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Abstract

Three-dimensional cinema and television involves the presentation of a sepa-
rate image to a viewer’s left and right eyes, in order to invoke a depth percep-
tion. Three-dimensional cinema and television provides filmmakers with an
additional cue to aid in their storytelling. Current acquisition and manipu-
lation approaches make it difficult to effectively exploit the additional depth
dimension. In this thesis we examine the pipeline of acquisition, processing
and display, and propose methods and approaches which make it easier to
exploit the depth dimension, while also aiming to improve the quality of the
three-dimensional viewing experience.

Computing a depth value for each pixel in the video images of a captured
scene is a difficult task. We propose an acquisition system where a cen-
tral, high quality film camera is supported with additional satellite sensors.
Rather than using sensors of a single modality, e.g. visible light cameras, we
propose to use additional modalities. Besides lower quality visible light cam-
eras, we also incorporate a Time-of-Flight depth camera and a thermal cam-
era. By combining sensors of different modalities we aim to provide more
information for computing per-pixel depth. The satellite cameras allow for
better occlusion reasoning of the scene. A depth camera provides a direct
measure of scene depth, albeit at a low resolution. Finally, a thermal imaging
camera provides information to correctly discern between different scene ele-
ments, when those scene elements are imaged as regions with similar colors.
We propose a method to combine the information from multiple modalities
and demonstrate that we can compute high quality depth maps.

Since we are dealing with motion pictures, it’s not sufficient to compute
depth only for a single instant in time. The computed depth should be tempo-
rally consistent for the video. We argue that the temporally consistent depth
is of most importance for foreground objects in a scene. We propose an in-
teractive approach which propagates segmented foreground objects from a
begin and end frame of a shot, to the frames in between. By grouping pixels
with similar photometric and thermal properties into so-called superpixels,
we reduce the complexity from per-pixel to per-superpixel. We then pose
the problem as a labeling problem for superpixels over time, where the label
that is assigned to each superpixel indicates to which segment that super-
pixel belongs. We show that this information can be directly exploited in the
depth computation, where the segments are used as prior knowledge in that
computation.
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For three-dimensional acquisition using a stereo pair of cameras, the arrange-
ment of the cameras at acquisition time determines the amount of depth that
can be perceived by the viewers. The depth of the underlying scene has to
be recovered in order to change the amount of depth perceived. In general,
the processing of three-dimensional content cannot be performed indepen-
dently for the left and right eye images, but should also take the underlying
scene depth into account. We propose a processing method which can copy
elements from a scene captured with one particular arrangement of cameras,
and then paste those elements into a scene with a different arrangement. We
demonstrate a method that even in the case where the recovered depth can-
not be accurately estimated, we can robustly copy and paste elements. We
further demonstrate how the underlying scene depth can be exploited when
the element is pasted, and avoid the difficult task of scene in-painting, while
aiming to conform to the stereo properties of the target scene.

Display of stereoscopic three dimensional content provides the user the abil-
ity to perceive a depth impression. The key factor is to ensure that each eye
is only stimulated with the corresponding image of the stereoscopic image
pair. The case where information intended for one eye is perceived by the
other eye, is denoted as crosstalk or ghosting. The presence of ghosting may
result in objects being perceived at the incorrect depth, and even result in the
depth impression being entirely lost. Ghosting also puts a relatively heavy
burden on the visual system of the viewer, with visual fatigue as the conse-
quence. We identify that display systems are not perfect and propose a com-
putational approach to mitigate the occurrence of ghosting in stereoscopic
three dimensional display systems. Our approach is based on incorporat-
ing perceptual metrics to compensate the input images in such a way as to
provide a perceptually more optimal viewing experience.
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Zusammenfassung

In dieser Doktorarbeit befassen wir die Pipeline zur Erfassung, Verarbeitung
und Darstellung von dreidimensionalen Inhalten für Kino und Fernsehen.

Die Beiträge die in dieser Doktorarbeit gemacht werden, können als wie folgt
zusammengefasst werden:

w Verfassungssystem auf einem einzigen Referenzkamera, durch
multimodale Satellitsensoren unterstützt, für die Berechnung der
Tiefekarten und Segmentierung

w Fusion multimodaler Sensorinformationen zu berechnen der
Tiefekarten mit einem lokalen Verfahren.

w Interaktive Video Segmentierung Methode mit multimodalen Sen-
sorinformationen. Das Ergebnis der Segmentierung wird zur Berech-
nung verbesserte Tiefekarten verwendet.

w Ein System für Kopieren und Einfügung Bearbeitung von stereo-
skopischen 3D-Inhalten mit Tiefe und Segmentierung Informatio-
nen.

w Ein Wahrnehmungsbasiertes System für die Kompensation der
Lichtverschmutzung durch sogenannte Geisterbilder in stereo-
skopische 3D Abbildungssysteme. Das Kompensationssystem ist all-
gemein und kann für alle Formen der additiven Lichtverschmutzung
in Abbildungssysteme angewendet werden.

Cinematographers und Kamerabetreiber haben sich gewöhnt um mit einer
einzigen Kamera zu erfassen. Wir schlagen daher eine multimodalen Ver-
fassungssystem vor, mit einer zentralen hochqualitativen Kamera der mit
verschiedenen Arten von Sensoren erweitert wird, um die Berechnung der
Tiefekarten und Segmentierung zu unterstützen. Unser Prototyp zeigt, dass
es relativ einfach ist, ein solches System zu bauen. Auch der Durchführung
von geometrischen Kalibrierung und Farbkalibrierung ist relativ einfach.

Wir beschreiben eine lokale Methode basiert auf der Fusion der ver-
schiedenen Modalitäten für die Berechnung von Tiefekarten. Tiefekarten
werden für die hohe Qualität Referenz Kamera in das Verfassungssystem
berechnet. Experimentelle Ergebnisse werden für Szenen mit dynamischen
Objekten und Hintergrundkram gezeigt. Okkludierungen, Texturlose Re-
gionen, wiederholende Texturen, oder ähnlich farbigen Vorder- und Hinter-
grundobjekte können vor Probleme sorgen in Methoden die sich nur auf
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Farbkonsistenz verlassen. Mehrere SatellitKameras ermöglichen es uns
Okklusionsregionen besser abzuschatzen, durch der Farbkonsistenz zwi-
schen der Referenzkamera und die SatellitKameras auf der linken Seite, und
die Farbkonsistenz zwischen der Referenzkamera und die SatellitKameras
auf der rechten Seite, zu vergleichen. Die Fusion von Stereo mit Time-
of-Flight Tiefedaten ergibt der richtigen Rekonstruktion von Texturlose
Regionen wie Hintergrundwänden. Daneben können gleichfarbige, aber in
unterschiedlichen Tiefen überdeckende Flächen, korrekt rekonstruiert wer-
den. Von besonderem Interesse ist der Fall, wenn menschliche Subjekte oder
Körperteile sich überdecken. Wir haben gezeigt, dass verschiedene Sub-
jekte unterschiedliche thermische Signaturen haben können. Daher, durch
die Fusion von thermischen Daten kann ein okkludierende Kontur gefun-
den werden, obwohl die Hautfarbe ähnlich ist. Wir vergleichen die Fälle
von Fusion von Stereo mit dem Time-of-Flight Tiefedaten, Fusion mit den
thermischen Daten und Fusion mit den beiden Time-of-Flight Tiefe und ther-
mischen Daten. Obwohl jede dieser Modalitäten separat zu ein verbesserte
Tiefekarte beitragen können, die Kombination aus beiden gibt Tiefekarte mit
den beste Ergebnisse.

Eine zentrale Aufforderung bei der Berechnung der Tiefekarten ist die
Schätzung der Okklusionsbereichen in einer Szene. Die Verwendung
mehrerer Satellitkameras auf beiden Seiten einer Referenzkamera, verhilft zu
einer besseren Schätzung. Um Kosten und Stellfläche der Verfassungssystem
zu reduzieren, schlagen wir vor, geringere Qualität Satellitkameras zu ver-
wenden. Dagegen hatten geringere Qualität Kameras mehr Bildrauschen als
die hochqualitativen Kamera. Dies gilt vor allem in dunkleren Bildbereichen.
Darüber hinaus haben die Satelliten und Referenzkameras auch sehr unter-
schiedliche Farbräume. Diese Eigenschaften beeinflussen die Genauigkeit
der Farbkonsistenz zwischen den Satellitkameras und dem Referenzkamera,
und damit die gesamte Präzision. Das berechnen von Tiefekarten basiert
auf Farbkonstanz allein, werd immer von Vieldeutigkeiten leiden. Fusion
mit zusätzlichen Modalitäten ist daher eine vielversprechende Richtung
zur Lösung einiger dieser Vieldeutigkeiten. Die Auflösung des Time-of-
Flight Kameras ist sehr niedrig im Vergleich zu den Referenzkamera. Feine
Details, wie die Blätter einer Pflanze, können daher nicht genau durch der
Time-of-Flight Kamera erfasst werden. Fusion mit niedriger Auflösung
Time-of-Flight Tiefe funktioniert deshalb am besten für Bereiche ohne feine
Details. Wärmebilder sind besonders nützlich, wenn das thermische Kon-
trast ausreichend hoch ist. Dies ist typischerweise der Fall bei Szenen mit
menschlichen Akteuren.

Wir beschreiben ein interaktives Video Segmentierung Methode für die Seg-
mentierung mehrere Vordergrund Objekte vom Hintergrund. Unsere Meth-
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ode propagiert bekannte Segmentierungen für das erste und letzte Bild zu
der Zwischenbilder in einer Videosequenz. Die propagierung stützt sich auf
der Übereinstimmung von Superpixeln in der Videosequenz, ohne Annahme
auf die Art der Bewegungen in einer Szene. Unsere Methode kann deshalb
bewegten Kameras und nicht-starr bewegten Objekten verarbeiten. Das
Ausnutzen mehreren Modalitäten trägt zu ein mehr robuster Übereinstim-
mung der Superpixel zwischen Frames einer Sequenz bei. Die Propagierung
von bekannte Segmentierungen kann okkludierende Objekte verarbeiten. In
sofern dass Objekte im Vordergrund in einer Sequenz sowohl in der ersten
und letzten Rahmens sind, können sie dann für der Zwischenbilder ver-
schwinden und wieder erscheinen. Falls optical flow Informationen verfüg-
bar sind, kann es einfach für die Übereinstimmung von Superpixel eingear-
beitet werden.

Ein vollautomatisches System kann zu ein falschen Segmentierung führen.
Wir schlagen daher vor, um einen Benutzer interaktiv die Propagierung
einer Segmentierung zu begleiten. Wir benötigen Korrekturen nur auf einen
groben Niveau statt auf Pixelniveau. Das verringert die Belastung für den
Benutzer. Genaue Segmentgrenzen werden dann in einem nachfolgenden
Schritt produziert. Mehrere Modalitäten können dann genutzt werden zur
Lösung der Farbenvieldeutigkeiten, und produzieren dann besseren Seg-
mentgrenzen. Die Segmentgrenzen sind zeitlich stabil, weil sie genau die
Grenzen der Objekte im Video passen. Wir können die Grenzen als Randbe-
dingungen in die Berechnung der Tiefekarten verwenden, so dass die Tiefe-
silhouetten zeitlich mehr stabil werden.

Wir beschreiben ein System für 3D Kopieren & Einfügen. Das System
baut das 2D Kopieren & Einfügen für Standbilder zu stereoskopischen
3D aus. Die Rekonstruktion der Tiefekarte für die Szene ist die grundle-
gende Operation in diesem System. Die rekonstruierten Tiefekarten können
bei der Durchführung des interaktiven Segmentierung benutzt werden, für
die Propagierung des Segmentierungsergebnis für das Bild entsprechend
mit einem Auge, zu das Bild entsprechend mit dem anderen Auge. Die
rekonstruierten Tiefekarten können auch bei die Zusammensetzung der seg-
mentierten Objekte in der Zielszenen benutzt werden. Segmentierung,
die Propagierung, und Zusammensetzung werden alle von höherer Qual-
ität Tiefkarten profitieren. Direktes Zusammensetzung mit benutzung
eine Tiefekarte, würde eine fehlerfreie Tiefekarte benötigen. Fehlerfreie
Tiefekarten können jedoch selten für allgemeine Szenen erhalten werden.
Zusammensetzung basiert auf Tiefekarten mit Fehlern, können stattdessen
Proxygeometrie und parametrische Verzögungen benutzen.

Bei Zusammensetzung unter verschiedenen Orientierungen, oder in ein Ziel-
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szene mit verschiedenartige stereo Parameter, könnte Okklusionsbereichen
wieder sichtbar werden. Für realistische Ergebnisse müssten diese wieder
sichtbare Okklusionsbereichen eingemalt werden. Wir zeigen stattdessen
dass, durch die Anwendung der entsprechenden Einschränkungen für das
berechnen der parametrische Verzögungen, wieder sichtbare Okklusions-
bereichen ganz vermieden werden können. Die Ergebnisse bleiben jedoch
immer noch überzeugend.

Wir beschreiben ein System für die Kompensation von Geisterbildern
und Lichtstreuung. Durch die Formulierung der Kompensation als Opti-
mierungsproblem, können wir den System in alle Fälle von zusatzliches
Lichtverschmutzung anwenden. Als solches ist unsere Formulierung eine
Verallgemeinerung der vorhandenen subtraktiven Kompensationsverfahren.
Da wir für den menschlichen Beobachter kompensieren werden, sollten wir
die Eigenschaften des menschlichen visuellen System nutzen. Wir zeigen
wie Beobachtungsmetriken in die Optimierungsformulierung eingearbeitet
werden können. Insbesondere durch die Integrierung der Kontrastempfind-
lichkeitsfunktion und das Lösen des resultierenden Optimierungsproblem,
wird der restliche Fehler in Regionen, in denen das menschliche visuelle
System weniger empfindlich ist, verbreitet. Am wichtigsten ist, dass die
Wahrnehmbarkeit von möglicherweise widersprüchliche Randcues für
Stereosehen, für Wahrnehmungsbasierte Deghosting reduziert ist. Dies
macht gerade das beobachten von stereoskopische 3D Abbildungssys-
teme noch komfortabler. Ein Benutzerstudie wurde durchgeführt, um
sicherzustellen, dass unsere Methode in der Tat von Benutzer bevorzugt
wird, statt einfache subtraktive Kompensation.

vi



Summary

In this thesis we address the pipeline for acquisition, processing and display
of three-dimensional contents for cinema and television.

The contributions made in this thesis can be summarized as:

w Acquisition system based on a single reference camera, supported
by multi-modal satellite sensors, for computing depth maps and seg-
mentation

w Fusion of multi-modal sensor information to compute depth maps
using a local method.

w Interactive video segmentation approach using multi-modal sensor
information. The result of the segmentation is used for computing
improved depth maps.

w A framework for copy and paste editing of stereoscopic 3D content
using depth and segmentation information.

w A perceptually-based framework for the compensation of light pol-
lution due to ghosting in stereoscopic 3D displays. The framework is
general and can be applied to all forms of additive light pollution in
display systems.

Cinematographers and camera operators are used to capture with a single
camera. We therefore propose a multi-modal capture system, using a central
high quality reference camera augmented with different types of sensors to
support the computation of depth maps and segmentation. Our prototype
system demonstrates that it is relatively straightforward to build such a sys-
tem, including performing geometric calibration and color calibration.

We describe a local method based on fusion of the different modalities for
computing depth maps. Depth maps are computed for the high quality ref-
erence camera in the capture system. Experimental results are shown for
scenes with dynamic objects and background clutter. Occlusions, textureless
regions, repeated textures, or similarly colored fore- and background objects
may pose problems in methods that rely only on color consistency. Multiple
satellite cameras allow us to better estimate occlusion regions by comparing
the color consistency between the reference camera and the satellite cameras
on the left side, to the color consistency between the reference camera and the
satellite cameras on the right side. The fusion of stereo with Time-of-Flight
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depth data results in the correct reconstruction of textureless regions such as
background walls. In addition, surfaces of the same color, but overlapping at
different depths can be correctly reconstructed. Of particular interest is the
case where human subjects or body parts are overlapping. We showed that
different subjects may have different thermal signatures. Therefore, by also
fusing the thermal data, an occluding contour can be found even though the
skin color is similar. We compared the cases of fusion of stereo with only
the Time-of-Flight depth data, fusion with only the thermal data, and fusion
with both Time-of-Flight depth and thermal data. Although each of these
modalities separately can help improve the depth map, the combination of
both gives the best result.

A key challenge in computing depth maps is the estimation of occlusion areas
in a scene. Using multiple satellite cameras on either side of a reference cam-
era, helps to better estimate occlusions. To reduce cost and physical footprint
of the acquisition system, we propose to use lower quality satellite cameras.
However, lower quality cameras exhibit more noise than the high quality ref-
erence camera. This is particularly true in low light areas. In addition, the
satellite and reference cameras also have very different color spaces. These
properties affect the accuracy of the color consistency between the satellite
cameras and the reference camera, and therefore the overall accuracy as well.
Computing depth based on color consistency alone will always suffer from
ambiguities. Fusion with additional modalities is therefore a promising di-
rection to help solve some of these ambiguities. The Time-of-Flight depth
camera resolution is very low compared to the reference camera. Fine de-
tails, such as the leaves of a plant, are therefore not accurately captured with
the Time-of-Flight depth camera. Fusion with low resolution Time-of-Flight
depth thus works best for areas without fine details. Thermal images are
most useful when thermal contrast is sufficiently high. This is typically the
case for scenes with human actors.

We describe an interactive video segmentation approach to segment multiple
foreground objects from the background. Our approach propagates known
segmentations for the first and last frame to the intermediate frames in a
video sequence. The propagation relies on the matching of superpixels across
the video sequence, without any assumption on the motions in a scene. Our
method can thus handle moving cameras and non-rigidly moving objects.
Exploiting multiple modalities helps to make the matching of superpixels
between frames of a sequence more robust. The propagation of known seg-
mentations can handle occluding objects. Provided that foreground objects
within a sequence are present in both the first and last frame, they may then
disappear and re-appear for the intermediate frames. If optical flow informa-
tion is available, it can be easily incorporated for the matching of superpixels.
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A fully automated method may produce the wrong segmentation. We thus
propose to employ a user to interactively guide the propagation of a seg-
mentation labeling. We require corrections only at a coarse level, rather than
at the pixel level, which reduces the burden on the user. Accurate segment
boundaries are produced in a subsequent refinement step. Multiple modal-
ities can then be exploited to help resolve color ambiguities and result in
better refinement boundaries. The segment boundaries are temporally sta-
ble as they accurately match the object boundaries in the video. We can use
the boundaries as constraints in the computation of depth maps, so that the
depth silhouettes become temporally more stable as well.

We describe an end-to-end system for 3D copy & paste, which extends 2D
copy & paste for still images to stereoscopic 3D. The reconstruction of the
depth map for the scene is the fundamental operation in this system. The
reconstructed depth maps can be used when performing the interactive seg-
mentation, for the propagation of the segmentation result for one eye image
to the other eye image, and for composition of the segmented objects into the
target scenes. Segmentation, propagation, and composition will all benefit
from higher quality depth maps. Direct composition based on the depth map
on the other hand, would require an error-free depth map. Error-free depth
maps are rarely obtained for general scenes however. Compositing based
on depth maps with errors can instead be done using proxy geometry and
parametric warps.

When compositing under different orientation, or into a target scene with dif-
ferent stereo parameters, disocclusions could occur. For realistic results these
disocclusions would have to be inpainted. Instead we show that by applying
the appropriate constraints to compute the parametric warps, disocclusions
can be avoided altogether, while still achieving compelling results.

We describe a framework for the compensation of ghosting and scattering. By
formulating the compensation as an optimization problem, we can apply the
framework to additive light pollution in general. As such, our formulation is
a generalization of existing subtractive compensation methods. Since we are
compensating for human observers, we should exploit the properties of the
human visual system. We show how we can incorporate perceptually-based
metrics into the optimization formulation. Specifically, by incorporating the
Contrast Sensitivity Function and solving the resulting optimization prob-
lem, the residual error is distributed to regions where the human visual sys-
tem is less sensitive to them. Most importantly, the perceptibility of possibly
conflicting edge cues for stereopsis is reduced for perceptual-based deghost-
ing. This makes watching stereoscopic 3D displays more comfortable. A
user study was conducted to verify that our perceptually-based compensa-
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tion method is indeed generally preferred over straightforward subtractive
compensation.
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Notation

Here we briefly describe the notation convention we use in this thesis. Scalar
variables will be written as lowercase letters, e.g., x. Vectors will be denoted
as lowercase bold letters with their components as lowercase italic letters,
e.g., x = (a, b, c)T. Vectors are assumed to be column vectors, and a row vec-
tor is then denoted as xT. Matrices will be denoted as uppercase bold letters,
e.g., M. A column j of the matrix is denoted as mj, whereas row i is denoted
as miT. A component of a matrix will be written as mi,j, representing the
value at row i and column j. The notation Mk×l represents the k×l submatrix
of M. Finally, diag(a) represents a diagonal matrix with the diagonal given
by vector a.

When we present equations related to projective geometry, a vector x =
(x, y)T will represent a 2D point. We do not explicitly distinguish between
homogeneous points (x, y, z)T and inhomogeneous points (x, y)T, but rather
implicitly assume (x, y, 1)T in the latter case. We will sometimes distinguish
points in 3D space as X = (X, Y, Z)T or (X, Y, Z, 1)T. In other words, a 3D
point is sometimes represented as a matrix rather than a vector. With ∼= we
denote equality up to scale, for example projection of a 3D point onto the 2D
image plane will be written x ∼= MX.

In all other situations we will explain what the variables and notation repre-
sent in a given equation.
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C H A P T E R 1

Introduction

In 1838 Wheatstone [Wheatstone, 1838] described the phenomenon of stere-
opsis: the observation of a scene under slightly different views as generated
by an observers’ left and right eye, resulting in the perception of depth. Based
on this concept, Wheatstone introduced the stereoscope (see Figure 1.1) for
viewing images with depth. The stereoscope presents an observer two im-
ages: one intended only to be viewed by the left eye, and one intended only
to be viewed by the right eye. Since this concept mimics the human visual
system, the illusion of depth can be created for an observer. The left and
right eye image pair is then referred to as a stereoscopic pair of images, and
the depth perception as stereoscopic 3D. Stereoscopic 3D therefore involves the
simultaneous, or near simultaneous, display of a stereoscopic pair of images.

With the invention of motion pictures, in 1890 W.Friese-Green extended
the concept of the stereoscope to introduce stereoscopic 3D motion im-
agery, by simultaneously displaying separate films for the left and right
eye [Wikipedia–3D Film, 2013]. Although stereoscopic 3D motion pictures
have been reintroduced several times since then, technological limitations
for both the recording and display systems have prevented full adoption
of the technology. Color differences between the left and right eye image,
or synchronization problems resulted in uncomfortable viewing conditions.
However, with the most recent reintroduction around 2003, technological ad-
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Figure 1.1: Wheatstone Stereoscope. The stereoscope introduced by Wheat-
stone [Wheatstone, 1838]. The device served to demonstrate that people
can perceive depth by observing a stereoscopic pair of images: one im-
age intended to be viewed only with the left eye, and another only with
the right eye. Stereoscopic 3D motion pictures were introduced based
on its principles.

vances have helped to overcome earlier limitations. Furthermore, in addition
to viewing stereoscopic 3D content in the cinema, many consumer display
devices can now display stereoscopic 3D content at home. Recently mobile
devices with stereoscopic 3D capability also became available.

Despite the technological advances, acquisition fundamentally still occurs
with two cameras, one for each eye, and more or less directly displaying the
output of each. Especially in the case of motion pictures, one might want to
edit the 3D content first. However, editing 3D content is not simply a mat-
ter of repeating a 2D editing operation on the image for each eye. Since the
stereoscopic pair of images is intended to generate the perception of depth,
when editing 3D content the depth of the underlying scene has to be taken
into account. One therefore needs to be able to recover or reconstruct that
depth.

Furthermore, in contrast to observing the real-world, stereoscopic 3D images
are displayed on the image plane of the display device. An observer therefore
has to maintain focus on that image plane, while rotating the eyes to obtain
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Figure 1.2: 3D Cinema to Mobile 3D. Stereoscopic 3D is no longer exclusive to
3D cinemas.
Images courtesy of Nintendo ©, http: // www. benjaminbernarddigital. com

a proper depth perception. This is referred to as the decoupling between
vergence and accommodation [Hoffman et al., 2008, Lambooij et al., 2009].
Since vergence and accommodation decoupling is not natural, it could lead
to increased cognitive load and eye strain, making the viewing experience
uncomfortable. It is therefore important to ensure both high quality content
and display for stereoscopic 3D.

Presenting high quality stereoscopic 3D content impacts the entire pipeline:
from acquisition, to processing, to display. In this thesis we propose novel
systems and methods which aim to improve acquisition, depth map compu-
tation, stereoscopic editing, and stereoscopic display.

1.1 Motivation

Computing depth maps from two or more cameras is a well-studied problem.
The Middlebury Stereo evaluation [Scharstein and Szeliski, 2012] provides an
overview of the many different stereo methods that have been proposed. The
results are presented for a set of somewhat artificial example scenes, however
computing good quality depth maps for general scenes remains a challenging
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problem. The challenge in computing depth from multiple views is to deter-
mine which pixels between different cameras correspond to each other. This
is achieved by examining their color similarities, and the hypothesis is that
pixels with a high degree of color similarity are likely to correspond to each
other. Uniformly colored objects, objects with repeating textures, or simi-
larly colored fore- and background objects could thus result in matching am-
biguities. In addition, the occurrence of occlusions may lead to additional
matching ambiguities. Occlusions may arise when objects at different spatial
locations are imaged from different camera locations. As a result, surfaces
visible in one camera, may be obscured in another camera.

To acquire images of the scene with multiple cameras at the same resolution
and color, homogeneous camera setups are used, i.e., all cameras are of same
make and model. It may not be feasible to use multiple of them, e.g. due to
cost or form factor of the camera. In the latter case using multiple cameras
would result in a bulky setup. Smaller form factor, lower quality and hence
lower cost cameras are becoming ubiquitous. Furthermore, sensors that ac-
quire different modalities are also becoming more ubiquitous. That leads to
the idea to instead combine different sensors, and different modalities with a
high quality camera. The different modalities are then to be fused in order to
compute depth.

The research questions we address are:

w Which kind of sensors should be included, how many and where
placed?

w How should we fuse the information from multiple modalities to com-
pute depth maps?

w Can lower quality sensors, but different modalities, be fused with high
quality reference images to obtain high quality results?

w What is the contribution of each modality for computing depth maps?

An important step in video processing is segmentation of the scene into fore-
and background objects or regions. Segmentation and depth maps are corre-
lated in that segmentation boundaries typically coincide with depth discon-
tinuities. Segmentation is also a well studied problem with many proposed
solutions, however segmentation remains a challenging problem, especially
for video sequences.

As with depth computation, segmentation relies on color differences between
objects and background. Additional modalities could help make video seg-
mentation more robust. Many automatic methods for video segmentation
are based on the displacement of corresponding pixels between frames of a
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video, often referred to as optical flow. Optical flow does not always yield
reliable results, especially in the presence of large motions. For video data
that is processed offline, for example in cinematic applications, user interac-
tion would be acceptable. Provided that the amount of required interaction
is limited, additional (iterative) user input could then help recover from er-
roneous segmentations.

Computing depth maps on each frame independently could result in tem-
porally noisy depth maps. Often it is most important for foreground objects
to maintain temporal consistency along the depth silhouettes. A known seg-
mentation can be exploited for computing temporally more consistent depth
maps.

The research questions we address are:

w How can we formulate the problem of video segmentation?

w How can we exploit multiple modality input data for segmentation?

w How can we best incorporate user input to ensure correctness of the
segmentation?

w How can we achieve accurate segmentation boundaries for foreground
objects?

w How can we exploit the segment boundaries for computing temporally
more consistent depth maps?

Once good quality depth maps for a given scene are obtained, those depth
maps can be exploited to synthesize new views of the scene. This implies
that the 3D scene is not altered, only the locations from which that scene
is observed. More interesting editing operations would actually change the
contents of the 3D scene. For the case of 2D images and video many such
tools already exist. To extend 2D methods to 3D, one cannot simply apply
the operation to the left and eye right images separately. Instead the com-
puted depth should be taken into account. For example to ensure the correct
relative size of objects at different depths, or the objects’ orientation based on
its location in the 3D scene. Another important aspect is for objects to main-
tain their stereo volume, to avoid them from appearing flat after editing.

The research questions we address related to 3D editing are:

w What level of quality should depth maps have?

w How can erroneous depth values in the depth map be handled in edit-
ing operations?

w How should depth be considered for editing 3D content?
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The final stage of the pipeline after acquisition and editing, is the display
of stereoscopic imagery. Different images for the left and right eye are dis-
played simultaneously, or near simultaneously, to invoke a depth perception.
This approach is based on how the human visual system operates. However,
there is an important difference. The eyes focus (accommodate) on a particu-
lar object in depth, and while simultaneously moving in opposite directions
(vergence). When images for the left and right eye are displayed on the same
plane in depth, i.e., the screen, this vergence–accommodation process has to
be decoupled. This could result in visual fatigue [Hoffman et al., 2008].

It is therefore important to ensure the highest quality possible stereoscopic
display. A particular problem we wish to address is that of crosstalk, also
referred to as ghosting. Crosstalk occurs when the images for the left and
right eye are not fully separated and as a result, the left eye can observe a
dim copy of the image intended for the right eye, and vice versa. This is
often the result of a physical property of the display system. Since these
stereoscopic 3D display systems are observed by humans, compensation for
crosstalk should exploit properties of the human visual system.

The research questions we address are:

w How can we formulate the problem and solve to obtain compensated
imagery?

w What is a good model for crosstalk which enables to incorporate per-
ceptual metrics?

w Which perceptual metrics should be considered for incorporation?

1.2 Contributions

In thesis we present the following contributions:

Multi-modal acquisition We describe an experimental acquisition system
which combines a high quality central reference camera with satellite sensors.
The sensors are (visible light) video cameras, Time-of-Flight depth camera,
and a Long-wave (thermal) infrared camera. We also discuss the calibration
for such a system.

Depth maps from multi-modal data We present a method to fuse the
multi-modal data from the experimental system to compute depth maps.
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We describe a local, per-pixel winner-take-all method that combines Time-
of-Flight with photometric information from the video cameras. The satellite
video cameras allow reasoning about occlusions in the scene, whereas the
thermal camera provides segmentation information, especially for shots with
human actors, which is often the case for live-action cinema and television.
Together with a plane-fitting and trilateral smoothing step we achieve high
quality results. Finally, we compare the contribution of each modality.

Segmentation and depth maps from multi-modal data Given the corre-
lation between segmentation boundaries and depth contours, we describe a
method which computes accurate segmentation boundaries for foreground
objects in a video sequence. We describe how segmentation can be formu-
lated as a labeling problem, which also takes temporal information into ac-
count. We demonstrate that by exploiting the multi-modal data and keeping
a user in the loop, we can obtain accurate segment boundaries for challeng-
ing cases. A method for computing depth maps is presented which uses the
segment boundaries, to obtain temporally more consistent depth maps.

Stereoscopic 3D editing —Stereo Copy & Paste We present a pipeline
for stereoscopic 3D copy & paste editing. We describe the propagation of
user performed segmentation on one image, to the other image for a stereo-
scopic pair. We use so-called stereo billboards, which approximate 3D ob-
jects with planar proxies and are robust to errors in depth maps. The planar
proxies are computed using various constraints, including constraints based
on stereoscopic parameters. Stereo billboards avoid the need for hole-filling
when rendering composited results.

Ghosting compensation for stereoscopic 3D displays We present a gen-
eral framework for compensating additive light pollution in display systems,
which directly incorporates perceptual models. The compensation is formu-
lated as an optimization problem, and we describe how the optimization can
be made tractable. We describe how this framework is applied to compensate
for ghosting, and also for scattering in concave displays. We achieve results
which are preferred over results from other methods, which is verified by a
user study.
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1.3 Organization

The remainder of this thesis is organized as follows:

w In Chapter 2 we discuss the related work to the pipeline for stereoscopic
3D: acquisition, computing depth and segmentation, editing of stereo-
scopic 3D content, and stereoscopic 3D displays.

w In Chapter 3 we describe the experimental acquisition system we built
which captures multi-modal data for aiding the computation of seg-
mentation and depth maps.

w In Chapter 4 we discuss a method for fusing the data from the experi-
mental system to compute depth maps, and compare the contribution
of each modality from our experimental system.

w In Chapter 5 we discuss an interactive segmentation approach, and how
the resulting segmentation is exploited in the computation of depth
maps, to obtain temporally more consistent results.

w In Chapter 6 we discuss editing of stereoscopic 3D images for the appli-
cation of copy and paste, and explain how the underlying depth of the
scene is taken into account.

w In Chapter 7 we discuss a framework for compensation of ghosting in
stereoscopic 3D display systems, and also discuss how the framework
can be applied to more general light pollution problems for display sys-
tems.

w In Chapter 8 we provide a discussion on future work and conclusions
on work presented in this thesis.

w In Appendix A we discuss a system using infrared structured light cap-
tured by multi-spectral cameras to compute depth maps, initially in-
tended to obtain ground-truth data for comparisons.

1.4 Publications

This thesis is based in part on the following accepted peer-reviewed publica-
tions.

J. VAN BAAR, P. BEARDSLEY, M. POLLEFEYS, M. GROSS. Sensor Fusion for
Depth Estimation, including TOF and Thermal Sensors 3DimPVT, 2012.

8



1.4 Publications

J. VAN BAAR, P. BEARDSLEY, M. POLLEFEYS, M. GROSS. Interactive Video
Segmentation Supported by Multiple Modalities, with an Application
to Depth Maps 3DTV-CON, 2012.

W.-Y. LO, J. VAN BAAR, C. KNAUS, M. ZWICKER, M. GROSS. Stereoscopic
3D copy & paste Proceedings of ACM SIGGRAPH Asia 2010, ACM Trans-
actions on Graphics, vol. 29, no. 6

J. VAN BAAR, S. POULAKOS, W. JAROSZ, D. NOWROUZEZAHRAI, R. TAM-
STORF, M. GROSS. Perceptually-based compensation of light pollution
in display systems APGV ’11 Proceedings of the ACM SIGGRAPH Sympo-
sium on Applied Perception in Graphics and Visualization.
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C H A P T E R 2

Related Work

In this chapter we discuss the related work according to the different steps
of the pipeline for stereoscopic 3D, as presented in Chapter 1. In Section 2.1
we discuss existing acquisition systems, and the system we propose instead.
Section 2.2 gives an overview of various methods for computing depth maps,
including methods which aim to fuse multiple modalities. Related work to
video segmentation is discussed in Section 2.3. In Section 2.4 we discuss re-
lated work to editing of stereoscopic 3D content. Finally, related work to the
compensation of ghosting in stereoscopic 3D displays, and compensation of
global illumination in other types of displays is discussed in Section 2.5.

2.1 Acquisition

There are numerous existing systems for stereoscopic 3D acquisition, from
research prototypes to commercial products. Research prototypes come in
different varieties. Most prototype systems use a stereoscopic pair of cam-
eras, or a trinocular camera configuration. Some systems integrate a camera,
or stereoscopic pair of cameras, with additional modalities, such as Time-of-
Flight depth [Zhu et al., 2008] or range sensing (LIDAR) [Diebel and Thrun,
2005]. Acquisition systems consisting of multiple (more than three) cameras
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Figure 2.1: Multi-camera Rig. Acquisition rig by HHI / fraunhofer. The rig
consists of two cameras in a mirror configuration, with two satellite
cameras on either side of the mirror.

typically are static, and configured to capture some working volume, mostly
for the purpose of full 3D reconstruction of objects [Seitz et al., 2006]. Some
multi-camera systems on the other hand are configured for wide-baseline ac-
quisition, for example a (static) system for view interpolation [Zitnick et al.,
2004].

For commercial stereoscopic 3D rigs, the most common rigs use two cameras,
either side-by-side or in a mirror configuration. The rigs require accurate
motorized control of both their position and lens settings. More recently a
multi-camera acquisition system was introduced which combines cameras in
a mirror configuration with additional satellite cameras (see Figure 2.1). The
motorized control makes the rigs rather bulky and wieldy.

Whether research prototype or commercial, the acquisition systems employ
a homogeneous set of cameras, i.e. all cameras are of the same make and
model. In some cases this leads to expensive and bulky systems. Further-
more, cinematographers and camera operators are trained to use a single
camera for acquisition. We therefore propose instead to augment a single
high quality reference camera with multiple satellite sensors. The sensors in-
clude (visible light) cameras, Time-of-Flight depth, and thermal (long wave-
length) infrared. Our goal is to fuse the information from the various modali-
ties for computing depth maps. We thus employ a heterogeneous set of cam-
eras, where the satellite cameras are of lesser quality, and smaller form-factor.
In Chapter 3 we describe the system in more detail, including the number of
satellite cameras, expected benefits of each modality, and calibration for the
system.
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2.2 Processing—Depth Maps

Computing depth maps for two-view stereo or multi-view stereo has re-
ceived, and continues to receive much research attention. It is beyond the
scope of this thesis to provide a complete overview of the research in this
area, but we discuss the most important related works. A taxonomy of dif-
ferent methods for depth (disparity) maps for two-view stereo is provided
by Scharstein et al. [2002]. Ongoing evaluations of proposed approaches are
published regularly [Scharstein and Szeliski, 2012]. A similar overview of
multi-view stereo methods and evaluations are available [Seitz et al., 2006,
2012].

So-called global methods can obtain high quality results. Global methods ex-
press the problem of depth reconstruction as a graphical model, via a Markov
Random Field, or the equivalent energy minimization formulation. A so-
lution can then be obtained by performing inference on the graph. It has
been shown that methods such as Graph Cuts [Boykov et al., 2001, Vogiatzis
et al., 2007] and Belief Propagation [Sun et al., 2003, Felzenszwalb and Hut-
tenlocher, 2006] can approximate global solutions. The drawback of global
methods is their performance, since the problem size depends on the number
of discrete labels and number pixels in the images, which is large for High-
Definition resolution imagery. To avoid the long running times of global
methods, Larsen et al. [2006] propose an iterative approach as an approxima-
tion to Belief Propagation. They back project the current depth hypothesis
onto the cameras in a multi-view setup.

Sensor fusion has received a lot of attention in recent years, especially in
combining visual data with depth measurements. Scanning approaches us-
ing laser range finders or Time-of-Flight depth sensors can reconstruct ob-
jects [Schuon et al., 2008] and even entire environments [Diebel and Thrun,
2005, Izadi et al., 2011]. The methods proposed by Schuon et al. [2008], Diebel
and Thrun [2005], and Izadi et al. [2011] are based on a dense sampling of
the object or scene, rather than using data at a single point in time. Long
scanning times of the proposed methods do not permit dynamic objects or
scenes. Some LIDAR systems allow real-time capture of dynamic indoor and
outdoor environments [Velodyne, 2012]. Although these systems currently
produce coarse 3D point clouds, the density is expected to increase for fu-
ture releases of these scanning systems. For dense reconstruction of dynamic
objects, Guan et al. [2008] use a combination of cameras and Time-of-Flight
depth sensors. They formulate and solve a probability model for the occu-
pancy within a bounded volume to obtain the 3D reconstruction. Their setup
is thus limited to reconstruct objects within some bounded volume.
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Tola et al. [2009] capture 3D video using a Time-of-Flight sensor to directly
generate a 3D mesh based on the depth values from the depth sensor. Im-
ages from a registered camera are then used as textures for the 3D mesh.
This approach does not fuse the information from the depth sensor and cam-
era, and resulting depth maps are therefore noisy and low resolution. Some
approaches attempt to increase the resolution from the Time-of-Flight depth
sensors, either using implicit edge information by iterative bilateral filter-
ing [Yang et al., 2007], or by more explicitly taking edge information into
account [Lindner et al., 2008, Nair et al., 2012]. Time-of-Flight depth sensors
have been used together with stereo for enhancing depth maps [Zhu et al.,
2008]. The benefit of the fusion of depth measurements and stereo is shown
for simple scenes with limited working volumes, rather than more natural
and general scenes.

Many shots will contain one or more human actors, which in addition typi-
cally are foreground objects. Having accurate depth discontinuities for these
foreground characters is important. Thermal infrared can provide segmen-
tation information for human actors with respect to the background. Fu-
sion with thermal infrared has been used in previous work. In [Conaire and
Smeaton, 2008] the authors propose to exploit thermal infrared for tracking
humans in video using so-called spatiograms. Their goal is the reliable track-
ing of occurrences rather than accurate segment boundaries. We instead ex-
ploit thermal infrared in the context of computing depth maps for general
scenes.

Our goal is to compute high quality depth maps for general (indoor) scenes,
typically involving multiple dynamic subjects. Depth maps are computed for
a high resolution reference camera. We combine the information from multi-
ple satellite cameras, with depth data from Time-of-Flight, and segmentation
information from thermal infrared images. In Chapter 4 we propose a lo-
cal method and show that we can obtain high quality depth maps from the
fusion of these modalities.

2.3 Processing—Segmentation and Depth Maps

The computation of depth without consideration of temporal information
could result in temporally inconsistent depth values. Temporal information
can be incorporated by extending graphical models to contain nodes from
previous and next frames using optical flow information [Larsen et al., 2007].
Temporally more smooth depth values may be obtained by reprojection of
depth values to adjacent frames followed by bundle adjustment [Zhang et al.,
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2009]. Yang et al. [2012a] show that background and motion models can be
recovered in multiple steps, and subsequently used to compute temporally
more smooth depth values.

Depth and color discontinuities typically occur at object boundaries, and are
therefore correlated. Information about the object boundaries could therefore
help to improve depth maps. Object boundaries information over time could
help to improve the temporal consistency of depth maps. We thus aim to
accurately segment foreground objects from the background for the frames
in a video sequence.

Video segmentation is a well-studied research area. Previous work can be
classified as either interactive or entirely automatic. Interactive segmenta-
tion methods require the user to provide initial scribbles to indicate fore-
and background. Local color models are learned from the initial indication,
and pixels are assigned a label according to these models. The method pro-
posed by Rother et al. [2004] is intended for still images and uses iterative
graph cuts for obtaining an accurate segmentation and matting. Some meth-
ods for video segmentation [Bai et al., 2009, Gong and Cheng, 2011, Price
et al., 2009] incorporate optical flow to propagate the segmentation to sub-
sequent frames. Price et al. additionally incorporate corrections made by
the user. Temporal information over the video sequence can be encapsulated
into point-trajectories for a sparse set of image samples [Ochs and Brox, 2011].
The sparse samples are then interpolated to obtain a per-pixel segmentation.
Although the methods mentioned above can obtain accurate segment bound-
aries, they are limited to segmentation of single foreground objects only.

The goal of most automatic video segmentation methods [DeMenthon and
Megret, 2002, Paris, 2008, Grundmann et al., 2010, Vazquez-Reina et al., 2010,
Lezama et al., 2011] is to obtain temporally consistent segmentations. Seg-
mentation boundaries are typically inaccurate. Since these methods are tar-
geted for applications such as object tracking, or non-photorealistic render-
ing, accurate segment boundaries are not crucial. These methods support
the segmentation of multiple objects. Objects that occlude each other in the
video sequence, cannot be consistently segmented. The methods proposed
by [Grundmann et al., 2010, Vazquez-Reina et al., 2010] consider video seg-
mentation to be a labeling problem, and formulate this as an energy mini-
mization problem. Both methods rely on a hierarchical segmentation, where
images are progressively segmented from coarse to fine segments. Grund-
mann et al. rely on optical flow between subsequent frames for grouping
corresponding segments temporally. On the other hand, Vazquez-Reina et
al. avoid the need for optical flow and consider (coarse) overlapping seg-
ments to correspond temporally. In addition, for this approach information
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across multiple frames of the video sequence is incorporated as higher-order
clique terms in a graphical model.

The correlation between depth and color discontinuities is used for spatially-
adaptive weighting of the smoothness term in global optimization methods,
which aims to avoid smoothing over depth boundaries [Felzenszwalb and
Huttenlocher, 2006], or object boundaries [Boykov and Funka-Lea, 2006].
In [Zitnick and Kang, 2007b] the authors propose to oversegment images
of video sequences and compute depth maps with consistent object bound-
aries. The correlation is also used to simultaneously compute segmentation
and depth maps [Bleyer et al., 2011, Zhang et al., 2011]. These methods op-
erate on stereo image pairs, and the resulting segmentation is used to handle
stereo occlusions, as opposed to object occlusions. Background segmentation
is exploited in [Yang et al., 2012a] for improving depth maps.

We propose an interactive approach to accurately segment multiple (possi-
bly occluding) objects in a video sequence. These accurate boundaries are
then exploited as explicit constraints when computing depth maps. We de-
fine the video segmentation problem as an energy minimization problem to
propagate known segmentations to the intermediate frames of a video se-
quence. Our approach is interactive: the user provides an initial segmen-
tation for the first and last frame of a video sequence, and supervises the
propagation to ensure correct labeling. The pixels in each video frame are
clustered into regions called superpixels, and the task therefore becomes to
label the superpixels according to the segment they belong to. To obtain ac-
curate segment boundaries, we employ a boundary refinement step based
on local color models near the initial boundaries. We show that the Time-of-
Flight depth can be exploited to reduce the size of the problem. In addition,
previous approaches rely only on color information and fail in areas with lack
of (color) contrast, such as textureless areas, or in areas of similarly colored
fore- and background objects. We show that thermal infrared can improve
the result in such situations.

2.4 Stereoscopic Editing—Stereo Copy & Paste

Computing depth maps and performing segmentation are necessary opera-
tions for editing stereoscopic 3D contents. Our focus will be on copy & paste
for stereoscopic images. The methods we present in this thesis for computing
depth, are specifically designed to operate on multi-modal data. However,
for stereoscopic copy & paste, we would like to be able to process stereo-
scopic image pairs in general. We thus choose an existing method for com-

16



2.4 Stereoscopic Editing—Stereo Copy & Paste

puting depth [Smith et al., 2009] instead. Since the depth maps likely contain
inaccuracies, we aim for a system that is robust with respect to inaccuracies
in the depth map.

To support stereoscopic copy & paste, we have to accurately segment mul-
tiple objects, either in still images, or in a video sequence. The interactive
segmentation approach we present in this thesis related to computing depth
maps, could be used in this context. In any case, this interactive segmen-
tation approach requires an initial segmentation for the first and last frame
of a video sequence. We would like to obtain these segmentations with the
least amount of user input. Methods which are designed for segmentation
of single objects, such as the iterative Graph Cuts approach [Rother et al.,
2004], or the incremental Graph Cuts scheme [Liu et al., 2009b], would re-
quire a significant amount of user interaction to segment multiple objects.
Lu et al. [2007] describe a multi-class segmentation method, but this can han-
dle only a small number of distinct classes and is computationally expensive.
To allow for easy multiple object segmentation we combine the fast cluster-
merging method by Ning et al. [2010], with mean-shift clustering [Comaniciu
and Meer, 2002].

We would like to segment objects for a stereoscopic pair of images. To avoid
having the user perform the segmentation twice, we aim to propagate the
segmentation for one eye image to the other eye. This propagation is re-
lated to cosegmentation. Cosegmentation aims at segmenting the common
parts between a pair or a sequence of images. Rother et al. [2006] exploit
histograms for consistency between foreground objects in images. Dong
Seon and Figueiredo [2007] encode the consistency between objects in frames
within a prior and solve a mixture model. Zitnick et al. [2005] aim for consis-
tent segmentation and motion simultaneously, using segment shape and op-
tical flow between images as constraints and finally solving an energy min-
imization problem. Motion, optical flow, and tracking have also been pro-
posed in segmentation propagation for video sequences [Chuang et al., 2002,
Agarwala et al., 2004]. Rather than relying on multiple frames, or modeling
the consistency between objects explicitly, we have chosen to adopt Video
Snapcut [Bai et al., 2009] which propagates a set of local windows along the
segmentation contour with associated color information.

Copy & paste editing for 2D images has received much attention recently.
Poisson image editing [Pérez et al., 2003] has the advantage that no accurate
segmentation is necessary, but requires care to be taken to avoid smearing in
the case of dissimilar backgrounds. Drag and Drop Pasting [Jia et al., 2006] at-
tempts to avoid smear by computing an optimal boundary for Poisson blend-
ing. However this method still will not produce desired results for multiple
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(partially occluding) objects of different textures. Alpha matting [Wang and
Cohen, 2008] on the other hand will be able to handle such cases, and we
compute alpha mattes for all segmentations in our system.

In Photo Clip-Art [Lalonde et al., 2007] objects are inserted into a target image
from a database of pre-segmented and labeled images. The 3D scene struc-
ture, and lighting are estimated by image analysis and to determine which
object to retrieve from the database. In our case the user explicitly selects the
objects to be copied and pasted for stereoscopic 3D images, and we address
the challenges that arise with this.

Several stereoscopic editing approaches exist. Stereoscopic Inpainting [Wang
et al., 2008] describes a segmentation-based method which exploits dispar-
ity maps to fill in missing depth and color due to occlusion in stereoscopic
images. Editing methods for manipulating stereo parameters, e.g., stereo
baseline, compute disparity maps to adjust the parameters locally or glob-
ally [Lang et al., 2010, Koppal et al., 2010, Wang and Sawchuk, 2008]. A com-
mercial stereo editing tool we are currently aware of is the Ocula plug-in for
Nuke [The Foundry, 2012]. The focus in these methods is either on fore-
ground object removal, color correction, alignment correction, or stereo view
synthesis rather than object copy & paste.

Rhee et al. [2007] introduced the concept of stereo billboards as planar proxies
for stereoscopic telepresence display under the assumption that objects are
always humans and fronto-parallel to the camera. In contrast, our stereo
billboards represent arbitrary 3D objects, and the optimal orientations are
computed using the objects’ reconstructed 3D points as constraints.

The system we will present shares some similarities with pop-up light
fields [Shum et al., 2004], which is an image-based rendering system that
models a sparse light field using a layered representation. In this system,
the user interactively segments layers for pop-up, with the goal of high qual-
ity rendering of a sparse light field. In contrast, our system allows to copy
objects from different sources, and is not a layered representation.

2.5 Stereoscopic Display—Deghosting

The illusion of stereoscopic depth is dependent on a viewer’s ability to fuse
corresponding features or edges presented to the two eyes [Howard and
Rogers, 2002]. Viewing stereoscopic images is a demanding task for the
HVS. It requires a decoupling between focus and eye vergence that has been
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demonstrated to influence not only viewer discomfort, but also hinder visual
attention and depth discrimination [Hoffman et al., 2008].

The perception of ghosting can be considered a “binocular noise" that further
hinders fusion limits and visual comfort. Yeh and Silverstein demonstrated
that crosstalk significantly influences the ability to fuse widely separated im-
ages via binocular eye vergence movement [1990]. Ghost images may intro-
duce unintended edges and binocular rivalry making visual processing un-
stable, unpredictable, and impair guiding visual attention [Patterson, 2007].
It has also been found to inhibit the interpretation of depth [Tsirlin et al.,
2011].

Use of even minimal crosstalk has been found to strongly affect subjective
ratings of display image quality and visual comfort [Yeh and Silverstein,
1990, Kooi and Toet, 2004]. Although acceptable crosstalk may generally be
as high as 5-10%, the detection and acceptability thresholds can be signifi-
cantly reduced with higher image contrast or larger disparity [Wang et al.,
2011]. There is a strong need to remove the detection of crosstalk.

Subtractive compensation methods for active (time-sequential) and passive
(light modulation) stereo display systems, subtract the predicted ghosting
contribution prior to display [Konrad et al., 2000, Klimenko et al., 2003].
These methods assume that there is sufficient signal to subtract from since
physical systems cannot inject negative light. To fully compensate in these
cases, the black level is raised globally (automatically), or locally (manually).
Smit et al. [2007] proposed a perceptually motivated extension to subtractive
compensation. They perform subtraction in the perceptually uniform CIE-
Lab, instead of RGB color space. This results in less visible ghosting compared
to standard subtractive methods. However, in the case of low luminance,
their method suffers from the same problem as other subtractive methods,
and leaves ghosting as uncorrectable. We specifically want to address these
“uncorrectable” cases, and instead propose a perceptually-based distribution
of the ghosting error to reduced sensitivity regions of the HVS.

Perceptually-based methods have been extensively used and an exhaustive
list would be beyond the scope of this thesis. We discuss the most relevant
works. Perceptual models have been exploited to determine if the texture of
objects masks an underlying coarse tessellation [Ferwerda et al., 1997], and in
stopping criteria for global illumination [Ramasubramanian et al., 1999, Man-
tiuk et al., 2006, Longhurst et al., 2006, Sundstedt et al., 2007]. We explicitly
exploit perceptual models for formulating an optimization framework.

Tone mapping involves the display of an image with a higher dynamic range
on a display with a lower dynamic range [Reinhard et al., 2002, Mantiuk
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et al., 2008]. The method that we propose is related to local tone mapping in
that our goal is to take an image with a higher dynamic range (the intended
image), and display it on a (locally) lower dynamic range display (due to the
light pollution). We aim to distribute the error smoothly in a local region,
and we propose to exploit HVS properties to do this in a perceptually more
optimal manner.

Majumder and Stevens [2005] aim to obtain a global smoothly varying lu-
minance in a multi-projector display by incorporating perceptual metrics.
Grosse et al. [2010] exploit the CSF to precompute a binary mask, which in
turn is used to compute an optimal coded aperture. Our work differs in that
our goal is to locally compensate for ghosting only. This requires a different
formulation for the optimization problem which we describe in Chapter 7.

In image processing domain, perceptual metrics are incorporated into a Vis-
ible Difference Predictors (VDP), which aims to quantify the perceptual dif-
ference between a reference and a test image [Daly, 1992, Lubin, 1995]. Fur-
thermore, Nadenau et al. [2001] propose to exploit the contrast sensitivity
function (CSF) for weighting the coefficients of a wavelet decomposition at
different levels. We propose to incorporate the CSF and components of the
VDP directly in our optimization framework.

Several subtractive compensation methods have been suggested to compen-
sate for indirect scattering by modifying the image before projection [Bimber
et al., 2006, Mukaigawa et al., 2006, Wetzstein and Bimber, 2007, Dehos et al.,
2008]. Bimber et al. [2007] provides a more comprehensive overview of other
related work in this field. All these methods suffer from the same problems
as subtracive deghosting methods. We propose an analytic subtractive com-
pensation for spherical domes, that operates on full-resolution images, and
combine this with our perceptual framework to redistribute this error into
visually less important regions.
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C H A P T E R 3

Multi-Modal System for
Acquisition

In this chapter we describe the experimental acquisition system we built. We
describe both the sensors that are used in the system, and the calibration pro-
cedures we employed. The high level description is a system consisting of a
central high quality reference camera augmented with satellite sensors. The
system combines sensors of various sensing modalities: color (visible light),
Time-of-Flight depth and long-wave infrared. We discuss the two types of
calibration we employ: geometric and photometric. Geometric calibration
determines the lens parameters, location and orientation of the satellite sen-
sors with respect to the reference camera. The photometric calibration aims
to find a color transform for each camera to ensure a similar photometric re-
sponse among cameras. In addition to the experimental acquisition system
we also describe a system initially aimed to capture ground truth data. This
system can simultaneously capture a scene that is captured with our experi-
mental acquisition system.
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Figure 3.1: Compact Cinema Cameras. Some examples of compact, full frame
imaging sensor, cinema cameras: Left the ARRI Alexa M, Middle Sil-
icon Imaging 2K mini, Right Blackmagic Design Cinema Camera.

3.1 Introduction and Motivation

To generate high quality content, for example for cinematic motion pictures,
a high quality camera is required. High quality cameras mostly distinguish
themselves from low quality ones in terms of sensitivity and noise. Cameras
with higher sensitivity are able to capture a higher dynamic range of inten-
sities. Sensitivity is important to ensure a high signal-to-noise ratio even for
low luminance areas in the scene. High quality cameras consist of high-end
components and are therefore expensive. In addition, the physical footprint
of high quality cameras tends to be large compared to that of lower quality
ones, although we are beginning to see more compact high-end cameras (see
Figure 3.1 for examples).

For capturing stereoscopic content, typically two cameras are used. Hav-
ing additional cameras beyond two, helps to improve the quality of com-
puted depth maps. Replicating the high quality reference camera to create
a homogenous multi-camera system could result in a bulky, expensive sys-
tem. More importantly however, cinematographers and camera operators are
used to capture a scene with a single camera. It would be desirable for the
cinematographer and camera operators to not be encumbered by additional
capturing devices, and instead focus only on acquisition with the single cam-
era.

As already discussed in Chapters 1 and 2, computing depth maps based on
color information alone could lead to ambiguities. We therefore would like
to capture additional information besides color images. We propose to incor-
porate two additional modalities: Time-of-Flight depth and thermal (long-
wavelength) infrared. Since there are no readily available experimental sys-
tems, we built our own.
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We propose to augment a central high quality camera with several satellite
sensors. The satellite cameras will be of less quality compared to the central
camera. We aim to exploit current hardware advances: lower cost, smaller
form factor but increasing quality. For example, small USB board cameras
have a weight of 30g and dimensions of a couple of cm. New low-end ther-
mal cameras are a similar size and price to machine vision cameras [Infrared
Cameras Inc., 2012]. Building a multiple sensor modalities single system is
thus becoming practical. Our experimental setup is merely a prototype. It
is feasible to eventually envisage a compact cinematographic camera aug-
mented with satellite sensors with little impact on its normal handling and
workflow.

3.2 System

Figure 3.2 shows a frontal view of the experimental rig we built. In the center
(mostly obscured behind the beamsplitting glass) is the reference camera (A).
On each side of the reference camera are two satellite cameras (B). The Time-
of-Flight camera (C) is mounted just above the reference camera. Finally,
the thermal infrared camera (D) is in a beamsplitting configuration with the
reference camera.

The beamsplitter consists of thermally coated K-glass at a 45◦ angle. All of the
visible light is allowed to pass through to the reference camera, whereas most
of the thermal radiation is reflected towards the thermal camera. This config-
uration allows the reference camera and the thermal camera to have nearly
the same optical path, and accurate alignment. Next, we briefly describe each
hardware component in more detail, the positioning of the sensors, and syn-
chronization.

3.2.1 High Quality Reference Camera

The definition of high quality for cinematographic applications may be dif-
ferent from the definition of high quality for broadcasting. We therefore do
not quantify what high quality is, but rather use the term more loosely. For
our experimental system we chose a Sony PMW-350K camera. This camera
has three different CMOS sensors for red, green and blue. Before the incom-
ing light is recorded by the sensors, the light is first split by a special prism
into three bands of wavelengths representing red, green and blue light. The
camera progressively captures images of 1280×720 resolution. From here on
we refer to this camera as the reference camera.
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Figure 3.2: Experimental Acquisition System. A The high quality reference
camera. B The satellite cameras. C The Time-of-Flight depth camera.
D The thermal infrared camera.

3.2.2 Satellite Cameras

For the satellite cameras we chose PtGrey Grasshopper cameras. The cam-
eras capture images of 1600×1200 resolution. Although the resolution is
larger compared to the reference camera, the imaging sensor is considerably
smaller. The viewing angle for the satellite cameras compared to the refer-
ence camera is larger. This ensures that the area of the scene imaged by the
reference camera fits within the area imaged by the satellite cameras. The
quality of the lenses we use for the satellite cameras compared to the lens for
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the reference camera is also lower, based on a comparison of the correspond-
ing Modulation Transfer Function (MTF) charts.

The satellite and reference cameras form a heterogeneous set. As we will
discuss in Chapter 4, we will have to take this fact into account when de-
termining color consistencies between a satellite camera and the reference
camera.

3.2.3 Time-of-Flight Depth Camera

The Time-of-Flight depth camera we use in our experimental system is the
Mesa Imaging SR 4000. Our choice of depth camera is mostly practical, since
the SR 4000 can be triggered via external trigger input. However, other depth
cameras are available as well, most notably the Microsoft Kinect. We discuss
this in more detail in Chapter 4.

The SR 4000 camera measures depth for 176×144 image pixels. The camera
has 24 infrared LEDs positioned in a circle around the imaging sensor. The
basic principle of Time-of-Flight is to measure the time it takes for a pulse of
light to be reflected and recorded by the imaging sensor. Depending on the
modulation frequency of the active illumination, the range of the camera can
be either 5m or 10m. Although the absolute (internal) accuracy is specified as
10mm, the actual accuracy of the depth measurements depends on an objects’
distance from the camera and its IR reflectivity.

Time-of-Flight depth is less reliable near depth contours where the IR light
strikes an oblique surface, and most of the light is not directly reflected back
to the camera. As a result, the depth contours in Time-of-Flight cameras typ-
ically do not correspond with the actual physical discontinuities. In general
the reflectivity properties of materials determine the amount of noise present
in the measurements. In addition, a depth value is typically computed over
several samples of the signal which represents the reflected light. Moving
objects therefore introduce additional noise for depth values close to their
depth contours.

3.2.4 Far Infrared Thermal Camera

The thermal infrared camera is a Flir SC645 camera. This camera records im-
ages at 640×480 resolution. The image sensor can passively measure thermal
radiation using an uncooled microbolometer operating in the wavelength
range of 7.5–14 µm. The SC645 can be thermally calibrated to an accuracy of
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Figure 3.3: Example Dataset. Example images from different cameras at one time
instant. Top - depth camera. Center - cinematographic camera. Left
and right - the outermost satellite cameras. Bottom - thermal camera.

about 2◦. However, we are only interested in relative measurements. The rel-
ative pixel-to-pixel accuracy is less than 100 mK for room temperature mea-
surements.

Figure 3.3 shows an example of the images acquired with the different sen-
sors of our experimental system. For simplicity, we only show example im-
ages for the left- and right-most satellite cameras (labeled (B) in Figure 3.2).

3.2.5 Sensors Positioning

The satellite cameras are positioned to each side of the reference camera to
create a wide-baseline setup. The size of the baseline could vary depending
on the scene that is being acquired. A larger baseline for scenes with objects
that are farther away from the camera, a smaller baseline for scenes with
objects closer to the camera.
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3.2.6 Synchronization

In the most ideal situation, the images for the different sensors are captured
at a single instance in time. This requires synchronization of the different sen-
sors with an external trigger signal. The satellite cameras and Time-of-Flight
camera have built-in capability to be synchronized via an external trigger sig-
nal. However, synchronization of the reference camera and thermal camera
proved difficult. The reference camera requires a so-called Genlock reference
video signal for synchronization, which should then also be synchronized
with the trigger signals. The thermal camera does not support synchroniza-
tion at the level of image capture. Instead, a trigger signal can be used to start
or stop continuous image capture.

In order to capture images with all sensors as close to a single instance in time
as possible, we implemented the following scheme. All sensors in the system
are able to capture images at a framerate of 25 frames per second (fps). We
use an off-the-shelf FPGA which can be programmed to generate the desired
trigger signal [CESYS, 2012]. The trigger signals are then constructed such
that they represent acquisition at a framerate of 25 fps. The reference and
thermal camera are also set to acquire images at a framerate of 25 fps.

Although we minimize the difference in time at which the images are cap-
tured for all sensors, without explicit synchronization fast motions could lead
to an object being captured at different locations in space. This in turn will
impact the quality of the results. We therefore aim to avoid fast motion when
capturing data with our experimental system.

3.3 Multi-Sensor Multi-Modal Acquisition

3.3.1 Expected Benefit of Satellite Cameras / Sensors

The satellite cameras can be exploited to reason about occlusions in the scene.
Regions in the scene are occluded depending on the viewpoint from which
the image was captured. We can compare the contributions from multiple
satellite cameras on one side of the reference camera. If the contributions are
very different we may be dealing with an occlusion region.
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3.3.2 Expected Benefit of Adding ToF Depth Sensor

The Time-of-Flight depth sensor directly records depth values. The resolu-
tion is small and some details are not captured in the recorded depth image.
However, in other cases the depth sensor records correct depth values. This
will help obtain correct depth values in uniform color regions, and repeated
texture regions. It could also help in regions of occlusions.

3.3.3 Expected Benefit of Adding Thermal Sensor

Many video sequences have live actors. Thermal sensors are particularly use-
ful in this case, as the thermal signature of live actors will typically be differ-
ent from inanimate objects and backgrounds. Even in some cases the thermal
signatures of different actors may be different. This information can be ex-
ploited as a first order prior on the segmentation, much like the red, green
and blue channels are used.

3.4 Calibration

3.4.1 Geometric Calibration

In order to determine corresponding pixels between cameras, the cameras
should be accurately geometrically calibrated. Geometric calibration deter-
mines the camera pose (extrinsics), and lens parameters (intrinsics) for each
camera.

The extrinsics consist of a rotation and a translation. Given a 3D point X =
[XYZ]T in some coordinate space. The 3D point X relates to a pixel u = [u, v]T

in the camera by the following equation:

x ∼= PX = K[R|T]X, u = x/z, v = y/z. (3.1)

The matrix K is a 3×3 intrinsics matrix containing focal length, and principal
point. In our case we compute the focal length separately for the x- and y-
directions. The principal point is a 2D point on the image plane, representing
the projection of the optical axis onto the image plane [Hartley and Zisser-
man, 2004]. Real lenses usually introduce distortion. We use a five parameter
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lens distortion model [Zhang, 2000], which accounts for radial and tangential
distortion:

u′ = u(1 + k1r + k2r2 + k3r4) + [2p1uv + p2(r + 2u2)], (3.2)
v′ = v(1 + k1r + k2r2 + k3r4) + [p1(r + 2v2) + 2p2uv]. (3.3)

Here r is determined as u2 + v2. The k3 parameter is usually set to zero. Our
geometric calibration procedure then consists of the following steps:

1. Present a series of checker patterns at various poses. The corners of the
checker pattern are detected for each pose.

2. Compute lens parameters for the satellite and reference cameras.

3. Compute the extrinsics between:

a) Each satellite camera and the reference camera.

b) The Time-of-Flight camera and the reference camera.

4. Compute homography between the thermal camera and the reference
camera.

Satellite Cameras The calibration of lens parameters and initial pose be-
tween each satellite camera and the reference camera is performed us-
ing known techniques [Bouguet, 2012]. We then perform bundle adjust-
ment [Lourakis and Argyros, 2009] as a final step.

Time-of-Flight Camera The focal length, principal point and lens distor-
tion parameters for the Time-of-Flight camera are calibrated during manu-
facturing and they can be retrieved from the camera. These parameter values
are used by the corresponding software library for the Time-of-Flight camera
to compute per-pixel X, Y, Z coordinates.

The Time-of-Flight depth camera produces X, Y, Z coordinates measured in
meters. The Time-of-Flight depth camera and the reference camera are thus
related by a transformation and scaling. Given the detected feature point in
the Time-of-Flight camera image, uToF, we can lookup the corresponding 3D
measurement XToF = (X, Y, Z)T. This gives a set of corresponding 3D points
between the reference camera, Xre f and the Time-of-Flight camera, XToF. The
goal is now to compute the transformation TrToF→re f (XToF) = Xre f .

First, we compute the closed-form solution for the rigid motion between Xre f
and XToF [Horn, 1987]. Rigid motion consists of a uniform scale s, rotation R,
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3 Multi-Modal System for Acquisition

Figure 3.4: Thermal Camera Calibration. Resistors are accurately mounted at
the corners of the checker pattern. By applying a current to the resis-
tors, they will heat up. Shown are the image acquired by the reference
camera, and (inset) the image acquired by the thermal camera. During
calibration the centers of each camera are first aligned manually, and
then a homography is computed to warp the thermal image for accurate
final alignment.

and translation T. We use the closed-form solution as the starting point for a
non-linear optimization. Rather than a uniform scaling, we estimate different
scaling parameters for X, Y, Z. TrToF→re f therefore consists of 9 parameters:

Xre f = TrToF→re f (XToF) = diag(sX, sY, sZ)RXToF + T. (3.4)

The non-linear optimization then aims to simultaneously minimize the dis-
tance between the 3D points, the reprojection error for the reference camera
image, and the reprojection error for the ToF camera.

Thermal Camera The goal for the thermal camera is to align it’s center of
projection to the center of projection of the reference camera. An initial align-
ment between thermal and reference camera is achieved by manual adjust-
ment. Final alignment is then achieved by warping the thermal camera image
using a homography computed between the thermal and reference camera.
The homography is computed based on a set of corresponding 2D features
between the thermal and reference images. In order to simultaneously detect
visible features in the reference image, and thermal features in the thermal
image, we precisely mounted resistors at each checker corner location (see
Figure 3.4). By applying a current on the resistors they will heat up, and we
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3.4 Calibration

Figure 3.5: Thermal Camera Calibration Result. Left Thermal camera image.
Middle Accurately aligned thermal image superimposed on the refer-
ence camera color image. Right Reference camera image. The thermal
signal of humans is high compared to background objects, even when
covered by clothing.

compute the first-order moment for each blob to determine its center with
sub-pixel precision. The images retrieved from the thermal camera are al-
ready corrected for distortion, and for computing a homography we do not
need any additional lens parameters.

An example of the registration between the reference RGB image and the
thermal image is shown in Figure 3.5, with the thermal image superimposed
on the color image.

3.4.2 Photometric Calibration

To compute photometric calibration we acquire an image of a color pattern
with all cameras. We do not aim to compute absolute photometric calibra-
tion, but instead relative photometric calibration to one of the cameras in the
experimental system. A user has to click the centers of the four outermost
color patches for each camera. The centers for the remaining color patches
are then determined automatically. For each camera we compute the average
photometric response over a small region around each color patch center.
Corresponding responses between two cameras are then used to compute a
polynomial of degree two for each color channel separately [Ilie and Welch,
2005]. Figure 3.6 shows the color pattern acquired by two cameras, and the
result of the computed photometric transform.
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3 Multi-Modal System for Acquisition

(a) (b) (c)

Figure 3.6: Photometric Calibration. The color pattern is acquired by all cam-
eras in the experimental system. We transform the color spaces to ob-
tain a similar photometric response for each camera. (a) Image used
as the photometric reference image. (b) Image acquired by the refer-
ence camera prior to transform. (c) Reference image after photometric
transform.

3.5 Discussion

In Chapters 4 and 5 we will describe how we can exploit multiple modali-
ties to compute depth maps and perform interactive segmentation, using the
multi-modal acquisition system we described in this chapter.
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C H A P T E R 4

Processing—Depth Maps

Computing depth maps for acquired videos is an important operation which
serves as a first step for many subsequent processing steps, for example the
insertion of Computer Graphics elements into a video. Our focus application
is the computation of depth maps for live-action 3D cinema and television,
i.e. television programs which are not broadcast in real-time or near real-
time, such as sport games. High quality depth maps are required for being
able to edit the stereoscopic images that will be displayed, based on the 3D
composition of the underlying scene. We are therefore mostly concerned with
the correctness of depth maps, and less concerned with performance aspects.

In this chapter we describe a method to compute depth maps using our ex-
perimental system presented in Chapter 3. The experimental system consists
of a high quality, central reference camera augmented with satellite sensors
of different modalities (see Figure 3.2). The goal with this system is for cin-
ematographers to capture scenes the way they are used to, using a single
camera, and not be encumbered by the satellite sensors. The additional satel-
lite sensors merely capture data to aid the computation of depth maps for the
acquired scenes.

We will present results we obtain with our method, and compare them to
results that can be obtained with other approaches. The method presented
in this chapter operates on individual frames in video sequences. As a con-
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4 Processing—Depth Maps

sequence, the depth maps between subsequent frames vary slightly. In the
next chapter we present a method which aims to compute temporally more
consistent depth maps.

4.1 Motivation

The goal is to obtain high-quality depth maps. Computing accurate depth
maps for general scenes remains a difficult problem. Inferring depth based
on photometric information alone could result in ambiguities. Existing work
has shown the advantage of active sensors for measuring 3D information, in-
cluding Time-of-Flight sensors and structured illumination. The Kinect [Mi-
crosoft, 2012] has been a landmark device in bringing 3D sensing to the
mass market, using an infrared illumination source that projects a structured
speckle pattern onto the scene. But there are limitations with both approaches
—Time-of-Flight response falls off on oblique surfaces, as found for example
near the occluding contour of a curved object. While structured illumina-
tion, such as the speckle pattern for Kinect, delivers sparse information, not
pixel-dense measurements. For both approaches, when the surface is poorly
reflective with respect to the infrared illumination, the depth values will be-
come unreliable.

Since our focus is on live-action cinema and television, we expect many of
the shots to contain human actors. Thermal cameras detect emitted heat and
human skin, even when covered by some layers of clothing, which typically
gives a thermal gradient with the background. A beam splitter is used to
capture registered images for the reference camera and the thermal camera.
Beam splitting with two visible light cameras has a disadvantage that only
half the light enters each camera. But beam splitting for a visible light cam-
era and a thermal camera using a K-glass beam splitter results in most of
the incident visible light entering the visible light camera, and most of the
thermal radiation entering the thermal camera.

We compute depth maps by combining the information from the various sen-
sors, a process we refer to as sensor fusion. The first contribution of this chap-
ter is to demonstrate how Time-of-Flight data is combined with data from
multiple cameras to compute high quality depth maps. The depth map is
actually computed for the (high-resolution) reference camera, supported by
the lower resolution Time-of-Flight sensor and support cameras. The method
utilizes support cameras on both sides of the reference camera in order to do
explicit reasoning about occlusions. We demonstrate that by using a local
method in combination with plane-fitting we can obtain high quality results
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for challenging scenes. In addition, we demonstrate that the occlusion rea-
soning in combination with a global method also produces high quality re-
sults, albeit for longer processing times. Our definition of local and global is
provided in Section 4.2. We also discuss how we exploit the fact that thermal
sensing aids segmentation by detecting thermal gradients between humans
and the background.

Our second contribution is to demonstrate the advantage of sensor fusion in-
cluding thermal sensing. We analyze several examples of cases that might
typically occur in scenes with human actors. We compute depth maps us-
ing only photometric information, and compare them to depth maps which
are computed including the contribution from the Time-of-Flight depth, the
thermal signal, and their combination.

4.2 Problem Formulation

Depth can be computed for a minimum of two images of the same scene
acquired from different viewing locations. The cameras which acquire the
images are assumed to be calibrated for both intrinsics and extrinsics. The
images are then rectified such that the epipolar lines are horizontal for both
images, and the epipolar line in one image directly corresponds with the
same epipolar line in the other image [Hartley and Zisserman, 2004]. One
of the images is then chosen as the reference image. For a given pixel p along
the epipolar line in the reference image, the corresponding pixel p′ along the
epipolar line in the other image is chosen as the one with maximum color
similarity. The horizontal difference between p and p′ is denoted as dispar-
ity. The process is repeated for all pixels in the reference image and results in
a so-called disparity map. Given that disparity is inversely related to depth,
i.e., pixels at greater depth have smaller disparities, disparity maps may be
referred to as depth maps as well.

The minimum and maximum disparities are dependent on the depth layout
of the underlying scene. Therefore, when searching for a corresponding pixel
along an epipolar line, only discrete disparity values in the range between the
minimum and maximum disparity are considered. The collection of simi-
larity values for each disparity within the disparity range, and for all pixels
in an image is called a disparity space image (DSI) [Scharstein and Szeliski,
2002].

Each discrete disparity value in the disparity range can be considered a label.
Computing the disparity map can thus be considered a labeling problem of
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4 Processing—Depth Maps

the set of image pixels P given a set of labels L. A labeling f then assigns a
label fp ∈ L to each pixel p ∈ P .

The quality of a labeling can be given by an energy function [Felzenszwalb
and Huttenlocher, 2006],

E( f ) = ∑
p∈P

φd( fp) + wsm· ∑
p,q∈N

φsm( fp, fq). (4.1)

Here, the unary term φd is called the data term, and the binary term φsm is
called the smoothness or similarity term. N is the set of all neighboring pix-
els p, q. The energy function of Equation 4.1 is formulated for a stereo pair of
cameras. However, the data term φd can easily incorporate the case of mul-
tiple cameras. In this case, one of the cameras is chosen to be the reference,
and all other cameras are compared to this reference. The data term φd is then
taken as the sum of the similarity measure between pixel p in the reference
camera image and corresponding pixels p′i in each of the other camera im-
ages. The smoothness term φsm only applies to the reference camera image.

Global methods such as Graph Cuts [Boykov et al., 2001], or Belief Propa-
gation [Felzenszwalb and Huttenlocher, 2006] can be used for obtaining a
solution for Equation 4.1. The weight wsm controls the amount of smooth-
ness that is imposed on the solution, where a larger value imposes a larger
penalty on discontinuities. If on the other hand wsm = 0 then Equation 4.1
becomes strictly local, i.e. the final depth value is determined independent
of the value at other pixels.

4.3 Sensor Fusion via Local Method

Our goal is to fuse the information from different modalities for computing
depth maps for the high quality reference camera. We will first describe our
approach for sensor fusion using a local method. Later in this chapter we will
describe sensor fusion using global methods. We therefore assume for now
that wsm = 0, and hence Equation 4.1 contains only the data term.

The problem is to obtain a high quality depth map by fusing (a) multi-view
stereo (MVS) data from the reference camera plus satellite cameras, with (b)
low resolution depth data from the depth camera, and incorporate (c) the
information from the thermal signal. Sensor fusion can be achieved by con-
structing a data term which consists of different terms for the various modal-
ities. We first consider contributions from the Time-of-Flight depth camera,
and the satellite cameras. We formulate the data term as:

φd = (wst · φd,st + wToF · φd,ToF + wre · φd,sat). (4.2)
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Figure 4.1: Overview. Given data acquired with our experimental acquisition sys-
tem from Chapter 3, depth maps are computed using different steps,
illustrated in this figure.

Here st stands for (photometric) stereo, ToF for Time-of-Flight, and sat for
reprojection onto the satellite cameras with occlusion reasoning. The corre-
sponding w parameters are weights to control the influence of each term. The
resulting energy function becomes:

E = ∑
P

φd. (4.3)

We design the data terms in Equation 4.2 such that the solution for Equa-
tion 4.3 is found by selecting the depth with maximum support, i.e. largest
value, for each pixel.

The depth computation using a local approach then contains the following
steps (see Figure 4.1):

1. Compute the initial data cost φd,st, for the multi-view stereo (MVS).

2. Fuse with Time-of-Flight depth data term, and data term for re-
projection onto the satellite cameras.

3. Initial depth map determined by selecting depth with maximum sup-
port for each pixel.

4. Perform (conservative) plane fitting to improve initial depth map.

5. Smooth depth values using trilateral filter.

Next, we will explain the different data terms in Equation 4.2 in more detail.

37



4 Processing—Depth Maps

4.3.1 Multi-View Stereo Depth using Satellite Cameras

We want to compute depth for the reference camera in our system. We do
not rectify the images to compute disparities, but we compute depth values
directly instead. Based on the depth layout in the scene, we choose a depth
range and discretize this range into a set of depth layers. Each depth layer
is parallel with the reference camera image plane. Given depth layer j with
associated depth Zj, and pixel i for the reference camera with image coordi-
nates (xi, yi, 1). The associated 3D point Xre f = (Xi, Yi, Zj) can be computed
using x ∼= Kref[I|0]Xre f (the reference camera has identity rotation matrix,
and zero translation):

Xi =
(px − x)Zj

fx

Yi =
(py − y)Zj

fy

The corresponding pixel on the satellite image plane is then computed as
x′ ∼= Ksat[R|T]Xre f .

Since all pixels are computed via a (3D) plane, we can omit explicit reprojec-
tion and instead warp the satellite images to the reference image. For a given
camera with K, R, T, from the 3D plane z = Zj we can infer the homogra-
phy H = K[r1r2r3·Zj + T], where ri denotes column i of R. Homography
H relates points on the 3D plane to pixels on the image plane. We compute
both Hre f , and Hsat, and then warp the satellite image to the reference image
using H−1

sat Hre f . Figure 4.2 illustrates the concept. Warped images are super-
imposed on the right for two depth planes, DA and DB. As can be observed,
the corresponding depths in the scene are “in focus”. We can leverage the
GPU to perform fast warping [Yang and Pollefeys, 2003].

Different color (dis)similarities can be used to characterize the difference be-
tween the colors of a pixel in the reference image and a corresponding pixel in
the satellite image. Examples are sum of absolute differences, and Birchfield-
Tomasi sampling insensitive dissimilarity measure [Birchfield and Tomasi,
1998]. The latter would be suitable in our case, since the reference and satel-
lite cameras have different resolutions and field of views. However, although
we apply color transforms to obtain similar color responses among the het-
erogeneous set of cameras, some residual color difference error remains. Nor-
malized cross-correlation (NCC) is a more robust measure in the presence of
such residual errors, since values are averaged over a (small) window:

NCC =
∑x,y( f (x, y)− f̄ )( f ′(x, y)− f̄ ′)√

∑x,y( f (x, y)− f̄ )2 ∑x,y( f ′(x, y)− f̄ ′)2
(4.4)
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DB

DA

DB
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Figure 4.2: Discrete Depth Layers. Reference camera R and two satellite cam-
eras, S1 and S2. Left A depth range [Dmin, Dmax] is discretized into a
set of depth planes for reference R. Right Two examples of warped and
superimposed satellite camera images corresponding to depth planes
DA and DB. Objects located at the depth of the corresponding plane
align in the warped images, and appear “in focus”. As can be observed,
depth plane DA corresponds to the depth of the painting, whereas DB
corresponds to the depth of the persons’ face.

NCC gives values in the range between [−1, 1], where a value of 1 means best
correlation.

We adopt the adaptive NCC proposed by Heo et al. [2011]. To improve the
localization power of the NCC a bilateral filter is incorporated. The bilat-
eral filter combines a spatial Gaussian with a range Gaussian, based on the
intensity. The bilateral filter weights are computed as:

wpq
bil = Gσs(‖p− q‖)Gσr(|Ip − Iq|). (4.5)

Here Gs is the spatial Gaussian, Gr the range Gaussian, p is the center pixel of
filter window W, and q∈W. Pixel p has intensity Ip, and pixel q has intensity
Iq.

The bilateral filter weights are applied to the correlation window:

NCC =
∑x,y wbil( f (x, y)− f̄bil)w′bil( f ′(x, y)− f̄ ′bil)√

∑x,y(wbil( f (x, y)− f̄bil))2 ∑x,y(w′bil( f ′(x, y)− f̄ ′bil))
2

. (4.6)

39



4 Processing—Depth Maps

The means f̄bil and f̄ ′bil are also computed for bilaterally weighted values in
the window. The size of the correlation window can be larger which makes
the matching more robust. However, the bilateral weighting still provides
good localization of intensity discontinuities.

We model the data terms in Equation 4.2 as truncated exponentials, and
each term has values in the range [τst, 1]. For increased robustness, the
values are truncated at τst [Scharstein and Szeliski, 2002]. Correlation val-
ues near zero already indicate poor color matching and we therefore take
NCC = max(NCC, 0). We can write the equation for the photometric stereo
data term as follows:

φd,st = max
{

exp
(−|1−max(NCC, 0)|

σNCC

)
, τst

}
. (4.7)

4.3.2 Fusion with Time-of-Flight Depth

The Time-of-Flight depth camera reports a 3D location X̂ for every pixel of the
cameras’ image sensor. To fuse the values from the Time-of-Flight camera, at
every inferred 3D location for a depth plane Zj of the reference camera, we
want to compare Zj with the Z value reported by the Time-of-Flight camera.
We thus need to look up the value at the corresponding pixel in the Time-of-
Flight image.

In Section 3.4.1 we determined that a 3D point Xre f in the reference camera
coordinate system corresponds to a 3D point XToF in the Time-of-Flight cam-
era via Xre f = TrToF→re f (XToF). To determine the pixel in the Time-of-Flight
camera for which to lookup the depth value, we transform Xre f to XToF with
Tr−1

ToF→re f , and then project onto the image plane with KToFXToF. The mea-

sured 3D location X̂ToF is then transformed to X̂re f in the reference camera
coordinate system via TrToF→re f .

The data term for the Time-of-Flight depth data is then formulated as

φd,ToF = exp

(
−min(|Zre f − Ẑre f |, τToF)

σToF

)
. (4.8)

Same as for φd,st, the exponential is truncated for robustness. The parameters
τ and σToF should depend on the accuracy of the Time-of-Flight camera. We
will discuss the choice of parameters in more detail in Section 4.8.

The depth camera is a time-of-flight sensor that measures phase shifts of re-
flected modulated IR illumination. However, some materials in the scene do
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Figure 4.3: Time-of-Flight Camera Images. Different images recorded by the
Time-of-Flight camera. Left Grayscale image of reflected infrared sig-
nal. Middle Depth map. Right Confidence map indicating reliability
of the measured depth values. Lighter values indicate higher confidence.
Wrong depth values can be observed in regions where the confidence
values are near zero.

not reflect infrared light well. This affects the accuracy of the depth mea-
surements in those regions. A reliability or confidence map could be computed
based on the intensities in the acquired infrared image. However, for the
specific hardware we use, such a confidence map is already constructed in-
ternally on the camera (see Figure 4.3). We exploit this confidence map to
exclude low confidence areas in the fusion. From experiments we observe
that for confidence values below threshold the depth measurements become
unreliable. We therefore consider only depth measurements at pixels with
confidence values above threshold.

4.3.3 Reprojection onto Satellite Cameras, with Occlusion
Reasoning

The measurements from the Time-of-Flight camera may not correspond to
the actual depth at that location. This is due to several reasons. One such
reason is the case when an infrared light pulse strikes a surface at an oblique
angle, for example along the depth silhouette of an object. The contribution
recorded at the pixel may then come from light reflected by a surface located
behind the object. Another reason is that the infrared light pulse received
at a pixel may have traveled a so-called multi-path, i.e. the light bounces
from one surface onto another, before being reflected towards the camera.
In addition, the Time-of-Flight camera exhibits noise which may result in an
incorrect measurement.
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Fusion of incorrect Time-of-Flight measurement with stereo could thus lead
to an incorrect result. The 3D location resulting from the fusion of stereo with
Time-of-Flight depth can be additionally verified by comparing the color con-
sistency between the reference camera and the satellite cameras. The basic
premise is that if the 3D location is correct, the colors should agree. How-
ever, occlusions in the scene make this agreement harder to estimate in prac-
tice. Since our experimental acquisition system has two satellite cameras on
either side of the reference camera, we can reason about possible occlusions.
This is an important step to improve the overall quality of the depth map.

As explained in Section 4.3.1, a point X can be reprojected onto the satellite
cameras image planes. We compute the absolute difference between the color
associated with the pixel in the satellite camera, and the color of the pixel in
the reference image. In the absence of occlusions we can compute φre as:

φd,re = exp

(
−
(

1
n

n

∑
i=0

(
∑c |Ic

re f − Ic
sati
|

3

))
/σre

)
, with c = {R, G, B}. (4.9)

Here, n is the number of cameras and Ic represents the intensity of a color
channel.

Reasoning about Occlusions The absolute difference between the ref-
erence camera and a satellite camera i in Equation 4.9 can be denoted as
ADi = ∑c |Ic

re f − Ic
sati
|/3. For a given satellite camera, when the depth for

a pixel under consideration is correct, we would expect that the color for the
pixel in the satellite camera, matches the color for the pixel in the reference
camera. Consequently, the corresponding AD would be small. By compar-
ing the ADi values for the satellite cameras, we can then reason about possi-
ble occlusions. Figure 4.4 depicts different occlusion cases for the symmetric
satellite camera configuration of our experimental system. The satellite cam-
eras are labeled 1 through 4, and the reference camera is labeled Ref. We
additionally define ADright = {AD1, AD2} and ADle f t = {AD3, AD4}. We
can then distinguish the following cases for occlusion reasoning:

1. No occlusions:

a) Correct depth: Equation 4.9 attains a minimum.

b) Incorrect depth: ADi for satellite cameras likely have different val-
ues and are larger compared to when the depth is correct.

2. Cameras on one side of the reference camera are occluded, depicted in
Figure 4.4(a). We identify this case when:
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(a) (b)

(c) (d)

Ref 2 134 Ref 2 134

Ref 2 134Ref 2 134

hypothesized
depth

Figure 4.4: Occlusion Cases. The reference camera is labeled Ref, and the satellite
cameras are labeled 1 through 4. Heavy drawn lines represent surfaces
at different depths. Camera rays are drawn to the point in depth under
consideration. (a) Cameras 3 and 4 on the left are occluded. (b) Camera
4 is occluded. (c) Cameras 1 and 4 are occluded. (d) Although the
hypothesized depth is closer than the occluding surfaces, this situation
also flags cameras 1 and 4 as being occluded.
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a) the values between ADright and ADle f t are different, and

b) the absolute difference for ADright are similar and below threshold,
or

c) the absolute difference for ADle f t are similar and below threshold.

3. The outermost satellite camera is occluded, depicted in Figure 4.4(b).
We identify this case either when:

a) (camera 1 occluded) absolute difference for AD2, AD3 and AD4
are similar, and AD1 is large compared to those values, or

b) (camera 4 occluded) absolute difference for AD1, AD2 and AD3
are similar, and AD4 is large compared to those values.

4. Both outermost satellite cameras are occluded, depicted in Figure 4.4(c)
and (d): the absolute difference for AD2 and AD3 are similar.

5. The same as for the previous case, but now also one of the cameras
adjacent to the reference camera is occluded.

For an occlusion occurrence of Case 2. we omit either cameras 1 and 2, or
cameras 3 and 4 in Equation 4.9. For an occlusion occurrence of Case 3. we
either omit satellite camera 1 or satellite camera 4 in Equation 4.9. For occlu-
sion occurrence Case 4. we omit both cameras 1 and 4 from Equation 4.9, and
finally for Case 5. we additionally omit either camera 2 or 3.

4.3.4 Winner Take All

We apply a Winner-Take-All (WTA) strategy to Equation 4.3, and assign
depth values associated with the largest support value for each pixel. An
example depth map is shown in the left column, top row of Figure 4.5. The
depth volume for this example is discretized into fifty depth planes. The re-
sult shows that although WTA only considers each pixel independently of
others, the quality of the depth map is good. In particular the depth values
near the depth discontinuity of the foreground person are well resolved. Also
the textureless wall is largely well reconstructed, which can be attributed to
the fusion with the Time-of-Flight depth. However, the depth map exhibits
noise which we aim to resolve next.

44



4.4 Plane Fitting for Improving Depth Estimates

Figure 4.5: High Quality Depth Map. Left Column Input data. From top to
bottom: reference camera image, Time-of-Flight depth, and thermal im-
age. Right Column Depth maps. From top to bottom: after initial
fusion, after plane fitting, and after trilateral smoothing. After the ini-
tial Winner-Take-All fusion, the depth map is very noisy. Plane fitting
reduces the noise, especially in planar areas. The final smoothing step
produces high quality depth map, since depth boundaries are initially
well estimated.

4.4 Plane Fitting for Improving Depth Estimates

To improve the initial fusion result and reduce the noise we first segment the
reference image into regions according to the photometric and thermal val-
ues of the pixels. We assume that the pixels belonging to a particular region
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likely have a depth value which can be approximated by a plane. The goal
is to determine a best fitting plane for a region, and if such a plane is found,
estimate the depth values for all pixels in the region according to that plane.
For segmenting the image into regions we adopt the superpixel segmentation
proposed by Achanta et al. [2010]. We extend this method to incorporate the
thermal signal in addition to the photometric information. By also consider-
ing the thermal signal we aim to correctly segment along object boundaries
in areas with similar fore- and background colors. For each region we then
perform the following steps:

1. Determine best-fit plane from depth values of four selected pixels.

2. Determine inliers and outliers for this plane hypothesis.

3. For the outliers, re-estimate the depths according to the plane hypothe-
sis.

4. Reproject 3D points associated with the re-estimated depths onto the
satellite cameras.

5. Determine if re-estimated depths are acceptable.

The above steps are performed according to RANSAC [Fischler and Bolles,
1981]. For each pixel we have the associated (X, Y, D)T. Given four pixels
selected for a region, we can fit a 3D plane aX + bY + cD + d = 0 using lin-
ear least squares. We discard regions for which we cannot estimate a plane
with a sufficient number of inliers. Plane estimates which are too slanted
with respect to the reference image are also discarded. For each plane esti-
mate we compute the depths for the pixels classified as outliers according to
the fitted plane. The corresponding 3D points are then reprojected onto the
satellite camera image planes to check if the estimated depths are consistent
with the color information from the satellite images (including occlusions,
see Occlusion Reasoning below). If the depths are not consistent with the
color information we discard the plane.

Our plane fitting approach is iterative, and only regions for which the pix-
els can be reliably estimated with a plane are processed on the first iteration.
Reliable planes are those for which most of the pixels in the region are clas-
sified as inliers. For subsequent iterations we also consider regions which
have similar photometric and thermal values compared to neighboring re-
gions. We assume that these regions should have planes which are similar
to estimated planes for the neighboring regions. We do allow the normals to
differ within some threshold, which helps to better approximate regions that
are curved.
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If a scene is well approximated by planar segments, the plane fitting can
reduce noise and achieve high quality results. In general however scenes
may have detailed areas for which the depths are not well approximated by
planes. Since our plane fitting is conservative this means that for some seg-
ments we cannot reliably estimate planes and we therefore leave the initial
depth values unmodified. An example of the depth map after plane fitting is
shown in the left column, middle row of Figure 4.5. Plane fitting improves the
result in the background, and also for the foreground person. For regions of
the plants, and also between foreground persons’ body and arm, no planes
could be reliably estimated. The final step discussed in Section 4.5 aims to
improve those areas.

This plane fitting step can be considered an approximation to a global
method, which imposes a smoothness constraint on the solution (Equa-
tion 4.1). By considering the depth values of pixels over regions, we essen-
tially incorporate smoothness.

Occlusion Reasoning

We can take into account that we may be dealing with occlusions, and some
pixels may project onto different surfaces in the different satellite images. We
separately check for color consistency for the left and right satellite cameras.
However, in addition we also check if the pixel in a satellite image is occluded
by comparing the depth value. For each region which is well represented by
a plane, we store the depth value at the reprojected locations in the satellite
images. We overwrite the current depth value whenever a smaller depth
value reprojects to a particular satellite image pixel. We can either iterate this
approach for a fixed number of iterations, or until the number of segments
that are updated is below threshold.

4.5 Smoothing

The depth values in the depth maps have been computed based on dis-
cretized depth planes. In addition we assumed that the depth values for
pixels within a region can be approximated by a plane. Finally, as discussed
above, some regions in the depth maps still exhibit noise in the depth val-
ues. The final step is therefore to perform a smoothing of the depth values.
In edge-aware smoothing, intensity edges are respected to avoid smoothing
across them. We adopt a similar approach and perform the smoothing of the
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depth maps using a trilateral filter:

wpq = Gσs(‖p− q‖)Gσr(|Ip − Iq|)Gσd(‖Zp − Zq‖). (4.10)

Equation 4.10 extends the bilateral filter of Equation 4.5 with a term for the
depth difference between pixel p and q. The trilateral filter therefore avoids
smoothing over both spatial edges, as well as depth discontinuities. We ex-
tend the range component of the trilateral filter in Equation 4.10 to incorpo-
rate the thermal signal as well. In addition, we can also incorporate an addi-
tional term for the superpixel region boundaries, to avoid smoothing across
neighboring regions which are dissimilar in color and thermal values. Trilat-
eral smoothing is especially effective if the depth discontinuities have been
accurately estimated [Smith et al., 2009]. The left-column, top-row of Fig-
ure 4.5 shows an example of the depth map after trilateral smoothing. The
depth discontinuities which were already well estimated after plane fitting
are preserved, while the noise in the depth values is smoothed. For the plant
on the left-hand side the depth values are appropriately smoothed across the
leaves.

4.6 Results for Fusion via Local Method

Additional results obtained with the local method we described are pre-
sented in Figures 4.6 and 4.7. Both Figures show the input image from the ref-
erence camera on the top row, the depth map after fusion but before smooth-
ing on the middle row, and the depth map after smoothing on the bottom
row. The depth volumes for these examples are again discretized into fifty
depth layers. Textureless areas, such as the background wall, are difficult to
reconstruct with only photometric stereo. Due to the fusion with the Time-
of-Flight depth the depth values for these areas are reconstructed well in our
local method. The fusion of the photometric information from the satellite
cameras with the Time-of-Flight depth and incorporating the thermal signal,
can also preserve detailed features such as fingers, even when the foreground
and background colors are similar (Figure 4.6 right column). The depth for
the interior part of the plant with the thin elongated leaves, on the right-
hand side, is not reconstructed well. The fine details are not captured by the
Time-of-Flight camera. For photometric stereo, pixels on leaves cannot be
reliability matched due to the similarity and proximity of the many leaves.

By exploiting the thermal signal, the segmentation can be correct when there
is no color discontinuity present. The left column of Figure 4.8 shows a
zoomed-in area from the color image (for the example from the left column
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Figure 4.6: Sensor Fusion using Local Method—I. First row Reference cam-
era color image (note: faces have been altered for privacy reasons). Sec-
ond row Depth map before smoothing. Third row Depth map after
trilateral smoothing. In the first column the hair of the two subjects
is reconstructed correctly. In the second column the hand, including
fingers, is accurately reconstructed.

of Figure 4.6). Along the boundary between the subjects’ hair there is no dis-
tinct color difference. The thermal signal in the middle column shows a clear
difference, and the segmentation correctly segments along the boundary as
shown in the right column. The depths are correctly reconstructed as a result
(see Figure 4.6).
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Figure 4.7: Sensor Fusion using Local Method—II. First row Reference cam-
era color image. Second row Depth map before smoothing. Third row
Depth after trilateral smoothing. Additional examples showing results
for challenging scenes including textureless areas, and cluttered back-
ground (plants).

4.7 Fusion with Thermal Signal

The thermal signal is exploited during several of the steps to compute depth
maps using a local method as explained earlier. Both superpixel segmenta-
tion and trilateral smoothing take the thermal signal into account. Since the
thermal camera image is registered to the reference camera image, the ther-
mal signal can be considered as an additional channel for the reference im-
age. In other words, we can treat the combined reference image and thermal
image as an (R,G,B,Th)-image.
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4.7 Fusion with Thermal Signal

Figure 4.8: Thermal Segmentation. Left Region of interest in reference camera
color image. Middle Region of interest in thermal image. Right Same
as Left image, now with superpixel segment boundaries superimposed.
There is no clear color discontinuity in the region where the subjects’
hair overlap. However, the thermal signal does show a clear difference
in the same region. The superpixel segmentation is able to segment
along the thermal boundary (inside red rectangle).

For the local method we have taken wsm = 0 in Equation 4.1. Global methods
on the other hand take the smoothness term in Equation 4.1 into account, and
therefore wsm 6=0. The smoothness term acts as a regularizer. From a proba-
bility theory point of view, the smoothness term can be considered a prior.
The prior assumption is that neighboring pixels which have similar colors
should likely have similar depth values. Therefore, the prior aims to penalize
the assignment of different labels (depths) to neighboring pixels with simi-
lar colors. This prior can be included in Equation 4.1 as a per-pixel spatially
varying weight: wsm(p), for pixels p.

To incorporate the thermal signal, the gradients of the thermal image are
combined with the gradients of the color image to determine the spatially
varying weights. Solving Equation 4.1 now requires a global method, which
considers all the pairs of neighbor pixels over the image, to compute a so-
lution. Methods based on message passing, such as Belief Propagation, are
well-known approaches for solving Equation 4.1. The data term for the en-
ergy function is the same as in Equation 4.2. Different functions can be cho-
sen for the smoothness term. For example, a standard Potts model [Felzen-
szwalb and Huttenlocher, 2006] penalizes the difference between the labels
of neighboring pixels, regardless of the magnitude of the difference. Instead,
one can penalize with a function which depends linearly or quadratically on
the difference between labels. For improved robustness, the cost function is
typically truncated. From experiments we found that in our case a truncated
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linear cost function gives adequate results:

φsm(p, q) = min(|Zp − Zq|, TZ); (4.11)

We next present results for incorporating the thermal signal.

4.8 Results

The results in this section were computed using Tree-reweighted message
passing (TRW-S) [Kolmogorov, 2006] for solving Equation 4.1. Figure 4.9
compares the thermal signal contribution. The left image shows the result
when the thermal signal is incorporated as a smoothness prior, the right im-
age shows the result without. Without the thermal signal, there is no distinct
color discontinuity in the region where the actors’ hair overlap. As a result,
wrong depth is assigned to certain areas. On the other hand, there is a dis-
tinct discontinuity in the thermal signal, and the depth map now correctly
assigns different depths.

Figure 4.9: Depth Maps Computed using TRW-S. Left With thermal segmen-
tation prior. Right Without thermal segmentation prior. When not
using the thermal signal in the smoothness prior, the boundary for the
foreground objects’ hair is incorrectly reconstructed, due to the lack of
color gradient.

There are several parameters in Equations 4.7, 4.8 and 4.9. From experiments
we found that the following parameters values to be adequate: τst = 0.3,
σNCC = 0.5, τToF = 0.1, σToF = 0.14, and σre = 10.0. The values for the
Time of Flight camera are based on the reported accuracy of the camera. Our
particular camera operates at 5m, and in the case of near 100% reflectivity the
camera accuracy is about 1cm.

The weights in Equations 4.1 and 4.2 respectively determine how much
smoothness to enforce, or how each modality is weighed relatively to the
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others. In our results, each of the modalities is weighed equally and all three
weights, wst, wToF, wre in 4.2 are set to 1.0. The weight wToF is set to zero when
the value in the acquired confidence image falls below threshold, since the
depth measurements for these areas are not reliable. The smoothness weight
wsm in Equation 4.1 is determined according to magnitude of the data cost.
We validated experimentally that small variations of this weight have little
impact on the final result. However, as expected, setting wsm to larger values
trades off the preservation of details with less noise in the depth map. An
interesting direction for future research is to determine these weights auto-
matically.

4.8.1 Comparison of Modalities

To give a better idea of the contribution of each modality for fusion, we omit-
ted the reprojection onto the satellite cameras for the examples shown next.
Figures 4.10 and 4.10 compare the results for stereo (RGB), stereo + thermal
(RGB+T), stereo + depth (RGB+D) and stereo + depth + thermal (RGB+D+T),
in rows two through five for several example scenes. The TRW-S parame-
ters were fixed for all results. In the first column of Figure 4.10, (RGB) and
(RGB+T) yield equivalent results. When the information from the depth cam-
era is fused, the space between the two foreground subjects is reconstructed
at the correct depth. Finally, in row four, (RGB+D+T) preserves the shape
of the nose for the foremost subject. For the second column, when fusing the
information from the depth camera, the paper leaflet is no longer being recon-
structed compared to the (RGB) and (RGB+T) cases. This, together with the
missing leaves for the plants in the background, demonstrates the problem
of thin structures for the depth camera. In the third column of Figure 4.11,
the hand shape is better preserved for both cases where thermal is consid-
ered in the smoothness prior. In the last column of Figure 4.11 the plant pot
is reconstructed accurately along its boundary when thermal is considered.

4.9 Discussion

In this chapter we describe the computation of depth maps from data ac-
quired with a reference camera augmented with satellite sensors. By fusing
visible, Time of Flight depth and thermal information, we can employ a lo-
cal method and achieve high quality depth maps for the reference camera.
We compared our local method to a global message-passing method, and
showed that we can obtain comparable results.
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4 Processing—Depth Maps

Experimental results were shown for scenes with dynamic objects and back-
ground clutter. Textureless areas, such as background walls, and also repeat-
ing texture patterns are handled by fusing depth from photometric stereo
with the Time of Flight depth data. The Time of Flight depth sensor has a
small resolution, and thin structures such as plant leafs are not adequately
captured. Fusion with the photometric information from the satellite cam-
eras allows us to reconstruct some of those details.

We also showed cases where surfaces of the same color overlapped at differ-
ent depths. Of particular interest is the case where human subjects or body
parts are overlapping —we showed that different subjects may have differ-
ent thermal signatures, and therefore an occluding contour can be found even
though no contours can be detected in the photometric information. We pro-
vided additional comparisons to show the contribution of each modality sep-
arately.

Although performance is not our main goal, it would be beneficial to be able
to compute good quality depth maps at high performance. The performance
of local methods is much higher compared to global methods. For the local
method, results are computed in less than one minute per frame. The major-
ity of the time is spent for the plane fitting and trilateral filtering. Both steps
can be implemented on graphics hardware to increase the performance.

Our experimental system is only a proof of concept. Satellite sensors for this
system are becoming more compact, more low-cost but higher quality. For
example compact cameras with large imaging sensors are becoming avail-
able. Large imaging sensors exhibit less noise, and will benefit the quality
of the depth maps. The resolution of most Time of Flight based depth sen-
sors is their limiting factor. However, as these sensors are becoming more
ubiquitous, combined with the recent introduction of depth sensors using
structured light patterns, resolution is expected to increase. It is feasible
to envisage a compact clip-on device that attaches to a high quality (cine-
matographic) reference camera, to enable robust and accurate computation
of depth maps.

4.9.1 Temporal Consistency

The method presented in this chapter computes depth maps for each frame
individually. This causes temporal inconsistencies in the computed depth
maps. In the next chapter we discuss how we aim to address this issue. The
insight we have is that consistent depth contours for foreground objects, typ-
ically human actors, is most important. Furthermore, depth contours are
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correlated with color discontinuities. We thus propose to segment the fore-
ground objects from the background, and in turn exploit the segment bound-
aries when computing depth maps. To ensure accurate segment boundaries,
we propose an interactive method for generating the segment boundaries for
the individual frames of a video sequence. We also discuss how we benefit
from the multi-modal data we acquire with our experimental system. Two
methods for computing depth maps using known foreground objects seg-
ment boundaries are discussed.
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Figure 4.10: Several Example Scenes—I. Comparison between stereo (2nd
row), stereo + thermal (3rd row), stereo + depth (4th row), and finally
stereo + depth + thermal (5th row). The first row shows the reference
camera input images.
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Figure 4.11: Several Example Scenes—II. Comparison between stereo (2nd
row), stereo + thermal (3rd row), stereo + depth (4th row), and finally
stereo + depth + thermal (5th row). The first row shows the reference
camera input images.
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C H A P T E R 5

Processing—Segmentation

Together with depth, segmentation is an important operation in the post-
processing of acquired video. Segmentation involves the division of an image
into regions belonging to the same object or background. Segment bound-
aries (for foreground objects) are usually object boundaries, and there is thus
a correlation between segment boundaries and depth contours. In the pre-
vious chapter we described a method to compute depth maps from multi-
modal data. Depth maps are computed on individual frames, without taking
temporal information into account. Given the correlation between segment
boundaries and depth contours, knowledge about accurate segment bound-
aries could thus be exploited for computing depth maps.

In this chapter we describe how accurate segment boundaries can be ob-
tained for a video sequence. Our work is primarily focused on video se-
quences captured with the experimental system described in Chapter 3. Since
our focus is on correctness, the method we present includes a user-in-the-
loop to ensure correctness. We then describe how the segment boundaries
are exploited for computing depth maps. Our results show that we can ob-
tain high quality results, and with accurate boundaries that are temporally
consistent, the depth contours are temporally consistent as well.
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Sections 5.2.1 - 5.2.5

Segmentation
Propagation

Section 5.2.6

Interactive
Correction

Boundary
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Section 5.4

Depth
Maps

Section 5.6

Superpixel matching
Match sequences
Energy minimization

Figure 5.1: Overview. Given data acquired with our experimental acquisition sys-
tem from Chapter 3, the steps for propagating the segmentation and
computation of depth are illustrated in this figure.

5.1 Motivation

The term segmentation refers to the grouping of pixels which belong to
the same object or region within an image. Different segmentation strate-
gies have different goals. For example, over-segmentation, e.g. using
mean-shift [Comaniciu and Meer, 2002], aims to ensure that no regions are
merged, even when they belong to the same object. Other segmentation
strategies actually merge the initial segmentation regions produced by over-
segmentation, with the goal to cluster regions belonging to the same object.

Some segmentation strategies are entirely focused on the segmentation of a
single foreground object, e.g. [Rother et al., 2004], while others focus on seg-
menting the image to classify regions, such as sky and grass [Kohli et al.,
2009]. We are interested in the segmentation of one or more foreground ob-
jects from the background. Many movie shots contain human actors, and
we are particularly interested in the segmentation of such scenes. Depth con-
tours are correlated with segmentation boundaries. Typically a depth discon-
tinuity has an associated color discontinuity. Accurate segment boundaries
for objects in a video sequence can thus be exploited for computing depth
maps. Furthermore, accurate segment boundaries across a video sequence
will be temporally consistent, and by exploiting these boundaries the depth
silhouettes would also be temporally consistent. This is important for subse-
quent editing based on the depth.

Segmentation relies mostly on color discrimination. Video segmentation ad-
ditionally considers optical flow measures to produce temporally consistent
segmentations, however optical flow itself relies on color discrimination as
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5.1 Motivation

well. Therefore, in the case when foreground objects, or foreground and
background objects have similar colors, segmentation remains a challenging
problem. Furthermore, consistent segmentation is challenging for occluding
objects in a video sequence. We aim to overcome these problems by con-
sidering the segmentation of multiple objects across a video sequence as a
labeling problem. In addition we can exploit our multi-modal data to make
segmentation more robust.

For challenging cases, fully automated segmentation methods typically fail
to correctly segment objects in the images. To meet the high quality require-
ments for cinema and broadcast, already many users are employed in inter-
active post-processing operations. Since our focus is on quality and correct-
ness, we aim to keep a user in the loop to correct any segmentation mistakes.
Rather than requiring tedious corrections at the pixel-level, for our method
corrections are made on a more coarse level of pixel groupings, so-called su-
perpixels.

In this chapter we describe two contributions. Our first contribution is an in-
teractive segmentation approach. Given an initial segmentation for the first
and last frame in a video sequence, our proposed method propagates the seg-
mentations across the intermediate video frames. The problem is formulated
as a labeling problem of smaller segments or superpixels, across the video se-
quence. Superpixels are matched to superpixels in adjacent images, without
requiring the computation of optical flow, or camera motion. We will show
that the labeling problem can be solved efficiently, while exploiting temporal
coherence. By requiring an initial segmentation for the first and last frame of
the video sequence, we can propagate the segmentation for occlusion occur-
rences in the scene. Finally, initial boundaries of the segmented objects are
refined to obtain accurate object boundaries.

The second contribution in this chapter is to exploit the segmentation bound-
aries in computing depth maps. We describe this for two methods: an itera-
tive non-global method, and a global method based on message passing. The
iterative non-global method interpolates depth values up to the segmenta-
tion boundaries. This overcomes the problem that the Time-of-Flight depth
does not accurately match the actual depth discontinuities in the scene, as
explained in Section 3.2.3. For the global method we describe how to incor-
porate the segment boundaries into the message passing.

Figure 5.1 shows an overview of the steps involved for interactive segmen-
tation, and depth map computations, together with the sections in which the
corresponding parts are discussed in the remainder of this chapter.
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Propagation Algorithm:

Require: Video sequence consisting of n frames: I = {I1, · · · , In},
and user provided segmentations for I1, In.
Perform superpixel clustering on frames of I.
for all intermediate frames Ii, i ∈ [2, n− 1] do

for all superpixels Sk
i do

Determine label from either I1, or In.
Determine matches Sk

i−1 and Sk
i+1.

end for
end for
Define matched sequences S = {Sk

2, · · · , Sk
n−1}.

Formulate as energy minimization problem.

Table 5.1: Propagation of Known Segmentations. Outline of the algorithm for
propagating segmentation labels over the frames of a video sequence.

5.2 Interactive Segmentation

The goal is to segment frames in a video sequence into foreground objects
and background, and obtain accurate segment boundaries. Fully automated
segmentation methods may produce incorrect results for certain parts of the
image. In offline applications it would be advantageous if a user could be in-
corporated into the process to ensure correct and accurate segmentation. The
amount of work required by the user should be kept to a minimum. Ideally,
most of the work is performed by an algorithm, and the user imposes high-
level corrections when necessary. We develop an interactive segmentation
approach with these thoughts in mind.

The outline of our segmentation algorithm is given in Table 5.1. Figure 5.2
depicts the procedure. Given a video sequence I consisting of n frames, a
user provides the segmentation for the first and last frame. The goal is to
propagate the segmentation to all intermediate frames of the video sequence.
Propagation is achieved through matching so-called superpixels between ad-
jacent frames. The problem of propagating known segmentations can then be
considered a labeling problem, and formulated as an energy function. The
propagation is then obtained by minimizing the energy function. We first in-
troduce the energy function that we want to minimize, and then explain each
term in more detail.
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Figure 5.2: Segmentation Propagation. A superpixel Si in frame i is matched
to superpixels in frames 1, i − 1, i + 1, and n. Initial segmentations,
(a) and (b), are provided for frames 1 and n. The segmentation is then
propagated to frames 2, · · · , n− 1 by solving an energy minimization
problem. The propagated segmentations for frames i − 1, i, and i + 1
are shown in (c), (d), and (e) respectively.

5.2.1 Segmentation Propagation as Energy Minimization

We first perform a superpixel clustering1 on each frame in the sequence I.
We choose the SLIC superpixels method [Achanta et al., 2010]. For SLIC su-
perpixels, the user provides the desired number Nsp to obtain approximately
equal-sized superpixels. The SLIC algorithm first divides the image into Nsp
regular patches, with corresponding cluster centers. The algorithm then ef-
fectively performs an iterative K-means clustering using a combined CIELAB
and spatial distance as its distance measure. The user can control the com-
pactness of superpixels with a parameter which determines the degree by
which the spatial distance is considered.

Pixels along color boundaries typically consist of a color mixture of the ad-
jacent segments, and are therefore referred to as mixed pixels. These mixed
pixels could result in elongated segments, or slivers. To avoid this, we first
iteratively smooth the images by averaging with neighboring pixel groups
in 3×3 blocks [Zitnick and Kang, 2007a]. We then perform SLIC superpixel
segmentation on the smoothed images.

Segmentation can now be considered as the labeling of all superpixels over
all frames in a video sequence. Given the user provided segmentations for
frames I1 and In, we formulate the segmentation propagation to in-between

1To avoid confusion we refer to over-segmentation into smaller regions as clustering, and
to the labeling of foreground and background objects in an image as segmentation.
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Figure 5.3: Superpixels. Left Superpixel cluster boundaries superimposed on im-
age. Right Close-up of area marked by yellow rectangle. The current
superpixel under consideration is shaded red, and its set of neighboring
superpixels are shaded blue.

frames with the following energy function:

E = ∑
i∈S

φ(xi) + ∑
(i,j)∈N

φ(xi, xj) + ∑
c∈S

φ(xc). (5.1)

Here, the unary term φ(xi) represents the likelihood of a superpixel taking a
particular label, with the set of labels L determined by the segments in the
segmentation of I1 and In. The binary term φ(xi, xj) represents the similarity
between neighboring superpixels xi and xj in an image, and finally the higher
order term φ(x) aims to enforce the same label for a collection of superpixels.
We will explain each term in more detail next.

5.2.2 Matching Superpixels

To determine the cost of a superpixel taking on different segmentation labels,
we determine for each superpixel Sk in the images {I2, · · · , In−1} the best
matching superpixel in either I1 or In. For each superpixel we first construct
a feature vector. Included in the feature vector is the average color over the
superpixel, computed in the YCbCr color space. We found that this color
space gave slightly better results compared to the RGB color space. We could
have chosen the CIELAB color space instead, but we are not interested in the
best perceptually matching superpixels. We also include the average thermal
response for the superpixel if this modality is available.

We found that matching with average and thermal value alone did not give
robust matching results, and superpixels in Ii are easily matched with wrong
superpixels in I1 or In. This is due to the fact that the averages are local mea-
sures for a superpixel. We therefore also incorporate the neighborhood for a
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superpixel in the feature vector. An example of a superpixel and its neigh-
borhood of superpixels is shown in Figure 5.3. We denote the neighborhood
of superpixels connected to Sk as SNk . We then compute histograms for Y,
Cb, Cr, and thermal values over SNk . Each histogram consists of 16 bins. In
certain areas, e.g. near object boundaries, the set SNk may contain a num-
ber of different superpixels between subsequent frames. Although this could
affect the matching quality, we found that matching was much more robust
compared to including only information from a single superpixel.

The feature vector for a given superpixel is then given by:

f = (Ȳ, C̄b, C̄r, T̄h, HY, HCb, HCr, HTh)
T. (5.2)

Here the ¯(·) terms are the averages over the superpixel, and the H-terms are
histograms. The cost of matching a superpixel Sk in Ii with Sm in either I1 or
In then becomes:

MCk,m
i→{1,n} = ‖(|Y

k
i −Ym

{1,n}|, |Cbk
i − Cbm

{1,n}|, |Crk
i − Crm

{1,n}|,
|Thk

i − Thm
{1,n}|, χ2

dist(HYk
i
, HYm

{1,n}
),

χ2
dist(HCbk

i
, HCbm

{1,n}
), χ2

dist(HCrk
i
, HCrm

{1,n}
),

χ2
dist(HThk

i
, HThm

{1,n}
))‖.

(5.3)

Each term in Equation 5.3 is appropriately normalized. χ2
dist denotes the χ2-

distance measure between two histograms Hi and Hj:

χ2(i, j) =
1
2

K

∑
k=1

[hi(k)− hj(k)]2

hi(k) + hj(k)
. (5.4)

To search for the matching superpixel in I1 and In, we make no assump-
tions about the scene or camera motions. Figure 5.4 depicts the case where
for superpixel Sk

i in Ii we search for matching superpixels in image I1.
We first determine the centroid of Sk

i . Then, we define a search radius
r around the centroid location in I1, shown by the shaded circular area
in I1 on the left-hand side of Figure 5.4. For each segment l within ra-
dius r the superpixel in I1 with lowest matching cost is chosen, denoted
as Sk,l

1 . In the case of Figure 5.4 the search area intersects three seg-
ments, and hence we would obtain matches {Sk,1

1 , Sk,2
1 , Sk,3

1 } and correspond-
ing matching costs {MCk,m

(i→1),1, MCk,m
(i→1),2, MCk,m

(i→1),3}. The procedure is re-

peated for the matching between images Ii and In, giving {Sk,1
n , Sk,2

n , Sk,3
n } and

{MCk,m
(i→n),1, MCk,m

(i→n),2, MCk,m
(i→n),3}. Note that we do not enforce uniqueness:

superpixels in I1 or In can be matched to multiple superpixels in Ii.
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r

I1 Ii

Figure 5.4: Matching Superpixels within Search Radius. Left Image I1 seg-
mented into three segments: tree (red), sky + houses (green) and flow-
ers (blue). Superpixel boundaries are superimposed. Right The cur-
rent superpixel in image Ii (shaded red) and its neighborhood (shaded
blue). The centroid of the current superpixel determines the centroid
for a search area with radius r in image I1. The superpixel within the
search area with lowest matching cost is determined.

A segment may not be matched in either I1 or In. This could occur due to
the object represented by a particular segment is not visible, or the segment
lies beyond the search area determined by the search radius. In these cases a
large cost γ is assigned for segment l.

matching cost =

{
MCk,m

(i→{1,n}),l , l ∈ L and d <= r,
γ , otherwise.

(5.5)

With L the set of labels, and d the distance between Sk and Sm. Finally, we
choose the lowest matching cost between the matching costs for images I1

and In: min(MCk,m
(i→1),l, MCk,m

(i→n),l).

This matching approach can handle non-rigid motions and moving cameras,
at the expense of increased computational complexity. The user currently
chooses radius r based on the motion in the scene. Large motions will re-
quire a larger search radius. We could incorporate a coarse estimate of optical
flow to determine the search area. To increase the robustness of computing
the matching cost, we take into account whether image Ii is “closer” in prox-
imity to either I1, or In. Proximity is measured according to the different
search radii for images Ii. Given for image Ii the radii ri→1 and ri→n, we
weigh MCk,m

(i→1),l by ri→n/ri→1, and weigh MCk,m
(i→n),l by ri→1/ri→n. As a con-

sequence, for example for image I2, the matching cost to I1 will be weighed
more compared to the matching cost to In.
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Superpixel Matching with Adjacent Images

In addition to matching superpixels in Ii to superpixels in I1 and In, we also
match superpixels in Ii to superpixels in both adjacent images Ii−1 and Ii+1
for i ∈ [2, .., n− 1]. For i = 2 we omit matching with Ii−1, and for i = (n− 1)
we omit matching with Ii+1. In Section 5.2.5 we will explain in detail what
these matches are used for. For this case we extend the feature vector in 5.2
with spatial location information:

f = (Ȳ, C̄b, C̄r, T̄h, HY, HCb, HCr, HTh, xc, yc)
T. (5.6)

Here (xc, yc) is the centroid of the superpixel under consideration. The corre-
sponding matching cost is now:

MCk,m
i→j = ‖(|Yk

i −Ym
j |, |Cbk

i − Cbm
j |, |Crk

i − Crm
j |,

|Thk
i − Thm

j |, χ2
dist(HYk

i
, HYm

j
),

χ2
dist(HCbk

i
, HCbm

j
), χ2

dist(HCrk
i
, HCrm

j
),

χ2
dist(HThk

i
, HThm

i
), ‖xk

i − xm
j ‖)‖.

(5.7)

The matching procedure is similar as described above. The search radius r
is again chosen depending on the motion in the scene, however the radius is
typically much smaller than for the case of matching superpixels between Ii
and I{1,n}. We do not weigh the matching costs by proximity in this case, and
we do not compute per segment matches, but instead one match (Sk

i , Sm
i−1)

and one (Sk
i , Sm

i+1). Again we do not enforce uniqueness, and we could have:
(Sk

i , Sm
i+1) 6= (Sk

i+1, Sm
i ).

5.2.3 Incorporating Optical Flow

We can incorporate optical flow over the video sequence to improve the
matching. We first compute the optical flow Fi→j between every pair of ad-
jacent images (i, j) in the video sequence. We compute both directions Fi→j,
as well as Fj→i. Then given an image i, for the matching of superpixels with
frames 1 and n, we determine Fi→1 by compositing the flow computed for
adjacent images:

Fi→1 =
1

∑
k=i

Fk→k−1. (5.8)
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and same for F1→i. Next, for a superpixel Si in image i we determine the
matching superpixel S1 in image 1, and vice versa for S1 the matching super-
pixel S′i. In the case when Si = S′i, the cost MC(i→1),l is assigned for the label
l. The large cost γ to Si is then assigned to all remaining labels in L.

We similarly exploit optical flow information for matching superpixels be-
tween adjacent images (i, j). Using Fi→j and Fj→i to determine Si and S′i. If
Si = S′i the cost MC(i→j) is assigned to the matching.

5.2.4 Initial Propagation

The binary term φ(xi, xj) in Equation 5.1 aims to enforce a first-order smooth-
ness prior between neighboring superpixels in a frame, under the assump-
tion that superpixels with similar color (and thermal signal) should likely
have the same label. The binary term is defined by the following equation:

φ(xi, xj) = exp

(
(µi − µj)

2
{Y,Cb,Cr,th}

σ2
{Y,Cb,Cr,th}

)
. (5.9)

Here µ is the average Y, Cb, Cr, th over the superpixel. The final value for
φ(xi, xj) is computed as the average of the value for Y, Cb, Cr, th.

If we ignore the higher order term φ(x) for now, and taking only unary
and binary terms into account, Equation 5.1 can be solved using Graph
Cuts [Boykov et al., 2001]. The solution would assign a segment label to
each superpixel in all in-between images {I2, · · · , In−1}. This results in a per-
frame segmentation, without any temporal consistency between correspond-
ing superpixels across frames.

5.2.5 Incorporating Temporal Information for Propagation

By using the higher-order terms, or clique potentials, φ(x) we aim to impose a
temporal smoothness constraint on the superpixel labeling. Clique potentials
penalize the assignment of different labels to some collection of variables, i.e.
the clique [Kohli et al., 2009]. The penalty cost is irrespective of the number
of variables that take on a different label:

φ(x) =
{

0 , if ∀x ∈ x, x = l
γ , otherwise

(5.10)
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I2 I3 In-1(Sk
2 ,Sm)3 (Sm

3 ,Sp)4 (Sq
n-2 ,Sr   )n-1

(Sr’
n-1 ,Sq’   )n-2(Sp’

4 ,Sm’)3(Sm’
3 ,Sk’)2

Figure 5.5: Superpixels Sequence. Sequences of matching superpixels are con-
structed by considering pairs of matching superpixels for the im-
ages 2, · · · , (n − 1). Since it is not guaranteed that (Sk

i , Sm
i+1) =

(Sk
i+1, Sm

i ), the process is repeated for images (n− 1), · · · , 2, to ensure
each superpixel is contained in at least one match sequence.

The robust extension to this allows some members of the clique to take on a
different label [Kohli et al., 2009]. The robust clique potential is defined as:

φ(x) = min{min
l∈L

(
N · γmax − γl

Q
+ γl

)
, γmax}. (5.11)

Here γl is a per-label penalty, γmax is the maximum penalty for the clique,
and N = |cx| − nl(x), i.e. the number of variables in the clique which take a
different label than l (where |cx| is the cardinality of the clique). Q is called
the truncation parameter and represents how many variables in the clique
are expected to have a different label. In addition, we have that N ≤ bQ

2 c.
For our problem of segmentation propagation, we define cliques as sequences
of matching superpixel correspondences over the video sequence. We use
the matches computed between adjacent images as described in Section 5.2.2.
Starting with a matching superpixel pair between images 2 and 3, (Sk

2, Sm
3 ),

we add the pair to the match sequence Sk. We then continue with the match-
ing pair Sm

3 , Sp
4 , and add Sp

4 to Sk. We continue until image (n − 1) and for
matching pair Sq

(n−2), Sr
(n−1) we finally add Sr

(n−1) to the sequence Sk. Fig-
ure 5.5 illustrates the process. We repeat this process for every superpixel
in all frames 2, · · · , n − 1. We additionally repeat this process going in the
opposite “direction”, i.e. n− 1, · · · , 2. All superpixels which have not been
included in a match sequence so far are processed at this time. Note that
a superpixel may be included by multiple sequences. All match sequences
together then form S.
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For each sequence Sk in S we store two sequences of matching costs:

CSk = {MCk,m
2,3 , · · · , MCq,r

n−2,n−1}
CSk
L = {MCk

2→{1,n},l , MCm
3→{1,n},l , · · · , MCr

(n−1)→{1,n},l}.

CSk stores the matching cost of superpixels between adjacent frames, and
CSk
L stores the matching cost of superpixels with the segment labels (from

either I1 or In). From CSk and CSk
L we can determine the different terms in

Equation 5.11. We first compute the mean µl over (CSk
l ) for each l in L. We

then define γlbest
= minl(µl). The value of γl is then determined by:

γl =

{
γlbest

, if l = lbest,
γmax = γlbest

+ ε , if l 6= lbest.
(5.12)

Here ε represents a cost increase, and is discussed next.

Superpixel Sequence Matching Quality

Superpixels in a clique might have different segment labels. This is either due
to incorrect matching, or due to an occlusion occurrence. We therefore want
to allow that one or more of the superpixels in the clique will be assigned
a different segment label. However, this should depend on the matching
quality over a sequence Sk. The matching quality determines the truncation
parameter Q (Equation 5.11) and cost increase ε (Equation 5.12). The expected
segment labels for the sequence are determined by Sk,linit = minl(C

Sk
l ). From

this we can determine the dominant segment label as Nlmax = maxl(|Sk,linit=l|).
We can then determine truncation parameter Q as:

Q =

{ |x|
2 , ∀l ∈ L:µl are similar,

min
( |x|−Nlmax+1

2 , b |x|2 c
)

, otherwise
(5.13)

For a good matching quality we expect the standard deviation over CSk to
be small. To compute ε, we first compute 4max = max(|CSk − µ(CSk)|), and
then w = 1− exp

(
−(µ(CSk) +4max)/σ

)
. Finally, we set ε = γlbest

−w · γlbest
.

This allows some variables in the clique to have a different segment label
with only moderate cost increase.

If a cost ci in CSk is above some threshold, the corresponding sequence Sk
may be split up into S

′
k, S

′′
k . Each subsequence is then added separately to S .

We found that this improves the segmentation propagation result. Finally,
Equation 5.1 is solved using Robust Graph Cuts [Kohli et al., 2009].
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5.2.6 Interactive Segmentation Correction

Superpixels may be labeled incorrectly after propagation. In contrast to other
approaches, incorrect labels may be easily corrected by the user. Corrections
need to be made on the superpixel level, rather than requiring per-pixel cor-
rections, and is therefore less tedious for a user. In the case where the prop-
agation on a sequence fails and too many superpixels are labeled incorrectly,
the propagation could be performed iteratively. In that case, the initial prop-
agated segmentation serves as a starting point. The video sequence is then
split into smaller sequences, and the segmentation propagation is then ap-
plied to these smaller segments.

5.3 Segmentation Boundary Refinement

The segmentation boundaries are determined by the superpixel clustering
boundaries. Superpixels may include pixels from the background, or from
other foreground objects, and as a result superpixel boundaries may not ac-
curately match object contours. We therefore employ a refinement step to ob-
tain accurate boundaries. We employ a boundary refinement step based on
local overlapping classifier windows along the boundaries [Bai et al., 2009].

In our case an image is not just segmented according to a binary classification
of foreground and background, but we have to take multiple segments into
account. The first step is to determine a set of overlapping classifier windows
along each segments’ boundary. Here we take into account that boundaries
may be shared between multiple segments. We denote the total set of classi-
fier windows as w. For each wi ∈ w we model the color distribution for each
segment in wi with a 3-component Gaussian Mixture Model (GMM). We also
incorporate the thermal signal when computing the GMM. For a given pixel
in the window the probability pl(x) of pixel x having segment label l is de-
termined from the GMMs as:

pl(x) = p(x|l)/(p(x|l) + ∑
l′∈L,l′ 6=l

(p(x|l′)). (5.14)

A pixel x may be included in several classifier windows. The final pl(x) is
then a weighted average of the pi

l(x). The weights are calculated according
to the distance of x to the center (xc, yc)wi of the corresponding window wi.
The final segment label assignment is then refined using Graph Cuts segmen-
tation [Boykov et al., 2001]. The boundary refinement steps can be iterated to
progressively improve the accuracy of refinement.
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5.4 Exploiting Multiple Modalities

The segmentation propagation we describe can benefit from multi-modal
data in several ways. The thermal signal is incorporated in superpixel seg-
mentation (Section 5.2.1), in the matching of superpixels (Section 5.2.2, and
in the boundary refinement (Section 5.3). In addition to the thermal signal,
we also incorporate the depth we obtain from the Time-of-Flight camera. The
Time-of-Flight depth is not reliable enough to incorporate for the matching
between superpixels. Instead, we use the Time-of-Flight depth to merge su-
perpixels if their depths are similar. Merging reduces the total number of
superpixels, and therefore reduces the processing time and problem size for
robust Graph Cuts optimization.

5.5 Results

frame 8 frame 17 frame 28

Figure 5.6: Flowergarden Result. Result of our propagation method for frames 8,
17, and 28 of the flower garden dataset. The video sequence consists of
40 frames. The first and last image of the sequence have been segmented
into three layers: tree, flowers, background. The results shown here are
prior to interactive correction by the user, and shows the performance
of our method on a standard dataset.

Figure 5.6 shows the result of our propagation method for frames 8, 17, and
28 of the standard flower garden video sequence. We used 40 frames in this
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example, and a three level segmentation was provided for the first and last
frame of this video sequence. The propagated segmentations are prior to
any interactive correction by the user, and prior to boundary refinement. Al-
though some of the superpixels have been mislabeled, these results demon-
strate segmentation propagation for an arbitrary video sequence.

Figure 5.7: Occluding Objects Result. Segmentation propagation for occlud-
ing objects. Left The input images. Right Segmentation propagation
results prior to interactive correction and boundary refinement. Our
method is able to propagate the segmentation through an occlusion.

Figure 5.7 shows the result of a challenging case where one person occludes
another as they walk past. This dataset was acquired with our prototype rig
of Figure 3.2. For this example we incorporate motion information by using
the optical flow method from Brox et al. [2004]. Figure 5.7 shows the results
just before the occlusion (top row), during the occlusion (middle row), and
just after the occlusion occurred (bottom row). The segmentation propaga-
tion results are before interactive correction and boundary refinement. By
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exploiting the thermal signal, and defining clique potentials, the propaga-
tion can keep track of both people even though one person is nearly entirely
occluded by the other. In particular, frames near the occlusion occurrence
require interactive correction of the labels for a small number of superpixels,
however this is crucial for accurate results.

Handling Occlusions

Occluding foreground objects with similar photometric properties are espe-
cially challenging for video segmentation methods. We require a known seg-
mentation for the first and last frame of a sequence, such that we can handle
occluding objects. The example in Figure 5.7 shows that combined with the
higher order terms for the matching sequence, the propagation method as-
sign the correct labels, with only few superpixels taking an incorrect label.

Interaction

After propagation some superpixels may have incorrect labels. A user can
easily correct the incorrect labels. Figure 5.8 shows the result before and after
interaction. On average the results require the user to correct around five
superpixels per frame, with most of the correction required when similarly
colored foreground objects occlude each other.

Boundary Refinement

The segment boundaries obtained from superpixels are refined using over-
lapping classifier windows as explained in Section 5.3. Figure 5.8 shows
the result before and after refinement. Although the initial boundaries from
the superpixel regions may be inaccurate, after refinement we get accurate
boundaries.

5.6 Application: Depth Maps

5.6.1 Simplified Belief Propagation

This section describes the computation of depth maps for the reference cam-
era using the segment boundaries. The computation is based on the simpli-
fied BP method in [Larsen et al., 2006], which is an iterative procedure relying
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Figure 5.8: Boundary Refinement. Segmentation boundaries before (Left Col-
umn) and after (Right Column) refinement. The refinement produces
accurate boundaries even if the initial boundaries are inaccurate.

on local neighborhood support rather than message passing. The computa-
tion exploits the segment boundaries computed in the previous section. An
energy function, which is the same as Equation 4.1, is formulated for simpli-
fied BP:

E( f ) = ∑
p∈P

φd( fp) + wsm· ∑
p,q∈N

φsm( fp, fq). (5.15)

The depth computation consists of the following steps:

1. Compute a distance map using the segment boundaries obtained as de-
scribed previously.

2. Compute the initial data cost for the MVS by sweeping a depth plane
through a discretized depth volume.
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3. Perform an iteration of the simplified BP (utilizing the data from (1) as
described below).

4. Recompute the data cost for the MVS given the current estimate of the
depth map.

5. Iterate (3)-(4) until convergence.

Occlusion Reasoning: The computed depth map gets more accurate with
each iteration, and this enables reasoning about occlusions in the satellite
cameras. This supports a better estimate of φS because the computation can
be done using only the cameras that see a particular point in a scene, without
taking contributions from cameras that do not see the point due to occlusion.
The following steps are used to determine the nearest object for each pixel in
each satellite camera -

1. Iterate through each depth plane, starting with the farthest depth plane
from the reference camera, and ending with the nearest depth plane to
the reference camera.

2. Collapse all depths in the depth map which lie between the reference
camera and the current depth onto the current depth plane.

3. Iterate through each satellite camera.

4. Find the mapping between pixels of the reference camera and the satel-
lite camera, using the current depth plane.

5. Treat the collapsed depths as an image and warp them to the satel-
lite camera, using the current depth plane (using the projective texture
mapping capability of graphics hardware).

6. For each pixel in the reference camera, record the corresponding pixel in
the satellite camera and the depth value from the warped depth image,
where a depth value exists.

7. Move to the next depth plane and repeat (2)-(6).

The result is that for a given pixel in the reference camera and a given depth
plane, one knows the corresponding pixel in each satellite camera plus the
distance of that satellite pixel to its nearest object. If the distance to the depth
plane is greater than the distance of the satellite pixel to its nearest object,
then there is an occluder and information from the satellite camera is not
used in the computation of φS.

Weights in the Energy Function: The φD term is weighted to reflect confi-
dence in the depth value measured by the depth camera. The depth camera
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is a time-of-flight sensor that measures phase shifts of reflected modulated
IR illumination. It is less reliable near depth discontinuities where the IR
signal strikes an oblique surface so that there is a reduction in the signal re-
flected back at the sensor. To take account of this, a distance map is computed
based on the segment boundaries obtained in Section 4.3. The φD term has
zero weight if the distance value is smaller than dmin, unit weight if the dis-
tance is greater than dmax, and a linear ramp in between. The φsm term is
weighted to reflect confidence in the associated depth estimate. The goal is
to propagate depth values from areas of high confidence to areas of low con-
fidence as proposed in [Yang et al., 2006]. The confidence weight is given by
φS(xp) + φD(xp) with a weight of zero if this value is below a fixed threshold,
and a linear ramp for values above the threshold. For the case in the previ-
ous paragraph where φD has zero weight, the confidence weight for φsm is
also zero. In addition, φsm is only applied to pixels which lie within the same
segment, using the segments obtained in Sections 4.2 and 4.3. This is anal-
ogous to previous approaches in BP where smoothing over photometrically
dissimilar pixels is penalized.

Smoothing We apply the same trilateral smoothing as described in Sec-
tion 4.5. Given the segmentation for an image, smoothing between pixels in
different segments is disallowed.

5.6.2 Segment Boundaries for Message Passing

We also exploit the known segment boundaries in global methods based on
message passing. A spatially varying smoothness term φsm in Equation 5.15
is again computed based on the gradient information from the reference and
thermal image. The segment boundaries are then used to disallow messages
between nodes from different segments. As depicted in Figure 5.9, a node
p in the graphical model is connected to four neighboring pixels qi. Node
ql′

1 belongs to segment l′, whereas the remaining neighbor nodes belong to
segment l. The messages between p and q1 are disallowed.

5.7 Results

Figure 5.10 shows an example of the computed depth map using the segment
boundaries. Although the hair and skin color are similar in some regions
where the foreground objects overlap, the segment boundaries prevent the
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pq1
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Figure 5.9: Exploiting Segment Boundaries. Disallowing messages between
neighboring nodes which belong to different segments. Node p belongs
to segment l, whereas node q1 belongs to segment l′. Messages between
p and q1 are disallowed.

depth values from smoothing across depth contours of the objects. The ex-
amples of synthesized views using the smoothed depth map in Figure 5.10
show that the objects are well separated from each other and the background.

5.8 Discussion

In this chapter we describe an interactive video segmentation approach, with
the goal to exploit the resulting segment boundaries in the images for com-
puting depth maps. Video segmentation is formulated as a labeling prob-
lem over regions of pixels called superpixels. A segmentation for the first
and last frame of a video sequence is required, and these known segmenta-
tions are propagated across the frames of the video sequence. Propagation is
achieved through matching superpixels between images. By considering se-
quences of matching superpixels across the frames of the video sequence, we
incorporate temporal information for the segmentation propagation. The cor-
responding energy minimization includes higher order terms for the match
sequences, and can be efficiently solved using Robust Graph Cuts.

The matching of superpixels between images is straightforward, and since no
assumption about motion is made, moving cameras and non-rigid objects can
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Figure 5.10: Depth Boundaries. Resulting depth maps and synthesized views,
using segmentation constraints. Top Left Depth map before smooth-
ing. Top Right Depth map after smoothing. Bottom Left Synthe-
sized view using depth map before smoothing, no hole filling. Bot-
tom Right Synthesized view using smoothed depth map. Segment
constraints result in good depth discontinuities for the foreground ob-
jects. Segment constraints are also taken into account for smoothing
of the depth maps, in order to maintain the good depth discontinuities.

be handled by our approach. Furthermore, by propagating the information
from both directions, our approach can handle occluding objects. The initial
segment boundaries are finally refined to obtain accurate boundaries. For
this, a set of overlapping classifier windows using Gaussian Mixture Models
is used to determine per-pixel segmentation labels.

We can exploit the multi-modal data acquired with our experimental system.
The thermal data is used for the matching of superpixels between images, to
make the matching not only depend on photometric information alone. The
Time-of-Flight depth may be exploited to determine if superpixels belong to
the same object or surface. That is, if the depth between neighboring super-
pixels is similar, the superpixels may be merged together. This reduces the
number of superpixels which have to be processed for a video sequence, and
increase the stability of superpixels matching between images.
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The accurate segment boundaries can be used as constraints when comput-
ing depth maps. We describe two methods which use the segment bound-
aries. One is an iterative method, which reprojects the depths onto the satel-
lite camera in our experimental system. The other is a global method based
on message passing. Results show that we can obtain depth maps with good
depth contours. This is beneficial for post-processing operations such as view
sythesis and insertion of Computer Graphs elements. In addition the seg-
ment boundaries are temporally consistent. The depth contours of the ob-
jects are therefore also temporally consistent. Since occlusions in depth maps
occur around depth contours, being able to interpolate the depths up to the
accurate contours results in high quality depth maps.

The method we present can be combined with the temporal filtering pro-
posed by Lang et al. [2012]. Their temporal filtering aims to perform edge-
aware smoothing of the depth maps, and may suffer from oversmoothing in
the case when the foreground and background colors are similar. Incorporat-
ing the segmentation constraints proposed in this chapter could help resolve
this problem, and provide temporal filtering of depth for both the foreground
objects and the background.

Given the methods for computing segmentation and depth maps, in the next
chapter we describe a method to copy and paste objects for stereoscopic 3D
images. Stereoscopic 3D copy and paste requires both segmentation and
depth maps.
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Processing—Stereoscopic
Editing

There exist many 2D image and video editing tools: the input is an image,
or sequence of images, but the underlying scene depth is not considered. We
would like to extend many of these tools to stereoscopic 3D. However, we
cannot simply apply the 2D operations on the left and right images separately
without taking the underlying 3D scene into account. Some, not all, 3D effects
such as relative size depending on depth, or occlusions may be simulated in
2D images. Ensuring that this is done consistently for the left and right eye
image is a tedious task. It would be desirable to have 3D operations which
automatically take the underlying 3D scene into account, and consistently
edit the left and right image of a stereoscopic 3D pair.

Thus far we have discussed methods for computing segmentation and depth
for the images of a video sequence. In this chapter we discuss one of the
more common editing operation of copy & paste applied to stereoscopic 3D
images. Both segmentation and depth maps are required for stereoscopic 3D
copy & paste. The goal is to copy one or more objects from a stereoscopic
3D source scene, and paste them into a stereoscopic 3D target scene. We
ensure that objects change size depending on their depth or distance from
the camera, objects change pose according to the underlying 3D surface, but
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also adjust to the possible change in camera baseline, i.e. separation between
the left and right camera, for the target scene.

6.1 Introduction

The system and methods discussed in Chapters 3, 4 and 5 are related to acqui-
sition, segmentation and computation of high quality depth maps. We would
like to exploit this information for additional editing of the stereoscopic 3D
content. We cannot simply apply editing tools for 2D images or video, since
editing for stereoscopic 3D content has to take the underlying 3D scene into
account. Besides recovering the depth, editing tools also have to maintain
comfortable stereo perception, including ensuring the correct handling of oc-
clusions.

Our focus is mainly on live-action cinema and television. However, with the
introduction of 3D TVs people can also view stereoscopic 3D at home, and
even on mobile devices. In addition, consumer level 3D digital cameras [Fuji,
2009] enables easy capturing of 3D content. As with 2D images and video,
there will be a need for editing this content. Given this, in this chapter we
focus on a specific editing application: copy & paste for stereoscopic 3D im-
ages.

Copy & paste for 2D images has received a lot of attention in recent
years [Pérez et al., 2003, Georgiev, 2006, Farbman et al., 2009]. The users’
task for a plausible selection is to find objects which match in scale and ori-
entation with that of the target. Objects can then be selected with a “rough”
selection. No accurate segmentation of the object is required, provided that
backgrounds are either uniformly colored or have similar texture. Simply
applying these 2D methods in the source and target to the left and right eye
images is not sufficient, since 3D copy & paste has to take stereopsis into
account and avoid stereopsis rivalry: conflicting cues to the human visual sys-
tem in the left and right eye images which could severely strain the visual
system, or even destroy the 3D illusion altogether [Howard and Rogers, 2002,
Patterson, 2007, Lambooij et al., 2009]. More specifically, important aspects
are:

w Occlusion, being an important depth cue, has to be handled correctly.

w Maintain the copied objects’ stereo volume, i.e., the anisotropic parallax
between pixels that belong to the object and provide the cues for its 3D
shape. Loss of this information leads to the so-called “cardboarding”
effect, where objects appear as flat planes in depth.
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w The composition result should be consistent for both left and right eye
images. The pasted object should assume the correct orientation de-
pending on the surface orientation in the target, which varies with the
desired location for pasting.

w The copied object disparities in the target should be such that the depth
composition is correct with respect to the depth in the target.

To take these aspects into account for 3D copy & paste, introduces the prob-
lem of recovering the depth information. Many existing methods for two-
view stereo have been presented to compute per-pixel disparities [Scharstein
and Szeliski, 2002]. However, for input images of arbitrary scenes the com-
puted disparities are often inaccurate.

Furthermore, another challenge is to seamlessly composite the copied selec-
tion into the target. The aforementioned 2D copy & paste methods may result
in smearing artifacts in the case where the backgrounds are dissimilar in tex-
ture. Only composition using alpha mattes can seamlessly blend objects with
dissimilar backgrounds [Wang and Cohen, 2008]. High quality alpha mat-
tes will require accurate segmentation of the object to be copied and pasted.
Finally, direct rendering methods, e.g., forward mapping or geometry mesh
approximation, may result in artifacts in the case of inaccurate depth maps.

In this chapter we discuss an end-to-end system for 3D copy & paste, con-
sisting of components for depth reconstruction, selection and composition.
Our system makes several contributions. Selection requires segmentation of
the object(s) that will be copied. The first constribution is an automatic trans-
fer of the segmentation from the left eye to the right eye image, which ex-
ploits the computed depth map. The second contribution is the registration
of the copied object with respect to the local underlying support surface in
the target scene. The third contribution is composition using so-called stereo
billboards, which aim to preserve the original stereo volume of the source
selection to prevent the object from appearing as a flat cut-out (“cardboard-
ing” effect). The fourth contribution is the generation of contact shadows by
transferring the disparity map to the target and using an image space ambi-
ent occlusion approach.

6.2 Stereoscopic Copy & Paste

Our 3D copy & paste system allows a user to select objects from several
stereoscopic source images and composite them into a desired stereoscopic
target image. An overview of our system and the editing workflow for 3D
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Reconstruction
Section 6.2.1

Selection
Section 6.2.2

Composition
Section 6.2.3

Interactive segmentation
Segmentation refinement
Segmentation transfer

Local surface alignment
Rotation constraints
Stereo billboards
Occlusions
Shadows

Figure 6.1: Overview. The system for stereoscopic copy and paste consists of three
components, illustrated in the figure.

Stereo OutputReconstruction Selection Composition

Target

Source

Left Right

Left Right

Left Right

Figure 6.2: Workflow for 3D Copy & Paste. Given a stereoscopic pair of source
and target images, the first component is depth reconstruction, which
could be performed offline prior to online editing. Next the user per-
forms segmentation and selection of the object(s) to be copied. Finally
the copied object(s) is pasted into the target at some desired location,
and the result is a composited stereo pair of images.

copy & paste are shown in Figure 6.1 and Figure 6.2 respectively. Input to the
system are stereoscopic pairs of images for the source and target. The system
can be divided into three components:

1. Depth Reconstruction.

2. Selection.

3. Composition.

The first component, Depth Reconstruction (Section 6.2.1), determines the
underlying 3D scene for both source and target. The depth is used during
selection to support segmentation transfer, and during composition to sup-
port object placement, occlusion handling, and the stereo billboard steps. The
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main challenge for editing is in handling inaccuracies and wrong values in
the computed depth maps.

In the next component, Selection (Section 6.2.2), the user selects one or more
objects from source images to be copied to any desired location in the target.
To support this goal, several steps are necessary in preparing the source and
target images. Accurate boundary segmentation of objects, ground planes,
backgrounds etc. in both source and target images is required. We have
implemented an interactive segmentation tool. To reduce the amount of re-
quired user input and ensure consistent segmentations, the segmentation for
the left eye is automatically transferred to the right eye image.

In the final component, Composition (Section 6.2.3), the user determines a
desired location for pasting the copied selection in the target. Composition
is performed interactively while the user is viewing the resulting composite
stereoscopically. The system continuously ensures consistent orientation of
the cloned object with the local orientation in the target, by computing a best-
fit alignment with the targets’ local underlying surface. Furthermore, since
only two views are available and to avoid the need for in-painting, the sys-
tem constrains the amount of rotation and aims to keep the objects “forward
facing”. To ensure that the stereo volume of the objects is preserved, and
avoid the cloned objects from appearing flat, we have developed a method
we refer to as stereo billboards. Copied objects are sorted in depth for correct
occlusions. Finally, our system computes approximated contact shadows to
avoid the copied objects from appearing to float. We will next describe the
individual components in more detail.

6.2.1 Depth Reconstruction

We could use the methods described in Chapters 4 and 5 to compute the
depth maps, in the case when the data is acquired with our experimental
system. In the general case where only a stereoscopic pair of images is avail-
able, we instead use the method presented by Smith et al. [2009] to compute
disparity maps. For each pair of images we compute the disparity map Dl→r,
between the left and right image, and Dr→l between the right and left. Since
disparity and depth are related [Hartley and Zisserman, 2004, Ch. 10], we
simply refer to disparity as depth instead.

In general, the depth values in certain areas may not correspond to the cor-
rect depth due to the limitations of the particular algorithm. Furthermore,
depth values may be incorrect due to occlusions between the left and right

85



6 Processing—Stereoscopic Editing

Iteration 0 Iteration 4Iteration 2Iteration 1

(b) Segmentation refinement

(c) Segmentation transfer(a) Mean-shift kernel adjust

k = 10

k = 700

Figure 6.3: Object Selection. (a) Adjusting the kernel size can ease multi-object
segmentation, because the largest clusters usually correspond to sepa-
rate objects. (b) Segmentation refinement of the pineapple through four
iterations of graph cuts optimization. (c) Segmentation transfer results
from the left eye image to the right eye image. Pixels with unknown
segmentation are shown in white.

eye images. Our system is thus designed to be able to perform copy & paste
editing in the presence of (locally) inaccurate depth maps.

6.2.2 Selection

Our goal is to provide the user with the flexibility of selecting multiple ob-
jects from the source, and paste them at any desired location in the target.
To support this goal, both source and target should be accurately partitioned
into segments corresponding to objects, surfaces and backgrounds. Accurate
real-world object segmentation requires a significant amount of user interac-
tion in the form of strokes to mark fore- and background pixels. To reduce
the amount of user interaction we have implemented an interactive multiple
object segmentation approach with automatic transfer from one eye to the
other.
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Interactive segmentation Interactive segmentation refers to the segmen-
tation of one or more foreground objects in an image. The method described
can be used to provide segmentation for the first and last frame for the in-
teractive segmentation propagation of Chapter 5. Segmentation starts by
computing a mean-shift clustering [Comaniciu and Meer, 2002] on the im-
age. This results in some initial segmentation of the image into fore- and
background objects. Increasing the mean-shift kernel size, more aggres-
sively merges clusters across the entire image. We observe that, compared to
the background surfaces, the foreground objects’ contours require a smaller
mean-shift kernel size to better preserve the details. We thus employ the fol-
lowing scheme: the user adjusts the kernel size until the foreground objects
are sufficiently clustered into an initial segmentation (Figure 6.3a), next the
user provides strokes to merge clusters and improve the segmentation of the
foreground objects. These two steps can be repeated until some desired seg-
mentation of the foreground objects has been achieved. The remaining clus-
ters of the background surface can then be merged with only a small number
of strokes.

We again exploit the correlation between depth contours and color discon-
tinuities, and incorporate depth as a fourth channel in the mean-shift to im-
prove the cluster boundaries. Furthermore, the user can adjust the kernel size
adaptively for each object.

We merge clusters using the maximal-similarity merging mechanism [Ning
et al., 2010]. Clusters covered by the users’ stroke are first merged and
marked as selected, and the selection is then updated iteratively. More specif-
ically, if cluster R is selected, we merge cluster Q with R if:

1. R and Q are adjacent, and

2. ρ(R, Q) = max
S∈N (Q) {ρ(Q, S)}.

Here N (Q) denotes the set of adjacent clusters to Q, and ρ(R, Q) measures
the similarity of two clusters for color and depth. Instant visual feedback is
provided to the user during sketching, similar to Paint Selection [Liu et al.,
2009b], allowing the user to decide whether to continue or stop sketching.

Segmentation refinement with localized classifiers User input strokes
help differentiate objects in the scene. However, due to color ambiguity or
estimation errors in the depth maps, the contours of the merged clusters may
not fit the object boundary accurately (see Figure 6.3b—Iteration 0). There-
fore, after each stroke sketch, the contours are refined by applying graph cuts
optimization [Boykov et al., 2001] using overlapping localized classifiers [Bai
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et al., 2009]. We use the same refinement after transferring the segmentation
to the right image. We first discuss the contour refinement for the segmenta-
tion in the left image.

Bai et al. [2009] assume an accurate segmentation of the first frame as in-
put. They then define a set of overlapping windows whose centers lie on the
segmentation boundary. Each window contains both background pixels and
foreground object pixels. Color statistics for each window are gathered, and
a classifier assigns to every foreground pixel within that window, a probabil-
ity of that pixel belonging to the foreground. Bai et al. advocate using small
local windows. However, as stated above, our initial segmentation may be
inaccurate and hence, the local statistics for small windows may be incor-
rect. Larger windows would then be required for the inaccurate areas along
the boundary. Since there is no knowledge of where the inaccurate areas
are, we create two different sized windows at each sampled location on the
boundary: one small (30× 30 pixels) and one larger (60× 60 pixels). For each
window we build a Gaussian Mixture Model (GMM) in the Luv color space
using local color statistics. In addition, we use information from the whole
image to build a global GMM. For each window size we then compute the
model confidence for both local and global GMMs ( [Bai et al., 2009, Eq. 2]),
and we pick the one with the highest confidence. We run several iterations of
2-label graph cuts refinement for each input stroke. After each iteration we
update the local classifiers along the new boundary. Refinement iterations
are shown in Figure 6.3b.

Consistent segmentation transfer. To avoid the need for the user to re-
peat the segmentation procedure for the right image, we transfer the seg-
mentation result from the left image. We exploit the depth map and only
transfer those pixels with coherent disparities between the left and right im-
ages, since those pixels likely have classifiers with strong confidence. A pixel
is said to have coherent disparities if:

|dl→r − dr→l| ≤ 1 (6.1)

The initial segmentation transfer result is shown in Figure 6.3c—Iteration 0.
Since the image after transfer is initially sparsely segmented, we also transfer
the local classifiers from the left image. However, we compute a new global
GMM on the second image using only pixels with coherent disparities. We
compute the confidence values as described above and pick the one with
highest confidence. We perform several iterations of k + 1-label graph cuts
for global refinement for k partitioned segments. Several iterations are shown
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in Figure 6.3c. If the automatic transfer does not give the desired quality of
segmentation, the user may provide additional strokes for refinement.

6.2.3 Composition

In the final component of our system the user composites (pastes) the selec-
tion in the target images. To support interactive exploration of the location
for pasting, we aim for interactive performance while the user observes the
resulting composite in stereo 3D. However, as explained in Section 6.1, com-
position needs to take the various aspects related to stereopsis into account:
target depth composition, consistency, occlusions, and stereo volume. To ad-
dress these aspects we perform the following steps:

w Alignment of the pasted object with the local underlying surface in the
target.

w Constraining the rotation of the pasted object to avoid the need for in-
painting or object completion.

w Stereo volume preservation using stereo billboards.

w Depth sorting to determine the correct visibility, i.e., occlusions.

w Shadow estimation using the depth map and an ambient occlusion
technique.

Inaccuracies in the depth maps preclude direct artifact free rendering of the
selection, either using, for example, point sample rendering [Zwicker et al.,
2002], or mesh fitting [Zitnick et al., 2004]. For robustness with respect to
inaccuracies in the depth maps we introduce the stereoscopic extension of
billboard rendering which we have labeled stereo billboards. In the remain-
der of this Section we will explain the above steps in more detail. For all our
methods, we represent the geometry (point clouds) of both source and tar-
get scenes in a common coordinate frame. We define the center of projection
of the left eye camera as the origin of a 3D coordinate system, and align the
source and target camera to lie at the origin of this frame.

Local Surface Orientation Alignment

In the real world, objects are typically placed on some supporting surface,
e.g., a table or a sidewalk. Therefore, when an object is copied from a source
to a target image, our system aims to orient it in such a way that its support
surface in the source becomes aligned with an appropriate support surface
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table

wall

table

object

align table to wall

align table to table

source

target

table

wall

Figure 6.4: Local Surface Orientation Alignment. Left Source and target
scene images (left eye) with different orientations of the support sur-
faces. Middle+Right After the pineapple is copied and pasted into the
target scene, we compute a transformation for best alignment. In this
case, there are two possible alternatives, but the best choice would be to
align the source’s table surface to the target’s table surface.

in the target. As an example consider the situation in Figure 6.4. When the
pineapple from the source scene on the left is copied into the target on the
right, we aim to align the supporting table surfaces. This registration prob-
lem could be solved using a general point cloud registration technique [Besl
and McKay, 1992]. We observe, however, that in practice objects are mostly
placed onto planar support surfaces. Therefore we use a simple strategy to
align supporting planes.

During the Selection step the images have been segmented, and each fore-
ground object and background surface is represented by a segment. For a
selected object in the source we define a set S of neighbor segments. For
example in Figure 6.4 the pineapple has the table as its neighbor segment.
When the object is pasted into the target, S will overlap with a set Ŝ of seg-
ments in the target scene. In the example of Figure 6.4, Ŝ contains the target’s
table and wall segments. Exploiting the fact that support surfaces typically
are planar, we estimate a least squares fitting plane for each s ∈ S and ŝ ∈ Ŝ .
For each segment in {S , Ŝ} we define a coordinate frame (R, t), with rota-
tion R : R3 → R3 and translation t. We define t as the centroid of the 3D
points associated with the segment, and R is computed from the normal of
the estimated plane. We then aim to find the two segments s∗ and ŝ∗ with the
most similar orientation, i.e., they minimize the rotation required to align the
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Figure 6.5: Rotation Constraints. (a) Due to missing data (shaded in red), only
part of the repositioned object can be rendered onto the composited im-
age. (b) We compensate the perspective change by rotating the object
back, around the normal of the support patch, so that most of the avail-
able data still faces the viewer.

source and target segment:

(s∗, ŝ∗) = arg min
s∈S ,ŝ∈Ŝ

‖ RŝR−1
s ‖. (6.2)

The desired alignment transformation TA(x) = RA(x) + tA is the transfor-
mation that aligns these two segments. It can be computed as

RA = Rŝ∗R−1
s∗ ,

tA = tŝ∗ − RA(ts∗). (6.3)

Instead of using the entire segments, in practice we only use information
from partial segments. Partial segments are determined by taking a prede-
fined area around the selected object, e.g., the rectangular orange area around
the pineapple in Figure 6.4. We denote such partial segments as patches.
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Rotation Constraints

If one could move an object freely in 3D, parts that previously were hidden
would become visible, as shown in Figure 6.5a. With stereoscopic input im-
ages we have no data available for the invisible parts and hence, in-painting
or object completion techniques would be required to handle such rotations.
However, in-painting and object completion are difficult tasks. Instead, we
constrain the rotation to keep the object’s “forward facing” orientation of the
source images. We accomplish this by rotating the object around the normal
of the support plane computed during the alignment step.

Assume t is the centroid of the object in the source scene, and t̂ is its new
location after being pasted into the target scene. With the alignment transfor-
mation in Equation 6.3 we get:

t̂ = TA(t) = RA(t) + tA. (6.4)

We denote the up vector of the camera as u, and determine the angle θ be-
tween the projections of t and t̂ onto the ground plane (see Figure 6.5(a)). We
can then apply a corresponding rotation RF to ensure a target orientation as
close as possible to the source orientation of the object. RF is defined as:

RF = θn, (6.5)

where θn is the so-called Euler axis–angle representation, and n denotes the
normal of the support segment, as shown in Figure 6.5b. We can compute θ

as:

θ = sin−1
(‖(t− (t · u)u)× (t̂− (t̂ · u)u)‖
‖t− (t · u)u‖‖t̂− (t̂ · u)u‖

)
, (6.6)

In other words, we rotate the object around n at its centroid t̂ with angle θ.
The rotation constrained result may not be fully satisfying to the user and we
thus provide additional user control over the rotation for each pasted object
in the scene.

Stereo Billboards

The transformations TA and RF from above determine the desired pose of the
selected object copied into in the target. Due to the inaccuracies in the com-
puted disparities, the objects’ corresponding 3D point clouds are not suit-
able for direct rendering. To overcome this problem we adopt the motiva-
tion from Liu et al. [2009a] to compute parametric warps for rendering. We
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Figure 6.6: Stereo Billboards. This figure illustrates the computation of the
stereo billboard plane as the planar proxy geometry. An object is repre-
sented by a set of 3D points, with corresponding pixels in the left (red)
and right (blue) eye source images. (a) Pixels are back-projected onto a
current estimate for a stereo billboard plane (green). (b, c) Stereo bill-
board points and object points are transformed to the target scene. (d,
e) Transformed stereo billboard and object 3D points are projected onto
the target left and right eye image. The optimal stereo billboard plane
minimizes the difference between projected points in (d) and (e).

approximate the 3D point clouds with planar proxies, and we compute ho-
mographies for the left and right eye as our parametric warps for rendering.
However, the stereo volume of the source object is implicitly encoded by the
3D point cloud, and representing them by a plane could make the compos-
ited object appear flat: the so-called cardboarding effect in stereo. In order to
preserve the stereo volume of the source objects in stereoscopic 3D, we intro-
duce an approach we call stereo billboards. The goal is then to determine a
single planar proxy, such that the error between points projected by the para-
metric warp, and points from the projected 3D point clouds, is minimized.

We define stereo billboards as finding an optimal common plane v, from
which a pair of consistent homographies can be computed. Figure 6.6
sketches a particular configuration. We denote pixels of a segmented object
in the left and right source images as l and r respectively. Each pixel pair
(li, ri) has an associated 3D point Xi. For a given plane parametrization we
can project the points X onto the plane p = (vT, 1) resulting in X̃, such that,

vTX̃i + 1 = 0 PlX̃i = li,

vTX̃i + 1 = 0 PrX̃i = ri (6.7)
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where Pl and Pr denote the camera projection matrices for the source image
pairs.

Given Equation 6.3 and 6.6 we can define T(X) = TA(RF(X)). We can then
solve the following minimization problem:

v∗= arg minv ∑i

(
‖P̂lT(Xi)− P̂lT(X̃i)‖2 +

‖P̂rT(Xi)− P̂rT(X̃i)‖2
)

, (6.8)

where P̂l and P̂r denote the camera projection matrices for the target image
pairs. Equation 6.8 aims to find the optimal common plane which mini-
mizes the image space difference between the original points and the plane
approximated points, in order to faithfully represent the stereo object dur-
ing rendering. Figure 6.7 compares direct compositing, straightforward least
squares fitting, and our common plane optimization of Equation 6.8. Stereo
billboards can better preserve the stereo volume of the object.

To solve Equation 6.8 in the presence of inaccuracies in the disparity map,
we incorporate an outlier removal step by performing an erosion on the 2D
image pixels and remove the corresponding 3D points. While this does not
guarantee that all outliers will be removed, in practice we found that the
resulting common planes that were fitted to the remaining points gave ac-
ceptable results.

Occlusion

Composition of pasted objects behind other objects requires the correct han-
dling of occlusions. Furthermore each segmented object has an associated al-
pha matte for handling the mixed pixels along the segmentation boundaries.
Therefore, to ensure the correct order for occlusions and transparencies in
rendering, we have to perform depth sorting on the objects. Methods that re-
quire per-pixel depth values for depth sorting, e.g., depth peeling [Mammen,
1989], lead to interweaving objects due to the inaccuracies in the computed
depth maps. We instead use the planar proxies of Section 6.2.3 for depth sort-
ing. The overhead of having to recompute the proxy ordering is negligible
since we typically only have a limited number of planes to consider in the or-
dering. We can interactively move the pasted layers while correctly handling
the occlusions for the composite, see Section 6.3 for more details.
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(a) Direct composite

(d) Dynamic fitting(c) No stereo volume

(b) Fixed least square

Figure 6.7: Stereo Billboards Compositing. (a) Direct composite result with
source images from Figure 6.4. (b) Result with least square fitted plane
proxy. (c) Same as (b), but now using only a single image for both left
and right eye emphasizes the "cardboard" effect. (d) Our stereo bill-
boards using dynamically optimized common plane. Our result better
preserves the stereo volume.

Shadow Synthesis

Shadows are an important cue for judging contact between surfaces. In the
absence of knowledge about the light direction in the scene, we approximate
contact shadows by using screen-space volumetric ambient occlusion [Loos
and Sloan, 2010]. A depth map of the composite scene is required to syn-
thesize the shadows. We could use the point clouds to obtain depth images,
but this would be inconsistent with the stereo billboard warp. Therefore, we
obtain disparities for the composited scene directly from the warp instead
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(a) No shadow (c) Depth map(b) With shadow

Figure 6.8: Shadow Synthesis. (a) Even objects with the same orientation, when
copied & pasted into the same scene, will appear to be floating in the
absence of contact shadows. (b) Synthesized contact shadows generated
with our method. (c) Depth map used for shadow synthesis. Note:
we only render the selected object and the underlying surfaces into the
depth buffer.

and achieve more accurate shadows. Let (li, ri) and Xi denote a pair of corre-
sponding points on the selected object in the source images and their associ-
ated 3D point respectively. Using v∗ from Equation 6.8 we can project Xi onto
v∗ to obtain X̃i, and compute l̂i = P̂lT(X̃i). The image points (l̂i, r̂i) denote
the new positions of (li, ri) in the composite target images. We then render
the disparity value r̂i− l̂i at pixel l̂i into the depth buffer of the left composite
image, and vice versa for the right one. This method better preserves con-
tours in the depth map and is also more consistent with the stereo volume.
Synthesized shadows therefore exhibit less noise and better approximate the
object. A computed depth map with our method is shown in Figure 6.8c.
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(a) Direct composite (b) Our result

(f) Point clouds(e) No rotation(d) No shadow(c) Ours

Figure 6.9: Composition. (a) The user can roughly place the objects into the tar-
get scene. (b) Our system will automatically arrange the objects in a
right perspective and depth order. (c) Close-up of a region in (b). (d)
Without shadow, the object appears to be floating. (e) Without the ro-
tation constraint, the copied object edges are not parallel with target
object edges, resulting in unnatural results. (f) Rendered results with
point clouds show artifacts due to inaccurate depth reconstruction and
missing data.

6.3 Results

For all results presented in this section, we used the color transfer method
described by Reinhard et al. [2001]. The objects are selected and copied from
different source images shown in Figure 6.12.

Figure 6.9 compares direct composition (a) with our approach (b). Our sys-
tem can handle multiple objects composed in depth, and occlusions are con-
tinuously updated while the user determines a final location of the copied ob-
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(a) (d)

(b) (e)

(c) (f)

Figure 6.10: Results. Examples of composed scenes using objects copied from the
source images of Figure 6.12. a—c Left eye images. d—f Anaglyph
results.

jects in the target scene. Synthesized shadows and local surface alignment are
necessary to make the composition plausible (Figure 6.9c vs. Figure 6.9d,e).
Direct rendering with of the 3D point cloud derived from the depth map
makes the need for using stereo billboard evident.

Figure 6.10a—c demonstrate additional examples of objects copied onto vari-
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ous surfaces. Local surface alignment adjusts orientation and scale of the ob-
jects. Figure 6.10d—f shows anaglyph results of our copy & paste approach
to demonstate that objects are correctly composited in depth and do not ap-
pear flat. Figure 6.10f shows that although overall composition is correct with
respect to orientation, scale and depth, the illumination difference between
the source and target scene makes the copied object stand out.

6.4 Discussion

We have presented an end-to-end system for 3D copy & paste, which ex-
tends 2D copy & paste editing for still images to stereoscopic 3D. Our pro-
posed system and methods build on previous work for computing depth
maps and performing segmentations. To address inaccuracies in the cur-
rent depth maps, we have specifically aimed to make the segmentation re-
finement, segmentation transfer, alignment, stereo billboards, and occlusion
methods robust to those inaccuracies. As explained, this is largely achieved
by approximating the objects’ associated 3D point clouds with proxy geome-
try. For simplicity, we currently use planar proxy geometry.

Approximating geometry with planar proxies has certain limitations. Planar
proxies do not preserve detailed depth structure, such as the grass surface
in Figure 6.11a. As a result, the lack of partial occlusions makes the copied
object appear to float.

Another limitation of planar stereo billboards is that they may no longer re-
spect epipolar geometry. This might result in vertical disparities that could
strongly interfere with the stereopsis. To evaluate the amount of vertical dis-
parity that is introduced, we use an object which is not well represented by
a plane, shown in Figure 6.11b. The object is copied from the source scene
into two target scenes with the support surface at a different orientation. Fig-
ure 6.11c shows the ground truth image for 10◦ rotation, and Figure 6.11d
shows the composition using our stereo billboards. The vertical disparities
in this case are around 0.8% of the object height. Figure 6.11e,f compares
ground truth and our stereo billboards for 35◦ rotation. In this case the verti-
cal disparities are around 2.4%. Fukuda et al. [2009] report a tolerance of 45
arcmin for random dot stereograms. For 100 dpi display viewed at a distance
of 50 cm, this amounts to a vertical disparity tolerance of about 26 pixels. The
vertical disparity for our 35◦ case is about 10 pixels, which is well within the
reported tolerance, however a more thorough analysis should be conducted.

Instead of planar proxies, piece-wise planar proxies may be fitted to the 3D
points and depth to better approximate the objects. Avoiding proxy geom-
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(e) 35° ground truth (f) 35° synthesized

(c) 10° ground truth (d) 10° synthesized

(b) Source image(a) No partial occlusions

Figure 6.11: Limitations. (a) The lack of fine depth detail after planar approxi-
mation makes the copied object appear to float. (b) Source image for
comparisons of orientation changes. c,d; e,f Ground truth vs. our
approach for 10◦ and 35◦ orientation change. For 35◦, the epipolar
geometry is no longer correct, but the stereo images can still be fused.

etry altogether would require in-painting [Wang et al., 2008]. High quality
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in-painting however, is a difficult task, performed off-line and therefore typ-
ically limited to only relatively small areas.

Stereo billboards help to preserve the stereo volume of the copied source ob-
ject. However, if the initial depth volume in the source image is relatively
flat, such as for narrow baselines (or interocular), stereo billboards will not
be able to increase the stereo volume in the target. Furthermore, for large
differences in baseline between source and target, stereo billboards may not
be able to preserve volume. In particular achieving artistic stereo effects such
as hypostereo (gigantism) and hyperstereo (miniaturization) [Koppal et al.,
2010] in copy & paste is an interesting topic for future work. We may be able
to exploit the work by Lang et al. [2010] in such scenarios.

For plausible appearance of copied objects, we approximate contact shadows
to avoid objects from appearing to float. However, illumination differences
between the source and target images is a larger problem that we did not
address. This problem is not specific to 3D, see for example [Lalonde et al.,
2007]. Although we use the color transfer method described by Reinhard et
al. [2001], this does not always give the desired results. For truly plausible
appearance of pasted objects, more information about the scene illumination
should be recovered, and exploited to relight the objects. The depth map
could then also be used for shadow casting and light attenuation. However,
relighting is an active area of research with no good solution to date.

We have demonstrated stereoscopic 3D copy & paste for still images, which
achieves high quality compelling composition results and convincing stereo
viewing. An interesting direction for further exploration would be to extend
our approach to stereoscopic 3D video contents. Depth reconstruction, seg-
mentation, alignment, occlusions, and depth composition will now all have
to be done for dynamic objects and scenes. We have already partially ad-
dressed some of these challenges in previous chapters in this thesis. Finally,
with the rapid growth in popularity of 3D the need for stereoscopic 3D com-
positing tools in general will grow as well. We hope that our system serves as
a start in the exploration of more general stereoscopic 3D compositing tools.
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6 Processing—Stereoscopic Editing

Figure 6.12: Source Images. Input source images for copy & paste.
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C H A P T E R 7

Stereoscopic 3D Display

The final step in the stereoscopic 3D pipeline is the display of stereoscopic
image pairs. The images intended for the left and right eye are either shown
simultaneously or temporally multiplexed at high refresh rates. Although
stereoscopic 3D display systems continue to improve, some problems still re-
main. In this chapter we address the problem of crosstalk or ghosting. Since
the perception of depth for stereoscopic 3D relies on the human visual sys-
tem, we propose a perceptually-based method to compensate the input im-
ages and eliminate the perception of ghosting. Many computational models
have been developed using psycho-physical and physiological experiments
and which model various properties of the human visual system. We propose
to incorporate some of these models into an optimization-based perceptual
compensation. The inclusion of perceptual models results in a perceptually
more optimal, smooth distribution of the ghosting in the locally surround-
ing areas. This smooth distribution can eliminate the perception of ghosting.
Our results are evaluated with a user study which shows that our method is
preferred over previous approaches.

Our perceptual compensation is aimed at compensation for ghosting, also
referred to as deghosting. However, we will argue that our perceptual com-
pensation can be applied to compensate for additive unintended illumination
in display systems in general. We demonstrate this by applying perceptual
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compensation to scattering in immersive display systems. Our focus is on
high-end systems such as those found in cinema environments, but at the
end of the chapter we also discuss our perceptual compensation with respect
to consumer level display systems.

7.1 Motivation

Entertainment display system installations, such as cinemas, are among those
with the highest quality demands. Many movie theaters either have been, or
are in the process of being, converted to digital projection systems. High-end
projectors are employed to ensure a large peak intensity at maximum con-
trast. Digital projection systems have proven to be very suitable for stereo-
scopic 3D motion pictures. Stereoscopic image pairs are either temporally
or spatially multiplexed. An example of temporal multiplexing is the opto-
electronical switching of the polarization direction between the left and right
eye images [Lipton, 2012]. With corresponding polarization filters for the
eyewear, the images can be appropriately filtered for the left and right eye
of an observer. An example of spatial multiplexing is the separation of the
visible wavelengths in the color spectrum into different narrow wavelength
bands for the left and right eye images [Jorke and Fritz, 2003]. Again, corre-
sponding filters for the eyewear can appropriately filter the left and right eye
image.

The different components used in stereoscopic 3D cinemas, such as the filters
and the screen, cannot perfectly separate the images for the left and right
eye. For stereoscopic cinemas to be cost-effective, the eyewear needs to be
low-cost, which further reduces the separation power and exacerbates the
problem. As a result of non-perfect separation, the image intended for one
eye is contaminated with or polluted by a small amount of light coming from
the image intended for the other eye. This light pollution in stereoscopic 3D
displays is referred to as ghosting or crosstalk. Figure 7.1 shows an example
of ghosting, where a dim copy of the image intended for the other eye can be
observed.

We note that ghosting is a form of additive light pollution. Another exam-
ple of such light pollution is the scattering, or reflection into multiple direc-
tions, of light onto other areas of a screen in concave display surfaces. We
define light pollution as light that is originally injected as intended light, but
by some physical property of the display system results in unintended light
contribution to (portions of) the intended image. In the general case light pol-
lution results in a reduction of contrast, which can lead to a loss of detail in
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© Disney

(a)

(b)

Figure 7.1: Ghosting. An example of ghosting: Left Superimposed left and right
eye images reveal the shift due to the disparities. Right (a) The original
input image for the right eye. (b) The image observed after projection
for the right eye acquired with a camera through an eyewear polarizing
filter. A dim copy of the left image can be observed. (Best viewed elec-
tronically, adjusting brightness and gamma settings if images appear
too dark.)

the images. However for ghosting it could lead to the more severe problem
of making the stereoscopic 3D viewing experience uncomfortable. Ghost-
ing may interfere stereopsis when unintended (depth) edges conflict with
intended (depth) edges, thereby hindering the proper fusion of stereo im-
ages [Kooi and Toet, 2004, Tsirlin et al., 2011]. Combined with the vergence-
accomodation conflict [Hoffman et al., 2008], it is imperative for stereoscopic
displays that ghosting is minimized.

Our discussion is focused on stereoscopic 3D cinema displays. However, be-
sides cinema many consumer display devices, even mobile ones, are now also
capable of showing stereoscopic content. Especially consumer display de-
vices based on polarizing filters exhibit ghosting. The need for ensuring good
quality stereoscopic content and a comfortable viewing experience therefore
extends beyond the cinemas.

In this chapter we present a perceptually-based compensation method which
takes properties of the human visual system into account. Our focus is on the
compensation of ghosting, but by applying perceptual compensation to the
problem of scattering, we demonstrate that our method can be applied to ad-
ditive light pollution in display systems in general. We compare our results
with other approaches and show that with our method image details are bet-
ter preserved and contrast is reduced only locally in the images. Before we

105



7 Stereoscopic 3D Display{
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Figure 7.2: Overview. Overview of perceptually-based compensation. The formu-
lation is generally applicable for compensation of light pollution, and
we discuss two applications: deghosting and descattering.

discuss the details of our method, we first discuss the occurrence of ghosting
in various types of display systems.

7.2 Ghosting

Stereoscopic displays are often categorized as active or passive. Active dis-
plays rely on the synchronization of the eyewear with the display. The sepa-
ration of the left and right eye images occurs by actively obscuring via shut-
ters the opposite eye while the current eye image is being displayed. This
procedure is repeated in alternating succession. Passive stereoscopic displays
on the other hand do not rely on any synchronization between the display
and the eyewear. The left and right eye images are separated using matching
filters, e.g. polarization filters, for both the display and eyewear. The two
main advantages of passive stereoscopic displays over active ones are the re-
duced cost for the eyewear, and the simultaneous viewing by virtually an
unlimited amount of observers.

Although active systems physically obscure the appropriate eye, ghosting
could still occur due to a non-perfect synchronization between eyewear and
display. Since, for the reasons mentioned above, cinemas rely on passive
stereoscopic display systems our work and results are discussed related to
such passive systems. However, our method could be applied to compensate
for ghosting in active systems as well.
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7.3 Perceptually-based Compensation

We first discuss our perceptual compensation for light pollution in general,
and discuss its application for deghosting and descattering in Section 7.4.
We regard light pollution as an error term compared to the intended or de-
sired image. Compensation relies on the subtraction of the expected amount
of pollution prior to display. Subtraction may lead to negative values in ar-
eas of low intensity in the image to be compensated. Negative values are
clamped to zero and residual pollution remains. We address this by for-
mulating the compensation as a constrained optimization problem, where
the residual is weighted perceptually by incorporating models for properties
of the human visual system. We discuss which models are considered and
how the resulting optimization problem can be simplified to make the opti-
mization computationally tractable. Figure 7.2 illustrates an overview of our
perceptually-based compensation.

7.3.1 Compensation Formulated as Optimization Problem

Given an input image x to be displayed, we denote the image observed in
the absence of any light pollution as the desired image xd. When taking light
pollution into account, we denote this as the observed image xo. The goal of
compensation for light pollution is therefore to adjust the input image x such
that the observed image xo is as close as possible to the desired image xd. In
its simplest form compensation subtracts the amount of light pollution that
is expected given the input image. Mathematically this can be expressed as a
constrained optimization problem:

argmin
x
‖xo − xd‖2, s.t. 0 ≤ x ≤ 1. (7.1)

We will discuss the need for the constraints in more detail below. We intro-
duce an observation function ψ(x) to represent xo, and define:

ψ(x) = x + ϕ(x). (7.2)

Here ϕ(x) is a function which represents the additive light pollution for the
display system. The observation is thus defined as the sum of the input image
and the light pollution. Combining Equations 7.1 and 7.2 we get:

argmin
x
‖ψ(x)− xd‖2, s.t. 0 ≤ x ≤ 1. (7.3)

Since we are dealing with a physical display system, the range of intensities
that can be displayed are determined by that physical system. The constraints
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Figure 7.3: Perceptually-based Compensation Dataflow. Schematic overview
of the dataflow for our perceptual compensation.

in Equation 7.1 are important to ensure that the pixel values remain within
the range of physically attainable values. The constraint that x ≥ 0 represents
the fact that we cannot have negative light, whereas the constraint x ≤ 1
represents that we cannot display more light than the maximum possible
intensity (normalized to 1).

We define the difference between the observed compensated image and the
desired image as the residual r:

r = xo − xd = ψ(x)− xd = x + ϕ(x)− xd. (7.4)

In the case when the pollution can be fully compensated for we have r = 0.
However in general this will not be the case, and a solution will be one that is
projected onto constraints of Equation 7.3. Our goal is to compute a compen-
sated input image x resulting in an observed image which is perceptually as
close as possible to the desired image xd. To achieve this we should weight
the residual r by some abstract perceptually based weighting function λ(),
which can include any combination of the psychophysical and physiological
aspects of the human visual system. We then write Equation 7.3 as:

argmin
x
‖λ(r)‖2, s.t. 0 ≤ x ≤ 1. (7.5)

A schematic overview is shown in Figure 7.3. The above formulation ap-
plies to a single channel. For color images we solve Equation 7.5 separately
for each channel. This requires the images to be transformed to a color
space with independent channels. In our case we use the YCbCr color space,
which is a good approximation of the perceptually uniform CIE-Lab color
space [Sheng et al., 2010].
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It would in general be impractical, if not impossible, to solve Equation 7.5 as
the perceptual weighting λ() may be highly non-linear. To make Equation 7.5
amenable to efficient computation, we aim to linearize Equation 7.5. Unfor-
tunately, some of the human visual system properties are highly non-linear
and expensive to compute. We thus propose to model λ() as the product of
a linear and a non-linear term:

λ(r) ≈ ΛnΛlr (7.6)

Here Λn represents a diagonal matrix for the non-linear term, and Λl a ma-
trix for the linear term. For efficiency we compute Λn only once. With this
approximation to λ() we finally have:

argmin
x
‖ΛnΛlr‖2, s.t. 0 ≤ x ≤ 1. (7.7)

For now we assume that Λn = I, with I being the identity matrix. We will
defer the discussion of Λn until Section 7.6. We next describe how we exploit
the structure in Λl to make the optimization computationally tractable.

7.3.2 Linear Perceptual Weighting

The question is which property of the human visual system we can exploit
for the perceptual weighting. The Contrast Sensitivity Function (CSF) de-
scribes the human visual system sensitivity over the spatial frequencies as
the percentage of contrast change necessary to detect a difference. On the
left-hand side of Figure 7.4 are three CSFs representing photopic (yellow),
mesopic (green) and scotopic (purple) viewing conditions. The sensitivity
peaks around 10 cycles/degree and falls off towards the low and high fre-
quencies. We exploit the CSF with the goal to distribute the residual r into
areas of reduced sensitivity. , and incorporate the CSF into the optimization.

The CSF is most naturally expressed in the frequency domain, but we can
represent it in matrix form as:

Λl = F−1ΩF , (7.8)

where Ω is a diagonal matrix of the CSF spectral coefficients andF = Fy⊗ Fx
is the two dimensional discrete Fourier transform. We can thus directly apply
the CSF as the weighting function, with λ(r) ≡ Λl · r we have:

argmin
x
‖Λl · r‖2, s.t. 0 ≤ x ≤ 1. (7.9)
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Figure 7.4: 1D and 2D Constrast Sensitivity Function. Left CSF for pho-
topic conditions (yellow), mesopic conditions (green) and scotopic con-
ditions (purple). Right 2D CSF according to the model proposed by
Daly [1992].

The challenge is that Λl is a dense n× n matrix, with n the number of pixels
in the input image. For typical digital cinema quality content, this would
result in a matrix with roughly 1013 non-zero elements, and would require
over a terabyte of memory just to store.

By the convolution theorem, the component-wise multiplication of CSF co-
efficients in the spectral domain is equivalent to convolution in the spatial
domain. We thus express Equation 7.9 as a convolution:

argmin
x
‖Kl ∗ r(x)‖2, s.t. 0 ≤ x ≤ 1, (7.10)

where Kl is the spatial convolution kernel corresponding to Λl. We note that
Equation 7.10 is in the class of inverse problems, e.g. non-blind deconvolu-
tion [Banham and Katsaggelos, 1997], which aim to reconstruct a signal from
(possibly corrupted) observations given a known kernel. Equation 7.10 yields
a linear system with a (2-level) block Toeplitz with Toeplitz blocks (BTTB)
structure [Vogel, 2002]. We can exploit this fact to omit the need to store Λl
explicitly and compute Λlr on demand instead.

The spatial convolution kernel K (omitting subscript l) from Equation 7.10
can be represented as bttb(k), where bttb() generates a BTTB matrix from k.
By taking the so-called circulant extension of k, the Λlr matrix-vector prod-
ucts can be computed via 2D Fast Fourier Transforms (FFT) [Vogel, 2002, Ch.
5]. Given that the optimization problem in Equation 7.10 is convex, we can
solve it using for example Conjugate Gradients. To satisfy the constraints we
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Figure 7.5: Perceptually-based Compensation. A 1-D illustration comparing
no compensation, subtractive compensation and CSF weighting (per-
ceptual) compensation. (a)-(c) The input signals. (d)-(f) The “ob-
served” signals. Pollution is depicted as the red shaded areas. Per-
ceptual compensation smoothes the high contrast edge of the ghosting,
while simultaneously maximizing the contrast of the original input
right-hand edge.

use the conjugate gradients with gradient projection method (GPCG) [Moré
and Toraldo, 1991].

Perceptual Weighting with CSF

We illustrate the effect of weighting with the CSF in the optimization accord-
ing to a 1-D example in Figure 7.5. The desired input signal is shown in
Figure 7.5(a), and the input with pollution in Figure 7.5(d). The straightfor-
ward subtractive compensation reduces the input signal with the expected
amount of pollution—Figure 7.5(b). However, in areas where the input
signal is zero, no subtraction can be performed, and residual pollution re-
mains—Figure 7.5(e). The weighting by the CSF distributes the residual pol-
lution smoothly in the area local to where the pollution occurs. In addition,
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the intensity of the input signal is increased smoothly to maximize the con-
trast—Figure 7.5(c) and (f).

7.4 Perceptually-based Deghosting and
Descattering

We will next discuss two applications for our perceptually-based compensa-
tion: deghosting and descattering. For deghosting we discuss the fact that
we have a stereoscopic pair of images as input. For descattering we first de-
fine scattering pollution, and then discuss how scattering pollution can be
determined.

7.4.1 Deghosting

For stereoscopic display the input is a stereoscopis pair images: one the left
eye (xL) and one for the right eye (xR). Therefore, for deghosting the pollu-
tion function ϕ() from Equation 7.2 is a function of two input images. The
observed images in the presence of ghosting are then given by:

ψ(xL) = xL + ϕ(xL, xR),
ψ(xR) = xR + ϕ(xR, xL).

(7.11)

It is important that the pollution function is an accurate representation of
the actual pollution. In the case of ghosting we can estimate the function
by a series of dense measurements. We will discuss this in more detail in
Section 7.5.

For solving the optimization problem using GPCG, we stack the images xL
and xR into a single vector x. We furthermore assume that during a single it-
eration of GPCG, ϕ(x) remains constant. By re-arranging the terms in Equa-
tion 7.4 we can obtain r = x− (xd − ϕ(x)). Plugging this into Equation 7.9
we get:

argmin
x
‖Λlx−Λl(xd − ϕ(x))‖2, s.t. 0 ≤ x ≤ 1. (7.12)

At the start of an iteration we first compute Λl(xd − ϕ(x)) = x′, then we
perform one iteration of GPCG and use the current solution x to update ϕ(x)
and recompute x′. We continue until convergence, or a maximum number of
iterations. To compute Λlx, we first unstack x and then restack the result.
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7.4.2 Descattering

We also apply our perceptual compensation from Section 7.3 to the problem
of descattering for immersive displays. Immersive displays employ concave
screens, and light directed at a certain location reflects or scatters in multi-
ple directions. Scattered light itself produces more scattering, referred to as
multiple bounces, and produces an amount of indirect illumination which re-
duces contrast and degrades the intended image. One challenge with descat-
tering is that simply evaluating the pollution term ϕ() is a complex and
computationally expensive process which, in the general case, involves solv-
ing the rendering equation [Kajiya, 1986]. We are specifically interested in
projection-based IMAX Dome cinemas. The IMAX Dome screen are per-
fectly spherical and low-gain, resulting in Lambertian reflectance [Lantz,
1995, Scott, 2008]. This allows us to obtain closed-form solutions for the pol-
lution term and an initial guess that we use for descattering in our perceptual
optimization approach.

Efficient Closed-Form Pollution Estimation and Initial Guess

To compute the pollution term ϕ(), we exploit the fact that the point-to-
point form factor within a sphere is a constant. The consequence of this is
that the indirect illumination within a Lambertian sphere is spatially uni-
form, regardless of the projected illumination. This fact was previously used
to obtain a closed-form solution to the one-bounce light transport operator
within a closed, perfectly Lambertian sphere [Hawkins et al., 2005, Szirmay-
Kalos, 2000]. This can be generalized to partial spherical sections and multi-
ple bounces, which gives the following analytic expression for the pollution
term:

ϕ(x) =
ρ

4πr2 −Ωxρ
(a · x), (7.13)

where ρ ∈ (0, 1) is the screen gain (diffuse albedo), a is a vector specifying
the projected area of each pixel onto the screen, Ωx is the projected area of
the entire image, and r is the radius of the sphere. For simplicity of notation,
we omit the projector-to-screen form factors, but incorporate these in our im-
plementation. Equation 7.13 computes all bounces of indirect illumination,
for all pixels, using a single dot product in O(n) time where n is the num-
ber of image pixels. Hence, this computation can be performed efficiently
within the inner-loop of perceptual compensation, without down-sampling,
even for high-resolution input images typical of IMAX Dome projection.
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Figure 7.6: Experimental Setup. Our experimental rear-projection setup con-
sisting of two projectors using polarization filtering for generating sep-
arate left and right eye images. Results are captured by mounting the
eyewear in front of a camera lens (inset).

A good initial guess can improve the performance of our perceptual opti-
mization. It can be shown that using the cancelation operator [Seitz et al.,
2005] in combination with constant point-to-point form factors, subtractive
compensation can be computed using a single dot product:

x = xd −
ρ

4πr2 (a · xd). (7.14)

In practice we compute Equation 7.14, and if non-negative values exist, they
are clamped to zero (black). With the initial guess, the optimization needs
fewer iterations to arrive at a perceptual compensation.

7.5 Results

In this section we discuss the results of applying perceptually-based com-
pensation to deghosting and descattering. We built an experimental stereo-
scopic display system using using two superimposed projectors and polar-
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izing filters (see Figure 7.6). Projector PL is responsible for displaying image
xL for the left eye, and PR for xR for the right eye. The projectors are aligned
manually 1. To correct for color and brightness differences between the pro-
jectors, we measured their CIE-XYZ responses using a spectraphotometer.
The projectors have a gamma value of 2.2 and exhibit channel constancy, i.e.
R + G + B = W. Color and brightness are then corrected using the common
gamut mapping method [Stone et al., 1988].

Given the channel constancy, the ghosting pollution function ϕ(·, ·) is deter-
mined by a dense set of measurements for each color channel independently.
First the eyewear’s polarizing filter is mounted in front of the spectrapho-
tometer, and then for a discrete set of values for each R, G, B the correspond-
ing XYZ value is measured. We determine both ϕ(xL, xR), and ϕ(xR, xL). In
addition to the unintended pollution we also measure the values for the in-
tended images for the left and right eye. Compensation computations are
performed in the YCbCr color space to avoid the correlation between the
color channels in the RGB color space.

All our results have been generated for a "sweet-spot" location. We use the
model proposed by Daly [1992] for generating a 2D CSF. As CSF parameters
we use the projection resolution and size, a viewing distance of 3.0 m, light
adaptation of 5 cd/m2, and eccentricity zero.

Figure 7.7 compares no compensation (left), subtractive compensation (mid-
dle) and perceptual compensation (right) for the zoomed-in region of Fig-
ure 7.1. The input images are shown along the top row. The bottom row
shows the observed images acquired by camera with our experimental setup.
Subtractive compensation cannot entirely compensate for the ghosting pollu-
tion, and the ghosting is nearly as strong as for the non-compensated image.
The perceptual compensation distributes the residual smoothly to make the
ghosting edge imperceptible. Figure 7.8 shows additional comparisons. The
top row shows the non-compensated image, while the bottom row shows
zoomed-in regions for the observed subtractive and perceptually compen-
sated images. For the perceptual compensation no visible ghost edges are
observed. The ghosting for the grasshopper may appear subtle, however
ghosting for the antenna makes it difficult to obtain a correct depth sensa-
tion.

Figure 7.9 shows two examples of simulated projection onto a Lambertian
dome. We compare three cases: the ideal case when no scattering is present
(left), residual scattering after subtractive compensation (middle), and resid-
ual scattering after perceptual compensation (right). The first and third row

1alignment is pixel-accurate except for the periphery of the display
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No Compensation Subtractive Compensation Perceptual Compensation

Figure 7.7: Deghosting Comparison. Comparing the compensation for no
compensation (left), subtractive compensation (middle) and perceptual
compensation (right). Top Row Compensated input images. Bottom
Row Observed compensated images with ghosting. Compared to no
compensation, subtractive compensation can compensate for ghosting
only in some areas, but ghosting edges are still clearly visible. Percep-
tual compensation distributes the residual such that no ghosting edges
can be observed.

© Disney

Figure 7.8: Additional Deghosting Comparisons. Comparisons between sub-
tractive and perceptual deghosting for the badge, indoor, knight and
grasshopper scenes. Top Row Non-compensated input images. Bot-
tom Row A side-by-side comparison of observed images acquired with
a camera for subtractive compensation and perceptual compensation,
for a selected area per image.
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No Scattering
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Figure 7.9: Descattering. Simulated projection onto a spherical dome: compared
to the desired image (left) indirect scattering reduces contrast. For
areas with low intensity, subtractive compensation (middle) leads to
negative values which are clamped to black, leading to loss of detail in
the observed image. Our perceptual compensation (right) retains more
of these dark area details with the observed image being perceptually
closer to the desired image.

show the full projected image, whereas the second and fourth row show
zoomed-in areas corresponding to the rectangular demarcations in the full
images. The incoming light on a spherical dome scatters in all directions,
reducing the overall contrast of the projected images compared to no scatter-
ing. Subtractive compensation cannot compensate for the scattering in some
darker areas, and negative values are clamped to zero (black). The zoomed-
in areas in the middle column show that residual scattering reduces the con-
trast. Although the perceptual compensation compared to the desired image
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Figure 7.10: User Evaluation. Significant preference for perceptual compensation
is present in all ten images (left) and five of six videos (right) of our
two separate user evaluations. For video #2 there was no statistical
significant preference, which is attributed to the fact that ghosting for
this case occurs in a relatively small and visually less important region
of the image.

shows some loss of detail, compared to subtractive compensation many de-
tails are preserved.

7.5.1 User Evaluation

We conducted a user evaluation to determine whether the perceptual com-
pensation for ghosting for stereoscopic images and video is makes the view-
ing experience more comfortable. The experiments apply a single factor, the
compensation strategy, with up to three different conditions: no compensa-
tion (original image), subtractive compensation, and perceptual compensa-
tion. We did not include compensation by raising the black level globally, as
this significantly changes the image compared to the intended image. Using a
forced-choice, pairwise comparison design, participants were presented bal-
anced trials consisting of two images that differ only in compensation strat-
egy. Participants then chose which one provides a more comfortable viewing
experience.

Figure 7.10 shows that for both still images and video, there is strong statis-
tical evidence that the perceptually-based compensation is preferred. For 10
different still images we collected from 960 total balanced trials across 16 par-
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ticipants, and for 6 different videos we collected from 120 total balanced trials
across 10 participants. We applied Pearson’s chi-squared goodness-of-fit test
to analyze the participant preferences [Sheskin, 2007]. Perceptual compensa-
tion is significantly preferred over the original image and subtractive com-
pensation for both still images and video (p = 0.01 and χ2(2, 960) = 283.0,
p = 0.01 and χ2(1, 120) = 58.8 resp.). Video #2 was the only non-significant
result. Ghosting for this case occurs in a relatively small and visually less im-
portant region of the image, and is therefore less noticeable. As the ghosting
does not pose strong conflicts for stereopsis, there is no statistically signifi-
cant preference for subtractive or perceptual compensation.

7.6 Non-Linear Perceptual Weighting

Recall Equation 7.7. So far we have assumed that Λn was equal to the identity
matrix. Here we extend Λn to incorporate additional properties of the hu-
man visual system. We observe that although pollution is physically always
present, the actual pollution may be near or below the perceptual threshold
of visibility. Λn could thus represent weights to indicate the amount that
pollution is visible. Since Λn is a diagonal matrix Equation ref effectively
turns into a weighted optimization. However, we propose to exploit Λn in a
slightly different way.

Although we showed that we are able to avoid explicitly computing Λlr,
solving Equation 7.7 remains nevertheless computationally intensive. One
possibility for increasing the performance would be to reduce the size of the
problem. This could be done by restricting the computations to areas only
where pollution is noticeable. We thus propose to exploit Λn as a predictor by
turning this into a binary weighting mask in the spatial domain. We propose
to combine three different models for prediction of pollution visibility: the
threshold-vs-intensity (TVI), visual masking and saliency. We will shortly
describe each model and how they are combined into a single prediction.

Threshold-vs-Intensity The TVI describes the minimum contrast required
to distinguish between foreground and background intensities. A per-pixel
test is performed to check whether the residual ψ(x) − xd, averaged over
some area, is above a threshold:

δ(x) = (ψ(x)− xd) > ∆TVI . (7.15)
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(a) (b)

(c) (d)

Figure 7.11: Ghosting Prediction Map. Example of the ghosting prediction
map. For each of the four images in this figure the computed map
is shown on the left-hand side, and the modulation of the map with
the residual is shown on the right-hand side: (a) TVI map, (b) visual
masking map, (c) saliency map, and (d) thresholded prediction map.

Since we are primarily interested in cinema applications with mesopic lumi-
nance levels we blend between values computed by photopic and scotopic
models [Ferwerda et al., 1996].

Visual Masking Mechanisms in the visual system are tuned to different fre-
quency and orientations bands, and visual masking describes the reduction
in contrast sensitivity due to interactions between image components within
mechanism bands. We use the model proposed by Ferwerda et al. [1997] with
x̄ and ψ(x) as the reference and test images to compute per-pixel masking
values:

υ(x) = ∑
i

∑
θ

∆R2
i,θ(x), (7.16)

where ∆Ri,θ is the difference in response of a mechanism with frequency band
i and orientation θ, to a reference and test image.

Saliency The predictor can be further extended by considering only ghost-
ing in visually important, or salient, regions, e.g., Harel et al.[2007] proposed
an MRF-based approach to predict salient object regions.

To determine the spatial domain weighting mask Λn we normalize and com-
bine maps δ(x), υ(x) and γ(x) using component-wise multiplication:

Λn = γ(x)� (δ(x)� υ(x)). (7.17)

To turn Λn into a binary mask we compare each pixel against a threshold tΛn .
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Resolution #FFTs #Iterations Runtime (secs)

2028×1080 3772 159 248.5557
534×844 3992 167 128.4280
435×505 3684 154 34.3573
196×232 2636 109 4.1634

Table 7.1: Performance of CUDA implementation.

With deghosting, the pollution is due entirely to unintended light contribu-
tion from the other eye image. To better predict the noticeability of the ghost-
ing we use the saliency of that eye’s image. Thus, for the left eye we have:

Λn
left = γ(x)right � (δ(x)left � υ(x)left), (7.18)

and similarly for Λn
right.

We implemented this prediction model for our experimental setup. We ex-
tracted a 1D CSF from the generated 2D CSF in Section 7.5, and this CSF is
used in the masking model. Adaptation luminance for the TVI is computed
over a small area as proposed by Ramasubramaniam et al. [1999] (using the
XYZ measurements obtained for our experimental setup). Figure 7.11 shows
an example of ghosting prediction, with tΛn = 0.05.

Table 7.1 shows the timing results for our algorithm implemented in CUDA.
The first row shows the performance for a full resolution (2K) input image.
Subsequent rows show performance for examples of areas determined by
the pollution prediction. As compensation is only required for these areas,
the runtimes for smaller areas greatly reduce. Even with prediction, Table 7.1
shows that our method is not suitable for time-critical applications, but rather
for applications which allow the compensation to be performed in an offline
preprocess.

7.7 Discussion

We have proposed to incorporate models for properties of the human visual
system in the compensation of light pollution in display systems. We address
the problem of ghosting in stereoscopic 3D displays in particular: a dim copy
of the image intended for one eye is visible for the other eye. This results in
a loss of contrast, but more importantly ghosting introduces conflicting edge
cues which could hinder the interpretation of depth for an observer. Previous
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7 Stereoscopic 3D Display

approaches rely on subtractive compensation, i.e. subtraction of the amount
of expected ghosting prior to display. Subtraction could result in negative
values if the ghosting occurs in areas of the source image with low intensity.
These negative values are clamped to zero, and consequently residual ghost-
ing remains after compensation. We specifically address this problem, and
propose to distribute the ghosting smoothly in an locally surrounding area,
such that ghosting edges are no longer perceptible. Our approach achieves
this by formulating the problem as an optimization, and incorporate the con-
trast sensitivity function as a weighting. Evaluation shows that our method
is preferred to make the stereoscopic viewing experience more comfortable.

Our perceptual compensation method can be applied to additive light pollu-
tion, which includes ghosting, in general. We apply perceptual compensation
to scattering in immersive display systems. Our results show that perceptual
compensation can retain more details compared to previous approaches.

Computational complexity for our optimization-based approach is high due
to the fact that Λl is dense. Prediction of the areas where ghosting is visible
helps to reduce the size of the problem and increase performance. In ad-
dition, performance may be improved by formulating an approximation to
the perceptual metrics with more desirable properties for optimization. For
example an approximation of the CSF kernel which results in a Λl that is
sparse.

The combination of perceptual models for the non-linear perceptual term Λn
(Section 7.6), and the subsequent usage of Λn to predict when ghosting is
above the threshold of perception, was only validated experimentally. For
the ghosting prediction to be truly effective, a more thorough understanding
of discomfort and fatigue for viewing stereoscopic imagery will be necessary.
An example of recent work in this direction explores acceptability thresholds
for ghosting [Wang et al., 2011]. However, camera or object motion, stereo-
scopic saliency, overall scene composition, and disparity gradients influence
our contrast sensitivity and depth perception. Further research in these areas
will help to develop better computational models for stereoscopic applica-
tions.

Compensation for our method is computed based on measurements for a
sweet-spot location. However, measurements in a cinema show an increase
in ghosting from approximately 1.1% at the sweet-spot, to approximately
2.0% at the periphery. We evaluated the effect of an increase in ghosting for
off-axis periphery locations. Figure 7.12 compares subtractive and perceptual
compensation for the left periphery, the sweet-spot and the right periphery.
The same compensation, based on measurements for the sweet-spot, is ap-
plied in all three cases. An increase in ghosting for both periphery locations
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Figure 7.12: Sweet Spot. We compare compensations for left off-axis, center
(sweet-spot) and right off-axis locations. The top and bottom rows
compare subtractive and perceptual compensations. Although the
ghosting contribution increases for off-axis locations, the perceptual
compensation still increases viewing comfort.

can be observed, however the off-axis locations still benefit from the percep-
tual compensation.

Cinemas are controlled illumination environments and SMPTE D-Cinema
specifications [DCI, 2008] were developed to ensure uniformity among digi-
tal cinemas. Therefore, offline pre-computed deghosting material would be
valid for all digital cinemas that adhere to the specs. However, stereoscopic
3D content can now be viewed on a variety of consumer devices as well, and
the illumination environment will in general not be controlled. All stereo-
scopic display devices of a specific class, e.g. based on polarizing filters, will
likely exhibit a similar amount of ghosting. Given the results above of the
experiment for peripheral locations, perceptual deghosting could be applied
in non-controlled illumination environments, but only if the computational
complexity is reduced to allow the compensation to be computed in real-
time. In general, as the exposure to stereoscopic 3D content will increase,
ensuring a comfortable viewing experience will become even more impor-
tant.

123





C H A P T E R 8

Conclusions

8.1 Discussion

Compared to regular 2D content, stereoscopic 3D content requires separate
images for the left and right eye. However, the difference is more than simply
an additional 2D image. For processing, editing, and display of stereoscopic
3D content we have to take the depth of the scene into account as well. In
this thesis we have described our research to support and improve the acqui-
sition, processing, editing, and display of stereoscopic 3D content.

The contributions made in this thesis can be summarized as:

w Acquisition system based on a single reference camera, supported
by multi-modal satellite sensors, for computing depth maps and seg-
mentation

w Fusion of multi-modal sensor information to compute depth maps
using a local method.

w Interactive video segmentation approach using multi-modal sensor
information. The result of the segmentation is used for computing
improved depth maps.
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w A framework for copy and paste editing of stereoscopic 3D content
using depth and segmentation information.

w A perceptually-based framework for the compensation of light pol-
lution due to ghosting in stereoscopic 3D displays. The framework is
general and can be applied to all forms of additive light pollution in
display systems.

Cinematographers and camera operators are used to capture with a single
camera. We therefore propose a multi-modal capture system, using a central
high quality reference camera augmented with different types of sensors to
support the computation of depth maps and segmentation. Our prototype
system demonstrates that it is relatively straightforward to build such a sys-
tem, including performing geometric calibration and color calibration.

We describe a local method based on fusion of the different modalities for
computing depth maps. Depth maps are computed for the high quality ref-
erence camera in the capture system. Experimental results were shown for
scenes with dynamic objects and background clutter. Occlusions, textureless
regions, repeated textures, or similarly colored fore- and background objects
may pose problems in methods that rely only on color consistency. Multiple
satellite cameras allow us to better estimate occlusion regions by comparing
the color consistency between the reference camera and the satellite cameras
on the left side, to the color consistency between the reference camera and the
satellite cameras on the right side. The fusion of stereo with Time-of-Flight
depth data results in the correct reconstruction of textureless regions such as
background walls. In addition, surfaces of the same color, but overlapping at
different depths can be correctly reconstructed. Of particular interest is the
case where human subjects or body parts are overlapping. We showed that
different subjects may have different thermal signatures. Therefore, by also
fusing the thermal data, an occluding contour can be found even though the
skin color is similar. We compared the cases of fusion of stereo with only
the Time-of-Flight depth data, fusion with only the thermal data, and fusion
with both Time-of-Flight depth and thermal data. Although each of these
modalities separately can help improve the depth map, the combination of
both gives the best result.

A key challenge in computing depth maps is the estimation of occlusion areas
in a scene. Using multiple satellite cameras on either side of a reference cam-
era, helps to better estimate occlusions. To reduce cost and physical footprint
of the acquisition system, we propose to use lower quality satellite cameras.
However, lower quality cameras exhibit more noise than the high quality ref-
erence camera. This is particularly true in low light areas. In addition, the
satellite and reference cameras also have very different color spaces. These
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properties affect the accuracy of the color consistency between the satellite
cameras and the reference camera, and therefore the overall accuracy as well.
Computing depth based on color consistency alone will always suffer from
ambiguities. Fusion with additional modalities is therefore a promising di-
rection to help solve some of these ambiguities. The Time-of-Flight depth
camera resolution is very low compared to the reference camera. Fine de-
tails, such as the leaves of a plant, are therefore not accurately captured with
the Time-of-Flight depth camera. Fusion with low resolution Time-of-Flight
depth thus works best for areas without fine details. Thermal images are
most useful when thermal contrast is sufficiently high. This is typically the
case for scenes with human actors.

We describe an interactive video segmentation approach to segment multiple
foreground objects from the background. Our approach propagates known
segmentations for the first and last frame to the intermediate frames in a
video sequence. The propagation relies on the matching of superpixels across
the video sequence, without any assumption on the motions in a scene. Our
method can thus handle moving cameras and non-rigidly moving objects.
Exploiting multiple modalities helps to make the matching of superpixels
between frames of a sequence more robust. The propagation of known seg-
mentations can handle occluding objects. Provided that foreground objects
within a sequence are present in both the first and last frame, they may then
disappear and re-appear for the intermediate frames. If optical flow informa-
tion is available, it can be easily incorporated for the matching of superpixels.

A fully automated method may produce the wrong segmentation. We thus
propose to employ a user to interactively correct a propagated segmentation
labeling. We require corrections only at a coarse level, rather than at the pixel
level, which reduces the burden on the user. Accurate segment boundaries
are produced in a subsequent refinement step. Multiple modalities can then
be exploited to help resolve color ambiguities and result in better refinement
boundaries. The segment boundaries are temporally stable as they accurately
match the object boundaries in the video. We can use the boundaries as con-
straints in the computation of depth maps, so that the depth silhouettes be-
come temporally more stable as well.

We describe an end-to-end system for 3D copy & paste, which extends 2D
copy & paste for still images to stereoscopic 3D. The reconstruction of the
depth map for the scene is the fundamental operation in this system. The
reconstructed depth maps can be used when performing the interactive seg-
mentation, for the propagation of the segmentation result for one eye image
to the other eye image, and for composition of the segmented objects into
the target scenes. Segmentation, propagation, and composition will all ben-
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efit from higher quality depth maps. Direct composition based on the depth
map on the other hand, would require an error-free depth map. Error-free
depth maps are rarely obtained for general scenes however. Compositing
based on depth maps with errors can instead be done using proxy geometry
and parametric warps.

When compositing under different orientation, or into a target scene with dif-
ferent stereo parameters, disocclusions could occur. For realistic results these
disocclusions would have to be inpainted. Instead we show that by applying
the appropriate constraints to compute the parametric warps, disocclusions
can be avoided altogether, while still achieving compelling results.

We describe a framework for the compensation of ghosting and scattering. By
formulating the compensation as an optimization problem, we can apply the
framework to additive light pollution in general. As such, our formulation is
a generalization of existing subtractive compensation methods. Since we are
compensating for human observers, we should exploit the properties of the
human visual system. We show how we can incorporate perceptually-based
metrics into the optimization formulation. Specifically, by incorporating the
Contrast Sensitivity Function and solving the resulting optimization prob-
lem, the residual error is distributed to regions where the human visual sys-
tem is less sensitive to them. Most importantly, the perceptibility of possibly
conflicting edge cues for stereopsis is reduced for perceptual-based deghost-
ing. This makes watching stereoscopic 3D displays more comfortable. A
user study was conducted to verify that our perceptually-based compensa-
tion method is indeed generally preferred over straightforward subtractive
compensation.

Our proposed perceptually-based compensation is a computationally inten-
sive method due to the fact that it is a dense problem. We propose to exploit
additional perceptual models for computing a prediction of the visibility of
the light pollution. This prediction can then be used to select smaller areas in
the images, and apply the compensation on these smaller areas and increase
the performance. However, in the case when large areas of the image are
impacted by ghosting, running times may still be relatively long.

8.2 Future Work

Based on the research presented in this thesis, we identify several avenues for
future work related to acquisition, processing, editing, and display of stereo-
scopic 3D content.
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Figure 8.1: Production System. Concept drawing of a flexible, reconfigurable
setup of a high quality reference camera with satellite sensors.

With respect to the multi-modal capture system we propose, it is impor-
tant that sensors are mounted rigidly to avoid movement during acquisition.
A production ready system should be well-engineered to avoid the sensors
from moving. As sensors continue to improve and become smaller we envis-
age a system where satellite sensors can be easily mounted and reconfigured.
Figure 8.1 shows a concept design of a production ready system.
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For high quality depth maps, relying on color information alone is not suffi-
cient. As demonstrated, additional modalities can provide cues for comput-
ing depth, and also for segmentation. In addition to multiple modalities, for
depth maps of challenging scenes to achieve the quality required for movies
and broadcast, user interaction will continue to be necessary. An interest-
ing direction for future work would be to understand at which location, how
much detail in the depth map is necessary, given the goal of displaying the
content on stereoscopic 3D displays. Thin structures remain challenging, but
accurate per-pixel depth may not always be required, for example for plants
in the background.

An initial step to compute temporally smooth depth maps for video se-
quences was done by exploiting segmentation information for the video se-
quence. The segmentation information provides mostly information about
the boundaries of foreground objects. The background in the computed
depth maps may therefore still exhibit temporally noisy depth values. Com-
bining explicit foreground objects’ segmentation information with recent
methods proposed by Lang et al. [2012] and Yang et al. [2012b] could address
this.

We have discussed a framework for stereoscopic copy & paste editing. Fu-
ture work should address additional editing operating for stereoscopic 3D
content. Furthermore, being able to edit video sequences, rather than single
(still) images, will be challenging future work. Temporally varying depth, in
combination with varying stereoscopic camera parameters, e.g. baseline, will
need to be taken into account for the editing of stereoscopic video sequences.

Perceptually-based deghosting relies on solving an optimization problem,
which is computationally expensive. To solve the optimization more effi-
ciently, we would have to investigate how we can formulate the perceptually-
based metrics in such a way that are more amenable to optimization. For
example, could we formulate an approximation to the Contrast Sensitivity
Function which would turn the problem into a sparse system that can be
solved more efficiently? In general, to ensure an optimal viewing of stereo-
scopic 3D content across a wide variety of screen sizes, incorporating percep-
tual metrics such that stereoscopic 3D content can be automatically adapted
to the screen, will be an interesting direction for future work.
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A P P E N D I X A

Depth Maps using Active
Illumination and Multi-Spectral
Cameras

In this appendix we describe an additional acquisition system using multi-
spectral cameras and structured light, plus a method for computing depth
maps from the acquired images. The acquisition system resulted from the
desire to evaluate the methods presented in Chapters 4 and 5 by comparing
the results with ground-truth data. The acquisition system we implemented
did not produce the high quality results required to serve as ground-truth
data. However, the depth maps that are generated with this system can be
considered as an additional multi-modal method for computing depth maps.

A.1 Motivation

Comparison with ground-truth data requires acquisition of a scene with our
experimental system, as well as with a system capable of generating ground-
truth results. Laser scanners and structured light approaches offer accurate
3D reconstruction. However, these approaches require long scanning times
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and are unable to handle dynamic scenes. Dynamic scenes impose more
strict requirements on the acquisition. The same scene should be captured
in real-time and simultaneously with both our experimental system as well
as a ground-truth acquisition system. Approaches that are slow, or which
interfere with visible illumination are therefore not suitable.

Recently introduced infrared structured light depth sensors [Microsoft, 2012]
satisfy both constraints of real-time scanning and avoiding interference with
visible illumination. Kinect sensors can obtain depth maps of a scene at 30
frames per second. The reconstruction from a single depth sensor can be
very noisy, however multiple depth sensors can be combined instead [Butler
et al., 2012, Maimone and Fuchs, 2012]. Although this improves the recon-
struction to some degree, the quality is not sufficient for ground truth data.
Furthermore, a practical issue is the fact that the different sensors cannot be
synchronized to one another, or with external devices. We thus only exploit
the ability of the sensors to project infrared speckle patterns, and combine
several sensors to obtain a dense coverage of the scene with infrared speck-
les. Next, we first describe the acquisition system and calibration, followed
by a description of our approach for computing depth maps from data cap-
tured with the proposed system.

A.2 Acquisition

Figure A.1 depicts the hardware setup. We use the infrared speckle pattern
projected by Kinect sensors. The speckle patterns are generated using an in-
frared laser and a diffraction pattern. Due to the absence of optics the speckle
pattern is in focus across the entire working volume. The coverage with
speckles is relatively sparse, however the Kinect sensor exploits known lo-
cations of the speckles to produce a depth map in real-time. We use multiple
sensors in order to densely cover the scene with infrared speckles, without
exploiting knowledge about speckle locations.

The infrared speckle patterns can be captured with a camera that is sensitive
in the infrared spectrum, and which blocks all visible light contributions. We
record the scene with two JAI AD 130-GE multi-spectral cameras, config-
ured as a stereoscopic pair. The cameras uses a dichroic prism to separate
the incoming light into visible wavelengths and infrared wavelengths. The
camera contains two separate sensors: one which records RGB color images
for the visible wavelengths, and one which records grayscale images for the
infrared wavelengths. The sensors are pre-aligned such that the image is ac-
quired from nearly the same center of projection. The registered RGB color
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Figure A.1: Acquisition for Validation. The system consists of a stereo pair
of multi-spectral cameras and three Kinect sensors. The Kinect sen-
sors are solely used for projecting infrared patterns generated with the
built-in infrared laser and diffraction grating. The projection volumes
are overlapped to generate an area of increased speckle density to aug-
ment the scene. The multi-spectral cameras contain separate sensors
to simultaneously capture RGB images for the visible spectrum and
grayscale images for the near infrared spectrum. The sensors are pre-
aligned to capture from the same center-of-projection.

images will be exploited for computing depth maps, as we will explain in Sec-
tion A.3. Figure A.2 shows an example of the RGB color image and grayscale
infrared image that are acquired simultaneously.

The cameras are synchronized to each other, as well as to the sensors of our
experimental acquisition system from Chapter 3. We use the same synchro-
nization board as described in Section 3.2.6 for this purpose. The signals are
constructed such that the framerate is 25 fps. Note that since the projected
speckle pattern is static, there is no need for additional synchronization with
the Kinect sensors.
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Figure A.2: Multi-Spectral Acquisition. Example of images acquired simul-
taneously with the multi-spectral cameras. An internal beam split-
ting prism splits the light into visible wavelengths and infrared wave-
lengths. Left RGB color image. Right Infrared grayscale image.

A.2.1 Calibration

The calibration procedure for the extrinsics and intrinsics is the same as for
the satellite cameras of the experimental system described in Chapter 3. We
compared the images for the visible spectrum and the near infrared spec-
trum and found that they are well aligned in the central regions, but some
misalignment can be observed towards the periphery of the images. Since
we would like to exploit photometric discontinuities in the color images, the
color and infrared images should be accurately aligned across the entire im-
age. To correct for the misalignment, we first correct the acquired images for
lens distortion. We then compute a homography between the images from
the two sensors and warp the RGB color image using this homography. Fig-
ure A.3 shows the result before and after alignment using the homography
warping.

A.3 Stereo from Multi-Spectral Camera Pair

At every time instance the multi-spectral camera stereo pair produces four
images: an RGB and infrared image pair for both the left camera and the right
camera, denoted by IRGB

L , I IR
L , IRGB

R , and I IR
R respectively. To compute the

depth map we use the Semi Global Matching (SGM) method [Hirschmüller,
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Figure A.3: Multi-spectral Sensor Alignment. Left Images for visible spec-
trum (top) and near infrared spectrum (bottom) sensors. The images
are superimposed and zoomed in for the region marked with the yellow
rectangle. Middle Before warping the superimposed images appear
blurred due to the misalignment. Right After warping the images are
correctly aligned and edges in the superimposed image appear sharp.

2008]:

E(D) =∑
p

C(p, Dp) + ∑
q∈Np

P1 · T[|Dp − Dq| = 1]

+ ∑
q∈Np

P2 · T[|Dp − Dq| > 1].
(A.1)

Here, C(p, Dp) represents the disparity space image computed between the
base and match image [Scharstein and Szeliski, 2002]. Parameters P1 and P2
control the amount of smoothness that can be enforced. Parameter P1 pe-
nalizes disparities between neighboring pixels which differ by 1, while P2
penalizes larger disparity differences between neighboring pixels. The goal
is to minimize Equation A.1. For a given base image, SGM approximates the
minimization of Equation A.1 by aggregating the cost along multiple paths,
each with a different direction, and the minimum cost over all paths is then
selected at each pixel. Usually 8 or 16 different directions are considered.

We compute the disparity map Dl→r with the left as the base image, and the
right image as the match image. We also compute the disparity map between
the right and left image, Dr→l. In our case the input to the SGM method is
the pair of rectified infrared images I IR

L and I IR
R . The cost C(p, d) at pixel

p for disparity d is computed using the dissimilarity measure from [Birch-
field and Tomasi, 1998]. When computing Dl→r, and Dr→l we can exploit the
registered RGB color images IRGB

L , and IRGB
R to make the P2 penalty value
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Figure A.4: Left-Right/Right-Left Consistency Check. Left Disparity map for
left-to-right after consistency check. Right Disparity map for right-to-
left after consistency check. Occlusion areas close to the foreground
objects are clearly visible.

spatially varying. Under the assumption that depth discontinuities correlate
with color discontinuities, the value of P2 is weighted by the magnitude of
the gradient in either IRGB

L , or IRGB
R at each pixel. This promotes smooth-

ness in uniformly colored areas, while discouraging smoothness near color
discontinuities.

Similar to Hirschmüller [2008], we perform a so-called left-right/right-left
disparity consistency check [Fusiello et al., 1997]. Disparities which are not
consistent, i.e. |Dl→r(p)− Dr→l(p + d)| > 1 are set to invalid. An example
of resulting disparity maps obtained with out setup is shown in Figure A.4.
Note that the disparity consistency check invalidates most disparities in the
occlusion regions. Next, we describe how we interpolate invalid disparities.

A.3.1 Interpolating Invalid Disparities

The disparity values which are set to invalid during the disparity consistency
check are either noisy or located in occlusion areas. By examining the dis-
parities along the epipolar line in the match image, invalid disparities can
be classified as occlusions or mismatches due to noise [Hirschmüller, 2008].
Figure A.5 illustrates the situation. If the epipolar line associated with a pixel
in the reference image does not intersect with the disparity surface in the
match image, the pixel is classified as occluded. Hirschmüller proposes to
interpolate occluded pixels with the smallest disparity value over the dif-
ferent directions. However, interpolation of disparities in the occlusion area
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Figure A.5: Occlusion Classification. Left Disparities along a scanline for the
base image. Right Disparities along the corresponding scanline in the
match image. Given a pixel p in the occlusion area, the disparity value
can either be d1 or d2. The epipolar line ep,d2 intersects the disparity
surface in the match image on the right. The epipolar line ep,d1 on the
other hand does not intersect the disparity surface.

requires an accurate occluding contour along the depth discontinuity of an
object. Otherwise, the wrong disparity value may be interpolated instead. In
our case we obtain strong correlation for the infrared speckles between the
base and match image. However, the density of speckles near object bound-
aries may not be sufficient to obtain accurate silhouettes. Interpolation may
then incorrectly assign foreground disparities to pixels in occlusion areas.

Instead, we formulate the interpolation of invalid disparities as an energy
minimization:

E(d) = ∑
p

φ(xp) + ∑
q∈Np

φ(xp, xq). (A.2)

First, we traverse the image along the same directions as the paths for which
minimum costs are computed with SGM. Each path interpolates a possible
disparity value. The unary term φ(xp) in Equation A.2 is then constructed as
follows: 

φ(xp) = c(p, d) = 0, if invalid(p) & d ∈ P ;
φ(xp) = c(p, d) = 0, if ¬invalid(p) & d = dp;
φ(xp) = c(p, d) = γ, otherwise.

(A.3)

Here invalid() evaluates to 1 if the pixel is classified as having an invalid
disparity, and 0 otherwise. The set P denotes the set of disparity values ob-
tained from interpolation along the different paths. The value γ denotes a
large cost. Equation A.3 ensures that pixels classified as valid retain their
current disparity value. On the other hand, if the pixel p has been classified
as invalid, and the disparity value d is in the set of interpolated values, the
disparities have equal cost of being assigned to the pixel p.
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Figure A.6: Disparity Interpolation. Left The rectified input image for the left
camera. Right The corresponding computed disparity map for the left
image. The invalid pixels in Figure A.4-Left are interpolated. The
disparities along the depth discontinuity of the foreground object are
too noisy for use as ground truth data.

The binary term φ(xp, xq) in Equation A.2 is a Potts interaction
model [Boykov et al., 2001]. Similar as in Section A.3 above for spatially
varying weights P2, we can use the RGB image gradients as weights to make
φ(xp, xq) spatially varying. The binary term is then:

φ(xp, xq) = wp,qδ(xp 6= xq). (A.4)

We solve Equation A.2 using Graph Cuts [Boykov et al., 2001] to interpolate
disparities for the pixels classified as invalid. A result is shown in Figure A.6.

A.3.2 Extensions

Although the cameras are synchronized, the response for a speckle in both
cameras may be slightly different. This is due to the quantization imposed by
the camera in order to produce an image with discrete pixels. The Birchfield-
Tomasi (BT) [1998] dissimilarity measure takes this into account for the 1D
case. We explored extending the BT dissimilarity to 2D instead. We perform
1D BT dissimilarity for both a horizontal pass chorz, and a vertical pass cvert.
The final dissimilarity value is then chosen as min(chorz, cvert). In subsequent
experiments we did not observe any significant improvement over using 1D
BT dissimilarity.

Another approach would be to combine the cost from the infrared and color
images, similar to the fusion described in Chapter 4. The cost volume in
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Figure A.7: Infrared vs. Visible and Infrared Fusion. Left The result obtained
with SGM stereo using correlation on the infrared image only. Right
The result obtained with SGM stereo using with fusion of the correla-
tion on visible and infrared images. Overall, using only the infrared
image with projected speckle pattern results in better quality disparity
maps. Note in particular the area with the arm close to the body, and
the area near the top of the head.

Equation A.1 is then computed as:

C(p, Dp) = wRGB · CRGB(p, Dp) + wIR · CIR(p, Dp). (A.5)

Compared to the previous result, fusion of the infrared and color images pro-
duces results that are inferior in quality. Figure A.7 compares the results for
the left image of the stereo pair. The result for SGM stereo using the infrared
image only is shown on the left, and the result for stereo using the fusion of
RGB color with infrared is shown on the right. In the case of fusion, the depth
silhouette on the right-hand side of the person is slightly improved. On the
other hand, in the area between the body and the arm, and near the top of
the head the results with fusion are worse.

A.4 Comparative Analysis

We calibrate the multi-spectral cameras with respect to the experimental sys-
tem. This allows us to reproject the depth map obtained for the multi-spectral
cameras onto the reference camera of the experimental system. The repro-
jected result is superimposed on the reference image of the experimental sys-
tem, shown in the top-right of Figure A.8. The left multi-spectral camera is
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Figure A.8: Validation. Comparison of stereo from projecting IR speckle patterns
and sensor fusion. The depth map using IR patterns is obtained using
multi-spectral cameras. Top-Left The image from the reference camera
of our experimental system (Chapter 3). Top-Right The depth map
from Figure A.6 reprojected and superimposed on the reference camera
image of the experimental system. Holes (black) are due to disocclu-
sions. Bottom Comparison of the depth map obtained for the multi-
spectral cameras (left), with the depth maps obtained for the fusion
approach from Chapter 4 (right).

chosen as the base camera for the multi-spectral cameras stereo pair. We ap-
ply a 3×3 median filter to filter holes due to resampling when reprojecting
the depth map onto the high resolution reference camera of the experimen-
tal system. Some holes (black) remain in areas of disocclusions due to the
reprojection.

The reprojected depth map can be compared to the depth maps we obtain
with our fusion approach from Chapter 4. The depth map obtained from
the multi-spectral stereo camera pair is shown in the bottom-left of Fig-
ure A.8, and the depth map obtained from our fusion approach is shown
in the bottom-right of Figure A.8. The depth map computed for the multi-
spectral cameras contains more noise compared to the depth map obtained
with our fusion approach. However, we are only concerned with the compar-
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ison of depth discontinuities. As is evident from the result, the boundaries
in the depth map computed for the multi-spectral cameras are not accurate
enough to qualify as ground truth.

A.5 Discussion

To validate the depth maps we obtain using the multi-modal data acquired
with our experimental system, we are especially interested in comparing
depth silhouettes for foreground objects. In particular, we would like to
compare depths in the case where foreground and background have simi-
lar photometric properties. In that case, we expect the Time-of-Flight data
and thermal camera to provide the additional information for producing the
correct depth boundary.

For computing depth maps using the Kinect speckle patterns and multi-
spectral cameras, the infrared speckles alone do not provide sufficiently
dense coverage at depth discontinuities. As explained in Section A.3, we
have to rely on color discontinuities in the registered RGB images in order
to obtain good depth silhouettes. When color discontinuities are sufficiently
strong we can achieve good quality depth maps using the Kinect speckle
patterns and multi-spectral cameras. However, when foreground and back-
ground have similar photometric properties, the resulting depth maps do not
have the quality required to be used as ground truth depth data.

Improvements may be obtained by using more sensors to more densely cover
the objects. More coverage with infrared speckles also increases the chance
that the correlation becomes more ambiguous. The addition of a thermal
camera to the setup could help in the case when the photometric proper-
ties between the foreground and background are similar. In addition, Kinect
sensors may also be positioned 360◦ around an object to obtain a full 3D re-
construction. Of course, the use of infrared speckle patterns also limits this
application to indoor environments.
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