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Abstract

Visual and linguistic tools are the most common medium for exchanging infor-
mation, self-expression, and storytelling since the ancient times. The advancing
technology and humanity enriched these media by introducing novel forms such
as digital images, digital videos, online books, blogs, etc. which are tremendously
increasing in quantity. Today, we are at a point where we see various manifes-
tations of the same story for which joint analysis for the purposes of summa-
rization, archiving, and automatic meta-data annotation becomes crucial. This
leads to challenges in aligning multiple facet stories which would alleviate the
difficulties in comprehensive understanding for a joint analysis. Traditional ap-
proaches usually require complicated pre-processing steps (e.g., shot segmenta-
tion, speech/scene/face recognition and tracking), define a similarity metric be-
tween the sequence elements, and perform the alignment with standard tech-
niques based on dynamic programming. Thus, they suffer from the limitations
caused by the pre-processing steps, and the inherent drawbacks of Markov as-
sumptions. In this thesis, we focus on aligning multi-modal data, specifically in
visual and textual form, which is a fundamental step to learn and analyze corre-
spondences between different manifestations of the same story. To achieve this,
we build upon recent advances in deep and recurrent neural networks which
provide efficient vectorial and contextual representations of the modalities to be
aligned. Our label-based method for automatic alignment of video with narrative
sentences proposes a highly efficient alignment technique that does not require
heavy pre-processing steps, while enabling a fine level of granularity in the align-
ment result. Then, we develop an end-to-end differentiable neural architecture
that addresses the limitations of the two-stage solutions by optimizing the simi-
larity metric specifically for the alignment task while supporting one-to-one, one-
to-many, skipping unmatched elements, and non-monotonic alignment. Expand-
ing on this neural architecture, we develop a sequential spatial phrase ground-
ing network that formulates grounding of multiple phrases as a sequential and
contextual process allowing many-to-many matching. In a large variety of exper-
iments, we show that using neural methods for multi-modal data alignment bear
potential for more interesting research and applications by alleviating the large
manpower that would be needed otherwise.
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Zusammenfassung

Seit jeher sind visuelle und linguistische Werkzeuge die meist verbreiteten Me-
dien zum Austausch von Information, zur Selbstdarstellung und zur Erzählung
von Geschichten. Der technologische Fortschritt der Menschheit haben diese
Medien mit neuen Formen angereichert, die in ihrer Verbreitung rasant wach-
sen. Zu neuen Formen von Medien zählen zum Beispiel digitale Bilder und
Videos, online Bücher, Websites und Blogs, etc. Heute sind wir an einem
Punkt angelangt, an dem oft zahlreiche Erscheinungsformen ein und der sel-
ben Geschichte veröffentlicht werden. Es ist daher von essentieller Bedeu-
tung die verschiedenen Erscheinungsformen einer Geschichte geimeinsam zu
analysieren, um diese anschließend zusammenzufassen, zu archivieren oder um
automatisch wichtige Metadaten zu extrahieren. Die Angleichung und Synchro-
nisierung der verschiedenen Erscheinungsformen ist ein wichtiger, methodis-
cher Bestandteil, der die gemeinsame Analyse einer Geschichte signifikant vere-
infacht. Traditionelle Methoden erfordern typischerweise komplizierte Vorver-
arbeitungsschritte, wie zum Beispiel Segmentierung, Sprach- und Szenenanal-
yse, Gesichtserkennung, etc. Des weiteren definieren traditionelle Methoden
normalerweise eine Metrik, um die Ähnlichkeit zwischen einzelnen Elementen
der verschiedenen Manifestierungen einer Geschichte zu messen, welche an-
schließend mit Standardmethoden basierend auf dynamischer Programmierung
angeglichen werden. Aus diesem Grund erreichen traditionelle Methoden nur
eingeschränkt gute Ergebnisse, da diese durch die Vorverarbeitungsschritte und
die inhärenten Annahmen der Markov Theorie limitiert sind. Diese Arbeit befasst
sich mit der Angleichung und Synchronisierung von multi-modalen Daten, ins-
besondere in visueller und textueller Form. Dies ist ein fundamentaler Schritt, um
automatisch Korrespondenzen zwischen unterschiedlichen Erscheinungsformen
einer Geschichte zu analysieren. Unsere Arbeit basiert auf neuen Erkenntnissen
im Bereich von tiefen and rekurrenten neuronalen Netzwerken, die zu effizienten
vektoriellen und kontextuellen Repräsentationen der Modalitäten fuhren. Unsere
label-basierte Methode zur automatischen Angleichung von Videos mit Textse-
quenzen ist vergleichsweise effizient und benötigt keine tiefgreifenden Vorver-
arbeitungsschritte. Das Resultat ist eine detaillierte und granulare Angleichung.
Ferner entwickeln wir eine durchgehend differentierbare neuronale Architektur,
um die Probleme von zweistufigen Verfahren zu bewältigen. Die entwickelte neu-
ronale Architektur optimiert die Ähnlichkeitsmetrik speziell für die Aufgabe der
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Angleichung und Synchronisierung von multi-modalen Daten, die eins-zu-eins,
eins-zu-viele, nicht existierende und nicht monotone Elemente enthalten können.
Als Erweiterung dieser neuronalen Architektur entwickeln wir außerdem eine
Methode zur Lokalisierung von Phrasen in Bildern, die als sequentieller und kon-
textualer Prozess formuliert ist und viele-zu-viele Beziehungen erlaubt. In einer
Vielzahl an Experimenten zeigen wir, dass die Anwendung von neuronalen Net-
zen für multi-modale Datenangleichung grosses Potential birgt für weitergehende
Forschung. Darüber hinaus sind die vorgestellten Methoden von hoher Relevanz
für den Einsatz in Produkten, da mit diesen eine Vielzahl von arbeitsintensiven
Schritten automatisiert werden können.
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C H A P T E R 1
Introduction

Vision and language are the most common medium of communication and
expression throughout the history of humanity 1, 2. Starting from the ancient
times, humans drew and wrote on the walls of their caves by pragmatic ex-
igencies such as exchanging information, expressing themselves, codifying
laws, recording history, and storytelling. Considering the origins of writing
which emerged smoothly from visual drawings such as logographs, sym-
bolic systems, hieroglyphs, etc., it is safe to say that vision and language are
natural allies and often complement each other, see for example Figure 1.1.
Tradition did not change today, and we still use language and vision for ex-
changing information and storytelling. In fact, advancing technology and
humanity extended and enriched these media by introducing novel forms
such as digital images, digital videos, online books, blogs, etc. which are
tremendously increasing in quantity. Nowadays, we are at a point where we
see various manifestations of the same story. For example, a large number
of books are converted to screen in the form of TV series or motion picture.
Even more, some of them are re-adapted to screen multiple times. We see
thousands of blog posts online where personal stories are unfolded with in-
formative text and carefully chosen photos to highlight the most attractive
part of people’s experiences. The list could be continued more considering
the steadily increasing amount of content. As fundemental techniques in an-
alyzing images and text advance in natural language processing (NLP) and
computer vision (CV), their joint analysis for the purposes of summariza-
tion, archiving, and automatic meta-data annotation becomes the next nat-

1[Chakravarthi, 1992]
2[Diringer, 2013]
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Introduction

Figure 1.1: Storytelling in early ages. Upper left: The paintings in the cave Magura rep-
resenting dancing women, dancing and hunting men, disguised men, large
variety of animals, suns, stars, instruments of labour, and plants, dating
back to the bronze age. Upper right: Sumerian cuneiform scripts listing
gifts to the high priestess of Adap on the occasion of her election, dating back
to 26th century. Lower row: Judgement scenes from the Book of Dead dating
back to 1375 BC, Egypt.

ural step. This leads to challenges in aligning multiple facet stories which
would alleviate the difficulties in comprehensive understanding for a joint
analysis.

In this thesis, we focus on aligning multi-modal data, specifically in visual
and textual form, which is a fundamental step to learn and analyze corre-
spondences between the different manifestations of the same story. A sin-
gle picture, a video clip, a drawing, a Hollywood movie, a book, a phrase,
a sentence, or a blog post, all these are an example of a story since they
are a particular person’s representation of the facts of a certain matter, see
for example Figure 1.2. Aligned multi-modal data play an important role
in various applications including data retrieval, data archiving, data sum-
marization, and even more data generation by creating large corpuses for
learning.

For example, for media-services providers automatically aligned visual and
textual data would play an important role in fast retrieval of a desired con-
tent. In most TV and movie shooting workflows, the screenplays are pre-
pared first, and then actors are chosen, which is followed by shooting. The
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(a) (b) (c)

Figure 1.2: Different manifestations of the story of Chris McCandless: ”Into the Wild”.
(a) A book based on his journal by Jon Krakauer. (b) A documentary based on
his journey. (c) The movie adaptation of the book in (a). (In addition, there
are also newspaper articles about his story, his journal and various paintings
inpired by the events.)

screenplays may need multiple revisions to accommodate the talent that has
been cast in the various roles. The principle filming captures most of the
shooting script as much as possible. However, the post-production stage
can detect problems and scenes that may need to be added, deleted, or re-
vised. Clearly, there are many opportunities to deviate from the original
script on the way to the final version of the video, which would result in
unlabeled video/text data aggravating content retrieval. At this point, auto-
matic video-text alignment methods would significantly reduce the manual
work needed to align the script to the movie. Even more, these precisely
aligned movie-script pairs can be used to create audio description3 (AD) for
a movie by retrieving the corresponding sentences from the script for each
scene. Another benefit of such alignment would be automatic meta-data an-
notation in videos, considering scripts come with associated meta informa-
tion such as scenes, characters and dialogues. Furthermore, by localizing the
noun phrases of the aligned sentences in the individual frames of the corre-
sponding video section, additional meta-data extraction can be performed,
see Figure 1.3.

Many of these applications require finding complex correspondences within
the visual and textual input sequences, which can then be used to align the
sequence elements. These correspondences are often obtained by sophis-
ticated extraction of comparable feature representations in each modality,
often performed by a deep neural network. Common approaches to this

3Audio description is an additional narration track intended primarily for blind and visually
impaired consumers of visual media. It consists of a narrator talking through the presentation,
describing what is happening on the screen or stage during the natural pauses in the audio,
and sometimes during dialogue if deemed necessary. [aud, 2009]
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Elrond addresses the council. 
…
Frodo steps forward and moves towards a stone plinth. 
He places the ring on the plinth and returns to his seat. 

the council

Frodo
the ring the stone 

plinth

Figure 1.3: Meta-data extraction by aligning multi-modal data. First, the sentences are
aligned with the corresponding shots. Then, the phrases of the sentences are
aligned with the entities and propagated along the frames

alignment problem usually define or learn some sort of a similarity metric
between elements of the sequences, and then find the optimal alignment be-
tween the sequences. However, the defined similarity metric is mostly not
optimal for the alignment task. Furhermore, the performed alignment tech-
niques take limited local context into account, but contextual information
conducive to alignment may be scattered over the entire sequence due to
stroy-telling nature of the data.

The goal of this thesis is to do basic research and to investigate innovative
methods for automatic alignment of visual and textual data containing nar-
rative content which is an important link in joint understanding of multi-
modal content, and is closely related to activity recognition, dense caption
generation, and multimedia content retrieval. The focus lies on the compa-
rable representation of the sequences, and their optimal alignment taking
account of causal and temporal/spatial interactions between the sequence
elements. To achieve this, we build upon recent advances in deep and recur-
rent neural networks which provide efficient vectorial representations of the
modalities to be aligned.

Recently, a number of novel visual and textual sequence alignment tech-
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niques have been proposed that are able to provide solutions to certain types
of problems with different granularity levels and various degrees of global
contextual information. For the video-text alignment problem, most solu-
tions provide alignment at a coarse level, such as matching a book chapter
to an episode of a TV show, or aligning a book paragraph to a long scene.
The majority of these approaches use similarity between the written dia-
logues and the captions in the video as a cue. However, basing upon only
dialogues results in imprecise alignment for the video shots that do not con-
tain dialogues, but action. Furthermore, they mostly do shot threading as a
preprocessing step which poses limitations on the granularity and the pre-
cision of the resulting alignment from the very beginning. Even if the used
shot threading method results in a perfect shot segmentation, there could be
long continuous shots, which would need to be parsed even more due to
changing semantics and action.

Another direction to overcome the limitations of the prior methods is us-
ing a neural alignment process. With a carefully designed end-to-end neu-
ral architecture, the similarity metric between the sequence elements can be
learned and optimized specifically for, and jointly with, the alignment task.
In this way, a more optimal solution can be computed compared to the opti-
mal solutions of the two-stage solutions. Furthermore, the alignment process
can be formulated to consider the global context rather than local context.

Motivated by the successes of the prior approaches, the goal of this thesis is
to analyze and improve alignment techniques for visual and textual data, as
well as applying the advances in neural networks to design novel methods.

First, we investigate in Chapter 3 a label-based method for automatic align-
ment of video with narrative sentences, which provides automatic time-
stamps for each narrative sentence. Our approach segments the video into
semantic shots and aligns them with the sentences in an iterative way by
exploiting vector descriptors for text representation. We compute the simi-
larity between both types of information using vectorial descriptors and pro-
pose to cast this alignment task as a matching problem that we solve via dy-
namic programming. The presented method is simple to implement, highly
efficient, and does not require the presence of frequent dialogues, subtitles,
and character face recognition. In contrast to previous two-stage solutions,
our approach does not assume any pre-segmentation or shot threading of
the video, instead works on the raw video. We introduce the novel term
semantic cut to describe semantic change in a continuous camera shot, and
we use frame-based high-level labels to group the frames in order to de-
tect these semantic changes through the video. In this way, each shot con-
tains relatively different semantics knowing that the information given by
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the different sentences is relatively different. Then, we formulate the prob-
lem of text-video alignment as sentence-shot alignment by finding similar-
ity between the high-level labels in the shots and the words of the sentences.
Our final alignment is formulated in a graph-based approach computing the
minimum distance path from the first to the last sentence-shot pair.

In Chapter 4, we explore a novel method by proposing an end-to-end dif-
ferentiable neural architecture for heterogeneous sequence alignment which
addresses the limitations of two-stage solutions by optimizing the similar-
ity metric specifically for the alignment task. Standard techniques for the
alignment task, including Dynamic Time Warping (DTW) and Conditional
Random Fields (CRFs), suffer from inherent drawbacks. Mainly, the Markov
assumption implies that, given the immediate past, future alignment deci-
sions are independent of further history. The separation between similarity
computation and alignment decision also prevents end-to-end training. To
overcome these limitations, we formulate the alignment problem as a se-
quential alignment decision classification problem, where alignment actions
are implemented as moving data between stacks that represent the currect
workspace. This flexible architecture supports a large variety of alignment
tasks, including one-to-one, one-to-many, skipping unmatched elements,
and (with extensions) non-monotonic alignment. Extensive experiments on
semi-synthetic and real datasets show that our algorithm outperforms state-
of-the-art baselines.

Finally, in Chapter 5, we propose an end-to-end neural architecture for the
phrase grounding problem where the task is to align sentence phrases to the
corresponding image regions. Unlike prior methods that typically attempt
to ground each phrase independently by building an image-text embedding,
our architecture formulates grounding of multiple phrases as a sequential
and contextual process. The benefit of this architecture is its ability to uti-
lize rich context of prior matches along the way by introducing the notion of
contextual phrase grounding. Furthermore, the resulting architecture, sup-
ports many-to-many matching by allowing an image region to be matched
to multiple phrases and vice versa. We show competitive performance on
the Flickr30K benchmark dataset and, through ablation studies, validate the
efficacy of sequential grounding as well as individual design choices in our
model architecture.
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1.1 Principle Contributions

1.1 Principle Contributions

In the following we list the main contributions of the work presented in this
thesis:

• We propose a novel method to align human-written sentences (such
as scripts and audio description texts) with the complete set of shots
that constitutes the video. Our approach does not require dialogues,
subtitles, and face recognition. Unlike prior methods that perfrom
pre-segmentation or shot threading, the proposed method directly
works on the raw video. We automatically segment the input video
into shots by using frame-based high-level semantics so that a se-
mantic change in a continuous camera shot can be detected. We refer
to this semantic change as semantic cut throughout this thesis. We
also introduce a refinement process to optimize the semantic cuts so
that they tend to correspond to one sentence each. Furthermore, we
introduce a novel dataset of script sentence alignments of various
video sequences which are publicly available on the project page.

• We propose a deep neural architecture for the temporal alignment
of heterogeneous sequential data which overcomes the inherent
drawbacks of standard techniques including dynamic time warping
(DTW) and conditional random fields (CRFs) that cast Markov as-
sumptions. In contrast to two-stage solution of the traditional meth-
ods, our framework combines (1) the similarity computation and (2)
finding the optimal alignment with end-to-end training where the
alignment actions are implemented as moving data between stacks
of Long Short-term Memory (LSTM) blocks. This flexible architec-
ture supports a large variety of alignment tasks, including one-to-
one, one-to-many, skipping unmatched elements, and (with exten-
sions) non-monotonic alignment. Extensive experiments on semi-
synthetic and real datasets show that our algorithm outperforms
state-of-the-art baselines.

• We propose the notion of contectual phrase grounding where ear-
lier grounding decisions can inform the latter. We formalize this
process in the end-to-end learnable neural architecture we call Seq-
GROUND. The benefit of this architecture is its ability to sequentially
process many-to-many grounding decisions and utilize rich context
of prior matches along the way. Furthermore, we show competi-
tive performance both with respect to the prior state-of-the-art and
ablation variants of our model. Through ablations we validate the
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efficacy of sequential grounding as well as individual design choices
in our model.
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1.2 Publications

1.2 Publications

This thesis is based on the following peer-reviewed conference publications:

• P. Dogan, M. Gross, & J.C. Bazin. Label-based automatic alignment
of video with narrative sentences. In Proceedings of European Con-
ference on Computer Vision Workshops 2016.

• P. Dogan, B. Li, L. Sigal, & M. Gross. A Neural Multi-sequence Align-
ment TeCHnique (NeuMATCH). In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition 2018.

• P. Dogan, L. Sigal, & M. Gross. Neural Sequential Phrase Grounding
(SeqGROUND). In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 2019.

During the course of this thesis, the following peer-reviewed papers [Doğan
et al., 2015] and [Lancelle et al., 2019] were published, which are not part of
this thesis.

• P. Dogan, T. O. Aydin, N. Stefanoski, & A. Smolic. Key-frame
based spatiotemporal scribble propagation. In Proceedings of the
Eurographics Workshop on Intelligent Cinematography and Editing
2015.

• M. Lancelle, P. Dogan, & M. Gross. Controlling Motion Blur in Syn-
thetic Long Time Exposures. In Proceedings of the Eurographics
2019.
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C H A P T E R 2
Background and Related Work

This chapter reviews influential research in the areas of joint reasoning of
visual and textual data and multi-modal tasks. Because such applications
often require representation of unimodal data, we also include a more gen-
eral review on unimodal representation techniques with a brief overview on
neural networks.

2.1 Overview on Neural Networks

Neural networks is one of the most popular machine learning topics at
present due to its outstanding performance in accuracy and speed. In this
thesis, the representation of visual and textual data, and problem formula-
tions heavily rely on neural networks. Therefore, it is obligatory to review
the basic building blocks of neural architectures briefly. A neural network is
a collection of connected units or nodes, which loosely model the neurons in
a biological brain and produce an output by applying a non-linear function,
activation function, to its inputs. The connections between the nodes are
called ’edges’ that typically have a weight that adjusts as learning proceeds.
Typically, neurons are aggregated into layers, and different layers may per-
form different kinds of transformations on their input. 1

1We refer the reader to [Goodfellow et al., 2016] for a detailed overview over neural networks
and related literature, and Christopher Olah’s blog on https://colah.github.io/ for comprehensive
explanations.
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Activation Functions

Activation functions introduce non-linear properties which are significant to
represent non-linear complex arbitrary functional mappings between inputs
and outputs. To enable the use of back-propagation optimization strategy,
they need to be differentiable. In the following, we review some of the most
popular activation functions used in the literature and throughout this the-
sis.

While being non-linear and bounding the output to the range (0, 1), sig-
moid activation suffers from vanishing gradients during backpropagation,
and slow convergence. Being a rescaled version of the sigmoid tthat has an
output range of (−1, 1), the tanh function centers the data around 0, and re-
sults in higher gradients that help in a better learning rate. Being the most
commonly used activation function, ReLU provides sparse activation in a
randomly initialized network and cause fewer vanishing gradient problems
compared to sigmoidal activation functions that saturate in both directions.
These activation functions and their variants serve different purposes dur-
ing training which make them more popular relative to each other for cer-
tain tasks: sigmoid for classification problems, tanh often for regression, ReLU
mostly for intermediate layers.

2.1.1 Convolutional Neural Networks

Convolutional neural network (CNN) is a type of neural network that uses
many identical copies of the same neuron with weight-tying. This allows the
network to have lots of neurons and express computationally large models
while keeping the number of actual parameters that need to be learned rela-
tively small. CNNs typically consist of convolutional layers, pooling layers,
fully connected layers, and normalization layers, meaning that convolution
and pooling functions are used instead of normal activation functions above.
CNNs use relatively little pre-processing compared to other image classifi-
cation algorithms. Leveraging the structure of the input data for better per-
formance (e.g., close-by words signals in a voice recording or neighboring
pixels in an image are related), CNNs have prevalent applications in image
recognition, classification, medical image analysis, and speech recognition.

2.1.2 Recurrent Neural Networks

A recurrent neural network (RNN) is another class of neural networks where
connections between nodes form a directed graph along a sequence, which
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exhibits dynamic behavior for a time sequence using its internal state to pro-
cess sequences of inputs. They are called recurrent because they perform the
same task for every element of a sequence, with the output being dependent
in the previous computations. Another way to think about RNNs is that
they have a “memory” which captures information about what has been
calculated so far. In theory, RNNs can make use of information in arbitrarily
long sequences, but in practice, they are limited to looking back only a few
steps. 2

Long short-term memory networks (LSTMs), a special kind of RNNs, are ex-
plicitly designed to solve the long-term dependency problem, remembering
information for long periods of time. LSTMs also have the repeating chain-
like structure, however, the repeating module has a relatively more compli-
cated architecture compared to standard RNNs.

Another popular variant of RNNs is a network of gated recurrent units
(GRUs) introduced by [Cho et al., 2014] that performs similar to LSTMs.
However, GRUs have been shown in [Chung et al., 2014] to exhibit better
performance on smaller datasets. In general they have fewer parameters
than LSTMs since they lack an output gate.

With lots of notable variants, RNNs in general are well-suited to classifying,
processing and making predictions based on time series data, since there can
be lags of unknown duration between important events in a time series. Due
to this behaviour, we utilized RNNs, LSTMs in particular, to time sequences
such as videos and natural language queries in this thesis.

2.2 Unimodal Representations

2.2.1 Representation of Visual Information

Visual data for computer vision applications can roughly be classified into
two main classes: images, representing 2D visual information; and videos,
representing 3D visual information as a sequence of images.

Image Representations

In recent years, it was shown that deep CNNs (or ConvNets) can learn im-
age features that are transferable to many different vision tasks. These are

2Britz, Denny. Recurrent Neural Networks Tutorial. Available at:
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-
to-rnns/
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a special kind of multi-layer networks which are designed to recognize vi-
sual patterns from raw pixels with minimal preprocessing, and to serve as
rich feature extractors. The pioneering LeNet-5 [LeCun et al., 1998] model
largely introduced the CNN as we know today. Similar to LeNet-5 in general
architecture, but considerably larger, AlexNet [Krizhevsky et al., 2012] was
introduced in 2012 which leaded significant part of computer vision com-
munity to take a serious look at deep learning. Last of the classical network
architectures, but not least, VGG [Simonyan and Zisserman, 2014] was in-
troduced in 2014 offering a deeper but simpler variant of the convolutional
networks mentioned earlier.

The modern network architectures placed aside the simplicity of the net-
works above. GoogLeNet [Szegedy et al., 2015] introduced the Inception
module by straying from the general approach of simply stacking convo-
lutional and pooling layers on top of each other in a sequential structure,
which allows some pieces of network to process in parallel. It is an accepted
principle that deeper networks are capable of learning more complex func-
tions and representations. However, it was observed that although better
initialization and batch normalization techniques allow for deeper networks
to converge, they often converge at a higher error rate than their shallower
counterparts. To overcome this degradation problem, [He et al., 2016] re-
leased ResNet introducing residual blocks that learn residual functions as
refinement step. Following these main architectures, more efficient alterna-
tives and simple variants of the these blocks and architectures [Huang et al.,
2016], [Xie et al., 2017], [Szegedy et al., 2016], [Szegedy et al., 2017], even
automatically learned architectures [Zoph et al., 2018], were developped.

These learned features are transferrable to many vision tasks, [Yosinski et
al., 2014], [Oquab et al., 2014] such as image classification, semantic segmen-
tation, object detection/recognition/localization, instance segmentation, see
Figure 2.1 [Dai et al., 2016]. [Donahue et al., 2014] and [He et al., 2014] use
neural networks for generic visual recongition. Recent works such as [Long
et al., 2015], [Noh et al., 2015], [Chen et al., 2018a] use deep neural networks
for semantic segmentation where the task is labeling each pixel in the image
with a category label. Forming two stage attentional cascades by integrat-
ing a region proposal network to base CNNs, region-based CNNs (R-CNNs)
are introduced [Girshick et al., 2014], and widely used for object detection
and localization as in Fast R-CNN [Girshick, 2015], Faster R-CNN [Ren et
al., 2015], Mask R-CNN [He et al., 2017]. Morover [Redmon et al., 2016]
and [Zhou et al., 2016] perform object localization without explicit region
proposals.
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Figure 2.1: Example of object detection, recognition, and instance segmentation per-
formed by [Dai et al., 2016].

Video Representations

Generic representations for video have received comparatively less atten-
tion. Following the advances in image representation, common encoding
techniques for video include pooling and attention over frame features.
[Venugopalan et al., 2014] represents videos by mean pooling over the frame
features that are obtained by VGG model. [Xu et al., 2015a] and [Yao et al.,
2015] are the early works using attention over frame features again using
one of the image CNN arhictectures for feature extraction. To learn and rep-
resent the long term dependencies in a more comprehensive way compared
to simple pooling methods, [Donahue et al., 2015], [Ranzato et al., 2014],
and [Venugopalan et al., 2015] propose applying neural recurrence between
video frames by feeding the CNN feautures of the video frames to a stack
of long term RNNs. They show the effectiveness of such models for vari-
ous video description tasks. Instead of using CNNs to extract frame features
and building on them, [Tran et al., 2015] introduces a simple, yet effective ap-
proach for spatiotemporal feature learning using deep 3-dimensional CNNs
trained on a large scale supervised video dataset. In addition to these pio-
neering wokrs, there is a lot of variants and extensions of the models above.

2.2.2 Representation of Textual Information

The initial successes of using deep neural networks to solve computer vision
problems have led to efforts to use deep neural networks for learning fea-
tures in other domains. Natural language processing (NLP) is one of these
major domains, where applied deep neural networks can alleviate the chal-
lenges due to inherent complexity in representing, learning and using lin-
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guistic knowledge which is often influenced by contextual and situational
real-world settings.

Word Representation

In sparse representation, words are represented by a one-hot representation,
which means each word has a unique symbolic ID. The dimension of this
symbollic representation for each word is equal to the size of the vocabulary
(number of words represented), where all but one dimension are equal to
0, and one is set to 1. This representation brings important shortcomings:
there is no notion of similarity between words, and memory problems due
to dimensionalty of the vocabulary. To overcome these shortcomings, words
are typically mapped to continuous vector space with a much lower dimen-
sion, which is called word embedding. Methods to generate this mapping
include dimensionality reduction on the word co-occurance matrix, proba-
bilistic models, knowledge-based models, and neural networks.

Although the use of neural networks for word embeddings was ini-
tially proposed by [Bengio et al., 2003], it became prominent in NLP by
word2vec [Mikolov et al., 2013a] and GloVe [Pennington et al., 2014], with
the recent and rapid expansion and affordability in computational power,
considering the computational complexity of these models. The word2vec
models are shallow two-layer neural networks that are trained reconstruct
linguistic contexts of the words. These models utilize a large corpus of text
as input and produces a vector space with each unique word in the corpus
assigned a corresponding vector in the space. The resulting word vectors,
or embeddings, are positioned such that words that share common contexts
in the corpus are located in close proximity to one another in the produced
vector space. These neural networks can utilize either of two model archi-
tectures to produce a distributed representation of words: continuous bag-
of-words (CBOW) or continuous skip-gram (SG). In the continuous bag-of-
words architecture, the model predicts the current word from a window of
surrounding context words. The order of context words does not influence
prediction (bag-of-words assumption). In the continuous skip-gram archi-
tecture, the model uses the current word to predict the surrounding win-
dow of context words. The skip-gram architecture, [Mikolov et al., 2013b],
weighs nearby context words more heavily than more distant context words.
Similar to word2vec model, GloVe [Pennington et al., 2014] presents an un-
supervised learning algorithm for obtaining distributive vector representa-
tions for words Training is performed on aggregated global word-word co-
occurrence statistics from a large text corpus. GloVe seeks to produce word
embeddings explicitly as a goal, in contrast to word2vec which produces
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these as by-product. Following these unsupervised distributive word repre-
sentation models, fastText [Bojanowski et al., 2017] and ELMo [Peters et al.,
2018] augments the state-of-the-art results even more. Regular neural net-
works, in comparison to word2vec and GloVe models, generally produce
task-specific embeddings with limitations in relation to their use elsewhere.
Therefore, we proceed with the universal word embeddings as mentioned
above.

Sentence Representation

Distributed word representations are often used in recurrent architectures in
order to model sentential semantics. Building upon the word embeddings,
there are many competing schemes for learning sentence embeddings: from
simple word-vector averaging baselines to novel supervised/unsupervised
methods. [Arora et al., 2016] and [Rücklé et al., 2018] provide simple but
strong baseline approaches for averaging a sentence’s word vectors. Be-
yond simple-averaging, skip-thoughts model [Kiros et al., 2015] proposes
a simple neural network model for learning a fixed-length representations
of sentences without labeled data using an objective function that adapts
the skip-gram model for words. The only supervision it uses is the order-
ing of the sentences in the training text corpus. The model consists of an
RNN-based encoder-decoder that is trained to reconstruct the surrounding
sentences from the current sentence. Developing on skip-thoughts, quick
thoughts model [Logeswaran and Lee, 2018] proposes a faster approach
in unsupervised way. Overturning the assumption that unsupervised ap-
proaches result in lower quality, InferSent [Conneau et al., 2017] presents
a simple architecture that learns supervised universal sentence representa-
tions using a large annotated corpus [Bowman et al., 2015]. The success
of initial supervised approaches posed a the question of which supervised
training task would learn sentence embeddings that better generalize on
downstream tasks. [Subramanian et al., 2018] and [Cer et al., 2018] are
the recent works that try to answer this question by multi-task learning.
Sequence-to-sequence (seq2seq) prediction problems for machine transla-
tion is another challenging direction where the number of items in the in-
put and output sequences can vary. To adress the seq2seq problems, initial
works [Cho et al., 2014], [Sutskever et al., 2014], [Bahdanau et al., 2014],
[Luong et al., 2015] drew the attention on RNN-based encoder-decoder ar-
chitectures mainly using LSTMs and variants. .
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2.3 Multimodal Tasks

2.3.1 Joint Reasoning of Text and Image/Video

With the increasing amount of available datasets, deep neural networks are
widely used for task-specific applications. Majority of these applications
represents images as a single feature vector from the top or mid-layer of
a pre-trained convolutional network. Popular research topics in joint rea-
soning and understanding of visual and textual information include image
captioning [Karpathy and Fei-Fei, 2015], [Mao et al., 2014], [Vinyals et al.,
2015b], [Xu et al., 2015a], retrieval of visual content [Lin et al., 2014], text
grounding in images [Fukui et al., 2016], [Plummer et al., 2017], [Rohrbach
et al., 2016], [Wang et al., 2018] and visual question answering [Antol et al.,
2015], [Sadeghi et al., 2015], [Xu and Saenko, 2016] and visual question an-
swering [Antol et al., 2015], [Sadeghi et al., 2015], [Xu and Saenko, 2016].
Most approaches along these lines can be classified as belonging to either (i)
joint language-visual embeddings or (ii) encoder-decoder architectures. The
joint vision-language embeddings facilitate image/video or caption/sentence
retrieval by learning to embed images/videos and sentences into the same
space [Pan et al., 2016], [Torabi et al., 2016], [Xu et al., 2017], [Xu et al., 2015b].
For example, [Hodosh et al., 2013] uses simple kernel CCA and in [Farhadi
et al., 2010] both images and sentences are mapped into a common seman-
tic meaning space defined by object-action-scene triplets. More recent meth-
ods directly minimize a pairwise ranking function between positive image-
caption pairs and contrastive (non-descriptive) negative pairs; various rank-
ing objective functions have been proposed including max-margin [Kiros et
al., 2014] and order-preserving losses [Vendrov et al., 2015]. The encoder-
decoder architectures [Torabi et al., 2016] are similar, but instead attempt to
encode images into the embedding space from which a sentence can be de-
coded. Applications of these approaches for video captioning and dense
video captioning (multiple sentences) were explored in [Pan et al., 2016] and
[Yu et al., 2016a] respectively, for video retrieval in [Donahue et al., 2015],
and for visual question answering in [Anderson et al., 2017].

2.3.2 Video-text Alignment

A common solution to the video-text alignment problem consists of two
stages that are performed separately: (1) the learning of a similarity met-
ric between elements in the sequences and (2) finding the optimal align-
ment between the sequences. Alignment techniques based on dynamic pro-
gramming, such as Dynamic Time Warping (DTW) [Berndt and Clifford,
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Figure 2.2: Types of sequence correspondence. Matching blocks in two sequences have
identical colors and numbers. (a) A one-to-one matching where the white
blocks do not match anything. (b) A one-to-many matching where one block
on the bottom sequence matches multiple blocks on the top. (c) A non-
monotonic situation where the matching does not always proceed strictly
from left to right due to the red-1 block after the yellow-2 on top.

1994] and Canonical Time Warping (CTW) [Zhou and De la Torre, 2016],
are widely popular. In all cases, these approaches are disadvantaged by the
separation of the two stages. Conceptually, learning a metric that directly
helps to optimize alignment should be beneficial. Further, methods with
first-order Markov assumptions take only limited local context into account,
but contextual information conducive to alignment may be scattered over
the entire sequence. For example, knowledge of the narrative structure of a
movie may help to align shots to their sentence descriptions.

Under the dynamic time warping framework, early works on video/image-
text alignment adopted a feature-rich approach, utilizing features from di-
alogs and subtitles [Cour et al., 2008], [Everingham et al., 2006], [Tapaswi et
al., 2014]. Adding on these features, [Sankar et al., 2009] uses location, face,
and speec recognition for script to TV show alignment. However, the suc-
cess of the method is mostly limited to TV series, since it needs pre-training
of the frequent locations within the video to divide scenes. With the ad-
vances in the object detection/recognition and text representation with neu-
ral networks, recent works [Kong et al., 2014], [Lin et al., 2014], [Malmaud et
al., 2015] used nouns and pronouns between text and objects in the scenes.
[Tapaswi et al., 2014] presents an approach to align plot synopses with the
corresponding shots with the guidance of subtitles and facial features from
characters. They extend the DTW algorithm to allow one-to-many match-
ing. Following the early work, [Tapaswi et al., 2015] presents another ex-
tension to allow non-monotonic matching in the alignment of book chapters
and video scenes. The above formulations make use of the Markov prop-
erty, which enables efficient solutions with dynamic programming (DP). At
the same time, the historic context being considered is limited. [Zhu et al.,
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End-to- Supports Visual-
end Historic Non- textual

Method Training Context monotonicity Granularity

Sankar[2009] DTW No Markov No fine
Zhu[2015] CRF Chain No Markov + CoS Yes medium
Tapaswi[2015] DP No Markov Yes coarse
Tapaswi[2014] DP No Markov No fine
Bojanowski[2015] QIP No global No fine
NeuMATCH Neural Yes high order Yes* fine

Table 2.1: Comparison of existing video-text alignment approaches. Prior methods are
based on DTW, CRF and Convex Quadratic Programming (CQP). Non-
monotonicity for NeuMATCH requires extensions in Section 4.1.3.

2015] develops neural approach for the computation of similarities between
videos and book chapters, using Skip-Thought vectors [Kiros et al., 2015].
In order to capture historic context, they use a convolutional network over
a similarity tensor. The alignment is formulated as a linear-chain Condi-
tional Random Field (CRF), which again yields efficient solution from DP.
Although this method considers historic context, the alignment and similar-
ity are still computed separately. [Bojanowski et al., 2015] formulates align-
ment as quadratic integer programming (QIP) and solve the relaxed prob-
lem. Weak supervision can be introduced as optimization constraints. This
method considers the global context, but relates the video and text features
by a linear transformation and does not consider non-monotonic alignment.
Table 2.1 compares key aspects of these methods as well as our novel method
NeuMATCH introduced in Chapter 4.

In summary, existing approaches perform the alignment in two separate
stages: (1) extracting visual and textual features in such a way as to have
a well defined metric, and (2) performing the alignment using this similarity
(and possibly additional side information).

Shot Segmentation

Aligning sentences with the corresponding video parts requires shot de-
tection and shot segmentation. For this, many of the automated shot-
change detection methods use color histograms [Nagasaka and Tanaka,
1992], [Hampapur et al., 1995], [Lee and Ip, 1995], [Drew et al., 1999] or vi-
sual descriptors [Qu et al., 2009], [Lankinen and Kämäräinen, 2013], [Apos-
tolidis and Mezaris, 2014]. These are mostly successful for shots that are
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bounded by camera cuts or abrupt visual transitions. In the context of video-
text alignment, distinguishing a semantic change through a single camera
shot is valuable because a semantic change in the video is usually associated
to a new description sentence within the script. Therefore we explore using
semantic features, namely high-level labels, to segment the full video into
“semantic shots” and in turn match the sentences with them, in Chapter 3.

2.3.3 Phrase Grounding in Images

Phrase grounding is defined as spatial localization of the natural language
phrase in an image, see Figure 2.3. While significant progress has been made
in phrase grounding, stemming from release of several benchmark datasets
[Kazemzadeh et al., 2014], [Krishna et al., 2017], [Mao et al., 2016], [Plum-
mer et al., 2015], and various neural algorithmic designs, the problem is far
from being solved. Most, if not all, existing phrase grounding models can
be categorized into two classes: attention-based [Xiao et al., 2017] or region-
embedding-based [Plummer et al., 2018], [Zhang et al., 2017]. In the former,
neural attention mechanisms are used to localize the phrases by, typically,
predicting a course-resolution mask (e.g., over the last convolutional layer
of VGG [Simonyan and Zisserman, 2014] or another CNN network [He et
al., 2016]). In the latter, the traditional object detection paradigm is followed
by first detecting proposal regions and then measuring a (typically learned)
similarity of each of these regions to the given language phrase. Importantly,
both of these classes of models consider grounding of individual phrases in-
dividually (or independently), lacking the ability to take into account visual
and, often, lingual context and/or reasoning that may exist among multiple
constituent phrases.

We give a brief summary of the most notable approaches that have been
proposed for phrase grounding over the years. Among the ranking-based
methods [Karpathy et al., 2014] proposes to align sentence fragments and
image regions in a subspace using a bi-directional loss, in addition to ensur-
ing that correct phrases for each training image get ranked above incorrect
ones, also ensures that for each phrase, the image described by that phrase
gets ranked above images described by other phrases. Modeling the prob-
lem as a classification task, [Rohrbach et al., 2016] proposes a method to
learn grounding in images by reconstructing a given phrase using an atten-
tion mechanism. They use a softmax function to estimate the posterior prob-
ability of a phrase over all available region proposals in an image. In a sub-
sequent work, [Fukui et al., 2016] uses multimodal compact bilinear (MCB)
pooling to represent multimodal features jointly which is then used to pre-
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Two children display a stone with 

dialect on it while people in the 

background are reading. 

Figure 2.3: Phrase grounding problem: given a sentence and an image, aligning phrases
to the corresponding image regions.

dict the best candidate bounding box in a similar way with the cost on high
memory requisite. [Wang et al., 2016a] proposes an embedding network that
learns a joint image-text embedding space using a symmetric distance func-
tion which is then used to score the bounding boxes to predict the closest
to the given phrase. This embedding network is then extended by introduc-
ing a similarity network which aggregates multimodal features into a single
vector rather than an explicit embedding space [Wang et al., 2018]. Different
from the precursors, [Hu et al., 2016] proposes a recurrent neural network
model to learn a scoring function that takes the text query, the candidate re-
gions, their spatial configurations, and global scene-level context as input to
output scores for the candidate regions using local image descriptors.

[Plummer et al., 2017] perform global inference using a wide range of
image-text constraints derived from attributes, verbs, prepositions, and pro-
nouns. [Yeh et al., 2017] uses word priors with the combination of seg-
mentation masks, geometric features, and detection scores to select the can-
didate bounding box. [Wang et al., 2016b] proposes a structured match-
ing method which attempts to reflect the semantic relation of phrases onto
the visual relations of their corresponding regions without considering the
global sentence-level context. [Plummer et al., 2018] proposes to use multi-
ple text-conditioned embeddings in a single end-to-end model with impres-
sive results on Flickr30K Entities dataset [Plummer et al., 2015], which can
be added onto the prior methods.

These existing works ground each phrase independently, ignoring the se-
mantic and spatial relations among the phrases and corresponding regions
respectively. A notable exception is the approach of [Chen et al., 2017],
where a query-guided regression network, designed to regress the rank
of candidates phrase-region pairings, is proposed along with a reinforce-
ment learning context policy network for contextual refinement of this rank-
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ing. For referring expression comprehension, which is closely related to phrase
grounding problem, [Yu et al., 2016b], [Nagaraja et al., 2016], [Yu et al., 2018]
introduce taking account of context. Regarding visual data, they consider lo-
cal context provided by the surrounding objects only. In addition, [Nagaraja
et al., 2016], [Yu et al., 2018] use textual context with an explicit structure,
based on the assumption that “referring expressions mention an object in re-
lation with some other object”. On the other hand, our method represents vi-
sual and textual context in a less structured, but more global, manner which
alleviates more explicit assumptions made by other methods. Importantly,
unlike [Yu et al., 2016b], [Nagaraja et al., 2016], [Yu et al., 2018], it makes use
of prior matches through a sequential decision process. In summary, exist-
ing approaches perform grounding with two constraints: a region should be
matched to no more than one phrase, or a phrase should be matched to no
more than one region. Furthermore, most of these approaches consider the
local similarities rather taking account both global image-level and sentence-
level context.
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C H A P T E R 3
Label-Based Automatic Alignment of
Video and Text

Audio description consists of an audio narration track where the narrator
describes what is happening in the video. It allows visually impaired people
to follow movies or other types of videos. However the number of movies
that provide it is considerably low, and its preparation is particularly time
consuming. On the other hand, scripts of numerous movies are available
online although they generally are plain text sentences. Our goal is to tem-
porally align the script sentences to the corresponding shots in the video, i.e.
obtain the timing information of each sentence. These sentences can then be
converted to audio description by an automatic speech synthesizer or can be
read by a human describer. This would provide a wider range of movies to
visually impaired people.

Several additional applications could benefit from the alignment of video
with text. For example, the resulting correspondences of video frames and
sentences can be used to improve image/video understanding and auto-
matic caption generation by forming a learning corpus. Video-text align-
ment also enables text-based video retrieval since searching for a part of the
video could be achieved via a simple text search.

In this chapter, we address temporal alignment of video frames with their
descriptive sentences to obtain precise timestamps of the sentences with
minimal manual intervention. A representative result is shown in Fig. 3.1.
The videos are typically movies or some parts of movies with duration of 10
to 20 minutes. We do not assume any pre-segmentation or shot threading
of the video. We start by obtaining the high-level labels of the video frames
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(e.g., “car”, “walking”, “street”) with deep learning techniques [Jia et al.,
2014] and use these labels to group the video frames into semantic shots.
In this way, each shot contains relatively different semantics knowing that
the information given by the different sentences is relatively different. Then
we formulate the problem of text-video alignment as sentence-shot align-
ment by finding the similarity between the high-level labels in shots, and the
words of sentences. This similarity is computed using the vectorial features
of words and word-to-word distances. Our final alignment is formulated
in a graph based approach computing the minimum distance path from the
first to the last sentence-shot pair. The main contributions of the proposed
approach are:

• We align human-written sentences (such as scripts and audio de-
scription texts) with the complete set of shots that constitutes the
video. Our approach does not require dialogues, subtitles, and face
recognition. Our approach directly works on the raw video, i.e. no
presegmentation or cut is needed.

• We automatically segment the input video into shots by using frame
based high-level semantics so that a semantic change in a continuous
camera shot can be detected. We refer this semantic change as seman-
tic cut through the chapter. We also introduce a refinement process
to optimize the semantic cuts so that they tend to correspond to one
sentence each.

3.1 Algorithm

3.1.1 Overview

In this section, we present our approach for aligning a video with its nar-
rative sentences, which results in a time-stamp for each sentence [Dogan et
al., 2016]. To have an accurate alignment, the text input should provide at
least one sentence for each shot in the movie. By the term shot we refer to a
series of frames that runs for an uninterrupted period of time with the same
semantics, not necessarily defined by camera cuts. An example of text input
for our algorithm can be a movie script (dialogues not required). Another
example would be a transcribed audio description of the movie containing
rich descriptions for visually impaired people. We assume that the sentences
are in the same temporal order as the movie, like movie scripts and audio
descriptions. Our approach is designed for videos having a dynamic plot
with different scenes and actions as in the typical Hollywood movies. A
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Figure 3.2: Block diagram of our framework.

counter-example is a biographical documentary film, such as an interview,
where a person speaks to the camera during the whole duration of the video,
i.e. without any changes of scene or action.

We start by obtaining the high-level labels for all the video frames in the
form of words, as well as their confidence scores, using deep learning tech-
niques [Jia et al., 2014]. Then we smooth these through the time domain to
obtain temporal coherency. The temporally coherent results are used to de-
tect the semantic changes in the video, which correspond to the beginnings
and ends of the shots. Then, the labels and their confidence scores of the
frames of each detected shot are grouped together to represent the shots. We
then calculate a similarity score for each shot-sentence pair using the labels
from shots and sentence words. This provides a cost matrix, and we then
compute the minimum distance path assuming the matching of the first and
last sentence-shot pairs are given. The nodes of the calculated path provide
the matching of the sentence-shot pairs. This results in the annotation of
each input sentence with the time-stamp of the matched shot. An overview
on the main block of our framework is shown in Figure 3.2

3.1.2 High-Level Features and Temporal Coherency

We start by obtaining the high-level features (labels) of each frame of the
input video. Each video frame is processed independently and thus can be
processed in parallel. These high-level labels are in the form of text words
and typically refer to an object (e.g. “car”), a scene (e.g. “street”) or an
action (e.g. “walking”) visible in the video frame. We automatically obtain
these labels, as well as their confidence score, by the deep learning based
cloud service Clarifai1 or Caffe framework [Jia et al., 2014] with pre-trained

1https://www.clarifai.com/
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Figure 3.3: Representative example of high-level labels and their confidence scores for
a given input video frame. Top: the input frame i from the movie Lucid
Dreams of Gabriel. Bottom: the top 10 labels (in terms of confidence, out of
1000) and their confidence scores. The full confidence score vector (over all
the labels) at frame i is written wi.

models for its CNN architecture. As a result, for each video frame i we
obtain a feature vector wi whose number of entries is the total number of
labels (around 1000) and the entry values are the confidence scores for the
label corresponding to that entry index. A representative result vector for a
frame from the movie Lucid Dreams of Gabriel is shown in Fig. 3.3.

By concatenating these column vectors wi over time, we obtain a matrix W
containing the confidence scores of the labels through time. A representa-
tive example is shown in Fig. 3.4-top. Each row of this matrix represents
the scores of the label corresponding to that row index (e.g., “car”) through
time. If the entries of this row are all zero or very small, it means the cor-
responding label is not seen in the frames, e.g., no “car” object is visible in
the entire video. The values in the matrix rows are noisy due to motion blur,
occlusions, lighting change, and all the effects that decrease the performance
of the automatic object/scene recognition tools. Therefore the obtained ma-
trix requires smoothing in the temporal axis (x-axis) to provide temporal
coherency between the neighboring frames. We aim to find the labels that
have high confidence scores while eliminating the labels that are not tempo-
rally consistent. We find the labels by a graph based shortest path approach.
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We empirically set N to 10 and observed that higher values did not signif-
icantly change the final alignment results. We refer to the set of labels, one
per frame through time, as a “path” q through the cost matrix, and our aim
is to find the N shortest paths which will give us the N most dominant and
temporally coherent labels for each frame. For this, we apply a shortest path
algorithm N times in the following way. To find the first shortest path q1,
we consider the matrix W as a directed graph where the nodes are each
<frame,label> pair and the edges are defined using the entries of the matrix
W (see Fig. 3.4). The weight of the edge from node (i, l) to node (i′, l′) is
defined as

φ
(
(i, l), (i′, l′)

)
=

{
λ(1− wi′(l′)) + ϕ(l, l′) if i′ = i + 1

∞ else
(3.1)

where ϕ(l, l′) returns 1 when l 6= l′ and 0 otherwise, and where wi(l) is the
score of the label indexed by l at frame i, i.e. node (i, l). The scaling factor
λ sets the desired smoothness by penalizing the change of the label through
the path and we set it to λ = f ramerate

10 , where f ramerate is the frame rate
of the input video (usually 24fps). We apply Dijkstra’s algorithm [Dijkstra,
1959] to obtain the minimum distance path solution. After finding the first
path, we remove the edges pointing to the nodes of the calculated path so
that those nodes cannot be selected for the future paths. We repeat this pro-
cedure to find the N shortest paths, that is to say the N most dominant labels.
After the calculation of paths q1, ..., qN, the scores of the labels on the paths
are smoothed with weighted moving average filter. A resulting temporally
coherent matrix can be seen in Fig. 3.4-bottom. For writing simplicity, we
still name this processed matrix as W.

3.1.3 Shot Segmentation

So far, we explained how to obtain the temporally coherent labels and scores
per frame stored in W. We now aim to segment the whole input video into
shots by processing the matrix W. For a frame to be the beginning of a
new shot, it has to be different than the past neighboring frame and similar
to the future neighboring frame. Since we already have applied temporal
filtering, the scores in W carry temporal information from neighborhood,
not just from the surrounding frames. We calculate a score Si that represents
the score of frame i to be the beginning of a new shot:

Si = |DC(wi, wi−1)|(1− |DC(wi, wi+1)|) (3.2)
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Figure 3.4: Top: concatenated label vectors wi. The height of this matrix depends on the
number of unique labels detected through the whole video. Bottom: Tempo-
rally coherent result after path calculations where noisy labels are removed
or smoothed.

where wi is the vector of label scores of the frame i and DC computes the
cosine distance of the input vectors.

Then we find the top K local maxima among all Si, where K is the number
of sentences in the input text. The frames corresponding to these maxima
are our initial shot beginnings. It is important to note that we do not define
shots by camera cuts. As discussed earlier, we refer to “shot” as a sequence
of consecutive frames that have a similar semantic. Other than camera cuts,
semantic cuts are considered as “shots” as well. For example, a continuous
panning shot might have two different semantics with a soft border around
the middle of the pan. This panning shot needs to be segmented into two
shots since there might be two different sentences describing it due to se-
mantic change. Therefore our aim is not finding the camera cuts, but opti-

31



Label-Based Automatic Alignment of Video and Text

Figure 3.5: Cost matrix whose elements cij are computed using similarity score between
shot i (y-axis) and sentence j (x-axis).

mizing (and thus detecting) the semantic cuts -including camera cuts- that
will match the sentences in the best way.

3.1.4 Optimal Alignment

Cost matrix

In the previous sections, we have automatically segmented the input video
into shots according to their semantic contents and their smoothed features.
As the basis of our method, we need a robust estimate of the alignment qual-
ity for all the shot-sentence pairs. We observe that a shot and a sentence are
more likely to be alignable together if the words in this sentence and the la-
bels of this shot are semantically similar. Using this concept, we compute
a similarity value vij between each shot i and sentence j. Subsequently, we
transform these values into a cost matrix C ∈ RK×K, in which each entry cij
specifies a cost for aligning a pair of shot and sentence.

We represent the shot labels and the sentence words using GloVe word vec-
tor descriptors [Pennington et al., 2014] of dimension b = 300. For each de-
tected shot, we consider the set of all the N labels and scores found in all the
frames of the shot. We denote the l-th label of the i-th shot by its confidence
score fi(l) and its GloVe vector descriptor di(l) ∈ Rb where l ∈ [1...N]. Simi-
larly, we denote the m-th word of the j-th sentence with its GloVe descriptor
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dj(m) ∈ Rb. The similarity between the label l and the word with index
(j, m) is calculated as

zij(l, m) = |di(l)− dj(m)| (3.3)

which is modified by Lorentzian stopping function as

yij(l, m) =

(
1 +

∣∣∣∣zij(l, m)

σ

∣∣∣∣α
)−1

(3.4)

where α = 3 and σ = 0.5 for all the experiments shown in this chapter.

Finally the similarity values yij(l, m) are used to compute the cost matrix C
in which low values indicate shot-sentence pairs that are likely to be a good
match. The entries of the cost matrix C′ are computed as

c′ij = 1− 1
M

M

∑
m=1

fi(l)max
l∈N

yij(l, m) (3.5)

Lastly, we obtain the values of the cost matrix C by scaling the values of
C′ with an oriented 2D Gaussian factor which penalizes the elements in the
upper right and lower left corner. In this way we incorporate the global
likelihood of being at any node in the graph to our cost matrix considering
passing through the nodes at the top-right or bottom-left corners are very
unlikely.

cij = c′ij exp
(
− (i− j)2

2K2

)
(3.6)

An example of cost matrix for each pair of sentences and computed shots is
available in Fig. 3.5.

Path Calculation

So far we have described mappings between the shots and sentences. We
now explain how to find a discrete mapping p : R→ R2 in our cost matrix:
for a time t, p(t) = (i, j) means that the shot i corresponds to the sentence
j. We refer to the discrete representation of a mapping p as a path through
the cost matrix C, and consider a graph based solution to find the minimum
distance path. This path will provide the optimum shot-sentence pairings.
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Figure 3.6: Left: Possible oriented connections (in orange) between the nodes where the
red node is considered the source and the green node is the sink. Right: An
example path result from the source to the sink. (See text for details.)

We compute the cost of a path p as the average of all the entries in the cost
matrix that the path goes through:

ψ(p) =
1
T

T

∑
t=1

C(p(t)) (3.7)

where T denotes the number of steps in the path.

To find the path with minimum cost, we consider the cost matrix as a di-
rected graph where a path is defined as the set of connected nodes. We
identify a node by its position (i, j) and edge as an ordered pair of nodes.
Since we assume the input text sentences are in the same temporal order as
the video, we only allow forward motion. In other words each node (i, j)
is connected to its three neighbors (i, j + 1), (i + 1, j + 1), and (i + 1, j). The
weight of each edge is the value of the cost matrix at the node that the edge
points to. An example graph of the possible connections is shown in Fig. 3.6.

We use dynamic programming to find the minimum distance path [Sakoe
and Chiba, 1978]. Computing the shortest path from the first node (1, 1) to
the last node (K, K) provides us the initial result for the shot-sentence pair-
ings. An alignment result is shown in Fig. 3.7. The pink plot on the graph
represents the ground truth alignment. The black plot shows the regions
where our result is different than the ground truth. It is important to note
that the y-axis represents the frames, not the shots. This is why paths have
discrete vertical parts which corresponds to the set of frames corresponding
to a shot.
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Refinement

As mentioned earlier, the sentences in the input text description do not have
to correspond to the camera cuts. In addition, the result of the shot segmen-
tation does not have to give the perfect shots for the sentences. This may
cause the matching of a shot with more than one sentence (horizontal parts
in the path) or matching of a sentence with more than one shot (vertical
parts in the path). Therefore, the alignment that is obtained by the current
cost matrix may not be the optimum.

We compute the optimum alignment by modifying the cost matrix in an
iterative refinement procedure. Starting with the current optimum path, we
combine the shots that are matched to the same sentence into a single shot.
Conversely we segment the shot that is assigned to more than one sentence
for another round. The segmentation of this shot is conducted in a way
similar to Sec. 3.1.3. We find r − 1 local maxima among Si in Eq. 3.2 in the
corresponding region of frames during this shot, where r is the number of
resulting sentences matched with it. In this way we obtain r shots that can
be assigned to these r different sentences.

For example, the shots corresponding to the pink nodes (same column) on
the path in Fig. 3.6 will be combined together, while the shot corresponding
to the blue nodes (same row) will be split into two shots. After this refine-
ment, we repeat all the steps starting from Sec. 3.1.4 to find the new optimal
path. In our experiments, we observed that the result converges in less than
4 iterations. The effect of this refinement step is shown in the cost matrices
of Fig. 3.7.
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Figure 3.7: The alignment result automatically obtained by our approach for the full
movie (11 minutes) Lucid Dreams of Gabriel with its audio description sen-
tences. Top: The initial alignment result using the initial shot segmentation
results. The alignment of a shot to two consecutive sentences is seen in the
close-up view (red box). Bottom: Our final alignment result after the refine-
ment process. The close-up view shows that our result exactly matches with
the ground truth alignment.
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Figure 3.8: Two consecutive shots (one frame of each shot is shown here) separated by a
sharp camera cut and their aligned sentences, i.e. the nodes for these shot-
sentence pairs are on the minimum distance path of the cost matrix.

3.2 Applications

In this section we demonstrate different applications and the results ob-
tained by our algorithm. Please refer to our project webpage for video re-
sults.

3.2.1 Video-sentence alignment.

Aligning descriptive sentences to video in an automatic way can provide
rich datasets for modeling video contents. The resulting video-sentence
alignments can be used as training data to learn models for the task of auto-
matic generation of video descriptions. An example of video-sentence align-
ment obtained by our algorithm is available in Fig. 3.8. It shows two con-
secutive shots separated by a sharp camera cut and the automatic alignment
of the corresponding sentences. The sentences are marked automatically by
the timestamps that correspond to the very first frame of the shots by our
algorithm since the beginning of these shots are captured perfectly.

3.2.2 Shot segmentation.

Shot segmentation is used to split up a video into basic temporal units called
shots. These units have consecutive frames taken contiguously by a single
camera, representing a continuous action in time and space. Shot segmen-
tation is an important step for various tasks such as automated indexing,
content-based video retrieval and video summarization. While detecting
sharp camera cuts is not a difficult task (as shown in Fig. 3.8 for a sharp
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Figure 3.9: A continuous camera shot with two semantic shots aligned with the sen-
tences from its audio description. Top row: She opens the car door and gets
in. Bottom row: She gives the chocolate to Gabriel that is in the car. (from
Lucid Dreams of Gabriel)

camera cut), detecting only the camera cuts may not be sufficient for video-
text alignment or other video retrieval tasks. The target material can have
different types of separation. For example two sentences can take place in
the same scene with a continuous camera shot while representing two differ-
ent semantic information. A representative example of such a case is shown
in Fig. 3.9 where the shot starts by a woman getting into the car and ends
with a child having a chocolate bar. Although this scene is shot continu-
ously by a panning camera (i.e. not camera cut), it represents two different
semantics which are expressed by two sentences in the audio description.
Our joint segmentation approach is able to successfully detect the semantic
cuts indicated by different sentences in the text input.

3.2.3 Image-sentence alignment.

With the increasing trend of social media, a growing number of individu-
als share their own experiences as a blog post, which is in the form of text
with highlighting images and videos, over a multitude of Web platforms.
The visuals in such a blog are usually distributed all around the text without
a clear connection or caption that is linking it to the text story. Therefore,
aligning these visuals to their corresponding sentence in the blog in an auto-
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If you’re after the best mantı (Turkish ravioli) in town,
look no further than Salkım Sogut. The friendly staff
serve the handmade pasta in generous portions and
also make top-notch hünkar beğendi (lamb stew over
eggplant purée). Down the street, Rulo prepares
affordable and filling vegetarian meals. For just 6 TL
(£1.5) you can get a huge wrap loaded with falafel,
chickpeas, and every imaginable vegetable.

As you continue walking downhill to the seaside (sahil),
the canine population changes from mangy sunbathing
street dogs to small purebreds with their humans in
tow. Conversely, the street cats get fatter and lazier.
The seaside offers a great view of the European
peninsula, the Princes Islands, and the Sea of Marmara.
A favorite haunt for all Kadıkonians, you’ll see walkers,
cyclists, runners, and rollerbladers who just won’t let
the 90s die. The parks along the coast have tennis and
basketball courts, playgrounds and plenty of space for
picnics or just lounging in the grass.

. . .

. . .

Figure 3.10: Aligned image-sentence pairs in a blog post.

matic way is a subsidiary step for the completeness of the blog. An example
result computed by our method is shown in Figure 3.10.

3.3 Experimental Evaluation

We evaluated the proposed alignment method on a dataset of 12 videos with
the sentences from their scripts or audio descriptions, including continuous
long sections from the movies Lucid Dreams of Gabriel, The Ninth Gate, The
Wolf of Wall Street and Yes Man. The duration of the videos in the dataset
ranges from 10 to 20 minutes with 9.51 sentences per minute on average.
More examples on video-text alignment by our method are shown at the
end of this chapter in Figure 3.13-3.15.

We now present the evaluation of our proposed alignment approach with
respect to the manually obtained ground truth data. We measure the align-
ment accuracy by computing the temporal error between the ground truth
timestamps of the sentences and the timestamps obtained by our approach.
Fig. 3.11 shows the distribution of the temporal error. It shows that 88.64% of
the sentences have a temporal error of 0 second, i.e. our timestamps exactly
correspond to the ground truth timestamps. This demonstrates the accuracy
of our alignment approach.

We now present the evaluation of our proposed shot segmentation approach
with respect to the manually obtained ground truth shot segmentation. We
consider two metrics again. Firstly we measure the number of shots de-
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Figure 3.11: Distribution of the absolute error in seconds on the timestamps obtained by
our algorithm with respect to the ground truth timestamps. 88.64% of the
sentences are matched perfectly to the first frame of the corresponding shot.

tected by our approach over the total number of ground truth shots in the
movie. Secondly, we measure the number of correctly detected shots by our
approach over all detected shots, which includes false positives. The evalu-
ation is shown in Fig. 3.12.

Our method has some limitations. First, in order to correctly align the frames
with the corresponding sentences, the image labeling tools (e.g. object/scene
recognition) should provide sufficiently accurate labels and scores. The ac-
curacy of our method can directly benefit from the next advances of the im-
age labeling tools.

Another limitation is that our method is not designed for videos that mostly
consist of close-up shots (e.g. interview videos) rather than scenes, actions
and motion. Such video frames would not result in sufficient object/scene
labels due to the lack of action and scene changes. We focused on more
general movies because we believe they are more common. However, our
method is suitable for a simple integration of dialogue-caption alignment
approaches used in [Tapaswi et al., 2015], [Zhu et al., 2015] that could be
included as another variable in our global cost matrix. In future work, this
integration could improve the results in videos that lack narrative sentences
during dialogues.

A future application of our approach can be segmentation and structuring
of videos that will allow important post-applications in content-based me-
dia analysis. Clustering of video units like shots and scenes allows unsuper-
vised or semi-supervised content organization and has direct applications
in browsing in massive data sources. Given the framewise high-level labels
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Figure 3.12: Evaluation of our shot segmentation method. 95.97% of the ground truth
camera shots are detected by our method. 90.15% of the shots detected by
our algorithm correspond to the ground truth camera cuts. Meanwhile,
only 3.03% of the shots detected by our approach are false positives.

and timestamps of shot intervals of a video obtained by our algorithm, we
can easily cluster these shots. Treating the rows of the cost matrix as the fea-
tures of the segmented shots, one can simply apply a clustering method to
obtain shot clusters.

In future work, it would be interesting to extend the proposed approach to
cope with different types of media materials by bringing them into a com-
mon representation. For example a storyboard with drawing and sketches
could be aligned with the corresponding shots in the movie using the high-
level labels and their vector descriptors in an analogous way.

3.4 Summary

In this chapter, we considered videos (e.g., Hollywood movies) and their
accompanying natural language descriptions in the form of narrative sen-
tences (e.g., movie scripts without timestamps). We proposed a method for
temporally aligning the video frames with the sentences using both visual
and textual information, which provides automatic timestamps for each nar-
rative sentence. We computed the similarity between both types of informa-
tion using vectorial descriptors and propose to cast this alignment task as a
matching problem that we solve via dynamic programming. Our approach
is simple to implement, highly efficient and does not require the presence
of frequent dialogues, subtitles, and character face recognition. Experiments
on various movies demonstrated that our method can successfully align the
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movie script sentences with the video frames of movies which allows detect-
ing semantic changes in the video data. Currently, our method relies on the
semtic changes of scenes and actions, which does not allow long pauses and
dialogues. As a future direction, the method can be improved even more
with and integrated dialogue-caption alignment method, which will avoid
performance degredation caused by static scenes with dialogues.

......

A man in sitting on a bed and 

playing with his bead.

He looks towards the window and sees outside behind the bars. 

continuous shot
semantic cut

Gabriel plays with his 

bead in the car.

Figure 3.13: Aligned video-sentence pairs from the movie The Lucid Dreams of Gabriel.

......

A small group of Italian 

sailors cheer them on. Jordan watches as he takes a sip from his glass.

Dancing continues.
He glances out a porthole.

...

He focuses through the porthole.

There are distant lights of a plane making its way across the night sky.

The plane explodes, a tiny flash of light.

He looks bewildered.

continuous shot
semantic cut

Figure 3.14: Aligned video-sentence pairs from the movie The Wolf of Wall Street.
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...

......

......

He turns her and she is strangled with her scarf, her 

cheeks are blue, her eyes and tongue are protruding.
The wheelchair takes of and heads for the 

double door which opens to the flames.

He looks after her. He runs towards the door 

and the wheelchair is in fire. 
He collects the papers on the table.

He takes his jacket and bag, and tries 

to run away from the burning room

He struggles in smoke and flames.

He tries to save the book from fire.

Figure 3.15: Aligned video-sentence pairs from the movie The Ninth Gate.
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C H A P T E R 4
Neural Matching of Video and Text

In this chapter, we focus on aligning heterogeneous sequences with com-
plex correspondences without using dynamic programming (DP) based ap-
proaches. Heterogeneity refers to the lack of an obvious surface matching (a
literal similarity metric between elements of the sequences). As shown as an
example in the previous chapter, in the simple form, DTW/DP can be under-
stood as finding the shortest path where the edge costs are computed with
the similarity metric, so the decision is Markov. These approaches are disad-
vantaged by the separation of two stages, and limited for the alignment of
non-monotonic sequences that find diverse applications in molecular biol-
ogy [Löytynoja and Goldman, 2005], natural language processing [Barzilay
and Lee, 2003], historic linguistics [Prokić et al., 2009], and computer vi-
sion [Caspi and Irani, 2000].

To address these limitations, we propose an end-to-end differentiable neural
architecture, which we call NeuMATCH [Dogan et al., 2018], that considers
more than the local similarities for heterogeneous sequence alignment. In-
spired by LSTM-powered shift-reduce language parsers [Dyer et al., 2015;
Honnibal and Johnson, 2015], we augment LSTM networks with stack op-
erations, such as pop and push. The advantage of this setup is that the most
relevant video clips, sentences, and historic records are always positioned
closest to the prediction.

The NeuMATCH architecture represents the current state of the workspace
using four Long Short-term Memory (LSTM) chains: two for the partially
aligned sequences, one for the matched content, and one for historical align-
ment decisions. The four recurrent LSTM networks collectively capture the
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Elrond addresses the council.

Frodo steps forward and moves towards a stone plinth.

He places the ring on the plinth and returns to his seat.

Boromir turns sharply.
Frodo looks at someone questioningly.

null null

. . .

. . .

Figure 4.1: An example alignment between clip sequence and text sequence (from the
dataset HM-2 in Section 4.2).

decision context, which is then classified into one of the available alignment
actions. Compared to the traditional two-stage solution, the network can be
optimized end-to-end. In addition, the previously matched content and the
decision history inform future alignment decisions in a non-Markov man-
ner. For example, if we match a person’s face with the name Frodo at the
beginning of a movie, we should be able to identify the same person again
later (Figure 4.1). Alternatively, if the input sequences are sampled at differ-
ent rates (e.g., every third video clip is matched to text), the decision history
can help to discover and exploit such regularities.

Although the proposed framework can be applied to different types of se-
quential data, in this chapter, we focus on the alignment of video and textual
sequences, especially those containing narrative content like movies. The
reason for choosing narrative content is that it is among the most challeng-
ing for computational understanding due to a multitude of causal and tem-
poral interactions between events [Sheinfeld et al., 2016]. Disambiguation
is difficult with needed contextual information positioned far apart. Thus,
narrative contents make an ideal application and testbed for alignment al-
gorithms.

The contributions of this chapter are two-fold. First, we propose a novel end-
to-end neural framework for heterogeneous multi-sequence alignment. Un-
like prior methods, our architecture is able to take into account rich context
when making alignment decisions. Extensive experiments illustrate that the
framework significantly outperforms traditional baselines in accuracy. Sec-
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ond, we annotate a new dataset1 containing movie summary videos and
share it with the research community.

4.1 Algorithm

4.1.1 Overview

We now present NeuMATCH, a neural architecture for temporal align-
ment of heterogeneous sequences. While the network is general, for this
thesis we focus specifically on the video and textual sequence alignment.
The video sequence consists of a number of consecutive video clips V =
{Vi}i=1...N. The textual sequence consists a number of consecutive sentences
S = {Si}i=1...M. Our task is to align these two sequences by, for example,
finding a function π that maps an index of the video segment to the cor-
responding sentence: 〈Vi, Sπ(i)〉. An example input for our algorithm can
be a movie segmented into individual shots and the accompanying movie
script describing the scenes and actions, which are broken down into sen-
tences (Figure 4.1). The video segmentation could be achieved using any
shot boundary detection algorithm; NeuMATCH can handle one-to-many
matching caused by over-segmentation.

We observe that the most difficult sequence alignment problems exhibit the
following characteristics. First, heterogeneous surface forms, such as video
and text, can conceal the true similarity structure, which suggests a satis-
factory understanding of the entire content may be necessary for alignment.
Second, difficult problems contain complex correspondence like many-to-
one matching and unmatched content, which the framework should accom-
modate. Third, contextual information that are needed for learning the sim-
ilarity metric are scattered over the entire sequence. Thus, it is important
to consider the history and the future when making the alignment decision
and to create an end-to-end network where gradient from alignment deci-
sions can inform content understanding and similarity metric learning.

The NeuMATCH framework copes with these challenges by explicitly rep-
resenting the state of the entire workspace, including the partially matched
input sequences and historic alignment decisions. The representation em-
ploys four LSTM recurrent networks, including the input video sequence
(Video Stack), the input textual sequence (Text Stack), previous alignment
actions (Action Stack) as well as previous alignments themselves (Matched
Stack). Figure 4.2 shows the NeuMATCH architecture. The final hidden

1https://github.com/pelindogan/NeuMATCH
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states can be considered to encode information throughout the sequences.
The concatenated hidden states are classified into one of the available align-
ment actions, which subsequently modifies the content of these LSTM net-
works.

We learn a function that maps the state of workspace Ψt to an alignment ac-
tion At at every time step t. The action At manipulates the content of the
LSTM networks, resulting in a new state Ψt+1. Executing a complete se-
quence of actions produces an alignment of the input. The reader may rec-
ognize the similarity with policy gradient methods [Sutton and Barto, 2017].
As the correct action sequence is unique in most cases and can be easily in-
ferred from the ground-truth labels, in this chapter, we adopt a supervised
learning approach.

The alignment actions may be seen as stack operations because they either
remove or insert an element at the first position of the LSTM network (except
for non-monotonic matching discussed in Appendix 4.1.3). For example,
elements at the first position can be removed (popped) or matched. When two
elements are matched, they are removed from the input stacks and stored in
the Matched Stack.

4.1.2 Language and Visual Encoders

We first create encoders for each video clip and each sentence. After that,
we perform an optional pre-training step to jointly embed the encoded
video clips and sentences into the same space. While the pre-training step
produces a good initialization, the entire framework is trained end-to-end,
which allows the similarity metric to be specifically optimized for the align-
ment task.

Video Encoder. We extract features using the activation of the first fully
connected layer in the VGG-16 network [Simonyan and Zisserman, 2014],
which produces a 4096-dim vector per frame. As each clip is relatively short
and homogeneous, we perform mean pooling over all frames in the video,
yielding a feature vector for the entire clip. This vector is transformed with
three fully connected layers using the ReLU activation function, resulting in
encoded video vector vi for the ith clip.

Sentence Encoder. The input text is parsed into sentences S1 . . . SM, each
of which contains a sequence of words. We transform each unique word
into an embedding vector pre-trained using GloVe [Pennington et al., 2014].
The entire sentence is then encoded using a 2-layer LSTM recurrent network,
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where the hidden state of the first layer, h(1)t , is fed to the second layer:

h(1)t , c(1)t = LSTM(xt, h(1)t−1, c(1)t−1) (4.1a)

h(2)t , c(2)t = LSTM(h(1)t , h(2)t−1, c(2)t−1) , (4.1b)

where c(1)t and c(2)t are the memory cells for the two layers, respectively; xt
is the word embedding for time step t. The sentence is represented as the
vector obtained by the transformation of the last hidden state h(2)t by three
fully connected layers using ReLU activation function.

Encoding Alignment and Pre-training

Due to the complexity of the video and textual encoders, we opt for pre-
training that produces a good initialization for subsequent end-to-end train-
ing. For a ground-truth pair (Vi, Si), we adopt an asymmetric similarity pro-
posed by [Vendrov et al., 2015]

F(vi, si) = −||max(0, vi − si)||2 . (4.2)

This similarity function takes the maximum value 0, when si is positioned
to the upper right of vi in the vector space. That is, ∀j, si,j ≥ vi,j. When that
condition is not satisfied, the similarity decreases. In [Vendrov et al., 2015],
this relative spatial position defines an entailment relation where vi entails
si. Here the intuition is that the video typically contains more information
than being described in the text, so we may consider the text as entailed by
the video.

We adopt the following ranking loss objective by randomly sampling a con-
trastive video clip V′ and a contrastive sentence S′ for every ground truth
pair. Minimizing the loss function maintains that the similarity of the con-
trastive pair is below true pair by at least the margin α.

L = ∑
i

(
Ev′ 6=vi

max
{

0, α− F(vi, si) + F(v′, si)
}

+Es′ 6=si
max

{
0, α− F(vi, si) + F(vi, s′)

} ) (4.3)

Note the expectations are approximated by sampling.
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4.1.3 The Alignment Network

With the similarity metric between video and text acquired by pre-training,
a naive approach for alignment is to maximize the collective similarity over
the matched video clips and sentences. However, doing so ignores the tem-
poral structures of the two sequences and can lead to degraded performance.
NeuMATCH considers the history and the future by encoding input se-
quences and decision history with LSTM networks.

The central idea is that we can store historic information and the future por-
tion of the sequences to be matched in LSTM networks. The final hidden
state of the network can be considered to encode information throughout the
sequence. The concatenated hidden states are classified into one of the avail-
able alignment actions, which subsequently modifies the content of these
LSTM networks. We first introduce the four LSTM stacks used by the Neu-
MATCH framework. The complete framework is illustrated in Figure 4.2.

LSTM Stacks

At time step t, the first stack contains the sequence of video clips yet to be
processed Vt, Vt+1, . . . , VN. The direction of the LSTM goes from VN to Vt,
which allows the information to flow from the future clips to the current
clip. We refer to this LSTM network as the video stack and denote its hidden
state as hV

t . Similarly, the text stack contains the sentence sequence yet to be
processed: St, St+1, . . . , SM. Its hidden state is hS

t .

The third stack is the action stack, which stores all alignment actions per-
formed in the past. The actions are denoted as At−1, . . . , A1 and are encoded
as one-hot vectors at−1, . . . , a1. The reason for including this stack is to cap-
ture patterns in the historic actions. Different from the first two stacks, the
information flows from the first action to the immediate past with the last
hidden state being hA

t−1.

The fourth stack is the matched stack, which contains only the texts and clips
that are matched previously and places the last matched content at the top
of the stack. We denote this sequence as R1, . . . , RL. Similar to the action
stack, the information flows from the past to the present. In this chapter, we
consider the case where one sentence si can match with multiple video clips
v1, . . . , vK. Since the matched video clips are probably similar in content, we
perform mean pooling over the video features vi = ∑K

j vj/K. The input to
the LSTM unit is hence the concatenation of the two modalities ri = [si, vi].
The last hidden state of the matched stack is hM

t−1.
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Video
Stack

Text
Stack

Matched
Stack

Action
Stack

Initial a© b© c© 1© 2© 3©

Pop Clip b© c© 1© 2© 3© PC
Pop Sent a© b© c© 2© 3© PS
Match b© c© 2© 3© [ a© 1©] M

Match-Retain-C a© b© c© 2© 3© [ a© 1©] MRC
Match-Retain-S b© c© 1© 2© 3© [ a© 1©] MRS

Table 4.1: The basic action inventory and their effects on the stacks. Square brackets
indicate matched elements.

Action Prediction

At every time step, the state of the four stacks is Ψt = (Vt+ , St+ , A(t−1)− , R1+),
where we use the shorthand Xt+ for the sequence Xt, Xt+1, . . . and similarly
for Xt− . Ψt can be approximately represented by the LSTM hidden states.
Thus, the conditional probability of alignment action At at time t is

P(At|Ψt) = P(At|hV
t , hS

t , hA
t−1, hM

t−1) (4.4)

The above computation is implemented as a softmax operation after two
fully connected layers with ReLU activation on top of the concatenated state
ψt = [hV

t , hS
t , hA

t−1, hM
t−1]. In order to compute the alignment of entire se-

quences, we apply the chain rule.

P(A1, . . . , AN|V ,S) =
N

∏
t=1

P(At|A(t−1)− , Ψt) (4.5)

The probability can be optimized greedily by always choosing the most
probable action or using beam search. The classification is trained in a su-
pervised manner. From a ground truth alignment of two sequences, we can
easily derive a correct sequence of actions, which are used in training. In
the infrequent case when more than one correct action sequence exist, one
is randomly picked. The training objective is to minimize the cross-entropy
loss at every time step.

Alignment Actions

The Pop Clip action removes the top element, Vt, from the video stack. This
is desirable when Vt does not match any element in the text stack. Analo-
gously, the Pop Sentence action removes the top element in the text stack, St.
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The Match action removes both Vt and St, matches them, and pushes them
to the matched stack. The actions Match-Retain Clip and Match-Retain Sen-
tence are only used for one-to-many correspondence. When many sentences
can be matched with one video clip, the Match-Retain Clip action pops St,
matches it with Vt and pushes the pair to the matched stack, but Vt stays on
the video stack for the next possible sentence. To pop Vt, the Pop Clip action
must be used. The Match-Retain Sentence action is similarly defined. In this
formulation, matching is always between elements at the top of the stacks.

It is worth noting that the five actions do not have to be used together. A sub-
set can be picked based on knowledge about the sequences being matched.
For example, for one-to-one matching, if we know some clips may not match
any sentences, but every sentence have at least one matching clip, we only
need Pop Clip and Match. Alternatively, consider a one-to-many scenario
where (1) one sentence can match multiple video clips, (2) some clips are
unmatched, and (3) every sentence has at least one matching clip. We need
only the subset Pop Clip, Pop Sentence, and Match-Retain Sentence. It is desir-
able to choose as few actions as possible, because it simplifies training and
reduces the branching factor during inference.

Discussion. The utility of the action stack becomes apparent in the one-to-
many setting. As discussed earlier, to encode an element Ri in the matched
stack, features from different video clips are mean-pooled. As a result, if
the algorithm needs to learn a constraint on how many clips can be merged
together, features from the matched stack may not be effective, but features
from action stack would carry the necessary information. The alignment
actions discussed in the above section allow monotonic matching for two
sequences, which is the focus of this chapter and experiments. We discuss
extensions that allow multi-sequence matching as well as non-monotonic
matching in Section 4.1.3.

Parameterized Actions

The basic action inventory tackles the alignment of two sequences. The
alignment of more than two sequences simultaneously, like video, audio,
and textual sequences, requires an extension of the action inventory. To this
end, we introduce a parameterized Match-Retain action. For three sequences,
the parameters are a 3-bit binary vector where 1 indicate the top element
from this sequence is being matched and 0 otherwise. Table 4.2 shows one
example using the parameterized Match-Retain. For instance, to match the
top elements from Sequence A and B, the action is Match-Retain (110). The
parameters are implemented as three separate binary predictions.
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Seq A Seq B Seq C Matched
Stack

Initial a© b© c© 1© 2© 3© x© y© z©

1. M-R(110) a© b© c© 1© 2© 3© x© y© z© [ a© 1©]
2. Pop A b© c© 1© 2© 3© x© y© z© [ a© 1©]
3. Pop B b© c© 2© 3© x© y© z© [ a© 1©]
4. M-R(011) b© c© 2© 3© x© y© z© [ 2© x©][ a© 1©]

Table 4.2: An example action sequence for aligning three sequences.

The use of parameterized actions further enables non-monotonic matching
between sequences. In all previous examples, matching only happens be-
tween the stack tops. Non-monotonic matching is equivalent to allowing
stack top elements to match with any element on the matched stack. We
propose a new parameterized action Match-With-History, which has a sin-
gle parameter q that indicates position on the matched stack. To deal with
the fact that the matched stack has a variable length, we adopt the indexing
method from Pointer Networks [Vinyals et al., 2015a]. The probability of
choosing the ith matched element ri is

P(q = i|Ψt) =
exp( f (ψt, ri))

∑L
j=0 exp( f (ψt, rj))

(4.6a)

f (ψt, ri) = v>tanh
(

Wq

[
ψt
ri

])
(4.6b)

where the matrix Wq and vector v are trainable parameters and L is the
length of the matched stack.

4.2 Experimental Evaluation

We evaluate NeuMATCH on semi-synthetic and real datasets, including a
newly annotated, real-world YouTube Movie Summaries (YMS) dataset. Ta-
ble 4.3 shows the statistics of the datasets used.

4.2.1 Setup and Training

For the joint pre-training, we use 500 dimensions for the LSTM sentence
encoder and 300 for the joint embeddings. The dimensions of the word and
image embedding are 300 and 4096, respectively, while the margin in the
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HM-1 HM-2 YMS

# words 4,196,633 4,198,021 54,326
# sent. 458,557 458,830 5,470
# avg. words/sent. 9.2 9.1 9.5

# clips 1,788,056 1,788,056 15,183
# video 22,945 22,931 94
# avg clips/video 77.9 77.9 161.5

# avg sent./video 20.0 20.0 58.2
# clip/sent. (mean(var)) 2.0(0.33) 2.0(0.33) 2.6(8.8)

Table 4.3: Summary statistics of the datasets.

ranking objective function is α = 0.05. L2 regularization is used to prevent
over-fitting. The batch size is set to 32 and the number of contrastive samples
is 31 for every positive pair. The model is trained with the Adam optimizer
using a learning rate of 10−4 and gradient clipping of 2.0. Early stopping on
the validation set is used to avoid over-fitting.

The alignment network uses 300 dimensions for the video and text stacks, 20
dimensions for the matched stack and 8 for the history stack. Optionally, we
feed two additional variables into the fully connected layer: the numbers of
elements left in the video and text stacks to improve the performance on very
long sequences in the YMS dataset. The alignment network is first trained
with the encoding networks fixed with a learning rate of 0.001. After that,
the entire model is trained end-to-end with a learning rate of 10−5. For HM-
0, HM-1, and HM-2, we use the original data split of LSMDC. For YMS, we
use a 80/10/10 split for training, validation and test sets.

Details of Video Segmentation The video segmentation can be achieved
using any shot boundary detection algorithm. In this work, we segment
the input videos into video clips by a Python/OpenCV-based scene detec-
tion program2 that uses threshold/content on a given video. For the pa-
rameters, we choose the content-aware detection method with the threshold
of 20 and minimum length of 5 frames. Having a low threshold and mini-
mum length usually results in over-segmentation. However, NeuMATCH
can handle this resulting over-segmentation with the ability of one-to-many
matching.

2https://github.com/Breakthrough/PySceneDetect
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HM-1 HM-2

MD CTW DTW Ours MD CTW DTW Ours

clips 6.4 13.4 13.3 69.7 2.5 12.9 13.0 40.6
sents. 15.8 21.3 41.7 58.6 15.6 25.1 34.2 43.7

Table 4.4: Accuracy of clips and sentences for the 2-action model. Datasets require the
detection of null clips.

4.2.2 Datasets

We create the datasets HM-1 and HM-2 based on the LSMDC data [Rohrbach
et al., 2015], which contain matched clip-sentence pairs. The LSMDC data
contain movie clips and very accurate textual descriptions, which are orig-
inally intended for the visually impaired. We generate video and textual
sequences in the following way: First, video clips and their descriptions in
the same movie are collected sequentially, creating the initial video and text
sequences. For HM-1, we randomly insert video clips from other movies
into each video sequence. In order to increase the difficulty of alignment
and to make the dataset more realistic, we select confounding clips that are
similar to the neighboring clips. After randomly choosing an insertion posi-
tion, we sample 10 video clips and select the most similar to its neighboring
clips, using the pre-trained similarity metric (Section 4.1.2). An insertion po-
sition can be 0-3 clips away from the last insertion. For HM-2, we randomly
delete sentences from the collected text sequences. A deletion position is 0-3
sentences from the last deletion. At this point, HM-1 and HM-2 does not re-
quire one-to-many matching, which is used to test the 2-action NeuMATCH
model. To allow one-to-many matching, we further randomly split every
video clip into 1-5 smaller clips. As a result, the datasets can be used to test
the 3-action NeuMATCH model.

YMS dataset. We create the YMS dataset from the YouTube channels Movie
Spoiler Alert and Movies in Minutes, where a narrator orally summarizes
movies alongside clips from the actual movie. Two annotators transcribed
the audio and aligned the narration text with video clips. The YMS dataset
is the most challenging for several reasons: (1) The sequences are long. On
average, a video sequence contains 161.5 clips and a textual sequence con-
tains 58.2 sentences. (2) A sentence can match a long sequence of (up to 45)
video clips. (3) Unlike LSMDC, YMS contains rich textual descriptions that
are intended for storytelling; they are not always faithful descriptions of the
video, which makes YMS a challenging benchmark.
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4.2.3 Performance Metrics

The ground truth alignment between video and text inputs is performed at
the shot level, where each sentence has one or more corresponding shots.
Due to the capability of our framework, the video sequences can even
be composed of over segmented shots, since it can perform one-to-many
matchings. Similar to the existing work in retrieval [Tapaswi et al., 2015],
[Bojanowski et al., 2015], [Zhu et al., 2015], we focus our evaluation on recall,
and Jaccard index [Jaccard, 1912],[Van Rijsbergen, 1977] which quantifies the
difference between the ground truth assignment and the prediction by com-
puting the ratio of intersection over union (IoU).

For the experiments that require one-to-one matching, the evaluation is
straight-forward since it is binary. We used recall of clips meaning what per-
centage of clips are matched correctly either to a sentence or to null status,
and recall of sentences in a similar way. For one-to-many matching, where
one sentence can match multiple clips, we cannot use the same accuracy for
sentences. Instead, we turn to the Jaccard Index, which measures the over-
lap between the predicted range and the ground truth of video clips using
the intersection over union (IoU).

4.2.4 Baselines

We create three baselines, Minimum Distance (MD), Dynamic Time Warp-
ing (DTW), and Canonical Time Warping (CTW). All baselines use the same
jointly trained language-visual neural network encoders (Section 4.1.2),
which are carefully trained and exhibit strong performance. Due to space
constraints, we discuss implementation details in the supplementary mate-
rial.

The MD method matches the most similar clip-sentence pairs which have
the smallest distance compared to the others. We artificially boost this base-
line using specific optimization for the two accuracy measures. For evalua-
tion on video clips, we match every clip with the most similar sentence, but
if the distance is greater than the threshold 0.7, we consider the clip to be
unmatched (i.e., a null clip). For sentence accuracy, we match every sentence
with the most similar clip and do not assign null sentences.

DTW computes the optimal path on the distance matrix. It uses the fact that
the first sentence is always matched with the first clip, and the last sentence
is always matched to the last clip, so the shortest path is between the upper
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HM-0 HM-1

MD CTW DTW Ours MD CTW DTW Ours

clips 20.7 26.3 50.6 63.1 10.5 6.8 17.6 65.0
sents IoU 23.0 25.4 42.8 55.3 5.7 7.3 18.4 44.1

HM-2 YMS

MD CTW DTW Ours MD CTW DTW Ours

clips 10.6 6.9 18.0 37.7 4.0 5.0 10.3 12.0
sents IoU 9.0 7.6 18.9 20.0 2.4 3.6 7.5 10.4

Table 4.5: Alignment performance for 3-action model given in percentage (%) over all
data. Datasets HM-1, HM-2, and YMS require the detection of null clips and
one-to-many matchings of the sentences. HM-0 only requires one-to-many
matching of sentences.

left corner and lower right corner of the distance matrix. Note this is a con-
straint that NeuMATCH is not aware of. In order to handle null clips, we
make use of the threshold again. In the case that one sentence is matched
with several clips, the clips whose distances with the sentence are above the
threshold will be assigned to null. We manually tuned the threshold to max-
imize the performance of all baselines. For CTW, we adopt the source code
provided in [Zhou and De la Torre, 2016] with the same assignment method
as DTW.

4.2.5 Ablation Studies

In order to understand the benefits of the individual components of Neu-
MATCH, we perform an ablated study where we remove one or two LSTM
stacks from the architecture. The model No Act&Hist lacks both the action
stack and the matched stack in the alignment network. That is, it only has the
text and the video stacks. The second model No Action and the third model
No History removes the action stack and the matched stack, respectively. In
the last model No Input LSTM, we directly feed features of the video clip and
the sentence at the tops of the respective stacks into the alignment network.
That is, we do not consider the influence of future input elements.

Table 4.6 shows the performance of four ablated models in the one-to-many
setting. The four ablated models perform substantially worse than the com-
plete model. This confirms our intuition that both the history and the future
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HM-1 HM-2

clips sent. IoU clips sent. IoU

No Act&Hist 47.3 21.8 11.8 1.6
No Action 49.9 23.0 29.6 16.1
No History 57.6 33.4 28.3 17.0
No Input LSTMs 54.8 24.6 27.9 8.3

NeuMATCH 65.0 44.1 37.7 20.0

Table 4.6: Performance of ablated models in the one-to-many setting (3-action model).

play important roles in sequence alignment. We conclude that all four LSTM
stacks contribute to NeuMATCH’s superior performance.

4.2.6 Quantitative Results

Tables 4.4 and 4.5 show the performance under one-to-one and one-to-many
scenarios, respectively. On the one-to-one versions of the datasets HM-1
and HM-2, NeuMATCH demonstrates considerable improvements over the
best baselines. It improves clip accuracy by 56.3 and 27.6 percentage points
and improves sentence accuracy by 16.9 and 9.5 points. Unlike CTW and
DTW, NeuMATCH does not have a major gap between clip and sentence
performance. We attribute this partially to its superior ability to detect null
clips.

On the one-to-many versions of HM-1 and HM-2, as well as the YMS dataset,
NeuMATCH again shows superior performance over the baselines. The ad-
vantage over the best baselines is 47.4, 19.7, and 1.7 points for clip accuracy,
and 25.7, 1.1, and 2.9 for sentence IoU. Interestingly, NeuMATCH performs
better on HM-1 than HM-2, but the other baselines are largely indifferent
between the two datasets. This is likely due to NeuMATCH’s ability to ex-
tract information from the matched stack. Since HM-1 is created by inserting
random clips into the video sequence, the features of the inserted video clip
match surrounding clips, but other aspects such as cinematography style
may not match. This makes HM-1 easier for NeuMATCH because it can
compare the inserted clip with those in the matched stack and detect style
differences. It is worth noting that different cinematographic styles are com-
monly used to indicate memories, illusions, or imaginations. Being able to
recognize such styles can be advantageous for understanding complex nar-
rative content.
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(a) Distance matrix

(b) Ground truth alignment

(c) Ours (NeuMATCH)

(d) Minimum distance (MD)

(e) Canonical time warping (CTW)

(f) Dynamic time warping (DTW)

Figure 4.3: An alignment problem from HM-2 and the results. The vertical and hori-
zontal axes represent the text sequence (sentences) and video sequence (clips)
respectively. Green, red and yellow respectively represent the ground-truth
alignment, the predicted alignment, and the intersection of two.

To further investigate NeuMATCH’s performance without null clips, we ad-
ditionally create a one-to-many dataset, HM-0, by randomly dividing every
video clip into 1-to-5 smaller clips. Although NeuMATCH’s advantage is re-
duced on HM-0, it’s still substantial (12.5 points on both measures), showing
that the performance gains are not solely due to the presence of null clips.

As we expect, the real-world YMS dataset is more difficult than HM-1 and
HM-2. Still, we have a relative improvement of 17% on clip accuracy and
39% on sentence IoU over the closest DTW baseline. We find that Neu-
MATCH consistently surpasses conventional baselines across all experimen-
tal conditions. This clearly demonstrates NeuMATCH’s ability to identify
alignment from heterogenous video-text inputs that are challenging to un-
derstand computationally.

As a qualitative evaluation, Figure 4.3 shows an alignment example. The
ground alignment goes from the top left (the first sentence and the first clip)
to the bottom right (the last sentence and the last clip). Dots in green, red,
and yellow represent the ground truth alignment, the predicted alignment,
and the intersection of the two, respectively. In the ground truth path (e),
some columns does not have any dots because those clips are not matched
to anything. As shown in (a), the distance matrix does not exhibit any clear

60
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alignment path. Therefore, MD, which uses only the distance matrix, per-
forms poorly. The time warping baselines in (c) and (d) also notably deviate
from the correct path, whereas NeuMATCH is able to recover most of the
ground-truth alignment. Moreover, it has ability to catch the correct align-
ment even when it starts diverting at some point.

4.2.7 Qualitative Results

We show more alignment results computed by our approach on the datasets
HM-1, HM-2, and YMS that require one-to-many matching and contain clips
that do not match any sentences (i.e., null clips). For continuity, the all the
results mentioned in the following are shown at the end of this chapter. For
illustration purposes, each figure represents only a small portion (6-12 con-
secutive clips) of the entire aligned sequence. Each frame represents a video
clip. The aligned sentences are shown with wide brackets below or above
the clips.

Successful results for Hollywood Movies 1 (HM-1) The video sequences
in HM-1 contain clips from other movies that are inserted into the original
sequence, as explained in Section 4.2.2. Figure 4.4 shows a sequence from
the movie Jack and Jill. The fifth frame is from the movie This is 40, which
is successfully assigned as null. Note the last two frames have very similar
content (two women in dresses) to the sentence “With a fuzzy shawl and cap,
and a ruffled skirt.”, but our algorithm was able to identify them correctly.
Figure 4.5 shows a sequence from the movie Blind Dating. The one-to-many
assignment for the last three clips is correctly identified even when there is
a significant perspective and content change through the clips. Figure 4.6
shows a sequence from the movie Juno. The one-to-many assignment for
the last three clips is correctly identified even when there is a significant
perspective and content change through the clips.

Successful results for Hollywood Movies 2 (HM-2)

Each video sequence in HM-2 consists of consecutive clips from a single
movie, where some sentences were discarded in order to create null clips. It
still requires one-to-many matching of the sentences and the assignment of
null clips. Figure 4.10 and Figure 4.7 shows sequences from the movies Harry
Potter and the Prisoner of Azkaban and Bad Santa. In Figure 4.8, a sequence
from the movie The Ugly Truth is given. The third clip contains a vodka
bottle, which is mentioned in first sentence. The fourth and the fifth clips
are very similar. However, the algorithm finds the correct alignment. In
Figure 4.9, from Super 8, the boy and the bicycle are visible in both the second
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and the third clips, but the headstones only appear in the third clip. The
algorithm makes the correct decision. In Figure 4.11, from Unbreakable, the
wheelchair is only visible in the last clip and the algorithm successfully picks
that up.

Successful results for YouTube Movie Summaries (YMS)

In the YMS dataset, the sentences are longer than HM-1 and HM-2, and they
tend to describe multiple events. We asked the annotators to break them
down into small units, which allows them to precisely align the text with
the video sequence. These sequences tend to be much more complex than
HM-1 and HM-2. Examples are shown in Figure 4.13-4.15.

Failure Cases

We present two failure cases in Figure 4.16 and Figure 4.17 from the movies
Friends with Benefits and The Ugly Truth, respectively. The ground truth
is shown with green brackets and NeuMATCH’s predictions are with or-
ange brackets. In Figure 4.16, the first failure is that the second sentence is
matched with two more clips, but the additional clips also contain the “rail-
ing” and the “water”, which may have confused the algorithm. Similarly,
the boat appears in the sixth and seventh clips, which may have caused the
wrong alignment with the third sentence.

4.3 Summary

In this chapter, we propose NeuMATCH, an end-to-end neural architecture
aimed at heterogeneous multi-sequence alignment, focusing on alignment
of video and textural data. Alignment actions are implemented in our net-
work as data moving operations between LSTM stacks. We show that this
flexible architecture supports a variety of alignment tasks. Results on semi-
synthetic and real-world datasets and multiple different settings illustrate
superiority of this model over popular traditional approaches based on time
warping. An ablation study demonstrates the benefits of using rich con-
text when making alignment decisions. As a future work, The method can
be improved more by experimenting on the extensions for the alignment of
multiple sequences and non-monotonicity.
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C H A P T E R 5
Neural Sequential Phrase Grounding

In the previous chapters, we have presented approaches for aligning video
and text with narrative content, which mainly provides meta-data extraction
at the granularity of shot-sentence level that could be used for various ap-
plication as mentioned earlier. Taking this even further, a finer granularity
level by aligning phrases to image (video frame) regions is the next natural
step which poses the phrase grounding problem.

Consider image grounding for noun phrases from a given sentence: “A lady
sitting on a colorful decoration with a bouquet of flowers, that match her hair, in
her hand.” Note that while multiple ladies may be present in the image,
the grounding of “a colorful decoration” uniquely disambiguates to which of
these instances the phrase “A lady” should be grounded to. While contex-
tual reference in the above example is spatial, other context, including visual
maybe useful, e.g., between “her hair” and “a bouquet of flowers”.

Conceptually similar contextual relations exist in object detection and have
just started to be explored through the use of spatial memory [Chen and
Gupta, 2017] and convolutional graph networks (CGNNs) [Chen et al.,
2018b], [Yang et al., 2018]. Most assume orderless graph relationships among
objects with transitive reasoning. In phrase grounding, on the other hand,
the sentence, from which phrases are extracted, may provide implicate lin-
guistic space- and time-order [Hazen, 2014]. We show that such order-
ing is useful as a proxy for sequentially contextualizing phrase grounding
decisions. In other words, the phrase that appears last in the sentence is
grounded first and is used as context for the next phrase grounding in reverse
lexical order. This explicitly sequential process is illustrated in Figure 5.1. To

71



Neural Sequential Phrase Grounding

A man with a hat is playing a guitar behind an open 

guitar case while sitting between two men.

two men
an open 

guitar case
a guitar a hat A man

? ?

Figure 5.1: Illustration of SeqGROUND. The proposed neural architecture performs
phrase grounding sequentially. It uses the previously grounded phrase-
image content to inform the next grounding decision (in reverse lexical or-
der).

our knowledge, our framework is the first to explore such sequential mech-
anism and architecture for phrase grounding.

In this chapter, expanding on the class of recent temporal alignment net-
works (e.g., Chapter 4, [Dogan et al., 2018]), that propose neural architec-
tures where discrete alignment actions are implemented by moving data
between stacks of Long Short-term Memory (LSTM) blocks, we develop a
sequential spatial phrase grounding network that we call SeqGROUND [Do-
gan et al., 2019]. SeqGROUND encodes region proposals and all phrases into
two stacks of LSTM cells, along with so-far grounded phrase-region pair-
ings. These LSTM stacks collectively capture the context for the grounding
of the next phrase.
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5.1 Algorithm

5.1 Algorithm

5.1.1 Overview

We now present our neural architecture for grounding phrases in images.
We assume that we need to ground multiple, potentially inter-related,
phrases in each image. This is the case for the Flickr30k Entities dataset,
where phrases/entities come from sentence parsing. Specifically, we parse
the input sentence into a sequence of phrases P =

{
Pj
}

j=1...N keeping the
sentence order; i.e. j = 1 is the first phrase and j = N is the last. For a typi-
cal sentence in Flickr30k, N is between 1 and 54. The input image I is used
to extract region proposals in the form of bounding boxes. These bounding
boxes are ordered to form a sequence B = {Bi}i=1...M. We discuss the order-
ing choices, for both P and B, and their effects in Section 5.2.3. Our overall
task is to ground phrases in the image by matching them to their correspond-
ing bounding boxes, for example, finding a function π that maps an index
of the phrase to its corresponding bounding boxes 〈Pj, Bπ(j)〉. Our method
allows many-to-many matching of the aformentioned input sequences. In
other words, a single phrase can be grounded to multiple bounding boxes,
or multiple phrases of the sentence can be grounded to the same bounding
box.

Phrase grounding is a very challenging problem exhibiting the following
characteristics. First, image and text are heterogeneous surface forms con-
cealing the true similarity structure. Hence, satisfactory understanding of
the entire language and visual content is needed for effective grounding.
Second, relationships between phrases and boxes are complex. It is possible
(and likely) to have many-to-many matchings and/or unmatched content
(due to either lack of precision in the bounding box proposal mechanism or
hypothetical linguistic references). Such scenarios need to be accommodated
by the grounding algorithm. Third, contextual information that is needed
for learning the similarity between phrase-box pairs are scattered over the
entire image and the sentence. Therefore, it is important to consider all vi-
sual and textual context with a strong representation of their dependencies
when making grounding decisions, and to create an end-to-end network,
where gradient from grounding decisions can inform content understand-
ing and similarity learning.

The SeqGROUND framework copes with these challenges by casting the
problem as one of sequential grounding and explicitly representing the
state of the entire decision workspace, including the partially grounded input
phrases and boxes. The representation employs LSTM recurrent networks
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5.1 Algorithm

for region proposals, sentence phrases, and the previously grounded con-
tent, in addition to dense layers for the full image representation. Figure
5.2 shows the architecture of our framework, where the phrase stack contains
the sequence of phrases yet to be processed in an order and encodes the lin-
guistic dependencies. The box stack contains the sequence of bounding boxes
that are ordered with respect to their locations in the image. The history stack
contains the phrase-box pairs that are previously grounded. The ground-
ing decisions for the input phrases are performed sequentially taking into
account of the current states of these LSTM stacks in addition to full image
representation. The new grounded phrase-box pairs are added to the top of
the history stack.

We learn a function that maps the state of workspace Ψt to a grounding de-
cision dti for the bounding box Bi at every time step t, which corresponds
to a decision for phrase Pt. The decisions dti manipulates the content of
the LSTM networks, resulting in a new state Ψt+1. Executing a complete
sequence of decisions produces a complete alignment of the input phrases
with the bounding boxes. As the correct decision sequence is unique in most
cases and can be easily inferred from the ground-truth labels, in this frame-
work, we adopt a supervised learning approach.

5.1.2 Language and Visual Encoders

We first create encoders for each phrase and each bounding box produced
by a region proposal network (RPN). After that, we perform an optional pre-
training step to jointly embed the encoded phrases and bounding boxes into
the same latent space, as discussed in Section 5.1.3.

Phrase Encoder. The input caption is parsed into phrases P1 . . . PN, each of
which contains a word or a sequence of words, using [Chen and Manning,
2014]. We transform each unique phrase into an embedding vector, by per-
forming mean pooling over GloVe [Pennington et al., 2014] features of all
its words. This vector is then transformed with three fully connected layers
using the ReLU activation function, resulting in the encoded phrase vector
pj for the jth phrase (Pj) of the input sentence.

Visual Encoder. For each proposed bounding box, we extract features us-
ing the activation of the first fully connected layer in the VGG-16 network
[Simonyan and Zisserman, 2014], which produces a 4096-dim vector per re-
gion. This vector is transformed with three fully connected layers using the
ReLU activation function, resulting in the encoded bounding box vector bi
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Neural Sequential Phrase Grounding

for the ith bounding box (Bi) of the image. The visual encoder is also used
to encode the full image I into Ienc.

5.1.3 The Grounding Network

Having the encoded phrases and boxes in the same embedding space, a
naive approach for grounding would be maximizing the collective similar-
ity over the grounded phrase-box pairs. However, doing so ignores the spa-
tial structures and relations within the elements of the two sequences, and
can lead to degraded performance. SeqGROUND performs grounding by
encoding the input sequences and the decision history with stacks of recur-
rent networks. This implicitly allows the network to take into account all
grounded as well as ungrounded proposed regions and phrases as context
for the current grounding decision. We show in Section 5.2 that this leads to
a significant boost in performance.

Recurrent Stacks

Considering the input phrases as a temporal sequence, we let the first stack
contain the sequence of phrases yet to be processed Pt, Pt+1, . . . , PN, at the
time step t. The direction of the stack goes from PN to Pt, which allows the
information to flow from the future phrases to the current phrase. We refer
to this LSTM network as the phrase stack and denote its hidden state as hP

t .
The input to the LSTM unit is the phrase features in the latent space obtained
by the phrase encoder (see Sec. 5.1.2).

The second stack is a bi-directional LSTM recurrent network that contains
the sequence of bounding boxes B1, . . . , BM obtained by the RPN. The boxes
are ordered from left to right considering their center on the horizontal axis
for the forward network1. We refer to this bi-LSTM network as the box stack
and denote its hidden state for the ith box as hB

i . The input to the LSTM unit is
the concatenation of the box features in the latent space and the normalized
location features [bi, xbi ]. Note that the state of the box stack does not change
with respect to t. We keep all the boxes in the stack, since a box that is
already used to ground a phrase can be used again to grounding another
phrase later on.

1We experimented with alternative orderings, e.g., max flow computed over pair-wise proposal
IoU scores, but saw no appreciable difference in performance. Therefore for cleaner exposition
we focus on simpler left-to-right ordering and corresponding results.
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5.1 Algorithm

The third stack is the history stack, which contains only the phrases and the
boxes that are previously grounded, and places the last grounded phrase-
box pair at the top of the stack. We denote this sequence as R1, . . . , RL. The
information flows from the past to the present. The input to the LSTM unit is
the concatenation of the two modalities in the latent space and the location
features of the box. When a phrase pj is grounded to multiple (K) boxes
bπ(j) = b(pj,1), . . . , b(pj,K), each grounded phrase-box pair becomes a separate
input to the LSTM unit, keeping the spatial order of the boxes. For example,
the vector [pj, b(pj,1), xb(pj ,1)

] will be the first vector to be pushed to the top of

the history stack for the phrase pj. The last hidden state of the history stack
is hR

t−1.

The phrase stack and history stack both perform encoding using a 2-layer
LSTM recurrent network, where the hidden state of the first layer, h(1)t , is
fed to the second layer:

h(1)t , c(1)t = LSTM(xt, h(1)t−1, c(1)t−1) (5.1a)

h(2)t , c(2)t = LSTM(h(1)t , h(2)t−1, c(2)t−1) , (5.1b)

where c(1)t and c(2)t are the memory cells for the two layers, respectively; xt
is the input for time step t.

Image Context. In addition to the recurrent stacks, we also provide the
encoded full image I to the network as an additional global context.

Decision Prediction

At every time step, the state of the three stacks is Ψt = (Pt+ , Bt, R1+) , where
we use the shorthand Xt+ for the sequence Xt, Xt+1, . . . and similarly for Xt− .
The LSTM hidden states can approximately represent Ψt. Thus, the condi-
tional probability of grounding decision dti, which represents the decision
for bounding box Bi with the phrase Pt is

Pr(dti|Ψt) = Pr(dti|hP
t , hB

i , hR
t−1, Ienc). (5.2)

In other words, at time step t, a grounding decision is made simultane-
ously for each box for the phrase at the top of the phrase stack. Although it
may seem that these decisions are made in parallel independently, the hid-
den states of the box stack encode the relation and dependencies between
all the boxes. The above computation is implemented as a sigmoid op-
eration after three fully connected layers on top of the concatenated state
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ψt = [hP
t , {hB

i }, hR
t−1, Ienc]. ReLU activation is used between the layers. Fur-

ther, each positive grounding decision will augment the history stack.

In order to ground the entire phrase sequence with the boxes, we apply the
chain rule as follows:

Pr(D1, . . . , DN|P ,B) =
N

∏
t=1

Pr(Dt|D(t−1)− , Ψt) (5.3a)

Pr(Dt|P ,B) =
M

∏
i=1

Pr(dti|D(t−1)− , Ψt) , (5.3b)

where Dt represents the set of all grounding decisions over all the boxes for
the phrase Pt. The probability can be optimized greedily by always choosing
the most probable decisions. The model is trained in a supervised manner.
From a ground truth grounding of a box and a phrase sequence, we can
easily derive the correct decisions, which are used in training. The training
objective is to minimize the overall binary cross-entropy loss caused by the
grounding decisions at every time step for each 〈Pt, Bi〉 with i = 1, . . . , M.

Pre-training

As noted in Chapter 4, learning a coordinated representation (or similarity
measure) between visual and text data, while also optimizing a decision net-
work, is difficult. Thus, we adopt a pairwise pre-training step to coordinate
the phrase and visual encoders to achieve a good initialization for subse-
quent end-to-end training. Note that this is only done for pre-training; the
final model is fully differentiable and is fine-tuned end-to-end.

For a ground-truth pair (Pk, Bk), we adopt an asymmetric similarity pro-
posed by [Vendrov et al., 2015]

F(pk, bk) = −||max(0, bk − pk)||2 . (5.4)

This similarity function, F, takes the maximum value 0, when pk is posi-
tioned to the upper right of bk in the vector space. When that condition is
not satisfied, the similarity decreases. In [Vendrov et al., 2015], this relative
spatial position defines an entailment relation where bk entails pk. Here, the
intuition is that the image typically contains more information than being
described in the text form, so we may consider the text as entailed by the
image.
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5.2 Experimental Evaluation

We adopt the following ranking loss objective by randomly sampling a con-
trastive bounding box B′ and a contrastive phrase P′ for every ground truth
pair. Minimizing the loss function maintains that the similarity of the con-
trastive pair is below the true pair’s by at least the margin α:

L = ∑
i

(
Eb′ 6=bk

max
{

0, α− F(bk, pk) + F(b′, pk)
}

+Ep′ 6=pk
max

{
0, α− F(bk, pk) + F(bk, p′)

} ) (5.5)

Note the expectations are approximated by sampling.

5.2 Experimental Evaluation

5.2.1 Setup and Training

We use Faster R-CNN [Ren et al., 2015] as an underlying bounding box pro-
posal mechanism with ResNet50 as the backbone. The extracted bounding
boxes are then sorted from left-to-right by their central x-coordinate to be
fed into the Bi-LSTM network of the box stack. This way, the objects ap-
pearing close tend to be represented closer together, so that the box stack
can represent the overall context better. Following the prior works (see
Tab. 5.2), we assume that the noun phrases that are to be grounded have
already been extracted from the descriptive sentences. We also use the inter-
mediate words of the sentences together with the given noun phrases in the
phrase stack to preserve the linguistic structure; this also results in a more
complex train/test scenario. Note that we do not explicitly distinguish be-
tween the intermediate words, meaning that the network implicitly tries to
ground them as well.

SeqGROUND is trained in two stages that differ in box stack input. In the
first stage, we only feed the groundtruth instances to the box stack, which
are coming from the dataset annotation, for an image. The boxes that have
the same label as the phrase are considered as positive samples, while the
remaining boxes as negative samples. This set-up provides an easier phrase
grounding task due to the low number of input boxes which are contextually
distinct and well-defined without being redundant. Thus, it provides a good
initialization for the second stage where we use the box proposals by the
RPN.
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For the second stage, we map each bounding box, coming from the RPN,
to the groundtruth instances with which it has IoU overlap equal to or
greater than 0.7, and label them as positive samples for the current phrase.
The remaining proposed boxes having IoU overlap less than 0.3 with the
groundtruth instances are labeled as negative samples for that phrase. The
labeled positive and negative samples are sorted and then fed into the Bi-
LSTM network. It is possible to optimize for the loss function of all labeled
boxes, but this will bias towards negative samples as they dominate. Instead,
we randomly sample negative samples that contribute to the loss function
in a batch, where the sampled positive and negative boxes have a ratio of
1:3. If the number of negative samples within a batch is not enough, we let
all the samples in that batch contribute to the loss. In this way, the spatial
context and dependencies are represented without gaps by the Bi-LSTM unit
of the box stack, while preventing biasing towards negative grounding deci-
sions. After the second stage of training, we adopt the standard hard neg-
ative mining method [Felzenszwalb et al., 2010], [Sung and Poggio, 1998]
with a single pass on each training sample.

At test time, we use all the proposed boxes to feed them to the box stack
after ordering them with respect to their locations. When multiple boxes are
grounded to the same phrase, we apply non-maximum suppression with an
IoU overlap threshold of 0.3, which is tuned on the validation set. In this
way, multiple box results for the same instance of a phrase are discarded,
while the boxes for different instances of the same phrase are kept.

5.2.2 Dataset and Metrics

We evaluate our approach on the Flickr30K Entities dataset [Plummer et al.,
2015] which contains 31, 783 images, each annotated with five sentences.
For each sentence, the noun phrases are provided with their correspond-
ing bounding boxes in the image. We use the same training/validation/test
split as the prior work, which provides 1, 000 images for validation, 1, 000 for
testing, and 29, 783 images for training. It is important to note that a single
phrase can have multiple groundtruth boxes, while a single box can match
multiple phrases within the same sentence. Consistent with the prior work,
we evaluate SeqGROUND with the ground truth bounding boxes. If multi-
ple boxes are associated with a phrase, we represent the phrase as the union
of all its boxes on the image plane. Following the prior work, successful
grounding of a phrase requires predicted area to have at least 0.5 IoU (in-
tersection over union) with the groundtruth area. Based on this criteria, our
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Components

Visual context Bounding box Phrase History Accuracy

MSB none simple simple none 43.85
MSBs none simple simple none 50.90

NH global bi-LSTM LSTM none 59.55
NI none bi-LSTM LSTM LSTM 60.34
SPv global bi-LSTM simple LSTM 57.94
SBv global simple LSTM LSTM 55.68
SPvBv global simple simple LSTM 53.75
SBvPvNH global simple simple none 52.91

SeqGROUND global bi-LSTM LSTM LSTM 61.60

Table 5.1: Grounding accuracy of baselines and ablated models.

measure of performance is grounding accuracy, which is the ratio of correctly
grounded noun phrases.

5.2.3 Baselines and Ablation Studies

In order to understand the benefits of the individual components of our
model, we perform an ablation study where certain stacks are either re-
moved or modified. The model NH lacks the history stack where the pre-
viously grounded phrase-box pairs do not affect the decisions for the up-
coming phrases in a sentence. The model NI lacks the full image context
where the only visual information to the framework is the box stack. The
model SBv (simple box vector) lacks the bi-LSTM network for the boxes,
and direclty uses the encoded box features coming from the triple fully con-
nected layers in Figure 5.2. In this way, the decision for a phrase-box pair
is made independently of the other box candidates. The model SPv (simple
phrase vector) lacks the LSTM network for the phrase stack and directly uses
the encoded phrase features coming from the triple fully connected layers
in Figure 5.2. In this design, the framework is not aware of the upcoming
phrases so that the decision for a phrase-box pair is made without the lin-
guistic relations. Similarly, SPvBv lacks the bi-LSTM and LSTM networks
for the box and phrase stacks, respectively. Moreover, SPvBvNH lacks the
history module as an addition. Moreover, we created a baseline that per-
forms phrase grounding in a non-sequential way by picking the most simi-
lar bounding box in the joint embedding space. To encode the phrases and

81



Neural Sequential Phrase Grounding

0 1 2 3 4 5
Phrase order

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

right-to-left
left-to-right
random

Figure 5.3: Grounding accuracy versus the ordering of the grounded phrase among the
noun phrases of the sentence.

boxes, we used the same phrase-visual encoders that were pre-trained in
Section 5.1.3. For each image-sentence input, we created a similarity matrix
for all possible phrase-box pairs using the similarity function 4.2. Using this
matrix, the phrases were grounded to the most similar box and boxes for the
models MSB and MSBs, respectively.

Table 4.6 shows the performance of the six ablated models and two base-
lines on the Flickr30K Entities dataset. All these models perform substan-
tially worse than the complete model of SeqGROUND. This confirms our
intuition that knowing the global context for both visual and textual data,
in addition to history and future, plays an important role in phrase ground-
ing. We conclude that each stack contributes to our full model’s superior
performance.

Phrase Ordering. We consider several ways of ordering the phrases of a
sentence.

1. Left-to-Right: The network grounds the phrases in lexical order,
starting from the first phrase of the sentence.

2. Right-to-Left: The network grounds the phrases in reverse lexical
order, starting from the last phrase.

3. Random: We randomly order the phrases for the phrase stack, and
keep the ordering fixed for all of the training.

At test time, the phrases are ordered in the same order as the corresponding
design’s training time. The grounding accuracy with respect to the phrase’s
order among the noun phrases of the sentence is shown in Figure 5.3 for dif-
ferent ordering options. Red, green, and blue plots show the performance
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Method Accuracy

MCB [Fukui et al., 2016] 48.69
SMPL [Wang et al., 2016b] 42.08
NonlinearSP [Wang et al., 2016a] 43.89
GroundeR [Rohrbach et al., 2016] 47.81
RtP [Plummer et al., 2015] 50.89
Similarity Network [Wang et al., 2018] 51.05
IGOP [Yeh et al., 2017] 53.97
SPC+PPC [Plummer et al., 2017] 55.49
CITE [Plummer et al., 2018] 59.27

SeqGROUND 61.60

Table 5.2: Phrase grounding accuracy (in percentage) of the state-of-the-art methods on
the Flickr30k Entities dataset.

when the phrases to the LSTM cell are ordered left-to-right (lexical order),
right-to-left (reverse lexical order), and randomly, respectively. For all or-
dering options, the accuracy for the first phrase is significantly higher than
the others. This is due to the fact that the first phrases usually belong to
the category of people or animals which have significantly more samples in
the dataset. Moreover, the candidate boxes from RPN are more accurate in
proposing boxes for these categories which provides easier detection. The
grounding accuracy drops towards the last phrases, which usually belong
to the categories that have less samples in the dataset. Ordering the phrases
right-to-left boosts the performance slightly for the last phrases of the sen-
tence, since they are the first ones to be grounded. In this way, these hard-to-
ground phrases are not a subject of a possible error cumulation in the history
stack.

Unguided Testing. SeqGROUND does not necessarily need to be given
phrases to ground. Due to its sequential nature, it scans through all the
phrases in the sentences, selected phrases or not, and makes decisions which
of those to ground and where (see Fig. 5.4). This is a more complex scenario
than addressed by prior works, which only focus on phrases that implicitly
have groundings.

5.2.4 Quantitative Results

We report the performance of SeqGROUND on the Flickr30K Entities
dataset, and compare it with the state-of-the-art methods in Table 5.2. Se-
qGROUND is the top ranked method in the list, improving the overall
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Method people clothing body parts animals vehicles instruments scene other

SMPL 57.89 34.61 15.87 55.98 52.25 23.46 34.22 26.23
GroundeR 61.00 38.12 10.33 62.55 68.75 36.42 58.18 29.08
RtP 64.73 46.88 17.21 65.83 68.72 37.65 51.39 31.77
IGOP 68.71 56.83 19.50 70.07 73.72 39.50 60.38 32.45
SPC+PPC 71.69 50.95 25.24 76.23 66.50 35.80 51.51 35.98
CITE 73.20 52.34 30.59 76.25 75.75 48.15 55.64 42.83

SeqGROUND 76.02 56.94 26.18 75.56 66.00 39.36 68.69 40.60

Table 5.3: Comparison of phrase grounding accuracy (in percentage) over coarse cate-
gories on Flickr30K dataset.

grounding accuracy by 2.33% to 12.91% by performing phrase grounding as
a sequential and contextual process, compared to the prior work. For a fair
comparison, all these methods use a fixed RPN to obtain the candidate boxes
and represent them in features that are not tuned on the Flickr30K Entities
dataset. We believe that using an additional conditional embedding unit as
in [Plummer et al., 2018], and the integration of a proposal generation net-
work with a spatial regression that is tuned on Flickr30K Entities as in [Chen
et al., 2017] should improve the overall result even more. Performance on
this task can be further improved by using Flickr30K-tuned features to rep-
resent the image regions, with the best result of 61.89% achieved by CITE
[Plummer et al., 2018]. Futhermore, the use of an integrated proposal gener-
ation network to learn regression over Flickr30K Entities improves the result
up to 65.14% as achieved by [Chen et al., 2017]. Table 5.3 shows the phrase
grounding performance with respect to the coarse categories in Flickr30K
Entitites dataset. Competing results are directly taken from the respective
papers, if applicable.

5.2.5 Qualitative Results

We show some qualitative results in Figure 5.4 to highlight the capabilities of
our method in challenging scenarios. The colored bounding boxes show the
predicted grounding of the phrases in the same color. In (a) and (e), we see
a succesful grounding of long sequence of phrases, note the correct ground-
ing of hands in (a) despite other hands candidates. In (h), the phrase glasses is
correctly grounded to a single correct box instead of selecting all the glasses,
including the glasses of the partially occluded person in the middle even
though it was one of the proposed boxes. Similarly in (d), SeqGROUND
could distinguish which boxes to ground the phrases a girl and a woman,
suppressing the other candidates despite their similar context. We believe
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A young lady in blue skirt and a man 

with a black hat are holding hands in 

the middle of a road.

Two people are standing near a 

lake looking at two brown dogs.

(a) (b)

Three people are dancing where 

the person in the middle wears a 

wedding gown.

A girl with a red shirt on a white 

horse and a woman on a dark 

horse are clapping their hands.

(d)(c)

A toddler in a blue shirt is 

steering his toy on a grass field.

A baby with blond hair in flower 

patterned shirt holding an orange 

toy in her hand.

(e) (f)
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A man with glasses is working on 

an ATM machine.

A young woman is playing a violin 

while a young man is singing to a 

microphone.

(h)(g)

Figure 5.4: Sample phrase grounding results obtained by SeqGROUND.

this is possibly due to SeqGROUND’s ability to perform in a sequential way
where it consders the global image and text context. As an intuitive exam-
ple, the performed grounding starts by matching a dark horse to the correct
box. Encoding this grounded pair and the overall contextual information,
it grounds a woman to the correct box, which is just above a dark horse, in-
stead of getting confused by the box that has A girl. At the decision time
for a woman, the phrase stack encodes the future information, which is a girl
should have a red shirt and should be on a white horse. Taking account of
this information likely has led SeqGROUND to eliminate the box for a girl
at the decision time for a woman. In (b), phrases are correctly grounded to
multiple boxes, instead of one large single box for two people which would
contain mostly grass. Likewise, (c) shows an example where a single box is
used to ground multiple phrases, three people and the person which are po-
sitioned far apart. Phrase grounding with many-to-many matching is one
of the distinguishing properties of SeqGROUND, which is partially or com-
pletely missing in most of the competing methods. All these images, and
more in the supplementary material, show state-of-the-art performance of
SeqGROUND due to its contextual and sequential nature.

5.2.6 Further Results

More examples are shown in Figures 5.5-5.12.

1Due to copyright issues of the images in the Flickr30K Entities dataset, we are not allowed
to show images from it. Instead, we created similar content with images that have Creative
Commons license.
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A Japanese woman poses in a 

ceremonial clothing with an elaborate 

headpiece.

Two men are dancing and holding 

hands with a bride that has an 

elegant wedding dress.

(a) (b)

Figure 5.5: Examples of succesful results.

A white dog is running over the water. A boy with a dark shirt is running 

ahead of two men on a paved road.

(a) (b)

Figure 5.6: Example results. (a) Succesful grounding. (b) The grounding of two men is
partially missing the man at the very back.

A man with a helmet is riding a bike 

in front of a group of running men 

on the road.

A man is standing on a boat as 

the sun sets.

(a) (b)

Figure 5.7: Examples of succesful results.
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A woman is looking at a young horse

that looks at a dog.

A man with a helmet is riding a 

motorbike in front of a yellow car.

(a) (b)

Figure 5.8: Failure cases. (a) a dog, which is partially visible, is grounded wrongly. (b)
a yellow car is grounded to a blue car.

A man fishes on a calm sea

under a nice sky.
Lots of people on the streets and a vendor

selling her goodies.

(a) (b)

Figure 5.9: Failure cases (a) a calm sea is grounded to a much larger area. (b) a vendor
is grounded to two people, which are challenging to distinguish.

5.3 Summary

In this chapter, we proposed an end-to-end trainable Sequential Ground-
ing Network (SeqGROUND) that formulates grounding of multiple phrases
as a sequential and contextual process. SeqGROUND encodes region pro-
posals, and all phrases into two stacks of LSTM cells along with the par-
tially grounded phrase-region pairs to perform the grounding decision for
the next phrase. Results on the Flickr30K Entities benchmark dataset and
ablations studies show significant improvements of this model over more
traditional grounding approaches.
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Two boys are playing basketball in 

an outdoor court.

A man with a hat in dark clothes on 

his skateboard is performing on an 

obstacle in front of a tree as an old 

man is watching him.

(a) (b)

Figure 5.10: Example results. (a) Succesful grounding. (b) a tree, which is significantly
ocluded, is not grounded.

A girl with a helmet is 

riding a bike on a paved 

road near a grass field.

A man with a backpack is 

on a motorbike and a 

woman with a dog is 

walking.

A cute dog is standing near 

a river and looking around, 

and there is a group of 

swans.

(a) (b) (c)

Figure 5.11: Example results. (a) Succesful grounding. (b) a dog is missed. (c) Some
parts of a cute dog are assigned to a group of swans.
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A girl in black clothing is riding a bike

while her father is watching her. 

A girl in pink clothing is riding a bike

while her father is watching her. 

(a) (b)

Figure 5.12: Example results which are showing the efficacy of SeqGROUND. (a) Inac-
curate phrase a black clothing is succesfully ignored by SeqGROUND. (b)
Succesful grounding for an accurate description.
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C H A P T E R 6
Conclusion

In this thesis, we presented novel methods for contextual alignment of visual
and textual data, which is a significant step towards joint understanding of
multi-modal content with narrative content. Namely, we developed a neu-
ral approach to align multi-modal data taking account of the temporal rela-
tions and dependencies within the data sequences, as well as a label-based
approach to detect finer semantic changes in visual data. Furthermore, we
extended our neural architecture in order to have a spatial contextualized
representation of visual elements to propose a sequential approach for the
phrase grounding task.

In the following, we will review the principle contributions of the thesis and
discuss the limitations of the presented work as well as possible directions
for future work.

6.1 Review of Principle Contributions

In this thesis, we have shown how contextualized representations can be
used for multi-modal data alignment, and how this task can be formulated
as a sequential decision classification problem. By building on recently
developed neural architectures, we were able to take more global context
into account while making alignment decisions, compared to the traditional
methods.

In Chapter 3, we have presented a label-based approach to temporally align
the video frames with the descriptive sentences using both visual and tex-
tual context. Our approach directly works on the raw video without the
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need of shot segmentation or threading as a pre-processing step. Our
method performs the shot segmentation in an integrated and iterative way,
which allows the detection of semantic changes within continuous camera
shots.

In Chapter 4, we have shown an end-to-end neural architecture where the
alignment actions are implemented as moving data between stacks of LSTM
blocks. This novel architecture formulates the alignment problem as a se-
quence of decision classification where the decisions are performed by tak-
ing account of conducive contextual information that is scattered over the
visual and textual data sequences. Besides allowing one-to-many alignment
of sequences, this flexible architecture supports non-monotonicity and align-
ment of multiple sequences with extensions.

In Chapter 5, we have presented an expansion on recent temporal align-
ment networks, and developed a sequential spatial phrase grounding net-
work, SeqGROUND, which allows many-to-many grounding decisions. We
have proposed the notion of contextual and sequential phrase grounding,
where earlier decisions can inform the latter, and formulated this process
with an end-to-end learnable neural architecture.

To conclude, we believe that, traditional alignment approaches, which per-
form on pre-processed data in two stages by defining a similarity metric
and applying an optimal alignment technique based on dynamic program-
ming, are disadvantaged by the separation of these stages. Instead, neu-
ral architectures that learn a metric directly helping to optimize alignment
are beneficial. Furthermore, these architectures are capable of using contex-
tual information and dependencies that are scattered far apart and beyond
limited local context. We think using neural methods for multi-modal data
alignment bear potential for more interesting research and applications, and
hope that our work provides an important step in such a direction.

6.2 Future Work

We have presented some advances on how to align visual and textual data
with narrative content, however the methods are still far from perfectly solv-
ing the challenges in complex scenarios. While we have discussed the spe-
cific technical issues of each method in the corresponding chapters, we will
discuss the limitations of the presented work on a broader view as well as
possible directions for future work.

Currently the main limitation of video-text alignment is that the alignment
granularity remains very coarse for an acceptable accuracy for long length
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text and videos. As the length of the sequences increase, dissimilarities
and non-monotonicity escalates drastically. For example, consider aligning
a book to its movie adaptation. Most of the time, the original story from
the book is changed largely in the movie: some events and dialogues are
missed or added, the temporal order of the events are changed, the scenes
and even the characters are portrayed with different physical proporties. As
the length increases, the stories divert even more, where the local informa-
tion in the sequence elements of fine granularity is not enough by itself for
an accurate alignment decision since the global context is scattered far apart.
Even with coarse granularity levels, such as chapter to scene alignment, the
accuracy numbers stay low. Possible directions of future work include hav-
ing a more accurate fine level alignment could be learning and performing
the alignment in a pyramid representation, where strong anchor points from
the coarser level alignment are used for a finer alignment at every iteration.
Designing a neural achitecture to learn such a behaviour in general would
be interesting.

For the image-text alignment, a significant limitation is the use of pre-trained
region proposal networks that pose an upper bound on the detection perfor-
mance. One direction to overcome this problem is designing a neural net-
work that introduces an integrated region proposal generation network that
learns regression on the objects.

Another interesting direction to explore would be combining video-text and
image-sentence alignments to improve the overall alignment for the pur-
pose of meta-data extraction. Once a unit of video-sentence pair is aligned,
the phrases of the aligned sentence could be localized in the frames of the
video. The localized entities could be propagated, and the next video-
sentence alignment decision could be performed using this extra informa-
tion obtained by the propagation. The overall procedure could be designed
as a chain of alternation between alignment and propagation through time.
For this purpose, optical flow and temporal propagation methods would be
required to integrate.

An issue we have not addressed in thesis is the generation of a description
sentence or an expression for a selected video part or an image region. Con-
sidering the alignment problem as a comprehension task, we can jointly de-
sign a model for both comprehension and generation tasks. Being able to
generate text will allow us to annotate the elements of the text sequence that
do not have correspondance in the visual data. In this way, the whole video
can be annotated with the aligned or generated meta-data.
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