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ABSTRACT
Using data from student use of educational technologies to
evaluate and improve cognitive models of learners is now a
common approach in EDM. Such naturally occurring data
poses modeling challenges when non-random factors drive
what data is collected. Prior work began to explore the
potential parameter estimate biases that may result from
data from tutoring systems that employ a mastery learn-
ing mechanism whereby poorer students get assigned tasks
that better students do not. We extend that work both by
exploring a wider set of modeling techniques and by using
a data set with additional observations of longer-term re-
tention that provide a check on whether judged mastery is
maintained. The data set at hand contains math learning
data from children with and without developmental dyscal-
culia. We test variations on logistic regression, including the
Additive Factors Model and others explicitly designed to ad-
just for mastery-based data, as well as Bayesian Knowledge
Tracing (BKT). We find these models produce similar pre-
diction accuracy (though BKT is worse), but have different
parameter estimation patterns. We discuss implications for
use and interpretation of these different models.

Keywords
learning curves, logistic regression models, knowledge trac-
ing, parameter fitting, prediction accuracy

1. INTRODUCTION
Modeling student knowledge is a fundamental task when
working with intelligent tutoring systems. The selection of
tasks and actions is based on the student model, therefore an
accurate prediction of student knowledge is essential. The
accuracy of the student model depends on the quality of the
parameter fit. Parameter fitting is, however, not only im-
portant for prediction accuracy; the parameters of a model
also contain information on how students learn.

A variety of approaches to assess, interpret and predict stu-
dent knowledge have been proposed. Popular techniques to
model student learning include Bayesian Knowledge Tracing
(BKT) [8], Bayesian networks [4, 9, 10], performance factors
analysis [21] and Additive Factors Models (AFM) [5, 6].

BKT is one of the most popular approaches for student mod-
eling. Prediction accuracy of the original BKT model has
been improved using clustering approaches [20] or individ-
ualization techniques, such as learning student- and skill-
specific parameters [16, 19, 24, 26] or modeling the param-
eters per school class [21].

The AFM is a generalized linear mixed model [2] applying
a logistic regression. It is widely used to fit learning curves
and to analyze and improve student learning. AFM helps
identify flat or ill-fitting learning curves that indicate op-
portunities for tutor or model improvement. Consistently
low error curves indicate opportunities to reallocate valu-
able student time [5]. Consistently high error curves with
poor fit indicate a miss-specified skill model that can be im-
proved [15, 23] and used to design better instruction [14].
However, when working with mastery learning data sets,
averaging over students who have different initial knowledge
states and learning rates may lead to learning curves which
show little student learning. It has been shown [17] that
disaggregating a learning curve into curves for different sub-
populations or mastery-align the learning curves provides
more accurate metrics for student learning. However, so far
there exist no comparisons between the properties of the dif-
ferent models, such as the parameter fit. Furthermore, the
models were also not validated regarding prediction accu-
racy.

In this work, we therefore extensively evaluate the properties
and parameters of different logistic regression models when
fitting learning curves to a mastery learning data set contain-
ing students with heterogeneous knowledge levels. We turn
the suggestions of [17] for fitting learning curves in BKT into
logistic regression models and also introduce a further alter-
native model to the AFM. The data set at hand was collected
from an intelligent tutoring system for learning mathematics
and includes log files from 64 children with developmental
dyscalculia and 70 control children. Our findings show that
similar regression models predict very different amounts of
learning for the same data. Furthermore, we demonstrate
that different parameter fits lead to the same prediction ac-
curacy on unseen data. For further validation, we compare

Proceedings of the 7th International Conference on Educational Data Mining (EDM 2014) 52



prediction accuracy of logistic regression models to that of
BKT and analyze how well these models generalize to new
students. Our results demonstrate that logistic regression
models outperform BKT regarding prediction accuracy on
unseen data.

2. METHOD
In the following, we first introduce different logistic regres-
sion models and their properties. We then give a short
overview of BKT and finally explain the experimental setup.

2.1 Logistic regression models
Logistic regression models are used in Item Response The-
ory (IRT) [25] to model the response (correct/wrong) of a
student to an item. IRT is based on the idea that the prob-
ability of a correct response to an item is a mathematical
function of student and item parameters. The logistic re-
gression models presented in the following are based on this
concept.

Additive Factors Model (AFM). The AFM [5, 6] is
a logistic regression model fitting a learning curve to the
data. In a logistic regression model, the observations of the
students follow a Bernoulli distribution. A Bernoulli dis-
tribution is a binomial distribution with n = 1. Letting
ypi ∈ {0, 1} denote the response of student p on item i, we
obtain ypi ∼ binomial(1, πpi). The linear component πpi of
the AFM can then be formulated as follows:

πpi = logit(θp +
∑

k

qik · (βk + γk · Tpk)), (1)

with θp ∼ N (0, σ2

θ). The AFM is a generalized linear mixed
model with a random effect θp for student proficiency and
fixed effects βk (difficulty) and γk (learning rate) for the
skills k (knowledge components). The learning rate γk is
constrained to be greater than or equal to zero for AFMs.
qik is 1, if item i uses skill k and 0 otherwise. Finally, Tpk de-
notes the number of practice opportunities student p had at
skill k. The AFM is related to the linear logistic test model
(LLTM) [25] and the Rasch model [25]. When removing the
third term (γk ·Tpk) of Equation 1, we obtain an LLTM. Ad-
ditionally assuming a unique-step skill model (one skill per
step) results in the Rasch model. The intuition of the AFM
is that the probability of a student getting a step correct
is proportional to the amount of required knowledge of the
student θp, plus the difficulty of the involved skills βk and
the amount of learning gained from each practice opportu-
nity γk.
Learning curves are averaged over many students. The AFM
aligns the students by opportunity count. When applied to
mastery learning data, it therefore suffers from student at-
trition with increasing numbers of opportunities. Well per-
forming students need few opportunities to master a skill
and thus only the weaker students remain in the analysis
for higher opportunity counts. This student attrition can
lead to an underestimation of the learning rates γk. In the
following, we therefore introduce alternative logistic regres-
sion models that adjust for mastery-based data.

Learning Gain Model (LG). With the LG model, we in-
troduce a new alternative to the AFM. The LG model avoids
student attrition by aligning the students at their first sam-
ple (when they start the training) and at their last sample,

i.e., when they end the training (independent of whether
they mastered the skill or not). The linear component of
this model is very similar to that of the AFM:

πpi = logit(θp +
∑

k

qik · (βk + γk ·Npk)), (2)

whereNpk ∈ [0, 1] denotes the normalized opportunity count
of student p at skill k, i.e., we normalize over all opportuni-
ties student p had at skill k during the training. Rather than
measuring the amount learnt per opportunity, this model es-
timates the learning gain of the students over the course of
the training.

Alternative logistic regression models. To adjust for
mastery-based data, alternative ways to fitting the curves
have been proposed [17] for BKT. In the following, we refor-
mulate these suggestions and apply them to logistic regres-
sion models. The Mastery-Aligned Model (MA) can be
formulated using Equation 1, but with a different definition
of Tpk. For the MA model, we count backwards: Tpk is the
number of opportunities student p had at skill k as seen from
mastery. Tpk is 0 at mastery, 1 at one opportunity before
mastery and so on. Thus, the MA model aligns students at
mastery, which solves the problem of student attrition. A
different way to deal with student attrition is to group stu-
dents by the number of opportunities needed to first master a
skill. The linear component of this Disaggregated Model
(DIS) can be defined as follows:

πpi = logit(θp +
∑

k,m

qik · (βk,m + γk,m · Tpk)), (3)

where the difficulty βk,m and the learning rate γk,m are fit
by skill k and mastery group m. By combining the MA and
the DIS models, the Mastery-Aligned and Disaggre-
gated Model (DISMA) can be constructed. This model
disaggregates students into groups based on the number of
opportunities needed until mastering the skill and further-
more aligns the students at mastery.

All models presented are generalized linear mixed models
(GLMM) as the linear predictor πpi contains random effects
(for the students) in addition to the fixed effects (for the
skills). GLMMs are fit using maximum likelihood, which
involves integration over the random effects [3]. Integration
is performed using methods such as numeric quadrature or
Markov Chain Monte Carlo.

2.2 Bayesian Knowledge Tracing
BKT [8] is a popular approach for modeling student knowl-
edge. BKT models are a special case of Hidden Markov
Models (HMM) [22]. In BKT, student knowledge is mod-
eled by one HMM per skill (or knowledge component). The
latent variable of the model represents the student knowl-
edge. It indicates whether a student has mastered the skill
in question and is therefore binary. The state of this vari-
able is inferred by binary observations, i.e., correct or wrong
answers to tasks associated with the skill in question. A
HMM can be specified using five parameters. The transmis-
sion probabilities of the model are defined by the probability
pL of a skill transitioning from not known to known state
and the probability pF of forgetting a previously known skill.
The slip probability ps of making a mistake when applying a
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known skill and the guess probability pg of correctly apply-
ing an unknown skill define the emission probabilities of the
model. And finally, p0 denotes the probability of knowing a
skill a-priori. In BKT, the forget probability pF is assumed
to be 0 and therefore a BKT model can be specified with
the four parameters θ = {p0, pL, ps, pg}.

An important task when working with BKT models is pa-
rameter learning. The learning task can be formulated as
follows: Given a sequence of student observations y = {yt}
with t ∈ [1, T ], what are the parameters θ = {p0, pL, ps, pg}
that maximize the likelihood of the data p(y|θ). BKT mod-
els have been fit using expectation maximization [7], brute-
force grid search [1] or gradient descent [26].

2.3 Experimental setup
The training environment we use in this work consists of
Calcularis, a tutoring system for children with difficulties
in learning mathematics [11]. The program transforms cur-
rent neuro-cognitive findings into the design of different in-
structional games, which are classified into two parts. The
first part focuses on the training of different number repre-
sentations and number understanding. In the second part,
addition and subtraction are trained at different difficulty
levels. Task difficulty depends on the magnitude of num-
bers involved, the complexity of the task and the means
allowed to solve the task. The employed student model is
a dynamic Bayesian network modeling different mathemat-
ical skills and their dependencies. The controller acting on
the skill net is rule-based and allows forward and backward
movements (increase and decrease of difficulty levels) [12,
13].

The data set used for the experimental evaluation was col-
lected in a large-scale user study in Switzerland and Ger-
many with 134 participants (69% females). 64 participants
(73% females) were diagnosed with developmental dyscal-
culia (DD) and 70 participants (66% females) were control
children (CC). All children were German-speaking and vis-
ited the 2nd-5th grade of elementary school (mean age: 8.68
(SD 0.84)). Children trained with the program for six weeks
with a frequency of five times per week during sessions of
20 minutes. The collected log files contain at least 24 com-
plete sessions per child. On average, each child solved 1521
tasks (SD 269) during the training. Results of the external
pre- and post-tests demonstrated a significant improvement
in spatial number representation, addition and subtraction
after the training [11].

We investigated 20 addition and subtraction skills in the
number range 0 − 100. For our analyses, we used two ver-
sions of the data set. The first version (denoted as Version 1

in the following) contains the samples of all children at the
respective skills, while the second version (denoted as Ver-

sion 2 in the following) includes only children that mastered
the respective skills. Version 2 of the data set makes the
inclusion of the MA and DISMA models possible. However,
it excludes students not mastering a skill from the analysis,
which leads to a more homogeneous, but due to the drop-
out of many children with DD, also less interesting data
set. Version 1 of the data set contains 36′350 solved tasks,
while Version 2 consists of 20′784 tasks. External paper-
pencil and computer-based arithmetic tests conducted at

the beginning and at the end of the study demonstrated
significant improvement in addition and subtraction in the
number range 0− 100.

3. EVALUATION AND RESULTS
In a first study, we analyzed the parameter fit of different
regression models and evaluated their performance in pre-
diction of new items. Furthermore, we compared prediction
accuracy of regression models to that of traditional BKT.
We used all the samples until the children mastered a skill
and predicted the outcome of the first re-test. In a second
experiment, we evaluated the prediction accuracy of regres-
sion models as well as BKT when generalizing to new stu-
dents. We fitted the model based on a subset of students
and predicted the outcome for the rest of the students. Pre-
diction accuracy for both experiments was measured using
the root mean squared error (RMSE), the accuracy (num-
ber of correctly predicted student successes/failures based
on a threshold of 0.5) and the area under the ROC curve
(AUC). Prediction accuracy was computed using bootstrap
aggregation with re-sampling (n = 200) in the first experi-
ment and a student-stratified 10-fold cross validation in the
second experiment.
Fitting for the regression models was done in R using the
lme4 package. To be able to compare the parameter fit of
the different models, we did not constrain γk to be greater
than or equal to zero. Parameters for BKT were estimated
by maximizing the likelihood p(y|θ) using a Nelder Mead
simplex optimization [18]. This minimization technique does
not require the computation of gradients and is for exam-
ple available in fminsearch of Matlab. The following con-
straints were imposed on the parameters: pg ≤ 0.3 and
ps ≤ 0.3.

3.1 Analysis of parameter fit
In this experiment, we investigated the parameter fit of three
regression models on the data set Version 1 : The AFM, the
LG model and the DIS model. The three models obtain very
different parameter estimations for the same data. While
the AFM model predicts learning (positive γk) for 50% of
the skills, the LG model fits positive learning rates γk for all
skills and the DIS model obtains positive learning rates γk,m
for 92% of the cases. We therefore analyze the residuals and
prediction accuracy of the different models in the following.

Residual analyses. All three models tend to overestimate
the outcome for badly performing students and underesti-
mate the outcome for well performing students. This finding
is also visible in Fig. 1, which displays the mean residuals r
with r = fitted outcome - true outcome by estimated student
proficiency θp. Furthermore, the residuals r are strongly
correlated to student proficiency (ρAFM = −0.9621, ρLG =
−0.9612, ρDIS = −0.9532). These results are as expected,
because the models’ predictions are averaged over all the stu-
dents. While the residuals r are very similar for the AFM
and the LG models, the DIS model exhibits less variance
in student proficiency. As the students are grouped by the
number of opportunities needed to master a skill, student
proficiency within a group is more homogeneous.

For the AFM and the LG model, we also analyzed the mean
residuals r regarding the skill parameters βk and γk from
the models. There are no significant correlations between
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Figure 1: Mean residuals r by estimated student proficiency θp for the AFM (left), the DIS (middle) and the
LG (right) model.
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Figure 2: Mean residuals r by estimated skill diffi-
culty βk for the AFM (top) and the LG model (bot-
tom).

skill difficulty βk and mean residuals r neither for the AFM
(ρAFM = 0.1677, pAFM = .4798) nor for the LG model
(ρLG = 0.3777, pAFM = .1066). From Fig. 2, which dis-
plays the mean residuals r by estimated skill difficulty βk, it
is also obvious that these measures are not related for both
models. The residuals r are also not correlated to the es-
timated learning rate γk (ρAFM = 0.2058, pAFM = .3840;
ρLG = 0.1051, pLG = .6592) as displayed in Fig. 3. Fig-
ure 3 demonstrates how different the parameter fits of the
two models are regarding the learning rates γk. The AFM
fits learning rates γk in a very small range around 0 and 45%
of the learning rates are not significantly different from zero.
The outlier stems from a skill played by only two students re-
sulting in a total of 14 solved tasks. Learning rates γk fitted
by the LG model are all positive and exhibit a larger vari-
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Figure 3: Mean residuals r by estimated learning
rates γk for the AFM (top) and the LG model (bot-
tom).

ance. This larger variance appears to result from AFM hav-
ing a bias to underestimate learning rate (because mastery
leaves more poor students contributing to high opportunity
counts) and LG having a bias to overestimate learning rate
(because the adjusted end-point of all learning curves, the
last opportunity that achieves mastery, is always successful
whether or not it is a true or false positive).

The mean residuals r over time are displayed in Fig. 4. For
the AFM and the DIS model, an averaging window (n = 10)
was used to compute the mean residuals r with increasing
opportunity count. Both models underestimate the outcome
for less than 20 opportunities and overestimate it for larger
numbers. For the AFM, this observation is confirmed by
the significant positive correlation between the opportunity
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Table 1: Prediction accuracy of first re-test for data set Version 1 and 2. The values in brackets denote the
standard deviations. The best model per error measure is marked (*).

RMSE Accuracy AUC

Data set:
Version 1

AFM 0.3562 (0.0101)* 0.8391 (0.0119) 0.6825 (0.0230)*

LG 0.3587 (0.0125) 0.8451 (0.0113)* 0.6778 (0.0250)

DIS 0.3780 (0.0140) 0.8394 (0.0122) 0.6054 (0.0255)

BKT 0.3614 (0.0111) 0.8428 (0.0118) 0.6033 (0.0250)

Data set:
Version 2

AFM 0.3563 (0.0114)* 0.8474 (0.0123)* 0.6622 (0.0250)*

LG 0.3666 (0.0124) 0.8416 (0.0107) 0.6602 (0.0245)

DIS 0.3765 (0.0141) 0.8416 (0.0120) 0.5998 (0.0290)

MA 0.3633 (0.0117) 0.8401 (0.0114) 0.6508 (0.0255)

DISMA 0.3783 (0.0133) 0.8396 (0.0116) 0.6011 (0.0256)

BKT 0.3613 (0.0111) 0.8423 (0.0115) 0.6102 (0.0302)
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Figure 4: Mean residuals r by opportunity count for the AFM (left) and the DIS (middle) model and by
normalized opportunity count for the LG (right) model.

count and the mean residuals r (ρAFM = 0.3950, pAFM <

.001). This result probably stems from the fact that the well
performing students master the skills much faster and there-
fore student numbers drop with higher opportunity counts.
The DIS model exhibits a lower variance, as this model
groups the students by the number of opportunities needed
to master a skill and thus student performance within a
group is more homogeneous (ρDIS = 0.0860, pDIS = .4785).
For the LG model, the mean residuals r are plotted by the
normalized opportunity count in Fig. 4 (right). The LG
model underestimates the outcome in the beginning and in
the end and overestimates in-between. Through normalizing
the opportunity count, we align the beginning and the end
of the training for each student. We therefore end up with
more observations from low performing students in the mid-
dle and the model overestimates the outcome in this part.

Re-test prediction. The residual analyses demonstrate
that the models interpret the same data very differently,
i.e., the parameter fit and properties of the models vary
a lot. To validate these different parameter fits, we com-
puted the prediction accuracy for the first re-test (data set
Version 1 ) and compared it to a BKT model. The ob-
served mean outcome over all re-tests is high with 0.8419.

The AFM underestimates the true outcome with an aver-
age prediction of 0.8287, while the LG (average prediction
0.9108) and DIS models (average prediction 0.9488) overes-
timate the true outcome. Prediction accuracy for the dif-
ferent models is listed in Tab. 1. The AFM shows the best
RMSE (RMSEAFM = 0.3562) and AUC (RMSEAUC =
0.6825), while the LG models exhibits the highest accu-
racy (AccuracyLG = 0.8451). As the performance of stu-
dents is generally high, RMSE and AUC are, however, bet-
ter quality measures than accuracy. The LG model per-
forms second best in RMSE (RMSELG = 0.3587) and AUC
(AUCLG = 0.6778). However, the small differences be-
tween the AFM and the LG model along with the high
variances of the error measures indicate that there are no
significant differences between the two models. The DIS
model on the other hand demonstrates a considerably higher
RMSE (RMSEDIS = 0.3780) and also exhibits a low AUC
(AUCDIS = 0.6054) compared to the two other regression
models. The DIS model estimates the parameters βk,m and
γk,m by skill and mastery group. The resulting large num-
ber of parameters produces overfitting. Performance on the
training data set supports the overfitting hypothesis: The
DIS model outperforms the AFM and the LG model in
RMSE, accuracy and AUC on the training data set.
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Figure 5: Mean residuals r by estimated student proficiency θp (left), skill difficulty βk (center left), learning
rates γk (center right) and opportunity count (right) for the MA model.

Interestingly, the AFM and the LG model also outperform
the BKTmodel. The RMSE of BKT (RMSEBKT = 0.3614)
is higher than those of the two regression models, but stan-
dard deviations are again large. BKT exhibits especially a
lower performance in AUC (AUCBKT = 0.6033). The bet-
ter performance of the regression models might come from
two facts: First, the regression models fit the parameter
θp for the individual student’s proficiency, while traditional
BKT does not do any student individualization. Second,
BKT assumes that there is no forgetting, while the regres-
sion models are allowed to fit negative learning rates γk.
However, the time between mastering a skill and the first
re-test tends to be long. On average, the first re-test was
done after 140 opportunities. A logistic regression analysis
shows, that there is indeed a small, but significant amount
of forgetting (intercept = 1.8545, slope = -0.0012) in the
data. The probability of being correct at mastery amounts
to 0.8647 and decreases to 0.8419 after 140 opportunities.
Note, however, that the forgetting hypothesis is only valid
for the AFM, as learning rates γk are all positive for the LG
model.

Experiments on data set Version 2 . To be able to in-
clude the MA and DISMA models in our analyses, we also
evaluated prediction accuracy for the first re-test based on
data setVersion 2.
For this version of the data set, the LG and MA models pre-
dict positive learning rates γk for 100% of the skills, while the
AFM fits positive learning rates γk for 54% of the skills. The
DIS and DISMAmodels show positive learning rates γk,m for
90% of the mastery groups. Residuals r of the DISMAmodel
are very similar to those of the DIS model and we therefore
only discuss the mean residuals r for the MA model. Fig-
ure 5 displays the mean residuals r by estimated student
proficiency θp (left), skill difficulty βk (center left), learn-
ing rates γk (center right) and over time (right). Similarly
to the other models, the MA model tends to overestimate
the well performing students and underestimate the weaker
students (see Fig. 5 (left)). The correlation between esti-
mated student proficiency θp and mean residuals r is again
strong (ρMA = −0.9497, pMA < .001). As for the other
models, mean residuals r are uncorrelated to skill difficulty
βk (ρMA = 0.2916, pMA = .3118) and to learning rates γk
(ρMA = −0.2993, pMA = .2986). The MA model fits posi-
tive learning rates γk for all skills k (see Fig. 5 (center right)).
To compute the mean residuals r by opportunity count, we
again used an averaging window (n = 10). Unlike the other

models, the MA model overestimates the outcome in the be-
ginning and underestimates it with increasing opportunity
count. This result is due to the mastery alignment of the
model: As well performing students need less opportunities
to master a skill, student attrition occurs in the beginning,
where only weaker students remain in the analysis.

We again validated the parameter fit of the different mod-
els by predicting the first re-test and comparing predic-
tion accuracy to BKT. Prediction accuracy for the differ-
ent models is listed in Tab. 1. The AFM performs best
for all error measures (RMSEAFM = 0.3563, AUCAFM =
0.6622). The performance of the LG model (RMSELG =
0.3666, AUCLG = 0.6602) is again very close to that of
the AFM. Interestingly, the MA model performs well in
RMSE (RMSEMA = 0.3633) and also exhibits a large AUC
(AUCMA = 0.6508). The high variances again indicate
that differences between the AFM, the LG and the MA
models are not significant. The DIS and DISMA models
perform considerably worse in RMSE and AUC than the
best three regression models. The performance of BKT is
similar to the first version of the data set, with an RMSE
(RMSEBKT = 0.3613) in the range of the best regression
models and a significantly lower AUC (AUCBKT = 0.6102).

3.2 Generalization to new students
In a second experiment, we investigated how well the dif-
ferent regression models generalize to new students using a
student-stratified 10-fold cross validation. For new students
(i.e., the students in the test set), the number of oppor-
tunities to mastery is not known, therefore only the AFM
and the LG model were included in this analysis. Predic-
tion accuracy along with standard deviations for the re-
gression models as well as BKT is listed in Tab. 2. The
LG model shows the best performance in all error mea-
sures for Version 1 of the data set. The performance of
the AFM is very close to that of the LG model in RMSE
(RMSELG = 0.4164, RMSEAFM = 0.4200). The high
variance indicates that there are no significant differences
between the two models regarding RMSE. The AUC of the
LG model is, however, considerably higher than that of the
AFM (AUCLG = 0.6931, AUCAFM = 0.6693).
Both regression models again outperform BKT in RMSE
(RMSEBKT = 0.4236) and AUC (AUCBKT = 0.6688), but
the high variance indicates that there are no significant dif-
ferences in RMSE between all three models and also not in
AUC between the AFM and the BKT model.
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Table 2: Prediction accuracy of student-stratified cross-validation for data set Version 1 and 2. The values
in brackets denote the standard deviations. The best model per error measure is marked (*).

RMSE Accuracy AUC

Data set:
Version 1

AFM 0.4200 (0.0184) 0.7525 (0.0300) 0.6693 (0.0222)

LG 0.4164 (0.0175)* 0.7583 (0.0248)* 0.6931 (0.0211)*

BKT 0.4236 (0.0216) 0.7546 (0.0304) 0.6688 (0.0244)

Data set:
Version 2

AFM 0.4008 (0.0247) 0.7850 (0.0296) 0.6755 (0.0335)

LG 0.3936 (0.0241)* 0.7859 (0.0295)* 0.7199 (0.0260)*

BKT 0.4032 (0.0241) 0.7849 (0.0297) 0.6810 (0.0289)

The results for Version 2 of the data set show a similar pic-
ture. As expected, all models demonstrate a higher predic-
tion accuracy for Version 2 of the data set. As this version
of the data set includes only students that mastered a skill,
overall performance is more homogeneous and therefore pre-
diction is easier.

4. DISCUSSION
AFMs are widely used to analyze and improve student learn-
ing [5, 15, 23]. However, AFMs are prone to student attri-
tion when applied to data from mastery learning: As stu-
dents are aligned by opportunity count, the right hand side
of the learning curve fitted by an AFM is dominated by
students, who require a large number of opportunities to
master a skill, which might in turn lead to underestima-
tion of learning rates γk. Indeed, [17] observed that averag-
ing over different students with different initial knowledge
states and learning rates may result in aggregated learn-
ing curves that appear to show little student learning, even
though a mastery learning student model such as BKT iden-
tified the students as mastering the skills at runtime. This
issue can be solved by using alternative models for fitting
the learning curves [17]. Our experiments on data from
a mastery learning student model (dynamic Bayesian net-
work) with confirmed learning (significant improvement in
external post-tests) support these results: AFM fitted pos-
itive learning rates γk for about half of the skills and only
70% of the positive γk were significantly different from zero.
Alternative models, such as the LG and MA models pre-
dicted positive learning for all skills and learning rates γk
and generally showed a higher variance, i.e., learning rates
differed from skill to skill. Our results demonstrate that dif-
ferent (although very similar) regression models explain the
same data in a different way and that alternative regression
models predict different patterns of learning.

Despite the different parameter fits, prediction accuracy of
the regression models is very similar. When it comes to
generalizing to new students, the LG model shows the most
accurate prediction. However, as we observe a high variance
in accuracy measures, there is most likely no significant dif-
ference in prediction accuracy between the AFM and the LG
model. Although the AFM performs best in predicting the
first re-test, the high variance of the error measures indicates
that there is no significant difference between the AFM, the
LG and the MA models. The disaggregated models (DIS,
DISMA) perform significantly worse than the other regres-

sion models. As the disaggregation into different subpopu-
lations increases the number of parameters, the lower per-
formance of these models might be due to overfitting. This
hypothesis is supported by the fact that the disaggregated
models outperform the other regression models on the train-
ing data set in all error measures. Nonetheless, [17] demon-
strated the potential of disaggregated models. Prediction
accuracy of these models should therefore be evaluated on
larger data sets.

BKT models are outperformed by most of the regression
models when it comes to prediction accuracy on unseen data.
The AFM and the LG model show a higher accuracy when
predicting the first re-test, while the AFM, the LG and the
MA model generalize better to new students than BKT. Al-
though these differences are probably not significant (due
to the high variance in the error measures), they are still
interesting. One reason for this observation might be that
BKT does not model forgetting. Our analyses have, how-
ever, shown that there is forgetting in the data. As the LG
and MA models fit only positive learning rates γk, this ex-
planation is only valid for the AFM model. Another reason
for the superiority of the logistic regression models could be
that traditional BKT does not have any student individu-
alization. However, [26] demonstrated on a different data
set that a student individualized parameter p0 does not lead
to significant improvements. The reason for the difference
in prediction accuracy between BKT and logistic regression
models therefore needs to be investigated further.

5. CONCLUSION
In this work, we presented alternative logistic regression
models to AFMs, which are able to adjust for mastery-based
data sets. Our results demonstrate that the parameter fits
for different (although very similar) regression models vary a
lot. We also showed that despite the differences in parame-
ter fit, most of the regression models cannot be distinguished
regarding prediction accuracy on unseen data. Finally, our
evaluations revealed that logistic regression models outper-
form BKT, when assessing performance in prediction.

In the future, we would like to further analyze the differ-
ences between the proposed modeling techniques. Pre-post
gain data might be used to evaluate the different logistic
regression models. Is the pre-post gain better predicted by
improvement on all skills, as per the LG and MA models,
or improvement on a subset of skills, as per the AFM. It
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could be that, as with the retention measure, AFM some-
what under predicts learning gain and LG somewhat over
predicts learning gain. Furthermore, we would like to ana-
lyze the differences in prediction between BKT and logistic
regression models.
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[13] T. Käser, A. G. Busetto, B. Solenthaler, G.-M.
Baschera, J. Kohn, K. Kucian, M. von Aster, and
M. Gross. Modelling and Optimizing Mathematics
Learning in Children. IJAIED, 23(1-4):115–135, 2013.

[14] K. Koedinger and E. McLaughlin. Seeing language
learning inside the math: Cognitive analysis yields
transfer. In Proc. of the 32nd Annual Conference of

the Cognitive Science Society, pages 471–476, 2010.

[15] K. Koedinger, J. Stamper, E. McLaughlin, and
T. Nixon. Using Data-Driven Discovery of Better
Student Models to Improve Student Learning. In Proc.

AIED, pages 421–430, 2013.

[16] J. I. Lee and E. Brunskill. The Impact on
Individualizing Student Models on Necessary Practice
Opportunities. In Proc. EDM, pages 118–125, 2012.

[17] R. Murray, S. Ritter, T. Nixon, R. Schwiebert,
R. Hausmann, B. Towle, S. Fancsali, and A. Vuong.
Revealing the Learning in Learning Curves. In Proc.

AIED, pages 473–482, 2013.

[18] J. A. Nelder and R. Mead. A Simplex Method for
Function Minimization. Computer Journal, 7:308–313,
1965.

[19] Z. A. Pardos and N. T. Heffernan. Modeling
Individualization in a Bayesian Networks
Implementation of Knowledge Tracing. In Proc.

UMAP, pages 255–266, 2010.

[20] Z. A. Pardos, S. Trivedi, N. T. Heffernan, and G. N.
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