
Painting by Feature: Texture Boundaries for Example-based Image Creation
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Figure 1: Representative results generated by our proposed example-based painting framework. The user selects line features in a reference
image (colored lines in the top left images, see also area features in the supplementary material) which are then immediately available as
brushes for applications such as real-time painting or vector image stylization. The respective top right images depict the user’s painted
strokes in order to create the images in the bottom row. These demonstrate various use cases of our method: (a) complex paintings from a
few input strokes, (b) painting detailed, structured boundaries, (c) watercolor, and (d) diffusion curve effects. Source credits: (a) Sarah G via
flickr, fzap via OpenClipArt; (b) Pavla Sýkorová, clipartsy; (c) bittbox via flickr, papapishu via OpenClipArt; (d) Anifilm, Pavla Sýkorová

Abstract

In this paper we propose a reinterpretation of the brush and the
fill tools for digital image painting. The core idea is to provide
an intuitive approach that allows users to paint in the visual style
of arbitrary example images. Rather than a static library of col-
ors, brushes, or fill patterns, we offer users entire images as their
palette, from which they can select arbitrary contours or textures as
their brush or fill tool in their own creations. Compared to previ-
ous example-based techniques related to the painting-by-numbers
paradigm we propose a new strategy where users can generate
salient texture boundaries by our randomized graph-traversal algo-
rithm and apply a content-aware fill to transfer textures into the
delimited regions. This workflow allows users of our system to in-
tuitively create visually appealing images that better preserve the vi-
sual richness and fluidity of arbitrary example images. We demon-
strate the potential of our approach in various applications including
interactive image creation, editing and vector image stylization.
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1 Introduction

Strokes and lines are the most elementary primitives in painting,
both digital and physical. The concept of drawing shapes by first
sketching and developing object outlines seems to be so natural and
intuitive that small children employ it just as artists and designers.
Any existing image editor implements the basic pencil and/or brush
tools, and various attempts have been made to enhance their expres-
sive power, such as the calligraphic brush or the textured stroke.
Similarly, vector-based image editors use paths as their most fun-
damental primitive for defining object boundaries.

Despite their importance for sketching the essential structures in an
image, basic brush- or path-based tools are generally less suitable
for creating a clean, richly textured image such as the ones shown in
Figure 1. Researchers have long been aware of this gap between a
sketch and production quality artwork, and proposed various ideas
for converting simple sketches into richer and more expressive im-
ages [Ashikhmin 2001; Hertzmann et al. 2001; Ritter et al. 2006;
Orzan et al. 2008].

Unfortunately, existing approaches often face difficulties when syn-
thesizing images with significant structure, as the underlying algo-
rithms generally focus on synthesizing 2D textured areas, without
explicitly enforcing consistency to the boundaries of a shape. Due
to the sensitivity of human vision to the contours of a shape [De-
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Figure 2: Comparison of results from different approaches given the input picture (a) as the reference image or feature palette. Result of
(b) Image Analogies [Hertzmann et al. 2001], (c) Painting with Texture [Ritter et al. 2006], (d) Synthesizing Natural Textures [Ashikhmin
2001], (e) our approach. Source credit: Wednesday Elf – Mountainside Crochet via flickr

Carlo et al. 2003], such artifacts become immediately apparent (see
comparison in Figure 2).

This paper addresses these issues by modeling an image as a set of
two classes of features. The first class corresponds to 1D line fea-
tures, such as important contours, boundaries of textured regions,
or salient strokes which are used to define the basic structure of the
image. The second class corresponds to 2D area features, which
represent regions filled with a nearly-stationary texture. For defin-
ing the visual style of an image, we introduce the metaphor of a
feature palette, which is simply one or more example images of a
desired visual style, in which the user selects line and area features
with which to paint.

Our main technical contribution is a novel algorithm for interac-
tive synthesis of line features (brush tool) which utilizes a ran-
domized graph traversal mechanism with multi-level blending to
seamlessly synthesize long, non-repetitive, textured strokes sam-
pled from shorter exemplars located in the input image. For the
transfer of area features (fill tool) we use a state-of-the-art texture
synthesis algorithm [Wexler et al. 2007] which avoids visible dis-
continuities between painted line features and textured areas while
preserving the richness of the original exemplar. Both tools pro-
vide immediate real-time feedback, making their use as intuitive
and easy as an ordinary brush or fill tool. Creating complex, visu-
ally appealing drawings with our system requires similar effort as
creating a simple contour sketch in standard drawing systems.

2 Related Work

One of the first works for example-based visual style transfer be-
tween images is the Image Analogies approach by Hertzmann et
al. [2001]. They discuss the possibility of example-based paint-
ing using the texture-by-numbers paradigm where an input image
is first segmented into multiple regions denoted by color labels,
and then these labels are painted to form a new segmentation from
which an output image is generated using their texture synthesis al-
gorithm. While this approach provides a high degree of freedom in
defining the output result, it is not clear how to support the concept
of 1D structure elements such as contours. Moreover, the algorithm
complexity prohibits an interactive implementation. A representa-
tive result is shown in Figure 2b.

Ritter et al. [2006] further extended Hertzmann et al.’s framework
and created a nearly interactive texture-by-numbers painting pro-
gram where boundary pixels are refined automatically thanks to an
additional energy term which takes similarity of source and target
boundaries into account. However, a key limitation is the lack of
user control in the boundary forming process and the technique is
inherently 2D, i.e., it does not preserve 1D structure of more com-
plex boundaries. Although pixels are transferred from locations

with a similar boundary shape, there is no guarantee that they will
produce a 1D, visually continuous strip since the source pixels can
be located on different parts of the boundary. Hence, the method
produces convincing results only for textures which have a nearly
constant cross-section profile along the boundary, producing arti-
facts otherwise (see Figures 2c and 9).

Similar considerations apply to other types of texture synthesis
algorithms [Ashikhmin 2001; Efros and Freeman 2001; Kwa-
tra et al. 2003] which partially also provide support for user
constraints [Kwatra et al. 2005; Lefebvre and Hoppe 2005],
or to matching based image manipulation and morphing tech-
niques [Barnes et al. 2009; Shechtman et al. 2010; Darabi et al.
2012; Yücer et al. 2012]. All these methods provide very flexible
and powerful tools for filling or transforming image areas with plau-
sible and visually rich textures, but at the same time they are inher-
ently 2D without support for user-controlled, real-time 1D structure
transfer from a reference image. See Figure 2d for an exemplary re-
sult with the method of Ashikhmin et al. [2001]. The synthesis step
of the above result took 130 seconds, whereas our approach pro-
vides instantaneous feedback.

Recently, other example-based content generation techniques have
been proposed, which create new images from a user-provided set
of examples [Risser et al. 2010; Assa and Cohen-Or 2012]. How-
ever, these techniques are non-interactive, global approaches which
specialize in rapid generation of a large number of variations of the
input image. Currently, the only way to influence this process is by
providing a different choice of input images.

Sun et al. [2005] demonstrated the benefit of giving the user control
over structural features in the context of image inpainting. They
apply a constrained patch-based synthesis on the user-provided line
features and then perform inpainting on the remaining areas that is
consistent with the previously synthesized structures. A restriction
of this approach is, however, that the employed energy minimiza-
tion provides no guarantees that the global scale visual appearance
of the synthesized line feature is consistent with its appearance in
the respective source image. In texture synthesis, this problem is
generally avoided by multi-scale synthesis, but this is not feasible
for linear features, as they eventually disappear on lower resolu-
tions. Using basic energy optimization without a sufficiently ex-
pressive model of a feature’s global scale, artifacts are often per-
ceptible as a periodic repetition of a pattern along the output path.
On a related note, another example for the benefits of contour-based
editing is the work of Fang et al. [2007] for detail preserving shape
deformation in images.

For vector graphics editing Orzan et al. [2008] presented a tech-
nique for creating smooth color transitions between spline paths
using Poisson interpolation. Due to the purely vector-based repre-
sentation this approach is not suitable for style and texture transfer



between images. McCann and Pollard [2008] broke new ground
by introducing a set of gradient-painting tools, designed to be fully
interactive and directly controlled by the user. Notably, they intro-
duce an edge brush tool which allows the user to select a path in
a source image and map it to a path in the result using gradient-
domain blending. Their approach, however, targets image editing,
and their simple copying procedure offers no variation during fea-
ture synthesis, resulting in clearly visible periodicity when the out-
put path is much longer than the source path of the respective fea-
ture. In our approach, we utilize a workflow similar to theirs for
image creation. However, we introduce a generative line feature
model to enable an indefinite extension of a source path without
such artifacts.

Related to our algorithm for feature transfer is the work on video
textures [Schödl et al. 2000]. They developed a feature model capa-
ble of extending a video in the temporal domain, where the frames
are represented as graph nodes and the edge weights represent a
measure of similarity between two frames. Thanks to this represen-
tation a permutation of video frames can be expressed as a low-cost
traversal through the graph. Their approach served as an inspiration
for our generative model for line feature synthesis. However, simi-
lar to the work of Sun et al. [2005] and McCann and Pollard [2008],
a direct application of their loop-based synthesis algorithm would
result in obvious periodic artifacts. Part of our contribution is a
synthesis algorithm that resolves these issues.

3 Our Approach

As briefly outlined in the introduction, our proposed approach is
based on three central concepts. The first two of them are the two
different types of features and their corresponding tools:

• A Line Feature is a one-dimensional feature representing an
arbitrary curvilinear structure, such as an edge or contour in
an image. It typically represents a boundary between two tex-
tured regions, but can also represent other structures such as
open curves. The corresponding tool for painting line features
is the Brush tool.

• An Area Feature is a two-dimensional image region which
has the semantics of a stationary texture rather than that of
a one-dimensional structural element. It typically represents
the interior of a region, but can also be a changing gradient or
any other area sample. Its corresponding tool is the Fill tool.

Both tools consist of two parts, namely a selection component
which allows the user to define a desired line or area feature, and
a synthesis component which efficiently renders the corresponding
output according to the user’s drawing.

The third central concept is the Feature Palette and it concerns the
feature selection process. Rather than requiring the user to define
features in a cumbersome manual way, the basic idea is to regard an
arbitrary set of input images as a palette for painting. The user may
simply pick one or more input images that reflect a desired visual
style, and our algorithm provides the selection tools to intuitively
and efficiently define line features as well as area features. Hence,
any image can be used as a palette for defining features.

These concepts are fundamentally different from merely building
a static database of strokes and fill textures, as commonly done in
vector image editors. In our process, the reference image(s) used
as the feature palette permit effortless definition of a dynamically
changing library of brushes and textures on-the-fly. This facilitates
the replication of the desired visual characteristics of the reference
images in one’s own creation. The user directly benefits from the
rich visual details that are typically present in paintings, drawings,

or photographs. Just as a painter can efficiently mix colors on a
physical color palette, our concept allows the user to intuitively
and interactively modify and refine a feature with instant feedback
while painting.

In the following section we describe how the respective selection
and synthesis components of both the brush and the fill tools for
line and area features are implemented.

3.1 Brush

Given a feature palette in the form of one or more input images, se-
lecting a line feature such as an object contour requires the user to
simply draw a path (the width of which can be manually adjusted)
approximately along the desired feature. Since precise drawing of
such a path would be tedious, our algorithm supports an assisted
selection that refines the user’s approximate path and aligns the se-
lection closely to the actual line feature in the image. We found
that a relatively simple gradient-based approach is reasonable in or-
der to provide an active support for the user at a sufficient accuracy
for our algorithm, hence we based our path selection on an Active
Contours approach [Kass et al. 1988]. A considerable advantage of
this approach is that it runs in real-time and gives an instant result,
which is an important requirement for a responsive and intuitive
user interface.

Once the user has defined a path over a line feature we require a
real-time algorithm that synthesizes a corresponding line feature in
the output image as the user paints. In the field of texture synthe-
sis it has long been understood that synthesizing a larger texture
simply by tiling a smaller example texture produces sub-optimal
results. Thus, in order to avoid periodicity, some texture synthesis
techniques [Lefebvre and Hoppe 2005] deliberately introduce a de-
gree of randomness instead of tiling the texture. Likewise, our goal
is to reproduce the local visual characteristics, i.e., the look and feel
of a line feature, without introducing noticeable artifacts on a larger
scale. Approaches such as [McCann and Pollard 2008] exhibit pe-
riodicity and cannot explicitly avoid visible discontinuities when
stroke endpoints meet. We present a new algorithm for randomized
line feature synthesis based on a graph model of the input feature
to resolve such issues.

As line features such as object contours are one-dimensional and
oriented, we found the graph formalism introduced by Schödl et
al. [2000] for manipulating video over time to be an excellent basis
for feature synthesis. We sample an input path at equidistant points
and consider the direction of the feature to be equal to the direc-
tion of the user’s stroke. Treating these samples as graph nodes and
using the direction of the feature for ordering, we define a com-
plete oriented graph, where the weight w(i, j) of an oriented edge
between nodes i and j is given by a dissimilarity measure. Specif-
ically, we define w(i, j) = SSD(p(i), p(j − 1)), where p(i) is a
square image patch centered on the ith sample and aligned with the
path direction, and SSD denotes the sum of squared differences be-
tween patches (see Figure 4). We use SSD(p(i), p(j − 1)) rather
than SSD(p(i), p(j)) because traversing to a consecutive sample
on the original feature should be free, and thus w(i, i + 1) should
be equal to zero. The size of the patch is a user-configurable pa-
rameter which is intuitively equivalent to brush width and can be
adjusted interactively. A walk in such a graph represents a permu-
tation (with repetition) of input samples, which, if transferred to
equidistant samples on a different path and rendered, would yield a
variation of the source feature. The total cost of this walk is then
representative for the amount of discontinuities in the output.

Given this representation the main concern is how exactly to gener-
ate a walk through this graph to satisfy all of our requirements and



Figure 3: A comparison of different walk synthesis approaches. Top to bottom: looping, dynamic programming and our randomized graph
traversal. Note that finding the cheapest walk of a given length by dynamic programming provides the optimal result with respect to discon-
tinuity cost, but it does so by finding the cheapest loop in the graph and thus introduces periodicity. A randomized approach, though not
optimal with respect to the global cost, provides a more natural, varied look without noticeable visual discontinuities.
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Figure 4: A feature graph in matrix form, with color coded weights
of the similarity between two patches p(i) and p(j). Blue rep-
resents a low matching error and hence a high similarity, while
red represents a low patch similarity. Note that the matrix is not
square, as there can be no edges into node 0, nor is it symmetric,
as w(i, j) = SSD(i, j − 1) rather than SSD(i, j).

constraints. A potential solution could be to employ path optimiza-
tion techniques that are capable of minimizing discontinuity along
the entire path, e.g., by dynamic programming or belief propaga-
tion [Sun et al. 2005]. However, in our application such an approach
is not suitable for several reasons. First, if the desired length of the
walk is long compared to the input path provided by the user, the
optimal solution degenerates to simply cycling the cheapest loop,
as illustrated in Figure 3. Furthermore, it is not guaranteed that,
when the user changes the desired length of the walk, the new op-
timal solution will have the previous one as a prefix. However,
when a user draws a path with the brush tool, this corresponds to
a permanent modification of the walk length. Failing to consider
this inevitably causes the output stroke to flicker during interac-
tive painting, as it would have to be re-rendered to remain optimal
under changing stroke length (see supplementary video). In con-
trast, a random walk, such as the one employed by Schödl et al.
[2000], can generate a randomized solution, but provides no guar-
antees on the discontinuity cost and assigns a non-zero probability
to the highest-discontinuity edges.

So rather than finding a globally optimal walk of a given length or
randomly traversing the graph, our synthesis algorithm generates
a randomized, low-discontinuity walk of at least a given length.
Instead of randomly picking the next outgoing edge to traverse,
we pick the next goal node to visit. To minimize the discontinu-
ity cost, we do not automatically traverse the edge connecting the
two nodes, but instead apply Dijkstra’s algorithm [Dijkstra 1959] to
rapidly find the optimal path connecting the two nodes and append
this path to the current walk. We repeat this process, starting from
the previous goal node, until the desired length is achieved.

Although the length of the path, as measured in the number of nodes
traversed, is not easily predictable, we may simply continue con-
necting paths until we obtain a walk of at least the desired length,
picking each next goal node randomly. This ensures that any visual
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Figure 5: An illustration of blending on jumps. (a) A colorized
indication of the jump strip and blending area. (b) Synthesized fea-
ture without blending. (c) Synthesized base layer without blend-
ing. (d) Synthesized detail layer. (e) Synthesized base layer with
extrapolation-blending. (f) Synthesized base layer with extrapola-
tion blending and added detail.

element present in the input will be rendered from time to time,
without enforcing any particular ordering and keeping the visible
discontinuities to a reasonable minimum. One could also conceiv-
ably bias the walk to a certain sub-portion of the feature by a more
sophisticated selection of goal nodes, although we have not found
this necessary for our application.

In order to render the selected feature onto a user-provided path, we
sample the output path at equidistant intervals, generate a walk and
assign to each of the output samples an input sample represented
by the node at the given position in the walk. Having thus estab-
lished correspondences between output and input samples, we use
a simple piecewise-rigid mapping based on the Voronoi diagram of
the output samples to determine the output pixel values for pixels
within the stroke width of the sketched path. The process is illus-
trated in Figure 6.

Discontinuities in the synthesized path may occur when an edge
with greater cost has to be traversed. To mask these without sacri-
ficing fine details, we employ a decomposition-blending approach
inspired by Burt and Adelson [1983]. Whenever consecutive out-
put samples are created by a jump between non-consecutive input
samples we perform local blending. To that end, we use a bilateral
filter to decompose the source image into a base layer and a detail
layer, as proposed by Durand and Dorsey [2002]. We then extrapo-
late the base layer values for each of the consecutive sub-sequences
around the jump point and blend them, re-applying detail immedi-
ately thereafter, as illustrated in Figure 5.

3.2 Fill

The second tool, which we provide for efficient filling of image
areas between line features, is essentially a paint bucket tool as
present in all common image editors. However, analogous to the
brush tool, our concept is to provide a fill tool that fills image ar-
eas with texture selected by the user from the image serving as the
feature palette, maintaining consistency with the existing line fea-
tures. Selection of area features is more straightforward than for
line features as no specific structural properties have to be observed
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Figure 6: Line feature mapping process. (a) Both the source path and the target path are sampled (respectively, the green and the red circles)
at equal intervals. (b) We map the walk to the target path, determining for each target sample the corresponding source sample. (c) We
determine the color of a pixel (gray square) in the target by finding the nearest target sample and (d) taking the value at the same relative
position in the corresponding source patch (colored squares, arrows denote patch orientation).
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Figure 7: Given a source image (a), results of the fill tool with (b)
and without (c) pre-rotation. Note how the orientation of the stripes
on the synthesized linear features guides the orientation of the gen-
erated texture in (b). When rotation is not taken into account visible
artifacts might appear, as shown in (c). Source credit: Hrishikesh
Premkumar via flickr

during the selection. Hence, in our implementation the user can
simply specify any arbitrary region in an image and use it as an
area feature.

Unlike a simple flood fill tool, we have to consider the bound-
ary conditions of the region being filled to avoid inconsistencies
with existing image content like line features. Thus, rather than
formulating the task of the fill tool as a simple texture synthesis
problem, we treat this step as a content-aware fill which respects
boundaries of the filled area and implement the method of Wexler
et al. [2007] in combination with PatchMatch [Barnes et al. 2009]
for fast nearest-neighbor search.

A multi-scale optimization approach [Wexler et al. 2007] is critical
for our purpose, since the areas to be filled span over the majority
of the canvas and treating the fill synthesis locally would lead to
undesired artifacts and would furthermore be prone to introducing
unwanted repetitions in the generated texture. To improve the qual-
ity and visual appearance of the result, we also perform the nearest-
neighbor search across a limited range of rotations (see Figure 7).
However, rather than computing the transformed source patches on
the fly, we found that the combination of pre-rotating the source
selection and performing the nearest-neighbor search using only
translations to be significantly faster, which is crucial for instant
results and direct visual feedback to the user.

4 Applications and Results

An overview of our image creation workflow is illustrated in Fig-
ure 8. Due to its generality, our approach can be utilized in several
applications. One of our primary applications is vector image styl-
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Figure 8: Image creation workflow overview. (a) Annotated source
image: two area features delimited by the pink and green outlines,
and three line features indicated by the red curves and the numbers.
(b) Line feature synthesis along user-specified paths from the cor-
responding numbered line features of (a). The pink and green areas
represent the parts to be filled in by the corresponding area features
of (a). (c) Final result after texture transfer by the fill tool. Source
credits: Alessandro Andreuccetti via deviantART, mrjive via Open-
ClipArt

ization: the user selects line and area features in an example image
and then assigns them to paths and fill shapes of a vector image,
respectively. Figure 1 shows representative results created using
our framework. Note that, unlike previous texture-by-numbers ap-
proaches, we can handle open paths and strokes. The result images
are visually consistent on a local as well as a global scale and rep-
resent the visual style of the respective reference image (see com-
parison with previous texture-by-numbers approaches in Figures 2
and 9). Figure 1a illustrates that even a simple vector image com-
posed of a very limited number of input strokes (three in this exam-
ple) can lead to richly textured image. In Figure 1b please note
the quality of the knitting stitches generated by our line feature
synthesis at the boundaries of the different pieces of the penguin.
Our approach can also be applied for watercolor painting, as shown
in Figure 1c. This challenging task usually requires sophisticated
techniques [Curtis et al. 1997; DiVerdi et al. 2013], whereas our
approach can solve it without additional specific tools.

An interesting characteristic of our approach is that when paths in-
cident to a region have different “inside colors”, the region inpaint-
ing algorithm attempts to diffuse the difference between their colors
over the intermediate region, producing results similar to Diffusion
Curves [Orzan et al. 2008], with no additional creative effort on
the artist’s part. For example, in Figure 1d, note the diffusion ef-
fect along the cat’s whiskers and mustache (see also a more com-
plex example of texture transitions in Figure 15). A comparison



Figure 11: Example of different stylizations with the same stroke input (top left). Source credits (left–right): Martouf via OpenClipArt; Joe
Shlabotnik via flickr; Andrea Garcia via flickr; Pavla Sýkorová; Alessandro Andreuccetti via deviantART

(a) (b) (c)

Figure 9: Comparison with Painting with Texture [Ritter et al.
2006]: (a) source image, (b) result of Painting with Texture, (c) our
approach. Note how our method better preserves the important vi-
sual charcteristics of the source image thanks to explicit treatment
of line and area features. Source credit: Pavla Sýkorová

with Diffusion Curves is available in Figure 10. Both approaches
took a comparable amount of artistic effort to produce, however,
our method enables the transfer of the visual style and richness in
terms of texture from a reference image (see Figure 1d). Additional
examples of different stylizations given a single user-drawn sketch
are shown in Figure 11. In this stylization scenario, the user simply
needs to select the line and area features they would like to incor-
porate in the result image.

Another exciting application is interactive example-based painting.
We have developed a painting program which implements just the
two tools we introduce in this paper, deliberately leaving out extra
functionality of sophisticated image editors, in order to show that
our painting-by-feature approach alone enables the creation of ap-
pealing results. In our paint program the user may select features
from source images and transfer them to manually indicated posi-
tions, using the same mode of interaction as with the common brush
tool and fill tool known from consumer image editors. A represen-
tative interaction with our application is shown in Figure 8 as well
as in the supplementary video. It demonstrates that our application
is simple to use, and that the user can create and edit paintings in-
teractively with instantaneous feedback. Visually appealing results
can be created in a short time, typical editing session for the re-

(a) (b)

Figure 10: Comparison of vector stylization techniques. (a) Result
of Diffusion Curves [Orzan et al. 2008]. (b) Our result. Source
credit: Pavla Sýkorová

sults shown here were in the order of 1–3 minutes depending on the
level of detail the user wishes to incorporate. Additional results are
shown in Figure 12. Further potential applications of our method
include image editing scenarios such as inpainting. We refer read-
ers to the supplementary material for a representative result.

4.1 Limitations

While our approach has proven suitable for its intended applications
and produces high quality results, some limitations do apply.

We do not explicitly handle possible intersections and junctions of
line features which may produce visually disturbing transitions in
the output image (see Figure 13). These artifacts can partially be al-
leviated by proper reordering of strokes or using some sort of blend-
ing, e.g., min/max-blending (GL MIN or GL MAX blending mode
in OpenGL) or decomposition-blending described in Section 3.1.
Nevertheless, in future work one may consider to incorporate sup-
port for intersections and junctions directly into the synthesis algo-
rithm to automatically produce seamless output.

We also deliberately do not check for consistency of the selected
features to give the user full control and artistic freedom. As a
consequence the user can select a line feature that is not aligned



Figure 12: Additional results of interactive example-based paint-
ing. Left: source image, Right: result obtained by our approach.
Source credits: Paul Cézanne (top); Vincent Van Gogh, Kaldari via
Wikimedia Commons (bottom)

with an actual linear structure in the input image or one that is
composed of incompatible structural elements. In these cases our
algorithm might produce visually displeasing transitions (see Fig-
ure 14). Similarly, selection of an area feature which is incompati-
ble with already drawn line features may also lead to an erroneous
result (see Figure 15). An alternative scenario to investigate in fu-
ture work is that the feature selection process could be assisted by
interactive image segmentation tools [Li et al. 2004], or by identi-
fication and removal of inconsistent sub-elements, e.g., by texture
analysis [Todorovic and Ahuja 2009].

To prevent periodicity, our approach runs a randomized graph walk
(see Section 3.1). The disadvantage is that variations might exist be-
tween results for a same source image and input sketch. Additional
results available in the supplementary video (elephant sequence)
show that these variations are very limited, on a local level and vi-
sually consistent with the other results on a global level, which is
sufficient for our target applications.

5 Conclusion and Future Work

We have presented a feature-based image creation model, useful for
vector image stylization as well as manual image creation and im-
age editing. Our flexible example-based stylization approach blurs
the traditional border between the vector- and pixel-worlds, allow-
ing us to create and manipulate images while preserving the visual
richness of a chosen artistic style. We eagerly anticipate the new
possibilities in artwork creation that this approach opens to artists,
and are curious about the results which may be achieved by com-
bining this simple, yet powerful basic approach with other existing
creation and editing tools.

An interesting direction for future work is the automation of the
entire process of vector image stylization. This could be achieved
by automatically detecting features in a source image and assigning
them to paths and regions of a vector image based, e.g., on similar-
ity of fill and stroke colors to the colors in the feature.

We could also modify our algorithm to automatically synthesize
the fill for areas between user-defined curves while they are being
drawn, producing an example-based variant of the Diffusion Curves

(a) (b) (c)

(d) (e) (f)

Figure 13: Self intersections of a brush stroke (a) or junctions
of multiple linear features (d) may produce visible discontinuities.
These can be alleviated by proper stroke reordering (e), min/max-
blending (b) or decomposition-blending (c,f).

Figure 14: The user can select linear features which may not be
fully in line with our requirements on 1D structure (red and green
curves in the left inset), potentially producing unintended results:
the green curve generates white vertical sewings (top) and the red
curve yileds a completely erronous result (bottom).

by [Orzan et al. 2008]. However, even though line feature synthesis
is fast enough for interactive editing, this would require a real-time
fill synthesis algorithm (even with PatchMatch, [Wexler et al. 2007]
is too slow to permit this) and a similarly rapid image analysis tool,
which would determine source areas for output regions based on
the input strokes and other features present in the input in order to
keep the output visually consistent.

Similarly, used in conjunction with an automated image decompo-
sition algorithm such as [Guo et al. 2007], one could reduce an in-
put image into a sketch representation and a representative subset of
features in order to re-synthesize the original image at a later time.
Thus one could facilitate image compression with a configurable
loss of information (see supplementary material for an example of
image decomposition based on our method).

For the brush tool, it might be possible to investigate whether the
input line feature contains any underlying dimensionality (such as
texture orientation), and modify our formulation so that the output
is constrained by this underlying parameter, determined, e.g., by
pen pressure. Similarly, the introduction of control maps for area
features could play a role for synthesis.
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(a) (b) (c) (d) (e)

Figure 15: An example output of our fill tool when synthesized strokes contain incompatible structures (a). When the whole source image (b)
is taken as an example (red and blue rectangles) the fill tool produces pleasing transitions (c). However, when an incompatible portion (red
and blue areas) of the source image is selected (d), the algorithm can produce erroneous results (e). Source credit: Carl Wycoff via flickr
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