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Abstract

Moving least squares (MLS) is a very attractive tool to design effective meshless surface representations. However,
as long as approximations are performed in a least square sense, the resulting definitions remain sensitive to
outliers, and smooth-out small or sharp features. In this paper, we address these major issues, and present a novel
point based surface definition combining the simplicity of implicit MLS surfaces [SOS04, KolO5 ] with the strength
of robust statistics. To reach this new definition, we review MLS surfaces in terms of local kernel regression,
opening the doors to a vast and well established literature from which we utilize robust kernel regression. Our
novel representation can handle sparse sampling, generates a continuous surface better preserving fine details,
and can naturally handle any kind of sharp features with controllable sharpness. Finally, it combines ease of
implementation with performance competing with other non-robust approaches.

1. Introduction

Central to most point based graphic techniques [GP07] is
the definition of an efficient and effective surface representa-
tion approximating or interpolating the input points. In this
context, moving least squares (MLS) has become a popu-
lar tool on which several meshless surface definitions have
been built. While initial approaches [ABCO*03] based on
Levin’s projection operator [Lev03] were relatively expen-
sive to compute, significant efforts have been devoted to de-
sign simpler and more efficient methods [AKO4a, SOS04].
More recently, issues such as the stability under low sam-
pling density and real-time rendering have also been ad-
dressed [GGO7, GGGO8].

Since such approaches are based on least square approx-
imations, they naturally handle uniform noise and generate
smooth surfaces. On the other hand, it is well known from
statistics that such approaches are highly sensitive to out-
liers. In the same vein, this low pass filtering process as-
sumes data are sampled from a smooth manifold, resulting
in extra smoothing (figure 2a) or even instabilities near sharp
features [AK04b].

In this paper, we address these major issues via a novel
MLS based surface definition. Similar to Fleishman et al.’s
approach [FCOS05], we reach our goal by borrowing tech-
niques from robust statistics [Hub04]. Indeed, as previously
observed in the context of anisotropic smoothing [JDDO03,
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Figure 1: Left: Isidore model reconstructed using our
RIMLS representation from a point set with 3% noise. Right:
Closeup views of the sampling (top), and reconstructions
with standard IMLS (middle) and our RIMLS (bottom).

BMdFO03], samples belonging to a different smooth patch
across a sharp edge can be seen as outliers in the sense of
robust statistics. However, unlike Fleishman et al.’s method,
our approach does not suffer from misclassification issues
and generates a continuous surface while retaining all the
advantages of non-robust MLS methods. To summarize, the
major features of our novel MLS definition include:

e built-in handling of outliers and high frequency features,
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controllable sharpness (globally or locally),
stability under sparse sampling,

ease of implementation,

efficiency (suitable for real-time applications),
purely local computations without preprocessing.

More precisely, as another major contribution, we show
that MLS surfaces can be expressed in terms of local kernel
regression (LKR) [Nad64], opening the doors to a large liter-
ature of well established techniques. In particular, we focus
on implicit moving least squares (IMLS) [SOS04, Kol05],
on which we build our novel representation (section 3). In a
second step we show how general LKR can be properly ex-
tended with robust statistics (section 4.1). Combining IMLS
with the robust LKR approach gives our novel robust IMLS
surface representation (section 4.2). Finally, we also present
a novel feature preserving normal smoothing procedure, tai-
lored to the preprocessing of extremely noisy datasets.

2. Related Work
Moving Least Squares Surfaces

Moving least squares [She68] is a popular method for
functional approximation of irregular data. Its extension
to the reconstruction of manifolds has been pioneered by
Levin [Lev03] and introduced to computer graphics by
Alexa et al. [ABCO*03]. The surface was defined as the
set of stationary points of an iterative projection opera-
tor: at each step a polynomial approximation of the local
neighborhood is performed from a local planar parametriza-
tion. By omitting the polynomial fitting step, Amenta and
Kil [AKO4a] showed that the same surface can be defined
and computed by weighted centroids and a smooth gradi-
ent field. This definition avoids the planar parametrization
issues in the case of sparse sampling, and greatly simpli-
fies the representation, especially in the presence of nor-
mals [AA04, AAO7].

However, plane fit cannot perform tight approximations
and becomes unstable when the sampling rate drops be-
low some threshold [AKO04b, GGO7]. To overcome these
limitations, Guennebaud and Gross proposed to directly fit
higher order algebraic surfaces such as spheres [GGO7].
Using a spherical fit with appropriate normal constraints,
this approach yields a trivial and efficient closed form
solution of the underlying algebraic point set surfaces
(APSS) [GGGOS].

With similar initial motivations, Shen et al. [SOS04] pre-
sented a radically different solution to the problem: instead
of trying to fit trivariate polynomials to the data, they pro-
posed to use standard MLS to reconstruct tangential implicit
planes prescribed at each input sample position. When con-
stant polynomials are used as the MLS basis, this method
yields a simple weighted average [KolO5] that we refer to
IMLS for implicit MLS. Unfortunately, without a global op-
timization step, this approach suffers from expanding and
shrinking effects [GGO7]. The method presented in this pa-
per builds on IMLS and avoids those undesirable effects.

(@ (b)

Figure 2: (a) Comparison of various MLS definitions: SPSS
(purple), APSS (green), IMLS (blue), and our RIMLS (or-
ange). (b) L2 error (red) versus the robust Welsh’s function.

MLS and Sharp Features

By definition, MLS based techniques can only reconstruct
smooth surfaces. To overcome this limitation, various ap-
proaches have been proposed. Some of them rely on an ex-
plicit representation of the sharp creases using either cell
complexes [AA06D] or tagged point clouds [RIT*05,GG07]
to separate the input samples into different components. A
more challenging task, however, is to automatically detect
or enhance features present in the input point cloud.

As initially observed in the context of anisotropic smooth-
ing [JDDO03, BMdFO03], samples belonging to different
smooth patches across a sharp feature can be seen as out-
liers. This suggest the use of robust statistics both to deal
with real outliers and reconstruct sharp features. Follow-
ing this idea, Fleishman et al. [FCOSO05] designed an it-
erative refitting algorithm which locally classifies the sam-
ples across discontinuities. While constituting an impor-
tant progress, the method requires very dense sampling, as
well as special and complex handling to locally combine
the different patches making the approach relatively expen-
sive. Furthermore, it offers only limited flexibility to the
user, and the lack of global consistency of the classifica-
tions yields C ~! discontinuities and jagged edges. While
the latter limitation can be overcome using more advanced
techniques [DHOSO07, LCOLO07], their inherent complexity
makes them only suitable for surface reconstruction and not
to produce an effective surface representation.

Our approach also takes inspiration from robust statistics,
but in contrast to these methods, it naturally preserves any
kind of high frequency features, from sharp edges to fine
details, without any special handling or segmentation.

3. Kernel Regression and MLS

Kernel regression is a popular method in statistics to
estimate the conditional expectation of a random vari-
able [TFMO7]. In this section we briefly present local ker-
nel regression (LKR) and show the link to existing MLS
surface representations. In particular we will explicitly de-
rive Kolluri’s IMLS definition in this LKR framework, that
will form the basis for our new robust MLS definition in sec-
tion 4. Note that a link between MLS and LKR has been very
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recently suggested only in the case of the functional setting
[WSSO08].

3.1. Local Kernel Regression

Similar to MLS, local kernel regression is a supervised re-
gression method to approximate a function f(x) : RY - R
given its values y; € R at sampled points x; € R?. The input
data might be corrupted with noise such that y; = f(x;) + €,
where € is a random variable with zero mean.

The essence of the method is to approximate the unknown

function f(x;) around the evaluation point X in terms of a
Taylor expansion:

FO) 2 £+ (5 =) VA0 3 (5= ) HF) (5 =)+

where Hf (x) denotes the Hessian matrix of f(x). The order
o of the expansion is defined as the number of terms used in
the Taylor expansion minus one. This equation can be refor-
mulated as a sum of inner products:

f(Xi)%So+aiTS1+b,~T52+.‘. 1)

where a; = (x; —x), and b; = [... (a;);(a;); ...]" withk >
Jj. The local approximation is by definition more accurate
nearby the point x. This suggests the use of a weighted least
squares minimization to find the unknown parameters s =

[sosT sl ..]:

argmsinZ(yi—(so—i-a,-Tsl +biTsz+..,))2¢,-(x) (2)

where ¢;(x) = ¢(||x — x;]|), and ¢(x) is a symmetric and
decreasing weight function giving more weight to samples
near x in the minimization. Thus we see that equation (2) is
nothing but a local least square approximation as in standard
MLS.

3.2. Deriving MLS Surfaces from LKR

The problem of implicit surface reconstruction from point
clouds consists of approximating the signed distance func-
tion to a surface given points sampled from the surface. To
approximate the signed distance function using LKR, we as-
sume that the sampled points are close to the surface so that
f(x;) =~ 0 which implies to take y; = 0. In order to avoid the
trivial solution s = 0, some regularization terms have to be
added.

A common approach is to constrain the norm of the gra-
dient to be one: ||V f(x)|| = ||s1]| = 1. This regularization
term has been used in the context of plane [AA03] and
sphere [GGO7] fitting. In the presence of samples with nor-
mals, an alternative approach is to make the gradient of the
implicit surface approximate the prescribed normals [AA04,
GGGO8].

As explained in section 2, IMLS is based on a quite dif-
ferent approach [SOS04] that approximates prescribed func-
tions rather than scalar values. However, we show that IMLS
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can also be derived from the aforementioned normal con-
straint. Indeed, given the Tailor expansion of the gradient:

vf(xi)WVf(X)+Hf(X)(Xi—x)+... 3)

and taking a zero order expansion give us V f(x;) = Vf(x).
Since we assume the function f approximates a signed dis-
tance field, we can set the normal constraint V f(x;) = n;,
where n; is the normal at the sample point x;. In this case,
the first order LKR minimization degenerates to a zero order
LKR:
. T 2
argmin y’ (yi — (so +a; 81))“0;(x)

= argnginZ(so-l—(Xi—X)Tﬂi)2¢i(X) .

Solving this minimization yields the following explicit for-
mula for f(x):

¥ 0i(x)
which is exactly Kolluri’s IMLS definition.

Due to the high similarity between MLS and LKR, the
derivation of all other MLS surface definitions that fits a lo-
cal implicit surface from the LKR framework is also possi-
ble. As an example, the surface definition of SPSS with plane
fitting corresponds to 0 = 1 with the constraint ||s;|| = 1.
Interpreting IMLS, and MLS surfaces in general, in terms
of LKR opens many ways to improve the existing defini-
tions and make new ones, such as using different constraints
or utilizing methods and extensions developed for local ker-
nel regression. In the scope of this work, we combine robust
kernel regression techniques with IMLS to arrive at the pro-
posed novel representation.

F(x) =50 = @)

4. Robust Implicit MLS

In contrast to most previous heuristic methods for meshes
or point clouds that use robust measures to handle features
and outliers, we derive our new MLS surface definition by
formulating it as a LKR minimization using a robust objec-
tive function. This results in a simple and theoretically sound
implicit formulation of the surface.

In the following sub-sections, we first derive a robust
strategy for general continuous approximation using LKR,
and then we specialize it to the case of MLS surfaces and
faithful sharp feature reconstruction.

4.1. Robust Local Kernel Regression

Standard LKR, as presented in section 3.1, assumes the data
follow a smooth model with uniform noise. As a conse-
quence, even a single outlier in the data can significantly
influence the solution. Instead of relying on an extra out-
lier removal algorithm, robust statistics are based on sta-
tistical quantities that are not influenced by them. Some
popular robust measures are least median of squares, least
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trimmed squares, and repeated median (e.g. [Mor07]). How-
ever, since the objective functions of these methods are not
differentiable, they likely generate discontinuous solutions
(i.e., "'y and require expensive minimizations.

Therefore, we extend LKR to robust local kernel regres-
sion (RLKR) using y-type M-Estimators, which have the
significant advantage of leading to simple and efficient min-
imization procedures [Hub04]. Instead of the ordinary least
squares criterion, Y-type M-Estimators minimize a different
but still differentiable objective function such that outliers
are given less weight. For our problem, there are spatial and
normal outliers and thus these estimators are well-suited. Us-
ing M-Estimation, the general LKR objective function of eq.
(2) becomes:

argminy” p(y; — gs(x)) 9i(x) 5)

where gs = s + aiTsl + biTSQ + ... corresponds to the local
approximation of f, and p is an arbitrary function. Assum-
ing p is differentiable, and taking w(x) = Z—E/x, this non-
linear problem can be solved using the following Iteratively
Reweighted Least Squares (IRLS) [Cle79] minimization:

k . k—1 k 2

$ —argmin Y 0wt )i - bx))’  ©
where r{f*1 = y; — gk~ 1(x;) is the " residual at the k
iteration. Each iteration is equivalent to a weighted least
square minimization. The behavior of this method depends

on the choices of the function p and initial conditions, which
are discussed below.

_qth

Choice of p.  To be robust to outliers, the function p should
grow slowly such that w(x) decreases to zero as x — oo.
Moreover, for our purposes, its continuity degree is also an
important criteria. In this paper we used Welsch’s function

2 x \2
p(x)= %(1 —e (&) ) which is C°°, and yields a Gaussian

X \2
weight function w(x) = &) A comparison between the
L, norm and Welsch’s function is given in figure 2b.

Choice of the starting point. As with any non-linear opti-
mization, a critical choice is the starting point. In the context
of IRLS, it is usually recommended to initialize the itera-
tions with another robust method such as the median or me-
dian absolute deviation. However, in the context of MLS, the
continuity of the solution is of first importance. Therefore,
we use solutions of the least square minimization of eq. (2)
as the starting points. This has the significant advantage of
leading to a continuous reconstruction at any iteration step,
while being both simpler and much more efficient. In prac-
tice, this choice is equivalent to setting all the initial weights
to one (i.e., w(r?) = ).

4.2. Our Robust Surface Definition

Combining the IMLS surface definition as presented in sec-
tion 3.2 with the general RLKR approach of the previous
section yields a robust IMLS surface (RIMLS) defined by

STTTTT ‘f*?—\A"

(©) ()

Figure 3: A corner with one outlier reconstructed using
IMLS (blue) and RIMLS (orange). Grey curves show RIMLS
after one and two iterations. (a) is with the residual term
only, (b) is with the gradient term only, while (c) includes
both terms. (d) Plot of the approximate gradient in a worst
case scenario.

the following IRLS minimization:
40 = argmin Y (so -+ (5 —x) ) %0 (w7 ()

with the residuals rl]»‘*1 = A 1(x) — (x — x;)"n;. This def-
inition is robust to spatial outliers which is already a great
improvement over the initial version.

However, our main motivation is to increase the accuracy
of the reconstruction in the case of sharp features. While it
is common to assume that samples belonging to a different
surface patch across a discontinuity can also be interpreted
as spatial outliers, it is easy to observe that this assumption
does not hold nearby the actual first order discontinuity (fig-
ure 3a). We overcome this limitation by making the observa-
tion that, across a sharp feature, the actual outliers are not the
samples themselves, but the sample normals. This suggests
the addition of a second re-weighting term penalizing sam-
ples having normals far away from the predicted gradient of
the IMLS surface. Given Anf = ||V f¥(x) — n;]| as the mea-
sure of the difference between the predicted gradient and a
sample normal, we define this new weight function wy as:

(an)?

wa(Anf)=¢ o . (®)

The iterative minimization of our final RIMLS definition be-
comes:

_ Il (x—x)i(w(rfwa(Anf )
LOi(x)w(ry ™ )wa(Anf )
The effect of these refitting weights is illustrated in figure 3.

(C)]

)

Further insight into the robust weights wy,, can be gained
by considering the first order regularization term V f(x) = n;
we used to derive the initial IMLS definition in section 3.2.
The error made on this constraint is not explicitly addressed
in the residuals rf-‘fl. In fact, it corresponds to the norm of
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Figure 4: [llustration of the robust normal smoothing algo-
rithm on a highly noisy input rendered as both a set of splats
and a mesh (a). (b) is after the normal filtering pass. The
normals are sharp near the edges. (c) and (d) are the final
RIMLS reconstruction before and after the normal smooth-
ing step respectively. (e) and (f) corresponds to our RIMLS
in the presence of 25% and 40% of outliers respectively.

the residual gradient, which is equal to Anfﬁl. Finally, it is
interesting to note that equation (9) can also be seen as an
iterative trilateral filtering including both zero order and first
order penalizing weights.

4.3. Computing The Surface

The previous equation (9) entirely defines our RIMLS sur-
face as the zero set of the signed scalar field f. Computing
the surface, or parts of it, can therefore be achieved using
either a marching cube algorithm, by casting rays, or by pro-
jecting points onto the surface. In any case, evaluating the
scalar field f(x) requires the computation of the surface gra-
dient at each iteration.

Owing to the recursive nature of our definition, com-
puting exact derivatives leads to rather complicated and
expensive expressions. Fortunately, we show that tolerat-
ing a minor approximation, one can get pretty accurate re-
sults in a fairly easy manner. The key idea is to consider
that, in the definition of the current implicit function fk(x),
the refitting weights are constant values. Thus, fixing w; =

w(r’.‘*l)wn(Anffl), the gradient V f* becomes:

1

_ Zwigi(x)ni + L wi Vi (x) (n] (x —xi) — f*(x))
Lwidi(x)
The error due to this approximation is maximal when the
refitting weights vary quickly, i.e., nearby very sharp edges.
Figure 3d shows the accuracy of this approximation in such
a worst case scenario. Higher order derivatives can easily be
computed in the same manner.

Yk (x)

4.4. Robust Normal Mollification

Our RIMLS surface definition, like many previous ones, re-
lies on the input surface normals. Since RIMLS embeds a
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low pass filter, it naturally deals very well with both spatial
and normal noise. Nevertheless, when the input normals are
extremely noisy it might be helpful to first filter them. In
order to preserve sharp features, we accomplish this by ap-
plying the robust optimization procedure derived in the pre-
vious sections to the normal vector field. In particular, given
a point p ;, we define its smooth normal fi; as the solution of
the following IRLS minimization:

¢ Zi0i(p)wa(|In " —ni|)m;
n; = —1
Y 0i(pj)wa (|0~ —nyf])

where ¢; and w;, are defined as in the previous section.
Again, a critical choice is the starting point n(}. In the bi-

, (10)

lateral filtering setting, n? would be set to the initial sam-
ple normal n;. However, it is well known that this strategy
preserves outliers: for instance let’s pick a sample p; with
a flipped normal, all the similarity weights wy(||n; —n;|)
with i # j will be negligible, and its normal n; will stay un-
changed. Robust starting points typically aim to overcome
this issue. As a much faster approximation, we propose to
initialize the iterations with the weighted mean of the neigh-
bor normals without considering the current normal itself:

20— Yiizj0i(p;j)n;

T Xiiz0i(p))
The effectiveness of our normal filtering technique is de-
picted in figure 4 on a highly noisy dataset. This procedure
is similar to the one of Choudhury and Tumblin [CT03], and

mainly differs in the fact that we are doing a full minimiza-
tion and in the choice of a more robust starting point.

(1)

5. Results
5.1. Implementation and Performance

Our RIMLS algorithm is straightforward to implement: as
shown by equation (9), evaluating the scalar field f(x) is

repeat
i=0;
repeat
sumW = sumGw = sumF = sumGF = sumN = 0;
for p in neighbors(x) do
px = x - p.position;
fx = dot(px, p.normal);
if i>0 then alpha = exp(-((fx-f)/sigma_r)~2)
* exp(-(norm(p.normal-grad_f)/sigma_n)"2);
else alpha = 1;

w
grad_w

= alpha * phi(norm(px)~2);

= alpha * 2 * px * dphi(norm(px)"2);
sumW  += w;

sumGw += grad_w;

sumF  += w * fx; sumGF += grad_w * fx;
sumN += w * p.normal;

end

f = sumF / sumW;

grad_f = (sumGf - f * sumGw + sumN) / sumW;
until ++i>max_iters || convergence();

x =x - f * grad_f;
until norm(f * grad f) < threshold;

Listing 1: pseudo code of the projection procedure of a point
x onto the RIMLS surface.
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Figure 5: [llustration of the sharpness effect of the parameter Gy. Note that in this example we set 6y = co and therefore, the
case G, = oo corresponds to IMLS. The last picture illustrates the number of iterations to convergence for the case 6, = 0.5.

essentially a simple weighted average over the neighbors of
x repeated until some condition vanishes. Listing 1 gives a
pseudo code algorithm of the projection of a point onto the
underlying RIMLS surface using a steepest gradient descent
strategy. In the remaining parts of this section, we discuss
various implementation choices and performance.

Spatial weight function.  For the spatial weight function
;(x) we used the following C> continuous polynomial ap-
proximation of a Gaussian:

2\
0i(x) = <1 - "‘,;”) (12)

where the weight radii 4; allow to adapt to the local density.
The choice of h; depends on the amount of noise, and typical
values range from 1.4 to 4 times the local point spacing. For
fast neighbor retrieval, we store the input samples in a kd-
tree data structure (eg, see [AA06a]).

Robust weight radii. Our robust definition introduces two
additional weight radii 6, and G,. Since G, is used to scale
the residual term, which represents a difference of distance
to the surface, it can be set locally as a fraction of the spatial
radius A;. Thus, the refitting weight w becomes:

_ )y
w(x)=e il (13)

This way, the choice of o, does not depend on the object
scale anymore, and it can be set once for all. In this paper
we used 6, = 0.5.

The choice of 6, is much more subjective and depends
on the desired degree of sharpness. If we assume the norm
of the gradient is close to one, G, is used to scale the dif-
ference between unit vectors, and then typical choices range
from 0.5 to 1.5. Smaller values lead to sharper results. Fig-
ures 5 and 10 illustrates this effect. We also emphasize that
this sharpness parameter can be set locally for each sample,
allowing the user to locally adjust the degree of sharpness,
via, for instance, a painting-like tool [PKKGO03].
Termination criteria.  The last implementation choice
concerns the stopping criterion of the iterations. One option
would be to iterate until convergence is detected. We detect

convergence by tracking the relative change of the refitting
weights, i.e.:

max w(rf)wa(Anf) w(rEw, (Anf )
C Tw(rwa(Ang) R (i wa(Anf )

i

where 7 is a user defined threshold (eg, t = 10_4).

On the other hand, as seen in section 4.1, we took a special
care to build RIMLS such that at any iteration it generates a
reasonable and continuous surface. Therefore, one may fix
a constant number of iterations while still keeping the con-
vergence test as an early termination optimization. Note that
using a fixed number of iterations, preferably small, also al-
lows to extract a closed form formula of the implicit scalar
field f.

As demonstrated in figures 3, 5, and 12, we observed that
the converge rate of our algorithm is extremely high. Not
surprisingly, the number of refitting iterations for full con-
vergence slightly increases near sharp features or high fre-
quency details, while only one iteration is needed in smooth
regions. In fact, according to our experience, in most cases
the differences after one refitting iteration are seldom per-
ceptible (eg, see figure 7).

Performance. Thanks to the very high convergence rate
and simplicity of our approach, we can achieve performance
of similar order as the fastest MLS definitions. In practice,
the neighbor search part still remains the main computa-
tional cost. We emphasize that our RIMLS algorithm could
perfectly fit into the real-time upsampling and rendering
framework of algebraic point set surfaces (APSS) [GGGO8].
The following table summarizes for both APSS and RIMLS
the number of arithmetic operations required by one evalua-
tion as a function of the number of neighbors k and refitting
iterations i.

APSS APSS RIMLS
(approx normals) | (exact normals)
kx38+45 | kx130+309 | ix(kx56+13)

5.2. Analysis of Quality and Stability

We evaluated the capacity of our approach to reconstruct
and preserve surface features on a wide variety of models.

(© 2008 The Author(s)
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input poisson

Figure 6: Various reconstructions of the fandisk model after being randomly corrupted by noise of magnitude 0.5% of the object

size.

In the following comparisons, SPSS stands for Adamson
et al.’s simple point set surfaces based on normal averag-
ing [AAO03].

Moreover, unless stated otherwise, all the results pre-
sented here have been produced using the raw normals with-
out using the pre-smoothing procedure described in sec-
tion 4.4.

In contrast to previous sharp feature reconstruction meth-
ods for point set surfaces, we emphasize that the goal of
our algorithm is not to generate surfaces with precise nor-
mal discontinuities, but rather to improve the faithfulness of
the approximation at any scale. This behavior is depicted in
figure 8 on a sparsely sampled model. The shape of many
parts such as the hands and chest are distorted by previ-
ous MLS definitions. In contrast, RIMLS successfully re-
covers these parts, while smoothing out lower scale details
and noise. Sharp features are preserved as can be seen at
the corners and edges of the stand, and the tip of the head.
The expanding and shrinking effect at the tip of the skirt is
also prevented. As can be seen in figure 5, this behavior of
RIMLS is also effective in the case of very smooth objects.

The ability of our approach to recover sharp features from
sparse sampling is further demonstrated in figure 12. The
original model is subsampled to contain approximately 4%

ala

input SPSS APSS

alala

IMLS RIMLS (1 iter) RIMLS (2 iters)

Figure 7: Reconstruction of sharp features for the difficult
case of four intersecting planes.
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of its samples and the resulting model is reconstructed with
several MLS definitions. RIMLS preserves fine details and
sharp features on the body while providing a more stable
overall shape. Note the similarity of the RIMLS reconstruc-
tion from the subsampled model to the actual model.

In the same vein, figure 11 includes a comparison to the
Poisson surface reconstruction (PSR) technique [KBHO06]
which also takes into account input normals. While PSR
works well in extracting fine details out of densely sam-
pled datasets, when sampling density drops, MLS based ap-
proaches, and RIMLS in particular, are clearly superior.

Figure 6 illustrates the ability of our algorithm to recon-
struct sharp features from a highly noisy CAD model. As can
be seen, because of the large amount of noise, a large spa-
tial filter has to be employed, whence the large undesirable
effects produced by both APSS and IMLS near the edges
and corners. For the same reason, PSR also produced over-
smoothed edges in spite of the relatively dense sampling.
Figure 4 demonstrates the stability of the reconstruction un-
der the influence of high noise and outliers. For this difficult
case, the advantage of utilizing the pre-smoothing procedure
(section 4.4) is evident.

Furthermore, figures 7 and 9 show that our approach can
naturally handle high order corners and peaks respectively,
which is particularly difficult with previous sharp feature re-
construction methods.

5.3. Discussion

Like every functional approximation method, under certain
sampling conditions and extreme parameter settings, the
quality of the reconstructions can degrade. In particular, if
we decrease G, to very small values, there may appear dis-
continuities in the reconstructions, as can be seen in figure 5
for 6, = 0.33. In fact, when 6, — 0, all samples become
outliers of the other leading to a C ~! surface. Although we
have not done a rigorous theoretical analysis of the conver-
gence and surface continuity with respect to sampling and
parameter settings, in our extensive tests we never observed
any artifacts for 6, > 0.5, and never feel the need to use a
smaller value. As an example, figure 9 includes a rendering
with reflection lines showing the high continuity of our sur-
face.
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Figure 9: Illustration of the reconstruction of coarsely sampled peaks. Right is a rendering of the RIMLS reconstruction with

reflection lines.

6. Conclusion

We have demonstrated that MLS and local kernel regression
can be advantageously combined to design a novel surface
representation with great feature preserving ability. Our ap-
proach is particularly robust in the presence of noise, out-
liers and sparse sampling. While previous sharp feature re-
construction techniques for MLS focused on the genera-
tion of exact C° discontinuities at edges and corners, our
approach sharpifies the initial over-smoothed solution to a
more faithful approximation, keeping the surface differen-
tiable. As a result, our approach can improve the representa-
tion of sharp features and fine details of any frequency, and
naturally deals with complex situations such as high order
corners and peaks. A central advantage of our approach is
its extreme simplicity, making it particularly appealing for
interactive applications.

Though our results show the reconstructed surface is con-
tinuous for a wide range of sampling density and parameters,
theoretical bounds on these are yet to be derived in the fu-
ture.

Figure 8: Top row shows a comparison of various MLS def-
initions on a low sampled Ramses model. Bottom row shows
details of the RIMLS reconstruction.

As most of the non-linear techniques, ours depends on the
choice of a starting point. While our current solution already
provides satisfactory results, we believe it would still be in-
teresting to investigate more robust alternatives.

In addition to the novel surface definition, we showed that
MLS based point set surfaces can be interpreted in terms of
LKR, suggesting to adopt further methods from regression
literature to solve various problems in the geometric setting.
By changing the order of regression and constraints, or by
investigating unsupervised kernel regression, we believe that
superior MLS reconstructions will be possible.
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Figure 10: A cube sampled with 4 samples per face recon-
structed by RIMLS with 6, = 3, 1.2, 0.75 and 0.55.
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Figure 11: Comparison of various reconstruction methods
on a model downsampled to about 2.8% of the original data.
The Poisson reconstruction has been made with a limit of
one sample per node and depth 12.
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Figure 12: Comparison of different definitions and our def-
inition under very sparse sampling conditions. Bottom row
represents the number of RIMLS iterations with the corre-
sponding histogram.

models of figures 1, 8, 11, and 12 are courtesy of the
AIM@SHAPE Shape Repository.
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