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Abstract

The creation of digital humans is a long-standing challenge of computer graph-
ics. Digital humans are tremendously important for applications in visual effects
and virtual reality. The traditional way to generate digital humans is through
scanning. Facial scanning in general has become ubiquitous in digital media, but
most efforts have focused on reconstructing the skin only. The most important
part of a digital human are arguably the eyes. Even though the human eye is
one of the central features of an individual’s appearance, its shape and motion
have so far been mostly approximated in the computer graphics community with
gross simplifications. To fill this gap, we investigate in this thesis methods for
the creation of eyes for digital humans. We present algorithms for the reconstruc-
tion, the modeling, and the rigging of eyes for computer animation and tracking
applications.

To faithfully reproduce all the intricacies of the human eye we propose a novel
capture system that is capable of accurately reconstructing all the visible parts of
the eye: the white sclera, the transparent cornea and the non-rigidly deforming
colored iris. These components exhibit very different appearance properties and
thus we propose a hybrid reconstruction method that addresses them individu-
ally, resulting in a complete model of both spatio-temporal shape and texture at
an unprecedented level of detail.

This capture system is time-consuming to use and cumbersome for the actor mak-
ing it impractical for general use. To address these constraints we present the first
approach for high-quality lightweight eye capture, which leverages a database of
pre-captured eyes to guide the reconstruction of new eyes from much less con-
strained inputs, such as traditional single-shot face scanners or even a single
photo from the internet. This is accomplished with a new parametric model of
the eye built from the database, and a novel image-based model fitting algorithm.

For eye animation we present a novel eye rig informed by ophthalmology find-
ings and based on accurate measurements from a new multi-view imaging system
that can reconstruct eye poses at submillimeter accuracy. Our goal is to raise the
awareness in the computer graphics and vision communities that eye movement
is more complex than typically assumed, and provide a new eye rig for animation
that models this complexity.
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Finally, we believe that the findings of this thesis will alter current assumptions
in computer graphics regarding human eyes, and our work has the potential to
significantly impact the way that eyes of digital humans will be modelled in the
future.
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Zusammenfassung

Das Erstellen von digitalen Doppelgängern ist eine Herausforderung, die das Ge-
biet der Computergrafik schon lange beschäftigt. Digitale Doppelgänger sind es-
sentiell für Anwendungen in der virtuellen Realität oder in visuellen Effekten
in Filmen und werden klassischerweise durch Scannen erstellt. Insbesondere Ge-
sichtsscanning ist in digitalen Medien allgegenwärtig geworden. Die meisten For-
schungsarbeiten haben sich jedoch auf die Rekonstruktion der Haut beschränkt.
Obwohl das Auge vermutlich das wichtigste Gesichtsmerkmal ist und eine zen-
trale Rolle im Erscheinungsbild eines Individuums darstellt, wurde seine Form
und Bewegung in der Computergrafik mit groben Vereinfachungen angenähert.
Um diese Lücke zu schliessen, untersuchen wir in dieser Arbeit Methoden zum
Erstellen von Augen für digitale Doppelgänger. Wir präsentieren Algorithmen
für die Rekonstruktion, die Modellierung und das Rigging von Augen für Com-
puteranimationen und Tracking-Anwendungen.

Um alle Feinheiten des menschlichen Auges originalgetreu wiederzugeben, schla-
gen wir ein neuartiges Erfassungssystem vor, das in der Lage ist alle sichtbaren
Teile des Auges exakt zu rekonstruieren: die weisse Lederhaut, die transparente
Hornhaut und die sich deformierende farbige Iris. Diese Teile weisen alle sehr un-
terschiedliche visuelle und optische Eigenschaften auf und deshalb schlagen wir
eine hybride Rekonstruktionsmethode vor, die die verschiedenen Eigenschaften
berücksichtigt. Daraus resultiert ein vollständiges Augenmodell, das die Form
und die Deformation als auch die Textur in einem noch nie dagewesenen Detail-
lierungsgrad modelliert.

Dieses Erfassungssystem ist zeitaufwändig und umständlich in der Benützung
und in der Anwendung für den Darsteller, womit es sich für den allgemeinen Ge-
brauch nicht eignet. Um diese Einschränkungen zu beheben, stellen wir einen
neuen Ansatz für eine benutzerfreundlichere Augenerfassung vor, die weiterhin
hochwertige Augen generiert. Dabei verwenden wir eine Datenbank mit hoch-
qualitativen Augenscans, aus der neue Augen generiert werden. Dieser Prozess
wird durch einfache Eingaben gelenkt. Dazu kann z.B. ein traditioneller Ge-
sichtsscan oder sogar ein einziges Foto aus dem Internet verwendet werden. Die
Robustheit vom System wird mit einem neuen parametrischen Augenmodell und
einem neuartigen bildbasierten Algorithmus zum Anpassen der Modellparame-
ter erreicht.
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Für die Augenanimation stellen wir ein neuartiges Augen-Rig vor, das auf den
Erkenntnissen der Ophthalmologie und auf genauen Messungen eines neu-
en Multikamerasystems basiert, mit dem sich Augenpositionen mit Submilli-
metergenauigkeit bestimmen lassen. Unser Ziel ist es, das Bewusstsein in den
Computergrafik- und Computervision-Gemeinschaften zu schärfen, dass Augen-
bewegungen komplexer sind als üblicherweise angenommen. Dazu führen wir
ein neues Augen-Rig für die Animation ein, das diese Komplexität modelliert.

Wir glauben, dass die Resultate dieser Arbeit die aktuellen Annahmen in der
Computergrafik in Bezug auf die menschlichen Augen beeinflussen werden und
wir glauben, dass unsere Arbeit das Potenzial hat signifikante Auswirkungen auf
den Modellierungsprozess von Augen von digitalen Doppelgängern zu haben.
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at UniversitätsSpital Zürich for the helpful discussions and their eye-opening re-
marks.

I would like to thank Lewis Siegel and Michael Koperwas for their industry per-
spective.

vii



Prof. Gaudenz Danuser introduced me to world of research. I am grateful that he
encouraged me to do a PhD.

I would also like to thank all of our eye models, who spent countless hours in
uncomfortable positions and made this work possible.
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C H A P T E R 1
Introduction

Creating photo-realistic digital humans is a long-standing grand challenge
in computer graphics. Applications for digital humans include video games,
visual effects in films, medical applications and personalized figurines. One
of the cornerstones of producing digital doubles is capturing an actor’s face.
Several decades of research have pushed facial capture technology to an
incredible level of quality, where it is becoming difficult to distinguish the
difference between digital faces and real ones. An example for such a dig-
ital human is Mike depicted in Fig. 1.1. The members of the wikihuman.org
project created Mike to demonstrate state-of-the-art methods for the creation
of digital humans.

A lot of research went into better models and simpler capture methods for
digital humans. However, most research has focused on the facial skin, ig-
noring other important characteristics like the eyes. The eyes are arguably
the most important part of the face, as this is where humans tend to focus
when looking at someone. Eyes can convey emotions and foretell the actions
of a person and subtle inaccuracies in the eyes of a character can make the
difference between realistic and uncanny.

In this thesis we present methods for the entire digital eye creation pipeline.
This includes reconstructing the visible parts of the eye, modeling the vari-
ability of human eyes with a parametric model, and rigging the position and
motion for animation and tracking applications.

While a simple modeled or simulated eye may be sufficient for background
characters, current industry practices spend significant effort to manually
create eyes of hero characters. In this thesis, we argue that generic eye mod-
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Introduction

a) b)

c)

Figure 1.1: Mike is a state-of-the-art digital human. He is the result of an industry-
wide collaboration of researchers, visual effect specialists, and artists that
came together in the wikihuman project with the goal to create an open, and
publicly available data set of a digital human. The methods presented in
this thesis have been used to scan Mike’s eyes. The figure shows a reference
photograph (a), a photo-realistic render from the same view (b) and a close-
up render of the right eye (c) reconstructed with the methods presented in
this thesis. Images courtesy of wikihuman.org.
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els typically used in computer graphics are insufficient for capturing the in-
dividual identity of a digital human. The shape of the eye is generally ap-
proximated by two spheres, a big one for the sclera and a smaller one for the
cornea [Lefohn et al., 2003; Ruhland et al., 2014]. The iris is often thought
of as a planar disc, or as a cone to fake the refraction of the cornea. The
constriction and dilation of the pupil is typically modelled as planar, radial
motion and the out-of-plane deformation of the iris is generally neglected
[Ruhland et al., 2014]. Figure 1.2 shows such a generic CG eye.

Generic CG Eye Reconstructed Eye

Figure 1.2: The shape of a generic CG eye represents only a low order approximation of
an individual eye, while the proposed method reconstructs all its intricacies.

Our reconstruction method can greatly reduce the time spent and help in-
crease the realism of the eye. As an example, Figure 1.2 presents an eye
that is reconstructed by the method proposed in Chapter 4. Our reconstruc-
tion specifically captures the overall shape and spatial surface variation of
the sclera including a detailed vein texture, the complex shape, texture and
deformation of the iris, and even properties of the transparent cornea in-
cluding the exact curvature along with the refractive index at the bound-
ary. This example demonstrates that the aforementioned assumptions only
roughly approximate the true physiology of the eye, and thus cannot rep-
resent actor-specific details that can greatly increase the realism of a digital
double. Furthermore, the eyeball exhibits strong asymmetry, contains micro-
scopic surface details and imperfections such as Pingueculas1 - all of which
are very person-specific. The micro-geometry of the iris is as unique to ev-
ery person as a fingerprint, and its position and deformation depends on
the accommodation of the underlying lens. These are just a few examples
of eye details that cannot be captured with traditional models. Through the
results of this thesis we will show several more examples, in particular when
it comes to the dynamic deformation of the iris during pupillary response2.

1A degeneration of the fibers of the sclera resulting in a small bump.
2Varying pupil size via relaxation/contraction of the iris dilator muscle.
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Introduction

To overcome the limitations of generic eye models and accurately reproduce
the intricacies of a human eye, we argue that eyes should be captured and
reconstructed from images of real actors, analogous to the established prac-
tice of skin reconstruction through facial scanning. The eye, however, is
more complex than skin, which is often assumed to be a diffuse Lambertian
surface in most reconstruction methods. The human eye is a heterogeneous
compound of opaque and transparent surfaces with a continuous transition
between the two, and even surfaces that are visually distorted due to re-
fraction. This complexity makes capturing an eye very challenging, requir-
ing a novel algorithm that combines several complementary techniques for
image-based reconstruction. In this work, we propose the first system capa-
ble of reconstructing the spatio-temporal shape of all visible parts of the eye;
the sclera, the cornea, and the iris, representing a large step forward in real-
istic eye modeling. Our approach not only allows us to create more realistic
digital humans for visual effects and computer games by scanning actors,
but it also provides the ability to capture the accurate spatio-temporal shape
of an eye in-vivo.

While the results of our eye reconstruction system are compelling, the ac-
quisition process is both time consuming and uncomfortable for the actors,
as they must lie horizontally with a constraining neck brace while manually
holding their eye open for dozens of photos over a 20 minute period for each
eye. The physical burden of that approach is quite far from the single shot
face scanners that exist today, which are as easy as taking a single photo in
a comfortable setting, and thus the applicability of their method is largely
limited.

In this thesis, we present a new lightweight approach to eye capture that
achieves a comparable level of quality as our eye reconstructions but from
input data that can be obtained using traditional single-shot face scanning
methods or even just from a single image. Our key idea is to build a para-
metric model of the eye, given a training database of high-quality scans. Our
model succinctly captures the unique variations present across the different
components of the eye labeled in Fig. 1.3, including 1 - the overall size and
shape of the eyeball and cornea, 2 - the detailed shape and color of the iris
and its deformation under pupil dilation, and 3 - the detailed vein structure
of the sclera which contributes to both its color and fine-scale surface details.

Given our model, new and unique human eyes can be created. Aspects like
the shape or the color can be controlled without in-depth knowledge of the
subtleties of real eyes. Furthermore, we propose a novel fitting algorithm
to reconstruct eyes from sparse input data, namely multi-view images, i.e.
from a single-shot multi-view face scanner. The results are very plausible

4



scleralimbus

iris
pupil

Figure 1.3: The visually salient parts of a human eye include the black pupil, the colored
iris, and the limbus that demarcates the transition from the white sclera to
the transparent cornea.

eye reconstructions with realistic details from a simple capture setup, which
can be combined with the face scan to provide a more complete digital face
model. In this work we demonstrate results using the face scanner of Beeler
et al. [2010], however our fitting approach is flexible and can be applied to
any traditional face capture setup. Furthermore, by reducing the complexity
to a few intuitive parameters, we show that our model can be fit to just single
images of eyes or even artistic renditions, providing an invaluable tool for
fast eye modeling or reconstruction from internet photos. We demonstrate
the versatility of our model and fitting approach by reconstructing several
different eyes ranging in size, shape, iris color and vein structure.

Besides fitting single frames and poses the system can also be extended to
fit entire sequences. This allows for the analysis of the three-dimensional
position and orientation during gaze motion. An accurate eyeball pose is
important since it directly affects the eye region through the interaction with
surrounding tissues and muscles. Humans have been primed by evolution
to scrutinize the eye region, spending about 40% of our attention to that area
when looking at a face [Janik et al., 1978]. One of the main reasons to do
so is to estimate where others are looking in order to anticipate their actions.
Once vital to survival, nowadays this is paramount for social interaction and
hence it is important to faithfully model and reproduce the way our eyes
move for digital characters.

When creating eye rigs, animators traditionally think of the eyeball as a
sphere, which is being rotated in place such that its optical axis points to
where the character should be looking (Fig. 1.4 a). However, from our eye
reconstruction work we know that the eye shape is not a sphere, and is even
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a) b)

Figure 1.4: Eye Model: a) Traditional eye models assume the eye to be roughly spherical
and rotating around its center. The gaze direction is assumed to correspond
to the optical axis of the eye (black arrows). b) The proposed eye model takes
into account that the eye is not perfectly spherical and does not simply rotate
around its center. Furthermore it respects the fact that the gaze direction is
tilted towards the nose (see also Fig. 3.1 (b)).

asymmetric around the optical axis. This, of course, begs the question of
how correct these other assumptions are, and answering this question is the
main focus of Chapter 6 of this thesis. We explore ophthalmological models
for eye motion and assess their relevancy and applicability in the context of
computer graphics.

The eye is not a rotational apparatus but instead is being pulled into place
by six muscles, two for each degree of rotation (Fig. 3.1 a). These muscles are
activated in an orchestrated manner to control the gaze of the eye. As a con-
sequence, the eyeball actually does translate within its socket, meaning that
its rotational pivot is not a single point but actually lies on a manifold. Fur-
thermore, the eye is not simply rotated horizontally and vertically but also
exhibits considerable rotation around its optical axis, called torsion. With
the emersion of head mounted displays for augmented and virtual reality
applications, modeling these phenomena may become central to allow for
optimal foveal rendering.

A very important fact that is not captured in naı̈ve eye rigs is the fact that the
gaze direction does not align with the optical axis of the eye but rather with
its visual axis. The visual axis is the ray going through the center of the pupil
starting from the fovea at the back of the eye, which is the location where the
eye has the highest resolution. As depicted in Fig. 3.1 b, the fovea is slightly
shifted away from the nose, causing the visual axis to be tilted towards the
nose (Fig. 1.4 b), on average around five degrees for adults [LeGrand and
ElHage, 2013]. This is an extremely important detail that cannot be neglected
as otherwise the digital character will appear slightly cross-eyed, causing
uncanny gazes.

6



To be relevant for computer vision and computer graphics applications, a
phenomenon must be visible outside of ophthalmologic equipment, i.e. in
imagery captured by ordinary cameras. We employ a passive multi-view
acquisition system to reconstruct high-quality eye poses over time, com-
plete with accurate high-resolution eye geometry. We demonstrate that both
translation and torsion is clearly visible in the acquired data and hence in-
vestigate the importance of modeling these phenomena, along with the cor-
rect visual axis, in an eye rig for computer graphics applications.

We believe that the work presented in this thesis on eye reconstruction, eye
modeling, and eye rigging has the potential to change how eyes are modeled
in computer graphics applications.
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Introduction

1.1 Contributions

This thesis makes the following main contributions:

• An eyeball reconstruction algorithm for the coupled reconstructions of
sclera, cornea, and iris including the deformation of the iris.

• A parametric eyeball shape model created from a database of eyes. This
model allows us to generate a wide range of plausible human eyeball
shapes by defining only a few shape parameters.

• A parametric iris model which generates iris shapes including its de-
formation. The method requires only a photo or an artist sketch of
an iris as input.

• A parametric vein model that synthesizes realistic vein networks. The
various synthesized vein properties are fed to a renderer that lever-
ages vein samples from an eye database to render a sclera texture.

• A parametric model fitting algorithm that allow us to determine the best
eye model parameters to match input images and scans. Fitting to a
single image is possible.

• A parametric eye rig describing the positions and orientations of the
eyeballs. The rig can be configured to match a specific person, in-
cluding parameters for the interocular distance, the center of rota-
tion, and the visual axis.

• An eye rig fitting algorithm that estimates the best person-specific rig
parameters from a multi-view image sequence.
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1.2 Publications

This thesis is based on the following peer-reviewed publications:

• P. BÉRARD, D. BRADLEY, M. NITTI, T. BEELER, and M. GROSS.
High-Quality Capture of Eyes. In Proceedings of ACM SIGGRAPH
Asia (Shenzhen, China, December 3-6, 2014). ACM Transactions on
Graphics, Volume 33, Issue 6, Pages 223:1–223:12.

• P. BÉRARD, D. BRADLEY, M. GROSS, and T. BEELER. Lightweight
Eye Capture Using a Parametric Model. In Proceedings of ACM
SIGGRAPH (Anaheim, USA, July 24-28, 2016). ACM Transactions on
Graphics, Volume 35, Issue 4, Pages 117:1–117:12.

The thesis is also based on the following submitted publication:

• P. BÉRARD, D. BRADLEY, M. GROSS, and T. BEELER. Physiologically
Accurate Eye Rigging. Submitted to ACM SIGGRAPH (Vancouver,
Canada, August 12-16, 2018).

During the course of this thesis, the following peer-reviewed papers were
published, which are not directly related to the presented work:

• F. ZÜND, P. BÉRARD, A. CHAPIRO, S. SCHMID, M. RYFFEL, M.
GROSS, A. BERMANO, and R. SUMNER. Unfolding the 8-bit era.
In Proceedings of the 12th European Conference on Visual Media
Production (CVMP) (London, UK, November 24-25, 2015). Pages
9:1–9:10.
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C H A P T E R 2
Related Work

The eye is an important part of the human and this is reflected by the wide
spectrum of work related to eyes in various disciplines such as medicine,
psychology, philosophy, and computer graphics. The requirements for ap-
plications in computer graphics are however very different from other fields.
This chapter presents some of the related works that are relevant to digital
humans and computer graphics in general.

The amount of work related to reconstructing and modeling the human eye
is within limits. Our work is related to medical instruments, and facial cap-
ture methods, so we also provide a brief overview of these techniques, fol-
lowed by a description of other methods that are related to our approach at a
lower level. Specifically, the algorithms presented in this thesis touch on var-
ious fields including non-rigid alignment to find correspondences between
eye meshes, data driven fitting to adjust an eye model to a given eye mesh,
as well as constrained texture and geometry synthesis to create iris details.

These methods focus on modeling shape and appearance of eyes, which
provides a great starting point to our rigging and tracking work, which is
related to eye tracking and gaze estimation in images, capturing and mod-
eling 3D eye geometry and appearance, and rigging and animating eyes for
virtual characters. In the following we will discuss related work in each area.

2.1 Reconstruction and Modeling

Reconstructing and modeling eye geometry and appearance have so far re-
ceived only very little attention in the graphics community, as a recent sur-
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vey of Ruhland et al. [2014] shows. Most research so far has focused solely
on acquiring the iris, the most prominent part of an eye, typically only con-
sidering the color variation and neglecting its shape. An exception is the
seminal work by François et al. [2009], which proposes to estimate the shape
based on the color variation. Guided by the physiology of the iris, they de-
velop a bright-is-deep model to hallucinate the microscopic details. While
impressive and simple, the results are not physically correct and they have
to manually remove spots from the iris, since these do not conform with
their model. Lam et al. [2006] propose a biophysically-based light transport
model to simulate the light scattering and absorption processes occurring
within the iridal tissues for image synthesis applications, whereas Lefohn et
al. [2003] mimic an ocularist’s workflow, where different layers of paint are
applied to reproduce the look of an iris from a photograph. Their method is
tailored to manufacture eye prosthetics, and only considers the synthesis of
the iris color, neglecting its shape.

One of the first to model the entire eye were Sagar et al. [1994], who model a
complete eye including the surrounding face for use in a surgical simulator.
However, the model is not based on captured data and only approximates
the shape of a real eye. More recently, Wood et al. [2016a] presented a para-
metric eyeball model and a 3D morphable model of the eye region and then
fit the models to images using analysis-by-synthesis.

While there has been a substantial amount of research regarding the recon-
struction of shape of various materials [Seitz et al., 2006; Ihrke et al., 2008;
Hernández et al., 2008], none of these methods seem particularly suited to
reconstruct the heterogeneous combination of materials present in the eye.
As the individual components of the eye are all coupled, they require a uni-
fied reconstruction framework, which is what we propose in this thesis.

2.2 Iris Deformation

Other authors have looked into the motion patterns of the iris, such as di-
lation or hippus3 [Hachol et al., 2007]. Pamplona and colleagues study the
deformation of the iris when the pupil dilates in 2D [Pamplona et al., 2009].
They manually annotate a sparse set of features on a sequence of images
taken while the pupil dilates. The recovered tracks show that the individual
structures present in the iris prevent it from dilating purely radially on linear
trajectories. Our method tracks the deformation of the iris densely since we

3A rhythmic but irregular continuous change of pupil dilation.
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do not require manual annotation and our measurements confirm these find-
ings. More importantly, we capture the full three-dimensional deformation
of the iris, which conveys the detailed shape changes during pupil dilation.
In one of our proposed applications we complement our deformation model
with the temporal model proposed by Pamplona et al. [2009].

More importantly, we do capture the full three dimensional motion, which
not only conveys how the shape of the iris changes during dilation but also
shows that the iris moves on the curved surface of the underlying lens. As
we demonstrate in this thesis, the lens changes its shape for accommodation
and as a consequence, the shape of the iris is a function of both dilation and
accommodation - a feature not considered in our community so far.

2.3 Medical Instruments

In the medical community the situation is different. There, accurate eye
measurements are fundamental, and thus several studies exist. These ei-
ther analyze the eye ex-vivo [Eagle Jr, 1988] or employ dedicated devices
such as MRI to acquire the eye shape [Atchison et al., 2004] and slit lamps
or keratography for the cornea [Vivino et al., 1993]. Optical coherence
tomography (OCT) [Huang et al., 1991], in ophthalmology mostly em-
ployed to image the retina, can also be used to acquire the shape of cornea
and iris at high accuracy. An overview of the current corneal assessment
methods can be found in recent surveys [Rio-Cristobal and Martin, 2014;
Piñero, 2013]. Such devices however are not readily available and the data
they produce is oftentimes less suited for graphics applications. We there-
fore chose to construct our own setup using commodity hardware and em-
ploy passive and active photogrammetry methods for the reconstruction.

2.4 Facial Capture

Unlike eye reconstruction, the area of facial performance capture has re-
ceived a lot of attention over the past decades, with a clear trend to-
wards more lightweight and less constrained acquisition setups. The
use of passive multi-view stereo [Beeler et al., 2010; Bradley et al., 2010;
Beeler et al., 2011] has greatly reduced the hardware complexity and acqui-
sition time required by active systems [Ma et al., 2007; Ghosh et al., 2011;
Fyffe et al., 2011]. The amount of cameras employed was subsequently
further reduced to binocular [Valgaerts et al., 2012] and finally monocular
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acquisition [Blanz and Vetter, 1999; Garrido et al., 2013; Cao et al., 2014;
Suwajanakorn et al., 2014; Fyffe et al., 2014].

To overcome the inherent ill-posedness of these lightweight acquisition de-
vices, people usually employ a strong parametric prior to regularize the
problem. Following this trend to more lightweight acquisition using para-
metric priors, we propose to leverage data provided by our high-resolution
capture technique and build up a parametric eye-model, which can then be
fit to input images acquired from more lightweight setups, such as face scan-
ners, monocular cameras or even from artistically created images.

2.5 Non-Rigid Alignment

A vast amount of work has been performed in the area of non-rigid align-
ment, ranging from alignment of rigid object scans with low-frequency
warps, noise, and incomplete data [Ikemoto et al., 2003; Haehnel et al., 2003;
Brown and Rusinkiewicz, 2004; Amberg et al., 2007; Li et al., 2008] to
algorithms that find shape matches in a database [Kazhdan et al., 2004;
Funkhouser et al., 2004]. Another class of algorithms registers a set of
different meshes that all have the same overall structure, like a face or
a human body, with a template-based approach [Blanz and Vetter, 1999;
Allen et al., 2003; Anguelov et al., 2005; Vlasic et al., 2005]. In this work
we use a variant of the non-rigid registration algorithm of Li et al. [2008]
in order to align multiple reconstructed eyes and build a deformable eye
model [Blanz and Vetter, 1999]. Although Li et al.’s method is designed for
aligning a mesh to depth scans, we will show how to re-formulate the prob-
lem in the context of eyes, operating in a spherical domain rather than the
2D domain of depth scans.

2.6 Texture and Geometry Synthesis

In this work, texture synthesis is used to generate realistic and detailed
iris textures and also geometry from low-resolution input images. A very
broad overview of related work on texture synthesis is presented in the sur-
vey of Wei et al [2009]. Specific topics relevant for our work include con-
strained texture synthesis [Ramanarayanan and Bala, 2007] and example-
based image super resolution [Tai et al., 2010], which both aim to produce
a higher resolution output of an input image given exemplars. With patch-
based synthesis methods [Praun et al., 2000; Liang et al., 2001; Efros and
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Freeman, 2001], controlled upscaling can be achieved easily by constrain-
ing each output patch to a smaller patch from the low-resolution input.
These algorithms sequentially copy patches from the exemplars to the out-
put texture. They were further refined with graph cuts, blending, deforma-
tion, and optimization for improved patch-boundaries [Kwatra et al., 2003;
Mohammed et al., 2009; Chen et al., 2013]. Dedicated geometry synthesis
algorithms also exist [Wei et al., 2009], however geometry can often be ex-
pressed as a texture and conventional texture synthesis algorithms can be
applied. In our work we take inspiration from Li et al. [2015], who propose
to use gradient texture and height map pairs as exemplars where in their
work the height map encodes facial wrinkles. We expand on their method
and propose to encode color, geometry and also shape deformation in a pla-
nar parameterization, allowing us to jointly synthesize texture, shape and
deformation to produce realistic irises that allow dynamic pupil dilation.

2.7 Eye Tracking and Gaze Estimation

The first methods for photographic eye tracking date back over 100
years [Dodge and Cline, 1901; Judd et al., 1905], and since then
dozens of tracking techniques have emerged, including the introduc-
tion of head-mounted eye trackers [Hartridge and Thompson, 1948;
Mackworth and Thomas, 1962]. We refer to detailed surveys on
historical and more modern eye recording devices [Collewijn, 1999;
Eggert, 2007]. Such devices have been widely utilized in human-computer
interaction applications. Some examples were to study the usability of new
interfaces [Benel et al., 1991], to use gaze as a means to reduce rendering
costs [Levoy and Whitaker, 1990], or as a direct input pointing device [Zhai
et al., 1999]. These types of eye trackers typically involve specialized hard-
ware and dedicated calibration procedures.

Nowadays, people are interested in computing 3D gaze from images in
the wild. Gaze estimation is a fairly mature field (see [Hansen and Ji,
2010] for a survey), but a recent trend is to employ appearance-based
gaze estimators. Popular among these approaches are machine learning
techniques that attempt to learn eye position and gaze from a single im-
age given a large amount of labeled training data [Sugano et al., 2014;
Zhang et al., 2015], which can be created synthetically through realistic ren-
dering [Wood et al., 2015; Wood et al., 2016b]. Another approach is model-
fitting, for example Wood et al. [2016a] create a parametric eyeball model
and a 3D morphable model of the eye region and then fit the models to im-
ages using analysis-by-synthesis. Other authors propose real-time 3D eye
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capture methods that couple eye gaze estimation with facial performance
capture from video input [Wang et al., 2016] or from RGBD camera input
[Wen et al., 2017b] including an extension to eyelids [Wen et al., 2017a].
However, these techniques use rather simple eye rigs and do not consider
ophthalmological studies for modeling the true motion patterns of eyes,
which is the focus of our work.

2.8 Eye Rigging and Animation

Eye animation is of central importance for the creation of realistic virtual
characters, and many researchers have studied this topic [Ruhland et al.,
2014]. On the one hand, some of the research explores the coupling of
eye animation and head motion [Pejsa et al., 2016; Ma and Deng, 2009]
or speech [Zoric et al., 2011; Le et al., 2012; Marsella et al., 2013], where
other work focuses on gaze patterns [Chopra-Khullar and Badler, 2001;
Vertegaal et al., 2001], statistical movement models for saccades [Lee et al.,
2002], or synthesizing new eye motion from examples [Deng et al., 2005].
These studies focus on properties like saccade direction, duration, and ve-
locity, and do not consider the 3D rigging and animation required to perform
the saccades.

When it comes to rigging eye animations, simplifications are often made.
Generally speaking, a common assumption is that an eye is comprised of
a spherical shape, rotating about its center, with the gaze direction cor-
responding to the optical axis, which is the vector from the sphere cen-
ter through the pupil center [Itti et al., 2003; Pinskiy and Miller, 2009;
Weissenfeld et al., 2010; Wood et al., 2016a; Pejsa et al., 2016] (Fig. 1.4 (a)).
While easy to construct and animate, this simple eye rig is not anatomically
accurate and, as we will show, can lead to uncanny eye gazes. In this work,
we show that several of the basic assumptions of 3D eye rigging do not hold
when fitting eyes to imagery of real humans, and we demonstrate that in-
corporating several models from the field of ophthalmology can improve the
realism of eye animation in computer graphics.
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C H A P T E R 3
Eye Anatomy

In this chapter we provide an overview of the anatomy of the human eye
viewed through the lens of computer graphics. Medical books [Hogan et al.,
1971] describe it in much greater detail, but in this chapter we want to sum-
marize what is relevant to this thesis and to computer graphics in general.

The human eye consists of several different parts as shown in Fig. 3.1. The
white sclera and the transparent cornea define the overall shape of the eye-
ball. The colored iris, located behind the cornea, acts like a diaphragm con-
trolling the light going through the pupil at the center of the iris, and behind
the iris is the lens. It focuses the light and forms an image at the back of
the eyeball on the retina. The eyeball is connected to muscles that control its
position and orientation.

In the following sections we will provide more details about each individual
part of the eye.

3.1 Eyeball

The eyeball is the rigid and hard part of the eye. It is located inside the eye
socket that holds the eye in place with muscles as shown in Fig. 3.1 a. The
spherical eyeball shape allows for smooth rotations, however, its shape is
not perfectly spherical. The transparent cornea protrudes from the spherical
shape. Besides the cornea the front part of the eyeball is flatter towards the
nose and rounder towards the outer side of the face as depicted in Fig. 4.11.
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Figure 3.1: Anatomy: a) The eye is controlled by six muscles (two per degree of freedom),
which operate in an complex orchestrated way to rotate the eye. b) The eye
consists of different parts with different visual and optical properties. The
cornea, the limbus, and the sclera are rigid, whereas the iris, the pupil, the
conjunctiva, and the lens can deform. The gaze direction is not aligned with
the optical axis of the eye (dashed line) but corresponds to the visual axis
(solid line), which is formed by the ray passing through the center of the
pupil originating from the fovea at the back of the eye, which is the area
where the retina has the highest sensitivity.

Nevertheless, the eyeball shape is often approximated with two spheres, one
for the sclera and one for the cornea. The radius of the main sphere repre-
senting the sclera is about 11.5 mm and the cornea is modeled with a smaller
sphere with a radius of about 7.8 mm. The mean axial length of a human eye
is about 24 mm as reported by Hogan et al. [1971]. The axial length is also
affected by medical conditions like myopia or hyperopia. This means that the
axial length is either too long or too short to properly focus the light onto
the retina, requiring the people with these conditions to wear glasses. Given
theses spherical eyeball assumptions it is also very common to define the
rotation center of the eyeball at the center of the sphere defining the sclera
part of the eyeball.

The eyeball can be subdivided into different parts that all have different ap-
pearance and optical properties. The outer layer of the eyeball consists of
two parts: the sclera and the cornea that are described in the following sec-
tions.
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3.2 Sclera and Conjunctiva

The sclera and the conjunctiva (Fig. 3.1) make up the white part of the eye-
ball. The sclera is part of the rigid eyeball whereas the conjunctiva is con-
nected to the eyeball near the limbus and to the eye socket. This thin layer
covers thus the visible part of the sclera and moves freely on top of it as
shown in Fig. 6.7. It can be stretched and compressed leading to folds in the
conjunctiva that result in characteristic reflections following these folds.

Both the conjunctiva and the sclera contain blood vessels. These blood ves-
sels are visible since the sclera and the conjunctiva are translucent and not
fully opaque. This also means that light scatters inside the sclera and the
conjunctiva and makes them visually very soft. If eyes are rendered without
taking this scattering into account the rendered eyes will look very hard and
unnatural.

The blood vessels can be at different depths and have different sizes and
carry varying amounts of oxygen, all affecting the appearance of the blood
vessel. Also, in general, the color of the vessels in the conjunctiva is more
intense than the color of the vessels in the sclera since the latter are covered
by the conjunctiva. Another factor affecting the color of these vessels is the
emotional state of the person. A sad or an angry person might have more
pronounced and redder vessels.

3.3 Cornea

The cornea (Fig. 3.1) is the transparent part of the eyeball and is surrounded
by the sclera. The cornea is not perfectly transparent and reflects a part of
the incident light. This leads to visible reflections of bright light sources like
lamps and windows. The cornea is also not a homogeneous medium, but
it consists of multiple layers and each layer reflects a fraction of the inci-
dent light, which results in one main and multiple weaker glints. In contrast
to the conjunctiva, the cornea is completely smooth, which is important to
guarantee the optical properties of the cornea. This also results in very sharp
reflections on the cornea which can be leveraged by environment map cre-
ation [Nishino and Nayar, 2004] and eye tracking [Wang et al., 2015] algo-
rithms.

Also, since each layer has a slightly different index of refraction, the light
traversing the cornea will be refracted multiple times. Since the difference
in index of refraction between the air and the first cornea layer is the biggest,
the refraction is the strongest at this first interface and the refraction taking
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place at the other interfaces can often be neglected. In this thesis we will
simplify the cornea and approximate it with a single homogeneous medium.

Structurally, the cornea and the sclera are very similar. However, while one
is transparent the other has an opaque white color. Even though they both
consist of a similar composition of collagen fibers. The reason for the dif-
ferent optical properties lies in the arrangement of theses fibers. The regular
alignment of the collagen fibers in the cornea leads to transparency. Whereas
the random alignment of the fibers in the sclera scatters the light and makes
the sclera white.

3.4 Limbus

The transition region from the sclera to the cornea is called the limbus
(Fig. 3.1). Viewed from the front it is not a perfect circle, but it is usually
a bit wider than high. Hogan et al. [1971] report mean dimensions of 11.7
mm for the width and 10.6 mm for the height.

The limbus is not an abrupt interface, but expands over a few millimeters
due to a gradual internal change in structure. Besides the transition in com-
position the sclera geometrically clamps the cornea, further contribution to
the smooth transition. In photographs the limbus can appear as a hard in-
terface or it can expand over a larger region as shown in Fig. 3.2. The limbus
also contains a blood vessel network that is well visible in the almost trans-
parent part of the limbus.

Figure 3.2: The appearance of the limbus in a photograph depends on the width of the
limbus and the viewing direction. The insets show the limbus as well as the
limbal vessel network
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3.5 Iris

The iris is located behind the cornea and the limbus, but in front of the lens
(Fig. 3.1). It is responsible to control the amount of light that hits the retina.
It does so by contracting and dilating the pupil at its center.

The iris has a fibrous structure with craters called crypts. To contract and
dilate the pupil the iris has a sphincter muscle (Fig. 3.3) around the pupil
that contracts the iris and radial muscles that open the iris again. These
deformations lead to radial and circular folds on the iris.

a

b c

d e

Figure 3.3: A blue iris in contracted state (left) and dilated state (right) with visible
sphincter muscle (a), radial folds (b,c), circular fold marks (d), and the dark
rim (e).

The color of the iris is a combination of blue, green, and brown hues. A strict
classification of iris colors is difficult, but several authors define classification
systems with about ten classes [Mackey et al., 2011]. The composition of the
iris defines its color. For example the amount of melanin is responsible for
the brown color of the iris. Another factor affecting the appearance is the
environment light, which can make eyes very dull or make them stand out.

The edge of the iris usually has a fine brown or black pigmented rim. This
rim makes the transition to the pupil visually very soft.

Also, the iris is not a rigid object and it wobbles due to its inertia if the eye
moves very fast and then stops abruptly.
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3.6 Pupil

The pupil (Fig. 3.1) is the opening at the center of the iris and controls the
amount of light entering the eye. The pupil is not exactly at the center of the
iris and this center can even shift during contraction and dilation.

Through contraction and dilation the pupil adjusts it size constantly to ac-
count for the amount of environment light (direct response). But there are
other factors affecting its size. Due to the accommodation reflex the pupil con-
tracts when looking at a close object to guarantee the best possible sharpness.
Also, the pupil of the right and the left eye react in a coordinated way (con-
sensual response). Thus, if light is shone into one eye, the pupil of the other
eye will contract as well. This phenomenon is leveraged in Chapter 4 of this
thesis.

Visually, the pupil is almost never pitch black in a photograph. Light is re-
flected on the back of the eye and makes the pupil appear in a shade of gray.
If light is projected co-axially to the view axis the pupil becomes very bright,
since the light is directly reflected off the back of the eyeball. This effect
in combination with infrared light is employed by various pupil detection
algorithms.

3.7 Muscles

The muscles are responsible to orient the eyeball within the eye socket. There
are six muscles per eye (Fig. 3.1), which can be grouped in three pairs: supe-
rior rectus/inferior rectus, lateral rectus/medial rectus, and superior oblique/inferior
oblique. These six muscles move the eye in an orchestrated way. The muscle
have multiple functions depending on the current eyeball pose. If the eye
is in the neutral position (looking straight ahead) the superior rectus is the
muscle exerting the primary action responsible for looking up. If however
the eye is adducted (eye moving nasally) the inferior oblique becomes the pri-
mary muscle for looking up. For a more detailed analysis of the functions of
the individual muscles we refer to the medical literature [Hogan et al., 1971].
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Eye Reconstruction

Figure 4.1: We present a system to acquire the shape and texture of an eye at very high
resolution. This figure shows one of the input images, the reconstructed
eyeball and iris geometry, and a final render from a novel viewpoint under
different illumination (left to right).

The creation of digital humans for the use in animation requires a pipeline
with several components inluding eye reconstruction, modeling , and rig-
ging. In this chapter we introduce a system for the reconstruction of eyes for
digital humans. In Chapter 5 and Chapter 6 we show how this eye recon-
struction system can be leveraged to model and rig eyes.

The complexity of human eyes dictates a novel approach for capture and
accurate reconstruction. We must pay particular attention to the appear-
ance properties of the different components of the eye, and design different
strategies for reconstructing each component. While it is possible to assume
that the sclera is diffuse and Lambertian (such as often assumed for skin),
the cornea is completely transparent, and the iris is viewed under unknown
distortion due to refraction. Furthermore, there is a coupling of the eye com-
ponents, for example the corneal shape should transition smoothly to the
sclera, and the perceived iris position depends on both the corneal shape as
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well as the exact index of refraction (both of which do vary from person to
person).

The above observations lead to a progressive algorithm for eye reconstruc-
tion. We start by recovering the sclera shape, followed by the cornea, and
finally the iris. Each stage of the reconstruction requires a different approach,
relying on constraints from the previous stages but tuned to the appearance
properties at hand. The various reconstruction methods also require differ-
ent (but complementary) capture data, which we acquire through a novel
hardware setup of cameras, flashes and LED lights.
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Figure 4.2: This figure shows an overview of the system. First, several modalities of data
are acquired (Section 4.1). From these plus a generic eye proxy, the system
reconstructs the individual components of the eye, the sclera (Section 4.2),
the cornea (Section 4.3), and the iris (Section 4.4) and combines them into a
complete eye model.

To describe our method in detail, we organize this chapter as illustrated in
Fig. 4.2. Section 4.1 explains the data acquisition phase including the cap-
ture hardware. Section 4.2 discusses our passive multi-view, multi-pose re-
construction method for obtaining the sclera. Given the approximate sclera
shape, we design a photometric approach for computing the corneal shape
given a set of known LED lights in the scene and multiple views of the re-
fracted iris (Section 4.3). The iris itself is then reconstructed using a novel
multi-view stereo approach that traces light paths through the corneal inter-
face (Section 4.4). Irises are reconstructed for a sequence of different pupil
dilations and we recover a deformable model for iris animation, parame-
terized by pupil radius. Our results demonstrate that each individual eye
is unique in many ways, and that our reconstruction algorithm is able to
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capture the main characteristics required for rendering digital doubles (Sec-
tion 4.5).

4.1 Data Acquisition

The first challenge in eye reconstruction is obtaining high-quality imagery
of the eye. Human eyes are small, mostly occluded by the face, and have
complex appearance properties. Additionally, it is difficult for a subject to
keep their eye position fixed for extended periods of time. All of this makes
capture challenging, and for these reasons we have designed a novel acqui-
sition setup, and we image the eye with variation in gaze, focus and pupil
dilation.

4.1.1 Capture Setup

Our capture setup consists of multiple cameras, a modified flash for primary
illumination, and a variety of colored LEDs that will reflect off the cornea. To
help the subject remain still during acquisition, we arrange the setup such
that they can lie on the floor with their head in a headrest, situated under
the camera array (Fig. 4.3).

To get the best coverage in the space available, we place six cameras (Canon
650D) in a 2 by 3 configuration, with 100mm macro lenses focused on the
iris. The lens is stepped down to f 11 and the camera is set to ISO100. The
exposure is set to 1 second since we capture in a dark room and the flash
provides the primary illumination. The main flash light consist of three ele-
ments: a conventional flash (Canon 600EX-RT), a cardboard aperture mask
and a lens. This assembly allows us to intensify and control the shape of
the light so that reflections of the face and the eyelashes can be prevented
as much as possible. We use 9 RGB LEDs and arrange them in a 3x3 pat-
tern, ensuring that similar colors are not adjacent in order to maximize our
ability to uniquely detect their reflections on the cornea. The pupil dilation
is controlled with a high-power LED with adjustable brightness. We place
this LED close to the eye that is not being captured. Since the pupil dilation
of both eyes is linked we can control the dilation of the captured eye indi-
rectly, avoiding an extra specular highlight on the captured eye. In order to
measure the eye focusing at different depths, a focus pole with specifically
marked distances is placed in front of the subject. Finally, additional studio
lamps are used during camera calibration.
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Figure 4.3: Overview of the capture setup consisting of a camera array (1), a focused
flash light (2), two high-power white LEDs (3) used to control the pupil
dilation, and color LEDs (4) that produce highlights on the cornea. The
subject is positioned in a headrest (5). The studio lamps (6) are used during
camera calibration.

4.1.2 Calibration

Cameras are calibrated using a checkerboard of CALTag markers [Atcheson
et al., 2010], which is acquired in approximately 15 positions throughout the
capture volume. We calibrate the positions of the LEDs by imaging a mir-
rored sphere, which is also placed at several locations in the scene, close to
where the eyeball is during acquisition. The highlights of the LEDs on the
sphere are detected in each image by first applying a Difference-of-Gaussian
filter followed by a non-maximum suppression operator, resulting in single
pixels marking the positions of the highlights. The detected highlight posi-
tions from a specific LED in the different cameras form rays that should all
intersect at the 3D position of that LED after reflection on the sphere with
known radius (15mm). Thus, we can formulate a nonlinear optimization
problem where the residuals are the distances between the reflected rays
and the position estimates of the LEDs. We solve for the unknown LED and
sphere positions with the Levenberg-Marquardt algorithm.
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4.1.3 Image Acquisition

We wish to reconstruct as much of the visible eye as possible, so the subject
is asked to open their eyes very wide. Even then, much of the sclera is oc-
cluded in any single view, so we acquire a series of images that contain a
variety of eye poses, covering the possible gaze directions. Specifically we
used 11 poses: straight, left, left-up, up, right-up, right, right-down, down, left-
down, far-left, and far-right. The straight pose will be used as reference pose,
as it neighbors all other poses except far-left and far-right.

We then acquire a second series of images, this time varying the pupil dila-
tion. The intricate geometry of the iris deforms non-rigidly as the iris dilator
muscle contracts and expands to open and close the pupil. The dilation is
very person-specific, so we explicitly capture different amounts of dilation
for each actor by gradually increasing the brightness of the high-power LED.
In practice, we found that a series of 10 images was sufficient to capture the
iris deformation parametrized by pupil dilation.

The acquisition of a complete data set takes approximately 5 minutes for
positioning the hardware, 10 minutes for image acquisition, and 5 minutes
for calibration, during which time the subject lies comfortably on a cushion
placed on the floor.

4.1.4 Initial Reconstruction

To initialize our eye capture method, we pre-compute partial reconstructions
for each eye gaze using the facial scanning technique of Beeler et al. [2010].
Although this reconstruction method is designed for skin, the sclera region
of the eye is similarly diffuse, and so partial sclera geometry is obtainable.
These per-gaze reconstructions will be used in later stages of the pipeline.
Additionally, the surrounding facial geometry that is visible will be used for
providing context when rendering the eye in Section 4.5.

4.2 Sclera

Reconstructing the sclera is challenging because large parts are occluded by
the eyelids and the eye socket at any given time. As indicated previously,
the problem can be alleviated by acquiring the eye under multiple poses. In
this section we explain our approach to register the different poses into a
common frame and integrate the partial scans into a complete model of the
eyeball. The individual steps are outlined in Fig. 4.4.
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Figure 4.4: The sclera reconstruction operates in both image and mesh domains. The in-
put images and meshes are segmented (Section 4.2.1 and Section 4.2.2). The
partial scans from several eye poses are registered (Section 4.2.3) and com-
bined into a single model of the sclera using a generic proxy (Section 4.2.4).
A high-resolution texture of the sclera is acquired and extended via texture
synthesis (Section 4.2.5).

4.2.1 Image Segmentation

The individual components of the eye require dedicated treatment, and
thus the first step is to segment the input images to identify skin, sclera,
iris, and pupil regions. We acquire approximately 140 images for a single
eye dataset, considering all the poses, pupil dilations and multiple cam-
eras, which would make manual segmentation tedious. Therefore, a semi-
supervised method is proposed to automate the process. All images are cap-
tured under similar conditions, and thus the appearance of the individual
classes can be expected to remain similar. We therefore employ a nearest-
neighbor classification. We manually segment one of the images into skin,
sclera, iris and pupil regions (Fig. 4.5a). These serve as examples, from which
the algorithm labels the pixels of the other images automatically by assign-
ing the label of the most similar example pixel. Similarity is computed in
a lifted 21 dimensional feature space of 15 color and 6 Haralick texture fea-
tures [Haralick, 1979], and has proven to provide sufficiently accurate and
robust results. This classification is fast since every pixel is treated indepen-
dently. We obtain high quality classification by employing a post-processing
step that uses the following topological rules:
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• The iris is the largest connected component of iris pixels.

• There is only a single pupil and the pupil is inside the iris.

• The sclera part(s) are directly adjacent to the iris.

Fig. 4.5b shows the final classification results for a subset of images, based
on the manually annotated exemplar shown in (a).

a) b)

Figure 4.5: Pupil, iris, sclera, and skin classification with manual labels (a) and exam-
ples of automatically labeled images (b).

4.2.2 Mesh Segmentation

Given the image-based classification, we wish to extract the geometry of the
sclera from the initial mesh reconstructions from Section 4.1.4. While the
geometry is mostly accurate, the interface to the iris and skin may contain
artifacts or exhibit over-smoothing, both of which are unwanted properties
that we remove as follows.

While a single sphere only poorly approximates the shape of the eyeball
globally (refer to Fig. 4.11 in the results), locally the surface of the sclera may
be approximated sufficiently well. We thus over-segment the sclera mesh
into clusters of about 50mm2 using k-means and fit a sphere with a 12.5mm
radius (radius of the average eye) to each cluster. We then prune vertices that
do not conform with the estimated spheres, either in that they are too far off
surface or their normal deviates strongly from the normal of the sphere. We
found empirically that a distance threshold of 0.3mm and normal threshold
of 10 degrees provide good results in practice and we use these values for
all examples in this chapter. We iterate these steps of clustering, sphere fit-
ting, and pruning until convergence, which is typically reached in less than
5 iterations. The result is a set of partial sclera meshes, one for each captured
gaze direction.
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4.2.3 Pose Registration

The poses are captured with different gaze directions and slightly different
head positions, since it is difficult for the subject to remain perfectly still,
even in the custom acquisition setup. To combine the partial sclera meshes
into a single model, we must recover their rigid transformation with respect
to the reference pose. ICP [Besl and McKay, 1992] or other mesh-based align-
ment methods perform poorly due to the lack of mid-frequency geometric
detail of the sclera. Feature-based methods like SIFT, FAST, etc. fail to ex-
tract reliable feature correspondences because the image consists mainly of
edge-like structures instead of point-like or corner-like structures required
by the aforementioned algorithms. Instead, we rely on optical flow [Brox et
al., 2004] to compute dense pairwise correspondences.

Optical flow is an image based technique and typically only reliable on small
displacements. We therefore align the poses first using the gaze direction
and then parameterize the individual meshes jointly to a uv-plane. The cor-
respondences provided by the flow are then employed to compute the rigid
transformations of the individual meshes with respect to the reference pose.
These steps are iterated, and convergence is typically reached in 4-5 itera-
tions. In the following we will explain the individual steps.

Initial Alignment: The gaze direction is estimated for every pose using the
segmented pupil. Since the head does not remain still during acquisition,
the pose transformations are estimated by fitting a sphere to the reference
mesh and aligning all other meshes so that their gaze directions match.

Joint Parameterization: The aligned meshes are parameterized to a com-
mon uv-space using spherical coordinates. Given the uv-parameterization,
we compute textures for the individual poses by projecting them onto the
image of the camera that is closest to the line of sight of the original pose.
This naive texturing approach is sufficient for pose registration, and reduces
view-dependent effects that could adversely impact the matching.

Correspondence Matching: We compute optical flow [Brox et al., 2004] of
the individual sclera textures using the blue channel only, since it offers the
highest contrast between the veins and the white of the sclera. The resulting
flow field is sub-sampled to extract 3D correspondence constraints between
any two neighboring sclera meshes. We only extract constraints which are
both well localized and well matched. Matching quality is assessed using
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the normalized cross-correlation (NCC) within a k × k patch. Localization
is directly related to the spatial frequency content present within this patch,
quantified by the standard deviation (SD) of the intensity values. We set
k = 21 pixels, NCC > 0, and SD < 0.015 in all our examples.

Optimization: The rigid transformations of all the poses are jointly opti-
mized with a Levenberg-Marquardt optimizer so that the weighted squared
distances between the correspondences are minimized. The weights reflect
the local rigidity of the detected correspondences and are computed from the
Euclidean residuals that remain when aligning a correspondence plus its 5
neighbors rigidly. The optimization is followed by a single ICP iteration to
minimize the perpendicular distances between all the meshes.

4.2.4 Sclera Merging

After registering all partial scans of the sclera, they are combined into a sin-
gle model of the eyeball. A generic eyeball proxy mesh, sculpted by an artist,
is fit to the aligned meshes and the partial scans are merged into a single
mesh, which is then combined with the proxy to complete the missing back
of the eyeball.

Proxy Fitting: Due to the anatomy of the face, less of the sclera is recovered
in the vertical direction and as a result the vertical shape is less constrained.
We thus fit the proxy in a two step optimization. In the first step we optimize
for uniform and in the second step for horizontal scaling only. In both steps
we optimize for translation and rotation of the eyeball while keeping the
rotation around the optical axis fixed.

Sclera Merging: The proxy geometry prescribes the topology of the eye-
ball. For every vertex of the proxy, a ray is cast along its normal and inter-
sected with all sclera meshes. The weighted average position of all intersec-
tions along this ray is considered to be the target position for the vertex and
the standard deviation of the intersections will serve as a confidence mea-
sure. The weights are a function of the distance of the intersection to the
border of the mesh patch and provide continuity in the contributions.

Eyeball Merging: The previous step only deforms the proxy where scan
data is available. To ensure a smooth eyeball, we propagate the deformation
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to the back of the eyeball using a Laplacian deformation framework [Sorkine
et al., 2004]. The target vertex positions and confidences found in the pre-
vious step are included as weighted soft-constraints. The result is a single
eyeball mesh that fits the captured sclera regions including the fine scale
details and surface variation, and also smoothly completes the back of the
eye.

4.2.5 Sclera Texturing

As a final step, we compute a color for each point on the reconstructed sclera
surface by following traditional texture mapping approaches that project
the 3D object onto multiple camera images. In our case, we must con-
sider all images for all eye poses and use the computed sclera segmentation
to identify occlusion. One approach is to naively choose the most front-
facing viewpoint for each surface point, however this leads to visible seams
when switching between views. Seams can be avoided by averaging over all
views, but this then leads to texture blurring. An alternative is to solve the
Poisson equation to combine patches from different views while enforcing
the gradient between patches to be zero [Bradley et al., 2010], but this can
lead to strong artifacts when neighboring pixels at the seam have high gra-
dients - a situation that often occurs in our case due to the high contrast of a
red blood vessel and white sclera. Our solution is to separate the high and
low frequency content of the images. We then apply the Poisson patch com-
bination approach only for the low frequency information, which is guar-
anteed to have low gradients. We use the naive best-view approach for the
high frequencies, where seams are less noticeable because most seams come
from shading differences and the shading on a smooth eye is low-frequency
by nature. After texture mapping, the frequencies are recombined. Fig. 4.6b
shows the computed texture map for the eye in Fig. 4.6a.

Our texturing approach will compute a color for each point that was seen by
at least one camera, but the occluded points will remain colorless. Depend-
ing on the intended application of the eye reconstruction, it is possible that
we may require texture at additional regions of the sclera, for example if an
artist poses the eye into an extreme gaze direction that reveals part of the
sclera that was never observed during capture. For this reason, we synthet-
ically complete the sclera texture, using texture synthesis [Efros and Leung,
1999]. In our setting, we wish to ensure consistency of blood vessels, which
should naturally continue from the iris towards the back of the eye. We
accomplish this by performing synthesis in Polar coordinates, where most
veins traverse consistently in a vertical direction, and we seed the synthesis
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a) b) c) d)

e) f ) g) h)

Figure 4.6: The sclera is textured from multiple views of multiple different eye poses.
The resulting texture map (b) for a given eye (a) contains all the visible parts
of the sclera. We further complete the texture map through texture synthesis
(c). Our textures can have very high resolution details (d-h).

with a few vertical vein samples. Fig. 4.7 demonstrates the rotated synthe-
sis, which we perform only on the high frequencies in order to avoid syn-
thesized shading artifacts. Corresponding low-frequency content is created
by smooth extrapolation of the computed low-frequency texture.

Finally, we can also synthesize missing surface details in the back of the
eye. We use the same texture synthesis approach, but instead we operate
on a displacement map, which is computed as the difference between the
original and a smoothed version of the reconstructed eyeball. The final result
is a complete eyeball with continuous texture and displacement at all points.
We show a complete texture and zoom region in Fig. 4.6 (c-d), and highlight
a few zoom regions of different eye textures in Fig. 4.6 (e-h).

4.3 Cornea

Given the reconstructed sclera, we now describe our technique to recon-
struct the transparent cornea. Although the cornea consists of several thin
layers with different optical properties, we found it sufficient to model the
cornea as a single surface with a single medium respectively index of refrac-
tion inside the eye. We use a surface optimization method that aims to satisfy
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constraints from features that are either reflected off or refracted through the
cornea.

4.3.1 Theory

Reconstructing transparent surfaces requires different approaches than dif-
fuse surface reconstruction since the surface is not directly visible. Trans-
parent surfaces are generally not completely transmissive, but a fraction of
light is reflected if the refractive indices of the media involved differ. Thus,
a bright light placed in front of the cornea will cause a visible highlight that
provides a cue about the surface. Unfortunately, the position of the highlight
is view-dependent and cannot directly be used in a mulit-view setting.

On the other hand, for a single view there is an ambiguity between the depth
along the viewing ray corresponding to a highlight and the normal of the
surface. For every position along a viewing ray there exists a surface normal
reflecting the ray to the origin of the light (Fig. 4.8a, green). This creates a
surface normal field defined by all possible viewing ray direction and depth
combinations. A similar surface normal field is produced from refractions
(Fig. 4.8a, red).

The reflection and refraction surface normal fields of different views only
coincide at the position of the actual surface as illustrated in Fig. 4.8b. We
use this property to reconstruct the cornea.

Our system however produces only a sparse sampling of the normal fields
as we employ only a few LEDs. We therefore need to add regularization
to ensure a unique solution, which is provided through the chosen sur-
face representation. We employ an open uniform B-spline surface with 100
control points. This surface has more representation power than the tra-
ditionally employed 4th order Zernike polynomials [Ares and Royo, 2006;
Smolek and Klyce, 2003] yet can be controlled locally, which is beneficial for
optimization. The control points are spaced regularly and initialized to the
surface of the eyeball proxy introduced in Section 4.2.4. The position of the
boundary control points are optimized such that the surface boundaries fit
the proxy geometry. The boundary control points are kept fixed and are not
part of the following surface optimization.

4.3.2 Constraint Initalization

The corneal surface is optimized using three different types of constraints:
reflection, refraction and position constraints.
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Reflection Constraints: The 9 calibrated LEDs placed in front of the
cornea are imaged as highlights in the different views. From these high-
lights we extract reflection constraints, which prescribe the normal for any
point along the viewing ray through the highlight. Since the cornea is con-
vex, every LED-view pair contributes one constraint assuming the reflection
of the LED is visible in the view. In addition, since we registered the poses
in Section 4.2.3 we can combine constraints from all different poses. The
highlights are detected and identified similarly as in the calibration phase
(Section 4.1.2). While the highlights in the calibration images are acquired in
complete darkness, now they appear superimposed on the iris in the input
images, which can lead to false positive detections. Thus, we remove these
unwanted detections by fitting a 2D Gaussian curve to the intensity profiles
of all the highlight candidates to determine their width. Since all the LED
highlights have a constant size we can remove false positives with a lower
(3px) and upper (15px) threshold on the standard deviation of the Gaussian.

Refraction Constraints: Conceptually refraction constraints are very sim-
ilar to reflection constraints. Instead of observing the reflected highlight of
a known LED, we instead observe the refraction of a feature on the iris at
unknown position. Furthermore, the angle of refraction depends on the re-
fractive index. Both the position of the feature and the refractive index are
included as unknowns into the optimization and solved for. A feature point
on the iris contributes one refractive constraint per view. The corresponding
image location in the different views is estimated via optical flow [Brox et
al., 2004]. Features are filtered as described in Section 4.2.3 using NCC>0.6
and SD<0.02.

As for reflection constraints, we can combine refraction constraints from all
poses. The distribution density of the features varies substantially, as we
wont have any in the pupil for example. To account for this we weigh the
constraints by the local density, approximated by the distance d to the 10th
nearest constraint as wre f r = NCC/d2 where NCC is the average normal-
ized cross correlation score between corresponding image patches used as a
measurement of the quality of the constraint.

Position Constraints: Position constraints are extracted from the merged
sclera mesh (Section 4.2.4). Their purpose is to provide a continuous transi-
tion from the cornea to the sclera. We randomly sample position constraints
on the sclera in the vicinity of the corneal boundary. To ensure a good distri-
bution, we reject constraints that are closer than 1mm to each other.
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4.3.3 Surface Reconstruction

With a given set of reflection, refraction and position constraints and an ini-
tial guess of the surface, the unknown parameters are optimized with a two
stage approach. More specifically, we optimize the control points of the B-
Spline, the refractive index and the unknown positions of the feature points
on the iris which are used for the refraction constraints. This amounts to
a non-linear optimization which we solve using the Levenberg-Marquardt
algorithm by minimizing the error

Etot = λposEpos + λre f lEre f l + λre f rEre f r, (4.1)

where λpos = 0.1, λre f l = 1, and λre f r = 1 are user-defined parameters. The
error for the position constraints P is given as

Epos =
1
|P| ∑

i∈P

∥∥pi − ppos
i

∥∥2
, (4.2)

where ppos denotes the position of the constraint and p the nearest point on
the corneal surface. The error for the reflection constraints Q is given as

Ere f l =
1
|Q| ∑

i∈Q

∥∥∥ni − nre f l
i

∥∥∥2
, (4.3)

where n is the current and nre f l the targeted surface normal. The error for
the refraction constraintsR is given as

Ere f r =
1
|R| ∑

i∈R
wre f r

i

∥∥∥piris
i − pre f r

i

∥∥∥2
, (4.4)

where piris is the point on the iris, pre f r the closest point on the refracted ray
and wre f r its corresponding weight. Optimizing the distance to the closest
point has proven to be more stable than optimizing the mismatch of the
normals analogously to Equation 4.3.

In the first step we optimize for the control point positions of the B-spline
surface. They are optimized only along the opical axis of the eye and the
boundary control points are kept fixed at all times. After convergence the
surface is kept fixed and we optimize for the refraction constraint points on
the iris (piris) and the refractive index. We iterate by alternating the two steps
until the overall improvement drops below 10e−10. The initial and optimized
corneal surface plus constraints are visualized in Fig. 4.9 for one dataset.
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4.3.4 Cornea-Eyeball Merging

We update the eyeball mesh with the optimized cornea by smoothly blend-
ing the corneal surface into the eyeball mesh. First, corneal samples are com-
puted for each eyeball vertex by intersecting the cornea in the direction of
the eyeball normals. Second, the iris masks are dilated, blurred, projected
onto the cornea, and averaged to compute blending weights. Finally, the
eyeball vertices are combined with the corneal samples by weighting them
with the weights.

4.4 Iris

We now move to the final component of the eye, the iris. In contrast to the
sclera, we cannot perform traditional multi-view reconstruction to obtain
the iris geometry because the refractive cornea distorts the views of the iris.
Additionally, the cornea transitions smoothly in opacity from fully trans-
parent to fully opaque at the sclera, and this smooth transition can confuse
multi-view correspondence matching. For these reasons, we create a specific
iris reconstruction algorithm that is designed to handle these constraints.
Since the iris is coupled with the pupil, our method begins by localizing the
pupil in 3D. The iris geometry is then reconstructed and filtered, using the
pupil as initialization. Finally, we combine iris reconstructions from captures
with different pupil dilations, allowing us to parameterize and animate the
deformation of the iris during pupillary response.

4.4.1 Pupil Reconstruction

The pupil has a very prominent position at the center of the eye, which
makes it visually important and artifacts on its boundary would be clearly
visible. Therefore, we require a reconstruction method for the pupil bound-
ary that is robust with respect to perturbations like, for example, those
caused by the flash highlight. This robust boundary is used to constrain
the iris and also to guide the initial meshing of the iris.

Initialization: The pupil is initialized with the pupil mask boundaries that
we detect in image space. Each boundary is triangulated from multiple
views, taking into account refraction at the cornea, and we fit a circle to the
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triangulated points. The required image correspondences for the triangula-
tion are obtained from the optical flow, which we already computed for the
refraction constraints of the cornea optimization.

Refinement: As this initial estimate tends to be rather inaccurate due to
inconsistencies between pupil masks, we refine the estimated 3D circle in an
optimization that uses two data terms and two regularization terms. The
data terms come from two additional cues about the pupil location, 1) an
image term that incorporates the result of an image-based pupil detection
algorithm, and 2) a mesh term that incorporates an approximate 3D surface
reconstruction of the pupil region, triangulated from image correspondences
found using optical flow. The two regularization terms control the overall
shape and smoothness of the pupil. Based on these terms, we define an
energy function for the pupil as

E = λIEI + λMEM + λCEC + λSES, (4.5)

which we minimize for a set of n = 50 pupil samples taken on the initial
circle, with weights of λI = 10, λM = 1000, λC = 10000, and λS = 1000 for
all data sets. In the following, we will describe each of the energy terms in
more detail.

Image Term: We project the initial pupil circle into the cameras and blur
the images radially along the produced ellipses. We then use a radial edge
detector to locate the edge between the pupil and the iris, and we apply
radial non-maximum suppression (NMS) to the response. We define the
image data term as

EI =
1
n

n

∑
i=1

∥∥∥P(pi)− pedge
i

∥∥∥2
, (4.6)

where P(p) is the projection of sample point p into the image plane through
the cornea, and pedge is the position of the closest point on the detected edge.

Mesh Term: We create an approximate 3D surface mesh in the vicinity of
the pupil by triangulating rays from multiple views refracted at the corneal
interface, again with the help of optical flow to provide correspondences.
The mesh term for the pupil location then consists of the distances between
the pupil samples and the generated mesh, given by
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EM =
1

∑n
i=1 ci

n

∑
i=1

ci

∥∥∥pi − pmesh
i

∥∥∥2
, (4.7)

where the distances are weighted with the triangulation confidences c of the
mesh. The triangulation confidence is defined as a linear function of the
triangulation residuals, which maps a residual of 0mm to a confidence of
1 and a residual of 0.05mm to a confidence of 0 and clamps all the values
outside this range.

Regularization Terms: We allow the samples to deviate orthogonally
from the perfect circle, but we penalize these deviations with

EC =
1
n

n

∑
i=1

∥∥∥pi − pcircle
i

∥∥∥2
, (4.8)

where pcircle is the corresponding point of p on the circle. To obtain a smooth
pupil we also penalize strong changes in the deviations from one sample to
the next, using the following smoothness term, where r is the radial and o
the orthogonal component of the offset with respect to the circle.

ES =
1
n

n

∑
i=1

[
(2ri−ri+1−ri−1)

2 + (2oi−oi+1−oi−1)
2
]

, (4.9)

Finally, we minimize the sum of all these terms with the Levenberg-
Marquardt algorithm to find the position, the radius, and the per-sample
deviations from a circle of the pupil. During the optimization, we constrain
the normal of the pupil circle to the normal of the plane fit to iris mesh sam-
ples taken 1 mm away from the initial pupil boundary estimate to be more
robust. Fig. 4.10 illustrates the resulting sample positions both in 3D and
projected onto an image (in green), given the initial estimate (in red).

4.4.2 Iris mesh generation

We use the reconstructed pupil boundary to initialize the iris mesh. Starting
with a closed uniform B-Spline that we fit to the optimized pupil samples,
we scale the spline radially in 0.025mm steps to create a sequence of larger
and larger rings up to an iris radius of 7mm. These rings are sampled 600
times and a triangle mesh is created. This will serve as the topology for the
iris.
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In a second step, we reconstruct the correct position of each iris vertex. Each
vertex is projected (through the cornea) into a reference camera, where flow-
based correspondences to other views are computed. We triangulate the ver-
tex position by minimizing the squared distances between the vertex and the
refracted rays formed by the correspondences. This minimization is equiva-
lent to minimizing the surface error defined in Section 4.3.3. In addition, the
rays are weighted by the root mean square difference of the corresponding
7x7 pixel blocks in image space. In order to reduce high frequency noise, the
entire mesh reconstruction process is repeated for a second reference cam-
era to obtain a second mesh hypothesis which is combined with the first one
through weighted averaging.

4.4.3 Mesh cleanup

The reconstructed iris mesh can be noisy and distorted at the boundaries
due to the translucent sclera affecting the optical flow. We perform four
operations to filter the iris mesh.

Spike Filtering: Spikes are detected by computing a 3-ring neighborhood
around each vertex. If the distance between the vertex and the mean of the
neighboring vertices exceeds a threshold (set to 0.05mm), then the vertices
inside the ring are smoothed by solving a Laplacian system, keeping the rest
of the vertices fixed.

Boundary Deformation: Two criteria are used to label distorted bound-
ary vertices: a threshold on the triangulation residuals (set to 0.05mm) and
an angle threshold between the smoothed vertex normal and the normal of
the pupil set to 30 degrees. We dilate the labeled region and smooth those
vertices in the normal direction.

Mesh Relaxation: The mesh is relaxed locally to improve the triangulation
by removing skinny or overlapping triangles.

Pupil Constraint: The vertices at the pupil boundary are constrained to
the detected pupil shape. The constraint is enforced with a local Laplacian
system, where the pupil vertices as well as all mesh vertices farther than
1mm from the pupil are constrained. The vertices in-between are deformed
but the local shape is preserved.

40



4.4 Iris

Finally, the two independently triangulated and cleaned mesh hypotheses
are averaged to create the iris mesh.

4.4.4 Mesh Propagation

We now combine iris reconstructions from captures with different pupil di-
lations. Each mesh is reconstructed independently, with different topology
and vertex counts. We wish to compute a new set of iris meshes that are
in vertex-correspondence, allowing us to compute a per vertex deformation
model.

We begin by computing per camera optical flow [Brox et al., 2004] between
neighboring poses. Since the vertices are propagated from one pose to the
next, drift might accumulate. To minimize the total amount of drift we se-
lect a reference pose in the middle of the dilation sequence and compute the
optical flow in both dilation directions from there. To find the vertex corre-
spondences we project each vertex from the source mesh into all the target
pose cameras taking into account the refraction at the cornea. With the re-
sulting image positions and the optical flows we compute a set of rays that
we refract at the cornea and intersect with the iris of the target pose. The tar-
get pose vertex is computed as the median of all the intersections. To ensure
a clean pupil we enforce the pupil constraint and relax the mesh in the same
way as described in Section 4.4.3.

4.4.5 Temporal Smoothing and Interpolation

In order to animate the pupil dilation, we will use the captured pupil poses
as keyframes and interpolate linearly in-between. In practice we found that
the dilation of the pupil cannot be accurately controlled, and so the pupil di-
ameter tends to decrease in irregular steps. This can lead to multiple poses
with very similar diameters and geometry, but with different high frequency
reconstruction noise, which leads to artifacts when interpolating. In order to
smoothly integrate meshes from similar pupil radii, we compute two linear
regression models for all poses within a distance of 1mm pupil radius. The
first regression model expresses the vertex position and the second model
the Laplacian vector as a function of the pupil radius. We solve for the
smoothed mesh by evaluating both models and solving the resulting Lapla-
cian system with equal weights given to the Laplacians and the positions.
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4.4.6 Iris Texturing

Iris textures can be computed from a single view, but these textures will
contain undesired artifacts like highlights, washed out regions close to the
boundary, dust on the cornea, etc. These artifacts can be attenuated by com-
bining the textures from multiple views of the same iris dilation. We com-
pute a contribution map for each view which is set to 1 if the pixel is the
most saturated from all the candidates and to 0 otherwise. These maps are
then blurred with a small Gaussian kernel of 3 pixels. Based on these contri-
bution maps, the textures from the different views are blended into a single
texture. Picking the most saturated pixels will reduce artefacts caused by
illumination pollution from the flash light and by superposition of the white
sclera at the semi-transparent sclera-cornea transition alike. Then, we com-
bine the textures from several iris dilations using the median to attenuate
shading changes caused by the deforming iris.

4.5 Results

In this section we highlight the results of our eye capture technique by il-
lustrating the reconstructions of a variety of human eyes, each with its own
intricacies and details.

We begin by analyzing the common assumption that eyes can be modelled
as two spheres, a large one for the eyeball and a smaller one for the cornea.
In our work we show that this assumption is inaccurate, which we can il-
lustrate by overlaying a cross-section of a captured eye on top of the simple
model (Fig. 4.11, left). Furthermore, it is often assumed that an eye is sym-
metric about the view vector and that the left and right eye can be modelled
similarly. By capturing both the left and right eye of an actor, we demon-
strate that each eye is in fact unique and shows strong asymmetry individu-
ally, but when combined the expected left/right symmetry is clearly visible.
We believe these results have the potential to change how eyes are tradition-
ally modelled in computer graphics.

Our eye capture method is robust, which we highlight by reconstructing 9
different eyes from 6 different actors. The full set of reconstructions, shown
in Fig. 4.12, contains a variety of different iris colors, surface details, textures,
and overall eye shapes. Each eye has unique details, but we observed that
the differences between people are more significant than the differences be-
tween the two eyes of the same person, an expected phenomenon that helps
to validate our reconstruction results. For example, the two brown eyes in
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the center (5th and 6th from left) are larger than the rest. These represent
the eyes of an actor with severe myopia (or short-sightedness), which is often
correlated with larger-than-normal eyes [Atchison et al., 2004].

Every human eye is unique and contains minor intricacies that add to the
identity of the person. Our capture approach aims to reconstruct all the
visible intricacies. In particular, our sclera reconstruction is able to acquire
high-resolution surface variation including small details and Pingueculas,
as shown in Fig. 4.13.

Even more unique is the iris. Fig. 4.14 illustrates one pose of the recon-
structed irises for our 9 actors, visualized on their own with blue shading
for comparing the geometry. The individuality of iris shape from eye to eye
is clearly visible, again highlighting the importance of capturing real eyes
using the proposed technique. Fig. 4.15 shows a close-up view of a captured
iris with both surface details and texture, rendered with refraction through
the cornea.

One of the most interesting features of human eyes is the time-varying defor-
mation of the iris during pupillary response. Our method is able to recover
this deformation, which we illustrate for one actor in Fig. 4.16. As the pupil
changes size, our reconstruction shows that the iris dilator muscle creates
significant out-of-plane deformation, which largely contributes to the realis-
tic appearance of the eye. To further illustrate how unique this effect is for
each iris, we provide side-view renders for two additional irises and three
pupil radii in Fig. 4.17.

The ability to reconstruct a per-vertex deformation model for the iris dur-
ing pupil dilation allows us to animate the captured eyes. We show two
different applications for iris animation in Fig. 4.18. The first is a motion
capture scenario. Analogous to the way facial animation rigs are often built
from high-quality scan data and then later animated from low-resolution
mo-cap markers, our captured irises can be animated from a single low-
quality video stream. As a demonstration, we detect the pupil size of an ac-
tor in each frame of such a video and compute the corresponding iris shape
for a captured actor (Fig. 4.18, top). A second application is to automati-
cally make a digital character respond to lighting changes in the 3D environ-
ment. Using predicted pupillary response curves introduced in the seminal
work of Pamplona et al. [2009], we can animate the captured iris geometry
to show a character dynamically responding to a light source turning on and
off (Fig. 4.18, bottom). As these applications target iris animation, the results
are best viewed in the accompanying supplemental video.

We compare our results qualitatively with the seminal work of François et
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al. [François et al., 2009] in Fig. 4.19. While the strength of their approach
is its simplicity, our method arguably excels in quality. Since we aim to ac-
curately reconstruct all the intricacies of the eye, we more faithfully capture
the uniqueness and realism of eyes. In particular, our reconstructions show
the asymmetric shape of the sclera and fine scale surface variation. Our
iris geometry is reconstructed rather than heuristically synthesized, and we
even recover small defects like the aforementioned pingueculas and the non-
circular transition between sclera and iris in Fig. 4.19.

In order to provide context for visualizing the captured eyes we combine
them with the partially reconstructed face scans of the actors. We use a sim-
ple combination process that automatically fits the face geometry around
the back of the eyeball using a Laplacian deformation scheme. While the
approach is rudimentary, the result is sufficient to simulate an eye socket for
holding the reconstructed eye. Several results for different actors are shown
in Fig. 4.20, rendered from multiple viewpoints. We note that more sophis-
ticated methods for capturing the face region around the eyeball would be
ideal topics for future research.

Finally, we wish to highlight the potential impact that capturing real eyes
can have in creating artistic digital doubles - a task that is often performed
for visual effects in films. To this end, we combine both of the captured
eyes of an actor together with a face scan to create a compelling rendition
of an artistically designed digital human character, as shown in Fig. 4.21.
Such a result would traditionally take significant artistic skill and man-hours
to generate, in particular if the digital character should closely resemble a
real actor. Our result was created with very little effort, thanks to our new
method for capturing real human eyes.

All our textured results are rendered in a single pass using Autodesk Maya
with Octane Render. We use built-in diffuse materials with subsurface scat-
tering for the sclera and the iris, and reflective/refractive materials for the
cornea plus a water layer created by extruding the sclera by 0.1 mm. The
total processing time to reconstruct a complete eye on a standard Windows
PC with a 3.2 Ghz 6-core CPU is approximately 4 hours (2 hours for initial
reconstruction, 20 minutes for the sclera, 5-10 minutes for the cornea, 1 hour
for the iris, and 40 minutes for unoptimized texture synthesis). The main
bottleneck is the computation of optical flow.
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a) b)

c) d)

Figure 4.7: Texture synthesis is performed on the high frequency information in order to
complete the texture. A captured texture (a) is rotated to polar coordinates
(b) and synthesis is performed in a way that preserves vein orientation (c).
The final texture is rotated back to Cartesian coordinates (d).
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a) b)

c) d)
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Figure 4.8: The depth/normal ambiguity of a highlight (a) and the sparse normal field in
a multi-view setting (b). Corneal constraints before (c) and after optimiza-
tion (d).
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a)

b)

c)

d)

Figure 4.9: Visualization of the B-spline control points (a), the position constraints (b),
and a subset of the reflection (c) and refraction (d) constraints on the initial
(left) and optimized (right) surfaces.

c)b)a)

Figure 4.10: Pupil reconstruction. Given an initial pupil boundary estimate (red) from
the triangulated image-based pupil masks, we solve for the optimal pupil
boundary (green). The resulting pupil samples are shown in 3D (a), pro-
jected onto one image (b), and overlaid onto the response of the pupil edge
detector (c).
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Reconstructed surface
Spherical sclera fit
Spherical cornea fit

a) b)

Figure 4.11: The traditional assumption that an eye can be modelled as two spheres (red
and green) is inaccurate, as indicated by a top-view cross-section of our
reconstruction in blue (left). Eyes also exhibit strong asymmetry, which
we show by reconstructing both the left and right eyes of the same actor
(right).
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n=1.362 n=1.372 n=1.378

n=1.368 n=1.381 n=1.377

n=1.369 n=1.379 n=1.372

Figure 4.12: We highlight the robustness of our technique by capturing a wide variety of
eyes. This dataset consists of different iris colors, individual sclera textures,
and unique geometry for each eye. In particular, we can see that the two
brown eyes in the center are larger than the others - further highlighting
the importance of capture over generic modelling. The measured index of
refraction is listed under each eye.
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Figure 4.13: Our sclera reconstruction technique is able to acquire fine scale details in-
cluding Pingueculas (left) and surface variation (right) that is unique to
each eye.

Figure 4.14: We highlight the uniqueness of each individual iris by visualizing the 9
captured irises with blue shading.
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Figure 4.15: A close-up of detailed iris geometry and texture captured with our method,
rendered in high-quality with refraction through the cornea and three dif-
ferent light positions.

Figure 4.16: We measure the iris under various amounts of pupil dilation. As can be
seen, the iris dilator muscle creates significant out-of-plane deformation as
the pupil becomes larger (left to right).

closed

halfway

open

iris 1 iris 2

Figure 4.17: We highlight the uniqueness of each eye’s iris deformation during pupil
dilation by showing the deformations from a side view for two different
eyes and three different pupil sizes.
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Figure 4.18: We can apply the measured iris deformation in a pupil dilation animation.
Here we show two applications: one where an actor’s pupil is tracked in a
single low-quality infra-red video and the corresponding radius is applied
to our model (top). A second application is to automatically make a digital
double respond to lighting changes in the 3D environment (bottom).

Figure 4.19: We show a comparison with François et al. [2009] on the left. They employ
a generic eyeball model combined with a heuristic to synthesize the iris
morphology. Note how our results shown on the right faithfully capture
the intricacies of this particular eye, such as its asymmetric shape, the small
surface variation, and the non-circular iris-sclera transition.
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Figure 4.20: We further demonstrate our results by combining the captured eyes with
partial face scans, and rendering from various viewpoints with different
environment lighting. This figure shows how the reconstruction results
could be used in the visual effects industry for creating digital doubles.

Figure 4.21: We combine both captured eyes of an actor together with a face scan to
further demonstrate how our results can be used to create artistic digital
doubles.
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C H A P T E R 5
Parametric Eye Model

Figure 5.1: We present a new parametric eye model and image-based fitting method that
allows for lightweight eye capture at very high quality. Our eye capture
method can be integrated with traditional multi-view face scanners (as seen
here), or can operate even on a single image.

In Chapter 4 we present a system to capture the shape and appearance of the
human eye at a very high level of detail. This system, however, is tedious
to use for the operator and the subject and requires a setup with several
cameras and lights. In this chapter we introduce a method to simplify the
acquisition process, while generating eyes with a similar level of detail.

Our main goal is to generate a parametric eye model that can be fit to sparse
image data, leveraging a database of high-resolution eye reconstructions.
Since eyes are composed of several different components and contain in-
teresting variations at multiple scales, a single all-encompassing paramet-
ric model is not practical. For this reason we compose a model built from
three separate components, namely an eyeball model (Section 5.2) that repre-
sents the low-frequency variability of the entire eyeball shape, an iris model
(Section 5.3) that represents the high-resolution shape, color and pupillary
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deformation of the iris, and a sclera vein model (Section 5.4) that represents
the detailed vein structure in the sclera, including the vein network and the
width and depth of individual veins, as well as fine-scale geometric surface
details. In Section 5.5 we show how the model parameters can be estimated
by fitting the model to 3D face scans, single images, or even artistic portraits,
drastically simplifying the process of creating 3D high-quality eyes.

5.1 Input Data

With our eye reconstruction method we captured an eye database containing
30 high-quality eyes. This database provides high-resolution meshes and
textures for the white sclera and the colored iris (please refer to the schematic
in Fig. 1.3). The iris geometry is provided as a deformation model making it
possible to create meshes for an entire range of pupil dilations. The database
contains eyes of different iris colors ranging from brown to green-brown to
blue, and the high resolution geometry captures intricate eye-specific surface
details. A subset of the database eyes are shown in Fig. 5.2. We assume that
right and left eyes are anti-symmetric and we thus mirror the left eyes when
building the model for the right eye. Similarly, a mirrored version of the
model can be used to represent the left eye. The data provided contains also
a limbus opacity mask defining the transparency transition from sclera to
cornea, from which the position of the limbus can be extracted by mapping
the 50 percent opacity level to the mesh.

5.2 Eyeball Model

The eyeball is represented by a morphable model [Blanz and Vetter, 1999],
which has been demonstrated to be a good representation to capture low-
frequency variation. A morphable model is a linear combination of a set of
samples. To avoid overfitting to the samples, the dimensionality is often-
times reduced using methods such as principal component analysis (PCA).
PCA computes the mean shape plus a set of mutually orthogonal basis vec-
tors from the samples, ordered according to their variance. Truncating the
dimensions with lower variance leads to a subspace that captures the major
variation in the samples and is resilient to noise. In addition to the shape
variation, our model also includes a rigid transformation for the eyeball as
well as a uniform scale factor.

A morphable model requires all samples to be in perfect correspondence,
which is unfortunately not the case for our database of eyes. In our case,
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Top Front Side Iris Textured

Figure 5.2: We create a database of eyes, which contains high-resolution meshes and
textures for eyeball and iris. Notice how the geometric structure of the iris
(4th column) is linked to its color (5th column), in that browner irises are
smoother while bluer ones are more fibrous.

eyeballs exhibit only few semantic features that can be used to establish cor-
respondence. The most important one is the limbus, the boundary between
the white sclera and the transparent cornea (Fig. 1.3). Other features are less
salient, such as the overall asymmetry of the eye, but have to be encoded
as well. These features, however, are not well defined and thus the tradi-
tional two step approach to build a morphable model by first establishing
correspondences between all samples and then computing the model does
not lead to satisfactory results.

Instead, we perform an iterative scheme that alternates between establishing
correspondences and computing the model. The algorithm iteratively re-
fines the model in three steps, first by fitting the previous guess of the model
to the sample shapes, second by deforming this fit outside of the model in
order to more closely fit the samples, and third by recomputing the model
from these fits. Next we will discuss these three steps in more detail.

Step 1: Within-Model Fit. The eyeball modelM is fit to a sample shape S
by finding the model parameters p that minimize the energy
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Emodel = λshapeEshape + λlimbusElimbus + λcoe f f Ecoe f f (5.1)

where the shape term

Eshape =
1
|M| ∑

xi∈M|p
‖xi − χ(xi,S)‖2 (5.2)

penalizes the distance between points xi on the modelM evaluated at p and
their closest points χ(xi,S) on the sample shape S , and the limbus term

Elimbus =
1

|LM| ∑
yi∈LM|p

∥∥∥yi − φ(yi,LS)
∥∥∥2

(5.3)

penalizes the distance between points yi on the model limbus LM evaluated
at p and their closest points φ(yi,LS) on the limbus of the sample shape LS .
The shape coefficients term

Ecoe f f =
1
k

k

∑
i=1

(
ci − μi

σi

)2

(5.4)

penalizes shape coefficients ci far away from the mean coefficients of the
current modelM|p, where μi and σi are the mean and the standard deviation
of the i-th shape coefficient. The number of shape coefficients is k. We set
the constants to λshape = 1, λlimbus = 1, and λcoe f f = 0.1.

The parameter vector p consists of a rigid transformation, uniform scale, as
well as an increasing number of shape coefficients as discussed in step 3.

Step 2: Out-Of-Model Fit. The morphable model M|p fit in the previous
step will not match the sample S perfectly since it is constrained to lie within
the model space, which has only limited degrees of freedom. In order to es-
tablish better correspondences for the next step, we therefore need to further
deform the mesh non-rigidly to bring it out-of-model. We use a variant of
the non-rigid deformation method proposed by Li et al. [2008], which was
designed for aligning a mesh to depth scans using a deformation graph and
a continuous approximation of the target shape. In our context, we wish to
align the fitted model mesh to the database samples. We modify the method
of Li et al. to operate in the spherical domain rather than the 2D depth map
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domain, and we add additional constraints to match both the limbus bound-
ary and the mesh normals during deformation. We use two spherical coor-
dinate parameterizations which are wrapped like the patches of a tennis ball
so that the distortion in the domains is minimal. Closely following Li et al.,
the energy that is minimized by the algorithm can be expressed as the sum
of the following terms:

Enonrigid = λrEr + λsEs + λ f E f + λnEn + λlEl, (5.5)

where Er and Es correspond to the rigid and smooth energies as defined in
the original paper of Li et al. [2008]. We set the constants to λr,s = 0.01 and
λ f ,n,l = 1. The shape and limbus energies Es and El correspond to the ones
used in the previous step as defined in Equation 5.2 and Equation 5.3, respec-
tively. The normal energy En is defined analogously to the shape energy as
the Euclidean difference between the normals of the model and the normals
of the respective closest points on the sample shapes. The non-rigid defor-
mation produces meshes {M̃}which closely resemble the database samples
{S} but have the same topology as the eyeball model.

Step 3: Update Eyeball Model. From the non-rigidly aligned shapes
{M̃} an updated version of the model is computed using PCA and keep-
ing only the mean shape plus the k most significant dimensions. In order
to be robust towards initial misalignment, the algorithm starts with a very
constrained model that consists of the mean shape only (k = 0).

The proposed algorithm iterates these three steps and increases the dimen-
sionality k of the model every 10 iterations by including the next most signif-
icant PCA vector. Increasing the dimensionality allows the model to better
explain the data and by doing so gradually provides robustness. We use
a fixed amount of iterations because the error is not comparable from one
iteration to the other since the model has been updated at the end of each
iteration. After expanding the model three times (k = 3), we found that the
first mode of the deformable model accounts for 92 percent of the variance,
the first two for 96 percent, and the first three for 98 percent of the varia-
tion, which covers the low-frequency variation we are targeting with this
model. The final eyeball model thus contains 10 dimensions, six of which
account for rigid transformation, one for uniform scale, and three for shape
variation. Fig. 5.3 shows the deformation modes of our eyeball model.
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Figure 5.3: This figure visualizes the three modes of our eyeball prior. For visualization
purposes we show the normalized dimensions, scaled by a factor of 50. As
the eyeball does not contain much variation, we found three modes to be
sufficient as shape prior.

5.3 Iris Model

We now turn our attention to the iris and describe our model for parameter-
izing the texture and geometry of an iris given the database of captured eyes.
The iris is arguably the most salient component of the eye, and much of the
individuality of an eye can be found in the iris. A large variety of irises exist
in the human population, and the dominant hues are brown, green and blue.
In addition to the hue, irises also vary greatly in the number and distribution
of smaller features like spots, craters, banding, and other fibrous structures.
Interestingly, iris color and geometry are related, as the iris color is a di-
rect function of the amount of melanin present in the iris. Irises with little
melanin have a blueish hue, where irises that contain more melanin become
more brown. This accumulation of melanin changes the geometric struc-
ture of the iris, with blueish irises being more fibrous and brown irises being
smoother overall as shown in Fig. 5.2. We exploit the relationship between
color and structure in our iris model and propose a single parameterization
that will account for both.

60



5.3 Iris Model

Since irises have such a wide range of variation, it would be impractical to
parameterize them using a Guassian-distributed PCA space as we do for the
eyeball. Instead, we account for the variability by parameterizing the iris us-
ing a low-resolution control map, which represents the spatially varying hue
and the approximate distribution of finer-scale features (see Fig. 5.4.b for an
example control map). The control map will guide the creation of a detailed
high-resolution iris through constrained texture synthesis, using the irises in
the database as exemplars. The use of a control map is a very intuitive and
convenient way to describe an iris, as it can be extracted from a photograph
when reconstructing the eye of a specific person, or it can be sketched by an
artist when creating fictional eyes. Based on the low-resolution control map,
we propose a constrained synthesis algorithm to generate a detailed color
texture in high resolution (Section 5.3.1), and then extend the synthesis to
additionally create the geometric iris structure (Section 5.3.2).

5.3.1 Iris Texture Synthesis

Guided by the low-resolution control map our goal is to synthesize a high-
resolution texture for the iris based on our eye database, similar to example-
based super resolution [Tai et al., 2010] and constrained texture synthe-
sis [Ramanarayanan and Bala, 2007]. We achieve this by composing the
high-resolution texture from exemplar patches from the database, follow-
ing the well-studied image quilting approach introduced by Efros and Free-
man [2001]. In our application the process is guided by the control map and
selects suitable patches from the database ensuring they conform both with
the control map and the already synthesized parts of the texture. Once the
patches have been selected, they are stitched together using graph cuts and
combined to a seamless texture using Poisson blending. Finally, this texture
is merged with the intial control map in order to augment the low-res con-
trol map with high-res detail. Fig. 5.4 shows the individual steps, which we
will describe in more detail in the following.

Patch Layout. The structure of an iris is arranged radially around the
pupil. Operating in polar coordinates (angle/radius) unwraps the radial
structure (Fig. 5.4) and presents itself well for synthesis with rectangular
patches. We synthesize textures of resolution 1024x256 pixels with patch
sizes of 64x64 pixels that overlap each other by 31 pixels in both dimensions.
While iris features are distributed without angular dependency, they do ex-
hibit a radial dependency since the structure close to the pupil (pupillary
zone) differs substantially from the one closer to the limbus (ciliary zone).
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To synthesize a specific patch in the output, the algorithm can thus consider
sample patches at any angle with similar radii (±10%). The only drawback
of the polar coordinate representation is that the synthesized texture must
wrap smoothly in the angular dimension (i.e. across the left and right image
boundaries), which is handled by temporarily extending the texture by one
block in the angular direction. To guarantee a consistent wrapping the first
and last block are updated as pairs.

Output Patch Selection. The iris is synthesized by iteratively placing
patches from the database iris textures. In each iteration, we first need to
decide where to synthesize the next patch in the output texture. Many syn-
thesis algorithms employ a sequential order, typically left to right and top
to bottom. We found that this leads to unsatisfactory results since important
features, such as spots or freckles, can easily be missed because neighbor-
ing patches in the output may provide a stronger constraint than the control
map. Instead we select the next patch based on control map saliency, which
synthesizes patches in visually important areas first, thus allowing them to
be more faithful to the control map and spreading the control map resid-
ual error into less salient areas. Saliency is computed via steerable filters as
proposed by [Jacob and Unser, 2004].

Exemplar Selection. Once the location for the next patch to be synthe-
sized has been determined, a suitable patch exemplar has to be retrieved
from the database. This exemplar should be faithful to both the control map
and any neighboring patches that have already been chosen. Similarity to
the control map, denoted ec, is computed as the mean squared error be-
tween a downscaled version of the exemplar and the patch of the control
map. To gain invariance over differences in exposure and because the most
important quantity at this stage is faithful color reproduction, the error is
computed over the RGB channels, but the mean intensity of the exemplar is
scaled globally to match the mean intensity of the control patch. Similarity
to the already synthesized texture, denoted en, is computed as mean squared
error over the overlapping pixels. The two similarity measures are linearly
combined into a single quantity

e = αen + (1− α)ec, (5.6)

where we use α = 0.25 for all examples in this chapter. The exemplar patch
with the smallest error is chosen.
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Patch Merging. The end result of the above steps is a set of overlapping
patches that cover the entire texture. Even though the patches have been
carefully selected they will still exhibit seams. To alleviate this we follow
Kwatra et al [2003] and employ a graph cut to find seams between patches
that better respect the underlying image structure, i.e. finding a seam that
minimizes the color difference across the cut. For each patch, pixels at the
boundary of the patch that overlap neighboring patches are labeled as sinks
and the pixel at the center of the patch as a source. A graph for the current
block is constructed with horizontal and vertical edges. The capacity of each
edge is set to be the difference of the two connected pixels. We use the max-
flow/min-cut algorithm of Boykov et al. [2004] to solve for the cut.

Patch Blending. Once merged, the texture has a unique color per pixel
with minimal, yet still visible seams between patches. To completely re-
move the seams we employ Poisson blending [Pérez et al., 2003], setting the
desired color gradients across patch seams to be zero while preserving color
detail within patches.

Texture Blending. By definition, the synthesized texture T should well-
match the control map C and contain more high frequency detail. However,
the control map itself already contains a lot of structural information that
we wish to preserve. Therefore we propose to blend the synthesized texture
with the control map, however we need to take care not to superimpose the
same frequencies. Assuming the captured image is in focus, the frequency
content of the control map is determined by the resolution at which it was
acquired. If we base our synthesis on a low resolution image that captures
the complete face, then we want to add a larger range of spatial frequencies
than if the original input image was focused onto the eye and hence of high
resolution. To avoid superimposing the same frequency bands we thus need
to bandpass filter the synthesized texture before blending with the control
map. We model the bandpass filter as a Gaussian G with the standard devi-
ation computed from the ratio in width of the synthesized texture Twidth and
the control map Cwidth as

σ =
Twidth
Cwidth

σ′, (5.7)

where σ′ is the standard deviation of the Gaussian at the resolution of the
control map, typically set to 1px. In some cases it makes sense to pick a
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larger σ′ to account for noise or defocus of the control map. The high-pass
filtered texture and low-pass filtered control map are then combined as

T ← (T − G ∗ T) + G ∗ C, (5.8)

and then re-converted from polar coordinates to create the final texture of
the iris.

5.3.2 Iris Geometry Synthesis

As mentioned above, there is an inherent coupling between iris texture and
geometric structure. The idea is thus to exploit this coupling and synthesize
geometric details alongside the iris texture. The database is created with our
eye reconstruction method and contains both high-res iris textures and iris
deformation models, which encode iris geometry as a function of the pupil
dilation. Since the iris structure changes substantially under deformation,
we aim to synthesize the geometry at the observed pupil dilation. In addi-
tion, the algorithm will also provide extrapolations to other pupil dilations,
allowing us to control the iris virtually after reconstructing the eye.

Geometry Representation. The iris geometries in the database are en-
coded in cylindrical coordinates (angle/radius/height), which renders them
compatible to the domain used for texture synthesis. Spatially, the iris de-
formation model is discretized such that it has one vertex per pixel of the
corresponding texture, with full connectivity to its 8 neighbors. Temporally,
the deformation model is discretized at four different pupil dilations, spaced
equally to span the maximum dilation range common to all exemplars. One
of the pupil dilations is picked to match the dilation of the input image.

Synthesizing geometry cannot be performed using absolute spatial coordi-
nates since patches are physically copied from one spatial location in the
exemplar to another in the output texture. For this reason, we find it con-
venient to encode the geometry using differential coordinates that encode
the difference in angle, radius and height between neighboring vertices, and
then the synthesized geometry can be reconstructed. Specifically, for every
vertex, the iris geometry is encoded by the eight differential vectors to its
spatial neighbors (in practice, to avoid redundant storage we only need the
four vectors corresponding to top, top-right, right, and bottom-right), plus
three differential vectors forward in time, which we refer to as trajectories in
the following. See Fig. 5.5 for a schematic. These seven differential vectors
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result in 21 additional dimensions that are added to the three color channels
for synthesis.

Trajectory Scaling. The synthesis algorithm can place patches at different
radii than they were taken from in the exemplar. Even though this radius
difference is limited to ±10%, we still need to adjust for the fact that defor-
mation trajectories closer to the pupil are longer than trajectories closer to
the limbus (see Fig. 5.5 for a schematic explanation). Therefore, we scale the
difference vectors of each trajectory by

ρ =
rl − rto

rl − r f rom
, (5.9)

where r f rom is the radius at which the patch is extracted and rto the radius
where it is placed. rl is the limbus radius at which we assume no deforma-
tion.

Reconstruction. The synthesized differential vectors in the final iris tex-
ture are assembled to a linear Laplacian system for generating the final iris
geometry similarly to Sorkine et. al [2004]. Since all vectors are relative, the
system is under-constrained and we need to provide some additional con-
straints. The most natural choice is to constrain the positions of the pupil,
which ensures a faithful fit to the observed pupil. Since the geometry is en-
coded in cylindrical coordinates, we need to scale the angular dimension
(radians) to render it compatible with the radial (mm) and height (mm) di-
mensions. Thus, the angular dimension is multiplied by 5 mm, which corre-
sponds to the average iris radius present in the database.

The result of this section is an iris model parameterized by a low-resolution
control map, which allows high-resolution geometric and texture recon-
structions using constrained synthesis given the database of eyes as exem-
plars.

5.4 Sclera Vein Model

Finally, we complete the eye by presenting a model for synthesizing the
sclera. By far the most dominant features of the sclera are the veins, which
contribute substantially to the visual appearance of the eye. Depending on
the physical and emotional state, the appearance of these veins changes. For
example they swell when the eye is irritated or when we are tired, causing
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the infamous ”red eye” effect. Veins also travel under the surface at vary-
ing depths, and deeper veins appear thicker and softer, while veins at the
surface appear more pronounced.

We propose to model the different states of veins with a parametric vein
model. Such a model allows us to continuously change parameters and
blend between different states. Also, besides modeling changes we can cre-
ate additional detail not visible in the input data. Our model grows veins
from seed points following a parameter configuration. In the following, we
first describe our vein model and how the vein network is synthesized, and
then describe how the synthesized veins are rendered to create the sclera
texture, including a synthesized normal map to provide fine-scale surface
details.

5.4.1 Vein Model

When scrutinizing the veins of a real sclera, one can see that they exhibit
an enormous visual richness and complexity (see Fig. 5.6.d), caused by the
superposition of a large number of veins with varying properties such as
color, thickness, scale, shape, and sharpness. To resemble this complex
structure, we model the sclera vein network as a forest, where an individ-
ual tree corresponds the the vein network generated from a single large
vein. The large veins are the most salient structures when looking from afar,
and will be referred to as primary level veins. These veins branches off into
smaller second, third and lower level veins. Similar to L-Systems [Rozen-
berg and Salomaa, 1976] and tree growing methods [Palubicki et al., 2009;
Sagar et al., 1994] we create the vein network based on a set of rules, which
control the vein properties described next.

Vein Properties. A single vein is represented by a series of control points,
which are interpolated with a spline to provide a smooth and continuous
curve in the texture domain. These positional control points govern the
shape of the vein. Similarly, other spatially varying properties can also be
discretized along this spline and interpolated when required. The proper-
ties we synthesize include position offsets along the curve normals, the vein
thickness, the vein depth, which relates to its visibility, and vein branching
points. Note that the discretization is independent per property, as some
properties vary more quickly when traversing a vein network. To account
for the irregularity present in nature, we define the properties with a cer-
tain amount of randomness. We employ two types of random functions,
where one follows a Gaussian distribution N , parameterized by the mean
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and standard deviation. The second one is a colored noise function C, which
is parameterized by the amplitude controlling the amount of perturbation
and the spectral power density, which is controlled by the exponent in 1/ f x

and specifies the noise color.

The position offsets are defined by the colored noise function Co f f set in the
range of pink (x = 1) and red (x = 2) noise. Thickness is specified at the
starting point ρthickSeed, along with a decay factor ρthickDecay, again perturbed
with a colored noise function (Cthick). Depth is computed as an offset to a
given average depth ρdepth, created by adding colored noise (Cdepth). Fi-
nally, the locations of the branching points and the corresponding branch-
ing angles are determined by two Gaussian distributions, NbranchPos and
NbranchAngle, respectively.

Vein Recipes. Our model allows us to generate veins given a set of param-
eters (a vein recipe) describing the properties of the vein (width, depth, crip-
pling, noise, etc.). Multiple veins can be synthesized with the same recipe.
However, a single recipe does not account for the variation observed in na-
ture. Therefore, we empirically create multiple vein recipes that describe
veins belonging to different branching levels (primary, secondary, tertiary).
. We found that a set of 24 recipes (10 primary, 6 secondary, and 12 tertiary)
can produce vein networks of adequate visual complexity. In addition to the
parameters described above, the recipes will also prescribe the parameters
used for vein growing described below.

Vein Growing. Vein synthesis takes place in an unwrapped texture do-
main, with the limbus at the top and the back of the eyeball at the bottom.
Veins on the sclera grow from the back of the eyeball to the front, and hence
we grow them from bottom to top.

Growth is governed by a step size ρstep and a direction d at every point.
The step size is attenuated during growth by a decay factor ρstepDecay. The
growing direction is influenced by three factors, 1 - a Gaussian distribution
Nβ that provides a general growth bias towards the top of the domain, 2 -
a second Gaussian distribution Nγ that controls how much the vein mean-
ders, and 3 - a repulsion term that discourages veins from growing over each
other. The repulsion term stems from a repulsion map R that is computed
while growing the veins, by rendering the veins into an image, indicating
that a particular area has become occupied. The best growing angle can be
computed with the distributions defined above as
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α = max
α

(Nβ(α) + ε)(Nγ(α) + ε)(1−R(x + d) + ε). (5.10)

The direction d is computed from the angle α and current step size, and x
denotes the current position. Also, Nγ is evaluated relative to the last grow-
ing angle. Since the terms could fully deactivate each other in pathological
cases, we add a ε to the terms (ε = 0.001).

Vein Seeds. Veins start growing at seed points at the bottom of the texture
for primary veins, or at branching points for higher levels, and growing is
terminated if they reach a predescribed length or grow past the limbus. The
primary vein seeds are generated at random positions at the bottom of the
texture. We use 10 seeds in all our results. The seeds are generated sequen-
tially. To prevent that two seeds are too close to each other we reject the
seeds that are closer than 300 pixels. The final texture is 4096 by 2048 pixels.

5.4.2 Vein Rendering

Given a synthesized network of veins with spatially varying properties, we
now render the veins into the texture using an appearance model learned
from the database of eyes.

The appearance of a vein is influenced by many different factors, such as
its diameter, how shallow it grows, its oxygenation, and others. The most
important factor is the depth, which influences the color since the sclera has
a higher absorption coefficient in the red wavelengths and as a consequence
deeper veins appear blueish. The depth also influences the sharpness of the
vein, since more subsurface scattering blurs out the cross-profile. Next to
depth, thickness plays a central role since thin and thick veins are visually
quite different. Note that the two parameters are not independent, since
thin veins for example can only appear close to the surface as they would
be washed out further in, and consequently have to be of reddish color. We
use a data-driven approach to map depth and thickness to appearance, de-
termined from exemplary textures in the eye database, as described in the
following.

Cross-Section Model. We manually label 60 short vein segments in ex-
emplary textures, which span the vein appearance. From these segments
we sample cross-section profiles of the RGB space by fitting an exponential
along the profile:

68



5.4 Sclera Vein Model

c(r) = cbkgnd − δ exp
(−‖r‖1

2ψ

)
, (5.11)

where r is the distance from the labeled vein along the profile, in pixels. The
fitting estimates thickness ψ, depth δ and background color cbkgnd of these
cross-sections. Subtracting the background from the cross-section will allow
us to add the model to any background.

Given the synthesized thickness ψ and depth δ, we retrieve all samples with
similar depth and thicknesses from the labeled veins, where similarity is
computed as Euclidean distances on normalized tickness and depth values.
A similarity threshold th is set to 1.1 times the distance to the third nearest
neighbour. The retrieved cross-profiles are scaled to match to the query pa-
rameters, and the final cross-profile used for rendering is computed as their
weighted average, where the weights are set to 1− distance

th .

This model allows us to compute a cross-section for any pair of thickness
and depth parameters. Finally, the cross-section model is evaluated for each
pixel in the neighborhood of a vein with the local width and depth, and
added to the backplate.

Backplate. Our vein model describes the vein network but not the back-
ground into which the veins are to be rendered. This background contains
two components: the low frequency variation and the high-frequency struc-
ture of the sclera texture. The mid-frequency features are provided by the
vein model.

The high-frequency component accounts for visual noise and imperfections.
This high-frequency texture is created manually by copying sclera patches
that contain no veins from the database textures. Since it does not contain
any recognizeable structures we can employ the same high-frequency com-
ponents for every eye.

The low-frequency component is extracted from the smoothed input images
with the intent to match the perceived overall color variation. Since only
parts of the sclera texture can be computed from the images, we extrapolate
the low-frequency component of the sclera to the entire eyeball by fitting a
smooth spline surface to the visible parts of the texture. The spline surface
is cyclic in the horizontal direction so that the left and right border match
seamlessly. We also constrain the bottom of the texture to a reddish hue
since there is no data present at the back of the eyeball and visually eyes
appear more red near the back.
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The high- and low-frequency components are combined into a single back-
plate image, into which the veins are rendered. An example of a final vein
texture is shown in Fig. 5.6 (a), which additionally shows the impact of the
depth (b,c) and thickness (e,f) parameters.

Geometric Surface Details. The geometric surface details of the sclera
are important for the visual appearance of the eye since these little bumps
affect the shape of specular highlights. The bumps consist of a mix of ran-
dom bumps and displacements that correlate with the positions of big veins.
Thus, we create a normal map based on a combination of procedural noise
and displacements that follow the thick veins to render all our results.

This concludes the parametric model, which is able to synthesize all visible
parts of the eye, including the eyeball, the iris, and the veins.

5.5 Model Fitting

The model described in the previous sections allows us to create a wide
range of realistic eyes based on a few parameters and an iris control map.
In this section we describe how these parameters can be estimated auto-
matically and how the required iris control map is extracted from various
sources. We focus on two different use-case scenarios. In a first use-case,
we demonstrate how the proposed method may be used to complement ex-
isting photogrammetric face scanners to augment the facial geometry that
is inaccurate for the eye itself with high-quality eye reconstructions, and in
a second use-case we show how our method can be used to compute eye
geometry and textures from single, uncalibrated input images.

5.5.1 Multi-View Fitting

In the multi-view scenario we fit our eye model to a 3D face scan provided
by a multi-view stereo (MVS) reconstruction algorithm. In this work we
leverage the system of Beeler et al. [2010], but any other system that pro-
vides calibrated cameras and 3D geometry would also work. The MVS algo-
rithm reconstructs the white sclera reasonably well since its surface is mostly
diffuse, albeit at lower quality than skin due to strong specular reflections
which result in a noisier surface. Here, our model will serve as a regularizer
to get rid of the noise. Most other parts of the eye, such as the cornea or
the iris, pose greater challenge to the system, as they are either invisible or
heavily distorted. Here, our model will fully replace any existing 3D data
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and rely solely on the imagery to reconstruct geometry and texture. In the
following we will describe fitting of the model to a single or even multiple
face scans with different eye gazes simultaneously.

Eyeball Fitting. The input images are annotated by labelling the limbus
(red), the pupil (black), the sclera (white), and the iris (green) as shown in
Fig. 1.3. Manually labelling these features is quick and could potentially be
automated with existing eye detection techniques. Based on the input mesh
and the labels we estimate the parameters for each eye. Specifically, we es-
timate the rigid transformation, the scale, the coefficients of the deformable
model, as well as the radius and position of the pupil, yielding a total of 14
unknowns for a single eye. The orientation of the pupil is constrained by
our model to the average pupil orientation of the database. Fitting is based
on four weighted energy terms, which form the total energy Etotal to be min-
imized:

Etotal = λsEsclera + λlElimbus + λpEpupil + λcEcoe f f . (5.12)

The sclera energy term (Esclera) penalizes the distance between the model
meshM and the sclera mesh Z from the face scan, and is defined as

Esclera =
1
|Z| ∑

xi,ni∈Z
‖〈(xi − χ(xi,M)) , ni〉‖2 , (5.13)

where xi are the sclera mesh points and their closest points on the model are
χ(xi,M). Distance is only constrained along the normal ni, which allows
tangential motion. The sclera mesh is segmented from the full face mesh
using the sclera and limbus annotations.

The limbus energy term (Elimbus) penalizes the distance between the projec-
tion of the model limbus into the viewpoint and the limbus:

Elimbus =
1
|LS | ∑

yi∈LS

∥∥∥yi − φ(yi,LM)
∥∥∥2

, (5.14)

where yi are the limbus annotations and their closest points to the projected
model limbus are φ(yi,LM).

Similarly, the pupil energy term (Epupil) penalizes deviation of the projected
model pupil from the pupil annotations. Unlike the limbus energy, this en-
ergy has to take into account the refraction taking place at the cornea inter-
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face when projecting the pupil into the camera. For the refraction computa-
tion we use a continuous spline approximation of the cornea surface.

The last term corresponds to the coefficient term defined in Equation 5.4. All
terms are weighted equally, i.e. all lambdas are set to 1.

Since this is a highly non-linear energy, we optimize it iteratively following
an Expectation-Maximization (EM) schema. In the E-step we recompute all
the correspondences based on the current estimate of the model, and in the
M-step we fix the correspondences and optimize for the parameters using
the Levenberg-Marquart algorithm. Typically, the optimization converges
in about 5 iterations.

Iris Control Map. The optimization above yields the eyeball geometry and
a disk centered at the fitted pupil, which will serve as proxy to compute the
iris control map. As this disk only approximately corresponds to the real
iris geometry, each view will produce a slightly different iris texture. Since
the cameras of the MVS system frame the full head and lack resolution in
the eye area, we employ two zoomed in cameras to compute the iris texture.
From the two, we manually select the one producing the sharpest texture
as our primary view. The other view is used to inpaint the highlights only.
The algorithm computes a highlight probability using the method of Shen et
al. [2009] for each view and combines the iris texture maps according to

C =
Cpwp + Cs(1− wp)ws

wp + (1− wp)ws
, (5.15)

where Cp and Cs are the colors of the primary and secondary textures, and
wp and ws are the highlight confidence maps. As discussed in Section 5.3,
the resolution of the control map depends on the resolution of the input
images. In our particular setup, the resolution of the control map in polar
coordinates is 256x64 pixels.

Eye Pair Fitting. The properties of a pair of eyes are typically highly corre-
lated, as was also shown in our eye reconstruction work. This correlation can
be leveraged to reduce the dimensionality of the fitting task from naı̈vely 28
dimensions to 21. Since it is reasonable to assume that the eyes have a similar
(but antisymmetric) shape we can use the same shape coefficients and scale
for the second eye. Furthermore, the rigid transformation of the second eye
is linked to the first and can be reduced from 6 to 3 degrees of freedom, one
for the vergence angle and two for the inter-ocular vector. The remaining
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parameters are then pupil radius and position, which may differ between
the two eyes.

Multi-Pose Fitting. If we assume that the shape of the eyeball is rigid, we
can leverage multiple eye poses to better constrain the optimization. The
shape coefficients and global scale, as well as the inter-ocular vector are then
shared amongst all poses, as are the pupil positions. Fig. 5.7 shows an ex-
ample of multi-pose fitting, where we jointly optimize the parameters based
on three poses.

5.5.2 Single Image Fitting

Fitting our eye model to a single image is much less constrained than the
multi-view scan fitting since less data is available. Neither can we rely on
depth information nor do we have multiple views to constrain the optimiza-
tion. Still, by making some assumptions we are able to extract plausible
model parameters for a given image.

The optimization for single image fitting is based on the same energy for-
mulation as the multi-view case, described in Equation 5.12, but since we
do not have 3D information, the sclera term is removed. Thus the proposed
method requires just limbus and pupil annotations, and relies stronger on
the model prior. For example, we fix the scale of the eye to 1 due to the in-
herent depth/scale ambiguity in the monocular case. Furthermore, we rely
on the position of the model pupil and optimize for pupil radius only. To
project the limbus and pupil into the image, the method requires a rough
guess of the camera parameters (focal length, and sensor size), which can be
provided manually or extracted from meta-data (EXIF).

5.6 Results

In this section we will demonstrate the performance of the proposed method
on a variety of input modalities, ranging from constrained multi-view sce-
narios to lightweight reconstruction from single images. Before showing
fitting results, we will demonstrate the benefits of the parametric eye model
for manipulation.

The appearance of the vein network in the sclera varies as a function of the
physiological state of the person, leading to effects such as red eyes caused
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by fatigue. The proposed parametric vein model can account for such ef-
fects (and others) as shown in Fig. 5.8, where we globally change the depth
at which veins grow from shallow (a) to deep (b), which influences their
visibility, as well as the overall vein thickness from thick (c) to thin (d).

Since we do reconstruct the complete dilation stack of an iris, the pupil size
can be manipulated to account for virtual illumination conditions or to sim-
ulate some physiological effects, such as hippus, which is an oscillation of
the pupil diameter. Fig. 5.9 shows three different irises at four different dila-
tion stages. Our method nicely models the geometric detail that varies as the
the pupil dilates (left to right). The three irises differ in color, ranging from
brown (top) to blue (middle) to dichromatic (bottom). One can clearly see
the different surface structure, which is inherently linked to the color, with
brown irises being smoother and blueish more fibrous. Since our method
generates the structure as a function of the iris color, one can indirectly con-
trol the structure by changing the color of the iris. In the special case of the
dichromatic iris (bottom), the method produces structural details that vary
spatially and match the color. The dichromatic iris corresponds to the right
iris in Fig. 5.10.

Fig. 5.11 shows reconstruction results on a variety of different eyes, all cap-
tured in the multi-view setup and reconstructed using multi-view fitting.
The eyes exhibit varying iris color and structure, eyeball shape and sclera
vein networks. Since we operate on the same input data as multi-view face
reconstruction algorithms, namely a set of calibrated images, our method
seamlessly integrates with existing facial capture pipelines and augments
the face by adding eyes, one of the most critical components, as can be seen
in Fig. 5.1.

Fig. 5.12 demonstrates the robustness of our method. It shows the result
of a single image fit and the effect of reducing the resolution of the input
image by a factor of 35. Credible high-frequency detail missing in the low-
resolution image is synthesized by our method to produce similar quality
outputs.

Fig. 5.13 shows a comparison of our eye reconstruction method with our
lightweight fitting approach for an eye not contained in the eye database.
The results are generated from the same multi-view data from which also
the image for the comparison in Fig. 5.12 stems. Despite fitting the model to
just a single pose our approach produces results which are very close to the
more laborious eye reconstruction method. The mismatch of the back parts
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of the eyeballs is of little significance since neither of the methods produces
an accurate reconstruction of these hidden parts.

The computational effort required to reconstruct an eye is about 20 minutes.
The most time intense parts are the iris synthesis and the reconstruction of
the Laplacian system formed by the iris stack. Labelling a single image takes
about 3 minutes, which is the only user input required.

Being able to reconstruct eyes from single images as shown in Fig. 5.14 pro-
vides a truly lightweight method to create high-quality CG eyes, not only
from photographs but also from artistic renditions, such as sketches or paint-
ings and even extending beyond human eyes, as shown in Fig. 5.15.
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a) Captured texture

e) Combined texture

b) Control map

c) Synthesized patches

d) Synthesized texture

Figure 5.4: Synthesizing an iris consists of capturing initial textures (a), from which
control maps are generated by removing specular highlights (b). This con-
trol map is input to a constrained texture synthesis that combines irregular
patches (c) from the database to a single texture (d), which is then filtered
and recombined with the control map to augment the low-res control map
with high-frequency detail (e). The figure shows close-ups from a brown iris
on the left and from a blueish iris on the right.
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Figure 5.5: The iris geometry is tesselated uniformly in the polar domain, yielding eight
neighbors per vertex spatially (blue, left) as well as the forward neighbors in
time (orange, right), which describe the trajectory a vertex follows during
dilation. The trajectory is longest at the pupil and has to be properly scaled
during synthesis.

77



Parametric Eye Model

g) Primary h) Secondary i) Tertiary

b) Deep c) Shallowa) All

d) Annotations e) Thick f) Thin

Figure 5.6: Our parametric vein model allows the manipulation of the appearance of
the veins (a) using a parameter for thickness and one for depth. The vein
appearance is computed from an annotated exemplar texture (black segments
in d), and our parametric vein model allows to independently manipulate
depth (b,c) and thickness (e,f) to control the appearance. Veins are defined by
different vein recipes for the three different level (g,h,i).
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Figure 5.7: We can leverage multiple eye poses to better constrain the fitting optimiza-
tion. Here we fit simultaneously to three poses.

a) b) d)c)

Figure 5.8: Since we can parametrically control the sclera vein network and appearance,
we can simulate physiological effects such as red eyes due to fatigue. Here we
globally change the depth at which the veins grow from shallow (a) to deep
(b), as well as their thickness from thick (c) to thin (d).
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Figure 5.9: Since geometric detail is inherently linked to the color of an iris, we can
synthesize realistic microstructure, ranging from smooth for brown (top) to
fibrous for blueish irisis (center). The bottom row shows a dichromatic iris
that mixes gray-green and red-brown colors, which is clearly visible in the
synthesized structure.

Figure 5.10: Our method is able to reconstruct complex dichromatic irises by combining
different color exemplars from the database.
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Figure 5.11: Our method can reconstruct a variety of different eyes with varying eyeball
shape, iris structure and color, and synthesize realistic scleras with vein
textures and surface details.
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Figure 5.12: We demonstrate the robustness of our method by fitting the eye model to
a single high-resolution (HR) image and a low-resolution image (LR) ob-
tained by down-sampling the first by a factor of 35. The figure shows the
reference images (left), the reconstructed iris geometries (center), and the
textured iris geometries (right).

Comparison

Lightweight

High-Quality

0.5mm0mm

Figure 5.13: Reconstruction comparison between our high-quality and lightweight
methods. The figure shows the iris geometries (left) and textures (center)
generated from the same multi-view data from which also the image for the
comparison in Fig. 5.12 stems. The right side shows a comparison of the
reconstructed eyeball meshes. The color map visualizes the error between
the eyeball meshes of two methods.
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Figure 5.14: The proposed method can fit eyes even to single images such as this
one, opening up applications for eye reconstruction from internet photos.
Source: [Wikimedia Commons, 2006].
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Figure 5.15: We show the robustness of our method by fitting eyes even to artistic paint-
ings and single images of animals. Sources: [Wikimedia Commons, 1887;
Wikimedia Commons, 1485; Flickr, 2006].
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C H A P T E R 6
Eye Rigging

Figure 6.1: We present a new physiologically accurate eye rig based on accurate mea-
surements from a multi-view imaging system and show where assumptions
often made in computer graphics start to break down. This figure shows an
input image with the eye rig overlaid, the eye rig, and a comparison between
our (green) and a simple eye rig (red) traditionally used in computer graph-
ics (left to right).

In Chapter 5 we present a novel parametric eye model. This eye model al-
lows for the quick and robust generation of realistic eyes from as little as a
single image. This model, however, is limited to the eyeball and does not
model the movement nor the positioning of the eyes within the head.

In this chapter we present a parametric eye rig and a method to estimate its
person-specific parameters from images as an extension to the parametric
eye model introduced in Chapter 5. We define this novel eye rig in Sec-
tion 6.1. In Section 6.2 we describe the image capture setup that we need
for estimating the rig parameters. This estimation has two phases. First, we
fit the eyeball shape and per frame pose (Section 6.3) and second we fit the
actual rig (Section 6.4). We validate the effectiveness of the presented rig and
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investigate the importance of accurate eye motion modeling in the context
of computer animation (Section 6.5).

6.1 Eye Rig

Our eye rig consists of several parameters that define the rig configuration.
We differentiate between static and dynamic parameters, where static param-
eters are person-specific but do not change during animation, and dynamic
parameters can change over time. The static configuration describes the ge-
ometry of the rig, such as, for example the interocular distance or the shape
of the eyeballs. We attribute the static variables with a bar (x̄). The dynamic
configuration defines the motion of the eyes, and we attribute dynamic vari-
ables with a dot (ẋ). The entire configuration containing both static and dy-
namic parameters is denoted as ˙̄P .

In the following we describe the individual rig parameters. Without loss
of generality, we will consistently refer to a right-handed coordinate system
where the x-axis points left, the y-axis points up, and the z-axis points for-
ward, all with respect to the character.

6.1.1 Eye Shape

Fig. 3.1 (b) shows a cross-section of the eye and labels the most important
features in our context, which we will discuss in more detail below.

Eyeball shape For the eyeball shape we use the parametric eye model in-
truduced in chapter Chapter 5. This model represents the eyeball shape with
a PCA model with six modes plus a global scale. Since the two eyes of an
individual are similar in shape, we employ a set of six symmetric coefficients
coupled with a set of six antisymmetric coefficients that model the difference
and are regularized to be small.

It will become convenient to model certain parameters as splines on the eye-
ball surface (e.g. the limbus, as described next), and so in order to allow for
simple and efficient evaluation of splines on the eyeball surface, we transi-
tion from the irregular mesh domain to the regular image domain and store
the mean shape and difference vectors as texture maps. The texture param-
eterization is based on spherical coordinates and chosen such that the poles
are on the top and bottom of the eye, and the texture resolution is 2048x1024
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pixels. Given the rig configuration ˙̄P , any point xuv ∈ R2 in texture space
can be transformed to a point xworld ∈ R3 in world space via

xworld = Eyeball(xuv, ˙̄P), (6.1)

which applies the inverse texture parameterization at xuv followed by a for-
ward evaluation of the rig configuration ˙̄P .

Limbus The limbus refers to the boundary between the cornea and sclera.
Its shape and position is tightly coupled with the shape of the eyeball and
has no additional degrees of freedom. We represent the limbus in texture
space as a closed B-spline that is directly mapped to the eyeball surface. We
define the mapping of points xctr ∈ R1 on the spline to points xuv ∈ R2 in
texture space as

xuv = Limbus(xctr). (6.2)

Pupil Our parametric eye also contains a pupil. However, it is the mean
pupil of a captured dataset and does not account for any person-dependent
excentricity of the pupil. To address this we add three translation parame-
ters that are static and common to both eyes, which describe the offset from
the mean pupil. Analogous to the eyeball shape coefficients we control the
radius of the two pupils via a symmetric parameter and an antisymmetric
one that accounts for the fact that the two pupils will be similar in radius
but not exactly the same. The pupil radius parameters vary per pose and are
thus dynamic.

Visual axis The gaze direction of an eye does not coincide with the optical
axis, but with the visual axis of the eye, which is defined as the ray passing
through the center of the pupil and originating at the point on the retina
with the sharpest vision, the fovea. Since we do not know the location of the
fovea, we model the visual axis by a ray originating at the center of the pupil.
The direction of the ray is defined in spherical coordinates, as the inclination
relative to the z-axis. The pair of visual axes for the two eyes is given by four
static parameters, a symmetric polar angle and antisymmetric azimuth that
provide the main directions, coupled with an antisymmetric polar angle and
symmetric azimuth that model slight deviations between the left and right
eyes.
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Eyelid interface The eyelid interface defines the location where the skin
of the eyelid touches the eyeball. We extend the parametric eye model with
a parametric model of the eyelid interface. Similar to the limbus, this inter-
face is represented by curves in texture space, one for the upper and one for
the lower eyelid interface. The shape of the curves is based on two fourth
order B-splines whose six middle control points are constrained as shown
in Fig. 6.2. The control points are constrained to lie on equidistant lines
perpendicular to the horizontal line connecting the two corners of the eye.
Each perpendicular line contains two control points that are parametrized
by the opening of the eyelid (computed as the signed distance between the
two points) and the vertical offset of the points (parameterized by the signed
distance between their mean and the horizontal line). The opening param-
eter is constrained to positive values which prevents the upper curve from
crossing over the lower curve. The eye rotation relative to the eyelid inter-
face is accounted for by warping the eyelid curves in texture space. Since
the texture coordinates are based on spherical coordinates, the warp can be
computed analytically. Given the rig configuration ˙̄P , we define the map-
ping of points xctr ∈ R1 on the spline to points xuv ∈ R2 in texture space
as

xuv = Eyelid(xctr, ˙̄P). (6.3)

Tear duct We model the tear duct as a line segment between the last point
on the upper eyelid interface curve and the last point on the lower eyelid
interface curve.

6.1.2 Eye Motion

As depicted in Fig. 3.1 (a), the eye is driven by a set of muscles that exert
translational forces on the eyeball in order to rotate it. Two muscles are re-
sponsible for one rotational degree of freedom (one for each direction), but
for any actual motion there is always several of these muscles being acti-
vated in a complex and orchestrated way. An in-depth discussion of the
muscular eye actuation is beyond the scope of this thesis and we refer the
interested reader to medical textbooks [Carpenter, 1988]. To name just one
example, when the eye is rotated horizontally away from the nose (abducted),
most of the work to rotate the eye upwards (elevation) will be done by the su-
perior rectus muscle. On the other hand, when the eye is rotated horizontally
towards the nose (adducted), it will be the inferior oblique muscle that is re-
sponsible for elevating the eye. As a consequence, the typical assumption
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a
c d b

bU

bL

Figure 6.2: The eyelid interface consists of two B-spline curves (from a to bU and a to
bL) defined by their control points (red and blue). The blue control points
can move freely. The middle control points (red) are equally distributed on
the middle line connecting the eye corner (a) and the tear duct (b) and are
constrained to move perpendicularly to this middle line. The two control
points on each of these lines are parameterized by the eye opening distance
(c) and their joint vertical shift from the middle line (d).

that the eye rotates only horizontally and vertically around a static pivot is
incorrect. In reality the eye not only exhibits rotation around all axes, but
also translates within its socket during rotation [Fry and Hill, 1962].

Rotation We model the eye rotation Θ̇ based on a Helmholz gimbal with
three degrees of freedom (up/down=Θ̇x, right/left=Θ̇y, torsion=Θ̇z). Ac-
cording to Donders’ law, for a given gaze direction

(
Θ̇x, Θ̇y

)
the torsion an-

gle Θ̇z is unique and independent of how the eye reached that gaze direction.
To determine the corresponding z-axis rotation for a given gaze direction we
apply Listing’s law following the work of Van Run et al. [1993]. Listing’s law
states that all feasible eye orientations are reached by starting from a single
reference gaze direction and then rotating about an axis that lies within the
plane orthogonal to this gaze direction. This plane is known as the Listing’s
plane, which we parameterize by (Θ̄x,Θ̄y)

Θ̇z = L
(
Θ̇x − Θ̄x, Θ̇y − Θ̄y

)
. (6.4)

Translation While Listing’s model is well understood in ophthalmology,
only very little is known about the translation of the rotation center. Fry and
Hill [1962; 1963] reported that the rotation center of the eye is not a single
point, but that it lies on a fixed arc called the centrode. For the left-right
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motion of the eye, they report that the rotational center of the eye orbits
around the center of its socket at an average distance of 0.79mm. For the up-
down motion they report an inverted orbit, i.e. the eye moves forward when
rotating up and down. Their measurements were limited to central left-right
and up-down motions, and as shown in Fig. 6.11 our measurements match
theirs very well. Unfortunately, to the best of our knowledge, no model
that predicts eye translation over the entire range has been developed to
date. Based on theirs and our measurements we hence suggest the following
model to account for translation.

To account for the translational motion of the eye, we introduce the function
Ψ(·) that adds a pose dependent offset to the person-specific rotational pivot
p̄ for a given eye gaze:

ṗ = Ψ
(
Θ̇x, Θ̇y

)
+ p̄. (6.5)

Based on our measurements (Fig. 6.10) we model Ψ(·) as a bivariate
quadratic function

Ψ
(
Θ̇x, Θ̇y

)
= (ᾱ0 ± δ̄0) + (ᾱ1 ± δ̄1) · Θ̇x + (ᾱ2 ± δ̄2) · Θ̇y

+ (ᾱ3 ± δ̄3) · Θ̇2
x + (ᾱ4 ± δ̄4) · Θ̇2

y

+ (ᾱ5 ± δ̄5) · Θ̇x · Θ̇y, (6.6)

where the ᾱ0−5 parameters are symmetric between the left and right eye,
and the δ̄0−5 are antisymmetric.

6.1.3 Eye Positioning

The eyes are positioned inside the head via a series of transformations. The
most direct way would be to place each eye independently in the world co-
ordinate frame, but this would require two full rigid transformations per
frame, and hence be highly overdetermined. The aim is thus to reduce
the degrees of freedom as much as possible without sacrificing the required
flexibility. For an overview of the chosen coordinate frames please refer to
Fig. 6.3.

World → Skull A first step is to model the head motion. This will require
one rigid transformation per frame Ṁworld→skull, which can be given by an-
imation curves or estimated from captured data (e.g. [Beeler and Bradley,
2014]).
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Skull → Pair Relative to the skull we create an eye pair coordinate frame,
defined via the reduced rigid transformation M̄skull→pair. This coordinate
frame is chosen such that its origin is in the middle between the left and
right eyes, with the x-axis going through their rotational pivots p̄, and the
x-axis rotation is kept identical with the x-axis rotation of the skull. The pair
coordinate frame is person-specific but static as it does not change during
animation.

Pair → Socket The left and right eye sockets are defined relative to the
eye pair coordinate frame via a static transform M̄pair→socket. The sockets are
translated by plus/minus half the interocular distance along the x-axis and
plus/minus half the vertical eye offset along the y-axis.

World → Socket The ultimate socket transformation per eye is given by
the concatenation of the individual transformations. The total number of
degrees of freedom is 6n (World → Skull) + 5 (Skull → Pair) + 2 (Pair →
Socket) = 6n + 7, where n is the number of frames, versus the 12n of the most
naı̈ve model.

6.1.4 Eye Control

Once fit to a person (Section 6.4), the proposed rig exposes the eye gazes as
control parameters for the eye pose. Consistent with industry grade eye rigs,
an animator may animate the eye gazes of the left and right eyes individu-
ally, or couple them via a controllable look-at point of the character. In the
former case the rig exposes four degrees of freedom (one 2D gaze per eye),
which are reduced to three in the latter case (one 3D lookat point). Further-
more, the opening of the pupil can be controlled by a single user parameter
during animation.

6.2 Data Acquisition

In order to develop our eye rig we depend on high-quality data of real eye
motion. We employ a multiview capture setup consisting of 12 DSLR cam-
eras (Canon 1200D) for taking photographs of static eye poses, from which
we can reconstruct the shape of the skin surface using the system proposed
by Beeler et al. [2010]. For a given subject, we record approximately 60 dif-
ferent eye positions, corresponding to one set of gaze points approximately 1
meter from the subject, which span three horizontal rows at various heights,
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M̄skull pair

Ṁworld skull

M̄+
pair      socket

M̄−
pair      socket

world
skull

pair

left socket

right socket

Figure 6.3: The proposed rig rotates and offsets the eye relative to its socket. The left and
right sockets are defined via antisymmetric transformations relative to the
joint pair coordinate frame, which in turn is relative to the coordinate frame
of the skull. While all of these transformations are static, the skull moves
relative to the world coordinate frame over time.

as well as a second set of gaze points that increase in distance from the sub-
ject along a single viewing ray, in the range of 0.25 to 3 meters. For the entire
capture session the subject maintains a fixed head position. As a result, there
is only little motion between frames and we can track a face mesh template
to all frames [Beeler et al., 2011] and compute the underlying skull pose us-
ing a rigid stabilization technique [Beeler and Bradley, 2014]. Our setup is
shown in Fig. 6.4.

We further record the 3D look-at point for each pose using an HTC Vive
tracking system1. We modified one of the Vive controllers by adding a small
light bulb, which the subject is instructed to fixate on during acquisition.
To register the camera coordinate frame with the coordinate frame of the
Vive, we need to compute the rigid transformation that aligns them. This
is a trivial task if we have a set of point correspondences in each coordinate
frame. To this end, we record a series of points with the Vive, and for each
point we reconstruct the 3D position in camera space by detecting the light
bulb in the cameras and triangulating. Since the light bulb position does
not coincide exactly with the tracking point of the vive controller, we also
capture the controller at various orientations, allowing us to solve for the
light bulb offset as part of the coordinate frame transformation.

To add robustness outside the working volume of the cameras, we also
record the position of the cameras with the tracked controller. Since we can-
not move the controller to the center of the camera we record a point on the
camera lens axis, close to the back of the camera, and account for this one-

1www.vive.com
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4 Lights

12 Cameras

1 Vive
Controller

Figure 6.4: Our capture setup consists of 12 DSLR cameras and 4 industrial light
flashes, providing synchronized multi-view imagery of static eye poses. We
modified an HTC Vive Controller by adding a small light bulb, which the
subject fixates on during acquisition, giving ground truth 3D look-at points.

dimensional offset when solving for the transformation between the camera
and Vive coordinate frames.

The final result of our data acquisition stage is a multi-view image dataset of
approximately 60 eye poses, complete with facial geometry that has known
rigid head transformations between poses, and known 3D look-at points.
We captured and evaluated our method on three different subjects.

6.3 Eye Configuration Reconstruction

One of the core components of this work is to empirically design an eye rig
that is capable of faithfully representing real eye motions while being com-
pact and robust to noise. We aim to construct a person-specific rig from
the captured data described in Section 6.2. Thus far, however, the dataset
contains only reconstructed face meshes and skull transformations, but no
per-frame eyeball geometry to fit the rig to. In this section we describe how
we obtain the eye configurations (shape and per-frame pose) for the cap-
tured data. Once we have accurately reconstructed the eye configurations,
we fit the person-specific eye rig parameters as described in Section 6.4.
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We wish to reconstruct eye configurations with as little regularization as pos-
sible in order to remain faithful to the data. For the shape, fortunately we
can rely on the parametric eye model introduced in Chapter 5, which was
itself generated from measured data acquired with the system presented in
Chapter 4. This alleviates the problem considerably and leaves us only with
the need to recover the six degrees of freedom of the eye pose, which we
denote Ṁ ∈ R6, for each pose of each eye. One viable option would be to es-
timate Ṁ independently per frame per eye without any a-priori knowledge.
On the other hand, we do know certain things about eye movements from
the medical literature, such as Listing’s model, and it will be helpful to be
able to rely on such information where possible. Therefore, we propose to
actually use a subset of our rig introduced in Section 6.1 to reconstruct the
individual eye poses of the dataset.

As with most applications of parametric model fitting to real world data, our
rig will only explain the captured imagery up to a certain error. In order to
improve the fit we introduce two slack variables in the eye pose computa-
tion. First, we add a per pose torsion residual Θ̇ε

z to Equation 6.4, yielding

Θ̇z = L
(
Θ̇x − Θ̄x, Θ̇y − Θ̄y

)
+ Θ̇ε

z . (6.7)

Secondly, we add a per-pose residual ṗε for the rotational pivot point in
Equation 6.5, yielding

ṗ = Ψ
(
Θ̇x, Θ̇y

)
+ p̄ + ṗε. (6.8)

As we did not know the general shape of Ψ(·) initially, we simply set it
to 0. However, when reconstructing the poses for future subjects, one can
use Equation 6.6 instead as a-priori information. These slack variables are
weakly regularized to be small, incentivising the other variables to capture
as much of the signal as possible and only represent the residual. Together
with the gaze direction (Θ̇x, Θ̇y), this amounts to six dynamic degrees of
freedom per eye and allows to accurately reconstruct eye poses while still
leveraging prior knowledge.

We obtain the eye configurations by fitting to manual annotations (Sec-
tion 6.3.1), which makes fitting very robust. Automatic labelling is chal-
lenging due to the complexity of the eye region in terms of geometry and
appearance. Manual annotations, however, are not pixel-perfect and there-
fore the fits contain errors. Thus, we refine the positions with photometric
constraints (Section 6.3.2). The final eye configurations will be passed on to
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Figure 6.5: Example image annotations: limbus (yellow/turquoise), lower eyelid inter-
face (red/blue), tear duct (orange/cyan), and pupil (brown/gray).

our full rig fitting algorithm described in Section 6.4. We employ the Ceres
solver [2018] to solve for optimal parameters P .

6.3.1 Annotation Fitting

The eyeball positions are first fitted to image annotations. As shown
in Fig. 6.5, we manually annotate the limbus, the eyelid interfaces, the
pupils, and the eye corners. The features are annotated in approximately
three camera views each, selecting vantage points for which the feature is
best visible. For each of these annotations we formulate a constraint, which
together form the following optimization problem

Eannotation = Elimbus + Eeyelid + Eshape + Ecorners + Epupil. (6.9)

Limbus constraint The limbus constraint forces the projection of the
model limbus contour to be close to the annotated limbus contour in the
image. The similarity of the two contours is computed in image space by
sampling the annotated contour every millimeter. For each sample point
alim

i , the distance to the closest point on the model limbus contour is com-
puted. This corresponding point is defined by a single curve parameter clim

i ,
which is part of the optimization to allow the correspondence to slide along
the limbus contour. Via Equation 6.2 and Equation 6.1 the curve parame-
ter clim

i is mapped to world space and then projected via Camera(·) into the
image plane
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wlimbus = 1 wa
pupil = 1

weyelid = 1 wb
pupil = 10

wcorners = 10 winter−camera = 4000
wshape = 10 winter− f rame = 4

wre f erence− f rame = 4

Table 6.1: Weights used to balance the individual energy terms.

xlim
i = Camera( Eyeball( Limbus(clim

i ), ˙̄P) )

Elimbus = wlimbus · 1
nlim ·

nlim

∑
i=1

∥∥∥ xlim
i − alim

i

∥∥∥2
, (6.10)

where we compute the weighted L2 norm. The weights for this and the other
energy terms are tabulated in Table 6.1.

Eyelid interface constraint Conceptually, the eyelid interface constraints
are identical to the limbus constraints. They force the projection of the model
eyelid interface to be close to the corresponding annotations. These anno-
tations are sampled every millimeter and each sample has a sliding corre-
spondence on the model defined by a curve parameters clid

i . This parameter
is part of the optimization and is initialized with the closest point. Analo-
gous to the limbus constraint the residuals are computed in camera space as
the weighted L2 difference of the annotation samples alid

i and their projected
correspondences xlid

i :

xlid
i = Camera( Eyeball( Eyelid(clid

i , ˙̄P), ˙̄P) )

Eeyelid = weyelid · 1
nlid ·

nlid

∑
i=1

∥∥∥ xlid
i − alid

i

∥∥∥2
. (6.11)

The eyelid interface is oftentimes only partially visible in a camera due to
occlusion by the eyeball, and hence we have to take into account visibility
when computing correspondences. As visibility computation is costly and
not easily differentiable, we precompute it and keep it fixed during opti-
mization. After convergence we re-compute visibility and continue to opti-
mize with updated constraints. We found two such alternating iterations to
be sufficient.

96



6.3 Eye Configuration Reconstruction

Eyelid interface shape constraint The chosen eyelid interface model can
represent shapes that are not realistic. To prevent the optimization to get
stuck in such a configuration we add an eyelid interface shape constraint.
This term penalizes angles αi between three successive control points ci−1,
ci, and ci+1 of the upper and lower eyelid interface curves. If the angle is
smaller than αconcave = 10◦ or bigger than αconvex = 30◦ the curve is penal-
ized with

Eshape = wshape · 1
nshp ·

nshp

∑
i=1

∥∥∥ dshp
i

∥∥∥2
(6.12)

dshp
i =

⎧⎪⎨
⎪⎩

αi − αconvex, αi > αconvex

αi + αconcave, αi < −αconcave

0, otherwise

αi = angle(ci−1, ci, ci+1). (6.13)

Eye corner constraint The eye corner constraint is a special case of the
eyelid interface constraint and minimizes the weighted L2 distance between
the projection xcor

i of the eyelid interface end points ccor
i ∈ 0, 1 and their

corresponding corner annotations acor
i

xcor
i = Camera( Eyeball( Eyelid(ccor

i , ˙̄P), ˙̄P) )

Ecorners = wcorners · 1
ncor

ncor

∑
i=1
‖ xcor

i − acor
i ‖2. (6.14)

Pupil constraint The pupil constraint forces the projection of the pupil
model to be close to the pupil annotations. Conceptually, this is very sim-
ilar to the limbus constraint but with the major difference that we have to
take into account refraction at the cornea, for which no closed form solution
exists. So instead we do not compute the residual in the image plane but
in world space. We intersect the camera ray from the annotation apup

i with
the cornea, providing the intersection point ypup

i in texture space. We then
refract the ray at this point and compute the distance between the refracted
ray rpup

i and the model pupil circle Pupil( ˙̄P)
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rpup
i = Re f ract( Camera−1(apup

i ), Eyeball(ypup
i , ˙̄P) )

Ea
pupil = wa

pupil ·
1

npup ·
npup

∑
i=1

∥∥∥ rpup
i , Pupil( ˙̄P)

∥∥∥2

ray−circle
. (6.15)

However, since the shape of the cornea changes during the optimization,
we cannot keep ypup

i fixed but allow it to slide on the surface of the eyeball,
such that its projection back into the image plane always coincides with the
sample apup

i

xpup
i = Camera( Eyeball(ypup

i , ˙̄P) )

Eb
pupil = wb

pupil ·
1

npup ·
npup

∑
i=1

∥∥ xpup
i − apup

i

∥∥2
. (6.16)

The final pupil energy is given by the sum of Equation 6.15 and Equa-
tion 6.16.

6.3.2 Photometric Refinement

The annotation-based fitting presented in section 6.3.1 produces a first esti-
mate of the eye positions, but manual annotations are not pixel-perfect and
lead to inaccuracies. To overcome these we introduce an image-based re-
finement term that does not depend on manual annotations, but can highly
benefit from the close initial guess they provide. The idea is to incorpo-
rate additional constraints that enforce photoconsistency across cameras and
across frames by projecting 3D patches of the eye into the different images
to compute the discrepancy. These constraints are defined only on the unob-
structed parts of the sclera and we first describe how we mask out occluders,
such as skin or eyelashes, and introduce the photometric inter-camera and
the inter-frame constraints subsequently. The constraints are formulated in
the same framework and are integrated with the Eannotation energy

Ere f inement = Eannotation

+ winter−camera · Einter−camera

+ winter− f rame · Einter− f rame

+ wre f erence− f rame · Ere f erence− f rame. (6.17)
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Figure 6.6: The proxy eyelid geometry used to compute the sclera masks. The figure
shows the eyeball (orange) and skin (gray) geometries. The lower and up-
per eyelash proxies (blue) consist of an eyelid margin (perpendicular to the
eyeball surface) and an eyelash part.

Mask computation We compute a sclera mask by projecting the fitted eye-
lid interface and limbus contour from the current estimate into the camera.
Unfortunately, for oblique views the sclera part might still be occluded by
eyelashes, the nose or other skin parts. The nose and skin parts are masked
using the face scan geometry, but eyelashes are not present in the face scan.
Therefore, we create an eyelash geometry proxy as shown in Fig. 6.6. This
proxy follows the fitted eyelid interfaces and consists of two parts: the eye-
lid margin and the actual eyelashes. The margin is a six millimeters wide
section perpendicular to the eyeball surface. The eyelashes are connected at
the end of the eye margin and extend the proxy further out by 7 millimeters
but are bent down at a 45 degrees angle. This proxy is then used together
with the face geometry to render sclera masks for both eyes in all cameras
and all frames.

Inter-camera constraint The inter-camera constraint tries to maximize the
similarity of a 3D patch from one frame projected into all cameras. The ap-
proach is to sample the space along patch normals to find better positions.
These positions are then added as constraints to the optimization problem.

We select points on the sclera on a regular grid in texture space so that they
are separated by about 0.5 millimeters. We prune points that are not seen by
at least two cameras. Inspired by Beeler et al. [2010] we create a 25x25 pixel
3D patch for each sample point that is offset forwards and backwards in
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steps of 0.1 millimeters up to ±1.5 millimeters. These patches are not planar
but have the local shape of the eyeball. At each offset the algorithm com-
putes the normalized cross-correlation between a reference camera and all
the other cameras and weights the correlations by the foreshortening angle.
We use the masks to evaluate the visibility of the patches in each camera.

The algorithm chooses the reference camera based on a structure measure,
which is the sum of neighbor pixel differences. This is required since we
cannot solely rely on foreshortening as some cameras might be out-of-focus
due to the shallow depth of field of the cameras.

The optimization residual is formed by the offset position with the smallest
photometric error xopt

i and the corresponding closest point on the eyeball
surface. The closest point is defined by a texture coordinate yinter−camera

i and
is part of the optimization parameters.

xinter−camera
i = Eyeball(yinter−camera

i , ˙̄P)
Einter−camera =

∥∥∥ xinter−camera
i − xopt

i

∥∥∥2
. (6.18)

Inter-frame constraint For a given camera the inter-frame constraint
tracks and links the same features of two adjacent frames, for which the
gaze direction differs by no more than 20 degrees. To compute correspon-
dences between the frames for a given camera, we compute a texture for
both frames. The veins are the features which are the easiest to track. Thus,
we band-pass filter one of the textures and pick only a small percentage
(0.05%) of the pixels with the highest response as samples. Then, the feature
density is reduced such that features are separated by at least one millime-
ter using a non-maxima suppression strategy. For the remaining features we
compute a correspondence in the other texture with a brute force search. The
search window is 21 pixels wide and we search up to a maximum distance of
30 pixels. To speed up the search we use an image pyramid with three levels
and initialize the next layer with the result of the coarser one. We filter the
correspondences using RANSAC [Fischler and Bolles, 1981] as follows. For
every two features in one texture we compute the similarity transform that
transforms the features into the corresponding features of the other texture.
Given this transformation we measure how well all the features map onto
their corresponding features. Features with a distance bigger than 0.25 mil-
limeters to their correspondences are considered to be outliers and ignored.
Ultimately, the transformation with the overall highest score is used to filter
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outliers. If there are less than six correspondences we completely ignore the
frame.

When these features in texture space between two frames match up, then the
eye configurations are reconstructed correctly. To constrain the optimization
towards that configuration, we project for every feature j the texture loca-
tions fj

i and fj
k into the camera yielding aj

i and aj
k for frames i and k, respec-

tively:

aj
i = Camera( Eyeball(fj

i ,
˙̄Pi) ). (6.19)

We now add a free variable fj to the optimization, with the intent that this
represents the true feature location on the eyeball, and hence projects onto
all aj

i in the respective frames.

xj
i = Camera( Eyeball(fj, ˙̄Pi) )

Einter− f rame = ∑
i,j

∥∥∥ xj
i − aj

i

∥∥∥2
. (6.20)

Reference-frame rotation constraint The sclera is covered by a protec-
tive, mostly transparent skin called the conjunctiva. This skin is not firmly
attached to the eyeball, but actually slides over it, stretching and folding dur-
ing eye rotations. Since both sclera and conjunctiva contain veins and other
features, these features move relative to each other (Fig. 6.7) which poses a
challenge for the inter-frame constraints and might cause drift as the inter-
frame constraints are only concerned with neighboring poses. To prevent
this drift we add a rotation constraint that constrains the axial rotation of
a pose with respect to the pose in the reference frame. Since every pose is
constrained to the same reference pose the drift can be eliminated. The rel-
ative motion of conjunctiva and sclera is minimal at the limbus, where the
conjunctiva is thinnest and more firmly connected to the sclera. We com-
pute a photometric residual from this area inside the texture map, which
will constrain the torsion Θ̇z to align the two poses.

With this final refinement step we can accurately compute the poses of the
eyes in all frames individually. In the next section we describe how eye rigs
may be fitted to this data and in Section 6.5 we discuss the captured data in
detail and elaborate how it has informed the design of the proposed eye rig.
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Figure 6.7: The eyeball (shown here in texture space, with the sclera masked) is coated
by a protective, mostly transparent tissue layer called the conjunctiva, which
is not firmly attached to the eyeball but slides over it during rotation. As a
consequence, the veins in the conjunctiva (green arrow) deform relative to
the sclera (red arrows). This complicates alignment of eye poses considerably.

6.4 Eye Rig Fitting

In the previous section we introduced residual variables that add additional
degrees of freedom to the rig and allows to accurately reconstruct the eyeball
poses for all frames independently. Unfortunately, we cannot interpolate
these poses without a model. In this section we show how the individual
components of the proposed rig can be fit to the reconstructed per frame
eye configurations to create a model that faithfully reproduces human eye
motion.

6.4.1 Listing’s Model

Listing’s model predicts the per frame torsion Θ̇z based on the eye gaze
(Θ̇x,Θ̇y). Key to the Listing’s model is the orientation of the Listing’s plane
(Θ̄x,Θ̄y) which we fit based on the measured per frame orientations. As
shown in Fig. 6.8 the model predicts the torsion well in the central field of
view but degrades with more extreme gazes.
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Figure 6.8: Not predicting rotation around the optical axis amounts in large residuals
across the entire range of motion. Listing’s model predicts the torsion reli-
ably for the largest part but fails to explain the extremes where it appears to
deviate from the true physiology of the eye. Note that the model correctly
predicts the dependency on elevation of the eye (Θx).

6.4.2 Translation Model

The translational component of the eye center is estimated using the pro-
posed mapping function Ψ(·) that predicts each translational component
from the eye gaze (Θ̇x,Θ̇y). The parameters are estimated from the measured
per frame translation offsets using bivariate quadratic regression. As shown
in Fig. 6.9 the model predicts the translational behaviour of the eye well.

6.4.3 Eye Rig

Once the static parameters of the predictive models have been computed,
we optimize the other parameters of the rig based on the per frame eye con-
figuration. We uniformly sample the front of eyeball to produce a set of
texture coordinates for which we have corresponding 3D positions in each
frame. Using all these positions as constraints we solve for the optimal rig
parameters.

Simple Rig Disabling the predictive models reduces the proposed eye-rig
to the typical eye-rigs used in computer animation, where the eye motion is
modelled by two rotations (Θ̇x,Θ̇y) around a fixed center of rotation p̄.
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Figure 6.9: The left column shows the remaining translation residuals (red bars) with-
out and the right one with the proposed translation model for offsets
along x- (top), y- (middle) and z-axis (bottom). The proposed model re-
duces the residual substantially. Note, for example, how the lateral off-
set show that the eye translates to the side of the gaze direction as the
muscles pull it, while the vertical residuals without model indicate that
the eye moves upwards when looking down and down when looking up.
This is in line with findings from ophthalmology [Fry and Hill, 1962;
Fry and Hill, 1963] and the proposed regression succeeds at modeling the
effect.
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6.4.4 Visual Axis

In addition to the per frame eye configuration reconstructed in the previous
section we also record the look-at point for every frame (Section 6.2). This
allows to compute the visual axis per eye, given by the offset to its optical
axis in spherical coordinates.

6.5 Results

We start by validating the accuracy of the proposed system as well as inves-
tigating the relevancy of our more accurate eye rig for computer vision and
graphics applications.

The algorithm presented in Section 6.3 allows to reconstruct eye poses
from multi-view imagery at submillimeter precision. Our results are in
line with the findings presented in ophthalmology research papers mea-
sured using specialized hardware [Fry and Hill, 1962; Fry and Hill, 1963;
Carpenter, 1988]. Fig. 6.10 shows the measurements for one of the test sub-
jects. We captured the person doing three horizontal sweeps followed by a
single vertical sweep from neutral gaze upwards. The look-at points were
distributed on the capture gantry (Fig. 6.4) and as a consequence the eleva-
tion of the eye changes during the horizontal sweeps. The gaze directions
are clearly visible and while the vertical gaze is the same for both eyes, the
horizontal gaze differs by a constant offset, which is due to the discrepancy
between the optical and visual axis (Fig. 3.1 (b)).

The left column in Fig. 6.12 shows the measured slack variables, more specif-
ically the translation offset of the pivot as well as the rotation of the eye
around its optical axis, called torsion. One can identify clear patterns that
show that for example the eye moves to the left when rotating left, since
the muscles pull it in that direction. Interestingly, when rotating up the eye
actually translates down and sideways towards the nose.

These measurements are in line with findings reported by ophthalmology
researchers as shown in Fig. 6.11, but we can capture them with a general-
purpose multi-view camera system that allows to go beyond the more con-
strained ophthalmological acquisition, which typically limits motion to a
single direction.

Obviously the simple eye rigs typically employed in computer vision and
graphics cannot explain these measurements. Hence we propose a novel eye
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Figure 6.10: This figure shows the raw measurements of gaze angles for one subject, for
both the left (orange) and (blue) eyes. The subject did three sweeps left to
right at different eye elevations (frames 0-15, 16-33, and 34-50) and finally
a vertical sweep from neutral upwards (51-55). Since the look-at points
were distributed on the capture gantry running over a corner, the vertical
eye motion is higher on the sides than at the front which is clearly visible
in the left plot.

Figure 6.11: Our measurements match the findings presented by Fry and Hill. The left
plot shows the three horizontal sweeps from Fig. 6.10, plotted in relation
to Θy. The colors indicate the three different elevations and the black dots
shows the projection onto the centrode (the orbit of the eye pivot) as sug-
gested by [Fry and Hill, 1962]. The estimated radius of the sphere is 4mm,
which is within the range they reported. The right plot shows lateral mo-
tion for the vertical sweep plotted over the figure from [Fry and Hill, 1963]
demonstrating that our measurements match theirs very well.
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rig that incorporates knowledge from ophthalmology, which fits the mea-
surements much better as shown in Fig. 6.12. The translation model intro-
duced in Section 6.1 succeed at removing most of the signal, leaving just
fitting noise behind, which lies in the order of a tenth of a millimeter. The
Listings model also predicts the torsion well, except for the extreme gaze
poses, where the physiology of the eye motion appears to disagree the theo-
retical model.

The fact that these measurements have been computed from ordinary cam-
eras is a strong indicator that phenomenons such as torsion and eye transla-
tion can be important for computer vision applications, such as accurate eye
gaze estimation (Fig. 6.14). Eye gaze is also central for computer animation,
where a common mistake is to presume the visual axis to align with the opti-
cal axis of the eye, which will lead to cross-eyed characters (Fig. 6.13). As the
visual axis is rotated nasally by about 8 degrees on average relative to our
eye model coordinate frame, the optical axis is actually pointing outwards
when a person is looking at infinity.

To understand the relevancy of our findings for computer graphics applica-
tions we synthesize several eye poses with both the presented and a tradi-
tional eye rig (Fig. 6.14). The traditional eye rig neglects torsion and transla-
tion of the rotational pivot, which leads to subtle yet very noticeable effects
especially for extreme eye poses resulting in a difference in perceived gaze
for the two rigs.
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WITHOUT  Predictive Models WITH Predictive Models

Figure 6.12: With the proposed method we can measure both translation of the pivot
(top three rows) and rotation of the eye around its axis (bottom row). The
measurements reveal patterns which are strongly correlated with the eye
movement (Fig. 6.12). For example it is apparent that the eye moves back-
wards when rotating to either side (bottom-right), sideways in the direction
of gaze (bottom-left), and downwards when looking up (bottom-center).
These results are in line with findings from the ophthalmology community
(Fig. 6.11). We introduce predictive models in Section 6.1 that succeed at
explaining most of the patterns, hence allowing the presented rig to better
resemble the physiologically correct eye motion.
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Fitted axis Limbus axis

Figure 6.13: The visual axis is tilted towards the nose and is not perpendicular to the
limbus. This results in the limbus planes (violet) being oriented away from
the nose if the subject’s gaze is at infinity.

109



Eye Rigging

Figure 6.14: Neglecting torsion and translation of the rotational pivot leads to subtle
yet very noticeable effects as can be seen in this figure. The green limbus
contour plus orientation of the limbus plane represent the results of the
proposed method, where the red ones stem from a simple rig without these
components, but with optimized center of rotation. As you can see, the sim-
ple model degrades in particular towards the extreme eye poses, resulting
in a difference in perceived gaze.
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Figure 6.15: A lot of the mismatches in Fig. 6.14 stem from the fact that traditional eye
models neglect the rotation around the z-axis called torsion. This results
in a mismatch of up to 15 degrees, which is clearly visible on the left side
where the red and blue channels do not align. Using the torsion predicted
by the Listing’s model alleviates this as can be seen on the right.
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C H A P T E R 7
Conclusion

In this thesis we present methods for the creation of eyes for digital humans.
This includes algorithms for the reconstruction, the modeling, and the rig-
ging of eyes for animation and tracking applications.

We capture the shape and texture of the most prominent components of the
eye at an unprecedented level of detail, including the sclera, the cornea, and
the iris. We demonstrate that the generic eye models typically used in our
community are not sufficient to represent all the intricacies of an eye, which
are very person-specific, and we believe that the findings of this thesis have
the potential to alter our community’s current assumptions regarding hu-
man eyes. In addition, we present the first method for reconstructing de-
tailed iris deformation during pupil dilation, and demonstrate two applica-
tions of how data-driven iris animations can be combined with our high-
quality eye reconstructions. A data set has been published on our website1.

These eye reconstructions enable the creation of a new parametric model
of 3D eyes built from a database of high-resolution scans with both geom-
etry and texture. Our model contains a shape subspace for the eyeball, a
coupled shape and color synthesis method for the iris parameterized by a
low-resolution control map, and a sclera vein synthesis approach also with
tunable parameters to generate a variety of realistic vein networks. We also
present an image-based fitting algorithm that allows our parametric model
to be fit to lightweight inputs, such as common facial scanners, or even single
images that can be found on the internet. Our parametric model and fitting
approach allow for simple and efficient eye reconstructions, making eye cap-

1https://www.disneyresearch.com/publication/high-quality-capture-of-eyes/
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ture a more viable approach for industry and home use. Furthermore, the
model allows to manipulate the captured data as it is fully parametric, such
as changing the amount and appearance of sclera veins to simulate physio-
logical effects or controlling the pupil size to have the eye react to synthetic
illumination.

Based on the parametric eye model we present a novel eye rig informed by
ophthalmology findings and based on accurate measurements from a multi-
view imaging system that can reconstruct eye poses at submillimeter accu-
racy. Our goal is to raise the awareness in the computer graphics and vision
communities that the eye movement is more complex than oftentimes as-
sumed. More specifically, we show that the eye is not a purely rotational de-
vice but actually translates during rotation and that it also rotates around its
optical axis. These are important facts, for example, for foveal rendering and
head-mounted display devices, which are gaining a lot of popularity due to
the emerging augmented and virtual reality entertainment. Another impor-
tant aspect that animators have to consider is the fact that the visual axis of
the eye, which defines its gaze, is not identical with the optical axis. Ne-
glecting this leads to cross-eyed gazes which quickly lead into the uncanny
valley. We investigate the effect of ignoring or modeling these phenomena in
the context of computer graphics and computer vision to provide the reader
an intuition of their potential importance for their application.

We believe that these tools and methods are a valuable contribution to the
current eye creation pipeline. These methods allow for the more accurate
and realistic creation of eye shape, appearance, and motion on one hand,
but they also allow for an easier, faster, and more robust creation on the
other hand. We believe that these tools have the potential to change how
eyes are being modeled in the visual effects industry and we hope that they
will infuse a soul into a new generation of digital doubles in films.

7.1 Limitations

The methods presented in this thesis are great for various visual effects ap-
plications. But unfortunately, they have their limitations.

Our eye reconstruction introduced in Chapter 4 system approximates the iris
as a surface. Since the iris is a volumetric object with partially translucent
tissue it is difficult to reconstruct accurately. We believe, however, that the
optical flow correspondences used to reconstruct that surface are sufficiently
accurate to represent the iris with adequate details suitable for rendering,
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already a step forward from traditional practices that approximate the iris
as a plane or cone.

Our parametric eye model (Chapter 5) allows for single-image reconstruc-
tions, but unfortunately not without limitations. As can be seen in some
of the single-image reconstructions, reflections off the cornea are difficult to
identify and ignore and thus can become baked-in to the iris texture (see the
bird example in Fig. 5.15). Additionally, our sclera vein synthesis does not
guarantee to produce vein networks that match any partial veins that might
be visible in the input images. Also, our model is naturally limited by the
size and variation of the input database, and since only a limited number of
scanned high-quality real eyes are currently available, our results may not
optimally match the inputs, but this will be alleviated as more database eyes
become available.

At this stage our fitted rig is person-specific and we have not investigated
how it can generalize to others. This would, of course, be highly desirable
since building the rig requires a dedicated capture session and a lot of man-
ual annotations, which is realistically only feasible for hero assets in large
productions. It will, however, enable to acquire a large corpus of eye motion
and to create a generalizable model based on that data, which we consider
interesting future work.

Nevertheless, even with these limitations our methods provide a great start-
ing point for computer graphics artists to create realistic eyes from images.

7.2 Outlook

Besides addressing the limitations of our system, there are still many oppor-
tunities to extend and improve the presented techniques including recon-
struction of the eye region, modeling of the eye appearance, and modeling
of the eye motion.

Eye region Reconstructing, modeling, and rigging the geometry of the eye
region is still a remaining challenge. The complex geometries, the various
materials, the interfaces between the different parts of the eye, and the oc-
clusions make this a very challenging undertaking. Furthermore, the eyes
and the surrounding skin substantially influence each other. The eyelid is
deformed as the eye moves underneath it and we expect that opening the
eyes wide or firmly closing them does actually influence the position of the
eye in the socket, hence affecting its motion. Future work should thus look
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at ways to couple these two models and provide a rig for the entire eye re-
gion. Currently, a digital artist creates an eye region rig by hand based on his
experience. The model-guided eyelid reconstruction of Bermano et al. [2015]
is a first step, but it is limited to the reconstruction of eyelids. The eyelids
cannot be animated or modified since there is no underlying rig that allows
for this interpolation. Wood et al. [2016a] present a model based on the prin-
cipal component analysis. We believe that better models can be found, that
are better suited to represent the nonlinear deformations of the eye region.

Eye appearance Capturing and modeling the appearance of the eye as
well as eye rendering are topics that we do not investigate in this thesis.
We do not capture reflectance properties of the eyes, such as BRDF or BSS-
RDF parameters. Also, the eye consists of various materials, some varying
in space, such as the sclera and the cornea. Anatomically they are the same
part, but the appearance transitions from white to transparent due to a struc-
tural change. Also the tear layer, covering the eye, leads to glints, many of
them close to the eyelids. The amount of liquid of this layer changes de-
pending on the physical and emotional state of the person. New appearance
capture methods need to be developed in the future which model the eye
with an even greater attention to detail to produce more realistic digital hu-
mans.

Eye dynamics In this thesis, we model the motion of the eye in a static
sense. We model the different poses and states the eyeball and the iris can
reach over time, but we do not analyze the temporal characteristics and dy-
namic behavior such as saccades, hippus, or tremor. These motions have
been investigated extensively, but the analysis is often limited to a 2D gaze
analysis. The 3D techniques, presented in this thesis, might reveal previ-
ously unknown effects. This might lead to potential applications outside of
our community, for example in ophthalmology, where accurate image-based
eye acquisition could help in discovering, monitoring and treating eye dis-
eases.
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Appendix

Appendix

Figure A.1: This figure shows what can go wrong. The two top rows show artifacts pro-
duced by wrong indexing and constraint definition in the Laplacian system
solve of the iris. In the third row we show the result of a range overflow in
vein rendering, and in the bottom row we show the resulting eyeball textures
based on badly fitted eyes.
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Runions, Brendan Lane, Radomı́r Měch, and Przemyslaw Prusinkiewicz. Self-
organizing tree models for image synthesis. ACM Trans. Graphics (Proc. SIG-
GRAPH), 28(3):58, 2009.

[Pamplona et al., 2009] Vitor F Pamplona, Manuel M Oliveira, and Gladimir VG
Baranoski. Photorealistic models for pupil light reflex and iridal pattern defor-
mation. ACM Trans. Graphics (TOG), 28(4):106, 2009.

[Pejsa et al., 2016] Tomislav Pejsa, Daniel Rakita, Bilge Mutlu, and Michael Gle-
icher. Authoring directed gaze for full-body motion capture. ACM Trans. Graph-
ics (Proc. SIGGRAPH Asia, 35(6), 2016.
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