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Abstract
We present the light field oracle, a novel mathematical con-
cept for the acquisition, processing and representation of
light fields. We first compute a hierarchical representation
from a set of sparse image samples using a combination of
wavelet transform and scattered data interpolation. The
light field oracle then progressively acquires image data
and selectively refines this initial representation. By com-
paring the actual input image to the corresponding recon-
struction from the wavelet pyramid, the oracle dynamically
decides on whether the new sample is needed and, if neces-
sary, inserts it into the representation. Our incremental
update scheme exploits the spatial localization of wavelets
and allows for highly efficient image decomposition. Like-
wise, image reconstruction for rendering is computed
locally in the wavelet domain and does not require a global
inverse transform. The wavelet hierarchy along with fast
decomposition and rendering operators constitutes a pow-
erful mathematical framework also amenable to compres-
sion.

1.  Introduction
Image based rendering (IBR) has received a lot of attention
since Light Field Rendering [13] and The Lumigraph [7]
have been presented in 1996. The beauty of IBR lies in its
power to represent scenes with rich and complex geometric
detail. Hence, much of the follow–up work suggested vari-
ous ways and tools to reconstruct efficiently approxima-
tions of the underlying Plenoptic function [1]—mostly
from a set of dense scene samples and sometimes in combi-
nation with rough scene geometry. As a result, the initial
concepts have been improved significantly in terms of stor-
age efficiency and reconstruction quality.

In spite of a few exceptions, however, relatively little
work has been devoted to the development of fast and
easy–to–handle data acquisition schemes for light field ren-
dering systems. In this paper, we present the light field ora-
cle—a novel mathematical concept for progressive,
hierarchical light field acquisition, representation, and pro-

cessing. The representation combines conventional wavelet
transforms with hierarchical scattered data interpolation
and works with any orthogonal wavelet and interpolation
filter kernel. In addition, we designed a set of local decom-
position and reconstruction operators which greatly reduce
the computational costs of incremental updates and render-
ing queries.

In IBR, in–core compression has proved to be of critical
importance for rendering, especially when not involving
geometric scene information. The challenge has been to
use as little memory as possible during acquisition and
reconstruction while still providing the necessary random
access to every single data item. Besides an effective com-
pression we could think of additional data reduction mech-
anisms, e.g. by intelligently selecting the data samples. The
Light Field Oracle implements such a smart sampling and
data selection scheme. The initial input to the oracle is a
small, incomplete set of images of a 3D scene, sampled at
irregular positions. The oracle’s task then is to decide—
automatically and progressively—whether or not to accept
a new image sample that was not included in the initial set.
Accepted images are incrementally inserted into the hierar-
chy, each of which incrementally refining the initial repre-
sentation, rejected images are discarded. The hierarchical
data representation itself as well as powerful view interpo-
lation properties are provided by an extended 4-dimen-
sional wavelet transform. This concept allows us to design
highly efficient local projection operators for data insertion
as well as local reconstruction operators for rendering. The
hierarchical representation in combination with the local
operators form the core contribution of this paper.

The implementation presented here is tested using syn-
thetic, pre–computed reference images: A stack of ray-
traced images of a 3D scene serves as source of input.
However, our concept can easily be adapted to a real–world
setting employing a hand–held camera as source of input,
given a decent tracking of camera position and orientation.

In the following section we discuss related work. We
then give a short overview of the entire system and its main
components. In Section 4 we present the employed param-
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eterization before we focus on the data representation in
Section 5 and the local operators in Section 6. We demon-
strate the performance of the method on various example
data sets in Section 7, followed by the conclusions. Finally,
we discuss work that is currently underway in Section 9.

2.  Related work

The notion of hierarchy can be found in several approaches
to light field representation and encoding. For instance, a
2–dimensional wavelet transform using Haar wavelets is
applied on a linearized representation of the Spherical
Light Fields in [10]. A very similar coding scheme for very
large volume data has been introduced before by the same
authors in the context of volume rendering [9]. Further-
more, fully 4-dimensional wavelet transforms are exploited
by several authors: In [17], a 4–dimensional, non–standard
Haar transform is utilized. The tree–like coding scheme
called Wavelet Stream is designed for progressive storage
and transmission of compressed light field data as well as
for interactive rendering by providing random access to
coefficients while decoding. Comparable work is presented
in [15] and also in [12]. The authors of [12] additionally
include detailed discussions about parameterization issues
in their setting, the choice of decomposition for higher
dimensional wavelet transforms as well as the choice of
wavelet basis functions. However, unlike the light field ora-
cle, all these approaches compute the hierarchy only after
data acquisition rather than as an integral part of it.

Numerous solutions have also been proposed for the
compression of light fields. A short but comprehensive
overview may be found in [17]. A detailed comparison
among block, reference and wavelet coders is given in [14].
It is well known that using even a rough approximation of
the scene geometry—the scene proxy [2]—can greatly
reduce the number of image samples needed. In purely

image based rendering systems, however, efficient repre-
sentation and compression is of greatest importance. The
question of appropriate sampling rates for anti–aliased
light field rendering, i.e. minimal Plenoptic Sampling rates,
is addressed in [5]. These rates can be found by analyzing
the bounds of the spectral support of the light field signal.
However, the question how to acquire this minimal set of
images has not been answered.

In [18], an adaptive acquisition method for lumigraphs
is presented. While it includes geometrical scene informa-
tion for improving the representation, it is confined to syn-
thetic scenes only. Image data acquisition of real world
scenes is described in [8]. A hand–held camera is used for
video data capturing whereas a structure–from–motion
approach is applied for image sequence calibration. Our
approach nicely complements on these methods in that it
provides a powerful framework for the underlying mathe-
matical representation. Furthermore, our scheme is inher-
ently progressive and efficiently refines the initial light
field representation.

The Unstructured Lumigraph Rendering (ULR)
algorithm [2] bridges between systems involving geometry
and systems that do not by describing a generalized repre-
sentation for many image–based rendering (IBR) algo-
rithms. It also bridges between structured input as used in
the original light field method and unstructured input first
dealt with in [7]. Furthermore, the method presented
in [11] introduces dynamic reparameterization as a means
to deal with significant, unknown depth–variation without
requiring approximate scene geometry.

3.  Overview

Figure 1 depicts the conceptual components of the light
field oracle. Besides acquisition, parameterization and the

Figure 1: Overview of the setup: acquisition, parameterization, viewing and core component.
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viewer, the core component is constituted by the hierarchi-
cal representation and by a set of operators.

The acquisition component provides input images com-
bined with the corresponding position and orientation
information of the real or virtual camera. In the current test
implementation, it delivers individual images from a stack
of previously raytraced images on demand instead of read-
ing from a live video stream. Thus, raytraced images are
available; they are not generated when needed as is done
in [18].

Secondly, a parameterization module is needed to trans-
form image and camera pose data into samples and their
corresponding 4–dimensional indices required in the light
field representation. We call a single sample a hyxel 1 each
of which consists of the four components . The
parameterization is discussed in Section 4.

The core component itself has two modes. In the first
mode, the approximation mode, a light field estimate is
computed by projecting an initial set of input images using
a given parameterization, as it is done in [7]. A quadra–lin-
ear basis function is employed for this projection. The
resulting light field is sampled only coarsely and may even
contain undefined locations, especially when the set of
input images is kept small. In order to improve on the esti-
mate, a hierarchical scattered data interpolation (HSDI)
based on the scheme in [7] is performed. However,
unlike [7], we modify the hierarchical computation to both
interpolate and build a wavelet representation. To this end,
we designed an extended multiresolution analysis (eMRA)
which is discussed in detail in Section 5.

Once an initial estimate is found, the core switches to its
second mode, the so called oracle mode. In this mode, aim-
ing at a progressive refinement of the estimate, the core
continuously grabs image samples with new information.
Before further processing new samples, the oracle decides
on the acceptance of each of them individually based on an
analysis of the difference between the input image and the
corresponding reconstructed view from the current camera
position. The required rendering procedure utilizes image
slicing, i.e. extraction of a 2D image slice from the 4D data
set. Accepted image samples are incrementally inserted as
parameterized data into the hierarchy, rejected ones are dis-
carded. Note that the oracle decides on each input image
individually. Hence, the oracle does not aim at finding the
optimal set of images representing a given 3D scene as a
whole, but rather at locally minimizing the amount of data
being acquired. As a result, the set of selected image sam-
ples will be dependent on the order in which the images are
being presented.

In order to minimize the computational cost of the pro-
gressive refinement we introduce local projection operators
which directly alter the extended MRA. For the purpose of
rendering, we designed local reconstruction operators.
Both, the local projection and the local extraction operators
are addressed in detail in Section 6.

The viewer component provides all necessary function-
ality concerning viewing and controlling of the system. It
mainly consists of a light field viewer and three special
viewers for 1) the current input image, 2) the reconstructed
image at the corresponding view point and 3) a 3D visual-
ization of the spatial camera position and orientation of
accepted and rejected input images in relation to the
object’s position. The latter viewer may be understood as
some sort of user guidance system by visualizing already
densely and still sparsely sampled locations around the
object of interest.

4.  Parameterization

We parameterize each viewing ray using a novel cylinder–
plane parameterization that is similar to the sphere–plane
parameterization presented in [4]. For every ray the inter-
section with a cylinder and a plane is computed. The cylin-
der circumscribes the object of interest centered at the
origin. The plane itself is centered inside the cylinder,
aligned parallel to the cylinder axis and orientated perpen-
dicular to the current viewing direction as shown in
Figure 2(a). The points of intersection, i.e. the viewing ray,
can be identified through the four parameters and

.

This parameterization has various advantages. Firstly,
when no geometrical information for depth–correction is
available, it is imperative to place the focal plane near the
object’s center such that the blurring artifacts for points
outside the focal plane are not intensified. Secondly, the
cylinder provides full horizontal coverage and thus, it is not
necessary to glue together two or even more parameteriza-
tion spaces for data capturing, as needed for the 2–
plane parameterization [7], [13].

1 According to the pixel (picture element) in 2D and the voxel (volume
element) in 3D we call an element in 4D a hyxel (hyper–volume element).
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Figure 2: Cylinder–plane (a) and sphere–plane
(b) parameterization.
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Moreover, compared to the standard 2–plane parameter-
ization, the cylinder–plane parameterization proved to be
considerably better and generally more homogeneous in
terms of the signal–to–noise ratio (SNR) on camera paths
that are important in our setting. This is demonstrated in
Figure 3 where the camera was moved horizontally on a
circular path over a range of . The angle is set to

where two light slabs [13] of the 2–plane parame-
terization are merged together at an angle of . As a
result, the peak in the red curve is caused by the presence
of two focal planes for the same view. The SNR was com-
puted as

with and denoting the signal energy of the noisy
signal and the pure noise, respectively. The signal energy
can be computed as the sum of squares of all discrete val-
ues, i.e. pixel intensities. Reconstructed views using either
parameterization were used as noisy signals whereas the
difference of a reconstructed view and the corresponding
raytraced reference image was used as the noise itself.

However, a minor difficulty of the cylinder–plane
parameterization might arise when moving the camera
away from the plane to an elevated position, but still
pointing to the origin. As is visualized in Figure 10, fore-
shortening effects will occur due to the perspective projec-
tion of the image plane onto the st-plane. For ray–based
insertion and/or extraction, this is not an issue since the
perspective is automatically taken into account. In our case
of image–slicing however, the perspective distortion must
be accounted for. Such a correction can be accomplished
by post–warping images reconstructed through slice
extraction, and pre–warping images prior to projection,
respectively. Both operations can be accomplished using
texture hardware for image resampling.

Using a different parameterization such as the sphere–
plane parameterization shown in Figure 2(b) foreshorten-
ing may be avoided. By having the plane centered in the
sphere’s origin and oriented perpendicular to the viewing
direction, perspective distortion does not occur. Future
work will experiment with the sphere–plane parameteriza-
tion as illustrated in Figure 2(b).

5.  Data representation

The data representation is a central part of the light field
oracle and crucial for its success. Most importantly, the
data representation has to handle an incompletely sampled
function. Furthermore, we have to manage adaptive sam-
pling densities since samples will be selected randomly. It
is also highly desirable that the multiresolution analysis is
kept independent of the particular filter kernel employed

since the approximation of the light field is significantly
influenced by the quality of the interpolation filter. More-
over, support for a progressive and efficient compression
scheme with high compression gain and random access to
every data element is important. Finally, we need fast local
operators for data insertion and reconstruction.

In order to meet all these requirements we designed an
extended multiresolution analysis (eMRA) as a unified rep-
resentation for sampling, interpolation, compression and
rendering. As in [17] we apply a fully 4–dimensional
wavelet transform with the additional freedom of an inde-
pendent projection/interpolation filter kernel as explained
below. For a comprehensive introduction to wavelet theory
we refer to [19] and [6]. As pointed out earlier, the core
module has two modes: an initial construction of a light
field estimate during the approximation mode (Section 5.1)
as well as the oracle mode for incremental refinement of
the initial estimate (Section 5.2).

5.1.  Construction of the extended MRA

Figure 4 shows the initial projection path, the subdivision
and fill–in procedure as well as the projection onto differ-
ence space. We use 1D notation for better readability
although we deal with a 4-dimensional set of hyxels. In
essence, a hierarchical scattered data interpolation similar
to the splat–pull–push scheme in [7] is applied to an initial
set of parameterized image data samples. The splat–pull–
push scheme combines methods to address the problems of
sparse sampling with large gaps of missing data [3] and
methods to deal with the non–uniformity of the sample
distribution [16]. Gaps of missing data will be denominated
with NO_DATA, as is indicated in the initial data vector
in Figure 4, for instance.

The major difference in comparison with the splat–pull–
push scheme is that we convert the hierarchy into a consis-
tent MRA while constructing it. To this end, we first push
the data down the hierarchy. Note that the corresponding
projection operator at level can be any interpolation
filter, e.g. a Gaussian or a B-spline, modified to recognize
and handle locations with missing data. In other words, this

180°
ϕ 0=

90°

SNR 20
ES

EN
------- 

 log⋅=

ES EN

z 0=

SNR [dB]

ϕ [rad]

10

30

20

0 1.51.00.5-0.5-1.0-1.5

cylinder-plane

2-planes

Figure 3: Comparison of the signal–to–noise ra-
tio (SNR) of different light field param-
eterizations.

c
0

P
m*

m

4 / 11



PACIFIC GRAPHICS CONFERENCE 2002 Proceedings / pp. 116–126 Sabine Coquillart, Heung–Yeung Shum, Shi–Min Hu (eds.)
operator is independent of the operator setting employed in
the wavelet transform. Subsequently, data is pulled up
again level by level using the wavelet subdivision operator

. During subdivision, an additional fill–in is performed
that eventually restores previously known data in each fre-
quency subband. The corresponding operator computes
the data at level from the estimate and from the
initial projection as shown in Equation (1) . Note that

 is non-linear.

(1)

The non–linearity of the setting requires to propagate
the changes down the pyramid to all each time a
new is computed. This is accomplished by standard
wavelet projection operators  and .

Figure 11 demonstrates the power of the hierarchical
interpolation scheme in a 2D setting. Image (a) shows the
original image. Image (b) shows a scattered version of the
original, sampled on randomly oriented lines such that only
25% of the input data is known. The interpolated image (c)
was generated using a 5–tap Gaussian. When applying the
scheme in 4D, interpolation is not only done in individual
image slices but also across neighboring slices.

The initial data vector is computed by projecting the
discrete light field function onto a chosen basis. This is
accomplished by the inner products of with the duals
of the basis functions as shown in Equation (2).

(2)

(3)

is given by the set of scattered samples at some
spatial positions within the support of . Inserting (3) in
(2) yields

In practice, we use samples of the primal functions
instead of the duals . In the case of the box basis,
applies. The duals of the quadra-linear basis—the basis we
are using for the initial projection—are more complex, but
the basis functions sufficiently approximate their own duals
for our purposes, assuming nearly orthogonal decomposi-
tions.

5.2.  Incremental update and oracle mechanism

After the initial construction of the pyramid we switch to
local operators which involve only the subset of wavelet
coefficients actually affected by an operation. Local opera-
tors for both update and rendering procedures are advanta-
geous for the reduction of the computational complexity.
They are discussed in detail in the next section.

An incremental update of the hierarchical representation
works as follows. Let be a new input image. We push
the new data item down the hierarchy exploiting the linear-
ity of the projection operator. This results in the recurrence
relation expressed in Equation (4), where denotes the
increment with respect to :

(4)

Thus, it is only the incremental information that
needs to be inserted. Note that this increment represents
local changes only.
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The oracle mechanism itself is rather simple. The core
module renders a view that corresponds to the position of
the new image data sample and computes the difference of
input and estimated view. Any difference represents miss-
ing information. If the difference fulfills a threshold crite-
rion it is fed into the eMRA using a local, incremental
insert operator. With being a new image data sample
and the corresponding rendered view, the differences

are decomposed using the insert procedure
shown in Equation (4). Of course, the same scheme is
applicable to get  by using  instead of .

6.  Local operators

As pointed out before, an important contribution of the
paper is to minimize the computational complexity of the
incremental updates by the use of local operators. In gen-
eral, the complexity of a wavelet transform for an n-dimen-
sional data set of size N in each dimension is of ,
which is in our case. Clearly, we need to avoid a
complete back–transform with subsequent re–transform
each time an update is to be performed. Consequently, we
constructed a local projection operator used for incremen-
tal updates as well as a local reconstruction operator used
for rendering. Since these operators basically work on 2D
slices through the 4D data set, i.e. images, they are of

 as discussed more precisely in the results section.

The progressive inverse wavelet synthesis (PIWS) [20]
represents a somewhat similar idea. The scheme allows for
random access and partial decoding of wavelet compressed
3D data, based on inverse lifting operations. Unlike our
local operators, the PIWS scheme is designed for recon-
struction, i.e. rendering, only.

6.1.  Concept

In order to build local operators for both projection and
reconstruction it is necessary to identify the affected subset
of coefficients. The wavelet functions’ properties of being
well localized both in frequency and time—in contrast to
the Fourier transform—allow us to do so. Due to the con-
struction of the basis functions using binary dilations and
dyadic translations of some single function [6], it is pos-
sible to calculate the region of support, given a specific
wavelet and an arbitrary position in the data field to be fil-
tered. This so–called active area is of the same dimension-
ality as the data field itself. Hence, the active region on
level of the decomposition pyramid for a filter of size

 centered at position  in 1D is bounded by

(5)

where  is the position of  on level  given by

The bounds defined in (5) may slightly vary depending
on a specific filter’s tap–size and how it is centered. In
addition, boundaries must be handled separately in case the
active region does not fully lie inside the data field. Our
implementation solves this problem by following the
wrap–around strategy. Hence, active regions may continue
at the opposite end of the data field.

Identifying these active regions depending on the type of
edit operation, e.g. update or extraction of a point, line,
etc., and depending on the dimensionality of the data field
allows for the design of local operators. Consequently,
these operators access only the relevant subset of all wave-
let coefficients affected by the operation and leave all oth-
ers untouched.

Due to the separability of the wavelet transform, a
multi–dimensional data field can be filtered following the
tensor product strategy, i.e. all dimensions can be trans-
formed independently, one after another.

For illustration, Figure 12 shows the active regions for a
local point update for a level-3 transformed data field in
2D. Note that although the wavelet transform is applied
separately to each channel of the input image they are
merged together again for visualization. The two rightmost
images show transformed representations of the left image,
using Daubechies–4 (middle) and Daubechies–8 wavelets
(right). The middle image visualizes the active regions for a
local update operation on all 3 levels for the yellow dot
located inside the yellow circle in the leftmost image. The
active areas in all frequency subbands on the first two lev-
els are clearly identifiable. The third level shows a wrap–
around situation in both the x- and y-direction. The right-
most image, on the other hand, shows the active regions for
a local update operation for the red dot inside the red circle
in the original image. The regions’ sizes are noticeable big-
ger compared to the middle image due to the double tap–
size of the Daubechies–8 wavelet in comparison to the
Daubechies–4 wavelet. Moreover, a wrap–around situation
in both directions again occurs on level 2. On level 3, our
algorithm automatically switches from local operators to
global filtering since the active areas cover the whole rele-
vant area.

6.2.  Local reconstruction operator in 4D

By placing the camera position at a sample location
on the cylinder, each image represents a 2D slice of the 4D
data set for fixed values. For ease of notation, we
will replace by and by . Furthermore, the st-plane
will be identified as the zt-plane. Hence, rendering a new
image means reconstructing a complete zt-plane for a fixed
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pair of coordinates. Quadra–linear filtering accord-
ing to the chosen projection basis can be accomplished
through reconstruction of the image slices corresponding to
the four neighboring sample locations of the desired
view point and blending them together using accumulation
buffer support of the graphics hardware.

When reconstructing a complete zt-plane, i.e. one
image, global filtering in both z- and t-direction must be
applied. Hence, active areas cannot be identified in these
two dimensions; they can only be recognized in the x and y
dimension for a given, fixed sample location . Thus,
the local reconstruction operator cycles through the follow-
ing steps, starting from the highest transformation level M:

(1) set current level to m = M;

(2) identify active areas in x and y,
according to the position of (x0,y0)
on the current level m;

(3) successively apply reconstruction filter
in x- and y-direction locally and in z-
and t-direction globally;

(4) set new current level to m = m-1;

(5) if (m <> 0) go back to step (2);

Figure 5 shows the above procedure for the last filtering
step from level 1 to level 0 for the sample location .
The zt-axis represents both the z and t dimension. Hence, a
line aligned to this axis corresponds to a zt-plane. It is
important to note that after filtering and downsampling, an
active area for local filtering in any dimension collapses to
the fixed, single coordinate at which the active area was
centered, as is shown in Figure 5 for both  and .

Due to the collapsing of locally filtered dimensions, it
is—in terms of computation time—crucial to first apply the
reconstruction filter in such a dimension. As is clearly visu-
alized in Figure 5, only one single zt-plane is left for fur-
ther processing after filtering in x and y has been
completed. Note that this applies only to the last step from
level  back to .

6.3.  Local projection operator in 4D

Whenever the oracle decides to insert new data into the
hierarchy according to Equation (4) in Section 5.2, it is a
difference image, i.e. a single zt-plane representing this dif-
ference image, that needs to be inserted incrementally into
the eMRA. This plane is interpreted as a second 4D data set

holding only one image sample. The projection of this sin-
gle plane for a given, fixed location works very
similar to the reconstruction procedure given in the previ-
ous section, as is shown below:

(1) set current level to m = 0;

(2) identify active areas in x and y,
according to the position of (x0,y0)
on the current level m;

(3) successively apply projection filter
in x- and y-direction locally and in z-
and t-direction globally;

(4) set new current level to m = m+1;

(5) if (m <> M) go back to step (2);

Figure 6 shows this projection procedure for the first fil-
tering step from level 0 to level 1 for the location .
Note that contrary to the local reconstruction operator, the
local projection does not collapse any active area. Instead,
it inflates active areas from one level to the next as is
already shown in 2D in Figure 12. Furthermore, active
areas do not actually exist until the first step from level 0 to
level 1 has been completed, as is demonstrated in Figure 6.
Active areas in any dimension get generated after filtering
in this dimension has been completed.

However, there is more than one possibility of how to
complete one level. The top row of Figure 6 shows the opti-
mal order, the bottom row shows a correct yet far more
costly sequence. It is obvious that after the x- and y-direc-
tions have been completed, many zt-planes instead of just
one need to be processed. Note that reordering of individ-
ual filtering steps at any level of the pyramid is allowed as
long as each step is fully completed.

Figure 7 illustrates the impact of a chosen order of the
individual filtering steps in each dimension on the compu-
tational cost in a 2D setting. An axis–aligned line is being
transformed to level 1 using a local projection operator.
Whereas in the bottom row the second step involves pro-

x y,( )

xy

x0 y0,( )

x0 y0,( )

x0 y0

Figure 5: Filtering steps for a local reconstruc-
tion of a zt-plane in 4D, when filtering
from level 1 to 0 at location (x0, y0).
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y
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m 1= m 0=
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x0
x
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x0x0
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x

z,t
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x dir. y dir. t dir.z dir.
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Figure 6: Filtering steps for a local projection of
a zt-plane in 4D, when filtering from
level 0 to 1 at location (x0, y0): optimal
(top) and more costly order of filtering
(bottom).
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cessing of a whole set of lines, it is only one single line for
the optimal order, as is shown in the top row.

A brief analysis of the computational cost additionally
emphasizes the importance of finding the optimal sequence
for the first transformation to level 1: When assigning the
virtual cost of for filtering an initially untransformed data
field in 1D, we get a total cost of for the transforma-
tion of a 2D data field to level 1. Due to subsampling of
each dimension we get a total cost of for the pro-
jection to level 2. On level 3, we get , and so on.
Summing up, we get the geometric series shown in
Equation (6),

(6)

where m denotes again the current level of transformation.
In an n-dimensional space and using the properties of geo-
metric series, we get

For , the transformation to level 1 is already half
of the cost of all following steps. In 2D, the first step
already dominates the overall cost. Thus, the higher the
dimensionality, the more we gain by efficiently handling
the projection to level 1.

7.  Results

The concepts presented in the previous sections have been
implemented and tested on various input data sets. We first
discuss the visual performance of the light field oracle on
two different sets of input images. We then comment on
results demonstrating the performance in terms of compu-
tation time.

Figure 13 shows the visual performance of our concept
of local, incremental projections. Image (a) is a recon-
structed view of a densely sampled light field, rendered
from the transformed data set using local reconstruction
operators. The light fields’ resolution was set to
and it was constructed from initially 250 input images, ran-
domly selected from a stack of 450 pre–rendered images.
The transformation was completed to level 1 using the
Haar basis. Image (b) is a raytrace of the same view as for
image (a). Note the differences in high frequencies
between those two images. We take the difference image
shown in (d) to perform an incremental update according to
Equation (4). We use the local projection operator and
again render the same view using the local reconstruction
operator which yields image (c). The resulting image is
hardly distinguishable from the input image (b). Note that,

in general, a lumigraph cannot reproduce its input
images [2].

Figure 14 demonstrates all processing steps and both
modes of the light field oracle. Image (a) shows a rendering
right after the initial construction of the light field. The set
of pre–rendered images for this light field contains 150
images in total. They are regularly distributed on a grid of
30 (horizontal) times 5 (vertical) sample locations, result-
ing in a coarse sampling in the vertical direction. 120
images were randomly selected for the construction of the
initial light field of resolution . The black regions
in the image show areas with missing data. Image (a) was
rendered using ray–based extraction. Image (b) shows the
result after the transformation of the light field into our
extended MRA as described in Section 5, seen from the
same viewpoint. The transformation was completed to
level 1 using the Haar basis. Note the ghosting artifacts of
neighboring views as a result of the hierarchical interpola-
tion procedure. Again, image (b) was rendered using the
local reconstruction operators. Images (c)–(e) demonstrate
the oracle mode, as already shown in Figure 13. Using the
difference image (e) for an incremental update according to
Equation (4) and again rendering the same view using the
local reconstruction operator results in image (d).

As stated in Section 6, the local operators are of
instead of since they basically work on images
instead of the 4-dimensional data set as a whole. A more
thorough analysis of the computational complexity yields a
total dependence of

(7)

where N denotes the size of those dimensions that need to
be filtered globally. According to Section 6 these are the z
and t coordinates and match with the image resolution. The
first term —with being the maximal level of trans-
formation—accounts for the depth of the transformation
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pyramid whereas the second term considers the width
of the wavelet filter.

As stated before, most of the computational work needs
to be done during the transform to level 1. Thus, the overall
complexity shows a weak dependence of the first term in
Expression (7), as is demonstrated in Figure 8. These tim-
ings were measured running our implementation on a sin-
gle MIPS R12k processor at 400 MHz. The left column
shows the timings measured for a data set transformed to
the maximal possible level for the Haar and the
Daubechies–6 wavelets. Each chart displays the time spent
for a full wavelet transform of the whole data set, for a
local reconstruction and for a local projection operation,
dependent on the resolution in x and y. The size of z and t
were both fixed at 64. The right column shows the values
for the same setting when only transforming to level 1
instead of the maximal possible depth. Firstly, the qua-
dratic increase in computation time for the global decom-
position is clearly recognizable. Secondly, the curves of the
local operators do not exhibit a similar increase in compu-
tation time. In case of a wavelet transform to the maximal

possible depth of the pyramid (left column) they behave
linearly which is reflected by the first term in
Expression (7). In case of a level-1 transform only, the
curves start to level off to near constant behavior at a cer-
tain point, as is additionally emphasized in the bottom chart
of Figure 9. This point can be identified as the size of x and
y where active areas for local filtering for a given wavelet
can be computed. Once this point is reached, the computa-
tion time is independent of the size of x and y as is stated in
Expression (7).

As already mentioned, Figure 9 (bottom) shows the xy
values at which the computation time for the local opera-
tors levels off to nearly constant behavior. The precise val-
ues are dependent on the tap–size of the respective wavelet,
as indicated by the second term in Expression (7). To give
an example, the Daubechies–6 wavelet starts showing a
constant behavior earlier than the Daubechies–10 wavelet
as a consequence of its smaller tap–size. For comparison,
the upper chart in Figure 9 gives the timings measured for
the full decomposition. The size of z and t were again both
fixed at 64. The transforms for each wavelet were com-
pleted up to level 1.

O w( )

Figure 8: Timings measured for different wave-
lets dependent on the resolution in x
and y: maximal possible depth of
transformation (left column) and
transformation to level 1 (right col-
umn). The size of z and t is set to 64.
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Our implementation accepts any orthogonal wavelet.
Moreover, the hierarchical scattered data interpolator
works with any reasonable interpolation filter.

8.  Conclusions

We presented the light field oracle—a concept for progres-
sive data acquisition and representation of light fields,
exploiting the benefits of a hierarchical scattered data inter-
polation scheme and wavelet coding, combined in an
extended MRA. Moreover, we introduced local operators
for both projection and reconstruction needed for the pro-
gressive refinement.

The results presented demonstrate the great potential for
a future real–world system using a hand–held camera. The
timing measurements show that interactive frame rates for
both local reconstruction and local projection operations
are feasible, as soon as the system runs on one of the most
recent GHz processors: Using a Daubechies–4 wavelet for
example, the time needed for a local reconstruction opera-
tion will come down to somewhat less than half a second.
Additional future work on smart caching mechanisms will
allow for just–in–time (JIT) rendering [20].

9.  Future work

Besides caching mechanisms, we will first of all address
compression by exploiting the potential for high compres-
sion gains of the wavelet transform in the near future. First
experiments with a custom data structure capable of storing
only the non-zero coefficients while still permitting random
access to arbitrary values—as needed by the presented
algorithms—show that compression ratios of 100:1 or
more are achievable, as is reported in [14], for instance.

In addition, we will include the sphere–plane parameter-
ization as is shown in Figure 2(b). In a real–world setting,
camera calibration and tracking will become important
issues to address.
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Figure 10: Foreshortening: (a) horizontal view at z = 0
and (b) perspective distortion due to an ele-
vated camera position.

(b)(a)

Figure 11: 2D example of the hierarchical scattered
data interpolation scheme: (a) original, (b)
scattered (75% unknown data) and (c) inter-
polated image using a gauss 5–tap filter.

(b) (c)(a)

Figure 12: Wavelet filter support for a local point up-
date in 2D: original image (left) and trans-
forms to level three, using a Daubechies–4
filter (middle) and a Daubechies–8 filter
(right).

Figure 13: Incremental update of the Falls light field using the local operators: (a) reconstructed view before
the update, (b) input image, (c) reconstructed view after the update and (d) difference image used
for the incremental update.

(a) (b) (c) (d)

Figure 14: The light field oracle modes demonstrated using the Truck light field: (a) view of the coarsely sam-
pled light field containing undefined data, (b) same view after the transformation to the extended
MRA, completing the first mode, (c) input image, (d) reconstructed view after the incremental update
and (e) difference image between estimate and input image used for the incremental update in the
oracle mode.

(a) (b) (c) (d) (e)
11 / 11


	The Light Field Oracle
	1. Introduction
	2. Related work
	3. Overview
	4. Parameterization
	5. Data representation
	5.1. Construction of the extended MRA
	5.2. Incremental update and oracle mechanism

	6. Local operators
	6.1. Concept
	6.2. Local reconstruction operator in 4D
	6.3. Local projection operator in 4D

	7. Results
	8. Conclusions
	9. Future work
	References

