
Diss. ETH No. 25792

Intuitive Control of Animated Scenes

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

LOIC FLORIAN CICCONE
Diplôme d’ingénieur, Grenoble INP Ensimag, France
Born on 10.04.1990
Citizen of France

accepted on the recommendation of

Prof. Dr. Robert W. Sumner, examiner
Prof. Dr. Markus Gross, co-examiner
Prof. Dr. Daniel Sýkora, co-examiner

2019

ii

Abstract

Animation is a fundamental means of human expression that can dissolve the
boundaries of reality and bring imaginative characters to life in visual form. It
remarkably combines Arts for the creation of compelling shapes and movements,
and Technology for the incorporation of automation and interaction into design
paradigms.

The transition from hand-drawn 2D animation to 3D computer animation has
introduced new tools and creative possibilities. It has yielded different rendering
styles, physical simulations, and faster accomplishment of some tasks. However,
it completely changed the workflow and the modes of interaction for crafting an
animation, sometimes at the expense of the freedom of creation.

Current tools used by digital artists to author 3D content are very powerful; they
allow the creation of very compelling animations and provide a high level of con-
trol over the final result. However, some interaction metaphors provided by such
software do not accommodate specific tasks that users need to accomplish. This
leads to elements of the artist’s workflow that are achievable in a tedious, repeti-
tive and/or unnatural way. As a result, current 3D tools require a lot of practice
to be mastered. To this day, a novice user has no way to create a compelling char-
acter animation without prior intensive training. This limits drastically the range
of people who can express their creativity through animated features.

The overall goal of this thesis involves the study and understanding of intuitive,
user-centric design processes for computer animation as well as the application
of these ideas to create intuitive interaction techniques and expand the state of
the art in a way that focuses on user-oriented systems. In particular, this thesis
explores new interaction interfaces for three prominent aspects of computer an-
imation: environment design, movement crafting, and direct high-level control
of character motion. We demonstrate that the introduction of more intuitive and
natural animation tools has the potential to both facilitate the work of professional
artists and make the computer animation technologies accessible to novice users.

iii

iv

Résumé

L’animation est un moyen d’expression fondamental pour l’Homme, qui lui per-
met de dépasser les frontières de la réalité et de donner vie à des personnages
imaginaires sous forme visuelle. Elle combine de manière élégante l’Art pour le
design de formes et mouvements expressifs et la Technologie pour la capacité de
concevoir et intéragir avec les éléments virtuels.

La transition de l’animation 2D traditionnelle à l’animation 3D par ordinateur
a introduit de nouveaux outils et de nouvelles possibilités créatives. Des styles
de rendu inédits, des simulations physiques et l’accélération de certaines tâches
ont ainsi pu voir le jour. Cependant, cette transition a complètement modifié le
processus d’animation et les moyens d’interaction avec la scène virtuelle, parfois
au prix de la flexibilité de création.

Les outils actuels utilisés par les artistes pour produire du contenu 3D sont
très puissants. Ils permettent la création d’animations très convaincantes et four-
nissent un contrôle très précis sur le résultat final. Cependant, certain moyens
d’interaction fournis par ces logiciels ne sont pas adaptés à des actions spécifiques
que les utilisateurs doivent accomplir. Cela conduit à des tâches qui sont fasti-
dieuses et répétitives. Par conséquent, les logiciels 3D actuels demandent beau-
coup de pratique pour être maîtrisés. À ce jour, un utilisateur débutant n’a aucun
moyen de créer une animation de personnage convaincante sans formation in-
tensive préalable. Cela limite considérablement le nombre de personnes pouvant
exprimer leur créativité au travers des films d’animation.

L’objectif de cette thèse est l’étude et la compréhension d’outils de conception na-
turels pour l’animation par ordinateur, ainsi que l’application de ces idées pour
créer des techniques d’interaction intuitives et étendre l’état de l’art de manière
à se concentrer sur l’expérience utilisateur. En particulier, cette thèse explore de
nouvelles interfaces intuitives pour trois aspects importants de l’animation par
ordinateur : la conception de l’environnement, la création de l’animation et le
contrôle en temps réel de personnages. Dans cette thèse, nous démontrons que
de proposer des outils d’animation plus intuitifs et naturels a le potentiel de faci-
liter le travail des artistes professionnels et de rendre les technologies d’animation
par ordinateur plus accessibles aux apprentis.

v

vi

Acknowledgments

In 2015, Prof. Robert W. Sumner offered me the privilege of being his PhD student.
During the following three and a half years, as I was striving to prove myself
worthy of this honor, he continuously provided pertinent guidance to make this
thesis advance in the right direction, while always taking into consideration my
opinions, aspirations and competences. Bob’s altruism and his contagious joie
de vivre made this PhD a pleasant experience. I furthermore had the chance to
evolve in a remarkably inspiring environment, thanks to Prof. Markus Gross who
welcomed me with open arms in Disney Research Zurich. I benefited from his
constant efforts for making this lab, as well as the Computer Graphics Laboratory,
enjoyable working places.

Additional professors played a key role in the success of this PhD. I particularly
want to express gratitude to Prof. Marie-Paule Cani, my mentor during my Mas-
ter studies, who provided decisive support and advice to propel me to that doc-
torate position. I am also greatly thankful to my third committee member, Daniel
Sýkora; even though he never met me in the past, he kindly accepted to take the
time to examine my thesis, attend my defense and evaluate my work.

Doing a PhD is not always a happy time. There are of course the gratifying pa-
per acceptances, the enjoyable technical conferences and the diverse social events.
But there are also the frustrating code bugs, the difficult deadlines and the work-
ing weeks way beyond the usual 40 hours. In those cases, family’s and friends’
encouragements are essential for keeping focus, and colleagues’ presence is cru-
cial for staying motivated. For that, I would like to thank my parents, my sister,
Sabrina Lachal, Maxime Lucht, Chappuis family, Christian Schumacher, Derek
Bradley, Pascal Bérard, Fabio Zünd, Julia Chatain, Alessia Marra, Ming Zheng
and Romain Prévost, just to name a few, for their strong support. Special thanks
as well to Antoine Milliez who, more than being a colleague and a friend, was
also a mentor. With his few extra years of experience, he always generously gave
sincere advice to guide me on the right path.

In the middle of my PhD, I had the invaluable chance of doing a three months
internship in Walt Disney Animation Studios. Despite being so short, this pro-
fessional experience was certainly the most inspiring one of my life. I am very
grateful to everyone who made this possible, including my supervisors Dmitriy

vii

Pinskiy and Ricky Arietta, and to all the artists and scientists there who took the
time to discuss with me. Talking about influential artists, I also value very high
Maurizio Nitti’s constant dedication to assist me with the artistic aspects of the
projects, both for the design of user experiences and the production of results.

Last but not least, this project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation program under
the Marie Skłodowska-Curie grant agreement No 642841. This is a

formal way to say that none of this would have been possible without the finan-
cial support provided by DISTRO, a European network. It was a great pleasure to
meet once or twice a year all people from that consortium, who formed together
a lovely and uplifting community.

viii

Contents

Abstract iii

Résumé v

Acknowledgements vii

Contents ix

Introduction 1
1.1 Animation Legacy . 1
1.2 Artistic Principles . 2
1.3 3D Character Representation . 3
1.4 Authoring the Motion . 4
1.5 Real-time Animation . 6
1.6 Publications . 7

Related Work 9
2.1 Objects Deformation . 9

2.1.1 Deformation of Single Objects 9
2.1.2 Deformation of Multiple Objects 10

2.2 Animation Crafting . 11
2.2.1 Space vs Time . 11
2.2.2 Space-time Curves . 12
2.2.3 Performance Animation . 13

2.3 High-level Character Control . 13
2.3.1 Space-time Constraints . 13
2.3.2 Real-time Manipulation . 14

Flow Curves: an Intuitive Interface for Coherent Scene Deformation 17
3.1 Background . 19
3.2 Overview . 20
3.3 Subjective Curve Elements . 21

3.3.1 Principal Curves . 22
3.3.2 Abstract Contours . 23

ix

Contents

3.4 Flow Curves . 25
3.4.1 Flow Curve from Sketched Stroke 25
3.4.2 Flow Curves Network from Center-Point 26

3.5 Direct Deformation of Scene Objects 28
3.5.1 2D Grid Embedding . 29
3.5.2 Automatic Correspondence 29
3.5.3 Deformation . 30

3.6 Results and Discussion . 31
3.7 Conclusion . 34

Tangent-Space Optimization for Interactive Animation Control 37
4.1 Background . 40
4.2 Approach . 40

4.2.1 Problem Formulation . 40
4.2.2 Tangent Space Optimization 43
4.2.3 Implementation Details . 46
4.2.4 Timing Manipulations . 48
4.2.5 Static Case . 49

4.3 Evaluation . 50
4.3.1 Examples of Authoring Difficult Animations 50
4.3.2 User study: Simpler Curves for Complex Motions 52
4.3.3 User Study: Faster Editing Process 52
4.3.4 Qualitative Assessment from Professional Animators 54
4.3.5 System Performance . 55

4.4 Conclusion . 55

Authoring Motion Cycles 59
5.1 Background . 61
5.2 Overview and Workflow . 62
5.3 Cycle Specification . 63
5.4 MoCurves . 65

5.4.1 Spatial Manipulations . 66
5.4.2 Temporal Manipulations . 67
5.4.3 Contacts . 68

5.5 Results . 70
5.6 Conclusion . 73

PuppetPhone: Puppeteering Virtual Characters Using a Smartphone 75
6.1 Background . 77
6.2 Approach . 77

6.2.1 MotionStick . 77
6.2.2 State Machine . 78

x

Contents

6.2.3 Animation Blending . 79
6.3 Application: Build a Snowman . 82
6.4 Application: Multi-Reality Games 85
6.5 Conclusion . 88

Conclusion 91
7.1 Summary of Contributions . 92

7.1.1 Coherent Scene Deformation 92
7.1.2 Motion Visualization and Manipulation 92
7.1.3 Performance Animation for Motion Cycles 93
7.1.4 Interactive Character Control 93

7.2 Future Work . 94
7.2.1 Animating with Curves . 94
7.2.2 Accommodating New Technologies 95

Attribute limits during interpolations 97

References 99

xi

C H A P T E R 1
Introduction

1.1 Animation Legacy

Traditional hand-drawn animation provides a practical means to tell stories.
By solely requiring a pencil and papers, it enables artists to fully express
their creativity. This media, born almost two centuries ago, has a singular
way of breathing life into virtual characters, and creating stories where the
only limit is the creator’s imagination.

Creating animated features, such as the acclaimed Disney classics, is
nonetheless a long and fastidious process that requires a lot of manual work.
In order to improve the efficiency of their workflow, professional artists had
to be inventive and come up with new techniques. For example, layering was
invented to separate a fixed background from moving characters and there-
fore avoid re-drawings. They also introduced keyframing to carefully plan
the trajectory and timing of an action. There, instead of drawing frames in
the chronological order, animators first draw the main states of the motion,
called keyframes, and then complete the gaps with interpolation.

Even with these enhancements, creating an animation is laborious as it
requires drawing multiple frames of motion per second. Therefore, artists
are constrained to stick to simple scenes and lighting conditions. Complex
effects such as hair and liquid simulations are simplified as much as possi-
ble. This limits animators in their means of expression.

The introduction of 3D computer animation in the 1980s has opened up new
possibilities and challenges for animated content. Since then, a tremendous

1

Introduction

amount of research have been accomplished, allowing physical simulations
of complex systems, very realistic or stylized renderings, diverse mecha-
nisms for character control, etc. This growth was accompanied by many
applications, becoming an essential component in the movie industry, video
games and even medicine.

Not only the creative possibilities changed, but also the means: no more
pencil and paper, but a mouse and a computer; no more sketches and lines,
but triangles in a 3D space. It is a whole new system that was established.
But despite its differences, 3D animation strongly inherits from traditional
2D animation. Movements are again composed of several frames per sec-
ond, they obey to the same aesthetic principles, and animators continue to
use keyframing as the main method to animate characters.

However, changing the means while conserving the principles can yield in-
appropriate workflows. As a result, some tasks that were easy and natu-
ral with hand-drawn animation become challenging and unintuitive with
computers. Nowadays, creating a compelling animation in 3D is a task that
requires an intensive training, and therefore has a drastically limited acces-
sibility. In this thesis, we propose to make simple things easy again. We
develop user-centric tools and algorithms to make some tasks of 3D anima-
tion more natural to professional artists and more accessible to novice users.

1.2 Artistic Principles

Enhancing the workflow of 3D computer animation starts by understanding
the basis on which it rests. For that reason, we are particularly interested
in the 12 principles of animation introduced by Ollie Johnston and Frank
Thomas in their book The Illusion of Life [Thomas and Johnston, 1981]. There,
they describe how to produce an illusion of characters adhering to the basic
laws of physics, as well as conveying emotion and appeal. Additionally, the
principles of visual arts [Lidwell et al., 2003] reflect the different aspects of
the human visual system and serve as guidelines for shaping scenes into
aesthetically pleasing images.

Though originally intended to apply to traditional hand-drawn animation,
these principles still have great relevance for today’s more prevalent com-
puter animation. Reviewing those aesthetic principles and best-practices
developed in the context of classical art, illustration and hand-drawn anima-
tion permits to better understand the core factors at play in the field of aes-
thetic design. It appears that the freedom offered by traditional 2D sketch-

2

1.3 3D Character Representation

ing for crafting shapes and applying these visual principles is not reached
by current 3D interfaces.

A particular example of this is the principle of movement, consisting in direct-
ing the viewer’s eye as it flows through the screen. To achieve this principle,
artists use our tendency to pick up contrast edges across multiple objects
and join them together into longer imaginary subjective curves that our eyes
unconsciously follow. Hence, by carefully shaping and coordinating con-
trast edges across objects in a scene, visual artists are capable of bringing
our attention to a specific area. While traditional 2D sketching is a natural
fit for this task, current 3D tools are object-centric and do not accommodate
coherent deformation of multiple shapes into smooth flows.

In Chapter 3, we address this shortcoming by providing an intuitive inter-
face to craft such whole scene deformations in a fast, easy and natural way.
As traditional 2D sketching offers the freedom to naturally design the flow
of a scene, we choose to adopt a sketch-based approach, that we call Flow
Curves.

1.3 3D Character Representation

In 3D animation packages, geometries are defined by a multitude of vertices
connected together by quads or triangles. Moving each vertex one by one
in order to define character movements would be extremely cumbersome,
which is why artists use rigging. Rigging is what defines the set of possible
transformations for a character and help its manipulation (Fig. 1.1). A rig
is essentially a digital skeleton, composed of joints and bones, bound to the
3D mesh. Similar to real humans’ anatomy, moving a bone of the digital
character moves the attached vertices, like a skin.

The rig then enables posing the character, which can be done in two different
ways. Forward kinematics (FK) consists in setting the right joints orientations
to obtain the desired pose, while inverse kinematics (IK) consists in automat-
ically computing the rotations of a chain of joints that satisfy the positional
constraint of an end-effector. The latter is particularly useful for specifying
contacts, such as placing a hand on an object. This problem has been widely
studied in computer graphics and robotics research, as elaborated on in the
survey by Aristidou et al. [2017]. However, since IK is heavy and makes the
pose evaluation slower, characters typically contain a limited set of available
IK chains: usually on the arms, legs and spine.

Furthermore, in production environments, character rigs can become much
more complex. Their skeleton is equipped with different kinds of handles

3

Introduction

Figure 1.1: Left: a 3D mesh represents the geometry of the character. Middle: a digital
skeleton, reproducing real bones’ behavior, coordinately drives the vertices.
Right: Rig controllers allow manipulating the bones and other deformers.

to manipulate it in various ways (mainly FK and IK). Also, additional kinds
of deformers are provided to adjust the geometry in more detail, such as for
facial expressions. In total, a human character can easily contain more than
100 rig controllers, representing over 300 degrees of freedom.

1.4 Authoring the Motion

Making a character move consists in defining a pose for each frame of the
animation (usually 24 per second). As mentioned earlier, 3D artists usu-
ally use keyframing for this task. It is one of the 12 principles of animation,
also called pose to pose. In this practice, animators use the rig controllers
to pose the character at different points in time, and the in-between states
are automatically generated by interpolation. In principle, this represents a
huge gain compared to hand drawn animation: where a secondary animator
would often be the one manually drawing all the in-between frames, under
the instructions of the primary animator, the computer is now directly and
automatically interpolating keyframes. In practice however, the generated
interpolations barely ever meet the animator’s expectations, which necessi-
tate further laborious work.

4

1.4 Authoring the Motion

Indeed, the interpolation algorithm does not take into consideration any in-
struction from the artist, and naively applies a Bezier interpolation on every
parameter of the character’s rig — generating what we call animation curves.
To modify in-betweenings, the user has to manually edit the tangents of in-
terpolation of every animation curve (as a reminder, there are hundreds of
them). It is such a cumbersome and unintuitive process that animators will
almost always prefer to add more keyframes, often ending up with keys at
every couple of frames.

Furthermore, this process is frustrating in the sense that it offers no intuition
of timing. The temporal separation of keyframes is defined by their place-
ment on a timeline, which makes it difficult to evaluate if the animation is
too slow or too fast. The artist thus plays the animation and applies mod-
ifications in a trial and error fashion. In addition, animating requires con-
tinuously switching between at least three different interfaces: the viewport
for character posing, the timeline for keyframes placement, and the graph
editor for animation curves manipulation (see Fig. 1.2).

Figure 1.2: Example of a general purpose animation tool (Autodesk Maya). We high-
light the minimum three interfaces that are essential to animate a character:
the viewport, the timeline and the graph editor.

We propose to alleviate these limitations in Chapter 4 by introducing a
tangent-space optimization that provides a natural and interactive control
on interpolations. Our system presents a space-time curve representation
to manipulate the movement of any part of the character, and instead of

5

Introduction

adding keyframes it optimizes for the tangents of interpolation of the rig pa-
rameters that satisfy user constraints. This approach is non-intrusive to the
animators’ workflow and enables them to animate using fewer keyframes.
Furthermore, our method does not require any predefined IK chain, which
fastens the animation process, provides more freedom to the artist and ab-
stracts technical considerations such as hierarchy and FK vs IK.

To animate a character, an alternative to keyframing is performance anima-
tion. It consists in acting out the motion using a capture device — e.g. a
full-body motion capture suit — and the performance is directly transferred
into the virtual character. However, this technique is rarely used for ani-
mated features because of the lack of control it provides. The action has to be
acted out in real time, making difficult the performance of stylized effects,
and the movement is registered as one keyframe per frame which yields
complex animation curves that are very difficult to modify with traditional
tools. Besides, it requires dedicated devices and is generally not appropriate
for non-human characters because mimicking the movement of an animal is
challenging.

In this thesis, we notice that performance animation can be especially ap-
propriate for motion cycles since repeatedly acting out a motion allows to
progressively improve it. Moreover, motion cycles play a preponderant role
in computer animation as they are used for character development, for mo-
tion references, and almost everywhere in video games. Regardless, there
exists no tool dedicated to their design. In Chapter 5 we present a system
that takes advantage of performance animation to create motion cycles. We
propose a layered method to make it applicable with any capture device
and on any type of character. Additionally, to provide artists with a fine
level of control, we use space-time curves to interactively edit the resulting
animation. With this approach, a user can animate in the comfort of a single
viewport, without the need for any additional window.

1.5 Real-time Animation

The animation techniques discussed in the previous Section permit to ani-
mate characters with a high level of control. However, they require precision
and iterations, which do not allow to interactively give life to a virtual char-
acter. Even when performing the actions, further editing is required to cor-
rect some movements, adapt to different morphologies and add secondary
motion. Yet, the capability for a character to interact with a human user

6

1.6 Publications

is essential for some applications like video games. Using a few inputs, the
character is expected to react immediately and depict believable movements.

For real-time character control, the most common approach is the push-
button metaphor, where predefined animations are triggered each time the
user presses a key. Even when using more advanced devices such as smart-
phones, clickable buttons are overlaid on the screen to retrieve that usual
interface. However, this interaction is limited in the freedom it provides to
the user; for example, a "Move Forward" or a "Jump" button does not al-
low to specify the speed or the height of the action. It results a detached
interaction that is far from the satisfactory feeling of grasping and moving a
character around, which children cherish doing with physical toys.

We propose a new interaction metaphor in Chapter 6 that reduces the gap
between physical toys and virtual characters. We take advantage of differ-
ent smartphones’ characteristics to interactively puppeteer virtual objects.
As the user moves the phone around, a character that responds in real time
to the manipulations is seen through the screen, as if it was attached to the
phone via an imaginary rigid stick. This yields a natural interaction, sim-
ilar to moving a physical toy, and the puppet now feels alive because its
movements are augmented with predefined compelling animations — pos-
sibly created using our systems from Chapters 4 and 5. We show various
applications of this approach as Mixed Reality games.

1.6 Publications

This thesis is backed by the following peer-reviewed papers:

• L. Ciccone, M. Guay, R. W. Sumner
Flow Curves: an Intuitive Interface for Coherent Scene Deformation
Computer Graphics Forum (Proceedings of Pacific Graphics), pp. 247–256,
2016

• L. Ciccone, M. Guay, M. Nitti, R. W. Sumner
Authoring Motion Cycles
Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Com-
puter Animation (SCA), pp. 8:1–8:9, 2017

• R. Anderegg, L. Ciccone, R. W. Sumner
PuppetPhone: Puppeteering Virtual Characters Using a Smartphone
Proceedings of the 11th ACM SIGGRAPH Conference on Motion, Interac-
tion and Games (MIG), pp. 5:1–5:6, 2018

7

Introduction

• L. Ciccone*, L. Casas*, G. Çimen, P. Wiedemann, M. Fauconneau, R.
W. Sumner, K. Mitchell
Multi-Reality Games: an Experience Across the Entire Reality-
Virtuality Continuum
Proceedings of the ACM SIGGRAPH Conference on Virtual-Reality Con-
tinuum and its Applications in Industry (VRCAI), pp. 18:1–18:4, 2018

8

C H A P T E R 2
Related Work

As established in the previous Chapter, the transition from hand drawn ani-
mation to 3D computer animation has changed the way artists work, some-
times at the expense of the ease of creation. Therefore, many works have
introduced new algorithms and manipulation techniques in order to pro-
vide more freedom to artists and make it more easy to apply artistic princi-
ples. Some of them intend to get closer to the natural sketching mechanism
characteristic of hand drawn animation, while others propose new interac-
tion metaphors. In the following Sections we provide an overview of related
research works for the intuitive control of animated scenes.

2.1 Objects Deformation

2.1.1 Deformation of Single Objects

We have exposed in Section 1.3 how characters are deformed using skeletal
bones and rig controllers. However, most of other objects in the scene do not
possess such handles and need to be deformed differently. For that, several
algorithms exist, such as lattice grids (FFD) to deform free-form objects like
point clouds or triangle soups [Sederberg and Parry, 1986; Singh and Fiume,
1998; Milliron et al., 2002].

These types of deformers feature a click-and-drag interface, where the user
has to select and transform individual controls. Unfortunately, this inter-
action does not accommodate most of artistic principles. That is why many
researchers investigated sketching as a more natural way of deforming static

9

Related Work

objects [Hua and Qin, 2003; Kho and Garland, 2005; Nealen et al., 2005; Zim-
mermann et al., 2007; Kraevoy et al., 2009] and characters [Davis et al., 2003;
Sýkora et al., 2005; Lin et al., 2010; Guay et al., 2013; Öztireli et al., 2013;
Hahn et al., 2015; Mahmudi et al., 2016].

Thanks to their intuitive aspect and ease-of-use, sketch-based interfaces
are very appreciated. However, due to depth, recovering 3D informa-
tion from a 2D sketch is an ambiguous and under-constrained problem;
many solutions can exist for the same sketch. A common approach to
solve this issue is to work in the viewing plane [Kho and Garland, 2005;
Zimmermann et al., 2007; Guay et al., 2013; Öztireli et al., 2013; Mahmudi et
al., 2016]. Another solution is to let the user choose from several possible so-
lutions, as Davis et al. [2003] suggest. Others supplement the problem with
prior information on the solutions. For instance, physiological insight on the
human anatomy leading to specific joint limits, combined with constraints
to maintain balance were used to sketch sitting poses [Lin et al., 2010].

Sketching a deformation requires to define curves by pair: one for the refer-
ence and one for the target. The target one is drawn by the user while the ref-
erence one is usually computed from the mesh geometry [Nealen et al., 2005;
Zimmermann et al., 2007; Kraevoy et al., 2009] or the skeleton of the charac-
ter [Davis et al., 2003; Guay et al., 2013; Öztireli et al., 2013]. However, these
techniques do not allow deforming multiple objects simultaneously with a
single stroke, as might be required when crafting the movement of the scene.

2.1.2 Deformation of Multiple Objects

One challenge for multi-object deformation is the fact that different objects
are typically deformed with different algorithms (e.g. skeleton, FFD, etc).
Hence, the ability to quickly edit an existing raw scene requires a unified
approach to deformation. One solution is to formulate the deformation di-
rectly on the mesh vertices, typically by penalizing the distortion of trian-
gle elements [Sorkine et al., 2004; Sorkine and Alexa, 2007] while match-
ing some vertex position constraints. Unfortunately, this approach does not
support disconnected meshes and point clouds, such as fluids. Addition-
ally, the complexity of the deformation is proportional to the number of
vertices, which can impede interactive refinement. An alternative is to au-
tomatically compute an embedding of the geometry [Sumner et al., 2007;
Botsch et al., 2007; Sýkora et al., 2009] and use similar deformation formula-
tions on the grid embedding elements instead.

In 2D, grid embeddings are mainly used in the context of image warp-
ing [Carroll et al., 2010; Orbay et al., 2012]. Unfortunately, a single 2D

10

2.2 Animation Crafting

grid does not reflect the structural components of the objects in the scene
and can lead to undesirable distortions. For example, bending a branch
will distort the space around it. Similar to spatial warping, rendering us-
ing a nonlinear projection [Coleman and Singh, 2004; Coleman et al., 2005;
Brosz et al., 2007] allows to deform images. These techniques do not allow
deforming individual parts of objects with ease and, as with spatial warp-
ing, do not allow deforming objects without warping the space around them
(e.g. the background).

The solution we propose in Chapter 3 for the coordinate deformation of mul-
tiple objects benefits from the fast computation of 2D grid deformation while
preserving the intrinsic shape of objects. We compute a 2D grid embedding
of the 3D elements, in screen-space, that reflects the intrinsic shape of ob-
jects, and we automatically compute multi-objects abstractions which allow
the user to directly deform multiple objects with a single stroke.

2.2 Animation Crafting

2.2.1 Space vs Time

We have discussed in Section 1.4 the established framework for character
animation, called keyframing. It consists in specifying keyposes and placing
them at specific points on a timeline to control the timing.

Many works specifically aim to ease the posing process by exploring differ-
ent interfaces. Sketching is one of them, as presented in the previous Sec-
tion, but other interaction methods were also explored such as the pin-and-
drag metaphor [Yamane and Nakamura, 2003; Shi et al., 2007], the use of
reference poses [Wei and Chai, 2011; Choi and Lee, 2016] or even physical
devices [Yoshizaki et al., 2011; Glauser et al., 2016]. Separately, other pa-
pers focus specifically on improving the timing process through time warp-
ing [Witkin and Popovic, 1995; Hsu et al., 2007; Coleman et al., 2008] and
gesture-based retiming [Terra and Metoyer, 2004; Terra and Metoyer, 2007;
Walther-Franks et al., 2012].

These methods, however, are only focused on either spatial or temporal edit-
ing, and do not help the coordination process. Having a timeline discon-
nected from spatial realities makes the creation of an appealing and believ-
able motion very unintuitive.

One way to improve coordination is through visualization of the motion. Re-
cently, the de facto timeline visualization has been questioned and enhanced
with editable pose-icons representing the motion over the timeline [Mukai

11

Related Work

and Kuriyama, 2009] and deformable spatial planes rendered directly onto
the viewport [Yoo et al., 2015]. This helps controlling the timing with some
visual feedback, but does not provide control on spatial transformations.
Therefore, in this thesis we opt for space-time curve representations that
allow the visualization of several aspects of the motion as well as their coor-
dinate manipulation.

2.2.2 Space-time Curves

Space-time curves are geometric representations that permit to visualize and
manipulate the trajectory of a certain object/joint/controller over time. They
give a good intuition on the character’s movement as well as provide a di-
rect control on the arcs of motion. If drawing them is very straightforward,
manipulating them represents a much bigger challenge. Indeed, it not only
necessitates an intuitive curve editing mechanism, but also requires to define
how the whole character behaves to a specific trajectory’s modifications —
e.g. if the motion of a hand is edited, how much of the character’s movement
should be affected.

Some recent works have explored the concept of space-time curves for au-
thoring or editing motions. Guay et al. [2015] enable the creation of a full
character motion using a single stroke and refine it using additional types
of stroke edits. Unfortunately, their strokes are designed around specific
types of motions such as bouncing, rolling and waving, and their work only
demonstrates a few simple characters (e.g. no bipeds nor quadrupeds). Choi
et al. [2016] allow editing a wide range of motions using sketches, but their
work is restricted to editing and cannot author new motions. Using screen-
space strokes to define 3D deformations, these two papers end up with an
underconstrained problem and thus need to make assumptions about the
user’s intentions. More importantly, the methods proposed by these pre-
vious works require control on every single frame (i.e. one keyframe per
frame), which is not compatible with contemporary animation workflows
and not practical for editable animations.

Other works use space-time curves as an abstract way to define motion from
preexisting animations. In those cases, the curves are used as constraints to
retrieve and compose movements from a database [Lee et al., 2002; Min et
al., 2009] or as abstract indications to trigger predefined animations [Thorne
et al., 2004]. However, these methods do not provide a fine control over the
resulting animation, and limit it to the set of preexisting motions.

Our work strives to give the artist freedom over the animation process with
minimal restrictions and conflicts with the current animation workflow. We

12

2.3 High-level Character Control

moreover retain a high degree of genericity so that our control strategy can
be applied to any type of content, such as IK handles, bone transformations,
or even vertices.

2.2.3 Performance Animation

In order to have control on timing and motion simultaneously, others have
explored performance animation (or puppeteering) techniques. They con-
sist in using a capture device (mouse, Leap Motion, Vive, full-body mo-
tion capture suit, etc.) to mimic the desired motion, that it directly trans-
ferred to a virtual character. As humans have an instinctive sense of move-
ment and timing, performance animation has been used as a natural way
of specifying motions either for the full character [Chai and Hodgins, 2005;
Igarashi et al., 2005; Tautges et al., 2011; Kim et al., 2013] or through a layered
type of approach [Dontcheva et al., 2003; Neff et al., 2007; Choi et al., 2008;
Martin and Neff, 2012; Jin et al., 2015].

These methods introduce a much more intuitive way to create movements,
but elaborate animations are still very hard to achieve. Indeed, when gestur-
ing motions, users are not accurate enough to perfectly perform some styl-
ized effects or specific actions such as contacts. Furthermore, the resulting
motion is typically driven by animation curves with a complex parameteri-
zation, which does not permit easy editing.

In this thesis, we make the important observation that performance anima-
tion is particularly appropriate for motion cycles, and is most natural when
the motion is repeated several times. We then propose an algorithm to de-
liver a single closed loop from a sequence performed by the user, and a curve
representation that enables a precise editing of the motion.

2.3 High-level Character Control

2.3.1 Space-time Constraints

Space-time constraints were introduced by Witkin and Kass [1988] to achieve
motions that satisfy constraints. In this paradigm, a user can specify high-
level spatial and temporal constraints and the motion is produced automat-
ically via non-linear optimization. This inspired a lot of further research,
including many works focusing on articulated characters’ animation, which
extended the approach to provide a user interface [Cohen, 1992], create tran-
sitions between motion segments [Rose et al., 1996], enable the easy edi-

13

Related Work

tion of existing animations [Gleicher, 1997], retrieve a motion in a large
database [Min et al., 2009] and even synchronize the motion of multiple char-
acters [Kim et al., 2009].

A particular category of space-time constraints techniques seek to automat-
ically generate believable transitions by relying on simulations, databases
or heuristics. Important work with probabilistic models of human mo-
tion was used for filling gaps of animations [Chai and Hodgins, 2007;
Wang et al., 2008; Lehrmann et al., 2014], collision detection was used to
correct default interpolations [Nebel, 1999], and more recent research used
deep learning to generate animations that interpolate key poses [Zhang and
van de Panne, 2018; Harvey and Pal, 2018].

To allow for more controllability, Koyama and Goto [2018] provide mathe-
matical formulations for the control of an optimization based on physically
inspired energy terms. Their work has the additional benefit of modifying
tangents instead of adding keyframes, similar to our motivations in Chap-
ter 4. However, their approach is fundamentally different from ours: while
we aim at real-time control of interpolations with an intuitive interface di-
rectly in the viewport, Koyama and Goto [2018] provide an indirect and of-
fline motion manipulation tool via sliders and graph editors.

If space-time constraints allow for a fast editing of motion via high level
properties, producing animation in this way can be difficult as it requires
some intuition in how exactly to balance the different hard and soft terms of
the cost function such that the desired motion is produced. Fine-tuning the
result is also laborious as most often the parametrization of the animation
curves is altered based on the computational needs of the system. Further-
more, with space-time constraint techniques, the set of achievable motions
is restrained by the physical formulations or the library of movements the
optimization is based on.

2.3.2 Real-time Manipulation

Most of the mentioned approaches to ease the animation process do not
enable a real-time crafting of the full character motion. Sketch inter-
faces [Thorne et al., 2004; Jeon et al., 2010; Guay et al., 2015] require to
entirely specify sketch abstractions before the character can move; curve
editing techniques [Lee et al., 2002; Min et al., 2009; Choi et al., 2016] in-
volve iterations for the specification of different points’ trajectories; and
space-time constraints [Witkin and Kass, 1988] demand a careful defini-
tion of the different optimization weights. Performance animation, when
not used in a layered approach, can enable the interactive manipulation

14

2.3 High-level Character Control

of an entire character, usually using a full body motion-capture suit [Song
et al., 2017]. However, even if many works aimed to reduce the num-
ber of sensors required when performing the motion [Oore et al., 2002;
Chai and Hodgins, 2005; Shiratori and Hodgins, 2008; Liu et al., 2011;
Tautges et al., 2011; Kim et al., 2012], this approach requires specialized de-
vices that casual users rarely possess, and it is limited to physically realistic
motions of human-like characters.

Video games is the most prominent example of a system that involves real-
time animation of virtual characters. Most often, the interaction consists
in a push-button approach, where the user hits a button or a point on the
screen to trigger a specific action (e.g. ’Move there’, ’Jump’, ’Kick’, ’Shoot
here’, etc.). Since it is an underconstrained interface, the full character an-
imations is generated using motion data-bases [Arikan and Forsyth, 2002;
Min and Chai, 2012; Holden et al., 2016; Holden et al., 2017], physi-
cal simulations [Laszlo et al., 2000; Yin et al., 2007; Coros et al., 2010;
Geijtenbeek et al., 2013] or even both [Liu et al., 2010; Geijtenbeek et al., 2012;
Zordan et al., 2014]. To not limit the interface to a set of buttons, other works
propose to use abstract gestures [Rhodin et al., 2015; Cui and Mousas, 2018].
In those techniques, user movements are linked to specific actions of the
character, which makes it possible to animate it using different devices and
body parts. However the interaction is very abstract and unnatural.

For a more natural control on the character’s displacement, Willis et
al. [2011] propose to use a handheld projection system and animate a charac-
ter in the virtual world as one moves its projection on a wall. Unfortunately,
their technique only allows displacements in 2D (on the wall) and simplis-
tic animations. We alleviate this shortcoming in Chapter 6 by introducing a
similar grasping metaphor in Augmented Reality using a smartphone. This
makes our system accessible and easy to use. We furthermore require very
few preexisting motions, and we compose blended ones on the fly using a
technique based on the inverse distance weighting.

15

Related Work

16

C H A P T E R 3
Flow Curves: an Intuitive Interface for
Coherent Scene Deformation

Figure 3.1: Our new Flow Curves interface is designed to help artists take a scene with
an ambiguous flow (left), and quickly turn it into a compelling scene (right)
by simply sketching strokes — inducing multi-object deformations.

We discussed in Section 1.2 how effective compositions rely on the princi-
ples of visual arts. They allow skilled artists to cleverly exploit mechanisms
of our visual system in order to more effectively communicate the impor-
tant elements of an image. In particular, they use our tendency to pick up
contrast edges across multiple objects and join them together into longer
imaginary subjective curves to direct the eye’s movement across the image.
Hence, by carefully shaping and coordinating contrast edges across objects
in a scene, visual artists are capable of controlling the very way we look at
an image and bring our attention to a center-point (see Fig. 3.2). While this
concept is referred to as the principle of movement in visual arts, it is also
called flow in design, and good continuation in Gestalt perceptual theory.

17

Flow Curves: an Intuitive Interface for Coherent Scene Deformation

Figure 3.2: Movement in existing artwork (Left: book cover of Predator’s Gold, Middle:
screenshot from Mickey’s Christmas Carol, Right: poster of Ratatouille).
Yellow lines represent subjective curves pointing to a center-point.

Traditional 2D sketching offers the freedom to naturally craft and design
scene-wise subjective curves. In contrast, current 3D tools are designed in
an object-centric fashion which does not easily accommodate building a co-
herent movement, for a given view-point. In fact, digital artists are obliged
to shape each object separately, using several rig and deformation handles
that typically differ from object to object. In other words, these tools are
agnostic to the artistic principle of movement and provide no means of ex-
pressing coherence across multiple objects in a scene. Hence, despite the
dramatic importance of movement in visual design, 3D artists are left with
a cumbersome, indirect and time consuming workflow.

Our work in this Chapter addresses this shortcoming by introducing a new
sketch-based interface called Flow Curves that provides a direct coordination
control across multiple objects. From raw input geometry, we automatically
compute a deformation embedding for objects in the scene that allows di-
rectly deforming shapes without rig setup time. To provide the user with
the possibility to deform objects with a single stroke, we automatically com-
pute subjective curve elements (or SEcurves) spanning multiple objects in the
form of principal curves and abstract contours. By defining a flow curve as a
shape constraint over close-by SEcurves, we can optimize for a scene de-
formation that conforms to the sketched flow curves. When compared to
traditional workflows, our interface offers a significant increase in efficiency
(see Table 3.1 for comparison).

“The central point of interest has nothing to do with the center of the frame, but ev-
erything to do with where you wish the audience’s eye to eventually rest.” [Button,
2002]

18

3.1 Background

3.1 Background

Artistic principles. Some principles of visual arts have already been inte-
grated into computational tools, such as balance for photo composition [Liu
et al., 2010] and scene layout placement [Liu et al., 2015], or emphasis for di-
recting gaze [Cole et al., 2006; Bailey et al., 2009]. In this Chapter, we focus
on the principle of movement, that Glatstein defines as “the way a viewer’s
eye is directed to move through a composition, often to areas of emphasis.” [2013].
To our knowledge, this principle has never been used for whole scene de-
formation, but only for individual characters with the line of action drawing
concept [Öztireli et al., 2013; Guay et al., 2013], where the whole shape of a
character forms a smooth (skeletal) curve. Our flow curves subsume lines of
action and allow deforming whole scenes — including characters — using a
single stroke.

Subjective curves Those are imaginary curves that we perceive when
grouping together salient contrast edges and points. Gestalt theory
refers to this perceptual phenomenon as the principle of “good continu-
ation” [Wertheimer, 1938]. Due to its subjective nature, a precise mathemati-
cal characterization of good continuation remains elusive. Additionally, the
bulk of academic research in computer vision is geared towards identify-
ing existing subjective curves, either via fixed primitives such as circle arcs
and Euler spirals [Ullman, 1976], minimal curvature splines [Horn, 1983;
Mumford, 1994], or probabilistic models [Williams and Jacobs, 1997] where
a scalar (probability) field is computed from all the pairwise interactions
between edge segments (curve formed by tracing paths along probability
peaks). These methods identify subjective curves in existing images, while
our work provides a practical tool for shaping and forming new ones.

Automatic shape abstractions. To allow the user to deform raw scenes
with a single stroke, we automatically compute abstractions in the form of
principle curves and abstract contours. While it would be straightforward
to use rigged objects with our method (skeletons representing a good ab-
straction for many shapes), we decided to work in the general case where
most objects of the scene are not rigged (trees, fences, furniture, etc.). Auto-
matic skeletonisation techniques compute a skeleton from a mesh or point
cloud [Au et al., 2008; Tagliasacchi et al., 2009; Huang et al., 2013] but yield
skeletons with noisy branches that can rarely be sketched directly. Another
approach is to assume a parametric curve such as a spline and optimize
its shape as to conform to the object using an iterative closest point frame-

19

Flow Curves: an Intuitive Interface for Coherent Scene Deformation

work [Kass et al., 1988]. We build upon this approach as it is well suited for
sketching the smooth splines. Methods on shape abstractions that seek to
conserve fine details [Vishwanath et al., 2013] provide a contour that is too
fine for the smooth contours we search. On the contrary, other works seek to
remove details while preserving a coarse version of the shape [Mi et al., 2009;
Mehra et al., 2009]. However, pruning parts of objects solely based on geo-
metric features does not result in proper outer-abstractions such as contours
in the case of pointy objects, e.g. branches of a tree or poles of a fence.

3.2 Overview

Figure 3.3: Overview of our approach applied on a simple scene. The user gives as input
a 3D scene, on which our system automatically computes SEcurves (in the
form of objects abstractions) and a 2D grid embedding of the objects (used
for deformation). Then, when the user provides a flow curve, SEcurve pieces
are selected and associated to corresponding flow curve pieces based on a
geometric closest-point approach, and the grids are deformed as to have these
SEcurve pieces match the shape of the flow curve, in screen-space.

First, we need to determine which contrasts in the scene could be deformed
to form strong subjective curves. Since our goal is different from computing
existing subjective curves in images, we compute partial subjective curve el-
ements that we call SEcurves. While detecting these is highly ambiguous,
we observed that in many cases, subjective curves are formed from a skele-
tal curve of objects, or from parts of abstract outer-contours. Based on these
observations, we compute principal curves for thin objects and abstract con-
tours for complex ones, as well as groups of objects (Section 3.3). While these
SEcurves cover a wide range of cases, users may sketch additional ones if
desired.

20

3.3 Subjective Curve Elements

As a means of forming coherent subjective curves via scene deformations,
we introduce a sketch-based interface called Flow Curves. The flow curves
are defined as shape constraints for SEcurves in their vicinity (Section 3.4).
We offer two intuitive ways of specifying flow curves: (1) by sketching
strokes, which provides direct control onto the subjective curves of the scene
and (2) by sketching a center-point which automatically generates a coherent
network of flow curves converging towards it. This center-point provides
coordinated control onto the scene’s movement as a whole.

To match the SEcurves to their corresponding flow curves, we need a defor-
mation method that allows deforming different types of objects (including
point clouds such as liquids), requires little manual setup time, and pre-
serves the intrinsic shape of objects (i.e. does not distort space). Our solution
to these requirements is to compute a 2D grid embedding in screen-space
for each individual object in the scene and to formulate the constrained de-
formation on the grid embedding (Section 3.5). Constraints are the target
position of SEcurves and the conservation of the objects placement layout.

3.3 Subjective Curve Elements

Our visual system perceives curves that are subjective
and not entirely explicit: we fill-in the space between
contrast edges and points, and even skip over parts
of objects at high curvature points, in favor of longer
smoother curves. For example, in the image on the
left, we naturally see two solid triangles while none
is entirely present. In this Section, we identify strong
edges and shape features that could be elements of

subjective curves — we call them SEcurves.

The goal of our tool is to facilitate coordinating SEcurves into forming long
and coherent subjective curves — as opposed to finding existing subjective
curves as is done in the computer vision literature. Computing edges is
often noisy as well as impractical for sketching. Additionally, computing
every possible edges that could be used for creating movement in a scene
would make the selection process ambiguous (how to pick the right SEcurve
from a soup of edges?). By observing users sketching their own subjective
curves, we found that they are often formed from two categories of recurrent
SEcurves. The first is principal curves which abstract thin objects, and the
second is abstract contours which join the tips and edges of complex shapes
such as trees, plants and fences, as well as join together groups of nearby
objects.

21

Flow Curves: an Intuitive Interface for Coherent Scene Deformation

Based on these observations, we first compute for each object in the scene
both their principal curve (a generalization of the principal axis, detailed in
Section 3.3.1) and abstract contour (Section 3.3.2). Then we decide which
is best suited based on a measure of thinness. We estimate thinness as the
variance of the point-wise distance di between each point of the principal
curve and the contour. A small variance means that the principal curve is
a better approximation of the object than the abstract contour. Hence, if
∑ d2

i /N − (∑ di/N)2 is below a threshold, we keep the principal curve, oth-
erwise we keep the contour.

Shapes may form a principal curve individually, but when located close to
each other join and form a stronger contour, as shown by the four poles in
Fig. 3.3. Hence, in a second step, we measure whether multiple principal
curves are close to one another, in which case we compute an abstract con-
tour around this group of objects. As a result, the group holds individual
principal curves and a group-wise abstract contour.

3.3.1 Principal Curves

The tombs on the left illustrate how principal curves
(the blue curve on the right) are a practical approxi-
mation of side contrast edges (the green curves on
the left). We propose a method to automatically
compute principal curves for arbitrary objects in the
scene. Principal curves have been studied in statis-
tics as a non-parametric model of curved manifolds

and a generalization of the principal (vector) component [Silverman, 1985].
We follow a spline regression framework, where the correspondence be-
tween the data points and the spline is not known a priori but must be esti-
mated — typically in an iterative closest point (ICP) fashion.

Applying this technique to 3D meshes leads to problems of its own. First,
the distribution of points along the surface can influence the shape of the
principal curve, hence we need to re-sample the surface uniformly. Second,
minimizing the distance alone can lead to spurious curves when applied to
shapes that are not equally spaced-out w.r.t. their center-line (such as the
tree in Fig. 3.4). We address this issue with iterative regularization, i.e. we
penalize the solution w.r.t. the last computed curve between consecutive
ICP iterations.

Our first step is to compute a uniform sampling of the surface mesh. As
we work in screen space, we use the depth map and sample pixels whose
depth is lower than 1, yielding 2D surface points X = {x1, x2, ..., xN}. Note,

22

3.3 Subjective Curve Elements

we believe our approach easily extends to the 3D case with 3D surface re-
sampling. We initialize the spline c0(s) to the principal axis xaxis of the sur-
face by computing the largest eigen vector of the sample covariance matrix
formed from all the surface points Cov(X, X) = 1

N ∑N
i=1 (xi − x̄) (xi − x̄)T,

using principal component analysis. We use cubic Hermite splines in our
implementation, and initialize the length of c0(s) to the size of the shape in
its principal direction.

Then, we refine the curve by iteratively solving the following problem. At
each iteration, we compute the parametric correspondence s∗i of every sur-
face point xi to the current principal curve by computing the closest point(
s∗i = argmins ‖xi − ck(s)‖

)
. And then we minimize the euclidian distance

between both points, w.r.t. the spline degrees of freedom, while penalizing
deviations in shape from the previous curve:

ck+1(s) = min
c(s)

w1 ∑
i
‖xi − c(s∗i)‖

2 + w2

∫
s

∥∥∥∥∂c(s)
∂s
− ∂ck(s)

∂s

∥∥∥∥2

. (3.1)

We then increase k and iterate until no more improvement is gained. In
our implementation, we used a weight w2 1000 times bigger than w1. To
compute this integral, as well as all the following ones, we discretize the
Hermite curve into equally-spaced points and sum over the desired values
at these points. Examples of principal curves computed by our algorithm
are shown in Fig. 3.4.

Figure 3.4: Thin objects can be abstracted by a principal curve, which approximates their
side edges.

3.3.2 Abstract Contours

Subjective elements are often perceivable around the tips and edges of com-
plex shapes, or joining groups of close objects. Outer-contour groupings are

23

Flow Curves: an Intuitive Interface for Coherent Scene Deformation

often what we naturally sketch when drafting the shape of objects and as
such are an important class of SEcurves (see Fig. 3.3 middle).

We also use spline fitting to compute the abstract (outer) contour of an object
or group of objects, but here using a closed curve. We minimize the area
EA(c) enclosed by the curve c(s) while preventing points of the object from
moving outside the curve, resulting in a penalizing energy term EO(c). The
level of abstraction is controlled by weighting the curvature penalization
term EC(c). For the closed curve c(s), we use a cubic Hermite spline and
initialize it to the bounding box around the object. We detail bellow the
optimization problem we solve.

Area EA(c). We penalize the area enclosed by the curve, scaled by the ob-
ject’s bounding box area a0. We discretize the curve into equal-length seg-
ments and compute the enclosed area by summing all the signed areas under
these segments, using the determinant of the 2× 2 matrix formed by setting
the consecutive curve samples as columns: [c(si) c(si+1)], resulting in:

EA(c) =
1

2 · a0

∣∣∣∣∣∑i
Det [c(si) c(si+1)]

∣∣∣∣∣ . (3.2)

Outside points EO(c). We compute the number of edge pixels pi outside
the curve c(s). To do so, we trace vertical lines (in the ~y direction) starting
at each edge pixel pi, and count the number I(pi) of intersections with c(s).
The parity of I(pi) determines whether it is inside (odd) or outside (even).
Note that this term acts as a hard constraint and thus has a large weight wO.

EO(c) = ∑
i

1− (I(pi)% 2) . (3.3)

Curvature EC(c). We penalize the curvature of the contour c(s), which
corresponds to its second derivative (we approximate it numerically using
equally-spaced samples). Controlling a soft curvature penalty weight con-
trols the level of abstraction of the contour. Indeed, if c(s) is allowed to be
flexible, it can move inside cavities of the object in order to minimize area.

EC(c) =
∫

s

∥∥∥∥∂2c(s)
∂2s

∥∥∥∥2

. (3.4)

The total energy is non-linear and the term EO is discontinuous. Hence we
minimize the sum of energies using stochastic optimization with Covariance
Matrix Adaptation (CMA):

E(c) = wAEA(c) + wOEO(c) + wCEC(c), (3.5)

24

3.4 Flow Curves

setting the parameters to wA = 100 , wO = 105, and wC = 5 in our re-
sults. Note that there can be infinite reparameterizations of c(s) that yield
the same total energy values; this can cause global stochastic optimization
to loop without significant gains. We alleviate this issue with a stopping cri-
teria based on the relative improvement of the objective function. Examples
of abstract contours computed by our algorithm are shown in Fig. 3.5.

Figure 3.5: Complex shapes, as well as groups of objects, form abstract contours. We
compute them using spline fitting, i.e. by minimizing the area of a closed
spline curve while ensuring that points of the object remain inside the closed
curve. The level of abstraction is controlled by penalizing curvature.

3.4 Flow Curves

We define flow curves as shape constraints over SEcurves. The goal of flow
curves is to design smooth movement and we thus first describe how to
control the smoothness of the sketched flow curve — if desired by the user.
A second goal is coherence, not only for individual subjective curves, but
also for the scene as a whole. Hence, the second control we provide to the
user is a center-point, which generates a coherent network of smooth flow
curves.

3.4.1 Flow Curve from Sketched Stroke

We can control the smoothness of a flow curve γ(s) drawn by the user via
spline fitting and curvature penalization. We fit a cubic Hermite curve to the
stroke samples fi while penalizing the second derivative of the curve:

min
γ(s)

∑
i

w1 ‖ fi − γ(si)‖2 + w2

∫
s

∥∥∥∥∂2γ(s)
∂2s

∥∥∥∥2

, (3.6)

25

Flow Curves: an Intuitive Interface for Coherent Scene Deformation

which we optimize w.r.t. all the spline degrees of freedom, i.e. the position
and tangent of every control point. The number of control points nγ is deter-
mined by the length lγ of the sketched stroke. Observing that a flow curve
of length ws/4 (ws being the width of the screen) is well represented by 4
control points, we used nγ =

⌈
3 · 4·lγ

ws

⌉
+ 1.

3.4.2 Flow Curves Network from Center-Point

When the user sketches a circle shape, we interpret its center of mass as the
center-point and generate a network of flow curves. To be consistent with
the current scene, the generated network depends on the scene configuration
and the present SEcurves. But its definition is unfortunately not unique; for
example, on the top row of Fig. 3.6, each subjective element individually
points towards the center-point, while on the second row, they move in ac-
cordance, eventually bending towards the center-point. Hence, we compute
a parametric space of flow curves and provide the user with a flow radius
parameter dMax, indirectly controlling the number of flow curves generated.

Figure 3.6: We allow the user to specify only a center-point, from which several flow
curves are computed — each converging to the center-point. We first ini-
tialize the flow curves (in purple) from the SEcurves (in blue), as shown in
the left column. The user can control the amount of grouping for the gen-
erated flow curves through a parameter dMax. The right column shows the
deformed curves and scenes.

26

3.4 Flow Curves

Our idea is to first compute average curves from the SEcurves present in the
scene, before bending them in order to make them coherently flow towards
the center-point.

Average curves. To estimate the average flow curve in a region of the
scene, we first extrapolate each SEcurve in both directions by interpolating
the direction of the nearest SEcurves. To do so, we start with an extremity
c(1) (or c(0)) and look for the nearest points cj(s∗) on the other SEcurves at
a distance below dMax. Then we integrate the curve’s position by averaging
the directions with an inverse distance weighting scheme:

c(s + ∆s) = c(s) + ∆s
∑N

j=1 r(‖cj(s∗)− c(s)‖) ∂cj(s∗)
∂s

∑N
j=1 r(‖cj(s∗)− c(s)‖)

, (3.7)

where r is a radial kernel function used to interpolate the directions of the
neighboring SEcurves; we used r(d) = 1

1+d2 . Note that we only include in

the sum the points that verify ‖cj(s∗)− c(s)‖ < dMax and ∠
(

∂cj(s∗)
∂s , ∂c(s)

∂s

)
<

θMax. This condition on the angle between tangents allows avoiding influ-
ence from inappropriate curves and supporting curves crossing each other
(we used θMax = π

3). We stop when there is no more point verifying these
conditions.
Finally, knowing which SEcurves influenced the extrapolation of which
other ones, we cluster the resulting curves. We then compute their aver-
age curve c̄(s) (by imposing a common parametrization on every clustered
curve), that we smooth into a Hermite curve using Equation 3.6).

Bending curves. We now bend the computed average curves as to have
them smoothly join the center-point (Fig. 3.6 right). For each curve c̄(s), we
fix an extremity control point (its position and tangent) and deform the re-
maining part as to point towards the center-point, giving a flow curve γ(s).
To know in which direction to deform the curve (i.e. choosing between fixing
c̄(0) or c̄(1)), we deform both cases and measure the deformation magnitude
(difference in shape), and we select the case yielding the smallest deforma-
tion. Note that we also use this measure to remove flow curves that would
deform the scene too drastically.

Having a flow curve join a center-point means that if we extrapolate its path
it should eventually touch the center-point. We approximate this measure
with the angle between the curve’s tangent at its tip and the vector between
the tip position and the center-point, resulting in θp = ∠(γ(1)− xp, ∂γ(1)

∂s).

27

Flow Curves: an Intuitive Interface for Coherent Scene Deformation

Also, the length of the curve l(γ) is constrained to stay close to the initial
length l(c̄). Hence by minimizing these values and controlling the smooth-
ness via curvature, we obtain the following problem:

min
γ(s)

w1 θ2
p + w2 |l(γ)− l(c̄)|+ w3

∫
s

∥∥∥∥∂2γ(s)
∂2s

∥∥∥∥2

subject to γ(0) = c̄(0),
∂γ(0)

∂s
=

∂c̄(0)
∂s

,

(3.8)

where the direction term has a larger weight (w1 = 500) than length conser-
vation (w2 = 0.5) and curve smoothing (w3 = 7), to ensure pointing towards
the center-point.

3.5 Direct Deformation of Scene Objects

Figure 3.7: To deform arbitrary objects in the scene, we compute their 2D embedding,
in screen-space, which is then used for deformation. The grid is a coarse ap-
proximation that preserves its intrinsic shape when deformed. The SEcurves
are expressed as linear functions of the 2D grid triangles, shown with red
points. We optimize for a deformation of the grid as to match the shape of
SEcurves (in blue) to the shape of flow curves (in purple).

Deforming the scene objects as to have SEcurves match the shape of flow
curves would require re-computing them at each step of the process. We cir-
cumvent this problem by using a common 2D grid embedding of both the
object geometry and SEcurves (Section 3.5.1). The correspondence between
SEcurves and flow curves is automatically computed using proximity and
shape criteria (Section 3.5.2). From the correspondence, we derive position
constraints on grid vertices for matching the curves, and then minimize an
as-rigid-as-possible energy expressed on the grid embedding vertices (Sec-
tion 3.5.3).

28

3.5 Direct Deformation of Scene Objects

3.5.1 2D Grid Embedding

Since movement edits are screen-space refinements, we utilize a deformation
representation designed to operate in screen-space. Given a 3D object with
vertices V = {v1, v2, ..., vN}, we build a 2D triangle grid embedding defined
by vertices xg by uniformly tessellating the object’s bounding box in screen
space at a fixed resolution (15 pixels in our examples). We then remove all
triangles not occupied by the mesh so that the grid closely conforms to the
object’s projected shape (see Fig. 3.7, left). We parameterize the 3D object
vertices vi to their projected position Pvi = φi(xg) in the grid using barycen-
tric coordinates, together with depth values in view space dzi = ‖vi − Pvi‖.
Here, P is the perspective projection matrix. After deforming grid elements
xg into x′g (Section 3.5.3), we recover the deformed mesh position v′i with:

v′i = φi(x′g) + dzi xdir, (3.9)

where xdir is the unit vector between the camera position and point x′g(i) on
the screen.

3.5.2 Automatic Correspondence

Given a flow curve γ and SEcurves ci, we automatically select parts of SE-
curves that will be transformed and compute their correspondence to the
flow curve. The result are new curve segments cl and γl, sharing a common
parameterization s: cl(s) → γl(s). Our solution consists of two steps. We
first select curve segments c̃k and γ̃k based on a closest point approach com-
bined with a curve similarity measure [Cohen and Guibas, 1997]. Because
this initial selection may include SEcurve segments that are either too small
or in conflict with one another (an example is the tree’s contour in Fig. 3.7,
which could have both parts of its base selected), we filter undesirable seg-
ments based on a score.

The initial segmentation process computes all the corresponding SEcurve
segments c̃k and flow curve segments γ̃k, by going through all the points of
the discretized curve ci and storing the ones ci(sj) whose closest point γ(s∗j)
is under a threshold ‖γ(s∗j) − ci(sj)‖ < dm (we use dm = 100 pixels), and

whose angle between tangents is under a threshold ∠
(

∂ci(sj)

∂s ,
∂γ(s∗j)

∂s

)
< θm

(we use θm = 2
3 π). The result is a set of corresponding curve segments

c̃k → γ̃k.

Then, to filter undesirable segments, we compute a score S(c̃k) for each seg-
ment, based on its length and mean distance to the flow curve (i.e. mean of

29

Flow Curves: an Intuitive Interface for Coherent Scene Deformation

‖γ̃k(sj)− c̃k(sj)‖):

S(c̃k) = w1 l(c̃k) + w2
1

1 + d(γ̃k, c̃k)
. (3.10)

We keep only segments whose score is above Smin, resulting in the set of
segments {cl , γl}. We use values w1 = 1, w2 = 105 and Smin = 150 in our
implementation.

3.5.3 Deformation

Given a flow curve segment γl and its corresponding SEcurve segment cl
(computed in Section 3.5.2), our goal is to deform the grids as to match the
shape of cl to the shape of γl:

∂cl(s)
∂s

=
∂γl(s)

∂s
. (3.11)

We achieve this by computing an as-rigid-as-possible grid deformation that
satisfies this differential constraint. For increased speed, we use a fast imple-
mentation of ARAP which only solves for hard position constraints. We thus
turn the differential constraints into hard position constraints of the grid ver-
tices wi. We also add positional constraints to preserve the initial placement
of objects in the scene.

Layout positions constraints. We compute intersections between objects
and create position constraints for all grid vertices to which these intersec-
tions project: w∗i , ∀i ∈ L, where L is the set of all constrained positions’ in-
dices on a given object grid. When no position constraints are detected for a
particular object, the natural behavior is to translate, allowing their SEcurves
to match the flow curve, as is the case for the birds in Fig. 3.9.

Shape constraints into position constraints. We approximate the dif-
ferential expression above (Equation 3.11) in terms of positional constraints
by translating the flow curve γl to the position on the subjective curve that is
closest to a constrained grid point: γl(s) := γl(s) + (cl(s∗)− γl(s∗)), where
s∗ = argmins ‖cl(s)− w∗i ‖ ∀ i ∈ L. When there are no constrained grid po-
sitions (L = ∅), we translate the SEcurve to the nearest flow curve point:
cl(s) := cl(s) + (γl(s∗)− cl(s∗)), where s∗ = argmins ‖cl(s) − γl(s)‖. We
then use γ as a position matching constraint. We derive the appropriate con-
strained grid positions similarly to other sketch-based deformation meth-
ods [Zimmermann et al., 2007], by mapping the relative position of vertices
close to cl onto γl.

30

3.6 Results and Discussion

Given these constraints, we wish to compute a deformed grid that respects
the constraints while minimizing the local distortion of grid elements. To
do so, we compute a deformation energy Eshape(T) that measures the non-
rigidity of triangle transformations T = T1, T2, ..., where Ti transforms trian-
gle i from its undeformed to its deformed state. As such deformations are
well studied, we employ an as-rigid-as-possible deformation [Sorkine et al.,
2004] to solve the following problem:

min
xg

Eshape(T)

subject to cl(s) = γl(s) ∀ l

wi = w∗i ∀i ∈ L.

(3.12)

Vertex position constraints are enforced by construction by removing them
from the set of unknown variables. Due to the 2D formulation, the overall
system is solved efficiently, leading to interactive performance. After solv-
ing for the grid deformation, we recover the mesh vertex positions using
Equation (3.9).

3.6 Results and Discussion

Fig. 3.9 shows how four different scenes were edited using sketched flow
curves. We refer to them as 1-Fountain, 2-Octopus, 3-Cliff and 4-Cemetery,
following the top-to-bottom order. The last three scenes (2,3,4) are inspired
by existing artworks shown in Fig. 3.2. The various scenes allowed us to
evaluate our interface on different types of objects (connected and discon-
nected meshes such as the poles of a fence) and scene configurations.

The second functionality provided by flow curves is the ability to sketch a
center-point circle. The center-point — taken as the center of the sketched
curve — automatically generates coherent flow curves to deform the scene
(as described in Section 3.4). In Fig. 3.8, we show the possibility for the
user to interactively manipulate the center-point while our system generates
coherent flow curves that directly deform the scene.

Figure 3.8: The user can control the center-point, thereby interactively inducing flow-
preserving deformations over the whole scene.

31

Flow Curves: an Intuitive Interface for Coherent Scene Deformation

Figure 3.9: Left: input scene. Middle: SEcurves (blue) and sketched flow curves (pur-
ple). The SEcurves were computed automatically in the first two rows, and
manually specified in the last two rows. Right: final deformed scene. Note
that we preserve the initial object placement layout: objects in contact re-
main so during deformation, as is the case with the trees and ground, or the
knives and boxes. When there are no contacts, such as the small birds in the
third row, the flow curves automatically become position constraints.

To evaluate the efficiency of our tool, we invited two artists with more than
7 years of professional experience. We asked them to deform 5 scenes using
their favorite software (Maya) in order to create a personalized movement.
Then they used our flow curves to create similar deformations on the same
initial scenes. A visualization of this evaluation is shown in Fig. 3.10.

Both artists were impressed by the ease of use of our tool and appreciated
the direct use (i.e. no manual setup). Table 3.1 compares the times taken
both in Maya and using our Flow curves, as well as the required number of
mouse clicks: our interface is on average 6 times faster and require 8 times
less clicks. Flow Curves was manifestly much more intuitive and faster than
deformers available in Maya, however it did not offer the same level of con-
trol. In fact, both artists mentioned that they would like to use Flow Curves
as a fast and natural way to deform their scenes, and to then use additional
deformers if more detailed refinements are needed.

32

3.6 Results and Discussion

Figure 3.10: This figure shows results generated by Artist 1 in our user study. The
five scenes in the left column were deformed by the artist using both Maya
(middle column) and our Flow Curves interface (right column). Under
each deformed image, we provide the corresponding time and number of
mouse clicks required. Note that for scenes 3 and A, the artist has added
his own SEcurves to the ones automatically computed.

33

Flow Curves: an Intuitive Interface for Coherent Scene Deformation

Table 3.1: Comparison of the time and mouse clicks required by professional artists to
deform the same scenes in Maya and with Flow Curves.

3.7 Conclusion

We introduced a new sketch-based interface called Flow Curves that pro-
vides intuitive ways of deforming whole scenes for visual coherence. With
our interface, the user can more directly and efficiently design and edit the
movement of a scene, simply by sketching flow curves, or sketching a cir-
cle center-point. Our direct deformation method requires little to no manual
setup time and preserves the intrinsic shape of objects together with the ini-
tial objects placement layout. We demonstrated that our approach takes con-
siderably less time to operate than current modern 3D digital tools, which
require setting up diverse deformers and performing multiple edits from
different view-points.

In our effort to offer a fully automatic interface that works on raw scene
geometry with little manual setup, we made assumptions about the user’s
intentions. In particular, we automatically compute the correspondence be-
tween SEcurves and flow curves (Section 3.5.2), but this may not reflect the
expectation of the user (he or she may only want to modify closer SEcurves,
or maybe sketch larger deformations). This issue is easily removed with
manual intervention, such as by sketching over the desired SEcurve por-
tions that one would like to modify. Also, when computing SEcurves in
the scene, the performance of our algorithm depends on the segmentation
of the scene. For example, the fence in Fig. 3.5 is one object and we obtain
an outer-contour, while if it was segmented into several objects, a principal
curve would be obtained for each individual pole.

We believe that our characterization of flow curves as constraints over fea-

34

3.7 Conclusion

ture subjective curves in the scene opens new opportunities beyond scene
deformation. For instance, the same constraints could be used to guide the
modeling or lighting of a scene. For example, a procedural modeling algo-
rithm could use our constraints to generate objects whose SEcurves match
user-specified flow curves through shading control.

In this Chapter, we have focused on static scenes. However, moving objects
can form subjective curves over time due to visual persistence — our mind
keeps track of previous positions and traces imaginary paths over time. That
is why in the following Chapters we investigate dynamic scenes and we
provide space-time curve representations that improve the visualization and
control of animations.

35

Flow Curves: an Intuitive Interface for Coherent Scene Deformation

36

C H A P T E R 4
Tangent-Space Optimization for
Interactive Animation Control

Figure 4.1: Left: In traditional animation the character’s deformations are driven by
rig controls (light blue), which provide fine control but require a granular
interaction. Middle: Our system provides an armature (dark blue) that co-
ordinately drives the rig elements for a more flexible character manipulation.
Right: we introduce a curve representation (purple) for easily controlling the
interpolation between key poses without adding any keyframe.

37

Tangent-Space Optimization for Interactive Animation Control

Extending the principle of movement to dynamic elements would mainly
refer to the animation principle of arcs. An arc is the visual path that an
object or action draws over time. It is an important tool to make move-
ments realistic and pleasing to the eye. Arcs also participate in the signa-
ture of an object or character; for example, a robot arm travels on an an-
gular path while a dancer’s arm moves in a circular fashion. However, the
keyframing approach discussed in Section 1.4 provides a very indirect con-
trol on those arcs. While contemporary 3D software offer many controls
and methods for posing, the tools available to adjust the result of the auto-
matic in-betweening are comparatively rudimentary. Artists must manually
manipulate the parameters of interpolation splines for individual animation
variables. In this pose-centric view, the least burdensome way to adjust the
interpolated movement and timing is to add additional keyframes, which
displeasingly complicates the parametrization of arcs and animation curves.
As a result, artists spend a tremendous amount of time posing and setting
keyframes in order to achieve a high-quality animation.

For articulated movement, the situation is further complicated. The artist is
given the choice of either manipulating angles with forward kinematics (FK)
or positions with inverse kinematics (IK). However, the choice made when
posing the character will also determine the nature of the interpolation be-
tween these poses: FK results in smooth arcs while IK produces linear move-
ment, especially useful for contact points. This forces the artist to carefully
plan when to use FK and IK. As mentioned earlier, FK arcs cannot be con-
trolled other than with the rudimentary manipulation of individual spline
parameters. It is also the case for IK, with the additional limitation that only
identical kinematic configurations can be interpolated since existing systems
assume that IK chains have the same bases and end-effectors. This forces rig-
gers to define fixed IK chains on the character and prevents state-of-the art
techniques in flexible IK definition to be used in a production environment.
In addition, IK-based controls slow down the rig evaluation, so a limited set
is typically placed on the characters, which restricts the freedom of interac-
tion. For example, artists rarely put IK on fingers due to the complexity of
the hand structure.

We addresses these problems with a novel tangent-space optimization
framework and a temporal interface for articulated movement that allows
artists to intuitively adjust in-betweenings (Fig. 4.2). The key feature of our
technique is that the optimization solves for the tangents of interpolation
at existing keyframes. As a result, it does not add any complexity to the
animation curves and is non intrusive to the artist workflow. The optimiza-
tion supports user-provided or character-implied constraints such as joint
angle limits and stiffness for more natural deformations. Our system works

38

on top of typical character controls and does not add other complexities or
structures to drive the animation. Furthermore, our method provides an
abstraction on top of posing and animation that completely eliminates the
need for fixed IK chains.

Figure 4.2: Left: Traditional interface for editing interpolations — the artist must man-
ually edit the tangents of multiple attributes’ animation curves. Right: Our
interface — the artist directly manipulates the trajectory of an element, and
our solver optimizes for the tangents that match the user inputs.

We illustrate how our framework improves current animation pipelines with
various examples and use-cases with both professional artists and novice
users. In summary, we make the following contributions:

• A formulation of interpolation as optimization in the tangent space
of rig controls with given positional, joint angle, and stiffness con-
straints. This leads to real-time interpolation control, which enables
artists to work with fewer keyframes and cleaner animation curves.

• An interactive interface that utilizes the optimization framework and
allows editing space-time curves for precise locations of controls
during interpolations. This leads to a more fluid and natural inter-
action than with merely adjusting animation curves for transforma-
tions.

• A system that alleviates the need of fixed IK chains for interpolation,
and thus unlocks the use of state-of-the art posing techniques in pro-
duction environments.

39

Tangent-Space Optimization for Interactive Animation Control

4.1 Background

We have seen in Section 2.2.1 that many works proposed to ease the posing
process. It started with the introduction of inverse kinematics where the
user can specify positional constraints of end effectors at keyframes. They
are then interpolated provided that the constraints configuration does not
change (same bases and end effectors). Further works explored different
interfaces for crafting poses, as already exposed. However, none of those
techniques tackles the challenge of controlling the interpolation between the
crafted poses. Their methods modify the FK values of the character controls,
but since FK arcs are not editable — such as to define contacts — it makes
those techniques impractical in a professional environment.

Our system provides a fine control on interpolated trajectories, includ-
ing FK-driven ones, which finally permits the integration of such ad-
vanced posing techniques in a professional workflow. Previous anima-
tion interfaces based on space-time curves manipulation [Guay et al., 2015;
Choi et al., 2016] usually exploited the IK chains present on the rig, which
limits the set of trajectories that can be edited on the character. With our
technique, the user has the freedom to manipulate the trajectory of any joint,
or even between the joints, with the additional benefit that no keyframe will
be added to the animation.

4.2 Approach

4.2.1 Problem Formulation

Our system starts with any rig structure. Some examples are graphs of con-
trols for rotation and translation, more complex rigs with advanced controls,
or a skeletal structure with joints (Fig. 4.3). From there, the user can directly
start animating either with traditional tools, or with our system.

Once some keyframes are set, the Motion Curves corresponding to a point’s
path in time can be visualized (Fig. 4.4, left) by clicking on any point on the
control structure. The Motion Curve also displays orientations (middle) and
spacing of frames, i.e timing (right). The trajectory can be altered by drag-
ging a point on the Motion Curve corresponding to the location of the chosen
point at a particular frame. Its orientation and timing can also be controlled
by rotation, and scaling to change the spacing of frames in time, respectively.
In this paper, we define state as the positional and orientational configura-
tion of a point at a specific time. Alterations specified by the user on a point’s

40

4.2 Approach

Figure 4.3: Left: our generic abstraction of character controls. It represents the structure
that the artist is animating, which could be of any type: skeleton (middle),
rig controls (right) or others.

state are combined with further constraints, such as pinned points (motion
curves that the user does not want to be altered), and contact points, in or-
der to craft the resulting motion interactively. We show a step of an example
editing process in Fig. 4.5. In this example, the user sets the right hand as
contact, pins the trajectory of the hip, and manipulates the trajectory of the
left arm as represented with a Motion Curve.

Although the manipulations and constraints described above give the user
enough degrees of freedom and precise control, we observed that it is of-
ten difficult to get character specific deformations as all the above controls
are agnostic to the character being animated. This is a common problem
also in previous FK/IK based systems. We thus propose to further impose
character specific properties. Angle limits are set in order to forbid unde-
sired configurations (such as turning the elbow backward). Angle stiffness
defines the resistance of joints to rotations; for example, on a human char-
acter, artists would usually set a lower stiffness on the shoulder than on the
clavicle because the latter is less involved in arms’ movements.

As in most animation systems, we assume that each control in the under-
lying rig structure is parameterized, and each parameter is controlled by a
different animation curve (Fig. 4.6). Although our formulation supports ar-
bitrary animation curves, we will assume cubic Bezier curves, since they are
heavily used in practice. Once an artist defines keyposes, each parameter of

41

Tangent-Space Optimization for Interactive Animation Control

Figure 4.4: Motion Curve representation that allows to edit the trajectory (left), orienta-
tions (middle) and timing (right) during interpolations. The orange spheres
represent keyframes, i.e. points that will not be altered by the modifications.

Figure 4.5: Manipulation of the interpolation. The user edits the Motion Curve of the
left arm, while ensuring that the trajectory of the hip (red curve) and the
right hand (which is a contact) will not be altered.

42

4.2 Approach

each controller is thus interpolated with a cubic Bezier curve that defines the
motion. Using traditional systems, if the resulting animation is not satisfac-
tory, editing the character motion requires to manually edit the tangents of
every Bezier curve, a cumbersome process that requires a lot of effort and
time to get the desired animation.

Figure 4.6: Illustration of the introduced variables.

We denote all tangents of all such animation curves with the vector θθθ, and
all animation curves with c(θθθ, t). At each editing step, the user can click
on a point on the control structure, and change the parameters (position,
orientation, and scale) at that point interactively. We denote the state of this
point with s(c(θθθ, t)), and the new one interactively specified by the user
with s′(t). The goal is then to compute a new set of tangent values θθθ′ in
order to reach s′(t) (i.e. we want s(c(θθθ′, t)) = s′(t)) while satisfying other
constraints, as we will detail in the next Section.

4.2.2 Tangent Space Optimization

As we would like to formulate the problem in terms of the tangents θθθ,
we first express all changes, and in particular ∆s(c(θθθ, t)) := s(c(θθθ′, t)) −
s(c(θθθ, t)) in terms of changes in the tangents. This can be easily carried out
by a first order approximation:

s(c(θθθ′, t)) ≈ s(c(θθθ, t)) + Js(c(θθθ, t))(θθθ′ − θθθ)

∆s(c(θθθ, t)) ≈ Js(c(θθθ, t))∆θθθ,
(4.1)

where Js is the Jacobian matrix that stacks the derivatives of s with respect
to the tangents θθθ. This is the starting point of most IK formulations, and in
our case a well justified approximation as the user will incrementally alter
the Motion Curves. The Jacobian can be further factorized into

Js(c(θθθ, t)) =
δs(c(θθθ, t))

δc(θθθ, t)
δc(θθθ, t)

δθθθ
. (4.2)

43

Tangent-Space Optimization for Interactive Animation Control

This form of Js is useful as the first term on the right hand side is typically
simple. Denoting the ith component of c with ci, and the position and ori-
entation of s with sP and sO, respectively, if ci defines a translation, δsP

δci
= v

and δsO
δci

= 0, or if ci defines a rotation, δsP
δci

= v× (sP− r) and δsO
δci

= v, where
v is the unit vector pointing along the translation or rotation axis, and r is
the rotation center. The second term in the Jacobian factorization is more
involved, and often not possible to get analytically. We thus approximate it
with finite differences.

For simplicity, we will drop c and simply write s(θθθ, t) and Js(θθθ, t) for the rest
of this Section.

Energy terms

Given this linear approximation, we can now define three important
quadratic energies. The first one aims at making the solution s(θθθ′, t) stay
as close as possible to the target s′(t) interactively provided by the user on
the Motion Curve (as in Fig. 4.5):

Em =
∥∥∆sss′(t)− Js(θθθ, t)∆θθθ

∥∥2 , (4.3)

where ∆sss′(t) = sss′(t) − sss(θθθ, t). Next, to avoid abrupt deformations when
manipulating a trajectory, we add an energy term to minimize the changes
in tangents:

Ed = ‖D∆θθθ‖2 . (4.4)

Here, D is a diagonal matrix that stores stiffness parameters per tangent
component, as defined in Section 4.2.1. Finally, the user can break some tan-
gents, meaning that the animation curve for certain parameters can consist
of multiple segments of Bezier curves that are not C1. For such cases, we
add an energy term that forces the tangents at consecutive segments to stay
close in order to have an as smooth as possible curve:

Eb =
∥∥T+θθθ − T−θθθ

∥∥2 , (4.5)

where the matrices T+ and T− select tangent pairs corresponding to the
same keyframe of the same curve, but on different Bezier segments.

Pins and contact constraints

In addition to the interactively modified Motion Curves, the user can specify
pins and contact constraints on the structure. This is important to achieve

44

4.2 Approach

and interpolate the poses as desired. The pinned points’ trajectories and
orientations — i.e. their state denoted by sj(θθθ, t) — should not be altered
by the modifications on θθθ. Therefore, we have the desired states s′j(t) =

sj(θθθ, t), at all times t. We sample the time into a set of frames, which gives
us a constrained state per pin and per frame, that we stack into the vector
ρρρ(θθθ). The target states for these points are similarly stacked into ρρρ′. We thus
require that ρρρ′ = ρρρ(θθθ). We elaborate on the sampling of time in Section 4.2.3.

Other points can be set as contact between two keyframes tk and tk+1, e.g.
feet on the floor. This means that those points should not move between
the two specified keyframes. Specifically, we have sj(θθθ, tk) = sj(θθθ, tk+1),
and want s′j(t) = sj(θθθ, tk), ∀t ∈ [tk, tk+1]. Once again, we sample the time
between tk and tk+1 and append the set of constrained states sj(θθθ, t) to the
vector ρρρ(θθθ), and the set of corresponding desired states s′j(t) to ρρρ′.

Finally, the state of the manipulated point can also be constrained at some
specific time frames by selecting them directly on the Motion Curve. Similar
to pins, at those times tl we have s′(tl) = s(θθθ, tl). We also append those
constrained and desired states to ρρρ(θθθ) and ρρρ′.

All the aforementioned pins, contacts, and state constraints then define hard
constraints in our optimization problem. Noting that ρρρ′ = ρρρ(θθθ′) for some θθθ′,
we can use the linear approximation given in Equation 4.1 to get

∆ρρρ′ − Jρρρ(θθθ)∆θθθ = 0, (4.6)

where ∆ρρρ′ = ρρρ′ − ρρρ(θθθ), and ∆θθθ = θθθ′ − θθθ, as before.

Variables limits

Let us define θθθi,k as the tangent for parameter ci at keyframe tk. If the tangent
is broken, we respectively call θθθi,k− and θθθi,k+ the tangents corresponding to
the Bezier segments before and after tk. Each of these tangents is composed

of two components θθθi,k =

(
θX

i,k
θY

i,k

)
. The X component (horizontal expansion

of tangent in Fig. 4.6) determines the timing of the interpolation. In order
to ensure that the spline interpolation is injective, i.e. at each time t there is
only one value of ci(t), we limit this component to:

0 ≤ θX
i,k+ ≤ (tk+1 − tk)

0 ≤ θX
i,k− ≤ (tk − tk−1) .

(4.7)

The Y component (vertical expansion) determines the range of values that
ci(t) takes. In order to limit it within the range ui to vi, we have to restrict

45

Tangent-Space Optimization for Interactive Animation Control

the Y component of the tangents. This is important especially when ci(t)
represents joint angles (see angle limits as defined in Section 4.2.1). We can
then impose the following limits on the tangents:

φ(ui, k+) ≤ θY
i,k+ ≤ ψ(vi, k+)

−ψ(vi, k−) ≤ θY
i,k− ≤ −φ(ui, k−).

(4.8)

Depending on the type of interpolation, the functions φ and ψ can have com-
plex expressions, or even have no closed form. It is the case for Bezier inter-
polations, for which we propose the following approximation:

φ(ui, k±) =
4
3
(ui −min(ci(tk), ci(tk±1)))

ψ(vi, k±) =
4
3
(vi −max(ci(tk), ci(tk±1))).

(4.9)

We demonstrate in Appendix A that this approximation satisfies the limits
ui and vi for ci(t) at all times.

Quadratic problem formulation

Given the energies, constraints and limits defined above, we finally obtain
the following minimization problem:

min
∆θθθ

wm · Em + wd · Ed + wb · Eb

subject to ∆ρρρ′ − Jρρρ(θθθ)∆θθθ = 0

0 ≤ θX
i,k+ ≤ (tk+1 − tk)

0 ≤ θX
i,k− ≤ (tk − tk−1)

φ(ui, k+) ≤ θY
i,k+ ≤ ψ(vi, k+)

− ψ(vi, k−) ≤ θY
i,k− ≤ −φ(ui, k−)

, ∀i, ∀k.

(4.10)

This is a quadratic programming problem that we solve using the Mosek
solver [Mosek, 2010] with default parameters. In our implementation, we
chose wm = 100.0, wd = 1.0 and wb = 1.0 — here, the high value of wm re-
flects the prevailing importance given to satisfying the user manipulations.

4.2.3 Implementation Details

Tangents reduction

We can drastically reduce the size of the optimization by realizing that it is
not required to optimize for the entire set of tangents θθθ. Indeed, many tan-
gent modifications will not affect the state of the manipulated point or of the

46

4.2 Approach

constrained ones (pins and contacts), so they do not need to be considered.
We denote Cs the set of all parameters that affect the state s of the manip-
ulated point, and Csj the equivalent set for the state sj of each constrained
point. With hierarchical structures such as skeletons, those sets correspond
to the parameters of the point’s parent chain. We further denote the set of
parameters whose tangents are actually optimized in Equation 4.10 with C.

We begin by setting C = Cs. Then, for each constrained point, we identify
three cases: (1) if C ∩ Csj = ∅, we ignore the constraint and remove it from
the vector ρρρ because no modification on s will affect sj; (2) if Csj ⊂ Cs, we
remove the constraint from ρρρ and reduce the set C := C \ Csj ; (3) otherwise,
we keep the constraint and augment the set C := C ∪ Csj . Finally, if a point in
the time range t ∈ [tk, tk+1] is manipulated, only the tangents corresponding
to that time range need to be modified. In conclusion, the tangents that we
optimize for in Equation 4.10 are:

(
θθθi,k+ , θθθi,k+1−

)
, ∀i ∈ C.

For the example in Fig. 4.5 where the left arm is manipulated while the hip
and hand are pinned, our solver optimizes for 60 tangents, while the total
number of tangents present in this scene, supposing that the entire anima-
tion contains only 3 keyframes, is 556. This optimization allows to achieve a
real-time interaction, as presented in Section 4.3.5.

Time sampling

Pinning or setting contact points sj means imposing a constraint over a
whole time period [tk, tk+1]. To do so, we sample the time. The set of samples
is at most at every frame of the animation between tk and tk+1, but we can
reduce its size in case tk+1 − tk is large or Csj is small. Indeed, there is a lim-
ited number of degrees of freedom in the spline animation curves that define
the state sj, therefore we only need to sample the time range that number of
times, which is: 4× size(Csj).

Optimization and overconstrained cases

Most of the time, since the manipulations are incremental, one single iter-
ation of the optimization is sufficient to satisfy the constraints. However
sometimes it might not be enough, in which case we update the state and
Jacobian values and run the optimization again — this happens if s′(t) is
far from s(θθθ, t) and the linear approximation of Equation 4.1 is not accurate
anymore. Our stopping criteria is that the manipulated point’s state is close
enough to the user given state, i.e. ‖sss(θθθ + ∆θθθ, t)− sss′(t)‖ < ε.

47

Tangent-Space Optimization for Interactive Animation Control

If after several iterations (we used 5) the solution is not improved — i.e. the
curve does not move closer to the user-specified point — we reject it and
stay at the current configuration. This can happen when the problem is over
constrained, i.e. the set of constraints (pins, contacts and manipulated point)
are unreachable given the set of degrees of freedom (tangents). When the
user comes back to a reachable solution, the state is updated, which provides
direct feedback about the feasibility of the manipulations.

Solver stability

In order to improve the stability of the quadratic programming solver, we al-
lowed a threshold on the hard constraint corresponding to pins and contacts
in Equation 4.6. It becomes:

− εεε ≤ ∆ρρρ′ − Jρρρ(θθθ)∆θθθ ≤ εεε, (4.11)

where εεε is a vector of ε values that affect the extent on which constrained
points will be able to move around their desired state ρρρ′. It can be chosen
depending on the scale of the scene in order for the error to stay barely visi-
ble to the user. We used ε = 10−4.

The optimization problem being quadratic, we can rewrite Equation 4.10 in
the form 1

2∆θθθT ·QQQ ·∆θθθ + bbbT ·∆θθθ + c. Jittery solutions can be obtained if QQQ is
not full rank. We avoid such cases by regularizing QQQ with QQQ := QQQ+ λIII, with
λ = 10−6.

4.2.4 Timing Manipulations

Another important aspect to consider when manipulating interpolations is
the timing. The extent of tangents in the X direction, θX

i,k, influences the ease-
in and ease-out of interpolations. We propose to let the user edit this easing
directly on the Motion Curve, by scaling the timing up or down at any point
(see Fig. 4.4, right). Scaling up means moving the frames apart around that
point, i.e. making the motion faster, and scaling down means bringing the
frames closer around that point, i.e. making the motion slower. If the user is
scaling at time t ∈ [tk, tk+1] by a factor σ, we modify the tangents as follows:

θX
i,k+ := θX

i,k+ + σ
t− tk

tk+1 − tk

θX
i,k+1− := θX

i,k+1− + σ
tk+1 − t
tk+1 − tk

,
(4.12)

while still limiting the values to stay between 0 and (tk+1 − tk) in order to
keep an injective function.

48

4.2 Approach

4.2.5 Static Case

It is interesting to notice that the system we introduce for the control of inter-
polations can be reduced to a posing system, similar to what we find in the
literature [Yamane and Nakamura, 2003; Shi et al., 2007], if we remove time
from the equations. Indeed, c(θθθ, t) simply becomes c, meaning that we di-
rectly optimize for attributes’ values instead of tangents. The minimization
problem of Equation 4.10 then becomes:

min
∆c

wm · ‖∆sss− Js(c)∆c‖2 + wd · ‖D∆c‖2

subject to
∥∥Jρρρ(θθθ)∆θθθ

∥∥2
= 0

ui ≤ ci ≤ vi, ∀i,

(4.13)

where ρρρ is the vector of pinned (i.e fixed) points and the Jacobian Js(c) is
given by:

Js(c) =
δs(c)

δc
. (4.14)

Figure 4.7: The user is manipulating the character’s left arm for a static pose. The feet
and right hand are pinned, ensuring that they do not move during manipu-
lations.

The obtained system provides similar interaction abilities as our interpola-
tion control, always with angle limits and stiffnesses (Fig. 4.7). This shows
that our problem formulation can be generalized to cover a wide range of
the animation pipeline, and that it completely removes the need for fixed IK
chains in the rig. It is the system we use in Section 4.3 to design the keyposes
of our results.

49

Tangent-Space Optimization for Interactive Animation Control

4.3 Evaluation

4.3.1 Examples of Authoring Difficult Animations

We implemented our system as an Autodesk Maya plugin. To demonstrate
its potential, we let two artists design several animations for different types
of characters. While our method is designed to work in harmony with tradi-
tional tools, these animations were entirely authored using our system, from
the design of key poses to the editing of interpolations.

Complex interactions of hands with objects, such as playing the guitar, are
some of the most difficult animations to create due to fingers’ particular ges-
tures and contacts. Animating this case typically involves IK chains on the
fingers, which drastically slows down the rig evaluation, further hindering
the creation process. In contrast, creation becomes very natural using our
system, as one can pin some fingers, and freely move any other part of the
character. Contacts can be specified for certain time ranges to ensure that the
fingers won’t move during interpolation while a note is being played. The
animation presented in Fig. 4.8-left was created using our system without
requiring any IK chain.

In a similar vein, the diving animation shown in Fig. 4.1 and Fig. 4.8-right
necessitates contacts between the feet and the ground, which are easily han-
dled with our system. Additionally, the interpolation for the jump requires
a particular trajectory, with careful orientation and timing control, in order
to achieve a realistic falling movement. Our system allows for a natural in-
teraction with direct trajectory control for this case.

Figure 4.8: Results on a human character. Left: Playing guitar animation, which neces-
sitates specific contacts on fingers. Right: Diving animation, requiring foot
contacts and a believable falling trajectory.

50

4.3 Evaluation

Our system is not limited to human models. In Fig. 4.9, we show results with
a spider robot and a dinosaur. The spider animation is a walk cycle that was
created using only two key poses, demonstrating the effectiveness of the
ability to control interpolations with tangents. The dinosaur punching ani-
mation is another example where the control of timing plays an important
role. Furthermore, near the end of the animation, the dinosaur is standing
on a part of his tail. Handling this contact with traditional tools would be a
challenging task, especially since a classic rig would most likely not contain
any IK chain with an end effector at the middle of the tail. These issues are
effortlessly solved using our system.

Figure 4.9: Results on non-human characters. Top: Walking animation of a spider robot,
generated using only the shown two key poses. Bottom: Punching animation
of a dinosaur, who switches his contact component with the ground from the
feet to the tail.

51

Tangent-Space Optimization for Interactive Animation Control

4.3.2 User study: Simpler Curves for Complex Motions

One objective of our system is to help animators work with clean anima-
tion curves with the least amount of keyframes, making further editing as
easy and fast as possible. As the animations are typically refined and al-
tered many times in production, this is crucial for an effective workflow.
To evaluate this aspect on complex animations, we asked two professional
artists with a long experience using Autodesk Maya to animate scenes in
Fig. 4.8 and Fig. 4.9 using traditional tools. For each animation, we counted
the number of keyframes used, which are listed in Table 4.1. The number
of keyframes naturally depends on the animation style, but for all cases we
can clearly see that our system allows to animate using fewer keyframes (on
average, 2.2 times less). Moreover, since with traditional tools artists require
IK chains, the rig evaluation is considerably slowed down, further hindering
interaction. In Table 4.1, we show that since our system does not require IK
chains, the speed of the playback is on average 60% faster.

Table 4.1: For each animation, we compare the number of used keyframes when ani-
mating with a traditional system and with ours. Note that different controls
might have different keyframes, so we choose the most keyframed one. We also
compare the speed of rig evaluation in each case, in fps.

4.3.3 User Study: Faster Editing Process

To evaluate the effectiveness and accessibility of our system, we conducted
a further user study. We invited 16 people — 6 artists and 10 novice users —
who were presented with a simple robot flying animation composed of only
4 keyframes, where the character is hitting obstacles during interpolations.
The objective of the exercise was to modify the animation in order to avoid
those obstacles (see Fig. 4.10). Using Maya, they were free to use FK or IK,
add keyframes, or edit the curves of interpolations in the graph editor. Using
our tool, they only edited the motion curves in the viewport.

52

4.3 Evaluation

Figure 4.10: 16 users were asked to edit a robot flying animation (left) in order to avoid
obstacles (right), first using traditional tools on Maya and then using our
plugin.

Each user received a 10 minutes introduction to each system before starting.
We measured the time, number of clicks, and keyframes to produce the final
animations. Furthermore, each participant was asked to self-evaluate the
quality of his/her results on a scale from 0 to 5. All numbers are presented
in Table 4.2.

We observe that professional artists were able to edit the animation even
more effectively with our system than with traditional tools they are trained
on. Same goes for novice users, which demonstrates the accessibility of our
system. On average, both the time and number of clicks were reduced by a
third using our system. We also notice that this efficiency does not come at
the cost of poorer animations. Indeed, our approach received significantly
higher self-evaluation scores in all cases. This is partially due to the re-
duced number of keyframes, which yields a smoother motion. Note that
only one user (novice #5) attempted to edit the curves of interpolation in
Maya’s graph editor, a choice he eventually regretted. We believe that with
a longer experience of animators on our tool, these gains will be further in-
creased. We already observed this with Artist #1, who achieved the fastest
edit with our tool since he was already trained by working on the animations
presented in Section 4.3.1.

53

Tangent-Space Optimization for Interactive Animation Control

Time Clicks Keyframes Score
Maya Ours Maya Ours Maya Ours Maya Ours

Artist #1 6m52s 2m28s 278 137 10 4 3.5 3.5
Artist #2 6m15s 4m32s 139 113 11 4 3.0 5.0
Artist #3 5m41s 4m27s 252 154 11 4 1.0 2.0
Artist #4 6m12s 5m11s 252 202 14 4 3.0 4.5
Artist #5 7m30s 5m27s 276 201 11 4 2.5 4.0
Artist #6 5m53s 4m33s 139 117 12 4 2.0 4.0
Novice #1 9m01s 6m48s 214 115 12 4 2.5 4.0
Novice #2 11m02s 8m52s 168 154 12 4 2.5 5.0
Novice #3 9m31s 5m29s 203 96 15 4 2.0 3.5
Novice #4 10m28s 5m03s 181 99 14 4 2.5 4.5
Novice #5 25m26s 7m19s 465 153 4 4 2.0 4.0
Novice #6 6m48s 4m52s 170 151 8 4 1.0 3.0
Novice #7 6m30s 6m54s 175 166 12 4 1.0 4.0
Novice #8 6m17s 5m52s 178 150 9 4 2.0 3.0
Novice #9 14m17s 12m39s 338 232 14 4 3.5 4.5
Novice #10 7m29s 6m46s 145 121 10 4 2.0 4.0

Table 4.2: For each participant who edited the flying robot animation using Maya and
our system, we here compare the required time, the number of clicks, the num-
ber of keyframes and the self-evaluation score.

4.3.4 Qualitative Assessment from Professional Animators

We further conducted a survey and gathered observations on our system
from professional animators, along the lines of Koyama and Goto’s evalua-
tion [2018]. The artists were overall thrilled by the potential of the system,
and stated that our approach was solving the current main shortcomings
of the traditional animation systems, which they face everyday in produc-
tion. They had a much more natural and efficient interaction with characters.
Moreover, they really appreciated that our tool can be applied to characters
without complex rig controls — by acting directly on the skeleton —, which
eliminates one step of the animating process. The artists expressed a clear
desire to see such a system available in their workflow.

54

4.4 Conclusion

As animators like to keep a relatively local control, we realized that they
were reluctant to edit long chains or long interpolations in time. Also, their
main reservation was about working with global keyposes — i.e. assuming
that all elements are keyed at the same frames —, as they are used to working
with different keyframes for different parts of a character, a strategy they use
for e.g. follow-through effects. This could be easily solved computationally,
as we develop in Section 4.4, but would be challenging to represent visually.

4.3.5 System Performance

We tested the performance of our approach on a machine with an Intel Core
i7-4930K CPU and 32GB of RAM (we do not specify the graphics card since
we do not use any GPU optimization, neither does the optimization library
we use in our system [Mosek, 2010]). Table 4.3 shows the computing times
required to obtain the tangent values from user input, depending on the
number of degrees of freedom (i.e. tangents), the length of the interpolation
(i.e. spacing between two keyframes), and constraint configuration (number
of pins and contacts, lower or upper in the hierarchy of character controls).
Note that our system does not depend on the total length of the animation
since we only consider a section of it during our optimization (as discussed
in Section 4.2.3).

Given that artists rarely space their key poses by more than a few frames,
and that most configurations do not exceed 100 degrees of freedom, we ob-
serve high enough frame rates for fluid interactions for typical animations
in all cases. Some latency can be observed when a very large number of tan-
gents are involved over a long interpolation. Even for such rare cases, we
can maintain an interaction speed feasible for editing. Currently, creating the
matrices of the QP problem — i.e. computing the Jacobians — represents on
average 20% of the computing time in our tests, and this number goes up to
38% when a large number of DoFs and constraints are involved. Therefore,
using a GPU optimization to parallelize the computation of all derivatives
(from Equation 4.2) can significantly speed up the overall computation.

4.4 Conclusion

We proposed a new optimization-based keyframed animation system. For-
mulating common constraints and user interactions as an optimization prob-
lem in the tangent space of animation curves allowed us to handle the prob-
lem with fast quadratic programming based solvers. The result is an efficient
real-time system that abstracts away the difficult choice of FK/IK from the

55

Tangent-Space Optimization for Interactive Animation Control

Degrees of freedom
24 72 120 168

Fr
am

es 2 10 12 16 21
7 10 13 16 21

20 10 12 16 20

Degrees of freedom
24 72 120 168

Fr
am

es 2 52 57 69 86
7 58 80 94 130

20 67 106 158 227

Degrees of freedom
24 72 120 168

Fr
am

es 2 53 59 63 68
7 63 80 91 113

20 65 103 144 187

Degrees of freedom
24 72 120 168

Fr
am

es 2 52 54 57 63
7 59 68 81 101

20 63 103 144 200

Degrees of freedom
24 72 120 168

Fr
am

es 2 55 57 59 64
7 60 67 77 92

20 60 99 137 167

Degrees of freedom
24 72 120 168

Fr
am

es 2 56 59 61 66
7 61 76 89 99

20 63 101 162 191

Hi
er

ar
ch

y
Hi

er
ar

ch
y

Hi
er

ar
ch

y

Hi
er

ar
ch

y
Hi

er
ar

ch
y

Hi
er

ar
ch

y

Table 4.3: Each table presents the time, in milliseconds, required for optimizing tangents
to satisfy user manipulations, under different constraint configurations, as il-
lustrated on their right. The values depend on the number of dof (i.e. 2× num-
ber of tangents) and the length of the interpolation. Each exposed value is the
median over more than a hundred tests.

user, without adding keyframes or complicating animation curves. These
properties make the proposed system practical and easy to incorporate into
existing animation processes. We believe that with its stable and fast im-
plementation, our system is an important addition to the current animation
tools.

In our method, we assumed that animators use global keyposes. For cer-
tain animations, it might be more convenient to use different keyframes for
different parts of a character. Computationally, this can be achieved by us-
ing different keyframes for different attributes when optimizing tangents in
Equation 4.10 (i.e. attribute-dependent tk values). However, the interaction
might suffer from the inability to visualize clear segments of motion, and
therefore yield unexpected behaviors when editing. We plan to develop al-
ternative visualization strategies for these cases.

In this Chapter we have worked with connected structures such as skeletons

56

4.4 Conclusion

and body rig controls. But some structures, such as blendshape deformers
on a facial rig, consist of a set of independent handles. Our system naturally
extends to such cases, with a simplified optimization as only the tangents of
that handle’s attributes would need to be optimized. Visualization of motion
curves would again be the main challenge for these cases.

Finally, it is possible that there is no solution for tangents in Equation 4.10
that would satisfy the user manipulations, especially if there are numerous
contacts and pins specified. This means that there is no configuration of
Bezier interpolations on joints’ rotations that result in a certain trajectory for
the end effector, while satisfying the constraints. For these cases, what we
currently have is similar to that of IK systems: the optimization gives the
closest possible solution. Alleviating this shortcoming, which comes from
the limited degrees of freedom provided by the tangents, would require
adding keyframes. However, this is not desired by animators in current
animation workflows. Therefore, in the following Chapter, we propose an
alternative to keyframing for the case of motion cycles: we base our ap-
proach on performance animation, and our system keeps control on every
frame of the animation to let the user finely edit the motions with a similar
space-time curve representation.

57

Tangent-Space Optimization for Interactive Animation Control

58

C H A P T E R 5
Authoring Motion Cycles

Figure 5.1: Left: To specify a motion cycle, the user acts out several loops of the motion
using a variety of capture devices. Middle: A looping motion cycle is au-
tomatically extracted from the noisy performance. Right: A custom motion
representation tool, called MoCurves, allows controlling and coordinating
spatial and temporal transformations from a single viewport.

The previous Chapter examined in depth the keyframing process that is
used to author general animations and proposed to enhance it with a space-
time curve interface. For the creation of motion cycles, artists rely on the
same animation tools and principles, which makes our proposed system ap-
plicable. However, making the motion loop perfectly from a set of separate
keyframes remains a challenging task. In this Chapter, we make the core
observation that the cyclic nature of motion cycles makes them especially

59

Authoring Motion Cycles

appropriate for performance animation, and we therefore propose an alter-
native to keyframing for authoring them.

Motion cycles play an important role in animation production and game de-
velopment. In animated films and visual effects, artists use walk cycles and
other looping animations during character development to explore a char-
acter’s particular movement style. During production, these cycles aide the
animation workflow by providing a starting point for walking, running, and
other cyclic movements. In games, motion cycles play an even more promi-
nent role. Motion cycles for locomotion allow characters to move arbitrar-
ily under the player’s direction. Punching, kicking, flipping, and countless
other cycles are created to enable game combat. Even idle game characters
are animated with motion cycles for breathing and other subtle movements
that give them life. In fact, motion cycles play such an important role that
game engines have specialized animation components designed to play back
and seamlessly blend between different motion cycles.

Although specialized components for using motion cycles are commonplace,
little work has explored the specific challenges of authoring them. Instead,
the authoring process relies on general-purpose animation packages such as
Autodesk Maya, 3ds Max, or Blender. These packages, by design, accom-
modate a broad spectrum of animation tasks with support for features and
workflows used in animated films, visual effects, and games. This gener-
ality comes at a tremendous cost. The learning curve for any commercial
animation package is steep, and the animation process relies on complex
mechanisms that require expert knowledge to master. As a consequence,
although a motion cycle may only be a few frames of repeated animation,
creating those frames with general-purpose animation software is difficult,
time consuming, and restricted to expert users.

This Chapter explores the challenge of motion cycle authoring and provides
a system simple enough for novice animators while maintaining the flexi-
bility of control demanded by experts. Our system allows the user to act
several loops of motion using a variety of capture devices ranging from the
computer mouse to a full body motion-capture suit. Since these acted cycles
will inevitably contain imprecisions, we propose an optimization algorithm
to analyze and automatically extract a looping cycle from this potentially
noisy input. By supporting multidimensional input, cycles can accommo-
date an arbitrary number of animation variables. We then propose a space-
time curve interface, similar to the one used in the previous Chapter, to edit
the resulting motion cycle. These curves, that we call MoCurves, serve as
a representation and manipulation of the movement and allow the user to
control and coordinate spatial and temporal transformations from a single

60

5.1 Background

viewport. They encompass translation, rotation, scale and time. Motion cy-
cles for different character components can be authored independently in a
layered fashion and synchronized in time using an optimization-based time-
warping function built into the MoCurve interface. Finally, since contact
with the ground or other surfaces is pervasive in motion cycles yet difficult
to precisely control with a performance-based interface, we support a sketch
based contact specification in which a single sketched contact line induces a
spatio-temporal transformation that respects planar contacts without slid-
ing.

Our work introduces an effective system tailored to motion cycles authoring.
Our core technical contributions include a generic motion cycle extraction
algorithm, the MoCurve representation with support for coordinated spatial
and temporal editing, and a contact specification method that uses a single
sketched line to establish non-slipping planar contacts. We implemented our
approach as an Autodesk Maya plugin that permits motion cycle authoring
independent of Maya’s more complex animation features. We evaluated the
effectiveness of our work through tests with both novice and expert users
and showed motion cycles created with performance input from the mouse,
Wacom Cintiq tablet, Leap Motion hand tracker, HTC Vive, as well as full-
body motion capture. All these elements show that the creation process can
be dramatically simplified using our software, allowing novice animators to
author quality animations in minutes.

5.1 Background

One core contribution of our work is the automatic cyclification of an acted
motion. While some existing research [Rose et al., 1996; Ahmed et al., 2003;
Mukai, 2011] explores cyclification, these methods operate under the single-
cycle assumption and cannot accommodate cyclification of repeated mo-
tions. They focus on matching boundaries of a single cycle and do not allow
identifying a period in a longer sequence of an imprecisely repeated motion.
In Rose et al. [1996], the user is even asked to manually specify the start and
end points of a cycle. In our case, taking multiple loops as input is a tech-
nical challenge as it requires identifying a recurrent pattern over imprecise
loops in space and time.

Some previous methods [Tsai et al., 1994; Silva et al., 1999] can take as input
multiple loops, but can only process 1- or 2-dimensional curves. In con-
trast, we solve for N dimensions, which allows us to find the best period
for the N-dimensional signal directly. Moreover, similar to their approaches,
we experimented with frequency domain decomposition and found that for

61

Authoring Motion Cycles

performance animation the input is considerably noisy in the temporal di-
mension (i.e. all acted cycles do not have the same duration), which prevents
us from using frequency analysis such as Fast Fourier Transform, and led to
our feature-based solution.

5.2 Overview and Workflow

Our system is designed to create, represent and manipulate cyclic anima-
tions in a natural way. To create a motion cycle, the user performs the mo-
tion using any capture device, such as a mouse, Leap Motion, HTC Vive or
full body motion capture suit (as shown in our Results Section 5.5). Depend-
ing on the device being used, the user may choose to perform the whole
character motion or to animate parts of the character in a layered fashion.
Also, since synchronizing several motions is a crucial element of animation,
we play the animation of all previously created motions while the user per-
forms for other items (or other transformations of the same items). For ex-
ample, one would be able to act out the rotation of a foot while watching its
displacement.

Because users like to author cycles by performing them several times — each
time refining the motion — we begin by extracting a single cyclic curve from
the multiple performed cycles. Our solution is formulated as an optimiza-
tion problem which takes a repetitive and nearly cyclic motion as input, and
outputs a single clean cyclic motion (Section 5.3). This optimization is per-
formed in the N-dimensional space, where N is the number of dimensions
being captured — as shown in our examples, N can vary from 1 or 2 (mouse
input, Fig. 5.8) to a few thousands (physical simulation, Fig. 5.10). The cy-
cle extraction may be applied to any degree of freedom parameterizing the
character’s pose, such as rig controllers, skeletons, vertices, and any trans-
formation such as translations, rotations, scales.

To allow the user to directly edit and refine the cyclic motion from a single
viewport, we introduce in Section 5.4 MoCurves, a curve editor that com-
bines translations, rotations, scalings and timing into a single unified geo-
metric interface. We then describe in Section 5.4.3 an additional edit to our
curves that allows specifying planar contacts and solving sliding effects with
a single stroke.

62

5.3 Cycle Specification

5.3 Cycle Specification

In this Section we describe how we automatically extract a single closed
cycle from multiple nearly cyclic repetitions. The performed trajectory is
a discrete function p which associates times ti to a vector of values θθθi =
(θ1

i , θ2
i , ..., θN

i). These values can represent any type of transformation (po-
sitions, orientations, scales, a mix of them, etc.). The performed trajectory
p is supposed to be a periodic movement, but is imperfect in both space —
noisy θθθi — and time — noisy ti. Hence our goal is to identify points pi in the
nearly cyclic motion that are geometrically similar across periods. We start
by defining a curve descriptor that allows us to estimate the most probable
value for the period T. We then extract a set of nearly cyclic curves that we
average in order to obtain the shape of the final signal. We finally stitch the
extremities together in order to obtain a perfectly looping cycle.

Figure 5.2: Steps of the cycle extraction algorithm illustrated on a simple example —
only one attribute θ is animated, so p is of dimension 2. a) Points with
a similar neighboring shape are identified (red circles) using a new curve
descriptor. This allows to compute the average period of the motion, and
to partition p into several cycles. b) Correspondences between cycles are
computed. c) Each curve is non-uniformly scaled in order to align the corre-
sponding points. d) These curves are averaged to form the final cycle.

Curve descriptor The function p represents an N + 1-dimensional curve,
in which we seek to identify repetitive patterns. To measure the similarity
between points in a curve, we devised a descriptor that characterizes the
neighboring shape of a point on a curve. Our descriptor is similar to the one
used by Mori et al. [Mori et al., 2005], which we extend to the n-dimensional

63

Authoring Motion Cycles

case and make variant to rotations. Hence, we compute two descriptors hhhi
and gggi that respectively measure shape and velocity variations:

hhhi =

ĥhh
0
i

...

ĥhh
k
i

 where ĥhh
k
i = ∑

|i−j|≤k
θθθ
′
j and θθθ

′
j =

θθθ j+1 − θθθ j−1

tj+1 − tj−1

gggi =

ĝgg0
i

...
ĝggk

i

 where ĝggk
i = ∑

|i−j|≤k
θθθ
′′
j and θθθ

′′
j =

θθθ
′
j+1 − θθθ

′
j−1

tj+1 − tj−1

(5.1)

where we used k = 5, and we then define the similarity between two points
as:

dD(i, j) =
∥∥hhhi − hhhj

∥∥
2 ·
∥∥gggi − gggj

∥∥
2 . (5.2)

Period evaluation Considering the i-th point of the curve, pi, we define Ji
as the set of all indices j that are a local minima of dD(i, j), while remaining
under a threshold dm

D. By construction, Ji contains points that are similar in
shape and speed to pi. By conservatively choosing dm

D high enough — thus
favoring to select too many rather than too few points — we ensure that all
the points corresponding to pi in other cycles are present in the set Ji. Then,
we eliminate the outliers in Ji and divide the period T by computing the
minimal period that satisfies:

T = min
T∈N

T s.t.
∀k ∈ {

⌈
t1 − ti

T

⌉
, ...,

⌊
tn − ti

T

⌋
},

∃j ∈ Ji s.t. |tj − (ti + kT)| < mT

(5.3)

Here, the threshold mT depicts the variation in time of the cycles in p; we
used mT = dT/8e, which we found reasonable in practice for cyclic motions
performed by humans. In some particular cases, often when two parts of
the motion are very similar in shape and velocity, the point i can be badly
chosen resulting in an incorrect period. To eliminate this undesirable case,
we perform this computation for ten random points and select the median
period.

Average cycle Given the set of indices Ji cleaned from outliers (i.e. Ji only
contains points corresponding to pi in other cycles), we cut the curve p at
the corresponding points and extract a set of cycles c1, c2, ..., cp (Fig. 5.2a).
Similarly to the construction of Ji, we measure the similarity dD over

64

5.4 MoCurves

evenly spaced points to find correspondences between the cycles (Fig. 5.2b):
ccc1(tk

1)↔ ccc2(tk
2)↔ ...↔ cccp(tk

p). We then non-uniformly scale the cycles such
that tk

i = tk
j ∀i, j, k and the temporal length of each cycle is T (Fig. 5.2c). We

finally compute the average cycle ccc (Fig. 5.2d) yielding:

ccc(t) =
1
p

p

∑
i=1

ccci(t), ∀t ∈ [0...T] (5.4)

The curve c we averaged may contain a discontinuity at its extremities, i.e.
dddex = ccc(0)− ccc(T) may not be 000. In order to make it perfectly cyclic, we stitch
the curve c as follows:

ccc(t) = ccc(t) +
(

t
T
− 1

2

)
dddex, ∀t ∈ [0...T] (5.5)

Spline fitting. In order to have a smoother representation of the motion,
as well as a simpler editing, we fit a cubic Bezier curve to each component of
the cycle c — i.e. one for the translations (γP), one for the rotations (γR) and
one for the scales (γS) of each moving item. Many B-Spline fitting methods
already exist; we chose to use the one implemented in the Autodesk Maya
API.

5.4 MoCurves

To edit motion cycles in an intuitive manner, we combine spatial and tempo-
ral controls into a single geometric representation that allows the user to edit
both aspects in a single viewport. This is particularly challenging for time
as the user needs to precisely and intuitively edit temporal constraints using
3D spatial manipulations. For this purpose, we introduce MoCurves. Their
representation is similar to the Motion Curves introduced in Chapter 4, but
their functioning is different since here we do not solve for the tangents of
interpolation but for every frame of the animation.

For each animated item (i.e. object, rig controller, bone, etc.), we define
one MoCurve that represents its spatial (i.e. translation, rotation and scale)
and temporal transformations. The following subsections describe how
MoCurves allow the visualization and manipulation of diverse aspects of
the motion, as well as permit the simple editing of planar contacts and auto-
matic solving of sliding effects. Note that to amplify the intuition of move-
ment and timing, we provide the ability to make all manipulations in real-
time, while the animation is played; a benefit of working with motion cycles
is that they seamlessly loop, so this does not create a visual discomfort.

65

Authoring Motion Cycles

5.4.1 Spatial Manipulations

As described in Section 5.3, an item’s position, rotation and scale over time
are described by cubic Bezier splines γP, γR and γS. There is a direct corre-
spondence between the parametrization of these curves and the time of the
animation (e.g. at time t∗, the item is at position γP(s∗P)). We note ϕP, ϕR and
ϕS the bijective functions giving t from the parametrization of each curve —
i.e. t∗ = ϕP(s∗P) = ϕR(s∗R) = ϕS(s∗S). This provides a unified correspondence
between all aspects of the motion.

Figure 5.3: MoCurves allow three types of spatial edition. A 3D spline with editable
control points represents the trajectory over time (a). Arrows at every time
frame represent both the orientation (b) and scale (c) over time; they are
directly manipulable in the viewport. In red are the regions affected by the
manipulations.

The curve γP is displayed in the viewport in order to represent the displace-
ment (i.e. translations) over time. The user can directly edit the trajectory by
manipulating control points of γP (Fig. 5.3a). We represent the orientation
(i.e. rotations) at each time frame by two orthogonal arrows centered at the
corresponding position (Fig. 5.3b), and the scaling by the geometry of these
same arrows (Fig. 5.3c). Thus, by looking at a MoCurve, a user has a clear
overview of the item’s movement.

The orientation and scale of arrows can directly be manipulated in order to
modify the rotations and scales of the curve over time. The modification of
one frame also modifies neighboring ones in order to smooth the motion,
just like the editing of a curve’s control point affects a certain fraction of the
curve. The range τ of affected frames (red arrows in Fig. 5.3) is set by the
user. When an attribute of arrow i is deformed by dθi, we propagate the
deformation on arrows j using a Gaussian radial basis function:

dθj = dθi · e−σ(i−j)2
, ∀j ∈ {i− τ, i + τ} (5.6)

66

5.4 MoCurves

5.4.2 Temporal Manipulations

Animators often draw time bars at a constant temporal interval to convey
the timing of a hand-drawn motion. Inspired by this representation, we ren-
der on top of the Mocurve γP keypoints at each time frame of the animation.
A keypoint can either be represented by a point or by arrows that also give
information about orientation and scale (see Section 5.4.1). Hence, if key-
points are close to each other it means that the motion is slow, while if they
are very distant it means that the motion is very fast.

Once again, the visual representation also serves as a manipulation tool: the
user can directly edit the position of keypoints in order to edit the timing
of the cycle, as shown in Fig. 5.4. We formulate the deformation as shape
preserving deformation, similarly to [Kim et al., 2009], but here applied to
the case of periodic curves.

Figure 5.4: Two keypoints are moved upwards on the curve, setting new timing con-
straints (red points). A smooth time warping is applied, resulting in a mo-
tion that is slower at the top. Note that the motion is consequently faster on
the rest of the curve in order to conserve the cycle period.

By moving keypoints, the user defines a set of spatial constraints: γP(s∗i) =
γP(sc

i), ∀i ∈ C. We thus seek a new distribution of keypoints along the curve
s∗ = (s∗0 , ..., s∗m) satisfying s∗i = sc

i , ∀i ∈ C. This is equivalent to computing
a new temporal distribution t∗ = (t∗0 , ..., t∗m) satisfying t∗i = ϕP(sc

i), ∀i ∈ C.
To do so, we solve a quadratic optimization problem containing four energy
terms.

Constraints EC(t∗) We penalize the distance between the constrained
points and their desired position:

EC(t∗) = ∑
i∈C

(t∗i − ϕP(sc
i))

2 (5.7)

67

Authoring Motion Cycles

Period ET(t∗) A crucial constraint is that cycles must conserve the period:

ET(t∗) = (t∗m − t∗0 − T)2 (5.8)

Velocity EV(t∗) We regularize velocities by penalizing deviations from the
ones on the original curve. In other words, the temporal spacing between
consecutive t∗i should be stable:

EV(t∗) =
m−1

∑
i=0

((
t∗i+1 − t∗i

)
− (ti+1 − ti)

)2 (5.9)

Speed variation ES(t∗) The time warping must not introduce points
where the motion is accelerated or decelerated abruptly. That means that
two consecutive segments have to stay close in size:

ES(t∗) =
m−1

∑
i=0

((
t∗i+1 − t∗i

)
−
(
t∗i − t∗i−1

))2 (5.10)

The new time distribution is thus obtained by minimizing the total energy,
while ensuring that t∗ increases:

min w1EC(t∗) + w2ET(t∗) + w3EV(t∗) + w4ES(t∗)
subject to (t∗i+1 − t∗i) ≥ 0, ∀i ∈ {0, ..., m− 1}

(5.11)

We solve this constrained quadratic programming problem using a qp
solver, where we choose the weights w1 and w2 to be 104 times bigger
than w3 and w4 because they act as strong constraints. Finally, we recover
the positions, orientations and scales at each time step using γP(ϕ−1

P (t∗i)),
γR(ϕ−1

R (t∗i)) and γS(ϕ−1
S (t∗i)).

5.4.3 Contacts

While contacts are present in most cyclic character motions such as locomo-
tion, they can hardly be acted out accurately as they involve sharp corners
in the trajectory. To edit a MoCurve as to exhibit sharp corners and straight
lines, we introduce a stroke-based editor that cuts the curve with a straight
line. This line, extruded along the viewing direction, defines a plane on
which all points from a section of the curve are projected (Fig. 5.5).

This solves contacts in terms of space, but not in terms of time. Indeed, two
points simultaneously touching the ground can introduce a sliding effect if

68

5.4 MoCurves

Figure 5.5: The user can draw a line (here in purple) to specify ground contacts. Por-
tions of the trajectories are then projected on the contact plane, as shown on
the right.

they are not coordinated. In other words, we need to ensure that at every
frame of the animation, two items being in contact with the ground have the
same velocity — note that velocities are expressed with respect to the char-
acter’s root. The earlier projection step gives us information about which
items are in contact and at which time. This allows us to construct a graph
of the velocities of items in contact over time, as shown in Fig. 5.6. We fit
a spline λ minimizing the distance to these curves, using a method similar
to Section 5.3. λ defines the desired velocity of all items in contact with the
ground over time.

Figure 5.6: This graph represents the velocity over time of four items touching the
ground (one per color). To unify them, we fit a spline λ (red dashed curve)
that averages the contacts velocity. Note that here we illustrate for only one
dimension, but the velocity is usually 3D.

We now spatially modify the curve γP of each colliding item in order to
satisfy the contact velocity λ. First, we transform the part of γP being in
contact, which we define as γC

P ⊂ γP, such that:

γC
P(ϕ−1(t + dt)) = γC

P(ϕ−1(t)) + λ(t) · dt, ∀t (5.12)

This may change the length of γC
P by a scale factor sl. In order to keep a

smooth connection between γC
P and the rest of the curve, we also scale γP \

γC
P by sl in the direction of the contact. Finally, in order to ensure consistent

contacts — i.e. contact points are fixed in world space — we move the root
of the character with the velocity -λ(t) in world space coordinates. This way,
by simply specifying a contact surface, the user is able to make a character
move inside the environment in a consistent way, without sliding effect.

69

Authoring Motion Cycles

5.5 Results

We apply our system to four different characters with diverse shapes and
rig complexities. In this Section, we present a number of compelling motion
cycles that both novice and expert users were able to author using a variety
of input devices. Table 5.1 gives statistics about the number of elements
and transformations that were animated in each case — note that diverse
full-body motion capture suits were used for the Mocap motions of Fig. 5.9,
which is why the numbers vary at the bottom of the table.

Motion cycle Figure Anim. elem. Anim. transf.
Dinosaur walk 5.7 (a) 13 39
Human punch 5.7 (b) 5 8
Robot swim 5.7 (c) 8 23
Human dance 5.7 (d) 12 33
Dinosaur dance 5.7 (e) 18 49
Dragon eat 5.8 (left) 10 29
Dragon fly 5.8 (middle) 35 51
Human juggle 5.8 (right) 16 52
Dinosaur leap 5.9 (left) 11 21
Human kick 5.9 (middle) 11 30
Mocap punch 5.9 (right) 21 126
Mocap walk 5.9 (right) 60 253
Mocap samba 5.9 (right) 52 159

Table 5.1: For each motion cycle presented in the Results section, this table gives the
number of elements (i.e. rig controllers or skeleton joints) and the number of
transformations (i.e. translations, rotations, scales) that were animated.

To evaluate the accessibility of our system, we invited five novice users, who
never animated any character before, and gave them a limit of one hour to
author a motion cycle using our tool. The resulting animations, presented
in Fig. 5.7, are particularly convincing considering the inexperience of the
creators. This study was also a social success as users were enchanted to
be able to animate a character, several of them concluding: “this was the
most enjoyable user study of my life”. For comparison, we also asked two
of these novice users to create a similar motion cycle using Autodesk Maya,
without our plugin. After one hour of struggle (which was their time limit),
no exploitable content was created. This result confirms our belief that gen-
eral purpose animation packages such as Maya require significant training
before even simple animations can be created.

Additionally, our tool was used by a professional artist in order to evaluate

70

5.5 Results

Figure 5.7: Five novice users, who never created a character animation before, used our
system. In less than one hour, they were respectively able to create (from left
to right): a walk, a punch, a swim and two dance cycles.

how well our system is integrable into an expert’s pipeline. The artist used
a Wacom pen and tablet and authored the three motion cycles presented
in Fig. 5.8: the eating dragon was animated in approximately 20 minutes,
the flying dragon in approximately 15 minutes and the juggling human in
approximately 35 minutes. The last example exhibits how much our system
enables a fine control over the spatial and temporal aspects of the motion,
allowing the composition of complex synchronizations. As a feedback, the
artist shared how delighted he was to be able to directly perform the motion
he had in mind without having to be super precise, and how important the
MoCurves were in order to maintain a full control over the final result. He
claimed that this is a tool he would like to use regularly for the motion cycles
he needs to create.

Figure 5.8: A professional artist used our system to author three motion cycles. From
left to right: a dragon eating, a dragon flying and a human juggling. They
were respectively created in about 20 minutes, 15 minutes and 35 minutes.

A large variety of devices can be used to practice performance anima-
tion: these range from a computer mouse to full body motion-capture
suits and include Leap Motion, Kinect [Wang et al., 2012], tactile sur-
faces [Lockwood and Singh, 2012; Chung et al., 2015] and other dedicated
devices [Oore et al., 2002; Slyper and Hodgins, 2008; Shiratori et al., 2013;
Glauser et al., 2016]. Our method is generic enough to work with any type
and dimensionality of data as input. Most of our results were generated

71

Authoring Motion Cycles

using the most familiar devices — a mouse or a digital pen — but we also
demonstrate in Fig. 5.9 proper functioning with Leap Motion, HTC Vive and
full body motion-capture suits.

Figure 5.9: Our system supports a variety of performance capture devices. Here we
show a jump cycle created using the Leap Motion hand tracker (top left),
a kick cycle created using the HTC Vive (top right), and a punch, a walk
and a samba cycles created using a full body motion-capture suit (bottom).
In these last examples, the overlapped blue and yellow mannequins show the
spatial difference of cycles in the imperfect performed motion, while the green
mannequin shows the looping cycle extracted by our algorithm. Note that
in each case, we solve for a single multidimensional curve representing the
whole motion (dimension 127 for the punch cycle, 254 for the walk cycle and
160 for the samba cycle).

In terms of performances, the system is responsive enough to permit an in-
teractive utilization. The cycle extraction algorithm takes less than one sec-
ond to be executed, even in high-dimensional cases (such as motion-capture,
Fig. 5.9) where the curve being analyzed can have several hundreds of di-
mensions. As for the MoCurves manipulations, as specified in Section 5.4,
they are executed in real-time, while the animation is being played.

72

5.6 Conclusion

5.6 Conclusion

In this Chapter, we introduced an authoring tool tailored to cyclic motion
design. Our tool enables a user to repeatedly act out a periodic movement
and automatically extract a single closed cyclic motion. In order to conserve
a fine level of control required by artists, we then introduced MoCurves, a
curve editor that combines both space and time into a single geometric en-
tity that allows coordinated editing in a single viewport. By removing a thick
layer of expert knowledge required by general purpose animation tools, we
allowed both professional artists and novice users to create compelling ani-
mations.

When extracting a cycle from a performed motion, our algorithm requires
rough consistency in the input cycles, both in shape (same overall displace-
ment) and timing (cycles of similar duration). If the recorded performance
cycles vary widely, the algorithm will fail to find a period or the extracted
loop will be of poor quality. However, in our experiments, even inexperi-
enced users were able to perform loops consistent enough to deliver quality
results.

MoCurves allow the visualization and editing of the most widely used
attributes in animation. However, artists sometimes customize their rigs
with additional attributes, such as roll and lean for a foot. In our results,
we supplanted them with the translation or rotation of additional rig ele-
ments, but it would be interesting to explore mechanisms that would en-
hance MoCurves for the representation and manipulation of supplementary
attributes. As well, we provide a way to easily edit planar contacts, but the
intuitive authoring of more complex interactions, such as non-planar or dy-
namic contacts, remains an open and challenging problem.

Our algorithm can find cycles even in structured physical simulations such
as cloth, as shown in Fig. 5.10. However, it does not conserve the physical
correctness of the original simulation. Integrating mechanical constraints
into our algorithm in order to create physically-accurate cyclic simulations
would be an interesting direction for future work.

We showed that the animation tools presented in this Chapter, as well as
in the previous one, permit to animate characters in a faster and more in-
tuitive way than traditional systems. However, they focus on providing a
fine motion control and do not permit an interactive animation of the entire
character. In the next Chapter, we introduce a new interaction mechanism
where a user can steer a virtual character with simple and natural gestures.
Predefined motion cycles, potentially created using this Chapter’s system,

73

Authoring Motion Cycles

Figure 5.10: Handles of these two physics simulations (i.e. translating top of cloth and
rotating basis of hair) move periodically. Though, the simulated motions
are not periodic, as shown in red with frames spaced by the period T. Our
algorithm extracts looping motions, in green, from these simulations. The
dimensionality of the cyclified curves is respectively 7804 and 2611.

are used in order to augment the character’s displacements with compelling
animations.

74

C H A P T E R 6
PuppetPhone: Puppeteering Virtual
Characters Using a Smartphone

Figure 6.1: Using our new system, a player is able to manipulate a virtual puppet using
a smartphone. The character responds compellingly and in real-time to the
user motions, so that is stays at all times at a fixed distance from the phone.

When playing with toys, people cherish grasping them and manipulating
them freely. They imagine characters, create stories and solve quests by
moving the toys around and putting them in diverse situations. The ma-
jor frustrating aspect is that the handled physical puppets are inanimate;

75

PuppetPhone: Puppeteering Virtual Characters Using a Smartphone

they follow the player’s gestures like a lifeless and unconscious ragdoll. The
player’s imagination then has to fill the secondary motions with compelling
animations like walk cycles, jumps and kicks.

Playing in virtual worlds tackles this shortcoming because full character an-
imations can be achieved from little inputs. Usually in video games, the
player simply presses a button to trigger a predefined action. However, this
makes the interaction more abstract and it lacks the satisfactory feeling of
grasping the character and physically moving it.

Recent years have seen the appearance of diverse control devices such as
Kinect, Wii controllers, Vive controllers, Leap Motion and powerful smart-
phones. Each of them is able to track 3D movements to a certain extent,
which opens the door to new interaction metaphors. Even if many applica-
tions have then been introduced, like mimicking movements and grabbing
virtual objects, little work has been done to retrieve or enhance the particular
feeling of manipulating a puppet.

In this Chapter, we introduce an enhanced puppet interaction system, where
a virtual character accompanies the user’s gestures in a compelling manner.
The player uses a smartphone to observe, grasp and move the virtual pup-
pet, whose movements are beautified with detailed animations. Using a
phone, our method ties together the control of the character and camera into
a single interaction mechanism. The virtual character moves in order to stay
visible to the user, as if it was attached to the phone via a rigid stick. It thus
reacts in real time to the user’s motions, similar to a physical puppet but
with the difference that it now looks alive. We achieve this by interpreting
the user’s manipulations, with respect to the current character’s state and
the neighboring environment, into a weighted combination of predefined
animations (see Section 6.2). Our system requires a minimal amount of pro-
vided animations, that we adapt to different environments and character
dimensions.

We illustrate our system in an Augmented Reality application in Section 6.3,
where the player can grasp and move a character to make it, among other
actions, walk, jump, pick up objects and even create controllable snowmen
of any dimensions. We also show a second application as a Multi-Reality
game in Section 6.4, where the user is progressively immersed into the vir-
tual world.

76

6.1 Background

6.1 Background

Smartphones are very powerful computing devices that comprise a large
variety of sensors — multi-touch screen, cameras, accelerometer, gyroscope,
etc. — which provide a lot of information about their manipulation, and
in particular their displacement. The gesturing of smartphones has been
explored in several domains of computer graphics, for example to model
simple 3D shapes [Vinayak et al., 2016] and edit animations [Lockwood and
Singh, 2016]. Despite that, a large majority of mobile applications only takes
benefit of the tactile screen to drive a virtual character, using a push-button
approach as described earlier. A few works have taken advantage of the
displacement information to reconstruct a motion, using a single [Haegwang
et al., 2014] or several [Pascu et al., 2013] smartphones, but none of them
allows to move the character in a puppeteering manner as we do.

6.2 Approach

6.2.1 MotionStick

We propose a new interaction principle, the MotionStick, that works as an
extension of the MotionBeam introduced by Willis et al. [2011]. A user ma-
nipulates a smartphone that has information about it’s orientation, position
and movement in space. By looking at the virtual environment through the
screen, they can point the phone towards an object and grab it by holding
down the touchscreen. The object is then fixed to the end of an invisible
MotionStick, as represented in Fig. 6.2, and will react appropriately to any
movement of the smartphone caused by the user. While being held this way,
the distance and relative rotation to the phone is maintained, giving this con-
trol scheme a very responsive and direct feel. In some cases these constraints
can be relaxed, especially to handle collisions. For example, if the grabbed
object is pushed into the floor, the length of the MotionStick is shortened
appropriately in order to prevent it from phasing through the floor.

This interaction metaphor, similar to a physical reach extender, yields a nat-
ural interaction with virtual objects. The very light user interface, simply
consisting of pointing with a smartphone, makes it very easy to learn and
use. Moreover, regardless of this simplicity, it provides the user with a fine
and expressive control on the virtual space. This will be showcased in Sec-
tion 6.3 with our implementation prototype, where our application does not
require any additional user input interface.

77

PuppetPhone: Puppeteering Virtual Characters Using a Smartphone

Figure 6.2: Using the MotionStick metaphor, a virtual character is manipulated as if it
was attached to the end of an imaginary stick fixed to the smartphone.

When moving a virtual object around, it has the ability to react in more ways
than just updating its position and rotation according to the state of the Mo-
tionStick. In the following subsections, we will describe a method that en-
ables an object to come to life by animating it in accordance to the way it
is moved. From here on out, we will use a terminology corresponding to
a humanoid (e.g. walking, crouching); however, note that our system is
adaptable to any type of animated object, such as quadrupeds and cars.

6.2.2 State Machine

We use a state machine to determine how the virtual character is animated to
react in real time to the user movements. For example, in one state the char-
acter stands on the ground but as soon as the user flicks the character up it
switches to the jump state. Each state is defined by its internal logic, root po-
sition, configuration of the character animation and the IK state. The context
of the state machine consists of the environment – i.e. the ground and other
objects surrounding the character – and the user inputs – i.e. movements of
the MotionStick. One state is the active state and at every time-step its logic
updates the state of the character animation based on the context. Events
can be defined that trigger a state change and thus another state becomes
the active one, changing the behaviour of the animated character.

The MotionStick metaphor does not restrict the manipulation of the object
by the user. That is why the system controlling the character has to be pre-

78

6.2 Approach

pared for any input, even when no predefined animation is appropriate. Our
system handles such unexpected inputs by having a default state that is ac-
tivated when such a situation arises. A fitting default state would be to turn
the character into a ragdoll. It is for example necessary when a character
that has no jump momentum is held in the air; instead of having a character
with an inappropriate jumping animation in the air, the user would instead
be holding a physically simulated ragdoll.

Unpredictable user inputs also mean that animations with a high degree
of interaction with the world have to be adapted (e.g. the character picks
up an object from different directions and poses). In these cases, we use
inverse kinematics to adapt animations to the given situation. For example,
when the character picks up an object, its hands are moved close to the object
independent of the underlying animation.

6.2.3 Animation Blending

One challenge when animating a character with MotionStick is that the in-
put movement is very continuous. Therefore, contrary to interfaces with
a push-button metaphor, we cannot simply play a limited set of preexisting
animation clips. For example, if animations are defined for Walking and Run-
ning states, it is unclear which one to choose when the manipulation speed is
just between the two. The solution we choose is to use animation blending.
There exists different algorithms for blending animation clips – e.g. linear,
cubic, etc. – and our method can be used with any of them; we will thus
treat the blending algorithm as a black box.

Our system requires a small database of animations, that can be used to
blend together new ones. Each provided animation i has N blend parame-
ters pi,j ∈ [0, 1], that are used to place it in the N-dimensional blend space
– we call that point pi = (pi,1, ..., pi,N). Given a new point p in that space,
the blending algorithm returns a new animation that is a combination of the
neighbouring ones. Fig. 6.3 gives a blend space example where five anima-
tion clips are predefined – idle, walking, running, crouching idle and crouch-
ing walking – and each of them has two blend parameters – corresponding
to the root velocity and the crouching height. The challenge is then to map
the values from the user input ui (i.e. the smartphone’s position, orientation,
speed, etc.) to the blending parameters p(ui).

Most mappings are linear, which makes the computation of p(ui) straight-
forward. For example, the height of the smartphone uheight is mapped lin-
early to the crouching height: p(uheight) = (uheight − a) ∗ 1/(b− a) (clamped

79

PuppetPhone: Puppeteering Virtual Characters Using a Smartphone

Figure 6.3: An example of a blend-space graph with the predefined animation clips
idle(0,1),walking(0.5,1), running(1,1), idle crouching(0,0) and walking
crouching(1,0). In green is the desired blended animation with parameters
pvel = 0.2 and pheight = 0.73.

to [0, 1]). However, other mappings are non-linear, in particular the smart-
phone velocity uvel. This is especially important because an inexact mapping
would produce the wrong animation and result in foot sliding artifacts. We
solve this by creating a lookup table and make it continuous using inverse
distance weighting.

We fill our lookup table by choosing a set of probe points p∗k in the blend
space with a high enough density (e.g in a grid). The user properties u∗k
of these probe points can automatically be measured by blending the cor-
responding animation and then measuring its properties, for example the
movement velocity. With that, when a user provides new input values u,
the corresponding blend parameters are computed using inverse distance
weighting:

p(u) =

∑
k

wk(u)p∗k

∑
k

wk(u)
, if d(u, u∗k) 6= 0 for all i

p∗k , if d(u, u∗k) = 0 for some i
(6.1)

80

6.2 Approach

with
wk(u) =

1
d(u, u∗k)

q (6.2)

where d is the euclidean distance between two points and q ∈ R+ is the
power parameter – in our implementation we used q = 7. A high q leads to
a "sharper" resolution because only the points very close to u, but also needs
a higher density of probe points to prevent jerky transitions. In Fig. 6.4, we
show the lookup table obtained from the example in Fig. 6.3. Notice that the
border, defined by all animation clips with pvel = 1, is not a straight line.
This demonstrates that the mapping of the velocity parameter is non-linear.

Figure 6.4: The generated lookup graph used in our implementation, with a user input
that has to be projected to be inside the area of well defined blend parameters.
The blend parameter for velocity pvel is encoded in the red color channel of
the probe points, ranging from 0 to 1.

There is the corner case where the user input u is outside of the defined
area of possible animations – e.g. the user moves the character so fast that
no animation can be blended to match that velocity. To tackle that, we first
project u onto the border of the set of feasible configurations, obtaining u′.
In higher dimensions, the border would be a multi-dimensional mesh. In
the case of movement velocity, we then speed up the animation by a factor
uvel
u′vel

in order to achieve a motion with the desired velocity.

81

PuppetPhone: Puppeteering Virtual Characters Using a Smartphone

6.3 Application: Build a Snowman

We demonstrate our system by developing an Augmented Reality applica-
tion running on iPhone X. It was implemented using Unity with the libraries
Vuforia (for the AR), FinalIK (for inverse kinematics) and PuppetMaster (for
interpolating between ragdoll simulation and static animation). The ARKit
framework allows Vuforia to use the computational power of the iPhone X
to enable robust markerless AR tracking. For blending between animations,
we used the native animation framework of Unity. We hereafter describe
the characteristics of our prototype and how they relate to the challenges
described in Section 6.2 (Fig. 6.5).

Figure 6.5: An outline is shown when an object is in focus to be grabbed (left). When
pressing down on the touchscreen the character is controlled with the Mo-
tionStick metaphor using smartphone movements. Animations are gener-
ated to fit to any given situation and user input.

Our implementation uses only 7 animation clips: idle, walking, running,
idle crouched, walking crouched, get-up and mid-jump. All other anima-
tions are a combination of animation blending, ragdoll simulation and IK.
For example, rolling a snowball is made possible by taking the crouched an-
imation and then placing the hands on the surface of the snowball. The user
inputs include the position, velocity and orientation of the smartphone in
space. Additionally, we use the touchscreen as a single button to grab the
puppet with the MotionStick metaphor. No other buttons or inputs are used
which makes the interface extremely easy to learn. The environment of our
state machine contains the distance of the puppet to the ground and the set
of manipulable objects nearby.

Please refer to Fig. 6.6 for our state machine. The ragdoll state is used in
any situation where the user would force an undesired situation. E.g. when
the jumping arc would be too unrealistic. The walking and crouched an-
imations are generated with our animation blending method discussed in
Section 6.2.3. This lets the character react to any user movement with a suit-
able blended animation. More details about the jump state are given in the
following paragraph.

82

6.3 Application: Build a Snowman

Figure 6.6: The state machine used in our implementation. Arrows indicate our events
that switch to a new active state.

While the user input for making the character jump is simply to lift up the
phone with a high enough velocity, a compelling jump animation requires to
squat before taking off (i.e. Anticipation principle of animation). Therefore,
we force a short delay between the user movement and the jump in order to
build that anticipation. After that, the character smoothly returns back to the
position given by the MotionStick, which has meanwhile moved along the
jump path. We can estimate the jump path with a 2-dimensional parabola
when looking from the side view. At each frame the parabola is calculated
given the starting position of the jump (x0, y0), the current position (xt, yt)
and the current slope of the jump y′t:

y(x) = ax2 + bx + c

where a =
y′t(xt − x0)− yt + y0

(xt − x0)2

b =
y′t(x2

0 − x2
t)− 2xt(yt − y0)

(xt − x0)2

c =
x2

t (y
′
tx0 + y0)− xtx0(y′tx0 + 2y′t) + y′tx

2
0

(xt − x0)2

(6.3)

We use the position of the apex
(
− b

2a , y(− b
2a)
)

to animate the character ac-
cordingly. Furthermore, we detect if the jump is not valid, in which case we
switch to the ragdoll state. A jump is considered invalid if: (1) It rises again
after starting the descent (i.e. multiple apexes), (2) It turns while in air, or

83

PuppetPhone: Puppeteering Virtual Characters Using a Smartphone

(3) It stops in the air. If none of these cases happen, the character lands back
on the ground and absorbs the shock of the landing by doing a very short
crouch.

Figure 6.7: Screenshots of our application show the character building a snowman,
which then itself builds a second snowman.

We propose to showcase our control scheme with a building experience.
Please refer to Fig. 6.7 for a selection of screenshots. Our application lets
the user build a snowman out of snowballs, that can be rolled to variable
diameters. This snowman then comes to life and can be controlled just like
the original puppet character. Consequently, the snowman can then also
crouch, jump and even build more snowmen. Because the snowballs mak-
ing up the snowman have variable sizes, the proportions of the snowman
must also be variable. We achieve this by extending specific bones of the rig,
e.g. by adapting the length of the neck to accommodate for the head size.
An example of this setup is shown in Fig. 6.8.

However, having an overly elongated bone would result in very stiff move-
ments. In our case, we resolve this problem by interpolating the snowball
positions between chest and pelvis with a quadratic bezier curve. The con-
trol points are given by the pelvis position, the chest position, and the point
p1 defined as:

p1 =
ppelvis + (1− b) · pchest + b · pup

2
(6.4)

where pup is the position of the chest when the snowman is be standing
upright. In our implementation we used a bend factor b = 0.3.

84

6.4 Application: Multi-Reality Games

Figure 6.8: Our animation rig (blue) with variable bone lengths and our smoothed spine
(red dotted) on a snowman with a long spine bone.

6.4 Application: Multi-Reality Games

The mechanism we propose is designed to be very close to the way we inter-
act with physical toys. However, the remaining difference is that the char-
acter is virtual, which makes it intangible and constitutes a gap between the
player and his/her toy. In order to reduce this gap, we seek to make the
user feel more connected to the virtual elements. To that end, we built an
application where the user is progressively immersed into the virtual world,
a concept we called Multi-Reality Games.

Figure 6.9: (i.) Our Multi-Reality game starts with objects and characters from the
real world. (ii.) Physical assets get animated using photo-realistic AR. (iii.)
Moving a step forward in the RVC, the user interacts with a scene where
physical and virtual assets coexist. (iv.) Finally, our game ends with a fully
virtual scene with only CG-assets.

The term Mixed Reality (MR) refers to a set of technologies that aim to present
the real and the virtual worlds unified in the same space and time. This con-

85

PuppetPhone: Puppeteering Virtual Characters Using a Smartphone

cept was first defined by Milgram et al. [Milgram et al., 1994] as a connection
between the real and virtual environments, forming the Reality-Virtuality
Continuum (RVC). This linear scale starts from the real environment itself
and covers technologies such as Augmented Reality (AR) and Augmented
Virtuality (AV) until reaching a fully virtual environment (see Fig. 6.10).
If many of these technologies find a relevant place in the RVC, seamlessly
transitioning between them — and therefore spanning the entire continuum
within a single application — remains an open challenge. Here, we propose
Multi-Reality experiences as a natural, fluid and seamless approach to travel
throughout the RVC. In this Section, we detail an application to go from re-
ality to virtuality, nonetheless, this could also be experienced in the opposite
direction, from virtuality to reality.

Reality

Mixed Reality

Virtual
Reality

Augmented
Reality

Augmented
Virtuality

Figure 6.10: Illustration of the Reality-Virtuality Continuum and the position of AR,
AV, VR and MR in it.

We propose an adventure game where the goal is to solve a quest to restore
freedom in the hidden world of Tasbada. The game starts in the real world:
the user decide where the Multi-Reality experience will take place and select
the physical objects that will compose the real-world scene.

As soon as the user has defined a location and the real-world assets for
the gaming experience, we start travelling across the RVC. We use a pre-
defined 3D printed object to incorporate a narrator into the game (as shown
in Fig. 6.11). We use Props Alive [Casas et al., 2017] to create the illusion of
movement of static objects from the real world with photo-realistic render-
ings. Additionally, when these animated real-world objects cast shadows,
we use Shadow Retargeting [Casas et al., 2018] to account for their deforma-
tion. Hence, our application enhances the user’s imagination by presenting
extended capabilities, such as speech and movement, to inanimate objects in
the real world.

Once the narrator has explained the mission to the player, we ask him to
take a photo of himself (or a friend) to be transported into the game. Ex-

86

6.4 Application: Multi-Reality Games

Figure 6.11: a) Static and inanimate 3D printed narrator. b-c) Narrator speaking to the
user through photorealistic Augmented Reality using a mobile phone.

tending [Nijholt, 2005], we use virtual avatars for this Multi-Reality game
experience; this brings closer the physical and augmented worlds as the
user can feel connected to the virtual character. We use AR Poser [Cimen
et al., 2018] to capture the user’s initial pose, and we additionally extract the
representative color of the clothes to apply on the avatar (Fig. 6.12).

Figure 6.12: The user’s initial pose and the representative color of their clothes are ap-
plied to the virtual character of the game.

Now that the player is embodied into the virtual character, he is asked to
solve a quest by unlocking several milestones in the augmented world. We
use the MotionStick metaphor to let the user control his avatar with the
movement of the phone. Once the milestones are accomplished and the final
goal of the game is reached, we embark the user in a fully virtual world, as
a reward for their achievement.

87

PuppetPhone: Puppeteering Virtual Characters Using a Smartphone

In this final stage, the player can explore the liberated world of Tasbada
through the mobile phone and interact with it. Virtual objects present in
the augmented reality scene remain, but the real-world scenario becomes
overlaid with a fully virtual setting. This last transition allowed the user to
smoothly progress one step further in the RVC, from AR to VR. The user
started the game at the real end of the continuum and ended it on the totally
virtual side of it.

6.5 Conclusion

In this Chapter, we have introduced a new interaction metaphor to control
virtual characters. It combines advantages of both real and virtual worlds by
providing a great freedom of motion, similar to the manipulation of physi-
cal toys, while augmenting the character’s responses with engaging anima-
tions. We proposed solutions to the new challenges emerging from such
a flexible interaction system, like the interpretation of users’ gestures, the
real-time formation of accurately timed animations and their adjustment to
characters with variable proportions. We validated our approach with an
AR application that allows to create living snowmen of any dimensions.

We additionally proposed to make the user even more engaged with the vir-
tual characters by seamlessly traversing the Reality-Virtuality Continuum.
To illustrate that theory, we successfully implemented and assembled recent
techniques in Mixed Reality to provide a game where the player is progres-
sively immersed into a virtual world. We believe that future advancements
in Mixed Reality technologies would contribute for even more immersive
applications.

The control interface we propose being light, if many different animations
and character behaviors are added to the experience, it might become un-
clear what the intent of the user is. For example, gestures corresponding to a
punch, a kick, a throw and a headbutt might be too similar. This can be tack-
led by introducing more input possibilities (such as using the tactile screen)
or defining specific and more abstract gestures for certain actions, similar to
what Thorne et al. [2004] propose.

As a control device, we chose the smartphone for its versatility, its preva-
lence and the unification of controller and camera it provides. That being
said, our method is adaptable to any other device that tracks position and
orientation over time. For example, one could use a VR system such as HTC
Vive or Oculus Rift to grab and move a character in virtual reality; there, the
user could even more closely interact with the puppet since the MotionStick

88

6.5 Conclusion

could be of length 0. VR systems also support multiple controllers, open-
ing up possibilities like the simultaneous control of several puppets or more
control on a single one.

89

PuppetPhone: Puppeteering Virtual Characters Using a Smartphone

90

C H A P T E R 7
Conclusion

Traditional hand drawn animation is a fascinating means of expression that
is accessible to everyone. However, manually drawing every frame of a
movie requires a tremendous amount of work and patience. The introduc-
tion of computer animation has enabled the automation of certain tasks, and
therefore a huge gain in time. However, early in this thesis we observed
that this new tool also yielded a less natural interaction with the scene and
a more cumbersome achievement of some simple tasks. Mastering current
3D animation software requires an intense training, which makes this media
much less accessible.

We started by reviewing aesthetic principles and best-practices developed
in the context of classical art, illustration, and hand-drawn animation to un-
derstand the core factors at play in the field of aesthetic design. From these
observations, we identified elements of the animation workflow that were
particularly tedious to achieve with current techniques, and we expanded
the state of the art in a way that focuses on artist-oriented animation tools.
The new interfaces and algorithms we proposed were validated with the
achievement of production quality results and the conduction of several user
studies.

By its nature, computer animation lays at the intersection between arts and
technology. On the one hand, it requires strong artistic skills to shape ap-
pealing characters and infer believable movements. On the other hand, it
involves very complex algorithms for the computation and rendering of ev-
ery frame. Therefore, it is very delicate to find the right balance between
automation and manual inputs, and the animation workflow can easily suf-

91

Conclusion

fer from that. While requiring too much manual work can make the process
tedious and repetitive, providing too much automation can hinder the artis-
tic control. In this thesis, we strove to design tools that are accessible and
intuitive, while still providing a fine level of control to the user.

7.1 Summary of Contributions

7.1.1 Coherent Scene Deformation

We started by working on static scenes and observed that the artistic prin-
ciple of movement is particularly tedious to apply with current techniques
due to the object-centric nature of deformers. Thus, in Chapter 3 we intro-
duced an interface called Flow Curves that enables artists to quickly turn
a scene with an ambiguous movement into a compelling scene by simply
sketching strokes or specifying the center of interest.

A core component of our method is a deformation representation tailored to
the view-dependent nature of the principle of movement. It enables the co-
ordinate deformation of multiple objects from a single stroke, and works on
any type of objects. This representation allows to work in a single viewport,
without the need for any additional window. Furthermore, to save setup
time and efforts, we provided algorithms to automatically identify lines of
interest — possibly spanning multiple disconnected objects — that may con-
tribute to the scene movement.

7.1.2 Motion Visualization and Manipulation

When dealing with animated scenes, a similar artistic principle comes into
action, called arcs. It states that moving elements should also display visu-
ally pleasing curves over time. However, applying this principle is not ac-
commodated by the most common animation process used by professional
artists: keyframing. There, key poses are define at specific points in time
and are then interpolated. This pose-centric system provides a very indirect
control on the arcs of motion. In Chapter 4, we enhanced keyframing with
a space-time curve representation that allows to visualize and modify those
arcs in an intuitive way.

Our system is designed to be non-intrusive to the artist’s workflow. It does
not require a different character representation, nor introduce any additional
keyframe. Rather, when the user manipulates a Motion Curve, our system
optimizes for the tangents of interpolation of existing character parameters

92

7.1 Summary of Contributions

that match the user-constraints. Our pin-and-drag interface enables a fine
level of control and abstracts technical considerations such as hierarchy and
FK vs IK.

7.1.3 Performance Animation for Motion Cycles

After demonstrating that the keyframing process can be greatly enhanced,
we also explored an alternative that is more movement-centric. To do so, we
used performance animation which consists in mimicking the motion of an
animated element. In Chapter 5, we observed that this could particularly
benefit motion cycles, since repeatedly acting a movement helps improving
it. We therefore proposed a system where the user first acts out several cycles
of an action to create it, and then edits the curves of motion to refine it.

Since human movements are imprecise, we proposed an algorithm to extract
a clean loop from the user input. We also adapted our space-time curve rep-
resentation from Chapter 4 to cyclic motions. Since now the movement is not
driven by a set of interpolated keyframes, much more freedom can be pro-
vided to the user for the manipulation of MoCurves. We even enabled a very
precise control of the timing directly on those curves. Our method is generic
enough to work with any capture device as input, using a layered approach
when the dimensionality of the device is smaller than the animated content.

7.1.4 Interactive Character Control

After proposing different ways for animating virtual characters with a fine
level of detail, we explored the challenge of interactively maneuvering them.
Most video games already use such real-time motion control, but the de-
tached interaction they propose is abstract and limiting. In Chapter 6, we
took advantage of the power and versatility of smartphones to propose a
new interaction metaphor that is close to the feeling of grasping a real pup-
pet.

Using our tool, a user can see a virtual character through the screen and grab
it. It then responds compellingly and in real-time to the user motions so that
is stays at all times visible through the phone and at a fixed distance. It is
similar to holding a puppet with a reach extender, with the benefit that the
puppet now looks alive. We demonstrated the usability of this new mecha-
nism with two Mixed-Reality applications.

93

Conclusion

7.2 Future Work

This thesis introduced various techniques to make the interaction with ani-
mated scenes more intuitive and accessible. Follow-up research efforts were
suggested for each individual contribution, and in this Section we will dis-
cuss what we identify as two major overall directions for future work in
animation interfaces.

7.2.1 Animating with Curves

Artists extensively use visual curves in order to make scenes more appeal-
ing. That was observed earlier in this thesis when investigating the princi-
ples of animation and visual arts. This is why curves are also prominent in
our work: they provide a familiar tool to the artist and constitute a natural
fit for many design tasks. Therefore, exploring additional curve-based inter-
faces is a pertinent direction for future work, especially with the emergence
of more sophisticated devices (as discussed in the following Section).

In particular, in Chapters 4 and 5 we proposed two different space-time
curve representations for the control of motion. Having them tested by pro-
fessional animators from the Walt Disney Company was a great chance, and
it allowed us to evaluate the pros and cons of each method — as elabo-
rated in the respective Sections. Our conversations with those artists con-
vinced us of the pertinence of using curves for the visualization and control
of movement. In the future, we would like to investigate a new represen-
tation that would combine the advantages of both methods, enabling the
unconstrained control of any part of the character without being intrusive
to the usual workflow. This could be done through animation layers, where
the first layer would conserve the imposed keyframes and the others would
apply an additional transformation per frame (like a delta) for finer edits.

Earlier in this thesis we emphasized the importance of adapting the tools to
the existing workflow, in order for the artists to embrace them more easily.
However, when looking further into the future, we believe that the anima-
tion workflow will itself require transformations in order to better integrate
the new methods. With systems like the ones we propose, where IK chains
and graph editors are not necessary anymore, many optimizations can be
made on the usual pipeline. Keyframing could eventually become obsolete,
and animators would work with continuous movements (no frames) edited
through space-time curves.

94

7.2 Future Work

7.2.2 Accommodating New Technologies

With the continuous progress of technologies, the art of animation is in con-
stant evolution. And as the algorithms and devices continue to innovate, the
interaction systems will need to keep adapting. In particular, recent years
have seen the emergence of Augmented Reality and Virtual Reality, which
have the potential to strongly impact computer animation. In Chapter 6 al-
ready, we showed how exploiting those new instruments can transform the
way we interact with virtual characters.

One key revolution induced by Mixed Reality technologies, and in particular
VR, is the increase of dimensionality: the user can now visualize in stereo-
scopic 3D, has a camera disconnected from the manipulation devices, and
can maneuver two 6-dof controllers simultaneously. This introduces new
possibilities to visualize and manipulate virtual content, which interaction
systems can definitely benefit from. For example, to continue our discussion
on curves, defining them in VR is much more straightforward, as demon-
strated with recent applications such as Tilt Brush [Google, 2016]. Many
systems designed for computers, such as those proposed in this thesis, can
thus be extended to VR and become even more intuitive due to the suppres-
sion of depth ambiguity.

Of course, new interaction challenges also arise when working with those
devices. One of them is the reduction of the number of buttons; artists are
used to work extensively with shortcuts on the keyboard, so switching to
VR/AR will require to define alternatives. We believe that adding buttons
in the virtual environment would be distractive, so we suggest studying user
gestures that can be interpreted as commands as a more appropriate solu-
tion. Also, visual and physical tiredness that occurs when wearing a head-
set and performing large movements is an important constraint. Future user
experiences will need to account for that and propose systems that accom-
modate an easy switch between computer screen and headset and that can
be executed in a sitting position with elbows resting on the desk.

New technologies can not only innovate the way we create animations but
also the way we watch them. We discussed early in this thesis how the tran-
sition from traditional hand drawn animation to 3D computer animation
changed the crafting mechanism, but since animated content was still dis-
played on flat screens, the artistic principles that guided their design were
conserved. However, watching an animation in Mixed Reality is substan-
tially different. Bringing the viewer’s attention to the relevant area of the
scene and designing movements that look compelling from several points of
views are particularly challenging. As a result, new artistic principles that

95

Conclusion

are specific to this new media will emerge, and it will be essential to provide
the right tools and algorithms to apply them.

96

A P P E N D I X A
Attribute limits during interpolations

In this appendix, we demonstrate that if a parameter c is constrained to stay
between u and v, the limits on the tangents we defined in Equations 4.8
and 4.9 satisfy the parameter’s constraints at all times.
Between two keyframes tk and tk+1, we consider that the value of c(θθθ, t) is
interpolated by a Bezier cubic spline:

[
t

c(θθθ, t)

]
=

[
BX

c (λ)
BY

c (λ)

]
=

[
tk

c(tk)

]
(2λ3 − 3λ2 + 1) + 3λ(1− λ)2θθθk+

+

[
tk+1

c(tk+1)

]
(3λ2 − 2λ3)− 3λ2(1− λ)θθθk+1− ,

where λ ∈ [0, 1]. Therefore, imposing c(θθθ, t) ≤ v ∀t ∈ [tk, tk+1] is equivalent
to imposing BY

c (λ) ≤ v ∀λ ∈ [0, 1]. By injecting the upper limits of Equa-
tion 4.8 into BY

c (λ), with the definitions of φ and ψ proposed in Equation 4.9,
we obtain the following inequality, where we note mx = max(c(tk), c(tk+1))
for easier reading:

BY
c (λ) ≤

c(tk)(2λ3 − 3λ2 + 1) + 4(v−mx)λ(1− λ)2

+ c(tk+1)(3λ2 − 2λ3) + 4(v−mx)λ2(1− λ).

Knowing that both (2λ3− 3λ2 + 1) and (3λ2− 2λ3) are positive for λ ∈ [0, 1],
and by definition both c(tk) and c(tk+1) are lower than mx, we obtain:

BY
c,i(λ) ≤ 4(v−mx)λ(1− λ) + mx.

Finally, since λ(1− λ) ≤ 0.25 on [0, 1] and v− mx is positive (we suppose
that the limit is respected at keyframes), we end up with the desired result:

97

Attribute limits during interpolations

BY
c,i(λ) ≤ v.

The same demonstration is valid for the lower limit. Indeed, if u is the lower
limit of c, that means that −u is the upper limit of −c, which brings us back
to the above computation.

98

References

[Ahmed et al., 2003] Amr Ahmed, Farzin Mokhtarian, and Adrian Hilton. Cycli-
fication of human motion for animation synthesis. In Eurographics 2003 - Short
Presentations, 2003.

[Arikan and Forsyth, 2002] Okan Arikan and David A. Forsyth. Interactive mo-
tion generation from examples. ACM Trans. Graph., 21(3):483–490, 2002.

[Aristidou et al., 2017] Andreas Aristidou, Joan Lasenby, Yiorgos Chrysanthou,
and Ariel Shamir. Inverse kinematics techniques in computer graphics: A sur-
vey. Computer Graphics Forum, 37(6):35–58, 2017.

[Au et al., 2008] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel
Cohen-Or, and Tong-Yee Lee. Skeleton extraction by mesh contraction. ACM
Trans. Graph., 27(3):44:1–44:10, 2008.

[Bailey et al., 2009] Reynold Bailey, Ann McNamara, Nisha Sudarsanam, and
Cindy Grimm. Subtle gaze direction. ACM Trans. Graph., 28(4):100:1–100:14,
2009.

[Botsch et al., 2007] Mario Botsch, Mark Pauly, Martin Wicke, and Markus Gross.
Adaptive space deformations based on rigid cells. Computer Graphics Forum,
26(3):339–347, 2007.

[Brosz et al., 2007] John Brosz, Faramarz F. Samavati, M. Sheelagh T. Carpendale,
and Mario Costa Sousa. Single camera flexible projection. In Proceedings of the
5th International Symposium on Non-photorealistic Animation and Rendering, pages
33–42, 2007.

99

References

[Button, 2002] Bryce Button. Nonlinear Editing: Storytelling, Aesthetics, and Craft.
CMP Books, 2002.

[Carroll et al., 2010] Robert Carroll, Aseem Agarwala, and Maneesh Agrawala.
Image warps for artistic perspective manipulation. ACM Trans. Graph.,
29(4):127:1–127:9, 2010.

[Casas et al., 2017] Llogari Casas, Maggie Kosek, and Kenny Mitchell. Props
alive: A framework for augmented reality stop motion animation. In 2017 IEEE
10th Workshop on Software Engineering and Architectures for Realtime Interactive
Systems, 2017.

[Casas et al., 2018] Llogari Casas, Matthias Fauconneau, Maggie Kosek, , Kieran
Mclister, and Kenny Mitchell. Image based proximate shadow retargeting. In
Proceedings of the Computer Graphics and Visual Computing (CGVC) Conference
2018, 2018.

[Chai and Hodgins, 2005] Jinxiang Chai and Jessica K. Hodgins. Performance an-
imation from low-dimensional control signals. ACM Trans. Graph., 24(3):686–
696, 2005.

[Chai and Hodgins, 2007] Jinxiang Chai and Jessica K. Hodgins. Constraint-
based motion optimization using a statistical dynamic model. In ACM SIG-
GRAPH 2007 Papers, 2007.

[Choi and Lee, 2016] Myung G. Choi and Kang H. Lee. Points-based user inter-
face for character posing. Computer Animation and Virtual Worlds, 27(3-4):213–
220, 2016.

[Choi et al., 2008] Byungkuk Choi, Mi You, and Junyong Noh. Extended spatial
keyframing for complex character animation. Comput. Animat. Virtual Worlds,
19(3-4):175–188, 2008.

[Choi et al., 2016] Byungkuk Choi, Roger Blanco i Ribera, J. P. Lewis, Yeongho
Seol, Seokpyo Hong, Haegwang Eom, Sunjin Jung, and Junyong Noh.
Sketchimo: Sketch-based motion editing for articulated characters. ACM Trans.
Graph., 35(4):146:1–146:12, 2016.

[Chung et al., 2015] Se-Joon Chung, Junggon Kim, Shangchen Han, and Nancy S.
Pollard. Quadratic encoding for hand pose reconstruction from multi-touch
input. In EG 2015 - Short Papers, 2015.

[Cimen et al., 2018] Gokcen Cimen, Christoph Maurhofer, Bob Sumner, and Mar-
tin Guay. Ar poser: Automatically augmenting mobile pictures with digital
avatars imitating poses. In 12th International Conference on Computer Graphics,
Visualization, Computer Vision and Image Processing 2018, 2018.

100

References

[Cohen and Guibas, 1997] Scott D. Cohen and Leonidas J. Guibas. Partial match-
ing of planar polylines under similarity transformations. In Proceedings of the
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 777–786,
1997.

[Cohen, 1992] Michael F. Cohen. Interactive spacetime control for animation. In
Proceedings of the 19th Annual Conference on Computer Graphics and Interactive
Techniques, pages 293–302, 1992.

[Cole et al., 2006] Forrester Cole, Doug DeCarlo, Adam Finkelstein, Kenrick Kin,
Keith Morley, and Anthony Santella. Directing gaze in 3d models with stylized
focus. In Proceedings of the 17th Eurographics Conference on Rendering Techniques,
pages 377–387, 2006.

[Coleman and Singh, 2004] Patrick Coleman and Karan Singh. Ryan: Rendering
your animation nonlinearly projected. In Proceedings of the 3rd International Sym-
posium on Non-photorealistic Animation and Rendering, pages 129–156, 2004.

[Coleman et al., 2005] Patrick Coleman, Karan Singh, Leon Barrett, Nisha Su-
darsanam, and Cindy Grimm. 3d screen-space widgets for non-linear projec-
tion. In Proceedings of the 3rd International Conference on Computer Graphics and
Interactive Techniques in Australasia and South East Asia, pages 221–228, 2005.

[Coleman et al., 2008] Patrick Coleman, Jacobo Bibliowicz, Karan Singh, and
Michael Gleicher. Staggered poses: A character motion representation for
detail-preserving editing of pose and coordinated timing. In Proc. of the 2008
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 137–
146, 2008.

[Coros et al., 2010] Stelian Coros, Philippe Beaudoin, and Michiel van de Panne.
Generalized biped walking control. ACM Trans. Graph., 29(4):Article 130, 2010.

[Cui and Mousas, 2018] Yaoyuan Cui and Christos Mousas. Master of puppets:
An animation-by-demonstration computer puppetry authoring framework. 3D
Research, 9(1):158:1–158:14, 2018.

[D. D. Willis et al., 2011] Karl D. D. Willis, Ivan Poupyrev, and Takaaki Shiratori.
Motionbeam: A metaphor for character interaction with handheld projectors.
In Conference on Human Factors in Computing Systems - Proceedings, pages 1031–
1040, 2011.

[Davis et al., 2003] James Davis, Maneesh Igarashi, Erika Chuang, Zoran
Popovic’, and David Salesin. A sketching interface for articulated figure an-
imation. Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 320–328, 2003.

101

References

[Dontcheva et al., 2003] Mira Dontcheva, Gary Yngve, and Zoran Popović. Lay-
ered acting for character animation. ACM Trans. Graph., 22(3):409–416, 2003.

[Geijtenbeek et al., 2012] Thomas Geijtenbeek, Nicolas Pronost, and A. Frank
van der Stappen. Simple data-driven control for simulated bipeds. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pages 211–219, 2012.

[Geijtenbeek et al., 2013] Thomas Geijtenbeek, Michiel van de Panne, and
A. Frank van der Stappen. Flexible muscle-based locomotion for bipedal crea-
tures. ACM Transactions on Graphics, 32(6):206:1–206:11, 2013.

[Glatstein, 2013] Jeremy Glatstein. Formal Visual Analysis: The Elements & Princi-
ples of Composition. 2013.

[Glauser et al., 2016] Oliver Glauser, Wan-Chun Ma, Daniele Panozzo, Alec Ja-
cobson, Otmar Hilliges, and Olga Sorkine-Hornung. Rig animation with a tan-
gible and modular input device. ACM Trans. Graph., 35(4):144:1–144:11, 2016.

[Gleicher, 1997] Michael Gleicher. Motion editing with spacetime constraints. In
Proceedings of the 1997 Symposium on Interactive 3D Graphics, pages 139–ff., 1997.

[Google, 2016] Google. Tilt brush, 2016.

[Guay et al., 2013] Martin Guay, Marie-Paule Cani, and Remi Ronfard. The line of
action: an intuitive interface for expressive character posing. ACM Transactions
on Graphics, 32(6):205:1–205:8, 2013.

[Guay et al., 2015] Martin Guay, Rémi Ronfard, Michael Gleicher, and Marie-
Paule Cani. Space-time sketching of character animation. ACM Trans. Graph.,
34(4):118:1–118:10, 2015.

[Haegwang et al., 2014] Eom Haegwang, Choi Byungkuk, and Noh Junyong.
Data-driven reconstruction of human locomotion using a single smartphone.
Computer Graphics Forum, 33(7):11–19, 2014.

[Hahn et al., 2015] Fabian Hahn, Frederik Mutzel, Stelian Coros, Bernhard
Thomaszewski, Maurizio Nitti, Markus Gross, and Robert W. Sumner. Sketch
abstractions for character posing. In Proceedings of the 14th ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, pages 185–191, 2015.

[Harvey and Pal, 2018] Félix G. Harvey and Christopher Pal. Recurrent transition
networks for character locomotion. In SIGGRAPH Asia 2018 Technical Briefs,
pages 4:1–4:4, 2018.

[Holden et al., 2016] Daniel Holden, Jun Saito, and Taku Komura. A deep learn-
ing framework for character motion synthesis and editing. ACM Trans. Graph.,
35(4):138:1–138:11, 2016.

102

References

[Holden et al., 2017] Daniel Holden, Taku Komura, and Jun Saito. Phase-
functioned neural networks for character control. ACM Trans. Graph.,
36(4):42:1–42:13, 2017.

[Horn, 1983] Berthold K. P. Horn. The curve of least energy. ACM Trans. Math.
Softw., 9(4):441–460, 1983.

[Hsu et al., 2007] Eugene Hsu, Marco da Silva, and Jovan Popović. Guided time
warping for motion editing. In Proc. of the 2007 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 45–52, 2007.

[Hua and Qin, 2003] Jing Hua and Hong Qin. Free-form deformations via sketch-
ing and manipulating scalar fields. In Proceedings of the Eighth ACM Symposium
on Solid Modeling and Applications, pages 328–333, 2003.

[Huang et al., 2013] Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong,
Hao Zhang, Guiqing Li, and Baoquan Chen. L1-medial skeleton of point cloud.
ACM Trans. Graph., 32(4):65:1–65:8, 2013.

[Igarashi et al., 2005] Takeo Igarashi, Tomer Moscovich, and John F. Hughes. Spa-
tial keyframing for performance-driven animation. In Proc. of the 2005 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages 107–115,
2005.

[Jeon et al., 2010] Jaewoong Jeon, Hyunho Jang, Soon-Bum Lim, and Yoon-Chul
Choy. A sketch interface to empower novices to create 3d animations. Computer
Animation and Virtual Worlds, 21(3-4):423–432, 2010.

[Jin et al., 2015] Ming Jin, Dan Gopstein, Yotam Gingold, and Andrew Nealen.
Animesh: Interleaved animation, modeling, and editing. ACM Trans. Graph.,
34(6):207:1–207:8, 2015.

[Kass et al., 1988] Michael Kass, Andrew Witkin, and Demetri Terzopoulos.
Snakes: Active contour models. International Journal of Computer Vision,
1(4):321–331, 1988.

[Kho and Garland, 2005] Youngihn Kho and Michael Garland. Sketching mesh
deformations. In Proceedings of the 2005 Symposium on Interactive 3D Graphics
and Games, pages 147–154, 2005.

[Kim et al., 2009] Manmyung Kim, Kyunglyul Hyun, Jongmin Kim, and Jehee
Lee. Synchronized multi-character motion editing. In ACM SIGGRAPH 2009
Papers, pages 79:1–79:9, 2009.

[Kim et al., 2012] Jongmin Kim, Yeongho Seol, and Jehee Lee. Realtime perfor-
mance animation using sparse 3d motion sensors. In Motion in Games, pages
31–42, 2012.

103

References

[Kim et al., 2013] Jongmin Kim, Yeongho Seol, and Jehee Lee. Human motion re-
construction from sparse 3d motion sensors using kernel cca-based regression.
Computer Animation and Virtual Worlds, 24(6):565–576, 2013.

[Koyama and Goto, 2018] Yuki Koyama and Masataka Goto. Optimo:
Optimization-guided motion editing for keyframe character animation.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, pages 161:1–161:12, 2018.

[Kraevoy et al., 2009] Vladislav Kraevoy, Alla Sheffer, and Michiel van de Panne.
Modeling from contour drawings. In Proceedings of the 6th Eurographics Sympo-
sium on Sketch-Based Interfaces and Modeling, pages 37–44, 2009.

[Laszlo et al., 2000] Joseph Laszlo, Michiel van de Panne, and Eugene Fiume. In-
teractive control for physically-based animation. In Proc. of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, pages 201–208, 2000.

[Lee et al., 2002] Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins,
and Nancy S. Pollard. Interactive control of avatars animated with human mo-
tion data. In Proc. of the 29th Annual Conference on Computer Graphics and Inter-
active Techniques, pages 491–500, 2002.

[Lehrmann et al., 2014] Andreas M. Lehrmann, Peter V. Gehler, and Sebastian
Nowozin. Efficient nonlinear markov models for human motion. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1314–1321, 2014.

[Lidwell et al., 2003] William Lidwell, Kritina Holden, and Jill Butler. Universal
principles of design. Rockport publ. cop., 2003.

[Lin et al., 2010] Juncong Lin, Takeo Igarashi, Jun Mitani, and Greg Saul. A
sketching interface for sitting-pose design. Proceedings of the Seventh Sketch-
Based Interfaces and Modeling Symposium, 18(11):111–118, 2010.

[Liu et al., 2010] Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao,
and Weiwei Xu. Sampling-based contact-rich motion control. ACM Trans.
Graph., 29(4):128:1–128:10, 2010.

[Liu et al., 2011] Huajun Liu, Xiaolin Wei, Jinxiang Chai, Inwoo Ha, and Taehyun
Rhee. Realtime human motion control with a small number of inertial sensors.
In Symposium on Interactive 3D Graphics and Games, pages 133–140, 2011.

[Liu et al., 2015] Tianqiang Liu, Jim McCann, Wilmot Li, and Thomas
Funkhouser. Composition-aware scene optimization for product images.
Comput. Graph. Forum, 34(2):13–24, 2015.

[Lockwood and Singh, 2012] Noah Lockwood and Karan Singh. Finger walking:

104

References

Motion editing with contact-based hand performance. In Proc. of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 43–52, 2012.

[Lockwood and Singh, 2016] Noah Lockwood and Karan Singh. Gestural motion
editing using mobile devices. In Proceedings of the 9th International Conference on
Motion in Games, pages 25–30, 2016.

[Mahmudi et al., 2016] Mentar Mahmudi, Pawan Harish, Benoît Le Callennec,
and Ronan Boulic. Artist-oriented 3d character posing from 2d strokes. Comput.
Graph., 57(C):81–91, 2016.

[Martin and Neff, 2012] Tyler Martin and Michael Neff. Interactive quadruped
animation. In MIG, pages 208–219, 2012.

[Mehra et al., 2009] Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer,
Amy Gooch, and Niloy J. Mitra. Abstraction of man-made shapes. ACM Trans.
Graph., 28(5):137:1–137:10, 2009.

[Mi et al., 2009] Xiaofeng Mi, Doug DeCarlo, and Matthew Stone. Abstraction of
2d shapes in terms of parts. In Proceedings of the 7th International Symposium on
Non-Photorealistic Animation and Rendering, pages 15–24, 2009.

[Milgram et al., 1994] Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio
Kishino. Mixed reality (mr) reality-virtuality (rv) continuum. Systems Research,
2351:282–292, 1994.

[Milliron et al., 2002] Tim Milliron, Robert J. Jensen, Ronen Barzel, and Adam
Finkelstein. A framework for geometric warps and deformations. ACM Trans.
Graph., 21(1):20–51, 2002.

[Min and Chai, 2012] Jianyuan Min and Jinxiang Chai. Motion graphs++: A com-
pact generative model for semantic motion analysis and synthesis. ACM Trans.
Graph., 31(6):153:1–153:12, 2012.

[Min et al., 2009] Jianyuan Min, Yen-Lin Chen, and Jinxiang Chai. Interactive
generation of human animation with deformable motion models. ACM Trans.
Graph., 29(1):9:1–9:12, 2009.

[Mori et al., 2005] Greg Mori, Serge Belongie, and Jitendra Malik. Efficient
shape matching using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell.,
27(11):1832–1837, 2005.

[Mosek, 2010] APS Mosek. The mosek optimization software. Online at
http://www. mosek. com, 54(2-1), 2010.

[Mukai and Kuriyama, 2009] Tomohiko Mukai and Shigeru Kuriyama. Pose-
timeline for propagating motion edits. In Proc. of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 113–122, 2009.

105

References

[Mukai, 2011] Tomohiko Mukai. Motion rings for interactive gait synthesis. In
Symposium on Interactive 3D Graphics and Games, pages 125–132, 2011.

[Mumford, 1994] David Mumford. Elastica and computer vision. In Algebraic
Geometry and its Applications, pages 491–506, 1994.

[Nealen et al., 2005] Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel
Cohen-Or. A sketch-based interface for detail-preserving mesh editing. ACM
Trans. Graph., 24(3):1142–1147, 2005.

[Nebel, 1999] Jean-Christophe Nebel. Keyframe interpolation with self-collision
avoidance. In Computer Animation and Simulation ’99, pages 77–86, 1999.

[Neff et al., 2007] Michael Neff, Irene Albrecht, and Hans-Peter Seidel. Layered
performance animation with correlation maps. Comput. Graph. Forum, 26:675–
684, 2007.

[Nijholt, 2005] A. Nijholt. Meetings in the virtuality continuum: send your avatar.
In 2005 International Conference on Cyberworlds (CW’05), pages 8–82, 2005.

[Oore et al., 2002] Sageev Oore, Demetri Terzopoulos, and Geoffrey Hinton. A
desktop input device and interface for interactive 3D character animation. In
Proceedings of the Graphics Interface 2002 Conference, May 27-29, 2002, Calgary,
Alberta, Canada, pages 133–140, 2002.

[Orbay et al., 2012] Günay Orbay, Mehmet Ersin Yümer, and Levent B. Kara.
Sketch-based aesthetic product form exploration from existing images using
piecewise clothoid curves. J. Vis. Lang. Comput., 23(6):327–339, 2012.

[Öztireli et al., 2013] A. Cengiz Öztireli, Ilya Baran, Tiberiu Popa, Boris Dalstein,
Robert W. Sumner, and Markus Gross. Differential blending for expressive
sketch-based posing. In Proceedings of the 2013 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 155–164, 2013.

[Pascu et al., 2013] Tudor Pascu, Martin White, and Zeeshan Patoli. Motion cap-
ture and activity tracking using smartphone-driven body sensor networks.
In Third International Conference on Innovative Computing Technology (INTECH
2013), pages 456–462, 2013.

[Rhodin et al., 2015] Helge Rhodin, James Tompkin, Kwang In Kim, Edilson
de Aguiar, Hanspeter Pfister, Hans-Peter Seidel, and Christian Theobalt. Gen-
eralizing wave gestures from sparse examples for real-time character control.
ACM Trans. Graph., 34(6):181:1–181:12, 2015.

[Rose et al., 1996] Charles Rose, Brian Guenter, Bobby Bodenheimer, and
Michael F. Cohen. Efficient generation of motion transitions using spacetime

106

References

constraints. In Proceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques, pages 147–154, 1996.

[Sederberg and Parry, 1986] Thomas W. Sederberg and Scott R. Parry. Free-form
deformation of solid geometric models. SIGGRAPH Comput. Graph., 20(4):151–
160, 1986.

[Shi et al., 2007] Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun
Bao, and Baining Guo. Mesh puppetry: Cascading optimization of mesh de-
formation with inverse kinematics. ACM Trans. Graph., 26(3):81–89, 2007.

[Shiratori and Hodgins, 2008] Takaaki Shiratori and Jessica K. Hodgins.
Accelerometer-based user interfaces for the control of a physically simu-
lated character. In ACM SIGGRAPH Asia 2008 Papers, pages 123:1–123:9,
2008.

[Shiratori et al., 2013] Takaaki Shiratori, Moshe Mahler, Warren Trezevant, and
Jessica K. Hodgins. Expressing animated performances through puppeteering.
In 2013 IEEE Symposium on 3D User Interfaces (3DUI), pages 59–66, 2013.

[Silva et al., 1999] Fernando Wagner da Silva, Luiz Velho, Jonas Gomes, and
Siome Goldenstein. Motion cyclification by time x frequency warping. In Pro-
ceedings of the XII Brazilian Symposium on Computer Graphics and Image Processing,
pages 49–58, 1999.

[Silverman, 1985] Bernard W. Silverman. Some aspects of the spline smoothing
approach to nonparametric regression curve fitting (with discussion). Journal
of the Royal Statistical Society, Ser.B, 47(1):1–52, 1985.

[Singh and Fiume, 1998] Karan Singh and Eugene Fiume. Wires: A geometric
deformation technique. In Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, pages 405–414, 1998.

[Slyper and Hodgins, 2008] Ronit Slyper and Jessica K. Hodgins. Action capture
with accelerometers. In Proc. of the 2008 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, pages 193–199, 2008.

[Song et al., 2017] Jaewon Song, Roger Blanco i Ribera, Kyungmin Cho, Mi You,
J. P. Lewis, Byungkuk Choi, and Junyong Noh. Sparse rig parameter optimiza-
tion for character animation. Comput. Graph. Forum, 36(2):85–94, 2017.

[Sorkine and Alexa, 2007] Olga Sorkine and Marc Alexa. As-rigid-as-possible
surface modeling. In Proceedings of the Fifth Eurographics Symposium on Geometry
Processing, pages 109–116, 2007.

[Sorkine et al., 2004] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa,

107

References

Christian Rössl, and Hans-Peter Seidel. Laplacian surface editing. In Sympo-
sium on Geometry Processing, volume 71, pages 175–184, 2004.

[Sumner et al., 2007] Robert W. Sumner, Johannes Schmid, and Mark Pauly. Em-
bedded deformation for shape manipulation. ACM Trans. Graph., 26(3), 2007.

[Sýkora et al., 2005] Daniel Sýkora, Jan Buriánek, and Jiří Žára. Sketching car-
toons by example. In Proceedings of Eurographics Workshop on Sketch-Based Inter-
faces and Modeling, pages 27–34, 2005.

[Sýkora et al., 2009] Daniel Sýkora, John Dingliana, and Steven Collins. As-rigid-
as-possible image registration for hand-drawn cartoon animations. In Proceed-
ings of the 7th International Symposium on Non-Photorealistic Animation and Ren-
dering, pages 25–33, 2009.

[Tagliasacchi et al., 2009] Andrea Tagliasacchi, Hao Zhang, and Daniel Cohen-Or.
Curve skeleton extraction from incomplete point cloud. In ACM SIGGRAPH
2009 Papers, pages 71:1–71:9, 2009.

[Tautges et al., 2011] Jochen Tautges, Arno Zinke, Björn Krüger, Jan Baumann,
Andreas Weber, Thomas Helten, Meinard Müller, Hans-Peter Seidel, and Bernd
Eberhardt. Motion reconstruction using sparse accelerometer data. ACM Trans.
Graph., 30(3):18:1–18:12, 2011.

[Terra and Metoyer, 2004] Sílvio C. L. Terra and Ronald A. Metoyer. Perfor-
mance timing for keyframe animation. In Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 253–258, 2004.

[Terra and Metoyer, 2007] Sílvio C. L. Terra and Ronald A. Metoyer. A
performance-based technique for timing keyframe animations. Graphical Mod-
els, 69(2):89–105, 2007.

[Thomas and Johnston, 1981] Frank Thomas and Ollie Johnston. The illusion of life
: Disney animation. Disney Editions, 1981.

[Thorne et al., 2004] Matthew Thorne, David Burke, and Michiel van de Panne.
Motion doodles: An interface for sketching character motion. In ACM SIG-
GRAPH 2004 Papers, pages 424–431, 2004.

[Tsai et al., 1994] Ping-Sing Tsai, Mubarak Shah, Katharine Keiter, and Takis Kas-
paris. Cyclic motion detection for motion based recognition. Pattern Recogni-
tion, 27(12):1591 – 1603, 1994.

[Ullman, 1976] Shimon Ullman. Filling the gaps: The shape of subjective con-
tours and a model for their generation. Biological Cybernetics, pages 1–6, 1976.

[Vinayak et al., 2016] Vinayak, Devarajan Ramanujan, Cecil Piya, and Karthik Ra-
mani. Mobisweep: Exploring spatial design ideation using a smartphone as a

108

References

hand-held reference plane. In Proceedings of the TEI ’16: Tenth International Con-
ference on Tangible, Embedded, and Embodied Interaction, pages 12–20, 2016.

[Vishwanath et al., 2013] A. V. Vishwanath, R. Arun Srivatsan, and M. Ra-
manathan. Minimum area enclosure and alpha hull of a set of freeform planar
closed curves. Comput. Aided Des., 45(3):751–763, 2013.

[Walther-Franks et al., 2012] Benjamin Walther-Franks, Marc Herrlich, Thorsten
Karrer, Moritz Wittenhagen, Roland Schröder-Kroll, Rainer Malaka, and Jan
Borchers. Dragimation: Direct manipulation keyframe timing for performance-
based animation. In Proceedings of Graphics Interface 2012, pages 101–108, 2012.

[Wang et al., 2008] Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Gaus-
sian process dynamical models for human motion. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(2):283–298, 2008.

[Wang et al., 2012] Xin Wang, Qing Ma, and Wanliang Wang. Kinect driven 3d
character animation using semantical skeleton. In 2012 IEEE 2nd International
Conference on Cloud Computing and Intelligence Systems, pages 159–163, 2012.

[Wei and Chai, 2011] Xiaolin Wei and Jinxiang Chai. Intuitive interactive human-
character posing with millions of example poses. IEEE Computer Graphics and
Applications, 31(4):78–88, 2011.

[Wertheimer, 1938] M. Wertheimer. Laws of organization in perceptual forms. 1938.

[Williams and Jacobs, 1997] Lance R. Williams and David W. Jacobs. Stochastic
completion fields: A neural model of illusory contour shape and salience. Neu-
ral Comput., 9(4):837–858, 1997.

[Witkin and Kass, 1988] Andrew Witkin and Michael Kass. Spacetime con-
straints. In Proceedings of the 15th Annual Conference on Computer Graphics and
Interactive Techniques, pages 159–168, 1988.

[Witkin and Popovic, 1995] Andrew Witkin and Zoran Popovic. Motion warp-
ing. In Proc. of the 22Nd Annual Conference on Computer Graphics and Interactive
Techniques, pages 105–108, 1995.

[Yamane and Nakamura, 2003] Katsu Yamane and Yoshihiko Nakamura. Natu-
ral motion animation through constraining and deconstraining at will. IEEE
Transactions on Visualization and Computer Graphics, 9(3):352–360, 2003.

[Yin et al., 2007] KangKang Yin, Kevin Loken, and Michiel van de Panne. Simbi-
con: Simple biped locomotion control. In ACM SIGGRAPH 2007 Papers, 2007.

[Yoo et al., 2015] Innfarn Yoo, Michel Abdul Massih, Illia Ziamtsov, Raymond
Hassan, and Bedrich Benes. Motion retiming by using bilateral time control
surfaces. Comput. Graph., 47(C):59–67, 2015.

109

References

[Yoshizaki et al., 2011] Wataru Yoshizaki, Yuta Sugiura, Albert C. Chiou, Sunao
Hashimoto, Masahiko Inami, Takeo Igarashi, Yoshiaki Akazawa, Katsuaki
Kawachi, Satoshi Kagami, and Masaaki Mochimaru. An actuated physical
puppet as an input device for controlling a digital manikin. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages 637–646,
2011.

[Zhang and van de Panne, 2018] Xinyi Zhang and Michiel van de Panne. Data-
driven autocompletion for keyframe animation. In MIG ’18: Motion, Interaction
and Games (MIG ’18), 2018.

[Zimmermann et al., 2007] Johannes Zimmermann, Andrew Nealen, and Marc
Alexa. Silsketch: Automated sketch-based editing of surface meshes. In Pro-
ceedings of the 4th Eurographics Workshop on Sketch-based Interfaces and Modeling,
pages 23–30, 2007.

[Zordan et al., 2014] Victor Zordan, David Brown, Adriano Macchietto, and
KangKang Yin. Control of rotational dynamics for ground and aerial behav-
ior. IEEE Transactions on Visualization and Computer Graphics, 20(10):1356–1366,
2014.

110

	Abstract
	Résumé
	Acknowledgements
	Contents
	Introduction
	1.1 Animation Legacy
	1.2 Artistic Principles
	1.3 3D Character Representation
	1.4 Authoring the Motion
	1.5 Real-time Animation
	1.6 Publications

	Related Work
	2.1 Objects Deformation
	2.1.1 Deformation of Single Objects
	2.1.2 Deformation of Multiple Objects

	2.2 Animation Crafting
	2.2.1 Space vs Time
	2.2.2 Space-time Curves
	2.2.3 Performance Animation

	2.3 High-level Character Control
	2.3.1 Space-time Constraints
	2.3.2 Real-time Manipulation

	Flow Curves: an Intuitive Interface for Coherent Scene Deformation
	3.1 Background
	3.2 Overview
	3.3 Subjective Curve Elements
	3.3.1 Principal Curves
	3.3.2 Abstract Contours

	3.4 Flow Curves
	3.4.1 Flow Curve from Sketched Stroke
	3.4.2 Flow Curves Network from Center-Point

	3.5 Direct Deformation of Scene Objects
	3.5.1 2D Grid Embedding
	3.5.2 Automatic Correspondence
	3.5.3 Deformation

	3.6 Results and Discussion
	3.7 Conclusion

	Tangent-Space Optimization for Interactive Animation Control
	4.1 Background
	4.2 Approach
	4.2.1 Problem Formulation
	4.2.2 Tangent Space Optimization
	4.2.3 Implementation Details
	4.2.4 Timing Manipulations
	4.2.5 Static Case

	4.3 Evaluation
	4.3.1 Examples of Authoring Difficult Animations
	4.3.2 User study: Simpler Curves for Complex Motions
	4.3.3 User Study: Faster Editing Process
	4.3.4 Qualitative Assessment from Professional Animators
	4.3.5 System Performance

	4.4 Conclusion

	Authoring Motion Cycles
	5.1 Background
	5.2 Overview and Workflow
	5.3 Cycle Specification
	5.4 MoCurves
	5.4.1 Spatial Manipulations
	5.4.2 Temporal Manipulations
	5.4.3 Contacts

	5.5 Results
	5.6 Conclusion

	PuppetPhone: Puppeteering Virtual Characters Using a Smartphone
	6.1 Background
	6.2 Approach
	6.2.1 MotionStick
	6.2.2 State Machine
	6.2.3 Animation Blending

	6.3 Application: Build a Snowman
	6.4 Application: Multi-Reality Games
	6.5 Conclusion

	Conclusion
	7.1 Summary of Contributions
	7.1.1 Coherent Scene Deformation
	7.1.2 Motion Visualization and Manipulation
	7.1.3 Performance Animation for Motion Cycles
	7.1.4 Interactive Character Control

	7.2 Future Work
	7.2.1 Animating with Curves
	7.2.2 Accommodating New Technologies

	Attribute limits during interpolations
	References

