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ABSTRACT

The adaptivity of intelligent tutoring systems relies on the
accuracy of the student model and the design of the instruc-
tional policy. Recently an instructional policy has been pre-
sented that is compatible with all common student models.
In this work we present the next step towards a universal
instructional policy. We introduce a new policy that is ap-
plicable to an even wider range of student models including
DBNs modeling skill topologies and forgetting. We theoreti-
cally and empirically compare our policy to previous policies.
Using synthetic and real world data sets we show that our
policy can effectively handle wheel-spinning students as well
as forgetting across a wide range of student models.

CCS Concepts

eApplied computing — Computer-assisted instruc-
tion; Computer-managed instruction; Distance learn-
ing;

Keywords
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1. INTRODUCTION

Intelligent tutoring systems offer a customized learning ex-
perience, since they adapt the difficulty level and task se-
lection to the knowledge of the student. This adaptivity is
based on two main components: a student model predicting
if a student will answer a specific task correctly and a control
algorithm implementing the instructional policy. Therefore,
the learning outcome depends on the design of the instruc-
tional policy as well as the accuracy of the student model.
A lot of research has be done to construct student mod-
els that are able to accurately represent student knowledge.
A wide-spread approach for modeling student knowledge is
Bayesian Knowledge Tracing (BKT) [10]. Traditional BKT
has been improved using individualization and clustering
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techniques [23, 30, 31, 29, 24]. Latent factors models such as
the Additive Factors Model (AFM) [5, 6] and Performance
Factors Analysis (PFA) [25] are also popular for modeling
student knowledge. Furthermore, dynamic Bayesian net-
works (DBN) [14, 13, 4, 9] have been used to model the
goals, engagement states and knowledge of a student. Re-
cently, DBNs modeling skill topologies have been introduced
and were shown to outperform BKT regarding prediction ac-
curacy [16].

Much less attention has been paid to the development
of efficient instructional policies. One important task in the
design of an instructional policy is the optimization of teach-
ing sequences [21, 22, 8, 26, 20]. Another essential task is
the design and analysis of algorithms deciding when to stop
teaching a certain skill to a student. "When-to-stop’ poli-
cies are essential to avoid over-practice or under-practice of
a skill [5, 19]. A common choice for BKT is the mastery
threshold policy [10], which stops when the predicted prob-
ability that a student has mastered a given skill is above a
certain threshold. However, the mastery threshold can be
seen as a parameter that controls the frequency of false pos-
itives and false negatives (compared to true mastery) [19]
and therefore the performance of the policy depends on the
choice of this parameter. Furthermore, the mastery thresh-
old policy is not suitable for other popular models such as
AFM or PFA. Other work detected the moment at which
learning occurs using machine learning techniques [2], how-
ever, no specific policy was created. Teal is a metric for the
evaluation of student models [12], which implicitly includes
a stopping criterion. This stopping criterion is threshold-
dependent and was not turned into an instructional policy.
The predictive similarity policy [28] defines the stopping cri-
terion in a model-independent way and uses a simple func-
tional interface. Therefore, this ’when-to-stop’ policy can
take any predictive student model as an input. However, as
we will show later, it exhibits problems with wheel-spinning
students [3] and cannot be applied to recently introduced
student models [16].

In this paper, we introduce the predictive stability policy,
a new instructional 'when-to-stop’ policy inspired by [28].
This policy can take any predictive student model as in-
put. Our policy can be applied to a wider range of student
models (such as for example DBNs modeling forgetting [16])
than existing 'when-to-stop’ policies [10, 28]. Furthermore,
the policy is robust to noise in the data set such as wheel-
spinning students. In addition we augment our policy with
a success criterion, making it a 'when-mastery-is-achieved’
policy. As opposed to previous mastery criteria [10], our suc-



cess criteria can be used for any probabilistic student model
with a limited memory. Using synthetic data, we provide
an extensive analysis of the properties of our new policies
when applied to popular approaches for student modeling
(AFM, PFA, BKT). We demonstrate that our new policies
achieve similar results as the predictive similarity policy for
well performing students, but that our policies are able to
identify wheel-spinning students. We verify the results of
our synthetic data experiments on three real-world data sets
and show that the predicted behavior can be replicated. Fi-
nally, we explore the possibility to apply our policy to DBNs
modeling skill topologies and forgetting. Our results demon-
strate that the newly developed policies deliver meaningful
results for these models.

2. STUDENT MODELS

In this section, we give a short overview of the common
student models, which we later use for our experiments.

Bayesian Knowledge Tracing. BKT [10] models stu-
dent learning by using one Hidden Markov Model (HMM)
per skill. The latent variable L of the model is binary and
indicates whether a student has mastered the skill in ques-
tion. The observed variable O represents the binary task
outcomes, i.e. correct or wrong answers to tasks associated
with the modeled skill. The BKT model can be specified us-
ing five parameters. The emission probabilities of the model
are defined by the guess probability pe of correctly apply-
ing an unknown skill and the slip probability ps of making
a mistake when applying a mastered skill. The probability
pr of a skill changing from the unknown to the known state
and the probability pr of forgetting a previously known skill
define the transition probabilities of the model. The initial
probability of the model is denoted by the probability po
of knowing a skill a-priori. In traditional BKT, forgetting
is assumed to be zero pr = 0. Given a sequence of obser-
vations O1 = 01,02 = 02,...,07 = or the learning task
amounts to estimating the five parameters by maximizing
the likelihood function

> p(Os,...,0r,L,..., Lrlpo, pr, ps,pa), (1)
L

where we marginalize over all the hidden states L. Max-
imization of the likelihood is relatively simple and is com-
monly performed using expectation maximization [7], brute-
force grid search [1] or gradient descent [31].

Dynamic Bayesian Networks. DBNs offer the possibil-
ity to represent different skills jointly in one model [16]. The
latent variables of the model are again binary and indicate
whether a student has mastered a given skill. Similarly to
BKT, these latent variables are inferred based on binary
observations, i.e. correct or wrong answers to tasks associ-
ated with the given skill. In contrast to BKT, DBNs also
model the dependencies between different skills. The num-
ber of parameters depends on the number of represented
skills and on the structure of the graphical model. The
parameters of the network can again be associated with
guessing, slipping, learning and forgetting. By modeling
the topology and dependencies between skills DBNs have
been shown to outperform BKT models in prediction of the
next task outcome [16]. Given a sequence of observations
01 = 01,02 = 02,...,07r = or the learning task amounts
to estimating all initial, transition and emission parameters
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by maximizing the likelihood function

> " p(O1,...,0r,Ly,..., Lr|6), (2)
L

where we again marginalize over all hidden states L. Note
that since there are multiple dependent latent states L¢ at
any time step t exact inference becomes computationally in-
tractable. However, a convex approximation admits efficient
parameter learning and provides interpretable parameter es-
timates [16].

Latent Factors Models. AFM and PFA model the proba-
bility as a mathematical function of latent student and skill
parameters. Both methods are essentially logistic regression
models with a different feature vector and a different set of
latent parameters.

In AFM [5, 6] the probability of correctly solving the next
task is modeled as a function of student proficiency 6, and
two skill dependent parameters, item skill difficulty Sx and
learning rate Ax. The AFM model is given as

P(Co) = (1+exp(=(0p + Y aue(Br + MeTpr))) "5 (3)

where T}, is the number of tasks a student p has seen for skill
k. Note that AFM does not differentiate between correctly
and incorrectly solved tasks for the prediction of the next
task outcome.

PFA [25] extends the AFM model by differentiating be-
tween correct and incorrect past observations. To do so the
learning rate for each skill is split up into a success v, and a
failure parameter p, and the probability of correctly solving
the next task is given as

P(Cr) = (1+exp(— (05t _ qra(Br+7uSpi+peFpr))) " (4)

where Spr and Fjpr are the number of correct and wrong
responses to tasks associated with skill k.

3. INSTRUCTIONAL POLICIES

Subsequently, we first give an overview of the predictive sim-
ilarity policy [28], which is a so called "'when-to-stop’ policy
working for all widely-used student models. We then in-
troduce our new predictive stability policy, a 'when-to-stop’
policy, which can be applied to all standard student models
as well as to more complex DBNs modeling forgetting. Fur-
thermore, we also show that for probabilistic student models,
the predictive stability policy can be augmented by a success
criterion.

3.1 Predictive Similarity

The predictive similarity policy is a *when-to-stop’ policy
working with any predictive student model [28]. It is based
on the assumption that the training should stop, if the pre-
dicted probability that a student will give a correct response
is not changing anymore. In other words the policy stops as
soon as independent of whether the student gets the next
task right the predicted probability will not change anymore.
To put this formally, the policy proposes to stop, if

P(|P(Ct) — P(Cis1)| <€) >0, (5)

where P(C}) denotes the probability of observing a correct
response at time ¢. As shown by [28], this expression holds
in the following three cases:

1. P(Ct) >0 A |P(Ct) *Pc‘l(t)‘ <e€



2. P(<Cy) > 6 A |P(Ch) — Pepo(t)] < ¢
3. |P(Ct) — Pc|1(t)| < eN |P(Ct) — Pc‘o(t)| <e€

where Pc|0(t) = P(Ct+1|—|Ct) and PC|1(t) = P(Ct+1|Ct).
The policy relies on an undemanding functional interface to
the student model requiring three functions that are eas-
ily implementable by standard student models. The func-
tions as well as their implementation for the different student
models are summarized in Table 1. For BKT with meaning-
ful parameters (pg < 0.5 and ps < 0.5), the policy is highly
correlated to the mastery threshold policy with A = 0.95.
In this case, it is therefore equivalent to a 'when-is-mastery-
achieved’ policy. Although the predictive similarity policy
functionally works with any student model that provides the
interface described in Table 1, the policy fails to stop in sev-
eral use cases in which Equation (5) will never be fulfilled.
We will present two use cases for probabilistic models and
illustrate them using (adaptations of) BKT. For both use
cases, we set § = 0.95 and € = 0.01 as suggested by [28].
Note that for BKT with meaningful parameters, the predic-
tive similarity policy will in most of the cases stop because
the third condition is met; the first two conditions are ful-
filled only for special cases as for example P(C%) > 0 can be
achieved only if ps < 1 — §. As the third condition is met
only if the two curves Pgjg and Pgy; are converging (with
a maximum distance < 2¢), the policy fails for cases, where
the curves Pcj; and Pgjo do not converge.

Our first use case are wheel-spinning students. According
to [3], about 10% of the students training a specific skill are
wheel-spinning (i.e. they will never master this skill). De-
pending on the model parameters, the predictions for such
a student might never fulfill the stopping criteria. To il-
lustrate this behaviour, we calculated the predictions of a
BKT model with meaningful parameters (po = 0.5,pc =
0.3,ps = 0.2,pr = 0.2,pr = 0) for an artificial student.
We assumed the limit case of wheel-spinning, i.e. a student
who gets all answers wrong. Figure 1 demonstrates, that the
three stopping conditions are never met for the hypothetical
student.

The second use case are models that rule out the possibil-
ity of convergence of Pg|y and Pg|o , such as for examples
DBNs with forgetting. To demonstrate this problem, we cal-
culated the predictions of the simplest case of a DBN with
forgetting: BKT with pr > 0 for an artificial student with
only correct responses. Figure 2 compares the behaviour of
the policy for traditional BKT (po = 0.5,p¢ = 0.3,ps =
0.2,pr = 0.2,pr = 0) to that of BKT with a small amout of
forgetting (pr = 0.05). Even though the hypothetical stu-
dent solves all tasks correctly, the policy will never stop as
the curves Pcjp and Pg|o are never converging.

3.2 Our Policy - Predictive Stability

Inspired by the predictive similarity policy, we propose a new
'when-to-stop’ policy, which also works for models with non
converging estimates of Pg|; and Pgjg such as DBNs with
a forgetting factor or data sets containing wheel-spinning
students. Similarly to [28] we assume that every student will
reach one of two end states: the student will either master a
given skill or being unable to master this skill. Further, we
assume that if the two estimates Pcj; and Pg|o individually
converge to a value (not necessarily to the same value), the
student has reached one of the end states. Based on theses
assumptions, we propose to stop if the following expression
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Figure 1: Probabilities P(L:), Pcj1, Pcjo predicted
by a BKT model for a student getting all answers
wrong.
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Figure 2: Probabilities P(L:), Pcj1, Pcjo predicted
by a BKT model (top) and a BKT model with for-
getting (bottom) for a student getting all responses
correct.

is true
|Pojo(t 4 1) — Pejo(t)| < e A|Poji(t+1) — Poju(t)] < e (6)

where Pc|0(t) = P(Ct+1|—|Ct) and Pc‘l(t) = P(Ct+1|Ct).
If the change in prediction given the student answered the
current task correctly does not deviate significantly from the
prediction of the task outcome given he answered the previ-
ous task correctly then we should stop. The same holds true



Table 1: Three functions are sufficient to implement the two universal when-to-stop’ policies predicitive

stmilarity [28] and predictive stability.

Interface BKT

PFA

DBN

startState()
updateState(s,0:-1)

P(Lt) < P(Lt‘Pt_hOt_l)

predictCorrect(s) (1 =pS)P(L¢) + (1 — P(Lt))pa

S+ 0,F«+0
S« S+ 10&—1=17F — F+ 107:71:0

(1 + exp(—(0p + Br + S + pF))) ™"

obs < 0, P(Lti) < poi
obs < (obs,0¢-1)

S p, p(obs,Li,....Ly)
>1,;.0,P(01,-,0n,L1,....Ln)

for the prediction given we would have observed incorrect
responses. We therefore call our new policy the predictive
stability policy. Since our new policy is based only on Pc;
and Pco, it relies on the same functional interface (see Ta-
ble 1) as the predictive similarity policy and can therefore
take any predictive student model as input.

To investigate the behavior of our predictive stability pol-
icy and to compare it to the predictive similarity policy we
re-investigate the use cases from above (see Section 3.1).
We computed predictions for artificial students on simple
DBNs. For all simulations, we used € = 0.01. In the first
example of a simulated hypothetical student getting all an-
swers correct and a traditional BKT model with meaningful
parameters (po = 0.5,pc = 0.3,ps = 0.2,pr = 0.2, pr = 0),
our policy stops after five observations (see Figure 2, top).
This is comparable to the predictive similarity policy, which
stops after four observations. When we introduce forgetting
into the BKT model (pr = 0.05), we observe that while
Pcj1 and Pgjo do not converge to the same value, they do
converge individually (see Figure 2, bottom). While the
predictive similarity policy will never stop, our policy stops
after four observations. In the second example with the
simulated wheel-spinning student (see Section 3.1), Figure
1 again demonstrates that Pc|; and Pgjg do converge indi-
vidually, however, they again do not converge to the same
value. While the predictive similarity policy does not stop,
our policy is able to detect the wheel-spinning student after
four observations.

Our predictive stability policy is a 'when-to-stop’ policy
only, i.e. it does not give any indication whether the stopped
student passed the given skill. The mastery threshold policy
that is often used for BKT is not suitable for DBNs mod-
eling forgetting, since P(L; = 1) depends on pr. However,
popular probabilistic student models tend to have a limited
memory of past observations (BKT is for example Marko-
vian). For any set of model parameters we can therefore
empirically calculate an upper bound P,,(t) for P(C}) at
time ¢ by simulating a student that gets all answers cor-
rect. Using this upper bound P,,(-), we define a skill to be
mastered at the point ¢ if

S(t) = |Pun(t) = P(C)| < €. (7)
Both P, (t) and S(t) of course depend not only on ¢ but
on the student and skill as well. However, for notational
simplicity we omit this dependency in the equation.

Let us illustrate this principle of mastery by again simu-
lating two artificial students on a BKT model with forget-
ting (pr = 0.05). While the first student gets all answers
correct, the second student commits some mistakes in the
beginning. Figure 3 demonstrates that after ¢ = 12 obser-
vations, the prediction for the second student reaches the
upper bound P,,(12) from the first student. For student
models with limited memory, we therefore introduce the pre-
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Figure 3: Predictions P(C;) of BKT for a student
getting all answers correct (yellow) and a student
making some mistakes in the beginning (blue).

dictive stability ++ policy, a 'when-is-mastery-achieved’ pol-
icy, yielding the following output:

Passed: The training of the skill stopped at time ¢ based on
the predictive stability policy and S(t) is true.

Failed: The training of the skill stopped at time ¢ based on
the predictive stability policy and S(t) is false.

The policy relies on the same functional interface (see Table
1) as the predictive similarity policy. Note, however, that
the predictive stability ++ policy is not suitable for models
taking all past failures and successes into account such as
PFA.

4. THEORETICAL COMPARISON OF DIF-
FERENT POLICIES

In this section we show that our proposed policies predictive
stability and predictive stability++ are comparable to the
predictive similarity policy on the popular student models
AFM, PFA and BKT. For AFM, we will derive mathemat-
ically that the predictive stability and the predictive simi-
larity policies are actually equivalent. For BKT and PFA,
we investigate the behavior of the policies on idealized sim-
ulated data. Synthetic data is more useful than real world
data for our purposes, since real-world data sets are biased
by the 'when-to-stop’ and mastery rules used by the tutor-
ing system. By generating synthetic data, we can study the
properties of the policy without this bias, as we are able
to generate student responses of arbitrary sequence length.
The experiments conducted for BKT and PFA are designed
to answer the following research questions. 1) How do our
policies compare to the predictive similarity policy? 2) What
are the individual advantages and disadvantages of the re-



spective policy? and 3) How can students exhibiting wheel-
spinning benefit from our stop criterion?

41 AFM

Since the probability of a correct response in AFM for a
specific student and skill only depends on the number of
previous opportunities at this skill, P, and P¢, are equal:

P(Ci11|Ct) = P(Ciy1|=C). (8)

The three cases where the stopping criteria of the predictive
similarity policy are fulfilled therefore reduce to

1. P(Ct) >5/\|P(Ct)—P(Ct+1‘Ct)‘ <€
2. P(—\Ct) > (5/\|P(Ct)—P(Ct+1|Ct)| < €
3. |P(Ct) — P(C’t+1|Ct)| <e€

Since the third condition is contained within the first two
conditions, the predictive similarity policy will stop when
the third condition is met. The stopping criterion for our
predictive stability policy reduces to

|P(Ct) — P(Ci41]Ch)| < ¢,

which is equivalent to the predictive similarity stopping cri-
terion.

4.2 PFA

In the following, we show how our predictive stability pol-
icy compares to the predictive similarity policy by using a
PFA model on simulated data and we highlight interesting
differences in the opportunity count per student.

Experimental setup. Student responses are sampled based
on PFA models with different parameter sets. To ensure that
our parameters match real world conditions we generated
synthetic data by sampling from BKT models, using the pa-
rameter clusters found for BKT [27]. We then learned the
corresponding PFA parameters from the generated data and
sampled N = 200 students with 7" = 25 tasks per student
from the PFA models with the learnt parameters. We used
the following measures (adapted from [12]) to evaluate the
different policies: We define the effort E to be the number
of observations until the policy stops and the score S to be
the ratio of correctly solved tasks after the policy stopped.

Results. We compared effort and score as well as the per-
centage of students for which the policies stopped (see Table
2). Our policy stops for 99% of all students while the predic-
tive similarity policy stops only for 88% of all students. On
average our policy stops after £ = 4 training opportunities
compared to E = 8 opportunities for the predictive similar-
ity policy. However, stopping earlier comes at the cost of a
slightly decreased score (from S = 0.87 to S = 0.84). To
further investigate the performance differences of the mod-
els we compared the effort of the predictive similarity policy
and the predictive stability policy over the parameter space
of the PFA model showing ~, and py (success and failure
parameters), as displayed in Figure 4. We can confirm the
observation made by [28] that the predictive similarity pol-
icy together with PFA tends to lead to either really short
training sequences (meaning a low effort, small radius) or
many training opportunities (high effort, large radius). The
effort for nine parameter sets is at most £ < 2 and for five
parameter sets we observe an effort of more than £ > 15.
Comparing this effort distribution to the effort values for
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Table 2: Evaluation measures for selected PFA clus-
ters as well as for the weighted average over all clus-
ters, comparing the predictive similarity policy and
the predictive stability policy.

Ce Cio Average
Predictive stmilarity
% stopped 0.82 0.80 0.88
effort 19.40 14.30 8.20
score 0.88 0.77 0.87
Predictive stability
% stopped 1.00 1.00 0.99
effort 4.20 4.00 4.00
score 0.80 0.72 0.84

our policy (nine parameter sets with F < 2, one parame-
ter set with E > 15) we notice that with our policy effort
values are distributed in a smaller range. This effectively
reduces the ”all-or-nothing” effect found with the predictive
similarity policy [28].

To study this behavior, we investigated two example clus-
ters for which the predictive similarity and the predictive
stability policies exhibit high differences in effort (see Ta-
ble 2). The parameters for the two clusters are as fol-
lows: Cs (8 = 0.6699,7 = 0.0871,p = —0.0320) and Cho
(8 = 0.6118,y = 0.0514, p = —0.0373). These parameters
suggest that the clusters with high differences in effort be-
tween the two policies correspond to difficult skills. While
the predictive stability policy stops for all students, the pre-
dictive similarity policy stops for only part of the students
(for example for 80% of the students in Cig). For cluster
Cs, the predictive similarity policy stops after £ = 19.4 ob-
servations on average, while the predictive stability policy
shows an effort of only £ = 4.2. Of course, this leads also
to a lower average score of S = 0.80 compared to S = 0.88
for the predictive similarity policy. To investigate this ef-
fect even further, we split the students into a a set Usiop of
students for whom the predictive similarity policy stopped
and a set Upotstop With students for whom the predictive
similarity policy failed to stop. Table 3 shows the effort and
score of the predictive stability policy separately for Ustop
and Unotstop. The scores for Ustop achieved by the predictive
stability policy are now closer to the scores achieved by the
predictive similarity policy. The scores achieved for Unotstop
are low for both clusters. We therefore assume, that the pre-
dictive similarity policy acts as a 'when-is-mastery-achieved’
policy when applied to PFA: it only stops for students mas-
tering the skill. The predictive stability policy on the other
hand is a pure 'when-to-stop’ policy: it stops for students
mastering the skill as well as for students who are not able
to pass the skill.

4.3 BKT

Similar to the results for PFA we investigated the differences
of the policies for idealized student data. A special focus in
this investigation is our policy predictive stability ++ that
allows to decide on whether the student has reached mastery.

Experimental setup. We sampled student responses based
on the BK'T model for varying parameters. The parameters
are based on the clusters found by [27] on real world data.
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Table 3: Effort and score of the predictive stability
policy for selected PFA clusters. The measures were
computed separately for Usop and Unotstop-

Cs Cio
effort Usiop 4.50 4.29
score Usiop 0.84 0.76
effort Unotstop 2.69 2.85
score Unotstop 0.62 0.53

For every cluster we sampled student responses for N = 200
students with 7' = 25 tasks per student. According to [3],
about 10% of students are wheel-spinning in an intelligent
tutoring system, as such we generated a second data set that
includes N = 20 wheel-spinning students (i.e. the tasks are
not suitable to enable the student to achieve mastery of the
skill). We simulated wheel-spinning students by setting pr
and po to 0 (this means that none of these simulated stu-
dents will achieve mastery of the skill) while we kept the
cluster specific output probabilities pe and ps. As before
(see Section 4.2) the effort E denotes the number of obser-
vations until the policy stops and the score S denotes the
ratio of correctly solved tasks after the policy stops. In ad-
dition, the recent score RS is the ratio of correctly solved
tasks over the most recent responses. It was shown that the
3-5 most recent observations are of most interest for student
modeling [11], therefore we only included the three most
recent responses before stopping into the calculation of RS.

Results. Table 4 contains a summary of the comparison be-
tween the two policies on the BKT model. Effort and scores
have been computed by a weighted average incorporating
the size of the parameter clusters found in [27]. On the per-
fect data (no wheel-spinning students) both policies stop for
about 99% of the students, but according to the predictive
stability ++ policy, 11% of the students have not mastered
the respective skill. The average recent score of these stu-
dents amounts to RS = 0.04. This means that most of
the observations were incorrect responses and indicates that
our policy is successful at discriminating students that reach
mastery from those who do not. On the data set with 10%
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Table 4: Comparison of the predictive similarity and
predictive stability policies using a weighted average
over all clusters for BKT for a data set with perfect
students and a data set containing 10% of wheel-
spinning students.

perfect 10% wheel-spinning
Predictive stmilarity
% stopped 0.99 0.93
effort 5.50 5.72
score 0.86 0.83
Predictive stability
Y% passed 0.88 0.80
effort (passed) 6.44 6.38
score (passed) 0.86 0.85
Yofailed 0.11 0.18
effort (failed) 4.46 6.03
recent score (failed) 0.04 0.04

wheel-spinning students, the rate at which the predictive
similarity policy is able to stop drops to 0.93 while our pol-
icy stops for 97% of the students after about six observations
on average. Investigating the three most recent observations
of the cases where according to our policy mastery was not
achieved, we again observe very low scores. Showing all clus-
ters together, Figure 5 confirms that both policies provide
very similar values for effort and score on a wide variety of
BKT parameters.

To gain a better understanding of the differences we in-
vestigated again cluster Cs (po = 0.4,p¢ = 0.47,ps =
0.14, pr = 0.12) with and without wheel-spinning students.
The pie chart in Figure 6, top left shows that our policy
stops for all but 4% of the students for whom the predic-
tive similarity policy could not stop. On the other hand our
policy did not stop for only 1% of the students for whom
the predictive similarity policy stopped. Comparing these
results to the data set with wheel-spinning (Figure 6, top
right) shows that the predictive similarity policy is not able
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Figure 5: Evaluation measures for the predictive stability (left) and the predictive similarity policies (right)
over pc and ps across different BKT clusters. The radius of the circle denotes the effort (growing with a
larger radius) and the color the score (with red denoting higher scores).

to detect students exhibiting wheel-spinning (non-stops in-
creased from 7.5% to 19%) whereas our policy is not able
to stop in only 6.5% of the cases (increased from 4.5%).
Scores for both methods in both scenarios are very compa-
rable (Figure 6, bottom). Comparing the efforts we notice
that the effort for the students that according to our pol-
icy did not master the skill is significantly lower than for
students mastering the skill.

5. EXPERIMENTAL EVALUATION

We verified the performance of our predictive stability crite-
rion on real-world data sets by conducting two experiments.
In the first experiment, we replicate the behavior of our cri-
terion on synthetic data (see Section 4) by evaluating it
on BKT and PFA models. In the second experiment, we
demonstrate that the predictive stability ++ policy is a use-
ful stop (and mastery) criterion for DBNs modeling skill
topologies and including forgetting. For both experiments
we fit the exact same skills from the real-world data sets.

Data Sets and Models. The first two data sets stem from
data logs of 1581 children training with Calcularis [15].
Calcularis is an intelligent tutoring system for elemen-
tary school children with difficulties in learning mathemat-
ics. The student model used in Calcularis is a DBN rep-
resenting different mathematical skills. We build two DBNs
from this data set: The first DBN (denoted as 'Number
Representation Model’) contains skills training basic numer-
ical abilities. The second DBN (denoted as ’Subtraction
Model’) represents subtraction skills in the number range
from 0 — 1000. Both models are excerpts of the skill model
used in Calcularis. The third data set is the USNA Physics
Fall 2005 data set accessed via DataShop [18]. It was col-
lected from Andes2 [9], an intelligent program for physics
and contains data logs from 77 students of the United States
Naval Academy. We used four modules of this data set to
build the DBN (denoted as "Physics Model’) for the experi-
ment.

Note that DBNs modeling skill topologies have been pro-
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posed only recently. We used the graphical models suggested
in previous work for our experiments. Further details re-
garding the building process of our DBNs and the skills used
can be found in [16].

Experimental Setup. As for the evaluation on the syn-
thetic data sets (see Section 4.2) the effort E denotes the
number of observations until the policy stops and the score
S denotes the ratio of correctly solved tasks after the pol-
icy stopped. Further, the recent score RS is the ratio of
correctly solved tasks in the last three observations before
the policy stops. We computed all evaluation measures us-
ing student-stratified cross validation. The parameters of
the DBN models were trained using latent structured pre-
diction [17], bounding all parameters related to guessing,
slipping and forgetting by 0.3. We fitted the BK'T models
using [31] and setting pe < 0.3 and ps < 0.3. The parame-
ters of the PFA models were trained using the 1me4 package
of R. PFA requires a student parameter (the student profi-
ciency 0): For the unseen students in the test sets, we set 0
to the mean of the trained student parameters.

Traditional Models. To verify our results on synthetic
data, we evaluated our predictive stability policy on BKT
and PFA models fit to the skills of the four DBN mod-
els. Figure 7 (top) compares the average effort computed
for the predictive stability policy to the effort yield by the
predictive similarity policy. Each circle denotes one skill and
the colours indicate the different skill models. Both policies
tend to stop within £ = 3 observations. As expected, the
two policies show a high correlation (r = 0.73, p = 0.01),
with the predictive stability policy being slightly more con-
servative. Also the results for PFA (depicted int Figure 7
(bottom)) confirm our findings on the synthetic data set:
The predictive similarity policy tends to either stop imme-
diately or to go on for a very long time, while the predictive
stability policy usually stops after much less observations.

Dynamic Bayesian Network Models. DBNs modeling
skill topologies are a recent addition to the student model
familiy, which outperformed BKT on several data sets of
different learning domains [17]. We therefore evaluate our
predictive stability ++ policy on the three DBNs. Note that
on all DBN models, stopping is equivalent to passing: In
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brown = ’Subtraction Model’, red = "Physics Model’).

all the cases where the predictive stability ++ policy was
able to stop, the students were rated as having mastered
the skill. Figure 8 shows the percentage of stopped (passed)
students as well as the average effort and recent score for
the students who passed the respective skills.

For the ’Physics Model’, the policy stopped for 94% —
100% of the students within 4 — 9 observations on average.
The recent score is also high with a minimum of RS = 82%
and a maximum of RS = 96%. The results on the 'Sub-
traction Model’ are also convincing. For the skills S, ..., S5
the policy managed to stop in 71% to 96% of the cases.
The average efforts are low with a maximum of £ = 9 for
skill So and also the recent scores seem reasonable with a
minimum of RS = 72% again for skill S;. For skill Sg,
however, the policy managed to stop only for 6% of the stu-
dents who trained this skill. Further investigations of the
data set revealed that only 7% of the students trained this
skill, solving on average only two tasks. Therefore, for most
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The colors denote the different DBN models (blue = 'Number Representation Model’,

students, the available observation sequences were too short
for the policy to stop. For the students, who passed skill
Se, the policy shows a low effort (E = 2.5) and a high re-
cent score (RS = 0.78). The measures for skill S7 could
not be computed, since no student in the data set practiced
this skill. On the 'Number Representation Model’, the pre-
dictive stability++ exhibits mixed results. Skill Ly has a
low effort (E = 3.1) and a high recent score (RS = 0.95).
However, the policy stopped for only 30% of the students
who practiced this skill. Although 60% of the students in
the data set practiced skill Lo, data is sparse: 55% of the
students have less than two practice opportunities. Skill L
was mastered by 91% of the students with an average ef-
fort of £ = 6.8. The recent score for this skill is low with
RS = 0.53. Inspections on the data set showed that almost
all students practiced this skill and observation sequences
tend to be long - indicating that this is a rather difficult
skill. To check whether this example is an artifact of the



Performance comparison over real-world data sets

1 -_
hel
(0]
Q.
& 05—
@
ES
0_
10
o
Q
17
8 5
T
L
©
O_
- 17
[
2
a
[
o
(0]
g 0.5
@
€
3
2 |
L1 L1 S1 S2 S3 S4 S5 S6 S7 P1 P2 P3
Number ) )
Representation Subtraction Physics

Figure 8: Performance comparison of the predictive
stability+—+ policy on DBN models from different
data sets employing a different number of skills.

policy or the model, we examined the evaluation measures
of both the predictive similarity policy and the predictive
stability++ policy on the BKT model for skill L;. On this
model, both policies stop for only 66% of the students with
a low effort £ = 1. The recent score, however, is high with
RS = 0.89. Therefore, it seems that the low recent score is
caused by the DBN model parameters for this skill.

6. DISCUSSION AND CONCLUSION

Instructional policies are an important aspect of tutoring
systems as they influence the learning outcome. An essen-
tial part of the instructional design is the ’when-to-stop’
policy, which decides when to stop teaching a certain skill
to a student and therefore significantly influences the time
and effort students spend on acquiring particular skills. As
shown by [5] overpracticing is not necessary tied to a better
performance. Instead, a better model of the learning pro-
cess leads to a smaller effort without affecting the perfor-
mance [5, 19]. Recently, the "when-to-stop’ policy predictive
stmilarity was introduced [28]. This policy works with any
predictive student model and therefore allows to compare
different predictive student models not only with respect to
their prediction accuracy, but also in terms of the number
of practice opportunities they yield. While the predictive
similarity policy functionally works with all common stu-
dent models, we demonstrated in this work two important
use cases where the stop criteria of the policy are never met.
In the case of noise in the data set, i.e. students showing
a behavior diverging from the model parameters (such as
wheel-spinning), the policy fails to stop. Recent advances
in student modeling have shown promising results regarding
prediction accuracy, using DBNs modeling skill topologies
and forgetting. For these models the predictive similarity
policy is also not able to stop. In this work, we therefore in-
troduced a new 'when-to-stop’ policy that can be applied to
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a wider range of student models than previous policies [28,
10] including DBN modeling forgetting.

We demonstrated that for AFM models, this new policy
called predictive stability is equivalent to the predictive sim-
ilarity policy. By conducting experiments using simulated
data from PFA and BKT models, we showed that for models
with plausible parameters and no wheel-spinning students,
performance of the two policies is very similar. We confirm
the observations of [28] who found that the predictive simi-
larity policy tends to lead to either very short or very long
training sequences when applied to PFA. Results from our
policy on the same data, however, suggest that the predic-
tive stability policy might be more applicable to PFA mod-
els, as it circumvents the problem of extreme cases in the
number of training opportunities. We furthermore demon-
strated that our policy is able stop for wheel-spinning stu-
dents and thus is more robust to noise in the data. For
probabilistic models with a limited memory, we additionally
introduced a ’when-is-mastery-achieved’ policy called pre-
dictive stability++. Synthetic data experiments using BKT
showed, that this policy can consistently identify students
unable to achieve mastery of a skill. A current limitation of
the predictive stability++ policy is that it does not work for
AFM and PFA. In the future, we plan to explore possibili-
ties to adapt the 'when-is-mastery-achieved’ policy to mod-
els with unlimited memory. We also conducted experiments
applying PFA and BKT models on three different real-world
data sets. The results of these experiments confirm our find-
ings on synthetic data. Experiments on the same data sets
using DBNs modeling the topologies of the involved skills,
showed meaningful behavior compared to traditional mod-
els. However, no comparison to other policies were possible
since existing 'when-to-stop’ polices [28, 10] can not handle
models with forgetting. To investigate the potential of the
predictive stability policy in combination with DBNs further,
we plan to investigate the performance of the policy on large
scale synthetic data sets employing different skill topologies.
The real-world data sets used in this work stem from mas-
tery learning systems with an instructional policy already in
place, resulting in the introduction of a bias into the data
set that is hard to capture precisely. Therefore, the reported
results on real world data are an approximation to the true
performance of the policies.

To conclude, we presented a new instructional policy ap-
plicable to a wider range of student models than previous
policies [28, 10]. We compared our new policy to existing
policies theoretically as well as empirically and showed using
synthetic and real world data sets that our policy effectively
handles wheel-spinning and student models with forgetting.
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