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Abstract

We present an algorithm to convert point-sampled objects to textured meshes. The output mesh carries the geomet-
ric information present in the input model, while information about color and other surface attributes is separated
and stored in textures. The point cloud is triangulated and decimated so it adequately represents the object geome-
try. Using EWA splatting, we compute textures patches for all triangles in the mesh. In an iterative process, the size
of the texture patches is chosen adaptively such that texture information is preserved during the conversion. The
texture filtering capabilities of EWA splatting ensure that no texture aliasing occurs. Finally, the texture patches
are compiled into a texture atlas. Aside from colors, other surface attributes can be treated similarly. Normal maps
can be computed to allow for further simplification of the output mesh while maintaining high visual quality.

1. Introduction

Point-based surfaces are receiving growing attention from
the computer graphics community. Objects represented by
point-samples are often created by scanning real-world
objects [LPC*00, RHHLO02]. Avoiding triangulation, vari-
ous tools were developed to clean [WPK*04] and process
[PGO1] these models.

Point-sampled surfaces can be rendered in high quality
using EWA splatting [ZPBGO02], or raytracing [AA03]. The
Pointshop3D system [ZPKGO02] offers a large set of tools
to create and edit point-based objects, including free-form
deformation and texturing. Adams et al. [AWD*04] present
a system for painting on point-sampled surfaces.

Recently, methods for physically-based simula-
tion of point-sampled objects have been proposed
[MKN*04, PKA*05].

However complete, the set of editing and processing
tools for point-sampled surfaces pales to insignificance when
compared to the vast pool of mesh based tools and methods.
Commercial products like 3D Studio Max, Maya or men-
tal ray work on triangle meshes, and do not natively support
point-sampled surfaces.

Without appropriate tools for conversion, deciding for
point-sampled representation of an object is a one-way
street. An object’s geometry can be converted to a mesh
by triangulation. However, due to the dense sampling of the
surface with point-samples, the resulting mesh is of unnec-
essary size. This effect is aggravated since point samples
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also carry appearance attributes and are used to represent
textures. Thus, a high-frequency texture on a geometrically
simple point model will lead to a huge triangulation.

When working with meshes, the appearance of the ob-
ject is usually separated from the geometry by the use of
textures for surface attributes such as colors. Various ap-
proaches have been proposed that simplify meshes while
separating and storing the texture information present in the
original mesh. However, these approaches are designed for
meshes and do not consider sampling properties of point-
based surfaces, represented with attributes like surfel radii.
Varying sampling density, one of the main advantages of
point-sampled representations, further complicates the gen-
eration of textures for converted objects.

\We present an algorithm that converts a point-sampled ob-
ject to a textured mesh. We obtain an output mesh of reason-
able size by triangulating the point cloud and simplifying
the resulting mesh. Using the original point cloud, texture
patches are computed for each triangle in the output mesh.
In an iterative process, the patch size for each triangle is
chosen such that texture information present in the point-
sampled original is preserved during the conversion. The
texture patches are compiled into a texture atlas. Other sur-
face attributes, such as normals, displacements or extended
reflectance properties can be treated similarly. The conver-
sion process is guided by a geometry error controlling the
simplification and a texture error controlling the texture size.
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2. Related Work

Pfister et al. introduced layered depth cube (LDC) sam-
pling as a method to convert other representations to point-
sampled objects [PZvBGO00]. The naive approach to conver-
sion of point-sampled objects to textured meshes is using tri-
angulation and subsequent texture-preserving simplification
(see below). To our best knowledge, no work has been pub-
lished that specifically deals with converting point-sampled
objects to textured meshes.

The first step in our conversion algorithm is the triangula-
tion of the input point cloud. We use the Cocone algorithms
described in [ACDL02, DG03], which are based on global
delaunay triangulation. Other approaches to surface recon-
struction use implicit surfaces as an intermediate representa-
tion [HDD*92], or use local measures to find a triangulation
[BMR*99].

A lot of research has been devoted to the problem of mesh
decimation [SZL92, Hop96, GHI7]. In this context, meth-
ods for texture preservation have also been proposed.

Maruya [Mar95] implemented a texture preserving mesh
simplification method. He modified [SZL92] to retain color
information, which is then stored in a texture. The color in-
formation is interpolated linearly, hence the resulting texture
is prone to aliasing. Soucy et al. [SGR96] propose a similar
method, but use only nearest-neighbor sampling to compute
the output texture. The triangular texture patches are scaled
and sheared to half-squares of size 2". These half-squares
are then used to build the rectangular texture atlas.

Cignoni et al. [CMSR98] have proposed a general method
for computing textures for simplified meshes, without re-
quiring any knowledge on the simplification process. How-
ever, the computed textures are not sensitive to the input tex-
ture detail. Only simple texture filtering using supersampling
is implemented. Texture packing avoids scaling of the trian-
gles, while shearing is still allowed.

Hale [Hal98] proposes a different projection method,
avoiding discontinuity artifacts resulting from extreme sim-
plification. His texture packing method can handle arbitrary
triangles and thus avoids stretching or shearing of texture
patches.

These simplification methods are designed for meshes and
do not take into account the sampling properties of the sur-
faces. Varying sampling densities will lead to texture alias-
ing and loss of detail.

The remainder of this paper is organized as follows: Sec-
tion 3 gives an overview of the algorithm, and describes its
first two steps. The main part of the algorithm, the texture
generation, is treated in Section 4. The properties of the al-
gorithm are discussed in Section 5 before we present results
(Section 6) and conclude.

3. Algorithm Overview

Input to our algorithm is a point cloud P, with each sam-
ple carrying a number of attributes like color and normals,

point cloud ——

triangulate

triangle mesh

texture generation
texture packing

texture atlas

Figure 1: Algorithm overview. The input geometry is given
as a point cloud. First, the point cloud is triangulated and
simplified. Then, a texture patch is computed for each of the
triangles in the simplified mesh by splatting the input points
onto the triangle. Finally, these texture patches are compiled
into one texture atlas.

or more exotic surface properties. Such a surface sample is
called a surfel. From this input, we create a triangle mesh
which represents the object geometry, and one or more tex-
ture atlases containing the surface properties.

Our algorithm consists of four stages. In a first step, the
point-sampled object is triangulated. This leads to very small
triangles. Therefore, the mesh is decimated in a second step.
The resulting triangle mesh adequately represents the ob-
ject’s geometry. The core of the algorithm is the generation
of a texture for each of the triangles in the mesh. These tex-
tures are created by splatting the point samples onto the tri-
angle plane. We use EWA splatting [ZPBGO02] for texture
filtering in order to avoid sampling artifacts. Finally, a tex-
ture atlas is compiled from the individual texture patches.
Figure 1 illustrates the process.

The remainder of this section will give more details on
the triangulation and simplification steps, while the texture
generation is described in Section 4.

3.1. Triangulation

We use the Cocone and Tight Cocone algorithms
[ACDLO02, DGO03] for triangulation. Tight Cocone always
generates a watertight triangulation, while the Cocone algo-
rithm can be used to triangulate non-manifold surfaces. The
triangulations produced by these algorithms are generally of
good guality. In the presence of noise, a less susceptible tri-
angulation method, for example Robust Cocone [DG04], can
be used.

Since the sampling density on the point-sampled model
depends on both texture and geometry, the resolution of the
output mesh also depends on texture detail.
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3.2. Simplification

We aim to separate textures and geometry, hence the mesh
is simplified in a second step. This ensures that the mesh
resolution adequately represents the object geometry, and is
not influenced by the object texture. We use Garland and
Heckbert’s method [GH97] to simplify the mesh.

We only allow pair contractions along edges of the mesh.
This eliminates the possibility of connecting previously un-
connected parts of the mesh, which would cause problems in
the texture generation procedure.

Without changing the texture generation algorithm, the
triangulation and simplification steps can be replaced with
a different surface reconstruction method that is insensitive
to texture information present in the set of samples, for in-
stance using an implicit function as intermediate representa-
tion [HDD*92].

4. Texture Generation

The main part of our algorithm deals with the generation
of textures for the simplified mesh. We break the problem
down to individual triangles, and create a texture patch for
each triangle in the mesh. Since many small textures are not
practical, we pack them into one or more texture atlases that
can be used in rendering or further processing.

The patch rendering algorithm uses iterative refinement
to adapt the patch size to the detail present in the original
model. An error metric controls the texture size.

4.1. Patch Rendering

We use EWA splatting [ZPBGO1] to render the texture
patches. In addition to color information, this technique re-
quires that each surface sample either carries a normal and a
radius in case of circular splats, or tangent axes for elliptical
splats. If these additional attributes are absent, they can be
estimated from the neighborhood of the sample, for instance
using covariance analysis [PGK02, Pau03].

The viewing transformation for rendering is set up such
that the triangle T lies in the image plane, with its longest
side parallel to the screen-space x-axis. We use an orthogo-
nal projection to project the surfels onto the triangle plane.
Hidden surface removal is performed using visibility splat-
ting [PZvBGO00]. During splatting, those surfels whose pro-
jected splat ellipses intersect with the triangle and are not
discarded by the hidden surface removal, are added to a set
St.

The viewport size determines the resulting patch size.
Starting from the smallest possible patch size, we iteratively
enlarge the viewport until an error function E drops below
a user-defined threshold. The set St contains all surfels that
contribute to the texture. E measures the difference between
the color function reconstructed from these irregular point
samples, cs; (x,Y), and the piecewise linear function repre-
sented by the texture, t(x,y).
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The integral is approximated numerically by computing a
sum over all surfels in St, summing up local errors at the
projected surfel positions ps, weighted with the area of the
surfel, As. The local error e(-,-) is some metric for colors.
We use the metric induced by the L? norm. Note that in
general, cs; (px, Py) # Cs for a surfel s with projected co-
ordinates px and py. This is because the reconstruction of
the color function using EWA splatting is not interpolating.
Therefore, there can be pathological cases in which the er-
ror never drops below the user threshold, independent of the
resolution.

The iteration is terminated once the texture error is be-
low a threshold, or when a maximum resolution is reached.
The maximum pixel spacing s is a function of the minimum
distance between two surfels in St. Given a function that is
sampled at the surfel positions, we can safely resample it on
a regular grid with spacing no larger than s, independent of
the grid orientation.

S= %dmin (2
We can thus exit the refinement loop once the pixel spac-
ing falls below s. Note that this only defines an upper bound
on the texture resolution. Even if dy,in, is small, a small tex-
ture can be sufficient if the surfel color is constant. The same
holds if small surfels are used to represent a linear color gra-
dient. Most heuristics based on surfel count, surfel size or
color variance fail in these cases.

Upon completion of the rendering stage, we extract the
triangular texture patch from the framebuffer by rasterizing
the triangle. In order to avoid artifacts resulting from linear
texture interpolation over the triangle border, we leave a one
pixel boundary to all sides. The resulting texture patch is
stored and later packed into a texture atlas.

EWA Splatting can be used to interpolate any surfel at-
tribute, such as normals and depths. These data can be used
for normal mapping or displacement mapping respectively.
The procedure remains largely unchanged, however, a suit-
able local error function e(-,-) needs to be found for other
attributes. For normals, we use e(ns,nt) = 1 —(ns, nt).

4.2. Texture Packing

Once all texture patches are available, we compile them
into rectangular textures. We use the texture packing algo-
rithm described in [Hal98] with some minor modifications.
It packs triangular patches into bigger rectangular textures.
In the following, the modified algorithm is summarized.

The longest edge of the input triangles is always parallel
to the x-axis of the texture, with the remaining vertex above
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Figure 2: Result of the texture packing algorithm for the
dragon model. The texture was split into several 2" x 2™
pieces. 89% of the texture are used.

the longest edge. We will call this edge the base of the trian-
gle. The left and right angles adjacent to this edge are called
base angles a; and o respectively.

The algorithm creates rows consisting of triangles of simi-
lar height. To add triangles into a row, the best fitting triangle
within the height range of that row is chosen. Every second
triangle is mirrored horizontally, such that its third vertex
is below the base. The quality of a triangle with respect to
a row is determined by comparing the base angles of the
new triangle with the free base angle {3 of the last triangle in
the row. The triangle that minimizes min(|a; — B|, |or — B])
is inserted into this row. It is aligned with the bottom or
top border of the current row and mirrored vertically if
|oy — B| > |ar — B]. Then, the triangle is pushed as far to the
left as possible. New rows are started if no suitable triangle
can be found or if a row is full.

A pseudocode version of the algorithm is given in Ap-
pendix A. Figure 2 shows the result of this texture pack-
ing algorithm. Typically, 85% to 90% of the texture space
is used. Texture usage tends to be better if more and smaller
texture patches are available.

5. Discussion

The proposed method produces high-quality meshes and tex-
tures. As long as the geometry error during the simplification
steps is kept reasonable, the converted objects are visually
indistinguishable from the point-sampled originals. Only un-
der large magnifications, differences become visible.

Older approaches have used nearest neighbor interpola-
tion [SGR96] or linear interpolation [Mar95] to compute
texel values. No texture filtering is performed. Both [Mar95]
and [SGR96] determine patch sizes using the number of ver-
tices projected onto a triangle. This heuristic can result in
undersampling in regions of varying sampling density. If a
surface is densely sampled in a uniform color, or densely
sampled to represent a linear color gradient, determining the
patch size based on the number of vertices leads to large tex-
tures where only little information is present on the surface.
Our adaptive refinement works around these problems and
guarantuees an adequate sampling in all cases.

The resulting texture atlas is tightly packed and does not
introduce distortion artifacts due to scaling or shearing of
patches. However, it is not well suited for manual editing,

@ (b)
Figure 3: Cross-section of a saddle point. (a) Original ge-
ometry and simplified mesh around a saddle point. (b) No
texture is available for the lower part of the Triangle, the
texture in the upper part is distorted.

e.g. in a image manipulation program, since adjacent trian-
gles do not have neighboring texture patches in the atlas.

It is also not possible to use standard mip-mapping for
texture simplification without introducing severe artifacts.
Custom tailored mip-mapping can be performed by not only
dumping the texture patches at the computed optimal reso-
lution, but also at half and quarter resolutions. The texture
packing only needs to be carried out once, the smaller reso-
lution patches are then assembled in the same pattern as the
original resolution.

The triangulation of the input model is by far the most
time-consuming task. Since the texture generation does not
assume anything about how the mesh was acquired, it is pos-
sible to substitute any surface reconstruction algorithm for
the triangulation and simplification steps. An adaptive ver-
sion of [HDD*92] would be a suitable candidate.

5.1. Limitations

Due to the different interpolation schemes used for textures
and point samples, bilinear interpolation and EWA splatting,
respectively, the reconstructed color functions look slightly
different.

Note that a crucial prerequisite to the texture generation
is that the mesh adequately represents the geometry of the
input point cloud. Under extreme simplification, textures be-
come distorted and the resulting mesh can even contain tri-
angles that cannot be fully textured using the method de-
scribed herein. In these cases, the orthogonal projection of
the object surfels does not entirely cover the triangle area.
These triangles typically lie around points of negative Gaus-
sian curvature (see Figure 3).

If the surface deviates from the mesh at the mesh edges,
the orthogonal projections either ignore or repeat parts of the
surface. Figure 4 (a) illustrates the problem. This can cause
discontinuity artifacts when the mesh is highly simplified.

[Hal98] shows how the projection can be adapted to
gracefully handle these cases. He interpolates the vertex nor-
mals over the area of each triangle in order to find a pro-
jection normal for each point on the triangle. Applying the
interpolated normals projection to our approach, each sur-
fel has to be splatted using its own projection normal. This
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(b)

Figure 4: (a) Using orthogonal projection of adjacent
faces ignores or repeats parts of the original surface. (b) A
mushroom-shaped geometric detail is discarded by the sim-
plification algorithm. The resulting texture might show dis-
continuities along the contours of the mushroom.

method also greatly alleviates distortion artifacts, however,
finding the correct projection normal for a surfel is a non-
trivial optimization problem.

Another class of artifacts is introduced by surface patches
with depth complexity greater than one. Figure 4 (b) shows
an example. If a small part of the geometry is entirely dis-
carded by the simplification, the rendering will result in dis-
continuities along the contours. A remedy to this class of
artifacts is to use a parameterization of the original, as done
in [Mar95, SGR96]. It might be possible to modify a method
like [Mar95] to use EWA splatting for texture filtering. How-
ever, surfels have finite extent and cannot be attributed to
only one triangle. A method like this requires triangulation,
lacking the flexibility to change the mesh generation method.

6. Results

The conversion algorithm was implemented as a
Pointshop3D plugin. If desired, the intermediate result
after each conversion step can be inspected and the step
can be repeated with different parameters to manually
fine-tune the conversion. However, the only parameters
necessary for the conversion are an error bound for the
mesh simplification and a error threshold for the texture
generation.

Figures 5 and 6 show painted point-sampled models and
corresponding meshes generated using our algorithm.

As can be seen in Figure 5 (c), fine detail present in the
original model texture is preserved during the conversion.
Since the patch size is computed for each triangle individ-
ually, regions with low texture resolution in the input point
cloud only take up little space in the output texture. In this
example, the texture patch for the triangle containing the bee
is 5228 pixels large. The patch of an adjacent, blue triangle
which is of similar size occupies only 6 pixels.

Figure 6 (c) and (d) show surface sampling and triangles
for a part of the bunny model.

Figure 7 shows the effect of simplification on the result.
It is hard to visually distinguish between the original point
cloud and the output of our conversion algorithm using rea-
sonable simplification parameters. Only after further simpli-
fication of the mesh, simplification artifacts become visible.
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Model #Points  #Tris Textures  Times [s]

Igea 134345 11340 2.3MB/93% 258/15/35
Bunny 349989 10000 3.8MB/86% 511/28/104
Dragon 553619 30000 12.1MB/89% 907/37/444

Table 1: Statistics for converted models. The data shown
are: number of points in the input model, number of trian-
gles after simplification, number and size of (color) textures,
times for triangulation/simplification/texture generation (in
seconds).

Table 1 lists statistics for some models. Shown are the
number of points, the number of triangles in the output mesh,
the size and fill rate of the (uncompressed) output texture,
and the conversion times.

7. Conclusion

We have presented an algorithm to convert point-sampled
models to textured meshes. The generated textures adap-
tively capture the surface detail present in the point-sampled
object. Using EWA splatting, texture aliasing can be avoided
entirely. The resulting textured meshes can then be used
for further processing with mesh-based tools. Point-based
editing and mesh editing are no longer entirely separate
pipelines. Artwork in the form of point-sampled models can
be used in mesh-based programs.

Future research will focus on adapting the interpolated
normals projection to splatting in order to improve the qual-
ity of texture generation for highly simplified models.
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Appendix A: Pseudocode of Texture Packing Algorithm

This pseudocode version of the texture packing algorithm

expects a

set of triangle patches as input and writes them

into a rectangular texture.

Procedure packTextures

T: set of triangular patches
Ymin < 0
while not empty(T) do
h < max;eT height(t)
Th « {t € T : height(t) > h—Ah}
B+ 90°
mirrorH < false
while not empty(T,) do

t «arg min (g, min (Jo; — By, jor —B[)
mirrorV < |a; —B| > |or — B
if mirrorV then
mirror\ertical(t)
if mirrorH then
mirrorHorizontal(t)
if not insert(ymin,t) then
Ymin = Ymin+h

_ break )
mirrorH < not mirrorH

if mirrorV then
B+ o
else
B <~ Or

end while
end while

The function insert(-,-) inserts a triangle at the given y-
location. The triangle is inserted on the far right and pushed
as far left as possible. If there is not enough space in the tex-
ture to accomodate the triangle, the function returns false.

(© The Eurographics Association and Blackwell Publishing 2005.
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(a) (b)

(©)/(d)
Figure 5: A converted painted bunny-model. (a) Surfel model. (b) Textured mesh (10000 triangles). (c) Detail on the surface
of the surfel model, (d) on the textured mesh. The color texture patch for the triangle carrying the bee occupies 5228 pixels. A
neighboring blue patch occupies only 6 pixels.

@ (b) "

Figure 6: The (a) original and (b) converted dragon model. (c) Variable sampling density on the surface of the bunny model,
(d) corresponding wireframe in the triangle mesh.

Figure 7: Effect of simplification on the converted Igea model. (a) Top: surfel model, bottom: 11340 triangles. (b) 3420
triangles. (c) 446 triangles. (d) 30 triangles. Under higher simplification, discontinuitiy artifacts become visible.
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