Automatic Pose Estimation for Range Images on the GPU

Marcel Germann
Computer Graphics Laboratory
Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland
masi @student.ethz.ch

In Kyu Park
Inha University
Incheon, Korea
pik@inha.ac.kr

Abstract

Object pose (location and orientation) estimation is a
common task in many computer vision applications. Al-
though many methods exist, most algorithms need manual
initialization and lack robustness to illumination variation,
appearance change, and partial occlusions. We propose
a fast method for automatic pose estimation without man-
ual initialization based on shape matching of a 3D model
to a range image of the scene. We developed a new error
function to compare the input range image to pre-computed
range maps of the 3D model. We use the tremendous data-
parallel processing performance of modern graphics hard-
ware to evaluate and minimize the error function on many
range images in parallel. Our algorithm is simple and ac-
curately estimates the pose of partially occluded objects in
cluttered scenes in about one second.

1. Introduction

A common task in computer vision applications is to es-
timate the pose (location and orientation) of objects. Pose
estimation in scenes with clutter (due to unwanted objects
and noise) and occlusions (due to multiple overlapping ob-
jects) is challenging. Furthermore, pose estimation in 2D
images and video is sensitive to illumination, shadows, and
lack of features (e.g., objects without texture). Pose esti-
mation from range images — where each pixel contains an
estimate of the distance to the closest object — does not suf-
fer from these limitations. Range images can be robustly
acquired with active light systems [2, 1]. If a database of
3D models of objects is available, one can use model-based
techniques, where the 3D model of the object is matched to

Michael D. Breitenstein
Computer Vision Laboratory
Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland
breitenstein @vision.ee.ethz.ch

Hanspeter Pfister
Mitsubishi Electric Research Laboratories
Cambridge, MA, USA
pfister@merl.com

1. Pre-Processing

3D model or
detailed scan

‘ 2. Online Pose Estimation |

4

Render in different poses
(xRot, yfot, zRot)

Input
Range Map

Reference
Range Maps

3. GPU Pose Estimation

Compare Range Maps by
Downhill Simplex Optimization

Figure 1. Overview of the algorithm: Dur-
ing pre-processing, a 3D model is rendered
in different poses and stored as reference
range maps. During online pose estimation,
the reference range maps are compared to
the input range image using a novel error
function. To find the match with the least er-
ror we use a parallel implementation of the
downhill simplex method on the GPU.

the range image of the scene. Model-based pose estimation
has been used in applications such as object recognition,
object tracking, robot navigation, and motion detection.

In this paper we present a novel model-based pose es-
timation algorithm for range images that runs entirely on
modern Graphics Processing Units (GPUs). The massive

data-parallel processing on GPUs makes our method over
30 times faster than a comparable CPU implementation.
Our method works does not require manual initialization
and accurately computes object poses for synthetic or laser
scan data in about one second.

Figure 1 shows an overview of our method. We assume
that we estimate the pose of a known, rigid (reference) ob-
ject. In a pre-processing step, we use a 3D model or detailed
scan of the object and render it in different poses. Each pose
is stored as a reference range map in texture memory. This
task has to be performed only once per reference object.

During online pose estimation, we acquire a 3D scan of
the scene using an active light method (in our case a laser
range scan). We smooth the 3D scan on the GPU using a
median filter to compute the input range map. The task is
now to find the best match between reference range maps
and input range map through error minimization by pair-
wise comparisons. The best matching reference range map
and its translation with respect to the input range map yield
our pose estimation. We devised a novel error function (see
Section 4) that uses the range values and Euclidean distance
maps. The error function can be evaluated per pixel, which
makes it suitable for efficient processing in GPU fragment
shaders'. To efficiently minimize the error we developed
a novel data-parallel version of the downhill simplex algo-
rithm [19] that runs entirely on the GPU (see Section 5).

The novel contributions of our work are a simple er-
ror metric to compare the alignment of two range maps, a
method to compute signed Euclidean distance transforms
of images on the GPU, and a data-parallel implementation
of the downhill simplex algorithm on the GPU. We present
an efficient implementation of model-based pose estimation
for range images that runs entirely on the GPU, and we eval-
uate the performance and robustness on various synthetic
and real-world input scenes with clutter and occlusions.

2. Related Work

The main challenge in pose estimation is invariance to
partial occlusions, cluttered scenes, and large pose varia-
tions. Approaches based on 2D images and video generally
do not overcome these problems due to their dependency
on appearance and sensitivity to illumination, shadows, and
scale. Among the most successful attempts are methods
based on global appearance (e.g., [15]), and methods based
on local (2D) features (e.g., [24, 21]). Unfortunately, these
methods usually require a large number of labeled training
examples.

Recently, model-based surface matching techniques us-
ing a 3D model have become popular due to the decreasing
cost of 3D scanners. The most popular method for aligning

A fragment shader is a piece of user-programmable GPU code that is
executed for multiple pixels in parallel.

3D models and range images is the Iterative Closest Point
(ICP) algorithm [4] and its variations (e.g., [6, 22, 8, 9]).
However, as stated by Rusinkiewicz et al. [23], ICP re-
quires a sufficiently good initial pose estimate to avoid be-
ing stalled by local minima. Our method does not require
any initial guess and consistently finds the global optimum.
Shang et al. [25] use the Bounded Hough Transform (BHT)
[12] to compute an initial pose estimate before running ICP.
However, their method was developed for object tracking,
whereas our method is applicable for pose estimation from
a single range image.

Geometric hashing [16] is an efficient method to estab-
lish multi-view correspondence and object pose. However,
building the hash table is time consuming, and the matching
process is sensitive to image resolution and surface sam-
pling. A large class of methods use a deformable (mor-
phable) 3D model and minimize a cost term such that the
model projections match to input images (e.g., [14, 5]). Op-
timizing many parameters while projecting the 3D model is
inefficient and also requires an initial pose guess.

Another approach is to match 3D features (or shape de-
scriptors) to range images. Dorai et al. [7] use curvature
features by calculating principal curvatures. This requires
the surface to be smooth and twice differentiable and thus
is sensitive to noise. Moreover, occluded objects cannot be
handled. Johnson et al. [13] introduced ”spin-image” sur-
face signatures for 3D registration. This yields good re-
sults with cluttered scenes and occluded objects. But their
method is time-consuming, sensitive to image resolution,
and might lead to ambiguous matches. Mian et al. [18]
build a multidimensional table representation (referred to
as tensors) from multiple unordered range images. They
use a hash-table voting scheme to match the tensor to ob-
jects in a scene. Compared to spin-images, they report a
higher success rate, but the method requires high-resolution
geometry and has a runtime of several minutes. Similar to
our approach, Greenspan [11] precomputes range maps of
the model, and uses a tree structure and Geometric Probing.
However, the computation time depends on the object size
and he reports at least four seconds for reliable results.

There has been a substantial amount of work to apply
the processing power of GPUs to non-graphics applica-
tions. A good collection of general-purpose GPU process-
ing (GPGPU) can be found in [10]. To our knowledge there
is no previous work on GPU pose estimation.

3 Range Input Processing

Our method starts with an input 3D scan of the scene and
a 3D model of the object. Both are first being orthogonally
projected into the input range map and the reference range
map, respectively. We choose the viewports of these orthog-
onal projections, the viewing frustum, and the image resolu-

Figure 2. Processing of the input 3D scan:
a) original input 3D scan; b) range map after
smoothing by a median filter; c¢) result of the
simple edge detection algorithm; d) signed
Euclidean Distance Transform.

Algorithm 1 Signed EDT

coord(p) = coordinates of the closest edge e found to far
value(p) = signed distance value to e
Require: value(b) = —(m +1) Vb € background
Require: value(f) =+(m+1) Vf € foreground
Require: value(e) =0 Ve € edge
Require: coord(p) = (zp,yp) Vp € image
for all iterations m do
for all pixels p do
for all direct neighbors n of p do
if distance(p, coord(n)) < |value(p)| then
value(p) = signed_distance(p, coord(n))
coord(p) = coord(n)

tion to be the same. The scale factor of physical units (mm)
of the scanner to unit distance of the 3D model is readily
available from scanner manufacturers. Consequently, the
scale of the objects in the reference and input range maps is
identical after projection.

The input 3D scan is smoothed by a median filter with a
3 x 3 mask implemented as a fragment shader (see a) and b)
in Figure 2). In a second rendering pass, a simple heuristic
is used to detect object edges by comparing range values of
neighboring pixels. If the range difference exceeds 4% of
the image width, the pixel is marked as an edge (see ¢) in
Figure 2). The potential edge pixels are marked with a bit
for consecutive processing.

Next, we compute the signed Euclidean Distance Trans-
form (EDT) that assigns to each pixel the signed distance to
the edge pixels by adapting an approach called ping-pong
rendering [20]. It uses two RGBA color-textures and con-
secutively switches their role as rendering source and target,
respectively. In our GPU implementation we use a 32-bit
floating point format for each color channel. The values in
the first two color channels represent the coordinates of the
closest edge pixel found so far, the third channel stores the
signed distance, and the fourth channel indicates whether
an edge pixel is already found.

Algorithm 1 shows the pseudo-code of our EDT algo-
rithm. The parameter m determines the number of itera-

iteration 3

iteration 2

Figure 3. Computation of the signed EDT on
the GPU: The values are distances to closest
edge pixels. The top left image shows the ini-
tialization step. The other images show the
first three iterations.

tions. The distance values are initialized to —(m + 1) for
background pixels (i.e., range value = 0), to m + 1 for
foreground pixels (i.e., range value # 0), and to O for all
edge pixels. The first two color channels are initialized to
the pixel coordinates. In each iteration, the distance value of
each pixel is compared to the values of its eight direct neigh-
bors. The distance value and coordinates of the recent pixel
p are updated if the distance from p to the edge pixel saved
in a neighboring pixel n is smaller than the value saved at
p. This information is iteratively propagated over the entire
image at each step, as shown in Figure 3.

This method assumes square images. The number of iter-
ations m corresponds to the maximum distance of any pixel
to its closest edge. For full convergence one chooses m to
be half the width of the image. However, to speed up the
algorithm we make use of the fact that the distance of each
pixel to an object edge is typically much smaller. For our al-
gorithm we also do not need the exact EDT and are willing
to use an approximation. We empirically found that m = 7
is sufficient for the 64 x 64 pixel images we are using.

4 Error Function

Equation 1 shows the error function we use to compare
a reference range map R and an input range map [:

e(I,R,x,y,z) =
1 1

N Zecover(uvvvxvy)+)‘N Zerange(uvvaxayv'z)
cover " range

ey

It consists of the Cover Error Term €cover(u, v, T, y) (see
Section 4.1) and the Depth Error Term erange(u, VX, Y, 2)
(see Section 4.2) that are evaluated at each range map pixel
(u,v). The purpose of €coyer is to measure the errors in the
alignments of the silhouettes, inspired by Lee et al. [17].
The Depth Error Term measures differences in the topology
of the aligned objects in 2.5D similar to ICP in 3D.

The translation values (x,y, z) of R determine its posi-
tion with respect to /. The two error terms are weighted
by A and summed up over all image pixels (u,v). In our
experiments we empirically found that A = 10 works best
for all scenes and objects we tested. The normalization fac-
tors Negver and Nygpge — discussed in the following sections
— make the error independent of object and image size. The
error is minimal if R is perfectly aligned to a — possibly
partially occluded — object in I.

4.1 Cover Error Term

The cover error of a pixel (u,v) of the input range map
I and a pixel in the reference range map R — translated by

(z,y) —is:

6cover(ua v, T, y) -
|EDTy(u,v) — EDTr(u + x,v + y)|
if EDTr(u+z,v+y) >0 2)
0 otherwise.
The cover error term is minimal if the silhouettes of the
objects in I and R match perfectly. Note that only non-

background pixels of R with positive range values are con-
sidered. The cover error normalization factor is:

Neover = [{(u,v)|[EDTR(u+z,v+y) > 0}|. (3)
4.2 Depth Error Term

The range error term compares the range values of all
foreground pixels in I and R that overlap, thus:

6range(ua v,T,Y, Z) =
21(u,0) — (zrlu+ 2,0 +y) + 2)|

if EDT(u,v) > 0N EDTR(u+ x,v+1y) >0
0 otherwise.

“

Note that R is translated by (z,y) and that z is added to all
range values of R. The range error normalization factor is:

Nrange =
I {(w,v)|EDT(u,v) > 0A EDTR(u+ z,v+y) > 0}].

(&)

4.3 Implementation on the GPU

The error function in Equation 1 is computed using frag-
ment shaders. Due to the parallel processing on the GPU
these pixel-wise comparisons are very fast, especially for
low resolution images.

In a first step, the input range map I and the refer-
ence range map R are loaded to the GPU. A fragment
shader program computes the error terms €cover(u, v, 2, y)
and €pnge (4, v, 2, y, 2) for each pixel. Two binary bits ncoyer
and nNynge used for the normalization factors of Equations 3
and 5 indicate whether an error value was computed. All
values are stored in the color channels of a 32-bit texture S.

In a second step, the error values are summed up over
all pixels of .S and the final error is computed. Because this
summation has to be done for each optimization iteration
(see Section 5) we implemented it on the GPU using ping-
pong rendering between .S and a temporary texture 7.

Beginning with a step size s = 1, one color channel of
pixel (u, v) stores the sum of the values of the pixels (u, v),
(u+s,v), (u+s,v+s), (u, v+ s) by rendering from S to
T. Subsequently, s is doubled in each iteration, and S and
T are exchanged, as illustrated in Figure 4. The final result
of the error function is stored at pixel (0, 0) after s = log(l)
steps, where [is the image width in pixels. This algorithm
is very efficient assuming we have square images.

S Parallel Optimization Framework

The goal of the error optimization is to find the param-
eters (Z,9, 2, 0, ¢?, &) that globally minimize the error be-
tween the input and reference range maps. Thus, we are
solving the following 6-DOF optimization problem:

(2,9,%,0,6,6) =

arg min

i min (I, Ry 4,0, %, Y, 2) (6)

T,Y,z

step 1

step 2

Ry 4.0 is a reference range map of the 3D model rendered
with rotation angles (6, ¢,). Step 1 computes the error be-
tween each reference range map and the input range map us-
ing the downhill simplex method [19] for the translation val-
ues (z,y, z). Step 2 selects the reference range map Ry 4 »
with the lowest global error. The result is the estimated pose
(2,1),2,0,,06).

During pre-processing, we compute one large texture,
the reference texture matrix, to store all reference range
maps. This matrix has to be prepared only once per 3D
model (see Figure 5). The more reference range maps we

Figure 4. Computation of the final error on the
GPU: In each iteration k, information at the
current pixel (yellow with circle) is collected
from the upper (red), upper right (green), and
right (blue) neighbor at distance s = 2*.

Figure 5. Part of a reference texture matrix
with 24 range maps. The topmost row of each
range image (in red) is used to store the pa-
rameters of the downhill simplex algorithm.

store, the better our angular pose estimate and the slower
the algorithm. The texture memory size of the GPU also
imposes restrictions on the size of the reference texture
map. For example, it would be prohibitive to store all ref-
erence range maps for 3-DOF rotations with one degree in-
crements.

To address this issue we use a simple greedy algorithm.
We render the object using orthonormal projection and store
the z-buffer as a range map. Then we rotate the object by
(0, ¢,0) with very small rotation increments (e.g., 5 de-
grees). For each new reference range map we compute the
error according to Eq. 1 with respect to all previously stored
range maps. If the error is larger than a user-defined thresh-
old we add the range map to the reference texture matrix.
Since we do not replace but only add range maps we have
to run the algorithm a few times with increasingly larger
thresholds until we can fit all range maps into the reference
texture matrix. This algorithm could certainly be improved
(e.g., by dynamic programming).

Figure 6. Example of a starting point for a) the
reference range map R and b) the input range
map /. The initial translation parameters are
found by aligning the two starting points.

5.1 Initial Parameters

The number of iteration steps for convergence of the
downhill simplex procedure can be drastically reduced by
choosing adequate initial parameters. To compute good ini-
tial translation parameters (g, Yo, z0) We try to find a pixel
in R and I, respectively, that roughly corresponds to the
center of gravity of the object (see Figure 6). If I con-
tains multiple objects we choose the one that is closest to
the camera, i.e., the one with largest z value. For each range
map, we initialize the center of gravity (u,v) to the first
pixel and iterate over all pixels (r, s). We update (u,v) to
the new pixel position (r, s) if:

0.5-EDT (u,v)+(z(r, s)—z(u,v)) > 0.5-EDT(r, s).

)

The EDT terms force the result to be near the center of an
object, and the z term forces it to be close to the camera.

The initial translation parameters are then simply defined
by the alignment where these points from both range maps
fall together in x, y and z. In our experiments we found that
without a good initial guess (e.g., by just aligning the range
maps) it took about 30 to 40 iterations for the downhill sim-
plex algorithm to converge. With this simple method we
could reduce the number of iterations to 15, which resulted
in a speedup of a factor of two.

5.2 Data-Parallel Downhill Simplex on
the GPU

To parallelize the downhill simplex method for the GPU,
an additional scanline is added to each range map in the
reference texture matrix (see Figure 5). We use it to store
the parameters of the downhill simplex algorithm and the
error values in different color channels.

The vertices of the simplex are initialized to (zg, Yo, 20),
(xo + d, Yo, 20), (w0, Yo + d, 20) and (zg, Yo, 20 + d),
where g, yo and zg are the initial parameters described in
Section 5.1. We empirically determined that an adequate
value for the optimal step size d is 5% of the image width.

] | Median | Edge [EDT Pose Total
GPU | 0.0007 | 0.0003 | 0.0018 1.0247 1.0278
CPU | 0.0008 | 0.0002 | 0.0141 | 31.8236 | 31.8393

Table 1. Average times (in seconds) for differ-
ent parts of the algorithm on GPU and CPU.

The optimization procedure is implemented using three
fragment shader programs. The first shader implements the
actual downhill simplex algorithm as described by Nelder
et al. [19]. The second shader computes the error terms
of Equations 2 and 4, and the third shader computes the
final error value as described in Section 4.3. This loop is
executed for each evaluation of the error function in the the
downhill simplex algorithm. Finally, the topmost scanlines
of all reference range maps are transferred to the CPU. The
parameters (£, 4, 2, é, (5, &) of the reference range map with
the lowest error correspond to the estimated pose.

6 Results and Discussion

We tested our algorithm with synthetic data as well as
real laser scans. All results were computed using a PC with
3.2 GHz Intel dual-core CPU and nVIDIA GeForce 8800
GTX graphics card with 128 shader processors. We em-
pirically found that the optimal number of parallel downhill
simplex iterations is 15 for a range maps with 64 x 64 pixels.

The execution time — from input of the raw 3D scan to
output of the estimated pose — was 0.64 seconds for 1024
reference range maps (one matrix) and /.03 seconds for
2048 reference range maps (two matrices). Using 2048 ref-
erence range maps (two matrices) improved pose accuracy.
This corresponds to over 29,000 range map comparisons per
second. The running time is independent of scene and ref-
erence range map complexity. The input processing (edge
detection, EDT, and starting point) takes less than 0.1% of
the overall time. The rest of the time is used by the data-
parallel downhill simplex method. For one iteration step,
around 30% of the time is spent on the evaluation of the er-
ror function, 50% on collecting the error scores, and 20%
on the actual downhill steps. Running the same amount of
range map comparisons on the CPU takes 31.8 seconds —
about 30 times slower. Table 1 shows a detailed perfor-
mance comparison. The times for median filtering and edge
detection are very similar for GPU and CPU because there
is not sufficient parallelism during processing of one 64 x 64
image. However, computing on the GPU saves time because
the image has to be uploaded to the graphics card only once.

To measure the accuracy of the pose estimation we first
used synthetic data as ground truth. The 3D models for our
experiments are shown in Figure 7. Using 3D modeling

CR T o

Figure 7. The synthetic test models.

Dataset Avg. / Max. Avg. / Max. | Avg. / Max.

Translation Angular Hausdorff
Pipe 3.3px/3.8px | 5.22°/9.22° | 1.8%/6.8%
Dino 3.7px/4.9px | 5.82°/9.10° | 2.4%/7.9%
Drill 3.4px/5.1px | 7.01°/12.77° | 2.4%/7.7%
Laser scan N/A N/A | 2.0%/8.9%

Table 2. Average and maximum pose errors
and Hausdorff distances. Translational error
is in pixels (px), rotational error in degrees,
and Hausdorff distance is in percent of the
physical image width. There are no values
for the pose errors for the laser scans since
ground truth is not available.

software we built 21 test scenes with clutter and partial oc-
clusions, seven for each of the three models (see Figure 8).
As real-world test data we used 50 laser range scans — ac-
quired from different viewpoints — of four different bins
with bronze pipes. As the example in Figure 9 shows, the
laser scans are quite noisy.

We use two different error metrics to evaluate the pose
estimation (see table 2). Pose error refers to the difference
between the computed pose and ground truth. Since there
was no ground truth available for the laser scans we also
compute the one-sided Hausdorff distance. For each pixel
in the reference range map we find the closest pixel of the
input range map and compute their Euclidean distance. We
then take the average and the maximum of these distances,
both averaged over all test samples. Note that — after pose
estimation — those range maps are overlapping but not nec-
essarily axis aligned. The Hausdorff distances are normal-
ized by the width of the range map. In other words, a Haus-
dorff distance of one corresponds to the width of the image
in physical units. We report them as percentage of physical
image width.

In all our experiments, the algorithm correctly detected
the pose of the object closest to the camera without manual
initialization, even in scenes with noise and partial occlu-
sions. Table 2 shows the average and maximum errors over
all experiments using 2048 reference range maps. The av-
erage and maximum angular pose error is about 5 and 10
degrees, respectively. As expected, this is about half of the
angular difference between reference range maps, which is
22 degrees on average. For 1024 reference range maps, the
angular difference is about 28 degrees, and the average error

Figure 9. Two different views of the same
laser scan (red points). The blue mesh is
the result of the pose estimation. This ex-
periment resulted in the worst Hausdorff dis-
tance, but with still acceptable pose error.

increases to about 14 degrees. The translation and Haus-
dorff distance errors are very small. For the laser range
scanner, where we know the scaling from virtual to phys-
ical units, the average and maximum Hausdorff distances
(averaged over all test samples) correspond to 2.8 mm and
12.46 mm, respectively.

Figure 8 shows some example pose fitting results for the
synthetic models. Our method currently can only handle
one 3D model in the scene. However, the algorithm could
be extended to estimate the pose of n objects by fitting n
different models to the scene and choose the one with the
overall minimum error. To test this hypothesis we ran an
experiment with a mixed scene with all the models (see Fig-
ure 8, right). We had to ensure that the model picked by the
initial guess corresponded to the one we stored in the refer-
ence texture matrix. Once this was the case, the algorithm
was able to correctly fit the model to the scene.

Figure 9 shows two views of the same laser scan scene.
The algorithm yielded for this experiment the maximum
Hausdorff distance (21.7mm). As the reference model (in
blue) indicates, this result is acceptable for many applica-
tions. Running ICP [4] on our test scenes did not converge
because ICP requires a good initial pose guess. In contrast,
our method is exploring the complete parameter space in
parallel on the GPU and always finds the global optimum.

Figure 10 shows a boxplot of the mean, maximum, min-
imum, and standard deviation of the errors for all 15 down-
hill simplex iteration steps of a laser-scan test scene with
2048 reference range maps. Note the rapid convergence af-
ter only 11 iterations. By looking at the distribution of the
error values along each error bar we note the rapid falloff
towards the tails (min and max values).

~
T

)
T

+
L

o
T
——— =+

B I S T

error values of the parallel fittings
~
T

b — -

©
i

ot F-——-- | F-----t+ + ++ +

N e B B et e

b — -

Bttt = = [| = it

:
ik
H

~NE e = = F - b
o b = —[| | -
©F + it — —[[|~ —
ZE ot — [| b - e
RE e = [[F - e
@ e — [[| — e
T R I

iteration step

Figure 10. Mean, maximum, minimum, and
standard deviation of the error for all 15 iter-
ations of the downhill simplex method. Note
the rapid convergence.

7 Conclusions and Future Work

We presented a very fast method for pose estimation for
range images that exploits the parallelism of modern GPUs.
We demonstrated its capability to automatically locate ob-
jects in complex scenes and to correctly estimate their pose
without initial guess. Our method is not affected by local
minima since we compute the errors for all reference range
maps and then choose the globally best one. For this appli-
cation this simple, brute-force approach is very successful.

The number of range maps in the reference texture ma-
trix has an impact on the accuracy and on performance. This
number is limited by the amount of memory on the graphics
card. For 2048 reference depth maps we currently use 256
MB of texture memory. One could devise a better algorithm
to find the minimal set of reference poses. For example, the
user could decide that certain poses (e.g., frontal views) are
more likely and therefore should be represented more often
in the reference texture matrix.

Instead of using pre-computation, we could also com-
pute the reference range maps online by rendering a low-
resolution version of the 3D model. This would improve the
accuracy but reduce the speed. The best solution is proba-
bly a hybrid method that uses pre-computed reference tex-
tures for initial pose estimation and then online rendering
and pose fitting to improve accuracy.

Further improvements could be achieved by exploiting
nVIDIA’s Compute Unified Device Architecture (CUDA)
compiler [3] that allows to run many C-style programs si-
multaneously on the GPU. In this work we focused entirely
on range images. If greyscale or color values are available

Figure 8. Example pose estimation results for the synthetic data. The reference range maps with
minimum error (blue) are overlaid on the input range maps (red).

then we could take the luminance or color gradient into ac-
count in the error function. Other simple feature detectors
could be implemented on the GPU as well, although one
needs to investigate what benefits the added complexity has
for performance. We also would like to extend this work
to non-rigid objects, such as articulated models (e.g., chain-
links or human bodies) or deformable objects (e.g., faces).

8 Acknowledgments

We would like to thank the following persons for support
and many fruitful discussions: H. Okuda, Dr. K. Sumi, K.
Tanaka of Mitsubishi Electric; Dr. M. Jones, Dr. P. Beards-
ley, Dr. J. Katz, Dr. K. Kojima, MERL,; S. Heinzle, Dr. B.
Leibe, Prof. M. Gross, Prof. L. van Gool, ETH Zurich. This
project has been funded by Mitsubishi Electric. M. Breit-
enstein is partially funded by EU project HERMES (IST-
027110).

References

[1] 3Q Technologies Ltd. http://www.3q.org.
[2] Cyberware Inc. http://www.cyberware.com.

[3] Nvidia CUDA. http://developer.nvidia.com/object/cuda.html.

[4] P. Besl and N. McKay. A method for registration of 3d
shapes. PAMI, 1992.

[5] V.Blanz and T. Vetter. A morphable model for the synthesis
of 3d faces. SIGGRAPH, 1999.

[6] Y. Chen and G. Medioni. Object modeling by registration of
multiple range images. Robotics and Automation, 1991.

[7]1 C. Dorai and A. K. Jain. Cosmos - a representation scheme
for 3d free-form objects. PAMI, 19(10):1115-1130, 1997.

[8] N.Gelfand, L. Ikemoto, S. Rusinkiewicz, and M. Levoy. Ge-
ometrically stable sampling for the icp algorithm. 3DIM,
2003.

[9] N. Gelfand, N. Mitra, L. Guibas, and H. Pottmann. Robust
global registration. Eurographics Symposium on Geometry
Processing, 2005.

[10] GPGPU. http://www.gpgpu.org.

(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]
(23]
(24]

[25]

M. Greenspan. Geometric probing of dense range data.
PAMI, 24(4):495-508, 2002.

M. Greenspan, L. Shang, and P. Jasiobedzki. Efficient track-
ing with the bounded hough transform. CVPR, 2004.

A. Johnson and M. Hebert. Using spin images for efficient
object recognition in cluttered 3d scenes. PAMI, 21(5):433—
449, 1999.

M. J. Jones and T. Poggio. Multidimensional morphable
models: A framework for representing and matching object
classes. IJCV, 29(2):107-131, 1998.

M. J. Jones and P. Viola. Fast multi-view face detection.
CVPR, 2003.

Y. Lamdan and H. Wolfson. Geometric hashing: A general
and efficient model-based recognition sceme. IJCV, pages
238-249, 1988.

J. Lee, B. Moghaddam, H. Pfister, and R. Machiraju. Find-
ing optimal views for 3d face shape modeling. Automatic
Face and Gesture Recognition, pages 31-36, 2004.

A. Mian, M. Bennamoun, and R. Owens. Three-dimensional
model-based object recognition and segmentation in clut-
tered scenes. PAMI, 28(12):1584—-1601, 2006.

J. A. Nelder and R. Mead. A simplex method for function
minimization. The Computer Journal, 7(4):308-313, 1965.
J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. Com-
puter Graphics Forum, 26(1):80-113, 2007.

F. Rothganger, S. Lazebnik, C. S. J., and Ponce. 3d object
modeling and recognition using affine-invariant patches and
multi-view spatial constraints. CVPR, 2003.

S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time 3d
model acquisition. ACM TOG, 21(3):438-446, 2002.

S. Rusinkiewicz and M. Levoy. Efficient variants of the icp
algorithm. 3DIM, 2001.

C. Schmid and R. Mohr. Combining greyvalue invariants
with local constraints for object recognition. CVPR, 1996.
L. Shang, P. Jasiobedzki, and M. Greenspan. Discrete pose
space estimation to improve icp-based tracking. 3DIM,
2005.

