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Abstract

Technological advances in virtual and augmented reality (AR) have enabled new
ways for users to interact with digital characters. The use of virtual characters in
our lives by means of new digital assistants, avatars, virtual pets or digital toys is
rapidly increasing. Besides the visual fidelity of virtual characters, motion plays a
crucial role in interactive applications. However, the characters in AR often have
limited or no responsiveness to the user’s presence and to other stimuli— i.e.,
the user’s movements or changes in the real-world environment. In this thesis,
we investigated several approaches in modeling the characters’ motions. The fo-
cus was particularly on the methods that could enable virtual characters to give
human-like responses during the interactions with users and real-objects.

Building character animations is a well-established field in the film and gaming
industries. Characters are designed by artists, rigged to define joint movements
and then animated with careful timing to match animation scripts. However, un-
like in traditional video games or animation movies, the character’s surrounding
and the user input may not be predefined in AR applications. Integrating physics-
based approaches into characters’ motion models has a particular advantage in
interactive AR applications as they can generate motions that are online and re-
sponsive to environmental changes and user inputs. In this thesis, we explore
methods for motion models that allows virtual characters human-like responses
to interactions with users and real-objects.

Augmented reality has the power to turn our physical environments into digi-
tal gaming platforms by combining real and virtual objects. Besides focusing on
the physical aspects of the motion that supports the interaction with real objects
and natural responses to perturbations, perception capabilities like vision-based
human pose estimation, object recognition and reconstruction are investigated. A
first step in the direction of interactive AR characters is taken in this thesis that can
understand and react to environmental changes and user’s behaviors. The user
can use his or her own body movements and physical objects in the surround-
ing in the most natural and intuitive way to interact and play with AR charac-
ters. Finally, two frameworks are presented that incorporate digital characters
and costumes into selfie settings in AR, which allows virtual characters to mimic
the user’s pose, or the user to wear characters’ costumes. The approaches utilize
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the latest advancements of deep learning for 2D pose estimation in the wild, com-
bining with a projection onto the 3D subspace to find the closest matching 3D pose
and minimum parametrization, assuming selfie scenario— which enables mobile
devices to be used.
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Zusammenfassung

Technologische Fortschritte in der virtuellen und erweiterten Realität (AR)
eröffnen dem Benutzer neue Möglichkeiten, mit digitalen Charakteren zu inter-
agieren. Die Verwendung virtueller Charaktere in unserem Leben, die als neue
digitale Assistenten, Avatare, virtuelle Haustiere und digitale Spielzeuge genutzt
werden, nimmt rapide zu. Neben der visuellen Genauigkeit virtueller Charak-
tere spielt Bewegung in interaktiven Anwendungen eine entscheidende Rolle.
Die Charaktere in AR haben jedoch oft eine eingeschränkte (oder keine) Reaktion
auf die Anwesenheit des Benutzers und auf andere Reize - wie etwa Bewegun-
gen eines Benutzers oder Änderungen in der realen Umgebung. In dieser Arbeit
untersuchen wir Methoden für Bewegungsmodelle, mit denen virtuelle Charak-
tere menschenähnlich auf die Interaktionen mit Benutzern und realen Objekten
reagieren können. Das Erstellen von Charakteranimationen ist ein etablierter
Bereich in der Film- und Spieleindustrie. Charaktere werden von Künstlern ent-
worfen, manipuliert, um gemeinsame Bewegungen zu definieren, und werden
dann mit einem sorgfältigen Timing animiert, damit sie den Animationsskripten
entsprechen. Im Gegensatz zu herkömmlichen Videospielen oder Animationsfil-
men ist es nicht möglich die Umgebung des Charakters und die Benutzereinga-
ben in Augmented-Reality-Anwendungen vorzudefinieren. Die Integration von
physikbasierten Charakteransätzen in die Bewegungsmodelle von Charakteren
hat einen besonderen Vorteil in den interaktiven AR-Anwendungen, da sie on-
line Bewegungen erzeugen können, die auf die Umgebungsänderung und die
Benutzereingaben reagieren. Wir zeigen die Verwendung von Physik-basierten
Zeichenanimationen bei der Leistungsverfolgung, bei denen der Benutzer die Be-
wegungen digitaler Zeichen mit unterschiedlichen Morphologien steuert, die für
interaktive AR-Szenarien erweitert werden können.

Augmented Reality bietet die Möglichkeit, physische Umgebungen in digita-
le Spieleplattformen zu verwandeln, indem reale und virtuelle Objekte kom-
biniert werden. Nebst dem Fokus auf die physischen Aspekte der Bewegung,
welche die Interaktion mit realen Objekten und die natürlichen Reaktionen auf
Störungen unterstützen, untersuchen wir Wahrnehmungsfähigkeiten wie die auf
Sicht basierende Schätzung der menschlichen Haltung, die Objekterkennung
und die Rekonstruktion. Wir machen einen ersten Schritt in Richtung inter-
aktiver AR-Charaktere, die Umgebungsveränderungen und das Verhalten des
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Benutzers verstehen und darauf reagieren können, während der Benutzer sei-
ne eigenen Körperbewegungen und physischen Objekte in der Umgebung auf
natürlichste und intuitivste Art und Weise zur Interaktion verwendet und mit
AR-Charakteren spielt. Schließlich stellen wir einen Rahmen vor, welcher digita-
le Charaktere und Kostüme in die Selfie-Einstellungen von AR integrieren, wo-
durch virtuelle Charaktere die Haltung des Benutzers nachahmen können oder
der Benutzer die Kostüme von Charakteren trägt. Unser Ansatz nutzt die neues-
ten Fortschritte des Tiefenlernens für die Schätzung von 2D-Posen in freier Wild-
bahn, kombiniert mit einer Projektion in den 3D-Unterraum, um die am besten
passende 3D-Pose und minimale Parametrisierung zu finden, unter der Annah-
me eines Selfie-Szenarios, das die Verwendung mobiler Geräte ermöglicht.
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C H A P T E R 1
Introduction

Augmented Reality (AR) and Mixed Reality (MR) blur the line between our
physical and digital worlds by truly merging the interactions within them.
Naturally, mixing realities provides a new dimension in human-computer
interaction and its power comes from the use of the real environment and
entities as a new medium of interaction. At present, rapid advances and
the easy accessibility of features like cameras, gyroscopes, and accelerom-
eters made mobile devices a popular platform for AR applications. As a
result, we can see many applications in a lot of area including marketing
and advertising, education, industrial and medical procedures, gaming and
entertainment, shown in Fig. 1.1

Figure 1.1: AR is a powerful tool applied to entertainment, education, marketing and
other fields.

Interaction between humans and virtual characters covers a wide range of
disciplines including computer vision, artificial intelligence besides conven-
tional character animation techniques in computer graphics. Interactive vir-
tual characters embodied in an environment— in physical or digital form

1



Introduction

—should have the ability of generating actions online that are responsive to
the environment change and the user input. The superiority of AR and MR
applications comes from making virtual characters an integral part of the
real world and directly allowing natural physical interactions with users,
yet these actions should also be able to show a physical nature and accu-
racy. The overall goal of this thesis is to investigate different real interaction
aspects between users and interactive AR characters. It describes the steps
towards designing and implementing motion models for virtual characters
that can understand the user’s environment and freely move and interact in
it by applying animation and interaction techniques combining the follow-
ing two research areas:

• Augmented Reality

• Physics-Based Character Motion

1.1 Overview

The frameworks and interfaces presented in the thesis demonstrates that
an effective combination of advantageous features of the aforementioned
research domains yields a closer integration of virtual characters into our
physical environment. This chapter makes a brief overview of the individual
domains and summarizes challenges and contributions.

Augmented Reality

Figure 1.2: Milgram’s Reality Virtuality (RV) continuum. Adapted from [Milgram and
Kishino, 1994].

The Reality-Virtuality Continuum is first introduced by Paul Milgram and
Fumio Kishino in 1994 [Milgram and Kishino, 1994] with a new reality as
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“environment as one in which real-world and virtual-world objects are pre-
sented together within a single display” — Mixed Reality (MR). Milgram’s
RV continuum draws the continuous transition of real world from the left up
to virtual world on the right. As an intermediate case in the spectrum, Aug-
mented Reality (AR), refers to predominantly real-world spaces where virtual
elements, e.g. virtual objects or characters, are dynamically integrated into,
and can interact with, the physical world in real time .

At one extreme, Virtual Reality (VR) is a practice to tricking brain into experi-
encing a completely alternative reality from our physical world. The biggest
difference between VR and other realities is that it totally immerses a user
inside a synthetic environment that may or may not imitate real-world prop-
erties, such as the physical laws governing space, time, gravity and etc. In
VR, the connection of the user with the physical world is through sensory
feedback that typically tracks the head and hands of the user. A significant
effort is put into creating accurate representations of virtual objects from
their physical counterparts. Similarly, the believability and co-presence of
a virtual character interacting with a user depends on their human-like re-
sponses to users’ movements. Recently, Estudiofuture’s Vivo Technology
presented a platform that allows creating VR characters that are aware of
the the user’s movements and can give reactions to them with a technique
of blending key-framed animations with physical behaviours [Ruiperez and
Ruiperez, 2018]. It presents a use case example to show the importance of
AI interactivity in VR characters.

Figure 1.3: VIVO allows animators to create responsive VR characters that can react to a
user’s reaching out behaviour and his or her touches [Ruiperez and Ruiperez,
2018].

The main advantage of AR is its direct exploitation of the physical world. In
AR, there is no need for the virtual representations of real objects or users
while interacting with virtual characters. Therefore, it requires more intu-
itive and natural ways of interactions, since users and physical objects in the
surrounding environment remain visible.

According to the seminal work “A survey of Augmented Reality” by Ronald
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T. Azuma [Azuma, 1997], the following three parameters defines an AR sys-
tem:

• Combines real and virtual

• Interactive in real time

• Registered in 3-D

Rather than completely replacing it, AR supplements reality by combining
virtual characters and real objects into the same space with the user. The pa-
rameters specifically ensure the role of the interactivity itself in AR. Hence,
simply imposing a virtual character upon the real space that is standing but
not interacting with a user is not enough for a good AR experience. Instead,
animation models for virtual characters can exploit the input mechanisms
(e.g., sensors and cameras) of AR systems that collect user’s real-world in-
teractions to interpret and process. This thesis presents several AR appli-
cations taking full advantage of the physical world, especially focusing on
the user tracking and the bodily interactions between virtual characters and
users. While concentrating on animating them in a sufficiently believable
and natural way, it explores the interactions of virtual characters that can
realize and mimic users’ movements and intelligently inhabit the real world
merged with virtual and real objects.

Even though the type of the tracking equipment depends on the device,
there are three common tracking classes in current AR systems: user, ob-
ject and spatial tracking, illustrated in Fig. 1.4. Markers or spatial tracking
to detect surfaces allows properly positioning the virtual character and other
contents into the environment. Object recognition and tracking depends on
feature points extracted from the structure of the object through scanning.
The frameworks presented on this thesis target handheld devices, such as
mobile phones, with vision-based tracking methods. That is, recognition
and tracking of objects and/or user are achieved by the analysis of the cam-
era image. The user tracking comprises not only the position and orientation
of the user, which is solely based on device tracking, but also the estimation
of the user’s 3D skeletal pose directly from camera image.

Physics-Based Character Motion

Animation models for interactive virtual characters that can give lifelike re-
sponses to the unexpected disturbances in a dynamically changing environ-
ment in real time requires motion control. The physics-based character con-
trol uses physics (equations of motion) and operates at the mechanical level
of the motion. Just like real-world, the characters are controlled via forces
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Figure 1.4: User tracking for detecting users’ positions together with their body poses,
object tracking for recognizing real-world objects, and spatial tracking for
understanding the environment, including surface detections are essential
tools to enhance interactivity in AR.

and torques which can be external (e.g. gravitational forces or contact forces)
or internal (e.g. joint limits). Further, we summarize the three essential parts
of a physics-based character control framework: physics-based character,
controller and physics simulator.

Physics-Based Character can be regarded as a set of connected rigid
bodies which are linked to each other via character joints. In order to make
the control easier and increase simulation performance, the character mod-
els are often simplified as in Fig. 1.5. In general, rigid bodies are represented
with primitive geometries such as cylinders, spheres and boxes. A joint de-
fines and constraints the movements of the bodies, also known as Degrees
of Freedom (DOF). The commonly used joint types defined after human
and animal body mechanics are 3 degree-of-freedom ball-and-socket joint, 2
degree-of-freedom universal joint and 1 degree-of-freedom hinge joint. For
example, while a shoulder or wrist joint can be a ball-and-socket joint, a knee
is well represented with a hinge joint for a humanoid character.

The process of modeling a physics-based character includes defining kine-
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Figure 1.5: A physics-based character model: (left) the skeletal design of the character,
(middle) the construction of the character’s articulated body entirely out
of rigid bodies with physical properties such as mass, moment-of-inertia,
(right) the mesh of the character.

matic and physical properties of rigid bodies and joints, that is, providing
correct mass/density and geometry information (e.g., length and width of
the body) for each body, as well as limits for the joints. While the length of a
rigid body is chosen (or automatically defined) according to the anatomical
design of the character’s skeleton, the width might be associated with the
mass of the rigid body. The mass is an important property as it determines
how quickly it reacts to the external forces applied on it, such as gravity.
Another essential property of a rigid body is the moment of inertia which is
calculated from the rigid body density, how the mass is distributed relative
to its centre of mass. It defines the resistance of the body to angular acceler-
ation and affects the total angular momentum of the body. Taken together,
the mass distribution of a character has an impact on the overall motion of
the body and balance.

Physics Simulator is the fundamental requirement for physics based ani-
mation. It updates the state of simulated objects in the virtual environment
at each simulation step using Newton-Euler laws of dynamics. The update
of rigid bodies is performed in two steps in a physics simulation: Forward dy-
namics— linear and angular accelerations of each object are computed based
on the internal constraints and external forces applied on it; Numerical in-
tegration— positions and velocities of each objects are calculated based on
accelerations. Natural reactions occur during and after collision of objects
in real life, but collision issue needs to be handled in virtual world. There-
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fore, collision detection which determines whether two or more objects pen-
etrate or are in contact is an important part of the simulator. Bullet [bullet-
physics.org], ODE [ode.org], PhysX [nvidia.com/physx] and Newton [new-
tondynamics.com] are some well-known and commonly used physics en-
gines.

Motion Controller is the part that is responsible for generating joint
torques in a physics-based character control framework, which then fed into
the physics simulator. Fig. 1.6 depicts a general architecture of a physics-
based character animation and control system. A motion controller deter-
mines the joint torques based on the goal of the character’s motion. Hence,
it can be dedicated to specific tasks such as balance and locomotion and can
adapt a purely physical approach inspiring from successful biomechanics
models like Inverted Pendulum (IP) [Kenwright, 2010]. Notwithstanding, a
motion controller can also be modeled specifically to track a reference hu-
man motion.

A motion controller allows a user to interact with physics-based characters
via control parameters, such as desired body speed, direction and posing
(e.g., positioning of the character’s end-effectors). Besides allowing user to
control the speed and direction of physically simulated character’s motion,
it can also allow users to control a full body pose of the character from a
motion capture data.

The earliest and simplest control algorithm for pose tracking is Proportional
Derivative (PD) Controller [Hodgins et al., 1995]. The PD controller of a joint
can generate torque to track the desired joint angle coming from the refer-
ence motion by minimizing error between the current pose and the target
pose. It mimics a spring-damper system, where a force is generated by a
spring to move to its rest position. However, the downside of this approach
is that it has no knowledge on the underlying equations of motion and the
character’s physical properties, which can cause the an accumulated error
and unpredictable results. Furthermore, it requires fine tuning of the PD
control parameters for every different characters and motions.

Alternatively, methods that directly integrate multi-body (character) dy-
namics into constrained optimization can ensure a better and accurate re-
sults for motion tracking [Abe et al., 2007]. In this approach the equations
of motion representing the dynamics of the character is incorporated into
the optimization as a constraint, while the desired control for the charac-
ter is defined through objectives. Then the joint torques are calculated and
updated online at each simulation step. However, the biggest drawback of
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Figure 1.6: A single simulation step of a physics-based motion control system: the con-
troller is provided with information about the character’s state (e.g., joint
orientation, centre of mass (COM), ground reaction forces (GRF)) and con-
trol parameters from the user (e.g., desired speed, direction, end-effector po-
sitions). It, then, generates forces and torques for the character’s joints con-
sidering a set of physics-based constraints, such as for angular momentum,
balance and friction regulations. Finally, this actuator data is fed into the
simulator to estimate the new character state

these methods is their difficult implementation which require animators to
have knowledge on multi-body dynamics.

A physics-based motion controller naturally also include regulators exploit-
ing features inspired from biomechanics for improving the balance and sta-
bility of the character’s motions. For instance, a balance regulator (or objec-
tive) can be responsible for keeping Center of Mass (COM) of the character
directly within the convex polygon defined by the outline of the its feet—
known as support polygon. Angular momentum (AM) is another important
aspect for balance, employing full body regulation in the presence of distur-
bances due to ground forces and gravity, or other external forces [Macchietto
et al., 2009]. Role of an AM regulator can be controlling the the rate of change
whole body AM about the COM. Furthermore, another regulator can ensure
that the resulting Ground Reaction Forces (GRFs) is within and do not ex-
ceed friction limits.

Interactive AR Characters

Interactive virtual characters play a significant role to increase the immer-
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siveness in both virtual and augmented realities. In contrast to the tradi-
tional characters whose behaviors depend on virtual inputs from a mouse
and keyboard, intelligent characters in AR can be controlled with new inter-
action channels by exploiting qualities of the physical environment. Natu-
rally, the realism of the motions during interactions with the environment
greatly increases the believability of the character and the sense of its coex-
istence in our world.

In virtual or augmented reality applications including games and story-
telling the motion trajectories of a virtual character are traditionally hand-
crafted by skilled animators with key frame animation. The pipeline con-
sists of the artist setting up a skeleton and a rig for the character model.
The skeleton, which is a hierarchical set of interconnected bones, is used
to position the character in poses. The animation is created by interpolat-
ing between character poses that are saved into key frames. Since creating
these animations is a labor-intensive task, animating characters by adapt-
ing captured performances from human actors is a commonly used alterna-
tive. However, the ability of using captured human movements introduces a
key challenge— motion retargeting especially for animating non-humanoid
characters. In addition, animation models solely utilizing existing motion
dataset (either captured or hand-crafted) have a disadvantage of being re-
stricted by the contents of the database.

Animation becomes even more challenging during interaction with the user
and real objects in AR; autonomous virtual characters may need to react
to unpredictable user interactions and adapt their behaviors accordingly.
Overall, the realism of a character’s motion during interaction with a user
depends on several aspects; for example, its awareness of the real world
and environmental attributes including the user’s movements, its respon-
siveness to the dynamically changing environment and the appropriateness
of its motions regarding the context of interaction. To sum up, we can in-
vestigate the animation model of an interactive AR character from the per-
spective of the character model itself, its perception of the environment and
interaction with it, as in Fig. 1.7.

Character Realistically modeled motions respect the body structure and
dynamics of the character. Otherwise, any anomaly in the motion can dis-
tort the existence the virtual character in an alternate reality. The anomalies
can be implausible or repetitive movements and unresponsiveness to pertur-
bations. They are usually associated to the generated motion’s disrespect of
the laws of physics. Moreover, characters can also be non-anthropomorphic
where their limb proportions and even topology may be different from hu-
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Figure 1.7: An intelligent AR character can draw their perceptions from the state of vir-
tual and real objects. The behaviour of the character include interacting with
and reacting to the real (natural) environment, extending the communica-
tion with the user.

mans. Nevertheless, a virtual character possessing physical characteristics
of motion as much as possible and respecting mechanical constraints of its
body has a high level of embodiment in the real world.

Perception Perception of the environment is an integral task for the char-
acter in order to interact with it. A virtual character’s perception of its en-
vironment depend on the type of interaction which can happen between
the character and the objects in the environment, or the user and the other
virtual characters. A character’s awareness of the physical entities in AR
consists of tracking their kinematic features from visual sensor like camera,
e.g., objects’ position and orientation; or the user’s skeletal pose.

Interaction Interaction, which is coupled with perception, depends on the
character’s capacity of interactivity. The capacity is defined as the charac-
ter’s ability of conveying natural reactions to the environmental changes.
These changes can occur due to a user using its physical space and chang-
ing positions of the real objects in the physical world, or certain behaviors
of other virtual objects in virtual world. In addition to the physical validity
of the character’s motions (e.g., joint trajectories) and skeletal poses, the re-
sponses of the character to the interactions like collisions in AR should have
a regard for physical factors, such as force and mass.

1.2 Challenges

A virtual character is an effective means to involve humans in interactive en-
vironments; performing as a guide, tutor, actor, or even an adversary, virtual
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characters play a significant role to enrich a user’s experience. The overall
goal of this thesis is to develop motion models for virtual characters with
different morphologies that are able to interact with a user as well as other
elements in real world space specifically utilizing augmented reality tech-
nology. Naturally, motion models are crucial to increase the believability of
the characters during their interactions with human viewers. Even though
great advances in AR technology and their accessibility with easy-to-reach
digital devices opened up possibilities for the direct physical interactions
between users and virtual characters, there are a set of challenges to tackle:

• Traditional key-framing is not only a labor-intensive task, but also
not suitable for interactive applications where unexpected environ-
mental changes and accordingly character behaviors are met. In ad-
dition, exploiting solely human mocap data to animate characters
results in well known artifacts like foot-skating, shape interpene-
tration, or simply a perceived lack of realism. As an alternative,
physics-based approach generates motions online that are respon-
sive to non-predefined environment and user inputs, making it bet-
ter suited for the AR and other interactive applications. However,
using physics-based approaches are complicated as they require at
least some knowledge of multi-body dynamics, control and opti-
mization theory. Existing methods use intense preprocessing step
with manual parameter tuning or offline parameter optimization
specific to the character.

• The approaches for physics-based character control are specific to
character’s shape and task. That is, the same motion cannot be per-
formed exactly with a new character because of the different phys-
ical characteristics (e.g., distribution of mass over the body). In ad-
dition, we can expect a virtual character interacting with the user
in various scenarios to have different body shapes including non-
humanoid bipedal or even quadruped. This also applies to the cases
that a motion controller inferred from a human performance data.
This specific interaction case where a virtual character is mimicking
the movements of the user like a puppet requires a motion model
that is general enough to adapt the motions performed by an actor
to a similar motion performed by the character. Therefore, motion
retargeting is another problem to address.

• Physics-based character animation is computationally much more
expensive than kinematics-based alternatives. Computational effi-
ciency in an AR environment is critical since a virtual character must
create responsive motions in real time to the dynamically changing
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environment. Therefore, interactive characters in augmented reality
settings require motion models incorporating physical constraints to
character’s animation models while balancing computational cost
with kinematic strategies. Overall, animation models for AR char-
acters need to be robust to different character types, perturbations
from user and other objects from the interactive environment as well
as giving emergent and physically plausible responses as much as
possible.

• In order for the virtual characters to interact in an intelligent and
realistic manner, their understanding the real-world environment is
crucially important. The real objects and the user that are part of the
physical environment are the elements for the character to interact
within AR. By taking advantage of the cameras and leverage state-
of-the-art computer vision and machine learning techniques for data
acquisition from real world, a virtual character should be equipped
with a perception that can recognize and track poses of the objects
and the user. While an 3D object recognition followed by an 3D re-
construction is required for interactions with real objects, a 3D pose
estimation is necessary for the virtual characters to interact with the
user directly.

1.3 Contributions and Thesis Outline

The work with the resulting contributions presented in this thesis are
slightly diverse due to the exploratory nature of my research path. In
essence, our goal is to a large extend to leverage interactivity between users
and digital characters using AR. We focus on the animation models for in-
teractive and intelligent AR characters connecting several exciting research
topics: augmented reality, physics-based character motion, artificial intelli-
gence and image processing.

Taken together, AR provides an environment that virtual characters would
seamlessly be integrated into reality, so that the interaction with users and
physical objects in the environment itself would be in the most natural and
intuitive way. Modeling the characters and their behaviors using physics-
based solutions makes the characters interactive and responsive to the user
input and environmental stimuli like force and terrain changes. Finally, ob-
ject recognition and pose estimation techniques completes the character’s
abilities to perceive the real world.
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Further in this section, a brief introduction to our contributions in the afore-
mentioned domains are outlined.

1.3.1 Physics-Based Character Control Interface

Driving behaviors of a virtual creature using human motion data is quite
daunting task when the creature’s shape and morphology can significantly
differs from human body structure, as is often the case, because it requires
motion retargeting in real-time. Even though the motion capture is used to
communicate a large portion of the motion, using solely traditional inverse
kinematic techniques cannot synthesize a motion that respects the structure
and dynamics of the imaginary character as well as leaving free limbs, such
as tails, without motion, which are not possible to map from human body.

Figure 1.8: Example frames showing resulting character animations together with the
corresponding performance animations obtained with our physics-based
character control system.

We developed a physics-based character control interface that allows a vir-
tual character to track a human actor in real-time. The biggest drawback
of the physics-based character control is its complex nature which requires
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knowledge of dynamics and control theory. We address this challenge with
an intuitive interface that allows both quickly designing the mechanical sys-
tem of any character (e.g., dinosaurs) as well as setting the controller pa-
rameters automatically via a limb-based abstraction. The main goal is en-
hance the generality and accessibility of this simulated control mechanism
to novice users while ensuring physically accurate and emergent character
motions. In addition, the system can be extended to be used in AR appli-
cations because the generated character animations at interactive rates (See
Fig. 1.8).

1.3.2 Interacting with intelligent AR Characters

Thanks to augmented reality technology, virtual characters can be in a het-
erogeneous environment combined with virtual and real objects, but the full
potential of interactions between them has not been fully explored yet. Hav-
ing characters capture the context of the user’s environment and react with
an awareness of physical interactions with real object and a user remains a
challenge.

Figure 1.9: Examples of user-AR character interactions in our AR framework with both
real and virtual objects.

In this work we develop an AR system which allows investigation of differ-
ent natural physical interaction models between intelligent characters and
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real-virtual objects. Our vision is seeing animated AR characters walking
around on your table, adapting their motions to changes in environment
(e.g., slopes made up of real-world objects) and reacting disturbances in their
surrounding (e.g., pushed away by real book or stopped by a fan prop), as
shown in Fig. 1.9.

To enable a character to intelligently react to its environment, we introduce
a character animation model composed of four main layers— parametric lo-
comotion modeling, kinematic motion control layer, IK-based terrain adap-
tation, ragdoll physics layer— from bottom to top, respectively. Given only
the skeleton of the character to be animated as input, the parametric locomo-
tion model automatically generates periodic motion segments necessary for
the character’s locomotion. We ensure a physical feasibility in the generated
motions by integrating several physical constraints (e.g., full-body torque
regulation and friction) in the optimization of motion parameters together
with a set of kinematic objectives which still give users a flexibility to define
motion style. Kinematic motion control unit is responsible for animating
the character in real-time. Finally, an IK-based terrain adaptation and short-
lived ragdoll physics approach for handling perturbations are layered on
top.

We use an approach for the reconstruction of the 3D environment by utiliz-
ing off-the-shelf scanning solutions and Vuforia’s image recognition technol-
ogy [Vuforia, 2017] with pre-defined objects that the character can recognize
and perform accordingly.

1.3.3 AR Selfies

Incorporating digital avatar capabilities into entertaining scenarios in AR —
AR Selfies— unlocks new possibilities for communication and interactions
with virtual characters, considering Snapchat [SnapInc, 2018], which heavily
relies on AR. Inspired by this, we developed a framework, AR Poser, that
augments a person in a camera image with a digital character imitating the
person’s pose in a selfie setting through augmented reality.

To enable a digital character to interpret and reproduce the pose, we propose
a solution for 3D pose estimation approach that relies only on the RGB infor-
mation from a monocular image. A depth camera, such as a Kinect [Shotton
et al., 2013], is an alternative for 3D pose estimations, but not as widespread
as monocular cameras on mobile devices and not always reliable in outdoor
conditions. Our approach utilizes the latest advancements of deep learning
for 2D pose estimation in the wild, combining with a projection onto a small
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Figure 1.10: (Top) AR Poser: 2D pose estimation of the person, followed with its aug-
mentation with a digital character. (Bottom) AR Costumes: 3D costume
pose applied to person’s pose (middle column), leaving several parts of the
person visible. After shape estimation together with in-painting of the per-
son’s body, we manage to fit costume without artifacts.

3D pose space, assuming selfie scenario, to find the optimal matching 3D
pose for the character— which enables mobile phones to be used.

Once body pose estimation from monocular RGB image is achieved, it is
possible to augment digital costumes onto the person taking selfies. Follow-
ing to AR Poser, we described a new method to fit 3D AR Costumes onto the
person’s pose that is compatible with mobile devices, as shown in Fig. 1.10.
For this, we needed a more precise 3D pose estimation to match 3D costume
shape closely in pose and proportions. We achieve this with an additional
refinement optimization that adjusts the global scale based on root position
and exactly matches the limb directions with small local modifications. Still,
the overlaid costume shape may leave cloth or skin of the person visible be-
hind it. To remove this artifacts we use image processing techniques includ-
ing 2D masking using Grabcut [Rother et al., 2004] and Inpainting [Guillemot
and Le Meur, 2014].

The remainder of this thesis is organized as follows. The next chapter, Chap-
ter 2, discusses a literature review in the fields of motion retargeting, per-
formance tracking with simulated characters, augmented reality (AR) and
interaction with characters in AR and human body augmentation. Chapter
3 describes a framework for controlling morphologically different, physics-
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based characters in a simulated environment, based on performance track-
ing in real-time from a human actor. The framework enables virtual charac-
ters to mimic the characteristics of the performer’s motions, while maintain-
ing physical correctness. We start by describing the intuitive user interface
for modelling the character’s body and associating it to human actor’s skele-
ton via a limb-based abstraction. Further, we lay out the details of the mo-
tion retargeting process together with the control objectives and constraints.
Chapter 4 explores the ways of interaction between users and intelligent AR
characters via a motion model combining kinematic and physics-based ap-
proaches. We show examples of interaction with a quadruped AR character
adapted to real-world conditions. The subsequent Chapter 5 presents the
frameworks AR Poser and AR Costumes that investigates the problem of 3D
pose estimation and augmentation in an entertaining setting— AR Selfies.
Finally, Chapter 6 concludes the thesis with a summary and discusses limi-
tations along with potential directions for future research.

Publications Over the course of three years, the following peer-reviewed
publications have been accepted:

[Çimen et al., 2017] G. CIMEN, M. GUAY, S. COROS and R. SUMNER. An
Intuitive Interface for Human Performance Tracking with Simulated Char-
acters. 11th International Conference on Computer Graphics, Visualization, Com-
puter Vision and Image Processing, 2017.

[Cimen et al., 2018b] G. CIMEN, Y. YUAN, R. SUMNER, S. COROS and
M. GUAY. Interacting with Intelligent Characters in AR. Proceedings of the
1st Workshop on Artificial Intelligence Meets Virtual and Augmented Worlds
(AIVRAR) in conjunction with SIGGRAPH Asia, 2017.

[Cimen et al., 2018a] G. CIMEN, C. MAURHOFER, R. SUMNER and M.
GUAY. AR Poser: Automatically Augmenting Mobile Pictures with Digital
Avatars Imitating Poses. 12th International Conference on Computer Graphics,
Visualization, Computer Vision and Image Processing, 2018.

[Maurhofer et al., 2018] C. MAURHOFER, G. CIMEN, M. RYFFEL, R. SUM-
NER and M. GUAY. AR Costumes: Automatically Augmenting Watertight
Costumes from a Single RGB Image. Proceedings of the 16th ACM SIGGRAPH
International Conference on Virtual-Reality Continuum and Its Applications in In-
dustry, 2018.

[Casas et al., 2018a] L. CASAS, L. CICCONE, G. CIMEN, P. WIEDEMANN,
M. FAUCONNEAU, R. SUMNER and K. MITCHELL. Multi-reality Games:
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An Experience Across the Entire Reality-virtuality Continuum. Proceedings
of the 16th ACM SIGGRAPH International Conference on Virtual-Reality Contin-
uum and Its Applications in Industry, 2018.
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C H A P T E R 2
Related Work

This chapter lists the related work on kinematic motion retargeting tech-
niques and physics-based characters in the context of performance tracking
(Section 2.1), Augmented Reality (AR) technology and their applications in
the domain of interaction between users and virtual characters (Section 2.2),
and human body augmentation within the concept of AR selfies (Section 2.3).

2.1 Performance Tracking with Physics-based Characters

This section starts with a summary of skeleton-based motion retargeting so-
lutions that are mostly rely on Inverse Kinematics (IK). Following, we dis-
cuss a related subject— motion puppetry— which is based on a mapping of
pose correspondences between source human pose and target character pose
(see Section 2.1.2). Finally, the remaining subsection, Section 2.1.3, presents
previous work on physically simulated character animation and physics-
based motion retargeting, respectively.

2.1.1 Motion Retargeting

For the cases when a target character has different size and structure, naively
transferring only the joint angles results in a violation of constraints, such
as the character’s body intersecting with itself or the environment (e.g.,
ground). Therefore, in a scenario like performance tracking where an actor
guides the movement of a virtual character through his/her performance,
motion retargeting is necessary.
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First motion retargeting techniques emerged to adapt and reuse motion data
(i.e., motion capture, key-framing) created for one character on other char-
acters. When the source and target character have different body sizes and
proportion (e.g, arms, legs), it is not possible to apply a mapping to directly
transfer joint angles to the character. Therefore, the common approach used
in the prior work on motion retargeting is to adapt a feature-based inverse
kinematics (IK), where a set of important motion features are formalized as
constraints. The constraints tell the optimization to preserve the important
qualities of the motion.

[Gleicher, 1998] first addressed the motion retargeting as a spacetime opti-
mization problem, where a set of kinematic constraints, the spatial-temporal
relationship among body segments and the environment (i.e., the feet must
be planted when in contact with the ground), are specified via a pre-
processing step. [Choi and Ko, 1999] adopted an online motion retargeting
approach that uses inverse kinematics based on the Jacobian. Their approach
can imitate the joint angle changes from the reference motion while tracking
a set of end-effector positions by utilizing the kinematic redundancy of the
articulated figure. While Choi et al. pointed out that the end-effector posi-
tions are more important motion features than joint angles, [Shin et al., 2001]
argued that what is important can change by the context of the motion. [Tak
and Ko, 2005] further integrated dynamic constraints into their constrained-
based motion retargeting technique to ensure physically plausible motions.
They applied sequential filtering that optimizes the pose on every single
frame based on the kinematic and dynamic constraints designed by the ani-
mator.

Figure 2.1: An example of motion style transfer from a neutral to a sad emotion taken
from human motion sequence (top) and retargeted to a dragon character’s
motion (bottom) [Abdul-Massih et al., 2017]

.

When the characters have different topologies (i.e. different joints hier-
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archies), IK based approaches follow a strategy to only consider the con-
straints on end-effector positions using an intermediate skeleton [Monzani
et al., 2000] or simplified representation of motion [Kulpa et al., 2005] that is
morphology-independent. The intermediate skeleton proposed by[Monzani
et al., 2000] has fewer degrees of freedom (DOFs). This enables mapping im-
portant topology invariant features from source human motion to the target
character, such as end effectors and the remaining DOFs analytically. [Kulpa
et al., 2005] uses a character representation where limbs are represented as
half planes and spine as spline.

Recently, [Abdul-Massih et al., 2017] focused on the transferring motion
style between different morphologies using a concept called Groups of Body
Parts (GBPs). GBPs are kinematic chains manually defined by a user, ex-
tracted from the source character, mapped to the target character and later
transformed into constraints in a full-body optimization during retargeting.
They demonstrate various style retargeting examples transferred from a hu-
man to a non-humanoid character like a dragon or a T-Rex (Fig. x). The key
idea of this approach is mapping certain kinematic chains from the source
character’s skeleton to the corresponding kinematic chains to the target char-
acter.

For these aforementioned motion retargeting techniques, someone should
decide for the cases when the target character has a tail or other extra limbs
whose motion cannot be directly retargeted from human source motion
data— either associating the tail to a human body part, such as head of the
human performer, or not associating at all. The former will create unrealistic
motions for the tail and the latter will leave it motionless.

2.1.2 Motion Puppetry

Motion Puppetry is similar to the traditional skeleton-based retargeting as
it specifically tries to solve the problem of transforming the movements of
a performer to an animated character. While in skeletal-based retargeting,
human joint data are mapped to the character, in motion puppetry, users
can control the motion of a virtual character not necessarily by defining a
joints-to-joints mapping. When the virtual character has a topology which
is very different from human skeleton, skeleton-based retargeting requires
complex process. On the other hand, motion puppetry suggests solutions
to simplify or even bypass the skeleton-based character retarget process and
animate mostly non-humanoid characters, such as spiders or caterpillar.

Several researchers have investigated motion puppeteering. One of the early
motion puppetry system is developed by [Shin et al., 2001]. The proposed
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IK solver can realize the important aspects of the motion by employing im-
portance sampling and keep these features preserved during mapping to
the target character. For example, end effector positions that are in proxim-
ity to other object or ground considered important than others. However,
this method supports only identical topology and connectivity between the
performer and articulated figure. Later, [Dontcheva et al., 2003] developed a
layer-based animation authoring system that allows animating an arbitrary
character by synthesizing and editing motion in layers through a widget.
Editing happens by assigning the widget motion to one or more character
features, such as DOFs and relative handles (controlling points used in IK)
on the character’s skeleton, and mapping its reference frame to the refer-
ence frame of the camera view. [Hecker et al., 2008] developed a different
animation authoring system for the same purpose. With the proposed an-
imation authoring system, they brought the animators into the retargeting
process itself and allowed them authorizing motions using semantic specifi-
cations in task space instead of joint space. The goal of their solution is not
solving exactly the motion retargeting problem itself- mapping the motion
created on one body to another, but rather representing the motion from the
beginning in such a way that it can easily be transferred to a wide range of
topologically different characters.

Figure 2.2: A computer puppetry approach to animate non-humanoid characters, such
as Pixars Luxo lamp [Yamane et al., 2010]. It requires the user to manually
define 30 to 50 pose correspondences.

Several approaches learn mapping a human pose to a character pose from
a small set of sparse pose-to-pose correspondences. [Yamane et al., 2010]
applied shared Gaussian process latent variable models (shared GPLVM) to
learn a mapping function to animate non-humanoid characters from human
motion capture data. To improve the physical realism, they apply an ad-
ditional dynamics optimization based on the equations of motion. [Vögele
et al., 2012] developed a method to animate deformable quadruped char-
acters in real time by mapping from the skeleton motions of two humans.
For example, one human skeleton is mapped to the front half of a horse
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while the other skeleton to the back. [Rhodin et al., 2014] similarly estab-
lish a mapping between a human skeleton to a target character mesh with as
few as 4 interactively-defined sparse pose correspondences. While Yamane
et al., provided an offline approach, Rhodin et al., employ linear mapping
to enable real-time control. Similarly, in the approach developed by [Seol
et al., 2013], a correlation mapping between features of a human actions and
a character’s motions. However, these systems relies on some predefined
animations, such that an actor needs to to carefully match the pose of the
target character. Otherwise new character animations need to be deployed.

2.1.3 Physics-Based Characters

The physical implausibility is the main problem for performance tracking
with virtual characters that have significantly different topologies (i.e. dif-
ferent joints hierarchies) and do not move in the same way with the human
actor. For example, the legs of a dinosaur do not bend the same way as
the legs of human, and the free limbs humans do not possess—such as a
tail—remain static.

Tracking with physically simulated characters tackles these issues as it auto-
matically yields natural and consistent motions. Motion capture driven sim-
ulated characters are first introduced by [Zordan and Van Der Horst, 2003].
The motion capture data is tracked through a mapping that attaches virtual
springs between the mocap markers and the character’s joints, and resistive
torques applied to the character using a simple controller.

Even though, physically simulated characters has been well investigated
across numerous specific tasks, such as balancing, standing, walking, etc.,
no doubt great amount of work has been released in walking and balance
strategies [Yin et al., 2007, Tsai et al., 2010, Lee et al., 2010, Coros et al., 2010]
and extending them to mimic the style in the motion [Kavafoglu et al., 2018].
Typically, a set of locomotion poses are tracked with Proportional Derivative
(PD) control of target joint angles, and a balancing strategy based on the in-
verted pendulum (IP) model is used to adjust the target poses. While these
controllers are very robust and don’t need equations of motion, they can
only track specific motions, such as locomotion, and do not extend easily to
other types of motions.

Another line of work—so-called online optimization controllers—consider
the control at a single time step and recompute the torques each time via
inverse dynamics; assuming knowledge of the equations of motion ([Abe
et al., 2007, Da Silva et al., 2008, Macchietto et al., 2009, Mordatch et al., 2010,
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de Lasa et al., 2010, Levine and Popović, 2012]. When the equations of mo-
tion of an articulated rigid body system are expressed in generalized coor-
dinates, a linear relation between joint torques and joint accelerations can be
established for a single time step. As a consequence, it becomes possible to
minimize a collection of quadratic objectives under the hard linear constraint
that the equations of motion hold. [Abe et al., 2007] focused on motions that
remained in balance (static contacts) and subsequent works focused on plan-
ning and engineering features for various motion skills ([Da Silva et al., 2008,
Macchietto et al., 2009, Mordatch et al., 2010, de Lasa et al., 2010], or relaxing
physical realism for robustness [Levine and Popović, 2012].

Figure 2.3: The physics-based biped walking control system presented by [Coros et al.,
2010] that allows Interactively editing of character proportions.

Even though controlling a simulated character to track different motions has
been well studied, it still remains a challenge to go from a kinematic –strictly
positional– signal, to a controlled motion. In addition, it requires a scientist
or engineer to design controller parameters for each new character or mo-
tion which makes physics-based motion retargeting complicated. Therefore,
only a few prior works placed the control of simulated characters into the
hands of casual users. [Coros et al., 2010] allowed the user to change the
body proportions of the character, resulting in different motions. Unfortu-
nately, their method is specific to human locomotion. [Levine and Popović,
2012] used the bone lengths to initialize the rigid bodies, but relax the phys-
ical accuracy by allowing root activation. With their method, the character
can only track the same character, and there is no retargeting or free limbs
activation. Notwithstanding, there is no technique that is capable of track-
ing human actors with different characters as well as different body parts
associations.

2.2 Interacting with Virtual Characters in AR

This section begins with a brief history of development process of today’s
AR technology in mobile devices. Then, Section 2.2.2 lists the previous
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works on creative and interactive AR applications, especially in the context
of games that mixing realities from Milgram’s Reality Virtuality (RV) con-
tinuum [Milgram and Kishino, 1994]. Lastly, in Section 2.2.3, we discuss the
related research on interactive AR characters and agents.

2.2.1 A Brief History of Augmented Reality

“It consists of this pair of spectacles. While you wear them every one you meet
will be marked upon the forehead with a letter indicating his or her character.
The good will bear the letter ’G,’ the evil the letter ’E.’”

– L. Frank Baum, The Master Key, An Electrical Fairy Tale

The earliest recorded reference to the concept of AR is made by L. Frank
Baum in his short science-fiction novel ‘Master Key’ in 1901. In the story, a
demon gives a gift to the main character, called Character Marker. The gift
is a pair of electronic glasses that maps data on people— a lot like today’s
augmented reality headsets.

The concept of augmented reality can be traced back to the 1960’s as the first
head-mounted AR system is created by Ivan Sutherland in 1968 [Sutherland,
1968]. It was so heavy that it had to be hung from the ceiling and limited
to displaying graphical wireframe models, though, it was the first step in
making AR possible for users. The term of Augmented Reality, however,
was coined later in 1992 by a Boeing researcher, Tom Caudell [Caudell and
Mizell, 1992]. Then, Ronald Azuma clearly defined the term, Augmented
Reality in 1997 [Azuma, 1997]. The usage of AR remained limited to scien-
tific laboratories until 1999. Then, it gained momentum when Hirokazu Kato
released ARToolkit [Kato and Billinghurst, 1999] to the open source commu-
nity. ARToolkit was a software library that uses pose tracking from video
capture to calculate the real camera position and orientation in real time rel-
ative to physical fiducial markers. 3D computer graphics model could be
drawn to overlay the markers according to a virtual camera placed at the
same exact position of the real camera. It allowed researchers and other en-
thusiastic people to build AR applications for any handheld device with a
camera and an internet connection.

After 2000, the advances in mobile device capabilities introduce a strong
drive towards mobile applications. In 2004, Möhring et al. developed the
first video see-through augmented reality on a cell-phone tracking 3D mark-
ers [Mohring et al., 2004]. Later, the first truly usable natural feature tracking
system for smartphones is introduced in 2008 [Wagner et al., 2008] which is
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the precursor of the popular AR development toolkit— Vuforia [Vuforia,
2017]. Over the next ten years, the research and technology in AR is in rapid
expansion. The most popular example of AR applications are Snapchat and
the Pokémon go introduced in 2016. Throughout 2017, two more AR devel-
oper tools are released— ARKit for iOS mobile devices (iPad and iPhone) by
Apple and ARCore for Android by Google.

According to [Chatzopoulos et al., 2017], a successful mobile AR system
should enable users to focus on application rather than its implementation.
Beyond the ability to seamlessly supplementing real world with digital en-
hancement, heightening interactivity is also crucial in enhancing the user
experience in AR.

2.2.2 Interactive AR applications

The applications developed over the years are in the form of educational and
creative games that user can experience the different parts of the spectrum
of reality. Gradually, advances in the development of mixed reality have
made games possible to take advantage of the entire spectrum of realities
and converge them into a single application. It was the early 2000s when
we began to see AR take its place media applications, particularly in edu-
cation and entertainment. The world’s first outdoor AR game, ARQuake—
an AR adaptation of the popular Quake game— is launched [Thomas et al.,
2000]. Besides a head-mounted display, players had to wear a backpack con-
taining a computer. The player movements in the game are achieved with
user’s pose estimation via the combination of inertial sensor data (e.g., dig-
ital compasses, GPS) and visual tracking method using ARToolKit Library
while the actions are performed by a simple two-button input device.

One of the early examples of AR technology in the field of education is the
MagicBook [Billinghurst et al., 2001]. Large markers are integrated into a
book’s pages, which enable seeing 3D virtual content out of it through VR
glasses. The user can also switch into an immersive VR experience and
move into a scene and interact with characters. Later, [Grasset et al., 2008]
developed a mixed reality book that incorporates various visual and audi-
tory effects to the pages to enhance the reader’s immersion. The Haunted
Book [Scherrer et al., 2008] is a prime example of well-integrated AR con-
tent. The camera is mounted on a lamp on the table and the augmented
book is viewed through a computer screen. Their focus lies on interaction
between the virtual content and the physical book.

Following the AR magic books, interactive AR coloring books allowed users
to create 3D virtual pop-up content by coloring the pages of a real book and
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Figure 2.4: The skeleton embedding and skinning in MagicToon [Feng et al., 2017],
which allows creating 3D characters from 2D drawings. The user can de-
fine several joint positions (a). Then the system embed predefined human
skeleton (18 joints) on the model (b)(c) and apply skinning using heat diffu-
sion method (d).

interact with it. [Clark et al., 2011] presented the first AR book that can map
the colored pages of a book to virtual models. Later [Magnenat et al., 2015]
extended the experience with alive AR characters with predefined anima-
tions making the coloring process in real time. Recently, MagicToon [Feng
et al., 2017] added modeling pipeline into AR coloring concept allowing
creating and coloring 3D models out of sketches, rigging as shown in Fig.
2.4 and animating them by interpolating between affine transformations de-
fined by users. The system also support animating humanlike characters
through a skeleton embedding and skinning process and finally attaching a
set of predefined skeletal motions.

The research interest in mobile MR application that exploring various phys-
ical interactions within an entertaining game scenario was also not a new
concept. One of the first examples of this exciting direction for AR gaming
is The Invisible Train [Wagner et al., 2004], where the virtual trains move on
physical wooden tracks. The interaction with the game environment was
done by changing the path of tracks and the track switches. [Henrysson
et al., 2006] developed AR Tennis game where players can use their mobile
devices as an interaction tool by tilting to hit the ball around an AR-marked
table. Recently, [Casas et al., 2018b] presented an adventure game that al-
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low user to sequentially travel through the whole spectrum of reality while
they can interact with both virtual and physical objects using only a mobile
device.

2.2.3 Interactive AR Characters

Augmented reality makes virtual characters appear to coexist by superim-
posing them on top of the our physical world. However, the coexistence in
the real environment is not enough for a strong sense of presence and life-
like characters. The behavior of AR characters interacting with real world
can modeled in two different ways: (1) based on a selection of predefined an-
imations prepared for all possible situations; (2) based on observing chang-
ing changes in real environment including some objects in it and giving dy-
namic responses using physical interactions. Intelligent AR characters refer
to the second scenario and is a relatively less explored research.

The ALIVE [Maes et al., 1995] is an early system that supports AR charac-
ters that behaves according to user interactions. In the system, a virtual dog
character can behave according to users’ hand gestures. In another MR sys-
tem, a conversional humanoid agent, named Welbo [Anabuki et al., 2000],
assists users wearing an HMD and designing a partially equipped physi-
cal living room with virtual objects. The virtual robot acts according to the
user’s instructions via speech recognition and interacts with virtual objects.
Later [Wagner et al., 2006] developed and handheld AR application in which
a virtual character teaches users about art history.

However, all of the above AR characters interact with user and merely ob-
serve the physical environment but can’t be directly affected from the real
objects and the changes in the physical environment. The Virtual Brownies
[Aoki et al., 2005] is an early example for these kind of interactions. User can
interact with AR characters, Kobitos, through the real objects. They can push
around these physical objects such as a tea caddy. The real caddy moves by
synchronizing its movement with a physically simulated virtual caddy ac-
cording to the force applied from Kobitos. However, there is not further
detail on the modeling of characters’ animations and interactions.

An early example on autonomous AR characters developed by Barakonyi
in a game called Monkey Bridge [Barakonyi et al., 2005] that change their
behaviors based on the environmental changes. In the game, characters au-
tonomously selects which path to walk on and which animations to play to
reach a target location on the game platform. The players indirectly control
the characters behaviors by changing position and distribution of the virtual
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Figure 2.5: The behavior of intelligent AR agent in Monkey Bridge [Barakonyi et al.,
2005] is based on a motion planning that chooses the animation based on
platform type and a path planning depending on the spatial distribution of
platforms.

and physical wooden blocks on the game board that have different shapes.
Later, [Kang and Woo, 2011] explored a scenario that an AR character can
pull or push a real object in his environment, a toy cart, besides giving re-
alistic responses to manipulations of the toy in real time. The behaviors of
the character is selected among a predefined character animations based on
a state diagram that takes into account the movement of the toy cart and the
relative position of the character to it. Recently, McIntosh et al. created a
magic bench where a character appears and sit on the bench next to the user
[McIntosh et al., 2017]. However, the communication of the user with the
digital character is very limited as the movements of the user does not effect
the pose or animation of the character.

2.3 Posing with AR Characters

In the first part of this section, we summarize the recent works on 2D and
3D pose estimation, which is the essential research topic in computer vision
field and an enricher for AR applications. Followed by, Section 2.3.2 intro-
duces the related work on gesture-based interaction techniques based on
user tracking (e.g., hand and pose tracking) in interactive AR applications.
Further in Section 2.3.3, we present an body of literature exists on augmen-
tation concepts exploring around body.
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2.3.1 Body Pose Estimation

For VR and AR applications, estimations of an user’s 3D pose is a part of
the virtual character’s spatial reasoning and an important asset for the in-
teractions between the user and the character. However, The reconstruction
of a 3D human pose from an image is a not trivial task due to the ambigui-
ties associated to the missing depth information, as well as the variations in
human shapes.

With the introduction of commodity RGBD sensors in 2010, early efforts
have been devoted to the pose estimation using a depth camera. [Shotton
et al., 2013] introduced an approach that recognize a body part segmenta-
tion from single depth images using random forest classifiers, from which
a skeleton is extracted. While their estimator used only depth-based fea-
tures, a later approach combined color with depth-based segment labelling
for a more robustness estimation [Buys et al., 2014]. Recently, [Zimmermann
et al., 2018] presented an approach incorporating a 2D key point estimation
from color images with information from depth maps using multiple cal-
ibrated Kinect devices. The downside of these methods, apart from their
requirement of active depth sensing equipment, is that they need training
on large number of synthetic of annotated skeleton poses and depth map
pairs.

With the introduction of more powerful discriminative approaches, such
as Convolutional Neural Networks (CNN), researchers experimented one-
stage approaches that can recover full 3D pose from a single RGB image
using CNN-based regression [Toshev and Szegedy, 2013, Pavlakos et al.,
2016]. However, these data-hungry deep learning methods depends on large
3D annotated datasets and cannot benefit from large-scale 2D pose datasets
which is feasible to obtain on in-the-wild data. Some introduced a new
dataset [Mehta et al., 2017] combining real and synthetic data with the exist-
ing annotated 3D pose datasets [Ionescu et al., 2013], yet is hard to cover a
wide range of poses.

The body pose estimation in 2D from monocular RGB has been widely re-
searched yielding successful state-of-the-art estimators with high accuracy
prediction with deep CNNs [Wei et al., 2016], even in real-time citeCao16.
The key point detection in 2D have reached impressive performance since
they usually generalize better on images in the wild with the availability of
large scale datasets [Andriluka et al., 2014, Lin et al., 2014]. For this reason,
we also integrate it into our 3D pose estimation approach.

We are not the first to consider breaking down the problem into a first 2D
pose estimation step, followed by a 3D re-construction step. Some recent
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Figure 2.6: 3D pose estimation results by [Chen and Ramanan, 2016]: the estimation of
a 2D pose from an input image (top), followed by 3D pose estimation as a
result of matching to a library of 3D poses (bottom).

techniques use a multilayer neural network architecture to regress 3D coor-
dinates of the joints from their 2D locations [Tomè et al., 2017, Martinez et al.,
2017]. However, the predicted poses from these approaches are in scale and
translation normalized and not suitable for characters in real world units.
Some methods reconstruct the 3D pose via optimization or search using a
large database of poses. [Wang et al., 2014] represented 3D poses as a linear
combination of a sparse set of bases learned from a large 3D pose dataset,
and solve the 3D reconstruction as an optimization problem. [Yasin et al.,
2015] gathered a data-set of 2D and 3D pose pairs and learned a mapping
between the both in the context of 3D pose retrieval. [Chen and Ramanan,
2016] utilized a big 3D mocap library and their 2D projections from virtual
camera views in order to estimate 3D pose via a data-driven matching using
estimated 2D pose as query (Fig. 2.6).

Our approach is similar to the work in [Chen and Ramanan, 2016], which
uses an example-based matching method with 200.000 exampler. We avoid
having to gather a large dataset, and focused on a small set of poses geared
towards entertaining AR selfies.

2.3.2 Human Body as Input for Interactions

With the advancements in hand-gesture tracking, pose tracking, face track-
ing, and eye tracking, natural interaction methods is becoming essential for
the success of augmented reality. A new spectrum of interaction modalities
is presented using a space in which digital characters can perceive humans’
presence and react to their movements. According to [Schraffenberger and
van der Heide, 2016], natural and multiple interaction modalities are needed
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in an AR application as human interaction with the real world is inherently
multimodal through body, face and speech. For example, human tracking
input has been successfully applied to control and animate virtual charac-
ter’s facial expressions [Cao et al., 2014] and talking [Taylor et al., 2017].
Even though human tracking in the computer vision perspective is well es-
tablished, exploiting these natural modalities in controlling virtual charac-
ter’s pose and motions in AR is relatively new.

Several works investigated new gestural interactions instead of using the
conventional input devices (e.g., keyboard and mouse) to control the anima-
tions of virtual characters in AR. [Harviainen et al., 2009] presented an inter-
action technique that users can interact with a virtual character by gesturing
with camera movements. It gives the illusion of the character being aware
of the user (or camera) as different camera transformations (e.g., tilting) trig-
ger different actions. [Chen et al., 2017] developed an AR application that
allows a user to give orders to a virtual dog by using two interaction modal-
ities— hand gestures and speech (Fig. 2.7). The virtual dog is designed to
respond to the hand gestures from the user similar to how people interact
with their pet in real world. However, it requires a depth sensing camera for
hand tracking.

Figure 2.7: A virtual dog character responds to hand gestures of the user by barking.
The image is taken from Chen et al.’s work on multi-model interaction in
AR [Chen et al., 2017].

A few examples consider the case of adding a full digital character interact-
ing with the person in the image [Zünd et al., 2014]. Zund et al. evaluated
different aspects of reality mixing techniques. Recently, Apple’s Animoji

32



2.3 Posing with AR Characters

[Apple, 2018] presents standard emojis as digital avatars that can recognize
facial expressions from the front camera of the smart phone and mimic your
facial movements. Life-like digital characters that can perceive an user’s
body poses and movements from common sources like camera photos or
video and can react to them seamlessly in AR is a promising and new area
of research. To our knowledge, there has not yet been a case of a person’s
pose automatically estimated and utilized in the context of digital charac-
ter’s mimicking user’s behaviors in AR.

2.3.3 Augmenting Human Body

There has been several entertaining applications of people augmentation in
the recent years— making user’s body a part of the experience by mapping
an augmented content onto it. With combining face tracking from RGB im-
ages with different 3D masks, Snapchat’s lenses [SnapInc, 2018] are popular
examples for face augmentation. With the progress in human tracking, AR
has an unique potential for augmenting body while using it as a carrier of
information.

Several augmentation concepts have been explored around body. [Javornik
et al., 2017] presented an AR mirror overlays virtual make-up on people’s
faces making them look like someone else like a historical character. [Zhang
et al., 2017] proposed an virtual try-on application that inserts virtual eye-
glasses onto user’s face. Their approach can even generate the refraction ar-
tifacts caused by lenses based on the user’s eyeglasses prescription. Several
systems extended the magic mirror concept for training of anatomy giving
the illusion of that the user can look into his body utilizing a depth camera
device (e.g. a Microsoft Kinect [Shotton et al., 2013]) [Blum et al., 2012, Bauer
et al., 2017].

Among them, virtual clothes try-on systems received much attention as they
allow user trying on different virtual cloth without the effort of changing
them physically. There are two global challenges to tackle for a good cloth
augmentation system— a robust pose estimation of the person for the align-
ment of the virtual clothes, and a scaling method to to fit it better onto the
user’s body. [Yuan et al., 2013] utilizes Kinect RGB-D imagery that provides
body measurements and pose detection for their virtual try-on system. Their
scaling method is based on a resizing 3D avatar wearing the virtual cloth ac-
cording to the user’s body size.

The recent progress in pose tracking using image processing techniques has
led to new possibilities for virtual cloth augmentation from monocular RGB
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Figure 2.8: The mirror-like AR system by [Bauer et al., 2017] to display the internal
anatomy of the current user using Microsoft V2.0 Kinect.

imagery. The major problem is the lack of realism when actual clothes worn
by the user remain visible from side, when the overlaid virtual clothes can-
not completely cover them leaving them. [Rogge et al., 2011] presented a
cloth augmentation based on a 3D pose estimation system from a single
camera view. However, the system relies on a markered suit worn by the
user with a specific marker layout to reconstruct 3D joint data.
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C H A P T E R 3
Physics-Based Character Control
Interface for Performance Tracking

Figure 3.1: Our method is designed for tracking a human actor with a virtual character
in real-time. Traditional methods often leave free limbs such as tails without
motion, or provide only repetitive motions. Our method based on optimal
control, gets the free limbs involved in the tracking motion.

While human actors can account for parts of an imaginary creature’s motion,
for example its feet and hands, human actors cannot simultaneously play
parts of the body they do not have, such as a tail. Hence, during live per-
formance capture and retargeting, free limbs such as the tail remain static,
or move in a repetitive fashion. In this chapter, we investigate embedding
virtual characters into a mechanical simulation, and activating free limbs
through optimal control. One of the challenges with simulated control is the
intricacy of the controller’s design and parameters—leaving this technology
out of the hands of casual users and digital artists. We introduce a user-
friendly interface that allows casual users to quickly model the character’s
mechanical system, together with controller parameters required for track-
ing. We show various examples with a raptor dinosaur, as well as an alien
character tracking a live actor in real-time.
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3.1 Introduction

Motion capture is heavily used by the visual effects industry to allow a pro-
fessional actor to craft the performance of a virtual creature. However, be-
cause the creature’s shape and morphology often differs significantly from
the actor’s, a motion retargeting step is inevitable. A leading approach to
retarget a human actor’s motion onto a virtual character is to track shared
features such as the feet and the hips using inverse kinematics. The problem
with this approach is that it leaves free limbs, such as tails, static and without
motion.

To address this issue, we embed the character into a physics-based simu-
lation framework and track the actor’s motion using optimal control. As a
result, free limbs, such as a virtual creature’s tail, are automatically animated
to move in unique ways that are consistent with the character’s overall per-
formance. While this simulation control concept is a promising approach
to synthesize unique movements, its biggest drawback is its complex na-
ture. Physics-based simulation unfortunately requires intricate knowledge
of mechanics and control mechanisms, leaving it out of reach for most vi-
sual effects artists that lack scientific training. This complexity comes from
two main sources. First, the character must be provided an articulated me-
chanical system with corresponding rigid body and joint properties. And
second, a controller general enough to track various human motions in real-
time must be set up and tuned so that its parameters are appropriate for the
new character. In our work we use model-based inverse dynamics [Abe et
al. 2007].

In our research, we make physics-based retargeting more accessible with an
intuitive user interface, designed around a general control framework, that
allows both quickly designing the character’s mechanical system as well as
setting the controller parameters for optimal tracking. Our work relies on
the core observation that, while limbs may be different, they often share
a common function. For example, legs interact with the ground, and free
limbs, such as tails, are used for balancing and controlling the character’s
overall orientation. Hence, we devised a bipedal limb-based abstraction
where the user simply drags-and-drops from the abstract limbs to the sim-
ulated character’s limbs to automatically fill the controller’s parameters for
tracking.

Our method comes with additional benefits. First of all, we can automati-
cally clean-up contacts from the often noisy captured motion. This is possi-
ble thanks to the notion that certain limbs are used for support and interact
with the ground. Secondly, our controller penalizes deviations from a nat-
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ural pose, which can be used to control the style of the motion, simply by
specifying a new default pose. And finally, the tracking can be performed in
real-time. We show results of a raptor and alien tracking different motions.

3.2 Technical Overview

Our goal is to have a bipedal creature follow the motion of a human actor in
real-time. While characters and the actor may be different morphologically,
we observe that they often share a set of common features. In particular,
most characters share a global position, global orientation, as well as a set of
limbs whose end effector (EE) trajectories match, but at a different scale (see
Fig. 3). While tracking only the re-targeted positions conveys the essence
of the actor’s motion, it leaves the free limbs of the character, such as the
tail, without motion. To active the free limbs and provide the character with
additional realism, we model the full body dynamics and regulate angular
momentum with an additional control objective.

In order to mix different objectives while satisfying the equations of motion,
we formulate our tracking as model-based multi-objective control [Abe et al.
2007]:

min
q̈,τ, f

∑ wi Ei

s.t. M(q)q̈− C(q, q̇) = JT
x f + [0 τ]T,

(3.1)

which exploits the linear relation between joint accelerations q̈ and torques
τ when the equations of motion are expressed in generalized coordinates,
where the vector q is the root position, the root orientation and the set of
joint relative orientations. The matrix M(q) is the generalized mass matrix,
C(q, q̇) is the vector that combines gravitational forces, coriolis and centrifu-
gal terms. The jacobian transpose JT

x measures the change in position w.r.t.
the generalized degrees of freedom and maps the cartesian ground reaction
forces f into generalized forces, with the construction [0 τ]T avoiding root
activation.

Setting the weights wi of the objectives is a cumbersome and time consum-
ing task. To avoid setting all the weights manually, we introduce a limb
abstraction—summarized in Table 3.1—that automatically sets the weights
for each objective. Here we define a limb as a connected linear chain of bones
attached to the body frame which is comprised of the pelvis and upper body
(shown in grey in Fig. 3.2).
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Figure 3.2: The user interface we use to create an articulated rigid body system and
to quickly set control objectives based on a limb abstraction of the bipedal
character. The user simply drags and drops a limb type from the abstract hu-
manoid onto the limbs of the character to get it ready for simulated tracking.

Type Role

Support Carry the body through ground reaction forces and ensure contact con-
straints

Free Does not track a human part, such as a tail, but participate in angular
momentum control.

Targeted Tracks a human part, but without contacts (e.g. head or hands).

Table 3.1: Our limb abstraction is comprised of three types. Support limbs, which drive
the body to a desired location through ground reaction forces, and alternate
between swing and stance states. Free limbs, which do not track a human
body part, but help balance and control the character by regulating angular
momentum. And finally, Targeted limbs which track a part of the human
body such as the hands or head.

The first step to realize our simulated tracker concept is to model the char-
acter’s articulated rigid body system and to specify the type of limb, as well
as target location on the human actor’s skeleton. Hence, in the next section
we describe our intuitive user interface to get the character simulation- and
tracking-ready.

3.3 Simulated Tracking Interface

The input to our modeler is a bipedal character skeleton, and we provide the
necessary widgets to track a human skeleton through our limb-based optimal
control. We begin by modelling the character’s mechanical system, i.e. the
linked rigid bodies that approximate the mechanical properties of the char-
acter. The second step consists in attributing each of the character’s limbs a
type from one of our limbs (support, targeted or free).
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The user creates rigid bodies by clicking on the bones of the skeleton. We
first initialize the rigid body shape with the orientation and size of the skele-
ton bone, and set the mass and friction to default values. In most cases, the
user can use a facilitating function that fills a linear chain of bones with a
linear chain of connected rigid bodies, starting from the root, as shown in
our accompanying video.

Our limb-based abstraction implicitly encodes which human body part to
track. Hence when setting the type of limb by drag-and-dropping a limb
type from the limb-based abstraction (shown in Fig. 3.2), the controller is
automatically set ready for tracking the human actor. The ordering of the
process does not matter, the user can set the type of limb during or after
having modeled the articulated rigid body system.

3.4 Online Feature Retargeting

Generally, the features we track are human positions xr(t) and orientations
θr(t), where r denotes reference motion. In particular, we track each of the
human’s end effector positions, together with the root position and orienta-
tion.

Figure 3.3: Some of the features in both the character and the human actor’s match but
at a different scale (e.g. the hand, feet and head, and pelvis positions). We
retarget these trajectories to the position and scale of the simulated character
for tracking.

While the orientations can be tracked directly (i.e. θdes = θr where θdes is
the desired orientation), the positions need to be translated and scaled as to
be reachable by a character with differently sized limbs. Secondly, because
the captured motion can have noisy contact trajectories, we perform online
cleaning-up of the end effectors at the extremity of support limbs.
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Retargeting Human Position Trajectories. To ensure feasibility of tracked
end effector positions, we first compute the differential coordinates of the
actor’s positions ∆xr(t) = xr(t +∆t)− xr(t), and scale it down based on the
proportions α = lc \ lr, where l∗ is the distance between a limb’s end effector
and root position for the rest pose, with c denoting character. This results in:

xdes(t) = α ∆xr(t) + x(t), (3.2)

where x(t) is the end effector’s position. This rescaling is illustrated in
Fig. 3.4.

Figure 3.4: When retargeting the end effector positions to the character, we scale the
relative displacements proportionally to each limb length, that we define as
the distance between the end effector and the root of the limb.

Online Contacts Clean-up. We process the end effectors (EEs) at the ex-
tremity of support limbs, as to clean the contacts in real-time. This is particu-
larly challenging when the capture is being streamed in real-time, and we do
not have the full trajectory to determine whether a position is supposed to
be in contact and remain fixed, or it should be moving.

Our solution to this problem is to keep the actor’s end effector fixed when
close to the ground (below a contact threshold), and to perform a smooth-in
and a smooth-out to transition between the fixed contact position, and the
moving position beyond the contact threshold. When the EE position gets
below a threshold at time t0, we project the position onto the ground using
its velocity, and define this position as the contact position xcontact. We then
perform a smooth transition between the EE position at the threshold posi-
tion x(t0) and the contact position xcontact using linear interpolation over a
small time window. When the actor’s EE position leaves beyond the contact
threshold at time t1, we perform a smooth out transition between the contact
position xcontact and x(t1) (see Fig.3.5).
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Figure 3.5: To clean contacts in real-time, we perform smooth-in and smooth-out transi-
tions between the fixed (below the contact threshold) and the moving (above
the contact threshold) end effector positions.

3.5 Control Objectives

We describe our objectives that include both tracking re-targeted positions to
be reached by the character, as well as objectives for regulating angular mo-
mentum, and controlling style. Each type of limbs contributes to the overall
sum of weighted objectives, and we describe at the end of the section how
we automatically prioritize the weights based on the type of limb.

Our limb-based controller tracks the global root position, root orientation,
the collection of end-effectors at the extremity of the limbs, as well as influ-
ences the tracking with additional full body angular momentum and pose
regularization. We assemble this sum of weighted objectives (detailed be-
low), and solve problem (3.1) for the optimal torques.

Target Position and Orientation. These objectives are used to track the re-
targeted positions xdes and orientations θdes, by the character. We compute
the desired acceleration for the concerned rigid body based on proportional-
derivative (PD) control:

ẍdes = kp(xdes − x) + kd(ẋr − Jx q̇),
θ̈des = kp(θdes − θ) + kd(θ̇r − Jθ q̇), (3.3)

where x and θ are the rigid position and orientation, kp the proportional
stiffness and kd, the derivative value, which both remain constant for all
motions. Here Jθ denotes the change in orientation for the rigid body, w.r.t.
the all the joint orientations. From these desired accelerations, we measure
the error to the character’s current accelerations:

Ep = ‖ẍdes − (Jx q̈ + J̇x q̇)‖2, (3.4)

Eo = ‖θ̈des − (Jθ q̈ + J̇θ q̇)‖2. (3.5)
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Figure 3.6: In this figure we see the result of setting two different types of limbs for the
alien character. The limb association on the left sets the tails to free limbs,
while the association on the right sets the tails to the targeted limbs, which
allows the stingers at the tip to perform attacking motions.

Angular Momentum (AM). The total angular momentum about a point (of-
ten the character’s center-of-mass) gives a measure of the system’s internal
rotations. For example, when the actor’s upper body bends forward, the to-
tal angular momentum changes, and we can minimize this change in AM
w.r.t. to all the links (including the tail) to activate the tail’s motion.

Hence we minimize the change in total angular momentum w.r.t. to the
center of mass:

EAM = ‖L̇AM‖2, (3.6)

where

L̇AM = R(q)M(q)(JT
x q̈ + J̇T

x q̇),

R(q) = [ [ r1(q) ]× . . . [ rm(q) ]× ],

where ri(q) are the position vectors of the ith body links relative to the center-
of-mass, [ ri(q) ]× are the skew symmetric coefficients from the cross prod-
uct, JT

x = [ JT
x1

. . . JT
xm ] is the jacobian transpose mapping generalized

coordinates to cartesian positions, and M(q) is the mass matrix of the entire
articulated rigid body system.

Pose Regularization. To control the style of the animation, as well as to
prevent the character from entering unrealistic configurations, we penalize
deviations from a rest pose. This regularization objective is the sum of errors
between joint angle accelerations computed through PD control (similarly
to equation (3.5)) with the desired pose defined as the rest pose in equation
(3.3), resulting: Ereg

j for each joint j.
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Total Sum of Objectives. Using equation (3.4) and (3.5), we define a root
position and orientation objective Eroot, as well as the set of end effector ob-
jectives EEE

i , i = 1, ..., m with m limbs. With the angular momentum regu-
lation and the pose regularization, the total sum of objectives we minimize
is:

wrootEroot+∑
i

wEE
i EEE

i + wAMEAM + ∑
i

wreg
j Ereg

j , (3.7)

which we set as the objectives in problem (3.1). But before solving the prob-
lem, we first need to set the weights of each objective.

Limb-based Prioritization. Solving the torques that minimize this sum of
weighted objectives (3.7) is challenging in practice as the objectives may be
conflicting and need to be prioritized. We observed that certain limbs play
a more important role when it comes to performance tracking. For example,
the support limbs need to provide clean contact positions and should be
weighted higher. Hence, to accommodate the user in setting the weights,
we use our limb-based abstraction to automatically set values.

To express the relative priorities of the objectives, we first define a maximum
weight value wmax, and define each weight based on this maximum value,
and on the type of limb. Hence, the global orientation and position being
visually important are weighted with the maximum value wroot = wmax, the
angular momentum playing a lesser role wAM = 0.5wmax, and the objec-
tives that depend on the type of limb (the end effectors, as well as the pose
regularization) are summarized below:

Limb wEE
i wreg

j

Support wmax 0.01 wmax
Targeted 0.5 wmax 0.02 wmax

Free - 0.03 wmax

where wmax = 4000, and depends on the mass of the system.

3.6 Results

Character setup. We created two characters using our interface described
in Section 3.3. The first is a raptor dinosaur and the second an alien that
walks on his hands and has two tails. In both cases, an artist created a mesh
and a skeletal rig in Maya ([Autodesk, 2017]) without constraints regarding
its skeleton. Our interface for the character set up allows quickly creating
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rigid bodies based off the skeleton, as well as setting different types of limbs
for the tracking (see Fig. 3.6 for different types of limb associations). All of
the character set ups including the full articulated rigid body systems were
created under three minutes each.

Capturing human motion. We captured all the actor’s motions using an
Axis Neuron ([Noitom, 2017]) full body motion capturing system. The sys-
tem as 13 captors and samples the motion at 120 frames per second. The
character’s motion is not always accurate and may include body interpene-
trations, shakiness in the feet or hands, as well as unstable foot contacts.

Solver. We solve problem (3.1) at each time step ∆t = 0.01, with linearly-
constrained quadratic programming. We then integrate the generalized ac-
celerations using the generalized equations of motion. Note that we do not
send the torques to a cartesian rigid body simulator, but always perform the
simulation in generalized coordinates. Our single threaded implementation
runs in real-time on a 4.00 GHz Intel Core i7 machine. We used the same ob-
jectives and weights provided by our limb-based abstraction, to track human
locomotion (forward and backward), as well as various expressions gestured
with hands and upper body such as roaring, being scary and biting (shown
in our accompanying video).

Using our limb-based controller across different characters. It is often the
case that for each new character, the control objective weights must be ad-
justed to this new character’s proportions. We tested using a similar limb
attribution on both the raptor—which has a long and heavy tail with a long
upper body—and an alien character—which has two long tails and no legs,
but stands on his hands. We found our limb-based control framework to
be quite robust in that regard, adapting quite well to changes in character
morphology and producing motions that are characteristic to the character’s
intrinsic shape (shown in our accompanying video).

Controlling style through different rest poses. We experimented with our
pose regularization to provide the motion with a different feel. For example,
we changed the raptor’s pose to have its head slightly tilting forward, which
resulted in a sadder look for the motion (shown in our accompanying video).

3.7 Summary and Outlook

Setting the control parameters for a new simulated character is traditionally
complex and requires engineering skills. We introduced an intuitive inter-
face for casual users to track human actors with a simulated character in
real-time. Our limb-based abstraction simplifies the initial set up to clicking
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and dragging on a few nodes. Through the use of optimal control for the
tracking, our method automatically activates free limbs such as tails, and
provides the character with unique motions that are coherent with the over-
all action.

One of the main intricacies associated with multi-objective inverse dynamics
([Abe et al., 2007]) are the conflicts between objectives and constraints, which
may become unfeasible—causing the simulator to diverge and blow up. One
of our remedies was to relax the hard position constraints and replace them
with objectives (with a large weight value provided by the support-type of
limb). While we greatly simplified the process of tracking human actors with
bipedal characters, we left out tracking with quadrupeds and multi-legged
creatures, which could addressed by coordinating the stance limbs of the
character.

In the next chapter, we focus on the interaction scenarios between users and
virtual characters in an AR application via real-world objects, while still en-
suring the physical feasibility in the motion model of the characters.
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C H A P T E R 4
Interacting with Intelligent Characters in
AR

Figure 4.1: Our intelligent virtual characters can navigate real world environments
(right) and react to objects that collide with them (left).

In this chapter, we explore interacting with virtual characters in AR along
real-world environments. Our vision is that virtual characters will be able
to understand the real-world environment and interact in an intelligent and
realistic manner with it. For example, a character can walk around un-even
stairs and slopes, or be pushed away by collisions with real-world objects
like a ball. We describe how to automatically animate a new character, and
imbue it’s motion with adaption to environments and reactions to perturba-
tions from the real world.

4.1 Introduction

Augmenting our environment with intelligent virtual characters that can
walk around and interact with our environment is an exciting and promising
vision. However, achieving this idea represents several technical challenges.
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It remains a challenge to model the motion of a character, have it understand
its environment and navigate the world in a natural way.

In this work, we take a first step in the direction of making a character intel-
ligent, and able to interact in AR. We separate the problem into three main
components. First is the modelling of the character’s motion and its ability
to move around. Given a character’s skeleton, how should the joints move
in order to go from point A to point B, including on un-even terrain. We
describe a parametric model of quadruped locomotion, which we use to fill
a blend-tree that outputs motions conforming to control directions. The sec-
ond problem is how to adapt the characters motion to un-even terrains, as
well as collisions with objects (such as a ball). We full-fill this by layering
on top of the blend-tree, an inverse kinematics solver for terrain adaptation,
and a physically simulated rag-doll for character-object collisions. The last
problem is the character’s ability to understand the environment and nav-
igate it. Online consumer-level scanning of 3D worlds remains inaccurate,
and we describe our solution which cleverly combines pre-defined objects
with off-the-shelf scanning solutions to provide high-resolution 3D recon-
structions of the environment.

Given our intelligent character that can understand the real world and move
around, we describe the types of AR interactions we support with real world
objects, as well as the experiments we conducted using these interactions.

4.2 Technical Overview

Our animation model provides a virtual quadruped character the ability to
navigate real world environments, and react to objects in it in real-time—
given only the character’s skeleton as input. The motion model is composed
of motion clips (walk straight, left, right, backward, etc) that are blended
in real-time. Then an inverse kinematics and short-lived ragdoll retargeting
method are layered on top to adapt the motion to terrains and perturbations.
We start by describing how we generate motion clips from a skeleton.

4.3 Parametric Locomotion Model

We use mechanical simulation, together with characterizations of
quadruped motion, to generate locomotion for characters of different shapes
and sizes. Internally, our parameterized motion generation system is based
on constrained multi-objective optimization. The parameters are what
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we call the motion plan: a gait pattern (which foot falls at which time), foot
height, center of mass velocity and rotational velocity. We optimize to match
these values together with various regularizers ensuring smooth transitions
between clips. Some constraints are implicit, or by construction. To support
a wide range of characters, we constrain the skeleton to a known simplified
template (see Fig. 2) that has only hinge joints and pre-defined masses. The
final stage consists in upscaling the motion from the simplified template to
the higher-resolution template (see Figure 4.2)

Parameterization

We use a parametric model of quadruped that are composed of articulated
chain like structures, in particular, of serially connected and actuated links.
The design parameters s is used to specify the quadruped morphology,
which is given by

s =
(
l1, . . . , lg, a1, . . . , an, bw, bl

)
, (4.1)

where g is the number of links, li ∈ R is the length of each link, n is the
number of actuators, and ai ∈ R3 is the actuator parameters. For linear
actuators, ai defines the 3D attachment points, while for rotary actuators, it
corresponds to orientation of axis of rotation. Apart from these parameters
that represent the kinematic tree morphology of the quadruped, we use two
additional parameters bw and bl to represent the physical dimensions of the
quadruped body (width and length respectively).

Likewise, the motion parameters m = (P1, . . . , PT) are defined by a time-
indexed sequence of vectors Pi, where T denotes the time for each motion
cycle. Pi is defined as:

Pi =
(

qi, xi, e1
i , . . . , ek

i , f1
i , . . . , fk

i , c1
i , . . . , ck

i ,
)

, (4.2)

where qi defines the pose of the quadruped, i.e., the position, and orientation
of the root as well as joint information such as angle values, xi ∈ R3 is the
position of the quadruped’s center of mass (COM), and k is the number of
end-effectors. For each end-effector j, we use ej

i ∈ R3 to represent its position
and fj

i ∈ R3 to denote the ground reaction force acting on it. We also use a
contact flag cj

i to indicate whether it should be grounded (cj
i = 1) or not

(cj
i = 0).
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Motion Optimization

The purpose of motion optimization is to take a quadruped design s and opt-
mize its motion for user specified task while satisfying certain constraints.
We used a cost function F(s, m) to encode the task specifications. We now
describe how F(s, m) is constructed. To this end, we use a set of objectives
that capture users’ requirements, and constraints that ensure task feasibility.

Objectives We allow the users to define various high-level goals to be
achieved by their quadruped designs such as moving in desired direction
with specific speeds, different motion styles, etc. To capture the desired di-
rection and speed of motion, we define the following objectives:

ETravel =
1
2
||xT − x1 − dD||2 ,

ETurn =
1
2
||τ(qT)− τ(q1)− τD||2 , (4.3)

where xi is the quadruped’s COM as defined in eq. 4.2, τ(qi) is the turning
angle computed from pose qi, while dD and τD are desired travel distance
and turning angles respectively. ETravel ensures that the quadruped trav-
els a specific distance in desired time, while ETurn can be used to make a
quadruped move on arbitrary shaped paths.

Motion style is highly effected by gait or foot-fall patterns that define the
order and timings of individual limbs of a quadruped. We internally define
various foot-fall patterns for different motion styles such as trotting, pac-
ing, and galloping. When users select a specific motion style, our system
automatically loads the necessary foot-fall patterns, thereby allowing novice
users to create many expressive quadruped motions. Motion style is also
effected by quadruped poses. For expert users, we allow the capability to
specify and achieve desired poses, if needed, using the following objectives:

EStyleCOM =
1
2

T

∑
i
||xi − xD

i ||2 ,

EStyleEE =
1
2

T

∑
i

k

∑
j
||ej

i − ej
i
D
||2 , (4.4)

where k is the number of end-effectors, xD
i and eD

i represent desired
quadruped COM, and end-effector positions respectively. Apart from these,
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motion smoothness is often desired by the users, which is encoded by the
following objective:

ESmooth =
1
2

T−1

∑
i=2
||qi−1 − 2qi + qi+1||2 . (4.5)

Constraints We next define various constraints to ensure that the gener-
ated motion is stable.

Kinematic constraints: The first set of constraints ask the position of COM,
and end-effectors to match with the pose of the quadruped. For every time
step i, and end-effector j:

ϕCOM(qi)− xi = 0 ,

ϕEE(qi)
j − ej

i = 0 , ∀j, (4.6)

where ϕCOM and ϕEE are forward kinematics functions outputting the posi-
tion of COM and end-effectors respectively.

We also have a set of constraints that relate the net force and torque to the
acceleration and angular acceleration of the quadruped’s COM:

k

∑
j=1

cj
if

j
i = Mẍi ,

k

∑
j=1

cj
i(e

j
i − xj

i)× fj
i = Iöi , (4.7)

where M is the total mass of the quadruped, and I is the moment of in-
ertia tensor. The acceleration ẍi can be evaluated using finite differences:
ẍi = (xi−1 − 2xi + xi+1)/h2, where h is the time step. Similarly, the angular
acceleration öi can be expressed as öi = (oi−1 − 2oi + oi+1)/h2. We note
that the orientation of the root oi is part of the pose qi, and it uses axis-angle
representation.

Friction constraints: To avoid foot-slipping, we also have the following con-
straints for each end-effector j:

cj
i(e

j
i−1 − ej

i) = 0, cj
i(e

j
i − ej

i+1) = 0 , (4.8)

for all 2 ≤ i ≤ T − 1, which implies that the end-effectors are only allowed
to move when they are not in contact with the ground. Further, to account
for different ground surfaces, we enforce the friction cone constraints:

f j
i ‖ ≤ µ f j

i ⊥ , (4.9)
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where f j
i ‖ and f j

i ⊥ denote the tangential and normal component of fj
i respec-

tively, and µ is the coefficient of friction of the ground surface.

Limb collisions: For physical feasibility, we propose a collision con-
straint that ensures a safe minimum distance between the limb segments
of quadruped over the entire duration of the motion.

d(Vk1
i , Vk2

i ) ≤ δ , (4.10)

where Vk
i represents a 3D segment representing the position and orientation

of kth limb, d(·) computes the distance between k1 and k2 limbs, and δ is the
threshold distance beyond which collisions may happen.

Motion periodicity: If the users prefer a periodic motion, we can add an
additional constraint that relates the start pose q1 and the end pose qT of the
quadruped:

J(qT)− J(q1) = 0 , (4.11)

where J(qi) extract the orientation of the root and joint parameters from
pose qi.

4.4 High-Resolution Motion

The motion planning algorithm described above mainly cares about the root
and the end-effectors of the skeleton, and it does not optimize for the motion
style of the limbs. Thus, for motion planning, we choose to use a reduced
version of the modeled skeleton which only has two joints for each limb
(Figure 4.2(a)). After the motion is generated, we do IK post-processing to
match all joints (except intermediate limb joints) and end-effectors between
the original high-resolution skeleton and the reduced one (Figure 4.2(c)).

(a) (b) (c)

Figure 4.2: (a) Low-resolution skeleton. (b) High-resolution skeleton. (c) Joint corre-
spondence between low-resolution and high-resolution skeletons.
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IK post-processing We will just use front limb for the discussion. Since
motion planning only produces the positions of the shoulder and the end-
effector for each limb and we have two additional joints, i.e., wrist and fin-
ger, we need to add two parameters to constrain the limb and provide styl-
izing interface for the user. As illustrated in Figure 4.3(a), L is the distance
from the elbow to the end-effector, which can help determine the elbow’s
position. θ is the angle between the finger and the upright direction, which
infers the positions of the finger and the wrist. Additionally, Figure 4.3(b-c)
tells us that there are two solutions for the elbow, and similarly for the wrist.
Thus, we need two binary parameters choose which way we want the elbow
and the wrist to bend. If we inspect the motion of real animals, we will find
that their joint angles keep changing during a motion cycle. To mimic such
behavior, we use a different set of L and θ when the limb is in full swing, and
linearly interpolate these two sets of parameters for other motion phases.

𝐿

𝜃

shoulder

elbow

wrist

finger

(a) (b) (c)

Figure 4.3: (a) Illustration of the front limb. Two parameters L and θ are used to con-
strain the joints and stylize the limb motion. (b-c) Since their are two ana-
lytical solutions for the elbow position, a binary parameter is used to select
one of them.

4.5 Kinematic Controller and Adaptation

The real-time motions is produced with an animation controller which tran-
sitions and blends between motion clips based on two input parameters: the
speed and direction of the character’s root. The controller is a state machine
holding idle, walk forward, and walk backward states. The walking states
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(forward and backward) each blend between 3 motion clips: left, straight
and right. The parameters for blending between clips or transitioning be-
tween states are detailed in Figure 4.5, and are automatically created from
the generated motion clips, which is described in the previous section.

This motion controller performs only motions over flat terrain, and cannot
react naturally to pushes and perturbations. To walk over different terrains,
we adapt the current frame of the animation using inverse kinematics (IK),
based on the terrain height. The ground height is computed by raycasting
from the ground foot position, as shown in Figure 4.4.

Finally, to have the character react realistically to physical perturbations,
such as being pushed or hit, we added a simulated character (ragdoll) layer
on top. For this, we used PuppetMaster ( [PupperMaster, 2017]) which is
a character’s physics tool for automatically generating ragdolls for bipeds.
It enables creating active ragdolls that can follow kinematic reference mo-
tions. We extended its ragdoll layer for quadruped characters, and used it
for simulating reactions.

Figure 4.4: Terrain adaptation is maintained by the estimation of the ground height at
the position of the each feet by casting a ray and adding the feet offsets at the
current animation frame.

4.6 3D reconstruction

We describe our approach to understanding the environment for AR pur-
poses. Because current consumer level hardware devices such as the
Hololens only offer coarse reconstructions online, we cannot use them for
having characters walk over as they appear to be floating in air.

Hence, we developed pre-defined objects that are recognized and local-
ized in space using feature-based technology (Vuforia Engine [Vuforia,
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Figure 4.5: A blending diagram is automatically created from the generated motion clips
that controls the motion transition using parametric inputs- speed and di-
rection (of root).

2017]). For each real world object, we define a corresponding 3D digital
geomtric counter-part that matches in shape and size. Then, we scan the
real world object from all directions using an RGB camera to obtain a data-
base of image-based features and transformation pairs. At runtime, Vuforia
searches for matching features and returns the id of the object, together with
its transformation that we apply to the 3D object in the scene.

We encountered a few issues recognizing objects with Vuforia. One problem
is when the objects are transparent, or have plain textures. In this case, the
lack of features causes the recognition to fail. Similarly to object recognition,
objects with shiny and reflective properties do not give successful image
recognition and tracking. Hence for some objects, we add a rich texture on
top to make them distinguishable, as shown in our figures bellow.

4.7 Interactions

We take our animated character together with its ability to navigate the real
world environment, and design AR interactions in 3D. In particular, we pro-
vide ways for the user to specify where the character should go, ways to
have 3D virtual and real objects collide with the character, as well as ways
to configure different terrains.

Specifying trajectories via touch on the screen. The quadruped character
can be directed through any arbitrary paths in the physical environment,
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over different terrains. The paths are generated by projecting onto the envi-
ronment, the user’s fingertip when drawing on the touchscreen, as shown
in Figure 4.6.

Walking over different real-world slopes. The virtual character’s behav-
ior depends on the purpose of the interaction. Therefore we label objects
either as terrain or non-terrain in order for the motion model to behave in
the correct manner. We label the terrain automatically by defining objects as
terrain if their height is bellow a certain threshold, that corresponds to the
maximum height the character can climb.

Different slopes and platforms can be formed with different arrangements
of the objects as shown in Figure 4.7. While the character’s motion model
will only employ the inverse kinematics for adapting to objects labeled as
terrain, it should react differently for the other objects, as described next.

Pushing characters with real-world objects. Non-terrain objects can be
used for interactions like colliding with or pushing the quadruped, as
shown in Figure 4.8. For animating the reactions, a ragdoll simulation (un-
controlled passive dynamics) is activated for a short period of time, letting
the character react to the perturbation. After the short period of time, the
state of the simulated (ragdoll) character is blended back into the animation
state over another small window of time. Completely switching to a rag-
doll simulation causes to the character to fall. Hence, above a certain force
threshold, we do not blend back to the animation and simply let the charac-
ter flow.

Interacting with virtual objects. We also experimented the interactions be-
tween the character and virtual objects. We designed a simple platformer
game (which is shown in our accompanying video), where the user can use
various props to carry the virtual character from the beginning to the end of
the platform puzzle, while trying to prevent him from falling. The charac-
ter only moves forward, and its moving direction can only be changed if it
hits a wall prop. When the character meets an elevator platform which goes up
and down, the user needs to use a fan prop (shown in Figure 4.10) to stop
the character such that it can wait. For an increased challenge, we added an
enemy cannon which shoots 3D balls at the character, possibly causing it to
fall from the platform, as shown in Figure 4.9.

4.8 Summary and Outlook

We proposed a first step in the direction of bringing intelligent characters
to life in augmented reality. The system automatically models the charac-
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Figure 4.6: Path drawing with touch is used to direct the character in the physical envi-
ronment.

Figure 4.7: Different arrangements of predefined physical objects creates different slopes
for the character to walk on. For the details of the 3D object reconstruction,
we kindly refer to Section 4.6.

Figure 4.8: The character reacts to the pushes by real objects.

Figure 4.9: During the platformer game, the character can be hit by a virtual cannon
ball and fall down.

Figure 4.10: A virtual fan can be used to stop the character which creates virtual forces.
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ter’s motions respecting its skeletal structure and joint movements, as well
as giving an ability to adapt it to changes in terrain and interact with both
physical and virtual objects in real time. The AR characters can understand
understand their environments with a set of predefined real-world objects
and navigate them.

Even if the character’s responses are in real-time, we can only interact slowly
with objects, as the tracking is remains at low frequency. In addition, we
used pre-defined 3D objects instead of scanning the world. We believe that
both of these issues will improve with the evolution of hardware.

In the next chapter, we further investigate AR characters that can capture
user’s poses to mimic them in AR selfies. Furthermore, the chapter contin-
ues by introducing an AR costume concept that allows augmenting water-
tight clothes onto the estimated user’s poses.
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C H A P T E R 5
AR Selfies

This chapter presents two frameworks that incorporate digital characters
and costumes into selfie settings in AR. First, we introduce AR Poser, which
allows virtual characters intelligently to mimic the user’s pose in an AR
selfie. The core of our solution in this section relies on identifying the person
in the selfie scene utilising a computer vision technique and then estimat-
ing the closest 3D pose with a projection on a 3D pose subspace. Second,
we present another framework, AR Costumes, that overlays a “watertight”
costume on a digital image of a person. The method proposed in Section
5.2 is a combination of techniques: estimating the proportions of a body, ap-
proximating a 3D pose as in AR Poser for the costume with an additional
refinement considering the estimated proportions, and using masking and
inpainting to remove the visible skin and clothes behind the costume.

5.1 AR Poser

Figure 5.1: Examples of poses automatically recovered and augmented with a digital
character using our method.
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We introduce AR Poser: a framework for posing with, or as a digital character.
In this chapter, we describe our first contribution to AR Poser: a technique for
digital characters to recognize and automatically reproduce the same pose as
a person in a picture (using only RGB information from a mobile device). 3D
human pose estimation from RGB is an under-constrained and ambiguous
problem that remains today an active field of study. Instead of addressing
the general case of human pose estimation, we propose a solution that can be
tailored to a specific scenario—such as entertainment poses for AR selfies. At
the heart of our solution is a set of predefined poses (selfie poses) utilized to
reduce ambiguities. In a nutshell, our method consists of two reliable steps:
we first perform 2D pose estimation, and then perform a projection onto
the 3D subspace to find the closest matching 3D pose. With our method,
we are able to automatically create augmented reality selfies for a variety of
different poses.

5.1.1 Introduction

Digital augmentation of the real world opens new dimensions for ideation,
communication and entertainment. For example, facial tracking combined
with different mask overlays recently resulted in highly entertaining and
popular mobile applications. In the future, we can imagine combining hu-
man shape estimation with digital character augmentation to unlock various
entertaining selfie scenarios. Hence, we introduce AR Poser: a framework for
posing with or as a digital character. We describe our first contribution to AR
Poser: a technique for digital characters to automatically reproduce the same
pose as a person in a picture.

To automatically imitate the person’s pose with a 3D digital character, we
need to estimate the 3D pose of the person from a single monocular image
(RGB). 3D human pose estimation from RGB is an under-constrained and
ambiguous problem that remains an active field of study. Instead of address-
ing the general case of human pose estimation, we propose a solution that
can be tailored to a specific scenario—such as poses AR selfies. At the heart
of our solution is a set of predefined poses (selfie poses) utilized to reduce
ambiguities associated with depth when estimating 3D poses. In a nutshell,
our approach consists of breaking down the problem into two more reliable
steps: first a 2D pose estimation, and then a projection onto our 3D subspace
to find the closest matching 3D pose. With our method, we were able to au-
tomatically create augmented reality selfies for a variety of different poses.
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5.1.2 2D Pose Estimation

We have recently seen rapid progress in 2D pose estimation from monocular
images using deep learning “in the wild”. There are now packaged solutions
that offer robust solutions for multiple subjects and occluded parts. In this
work, we use the pre-trained network OpenPose [Cao et al., 2017], which
was trained on the COCO [Lin et al., 2014] and MPII [Andriluka et al., 2014]
datasets.

The pre-trained network takes as input the RGB image, and returns a list of
joint positions yi together with a confidence value ci. For example, a par-
tially visible body will result in a low confidence value for the joints outside
the image. The neural network was trained over a large data-set of hand-
annotated images—each with the skeleton of the people in the image.

The 2D skeleton has a set of joint names, that we associate to the 3D joints of
our character, as shown in Fig.5.2. This map is defined manually in our case,
but could be done automatically given corresponding T poses for example.
With the 2D joint positions associated to 3D joints, we can proceed to the
step of computing the best matching 3D pose.

Figure 5.2: The 2D skeleton on the left is obtained from OpenPose. It has 18 joints. On
the right is the 3D character that we used in our experiment. A common
subset of joints need to be mapped for the 3D pose matching process.

5.1.3 3D Pose Projection

The way we project the 2D skeleton onto the 3D pose space is via local opti-
mization. We assume a small set of 3D poses, in our case entertaining selfies,
as shown in the results section. The 3D poses constrain the solution space
to only plausible articulations of the character’s body. Since possible selfie
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poses are symmetrical, we handle symmetries by mirroring the 3D poses in
the dataset along the y-axis.

For each pose in the data base, we optimize for the rigid transformation that
will bring the 3D pose, closest to the 2D projected skeleton, in terms for joint
positions. The global transformation of a 3D pose is parameterized with 3
degrees of freedom, as we constrain the translation of the character along
the y-axis, as shown in Fig. 2.

Figure 5.3: From 2D pose estimation to 3D pose subspace and finding optimal character
pose.

Formally, for each pose Xk = {xi}k defined as a set of joint positions xi,
we optimize for a reduced rigid transformation M composed of a rotation
around the y axis Ry, and translations along the x and z axises Tx, Tz—
resulting in M = Ty Tx Ry and shown in Fig.5.3—that minimizes the similar-
ity cost between the 3D projected joint positions P M xi and the 2D joint posi-
tions yi, where P is the view and projection transformation of the camera (see
next section for how we estimate the mobile camera’s parameters). Finally,
we go through all the optimal transformations and poses pairs < Xk, M >,
and pick the one that has the smallest cost value, resulting in the following
optimization problem:

X∗, M∗ = argmin
<Xk,M>

min
M

∑
i
||yi − P M xi||2. (5.1)

We solve the internal optimization for the transformation M using gradient-
based optimization along numerical derivatives. This requires initializing
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the 3D pose front facing the camera as to ensure convergence towards a sen-
sible solution.

We described how to match the 3D pose to the 2D skeleton, but this depends
on 3D camera parameters for the projection. Next we describe how we esti-
mate these for the mobile device given a know a priori marker in the scene.

5.1.4 Augmentation and Mobile Setup

To incorporate a 3D character into the real world picture using a mobile de-
vice, we need to estimate the camera parameters: a view and perspective
matrix. The perspective matrix is given by the device, while we use marker-
base technology (Vuforia) [Vuforia, 2017] to recognize and track the camera’s
transformations. We print a real world marker that is about the size of a
person, and process the texture for visual features. When the mobile device
takes a picture, it contains the marker, which is then used to estimate the
orientation and position of the camera.

The 3D character pose used in the optimization (section 5.1.3), is initialized
to roughly fit inside the bounding box of the marker. The optimization ad-
justs the character’s depth translation to match the same size as the person’s
2D skeleton. If the character is to be smaller, (e.g. a dwarf) we wait until the
end of the optimization, to scale the final 3D pose back to its original size.

Finally, the neural network we use in section 5.1.2 (OpenPose) to estimate
the 2D pose of a person is sizable and runs optimally on a graphics card.
Deploying such a system on a mobile device represents a significant integra-
tion effort, and will suffer from a loss of performance due to the difference
in hardware. Our solution is to place the 2D pose estimation “in the cloud”
and send messages between the mobile device taking pictures, and the 2D
pose estimation running on a server.

5.1.5 Results and Discussion

We designed a creative concept around Space Exploration that resulted in 12
relevant poses. We started with a set of 10 poses, and invited people to expe-
rience the application. The subjects performed poses we did not have, which
we then crafted and included in the dataset, removing the ones that were not
relevant. Two such iterations ended up thee 12 relevant poses shown below.

The pictures were taken from a mobile device, sent to a server for the 2D
skeleton estimation (running OpenPose), and then the 3D pose matching
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was performed on the mobile device. The whole process took about 2 sec-
onds.

The sum of joint positions that we minimize is successful at matching the
shape of the character, but does not always succeed at finding a perceptually
similar size for the character. It can be seen in our results that sometimes
the character is larger than others. We could fix this with a final pass that
adjusts the size based on the shoulder and feet proportions, which seem to
be visually important.

Naturally, poses not present in the database fail to be discovered. This is
a limitation by design. Also, at the moment we only tackled and demon-
strated pose similarity for body joints—excluding the face and the hands.
In consequence, similar body poses that have different hand gestures will
fail to be discriminated. We think this could be tackled with a 2 step match-
ing where first the full body is matched, then the different hand poses are
considered.
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5.1.6 Summary and Outlook

We proposed a practical approach to produce augmented reality selfies with
digital characters. It relies on a set of predefined poses that are automatically
selected and adjusted based on a 2D pose estimate of the character. The
process works with mobile devices like smartphones and tablets.

While a few minor improvements are required to match people of different
sizes, it unlocks possibilities to investigate new interactions. Inspired by this,
in the next section of this chapter, we have the digital character’s costume
be worn by the person in the picture— AR costumes. While pose estimation
is sufficient for many applications, it falls short when fitting cloth onto a
person, which requires a good estimate of shape. Therefore, we perform an
additional optimization on the full degrees of freedom of the 3D skeleton
to match the 2D skeleton better with local refinements. These refinements
are relatively small such that we do not lose the notion of what constitutes a
viable and common human pose that is obtained with the first constrained
optimization step.
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5.2 AR Costumes

Figure 5.4: Naively matching a 3D costume pose to person’s pose (middle column), re-
sults in several parts of the person visible. In this work, we solve these prob-
lems with shape estimation of the costume, together with inpainting of the
person’s body.

We describe a method to automatically augment a watertight digital cos-
tume onto a person’s body from a monocular RGB image. When overlay-
ing a digital costume onto a body using pose matching, several parts of the
person’s cloth or skin remain visible due to differences in shape and propor-
tions. In this thesis, we present a practical solution to these artifacts which
requires minimal costume parameterization work, and a straightforward in-
painting approach. To our knowledge, our approach is the first to deliver
plausible watertight costumes from RGB imagery only, and is compatible
with mobile devices. We believe this can serve as a useful baseline for future
improvements and comparisons.

5.2.1 Introduction

Imagine taking a selfie and magically wearing your favorite character or
hero’s suit. While we did see digital cloth added onto people in the past, it
was often with a depth camera such as a Kinect, which is not always reliable
in outdoor conditions, and is not as widespread as monocular cameras on
mobile devices. In this thesis, we carry out this concept from a single RGB
image, in a manner compatible with mobile devices.
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People come in different shapes and sizes, and estimating the best costume
to fit their given pose and proportions is a challenge. While recent work sup-
ports estimating shapes, it might not be the desired solution to fully cover
the body: artistic direction might require the shape to remain slender or
muscular, for example. Hence, we approach this problem with a costume
parametrization based on different skeleton proportions (variations in limb
lengths such as legs and spine), and combine this with inpainting to remove
the remaining visible parts, such as cloth or skin from the person behind, as
shown in Fig. 5.4.

Our solution is practical and requires minimal parametrization work. Given
a 3D costume, we manually create different versions associated to a 3D skele-
ton of different proportions. Together with a data set of poses, we optimize
for the best matching 3D costume to the person’s 2D skeleton (estimated
from the RGB image using a 2D pose tracker). Once the best matching shape
(pose and proportions) is found, we need to remove the remaining visible
regions of the person. To solve this, we estimate the person’s body mask we
want to remove (e.g. the body, but without the head or hands), and proceed
with inpainting the masked region. To inpaint, we capture the background
image without the person, and then compute a projection transform—or ho-
mography—from four feature points in the source image to the target image,
followed by Poisson image editing to match the surrounding color and light-
ing.

The entire process runs in about ten seconds on a first generation Surface
Book convertible, without an optimized solution. We show successful results
on various poses and proportions—including complex poses where limbs
are crossing. Together with successful results, we show failure cases in sup-
plementary material which will be useful for comparisons and evaluating
future improvements.

5.2.2 3D Costume Shape

To summarize, our approach breaks down the problem of costume fitting
from a single RGB image into two main parts: a shape estimation described
in this Section, followed by mask estimation and inpainting for the remaining
visible parts, described in Section 5.2.3.

Hence given an RGB image containing a single person, our goal is to find a
costume shape which best fits the pose and proportions of the person. Our
3D shape estimation follows a 2D inference plus 3D matching type of ap-
proach as in AR Poser (Section 5.1.3), but extended with estimating propor-
tions followed by refinement.
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We first estimate the 2D skeleton with joint positions yi of the person, as
described in Section 5.1.2. We then parameterize the 3D costume mesh with
different 3D skeleton poses k and proportions c (variations in limb lengths),
resulting in p = c× k shapes in our data set.

From the 2D skeleton, we optimize for the closest 3D pose k∗, then search for
the optimal proportions c∗ using a heuristic that favors shoulders and hips
for closer perceptual similarity. The final pose is close to the 2D skeleton,
but could still be refined. Hence we perform a final full space refinement
optimization to match more exactly the limb directions and joint positions
of the 2D skeleton.

Proportions Estimate

Given our closest pose k∗, we seek to choose the closest matching propor-
tions c∗ to better fit the 2D skeleton. In our experiments, we found that com-
paring the sum of all joint positions, such as in the previous section, did not
lead to perceptually similar proportions, or resulted in confusing the opti-
mization (5.1) into the wrong pose. We found that focusing on the shoulders
and hips, which are visually more prominent, yielded better results percep-
tually, and more robust pose and proportions pairs.

Figure 5.5: Our three shapes with variations in limb lenghts. The arms and legs are
longer on the left, and shorter on the right. A better estimate of the propor-
tions helps the refinement of the pose converge to a better solution.

Our selection criteria is based on two features f = [ fs/w, fh/w] measuring the
shoulder-to-waist ratio fs/w, and the shoulder width versus average upper
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body height ratio fs/h, defined as:

fs/w =
| SL − SR |
| HL − HR |

fs/h =
2 · | SL − SR |

| SL − HL | + | SR − HR |
,

where SL and SR are the left and right shoulders, and HL, HR the hips of the
skeleton in 3D.

We select the 3D shape c which has the closest feature vector to the target 2D
skeleton features ft when inverse projected onto a plane centered on the 3D
costume. Specifically, we pick the shape c that minimizes the weighted sum
at the L2 norm:

c∗ = argmin
c
‖w [ ft − fc]

T ‖2.

where w = [w0 w1] are both equal to 1 in our implementation.

While there is a variety of different proportions in people, we found that
three main modes (| c |= 3) was sufficient to span most of our subjects, and
represented a satisfactory compromise between speed, set-up complexity
and quality. Additionally, the refinement step discussed next can contribute
to fixing slight proportion mismatches in 2D, as we optimize in 3D allowing
the limbs to visual shorten when projected onto the screen.

Global-local Refinement

At this point, we have a 3D shape (pose k∗ and proportions c∗) which is close
to the person’s shape, but is still different in the exact bone orientation and
joint position, as shown on the left in Fig. 5.6. To remove these differences,
we perform an additional refinement step with respect to the full degrees of
freedom of the 3D character: the joint orientations Q = qi and the root posi-
tion x0 of the character. Because bone positions may not match exactly, we
weight down this objective in optimization (Eq. 5.1), and add an additional
objective function which seeks to match the bone directions, resulting in the
following optimization:

Q∗, x∗0 = min
Q,x0

wp Ep + wdir Edir,

Edir = ∑
i
‖(yi − yp(i))− (PM∗xi − PM∗xp(i))‖2,

where p(i) is the parent of i. We solve this problem in a global / local fash-
ion where we optimize for the global position while keeping the orientation
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Figure 5.6: We optimize globally for the root position to adjust the scale, and alternate
with local optimization of the joint angles in a back-and-forth manner, to
finally converge to a well matching pose.

fixed, and solve for the individual joint orientations while keeping the po-
sition fixed. Both of these steps are performed using local gradient descent
along numerical derivatives.

We now have a costume that matches closely in pose and proportions, but
when overlayed over the person, leaves cloth and skin from the person visi-
ble, as shown on the right in Fig. 5.6. We remove these in the next section by
estimating a 2D mask and inpainting.

5.2.3 Inpainting and Composition

The costume shape overlayed on the person at this point still has cloth or
skin visible, as shown in Fig. 5.7. To remove these artifacts, we estimate
the 2D mask of the person’s body and head, and then inpaint the body area
using background information. When rendering the 3D costume, we can ob-
tain an odd look when the lighting and shadows differ from the real world,
and when the costume appears plastic or unnatural. Hence we estimate the
lighting direction by sampling the picture, and filter the final render to pro-
duce a more natural look for the costume.

Masking

To compute the 2D mask, we use Grabcut [Rother et al., 2004], which requires
an initial labelling of the foreground, probably foreground and background pix-
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Figure 5.7: We first estimate the person’s mask using the estimated 2D skeleton and
Grabcut. Then we define a Homography transformation from target image
coordinates to source (background) coordinates in order to color the masked
pixels. Finally we apply Poisson image editing to fix the remaining color
discrepencies.

els. We use the estimated 2D skeleton, and set foreground pixels that are
within a distance r of a few pixels of the joint positions, and within 2r of the
skeleton bones—defined as lines between joints. For the head specifically,
we set a slightly larger ellipse to indicate the facial pixels to obtain a more
precise boundary. Pixels within a larger radius are marked as probably fore-
ground, while the rest remains assumed background. We run the algorithm
for 5 iterations which yields reasonable results in most cases. With complex
backgrounds, it sometimes misclassifies pixels. To circumvent this problem
we simply inflate the mask to be inpainted. The final result can be seen in
Fig.5.7.

Inpainting

Our goal is to color the masked pixels with plausible underlying scene val-
ues. Hence we capture the environment (with a video) and seek to find the
pixel colors that best match the structure of the captured background, while
resembling the colorization of the target picture.

Our solution consists in computing a projective transformation (a.k.a Homog-
raphy) from the closest matching background with respect to camera param-
eters, to the new target image, using 4 corresponding points in the images:
in our case, the 4 corners of the AR Poser poster. When capturing the back-
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ground, we record the camera position x and orientation q. Given a new
camera position and orientation x

′
and q

′
(at runtime), we search our dataset

for the nearest background image. Note that for speed we used a KD-tree.

Given the nearest background image, we want a warping function that maps
coordinates x, y in the target image, to coordinates x′′, y′′ in the source (back-
ground) image. Hence we track the four positions of the corners in the
source image S1,2,3,4 and target image T1,2,3,4, and define a projection trans-
formation by assembling:

WS = S−1
(1−3) · S4, (5.2)

where S(1−3) is the 3× 3 matrix concatenating the first 3 vectors in the source
image as homogenous coordinates x, y, 1. The matrix resulting from multi-
plying S(1−3) by the vector WS, is the transform that maps the source square
to canonical coordinates. Hence we can transform from the target square to
the canonical space and then to the source via:

M = WT · T(1−3)

(
WS · S(1−3)

)−1
, (5.3)

which for a given pixel coordinate x, y, we obtain the intermediate coordi-
nates:

[
x′ y′ z′

]T
= M ·

[
x y 1

]T , which require a final dehomogeniza-
tion:

xprimeprime =
x′

z′
y′′ =

y′

z′
.

Sampling pixels from this function yields similar color and structure, but
does not ensure boundary smoothness and color consistency, as can be seen
in Fig.5.7. Hence we further optimize the pixel values to blend with the
target image by minimizing the target color gradient while preserving the
source color gradient—a method known as Poisson image editing [Pérez
et al., 2003]. We solve this using an existing packaged solution in OpenCV
[Bradski, 2000].

Composition

We render the 3D costume using rasterization rendering in Unity. Sim-
ply overlaying the inpainted picture with the rendered costume might hide
parts of the head of the target person. To avoid this, we attach a simple,
transparent 3D object approximating a generic human head to the neck-bone
of the character’s rig, which acts as a depth mask during the render pass and
occludes the relevant parts of the costume.
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Figure 5.8: Our optimzation may result in large deformations when misclassifying the
person’s proportions (left). Another issue is we do not track the 2D feet
orientation at the moment, and cannot reproduce this pharao pose at the
moment (middle). Similarly limgs crossing are not prevented for the moment
in our optimization. Estimating the mask area of the face in the legs crossing
pose, without the hands, is challenging. Finally, poses that expose the inner
area of the mesh are not taken into account at the moment, and methods to
adress this are discussed in our results section.

Figure 5.9: Average likeability score for the 9 poses, performed by 7 subjects. Some of the
poses are well handled accross people, others yield mitigated likebility, while
others are not well handled by our current method.

As for the rendering, we use a single directional light to approximate the
scene lighting. When the light direction is different from the one in the pic-
ture, the rendering looks odd. Hence we need to find an appropriate light-
ing direction, which we do by sampling the face of the person in the image.
Additionally, Phong shading tends to yield plastic-looking materials, which
differs from the overall feel of the picture. Our quick fix is to add noise to
the costume’s rendering.

To estimate the lighting direction, we use the 2D face landmarks from the
2D pose estimation to sample different points in the source picture. We then
sample their HSV values by averaging the neighboring pixels. In particular,
we use points around the cheeks and forehead since they tend to have less
unwanted noise in comparison to glasses or hair. Thanks to the face joints
we can also align a 3D mesh of a face to match the joint positions.

By sampling the same set of points over the 3D mesh, we can read the normal
direction of that vertex, and by a weighted average of the normals multiplied
by the value of the pixels, we can infer a rough approximation of the direc-
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tion of the light source. We use the resulting vector to set the new rotation of
a directional light that illuminates the virtual costume and creates shadows
in the ground. A more accurate approach is described in citeface2light, but
an implementation in this context is left for future work.

5.2.4 Results and Discussion

The pictures are taken from a surface book, sent to a server for the 2D skele-
ton estimation (running a pose tracker on the GPU). The skeleton is sent
back to the device which processes the skeleton and image to match the
shape and perform inpainting. The whole process takes about 10 seconds,
from which two thirds is used by computing the segmentation with Grabcut
[Rother et al., 2004] and the inpainting using Poisson image editing [Pérez
et al., 2003]. Our code was not optimized for speed.

Qualitative Study

Our data set holds 12 poses and we performed a qualitative user study of
9 poses, similar to the most recurrent ones people do. We had 7 different
person perform the 9 poses. We then showed the results different people
and asked to rank the likability of the results as binary value: 1 for like, and
0 for do not like. The average of the evaluations shown in table 5.9 resulted
in 4 of the poses with a success rate above 80%, with 3 having 100%, 3 having
mitigated likability, and 3 being systematically unconvincing (bellow 20%).

The mitigated likeability we believe are due to two main artifacts. We some-
times obtain large deformations when our proportions classification fails,
which causes the subsequent refinement stage to over-compensate resulting
in la large deformations, as shown in on the left in Fig.5.8. The second arti-
fact is the collar, which sometimes overlap with the mouth, which changes
the nature of the costume. We think this could be addressed by fitting a 3D
head model to the person’s face, and avoiding interpenetration of the cos-
tume with the head.

The systematically unconvincing results we believe are due to poses are
method cannot handle properly at the moment. Our optimization does not
hold 2D feet markers, and so we fixe the orientation the feet—preventing
from matching the sideways pose of the pharao, as shown in Fig.5.8. Simi-
larly, we do not avoid intersections between limbs, which can cause the legs
crossing pose to fail in most cases. This could be improved with a subspace
optimization of the costume shape, or similarly by restricting the bones to
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anatomically plausible angles. Finally, the “wow” pose which leans forward
exposes the inner area of the mesh, which our method does not handle auto-
matically. We would need a 3D model of the person’s head to cull the back
side of the mesh from being visible after rendering.

Figure 5.10: To judge the importance of each step in our method, we performed an abla-
tion study by computing the results with the full pipeline, each time leaving
out on step. Image (b) shows the result with all steps applied to source im-
age (a). The bottom row shows the partial results with: (c) no proportion
estimate, (d) no size refinement, (e) no bone direction refinement. (f) no
pinpointing and (g) no approximate head masking.

Ablation Study

To evaluate the effect of the different steps as well as their necessity, we gen-
erated the results by iteratively leaving one out. Fig. 5.10 shows the results.
Refinement and inpainting have the most dramatic effect and leaving them
out results in unconvincing compositions. A lesser impactful step is our
proportions estimation which selects amongst a few discrete costumes (3
shapes). We observed that an ill-matched character can be adjusted by the
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refinement process. However, it can be observed that the visual quality of
the results is generally better when a costume with a similar body type is
selected. The same holds for the method used to color correct the inpainted
image material. In many cases, histogram matching is enough to get a con-
vincing result, but the Poisson energy minimization compensates for much
more differences in color and can make the difference in more extreme cases.

5.2.5 Summary and Outlook

We created a system to accurately overlay a person in a monocular RGB
image with a watertight 3D costume matching in proportions and pose. It
furthermore improves the quality of the result by removing visible artifacts
of the source picture by inpainting the relevant areas, but keeping specific
body parts of the target person, resulting in a realistic image composition.

Trying with new characters, different than the astronauts, requires fine tun-
ing parameters in our optimization (sections 5.1.3 and 5.2.2). We also ob-
served that we could obtain better results for certain people and poses by
tweaking the parameters. Note that we kept them fixed for our evaluation,
but it could be interesting to classify the optimization parameters based on
the person’s picture.

The next chapter concludes the work presented in this thesis and discusses
future directions and limitations of the each different frameworks described
in previous chapters.
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C H A P T E R 6
Conclusion

The AR characters’ biggest draw is their interactive and engaging nature.
However, not only overlaying virtual characters into the the real world, but
also fully exploiting the physical world with natural and direct input modal-
ities in the context of human-character interaction is yet an unexplored con-
cept. Our vision is that AR characters will increasingly become more inter-
active in such a way that they can respond to voice, gestures and even touch,
and develop a better understanding of the space they are in with the objects
in their physical surrounding such that they immediately react to changes in
the environment in a natural way.

This thesis has presented steps toward creating motion models for AR char-
acters possessing some of the aforementioned characteristics through sev-
eral example application scenarios. Our focus in these scenarios was the
directness of interaction, the consistency of the characters’ behaviors with
their physical surroundings, thus making human-character interaction more
natural. To conclude, in this chapter, we summarize the main contributions,
discuss the limitations and providing future directions.

6.1 Summary

Physics-Based Character Control Interface. Physics-based approaches are
better suited for AR and VR applications as they can generate motions on-
line that are responsive to the environment changes and the user input, and
physically accurate since optimization directly relies on the equations of mo-
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tion. However, these methods require knowledge of multi-body dynamics,
numerical integration and control theory.

In Chapter 3, we presented an intuitive interface for physics-based charac-
ter control where a user can drive a virtual characters motions in real-time.
The approach generalizes the process of setting up the control parameters
for tracking, which is a tedious task and requires re-tuning each time when
the character is changed, by providing a limb-based abstraction. Our limb-
based controller operates on the principle that different limbs play certain
role in a specific scenario like performance tracking which results in differ-
ent distributions of effort. Some is responsible for carrying the body to the
target trajectories provided by the human performer, other only contributes
to the regulation for more stable and balanced motions. The advantage of
this proposed automatic weighting scheme is that it combines the parame-
ter tuning with character mapping, and makes it available to casual users by
integrating this information into a limb-based abstraction.

Thanks to the proposed abstraction, our system can also supports a variety
of bipedal characters with different morphologies, as well as different limb
settings for the same character. We tested the generalization of our system
with two different biped creature: Raptor and alien, which have very dif-
ferent morphologies. Finally, another contribution of our proposed tracking
system is its activation of the free limbs of the character (e.g., tails). Nor-
mally, the tail of a character in simulation would automatically have pas-
sive motions as it being dragged by the body. On the other hand, animals
in nature voluntarily use their tails increase balance and stability in their
movements. For example, an interesting study showed that losing horizon-
tal sways when geckos drop their tails limits the rotation of their pelvis,
which ultimately decrease step length in their locomotion [Jagnandan and
Higham, 2017]. In our system, the tail is actuated to regulate angular mo-
mentum and eventually balance in the overall motion of the character.

Interacting with Intelligent AR Characters. With computer vision’s capa-
bility of identifying real objects and mapping virtual overlays atop them,
AR has the power to turn our physical environments into digital gaming
platforms. Unfortunately, having virtual characters understanding changes
of real objects manipulated by users and naturally responding them is cur-
rently underexplored. In Chapter 4, we took the first steps to support virtual
AR characters to understand and react to different physical and virtual ob-
jects, as well as coping with different terrains arranged with real objects, and
steering to target locations (through target paths), which are interactively
defined by user.

We use a parametric model of quadruped motion based on trajectory opti-
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mization with multiple objectives. The model enable automatically applying
locomotion to a variety of characters based on several motion parameters de-
fined by user. These parameters of the model are the gait pattern, the speed
of the motion, the turning rate. In the optimization, these parameters turn
into objectives: the end effector trajectories, together with different regular-
izations (e.g., smoothness). The advantage of our system is that the user
does not have to deal with setting such as character’s mechanical system for
the optimization because adapting the predefined, simplified character tem-
plate to a different character is straight-forward. In addition, it still allows
users to change the style to the generate motions with the aforementioned
parameters.

AR Selfies. In Chapter 5, we described two frameworks that explore new so-
cial interaction scenarios between users and digital characters— AR Selfies.
First, we introduced AR Poser, which allows taking a selfie with a human-
like avatar, or a virtual 3D recreation of a popular comic book character im-
itating your pose. It is based on a 3D pose estimation technique from sin-
gle RGB camera image taken with a mobile device. The advantage of our
technique is that it is compatible with mobile devices and reliable in out-
door conditions by combining robust 2D pose estimation with 3D lifting in
a small 3D poses space.

Further, we described AR Costumes, which allows projecting a watertight
costume onto a person by approximating the dimension and matching the
costume to the body joints of the person. Finally, to remove cloth or skin
visible behind the costume, we use masking the body while still leaving
hands visible, and in-painting to fill in with the background image. After in-
painting, additionally, we apply Poisson image editing technique to match
the light and color difference between current and background image. To
our knowledge, our solution is the first that can overlay watertight costumes
from RGB imagery only, and is practical with minimum parametrization.

6.2 Limitations and Future Directions

Physics-Based Character Control Interface.

The downside of combining multiple objectives is that there may be interfer-
ence between different objectives. We handle this by implicitly prioritizing
objectives with our limb-based abstraction that sets higher weights to the
limbs that meets high-priority objectives. However, we noticed that, as a
design mistake, our angular momentum objective cancels rotations about
the COM, which causing a conflict with the root orientation objective that
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is responsible to achieve desired direction. Consequently, we are unable to
generate motions including sharp turns. One potential solution is to allow
the angular momentum changes producing the target body rotation.

While our limb-based abstraction supports walking on hands and having
multiple tails, it is designed specifically for bipedal characters. In the fu-
ture, we would like to extend our system to the case of quadrupeds by in-
troducing a coordinated stance-limb planner which coordinates end-effector
trajectories between the support limbs of the character.

Our system can alter the character’s motion style by simply changing a sin-
gle pose regularization. It doesn’t depend on large collections of data. How-
ever, the single pose regularization could easily be replaced with a data-
driven pose function learned from a collection of example poses (using for
example [Grochow et al., 2004]).

Interacting with Intelligent AR Characters.

The pose estimation of virtual objects with marker tracking is in general not
stable in AR. This error in position tracking has an effect on the animated
responses of the virtual characters. For example, it can be seen that the char-
acter’s feet drift little on each step while walking. This is the biggest issue
in marker based AR issues and will be overcome with the evolution to more
stable tracking technology.

Detecting physical toys and embedding their virtual counterparts would
boost the immersiveness of this work. Therefore, a future direction would
be investigating chameleon technology [Chameleon, 2018] with in-painting,
allowing real-world characters to “come-to-life”, by replacing their back-
ground. We can further increase the connection of the characters to the real
world by adding shadows.

A future direction for enhancing our character’s intelligence would involve
other sense as well, such as responding to the user’s voice and specific hand
gestures, similar to what [Chen et al., 2017] proposed. Additionally, with
hand tracking, it would be possible to steer characters by drawing a vir-
tual path at the user’s fingertip on the real table. Furthermore, a robust
3D hand reconstruction of the user’s hand on top of it, can allow user to
change pose of the characters by animating their virtual body-parts. More-
over, with a haptic feedback suit, which applies forces and vibrations to the
user’s hand, can enable the interaction using real touch.

AR Selfies.

Both frameworks presented in Chapter 5 is tied to the physical location
marker, AR Poser poster, to estimate the orientation and position of the cam-
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era. Not only we use it to import the character at a location, but also in the
optimization to pose avatars at a location. A future option would be to uti-
lize markerless AR technology that allows augmenting without the use of
image targets, like the Wikitude SDK [SDK, 2019] and their instant tracking,
or simultaneous localization and mapping (SLAM) technology. It tracks the
user’s surrounding to localize the device and to detect plane surfaces (e.g.
floor, walls).

Another limitation is the number of poses and shapes that are stored in
dataset. Our methods remain to be tested with children, who have more
variation in limb lengths, compared to adults. We plan to increase the num-
ber of poses to make them more stable and robust. We think that accommo-
dating characters that have significantly different or exaggerated limb pro-
portions, such as a cartoon character with tiny legs, would require changing
the head position, and thus revisiting our design.

Our in-painting requires scanning the area before hand, which requires start-
ing over when the environment changes. Also, we in-paint using a projec-
tion transformation derived from a known marker in the scene (the AR Poser
poster), and in the event it changes location, we must rescan the environ-
ment once again.

Finally, when masking the target person using Grabcut [Rother et al., 2004],
we don’t always get a segmentation that is precise enough. This results in
body and background parts that are still visible after the in-painting, or it
may hide parts of the head. Additionally, the approximated head model
used to hide parts of the 3D costume may not be accurate enough (see fig-
ure 5.8). This could be improved by using a more detailed, dynamically
adjustable model, to estimate the shape of the person.
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