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  I
ABSTRACT

During the recent years, visualisation has become an important part of scientific and engi-
neering work. In parallel to the continuously increasing computing power available, the 
amount of data to be processed has become larger quickly. As is the case for the internet, 
there is a growing gap between the quantity of information that is theoretically available 
and the ability to efficiently process and handle this information. The extraction of the 
essential contents of the information and its reduction to a reasonable degree thus becomes 
a more and more important task.

This also holds for the field of flow visualisation, where the underlying industrial data-
sets mostly are based on large computational grids originating from CFD (Computational 
Fluid Dynamics). A grid of this type often contains about one million or even more cells 
and nodes. The data given on these structures usually are vector and scalar fields, often 
given for several hundred time steps in the case of unsteady flow. As a consequence of this, 
the raw data consume significant disk space, and it is not possible to inspect and analyse 
every detail of the flow.

Nevertheless there is a way out of this dilemma, since most of the flow details are not 
needed for understanding the general flow behaviour. The designers of water turbines, for 
example, are mainly interested in special flow structures like vortices, since these can cause 
undesired vibrations and resonance, leading to reduced efficiency, increased material abra-
sion, and in the worst case to machine damage. The essential parts of the flow, which are 
called features, can be extracted from the flow using special criteria and algorithms.

The concept of feature extraction is part of the more general task of selective visualisa-
tion of flow. Several vortex criteria can be found in literature, which comprise the defini-
tion of line-type features like vortex core lines and surface-type features like vortex hulls. 
Also, a stream of mass-less particles in a flow can help identify its critical regions. All these 
paradigms can be applied to steady and time-dependent flow likewise. In the latter case, 
feature tracking is performed over successive datasets.

In addition to conventional rendering and displaying techniques, virtual environments
are becoming more and more popular in science and industry. VR technologies enhance 
the visual and acoustic perception by use of new input and output devices, such as light-
sabers, 3D glasses, head trackers, large projection screens and stereo sound. They provide 
a way to “immerse” into a 3-dimensional graphical scene and thus to better explore and 
understand the structure of the visualised data. The field of flow visualisation can also ben-
efit from these techniques and is therefore supported by VR development packages from 
several current visualisation platforms.

The goal of this thesis is to investigate the essential features and behaviour of unsteady 
flow in the context of flow visualisation and industrial application. The focus is on new 
feature-based, region-based and integration-based methods for selective visualisation of 
3D flow given in terms of vector and scalar fields on unstructured three-dimensional grids. 
Scale-space techniques known from computer vision improve the quality of the feature 
extraction. The results are also presented in a virtual reality environment and help our 
industry partners improve the design of turbomachinery parts, e.g. of water turbines.
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  III
ZUSAMMENFASSUNG

In den letzten Jahren wurde Visualisierung zu einem wichtigen Bestandteil wissenschaftli-
chen und technischen Arbeitens. Parallel zur stetig wachsenden Rechnerleistung sind auch 
die zu verarbeitenden Datenmengen schnell angestiegen. Wie beim Internet existiert eine 
wachsende Lücke zwischen der Quantität an theoretisch verfügbarer Information und der 
Fähigkeit, diese noch effizient verarbeiten und mit ihr umgehen zu können. Das Heraus-
filtern wichtiger Inhalte aus der Information und deren Verringerung auf ein vernünftiges 
Mass wird deshalb zur immer wichtigeren Aufgabe.

Dies trifft ebenfalls auf das Gebiet der Strömungsvisualisierung zu, wo die zugrundelie-
genden industriellen Datensätze meist auf grossen, aus der rechnergestützten Strö-
mungsdynamik stammenden Rechengittern basieren. Ein solches Gitter enthält oftmals 
etwa eine Million oder mehr Zellen und Knoten. Die auf diesen Strukturen gegebenen 
Daten sind gewöhnlich Vektor- und Skalarfelder, oft für mehrere hundert Zeitschritte im 
Falle einer zeitabhängigen Strömung. Als Folge davon verbrauchen die Rohdaten signi-
fikanten Plattenplatz, und es ist nicht möglich, jedes Detail der Strömung zu betrachten.

Trotzdem gibt es einen Ausweg aus diesem Dilemma, da die meisten Details für das 
Verständnis des generellen Strömungsverhaltens nicht benötigt werden. Die Designer von 
Wasserturbinen sind zum Beispiel hauptsächlich an speziellen Strukturen wie Wirbeln
interessiert, da diese unerwünschte Vibrationen und Resonanz verursachen können, 
welche den Wirkungsgrad erniedrigen, das Material abnutzen und im schlimmsten Fall 
Maschinenschäden hervorrufen. Die wesentlichen Teile der Strömung, auch Merkmale
genannt, können mittels spezieller Kriterien und Verfahren ermittelt werden.

Die Merkmalsextraktion gehört zur selektiven Visualisierung. In der Literatur finden 
sich hierfür verschiedene Wirbelkriterien für Linien-Merkmale wie Wirbelkernlinien und 
Oberflächen-Merkmale wie Wirbelhüllen. Ein Partikelstrom kann ebenfalls helfen, die kri-
tischen Regionen einer Strömung zu identifizieren. All diese Paradigmen können auf kon-
stante und zeitabhängige Strömung gleichermassen angewendet werden. Im letzteren Fall 
wird Merkmalverfolgung auf aufeinanderfolgenden Datensätzen durchgeführt.

Zusätzlich zu konventionellen Rendering- und Anzeigetechniken werden virtuelle 
Umgebungen in Wissenschaft und Industrie immer beliebter. VR-Technologien erweitern 
die visuelle und akustische Wahrnehmung durch Gebrauch neuer Peripheriegeräte, wie 
z.B. Laserschwerter, 3D-Brillen, Headtracker, grosse Projektionsflächen und Stereosound. 
Sie ermöglichen, in eine graphische 3D-Szene “einzutauchen“ und somit die Struktur der 
visualisierten Daten besser zu verstehen. Strömungsvisualisierung kann ebenfalls von 
diesen Techniken profitieren und wird deshalb durch VR-Entwicklungspakete mehrerer 
aktueller Visualisierungs-Plattformen unterstützt.

Das Ziel dieser Dissertation ist, wesentliche Merkmale und Verhalten zeitabhängiger 
Strömungen im Kontext wissenschaftlicher Visualisierung und industrieller Anwendung 
zu untersuchen. Der Schwerpunkt liegt dabei auf merkmals-, gebiets- und integrations-
basierten Methoden zur selektiven Strömungsvisualisierung in Form von Vektor- und 
Skalarfeldern auf unstrukturierten 3D-Gittern. Aus der Computer Vision bekannte Scale-
Space-Techniken verbessern die Qualität der Merkmalsextraktion. Die Ergebnisse werden 
auch in einer VR-Umgebung präsentiert und helfen unseren Industriepartnern, das 
Design von Strömungsmaschinen, z.B. Wasserturbinen, zu verbessern.
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1C H A P T E R
1INTRODUCTION

During the recent years, visualisation on digital computers has become an important part 
of scientific and engineering work, especially in application fields like medicine, the natu-
ral sciences, automotive and aircraft industry. In parallel to the continuously increasing 
computing power available, the amount of data to be processed has grown rapidly. As in 
the case of the internet, there is a growing gap between the quantity of information that is 
theoretically available and the ability to efficiently process and handle this information. 
The extraction of the essential contents of the information and its reduction to a reasona-
ble degree thus becomes a more and more important task.

This also holds for the field of flow visualisation, where the underlying industrial data-
sets mostly are based on large computational grids originating from CFD simulations 
(Computational Fluid Dynamics). A grid of this type often contains millions of cells and 
nodes. The data stored on these structures usually are vector and scalar fields, often given 
for several hundred time steps in the case of unsteady flow. As a consequence of this, the 
raw data consume significant disk space, and it is for a human being not possible to inspect 
and analyse every detail of the flow.

Nevertheless there is a way out of this dilemma, since most of the flow details are not 
needed for understanding the general flow behaviour. The designers of industrial water 
turbines, for example, are mainly interested in special flow structures like vortices since 
these can cause undesired vibrations and resonance, which lead to reduced efficiency, 
enhanced material abrasion, and in the worst case to machine damage. The essential parts 
of the flow, which are called features, can be extracted from the flow data using special cri-
teria and algorithms.

This dissertation investigates the essential features and behaviour of unsteady flow in 
the context of scientific visualisation and industrial application. The focus is on new fea-
ture-, region- and integration-based methods for selective visualisation of flow given in 
terms of vector and scalar fields on unstructured three-dimensional grids. The thesis also 
treats the fairly new idea to apply scale-space techniques to the field of flow visualisation.
1
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Originally proposed in the context of image processing, scale-space techniques have 
been used for structured grids in the field of computer vision. However, their potential for 
flow visualisation was previously not exploited, maybe due to the major changes in imple-
mentation required for the unstructured grids mainly used in this field.

The goal of this thesis is to benefit from scale-space methods to improve the quality of 
feature extraction and tracking, which is performed in terms of vortex core line detection. 
Additionally, vortex hulls for unstructured grids are presented to enhance the visual per-
ception of vortex sizes and shapes. Furthermore, a modified particle tracer is proposed 
which allows for concentrating on selected regions-of-interest (ROIs), thereby reducing 
occlusion problems, visual artifacts and storage requirements. Some of the results are also 
presented in a virtual reality environment and help our industry partners improve the 
design of turbomachinery parts, e.g. of water turbines.

The remainder of this chapter is structured as follows: Section 1.1 sets the context of 
this thesis by describing the flow visualisation process. Section 1.2 motivates the 
approaches presented in this thesis, whereas Section 1.3 shortly discusses some related 
work done in this area before. Our major contributions to the field are listed in 
Section 1.4, and Section 1.5 concludes this chapter with an outline of the dissertation.

1.1 FLOW VISUALISATION PIPELINE

The overall visualisation process can be seen as a pipeline consisting of four major phases: 
data input, filtering, mapping, rendering [HM90]. Figure 1.1 illustrates the process from 
gaining scientific flow data until rendering of the graphical results on a computer display. 
The following sections will discuss the individual stages of the pipeline in more detail.

FIGURE 1.1 The flow visualisation pipeline with its four major phases.

1.1.1 Data Input

There are two basically different sources for the input data of the visualisation process, a 
physical and a virtual one. The first is to really establish a physical flow by constructing 
real-world models (e.g. a turbo-machine in a wind channel) and to measure its character-
istic data (such as velocity and pressure), using sensors mounted at the test object (such as 
wing tips of an airplane or the draft tube of a water turbine). The alternative way is to do 
Computational Fluid Dynamics (CFD), i.e. to numerically simulate the flow on a digital 
computer by solving Navier-Stokes equations. In both cases, the results are produced for a 
predefined grid in the computational domain and stored as datasets on disk.

mapping

visualisation platforms
VR environments

flow measurements
flow simulation (CFD)

deriving data fields
data smoothing

feature extraction
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filtering renderingdata input
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1.1.2 Filtering

The filtering step is in a sense the preprocessing of the actual visualisation (whereas from 
the CFD viewpoint, the visualisation step is often called CFD postprocessing, see [Bun89]).
Filters convert a CFD dataset to another one by modifying its contents. Typical examples 
are: calculating derived fields from the input data fields (e.g. vorticity from velocity), 
building 2D slices from 3D data, or smoothing the input data using Gaussian filters.

1.1.3 Mapping

Mapping is the central part of the visualisation process. Its task is to produce geometrical 
primitives (e.g. points, lines or triangle meshes) which depict the essential information of 
the flow data. Typical examples are the computation of isosurfaces and contour plots from 
scalar fields, as well as feature extraction and particle tracing. Often the result data must 
be postprocessed (e.g. by computing connected components of triangle meshes).

1.1.4 Rendering

The rendering phase concludes the visualisation process by converting the 3D geometric 
primitives to a 2D image consisting of coloured pixels. Common visualisation platforms 
such as AVS 5, AVS Express or Covise offer sophisticated renderers for a variety of purposes, 
e.g. the Covise system includes a conventional renderer as well as a special renderer sup-
porting virtual environments (see Chapter 8).

1.2 MOTIVATION

This dissertation mostly deals with the filtering stage and mapping stage of the flow visu-
alisation pipeline. It particularly focuses on methods for selective visualisation of flow fea-
tures like vortices, vortex hulls and particle movements in time-dependent CFD data given 
on unstructured three-dimensional grids.

As mentioned above, automatic extraction of features is a promising strategy to cope 
with the large amount of data produced by such time-dependent CFD simulations. The 
computational time for this type of simulation is typically in the order of days, which jus-
tifies the time spent on postprocessing the data by extracting features in a batch run. In 
fact, automatic feature extraction can achieve substantial data reductions while still per-
mitting the visualisation of the essential parts of the flow. It can be used for visually brows-
ing the results or in conjunction with other visualisation methods. However, the 
implementation of this strategy leads to the following problems:

1. Many flow features are of fractal nature, that means that there is no unique definition 
of their feature size. Depending on the observation scale, different sets of features can 
be observed. Usually, the scale is implicitly defined when an extraction method is 
designed. Instead, it would be preferable to let the user specify the scale interactively 
while viewing the result data.

2. Most methods require numerical computation of spatial derivatives, which is known 
to cause a roughening of the data. Smoothing the data can reduce this effect, but it is 
not trivial to find an appropriate smoothing kernel when dealing with irregular grids 
and highly varying cell sizes, as often occur in CFD datasets.
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3. When features are extracted from time-dependent data, animating them can cause 
popping effects with features suddenly appearing or disappearing. These artifacts can 
be alleviated by incorporating temporal in addition to spatial smoothing.

As we will see in Chapter 4, scale-space techniques can successfully be applied to the field 
of computer vision, where feature extraction has already been practised for a long time. 
These techniques smooth the input data using Gaussian kernels, the standard deviation  
of which can be any positive real number. The hereby defined scale axis plus the spatial 
axes span the scale-space. Features thus not only have spatial extents but also a certain scale 
extent. They can therefore be searched and found in scale-space. This technique has the 
potential to solve the problems mentioned above also for the flow visualisation field.

The idea is now to combine scale-space methods with feature extraction in order to 
track features along time or, alternatively, along scale. Whereas the first scenario is obvious, 
the second one should help identify fragmented features while still keeping their positional 
accuracy. Furthermore, the quality of the results should be improved, because estimating 
derivatives of the flow fields needs no extra filtering due to the presmoothed data at higher 
scale levels. Furthermore, subsetting of the resulting vortex core lines should be automated 
and need fewer heuristic parameters than in previous implementations (see Chapter 5).

The concept of feature extraction is part of the more general task of selective visualisa-
tion of flow. A variety of vortex detection criteria can be found in literature, which com-
prise the definition of line-type features like vortex core lines and surface-type features like 
vortex hulls. Also, a stream of mass-less particles in a flow can help identify its regions-of-
interest. All these paradigms can be applied to steady and time-dependent flow likewise.

Besides the feature tracking system discussed above, we want to design a method for 
adding vortex hulls to the extracted vortex core lines, which in contrast to other 
approaches is capable to operate on unstructured grids (see Chapter 6). The idea is to com-
bine the advantages of line-type features (clear separability of different vortices) with those 
of region-type features (better notion of vortex shape and size). The new method should 
permit the choice of different scalar fields and thresholds to define the boundary of the 
vortex, as well as filtering and fairing operations to smooth the resulting tubes.

Furthermore, we want a modified particle tracer which reduces the number of particles 
to be processed by concentrating on certain regions-of-interest (see Chapter 7). A cell clas-
sification scheme and a special particle seeding scheme will help keeping the particle den-
sity constant, while blending operations will allow smooth transitions at the boundaries.

In addition to conventional rendering and displaying techniques, virtual environments
are becoming more and more popular in science and industry. VR technologies enhance 
the visual and acoustic perception by use of new input and output devices, such as laser 
swords, 3D glasses, head trackers, large projection screens and stereo sound. They provide 
a way to “immerse” into a 3-dimensional graphical scene and thus to better explore and 
understand the structure of the visualised data.

The field of visualisation can also benefit from these techniques and is therefore sup-
ported by VR development packages from current visualisation platforms. We will in 
Chapter 8 present a framework which allows to interactively explore results from our vis-
ualisation methods in such a virtual environment. Since the filtering and mapping stage 
of the flow visualisation pipeline takes significant time, the approach is to store the results 
to disk and transferring them to the VR system, which can render and display them at 
comfortable frame rates.

σ
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1.3 RELATED WORK

This section summarises some important work which was done in the context of flow vis-
ualisation prior to this dissertation. More detailed descriptions of the referred papers will 
be given in the appropriate chapters later in this thesis.

The general field of visualisation was first defined in 1987 by McCormick, DeFanti 
and Brown in their groundbreaking NFS report [MDB87], which stated the necessity of 
and showed the direction for further research. The vast application field of flow visualisa-
tion was described in detail in 1989 by Buning [Bun89] and later by Post, Laramee et al.
in several articles [HPvW94, PvW94, PVH+03, LHD+04].

Multi-scale and multi-resolution data representations had already been used during the 
1970s [Kli71], but without solving the problem of relating features of different scales to 
each other. The foundations of the scale-space theory were then established in the 1980s 
by Witkin [Wit83, WT83] and Koenderink [Koe84]. Originally restricted to image 
processing and vision, the theory was in the 1990s extended by Florack, Romeny et al. 
[FtHRKV92] and Lindeberg [Lin94], who gave a thorough compendium of scale-space 
theory and application fields at that time.

Nonlinear scale-spaces based on anisotropic diffusion were used by Perona and Malik 
[PM87] for edge detection and by Diewald et al. [DPR00] for visual exploration of vector 
fields. Our goals are, beyond visual exploration, to algorithmically extract features as geo-
metric objects and to improve this process by exploiting the multi-scale nature of the fea-
tures. For this purpose, we will use isotropic linear scale-spaces, since they better fit to our 
requirements.

Luerig, Westermann et al. [LGE97, WE97] performed feature extraction from volu-
metric data in scale-spaces based on wavelets. However, to keep the spatial resolution also 
at higher scale levels, we will not construct a multi-resolution pyramid. Also, such a pyra-
mid would yield a too coarse sampling along the scale axis. For the purpose of feature 
tracking, it is preferable to have no prescribed sampling.

Different vortex detection methods were proposed by Levy et al. [LDS90], Sujudi/
Haimes [SH95b, SH95c], Banks/Singer [BS94, SB94], Miura/Kida [MK96], and 
Strawn/Kenwright/Ahmad [SKA98, SKA99]. Based upon their line-type definitions of a 
vortex, Roth and Peikert [RP99, Rot00] proposed the parallel vectors operator, a more 
general scheme which all of the above vortex criteria can be embedded in by formulating 
them in terms of two vector fields. However, all these approaches only solve the problem 
for steady flow fields in 3D. Our goal is to also track vortices over time or scale using a 4D 
extension (published in [BP02b]) of the parallel vectors algorithm.

Feature tracking was performed e.g. by Silver et al. [SZF+91, SW96] and Reinders et 
al. [RPS99, Rei01]. Most of the existing tracking methods operate on features extracted 
from 3D grid cells in single datasets. In contrast, our approach is to extend the grid cells 
by one dimension and to extract the features from these lifted cells, which are in our case 
4D hypercubes. This reflects the same lifting principle as the Marching Cube algorithm 
uses for isosurface extraction in 3D, a problem which was originally regarded as tracking 
2D contour plots along the  axis of the 3D grid. An advantage of our feature tracking 
method is that it needs no heuristics like spatial overlap [SW96] or shape attributes 
[RPS99], while it can still handle features moving by more than one grid cell per dataset.

z
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Vortex hulls have been treated by Zabusky [ZBP+91], Banks and Singer [BS94], Sadar-
joen [Sad99], Roth [Rot00] and recently by Garth et al. [GTS+04]. Most approaches 
regard the vortex hull as a deformable model (see Terzopoulos and Fleischer [TF88]) 
which has a centerline and is extended until a certain condition is met, for instance when 
the pressure becomes too large. However, many implementations are based on rectilinear 
or structured grids. We will also stick to the deformable model principle but develop a 
method working on unstructured grids and for termination criteria based on different 
scalar fields. Our extension principle is more sophisticated than the one previously pre-
sented in [BP02a] and therefore needs less computational time. 

Particle tracing is actually a well-known standard technique (see the description by 
Sadarjoen et al. [SvWHP97]). Nevertheless, it is hard to find better techniques for time-
dependent vector fields. One of the key problems is to maintain the particle density over 
time. For streamline integration, streamline placement techniques were introduced by 
Turk and Banks [TB96]. Our approach [BP02a] takes advantage of the mass conservation 
property of physical flow fields and uses a quasi-random particle seeding scheme (see 
[SH95, SMA00]) in conjunction with a buffer cell mechanism. The restriction to a certain 
region-of-interest surrounded by a ring of buffer cells saves significant computational 
effort. Based upon two scalar thresholds, a smooth blending of particles entering and leav-
ing the ROI is achieved.

For our VR application, we chose the Covise visualisation platform developed at the 
University of Stuttgart [HLR04] and now being distributed by the spin-off company 
VisEnSo [VIS04]. The VR renderer contained in this package can be enhanced by user-
programmed plugins [VIS03], which enabled us to transfer our visualisation results into a 
virtual environment for interactive exploration and enhanced visual perception.

1.4 CONTRIBUTIONS

The goal of this thesis is to investigate the essential features and behaviour of unsteady flow 
in the context of flow visualisation and industrial applications. The focus is on new fea-
ture-based, region-based and integration-based methods for selective visualisation of 3D 
flow given in terms of vector and scalar fields on unstructured three-dimensional grids. 
Scale-space techniques known from computer vision improve the quality of the feature 
extraction. The results are also presented in a virtual reality environment and help our 
industry partners improve the design of turbomachinery parts, e.g. of water turbines. The 
main contributions of this thesis are:

• an application of scale-space techniques to the field of flow visualisation,

• a computational scheme for constructing the scale-space on unstructured CFD grids,

• an algorithm for extracting and tracking vortex core lines over time and scale,

• a scalar-field based method for constructing vortex hulls around core lines,

• a particle tracer for selective visualisation of regions-of-interest in flow fields,

• a framework for interactive visualisation of flow features in virtual reality.
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1.5 OUTLINE

The remaining chapters of this thesis are organised as follows:

• Chapter 2 gives a brief overview on the fundamentals of visualisation in general and of 
flow visualisation in particular. After a presentation of several different ways to catego-
rise visualisation, the most important grid and data types used in flow visualisation are 
discussed. The definitions given here are fundamental for the flow visualisation tech-
niques described in the following chapters.

• Chapter 3 gives a short overview on several basic techniques for flow visualisation, 
most of which were used as ingredients for the algorithms and methods presented in 
the later chapters of the thesis. A few representatives of the flow visualisation catego-
ries mentioned in the previous chapter are discussed, namely of the direct, integration-
based, region- and feature-based flow visualisation techniques.

• Chapter 4 gives an overview of some important data representations dealing with dif-
ferent levels of resolution or scale. It presents the scale-space representation and its spe-
cial properties, along with some application examples from image processing and 
computer vision. The use of scale-space methods for flow visualisation is also moti-
vated. At the end of the chapter, several methods for computing the scale-space repre-
sentation on different grid types are discussed and compared, and a newly developed 
method for computing the scale-space on unstructured grids is presented.

• Chapter 5 recapitulates the parallel vectors operator, a general vortex core line extrac-
tion algorithm introduced by Roth and Peikert [RP99], and describes the adaptations 
and simplifications to be made in the context of a scale-space analysis. It is then shown 
how a 4D extension of this algorithm is able to track vortices in either the temporal or 
in the scale domain. Finally, both numerical and visual results are given.

• Chapter 6 presents an implementation of vortex hulls for vortex core lines on unstruc-
tured grids, which allows to select from different hull shapes and scalar fields, to define 
suitable thresholds, and to smooth the surfaces of the constructed tubes. The combi-
nation of line-type features (vortex core lines) and region-type features (vortex hulls) 
leads to plastic illustrations of vortex extents and still clearly separable features.

• Chapter 7 explores techniques for visualising selected flow structures in time-depend-
ent data by use of a modified, sophisticated particle tracer. A particle seeding scheme 
based on quasi-random numbers is proposed, which minimises visual artifacts such as 
clusters or patterns. By constraining the visualisation to a region of interest, occlusion 
problems are reduced and storage efficiency is gained. The primary industrial applica-
tion is the visualisation of the vortex rope, a rotating helical structure which builds up 
in the draft tube of a water turbine. In two related applications, the cavitation regions 
near the runner blades of a Kaplan turbine and a water pump are visualised.

• Chapter 8 presents a framework for transferring results of the vortex core extraction 
and vortex hull construction to a virtual environment. A file system based approach is 
used to decouple the rendering phase from the computationally expensive data acqui-
sition and feature extraction procedures. As a consequence of this, the VR application 
is able to efficiently load and handle the vortex result data. The user can thus navigate 
through the result datasets at comfortable frame rates and interactively select, mark 
and remove vortex structures from the screen.
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• Chapter 9 concludes the dissertation with a summary of the main contributions, a 
discussion of advantages and drawbacks of the presented approaches, and some ideas 
for future research.

• Appendix A contains coloured versions of some result images shown in the previous 
chapters, especially concerning feature extraction and tracking, vortex hulls, the VR 
application, and selective particle tracing.

• Appendix B contains all literature references of this thesis.

• Appendix C contains some more detailed explanations on how the vortex hulls of 
Chapter 6 were constructed. The focus is on the problem of intersecting a given ray 
with a quadrangle face of a hexahedral cell in 3D space, which can be planar or non-
planar. Due to the discrete nature of the underlying unstructured grids and due to 
noise contained in some of the raw industrial datasets we investigated, a number of 
nontrivial numerical problems had to be solved in addition to the theoretical proce-
dure.

• Appendix D contains a curriculum vitae of the author of this thesis.



2C H A P T E R
2BASICS OF FLOW VISUALISATION

Flow visualisation has been an important and interesting part of visualisation for decades. 
In this chapter, we give a brief overview on the fundamentals of visualisation in general 
and of flow visualisation in particular. After presenting several different ways to categorise 
visualisation, we will discuss the most important grid and data types used in flow visuali-
sation. The definitions given here are fundamental for the flow visualisation techniques 
described in the following chapters.

2.1 CLASSIFICATION

Although visualisation has a long history, its meaning for scientific work was not fully rec-
ognised until the late 1980s. In their pioneering NSF report on visualisation in scientific 
computing [MDB87], McCormick, DeFanti and Brown gave a general definition of the 
subject and pointed out the need and direction for further research. Since the general field 
of visualisation, as well as that of flow visualisation, offers a wide range of methods and 
applications, no trivial or even canonical classification of the subject exists [HPvW94]. 
Also, the special conditions of any application field have a strong influence on the suita-
bility of each visualisation method, and thus on the preferred choice. In this section, we 
will present several possible criteria for a categorisation of visualisation.

2.1.1 Application field

The perhaps most intuitive criterion is the application field where data are to be visualised. 
A coarse differentiation can be made between information visualisation and scientific visu-
alisaton. The first one mostly deals with discrete and higher-dimensional data, which is 
often stored in tables or relational databases and does not have a well-defined metrics. 
Typical methods of information visualisation include chart diagrams, parallel coordinates, 
scatter plots and perspective walls. A wide selection of business applications are available 
which cover the most important needs of this area.
9
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This thesis concentrates on the other type, scientific visualisation, and one of its most 
common subareas, flow visualisation. Typical applications of flow visualisation can be 
found in (but are not restricted to) aerodynamics, automotive industry, geology, medicine, 
meteorology, and turbomachinery design.

2.1.2 Gaining data for visualisation

In this chapter, we use the term “flow visualisation” for what is actually computational flow 
visualisation. This means that the datasets to be visualised were created by numerical sim-
ulations based on physical models, e.g. using the Navier-Stokes equations. The simulated 
flow data (especially the velocity and pressure data) are stored in datasets and serve as a 
basis for various computational methods to visualise the flow. In this thesis, we will mainly 
refer to this type of gaining and processing the information contained in a flow.

However, it should be kept in mind that flow visualisation can also be done the “good 
old way” using flow experiments and empiricism. One example is the use of test rigs for 
reduced scale models of existing turbines, as is done by our industry partner VA Tech 
Hydro, the former Escher Wyss (a size comparison of test model and real counterpart of 
a Francis runner is shown in Figure 2.1). The flow behaviour within these models can for 
instance be observed and recorded using high-speed cameras and stroboscope lighting. 
Another possibility is to inject dye into a flow and to photographically record the move-
ment and distribution of the coloured water particles.

.

FIGURE 2.1 Original and 1:10 scale test rig model of a Francis runner (image courtesy 
of VA Tech Hydro, Zurich). See also Colour Figure A.1 on page 121.

Although numerical simulation and computational visualisation give better insight into 
the flow behaviour and help reduce the developing costs of technical devices (such as 
machine parts of a water turbine), experimental and empirical flow visualisation are still 
indispensable for proving the theoretically computed results. For cost reasons, such flow 
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experiments are only performed for turbomachinery designs which have in advance been 
optimised using computational visualisation methods.

2.1.3 Level of data abstraction

Visualisation methods can also be categorised according to the effort they require in com-
parison to other steps of the visualisation pipeline. Post, Laramee et al. distinguish between 
three fundamentally different types of visualisation methods, namely direct, integration-
based, and feature-based visualisation methods [PVH+03, LHD+04]. Generally, it can be 
stated that the computational complexity of a method rises with its level of data abstrac-
tion (see Figure 2.2). On the other hand, a more sophisticated visualisation method leads 
to more physically meaningful results, which reduces the amount of data to proceed with.

FIGURE 2.2 The actual flow visualisation step in the visualisation pipeline.

In the simplest case, the user is interested in a quick, intuitive, and direct visualisation of 
the data. This can often be achieved by relatively fast and simple methods, e.g. the velocity 
data of a flow can easily be drawn as an arrow plot if the flow is 2-dimensional (for 3 
dimensions, the case is more difficult to handle due to perception and occlusion prob-
lems). A similar method is the use of hedgehog plots as suggested by Klassen and Har-
rington [KH91] and implemented in The Visualisation Toolkit (VTK) by Schroeder, 
Martin and Lorensen [SML03]. For direct visualisation of 3-dimensional flows, volume 
rendering is a good technique to cope with the increased occlusion problems. In medical 
applications, which mostly use Cartesian grids, volume rendering is very common. How-
ever, it is not trivial to adapt these methods to unstructured grids, which are mostly used 
in flow visualisation. A possible solution is to resample the unstructured grid to a Cartesian 
one, as is suggested by Westermann [Wes01].
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More abstract than direct visualisation are integration-based methods, since they use 
integral objects as a counterpart to the derivative nature of simulation-based flow data (e.g. 
velocity gained from a CFD simulation). Using integration methods, it is possible to 
reconstruct visualisation-relevant data (such as the position of a particle, or streamlines) 
from the simulation data.

The third type is the feature-based approach, which performs an additional abstraction 
step by extracting certain phenomena (such as vortices) or topological information (like 
critical points) from the original flow data. The extraction step is in general computation-
ally expensive, but this drawback is compensated by an enormous reduction of the amount 
of data. Since the original data are not needed for the final visualisation of the features, a 
data reduction rate of up to 1:10000 is possible ([Ken98]). In Chapter 5, we will present 
feature-based visualisation methods for extracting vortices from a flow.

In addition to the three cases mentioned above, we can also define a fourth type, 
namely region-based visualisation. In contrast to many feature-based methods which rely 
on locally defined criteria (such as critical points), one can also define a region-of-interest 
(ROI) by a more global criterion. For example, it is possible to set a threshold for a scalar 
field defined on the total computational domain, which leads to isosurfaces as resulting 
structures of the visualisation step. In Chapter 7, we will deal with integration-based as 
well as region-based visualisation methods, and present a modified particle tracer which 
combines techniques of both types.

2.1.4 Spatial dimensionality of grid and data

In most application fields of visualisation, 1-, 2- or 3-dimensional grids are common. For 
example, image processing assumes a 2D uniform data structure inherent in digital images, 
and uses the integer row and column index for addressing a certain pixel. These indices 
can also be interpreted as - and -coordinates determining the physical location of the 
point on a Cartesian grid (see Section 2.2).

For medical applications (and also in the field of vision), often 3D “images” are used, 
which are actually stacks of 2D images. A typical example is a computer tomography (CT), 
magneto-resonance (MR) or positron-emission (PET) dataset [MCS02], which mostly 
consists of more than 100 two-dimensional slices (each slice representing a cross-section 
through the body of a patient [EW92]). By regarding the direction perpendicular to the 
slices as the -dimension of the Cartesian grid, the stack of slices builds a volumetric data-
set which can be explored for structures such as bone, tissue and vessels.

For turbomachinery design, 3-dimensional unstructured grids (created using CAD 
tools) are predominant, for the possibility of representing arbitrary shapes of machine 
parts (such as the runner and draft tube of a water turbine). The data defined on these grids 
are at least 3- or even higher-dimensional (see Section 2.3).

2.1.5 Temporal dimensionality of data

Another important point is whether the flow is steady or unsteady (time-dependent). In 
the latter case, the data are often given for several hundreds of time steps, leading to serious 
storage and processing issues. Solutions often use special techniques to cope with the 
amount of data, such as out-of-core rendering [USM97] and rendering of compressed data 
[YMC00]. In Chapter 5, we will present a method for tracking vortex core lines over time, 
which uses a sliding activity window to access the datasets for different points in time.

x y

z
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2.2 CELL AND GRID TYPES

Flow data are in general not given as continuous analytic functions (except for artificially 
constructed theoretical examples) but as discrete datasets, which serve as an input for the 
visualisation pipeline. The datasets mostly originate from CFD simulations based on 
Lagrangian-type or Eulerian-type representations of the Navier-Stokes equation. Lagrang-
ian methods comprise smooth particle hydrodynamics (SPH) mainly used in astrophysics 
[GM77], as well as vortex methods (see Cottet and Koumoutsakos [CK00]) based upon 
vorticity of moving fluid elements. In contrast, Eulerian methods deal with velocity and 
pressure data at fixed points on a grid. We will in the following only treat visualisation 
methods based on Eulerian flow fields given on such computational grids.

A variety of different grid types has been established, mostly due to the needs of specific 
application fields (see Nielson et al. [NSR90, NHM97]). Common to all grid types is that 
they store data (vectors or scalar values) at distinct point locations in physical space, which 
are called nodes. Neighbourhoods are defined through edges, every edge being a line seg-
ment directly connecting two nodes.

There exist also alternative point representations like point clouds, which have been suc-
cessfully investigated and implemented at the ETH Zurich within the scope of the 
PointShop3D project by Pauly et al. (see the PointShop3D website [PZK+03] and [PG01, 
PGK02, PKG03, PKKG03, Pau03]). The point cloud representation stores only isolated 
points without connecting edges, so their is no a-priori defined neighbourhood of a certain 
point (see Figure 2.3 left). When neighbourhood information is needed for a sample point 
of the cloud (e.g. for estimating its surface normal), a neighbourhood can still be defined 
ad hoc, for instance by choosing the k cloud points which lie closest to the sample point.
Alternatively, a point cloud can be transformed into a triangular mesh (which is a special 
case of a grid) using surface reconstruction methods (see Figure 2.3 right).

FIGURE 2.3 Point cloud versus grid (in this case, a triangular mesh) for the Stanford bunny model.

The smallest organisational unit of a grid is a called a cell. Usually, a cell contains a small 
number of nodes with their connecting edges. As the nodes are connected by edges, so the 
edges build the boundary of the faces, provided that the cells are 3-dimensional. In 2-space, 
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polygonal meshes are predominant, the cells mostly being triangles or quadrangles. In 3-
space, mainly tetrahedral and hexahedral cells are used (see Figure 2.4).

FIGURE 2.4 Different cell types used in visualisation grids (bottom faces are shaded).

A coarse classification of grids divides them into structured and unstructured grids. The 
fundamental difference between them is that structured grids consist of only one cell type,
and that their nodes are arranged in an array. Therefore an arbitrary node index directly 
yields the indices of the neighbour nodes by simply incrementing or decrementing the 
index. As a further consequence, the number of neighbours of any inner node is constant 
(e.g. 4 neighbours in a 2D uniform grid with rectangle cells). Structured grids thus implic-
itly contain their connectivity (neighbourhood) information, which reduces the storage 
requirements as well as computational times and theoretical complexity of algorithms 
working on them.

The simplest and computationally easiest to handle case is of a structured grid is a uni-
form grid, which can be Cartesian or skew-angled. In the uniform case, the points are 
equally distributed along every dimension of the grid, thus a simple linear transformation 
exists between the node indices  and the physical node coordinates . It is 
therefore not necessary to explicitly store the physical coordinates of the grid nodes - the 
grid extents and constant distances between two successive nodes are sufficient for access-
ing all grid information and data.

Slightly more difficult to handle is a non-uniform but still structured grid (also called 
curvilinear grid), which is topologically equal to uniform grids, but the points are not equi-
distant. It thus requires to store a node list containing the coordinates for every grid node. 
However, the connectivity information is still implicitly available, as in the uniform case.

The class of unstructured grids is characterised by the fact that they do not possess a reg-
ular topology. Also, the cells can be of varying types (i.e. tetrahedral and hexahedral cells 
mixed within a 3-dimensional unstructured grid). Even if all cells are of the same type, the 
number of neighbouring nodes can vary also for the inner nodes, as can clearly be seen in 
the lower right picture of Figure 2.5.

There exist also some hybrid grid types, for example block-structured grids. These are 
unstructured compositions of structured sub-grids (as shown in Figure 2.5, bottom left). 
In the following chapters, we will only treat the case of pure unstructured grids, which lack 
any type of implicit structure. They build the most general type of unstructured grids and 
therefore also comprise the block-structured ones.

hexahedraltetrahedralquadrangulartriangular

i j k, ,( ) x y z, ,( )
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FIGURE 2.5 Different grid types used in visualisation (2D representation, cells are shaded).
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2.3 DATA FIELDS

A CFD (Computational Fluid Dynamics) dataset is usually defined on a 2- or 3-dimen-
sional grid and contains an n-dimensional data vector of real numbers for every grid node. 
The sources for these n-tuples are also called data channels. Some of the values are just sca-
lar, some of them are defined as components of vectors, such as the velocity of the flow. 
In the following, we give a short overview of the most important types of vector fields and 
scalar fields originating and derived from CFD datasets. We will refer to these definitions 
when explaining flow visualisation techniques in the next chapter.

2.3.1 Vector Fields

Since CFD datasets are generally computed using physical models like the Navier-Stokes 
equations, the most common vector field stored for each node is the velocity field. Until 
further notice, we will assume that the flow is steady, i.e. the CFD dataset is given for only 
one point of time and the flow can be regarded as constant. Furthermore, we will assume 
a discrete 3-dimensional computational grid. The flow fields are then defined in a contin-
uous 3-dimensional Cartesian  coordinate system, regardless of the fact whether the 
underlying grid is structured or unstructured. The velocity  of the flow at an arbitrary 
location  in computational space is defined component-wise as

, (2.1)

where each component marks the flow velocity in the corresponding spatial direction. If 
the point  is one of the grid nodes, its velocity and other data fields are directly 
given in the dataset. However, if the point  lies in the interior of a grid cell, an 
interpolation scheme is necessary to evaluate the data fields at this point. On 2-dimen-
sional grids, linear interpolation is common for triangular cells and bilinear interpolation 
for quadrangle cells. On 3-dimensional grids, mostly linear interpolation is used for tetra-
hedral cells and trilinear interpolation for hexahedral cells. In the following, we will only 
write the vector and scalar field variables and omit the  coordinates indicating that 
the data are defined as a continuous field rather than only on the grid nodes.

Each of the three velocity field components  defines a scalar field, the gra-
dient  of which can be computed as the vector of its first derivatives in every spatial 
direction. The velocity gradient tensor  is defined as the Jacobian of the velocity, that is 
the combination of the gradients for every of the three velocity field components:

. (2.2)

Note that this is not the Hessian matrix of the second derivatives of the velocity field - the 
notation  means that the  component was once derived along the  direction, so it 
is only a first derivative.
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The computation of spatial derivatives is not trivial for a data field which is not analyt-
ically given, as is the case on a discrete grid. A discretised differentiation operator is neces-
sary, the complexity of which strongly depends on the grid type. For a uniform grid, a 
simple operator like the symmetric difference operator [Ste93] is sufficient, which is stored 
in a  matrix if the grid is 3-dimensional.

For an unstructured grid, however, symmetric differences are no suitable way since the 
number of neighbouring nodes is not constant for every node, and the distances between 
the nodes also differ. One possibility is to use a weighted difference operator on a k-neigh-
bourhood of each node. Such a scheme can also be applied when computing higher deriv-
atives such as the Laplacian, as was proposed by Taubin [Tau95] and refined by Desbrun 
et. al. [DMSB99]. They use an umbrella operator for smoothing triangular surface meshes, 
which we will apply to the postprocessing of vortex hulls later in Chapter 6.

Alternatively, a polynomial can be fit into the neighbourhood of each node to compute 
its spatial derivatives. Since this method is computationally quite expensive, we chose a 
least-square-fit among the one-neighbourhood of a node. This method is relatively easy to 
implement since the one-neighbours are directly accessible through the edge information 
of the grid. In Chapter 5, we will see that the accuracy of the method is sufficient even for 
higher-order derivatives, provided that the underlying datasets could be presmoothed.

The vorticity vector  indicates the local rotation of the flow and is defined as the curl
of the velocity vector. Its length is a measure for the rotational speed, whereas its direction 
shows the rotational axis (assuming that the rotation is right-handed). For the vorticity 
computation, six out of the nine components of the velocity Jacobian are needed:

. (2.3)

The velocity Jacobian is also contained in the acceleration  which each particle in the flow 
experiences:

. (2.4)

In contrast to the velocity, the pressure  is no vector but only a scalar field, thus the pres-
sure gradient  w.r.t. the three spatial directions is a vector written as

. (2.5)

The pressure Hessian matrix  contains the second derivatives of the flow pressure:

. (2.6)
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It is also possible to multiply the Hessian and the gradient of the pressure, resulting in a 
vector field which we will call the pressure Hessian times pressure gradient . 
This vector field will be needed for the Miura/Kida definition [MK96] of a vortex (see 
Chapter 3):

. (2.7)

2.3.2 Scalar Fields

The most common scalar field contained in CFD datasets is the pressure field. For any 
node of the CFD grid, the pressure has been measured or computed by a flow simulation, 
as has been for the velocity. In combination with a suitable interpolation scheme, one can 
define the pressure  for an arbitrary point location :

. (2.8)

Another important scalar field is the helicity , which is the inner product of two vectors, 
namely the velocity and the vorticity (which itself is derived from the velocity):

. (2.9)

There is also a different version called the normalised helicity , based upon the normalised 
velocity and vorticity ( ) rather than the original vectors. Since the dot product of two 
normalised vectors is equal to the cosine of the angle enclosed by them, the normalised 
helicity field indicates for every location “how parallel” the velocity and vorticity are:

. (2.10)

Roth and Peikert [Rot00] define two additional scalars which are useful for estimating the 
relevance of a detected vortex structure (namely a vortex core line, see Section 3.4.2). They 
presented the parallel vectors operator, which postulates that two certain vectors should be 
parallel or antiparallel on such a vortex core line. For a point on a vortex core line com-
puted by the parallel vectors operator, the feature quality is defined using the angle between 
the velocity and the tangent to the core line at this point (see Section 5.2.5 for further 
explanations).

The vortex strength is an indicator of how fast the flow locally rotates around a certain 
point, e.g. on a vortex core line. For a 2-dimensional flow, a vortex occurs as a critical point 
in the 2D plane, forming a spiral pattern. In this case, the  matrix of the velocity gra-
dient (which is the Jacobian of the 2D velocity field) has two conjugate complex eigenval-
ues, the absolute value of the imaginary part of which is the vortex strength.
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Since the flow is swirling around the vortex core line also in 3D, a spiral pattern is to 
be expected in the 3D case, too. But the spiral will occur in a plane which is perpendicular 
to the core line (see Figure 2.6). The core line direction and the velocity at the core line 
are almost equal (the feature quality is near one on the core line), so the velocity direction 
can be chosen for an approximation of the rotational axis.

FIGURE 2.6 Definition of vortex strength in a plane perpendicular to the core line (vortex visualised 
by streamlines and LIC method, see Section 3.2). Image courtesy of ETH Zurich.

The velocity can now be projected to a plane perpendicular to the velocity direction by 
using the velocity gradient (Jacobian) of the 3D domain. If f and g are normalised basis 
vectors of the perpendicular plane, and

(2.11)

, (2.12)

then the projected velocity matrix computes to

, (2.13)
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and the absolute value of the imaginary part of its eigenvalues yields the vortex strength.

At first glance, the vortex strength is only locally defined in the vicinity of a vortex core 
line. However, since the definition only depends on the velocity field and its gradient, it 
can be applied to every point of the computational domain, so the strength field is globally 
available for evaluation. The definition also makes sense outside the vortex regions, for if 
the eigenvalues of the projected velocity matrix are real numbers, the vortex strength is set 
to zero.

In this chapter, we gave a synopsis of basic flow visualisation terms, such as the most 
common grid types and data fields. Based on the definitions given here, we will in the next 
chapter describe a few basic computational techniques for flow visualisation, which were 
part of the algorithms developed for this thesis and presented in Chapter 5 to Chapter 7.
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3FLOW VISUALISATION TECHNIQUES

In this chapter, we will give a short overview on several basic techniques for flow visuali-
sation, most of which were used as ingredients for the algorithms and methods presented 
in the later chapters of this thesis. We will discuss here a few representatives of the flow 
visualisation categories mentioned in Section 2.1.3, namely of the direct, integration-
based, region- and feature-based flow visualisation techniques.

3.1 DIRECT TECHNIQUES

As described in Section 2.1.3, direct visualisation techniques are computationally inexpen-
sive, since they merely just evaluate the flow data and use simple glyphs for depicting the 
flow behaviour. Among the most common representatives of direct techniques are arrow 
plots (also called hedgehog plots) and colour coding of scalar data (like pressure, temperature 
or velocity magnitude of the flow). Both of them can also be combined and are mostly per-
formed in two spatial dimensions.

3.1.1 Arrow and Hedgehog Plots

The probably most direct and intuitive visualisation method, at least for 2-dimensional 
flows, is to draw for every grid node an arrow indicating the velocity vector at this location
[BCE92]. The arrow direction and the arrowhead indicate the direction of the flow veloc-
ity at the current node. The length of the arrow can be used for displaying the magnitude 
of the velocity vector, i.e. the speed of the flow.

However, this leads to very different arrow lengths among the grid nodes, which can 
disturb the visual perception: points of low velocity (e.g. near a critical point where the flow 
velocity is zero) might yield too short arrows which are hardly visible. On the other hand, 
points of high velocity might have too long arrows which cross each other, leading to a 
clutter of lines (see Figure 3.1, left).
21
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To circumvent this problem, the arrow lengths can be kept constant by normalising the 
flow velocity vectors (Figure 3.1, right). Of course this leads to a loss of information, and 
at the latest when it comes to the visualisation of 3-dimensional flow, additional problems 
like occlusion arise. Furthermore, the projection from a 3D scene to a 2D image can also 
mislead the perception of the viewer. Therefore arrow plots are hardly used for 3D flow 
visualisation.

FIGURE 3.1 Arrow plots. Left: length proportional to velocity, right: constant length.

3.2 INTEGRATION-BASED TECHNIQUES

Also directly working on the physical flow data like velocity, these techniques differ from 
direct techniques in that they interpret the flow as a movement of particles rather than just 
evaluating the flow fields at fixed grid points. This requires the use of calculus methods, 
such as integrals for solving differential equations, and also interpolation methods for field 
evaluation, since the particles most of the time are located in the interior of grid cells.

3.2.1 Streamlines and Particle Tracing

To visualise the continuous nature of a (2- or 3-dimensional) flow field, streamlines can be 
computed based on the physical information contained in the flow [BCE92]. Let  be an 
arbitrary particle in a steady flow, which starts at time  at the seed point . The initial 
condition of the particle movement is therefore

, (3.1)

and the movement of the particle fulfils the ordinary differential equation

(3.2)

where the velocity of the particle depends on its current location in the constant flow field. 
The trajectory of the particle can therefore be integrated forward. This is mostly done by 
discretising the differential equation and applying explicit or implicit solution methods. A 
typical example is the Euler method, which is a first-order approximation since it is based 
upon a first-order Taylor series to discretise the differential equation.

A forward integration step is made by evaluating the velocity at the current particle 
location, computing the displacement of the particle during one time step, and updating 

P
t0 x0

x t0( ) x0 t0 IR x x0, IR3∈,∈( )=

x· t( ) dx t( )
dt------------- v x t( )( ) t IR x v, IR3∈,∈( )= =
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the location of the particle. By inverting the sign of the time step, is also possible to inte-
grate backward the motion of the particle.

More accurate results can be obtained by decreasing the time step (which leads to rap-
idly increasing computation times) or by the use of higher-order methods such as the 2nd 
order Heun method or the classic 4th order Runge-Kutta method [Sch97]. Alternatively, 
the differential equation can be solved by implicit rather than explicit methods. This 
requires in every step the solution of a linear equation system but allows greater time steps, 
which also leads to more numerical stability.

While integration in physical space is straightforward, evaluating the velocity field is 
nontrivial for non-uniform or even unstructured grids, since it requires the identification 
of the cell the particle is currently located in, and of its local coordinates within that cell. 
The stencil walk algorithm by Buning [Bun89], for example, starts at the midpoint of a 
cell for iteratively searching the point position in computational space, using Newton’s 
method (see also the book chapter on particle tracing of Sadarjoen et al. [SvWHP97]).

Streamlines are a very natural and obvious method to depict the continuous nature of 
a flow (see Figure 3.2). However, they mostly tend to get unevenly distributed even when 
being started at equidistant seed points. To cope with this problem, methods were devel-
oped for optimised automatic streamline placement, such as the methods by Turk/Banks 
[TB96], Jobard/Lefer [JL97], and Telea/vanWijk [TvW99].

FIGURE 3.2 Streamlines indicating a vortex at the stay vanes of a water turbine 
(image courtesy of VA Tech Hydro Zurich and of ETH Zurich).
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3.2.2 Path Lines and Streaklines

For time-dependent flow fields, it is also possible to compute path lines and streaklines, in a 
similar manner to streamlines. The difference for path lines is that for unsteady flow, the 
velocity field is updated at every time step, so the velocity evaluation is not only depending 
on the current particle location  but also on the current integration time :

(3.3)

The difference for streaklines is that for unsteady flow, several different particles are started 
at the same seed point but consecutively at different points in time.

FIGURE 3.3 Stream surfaces indicating a vortex at the stay vanes of a water turbine 
(image courtesy of VA Tech Hydro Zurich and of ETH Zurich).

Streamlines from different seed points can be combined to stream surfaces by connecting 
sets of particle locations of the same time to polylines (see Figure 3.3). They are described 
in more detail in the work of Hultquist [Hul90, Hul92], in the article by Post and van 
Wijk [PvW94] and in the paper of Garth et al. [GTS+04].

3.2.3 Line Integral Convolution

A further alternative is the use of Line Integral Convolution (LIC), which was presented by 
Cabral and Leedom [CL93] and improved by Stalling and Hege [SH95a, BSH97]. It 
combines integration-based with texture-based methods by smoothing a noise image 
along streamlines, resulting in a picture where the streamlines appear as smears (see 
Figure 3.4).

x t( ) t

x· t( ) dx t( )
dt------------- v x t( ) t,( ) t IR x v, IR3∈,∈( )= =
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The original LIC algorithm works as follows: a streamline can be uniformly reparame-
trised using the arc length s of its curve rather than the integration time t. As a consequence 
of this, the ordinary differential equation (3.2) transforms to

(3.4)

where the velocity is normalised, leading to equidistant sample points on the computed 
streamline. For a given streamline  and position , the intensity value  
of a pixel in the result image is then calculated by the convolution integral

(3.5)

where  is a one-dimensional scalar weighting function (a filter of length 2L applied along 
the streamline, starting from the pixel position) and  is a 2D texture image (usually white 
noise) of the same resolution as the result image. Since the result image is a grey-level one, 
colours can be used to display additional information like the velocity magnitude.

Line Integral Convolution is mostly applied for 2D images, for the same reasons as 
arrow plots. In the example image, a 3D dataset was underlying and the 3D perception 
problem was solved by taking a cross-section of the grid and mapping the third velocity 
component onto that plane using the colour of the streamlines. However, there are also 
3D LICs possible using volume rendering techniques, as were suggested by Interrante and 
Grosch [IG97, IG98].

FIGURE 3.4 Line Integral Convolution image for guide and stay vanes of a water turbine 
(image courtesy of VA Tech Hydro Zurich and of ETH Zurich).
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3.3 REGION-BASED TECHNIQUES

A completely different approach to visualise a flow behaviour is to restrict the interest to 
certain regions of the flow. Flow-relevant features like vortices can then be defined as con-
nected sets of 3D points in the computational domain. This set of points often represents 
a closed surface bounding a volume surrounding the feature, e.g. a hull surrounding a 
vortex core line (see Chapter 6).

3.3.1 Isosurfaces and Vortex Hulls

Such a region-of-interest (ROI) of the flow can, for instance, be limited by an isosurface of 
one of the scalar fields mentioned in Section 2.3.2. A common choice for the scalar field 
is the absolute value of the flow vorticity. One can assume that in the interior of a vortex, 
the vorticity magnitude is high and must lie above a predefined scalar threshold (see the 
article of Zabusky et al. [ZBP+91]):

(3.6)

Rather than taking the vorticity magnitude to define the boundary isosurface of the vortex,
one can also use helicity (which is derived from vorticity and velocity, see Section 2.3.2):

(3.7)

or alternatively the normalised helicity:

(3.8)

Another variant is to assume that there is a pressure minimum in the interior of a vortex:

(3.9)

Computationally more expensive is the so-called lambda2 method [JH95], which for a cer-
tain location decomposes the Jacobian matrix  into its symmetric part  and antisym-
metric part  and computes the three real eigenvalues  of the symmetric matrix 

. A vortex is regarded as a region where at least two eigenvalues are negative, so if 
, the boundary isosurface should enclose all points with

(3.10)

However, all of these purely isosurface-based methods have in common that they are not 
suitable for reliably detecting the vortices in a typical turbomachinery flow, since the vor-
tices of these are in general weak structures and not isolated from each other very well, as 
was shown by Roth and Peikert [RP96, Rot00] in the context of curved vortices in a bent 
flow (see Figure 3.5). Furthermore, the scalar threshold criterion is often met at the 
boundaries of the grid, so the isosurface method tends to produce false positives (e.g. vor-
ticity is often maximal at the grid boundary due to strong shear, see Figure 3.6).

Therefore a combination of scalar thresholding with feature-based techniques is more 
promising. One possibility is to firstly extract line-type features, such as vortex core lines
(see Section 3.4.2 and Chapter 5), and then build growing surfaces surrounding the fea-
tures [BP02], such as vortex hulls. We developed a suitable implementation of such vortex 
hulls for unstructured grids, which will be described in detail in Chapter 6 of this thesis.
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FIGURE 3.5 Lambda2 isosurfaces in a Francis turbine showing connected components 
(image courtesy of VA Tech Hydro Zurich and of ETH Zurich).

FIGURE 3.6 Vorticity isosurface in a Francis turbine showing false positive at grid boundary 
(image courtesy of VA Tech Hydro Zurich and of ETH Zurich).
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3.4 FEATURE-BASED TECHNIQUES

As previously explained in Section 2.1.3, there are several good reasons for visualising flow 
fields on a more abstract level, namely by extracting features of the flow. Such features can 
be described in a topological way, for instance using 0-dimensional point-type features or 
1-dimensional line-type features. These have been defined in literature using various crite-
ria, mostly based upon the vector and scalar fields contained in the flow data. We will in 
the following give some explanations to both techniques and later in Chapter 5 concen-
trate on line-type features.

3.4.1 Vector Field Topology and Critical Points

If the underlying flow field is a 2-dimensional vector field, e.g. containing the velocities at 
the grid points, the vector field can be linearised or regarded as linear in each cell (e.g. by 
subdivision of quadrangular cells into triangular ones and subsequent linear interpolation 
of the vectors within the triangular cells, see also Section 5.2.4).

Helman and Hesselink [HH89, HH91] introduced the concept of topological analysis
of 2D linear vector fields. They detected and classified the critical points of a flow, which 
are the isolated points where the velocity field is zero (provided that , see 
below). The key is to compute the eigenvalues and eigenvectors of the velocity gradient (see 
Section 2.3.1) at these points. We assume a linear vector field

, where (3.11)

(3.12)

is the Jacobian of the velocity. Solving its characteristic equation

, (3.13)

, or simply (3.14)

(3.15)

yields the eigenvalues

(3.16)

where the discriminant of the characteristic equation is

. (3.17)

We can now distinguish between the cases shown in Table 3.1, depending on the trace 
and determinant of the velocity Jacobian, and on the discriminant of its characteristic 
equation. The trace of the velocity Jacobian is equal to the flow divergence.
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focus source center focus sink

node focus source node focus sink

node source node sink

 
(not a critical 
point)

line source shear line sink

saddle source saddle div.-free saddle sink

TABLE 3.1         Different cases of velocity gradient eigenanalysis and vector field topology 
(table according to Peikert [Pei03], images courtesy of ETH Zurich).

trace A( ) 0> trace A( ) 0= trace A( ) 0<
discr A( ) 0< det A( ) 0>

discr A( ) 0= det A( ) 0>

discr A( ) 0> det A( ) 0>

discr A( ) 0> det A( ) 0=

discr A( ) 0> det A( ) 0<
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The topology near a critical point can be of various shapes. For complex eigenvalues, a 
focus indicates a vortex spiralling around a rotational center (see also the definition of 
vortex strength in Section 2.3.2). For real eigenvalues, we obtain a node focus, node, line or 
saddle, the real eigenvectors then being asymptotes of the flow near the critical points.
Based upon the classification of the critical points, it is possible to construct a topological 
skeleton of separatrices connecting them, and thus to subdivide the domain into topolog-
ically homogeneous regions.

Vector field topology has widely been used for 2-dimensional flows (e.g. by Peikert 
[Pei03]) and also been extended to 3-dimensional flows (e.g. by Chong, Perry and 
Cantwell [CPC90, PC87, PC92], by Tobak and Peake [TP82] and by Soria and Cantwell 
[SC92]). However, high-resolution datasets of turbulent 3D flows can contain a large 
number of critical points, cluttering the flow topology image. To cope with this, de Leeuw 
and van Liere [dLvL99] proposed a multilevel topology analysis, removing structures of 
varying scales from the flow topology. A similar effect could be achieved by using a scale-
space representation of the flow data. Furthermore, line-type features are less prone to 
cluttering than isolated points. We will pursue both of these approaches in Chapter 4 and 
Chapter 5.

3.4.2 Vortex Core Lines and Parallel Vectors Operator

A line-type vortex definition assumes that the flow spirals around a (straight or bent) cen-
tral axis, which is called vortex core line. The main advantage of vortex core lines is that due 
to their thin shape, different vortices can clearly be separated from each other, which also 
makes feature tracking an easier task. Furthermore, a line-type feature has a clearly defined 
extent (since its thickness is mathematically zero, no termination criterion for the object 
boundary is necessary, as is for region-type methods like isosurfaces). And finally, core 
lines are more stable for they lie in the centre of the vortex, where the vortex is strongest.

A variety of vortex core line definitions can be found in literature, mostly based on the 
velocity or pressure field of the flow and their derivatives. Since some of the criteria were 
expressed by complex algorithms, the original versions are difficult to compare to each 
other. Remarkably, it is yet possible to reduce them to a common framework, which is a 
relatively simple computational scheme. 

This scheme was discovered by Roth and Peikert, who published it in 1999 as the par-
allel vectors operator [RP99]. In general, the concept means that any vortex core line 
defined by one of the mentioned vortex criteria can be computed as a set of points where 
two given vector fields u and w are parallel, or as a subset thereof:

(3.18)

This condition can also be written as

(3.19)

where the magnitude of the parameter  denotes the aspect ratio of the two vectors and 
its sign indicates whether they are parallel or antiparallel.

We will in the next sections describe five existing vortex core line definitions and show 
how they can be mathematically expressed by parallel vectors, as suggested by Roth 
[Rot00]. At the end of this chapter, we will give a systematic classification of the methods, 
their underlying vector fields and their embedding into the parallel vectors scheme.

u w u w, IR3∈( )||

u λw λ IR ∞– ∞,{ }∪∈( )=
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3.4.3 Vortex detection method by Levy, Degani and Seginer

Levy, Degani and Seginer define a vortex by means of the normalised helicity (see 
Section 2.3.2). Since this scalar is a dot product of two normalised vectors, namely the 
normalised velocity  and normalised vorticity  (see Figure 3.7), it is equal to the cosine 
of the angle enclosed by these two vectors, and thus it lies in the range of -1 to +1:

(3.20)

In their pioneering paper [LDS90], Levy et al. expect the normalised helicity to tend to 
one of these extremal values when approaching a vortex. The border case is equal to the 
assumption that the velocity and vorticity vector are parallel or antiparallel (i.e. they build 
an angle of 0 degrees or 180 degrees, respectively):

(3.21)

In spite of the fact that this criterion is sufficient for a line-type feature definition, Levy et 
al. use an algorithmic approach which computes slices with contour plots of normalised 
helicity. After manually locating sectional extrema of normalised helicity on these slices, 
they integrate streamlines starting at the extremum points to detect the vortices, assuming 
that the vortex core is a streamline itself.

This method, however, mixes the local definition of a normalised helicity extremum 
with the global definition of a streamline, which is not proper for general vector fields. A 
further drawback is the fact that the extraction of vortex core lines is not fully automated 
in their algorithm.

In contrast to the original paper, we will restrict ourselves to the parallel vectors crite-
rion of Equation 3.21 when referring to the Levy method. This approach not only is 
mathematically simpler but also has the advantage of including critical points into the 
vortex definition. Since velocity or vorticity can be zero at distinct locations even in a non-
degenerate flow field, the pure normalised helicity definition of Equation 3.20 fails in 
these cases because of division by zero when normalising the two vectors. By expressing 
the vortex criterion in terms of original velocity and vorticity, the parallel vectors operator 
avoids that problem.

FIGURE 3.7 Principle of the Levy method (sketch according to [Rot00]).
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3.4.4 Vortex detection method by Sujudi and Haimes

Sujudi and Haimes give an algorithmic definition of a vortex. In a technical report and a 
paper [SH95b, SH95c], they assume a tetrahedral grid for the computational domain of 
the flow. The velocity field can thus be linearly interpolated within every grid cell, and the 
velocity gradient is constant within every cell. The algorithm loops through all grid cells 
and computes this  Jacobian matrix and its eigenvalues for every cell. The case of 
three real eigenvalues is rejected since a vortex only appears where complex eigenvalues 
exist, analogously to the 2-dimensional case (see Peikert’s summary [Pei03]). In the case 
of only one real eigenvalue, its eigenvector is computed and the velocities for all four nodes 
of the current tetrahedron are projected onto a plane perpendicular to this real eigenvector. 
The linear field of these projected velocities has a straight line of zeroes. Intersecting this 
line with the tetrahedral cell potentially yields two intersection points on the triangular 
faces, which limit a line segment indicating a piece of a vortex core line (see Figure 3.8).

FIGURE 3.8 Principle of the Sujudi/Haimes method (sketch according to [SH95b] and [Rot00]).

This rather complex algorithm can be simplified as follows: As is evident from Figure 3.8,
the condition that on the vortex core line the projected velocity is zero is equivalent to the 
condition that the raw velocity is parallel or antiparallel to the real eigenvector. This, how-
ever, means that the raw velocity v is itself a real eigenvector of the original Jacobian J:

(3.22)

And this again means that the velocity vector is parallel to the product of Jacobian and 
velocity vector, which is the acceleration of a particle in the case of a steady flow field:

(3.23)

Similar to the Levy case, the Sujudi/Haimes vortex criterion can be formulated as a prob-
lem of finding parallels for two vector fields.
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3.4.5 Vortex detection method by Banks and Singer

Banks and Singer were the first researchers to present a vortex method which explicitly 
constructs vortex cores as line-type features. In a paper [BS94] and in a technical report 
[SB94], they propose a predictor-corrector scheme for extending a vortex core line. Once a 
point has been found on the vortex core line, the algorithm performs a small integration 
step to predict the next point on the vortex core line (see Figure 3.9). This integration step 
reminds of the Euler method for streamline integration but the difference is that the 
Banks/Singer method uses the vorticity rather than the velocity field for the integration.

The vorticity is then evaluated at the predicted point, and a plane containing the pre-
dicted point and perpendicular to its vorticity vector is established. The assumption is now 
that the vortex core is a region of low pressure , thus the pressure field projected to the 
plane has a local minimum, which marks the next point on the vortex core line. The local 
pressure minimum is thus computed and its location is used as the corrected point, pro-
vided that the corrected point is not too far away from the predicted one. Otherwise the 
algorithm stops and assumes that the end of the vortex core line has been reached.

FIGURE 3.9 Principle of the Banks/Singer method (sketch according to [SB94]).

The Banks/Singer method is obviously based upon the vorticity field and the pressure field 
of the flow. To be more precise, it steps along the vorticity and searches for local minima 
of pressure, assuming that the vorticity variation is small compared to the pressure varia-
tion. For decreasing step sizes, the method thus computes points where the vorticity is par-
allel to the pressure gradient:

(3.24)

Since the search for local minima of the (projected) pressure field is based on finding the 
zeroes of the (projected) pressure gradient, it also yields local maxima and saddle points. 
To restrict the results to local minima, a second criterion must be applied in addition to 
the parallel vectors operator, which excludes false positives. This can be achieved by check-
ing the Hessian (i.e. the second derivatives) of the pressure. Points are only minima when 
the two eigenvalues of the (symmetric) pressure Hessian are both positive.
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3.4.6 Vortex detection method by Miura and Kida

Miura and Kida proposed another method to find vortex core lines based on minima of 
pressure. In a paper [MK96], a technical report [MK97a] and several articles [MK97b, 
MK98a, MK98b, MK98c], they define a modified pressure, which is under certain con-
ditions equal to the pressure. Their algorithm computes for every grid node the pressure 
Hessian matrix, its eigenvalues  and eigenvectors  (since the Hessian 
is symmetric, all three eigenvalues are real). The coordinate system is then transformed to 
another one spanned by the three eigenvectors. Within the new system, the pressure can 
be quadratically approximated w.r.t. the local coordinates  by the scalar function

(3.25)

which has a local extremum at the centre point . For a pressure minimum, 
 and  are both positive, and the graph of the pressure function is an upward opening 

paraboloid. On any plane parallel to the plane spanned by the eigenvectors  and , the 
graph of the projected pressure p is a parabola and minimal on a straight line through C 
and aligned with the  direction (see Figure 3.10). The point on this straight line closest 
to the grid node Q is chosen for the next point R on the vortex core line, provided that the 
distance does not exceed a certain threshold depending on the cell size. At the end, the iso-
lated core line points are connected to polylines using a nearest neighbour heuristic.

FIGURE 3.10 Principle of the Miura/Kida method (sketch according to [MK96] and [Rot00]).

This rather complex algorithm can again be expressed by a simpler formulation. Roth 
[Rot00] shows that by picking points on the predicted line of sectional pressure minima, 
the Miura/Kida method tracks exactly the valley lines of pressure. These are the places where 
the pressure gradient is an eigenvector of the pressure Hessian. At the vortex core line, the 
product of the pressure Hessian and the pressure gradient must therefore be parallel to the 
pressure gradient:

(3.26)

Again, the vortex criterion could be expressed by the local parallelism of two vector fields.
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3.4.7 Vortex detection method by Strawn, Kenwright and Ahmad

Similar to the Miura/Kida method which seeks local pressure minima, it is also possible to 
search for local extrema of other data fields of the flow. In the context of aeronautics, 
Strawn, Kenwright and Ahmad [SKA98, SKA99] suggested the computation of local 
maxima of vorticity magnitude to find the centre lines of vortices. Their implementation 
assumes a structured hexahedral grid where the vorticity, vorticity magnitude and its gra-
dient have been precomputed for all nodes using central differences.

The algorithm loops through all interior grid cells and treats all six faces for every cell. 
For a certain face, a  nodal patch is defined containing the four corners of the face 
and 12 neighbouring nodes (see Figure 3.11). The vorticity magnitude of these 16 nodes 
is compared and the central face only considered a candidate if the node with greatest vor-
ticity magnitude is a face corner. In this case, the exact location of the maximum on the 
face is determined by bilinear interpolation of the vorticity magnitude gradient on the face 
and computing the zeroes of the 2D gradient restricted to the face plane.

FIGURE 3.11 Principle of the Strawn/Kenwright/Ahmad method (sketch according to [SKA98]).

The use of cell faces for calculating the local maxima is an approximation. Actually, the 
goal is to find the maximum lines of vorticity in the flow, i.e. the set of points where the 
vorticity magnitude  is maximal in a plane containing the point and perpendicular to 
the vorticity . Since for a maximum point, the 2D gradient of vorticity magnitude in 
this plane is zero, the 3D gradient is normal to the plane and thus parallel to the vorticity:

(3.27)

Of course we can also maximise the square of vorticity rather than its magnitude to find 
the maximum points. And since , we get the vortex criterion

(3.28)

The vorticity must be parallel to the product of transposed vorticity gradient and vorticity.
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3.4.8 Mapping of vortex criteria to Parallel Vectors Operator

As has been shown in the previous sections, the various vortex definitions seem at first 
glance to be completely different from each other, but can all be expressed using the par-
allel vectors operator scheme [RP99]. Table 3.2 summarises the different vortex criteria, 
the vector fields they are based on, and their assignment to the input fields of the parallel 
vectors operator. 

In Chapter 5, we will discuss algorithms for extracting and tracking vortex core lines, 
which were implemented using the parallel vectors operator. Due to the generality of the 
approach, there are additional vortex criteria in literature suitable for this formulation. It 
is thus relatively easy to implement additional vortex criteria by just setting up the required 
vector fields and using the existing parallel vectors framework.

Authors 1st vector field symbol 2nd vector field symbol

Sujudi/Haimes velocity acceleration 
of fluid particle

Levy/Degani/Seginer velocity vorticity

Strawn/Kenwright/ 
Ahmad

transposed 
vorticity gradient 
times vorticity

vorticity

Banks/Singer pressure gradient vorticity

Miura/Kida pressure gradient pressure Hessian times 
pressure gradient

TABLE 3.2         Different vortex criteria and their parallel vectors representation 
(table entries rearranged for better overview of common vector fields).
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4SCALE-SPACE TECHNIQUES

When doing physical measurements or observations of real-world objects, it is impossible 
to get a perfect representation of the sampled data because the “aperture” of the observa-
tion instrument (e.g. a human’s eye or a photo camera) cannot be varied arbitrarily, thus 
the image resolution is limited to a certain range of scales. The necessity of regarding sev-
eral levels-of-detail when investigating datasets gained from physical measurements led to 
the development of so-called multi-scale and multi-resolution representations. These data 
representations have widely been used for image processing since the beginning of the 
1970s, but it is no trivial task to relate image structures across different levels of scale, nor 
to distinguish significant image features from noise.

A major breakthrough was the introduction of the scale-space theory by Witkin and 
Tenenbaum [Wit83, WT83] and by Koenderink [Koe84] in 1983/84. They define the 
inner scale as the smallest level-of-detail we can resolve and represent in our input data (e.g. 
one cone or rod of our retina, or one image pixel), the outer scale as the largest possible 
structure (e.g. our field of view, or the whole image).

In this chapter, we give an overview of some important data representations dealing 
with different levels of resolution or scale. After sketching the multi-resolution and multi-
scale techniques, we present the scale-space representation and its special properties, along 
with some application examples from image processing and computer vision. The use of 
scale-space methods for flow visualisation is also motivated.

At the end of this chapter, several methods for computing the scale-space representa-
tion on different grid types are discussed and compared. One challenge in the field of flow 
visualisation is the use of unstructured grids originating from CFD simulations. As a first 
major contribution of this Ph.D. thesis, we will therefore present a method for computing 
the (linear isotropic) scale-space representation for unstructured grids.
37
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4.1 MULTI-RESOLUTION AND MULTI-SCALE REPRESENTATIONS

There are several reasons for constructing multi-resolution and multi-scale data represen-
tations in the sciences. Unfortunately, both terms have often been used interchangeably in 
literature. To avoid any confusion, we will therefore strictly use the term multi-resolution
if the representation is based on data with different spatial resolutions for different scale 
levels, and multi-scale if the data has got the same spatial resolution at every scale level.

What is common to both types of data representations is the need for several levels of 
detail or scale, respectively. For example, regard the fundamental problem of edge detec-
tion in image processing. Figure 4.1 shows a cross-section through an object boundary in 
a 2D image. The black dots represent the grey-level values sampled along the cross-section 
direction. In order to extract an edge, gradients have to be computed by discrete approxi-
mation of the first derivative of the grey-level function along the cross-section. The differ-
ent slopes of the straight lines indicate that the result of the first derivative estimation 
strongly depends on the size of the support of the difference operator and thus on the scale 
of observation.

The dotted line, which marks the slope computed from two directly neighboured grey-
level values, seems to be only a product of noise and thus to be useless. However, even the 
dashed line does not certainly mark the slope of the “edge”, because it could also be noise 
superimposed to a bigger structure on a coarser scale. In this case, the continuous line 
might yield a better approximation for the slope of the edge. Since we have in general no 
a-priori knowledge about the size of the features of a given data signal, it is necessary to 
regard all levels of scale, or at least a wide range of different scales.

FIGURE 4.1 The basic scale problem, as it occurs in the task of edge detection 
(sketch according to Lindeberg [Lin94]).
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4.1.1 Multi-resolution data representations

Multi-resolution techniques, such as quad-trees [Kli71], pyramids, multi-grid methods 
[Hac85] and wavelets, are especially useful for the task of data compression, which reduces 
storage requirements and transfer times on networks. A typical example is the pyramid of 
a 2D image, a concept which arose during the 1970s. Beginning with the original image, 
a set of images with exponentially decreasing size is constructed by successively smoothing 
and subsampling (see Figure 4.2). In the simplest case, the original image is a squared one 
with  pixels. The size of every subsequent image decreases by a factor of 2 in every 
dimension, thus by 4 in the 2D image case. Every pixel of the smaller image is computed 
from a certain neighbourhood in the previous image, e.g. by averaging 4 pixels of the cor-
responding position in the larger image. In the one-dimensional case, this reduce operation 
can recursively be written as

(4.1)

where  represents the original image and  stands for a weighting function which 
is the filter mask of the discrete convolution. Rather than just averaging (which leads to 
severe aliasing problems), more sophisticated filter masks can be applied, like a binomial 
filter with weights (1/4, 1/2, 1/4) for every dimension. The binomial filter is a discrete 
approximation of a Gaussian filter, since its weights are all positive, symmetric to the 
centre of the filter and sum up to 1. Repeated application of such a discrete smoothing 
filter successively suppresses high image frequencies and therefore leads to a low-pass pyr-
amid, which was proposed by Burt [Bur81] and Crowley [Cro81] at the beginning of the 
1980s. By regarding the difference between two adjacent levels in a low-pass pyramid, one 
obtains a bandpass pyramid, which is also called Laplacian pyramid or difference of low-pass 
pyramid (DOLP). Such bandpass pyramids have widely been used for feature detection 
and data compression.

FIGURE 4.2 Multi-resolution (pyramid) representation of a two-dimensional image 
(sketch according to Lindeberg [Lin94]).
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An advantage of bandpass pyramids is that they do not lose detail information at each 
subsampling step, but store the details in addition to the smoothed data. The original data 
can then be reconstructed from a coarser resolution level by an expand operation, which is 
the inverse of the reduce operation. A similar mechanism is part of the wavelet approach, 
which was introduced by Daubechies [Dau88] and for instance used in conjunction with 
volume rendering by Lippert [Lip98] and surface/volume compression by Staadt [Sta01]. 
In contrast to Laplacian pyramids, (orthogonal) wavelets provide a critical sampling of the 
data, i.e. there is no redundancy between data at different resolution levels.

The main advantage of pyramid representations is that the image size rapidly decreases, 
reducing both the memory requirements and the computational effort of the pyramid 
construction and subsequent algorithms. This allows for progressive transmission, which is 
especially important for transferring multimedia structures like images and movies over 
networks. Pyramids are constructed from an algorithmic process, which makes theoretical 
analysis more difficult in comparison to a representation based on purely analytic formu-
las. For our purposes, multi-resolution techniques would not be an optimal choice because 
pyramids correspond to a quite coarse quantisation along the scale dimension, which 
might not be sufficient for relating and tracking features across scales. Also, the loss of 
detail due to reduced spatial resolution is not always tolerable, as we will see in Section 4.5.

4.1.2 Multi-scale data representations

Multi-scale techniques define a one-parameter family of signals which also are derived 
from the original signal by a smoothing process, which successively suppresses fine-scale 
information (see Figure 4.3). In contrast to the multi-resolution approach, the resolution 
here is kept equal for all levels of scale, leading to a stack of images rather than a pyramid.
Furthermore, the smoothing operation must not necessarily be formulated algorithmically 
but can also be expressed using mathematical formulas dealing with continuous functions, 
as we will see later. This makes it possible to overcome the discrete scale levels of the multi-
resolution scheme by admitting real numbers for the scale parameter.

FIGURE 4.3 Multi-scale representation of a two-dimensional image 
(sketch according to Lindeberg [Lin94]).
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The multi-scale approach not only provides a framework for accessing arbitrary levels of 
scale but also simplifies the implementation of many numerical algorithms for feature 
extraction, since these often require the numerical computation of derivatives. To cope 
with the roughening effect of these derivatives, some amount of smoothing is necessary.
Since for the multi-scale representation the underlying data have already been smoothed,
no smoothing functionality needs to be integrated into the feature extraction algorithms, 
easing their implementation and enhancement. In the next section, we will propose the 
scale-space concept as a multi-scale representation with unique and canonic properties, 
which are advantageous for many application fields.

4.2 SCALE-SPACE CHOICE AND PROPERTIES

In the previous section, we explained the basic structure of a multi-scale representation of 
2D image data. This concept can also be extended to higher dimensions and other data 
structures. For reasons of simplicity, we will keep the term “image” until the introduction 
of specific flow visualisation needs in Section 4.5.

The question arises what type of filter is most appropriate for the smoothing operation to 
build a coarse-level image from its predecessor in the multi-scale image stack. A natural 
choice for the smoothing kernel would be a Gaussian filter. The crucial point was shown 
by Florack et al. [FtHRKV92]: The convolution of an -dimensional data signal  
with the -dimensional Gaussian kernel

(4.2)

where

(4.3)

holds for the scale level  in relation to the standard deviation , is the unique family of 
“aperture” functions to meet the following requirements:

• Linearity: 
Applying the smoothing function can be interchanged with adding two datasets or 
multiplying a dataset with a scalar. (This means that, for instance, if an original image 
has been smoothed and its grey level values shall later be stretched by a linear transfor-
mation, the computationally expensive convolution operation needs not to be done 
again - stretching the grey level values of the smoothed image results in the same 
image as smooting the image after stretching its grey level values.)

• Shift invariance: There is no preferred location of an image structure or feature.

• Scale invariance: There is no preferred size of an image structure or feature.

• Isotropy: There is no preferred direction for an image processing operator.

• Semigroup (cascade smoothing) property: 
The set of smoothing functions forms a commutative semigroup w.r.t composition (a 
semigroup is closed under the operation, is associative and has a zero element). This 
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means that an image at a coarse scale  needs not necessarily to be computed directly 
from the original image at scale zero with the large scale parameter  and its wide 
Gaussian kernel support. It can alternatively be computed from an already smoothed 
image at a medium scale level  by applying a Gaussian kernel for the reduced scale 

, the smaller support of which makes the convolution computationally less 
expensive.

• Non-creation and non-enhancement of local extrema: 
New image structures like local extrema (for any order of derivative) are not created 
but can only disappear when increasing the scale level. Furthermore, existing local 
extrema cannot be enhanced but only diminished with increasing scale. Since the con-
volution with a Gaussian kernel can also be interpreted as solving the isotropic diffu-
sion (heat) equation (see Section 4.6), a physical interpretation of this property can 
also be given: A hot spot on a finite domain (e.g. a 1-dimensional metal stick as in 
Figure 4.4) will not become hotter but cool down with increasing time, and a cold 
spot will warm up till it has reached the equilibrium temperature of the domain.

FIGURE 4.4 Non-creation of local extrema (application to a 1-dimensional signal) 
(sketch according to Lindeberg [Lin94]).

Based on these requirements, a linear scale-space representation can be defined by adding 
an additional scale axis (corresponding to the standard deviation of the Gaussian kernels) 
to the spatial axes of the computational domain. A formal definition of the linear scale-
space will be given in Section 4.6.

Nonlinear scale-spaces can be obtained by relaxing some of the requirements. A famous 
example is Perona and Malik’s scale-space based on anisotropic diffusion, which supports 
operators for edge detection [PM87]. Diewald, Preusser and Rumpf [DPR00] also use ani-
sotropic diffusion to smooth images while preserving their edges. Their method is 
restricted to uniform grids. We will in the following restrict ourselves to the isotropic linear
scale-space, since it better fits to our needs for flow feature detection (see Section 4.5).
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4.3 RELATION OF SCALE-SPACE TO FOURIER THEORY

Although we regard the scale-space representation as a stack of images where every image 
has the same spatial resolution, we could in practice reduce the memory requirements by 
storing “smoother” images with less resolution. (In our case, we avoided this because for 
unstructured grids, it would have induced additional complexity, see Section 4.7). Let us 
compare the scale-space construction in the spatial domain and in the Fourier domain, 
there represented by frequencies. For reasons of simplicity, we restrict ourselves to 1-
dimensional signals. We assume that the original signal  is continuous and band-lim-
ited, having a Fourier transform  with a maximum frequency , and that it has 
been sampled to a discrete signal. The sampled signal is not band-limited but has a peri-
odic spectrum. However, we only need the “core spectrum” in the range of 
to reconstruct the signal, since the other frequencies are copies of the core spectrum and 
thus redundant. If the original signal was sampled above the Nyquist frequency
( ) due to Shannon’s sampling theorem [Sha49], these copies do not 
overlap. For an ideal reconstruction of the signal, we can use a box filter in the interval 

. Due to the convolution theorem, a convolution of two signals in the spatial 
domain corresponds to a multiplication of the signals in the frequency domain. Multiply-
ing the Fourier transform of the original signal with the rectangular box filter corresponds 
to convolving the original signal in the spatial domain with a sinc function of type

 , (4.4)

because the sinc function is the Fourier transform of a rect function and vice versa (see 
Figure 4.5). Of course the sinc function deviates from the Gaussian used for constructing 
the scale-space. On the other hand, the shape of the sinc function is similar to the bell 
shape of the Gaussian kernel. Both filter kernels are axisymmetric, have infinite support 
and a maximum at the symmetry axis , and converge towards zero if  tends 
towards infinity. The Fourier transform of a Gaussian kernel is again a Gaussian and thus 
a non-ideal low-pass filter (see Figure 4.6). The standard deviation  of the spatial Gaus-
sian is reciprocal to the standard deviation  of its counterpart in the frequency domain:

. (4.5)

This uncertainty relation is closely related to the famous one from the field of quantum 
physics (Werner Heisenberg, 1927) dealing with location and momentum of a particle. In 
our case, the uncertainty relation says that the broader the Gaussian is in the spatial 
domain, the narrower it is in the frequency domain and vice versa (see Figure 4.6). This 
also matches our intuition because a smooth spatial function (wide Gaussian filter kernel, 
large ) must have low frequencies (small  and thus a small ).

In contrast to a box filter, the Fourier transform of a Gaussian has unlimited frequen-
cies, but we can truncate it using the three sigma rule, which says that nearly all values (99.7 
percent) occurring in a Gaussian distribution lie in the interval , where  is the 
standard deviation. The truncation leads to a band-limitation of the smoothed signal to 

. According to the sampling theorem, we can then subsample the 
smoothed signal at a sampling rate of . The hereby induced 
error only causes a minimal ringing effect in the spatial domain. If we double the width 

 of the Gaussian kernel for the next level in the scale-space, we can subsample the new, 
smoother signal by a factor of  in comparison to the previous signal.

f x( )
F ω( ) ωmax

ωmax– ωmax[ , ]

ωsample 2 ω⋅ max≥

ωmax– ωmax[ , ]

sinc x( ) x( )sin
x---------------=

x 0= x

σx
σω

σx σϖ⋅ 1=

σx σω ωmax

3σ– 3σ[ , ] σ

ω'max 3 σ⋅ ω 3 σx⁄= =
2 ω⋅ 'max 6 σ⋅ ω 6 σx⁄= =

σx
2



44 4   S C A L E - S P A C E  T E C H N I Q U E S
FIGURE 4.5 Correspondance of sinc and rect function in spatial and frequency domain. 
(Images created using Gnuplot version 4.0).

FIGURE 4.6 Correspondance of Gaussian functions in spatial and frequency domain. 
Left column: Gaussian in the spatial domain for . 
Right column: Gaussian in frequency domain for . 
(Images created using Gnuplot version 4.0).
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4.4 APPLICATION TO IMAGE PROCESSING AND COMPUTER VISION

Scale-space representations have widely been used in image processing and computer 
vision for more than 20 years. They are especially useful for the important task of feature 
extraction. Since “feature” is only a general term for a variety of relevant objects contained 
in a (2D or 3D) image, features can be image structures of very different shape and size. 
It is therefore necessary to investigate a whole set of images at different levels of scale to 
extract, distinguish and track the features of interest.

Lindeberg [Lin94] shows that a measure for the “feature size” of a grey-level image 
structure can be computed from its scale-space representation after building the scale-space 
primal sketch. For a certain level of scale, a grey-level blob arises for each feature, mainly as 
a bright region on a dark background or vice versa. The blobs can therefore be output as 
a grey-level image. The observation now shows that when the scale level increases, a typical 
feature arises at a certain scale level and disappears at a higher scale level. Several features 
can merge into a bigger feature, as well as a feature can break up into several other features.

All these topology changes (creation, annihilation, merge, split) are called blob events. 
The difference of the creation scale and annihilation scale of a certain feature is a measure 
for its scale extent. Features have therefore a spatial as well as a scale extent (see Figure 4.7). 
Since the grey-level blob is an -dimensional object (e.g. a 2D image region), the sum 
(integral) of the grey-level blobs along the -dimensional scale axis forms an -
dimensional volume which is called scale-space blob, the size of which can be regarded as a 
measure for the feature size.

Figure 4.8 shows a typical example of feature extraction in 2D images. The upper left 
picture is the original image, which corresponds to the raw data of the input signal  
at scale level zero (see Equation 4.7). To the right of the original image, the grey-level 
blobs computed for this image are shown. The procedure has been repeated for increasing 
levels of scale, using Gaussian convolution for successively smoothing the original image.

As is clearly visible, the features of the original image (where the inner scale is just one 
pixel) have very small size and are merely noise. With increasing scale level, the feature size 
increases, too. The second and third pair of pictures, for example, emphasise the small 
structures like keys of the telephone console and pocket calculator. The noise is already 
strongly reduced in these images. This can also be verified in the corresponding grey-level 
blob images, which hardly contain single points anymore. Instead, the keys of the phone 
and calculator can clearly be identified.

In the fourth and fifth picture row, the keys of the two devices have melted to contig-
uous blocks for the observer’s eye. Likewise, the small grey-level blobs of the single keys 
melt to bigger grey-level blobs - two new features have arisen out of many small ones. 
However, even these bigger features have a bounded scale extent, since their “lifetime” 
along the scale axis is limited. The sixth picture row shows that the medium-sized features 
(key blocks) have merged into just three big features (like the receiver and cable of the 
phone), whereas all small features have disappeared.
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FIGURE 4.7 Feature extents in spatial and scale dimension. Indicated feature comprises smaller fea-
tures and is contained by a bigger feature itself (image courtesy of T. Lindeberg [Lin94]).

FIGURE 4.8 Gaussian smoothing and scale-space computation for images. Grey-level blobs at differ-
ent scale levels indicate increasing feature sizes (image courtesy of T. Lindeberg [Lin94]).
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4.5 APPLICATION TO FLOW VISUALISATION
As was mentioned in the motivation of this thesis (Section 1.2), automatic extraction of 
features is a promising strategy to cope with the large amount of data produced by time-
dependent CFD simulations. The computational time for this type of simulations is typ-
ically in the order of days, which justifies the time spent on post-processing the data by 
extracting features in a batch run. Feature extraction can achieve data reductions of up to 
1:10000 [Ken98] while still permitting the visualisation of essential parts of the flow. It
can be used for visually browsing the results or in conjunction with other visualisation
methods. However, the implementation of this strategy leads to the following problems:

1. Many flow features are of fractal nature, that means that there is no unique definition 
of their feature size. Depending on the observation scale, different sets of features can 
be observed. Usually, the scale is implicitly defined when an extraction method is 
designed. It would be preferable to let the user specify the scale interactively while 
viewing the result data.

2. Most methods require numerical computation of first- and second-order spatial deriv-
atives, which causes the data to be roughened. Smoothing the data can reduce this 
effect, but it is not trivial to find an appropriate smoothing kernel when dealing with 
unstructured grids and highly varying cell sizes, which often occur in CFD datasets.

3. When features are extracted from time-dependent data, animating them can cause 
popping effects with features suddenly appearing or disappearing. These artifacts can 
be reduced by incorporating temporal in addition to spatial smoothing.

As we have seen in Section 4.4, scale-space techniques can successfully be applied to the 
field of computer vision, where feature extraction has already been practised for a long 
time. These techniques smooth the data using Gaussian kernels, the standard deviation  
of which can be any positive real number. The scale axis plus the spatial axes span the scale-
space. Features thus not only have spatial extents but also a certain scale extent. They can 
therefore be searched and found in scale-space. This technique has the potential to solve 
the problems mentioned above for the flow visualisation field, too.

However, for flow visualisation applications, some additional adaptations must be 
made: Firstly, a discretised smoothing operation must be provided also for curvilinear and 
unstructured grids. And secondly, special attention has to be paid to boundary treatment, 
due to the relatively low resolutions in CFD datasets (often having interior boundaries) 
and the importance of the flow behaviour near material boundaries.

Many of the published “multi-scale” techniques are indeed multi-resolution, e.g. 
Luerig, Westermann et al. [LGE97, WE97] performed feature extraction from volumetric 
data in scale-spaces based on wavelets. However, to keep the spatial resolution, we do not 
construct a multi-resolution pyramid. Also, such a pyramid would yield a coarse sampling 
along the scale axis (see Section 4.1). Yet for the purpose of feature detection and tracking, 
it is preferable to have no prescribed sampling.

The idea of using the scale-space for visualisation of vector fields is not entirely new. 
Diewald et al. [DPR00] demonstrate the usefulness of anisotropic diffusion for the visu-
alisation of vector fields. By successively smoothing the data, their scale-space can be vis-
ually explored. Our goals are, beyond visual exploration, to algorithmically extract features 
as geometric objects and to improve this process by exploiting the multi-scale nature of the 
features. And since we do not prefer certain spatial directions for searching flow features, 
we will use an isotropic version of the scale-space.
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Scale-space analysis can enhance flow visualisation in many ways:

1. At larger scales, the set of features is reduced to fewer and clearer features. This is par-
ticularly useful for features defined by higher-order derivatives, such as the vortex cri-
teria of Miura and Kida [MK97] and of Roth and Peikert [RP98].

2. It becomes possible to focus on features of a certain scale.

3. Tracking features over scale allows for visualising them with the positional accuracy of 
small scales and simultaneously deriving connectivity information from larger scales.

4. Selective visualisation can be done by picking an individual feature at a larger scale 
which is then tracked to a smaller scale and finally tracked over time.

All said above applies to flow features of any dimensionality. However, we will focus on 
1D (line-type) features, for the reason that the CFD datasets computed by our industry 
partners are mostly visualised for the purpose of studying vortices. (Vortices reduce a 
machine’s efficiency by binding energy. Also, an unstable vortex can interact with machine 
parts, producing undesired effects like material abrasion or resonance).

The following section presents a formal definition of the scale-space representation for 
continuous data signals. The last section then discusses several methods to numerically 
compute the scale-space for discrete structured 3-dimensional grids, plus their benefits and 
drawbacks. As a first major contribution of this Ph.D. thesis, we will also present a method 
to compute the linear isotropic scale-space for unstructured grids, which are most common 
in CFD datasets and flow visualisation.

4.6 SCALE-SPACE DEFINITION
The linear isotropic scale-space of a given -dimensional physical space  and a con-
tinuous scalar data field  given on this domain is defined as the -dimensional 
space  with data

(4.6)

and initial condition (original data signal)

, (4.7)

where  is the real-valued scale ( ). The (n-dimensional) Gaussian kernel of 
standard deviation  computes to

. (4.8)

Of course the scale-space can be constructed from this definition in a straightforward 
manner by successively applying Gaussian kernels to the original data. However, convolv-
ing a scalar field  with a Gaussian of standard deviation  is equivalent to solving the 
isotropic diffusion equation (or heat equation), which contains the first temporal derivative 
(written as dot-notation) and second spatial derivatives (Laplacian ) of the data signal:

(4.9)
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for diffusion time  and initial condition

. (4.10)

Remark:

The reason for calling the diffusion time variable  rather than  is that we want to do 
scale-space analysis also for time-dependent data such as unsteady flow fields. We then 
have two orthogonal time axes, namely the “physical time”  and the “diffusion time”  
which by definition of the scale-space (Equation 4.6) is equal to the scale parameter. 

4.7 SCALE-SPACE COMPUTATION

The formal definition of Section 4.6 assumes a continuous data field defined in a continu-
ous computational domain. To actually compute the scale-space for a discrete grid (as used 
in scientific visualisation) and for discrete scale levels, we need discretised versions of the 
convolution operator or of the diffusion equation, respectively. In this section, we will dis-
cuss such methods for the case of structured (e.g. uniform) and unstructured grids, as well 
as the computation of derivatives.

4.7.1 Structured Grids

On a structured grid, there are at least three basically different methods for smoothing data 
with a Gaussian filter kernel:

1. The obvious one is to actually compute the convolution with a discrete sampled Gaus-
sian, which can be performed either in the spatial domain or in the frequency domain. 
For unstructured grids, this requires additional efforts, e.g. a uniform resampling and 
trilinear interpolation of the data, which increases the numerical imponderabilities.

2. The second method is to repeatedly apply for each dimension a binomial filter with 
weights (1/4, 1/2, 1/4). The weights of this recursive filter are (up to normalisation) 
the even rows of the Pascal triangle and thus converge to a Gaussian filter kernel. This 
method seems to be more adequate to the computation of a scale-space where a whole 
sequence of Gaussians is needed. However, the main problem with this approach is 
that the number of iterations is proportional to  and thus to .

3. The third method is to discretise the diffusion (heat) equation. While this amounts to 
numerically solving a partial differential equation, it has the advantage to work well 
also for large  values, and furthermore to extend properly to unstructured grids. For 
the special case of a uniform grid, the spatial discretisation of the diffusion equation 
can be performed e.g. by finite differences to approximate the Laplacian of 
Equation 4.9. In the 1-dimensional case, the filter mask is of the form .
Higher-dimensional Laplace operators are built analogously, e.g. the 2-dimensional 
filter mask used for image processing is

. (4.11)

s σ2 2⁄=

u x 0,( ) f x( )=

s t

t s

s σ2

σ

1 2– 1, ,( )

∇2u uxx uyy+
0 0 0
1 2– 1
0 0 0

0 1 0
0 2– 0
0 1 0

+≈
0 1 0
1 4– 1
0 1 0

= =



50 4   S C A L E - S P A C E  T E C H N I Q U E S
4.7.2 Unstructured Grids

The grids typically used in turbomachinery CFD consist of hexahedral cells and are either 
block-structured or unstructured. We will focus on the latter ones as they comprise the 
former ones. However, using a discretised smoothing kernel like the Gaussian one is not 
feasible for unstructured grids because of their irregular geometry. We must therefore dis-
cretise and solve the diffusion equation to compute the scale-space on unstructured grids.

For the spatial discretisation, one possibility is to approximate the Laplacian  
of Equation 4.9. An example for a discrete Laplacian on unstructured grids is the umbrella 
operator proposed by Taubin [Tau95] and refined by Desbrun [DMSB99], which we used 
for the purpose of mesh fairing (Section 6.2.5), also treated by Guskov et al. [GSS99]. An 
alternative would be to use piecewise polynomial surfaces like Michelli splines [Mic94] for 
approximating the Laplacians at the grid nodes.

We decided to rather discretise the complete diffusion equation by applying the finite 
element method (FEM) pioneered by Zienkiewicz [ZT00] to the grid cells. This type of 
general hexahedral elements is usually referred to as isoparametric elements. They are unit 
cubes when expressed in local coordinates , see Figure 4.10. The basic procedure 
for a 1-dimensional scalar signal works as follows: We regard the scalar dataset

(4.12)

defined on  nodes and interpolate it between the nodes using the linear basis functions

, (4.13)

which are also called hat functions due to their triangular shape (see Figure 4.9). At any 
point location  in computational space, the hat functions sum up to one (partition of 
unity):

, (4.14)

so they can be used as weighting functions for the scalar values of the grid nodes. The scalar 
value at location  can therefore be interpolated by the linear combination

. (4.15)

Note that due to the small support of the hat functions, only direct neighbours of a certain 
node have influence on the scalar value near that node. Let us return to the continuous 
diffusion equation in the 3-dimensional case:

. (4.16)
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FIGURE 4.9 Hat functions as a simple example of finite elements (1D signal, N=6).

We can multiply this equation by any hat function  as test function:

, (4.17)

and integrate over an arbitrary subset  of the computational domain:

. (4.18)

The diffusion equation can now be spatially discretised by inserting the interpolation 
function (Equation 4.15) into Equation 4.18:

. (4.19)

By swapping the sums and integrals on both sides, we get

. (4.20)

This can be written shorter using the abbreviations

(4.21)
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and

, (4.22)

resulting in the  equations

. (4.23)

The original partial differential equation (Equation 4.16) can therefore be solved by a 
system of ordinary differential equations (ODEs):

, (4.24)

where  and  are the so-called element mass matrix and element stiffness matrix. These 
two matrices only depend on the grid geometry and therefore are constant throughout the 
smoothing process. As can easily be seen from Equation 4.21 and Equation 4.22, the 
matrix  is always symmetric, whereas  is in general not.

We decided to solve the ODE system using the implicit Euler method, since it is numeri-
cally superior to the explicit Euler and allows greater time steps . The spatially and tem-
porally discretised diffusion equation is then

. (4.25)

Multiplying by  and rearranging the terms yields

. (4.26)

If the time step is kept constant throughout the computation, the matrix  can be 
precomputed like  and . Computing the smoothed scalar dataset  from the 
previous dataset  is equal to solving a linear equation system of type

. (4.27)

The question remains what boundary conditions the diffusion equation should have, and 
how this influences the properties of the matrices and thus the computational effort of the 
equation solving process.

An obvious choice for boundary conditions are symmetric boundary conditions, where the 
normal derivative is forced to be zero. This is the simplest form of a Neumann boundary 
condition. It says that diffusion can happen unrestrictedly along the boundary of the com-
putational grid, but no diffusion is allowed across the boundary.

For symmetric boundary conditions, we can simplify the  matrix. Partial integration of 
the right side of Equation 4.22 yields

. (4.28)
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The symmetric boundary condition makes the term  zero, and the ele-
ments of the stiffness matrix can thus be computed as

. (4.29)

As a consequence of this, we get rid of the numerically unfavourable second derivatives. 
Even more important, the matrix  is now symmetric like the matrix . The choice of 
the symmetric boundary condition has therefore a positive effect on the computation: the 
storage requirements for the matrices are reduced, and more efficient equation solvers are 
available, which reduce the computational time (see Section 4.8 for detailed results).

The question remains how to compute the entries  and  of the element mass 
matrix and element stiffness matrix. Each element is defined for two nodes of the grid, 
whose global node numbers are  and . However, a node is in general contained in several 
adjacent cells (see Figure 4.10, where node  and node  are shared by two cells 
lying on top of each other). Therefore we must loop over every cell of the grid, and for 
each node pair of the current cell we must compute the contribution of this cell to the 
matrix elements of this node pair.

FIGURE 4.10 Sharing of nodes by adjacent grid cells, indexing scheme of the local cell corners 
and mapping of a grid cell from physical to computational space.
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Since integration over the hexahedral elements would have been very complex in global 
coordinates, the actual computation of the integrals was done in local coordinates. Assume 
that the 8 corners of a hexahedral grid cell can be decimally indexed  or 
binary indexed , see Figure 4.10. Let their physical  coordi-
nates be . For the coordinate transformation between computa-
tional and physical space in that cell we use the trilinear interpolation

. (4.30)

There are 8 local hat functions defined in the cell domain:

. (4.31)

where  and . The contribution  of the current cell 
to the element mass matrix for the two local cell corners  and  is then

, (4.32)

where  and  are the hat functions for the local node numbers  
and

(4.33)

is the Jacobian of the coordinate transformation function from Equation 4.30. The con-
tribution  of the current cell to the element stiffness matrix for the two local cell cor-
ners  and  is

, (4.34)

where

(4.35)

means the gradient of the hat function w.r.t. the local coordinates . We numeri-
cally compute the integrals of Equation 4.32 and Equation 4.34 using Gauss quadrature. 
In the end, our implementation loops through all grid cells and locally computes the FE 
integrals  and  between any two local nodes  and  of the current cell. The 
result for two certain nodes is assigned to their global node numbers  and added to the 
matrix entries  and  of the mass element matrix and mass stiffness matrix.
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4.7.3 Computing Derivatives

Many feature extraction techniques, be it in computer vision or in scientific flow visuali-
sation, require - in addition to the data fields - their first and sometimes second spatial 
derivatives. The need for smoothing increases with the order of the derivative, since the 
smoothing must compensate for the roughening effect of the numerical differentiation. A
basic property of the Gaussian convolution operator is that it commutes with the differ-
entiation operation:

, (4.36)

which provides us with three different ways to compute derivatives of the smoothed data. 
The left term corresponds to differentiating the smoothed data. This is our preferred 
approach because it is numerically clearly better than smoothing the differentiated data as 
reflected by the middle term. It also makes differentiation a simpler task which can be 
done with minimal stencils. Also, its runtime is shorter since we can do the time-consum-
ing convolution as a preprocessing step and save its results to disk. This fact also argues 
against the use of sampled derivatives of the Gaussian which are then convolved with the 
data, according to the right term. This computing strategy makes particular sense in an 
environment where smoothing is generally done with sampled Gaussians. However, for 
the reasons mentioned above and in Section 4.7.1, we discarded this option.

Our actual implementation uses a least squares fit (LSF) based on 1-neighbourhoods for 
computing derivatives of presmoothed scalar and vector fields (e.g. the velocity and pres-
sure gradient). To approximate the gradient of a scalar field  at a central node

, the field is assumed to be linear in a local environment of the central node:

. (4.37)

Estimating the scalar values of the  direct neighbours of the central node yields the errors

(4.38)

(for each neighbour, ). The sum of the squared errors

(4.39)

can be minimised in a straightforward manner by setting its gradient to zero, namely its 
derivatives w.r.t the parameters . This leads to a linear equation system of 3 
normal equations with 3 unknowns, the solution  of which is the gradient of the 
linearised scalar field and thus an approximation for the gradient at the central node.

If the grid cells are non-degenerate, this method is numerically sufficient for the  
equation systems occurring here. For degenerate grid cells with acute angles, it might be 
necessary to avoid the normal equations, e.g. using Givens transforms, Householder trans-
forms or singular value decompositions (SVD) to solve the error equations (see [Sch97]).

The Jacobian of a 3D vector field is computed analogously by regarding the three vector 
components as scalar fields and repeating the above procedure for all of them.
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4.8 RESULTS

In this section, we give performance results for the scale-space computation on two time-
dependent industrial datasets [BP02], both discretised on unstructured hexahedral grids.
The first dataset derives from a coupled unsteady simulation (by VA Tech Hydro) of the 
runner and draft tube of a Francis turbine. The second and third dataset originate from an 
unsteady simulation (by Sulzer Pumpen) of a mixed-flow pump. All three datasets will also 
be investigated w.r.t. feature extraction in Chapter 5. In all three grids, the hexahedral cells 
served as an FE discretisation. We list the CPU times for computing the two FE matrices 
and for smoothing the data in a single step, for three values of the standard deviation . 
All computations were done on an SGI Octane (640 MB main memory, MIPS R10000 
CPU and R10010 FPU running at 250 MHz). We computed the FE matrix elements 
using Gauss quadrature (  Gauss points) and solved the linear equation systems 
using the f11jef function from the NAG Fortran library [NAG01], applying the symmetric 
Lanczos method and preconditioning the systems by symmetric successive overrelaxation.

Setting up the matrices turned out to be quite expensive, taking several minutes per 
matrix (see Table 4.1). However, the matrices are valid for all datasets given on the same 
grid, since they contain purely geometric information. The smoothing times scaled less 
than linearly with . If an explicit Euler scheme were used, they would scale quadratically 
because of  and the limited step size. We tested the implicit method for strong 
smoothing  in a single step and in several intermediate steps, finding no 
visual impact regarding feature extraction (see Figure 5.15 and 5.16). Therefore the accu-
racy of the implicit Euler method was sufficient for large integration steps.

The previous sections showed the specific properties of the scale-space representation, 
its usefulness for flow visualisation, and how to compute a linear isotropic scale-space for 
unstructured grids as used in CFD. Based on these precomputed scale-spaces, we will in 
the next chapter present some known and newly developed feature extraction methods, 
and demonstrate how these algorithms can benefit from the scale-space framework. 

turbine design nodes grid extent sigma matrix setup smoothing

CPU[s] CPU[s] iterations

draft tube 654770 1.33 x 0.59 x 0.72 0.002 531.8 41.2 9

0.008 88.5 23

0.032 219.6 62

pump stator 310757 0.50 x 0.50 x 1.54 0.002 242.3 19.2 9

0.008 31.8 17

0.032 67.9 40

pump rotor 235223 0.33 x 0.33 x 0.19 0.002 185.4 18.1 12

0.008 31.2 23

0.032 61.1 48

TABLE 4.1         Performance analysis of scale-space computation.
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5FEATURE EXTRACTION AND TRACKING

Scale-space analysis can be done in conjunction with virtually any scientific visualisation 
technique, in particular with locally operating methods (such as isosurfaces) and methods 
that include derivatives of the data fields. But like in the field of image processing (see 
[Lin94]), it is for flow visualisation most successfully combined with feature extraction
techniques [BP02]. Features of interest can be of various types and dimensions, but since 
our main application is the extraction of vortex core lines from CFD datasets, we will in 
this chapter focus on the detection of line-type features.

This chapter recapitulates a general 3D vortex core line extraction algorithm intro-
duced by Roth and Peikert [RP99] and describes the simplifications and improvements 
which we made in the context of a scale-space analysis. In particular, we take a glance onto 
the data structures, some techniques for speed-up of the computation, some mathematical 
background and heuristics for preparing the results.

It is then shown how a novel 4D extension of this algorithm is able to track vortices in 
either the temporal or the scale domain. In former approaches, features were mostly 
tracked after their extraction, using proximity-based and heuristic methods like spatial 
overlap [SW96] or shape attributes [RPS99] to relate them to each other. Our basic idea 
is, in contrast, to combine feature extraction and tracking within the same algorithmic pro-
cess. This is achieved by lifting the computational grid as well as the resulting features by 
one dimension in order to shift the feature tracking from the postprocessing phase of the 
feature extraction to the feature extraction itself.

We will illustrate the lifting of unstructured 3-dimensional grid cells to 4-dimensional 
hypercubes as well as the lifting from 1-dimensional line-type features to 2-dimensional 
feature meshes. The most remarkable improvement of our novel tracking method is its 
ability to correctly carry the connectivity of the features over cell boundaries, even for fast-
moving features which traverse more than one grid cell per time step. We will motivate 
the topological correctness of this approach and, at the end of this chapter, give both 
numerical and visual results of the methods presented here.
57
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5.1 VORTEX CORE LINE EXTRACTION

The vortex core line extraction algorithm we used for our implementation is based on the 
parallel vectors operator introduced by Roth and Peikert [RP99]. It is recapitulated here 
mainly because it will serve as a basis for our vortex tracking algorithm later presented in 
this chapter. Furthermore, it contains some modifications in comparison to the original 
version, why it was re-implemented from scratch for this dissertation.

As described in Section 3.4.2, the parallel vectors operator allows for specifying a vari-
ety of vortex core line definitions, e.g. the vortex criteria given by Levy et al., by Sujudi/
Haimes, by Banks/Singer, by Miura/Kida, and by Strawn et al. (see Section 3.4.3 to 
Section 3.4.7). In a mathematical sense, the parallel vectors algorithm computes the set of 
points where two given vector fields  and  are parallel or antiparallel, i.e. where there 
exists some scalar value  such that .

We implemented this algorithm on a cell-by-cell basis by scanning all grid faces for 
intersection points with the vortex core lines, which are then connected to line segments 
traversing the grid cells. By connecting the line segments of neighbouring cells to 
polylines, the final vortex core lines are obtained. The composing is based on the velocity 
field .

Note that in an abstract sense, one could argue that the parallel vectors method actually 
operates on three vector fields . However, the vector field  only plays a secondary 
role, namely for postprocessing the resulting vortex core lines. Besides, one of the vector 
fields  and  often is the velocity field  itself (e.g. when using the Levy or Sujudi/
Haimes criterion).

So far, our vortex extraction method corresponds with one of the implementations 
described in Roth’s dissertation [Rot00]. But since we were working in the context of a 
scale-space analysis, we simplified the procedure in two ways:

1. Since the data are presmoothed, estimating derivatives (e.g. for setting up the velocity 
Jacobian or pressure gradient field) can be done with a simple computational scheme 
and no extra filtering. To be more precise, an ordinary least square fit of the velocity or 
pressure gradient based on a one-neighbourhood stencil was sufficient for our pur-
poses (see Section 4.7.3).

2. The connecting of the lines can be done more automatically and with fewer “quality” 
parameters. In the case of vortex core lines, one parameter turned out to be sufficient, 
namely the signed length ratio  of the two vectors  and  at the intersection 
points found on the grid faces. Since “insignificant” features are eliminated automati-
cally when increasing the scale , other parameters used in former implementations 
[RP99], like the deviation of the core line tangent from the velocity direction (feature 
quality, see Section 5.2.5), are no longer needed for constructing the vortex core lines. 
We will only store these attributes for an eventual postprocessing, namely the filtering
of resulting vortex core lines for graphical output.

We will in the following explain some implementation details of the 3D version of the 
vortex core line extraction algorithm. Afterwards, we will extend this procedure from 3 to 
4 dimensions and present a novel tracking algorithm based on a computational grid and 
features “lifted” by one dimension.
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5.2 EXTRACTION OF VORTEX CORES IN 3D

Our vortex core line extraction algorithm basically consists of the following steps:

1. Compute the connectivity structure of the underlying unstructured grid: 
Store relevant cell <-> face <-> edge <-> node relations in suitable data structures.

2. Set up the two vector fields  and , depending on the chosen vortex criterion: 
Load the physical flow fields, build derived fields, assign them to  and .

3. Mark the intersected edges of the grid: 
Test for every edge whether the cross product  changes its sign (component-
wise) between the two end nodes (for a later trivial reject test of the grid faces).

4. Find the points of parallel vectors on all faces of the grid: 
Traverse the grid cell by cell, traverse each cell face by face. 
On each previously untreated face, compute all points where . 
Store all solution points in an attributed vertex list, together with attributes. 
For each cell, connect the solution points to line segments traversing the cell. 
Orient the line segments according to mean velocity at their endpoints.

5. Compute the feature quality and vortex strength of every found vertex 
(for eventual filtering before graphical output)

6. Generate and filter a polyline list containing the resulting vortex core lines: 
Loop through the vertex list, store contiguous segments as polylines. 
Filter the resulting polylines by 4 quality parameters (optional): 
minimal vortex strength, minimal feature quality, 
minimal vertices per polyline, maximal exceptions per polyline.

7. Output the resulting geometry to the graphics renderer.

We will now describe some implementation aspects of the vortex core line extraction algo-
rithm in more detail. Each of the following subsections is numbered according to its cor-
responding step in the algorithm listed above.

5.2.1 Computation of the connectivity structure for the unstructured grid

The unstructured grid only contains the information which global nodes belong to a cer-
tain grid cell. It does not enumerate the edges and faces of the grid, so we build a connec-
tivity data structure which stores

• for every (global) node number: 
- the smallest edge/face number of the edges/faces containing the node,

• for every (global) edge number: 
- the smaller and greater node number of its two endpoints,

• for every (global) face number: 
- the smallest node number of its four corners, and 
- the node number of its counterpart lying diametrically opposed on the face.

In the vortex extraction algorithm, we loop through all faces of a cell. This is achieved by 
taking four cell corners at once and identifying the global edge and face numbers using the 
information mentioned above and performing small searching loops. We found this strat-
egy a good trade-off between main memory requirements and computation time.

v w
v w

v w×

v λw=
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5.2.2 Setup of the two vector fields

We assume that the main memory available for our implementation is sufficient to load 
all physically meaningful flow fields (velocity, vorticity, pressure) for a certain time step at 
once. The two vector fields  and  can thus be represented by two pointers onto the data 
structures containing the vector fields (like velocity and vorticity). Depending on the 
chosen vortex extraction method, the two pointers are simply set to the appropriate vector 
fields according to the mapping of Table 3.2 in Section 3.4.8.

5.2.3 Marking of the intersected edges

The trivial reject test is based on the vector cross product . If the two vectors  and 
 are parallel, their cross product is the zero vector:

(5.1)

so we expect a change of sign for the three components of the cross product between the 
endpoints of an intersected edge. We thus check every edge of the grid and store the sign 
change information in 3 bits per edge. The test for sign changes of the three components 
of  can be performed by simple comparison of the two end nodes (assuming a linear 
interpolation of  along the edge) or by additionally checking for double intersections 
(assuming a quadratic interpolation of  along the edge).

Later in stage 4.) we first check for a given face whether edges of this face are inter-
sected. If not, we can immediately reject the face and continue with the next one. Since a 
vortex core line in general intersects only few cells and faces of the grid, this trivial reject 
saves significant computational time.

5.2.4 Finding the points of parallel vectors on all faces

The actual search for solution points takes place in three nested loops:

The inner loop computes the midpoint  of the quadrangle face  by averag-
ing its four corners:

(5.2)

and subdivides the face into four triangles , , , , 
which are consistently oriented (see Figure 5.2, left). To avoid flipping triangle orienta-
tions, we assume convex quadrangles, which are common in CFD datasets (see [Gar90]).

for each cell of the grid 
  for each of the 6 faces of the current cell 
    Subdivide the face into 4 triangles. 
    for each of the 4 triangles of the current face 
      Find the parallel points on that triangle using the eigenvector method. 
    next triangle 
  next face 
next cell

FIGURE 5.1 How to find the solution points on all faces of the grid.
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FIGURE 5.2 Subdivision of a cell face and conversion of local coordinates.

This triangulation allows for applying the analytic eigenvector method described by Roth 
[Rot00] to every triangle, rather than performing Newtonian iteration steps on the quad-
rangle face. The advantage of using triangles is that on a triangular face, the vector fields 

 and  can be linearly interpolated at any location :

. (5.3)

, (5.4)

where  and  holds for the local coordinates  of any point inside 
the triangle, ,  are the 3D vector data given at the three triangle cor-
ners (see Figure 5.3), and

(5.5)

(5.6)

are both  matrices containing differences of the data vectors at the corners.
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FIGURE 5.3 Linear interpolation of the vector fields  and  on a triangle.

The two vectors  and  are parallel at the locations  where

(5.7)

or (by inserting Equation 5.3 and Equation 5.4 into Equation 5.7)

. (5.8)

Assume that the matrix  is regular. Then multiplying Equation 5.8 with the inverse 
matrix  yields

, (5.9)

which is an eigenvector problem for the  matrix . Each resulting eigenvector 
 contains the local coordinates  of one “parallel point” w.r.t. the triangle, and 

the corresponding eigenvalue  is the signed length ratio of the two vectors  and  at 
this solution point.

In case the matrix  is singular, we can swap the roles of the two vectors  and . Then 
multiplying Equation 5.8 with the inverse matrix  yields

, (5.10)

and dividing this equation by the scalar value  results in
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, (5.11)

where  is the reciprocal value of . So we must in this case solve the eigenvector 
problem for the  matrix  and take the reciprocal value of each resulting eigen-
value  to get the length ratio  of the vectors  and . 

For numerical reasons, it is in practice favourable to invert that matrix of  and  
which is “more regular”, i.e. whose determinant has the greater absolute value. In any case, 
the method computes the eigenvalues and eigenvectors for a  matrix, yielding up to 
3 intersection points per triangle and thus a maximum of 12 intersection points on the 
quadrangle face.

As was said above, the eigenvector method determines the local coordinates  of 
any solution point w.r.t. the triangle where it has been found. Of course these must be 
converted to local coordinates  w.r.t. the quadrangle face, e.g. the coordinate trans-
formation for the triangle  is

(5.12)

. (5.13)

(see Figure 5.2, right). Having the local coordinates  w.r.t. the quadrangle face, all 
vector and scalar data at the solution points can be bilinearly interpolated from the values 
given at the four face corners.

In comparison to the original version [RP99], we changed the procedure for connect-
ing the solution points. When all six faces of a cell have been treated, the vertices found in 
this cell are in pairs connected to line segments. The ambiguous situation of more than 
two vertices per cell is heuristically resolved by sorting the vertices by ascending  and 
pairing vertices with consecutive  values (see Figure 5.4, where the vertices with positive 

 values and those with negative  values are grouped together). If the number of vertices 
per cell is odd, it is possible to neglect one vertex or to repeat the computation for that cell 
without trivial rejecting any cell face.

In contrast to the former implementation, we stored each intersection point in an attrib-
uted vertex list. The list of vertex attributes comprises

• the computed eigenvalue  (= signed length ratio of  and ),

• the physical  coordinates of the vertex, 

• the velocity  of the flow field at the vertex position,

• the time  for which the vertex has been found,

• the indices of the geometric grid cells where the vertex has been found 
(two different indices since a face in general belongs to two cells),

• the vortex strength (see Section 2.3.2) and feature quality (Section 5.2.5),

• some scalar values like helicity and pressure at the vertex,

• forward and backward pointers between the two vertices of a line segment 
(making the vertex chains to double-linked lists for easier traversal).
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The orientation of a vortex core line segment is chosen consistently with the mean velocity 
at its vertices: for a “good quality” vortex, the angle between the line segment and its mean 
velocity should not exceed 90 degrees (see Figure 5.4 and also Section 5.2.5). Otherwise 
the line segment is flipped. Matching segments in adjacent cells are then connected to 
polylines, as long as the orientation of the vortex core line is conserved.

FIGURE 5.4 Composing and orienting the line segments within a grid cell (2D representation).

5.2.5 Computation of the feature quality at a vertex

The feature quality  of a vertex is defined as the absolute value of the cosine of the angle 
 between the core line tangent  and the velocity  at the vertex position (see Figure 

5.5). The core line tangent  at the vertex  can be approximated by the segment  con-
necting its predecessor vertex  and successor vertex  on the core line:

(5.14)

. (5.15)

This approximation of the tangent is a weighted average, taking into account the different 
lengths of the core line segments, and thus being less vulnerable to noise at the core line. 
The feature quality is zero for a 90 degree angle and one for a 0 degree or 180 degree angle, 
thus being a measure of how well-aligned the core line direction is with the flow direction.

FIGURE 5.5 Definition of the feature quality of a vertex.
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5.2.6 Filtering of the polylines

When viewing the resulting polylines, they should be filtered based on their stored vertex 
attributes. One possibility is to simply apply user-defined thresholds to the vertices, e.g. 
by demanding a minimal vortex strength or feature quality for every “valid” vertex. Better 
results can be obtained by a more sophisticated technique like hysteresis thresholding, 
allowing a certain number of exceptions between two valid vertices. An invalid vertex does 
not immediately terminate the vortex core line but increments a counter of consecutive 
invalids. The vortex core line is only truncated when the allowed number of consecutive 
exceptions is exceeded. If a valid vertex is found before this number is reached, the counter 
of invalid vertices is reset to zero and the vortex core line can be extended by further ver-
tices (see Figure 5.6).

FIGURE 5.6 Filtering the polylines according to their vertex attributes 
(in this case, minimum vortex strength = 0.5, maximum number of exceptions = 2).

5.3 FEATURE TRACKING IN TIME AND SCALE

For various reasons, we need a way to track features from one timeframe to another. The 
obvious application is to track features along the time axis in time-dependent data. But it 
also makes sense to track features along the scale axis, this way exploring the information 
contained in the scale-space. An example for this is to interactively select an individual fea-
ture at a larger scale and then display it at a smaller scale, where its positions are more accu-
rate but the feature might be broken into disjoint fragments. In both cases, we have the 
spatial dimensions plus an extra dimension, which we call the tracking dimension.

The two types of tracking can also be combined, as in the “user scenario” shown in 
Figure 5.7. Here, a feature selected at scale  is tracked over scale until e.g. it breaks into 
fragments between the scales  and . The last scale  where the feature was contigu-
ous can be used as a starting point for a tracking over time rather than scale. At every time 
step, it is still possible to visualise the current feature in more detail at finer scales.

We will in the remainder of this chapter describe a 4D algorithm for algorithmic track-
ing of line-type features (e.g. vortices). Due to its complexity, the results take computa-
tional times between 10 seconds and 1 minute when tracked over several scales or times. 
For interactive exploration of features over time or scale but without explicit feature track-
ing, we developed a virtual reality application, which will later be described in Chapter 8.
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FIGURE 5.7 Example application of feature tracking in scale and time.

5.3.1 Lifting principle and hypercubes

Most of the existing tracking methods ([SZF+91, SW96], [RPS99, Rei01]) a posteriori try 
to relate features which have already been extracted from single timeframes. This approach 
can be compared to reconstructing an isosurface from given contour plots in a pile of 
slices. Before the marching cubes algorithm [LC87] was known, isosurface extraction had 
indeed been approached as a tracking problem with  being the tracking dimension.

The improvement brought by the MC algorithm was to “lift” already the contour 
extraction from 2 to 3 dimensions rather than lifting the results from 1 to 2 dimensions. 
Instead of working with 2D grid cells, the grid is extended by the tracking dimension and 
the contour extraction is done for 3D cells. The tracking therefore takes place during the 
feature extraction process. Such a lifting technique can basically be applied whenever a fea-
ture extraction is operating on a cell-by-cell basis. An example is the tracking of critical 
points by Tricoche et al. [TSH01]. In their paper, the tracking dimension is time, but it 
can be treated just like the  dimension in the marching cubes example. For a simpler 
notation, we will in the following use the term “time” for the tracking dimension, 
although the tracking can alternatively be performed over the scale dimension of the scale-
space.

Of course, the features extracted from a lifted grid get an additional dimension, too. 
For example, 0-dimensional features such as critical points become 1-dimensional lines. 
The tracking is now simply achieved by taking slices of constant time. In an implementa-
tion, it is of course more appropriate to represent time as a vertex attribute rather than as 
an additional coordinate. Then, taking a slice of constant time  means to extract a level 
set for time .
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5.3.2 Structure of the lifted grid cells

Since we focus on vortex cores (or more generally on line-type features) in hexahedral 
grids, the lifting generates cells which topologically are 4D hypercubes. A hypercube, or 
tesseract, has 16 vertices, 32 edges, 24 faces and 8 boundary cubes. The detected features 
are also lifted, namely from 1D to 2D manifolds (see [BP02]). It is clear that degeneracies 
can cause feature dimensions to be other than expected. Implementations have to take this 
into account. However, this is not a problem of the lifting scheme, since the problem is 
already present in the underlying extraction method.

The 16 corners of a hypercube consist of the eight corners of a geometric grid cell at 
two consecutive times  and . The eight 3D boundary cubes of the 4D hypercube are 
depicted in Figure 5.8. Two of them are purely spatial, consisting of the geometric grid cell 
for time  and for time  (shown as cases a) and e)). The other six boundary cubes are 
spatio-temporal, each consisting of one geometric cell face for both times (shown as cases 
b) to d) and f) to h)).

The main advantage of the “lifted” vortex tracking method is that it needs no heuristics 
like spatial overlap [SW96] or shape attributes [RPS99] for relating the vortices across 
time. But it still can handle vortices moving by more than a grid cell per timeframe, the 
tracking being correct w.r.t. linear interpolation of time. We will demonstrate this in more 
detail in the next section.

FIGURE 5.8 The eight 3D boundary cubes of a 4D hypercube 
(curved lines indicate the temporal edges of a spatio-temporal boundary cube).
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5.3.3 Construction of the feature mesh

Let us have a look at Figure 5.9 for understanding how our algorithm tracks the vortex 
core lines over cell boundaries even though working on a pure cell-by-cell basis. The left 
column shows the temporal development of an example vortex core line as a film strip 
(Figure 5.9 a)-d)). The tracking takes place between two consecutive frames for time  
and time . During this time span, parts of the fast-moving feature traverse more than 
one grid cell (e.g. the upper vertex of the core line moves from cell  to cell , whereas 
the lower vertex stays within cell ).

If the vortex core line behaves due to above assumption, its upper vertex reaches the top 
edge shared by cells  and  at an intermediate time . Likewise, it reaches the top edge 
shared by cells  and  at an intermediate time . The conventional segments of the 
vortex core line for time  and time  (shown using black points) arise from the 3D 
extraction process applied to the purely spatial boundary cubes of the hypercubes explained 
in Figure 5.8. They will certainly appear in the resulting feature mesh (Figure 5.9 e)).

The right column of Figure 5.9 shows the computation of the intermediate segments. 
Intermediate vertices arise from the spatio-temporal boundary cubes of the hypercubes (see 
Figure 5.8) when a feature line intersects a cell edge between two consecutive timeframes.
Figure 5.9 f) and g) illustrate the temporal development of the top and bottom face of cell 

. The left stack marks exactly the spatio-temporal 3D boundary cube which consists of 
the top face of cell  for the time span between  and  (see Figure 5.8 b).

Applying the 3D extraction to this boundary cube results in two solution points. For 
time , the upper vertex of the vortex core line (black point) is found. Since this upper 
vertex moves fast to the right and intersects the common top edge of cells  and , it is 
also found on the right edge of the top face of cell  for the intermediate time  (shown 
as a white point). Both solution points are projected to 3D neglecting the time which they 
were found for. For later times, we find no solution points since the feature has left cell . 
Summarised over all times, we get an intermediate line segment (see last face of left stack, 
shown in dark grey). This line segment is added to the feature mesh.

The case of the bottom face of cell  (right stack) is different from the top face in that 
the lower vertex of the vortex core line moves more slowly and therefore does not leave cell 

, nor does it intersect a cell edge. The 3D extraction thus yields only two solution points 
for this face, namely the two conventional vertices for times  and .

Figure 5.9 h) and i) illustrate the temporal development of the left and right face of cell 
. For times before , we find no solution point on the left face of cell  since the feature 

completely lies within cell . Beginning with time , the intermediate vertex from the top 
edge of the left face (also found for the top face of cell ) moves downward. It reaches its 
lowest position for time , then being a conventional vertex on the vortex core line. The 
right face shows the same development somewhat retarded. Figure 5.9 j) and k) finally 
depict the top faces of cells  and . The upper vertex of the feature completely traverses 
cell  and ends within cell .

The projected line segments are stored in a segment list and form a closed polygon for 
every geometrical grid cell. These polygons are afterwards triangulated, filtered (see follow-
ing Section 5.3.4) and build the resulting 2D feature mesh of the vortex tracking proce-
dure. As we have demonstrated, the feature mesh contains all necessary topological 
information for relating the features over time, even when they are fast-moving. Further-
more, the mesh can also can be used for event detection, as we will see in Section 5.4.3.
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FIGURE 5.9 Construction of the 2D feature mesh from the 3D boundary cubes of the 4D hypercubes 
(left column: geometrical grid cells, right column: spatio-temporal boundary cubes).
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5.3.4 Vortex tracking algorithm

The algorithmic problem can now be formulated as follows: Given two vector fields in 4D 
hyperspace (scale-space) spanned up by the physical space and the time axis:

(5.16)

(5.17)

and its values at the 16 corners of a hypercube, find the set of points on the 8 boundary 
cubes of the hypercube where the two vector fields are parallel, and output it as a triangle 
mesh in 3D space. The time for which a vertex was found should be stored as a vertex 
attribute, in addition to the other vertex attributes mentioned in Section 5.2.4.

Since all eight boundary cubes can easily be represented using the same data format as 
a standard grid cell, we can apply to each of them the same vortex core line extraction pro-
cedure as for the purely spatial 3D cells in Section 5.2. This leads to the algorithm shown 
in Figure 5.10, which loops over all eight boundary cubes for every hypercube.

The following enhancements were necessary to upgrade the algorithm from Section 5.2:

• a file-based timeframe caching mechanism (“sliding activity window”) which loads 
and releases the flow fields needed for the current two time steps,

• an extra loop over all timeframes / time steps where tracking shall take place,

• doubled vector and scalar fields (for treating two consecutive frames at a time),

• an extra loop over the 8 boundary cubes of a hypercube,

• lookup tables for assigning hypercube structures to geometrical cell structures 
(for all 16 hypercube corners: their time step and local node index in the grid cell),

Initialise a triangle list T. 
Read the first timeframe (for time t0).
for i = 1 to #timeframes - 1 
  Read the next timeframe (for time ti).
  for each grid cell 
    Get the data values at all 16 corners of its hypercube. 
    // = data values at the cell corners for times ti-1 and ti.
    for each of the 8 boundary cubes 
      // Find line segments in the boundary cube: 
      Apply the 3D procedure from Section 5.2. 
      Project the line segments to 3D space 
        and store the finding time as a vertex attribute. 
    next boundary cube
    // The line segments form closed polygons. 
    Triangulate the polygons and add the new triangles  
      to the triangle list T. 
  next grid cell
  Release the older timeframe (for time ti-1). 
next time step

FIGURE 5.10 The basic vortex tracking algorithm.

v : IR4 IR3→  : x y z t, , ,( ) v x y z t, , ,( )→

w : IR4 IR3→  : x y z t, , ,( ) w x y z t, , ,( )→



5 . 3   F E A T U R E  T R A C K I N G  I N  T I M E  A N D  S C A L E 71
• a triangle list, a filtering procedure for the triangles, and an additional output port for 
the triangle mesh to the graphics renderer, for depicting the 2D feature mesh resulting 
from the vortex tracking algorithm (see Figure 5.9).

Concerning the filtering of the triangle mesh, the minimum is to apply thresholds for the 
vertex attributes. Optional steps comprise the computation of connected components 
and/or the extraction of level sets of time.

FIGURE 5.11 Filtering the triangle mesh by computing the feature quality of intermediate vertices.

One possibility for filtering a triangle is the computation of its feature quality. 
Section 5.2.5 explained how the feature quality for a vertex on a core line is computed 
(that means a vertex found for either time  or time , where frames are available). This 
definition must now be enhanced to vertices found for intermediate times ( ).

As for conventional vertices, the quality is defined as the cosine of the angle between a 
velocity vector and a direction vector. Since an intermediate vertex lies on a triangle 
between two core lines (see triangle  in Figure 5.11), we cannot use the core line 
segments for computing the “core line tangent” as described in Section 5.2.5. We there-
fore sort the vertices  of the triangle by ascending times so that .

For vertex  with intermediate time , we compute the direction vector  which is 
the projection of the vertex  along the time isoline  to the opposite triangle edge 

. This direction replaces the “core line tangent” from Figure 5.5. The velocity vector 
is computed by averaging the velocity at the vertex  and at its counterpart  (linearly 
interpolated from the velocities at the vertices  and ). This vector replaces the velocity 
of a conventional vertex from Figure 5.5. Using the new direction and velocity definition, 
we can evaluate the cosine formula for computing the feature quality of vertex .

Since the vertex  is the intermediate time vertex for two triangles, its quality must be 
computed for the triangle  lying in the opposite direction, too. If the cosines for 
both triangles have the same sign (apart from their opposite directions), the vertex  is 
marked as “valid”, else as “invalid”. At the end, a triangle of the feature mesh is marked as 
valid if all its three vertices are valid, otherwise the triangle is marked as invalid.
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5.4 POSSIBLE EXTENSIONS

We will in the following discuss some possible extensions of our feature extraction and 
tracking methods, which were not implemented but might be interesting for future work.

5.4.1 Different cell types

So far, the 3D algorithm for feature extraction and the 4D algorithm for feature tracking 
assume that the underlying grid consists of only one type of grid cells, namely hexahedral 
ones. However, unstructured grids can contain a variety and even a mixture of different 
cell types. Besides of hexahedral, also tetrahedral, pyramidal or prism cells are common. The 
following Table 5.1 shows the properties of these cell types which are relevant for our fea-
ture extraction and tracking method: 

Since the faces of all these cell types are triangles or quadrangles, our 3D feature extraction 
method already contains the required methods to find solution points on the faces. As 
described in Section 5.2.4, we treat quadrangles by subdividing them into four triangles 
and applying the eigenvector method to the linearised vector fields on the triangles. For 
triangular faces as occur in tetrahedra, we can omit the subdivision and conversion of local 
coordinates. If we extract features for a pyramid or prism, we must for every face determine 
whether it is a triangle or a quadrangle.

Concerning the 4D feature tracking method, we similarly must for every cell regard the 
types and numbers of its boundary elements. As usual, we loop over all boundary elements 
of the current cell and apply the 3D feature extraction procedure. In summary, we only 
have to make a few slight changes to our algorithm, mainly in some simple additional con-
ditions (if...then...else or switch statements), which do not consume considerable compu-
tational time.

cell type number 
of 3D 
cell 
corners 
(c)

number 
of 2D 
cell 
faces 
(f)

type 
of 
faces

number 
of 4D 
hyper- 
corners 
(2c)

number 
of 3D 
boundary 
elements 
(f+2)

purely 
spatial 
boundary 
elements

spatio- 
temporal 
boundary 
elements

tetra- 
hedron

4 4 4 triangles 8 6 2 tetrahedra 4 prisms

pyramid 5 5 4 triangles 
1 quadrangle

10 7 2 pyramids 4 prisms 
1 hexahedron

prism 6 5 2 triangles 
3 quadrangles

12 7 2 prisms 2 prisms 
3 hexahedra

hexa- 
hedron

8 6 6 quadrangles 16 8 2 hexahedra 6 hexahedra

TABLE 5.1         Properties of different cell types and extension from 3 to 4 dimensions.
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5.4.2 Different feature definitions

Our main application in this thesis was the extraction of vortex core lines. However, our 
method is not restricted to these. In principle, we can apply it to any feature which fulfills 
the following requirements:

• the feature must be 1-dimensional (line-type feature)

• it can be calculated “face-wise”, that means we can construct it from solution points 
found on the grid faces, which can later be connected to line segments

• we can calculate it on a cell-by-cell basis, that means all cells can be treated independ-
ently. As a consequence, the algorithm is suitable for parallelisation.

• the feature must be locally defined, that means for a certain grid cell, we do not need 
any information from its neighbouring cells or cells that are even more distant.

Besides of vortex core lines, also separation and attachment lines [Ken98], and also ridge
and valley lines fulfill these requirements, since all of these can be reduced to the parallel 
vectors operator [RP99, Rot00]. However, integration-based features such as streamlines 
cannot be treated by our algorithm. Although they are line-type, they are globally defined 
over the whole domain, so they must be integrated from a certain startpoint through all 
the grid. For a calculation of a streamline within a cell, we first need the entry point, which 
depends on the calculation in the cells which the streamline has previously intersected. 
This sequential process would not allow for treating the cells independently, and also not 
for parallelisation.

All said above holds for the 3D feature extraction and for the 4D feature tracking like-
wise, since the latter one is based upon the former one.

5.4.3 Event detection

For this thesis, only the fundamental tracking of features was implemented, which com-
prises the development of continuing features without bifurcations. However, a feature can 
appear or disappear in the interior of the grid, and enter or leave the grid at its boundary. 
Furthermore, a feature can break into several features, or several features can join each 
other. Such events have been defined and investigated by Samtaney et al. [SSC94], Silver 
/ Wang [SW97, SW99], and Reinders et al. [RPS99, RPS01] using feature tracking meth-
ods based upon region correspondence and attribute correspondence.

We will in the following indicate how our implicit feature tracking in the spatio-tem-
poral domain could be extended to allow event detection, too. Most of the information 
required for this purpose is already implicitly contained in our two-dimensional triangu-
lated feature mesh. As stated in Section 5.3.3 and Section 5.3.4, the triangles of this mesh 
are spanned by conventional vertices found for times where time steps are available from 
the CFD dataset, and intermediate vertices found for times between two time steps.

As Figure 5.11 depicts, we can determine the line-type features for a given intermediate 
time by computing isolines for this constant time from the feature mesh. Let us investigate 
how the different event types mentioned above can influence the shape of the feature 
mesh.
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FIGURE 5.12 Event detection using the feature mesh.

• A split event will also split the feature mesh. If two split features later merge, a hole will 
occur in the mesh (see Figure 5.12). At the boundary of the mesh, splits and merges 
will show up as additional branches in the mesh topology. All in all, the topology of 
the mesh is significantly changed.

• If a feature appears, this creation event will open a new branch in a region of the mesh 
where no preceding triangles have been before, in contrast to a split event. Likewise, if 
a feature disappears, this annihilation event will terminate a branch of the mesh with 
no subsequent triangles in that region, in contrast to a merge event.

• An entry event is similar to a creation event in that a new branch occurs. The differ-
ence is, however, that some vertices of the corresponding mesh triangles were found 
on faces at the boundary rather than in the interior of the grid. As stated at the end of 
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Section 5.2.4, we store in the vertex list not only the time where the vertex was found, 
but also the global cell indices of the cells sharing the face where the vertex was found. 
A face at the grid boundary is characterised by having only one valid cell index (the 
second cell index is then set to “void”). Thus we can easily distinguish entry events 
from creation events. Similarly, we can define an exit event where a feature leaves the 
grid, and separate exit events from annihilation events.

Taking into account the considerations above, it makes sense to sort the triangles of the 
feature mesh by increasing minimum times of their vertices. For a complete event detec-
tion, we must loop over all times where (conventional or intermediate) vertices were 
found, so setting up a time list containing the times of all mesh vertices is also helpful.

The event detection can now take place similarly to the algorithm for rasterising a poly-
gon known from computer graphics. We loop over all times of the timelist and extract for 
each time its time isoline by intersecting it with all active triangles of the triangle mesh. 
Trivial rejection of inactive triangles can be applied by comparing the current time with 
the minimum and maximum vertex time for each triangle. Active edges and triangles are 
exactly those whose vertices have times greater and smaller than the current time.

For each intersected triangle, we store the two intersection points as line segments in a 
segment list, as well as whether the intersected triangle is “valid” (see end of Section 5.3.4). 
When the feature lines have been extracted for all time steps, we make a second loop over 
all time steps, but this time we regard two successive time steps at once (just as we did 
when computing the feature mesh). If a triangle is “invalid”, we have detected a hole in 
our feature mesh, which indicates an event, and the current feature line ends. If we find a 
new intersected and “valid” triangle, a new feature line begins. This way, we can determine 
the number and location of all feature lines for the current time.

Table 5.2 summarises the different event types, along with the circumstances which 
indicate their occurence. 

event type intersection of triangle 
with time isoline

triangle 
type

triangle 
flag

adjacent 
triangles

split vertex segment
interior invalid yes, 

both validmerge segment vertex

creation vertex segment
interior valid none

annihilation segment vertex

entry vertex segment
boundary valid none

exit segment vertex

TABLE 5.2         Mapping of triangle intersection types to event types.

t ti= t ti 1+=
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5.5 RESULTS
In this section, we provide numerical and visual results based on two time-dependent 
industrial datasets. Both datasets are discretised on unstructured hexahedral grids.

The first dataset is a coupled unsteady simulation (by VA Tech Hydro) of the runner 
and draft tube of a Francis turbine. The main purpose of the simulation was to predict the 
vortex rope, a helical vortex structure having a precession rate of roughly one third of the 
runner frequency. The computation was done for the original and for an optimised runner 
geometry. The optimisation improved the flow behavior, but its less articulate vortex rope 
is more difficult to extract. Figure 5.14 shows the vortex rope in the original design. The 
vortex core was extracted based on the definitions by Miura and Kida [MK97]] and by 
Levy et al. [LDS90]. Because the former works with second derivatives, some smoothing 
was necessary. The latter produced acceptable results even without smoothing.

Regarding the redesigned draft tube (Figure 5.15), it is remarkable how the topology 
of the vortex cores depends on the scale. At the smallest scales, noise is dominating, which 
disappears at medium scales. At larger scales, a vortex core close to the machine axis 
appears, describing the global swirl in the draft tube. Tracking the vortices over different 
scales and displaying them by triangular feature meshes allows us to recognise the frag-
mented cores without sacrificing the positional accuracy (Figure 5.16 left).

The second dataset is an unsteady simulation (by Sulzer Pumpen) of a mixed-flow 
pump operated at 35% of its best efficiency point. The vortex extraction and tracking on 
a 5-processor SGI Power Challenge for 1800 time steps (1-degree increments) took 73.5 
CPU-hours, thus about 2 1/2 CPU-minutes per time step. The temporal tracking of the 
vortex cores generates a description of the vortex motion. Figure 5.16 (right) reveals that 
most vortices are quite stable, whereas one vortex per diffusor channel is oscillating.

Figure 5.13 demonstrates the feature simplification aspect of the scale-space approach. 
Vortices have been extracted from all three datasets at fixed times but different scales. The 
number of features is plotted against the standard deviation of the Gaussian smoothing 
kernel. As is apparent, the number of features decreases significantly with increasing scale. 

FIGURE 5.13 Number of features at different scales.
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FIGURE 5.14 Original draft tube dataset: geometry and instantaneous streamlines (left). Pressure isosurfaces 
and pressure valley line indicate the so-called vortex rope. Pressure data for Miura/Kida meth-
od have been Gaussian-smoothed with  (middle). Vortex core extraction based 
on normalised helicity (Levy method) can be successfully applied to unsmoothed data (right). 
See also Colour Figure A.1 on page 121.

FIGURE 5.15 Modernised draft tube: vortices are less articulate and harder to extract. Vortex core extraction 
based on normalised helicity (Levy) has been applied to unsmoothed velocity field (left) and 
to Gaussian-smoothed data with  (middle) and  (right). Colors rep-
resent connected components of the surface swept by the core lines, see Figure 5.16. 
See also Colour Figure A.2 on page 122.

FIGURE 5.16 Vortex cores of modernised draft tube tracked through scales  (left). Diagonal 
pump dataset with vortices extracted in runner and diffusor along with manually seeded 
streamlines (middle). Vortex cores tracked temporally for a  rotation of the four-bladed 
runner (right). See also Colour Figure A.2 on page 122.
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6C H A P T E R
6VORTEX HULLS 

The aim of the vortex hull construction is to make the vortex core better visible and also 
interpretable. Rather than showing only a one-dimensional (line-type) feature, we now 
want to get a notion of the “size” of the vortex in a local neighbourhood of the core line. 
The goal can be achieved by surrounding the core line using a tube structure which is a 
closed surface, and thus combining line-type with region-type feature extraction methods. 
This hybrid approach combines the advantages of line-type features with those of region-
type features, namely clear separability and clear visibility of the vortices.

Most of the methods in literature regard the vortex hull as a deformable model which is 
topologically equal to a cylinder. In this case, the vortex hull is initialised with the vortex 
core line, corresponding to a cylinder of infinitesimal diameter. The vortex hull is then 
expanded until a certain termination condition is met. An example for this is Sadarjoen’s 
method which uses deformable models to approximate surface-type features [Sad99]. A 
general introduction to deformable models was given by Terzopoulos and Fleischer 
[TF88].

Concerning the termination criterion of the expansion, Banks and Singer [BS94] pos-
tulate that the pressure must not exceed a predefined limit, and that the angle between vor-
ticity at the core line and vorticity at the current point must be smaller than 90 degrees. 
However, their implementation is restricted to rectilinear grids. Roth [Rot00] describes an 
implementation which works fine for structured grids.

In contrast, we will in this chapter present a novel algorithm for constructing vortex 
hulls in unstructured grids. The implementation allows to select from different hull shapes 
and scalar fields, to define suitable thresholds, and to smooth the cross-sections and overall 
shape of the constructed tubes. At the end of this chapter, we will give some result images 
as well as performance analysis data for the algorithm. Further images of vortex hulls were 
created using a virtual reality system which will later be presented in Chapter 8.
79
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6.1 BASIC VORTEX HULL ALGORITHM

In an earlier paper [BP02b] and in the previous chapter, we described how to extract a 
vortex core line from a 3-dimensional CFD dataset. Based on such a vortex core line, our 
vortex hull approach follows the deformable model paradigm by radially expanding the 
core line as long as a certain scalar field is above or below a given threshold. To achieve 
this goal, the vortex hull is built from tube sections, where one tube section is added for 
every vertex or segment of the core line.

For every vertex, a seed point is set on the vortex core line, a plane containing the seed 
point and being perpendicular to the core line is set up, and a fan of  rays originating at 
the seed point is defined in that plane (  being an arbitrary integer greater than two). As 
soon as the lengths of the rays are known, the endpoints of the rays can be connected to 
star-shaped polygons. The cross-sections of the vortex hull along the core line are therefore 

-sided polygons (see Figure 6.1).

FIGURE 6.1 Principle of vortex hull construction.

The cross-section polygons can be of constant or variable shape and size, depending on 
what is preferred by the user. If the vortex only shall appear more plastic (e.g. for demon-
stration purposes), it may be sufficient to construct the tube sections as piecewise regular 
prisms or approximated cylinders of constant diameter, without a special physical meaning 
of the thickness. However, if the user is also interested in a measure for the “extent” of the 
vortex (e.g. for engineering and turbine design improvement), the information of a scalar 
field surrounding the core line will be needed for construction, and the resulting prismatic 
tube sections will be of varying thickness and shape, depending on the choice of scalar field 
and on the scalar threshold.

In a previous implementation (see [BP02a] and [SP03]), we used a fixed sampling rate 
for evaluating the scalar field on the rays, and vortex strength as the scalar field. Similar 
vortex hulls, but based on pressure values, have been computed by Banks and Singer 
[BS94]. In summary, our original algorithm consists of the following steps (Figure 6.2): 

n
n

n
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Figure 6.3 shows a vortex hull resulting from this algorithm, as well as the vortex core line 
and some streamlines indicating the vortical structure. With a slight modification, this 
algorithm produces a scalar field containing the vortex strength for nodes inside the vortex 
hull and zero values for nodes outside the vortex hull. In the remainder of this chapter, we 
will propose an improved version of this algorithm, which uses some more sophisticated 
techniques for the vortex hull computation and representation.

FIGURE 6.3 Vortex core line and computed vortex hull 
(streamlines added for better depicting the swirl in the draft tube).

Define a seed point at every vertex on the vortex core line.
for each seed point on the vortex core line

Estimate the core line tangent by adjacent core line segments.
Set up a plane perpendicular to the vortex core line.
Construct a fan of rays which spreads over the plane.
for each ray of the fan

Generate sample points on the ray at fixed small intervals.
for each sample point on the ray

Determine the cell containing the sample point.
Evaluate the scalar field.
if the scalar value has crossed the threshold then break

next sample point
Store the current sample point as endpoint of the ray.
next ray
Draw a star-shaped polygon connecting the ray endpoints.

next seed point
Connect the star-shaped polygons to prismatic tube sections 
around the vortex core line.

FIGURE 6.2 The original vortex hull construction algorithm (fixed sampling intervals).
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6.2 ENHANCED VORTEX HULL ALGORITHM
Based on the original vortex hull algorithm, we made several modifications which help 
improve the quality and reduce the computational time of the vortex hulls. The first 
design decision (explained in more detail in Section 6.2.1) was to set up the cross-section 
planes (and thus the seed points of the rays) in the middle of the core line segments rather 
than at their endpoints (which are the core line vertices). This choice has two advantages:

1. The plane normal (which must be approximately tangential to the core line) needs not 
to be interpolated from the two adjacent core line segments of a vertex. Instead, it is 
directly given for each core line segment by the difference vector of its two vertices.

2. The curvature of the line connecting the seed points is reduced, which smoothes the 
resulting vortex hull along its central axis (see Figure 6.4). This is the same smoothing 
effect as occurs when applying one step of the de Casteljau algorithm to a control 
polygon in order to construct a Bézier curve (“corner cutting”, [ESK96]).

FIGURE 6.4 Location of the cross-section planes in the middle of the core line segments.

The second design decision was to use adaptive rather than fixed sampling intervals for tra-
versing the rays and evaluating the scalar field. Rather than stepping forward in physical 
space and making point searches for the cell containing the current position, the ray tra-
versal is done using an enhanced connectivity information of the (unstructured) grid cells. 
The modified procedure for the ray traversal will be discussed in Section 6.2.2.

The third design decision was to filter the lengths of the ray endpoints, and to fair the 
resulting mesh using a discrete approximation of the Laplacian at the mesh vertices. These 
postprocessing methods will later be described in Section 6.2.3 and Section 6.2.5. Our 
improved vortex hull algorithm basically consists of the following steps:

1. Set up the cross-section planes and rays: 
For every segment of the core line, choose the midpoint as a seed point, 
set up a normal plane, a local coordinate system and a fan of rays in this plane.

2. Radially expand the vortex hull: 
For every ray, traverse cell by cell, compute the intersection points 
with the cell faces, and check the scalar field at these points w.r.t. the threshold.

3. Filter the resulting ray lengths (optional): 
Apply a median filter in a -neighbourhood of every ray to be filtered.

4. Assembly the vortex hull by connecting the ray endpoints using polygons.

5. Fair the resulting mesh (optional) by iterative Laplacian smoothing.

We will in the following treat some implementation aspects of the improved algorithm.
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6.2.1 Setup of the cross-section planes

As we have seen in the previous section, a cross-section plane of the vortex hull is defined 
by a core line segment and its two endpoints. The plane origin  and the plane normal 

 can easily be computed as

(6.1)

(6.2)

where  and  are two successive vertices on the core line which form the endpoints 
of the core line segment (see Figure 6.4). Within such a plane, a two-dimensional coordi-
nate system can be installed by setting up two basis vectors  and , which must be per-
pendicular to  and to each other. By taking suitable cross products and normalising 

, the three vectors build a right-handed coordinate system (see Figure 6.5, left).

FIGURE 6.5 Plane coordinate system for the rays, and definition of its basis vectors 
(3D and 2D representation, respectively).

We now have a coordinate system in a plane perpendicular to the core line. To construct 
the -sided polygon for the cross-section of the vortex hull, we build a fan of rays origi-
nating at the seed point  and pointing away from . The directions of the rays are 
equally distributed over the plane by dividing 360 degrees by the number  of desired rays 
(which is a user-defined constant for all vortex hulls). If the rays are numbered in ascend-
ing order from  to , then the angle  of the ray  w.r.t. the basis vector  is

(6.3)

(see Figure 6.5, right), and the direction  of the ray  in 3-space is

(6.4)

Given the seed point  and the ray direction , we can write the equation of the ray  as

. (6.5)

This equation serves as a mathematical basis for the ray traversal. The next section will 
treat the question how to find a suitable  value (and thus the endpoint of a ray) so that 
a user-defined termination criterion for the vortex hull is met.

P
N

P vi vi 1++( ) 2⁄=

N vi 1+ vi–=

vi vi 1+

L M
N

L M N, ,

L

M

N

L

M
Dj

P
0 1

1

ϕj

n
P P

n

1 n ϕ j L

ϕj
j
n--- 360° j IN 1,∈ j n≤ ≤( )⋅=

Dj j

Dj L ϕj( )cos⋅ M ϕj( )sin⋅+=

P Dj j

xj λ( ) P λ Dj λ IR λ,∈ 0≥( )⋅+=

λ



84 6   V O R T E X  H U L L S
6.2.2 Radial vortex hull expansion

Once a certain cross-section-plane of the vortex hull has been established, the further pro-
ceeding of the algorithm depends on the users’s choice. If only a better visualisation of the 
progression of the vortex core line is desired, it might be sufficient to give the vortex hull 
a constant thickness, i.e. the  values of all ray endpoints are equal (and can be set to a 
user-defined value). This will lead to regular shaped prismatic tubes, and, in case of a high 
value for the number  of rays per fan, to a quasi-cylindric shape (see Figure 6.6, left).

FIGURE 6.6 Vortex hull cross-sections based on different scalar fields. 
Left: based on distance field of core line, right: based on independent scalar field 
(threshold searching). Shapes are drawn for n=8 and a large value of n, respectively.

However, if the user is interested in seeing a measure for the “importance” of the vortex 
in the environment of the core line, a physically meaningful scalar field surrounding the 
core line is needed, as well as a user-defined scalar threshold. The endpoint of a certain ray 
is now computed as the first point on the ray where the scalar field crosses the scalar thresh-
old. This will result in different ray lengths and non-regular shapes of the vortex hull cross-
sections (see Figure 6.6, right). To achieve smooth vortex hulls, we could subdivide the 
resulting mesh of ray endpoints (e.g. by the Catmull-Clark operator [CC78]). However, 
since the core line vertices lie on neighbouring cell faces, the ray planes are relatively close 
together. And since we can also increase the number of rays, we decided to rather fair the 
resulting mesh using Laplacian smoothing without subdivision (see Section 6.2.5).

Possible choices for the scalar field are the pressure (which is often directly given on one 
of the data channels of industrial datasets), or the helicity (which can easily be computed 
from the velocity data of the flow). A good choice is also to use vortex strength as the scalar 
field, which is based on the velocity gradient tensor. Of course, the choice of constant 
thickness for the cross-sections can also be regarded as using a scalar field, namely the dis-
tance field of the core line. In this case, the scalar threshold is equal to the length of the 
rays (or, in the case of many rays, equal to the radius of the resulting nearby cylindric tube).

The actual algorithm to find the endpoint of a certain ray is based on a region-growing
scheme. The idea is to traverse the ray away from the seed point, which has a parameter 
value of  w.r.t. the ray equation (Equation 6.5). Our previously implemented 
approach stepped along the ray in fixed intervals in physical space, thus requiring a point 
search for every sample point to locate the cell containing it.
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The disadvantage of this method is, of course, the trade-off between many small inter-
val steps (consuming much computation time for the point searches) and few big interval 
steps (taking the risk of missing the first point where the scalar value crosses the threshold). 
Since the frequencies of the scalar field are not known in advance, it is not trivial to ade-
quately choose the interval step size due to Shannon’s sampling theorem [Sha49].

To circumvent this problem, we enhanced the connectivity structure of the unstruc-
tured grid. The new data structure stores for every face of the grid the two cells sharing the 
face, and for every cell of the grid its six side faces. This allows us to “switch” from one cell 
to a neighbouring cell without performing any point search. In combination with the ray 
direction, this means that it is sufficient to traverse cell by cell, test the cell faces for inter-
sections with the ray, and to switch to the cell which follows after the “next” point on the 
ray (see Figure 6.7). In other words, it is in every step necessary to select the intersection 
point with the smallest  value greater than the current  value (see also [Gar90]).

FIGURE 6.7 Ray traversal through the cells of the unstructured grid (projected view).

The drawback of our new propagation method is the necessity of raycasting the quadran-
gle cell faces. However, since we must traverse only few grid cells, this is more than com-
pensated by the reduced number of sampling points. A more detailed description of the 
ray traversal and intersection computation is given in Appendix C. The algorithm stops 
when one out of several termination criteria has been fulfilled, namely if

- the scalar threshold has been crossed between two consecutive intersection points, 
- the grid boundary has been reached, 
- the maximum number of traversed cells (along the ray) has been reached, 
- no new intersection point could be found on any face of the current cell.

In the latter three cases, the  value of the last valid intersection point on the ray is 
returned. In the first case, the return value for  is interpolated from the last two valid 
intersection points on the ray. A detailed pseudocode notation is given in Figure C.2.
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6.2.3 Filtering of the ray lengths

The finding of the  parameter values (and thus endpoints of the rays) strongly depends 
on the type of scalar field and on the scalar threshold. However, the raw data of this scalar 
field often originate from numerical CFD simulations and therefore contain inaccuracies. 
These inaccuracies can lead to artifacts such as high frequencies in the distribution of the 
ray lengths within a cross-section plane or self-intersections caused by rays of neighbouring 
cross-section planes (see Figure 6.8). Singularities show up in the resulting vortex hull, e.g. 
as holes or peaks in the triangular mesh representing its surface.

FIGURE 6.8 High frequencies of the ray lengths in the cross-sections of a vortex hull.

To cope with this undesirable effect, a user-defined filter mask can be activated for 
smoothing the  values within the planes. A good choice is the use of a median filter
because it eliminates numerical exceptions better than a simple average filter could do. The 
filter process loops over all rays of a certain plane and applies the filter mask to every ray, 
taking into account its -neighbourhood (i.e.  neighbours to the left and  neighbours 
to the right, so the filter mask size is , see Figure 6.9). This filtering leads to sig-
nificant noise removal (Figure 6.14 and 6.15), especially if the complete mesh is after-
wards faired using a Laplacian operator (see Section 6.2.5, Figure 6.16 and 6.17).

FIGURE 6.9 Smoothing the ray lengths by use of a filter mask (in this case k=1, filter size = 3).
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6.2.4 Vortex hull assembly

Once the  values of all rays in a certain plane have been found and eventually filtered,
the endpoints of the rays are computed using the ray equation (Equation 6.5). Afterwards, 
the algorithm switches to the next core line segment and thus to the next cross-section 
plane. An inner tube section between two neighbouring planes is then built up using quad-
rangles. Each quadrangle connects two neighbouring ray endpoints of a plane and the cor-
responding two ray endpoints of the neighbouring plane. For instance, if the two 
neighbouring planes are successively indexed  and , and the two neighbouring rays 
are indexed  and  within any plane, then the four ray endpoints , , 

,  are connected to a quadrangle (see Figure 6.10). Before inserting it 
into a graphical object for the rendering pipeline, each quadrangle is subdivided into two 
triangles, which are easier to handle for normal calculation and lighting.

The beginning and ending of the core line have to be treated somewhat different from 
the inner segments. Here, we only have ray endpoints of one plane and an additional single 
vertex (the first or last vertex of the core line). In this case, we directly build triangles, every 
triangle connecting the vertex and two neighbouring endpoints ,  of the plane.

FIGURE 6.10 Construction of the final vortex hull from the ray endpoints 
(in this case, m = #segments = 4, n = #rays per fan = 5).

As a result, the final vortex hull is a closed triangulated surface completely surrounding the 
vortex core line. The geometrical complexity of a vortex hull can be computed as follows: 
Let  be the number of segments (and thus fans) of a core line, and  be the number of 
rays per fan. Then the number of inner tube sections is , leading to  quad-
rangles and  triangles. Additionally, each of the two pyramids built for the 
beginning and ending of the vortex hull consists of  triangles, leading to  triangles. 
The vortex hull has thus a total of  triangles, so its complexity is 
proportional to the number of core line segments and to the number of rays per fan.

This statement also holds for the complexity of the vortex hull construction algorithm 
(without filtering and assuming a constant average time for the ray extension, which can 
be justified by statistical reasons), as is evident from the pseudocode shown in Figure C.1. 
Some performance measurement results confirming this will be given in Section 6.3.
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6.2.5 Mesh postprocessing

As is the case for CFD datasets, we can also reduce noise in the vortex hull, which is a geo-
metric mesh. We only have to smooth coordinates rather than data at the mesh vertices. 
For this fairing, we once again use the diffusion equation (compare to Equation 4.9)

, (6.6)

where  is the diffusion time,  is a scaling factor,  denotes the mesh itself (a vector con-
taining the coordinates of every mesh vertex), and  is the Laplacian of the mesh ver-
tices (see the SIGGRAPH paper of Desbrun et al. [DMSB99]). For reasons of simplicity, 
we used in this case an explicit Euler scheme to integrate the diffusion equation over time. 
The aim is to recursively filter the mesh, i.e. to construct a series of meshes where each 
newly built mesh  is computed from its predecessor mesh  according to

(6.7)

where  is the number of the current iteration,  is the Euler time step and  is the 
matrix containing the Laplacian weights for all mesh vertices. In principle, our algorithm 
loops over each mesh vertex , computes an approximated Laplacian  based upon 
its 1-neighbourhood (see below) and stores for every vertex  its displacement

. (6.8)

When all vertices have been processed, we add to every vertex its displacement:

, (6.9)

and perform the next Euler iteration. Since few iterations were sufficient in our case (see 
Section 6.3), we neglected the mesh shrinking effect. We approximated the Laplacian at a 
certain vertex using the umbrella operator proposed by Taubin [Tau95] (see Section 4.7.2),
which is suitable even for unstructured meshes and requires a stability criterion of

. (6.10)

Let  be the valence (= number of direct neighbours) of vertex  and  the set of 
direct neighbours connected to  by an edge. Then the umbrella operator computes to

(6.11)

which is the average vector of all edges pointing from  to its direct neighbours. In our 
implementation, the computed vortex hull consists of quadrangles (see Figure 6.10) and 
is (apart from the two endcaps) a cylindric structured mesh. We stored this mesh as a two-
dimensional array  of vertices (see Figure 6.11), where 

 is the number of cross-section planes,  is the number of rays per fan and  denote 
the plane and ray where the mesh vertex  was found as a ray endpoint. These inner 
vertices are stored in the columns  and rows  of the vertex array. 
The first vertex  and last vertex  of the vortex core line, which are the tips of the 
vortex hull endcaps, have to be treated specially. For reasons of simplicity, they are multi-
plied  times and copied to the left column  and right column  
of the vertex array. Futhermore, we made a cyclic continuation of the ray endpoints within 
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each plane. Since the vortex hull has a cylinder topology, we copied row  to row 
 and row  to row . Concerning the boundary conditions of the 

Laplacian smoothing, we decided to fix the vertices  and , which helps minimise the 
shifting of the overall vortex hull due to the Laplacian smoothing. Therefore only the inner 
vertices have to be displaced during the fairing process.

We can now apply the umbrella operator to every inner node of the vertex array 
 without testing for array boundaries, provided that we restrict 

the Laplace stencil to 4 or 8 neighbours per node. Of course the st and -th vertex of 
each inner column must again be circularly copied at the end of each Euler iteration step. 
The left and right column remain unchanged due to the fixed boundary condition.

FIGURE 6.11 Storage of mesh vertices and application of umbrella operator (cross stencil). 
(In this case, m = #segments = 5, n = #rays per fan = 3, M = valence = 4).

6.3 RESULTS
The modified vortex hull algorithm was tested on an SGI Octane (640 MB main memory, 
MIPS R10000 CPU and MIPS R10010 FPU running at 250 MHz) for three different 
unstructured grid datasets, using the Levy vortex extraction method and vortex strength 
as the scalar field. Table 6.1 compares the computational times of the five phases

- setup of the two vector fields and the scalar field, 
- extraction of the vortex core lines, 
- construction of the appropriate vortex hulls, 
- filtering of the rays by a median filter, 
- fairing of the resulting mesh by Laplacian smoothing.

From the table, it is evident that the time consumed for vortex hull construction is indeed 
proportional to the number of core line segments and to the number of rays per fan, as 
was expected by the theoretical complexity analysis in Section 6.2.4. Furthermore, the 
vortex hull construction time is relatively small in comparison to the vector field setup and 
core line extraction time, provided that the number of rays per fan is moderate.

For large numbers of rays per fan, the hull construction time increasingly dominates 
the costs. However, this is in practice no serious limitation since for most applications, 
about 30 rays per fan are sufficient for good-quality results (especially if the hull mesh is 
afterwards faired using the umbrella operator). Since our implementation uses a simple 
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sorting method with quadratic order of complexity, sorting the lambda values of the unfil-
tered rays becomes a bottleneck for large filter sizes. Of course the sorting time could be 
reduced by a more sophisticated method like Quicksort. As was to expect, the time for 
Laplacian mesh fairing of the vortex hull is proportional to the number of Euler iterations.

Figures 6.12 to 6.17 show some examples of vortex hulls constructed by the algorithm. 
The underlying datasets are based upon the artificial bent helix and the Francis draft tube 
also treated in Chapter 5. Figure 6.12 shows a wireframe representation of the vortex hull 
around the bent helix, based upon the distance field of the vortex core line with 5 rays per 
fan and regular pentagons as cross-sections. For the Francis draft tube, the distance field 
option with 36 rays per fan yields a quasi-cylindric shape of the vortex hull (Figure 6.13).

The noise originating from the fragmented vortex core line at the Francis draft tube 
inlet clearly increases when using vortex strength (Figure 6.14), since this scalar field con-
tains high frequencies. As postulated in Section 6.2.3, median filtering of the ray lengths 
removes a large amount of noise, since it eliminates numerical exceptions among the ray 
lengths (Figure 6.15). However, the resulting vortex hull looks somewhat “shrivelled”, 
containing bumps and still self-intersections of neighbouring ray planes.

To cope with this effect, we faired the mesh with and without previous ray filtering. 
Pure Laplacian smoothing reduces the raw data noise but fails to remove the numerical 
exceptions at the region of maximum twist of the vortex (Figure 6.16). A combination of 
median ray filtering and subsequent Laplacian smoothing yields better results, leading to 
a smooth vortex hull while still preserving the characteristic shape and thickness of the vor-
tex, despite of a slight shrinking (Figure 6.17). In practice, 4 neighbours per node, a step 
size of  and 10 explicit Euler iterations were sufficient for good visual results. 

turbine 
design

core 
line 
segments 
(m)

rays 
per 
fan 
(n)

vortex 
hull 
triangles 
(2mn)

filter size/ 
Euler 
iterations 
(k)

vector 
field 
setup 
CPU[s]

core 
line 
extr. 
CPU[s]

vortex 
hull 
constr. 
CPU[s]

ray 
median 
filtering 
CPU[s]

Laplace 
mesh 
fairing 
CPU[s]

bent 
helix, 
2000 
nodes

19 10 380 0 0.08 0.04 0.07 0.00 0.00

50 1900 0.34

100 3800 0.67

Francis 
original, 
654770 
nodes

283 10 5660 0 30.39 16.00 1.31 0.00 0.00

50 28300 6.38

100 56600 12.70

Francis 
modified, 
654770 
nodes

418 100 83600 0 30.48 15.97 33.49 0.00 0.00

1 0.07 0.15

5 0.41 0.79

10 1.12 1.59

50 17.18 7.97

TABLE 6.1         Performance analysis of the vortex hull computation.
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FIGURE 6.12 Vortex core line and hull construction for the bent helix dataset, 
based on Levy method and distance field (m = 19, n = 5, k = 0).

FIGURE 6.13 Vortex hulls based on Levy method and distance field (m = 283, n = 36, k = 0). 
Noise in the upper region (Francis draft tube inlet) due to unsmoothed CFD data.
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FIGURE 6.14 Vortex hulls for Levy method and max. vortex strength of 3.0 (m = 283, n = 36, k = 0). 
High-frequency noise at region of maximum twist of the vortex requires smoothing. 
See also Colour Figure A.3 on page 123.

FIGURE 6.15 Vortex hulls for Levy method and max. vortex strength of 3.0 (m = 283, n = 36, k = 15). 
Median ray filtering reduced noise especially at region of maximum twist. 
See also Colour Figure A.3 on page 123.



6 . 3   R E S U L T S 93
FIGURE 6.16 Vortex hulls for Levy method and max. vortex strength of 3.0 (m = 283, n = 36, k = 0). 
Laplacian mesh fairing (4 neighbours, , 10 iterations) without ray filtering. 
See also Colour Figure A.3 on page 123.

FIGURE 6.17 Vortex hulls for Levy method and max. vortex strength of 3.0 (m = 283, n = 36, k = 15). 
Combination of median ray filtering and subsequent Laplacian mesh fairing. 
See also Colour Figure A.3 on page 123.

λ tΔ⋅ 0.9=



94 6   V O R T E X  H U L L S



7C H A P T E R
7SELECTIVE PARTICLE TRACING

Tracing and rendering of moving particles is a standard technique for the visualisation of 
stationary or time-dependent 3D vector fields. Nevertheless, it is hard to find better tech-
niques for this type of data. Moving streamlines, for instance, are not physically meaning-
ful (see Chapter 3), while path lines should be reserved to static visualisations. Streaklines 
are an adequate technique, but by discretising them into a series of particles, some addi-
tional information can be conveyed.

Particles, in contrast, have the advantage of a small glyph size, which minimises occlu-
sion in projected views. Furthermore, particle visualisations compare naturally to some 
types of flow experiments. The hydraulic CFD simulations which led to this work are 
often accompanied by flow experiments where the flow is measured and visually examined 
in scale models. In such experiments, cavitation bubbles can be observed (even in rotating 
machine parts if viewed under stroboscopic lighting, see Section 7.3).

In this chapter, we explore techniques for the purpose of visualising isolated moving 
particles in time-dependent flow data. Our primary industrial application is the visualisa-
tion of the vortex rope, a rotating helical structure which builds up in the draft tube of a 
Francis-type water turbine. The vortex rope can be characterised by high values of norm-
alised helicity, which is a scalar field derived from the velocity data given in the underlying 
CFD datasets. In two related applications, the goal is to visualise the cavitation regions 
near the runner blades of a Kaplan turbine and a storage pump, respectively. Again, the 
flow structure of interest can be defined by a scalar field, namely by low pressure values.

In contrast to previous particle tracing approaches, we trace the particles selectively, 
which means that we focus on special regions-of-interest (ROIs) defined by two thresholds 
of a scalar field. We compute and visualise particles only within these regions, which sig-
nificantly reduces the amount of data to be processed. This method not only gains storage 
efficiency but also reduces occlusion problems. Furthermore, we propose a particle seeding 
scheme based on quasi-random numbers, which minimises visual artifacts such as clusters 
or patterns.
95
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7.1 PARTICLE TRACING VERSUS OTHER TECHNIQUES
Instead of tracing discrete particles, 3D textures could alternatively be used to visualise the 
flow field, e.g. by extending the Lagrangian-Eulerian Advection (LEA) algorithm proposed 
by Jobard et al. [JEH01] from two to three dimensions. However, we did not choose this 
approach because for time-dependent 3D textures, the texture loading and rendering time 
becomes significant. Also, hardware support for 3D texture is not generally available.

Concerning the seeding of the particles, the goal of evenly spaced glyphs has led to the 
streamline placement techniques [TB96], which, in principle, could be extended to four 
dimensions for time-dependent flow. Our approach is instead to exploit the conservation 
of mass property of physical flow fields. For incompressible flows, the conservation of mass 
means a divergence of zero, therefore the particle density remains constant if it was initially 
constant. For compressible flows, an initial particle distribution can be made to reflect the 
density of the medium.

A common problem of particle-based flow visualisation is the need for injecting new 
particles during the time evolution. The injection is necessary to maintain a uniform den-
sity of the particles over time. Texture-based methods accomplish this by continually 
adding noise. The noise is smeared enough to avoid visible artifacts by the large filter ker-
nels typically used in line integral convolution (LIC). But this solution is obviously not 
applicable to the discrete particles in our case. Instead, our strategy is to extend the region-
of-interest by a few layers of “buffer” cells, where the particles are kept invisible. When par-
ticles enter or leave the ROI, their visibility is changed smoothly. In the buffer cells, the 
correct particle density can now be maintained by adding and deleting invisible particles. 
And because of the mass conservation, this carries over to the visible particles, too.

7.2 FLOW REGIONS OF INTEREST
While steady flows can be explored by scanning the data domain (e.g. extracting isosurfaces 
at different scalar levels or placing seed points for streamlines at different locations), this is 
not an option for time-dependent data. But then, visualisation has to be sparse, i.e. it can 
not simultaneously depict the flow everywhere in the computational domain. If a certain 
level of detail is expected, visualisation has to be constrained to a region, and as a conse-
quence, the data must be explored repeatedly. In this chapter, we use the approach of defin-
ing flow regions in a data-guided way. Flow regions of our interest are vortices and 
cavitation regions, but other types of flow regions, such as recirculations, could be treated 
similarly.

We experienced that typical regions-of-interest consist of a few percents of all grid cells. 
Hence, it makes sense to generate and trace the particles only where needed. A common 
practice is to release particles from locations evenly spaced along lines or circles and at fixed 
time intervals. One can then observe how these geometrical patterns are deformed over 
time. A different approach, which we pursued instead, is to randomly spread particles in 
space, aiming at a uniform particle density while avoiding patterns and clustering.

We will generally assume that regions-of-interest (ROIs) can be specified by a scalar 
field. In many cases, such a scalar exists among the CFD data channels or can easily be 
derived from them. For example, cavitation regions are characterised by low pressure 
values (pressure values falling below the vapor pressure). And vortices can be characterised 
by high values of either helicity or normalised helicity.
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There are miscellaneous possibilities to define a ROI by means of scalar thresholds:

1. In Chapter 3, we mentioned a purely region-based approach, namely to extract an iso-
surface for a certain scalar threshold. The result of such an isosurface extraction is 
often more than one connected component. It can then be necessary to perform a 
selection among these components, especially because the resulting isosurface often 
contains false positives, that means undesired additional solutions (e.g. the region at the 
grid boundary of the turbine case shown in Figure 7.1).

2. In the case of a vortex, there is an alternative way to define a ROI based upon an 
extracted vortex core. In Chapter 5 and Chapter 6, we described a mixture of region- 
and feature-based techniques, namely how to detect a vortex core line and to radially 
expand the core line as long as a certain scalar field (e.g. the pressure or the vortex 
strength) is above or below a given threshold. The resulting vortex hulls significantly 
reduce the false positives, separate different vortices from each other and help better 
perceive the shape of the vortex than a pure isosurface could do.

3. In this chapter, we will pursue a third possibility, which is a mixture of region- and 
integration-based methods. Similar to isosurface extraction, we will define the ROI 
only by scalar values, without precomputing flow features such as vortices. Instead, we 
will trace particles in regions limited by two scalar thresholds controlling their visibil-
ity. The flow features will implicitly be contained in the ROI and detected by observ-
ing the overall structure of the moving particle stream.

In the remainder of this chapter, we will propose the industrial context of our particle 
tracer and then describe its specific visualisation techniques in more detail.

FIGURE 7.1 ROI definition by a scalar field and threshold. The isosurface consists of several 
connected components, including false positives at the boundary of the turbine case. 
See also Colour Figure A.1 on page 121.
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7.3 INDUSTRIAL APPLICATION

The main industrial case under investigation was the flow field in a Francis water turbine. 
The flow in the turbine passes through the vaneless spiral casing and enters the stationary 
stay and guide vanes, which accelerate the flow. The flow afterwards decelerates through 
the Francis runner and enters the draft tube, which is the last component of the turbine. A 
draft tube generally is a diffuser with or without a bend, whose objective is to convert the 
available kinetic energy into a rise in pressure. Depending on the operating conditions, the 
swirl of the flow at the runner exit (and thereby at the draft tube inlet) is strong enough to 
cause a flow instability, which is called the draft tube vortex. The typical shape of a draft 
tube vortex is that of a rotating helix. Due to the low pressure in the center of the vortex, 
the flow is often cavitating for a wide range of operating conditions, so that on the test rig, 
the vortex rope can be naturally visualised by means of cavitation bubbles, see Figure 7.2.

FIGURE 7.2 Photograph of a cavitating vortex rope on the test rig (image courtesy of 
VA Tech Hydro, Zurich). See also Colour Figure A.4 on page 124.

The part-load vortex rope is of technical relevance for two reasons. Firstly, it causes serious 
variations in relative pressure within the runner and on its hub and shaft, as well as in the 
draft tube (see Figure 7.3 and Figure 7.4). Secondly, it leads to an unstable through-flow 
and unstable power output. The shaft vibrations caused by the pressure variations can 
cause severe damage of the machine. Therefore in some power plants the operating range 
of the machine is restricted in order to avoid a strong vortex and the resulting damage.

The design of the runner blades and the hydraulic contour of the draft tube have a 
strong influence on the onset and strength of the draft tube vortex. It is therefore impor-
tant to understand the details of the vortex rope flow in order to define physically well 
founded design rules for a turbine design which is safe w.r.t. the draft tube vortex.

The visualisation methods demonstrated in this chapter are based on transient CFD 
simulations of the draft tube vortex in a pump turbine. The 3D Navier Stokes equations 
were solved using the commercial code CFX-TASCflow [Tec00] with a circumferentially 
averaged inlet velocity profile resulting from a CFD simulation of the runner flow.
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FIGURE 7.3 Variations of relative pressure at the runner blades of a Francis turbine (bottom view, 
vortex rope depicted as pressure isosurface). See also Colour Figure A.4 on page 124.

FIGURE 7.4 Variations of relative pressure in the draft tube of a Francis turbine (side view, 
vortex rope depicted as pressure isosurface). See also Colour Figure A.4 on page 124.
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7.4 VISUALISATION TECHNIQUES

For the purpose of selectively visualising the flow in regions-of-interest, we modified the 
standard particle-based technique in the following ways: 

• The particles are visible only in the ROI, with a smooth transition (fading) if they 
enter or leave the ROI. This method will reduce occlusion problems when rendering 
the resulting glyphs, and save memory as well as computation time.

• The particles are uniformly distributed in a way that no artifacts such as clusters or 
regular patterns occur. This way, the particle density roughly corresponds to the den-
sity of the medium during the complete tracing process. For incompressible flow, this 
means that the particle density is initially constant and remains constant over time.

We will in the following sections describe in more detail the specific visualisation tech-
niques we used for our novel particle tracer.

7.4.1 Cell classification

Initially and after each time step of the particle tracing algorithm, the grid cells are classi-
fied as inner, buffer or outer cells. The cell classification is based on the scalar field  of 
the CFD dataset and two particle visibility thresholds  (see also Section 7.4.3):

• The inner cells are those where at least one corner has a scalar value exceeding the 
lower visibility threshold, i.e. which satisfies . The inner cells thus com-
pletely cover the region of partial and full visibility of the particles (see Figure 7.5).

• The buffer cells are those in a topological -neighbourhood of the inner cells. Addi-
tionally, all inner cells within the -neighbourhood of an inflow boundary are 
regarded as buffer cells.

• The remaining cells (often covering about 90 percent of the grid) are classified as outer 
cells.

FIGURE 7.5 Classification of cells, particle visibility, and tiles of quasi-random points.
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7.4.2 Particle seeding

The goal of the particle seeding is to generate a uniform distribution of the particles while 
avoiding clusters and regular patterns. In multi-dimensional spaces, quasi-random
sequences give better results than pseudo-random sequences or jittered regular samples. The 
latter two methods lead to clustering (Figure 7.6 (a) and (b)) or regular patterns 
(Figure 7.6 (c)).

Sobol’ quasi-random sequences were proposed [SH95] and have recently been used 
[SMA00] for LIC methods. An advantage of the Sobol’ points is that they can be tiled with 
no visual seams, as is shown in Figure 7.6 (d) and (e). This allows us to tile the physical 
space and to create quasi-random points only for a single tile, which is repeatedly used 
wherever it covers the ROI (extended by a few layers of buffer grid cells, see Section 7.4.1).

FIGURE 7.6 (a): Pseudo-random samples. (b), (c): jittered regular samples. (d): Sobol’ points. (e): four 
tiles of Sobol’ points.

7.4.3 Particle visibility

In our application, the ROI is defined by high values of a scalar field , which is either 
directly given in the datasets (e.g. pressure with inverted sign) or has previously been 
derived from them (e.g. helicity, computed from velocity). The particles are invisible as 
long as at their location, the scalar field  is below a predefined lower threshold . 
Above an upper threshold , they are fully visible (see Figure 7.7). Between the two 
thresholds, a smooth transition is made using either semi-transparency or reduced size of 
the rendered glyphs. Invisible particles can be generally treated as nonexistent by the 
implementation, which saves considerable memory and computation time. However, in 
the vicinity of the ROI it is good to trace invisible particles, too (see Section 7.4.1).

FIGURE 7.7 Smooth visibility transition by two scalar thresholds.
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7.4.4 Particle tracing

The crucial point of our algorithm is that it traces particles only in the inner and buffer 
cells, which cover a minority of the grid. The particles are initially distributed over all inner 
and buffer cells and periodically advected using Heun’s second-order integration method, 
then covering a different area. As long as this area completely covers all inner cells, every-
thing is fine. However, this condition can fail - not only because of the particle movement 
but also because the set of inner cells is dynamic due to the time-dependent scalar field.

After a certain update interval, we therefore clear all particles in the outer and buffer 
cells and generate new particles in the buffer cells. Since these particles are invisible by def-
inition of the buffer cells, the replacement has no visual impact. Nevertheless, it is impor-
tant that old and new particles join seamlessly at the border between buffer and inner cells, 
since the new particles may later become visible. By using Sobol’ quasi-random points, we 
can meet this requirement sufficiently for the purpose of visualisation. And by making the 
ring of buffer cells wide enough, we avoid replacing the particles too often. Based on these 
considerations, we designed a selective particle tracer of the structure shown in Figure 7.8. 

The particles in the buffer cells can be replaced at fixed time intervals, although a safer 
method would be to release marked particles at the outer boundary of the buffer cells. A 
marked particle entering an inner cell would trigger the replacement. Instead of generating 
a new set of quasi-random points for each replacement operation, we experimented with 
a cheaper solution, namely to just randomly offset the old Sobol’ tiles. This corresponds 
simply to a translation of all tiles, so there is no need to actually modify point coordinates. 

A drawback of our algorithm is that the integration of particle paths in unstructured 
grids requires frequent incremental point searches [Bun89]. However, a global point 
search is only necessary for newly generated particles, mostly because there is no spatial 
coherence in quasi-random sequences. To optimise the global point search, we organise 
the particles in a regular grid, which is a refinement of the tiling grid.

Create initial particles in INNER and BUFFER cells. 
currentTime := startTime
while currentTime < endTime
  Get current velocity field and scalar field.
  if update interval has expired 
    Update classification for each cell 
    (according to the scalar values of its nodes). 
    Delete all particles in OUTER and BUFFER cells. 
    Generate new particles in BUFFER cells. 
  end if
  currentTime := currentTime + timeStep
  for each particle in the particle list 
    Get current velocity of the particle. 
    Calculate new position of the particle (Heun integration, 2nd order). 
    Find new cell and local coordinates of the particle. 
    Classify the particle according to its cell classification. 
  next particle
  if drawing interval has expired 
    Draw the partly and fully visible INNER particles. 
  end if
end while

FIGURE 7.8 Pseudo-code of the selective particle tracer.
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7.4.5 Conservation of mass

When the velocity field (and the density in the case of a compressible flow) is interpolated 
from the node data, the resulting fields are expected to be mass-conservative. However, 
this is not the case if the standard techniques are used, namely trilinear interpolation in 
hexahedral grid cells and linear interpolation in tetrahedral grid cells. By comparing the 
influx and efflux of hexahedral grid cells, we observed that typically 1-5% of the mass is 
numerically “lost” due to the trilinear interpolation of the node data. This loss could in 
our case be reduced to about 0.5-2% by regarding the dual grid (dual cells are the control 
volumes of the finite volume method used by solvers such as CFX-TASCflow for the flow 
simulation). 

In principle, a mass-conservative interpolation could alternatively be used [FWCS97]. 
However, this would require the computation of two global stream functions for every sim-
ulated or interpolated time step. We decided to use a special interpolation only in cells 
next to solid (no-slip) boundaries, where most of the numerical mass loss occurs. In these 
boundary cells, the main effect of trilinear interpolation is that particles tend to “stick” at 
the boundary, eventually compromising the postulated uniform distribution. To prevent 
this, we do not allow particles to get closer to a solid wall than a certain fraction of a cell. 
We achieve this by clamping the appropriate local coordinate after each integration step
and neglecting the velocity component of the particle which directs towards the wall. This 
method is common practice [Bun89] and can be justified by the assumption of particles 
with a spatial extent (see Figure 7.9).

FIGURE 7.9 Clamping local coordinates at the grid boundary (2D representation).

7.4.6 Particle rendering

We used different techniques for the graphical output of the traced particles. An obvious 
technique is to render the particles as spheres, which minimises occlusion problems to the 
lowest possible degree and is easiest to implement. Furthermore, spheres are a natural 
equivalent to the cavitation bubbles observed in flow experiments (see Figure 7.2).

A good alternative technique is to render the particles as streamlets, which depict short 
pieces of their local path lines (see [WLG97]). The occlusion problem is in this case solved 
by alpha-texturing. For the shape of the streamlets, we used quadrilateral strips (ribbons) 
made up of billboard polygons. Billboard polygons are permanently directed towards the 
viewer and give the illusion of 3D rather than flat objects. Moreover, they can effectively 
be illuminated with diffuse and specular reflexion.

cell boundary

clamping zone

particle sphere

particle velocity
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7.5 RESULTS

We applied our selective particle tracer to CFD data for different types of water turbines
and using various rendering techniques.

Figure 7.10 shows a taking of a Kaplan turbine, which was investigated under different 
operating points and visualised when operating at its best efficiency point. The focus of 
the corresponding video animation was on the cavitation regions which developed on the 
suction side of the Kaplan runner blades and were identified by regions of low pressure.
The cavitation bubbles were in this case visualised by rendering the particles as spheres.

A similar procedure was applied to the waterflow through a storage pump, which is 
depicted in Figure 7.11. The original machine is located at Ffestiniog (North Wales) 
between two water reservoirs at different heights above sea level. It acts as a turbine con-
nected to an electric generator during peak hours (daytime) and to inversely pump water 
back to the higher reservoir during off-peak hours (nighttime). Four of these water tur-
bines at the power station can generate 360 MW of electricity within 60 seconds of the 
need arising. As can be seen from the picture, rendering the particles as spheres was a good 
choice to keep the occlusion problems low, despite of the high particle density in the flow.

Finally, Figure 7.12 shows an example for rendering particles as streamlets. The flow 
was visualised in the draft tube after passing the runner of a Francis turbine similar to that 
investigated in the previous chapters. In this case, we used fewer particles, allowing for 
alpha-textured billboard polygons to give a better impression of the particle motion. 
Streamlets as rendering primitives turned out to be particularly suited for video animations
- since even a freeze image gives a good impression of the flow behaviour and direction, 
the transition between two consecutive frames appears smoother than when using spheres.

FIGURE 7.10 Cavitation bubbles near Kaplan runner blades, rendered as spheres 
(ROI was specified by low pressure). See also Colour Figure A.4 on page 124.
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FIGURE 7.11 Particle stream through a storage pump, rendered as spheres (Runner case 
was opened in front for better insight). See also Colour Figure A.4 on page 124.

FIGURE 7.12 Vortex rope in Francis draft tube, rendered as streamlets (ROI is indicated by 
an isosurface of normalised helicity). See also Colour Figure A.4 on page 124.
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8C H A P T E R
8A VIRTUAL REALITY APPLICATION

Virtual environments have become a significant field of research and application during 
the past years. Their enhanced input and output devices and methods facilitate the explo-
ration of complex data and geometries. Concurrently, they help reduce a variety of prob-
lems related to spatial 3D perception, such as cluttering and occlusion in complex 
geometrical scenes.

The vortex core line extraction and vortex hull construction described in Chapter 5 and 
Chapter 6 is a time-consuming process, taking up to one minute for a single timeframe.
The user is thus forced to wait after every change of the input parameters until the new 
results are available and visible on the screen. To overcome this burden and facilitate an 
interactive use of the vortex application, a new system architecture is necessary.

In this chapter, we will present a framework for transferring results of the vortex core 
extraction and vortex hull construction to a virtual environment. We use a file system 
based approach to decouple the rendering phase from the computationally expensive data 
acquisition and feature extraction procedures. As a consequence of this, the VR applica-
tion is able to efficiently load and handle the vortex data. The user can thus navigate 
through the preprocessed timeframes at comfortable frame rates and interactively trans-
form, select, mark and remove vortex structures of the graphical scene.

The remainder of this chapter is organised as follows: In Section 8.1, we will give a brief 
introduction to the visualisation and programming environment that we used for our 
implementations. After a short comparison of the two visualisation platforms AVS and 
COVISE, we will motivate the choice of COVISE for the later stages of this thesis, and 
present its two basic VR concepts: a special renderer COVER and user-programmable plu-
gins for extending its functionality. We will then in Section 8.2 demonstrate how our 
framework is built from three major components based upon these ingredients, and 
describe the specific features provided by the new VR application for vortices. At the end 
of this chapter, we will give some performance measurement results as well as result images 
(Section 8.3).
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8.1 VISUALISATION SYSTEMS AND VIRTUAL ENVIRONMENTS
The algorithms described in this thesis were implemented for two visualisation platforms. 
The first one was AVS (Advanced Visualisation System), which is available in two ver-
sions, AVS 5 and AVS Express. We preferred AVS 5 since there was already a vast amount 
of modules available which had been previously implemented for this system. The second 
platform was COVISE (Collaborative Visualisation and Simulation Environment), which 
was developed at the High Performance Computing Center (HLRS) of the University of 
Stuttgart [HLR04] and afterwards distributed by the spin-off company VisEnSo [VIS04]. 
There has been a cooperation between HLRS/VisEnSo and the ETH Zurich regarding the 
COVISE system for several years. Additionally, our industry partner VA Tech Hydro is 
also working with COVISE, and is using it in conjunction with VR devices like the mobile 
Cykloop (see Figure 8.3 right).

Both visualisation platforms support the graphical programming paradigm, i.e. they 
offer a graphical user interface which facilitates the construction of major visualisation 
applications by composing them of minor units. Every application is stored as a network
of individual programs, which are called modules. The modules possess input and output 
ports for a variety of data types like computational grids, vector/scalar fields and images. 
By connecting the module ports using pipes, the dataflow through the network is con-
trolled and major applications can be built from minor ones, similar as if using a construc-
tion kit (see Figure 8.1).

FIGURE 8.1 A typical COVISE network.

In both systems, a certain set of standard modules is available for general tasks, like readers 
for the input of computational grids and data fields, mappers and filters for intermediate 
processing of the data, and renderers for the output of the resulting geometry. In addition 
to the standard modules, it is also possible to enhance the systems with arbitrary user-pro-
grammed modules, which is in fact the actual strength of these visualisation systems. An 
essential difference between AVS and COVISE is, however, that COVISE offers two dif-
ferent modules for geometry output: a conventional Open Inventor based Renderer (see 
Figure 8.2) as well as a special Performer based renderer COVER for support of virtual 
reality applications (see Figure 8.4 left).
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The conventional renderer is mainly used for single-workplace applications and collab-
orative working both using standard monitor output, whereas COVER also supports 
graphical presentation in virtual environments like caves (Figure 8.4 left), projection 
screens (Figure 8.3 left), and portable devices (such as the Cykloop developed by VisEnSo, 
Figure 8.3 right). To profit by the enhanced rendering and VR capabilities and apply them 
to the flow visualisation problems described in the previous chapters, we used COVISE as 
a second implementation platform during the later stages of this thesis.

FIGURE 8.2 The Inventor-based COVISE standard renderer.

FIGURE 8.3 Typical VR environments. Left: large projection screen. 
Right: the mobile Cykloop device (image courtesy of VisEnSo GmbH, Stuttgart).
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We will now briefly present the basic functionality of the VR renderer COVER, which 
we used as a component for our interactive vortex visualisation application described in 
Section 8.2. COVER (COvise Virtual Environment Renderer) is a special OpenGL Per-
former based renderer for virtual environments and their peripheral devices such as head 
trackers and 3D mouses. It also supports virtual devices, e.g. a lightsaber for selecting 
menu entries using the 3D mouse (see Figure 8.4, left). Its functionality can be extended 
by programming additional plugins [VIS03]. Besides projecting the graphical scene to a 
VR screen like a cave or workbench, a conventional monitor workplace is also supported, 
which is especially useful for testing purposes during the implementation phase. In this 
case, COVER renders the graphical output into a special window viewport of the desktop 
on a standard monitor and accepts conventional 2D mouse input as a substitute for 3D 
mouse input. Of course a 3D mouse position in virtual space has to be simulated from the 
2D coordinates then. Although the user gets no real 3D perception of the scene in this 
case, it is still possible to grab and manipulate the scene objects using a simulated lightsaber 
as in the virtual environment case.

FIGURE 8.4 Left: A graphical scene projected from the COVER renderer into a cave 
(image courtesy of VisEnSo GmbH, Stuttgart. See also Colour Figure A.3 on page 123). 
Right: The standard main menu of the COVER renderer.

The basic COVER module, when integrated into a COVISE network, provides a main 
menu which offers fundamental graphical operations to the user. Figure 8.4 (right) shows 
the main menu of the COVER renderer as displayed on the screen. The move world option 
enables the user to pick up the whole graphical scene and to translate and rotate it on the 
screen. The scale world option allows for zooming into and out of the scene, and thus for 
inspecting its graphical objects in more detail. Graphical operations can be restricted to 
certain parts of the scene by choosing the part manip option. Furthermore, a fly option is 
available which starts a flight through the scene to a target position aimed to by the 3D 
input device. Selecting the “Covise...” entry opens a second window where the user can 
start a custom VR application and its appropriate COVER plugin. An additional menu 
entry showing the custom application name is then added to the COVER main menu.
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8.2 THE VR APPLICATION FOR VORTEX VISUALISATION
Based on the concepts presented in the previous sections, we implemented a framework 
for the COVISE and COVER platform, which allows for interactively visualising basic 
results of the feature extraction methods described in Chapter 5 and Chapter 6, namely 
vortex core lines and vortex hulls.

8.2.1 System Overview

Figure 8.5 shows the structure of the overall system, which basically consists of three mod-
ules: a feature extraction module, a COVER plugin and a feature processing module. The 
feature extraction module is part of a COVISE network and contains the algorithms 
known from Chapter 5 and Chapter 6, namely for extracting vortex core lines and con-
structing vortex hulls. In a preprocessing step, this module extracts features from time-
dependent CFD data by looping through a timeframe directory in a batch mode. For every 
timeframe in the directory, the vector and scalar fields are set up and the vortex core lines 
are extracted. The surrounding vortex hulls can also be computed and smoothed. Finally, 
the resulting geometry is exported to a result file on disk (see Figure 8.5, left). This proce-
dure takes about 1 minute per frame and is repeated for every timeframe of the directory.

FIGURE 8.5 System architecture for the VR vortex visualisation framework. 
Dashed lines: batch mode network. Solid lines: interactive mode network.

Once the vortex results have been stored to disk, another COVISE network for interactive
use in a VR environment can be started, which contains an instance of the COVER ren-
derer and the feature processing module. The COVER renderer has been enhanced by a 
COVER plugin, which adds an additional entry to the COVER main menu and registers
the feature processing module to COVER (see Figure 8.5, right). From now on, the plugin 
serves as an interface between the user, the COVER renderer and the feature processing 
module. It contains callback functions for polling the user input devices and triggers the 
renderer for graphical output of the scene. Also, it provides picking functionality, which 
we developed as a functional extension to COVER and which enables the user to select 
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the vortex which is nearest to the 3D mouse position in virtual space. We will in the fol-
lowing sections describe the three major components of the overall system, their function-
ality and their features in more detail.

8.2.2 The feature extraction module

The batch mode network (Figure 8.5 left) contains the feature extraction module ucdVor-
texTracks for vortex core line extraction, vortex tracking (not used here), and vortex hull 
construction, thus comprising the implementations of all visualisation methods presented 
in Chapter 5 and Chapter 6 of this thesis. The vortices are extracted in a batch mode, 
looping through all time steps of a certain flow simulation, vortex extraction method and 
scale step, and writing the results into a corresponding result directory. A single result file 
contains the number of vortex core lines found for this time step, and for every vortex core 
line:

- the number of vertices on the core line, 
- the number of triangles building its vortex hull, 
- for every vertex: the  coordinates of the vertex, 
- for every triangle: the  coordinates of its three corners.

The result files are hierarchically organised in the file system, which means that the flow 
simulation, vortex method and scale step each define a level of the directory tree. Within 
a certain directory, the result files are indexed in ascending order due to their time step 
within the flow simulation. This hierarchical directory structure allows for easily building 
the correct result file name from the user inputs by converting the selected menu entries 
to strings and concatenating them to the required file name (see also Section 8.2.4).

8.2.3 The COVER plugin

The COVER plugin ucdVortexTracksPlugin communicates with the feature processing 
module via a message passing mechanism. It not only transfers the current settings and any 
update of the widgets, but also implements a newly developed picking mode, which takes 
the current 3D mouse position in virtual space and loops through every vortex core line 
segment. The core line segment which lies closest to the current mouse position defines 
the selected vortex core line and hull, which is then highlighted on the screen (see Figure 
8.6). Several vortices can be selected and grouped together, deselected or removed from 
the screen to allow better insight into complex geometrical scenes.

8.2.4 The feature processing module

When the feature processing module ucdVortexTracksCOVER is started and registered to 
the COVER renderer, an additional menu entry appears in the COVER main menu, 
showing the name of the feature processing module (see lower right part of Figure 8.6). A 
click on this menu entry opens a pop-up window entitled with the same name, which is 
the main menu of the VR application (see upper left part of Figure 8.6).

This main menu of the VR application contains widgets like radio buttons (e.g. for 
switching the input device between the Transform Object and Select Object mode) or sliders 
(like the Scale, Time and Opacity slider). Furthermore, additional submenus can be opened 
from this menu (e.g. the Turbine Design and Extraction Method submenus shown in the 
upper right part of Figure 8.6).

x y z, ,( )
x y z, ,( )
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FIGURE 8.6 A typical scene showing COVER and VR application menus and vortex hulls. 
The twisted vortex in the upper part of the draft tube has been selected. 
See also Colour Figure A.3 on page 123.

After the VR application has been started, the user can choose one out of several flow sim-
ulations (or turbine designs, respectively) and vortex extraction methods from the multiple 
choice submenus mentioned above. Furthermore, he or she can set the scale and time slid-
ers between a minimum and maximum value and this way choose an arbitrary degree of 
smoothing and time step for which vortex cores were extracted.

Based on these four user settings, the VR application determines the corresponding 
result file, loads the result data and transforms them into graphical objects for the COVER 
renderer. In practical experience, the sum of loading, rendering and user perception time 
is in the range of 1 second per timeframe (see performance results in Section 8.3). It is thus 
possible to navigate through the solution space of the vortex extraction and to interactively 
explore the behaviour of the detected flow features.

The Transform mode of the main menu allows for common geometrical transforma-
tions of the displayed vortices (like translation, rotation and scaling). Another option is the 
Select mode, which we implemented based upon the picking functionality described in 
Section 8.2.3. In this mode, the vortices can be selected and highlighted, deselected and 
removed individually or in groups (see Figure 8.6). This feature allows for better structur-
ing complex geometrical scenes containing a larger number of vortices.

Besides the previous options, the user can continuously adjust the opacity of the vortex 
hulls using a slider widget similar to the scale and time slider. This feature allows for visu-
alising a semi-transparent vortex hull together with the vortex core line at its center (see 
Figure 8.7 and Figure 8.8).
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8.3 RESULTS

The VR application for vortex cores was tested on a 250 MHz SGI Octane in the desktop 
view mode (that means the user input was done by a conventional 2D mouse, the graph-
ical output was rendered to a standard monitor screen). For three different turbine designs,
we fixed a certain scale ( ), vortex method (Levy), scalar field (vortex strength), 
and hull shape (10-sided polygons). The vortices of a whole unsteady CFD timeframe 
directory were then extracted and their hulls computed, the results for every time step writ-
ten to disk.

In the VR application, the time slider was manually moved between its minimum and 
maximum value (= first and last frame of the unsteady CFD dataset) for measuring the 
performance. Concurrently, the number of thereby loaded and rendered timeframes was 
counted, as well as the number of triangles of the vortex hulls. To get a realistic measure 
for the interactive performance in practical use, the execution time was not measured as 
pure CPU time but for complete feedback cycles also including the perception and reac-
tion time of the user. Table 8.1 shows

- the number of timeframes which were looped through, 
- the number of vortex hull triangles summed over all frames, 
- the amount of result file disk space summed over all frames, 
- the time consumed for loading, rendering and perceiving the results of all frames,

and the corresponding numbers per second. From the table, it is evident that the applica-
tion is interactive, but the frame rate is by one order of magnitude too low for a smooth 
animation of the complex geometry of the vortex hulls. Prefetching several timeframes
into main memory could improve the performance of the system. 

Figure 8.7 and Figure 8.8 show some examples of vortex core lines and their surrounding 
vortex hulls in the COVER environment. The screenshots were taken for the original and 
modified draft tube design of the Francis turbine already treated in Chapter 5. Due to its 
improved design, the modified draft tube produces weaker vortices, leading to more frag-
mented and less articulate vortex structures (compare with result images of Section 5.5).

turbine 
design

number 
of 
frames

number 
of
triangles

disk
space 
[KB]

loading/ 
rendering
time [s]

frame 
rate 
[frames/sec]

throughput 
[triangles/sec]

throughput 
[KB/sec]

bent 
helix

4 1520 56 1.0 4.0 1520 56

Francis 
original

26 130340 4756 20.0 1.3 6517 238

Francis 
modified

24 146460 5332 20.0 1.2 7323 267

TABLE 8.1         Performance analysis of the VR application for vortices.
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FIGURE 8.7 Vortex core lines and hulls of the original draft tube design. The hulls were computed 
for a vortex strength threshold of 1.0. See also Colour Figure A.3 on page 123.

FIGURE 8.8 Vortex core lines and hulls of the modified draft tube design. The design optimisation 
led to fragmentation of the vortices. See also Colour Figure A.3 on page 123.
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9CONCLUSIONS

This chapter concludes the dissertation with a summary of the main contributions, a dis-
cussion of advantages and drawbacks of the presented approaches, and some ideas for 
future research.

9.1 PRINCIPAL CONTRIBUTIONS

The main focus of this thesis is on the visualisation of steady and time-dependent flow 
structures by means of vortex core line extraction, vortex core line tracking, vortex hull 
construction and selective ROI-based visualisation of moving particles. In this context, the 
following contributions have been made to the field:

• Scale-space techniques: 
We have implemented a method for computing the linear scale-space of CFD data on 
unstructured grids. Rather than convolving the original data using Gaussian filters, we 
solved the diffusion equation to get the smoothed datasets. The diffusion equation 
was discretised using a finite element approach and solved using implicit Euler inte-
gration, where symmetric boundary conditions reduced the computational time.

• Feature extraction and tracking: 
We have implemented a modified version of the parallel vectors operator for feature 
extraction, namely the computation of vortex core lines in 3D space. By applying the 
precomputed scale-space and controlling the scale parameter, we are able to improve 
the extraction of features, in particular of features defined in terms of second spatial 
derivatives. We have also presented a novel 4D tracking method for line-type features, 
which allows for tracking vortex cores through different scales inherently carrying over 
correct topological information such as connectivity. The same algorithm can be used 
for temporal tracking, as is needed for selective visualisation of features in time-depen-
dent data. Our implicit tracking method can reliably treat fast-moving features and is 
therefore a good alternative to proximity-based methods.
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• Vortex hulls: 
We have refined and implemented an algorithm for constructing closed tubes sur-
rounding the previously extracted vortex core lines in an unstructured grid. We use the 
deformable model paradigm to enhance the core lines by means of growing rays which 
lie in planes perpendicular to the core lines. By enhancing the connectivity data struc-
ture of the grid, we are able to migrate along each ray without global or local point 
searches, which significantly reduces the computational time. The shape of the result-
ing vortex hulls strongly depends on the choice of a scalar field and threshold. In case 
the scalar data are noisy, a median ray filter in combination with subsequent Laplacian 
mesh fairing can successfully smooth the vortex hulls to reduce visual artifacts.

• Selective particle tracing: 
We have developed a modified particle tracer for selectively visualising time-depen-
dent 3D vector fields. Unlike previous representatives of its kind, our particle tracer is 
focused on special regions-of-interest in the flow, which can reduce the amount of data 
to be processed by one order of magnitude. By using quasi-random sequences when 
seeding new particles, a uniform particle density is maintained over time, and regular 
patterns and clusters are avoided. Due to the use of buffer cells and of two scalar 
thresholds for visibility, the particles fade in and out smoothly, which is favorable for 
animations. We applied our method to various datasets from our industry partners, 
visualising the vortex rope in the draft tube of a Francis turbine, as well as cavitation 
on the suction side of a Kaplan turbine, and the flow through a storage pump. The 
concept of selective visualisation of the relevant flow structures has proven to give 
additional insight into their complex dynamic behavior.

• Virtual Reality Application for Flow Visualisation: 
We have implemented a framework for transferring the results of the vortex extraction 
to a virtual environment. The VR environment allows for displaying and manipulat-
ing the graphical objects on a screen, in a cave, on a workbench or similar VR output 
devices, and to manipulate them using 3D input devices. By storing the vortex extrac-
tion results to the file system in a batch mode, the computationally expensive CFD 
timeframe retrieval and feature extraction is decoupled from the rendering process. 
The VR application thus allows the user to interactively navigate through the solution 
space of the vortex extraction, switching between the result timeframes for different 
turbine designs, vortex extraction methods, scale and time steps. In addition, distinct 
vortices and their hulls can be marked, selected, highlighted and removed using the 
3D input device. The transparency of the rendered vortex hulls can be continuously 
adjusted, which permits insight to the vortex core lines at their center and improves 
their overall visual perception.

9.2 DISCUSSION AND FUTURE WORK

In this thesis, it has been demonstrated that feature-based, region-based and integration-
based visualisation techniques can successfully be combined with scale-space and VR tech-
niques to improve the extraction and visualisation of relevant flow features from time-
dependent CFD datasets. We will list here some advantages and limitations of the pre-
sented approaches, as well as some possible directions for future research.
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• The linear scale-space representation is a powerful instrument because it allows not 
only for smoothing the datasets but also to implicitly track features over different lev-
els of scale or time. The vortex tracking algorithm inherently delivers the correct 
topology of line-type features, even when they are fast moving over cell boundaries 
between two successive time steps. This leads to more coherence of the features and to 
a reduction of heuristics and user inputs like thresholds. Since our tracking algorithm 
provides the basic information on bifurcations, future work could also solve the prob-
lem of event detection, which was not yet treated in this thesis.

• The drawback of the approach is its high computational effort. Smoothing large 
industrial CFD datasets requires discretising and solving the diffusion equation by 
numerical methods, which takes a lot of preprocessing time (see Section 5.5). Com-
puting the scale-space for one timeframe is in the order of minutes, for an unsteady 
CFD dataset it is in the order of several hours. Once the scale-space representation is 
available, a feature extraction run for one timeframe still takes about one minute for a 
large grid with about 1 million nodes. Tracking over 100 time steps thus requires
nearly two hours. Also, the amount of main memory needed for efficient working is 
an issue, since the industrial datasets are large and will rapidly increase also in the 
future. In summary, these techniques are well-suited for batch mode and hence for 
computing video animations. Interactive exploration of the solution space is still awk-
ward. Overcoming this disadvantage was one motivation for developing the VR appli-
cation of Chapter 8.

• The vortex hull concept combines the advantages of line-type features (clear separabil-
ity) and surface-type features (better perception of vortex size and shape). However, 
the user needs a-priori knowledge for choosing a suitable scalar field and threshold, 
since the results of the vortex hull construction strongly depend on these. In the cur-
rent implementation, a global scalar threshold is used for all vortex hulls. Since the 
scalar values on the core lines differ considerably, a scalar threshold per core line could 
improve the quality of the results. Relative rather than absolute threshold values are 
also thinkable, as suggested by Roth [Rot00].

• Often the scalar fields of the industrial datasets are noisy, so the computed vortex hulls 
need some postprocessing in terms of smoothing. A median filter was implemented to 
eliminate numerical exceptions affecting the cross-sections of the hulls. Furthermore, 
Laplacian fairing of the complete hull mesh helped improve the quality of the vortex 
hulls. However, alternative types of low-pass filters are also thinkable, like a binomial 
or discrete Gaussian filter for the rays. Future work could comprise a comparison of 
different such filters. Additionally, the scale-space representation of the underlying 
scalar fields could be exploited to reduce the noise in advance.

• Selective particle tracing is computationally more efficient than conventional versions 
since the region-of-interest reduces the amount of processed data to typically an order 
of magnitude. The particles are smoothly blended in and out due to the inner/outer/
buffer cell classification, the Sobol’ distribution and the two thresholds for visibility 
(see Chapter 7). These properties predestine the method for the production of video 
animations, especially when using streamlets as rendering primitives. However, the 
resulting images regarded as single stills are not as meaningful as those produced by 
some other techniques like streamlines, streaklines and path lines, which record the 
“history” of the particles.
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• The VR application yields a significant efficiency and performance gain for exploring 
the results of the vortex extraction process. In contrast to the vortex extraction mod-
ule, the response time to a user input (such as changing the time or scale of the under-
lying timeframe, or the extraction method) decreases from about 1 minute to about 1 
second, which permits an interactive use of the tool. However, loading the results from 
the file system is still a bottleneck, which leads to popping effects when trying to ani-
mate the features by fast changing user inputs (e.g. slider movements). Future work 
should address this issue, for instance by a technique for prefetching several result 
timeframes into main memory.

• Finally, the current VR application only supports vortex core lines and vortex hulls. 
The framework, however, gives room to support more flow features, such as the fea-
ture meshes gained from vortex tracking (Chapter 5) and the positions from traced 
particles (Chapter 7). Also, an enhancement of the user interface by more interactive 
functionality could be investigated, such as the possibility to create streamlines at 
selected points near the vortex core lines.
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ACOLOUR FIGURES

FIGURE A.1 Vortex extraction for a Francis turbine. 
 
Top left: Francis runner and scaled model (Figure 2.1 on page 10). 
Top right: vortex rope in draft tube visualised by isosurface (Figure 7.1 on page 97). 
Bottom: vortex core lines due to Miura/Kida and Levy method (Figure 5.14 on page 77).
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FIGURE A.2 Vortex tracking in scale and time. 
 
Left column: vortex core lines for increasing scale level (Figure 5.15 on page 77). 
Top right: surfaces swept by the vortex core lines shown in left column. 
Center right: vortex core lines and streamlines in a mixed-flow pump. 
Bottom right: vortices of mixed-flow pump tracked over time (Figure 5.16 on page 77).
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FIGURE A.3 Vortex hulls (left column) and VR application (right column). 
 
Left: vortex hulls based on raw data (Figure 6.14 on page 92), after pure median filtering 
(Figure 6.15 on page 92), after pure Laplacian mesh fairing (Figure 6.16 on page 93), and 
after a combination of median and Laplacian smoothing (Figure 6.17 on page 93). 
 
Right: COVER renderer (Figure 8.4 on page 110) and VR application showing vortex core 
lines and hulls (Figure 8.6 on page 113, Figure 8.7 and 8.8 on page 115).
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FIGURE A.4 Industrial motivation (left column) and selective particle tracing (right column). 
 
Top left: cavitation bubbles on an industrial test rig (Figure 7.2 on page 98). 
Center left: relative pressure variations in a Francis runner (Figure 7.3 on page 99). 
Bottom left: relative pressure variations in a Francis draft tube (Figure 7.4 on page 99). 
 
Top right: Cavitation bubbles at Kaplan runner blades (Figure 7.10 on page 104). 
Center right: Particle stream through a storage pump (Figure 7.11 on page 105). 
Bottom right: Streamlets and isosurface indicating the vortex rope 
in a Francis draft tube (Figure 7.12 on page 105).



BA P P E N D I X
BREFERENCES
125



126 B   R E F E R E N C E S
References

[BCE92] K.W. Brodlie, L.A. Carpenter, and R.A. Earnshaw. Scientific Visualization - 
Techniques and Applications. Springer-Verlag, 1992.

[BP02a] D. Bauer and R. Peikert. A case study in selective visualization of unsteady 3d 
flow. In Proceedings of IEEE Visualization 02, pages 525–528, Oct 2002.

[BP02b] D. Bauer and R. Peikert. Vortex tracking in scale-space. In I. Navazo (Editors) 
D. Ebert, P. Brunet, editor, Data Visualization 2002. Proceedings of VisSym 02, 
pages 233–240, May 2002.

[BS94] D. Banks and B. Singer. Vortex tubes in turbulent flows: Identification, repre-
sentation, reconstruction. In Proceedings of IEEE Visualization 94, pages 132–
139, Oct 1994.

[BSH97] H. Battke, D. Stalling, and H.C. Hege. Fast line integral convolution for arbi-
trary surfaces in 3d. Visualization and Mathematics, pages 181–195, 1997.

[Bun89] P. Buning. Numerical algorithms in cfd post-processing. In von Karman 
Institute for Fluid Dynamics Lecture Series 1989-07, editor, Computer Graphics 
and Flow Visualization in Computational Fluid Dynamics, Sep 1989.

[Bur81] P.J. Burt. Fast filter transforms for image processing. In Computer Vision, 
Graphics, and Image Processing, volume 16, pages 20–51, 1981.

[CC78] E. Catmull and J. Clark. Recursively generated b-spline surfaces on arbitrary 
topological meshes. Computer Aided Design, 10(6):350–355, 1978.

[CK00] G.-H. Cottet and P.D. Koumoutsakos. Vortex Methods: Theory and Practice. 
Cambridge University Press, 2000.

[CL93] B. Cabral and L. Leedom. Imaging vector fields using line integral convolution. 
In ACM Press / ACM SIGGRAPH, editor, SIGGRAPH 1993, Computer Graph-
ics Proceedings, Annual Conference Series, pages 263–270, Aug 1993.

[CPC90] M.S. Chong, A.E. Perry, and B.J. Cantwell. A general classification of three-
dimensional flow fields. Phys. Fluids A, 2(5):765–777, May 1990.

[Cro81] J.L. Crowley. A Representation for Visual Information. PhD thesis, Carnegie-
Mellon University, Robotics Institute, Pittsburg, Pennsylvania, 1981.

[Dau88] I. Daubechies. Orthonormal bases of compactly supported wavelets. In Comm. 
on Pure and Applied Mathematics, volume XLI, pages 909–996, 1988.

[dLvL99] W.C. de Leeuw and R. van Liere. Visualization of global flow structures using 
multiple levels of topology. In Data Visualization 1999. Proceedings of VisSym 
99, pages 45–52, May 1999.



  127
[DMSB99] M. Desbrun, M. Meyer, P. Schroeder, and A. Barr. Implicit fairing of irregular 
meshes using diffusion and curvature flow. In ACM Press / ACM SIGGRAPH, 
editor, SIGGRAPH 1999, Computer Graphics Proceedings, Annual Conference 
Series, pages 317–324, Aug 1999.

[DPR00] U. Diewald, T. Preusser, and M. Rumpf. Anisotropic diffusion in vector field 
visualization on euclidean domains and surfaces. IEEE Transactions on Visual-
ization and Computer Graphics, pages 139–149, Apr-Jun 2000.

[ESK96] J. Encarnacao, W. Strasser, and R. Klein. Graphische Datenverarbeitung 1 - Ger 
tetechnik, Programmierung und Anwendung graphischer Systeme. R. Olden-
bourg Verlag Muenchen Wien, 1996.

[EW92] R.A. Earnshaw and N. Wiseman. An Introductory Guide to Scientific Visualiza-
tion. Springer-Verlag, 1992.

[FtHRKV92] L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. Viergever. 
Scale and the differential structure of images. Image and Vision Computing, 
10:376–388, 1992.

[FWCS97] D. Feng, X. Wang, W. Cai, and J. Shi. A mass conservative flow field visualiza-
tion method. Computers & Graphics, 21(6):749–756, Nov 1997.

[Gar90] M.P. Garrity. Raytracing irregular volume data. In Proceedings of the 1990 San 
Diego Workshop on Volume Visualization, pages 35–40, Nov 1990.

[GM77] R.A. Gingold and J.J. Monaghan. Smoothed particle hydrodynamics - theory 
and application to non-spherical stars. Royal Astronomical Society, Monthly 
Notices, 181:375–389, Nov 1977.

[GSS99] I. Guskov, W. Sweldens, and P. Schroeder. Multiresolution signal processing for 
meshes. In ACM Press / ACM SIGGRAPH, editor, SIGGRAPH 1999, Computer 
Graphics Proceedings, Annual Conference Series, pages 325–334, Aug 1999.

[GTS+04] C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, and G. Scheuermann. Surface 
techniques for vortex visualization. In Data Visualization 2004. Proceedings of 
VisSym 04, pages 155–164, May 2004.

[Hac85] W. Hackbusch. Multi-Grid Methods and Applications. Springer Verlag (New 
York), 1985.

[HH89] J.L. Helman and L. Hesselink. Representation and display of vector field topol-
ogy in fluid flow datasets. IEEE Computer, 22(8):27–36, Aug 1989.

[HH91] J.L. Helman and L. Hesselink. Visualizing vector field topology in fluid flows. 
IEEE Computer Graphics and Applications, 11(3):36–46, May 1991.

[HLR04] HLRS. Covise website of High Performance Computing Center Stuttgart 
(HLRS). http://www.hlrs.de/organization/vis/covise, 2004.

[HM90] R.B. Haber and D.A. McNabb. Visualization idioms: A conceptual model for 
scientific visualization systems. Visualization in Scientific Computing 1990, 
pages 74–93, 1990.



128 B   R E F E R E N C E S
[HPvW94] L. Hesselink, F.H. Post, and J. van Wijk. Research issues in vector and tensor 
field visualization. IEEE CG&A, 14(2):76–79, Mar 1994.

[Hul90] J.P.M. Hultquist. Interactive numerical flow visualization using stream surfaces. 
Computing Systems in Engineering, 1(2-4):349–353, 1990.

[Hul92] J.P.M. Hultquist. Constructing stream surfaces in steady 3d vector fields. In Pro-
ceedings of IEEE Visualization 92, pages 171–178, Oct 1992.

[IG97] V. Interrante and C. Grosch. Strategies for effectively visualizing a 3d flow using 
volume line integral convolution. Proceedings of IEEE Visualization 97, pages 
421–424, Oct 1997.

[IG98] V. Interrante and C. Grosch. Visualizing 3d flow. IEEE Computer Graphics and 
Applications, 18(4):49–53, 1998.

[JEH01] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Lagrangian-eulerian advection for 
unsteady flow visualization. In Proceedings of IEEE Visualization 01, pages 53–
60, Oct 2001.

[JH95] J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid 
Mechanics, 285:69–94, 1995.

[JL97] B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary density. 
In Proceedings of the Eurographics Workshop on Visualization in Scientific 
Computing, pages 45–55, 1997.

[Ken98] D. Kenwright. Automatic detection of open and closed separation and attach-
ment lines. Proceedings of IEEE Visualization 98, pages 151–158, Oct 1998.

[KH91] R.V. Klassen and S.J. Harrington. Shadowed hedgehogs: A technique for visual-
izing 2d slices of 3d vector fields. In Proceedings of IEEE Visualization 91, 
pages 148–153, 1991.

[Kli71] A. Klinger. Pattern and search statistics. In Optimizing Methods in Statistics. J.S. 
Rustagi (ed.), Academic Press (New York), 1971.

[Koe84] J. J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370, 
1984.

[LC87] W. Lorensen and H. Cline. Marching cubes: A high resolution 3d surface con-
struction algorithm. Computer Graphics (SIGGRAPH ’87 Proceedings), 
21(4):163–169, Jul 1987.

[LDS90] Y. Levy, D. Degani, and A. Seginer. Graphical visualization of vortical flows by 
means of helicity. AIAA, 28(8):1347–1352, Aug 1990.

[LGE97] C. Luerig, R. Grosso, and T. Ertl. Combining wavelet transform and graph the-
ory. Visualization in Scientific Computing 1997, pages 137–144, 1997.

[LHD+04] R.S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F.H. Post, and D. Weiskopf. 
The state of the art in flow visualisation: Dense and texture-based techniques. 
Computer Graphics Forum, 23(2):203–221, May 2004.



  129
[Lin94] T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic Pub-
lishers (Boston/London/Dordrecht), 1994.

[Lip98] L. Lippert. Wavelet-Based Volume Rendering, volume Selected Readings in 
Vision and Graphics (Volume 9), Diss ETH No. 12612. PhD thesis, ETH Zurich, 
Department of Computer Science, Computer Graphics Laboratory, Zurich, Swit-
zerland, 1998.

[MCS02] T. Maekelae, P. Clarysse, and O. Sipilae. A review of cardiac image registration 
methods. IEEE Transactions on Medical Imaging, 21(9):1011–1021, September 
2002.

[MDB87] B.H. McCormick, T.A. DeFanti, and M.D. Brown. Visualization in scientific 
computing. Computer Graphics, 21(6):1–14, Nov 1987.

[Mic94] C.A. Michelli. Mathematical Aspects of Geometric Modeling. SIAM/CBMS-
NSF (Regional Conference Series in Applied Mathematics 65), 1994.

[MK96] H. Miura and S. Kida. Identification of central lines of swirling motion in turbu-
lence. In Proceedings of International Conference on Plasma Physics, Nagoya, 
Japan, pages 866–869, 1996.

[MK97a] H. Miura and S. Kida. Identification and analysis of vortical structures. NIFS-
520 Research Report, Nov 1997.

[MK97b] H. Miura and S. Kida. Identification of tubular vortices in turbulence. Journal of 
the Physical Society of Japan, 66(5):1331–1334, May 1997.

[MK98a] H. Miura and S. Kida. Dynamics of low-pressure swirling vortices in turbulence. 
Advances in Turbulence VII, pages 347–348, 1998.

[MK98b] H. Miura and S. Kida. Identification and analysis of vortical structures. Euro-
pean Journal of Mechanics B/Fluids, 17(4):471–488, 1998.

[MK98c] H. Miura and S. Kida. Swirl condition in low-pressure vortices. Journal of the 
Physical Society of Japan, 67(7):2166–2169, July 1998.

[NAG01] NAG. NAG Fortran Library. Chapter F11: Sparse Linear Algebra. The Numer-
ical Algorithms Group Ltd (http://www.nag.com/numeric/fl/manual20/html/toc/
f11.html), 2001.

[NHM97] G.M. Nielson, H. Hagen, and H. Mueller. Scientific Visualization - Overviews, 
Methodologies, Techniques. IEEE Computer Society Press, 1997.

[NSR90] G.M. Nielson, B. Shriver, and L.J. Rosenblum. Visualization in Scientific Com-
puting. IEEE Computer Society Press, 1990.

[Pau03] M. Pauly. Point Primitives for Interactive Modeling and Processing of 3D 
Geometry, volume Selected Readings in Vision and Graphics (Volume 23), Diss 
ETH No. 15134. PhD thesis, ETH Zurich, Department of Computer Science, 
Computer Graphics Laboratory, Zurich, Switzerland, 2003.



130 B   R E F E R E N C E S
[PC87] A.E. Perry and M.S. Chong. A description of eddying motions and flow patterns 
using critical-point concepts. Ann. Rev. Fluid Mech., 19:125–155, 1987.

[PC92] A.E. Perry and M.S. Chong. Topology of flow patterns in vortex motions and 
turbulence. In J.P. Bonnet and Eds. Kluwer Academic Publishers M.N. Glauser, 
editors, Eddy Structure Identification in Free Turbulent Shear Flows (IUTAM 
Symposium, Poitiers, France), Oct 1992.

[Pei03] R. Peikert. Purely Linear 2D Vector Fields. http://graphics.ethz.ch/ peikert/per-
sonal/Linear2D, 2003.

[PG01] M. Pauly and M. Gross. Spectral processing of point-sampled geometry. In 
ACM Press / ACM SIGGRAPH, editor, SIGGRAPH 2001, Computer Graphics 
Proceedings, Annual Conference Series, pages 379–386, Aug 2001.

[PGK02] M. Pauly, M. Gross, and L. Kobbelt. Efficient simplification of point-sampled 
surfaces. In Proceedings of Visualization 2002, pages 163–170, Oct 2002.

[PKG03] M. Pauly, R. Keiser, and M. Gross. Multi-scale feature extraction on point-sam-
pled models. In Computer Graphics Forum, editor, Proceedings of the 24th 
Annual Conference of the European Association of Computer Graphics (Euro-
graphics), 2003.

[PKKG03] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape modeling with point-sam-
pled geometry. In ACM Press / ACM SIGGRAPH, editor, SIGGRAPH 2003, 
Computer Graphics Proceedings, Annual Conference Series, Aug 2003.

[PM87] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffu-
sion. IEEE Computer Society Workshop on Computer Vision (Miami, FL), pages 
16–22, 1987.

[PVH+03] F.H. Post, B. Vrolijk, H. Hauser, R.S. Laramee, and H. Doleisch. The state of the 
art in flow visualisation: Feature extraction and tracking. Computer Graphics 
Forum, 22(4):773–790, Dec 2003.

[PvW94] F.H. Post and J.J. van Wijk. Visual representation of vector fields: Recent devel-
opments and research directions. Chapter 23 in: Scientific Visualization - 
Advances and Challenges, pages 367–390, 1994.

[PZK+03] M. Pauly, M. Zwicker, O. Knoll, T. Weyrich, R. Keiser, and M. Gross. 
PointShop3D website. http://graphics.ethz.ch/pointshop3d, 2003.

[Rei01] F. Reinders. Feature-Based Visualization of Time-Dependent Data. PhD thesis, 
Technical University of Delft, Netherlands, Mar 2001.

[Rot00] M. Roth. Automatic Extraction of Vortex Core Lines and Other Line-Type Fea-
tures for Scientic Visualization, volume Selected Readings in Vision and Graph-
ics (Volume 9), Diss ETH No. 13673. PhD thesis, ETH Zurich, Department of 
Computer Science, Computer Graphics Laboratory, Zurich, Switzerland, 2000.

[RP96] M. Roth and R. Peikert. Flow visualization for turbomachinery design. In Pro-
ceedings of IEEE Visualization 96, pages 381–384, Oct 1996.



  131
[RP98] M. Roth and R. Peikert. A higher-order method for finding vortex core lines. In 
Proceedings of IEEE Visualization 98, pages 143–150, Oct 1998.

[RP99] M. Roth and R. Peikert. The parallel vectors operator - a vector field visualiza-
tion primitive. In Proceedings of IEEE Visualization 99, pages 261–268, Oct 
1999.

[RPS99] F. Reinders, F.H. Post, and H.J.W. Spoelder. Attribute-based feature tracking. In 
Springer Verlag, editor, Data Visualization 99 (VisSym 99 Proceedings), pages 
63–72, 1999.

[RPS01] F. Reinders, F.H. Post, and H.J.W. Spoelder. Visualization of time-dependent 
data using feature tracking and event detection. The Visual Computer, 17(1):55–
71, Feb 2001.

[Sad99] A. Sadarjoen. Extraction and Visualization of Geometries in Fluid Flow Fields. 
PhD thesis, TU Delft, the Netherlands, 1999.

[SB94] B. Singer and D. Banks. A predictor-corrector scheme for vortex identification. 
NASA Contractor Report 194882, ICASE Report No. 94-11, Mar 1994.

[SC92] J. Soria and B.J. Cantwell. Identification and classification of topological struc-
tures in free shear flows. In J.P. Bonnet and Eds. Kluwer Academic Publishers 
M.N. Glauser, editors, Eddy Structure Identification in Free Turbulent Shear 
Flows (IUTAM Symposium, Poitiers, France), Oct 1992.

[Sch97] H.R. Schwarz. Numerische Mathematik. B.G. Teubner Stuttgart, 1997.

[SH95a] D. Stalling and H.C. Hege. Fast and resolution independent line integral convo-
lution. In ACM Press / ACM SIGGRAPH, editor, SIGGRAPH 1995, Computer 
Graphics Proceedings, Annual Conference Series, pages 249–256, Aug 1995.

[SH95b] D. Sujudi and R. Haimes. Identification of swirling flow in 3d vector fields. 
Tech. Report, Dept. of Aeronautics and Astronautics, MIT, Cambridge, MA, 
1995.

[SH95c] D. Sujudi and R. Haimes. Identification of swirling flow in 3d vector fields. 
AIAA Paper 95-1715, 12th AIAA CFD Conference, San Diego, CA, Jun 1995.

[Sha49] C.E. Shannon. Communication in the presence of noise. Proc. Institute of Radio 
Engineers (IRE), 37:10–21, 1949.

[SKA98] R.C. Strawn, D.N. Kenwright, and J. Ahmad. Computer visualization of vortex 
wake systems. In American Helicopter Society 54th Annual Forum, May 1998.

[SKA99] R.C. Strawn, D.N. Kenwright, and J. Ahmad. Computer visualization of vortex 
wake systems. AIAA Journal, 37(4):511–512, April 1999.

[SMA00] A. Sanna, B. Montrucchio, and R. Arina. Visualizing unsteady flows by adap-
tive streaklines. In Proc. WSCG 2000, The 8-th International Conference in Cen-
tral Europe on Computer Graphics, Visualization and Interactive Digital 
Media2000, pages I84–I91, Feb 2000.



132 B   R E F E R E N C E S
[SML03] W.J. Schroeder, K.M. Martin, and W.E. Lorensen. The Visualization Toolkit 
(VTK) (3rd edition). Kitware, Inc., 2003.

[SP03] M. Sato and R. Peikert. Core-line-based vortex hulls in turbomachinery flows. 
Journal of the Visualization Society of Japan (Utsunomiya Visualization Sympo-
sium, 2003), 23(2):151–154, 2003.

[SSC94] R. Samtaney, D. Silver, and J. Cao. Visualizing features and tracking their evo-
lution. IEEE Computer, 27(7):20–27, July 1994.

[Sta01] O. Staadt. Multiresolution Representation and Compression of Surfaces and Vol-
umes, volume Selected Readings in Vision and Graphics (Volume 12), Diss ETH 
No. 14013. PhD thesis, ETH Zurich, Department of Computer Science, Com-
puter Graphics Laboratory, Zurich, Switzerland, 2001.

[Ste93] R. Steinbrecher. Bildverarbeitung in der Praxis. R. Oldenbourg Verlag GmbH, 
Muenchen, 1993.

[SvWHP97] A. Sadarjoen, T. van Walsum, A.J.S. Hin, and F.H. Post. Particle tracing algo-
rithms for 3d curvilinear grids. In G.M. Nielson, H. Mueller, and H. Hagen, edi-
tors, Scientific Visualization: Overviews, Methodologies, and Techniques, 
Chapter 14, IEEE Computer Science Press, pages 311–335, 1997.

[SW96] D. Silver and X. Wang. Volume tracking. In Proceedings of IEEE Visualization 
96, pages 157–164, Oct 1996.

[SW97] D. Silver and X. Wang. Tracking and visualizing turbulent 3d features. IEEE 
Transactions on Visualization and Computer Graphics, 3(2), Jun 1997.

[SW99] D. Silver and X. Wang. Visualizing evolving scalar phenomena. Future Gener-
ation Computer Systems, 15(1):99–108, Feb 1999.

[SZF+91] D. Silver, N. Zabusky, V. Fernandez, M. Gao, and R. Samtaney. Ellipsoidal 
quantification of evolving phenomena. Scientific Visualization of Physical Phe-
nomena (MIT, Cambridge), N. Patrikalakis (ed.), pages 573–588, 1991.

[Tau95] G. Taubin. A signal processing approach to fair surface design. In ACM Press /
 ACM SIGGRAPH, editor, SIGGRAPH 1995, Computer Graphics Proceedings, 
Annual Conference Series, pages 351–358, Aug 1995.

[TB96] G. Turk and D.C. Banks. Image-guided streamline placement. In ACM SIG-
GRAPH, editor, Computer Graphics Proceedings ’96, pages 453–460, 1996.

[Tec00] AEA Technology. CFX-TASCflow Theory documentation, Chapter 4: Turbu-
lence Closure Models. Harwell, U.K., http://www.software.aeat.com/cfx/, 2000.

[TF88] D. Terzopoulos and K. Fleischer. Deformable models. The Visual Computer, 
4:306–331, 1988.

[TP82] M. Tobak and D.J. Peake. Topology of 3d separated flow. Ann. Rev. Fluid Mech., 
14:61–85, 1982.



  133
[TSH01] X. Tricoche, G. Scheuermann, and H. Hagen. Topology-based visualization of 
time-dependent 2d vector fields. In Springer Verlag, editor, Data Visualization 
2001 (VisSym 01 Proceedings), pages 117–126, 2001.

[TvW99] A. Telea and J. van Wijk. Simplified representation of vector fields. In Proceed-
ings of IEEE Visualization 99, pages 35–42, Oct 1999.

[USM97] S. Ueng, C. Sikorski, and K. Ma. Out-of-core streamline visualization on large 
unstructured meshes. IEEE TVCG, 3(4):370 ff., Oct 1997.

[VIS03] VISENSO. Covise Tutorial (Users Guide and Programming Guide). Covise 
Version 5.3 CD-ROM, 2003.

[VIS04] VISENSO. COVISE product website of VISENSO GmbH, Stuttgart. http://
www.covise.de/d+e/data0801/deutsch/products/d_fs_prod.html, 2004.

[WE97] R. Westermann and T. Ertl. A multiscale approach to integrated volume segmen-
tation and rendering. Computer Graphics Forum, 16(3):117–127, Sep 1997.

[Wes01] R. Westermann. The rendering of unstructured grids revisited. In Data Visualiza-
tion 2001. Proceedings of VisSym 01, pages 65–74, May 2001.

[Wit83] A.P. Witkin. Scale-space filtering. In Proc. of 8th International Joint Conference 
on Artificial Intelligence, (Karlsruhe, Germany), pages 1019–1023, Aug 1983.

[WLG97] R. Wegenkittel, H. Loeffelmann, and E. Groeller. Visualizing the behavior of 
higher dimensional dynamical systems. In R. Yagel and H. Hagen, editors, Pro-
ceedings of IEEE Visualization 97, pages 119–125, 1997.

[WT83] A.P. Witkin and J.M. Tenenbaum. On the Role of Structure in Vision. Human and 
Machine Vision (J. Beck, B. Hope, A. Rosenfeld, eds.), New York, Academic 
Press, 1983.

[YMC00] C. Yang, T. Mitra, and T. Chiueh. On-the-fly rendering of losslessly compressed 
irregular volume data. In Proceedings of IEEE Visualization 00, pages 101–108, 
Oct 2000.

[ZBP+91] N. Zabusky, O. Boratav, R. Pelz, M. Gao, D. Silver, and S. Cooper. Emergence 
of coherent patterns of vortex stretching during reconnection: A scattering para-
digm. Physical Review Letters, 67(18):2469–2472, 1991.

[ZT00] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method - Volume 1 (The 
Basis). Butterworth-Heinemann, 5th edition, 2000.



134 B   R E F E R E N C E S



CA P P E N D I X
CIMPLEMENTATIONAL ASPECTS

This appendix contains some more detailed explanations on the implementation of the 
vortex hulls described in Chapter 6. The focus is on the problem of expanding a vortex 
hull, beginning at a given vortex core line and stepping outwards along rays in predefined 
planes. Our method of traversing the hexahedral grid cells along the rays requires inter-
secting the rays with cell faces. Due to the discrete nature of the underlying unstructured 
grids and due to the noise contained in some of the raw CFD datasets we used, a number 
of numerical problems had to be solved in addition to the theoretical procedure.

In Chapter 6, we explained how to construct a vortex hull from fans of rays originating 
at the central vortex core line. The pseudocode of this procedure BuildVortexHulls() is 
shown in Figure C.1. Furthermore, we proposed a scheme to step along a ray and traverse 
the cells of an unstructured grid until a given scalar threshold has been crossed. The 
pseudocode of this function FindEndpointOfRay() is shown in Figure C.2.

What remains to describe is the method for computing the intersection points of a ray 
with a cell face, which is in general a non-planar quadrangle in 3D-space. Of course this 
computation could be done in physical space, directly yielding the global  coordi-
nates of the intersection points. However, we also need the local  coordinates of 
the intersection point w.r.t. the four corners of the quadrangle face, for two purposes:

1. Testing if a computed intersection point of the ray with the unbounded surface (con-
taining the cell face) lies inside the quadrangle spanned by the face corners (or outside, 
which would make the intersection point irrelevant),

2. Evaluation of the scalar field at a computed intersection point from the values at the 
face corners (for we can determine whether the scalar threshold has been crossed).

To avoid a point search on the quadrangle face (requiring the solution of a nonlinear equa-
tion system, e.g. by Newton iterations), it is better to compute the intersection points in 
computational space, where all coordinates are local to the face corners. In Section C.1, we 
will describe the mathematical background of the ray/face intersection in more detail. In 
Section C.2, we will finally treat some numerical issues of the intersection computation.  

x y z, ,( )
r s t, ,( )
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procedure BuildVortexHulls()

for each vortex core line
m := number of segments of this vortex core line

// Construct the vortex hull:

for segment i = 1 to m
Determine the start cell (= cell containing the segment).
Set up a plane perpendicular to the core line:

Compute plane origin P (= midpoint of segment).
Compute plane normal N (= difference of segment vertices).

Set up a 2D plane coordinate system by seed point P.
and two orthonormal basis vectors L and M.

// Compute all ray endpoints and their lambda values:
for ray j = 1 to n

Compute ray angle phi[j] and ray direction D[j].
lambda[j] := FindEndpointOfRay(P, D[j])

next ray

// Filter each ray (median filter, k-neighbourhood):
for ray j = 1 to n

Collect old lambda values in k-neighbourhood of ray j.
Sort the (2k+1) lambda values in ascending order.
Set new lambda[j] to median of the (2k+1) lambda values.

next ray

// Compute the ray endpoints using the ray equations:
for ray j = 1 to n

Q[i,j] := P + lambda[j] * D[j]
next ray

next segment

// Assembly the vortex hull:

for segment i = 1 to m-1
// Build inner tube section between two neighbouring planes:
for ray j = 1 to n

Quadrangle = (Q[i,j], Q[i,j+1], Q[i+1,j], Q[i+1,j+1])
StoreTriangle(Q[i,j], Q[i+1,j], Q[i+1,j+1])
StoreTriangle(Q[i,j], Q[i+1,j+1], Q[i,j+1])

next ray
next segment

// Build pyramids for first and last segment of the core line:
for ray j = 1 to n

StoreTriangle(v[0], Q[1,j], Q[1,j+1])
StoreTriangle(v[m], Q[m,j], Q[m,j+1])

next j
next vortex core line

FIGURE C.1 The enhanced vortex hull construction algorithm.
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function FindEndpointOfRay(seedPoint, rayDirection)

// Initialisation: start at the seed point P
current[CellNr, Lambda, Scalar] := (seedCellNr, 0.0, seedScalar)

// Traverse the ray, away from the seed point

for step = 0 to MAXSTEP
Collect coords and scalars of all 8 nodes of current cell

// For each of the 6 side faces of the current cell,
// compute all intersection points with the ray:
nextFaceNr := VOID
nextLambda := INFINITE

for face i = 0 to 5
Collect coords and scalars of all 4 nodes of face i

// Find all (0,1 or 2) intersection points of ray and face i
// (compute lambda and scalar values and inside face flag):
RayCastQuadrangleFace(seedPoint, rayDirection,

&lambda[2], &scalar[2], &inside[2])

// Select nearest intersection point and next cell:
for solution k = 0 to 1

if lambda[k] > currentLambda and lambda[k] < nextLambda
if inside[k] = TRUE then

nextFaceNr := GlobalFaceNumber[currentCellNr, i]
nextCellNr := NeighbouringCell[currentCellNr, nextFaceNr]
nextLambda := lambda[k]
nextScalar := scalar[k]

end if
next solution k

next face

// If no intersection has been found on any face,
// stop and return the old ray point:
if (nextFaceNr = VOID) then return currentLambda

// If grid boundary or maximum number of steps has been reached,
// stop and return the new ray point:
if (nextCellNr = VOID) or (step = MAXSTEP) then return nextLambda

// If the scalar threshold has been crossed,
// stop and return the interpolated crossing point:
if thresholdCrossed(currentScalar, scalarThresh, nextScalar) then

return Interpolation(scalarThresh,
 currentLambda, nextLambda, currentScalar, nextScalar)

// Else switch to next cell and continue with next step
current[CellNr, Lambda, Scalar] := next[CellNr, Lambda, Scalar]

next step

FIGURE C.2 The algorithm for finding the endpoint of a ray.
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C.1 INTERSECTIONS OF RAYS WITH CELL FACES

In the following, the assumption is made that the quadrangle  formed by a 
cell face is non-degenerate, i.e. its four corners  are all different and the 
edges are not collinear. The case of a planar quadrangle can easily be treated by subdividing 
the quadrangle into two triangles and intersecting the ray with the plane containing these 
triangles. We will, however, in the following assume that the quadrangle is non-planar, 
which is the more general and more complex case.

At first, we must establish the transformation between physical and computational 
space. Since the quadrangle  is non-planar, it can be regarded as part of a 
bilinear surface, and mapped from physical space to computational space as follows (see 
Figure C.3):

 is mapped to 

 is mapped to 

 is mapped to 

 is mapped to 

FIGURE C.3 Mapping of a non-planar quadrangle between computational and physical space.

 are corners of the unit cube and span a bilinear face, since for all these 
corners, the three coordinates  in computational space fulfil the bilinear surface 
equation
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The mapping from computational to physical space can easily be done using an affine 
transformation. Since the quadrangle  is non-degenerate and non-planar, the 
three span vectors

(C.2)

(C.3)

(C.4)

are linearly independent, thus the matrix

(C.5)

is regular. As can easily be shown, the affine point transformation

(C.6)

is then bijective and maps  onto , and also every point 
from computational space to physical space unambiguously. The corresponding affine 
vector transformation is the same, apart from the missing translation vector :

(C.7)

However, since we also need the inverse mapping from physical to computational space, 
we must invert the matrix  and use the inverse point transformation

(C.8)

to map  onto , and also every point from physical space to 
computational space in a unique manner. Its respective inverse vector transformation is

(C.9)

To compute the intersections of the (physical) ray

(C.10)

with the bilinear surface, we now transform the ray by inserting the start point  of the 
ray into the inverse point transformation:

(C.11)

and by inserting the ray direction  into the inverse vector transformation:

(C.12)

It is easy to prove that the  parameter needs not to be transformed, since this real number 
has the same value in physical and computational space (due to the aspect ratio conservation
property of affine transformations). The transformed ray thus can be written as
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(C.13)

or, component-wise, as a set of three scalar functions:

(C.14)

(C.15)

. (C.16)

Substituting  in the bilinear surface equation  (Equation C.1) by these 
scalar functions yields the intersection equation

(C.17)

(C.18)

(C.19)

Solving this quadratic equation for , and inserting the resulting two values  (pro-
vided that they are real) into the transformed ray equation, we get the local coordinates of 
the intersection points :

(C.20)

If the local coordinates of an intersection point  are written as

, (C.21)

then the test whether the intersection point lies inside the quadrangle now reduces to a test 
whether its local coordinates lie between  and :

(C.22)

(since  holds for all points of the bilinear surface, the third coordinate  then 
automatically lies between  and , too).

The local coordinates of an intersection point can also be used for bilinear interpolation 
of its scalar value from the scalar values at the four quadrangle corners. Let  
be the scalar values at the four face corners . Then the scalar value at the 
intersection point with local coordinates  computes to

(C.23)

The procedure RayCastQuadrangleFace() shown in Figure C.4 is called by the function 
FindEndpointOfRay() of Figure C.2. It returns the  values, local coordinates, inside 
quadrangle test result flags and scalar values of all real intersection points of the current 
ray with the current face. If the solutions of the intersection equation are complex, they 
are ignored by setting the inside quadrangle test result flags to FALSE.
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FIGURE C.4 The algorithm for intersecting a ray with a quadrangle cell face.

procedure RayCastQuadrangleFace(startpoint p, raydirection d)
coords0, coords1, coords2, coords3,
scalar0, scalar1, scalar2, scalar3,
&lambda[2], &scalar[2], &inside[2])

// Initialisations
for k = 0 to 1

lambda[k] := 0.0
scalar[k] := 0.0
inside[k] := FALSE

next k

// Compute span vectors p01, p02, p03 and transformation matrix A.
// Check if matrix A is regular or singular.
p01 := p1 - p0
p02 := p2 - p0
p03 := p3 - p0
A := [p02, p01, (p03 - p02 - p01)]

// General case: non-planar quadrangle
if det(A) <> 0.0 then

// Invert matrix A and transform the ray
// from physical to computational space

A_inv := invertMatrix(A)

p’ := (pr,ps,pt) := A_inv * (p - p0)
d’ := (dr,ds,dt) := A_inv * d

NumReal := SolveDegree2(dr*ds, pr*ds + ps*dr - dt, pr*ps - pt,
&lambda[0], &lambda[1])

for solution k = 0 to 1
rst[k] := (r,s,t) := p’ + lambda[k] * d’

// Check if intersection point lies inside QUADRANGLE
inside[k] := (r >= 0.0) and (r <= 1.0) and (s >= 0.0) and (s <= 1.0)

// Evaluate scalar field at intersection point
scalar[k] := ScalarBilinearInterpolation

(scalar0,scalar2,scalar1,scalar3, r,s)
next solution k

// (Special case: planar quadrangle)
else
...// Can be treated by subdividing the planar quadrangle 
...// into two triangles and linear interpolation of the scalar values
end if
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C.2 CELL TRAVERSAL IN HEXAHEDRAL GRIDS
To minimise numerical inaccuracies, the algorithms described in this chapter were imple-
mented using floating point variables of double precision. Nevertheless, there were some 
numerical problems to deal with that were not trivial to solve.

One of the most difficult problems was the decision whether a newly found intersection 
point of a ray with a cell face will extend the ray (see also Section 6.2.2). In theory, one 
computes the intersection points with all faces of the cell currently being traversed. The 
point with the smallest  value greater than the old  value currentLambda (from the pre-
vious cell) is then chosen to extend the ray (see Figure 6.7). But this decision is somewhat 
critical because it depends on numerical comparisons of real-number  values. Let us have 
a look at an excerpt of the procedure FindEndpointOfRay() from Figure C.2:

// Select the nearest intersection point:
for face i = 0 to 5

if inside[k] = TRUE and
lambda[k] > currentLambda and
lambda[k] < nextLambda then

nextLambda := lambda[k]
nextScalar := scalar[k]

end if
next face i

The second comparison

if lambda[k] > currentLambda ...

shall ensure that any chosen intersection point must indeed extend the ray. The compar-
ison works well when the two  values belong to points on different faces of the same cell 
(see Figure C.5, left).

FIGURE C.5 Different intersection situations (2D representation). 
Left: points of same cell on different faces. Right: points of different cells on same face.

However, regard the case of two points lying on the same face of two different neighbour-
ing cells (see Figure C.5, right). Assume that the ray has been extended up to point  
(currentLambda) when cell  was traversed. When the algorithm switches to cell , the 
newly found point  (lambda[k]) might have a  value slightly greater than  (current-
Lambda), although the two  values in theory must be equal.  is therefore wrongly 
selected to extend the ray, since its  value is the smallest of all intersection points ( , 

) of cell  with the ray. But this forces the algorithm to stop ahead of time, since the
point  found in the same cell  has a greater  value than  and thus will be ignored.
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We therefore had to modify the second comparison by introducing a small  constant and 
testing if the new  value is “really” greater than the current one:

if lambda[k] > currentLambda + EPSILON ...

However, this was still not sufficient because the case of two points lying on different faces 
on the same cell (which had worked well without the ) did now not always work properly 
anymore. The new problem was caused by rays intersecting a cell near an edge of the grid,
where two faces meet (Figure C.6, left). In such a case, the two  values are close together 
but not equal, so the  might prevent the higher  value of  from being accepted 
(because it is not enough greater than that of ). The algorithm will then also stop too 
early, yielding a ray endpoint too close to the vortex core line, and thus a well visible 
“chuck hole” in the vortex hull surface.

FIGURE C.6 Further intersection situations (2D representation). 
Left: two intersections near an edge. Right: two intersections on the same face.

It is therefore necessary to distinguish between two cases, and to store for each intersection 
point extending the ray, on which grid face (global face number) it was found. For every 
newly treated face, its global face number is determined (testFace) and compared to the 
global face number of the current ray endpoint (currentFace). Depending on the result, the 

 value is used for the comparison or not.

One could argue that it is not necessary to treat a face which has already been treated 
in the preceding cell. However, this is not always true because a cell face can be non-planar 
and thus have several (if bilinearly interpolated, two) intersection points with the ray (see 
Figure C.6, right). The algorithm in this case finds the point  on the non-planar face 
inside cell , stores  as the current ray endpoint, memorises the global face number of 
the non-planar face and then switches to cell . Ignoring the non-planar face inside cell 

 would miss the point  and stop the algorithm again ahead of time (because no inter-
section point can be found on any other face of cell ).

Storing the greater rather than the smaller  value resulting from the quadratic inter-
section equation within cell , though, would extend the ray immediately to point  
rather than to point . But if we omit point , we could miss a threshold crossing of 
the scalar field between  and , or between  and . So this would neither be a 
correct way to handle the matter.
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It is therefore necessary to compute and check every intersection point, so we must in each 
step choose the nearest intersection point of a cell as the next ray endpoint (as long as the 
threshold of the scalar field has not yet been crossed). Taking all these considerations into 
account, the modified FindEndpointOfRay() function looks as shown in Figure C.7: 

FIGURE C.7 The modified function FindEndpointOfRay().

function FindEndpointOfRay(seedPoint, rayDirection)

// Initialisations
EPSILON := 0.0001
current[Cell, Face, Lambda, Scalar] := (seedCell, VOID, 0.0, seedScalar)

// main loop for traversing the ray
for step = 0 to MAXSTEP

...
nextFace := VOID 
nextLambda := INFINITE 

for face i = 0 to 5
// Get global face number of current test face
testFace := GlobalFaceNumber[currentCell, i]

// Find intersection points of ray with test face
RayCastQuadrangleFace(seedPoint, rayDirection,

&lambda[2], &scalar[2], &inside[2])

// Select the nearest intersection point of the ray
// with the cell currently being traversed
for solution k = 0 to 1

if testFace = currentFace then epsilon := EPSILON
if testFace <> currentFace then epsilon := 0

lambdaBigger := (lambda[k] > currentLambda + epsilon)
lambdaSmaller := (lambda[k] < nextLambda)

if inside[k] and lambdaBigger and lambdaSmaller then
next[Face, Lambda, Scalar] := (testFace, lambda[k], scalar[k])

end if
next solution k

next face i

// If grid boundary has been reached or 
// if scalar threshold has been crossed or 
// if no intersection point could be found with any cell face, 
// terminate and return the current ray endpoint
if ... then return currentLambda

// Otherwise, switch to next cell
nextCell := NeighbouringCell[currentCell, nextFace]
current[Cell, Face, Lambda, Scalar] := next[Cell, Face, Lambda, Scalar]

next step
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	For medical applications (and also in the field of vision), often 3D “images” are used, which are actually stacks of 2D images. A typical example is a computer tomography (CT), magneto-resonance (MR) or positron-emission (PET) dataset [MCS02]...
	For turbomachinery design, 3-dimensional unstructured grids (created using CAD tools) are predominant, for the possibility of representing arbitrary shapes of machine parts (such as the runner and draft tube of a water turbine). The data defi...
	2.1.5 Temporal dimensionality of data
	2.2 Cell and Grid Types

	A variety of different grid types has been established, mostly due to the needs of specific application fields (see Nielson et al. [NSR90, NHM97]). Common to all grid types is that they store data (vectors or scalar values) at distinct point ...
	There exist also alternative point representations like point clouds, which have been suc cessfully investigated and implemented at the ETH Zurich within the scope of the PointShop3D project by Pauly et al. (see the PointShop3D website [PZK+0...
	FIGURE 2.3 Point cloud versus grid (in this case, a triangular mesh) for the Stanford bunny model.
	FIGURE 2.4 Different cell types used in visualisation grids (bottom faces are shaded).

	The simplest and computationally easiest to handle case is of a structured grid is a uni form grid, which can be Cartesian or skew-angled. In the uniform case, the points are equally distributed along every dimension of the grid, thus a simpl...
	Slightly more difficult to handle is a non-uniform but still structured grid (also called curvilinear grid), which is topologically equal to uniform grids, but the points are not equi distant. It thus requires to store a node list containing ...
	The class of unstructured grids is characterised by the fact that they do not possess a reg ular topology. Also, the cells can be of varying types (i.e. tetrahedral and hexahedral cells mixed within a 3-dimensional unstructured grid). Even if...
	There exist also some hybrid grid types, for example block-structured grids. These are unstructured compositions of structured sub-grids (as shown in Figure 2.5, bottom left). In the following chapters, we will only treat the case of pure uns...
	FIGURE 2.5 Different grid types used in visualisation (2D representation, cells are shaded).
	2.3 Data Fields
	2.3.1 Vector Fields
	, (2.1)



	Each of the three velocity field components defines a scalar field, the gra dient of which can be computed as the vector of its first derivatives in every spatial direction. The velocity gradient tensor  is defined as the Jacobian of the velo...
	. (2.2)

	The computation of spatial derivatives is not trivial for a data field which is not analyt ically given, as is the case on a discrete grid. A discretised differentiation operator is neces sary, the complexity of which strongly depends on the ...
	For an unstructured grid, however, symmetric differences are no suitable way since the number of neighbouring nodes is not constant for every node, and the distances between the nodes also differ. One possibility is to use a weighted differen...
	Alternatively, a polynomial can be fit into the neighbourhood of each node to compute its spatial derivatives. Since this method is computationally quite expensive, we chose a least-square-fit among the one-neighbourhood of a node. This metho...
	The vorticity vector indicates the local rotation of the flow and is defined as the curl of the velocity vector. Its length is a measure for the rotational speed, whereas its direction shows the rotational axis (assuming that the rotation is ...
	. (2.3)
	. (2.4)
	. (2.5)
	. (2.6)
	. (2.7)
	2.3.2 Scalar Fields
	. (2.8)
	. (2.9)
	. (2.10)


	The vortex strength is an indicator of how fast the flow locally rotates around a certain point, e.g. on a vortex core line. For a 2-dimensional flow, a vortex occurs as a critical point in the 2D plane, forming a spiral pattern. In this case...
	Since the flow is swirling around the vortex core line also in 3D, a spiral pattern is to be expected in the 3D case, too. But the spiral will occur in a plane which is perpendicular to the core line (see Figure 2.6). The core line direction ...
	FIGURE 2.6 Definition of vortex strength in a plane perpendicular to the core line (vortex visualised by streamlines and LIC method, see Section 3.2). Image courtesy of ETH Zurich.
	(2.11)
	, (2.12)
	, (2.13)

	At first glance, the vortex strength is only locally defined in the vicinity of a vortex core line. However, since the definition only depends on the velocity field and its gradient, it can be applied to every point of the computational domai...
	In this chapter, we gave a synopsis of basic flow visualisation terms, such as the most common grid types and data fields. Based on the definitions given here, we will in the next chapter describe a few basic computational techniques for flow...
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	3.1 Direct Techniques
	3.1.1 Arrow and Hedgehog Plots
	FIGURE 3.1 Arrow plots. Left: length proportional to velocity, right: constant length.


	3.2 Integration-Based Techniques
	3.2.1 Streamlines and Particle Tracing
	, (3.1)
	(3.2)
	FIGURE 3.2 Streamlines indicating a vortex at the stay vanes of a water turbine (image courtesy of VA Tech Hydro Zurich and of ETH Zurich).


	3.2.2 Path Lines and Streaklines
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	FIGURE 3.3 Stream surfaces indicating a vortex at the stay vanes of a water turbine (image courtesy of VA Tech Hydro Zurich and of ETH Zurich).


	3.2.3 Line Integral Convolution
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	FIGURE 3.4 Line Integral Convolution image for guide and stay vanes of a water turbine (image courtesy of VA Tech Hydro Zurich and of ETH Zurich).
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	FIGURE 3.5 Lambda2 isosurfaces in a Francis turbine showing connected components (image courtesy of VA Tech Hydro Zurich and of ETH Zurich).
	FIGURE 3.6 Vorticity isosurface in a Francis turbine showing false positive at grid boundary (image courtesy of VA Tech Hydro Zurich and of ETH Zurich).
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	TABLE 3.1 Different cases of velocity gradient eigenanalysis and vector field topology (table according to Peikert [Pei03], images courtesy of ETH Zurich).
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	FIGURE 3.7 Principle of the Levy method (sketch according to [Rot00]).


	3.4.4 Vortex detection method by Sujudi and Haimes
	FIGURE 3.8 Principle of the Sujudi/Haimes method (sketch according to [SH95b] and [Rot00]).
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	3.4.5 Vortex detection method by Banks and Singer
	FIGURE 3.9 Principle of the Banks/Singer method (sketch according to [SB94]).
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	3.4.6 Vortex detection method by Miura and Kida
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	FIGURE 3.10 Principle of the Miura/Kida method (sketch according to [MK96] and [Rot00]).
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	3.4.7 Vortex detection method by Strawn, Kenwright and Ahmad
	FIGURE 3.11 Principle of the Strawn/Kenwright/Ahmad method (sketch according to [SKA98]).
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	3.4.8 Mapping of vortex criteria to Parallel Vectors Operator
	TABLE 3.2 Different vortex criteria and their parallel vectors representation (table entries rearranged for better overview of common vector fields).
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	4.1 Multi-Resolution and Multi-Scale Representations
	FIGURE 4.1 The basic scale problem, as it occurs in the task of edge detection (sketch according to Lindeberg [Lin94]).
	4.1.1 Multi-resolution data representations
	(4.1)
	FIGURE 4.2 Multi-resolution (pyramid) representation of a two-dimensional image (sketch according to Lindeberg [Lin94]).


	4.1.2 Multi-scale data representations
	FIGURE 4.3 Multi-scale representation of a two-dimensional image (sketch according to Lindeberg [Lin94]).


	4.2 Scale-Space Choice and Properties
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	FIGURE 4.4 Non-creation of local extrema (application to a 1-dimensional signal) (sketch according to Lindeberg [Lin94]).


	4.3 Relation of Scale-Space to Fourier Theory
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	FIGURE 4.5 Correspondance of sinc and rect function in spatial and frequency domain. (Images created using Gnuplot version 4.0).
	FIGURE 4.6 Correspondance of Gaussian functions in spatial and frequency domain. Left column: Gaussian in the spatial domain for . Right column: Gaussian in frequency domain for . (Images created using Gnuplot version 4.0).


	4.4 Application to Image Processing and Computer Vision
	FIGURE 4.7 Feature extents in spatial and scale dimension. Indicated feature comprises smaller fea tures and is contained by a bigger feature itself (image courtesy of T. Lindeberg [Lin94]).
	FIGURE 4.8 Gaussian smoothing and scale-space computation for images. Grey-level blobs at differ ent scale levels indicate increasing feature sizes (image courtesy of T. Lindeberg [Lin94]).

	4.5 Application to Flow Visualisation
	1. Many flow features are of fractal nature, that means that there is no unique definition of their feature size. Depending on the observation scale, different sets of features can be observed. Usually, the scale is implicitly defined when an...
	2. Most methods require numerical computation of first- and second-order spatial deriv atives, which causes the data to be roughened. Smoothing the data can reduce this effect, but it is not trivial to find an appropriate smoothing kernel whe...
	3. When features are extracted from time-dependent data, animating them can cause popping effects with features suddenly appearing or disappearing. These artifacts can be reduced by incorporating temporal in addition to spatial smoothing.
	1. At larger scales, the set of features is reduced to fewer and clearer features. This is par ticularly useful for features defined by higher-order derivatives, such as the vortex cri teria of Miura and Kida [MK97] and of Roth and Peikert [RP98].
	2. It becomes possible to focus on features of a certain scale.
	3. Tracking features over scale allows for visualising them with the positional accuracy of small scales and simultaneously deriving connectivity information from larger scales.
	4. Selective visualisation can be done by picking an individual feature at a larger scale which is then tracked to a smaller scale and finally tracked over time.
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	4.7 Scale-Space Computation
	4.7.1 Structured Grids
	1. The obvious one is to actually compute the convolution with a discrete sampled Gaus sian, which can be performed either in the spatial domain or in the frequency domain. For unstructured grids, this requires additional efforts, e.g. a unif...
	2. The second method is to repeatedly apply for each dimension a binomial filter with weights (1/4, 1/2, 1/4). The weights of this recursive filter are (up to normalisation) the even rows of the Pascal triangle and thus converge to a Gaussian...
	3. The third method is to discretise the diffusion (heat) equation. While this amounts to numerically solving a partial differential equation, it has the advantage to work well also for large  values, and furthermore to extend properly to uns...
	. (4.11)
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	(4.12)
	, (4.13)
	, (4.14)
	. (4.15)
	. (4.16)
	FIGURE 4.9 Hat functions as a simple example of finite elements (1D signal, N=6).
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	FIGURE 4.10 Sharing of nodes by adjacent grid cells, indexing scheme of the local cell corners and mapping of a grid cell from physical to computational space.
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	4.8 Results
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	5.1 Vortex Core Line Extraction
	1. Since the data are presmoothed, estimating derivatives (e.g. for setting up the velocity Jacobian or pressure gradient field) can be done with a simple computational scheme and no extra filtering. To be more precise, an ordinary least squa...
	2. The connecting of the lines can be done more automatically and with fewer “quality” parameters. In the case of vortex core lines, one parameter turned out to be sufficient, namely the signed length ratio of the two vectors and at the inter...

	5.2 Extraction Of Vortex Cores in 3D
	1. Compute the connectivity structure of the underlying unstructured grid: Store relevant cell <-> face <-> edge <-> node relations in suitable data structures.
	2. Set up the two vector fields and , depending on the chosen vortex criterion: Load the physical flow fields, build derived fields, assign them to and .
	3. Mark the intersected edges of the grid: Test for every edge whether the cross product changes its sign (component- wise) between the two end nodes (for a later trivial reject test of the grid faces).
	4. Find the points of parallel vectors on all faces of the grid: Traverse the grid cell by cell, traverse each cell face by face. On each previously untreated face, compute all points where . Store all solution points in an attributed vertex ...
	5. Compute the feature quality and vortex strength of every found vertex (for eventual filtering before graphical output)
	6. Generate and filter a polyline list containing the resulting vortex core lines: Loop through the vertex list, store contiguous segments as polylines. Filter the resulting polylines by 4 quality parameters (optional): minimal vortex strengt...
	7. Output the resulting geometry to the graphics renderer.
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	5.2.2 Setup of the two vector fields
	5.2.3 Marking of the intersected edges
	(5.1)

	5.2.4 Finding the points of parallel vectors on all faces
	FIGURE 5.1 How to find the solution points on all faces of the grid.
	(5.2)
	FIGURE 5.2 Subdivision of a cell face and conversion of local coordinates.
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	FIGURE 5.3 Linear interpolation of the vector fields and on a triangle.
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	FIGURE 5.4 Composing and orienting the line segments within a grid cell (2D representation).


	5.2.5 Computation of the feature quality at a vertex
	(5.14)
	. (5.15)
	FIGURE 5.5 Definition of the feature quality of a vertex.


	5.2.6 Filtering of the polylines
	FIGURE 5.6 Filtering the polylines according to their vertex attributes (in this case, minimum vortex strength = 0.5, maximum number of exceptions = 2).
	5.3 Feature Tracking in Time and Scale
	FIGURE 5.7 Example application of feature tracking in scale and time.


	5.3.1 Lifting principle and hypercubes
	5.3.2 Structure of the lifted grid cells
	FIGURE 5.8 The eight 3D boundary cubes of a 4D hypercube (curved lines indicate the temporal edges of a spatio-temporal boundary cube).

	5.3.3 Construction of the feature mesh
	FIGURE 5.9 Construction of the 2D feature mesh from the 3D boundary cubes of the 4D hypercubes (left column: geometrical grid cells, right column: spatio-temporal boundary cubes).

	5.3.4 Vortex tracking algorithm
	(5.16)
	(5.17)
	FIGURE 5.10 The basic vortex tracking algorithm.
	FIGURE 5.11 Filtering the triangle mesh by computing the feature quality of intermediate vertices.

	5.4 Possible Extensions

	5.4.1 Different cell types
	TABLE 5.1 Properties of different cell types and extension from 3 to 4 dimensions.

	5.4.2 Different feature definitions
	5.4.3 Event detection
	FIGURE 5.12 Event detection using the feature mesh.
	TABLE 5.2 Mapping of triangle intersection types to event types.
	5.5 Results
	FIGURE 5.13 Number of features at different scales.
	FIGURE 5.14 Original draft tube dataset: geometry and instantaneous streamlines (left). Pressure isosurfaces and pressure valley line indicate the so-called vortex rope. Pressure data for Miura/Kida meth od have been Gaussian-smoothed with  (...
	FIGURE 5.15 Modernised draft tube: vortices are less articulate and harder to extract. Vortex core extraction based on normalised helicity (Levy) has been applied to unsmoothed velocity field (left) and to Gaussian-smoothed data with  (middle...
	FIGURE 5.16 Vortex cores of modernised draft tube tracked through scales (left). Diagonal pump dataset with vortices extracted in runner and diffusor along with manually seeded streamlines (middle). Vortex cores tracked temporally for a  rota...



	C6VortexHulls.pdf
	The aim of the vortex hull construction is to make the vortex core better visible and also interpretable. Rather than showing only a one-dimensional (line-type) feature, we now want to get a notion of the “size” of the vortex in a local neigh...
	6.1 Basic Vortex Hull Algorithm
	In an earlier paper [BP02b] and in the previous chapter, we described how to extract a vortex core line from a 3-dimensional CFD dataset. Based on such a vortex core line, our vortex hull approach follows the deformable model paradigm by radi...
	FIGURE 6.1 Principle of vortex hull construction.

	The cross-section polygons can be of constant or variable shape and size, depending on what is preferred by the user. If the vortex only shall appear more plastic (e.g. for demon stration purposes), it may be sufficient to construct the tube ...
	FIGURE 6.2 The original vortex hull construction algorithm (fixed sampling intervals).

	Figure 6.3 shows a vortex hull resulting from this algorithm, as well as the vortex core line and some streamlines indicating the vortical structure. With a slight modification, this algorithm produces a scalar field containing the vortex str...
	FIGURE 6.3 Vortex core line and computed vortex hull (streamlines added for better depicting the swirl in the draft tube).


	6.2 Enhanced Vortex Hull Algorithm
	Based on the original vortex hull algorithm, we made several modifications which help improve the quality and reduce the computational time of the vortex hulls. The first design decision (explained in more detail in Section 6.2.1) was to set ...
	1. The plane normal (which must be approximately tangential to the core line) needs not to be interpolated from the two adjacent core line segments of a vertex. Instead, it is directly given for each core line segment by the difference vector...
	2. The curvature of the line connecting the seed points is reduced, which smoothes the resulting vortex hull along its central axis (see Figure 6.4). This is the same smoothing effect as occurs when applying one step of the de Casteljau algor...
	FIGURE 6.4 Location of the cross-section planes in the middle of the core line segments.


	The second design decision was to use adaptive rather than fixed sampling intervals for tra versing the rays and evaluating the scalar field. Rather than stepping forward in physical space and making point searches for the cell containing the...
	1. Set up the cross-section planes and rays: For every segment of the core line, choose the midpoint as a seed point, set up a normal plane, a local coordinate system and a fan of rays in this plane.
	2. Radially expand the vortex hull: For every ray, traverse cell by cell, compute the intersection points with the cell faces, and check the scalar field at these points w.r.t. the threshold.
	3. Filter the resulting ray lengths (optional): Apply a median filter in a -neighbourhood of every ray to be filtered.
	4. Assembly the vortex hull by connecting the ray endpoints using polygons.
	5. Fair the resulting mesh (optional) by iterative Laplacian smoothing.

	We will in the following treat some implementation aspects of the improved algorithm.
	6.2.1 Setup of the cross-section planes

	As we have seen in the previous section, a cross-section plane of the vortex hull is defined by a core line segment and its two endpoints. The plane origin and the plane normal can easily be computed as
	(6.1)
	(6.2)

	where and are two successive vertices on the core line which form the endpoints of the core line segment (see Figure 6.4). Within such a plane, a two-dimensional coordi nate system can be installed by setting up two basis vectors and , which ...
	FIGURE 6.5 Plane coordinate system for the rays, and definition of its basis vectors (3D and 2D representation, respectively).

	We now have a coordinate system in a plane perpendicular to the core line. To construct the -sided polygon for the cross-section of the vortex hull, we build a fan of rays origi nating at the seed point  and pointing away from . The direction...
	(6.3)

	(see Figure 6.5, right), and the direction of the ray in 3-space is
	(6.4)

	Given the seed point and the ray direction , we can write the equation of the ray as
	. (6.5)

	This equation serves as a mathematical basis for the ray traversal. The next section will treat the question how to find a suitable value (and thus the endpoint of a ray) so that a user-defined termination criterion for the vortex hull is met.
	6.2.2 Radial vortex hull expansion

	Once a certain cross-section-plane of the vortex hull has been established, the further pro ceeding of the algorithm depends on the users’s choice. If only a better visualisation of the progression of the vortex core line is desired, it might...
	FIGURE 6.6 Vortex hull cross-sections based on different scalar fields. Left: based on distance field of core line, right: based on independent scalar field (threshold searching). Shapes are drawn for n=8 and a large value of n, respectively.

	However, if the user is interested in seeing a measure for the “importance” of the vortex in the environment of the core line, a physically meaningful scalar field surrounding the core line is needed, as well as a user-defined scalar threshol...
	FIGURE 6.7 Ray traversal through the cells of the unstructured grid (projected view).

	The drawback of our new propagation method is the necessity of raycasting the quadran gle cell faces. However, since we must traverse only few grid cells, this is more than com pensated by the reduced number of sampling points. A more detaile...
	- the scalar threshold has been crossed between two consecutive intersection points, - the grid boundary has been reached, - the maximum number of traversed cells (along the ray) has been reached, - no new intersection point could be found on...
	In the latter three cases, the value of the last valid intersection point on the ray is returned. In the first case, the return value for is interpolated from the last two valid intersection points on the ray. A detailed pseudocode notation i...
	6.2.3 Filtering of the ray lengths

	The finding of the parameter values (and thus endpoints of the rays) strongly depends on the type of scalar field and on the scalar threshold. However, the raw data of this scalar field often originate from numerical CFD simulations and there...
	FIGURE 6.8 High frequencies of the ray lengths in the cross-sections of a vortex hull.

	To cope with this undesirable effect, a user-defined filter mask can be activated for smoothing the values within the planes. A good choice is the use of a median filter because it eliminates numerical exceptions better than a simple average ...
	FIGURE 6.9 Smoothing the ray lengths by use of a filter mask (in this case k=1, filter size = 3).
	6.2.4 Vortex hull assembly

	Once the values of all rays in a certain plane have been found and eventually filtered, the endpoints of the rays are computed using the ray equation (Equation 6.5). Afterwards, the algorithm switches to the next core line segment and thus to...
	FIGURE 6.10 Construction of the final vortex hull from the ray endpoints (in this case, m = #segments = 4, n = #rays per fan = 5).

	As a result, the final vortex hull is a closed triangulated surface completely surrounding the vortex core line. The geometrical complexity of a vortex hull can be computed as follows: Let  be the number of segments (and thus fans) of a core ...
	6.2.5 Mesh postprocessing

	As is the case for CFD datasets, we can also reduce noise in the vortex hull, which is a geo metric mesh. We only have to smooth coordinates rather than data at the mesh vertices. For this fairing, we once again use the diffusion equation (co...
	, (6.6)

	where is the diffusion time, is a scaling factor, denotes the mesh itself (a vector con taining the coordinates of every mesh vertex), and is the Laplacian of the mesh ver tices (see the SIGGRAPH paper of Desbrun et al. [DMSB99]). For reasons...
	(6.7)

	where is the number of the current iteration, is the Euler time step and is the matrix containing the Laplacian weights for all mesh vertices. In principle, our algorithm loops over each mesh vertex , computes an approximated Laplacian based ...
	. (6.8)

	When all vertices have been processed, we add to every vertex its displacement:
	, (6.9)

	and perform the next Euler iteration. Since few iterations were sufficient in our case (see Section 6.3), we neglected the mesh shrinking effect. We approximated the Laplacian at a certain vertex using the umbrella operator proposed by Taubin...
	. (6.10)

	Let be the valence (= number of direct neighbours) of vertex and the set of direct neighbours connected to by an edge. Then the umbrella operator computes to
	(6.11)

	which is the average vector of all edges pointing from to its direct neighbours. In our implementation, the computed vortex hull consists of quadrangles (see Figure 6.10) and is (apart from the two endcaps) a cylindric structured mesh. We sto...
	FIGURE 6.11 Storage of mesh vertices and application of umbrella operator (cross stencil). (In this case, m = #segments = 5, n = #rays per fan = 3, M = valence = 4).


	6.3 Results
	The modified vortex hull algorithm was tested on an SGI Octane (640 MB main memory, MIPS R10000 CPU and MIPS R10010 FPU running at 250 MHz) for three different unstructured grid datasets, using the Levy vortex extraction method and vortex str...
	- setup of the two vector fields and the scalar field, - extraction of the vortex core lines, - construction of the appropriate vortex hulls, - filtering of the rays by a median filter, - fairing of the resulting mesh by Laplacian smoothing.
	From the table, it is evident that the time consumed for vortex hull construction is indeed proportional to the number of core line segments and to the number of rays per fan, as was expected by the theoretical complexity analysis in Section ...
	TABLE 6.1 Performance analysis of the vortex hull computation.
	FIGURE 6.12 Vortex core line and hull construction for the bent helix dataset, based on Levy method and distance field (m = 19, n = 5, k = 0).
	FIGURE 6.13 Vortex hulls based on Levy method and distance field (m = 283, n = 36, k = 0). Noise in the upper region (Francis draft tube inlet) due to unsmoothed CFD data.
	FIGURE 6.14 Vortex hulls for Levy method and max. vortex strength of 3.0 (m = 283, n = 36, k = 0). High-frequency noise at region of maximum twist of the vortex requires smoothing. See also Colour Figure A.3 on page 123.
	FIGURE 6.15 Vortex hulls for Levy method and max. vortex strength of 3.0 (m = 283, n = 36, k = 15). Median ray filtering reduced noise especially at region of maximum twist. See also Colour Figure A.3 on page 123.
	FIGURE 6.16 Vortex hulls for Levy method and max. vortex strength of 3.0 (m = 283, n = 36, k = 0). Laplacian mesh fairing (4 neighbours, , 10 iterations) without ray filtering. See also Colour Figure A.3 on page 123.
	FIGURE 6.17 Vortex hulls for Levy method and max. vortex strength of 3.0 (m = 283, n = 36, k = 15). Combination of median ray filtering and subsequent Laplacian mesh fairing. See also Colour Figure A.3 on page 123.



	C7ParticleTracing.pdf
	Tracing and rendering of moving particles is a standard technique for the visualisation of stationary or time-dependent 3D vector fields. Nevertheless, it is hard to find better tech niques for this type of data. Moving streamlines, for insta...
	7.1 Particle Tracing versus other Techniques
	Instead of tracing discrete particles, 3D textures could alternatively be used to visualise the flow field, e.g. by extending the Lagrangian-Eulerian Advection (LEA) algorithm proposed by Jobard et al. [JEH01] from two to three dimensions. Ho...

	7.2 Flow Regions of Interest
	While steady flows can be explored by scanning the data domain (e.g. extracting isosurfaces at different scalar levels or placing seed points for streamlines at different locations), this is not an option for time-dependent data. But then, vi...
	There are miscellaneous possibilities to define a ROI by means of scalar thresholds:
	1. In Chapter 3, we mentioned a purely region-based approach, namely to extract an iso surface for a certain scalar threshold. The result of such an isosurface extraction is often more than one connected component. It can then be necessary to...
	2. In the case of a vortex, there is an alternative way to define a ROI based upon an extracted vortex core. In Chapter 5 and Chapter 6, we described a mixture of region- and feature-based techniques, namely how to detect a vortex core line a...
	3. In this chapter, we will pursue a third possibility, which is a mixture of region- and integration-based methods. Similar to isosurface extraction, we will define the ROI only by scalar values, without precomputing flow features such as vo...

	In the remainder of this chapter, we will propose the industrial context of our particle tracer and then describe its specific visualisation techniques in more detail.
	FIGURE 7.1 ROI definition by a scalar field and threshold. The isosurface consists of several connected components, including false positives at the boundary of the turbine case. See also Colour Figure A.1 on page 121.


	7.3 Industrial Application
	The main industrial case under investigation was the flow field in a Francis water turbine. The flow in the turbine passes through the vaneless spiral casing and enters the stationary stay and guide vanes, which accelerate the flow. The flow ...
	FIGURE 7.2 Photograph of a cavitating vortex rope on the test rig (image courtesy of VA Tech Hydro, Zurich). See also Colour Figure A.4 on page 124.

	The part-load vortex rope is of technical relevance for two reasons. Firstly, it causes serious variations in relative pressure within the runner and on its hub and shaft, as well as in the draft tube (see Figure 7.3 and Figure 7.4). Secondly...
	FIGURE 7.3 Variations of relative pressure at the runner blades of a Francis turbine (bottom view, vortex rope depicted as pressure isosurface). See also Colour Figure A.4 on page 124.
	FIGURE 7.4 Variations of relative pressure in the draft tube of a Francis turbine (side view, vortex rope depicted as pressure isosurface). See also Colour Figure A.4 on page 124.


	7.4 Visualisation Techniques
	For the purpose of selectively visualising the flow in regions-of-interest, we modified the standard particle-based technique in the following ways:
	We will in the following sections describe in more detail the specific visualisation tech niques we used for our novel particle tracer.
	7.4.1 Cell classification

	Initially and after each time step of the particle tracing algorithm, the grid cells are classi fied as inner, buffer or outer cells. The cell classification is based on the scalar field of the CFD dataset and two particle visibility threshol...
	FIGURE 7.5 Classification of cells, particle visibility, and tiles of quasi-random points.
	7.4.2 Particle seeding

	The goal of the particle seeding is to generate a uniform distribution of the particles while avoiding clusters and regular patterns. In multi-dimensional spaces, quasi-random sequences give better results than pseudo-random sequences or jitt...
	FIGURE 7.6 (a): Pseudo-random samples. (b), (c): jittered regular samples. (d): Sobol’ points. (e): four tiles of Sobol’ points.
	7.4.3 Particle visibility

	In our application, the ROI is defined by high values of a scalar field , which is either directly given in the datasets (e.g. pressure with inverted sign) or has previously been derived from them (e.g. helicity, computed from velocity). The ...
	FIGURE 7.7 Smooth visibility transition by two scalar thresholds.
	7.4.4 Particle tracing

	The crucial point of our algorithm is that it traces particles only in the inner and buffer cells, which cover a minority of the grid. The particles are initially distributed over all inner and buffer cells and periodically advected using Heu...
	FIGURE 7.8 Pseudo-code of the selective particle tracer.

	The particles in the buffer cells can be replaced at fixed time intervals, although a safer method would be to release marked particles at the outer boundary of the buffer cells. A marked particle entering an inner cell would trigger the repl...
	7.4.5 Conservation of mass

	When the velocity field (and the density in the case of a compressible flow) is interpolated from the node data, the resulting fields are expected to be mass-conservative. However, this is not the case if the standard techniques are used, nam...
	FIGURE 7.9 Clamping local coordinates at the grid boundary (2D representation).
	7.4.6 Particle rendering

	We used different techniques for the graphical output of the traced particles. An obvious technique is to render the particles as spheres, which minimises occlusion problems to the lowest possible degree and is easiest to implement. Furthermo...

	7.5 Results
	We applied our selective particle tracer to CFD data for different types of water turbines and using various rendering techniques.
	FIGURE 7.10 Cavitation bubbles near Kaplan runner blades, rendered as spheres (ROI was specified by low pressure). See also Colour Figure A.4 on page 124.
	FIGURE 7.11 Particle stream through a storage pump, rendered as spheres (Runner case was opened in front for better insight). See also Colour Figure A.4 on page 124.
	FIGURE 7.12 Vortex rope in Francis draft tube, rendered as streamlets (ROI is indicated by an isosurface of normalised helicity). See also Colour Figure A.4 on page 124.
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	FIGURE 8.3 Typical VR environments. Left: large projection screen. Right: the mobile Cykloop device (image courtesy of VisEnSo GmbH, Stuttgart).
	FIGURE 8.4 Left: A graphical scene projected from the COVER renderer into a cave (image courtesy of VisEnSo GmbH, Stuttgart. See also Colour Figure A.3 on page 123). Right: The standard main menu of the COVER renderer.
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	FIGURE 8.5 System architecture for the VR vortex visualisation framework. Dashed lines: batch mode network. Solid lines: interactive mode network.
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	FIGURE 8.6 A typical scene showing COVER and VR application menus and vortex hulls. The twisted vortex in the upper part of the draft tube has been selected. See also Colour Figure A.3 on page 123.


	8.3 Results
	TABLE 8.1 Performance analysis of the VR application for vortices.
	FIGURE 8.7 Vortex core lines and hulls of the original draft tube design. The hulls were computed for a vortex strength threshold of 1.0. See also Colour Figure A.3 on page 123.
	FIGURE 8.8 Vortex core lines and hulls of the modified draft tube design. The design optimisation led to fragmentation of the vortices. See also Colour Figure A.3 on page 123.
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	FIGURE A.1 Vortex extraction for a Francis turbine. Top left: Francis runner and scaled model (Figure 2.1 on page 10). Top right: vortex rope in draft tube visualised by isosurface (Figure 7.1 on page 97). Bottom: vortex core lines due to Miu...
	FIGURE A.2 Vortex tracking in scale and time. Left column: vortex core lines for increasing scale level (Figure 5.15 on page 77). Top right: surfaces swept by the vortex core lines shown in left column. Center right: vortex core lines and str...
	FIGURE A.3 Vortex hulls (left column) and VR application (right column). Left: vortex hulls based on raw data (Figure 6.14 on page 92), after pure median filtering (Figure 6.15 on page 92), after pure Laplacian mesh fairing (Figure 6.16 on pa...
	FIGURE A.4 Industrial motivation (left column) and selective particle tracing (right column). Top left: cavitation bubbles on an industrial test rig (Figure 7.2 on page 98). Center left: relative pressure variations in a Francis runner (Figur...

	D3Implementation.pdf
	This appendix contains some more detailed explanations on the implementation of the vortex hulls described in Chapter 6. The focus is on the problem of expanding a vortex hull, beginning at a given vortex core line and stepping outwards along...
	1. Testing if a computed intersection point of the ray with the unbounded surface (con taining the cell face) lies inside the quadrangle spanned by the face corners (or outside, which would make the intersection point irrelevant),
	2. Evaluation of the scalar field at a computed intersection point from the values at the face corners (for we can determine whether the scalar threshold has been crossed).

	To avoid a point search on the quadrangle face (requiring the solution of a nonlinear equa tion system, e.g. by Newton iterations), it is better to compute the intersection points in computational space, where all coordinates are local to the...
	FIGURE C.1 The enhanced vortex hull construction algorithm.
	FIGURE C.2 The algorithm for finding the endpoint of a ray.

	C.1 Intersections of rays with cell faces
	In the following, the assumption is made that the quadrangle formed by a cell face is non-degenerate, i.e. its four corners are all different and the edges are not collinear. The case of a planar quadrangle can easily be treated by subdividin...
	FIGURE C.3 Mapping of a non-planar quadrangle between computational and physical space.

	are corners of the unit cube and span a bilinear face, since for all these corners, the three coordinates in computational space fulfil the bilinear surface equation
	(C.1)

	The mapping from computational to physical space can easily be done using an affine transformation. Since the quadrangle is non-degenerate and non-planar, the three span vectors
	(C.2)
	(C.3)
	(C.4)

	are linearly independent, thus the matrix
	(C.5)

	is regular. As can easily be shown, the affine point transformation
	(C.6)

	is then bijective and maps onto , and also every point from computational space to physical space unambiguously. The corresponding affine vector transformation is the same, apart from the missing translation vector :
	(C.7)

	However, since we also need the inverse mapping from physical to computational space, we must invert the matrix and use the inverse point transformation
	(C.8)

	to map onto , and also every point from physical space to computational space in a unique manner. Its respective inverse vector transformation is
	(C.9)

	To compute the intersections of the (physical) ray
	(C.10)

	with the bilinear surface, we now transform the ray by inserting the start point of the ray into the inverse point transformation:
	(C.11)

	and by inserting the ray direction into the inverse vector transformation:
	(C.12)

	It is easy to prove that the parameter needs not to be transformed, since this real number has the same value in physical and computational space (due to the aspect ratio conservation property of affine transformations). The transformed ray t...
	(C.13)

	or, component-wise, as a set of three scalar functions:
	(C.14)
	(C.15)
	. (C.16)

	Substituting in the bilinear surface equation (Equation C.1) by these scalar functions yields the intersection equation
	(C.17)
	(C.18)
	(C.19)

	Solving this quadratic equation for , and inserting the resulting two values (pro vided that they are real) into the transformed ray equation, we get the local coordinates of the intersection points :
	(C.20)

	If the local coordinates of an intersection point are written as
	, (C.21)

	then the test whether the intersection point lies inside the quadrangle now reduces to a test whether its local coordinates lie between and :
	(C.22)

	(since holds for all points of the bilinear surface, the third coordinate then automatically lies between and , too).
	The local coordinates of an intersection point can also be used for bilinear interpolation of its scalar value from the scalar values at the four quadrangle corners. Let be the scalar values at the four face corners . Then the scalar value at...
	(C.23)

	The procedure RayCastQuadrangleFace() shown in Figure C.4 is called by the function FindEndpointOfRay() of Figure C.2. It returns the values, local coordinates, inside quadrangle test result flags and scalar values of all real intersection po...
	FIGURE C.4 The algorithm for intersecting a ray with a quadrangle cell face.


	C.2 Cell Traversal in hexahedral Grids
	To minimise numerical inaccuracies, the algorithms described in this chapter were imple mented using floating point variables of double precision. Nevertheless, there were some numerical problems to deal with that were not trivial to solve.
	The second comparison
	shall ensure that any chosen intersection point must indeed extend the ray. The compar ison works well when the two values belong to points on different faces of the same cell (see Figure C.5, left).
	FIGURE C.5 Different intersection situations (2D representation). Left: points of same cell on different faces. Right: points of different cells on same face.

	However, regard the case of two points lying on the same face of two different neighbour ing cells (see Figure C.5, right). Assume that the ray has been extended up to point (currentLambda) when cell  was traversed. When the algorithm switche...
	We therefore had to modify the second comparison by introducing a small constant and testing if the new value is “really” greater than the current one:
	However, this was still not sufficient because the case of two points lying on different faces on the same cell (which had worked well without the ) did now not always work properly anymore. The new problem was caused by rays intersecting a c...
	FIGURE C.6 Further intersection situations (2D representation). Left: two intersections near an edge. Right: two intersections on the same face.

	It is therefore necessary to distinguish between two cases, and to store for each intersection point extending the ray, on which grid face (global face number) it was found. For every newly treated face, its global face number is determined (...
	It is therefore necessary to compute and check every intersection point, so we must in each step choose the nearest intersection point of a cell as the next ray endpoint (as long as the threshold of the scalar field has not yet been crossed)....
	FIGURE C.7 The modified function FindEndpointOfRay().
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	1.2 Motivation
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	This thesis concentrates on the other type, scientific visualisation, and one of its most common subareas, flow visualisation. Typical applications of flow visualisation can be found in (but are not restricted to) aerodynamics, automotive ind...
	2.1.2 Gaining data for visualisation

	However, it should be kept in mind that flow visualisation can also be done the “good old way” using flow experiments and empiricism. One example is the use of test rigs for reduced scale models of existing turbines, as is done by our industr...
	.
	FIGURE 2.1 Original and 1:10 scale test rig model of a Francis runner (image courtesy of VA Tech Hydro, Zurich). See also Colour Figure A.1 on page 121.
	2.1.3 Level of data abstraction
	FIGURE 2.2 The actual flow visualisation step in the visualisation pipeline.


	More abstract than direct visualisation are integration-based methods, since they use integral objects as a counterpart to the derivative nature of simulation-based flow data (e.g. velocity gained from a CFD simulation). Using integration met...
	The third type is the feature-based approach, which performs an additional abstraction step by extracting certain phenomena (such as vortices) or topological information (like critical points) from the original flow data. The extraction step ...
	In addition to the three cases mentioned above, we can also define a fourth type, namely region-based visualisation. In contrast to many feature-based methods which rely on locally defined criteria (such as critical points), one can also defi...
	2.1.4 Spatial dimensionality of grid and data

	For medical applications (and also in the field of vision), often 3D “images” are used, which are actually stacks of 2D images. A typical example is a computer tomography (CT), magneto-resonance (MR) or positron-emission (PET) dataset [MCS02]...
	For turbomachinery design, 3-dimensional unstructured grids (created using CAD tools) are predominant, for the possibility of representing arbitrary shapes of machine parts (such as the runner and draft tube of a water turbine). The data defi...
	2.1.5 Temporal dimensionality of data
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	A variety of different grid types has been established, mostly due to the needs of specific application fields (see Nielson et al. [NSR90, NHM97]). Common to all grid types is that they store data (vectors or scalar values) at distinct point ...
	There exist also alternative point representations like point clouds, which have been suc cessfully investigated and implemented at the ETH Zurich within the scope of the PointShop3D project by Pauly et al. (see the PointShop3D website [PZK+0...
	FIGURE 2.3 Point cloud versus grid (in this case, a triangular mesh) for the Stanford bunny model.
	FIGURE 2.4 Different cell types used in visualisation grids (bottom faces are shaded).

	The simplest and computationally easiest to handle case is of a structured grid is a uni form grid, which can be Cartesian or skew-angled. In the uniform case, the points are equally distributed along every dimension of the grid, thus a simpl...
	Slightly more difficult to handle is a non-uniform but still structured grid (also called curvilinear grid), which is topologically equal to uniform grids, but the points are not equi distant. It thus requires to store a node list containing ...
	The class of unstructured grids is characterised by the fact that they do not possess a reg ular topology. Also, the cells can be of varying types (i.e. tetrahedral and hexahedral cells mixed within a 3-dimensional unstructured grid). Even if...
	There exist also some hybrid grid types, for example block-structured grids. These are unstructured compositions of structured sub-grids (as shown in Figure 2.5, bottom left). In the following chapters, we will only treat the case of pure uns...
	FIGURE 2.5 Different grid types used in visualisation (2D representation, cells are shaded).
	2.3 Data Fields
	2.3.1 Vector Fields
	, (2.1)



	Each of the three velocity field components defines a scalar field, the gra dient of which can be computed as the vector of its first derivatives in every spatial direction. The velocity gradient tensor  is defined as the Jacobian of the velo...
	. (2.2)

	The computation of spatial derivatives is not trivial for a data field which is not analyt ically given, as is the case on a discrete grid. A discretised differentiation operator is neces sary, the complexity of which strongly depends on the ...
	For an unstructured grid, however, symmetric differences are no suitable way since the number of neighbouring nodes is not constant for every node, and the distances between the nodes also differ. One possibility is to use a weighted differen...
	Alternatively, a polynomial can be fit into the neighbourhood of each node to compute its spatial derivatives. Since this method is computationally quite expensive, we chose a least-square-fit among the one-neighbourhood of a node. This metho...
	The vorticity vector indicates the local rotation of the flow and is defined as the curl of the velocity vector. Its length is a measure for the rotational speed, whereas its direction shows the rotational axis (assuming that the rotation is ...
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	2.3.2 Scalar Fields
	. (2.8)
	. (2.9)
	. (2.10)


	The vortex strength is an indicator of how fast the flow locally rotates around a certain point, e.g. on a vortex core line. For a 2-dimensional flow, a vortex occurs as a critical point in the 2D plane, forming a spiral pattern. In this case...
	Since the flow is swirling around the vortex core line also in 3D, a spiral pattern is to be expected in the 3D case, too. But the spiral will occur in a plane which is perpendicular to the core line (see Figure 2.6). The core line direction ...
	FIGURE 2.6 Definition of vortex strength in a plane perpendicular to the core line (vortex visualised by streamlines and LIC method, see Section 3.2). Image courtesy of ETH Zurich.
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	At first glance, the vortex strength is only locally defined in the vicinity of a vortex core line. However, since the definition only depends on the velocity field and its gradient, it can be applied to every point of the computational domai...
	In this chapter, we gave a synopsis of basic flow visualisation terms, such as the most common grid types and data fields. Based on the definitions given here, we will in the next chapter describe a few basic computational techniques for flow...
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	FIGURE 5.15 Modernised draft tube: vortices are less articulate and harder to extract. Vortex core extraction based on normalised helicity (Levy) has been applied to unsmoothed velocity field (left) and to Gaussian-smoothed data with  (middle...
	FIGURE 5.16 Vortex cores of modernised draft tube tracked through scales (left). Diagonal pump dataset with vortices extracted in runner and diffusor along with manually seeded streamlines (middle). Vortex cores tracked temporally for a  rota...



	C6VortexHulls.pdf
	The aim of the vortex hull construction is to make the vortex core better visible and also interpretable. Rather than showing only a one-dimensional (line-type) feature, we now want to get a notion of the “size” of the vortex in a local neigh...
	6.1 Basic Vortex Hull Algorithm
	In an earlier paper [BP02b] and in the previous chapter, we described how to extract a vortex core line from a 3-dimensional CFD dataset. Based on such a vortex core line, our vortex hull approach follows the deformable model paradigm by radi...
	FIGURE 6.1 Principle of vortex hull construction.

	The cross-section polygons can be of constant or variable shape and size, depending on what is preferred by the user. If the vortex only shall appear more plastic (e.g. for demon stration purposes), it may be sufficient to construct the tube ...
	FIGURE 6.2 The original vortex hull construction algorithm (fixed sampling intervals).

	Figure 6.3 shows a vortex hull resulting from this algorithm, as well as the vortex core line and some streamlines indicating the vortical structure. With a slight modification, this algorithm produces a scalar field containing the vortex str...
	FIGURE 6.3 Vortex core line and computed vortex hull (streamlines added for better depicting the swirl in the draft tube).


	6.2 Enhanced Vortex Hull Algorithm
	Based on the original vortex hull algorithm, we made several modifications which help improve the quality and reduce the computational time of the vortex hulls. The first design decision (explained in more detail in Section 6.2.1) was to set ...
	1. The plane normal (which must be approximately tangential to the core line) needs not to be interpolated from the two adjacent core line segments of a vertex. Instead, it is directly given for each core line segment by the difference vector...
	2. The curvature of the line connecting the seed points is reduced, which smoothes the resulting vortex hull along its central axis (see Figure 6.4). This is the same smoothing effect as occurs when applying one step of the de Casteljau algor...
	FIGURE 6.4 Location of the cross-section planes in the middle of the core line segments.


	The second design decision was to use adaptive rather than fixed sampling intervals for tra versing the rays and evaluating the scalar field. Rather than stepping forward in physical space and making point searches for the cell containing the...
	1. Set up the cross-section planes and rays: For every segment of the core line, choose the midpoint as a seed point, set up a normal plane, a local coordinate system and a fan of rays in this plane.
	2. Radially expand the vortex hull: For every ray, traverse cell by cell, compute the intersection points with the cell faces, and check the scalar field at these points w.r.t. the threshold.
	3. Filter the resulting ray lengths (optional): Apply a median filter in a -neighbourhood of every ray to be filtered.
	4. Assembly the vortex hull by connecting the ray endpoints using polygons.
	5. Fair the resulting mesh (optional) by iterative Laplacian smoothing.

	We will in the following treat some implementation aspects of the improved algorithm.
	6.2.1 Setup of the cross-section planes

	As we have seen in the previous section, a cross-section plane of the vortex hull is defined by a core line segment and its two endpoints. The plane origin and the plane normal can easily be computed as
	(6.1)
	(6.2)

	where and are two successive vertices on the core line which form the endpoints of the core line segment (see Figure 6.4). Within such a plane, a two-dimensional coordi nate system can be installed by setting up two basis vectors and , which ...
	FIGURE 6.5 Plane coordinate system for the rays, and definition of its basis vectors (3D and 2D representation, respectively).

	We now have a coordinate system in a plane perpendicular to the core line. To construct the -sided polygon for the cross-section of the vortex hull, we build a fan of rays origi nating at the seed point  and pointing away from . The direction...
	(6.3)

	(see Figure 6.5, right), and the direction of the ray in 3-space is
	(6.4)

	Given the seed point and the ray direction , we can write the equation of the ray as
	. (6.5)

	This equation serves as a mathematical basis for the ray traversal. The next section will treat the question how to find a suitable value (and thus the endpoint of a ray) so that a user-defined termination criterion for the vortex hull is met.
	6.2.2 Radial vortex hull expansion

	Once a certain cross-section-plane of the vortex hull has been established, the further pro ceeding of the algorithm depends on the users’s choice. If only a better visualisation of the progression of the vortex core line is desired, it might...
	FIGURE 6.6 Vortex hull cross-sections based on different scalar fields. Left: based on distance field of core line, right: based on independent scalar field (threshold searching). Shapes are drawn for n=8 and a large value of n, respectively.

	However, if the user is interested in seeing a measure for the “importance” of the vortex in the environment of the core line, a physically meaningful scalar field surrounding the core line is needed, as well as a user-defined scalar threshol...
	FIGURE 6.7 Ray traversal through the cells of the unstructured grid (projected view).

	The drawback of our new propagation method is the necessity of raycasting the quadran gle cell faces. However, since we must traverse only few grid cells, this is more than com pensated by the reduced number of sampling points. A more detaile...
	- the scalar threshold has been crossed between two consecutive intersection points, - the grid boundary has been reached, - the maximum number of traversed cells (along the ray) has been reached, - no new intersection point could be found on...
	In the latter three cases, the value of the last valid intersection point on the ray is returned. In the first case, the return value for is interpolated from the last two valid intersection points on the ray. A detailed pseudocode notation i...
	6.2.3 Filtering of the ray lengths

	The finding of the parameter values (and thus endpoints of the rays) strongly depends on the type of scalar field and on the scalar threshold. However, the raw data of this scalar field often originate from numerical CFD simulations and there...
	FIGURE 6.8 High frequencies of the ray lengths in the cross-sections of a vortex hull.

	To cope with this undesirable effect, a user-defined filter mask can be activated for smoothing the values within the planes. A good choice is the use of a median filter because it eliminates numerical exceptions better than a simple average ...
	FIGURE 6.9 Smoothing the ray lengths by use of a filter mask (in this case k=1, filter size = 3).
	6.2.4 Vortex hull assembly

	Once the values of all rays in a certain plane have been found and eventually filtered, the endpoints of the rays are computed using the ray equation (Equation 6.5). Afterwards, the algorithm switches to the next core line segment and thus to...
	FIGURE 6.10 Construction of the final vortex hull from the ray endpoints (in this case, m = #segments = 4, n = #rays per fan = 5).

	As a result, the final vortex hull is a closed triangulated surface completely surrounding the vortex core line. The geometrical complexity of a vortex hull can be computed as follows: Let  be the number of segments (and thus fans) of a core ...
	6.2.5 Mesh postprocessing

	As is the case for CFD datasets, we can also reduce noise in the vortex hull, which is a geo metric mesh. We only have to smooth coordinates rather than data at the mesh vertices. For this fairing, we once again use the diffusion equation (co...
	, (6.6)

	where is the diffusion time, is a scaling factor, denotes the mesh itself (a vector con taining the coordinates of every mesh vertex), and is the Laplacian of the mesh ver tices (see the SIGGRAPH paper of Desbrun et al. [DMSB99]). For reasons...
	(6.7)

	where is the number of the current iteration, is the Euler time step and is the matrix containing the Laplacian weights for all mesh vertices. In principle, our algorithm loops over each mesh vertex , computes an approximated Laplacian based ...
	. (6.8)

	When all vertices have been processed, we add to every vertex its displacement:
	, (6.9)

	and perform the next Euler iteration. Since few iterations were sufficient in our case (see Section 6.3), we neglected the mesh shrinking effect. We approximated the Laplacian at a certain vertex using the umbrella operator proposed by Taubin...
	. (6.10)

	Let be the valence (= number of direct neighbours) of vertex and the set of direct neighbours connected to by an edge. Then the umbrella operator computes to
	(6.11)

	which is the average vector of all edges pointing from to its direct neighbours. In our implementation, the computed vortex hull consists of quadrangles (see Figure 6.10) and is (apart from the two endcaps) a cylindric structured mesh. We sto...
	FIGURE 6.11 Storage of mesh vertices and application of umbrella operator (cross stencil). (In this case, m = #segments = 5, n = #rays per fan = 3, M = valence = 4).


	6.3 Results
	The modified vortex hull algorithm was tested on an SGI Octane (640 MB main memory, MIPS R10000 CPU and MIPS R10010 FPU running at 250 MHz) for three different unstructured grid datasets, using the Levy vortex extraction method and vortex str...
	- setup of the two vector fields and the scalar field, - extraction of the vortex core lines, - construction of the appropriate vortex hulls, - filtering of the rays by a median filter, - fairing of the resulting mesh by Laplacian smoothing.
	From the table, it is evident that the time consumed for vortex hull construction is indeed proportional to the number of core line segments and to the number of rays per fan, as was expected by the theoretical complexity analysis in Section ...
	TABLE 6.1 Performance analysis of the vortex hull computation.
	FIGURE 6.12 Vortex core line and hull construction for the bent helix dataset, based on Levy method and distance field (m = 19, n = 5, k = 0).
	FIGURE 6.13 Vortex hulls based on Levy method and distance field (m = 283, n = 36, k = 0). Noise in the upper region (Francis draft tube inlet) due to unsmoothed CFD data.
	FIGURE 6.14 Vortex hulls for Levy method and max. vortex strength of 3.0 (m = 283, n = 36, k = 0). High-frequency noise at region of maximum twist of the vortex requires smoothing. See also Colour Figure A.3 on page 123.
	FIGURE 6.15 Vortex hulls for Levy method and max. vortex strength of 3.0 (m = 283, n = 36, k = 15). Median ray filtering reduced noise especially at region of maximum twist. See also Colour Figure A.3 on page 123.
	FIGURE 6.16 Vortex hulls for Levy method and max. vortex strength of 3.0 (m = 283, n = 36, k = 0). Laplacian mesh fairing (4 neighbours, , 10 iterations) without ray filtering. See also Colour Figure A.3 on page 123.
	FIGURE 6.17 Vortex hulls for Levy method and max. vortex strength of 3.0 (m = 283, n = 36, k = 15). Combination of median ray filtering and subsequent Laplacian mesh fairing. See also Colour Figure A.3 on page 123.



	C7ParticleTracing.pdf
	Tracing and rendering of moving particles is a standard technique for the visualisation of stationary or time-dependent 3D vector fields. Nevertheless, it is hard to find better tech niques for this type of data. Moving streamlines, for insta...
	7.1 Particle Tracing versus other Techniques
	Instead of tracing discrete particles, 3D textures could alternatively be used to visualise the flow field, e.g. by extending the Lagrangian-Eulerian Advection (LEA) algorithm proposed by Jobard et al. [JEH01] from two to three dimensions. Ho...

	7.2 Flow Regions of Interest
	While steady flows can be explored by scanning the data domain (e.g. extracting isosurfaces at different scalar levels or placing seed points for streamlines at different locations), this is not an option for time-dependent data. But then, vi...
	There are miscellaneous possibilities to define a ROI by means of scalar thresholds:
	1. In Chapter 3, we mentioned a purely region-based approach, namely to extract an iso surface for a certain scalar threshold. The result of such an isosurface extraction is often more than one connected component. It can then be necessary to...
	2. In the case of a vortex, there is an alternative way to define a ROI based upon an extracted vortex core. In Chapter 5 and Chapter 6, we described a mixture of region- and feature-based techniques, namely how to detect a vortex core line a...
	3. In this chapter, we will pursue a third possibility, which is a mixture of region- and integration-based methods. Similar to isosurface extraction, we will define the ROI only by scalar values, without precomputing flow features such as vo...

	In the remainder of this chapter, we will propose the industrial context of our particle tracer and then describe its specific visualisation techniques in more detail.
	FIGURE 7.1 ROI definition by a scalar field and threshold. The isosurface consists of several connected components, including false positives at the boundary of the turbine case. See also Colour Figure A.1 on page 121.


	7.3 Industrial Application
	The main industrial case under investigation was the flow field in a Francis water turbine. The flow in the turbine passes through the vaneless spiral casing and enters the stationary stay and guide vanes, which accelerate the flow. The flow ...
	FIGURE 7.2 Photograph of a cavitating vortex rope on the test rig (image courtesy of VA Tech Hydro, Zurich). See also Colour Figure A.4 on page 124.

	The part-load vortex rope is of technical relevance for two reasons. Firstly, it causes serious variations in relative pressure within the runner and on its hub and shaft, as well as in the draft tube (see Figure 7.3 and Figure 7.4). Secondly...
	FIGURE 7.3 Variations of relative pressure at the runner blades of a Francis turbine (bottom view, vortex rope depicted as pressure isosurface). See also Colour Figure A.4 on page 124.
	FIGURE 7.4 Variations of relative pressure in the draft tube of a Francis turbine (side view, vortex rope depicted as pressure isosurface). See also Colour Figure A.4 on page 124.


	7.4 Visualisation Techniques
	For the purpose of selectively visualising the flow in regions-of-interest, we modified the standard particle-based technique in the following ways:
	We will in the following sections describe in more detail the specific visualisation tech niques we used for our novel particle tracer.
	7.4.1 Cell classification

	Initially and after each time step of the particle tracing algorithm, the grid cells are classi fied as inner, buffer or outer cells. The cell classification is based on the scalar field of the CFD dataset and two particle visibility threshol...
	FIGURE 7.5 Classification of cells, particle visibility, and tiles of quasi-random points.
	7.4.2 Particle seeding

	The goal of the particle seeding is to generate a uniform distribution of the particles while avoiding clusters and regular patterns. In multi-dimensional spaces, quasi-random sequences give better results than pseudo-random sequences or jitt...
	FIGURE 7.6 (a): Pseudo-random samples. (b), (c): jittered regular samples. (d): Sobol’ points. (e): four tiles of Sobol’ points.
	7.4.3 Particle visibility

	In our application, the ROI is defined by high values of a scalar field , which is either directly given in the datasets (e.g. pressure with inverted sign) or has previously been derived from them (e.g. helicity, computed from velocity). The ...
	FIGURE 7.7 Smooth visibility transition by two scalar thresholds.
	7.4.4 Particle tracing

	The crucial point of our algorithm is that it traces particles only in the inner and buffer cells, which cover a minority of the grid. The particles are initially distributed over all inner and buffer cells and periodically advected using Heu...
	FIGURE 7.8 Pseudo-code of the selective particle tracer.

	The particles in the buffer cells can be replaced at fixed time intervals, although a safer method would be to release marked particles at the outer boundary of the buffer cells. A marked particle entering an inner cell would trigger the repl...
	7.4.5 Conservation of mass

	When the velocity field (and the density in the case of a compressible flow) is interpolated from the node data, the resulting fields are expected to be mass-conservative. However, this is not the case if the standard techniques are used, nam...
	FIGURE 7.9 Clamping local coordinates at the grid boundary (2D representation).
	7.4.6 Particle rendering

	We used different techniques for the graphical output of the traced particles. An obvious technique is to render the particles as spheres, which minimises occlusion problems to the lowest possible degree and is easiest to implement. Furthermo...

	7.5 Results
	We applied our selective particle tracer to CFD data for different types of water turbines and using various rendering techniques.
	FIGURE 7.10 Cavitation bubbles near Kaplan runner blades, rendered as spheres (ROI was specified by low pressure). See also Colour Figure A.4 on page 124.
	FIGURE 7.11 Particle stream through a storage pump, rendered as spheres (Runner case was opened in front for better insight). See also Colour Figure A.4 on page 124.
	FIGURE 7.12 Vortex rope in Francis draft tube, rendered as streamlets (ROI is indicated by an isosurface of normalised helicity). See also Colour Figure A.4 on page 124.
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	8.1 Visualisation Systems and Virtual Environments
	FIGURE 8.1 A typical COVISE network.
	FIGURE 8.2 The Inventor-based COVISE standard renderer.
	FIGURE 8.3 Typical VR environments. Left: large projection screen. Right: the mobile Cykloop device (image courtesy of VisEnSo GmbH, Stuttgart).
	FIGURE 8.4 Left: A graphical scene projected from the COVER renderer into a cave (image courtesy of VisEnSo GmbH, Stuttgart. See also Colour Figure A.3 on page 123). Right: The standard main menu of the COVER renderer.

	8.2 The VR Application for Vortex Visualisation
	8.2.1 System Overview
	FIGURE 8.5 System architecture for the VR vortex visualisation framework. Dashed lines: batch mode network. Solid lines: interactive mode network.

	8.2.2 The feature extraction module
	8.2.3 The COVER plugin
	8.2.4 The feature processing module
	FIGURE 8.6 A typical scene showing COVER and VR application menus and vortex hulls. The twisted vortex in the upper part of the draft tube has been selected. See also Colour Figure A.3 on page 123.


	8.3 Results
	TABLE 8.1 Performance analysis of the VR application for vortices.
	FIGURE 8.7 Vortex core lines and hulls of the original draft tube design. The hulls were computed for a vortex strength threshold of 1.0. See also Colour Figure A.3 on page 123.
	FIGURE 8.8 Vortex core lines and hulls of the modified draft tube design. The design optimisation led to fragmentation of the vortices. See also Colour Figure A.3 on page 123.
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	D1ColourFigures.pdf
	FIGURE A.1 Vortex extraction for a Francis turbine. Top left: Francis runner and scaled model (Figure 2.1 on page 10). Top right: vortex rope in draft tube visualised by isosurface (Figure 7.1 on page 97). Bottom: vortex core lines due to Miu...
	FIGURE A.2 Vortex tracking in scale and time. Left column: vortex core lines for increasing scale level (Figure 5.15 on page 77). Top right: surfaces swept by the vortex core lines shown in left column. Center right: vortex core lines and str...
	FIGURE A.3 Vortex hulls (left column) and VR application (right column). Left: vortex hulls based on raw data (Figure 6.14 on page 92), after pure median filtering (Figure 6.15 on page 92), after pure Laplacian mesh fairing (Figure 6.16 on pa...
	FIGURE A.4 Industrial motivation (left column) and selective particle tracing (right column). Top left: cavitation bubbles on an industrial test rig (Figure 7.2 on page 98). Center left: relative pressure variations in a Francis runner (Figur...

	D3Implementation.pdf
	This appendix contains some more detailed explanations on the implementation of the vortex hulls described in Chapter 6. The focus is on the problem of expanding a vortex hull, beginning at a given vortex core line and stepping outwards along...
	1. Testing if a computed intersection point of the ray with the unbounded surface (con taining the cell face) lies inside the quadrangle spanned by the face corners (or outside, which would make the intersection point irrelevant),
	2. Evaluation of the scalar field at a computed intersection point from the values at the face corners (for we can determine whether the scalar threshold has been crossed).

	To avoid a point search on the quadrangle face (requiring the solution of a nonlinear equa tion system, e.g. by Newton iterations), it is better to compute the intersection points in computational space, where all coordinates are local to the...
	FIGURE C.1 The enhanced vortex hull construction algorithm.
	FIGURE C.2 The algorithm for finding the endpoint of a ray.

	C.1 Intersections of rays with cell faces
	In the following, the assumption is made that the quadrangle formed by a cell face is non-degenerate, i.e. its four corners are all different and the edges are not collinear. The case of a planar quadrangle can easily be treated by subdividin...
	FIGURE C.3 Mapping of a non-planar quadrangle between computational and physical space.

	are corners of the unit cube and span a bilinear face, since for all these corners, the three coordinates in computational space fulfil the bilinear surface equation
	(C.1)

	The mapping from computational to physical space can easily be done using an affine transformation. Since the quadrangle is non-degenerate and non-planar, the three span vectors
	(C.2)
	(C.3)
	(C.4)

	are linearly independent, thus the matrix
	(C.5)

	is regular. As can easily be shown, the affine point transformation
	(C.6)

	is then bijective and maps onto , and also every point from computational space to physical space unambiguously. The corresponding affine vector transformation is the same, apart from the missing translation vector :
	(C.7)

	However, since we also need the inverse mapping from physical to computational space, we must invert the matrix and use the inverse point transformation
	(C.8)

	to map onto , and also every point from physical space to computational space in a unique manner. Its respective inverse vector transformation is
	(C.9)

	To compute the intersections of the (physical) ray
	(C.10)

	with the bilinear surface, we now transform the ray by inserting the start point of the ray into the inverse point transformation:
	(C.11)

	and by inserting the ray direction into the inverse vector transformation:
	(C.12)

	It is easy to prove that the parameter needs not to be transformed, since this real number has the same value in physical and computational space (due to the aspect ratio conservation property of affine transformations). The transformed ray t...
	(C.13)

	or, component-wise, as a set of three scalar functions:
	(C.14)
	(C.15)
	. (C.16)

	Substituting in the bilinear surface equation (Equation C.1) by these scalar functions yields the intersection equation
	(C.17)
	(C.18)
	(C.19)

	Solving this quadratic equation for , and inserting the resulting two values (pro vided that they are real) into the transformed ray equation, we get the local coordinates of the intersection points :
	(C.20)

	If the local coordinates of an intersection point are written as
	, (C.21)

	then the test whether the intersection point lies inside the quadrangle now reduces to a test whether its local coordinates lie between and :
	(C.22)

	(since holds for all points of the bilinear surface, the third coordinate then automatically lies between and , too).
	The local coordinates of an intersection point can also be used for bilinear interpolation of its scalar value from the scalar values at the four quadrangle corners. Let be the scalar values at the four face corners . Then the scalar value at...
	(C.23)

	The procedure RayCastQuadrangleFace() shown in Figure C.4 is called by the function FindEndpointOfRay() of Figure C.2. It returns the values, local coordinates, inside quadrangle test result flags and scalar values of all real intersection po...
	FIGURE C.4 The algorithm for intersecting a ray with a quadrangle cell face.


	C.2 Cell Traversal in hexahedral Grids
	To minimise numerical inaccuracies, the algorithms described in this chapter were imple mented using floating point variables of double precision. Nevertheless, there were some numerical problems to deal with that were not trivial to solve.
	The second comparison
	shall ensure that any chosen intersection point must indeed extend the ray. The compar ison works well when the two values belong to points on different faces of the same cell (see Figure C.5, left).
	FIGURE C.5 Different intersection situations (2D representation). Left: points of same cell on different faces. Right: points of different cells on same face.

	However, regard the case of two points lying on the same face of two different neighbour ing cells (see Figure C.5, right). Assume that the ray has been extended up to point (currentLambda) when cell  was traversed. When the algorithm switche...
	We therefore had to modify the second comparison by introducing a small constant and testing if the new value is “really” greater than the current one:
	However, this was still not sufficient because the case of two points lying on different faces on the same cell (which had worked well without the ) did now not always work properly anymore. The new problem was caused by rays intersecting a c...
	FIGURE C.6 Further intersection situations (2D representation). Left: two intersections near an edge. Right: two intersections on the same face.

	It is therefore necessary to distinguish between two cases, and to store for each intersection point extending the ray, on which grid face (global face number) it was found. For every newly treated face, its global face number is determined (...
	It is therefore necessary to compute and check every intersection point, so we must in each step choose the nearest intersection point of a cell as the next ray endpoint (as long as the threshold of the scalar field has not yet been crossed)....
	FIGURE C.7 The modified function FindEndpointOfRay().
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