
Supplemental Material to Perceptually-Based Compensation of Light Pollution in
Display Systems

Analytic Formulation for Scattering

Jeroen van Baar
Disney Research Zürich
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Derek Nowrouzezahrai
Disney Research Zürich
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1 Descattering

To apply our framework to perform descattering for immersive dis-
plays we need an input image, and we need to be able to simulate
the observed image (including pollution) during the perceptual mini-
mization. The challenge with descattering is that just evaluating the
pollution term is a complex and computationally expensive process
which, in the general case, involves solving the rendering equa-
tion [Kajiya 1986].

1.1 Scattering on Arbitrary Lambertian Screens

We focus on projections designed for large audiences, and therefore
assume screens with uniform Lambertian reflection properties. Pro-
jecting an image induces a discretization of the screen into patches
with areas ai, defined by the projected area of each image pixel i.
The projected area of the whole image is simply a = ∑i ai = ‖a‖1.
Here we express the projected image x as b0. Furthermore, we
assume b0 explicitly specifies the direct-illumination radiosity of
each patch i on the screen, and not the emitted radiance of the pro-
jector. Note that, we ignore the projector-to-screen form factor for
simplicity of notation, but this could easily be incorporated.

In the case of Lambertian reflection, the indirect illumination can
be expressed recursively in terms of the input image b0 using the
classical recursive radiosity equation:

b = b0 +ρFb, (1)

where ρ is the diffuse reflectivity of the screen and F is the matrix
of patch-to-patch form factors defined as:

Fi j =
1

aiπ

∫
a j

∫
ai

cosθx cosθy

‖x− y‖2 V (x,y)dai(x)da j(y), (2)

where x and y are points on patches i and j respectively, θx and θy
are the angles between the surface normals and the line connecting
x and y, and V is the binary visibility function.

It is well known that Equation 1 can be solved for the observed
image b in terms of the input image b0 as:

b = Nb0 where N = (I−ρF)−1. (3)

For descattering, this is the general matrix form of the abstract
observation function ψ(x), where b0 is the projected image x and b
is the observed image ψ(x).

Since the form factor matrix only depends on the geometry, the
entire matrix can be stored and inverted as a preprocess – requiring
only a matrix multiplication during runtime to compute the observed
image. This can be further accelerated by employing approximation
techniques from recent precomputed radiance transfer [Ng et al.
2003] and direct-to-indirect transfer methods [Hašan et al. 2006].

1.2 Scattering in a Spherical Dome

For descattering, in this paper we are primarily interested in projec-
tions onto spherical domes, such as an IMAX Dome. In this context,
we introduce a novel method for efficiently computing the observed
image analytically.

The image observed by the audience, b, is a combination of the
direct-illumination radiosity, b0, and a pollution term:

b = b0 +b+, (4)

where b+
i is the additive scattering pollution observed at each dis-

crete patch i. To compute the total indirect radiosity b+, we start
by first expressing the 1-bounce radiosity and then generalize to
subsequent bounces.

1.2.1 The First Indirect Bounce

The first indirect bounce of illumination can be expressed in terms
of the direct radiosity using the discrete 1-bounce radiosity equation:

b1
i = ρ

n

∑
j

Fi jb0
j . (5)

Our key observation for solving this efficiently is that, due to the
unique geometric structure of a sphere, the patch-to-patch form
factors, Fi j , can be expressed analytically. To show this, we consider
the integrand in the definition of the form factor and note that the
triangle formed by any points x, y and the center of the sphere
is isosceles (see Figure 1), hence θx = θy. Further nothing that
visibility is always one for a sphere, and applying the law of cosines
and a double-angle identity we obtain:

cosθx cosθy

‖x− y‖2 =
cos2 θ

‖x− y‖2 =
cos2 θ

4r2 cos2 θ
=

1
4r2 , (6)

where r is the radius of the sphere. This insight allows us to express
the complete patch-to-patch form factor analytically simply as:

Fi j =
1

aiπ

∫
a j

∫
ai

1
4r2 dai(x)da j(y) =

a j

4πr2 . (7)

Note that this is simply the ratio of a patch area to the surface area
of a full sphere. With this simplification, the 1-bounce radiosity
expression in Equation 5 becomes:

b1 =
ρ

4πr2 (a ·b
0). (8)

What is notable about Equation 8 is it shows that 1-bounce scattering
due to any projected image on a sphere is spatially constant, and
can be computed with a single dot product.
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Figure 1: The form factor geometry for a spherical dome.

1.2.2 A Recurrence Relation for Subsequent Bounces

By recursively inserting subsequent bounces of light for b0 in the
right-hand-side of Equation 8, we can obtain an expression for the
2-bounce radiosity. Repeating this process for an arbitrary number
of bounces, m, results in a generalized expression of the form:

bm =
(

ρ

4πr2

)m
am−1(a ·b0). (9)

1.2.3 Total Indirect Illumination

The total indirect illumination, b+, is an infinite sum of all indirect
bounces:

b+ = b1 + · · ·+b∞ =
ρ

4πr2−aρ
(a ·b0). (10)

This is the pollution term, ϕ(x), which our perceptual framework
tries to minimize. Note that the total indirect illumination in a
spherical dome is a single spatially uniform “ambient” scalar. Fur-
thermore, Equation 10 makes it clear that all bounces of indirect
illumination, for all pixels, can be computed using a single dot prod-
uct in O(n) time where n is the number of pixels in the image. Hence,
this computation can be performed efficiently within the inner-loop
of perceptual compensation, without down-sampling, even for high-
resolution input images typical of IMAX Dome projection.

1.3 Subtractive Descattering

1.3.1 Subtractive Descattering for Arbitrary Screens

When negative values are not induced by a subtractive compensation
algorithm, the subtractive compensation is the perceptual optimal
solution. As subtractive compensation is in theory easier to compute,
we can improve the efficiency of perceptual descattering by first
checking if a subtractive compensation is possible.

Seitz et al. [2005] introduced the cancelation operator, which re-
moves indirect scattering given an observed image. This is exactly
the goal of descattering. We can express this in our notation by
rewriting Equation 1 as:

b0 = b−ρFb. (11)

Given a desired final observed radiosity b, Equation 11 allows us to
compute subtractive descattering of all bounces of indirect illumi-
nation for arbitrary screen configurations. The form factor matrix
F can be precomputed, allowing us to perform subtractive descat-
tering using a single matrix multiply during runtime. This was the
technique suggested by Mukaigawa et al. [2006].

1.3.2 Analytic Subtractive Descattering for Spherical Domes

For the special case of a spherical dome we can obtain an efficient,
analytic expression for subtractive descattering without the need to
precompute the form factor matrix or to perform the matrix vector
product in Equation 11. By exploiting the analytic expression for
form factors from Equation 7 and inserting into Equation 11 we
have:

b0 = b− ρ

4πr2 (a ·b). (12)

This simplifies the n×n matrix product into a single dot product and
allows us to compensate for all bounces of scattering, at all patches
of a spherical dome, analytically in just O(n) time.
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HAŠAN, M., PELLACINI, F., AND BALA, K. 2006. Direct-to-

indirect transfer for cinematic relighting. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA,
1089–1097.

KAJIYA, J. T. 1986. The rendering equation. In Comp. Graph.
(Proceedings of SIGGRAPH 86), ACM, vol. 13, 143–150.

MUKAIGAWA, Y., KAKINUMA, T., AND OHTA, Y. 2006. Ana-
lytical compensation of inter-reflection for pattern projection. In
Proc. of VR Software and Tech.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2003. All-
frequency shadows using non-linear wavelet lighting approxima-
tion. ACM Trans. on Graph. 22, 3, 376–381.

SEITZ, S. M., MATSUSHITA, Y., AND KUTULAKOS, K. N. 2005.
A theory of inverse light transport. In ICCV, IEEE Computer
Society, II: 1440–1447.


