
How to Refine 3D Hand Pose Estimation from Unlabelled Depth Data ?
Supplementary Material

Endri Dibra†, Thomas Wolf†, Cengiz Öztireli, Markus Gross
Department of Computer Science, ETH Zürich

†Equal contribution from both authors

{edibra,cengizo,grossm}@inf.ethz.ch, wolftho@student.ethz.ch

1. Architecture
We illustrate in Fig. 1 our candidate base model in detail.

2. Videos
We attach a video, consisting of three main parts, which

show some qualitative results on the optimization procedure
explained in the paper, as well as additional qualitative re-
sults obtained from a real subject.
In the first two parts, Pose Optimization and Shape Op-
timization, we adapt the base model and hand shape to a
single image until convergence. This serves to visualize the
Sec 4.3 from the paper and gives insight on how the pose
predictions get updated during learning.
In the next part, Comparisons, we show two videos, com-
paring the base model to the adapted model trained on our
dataset (with 50K unlabelled images). This refers to Sec 4.4
in the paper. The first video shows a validation sequence
of 300 frames with various hand poses. The second video
shows a live prediction using the Intel RealSense SR300
camera. Note that not only the pose prediction quality is
enhanced, but also jitter is removed significantly.

3. Implementation
We implemented linear blend skinning, the depth ren-

derer and the collision component as custom operations in
Tensorflow using CUDA kernels. To implement a custom
operation f : A 7→ B in Tensorflow, the explicit gradient of
g(f) has to be given, where g : B 7→ R is an arbitrary loss
functon.

3.1. Linear blend skinning

Letm be the number of joints. LetM = [M1, . . . ,Mm],
where Mi ∈ R4×4 is the matrix, that transforms from joint
space of joint i to view space for the hand pose θ (calculated
with the forwared kinematic chain). Let P = [p1, . . . , pn]
with pi ∈ R4 all point positions in homogeneous coordi-
nates and wi,j ∈ W ∈ Rn×m the weight, that defines how

much point pi is bound to the joint j ∈ [m].

3.1.1 Derivative w.r.t. M

We write f skin in terms of a scalar values with c ∈ [4] as
coordinate axis:

f skini,c (P,M) =

4∑
d=1

m∑
j=1

wi,jMj,c,dpi,d (1)

The derivative of f := f skin is:

∂fi,c(P,M)

∂Mk,l,m
= 1{l=c}wi,kpi,m (2)

The loss function g(f) can be differentiated using the chain
rule:

∂

∂Mk,l,m
g(f(M,P )) =

n∑
i=1

4∑
c=1

∂g(f)

∂fi,c

∂fi,c(P,M)

∂Mk,l,m
(3)

=

n∑
i=1

4∑
c=1

∂g(f)

∂fi,c
1{l=c}wi,kpi,m (4)

=

n∑
i=1

∂g(f)

∂fi,l
wi,kpi,m (5)

3.1.2 Derivative w.r.t P

To update P , we also need to differentiate f skin w.r.t. P .
In the equations above, we left out the batch dimension of
f skin, since all the operations can be done in parallel and in-
dependently for each batch element. However, our points P
are the same for each batch element, s.t. we need to be more
precise here. Let f skin ∈ Rn×4 × RN×n×4 7→ RN×n×4×4
where n is the number of points andN the size of the batch.
Note that also M exists for each batch element and there-
fore has now four dimensions. For a batch index b, point

1



Figure 1. CNN architecture of the base model

index i and coordinate index c we rewrite Eq. 1 as:

f skinb,i,c(P,M) =

4∑
d=1

m∑
j=1

wi,jMb,j,c,dpi,d (6)

Taking the derivative of f := f skin gives:

∂fb,i,c(P,M)

∂pk,l
= 1{k=i}

m∑
j=1

wi,jMb,j,c,l (7)

And the derivative of g(f) is given by:

∂

∂pk,l
g(f(M,P )) =

N∑
b=1

n∑
i=1

4∑
c=1

∂g(f)

∂fb,i,c

∂fb,i,c(P,M)

∂pk,l

=

N∑
b=1

n∑
i=1

4∑
c=1

∂g(f)

∂fb,i,c
1{k=i}

m∑
j=1

wi,jMb,j,c,l

=

N∑
b=1

4∑
c=1

∂g(f)

∂fb,k,c

m∑
j=1

wi,jMb,j,c,l (8)

3.2. Depth Renderer

Let f := fdepth. The derivative of a loss function g(f)
for c ∈ {x, y, z} is given by:

∂

∂pl,c
g(f(P )) =

120∑
i=1

120∑
j=1

∂g(fi,j)

∂fi,j

∂fi,j(P )

∂pl,c
(9)

with
∂fi,j(P )

∂pl,x
= h(l, P )(j − pl,x) (10)

∂fi,j(P )

∂pl,y
= h(l, P )(i− pl,y) (11)

∂fi,j(P )

∂pl,z
= −1{l=argmaxk(depthi,j(pk))}φ(pl) (12)

where

h(l, P ) = 1{l=argmaxk(depthi,j(pk))∧φ(pl)>0}

4(1− pl,z)
r2

(
1− (j − pl,x)2 + (i− pl,y)2

r2

)
(13)

To implement the loops over the image from Eq. 9 effi-
ciently, we can make use of the finite spatial support of φ
and loop only over a range of {bpl,x − rc, . . . , dpl,y + re}
for each point pl, which is for some indices i, j with 1 ≤
i, j ≤ 120 fulfilling l = argmaxk(depthi,j(pk)).

3.3. Collision Component

Let B := [b1, . . . , bm] ∈ Rm×3 the joint positions, C ⊂
N×N be all joint indices paired with their parent. Let L :=
Lcoll and f := f coll. We define f by:

f(a, b, p) = max(0,min(f1(a, b, p), f2(a, b, p))) (14)

with
f1(a, b, p) = (0.5h)2 − disth(a, b, p) (15)

and
f2(a, b, p) = r2 − distr(a, b, p) (16)

where disth(a, b, p) and distr(a, b, p) are the squared
distances of a point p from µ = a+b

2 in cylindrical coor-
dinates of a cylinder with endpoints a and b and height h:

disth(a, b, p) =

(
2

h
(b− µ)T (p− µ)

)2

(17)

distr(a, b, p) = ‖p− µ‖2 − disth(a, b, p) (18)

The derivative of g(L) is given by:

∂

∂bl
g(L(B)) =

g′(L)

m

∑
(i,j)∈C

m∑
k=1

1i6=k,j 6=k
∂f(bi, bj , bk)

∂bl

(19)

with

∂f(bi, bj , bj)

∂bl
= −1{min(f1,f2)>0}

(1{f1<f2}
∂ disth
∂bl

+ 1{f1>f2}
∂ distr
∂bl

) (20)

and

∂ disth(bi, bj , bk)

∂bl
=

4

h

√
disth ·

 bi − bk, if l = i
bk − bj , if l = j
bj − bi, if l = k

(21)



Finger Part 1st Rotation Axis 2nd Rotation Axis 3rd Rotation Axis

1. Index Finger Lower [-1.4, 0.1] [-0.1, 0.4] [-0.1, 0.6]
2. Index Finger Middle [0, 0] [-0.1, 0.1] [-0.1, 1.2]
3. Index Finger Upper [0, 0] [0, 0] [-1.0, 1.0]
4. Middle Finger Lower [0, 0] [-0.8, 0.2] [-0.1, 1.9]
5. Middle Finger Middle [0, 0] [0, 0] [-0.7, 1.2]
6. Middle Finger Upper [0, 0] [0, 0] [-0.3, 1.6]
7. Ring Finger Lower [0, 0] [-0.7, 0.2] [-0.1, 1.8]
8. Ring Finger Middle [0, 0] [0, 0] [-0.7, 1.5]
9. Ring Finger Upper [0, 0] [0, 0] [-0.3, 1.6]
10. Little Finger Lower [0, 0] [-0.5, 0.2] [-0.1, 1.8]
11. Little Finger Middle [0, 0] [0, 0] [-0.5,1.5]]
12. Little Finger Upper [0, 0] [0, 0] [-0.3, 1.6]
13. Thumb Lower [0, 0] [-0.4, 0.4] [-0.2, 1.8]
14. Thumb Middle [0, 0] [0, 0] [-0.5, 1.5]
15. Thumb Upper [0, 0] [0, 0] [-0.3, 1.6]

Table 1. Allowed euler angle bounds [ϕ, ϕ̄] for each joint or finger
part. Values are in radians.

∂ distr(bi, bj , bk)

∂bl
=

∂ disth
∂bl

+

 2bk − bi − bj , if l = i
0.5(bi + bj)− pk, if l = j
0.5(bi + bj)− pk, if l = k

(22)

Please note that we left out the arguments (bi, bj , bj) for
clarity in Eq. 20, 21 and 22.

3.4. Physical Component

In Tab.1 we give some extra detail on the bounds for
the valid range [ϕ, ϕ̄] of the euler angles for each finger
part/joint of the rigged 3D hand model depicted in Fig.2
from the paper and downloaded online from Turbosquid 1.
An angle of zero represents the joint/finger in its neutral
pose, which could be defined aribitrarily, but in our case is
the open palm. There are three rotation axes. The first one
has the same axis as the one from the finger. The second
axis rotates the finger to the side (e.g. to account for the
separation between the fingers). The third axis rotates the
finger towards the palm. We first rotate around the first axis,
then around the third axis and lastly around the second one.

1https://www.turbosquid.com/3d-models/rigged-male-hand-
max/786338


