
Diss. ETH No. 22964

Optimization Methods for Character
Animation using Rig Spaces

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by

Fabian Hahn
MSc ETH in Informatik, ETH Zurich

born on

23.08.1988

citizen of

Niederhasli (ZH), Switzerland
and the United States of America

accepted on the recommendation of

Prof. Dr. Robert W. Sumner, examiner
Prof. Dr. Markus Gross, co-examiner
Dr. Anthony D. DeRose, co-examiner

2015

ii

Abstract

Despite significant advances in computer graphics research targeting the field of
virtual 3D character animations, the workflows and tools of professional anima-
tion studios creating content for feature films and games have barely evolved.
As a result, animators often have to perform tedious and time-consuming tasks
during their work cycle that are mostly unrelated to the creative process of de-
signing a virtual character and its style of motion. This thesis attempts to bridge
this gap by proposing the use of character rigs as a central component for com-
putational methods to be built around, thus bringing state-of-the-art optimization
techniques into an environment familiar to artists. Rather than discarding a rig as
a mere mechanism artists build and use to facilitate their work, character rigs are
treated as an artist-designed subspace of deformations a character is allowed to
undergo.

To demonstrate the potential of this rig-focused optimization approach, three top-
ics in the character animation field are investigated and new methods utilizing the
rig deformation space are presented. In the field of rig-space simulation, a series
of proposed optimizations allow solvers to compute secondary motion of a char-
acter’s body with improved performance of up to two orders of magnitude com-
pared to previous approaches, while achieving the same level of quality. Further,
this work explores the use of rig-space optimization for the application of charac-
ter posing by introducing the concept of sketch abstractions, which allows direct
matching of a user drawn sketch with a rigged 3D character in 2D. As a third con-
tribution, the thesis provides a novel adaptive subspace simulation algorithm that
enables the computation of wrinkles and folds of tight-fitting clothing to be per-
formed in a reduced space, achieving significant runtime speedups over the cor-
responding full-space simulations. The applicability of these presented methods
to real-world data is showcased by applying them to complex production-quality
character rigs.

iii

iv

Zusammenfassung

Trotz sigifikanten Fortschritten in der Computergraphikforschung im Gebiet der
Animation von 3D-Charaktern haben sich die Arbeitsabläufe und Werkzeuge
von professionellen Animationsstudios, welche Inhalte für Trickfilme und Video-
spiele produzieren, kaum weiterentwickelt. Dies hat zur Folge, dass Animati-
onskünstler während ihres Arbeitsablaufs oft langwierige und zeitaufwändige
Schritte durchführen müssen, welche grösstenteils keinen Zusammenhang mit
dem kreativen Erstellungsprozess von virtuellen Charakteren und ihres Bewe-
gungsstils haben. Diese Dissertation versucht, diese Defizite zu überwinden,
indem sie Characterrigs as zentrale Komponente vorschlägt, auf deren Basis
rechnergestützte Methoden aufgebaut werden sollten. Auf diese Weise können
Künstlern moderne Optimierungsmethoden, welche dem aktuellen Stand der
Technik entsprechen, in einer ihnen familiären Art näher gebracht werden. An-
statt Rigs als reine Hilfestellungen für Künstler zu betrachten, welche ihnen ih-
re Arbeit erleichtern, werden Charakterrigs in dieser Arbeit als von Künstlern
vorgegebene Unterräume betrachtet, welche alle möglichen Deformationen eines
Charakters umfassen.

Um das Potential dieses rigfokussierten Optimierungsansatzes aufzuzeigen, wer-
den drei verschiedene Themenbereiche innerhalb der Charakteranimation unter-
sucht und neue Methoden präsentiert, welche vom Deformationsraum eines Rigs
gebrauch machen. Für Simulationen im Rigraum ermöglichen eine Reihe von Ver-
besserungen, dass Algorithmen die Bewegungen zweiten Grades eines Charak-
terkörpers mit einer verbessertern Laufzeit von bis zu zwei Grössenordnungen
verglichen mit bestehenden Methoden simulieren können. Eine solche verschnel-
lerte Simulation ist möglich, ohne dass sich dabei die Qualität der Resultate ver-
schlechtert. Des Weiteren untersucht diese Arbeit die Verwendung von Optimie-
rung im Rigraum im Rahmen der Charakterposierung, indem sie das Konzept
von Skizzenabstraktionen einführt. Mit diesen können vom Benutzer gezeichne-
te Skizzen direkt in 2D auf das Rig eines 3D-Charakters abgestimmt werden. In
einem dritten Beitrag stellt diese Dissertation einen neuartigen adaptiven Simu-
lationsalgorithmus vor, welcher die Berechnung von Knitter- und Falteneffekten
von eng anliegender Kleidung in Unterräumen ermöglicht. Dies hat gegenüber ei-
ner Simulation im vollen Raum eine signifikante Laufzeitverbesserung zur Folge.

v

Die Praxistauglichkeit der vorgestellten Methoden wird anhand der Anwendung
auf komplexe Charaketerrigs mit Produktionsqualität aufgezeigt.

vi

Acknowledgements

When I decided to study Computer Science at ETH, I did so because I thought I
would learn how to program video games, and even though I could not have been
more wrong, I never regretted the choice. When I later decided to pursue a PhD
in Computer Science, I did so because I thought it would be like my Master thesis
on a larger scale, and even though I proved to be completely wrong again, I am
very happy to say now that I do not regret this choice either. The last three years
have been a wild ride that probably taught me more than all the years before that,
and I have a couple of people to thank for that.

First and foremost, I would like to thank my two PhD advisors who made it pos-
sible for me to write a dissertation in such an exciting field: Prof. Bob Sumner for
accepting me as his first PhD student and advising me during the second half of
my PhD, and Prof. Markus Gross for initially offering me the position and advis-
ing me during the first half. I am proud of having been a part of their ”graphics
familiy” in Zurich at the Computer Graphics Lab and at Disney Research Zurich.

Second, I would like to thank all my collaborators that I had the great pleasure of
working with on all the projects that I am presenting in this thesis. I am deeply
grateful to Stelian Coros and Bernhard Thomaszewski for showing me what it
means to work with the very best in the field during all the long discussions
and research insights we shared. I would also like to thank Forrester Cole, Mark
Meyer and Tony DeRose from Pixar Research for collaborating with us on the
Subspace Clothing Simulation project, and Tony further for also serving on my PhD
committee. Many thanks to Frederik Mutzel and Maurizio Nitti for their tremen-
dous contributions to our Sketch Abstractions work, without which that project
simply would not exist.

Third, I would like to thank all the wonderful people that supported me during
the years of my PhD. Thanks to Antoine Milliez and Pascal Bérard for being the
best office mates and friends I could have ever hoped for. I am deeply grateful
to Alessia Marra for all the help in creating last-minute paper results. It was a
great pleasure to supervise Sabina Schellenberg, who was brave enough to do her
Master thesis with us on a topic as exotic as adaptive subspace simulation. Special
thanks go to all current and past members of CGL, IGL and DRZ for creating such
a fantastic working and social environment.

vii

Last but not least, I would like to thank my family and all my friends for always
patiently waiting for me to return from my paper deadline related absences from
real life. I have the deepest gratitude for my partner Katharina Tschanen who
stood by my side even during the most difficult of times. Kathi, I could not have
done this without your continuous encouragement and love.

viii

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

Contents ix

List of Figures xiii

List of Algorithms xiv

List of Tables xv

Introduction 1
1.1 Overview . 3

1.1.1 Efficient Rig-Space Physics Simulation 3
1.1.2 Sketch Abstractions for Character Posing 3
1.1.3 Subspace Clothing Simulation 4

1.2 Principal Contributions . 5
1.3 Thesis Outline . 6
1.4 Publications . 7

Related Work 9
2.1 Efficient Rig-Space Physics Simulation 9

2.1.1 Rigging . 9
2.1.2 Deformable Models . 10
2.1.3 Subspace Physics . 11
2.1.4 Skinning . 11

2.2 Sketch Abstractions for Character Posing 12
2.2.1 Sketch-Based Modeling . 13
2.2.2 Mesh Deformation . 13
2.2.3 Retrieval-and-Composition 14
2.2.4 Sketch-Based Posing . 15

2.3 Subspace Clothing Simulation . 16

ix

Contents

2.3.1 Cloth Simulation . 16
2.3.2 Subspace Simulation . 17
2.3.3 Pose-Space Deformation . 18

Foundations 21
3.1 Physics . 21

3.1.1 Deformable Objects and Elements 22
3.1.2 Elastic Energy . 22

Elastic Solids . 23
Cloth . 23

3.1.3 External Energy . 27
3.1.4 Equations of Motion . 28
3.1.5 Static Problems . 29
3.1.6 Energy Derivatives . 30

3.2 Energy Minimization . 31
3.2.1 Solver Considerations . 31
3.2.2 Newton-Raphson Iterations 32
3.2.3 Linear System Solving . 33
3.2.4 Hessian Regularization . 34
3.2.5 Line Search . 35

3.3 Subspace Simulation . 36
3.3.1 Rig Spaces . 36
3.3.2 Subspace Physics . 37
3.3.3 Rig-Space Physics Simulation 39

3.4 Analytic Rigs . 40
3.4.1 Rigid Transformation . 42
3.4.2 Blendshapes . 43
3.4.3 Linear Blend Skinning . 44

Definition . 44
Joint Transformations . 44
Rig Jacobians . 45
Matching Maya Behavior 47

3.5 Contact Handling . 48
3.5.1 Collision Detection . 48
3.5.2 Penalty-Based Collision Resolution 51
3.5.3 Impulse-Based Contact Resolution 52

Efficient Rig-Space Physics Simulation 55
4.1 Overview . 55
4.2 Method . 56

4.2.1 Rig-Space Physics Recap . 57
4.2.2 Linear Rig Approximation . 59

x

Contents

4.2.3 Physics-based Volumetric Skinning 60
Generating Example-Poses 61
Example-Based Skinning 62
Sparse Correspondences 63

4.2.4 Deferred Jacobian Evaluation 65
4.2.5 Implementation . 66

4.3 Results . 67
4.3.1 Rig-Space Simulation . 68
4.3.2 Skinning . 70

4.4 Summary and Outlook . 72

Sketch Abstractions for Character Posing 73
5.1 Overview . 73
5.2 Method . 75

5.2.1 Sketch Abstraction . 76
5.2.2 Matching Optimization . 77

Correspondences . 77
Subspace Optimization 78

5.2.3 Regularization . 79
Subspace Derivatives . 80
Coarsening . 81

5.2.4 Linear Blend Skinning Rigs 81
5.3 Results . 82

5.3.1 Redraw Posing . 83
5.3.2 Character Individualization 84
5.3.3 Draw-Over Posing . 87

5.4 Summary and Outlook . 88

Subspace Clothing Simulation 91
6.1 Overview . 91
6.2 Method . 93

6.2.1 Pipeline . 93
6.2.2 Pose-Space Database . 95

Relation between Pose and Clothing Deformation . . . 95
Pose-Space Parameterization 96
Data Generation and Model Reduction 97
Basis Creation . 97
Data Retrieval . 98

6.2.3 Adaptive Subspace Simulation 98
Input . 99
Kinematic Cloth Reference 99
Pose-Space Parameterization 101

xi

Contents

Subspace Cloth Model 101
Site Creation . 102
Subspace Optimization 104
Basis Construction . 105
Final Algorithm . 108

6.3 Results . 109
6.3.1 Setup . 109
6.3.2 Validation . 109
6.3.3 Generalization to Novel Poses 111
6.3.4 Application to Elastic Solids 111

6.4 Summary and Outlook . 112

Conclusion 119
7.1 Discussion . 119
7.2 Limitations and Future Work . 121

7.2.1 Efficient Rig-Space Physics Simulation 122
7.2.2 Sketch Abstractions for Character Posing 123
7.2.3 Subspace Clothing Simulation 124

Notation 127
A.1 Symbols, Variables and Operators 127
A.2 Matrix and Vector Derivatives . 129

References 131

xii

List of Figures

3.1 Example result of the Rig-Space Physics method 40

4.1 Example result for our efficient rig-space physics simulation method 55
4.2 Visualization of impulse vectors used to generate example-based

skinning training data . 61
4.3 Visual comparison to [Hahn et al., 2012] 69
4.4 Sumone example with and without secondary motion 70
4.5 Efficient rig-space simulation energy plot 71

5.1 Example stick-figure animation created using our sketch-based
posing system . 73

5.2 Cartoon Man example poses . 83
5.3 Cartoon Man falling animation . 84
5.4 Dragon parts database . 85
5.5 Dragon individualization examples 86
5.6 Elephant draw-over posing examples 87
5.7 Face draw-over posing example . 88

6.1 Example clothing simulation using our method 91
6.2 Subspace clothing simulation pipeline overview 94
6.3 Sample input training sequence frames 100
6.4 Untransformation of full-space cloth deformations using the in-

verse kinematic cloth reference . 103
6.5 Comparison to using a fixed subspace basis 106
6.6 Effect of adding the gradient to the subspace basis 107
6.7 Basis vector visualization . 114
6.8 Pants example deformations . 115
6.9 Generalization to motions not in the training data 116
6.10 Effect of simulating cloth far from training data 117
6.11 Application of adaptive subspace simulation to elastic solids 118

7.1 Sketch-based posing limitations . 123

xiii

List of Algorithms

1 Recursive volume splitting algorithm for the BVH tree construction. 49
2 Recursive volume update algorithm for BVH trees. 50
3 Recursive collision algorithm for two BVH tree volumes. 51

4 Finding a sparse correspondence set for skinning 65

5 Subspace integration with adaptive basis. 108

xiv

List of Tables

4.1 Efficient rig-space physics simulation timings 68

5.1 Sketch-based posing timings . 82

6.1 Subspace clothing simulation timings 110

xv

List of Tables

xvi

C H A P T E R 1
Introduction

Animations of three-dimensional digital characters have become ubiquitous
in recent years and have reached target audiences far beyond viewers of
animated movies and cartoons. Nowadays, the tools and techniques for cre-
ating character animation also see wide use in the production of live-action
movies, advertisements, and computer games. Furthermore, the animation
workflow also transfers to related fields like robotics and locomotion, vi-
sualization, or the design of interactive websites and mobile applications.
Despite this intensive use of 3D character animation, the tools and the over-
all workflow to create these animations have remained largely unchanged or
only evolved slowly. As a result, it remains common practice to employ pro-
cesses that burden the artists with a significant amount of tedious manual
labor in order to create high-quality results.

The core of the animation pipelines used by professional studios can be
roughly broken down into three distinct stages, each of which are usually
carried out by different specialized artists: In the modeling stage, a virtual
character is sculpted as a static object in a neutral pose, and is stored as a set
of vertices connected to a surface mesh by primitive faces such as triangles
and quads. This process could now be repeated for each desired pose of an
animation by either resculpting the character from scratch in that pose or by
editing the vertex positions of the character’s neutral pose, which would be
reminiscent of traditional 2D animation where characters are fully redrawn
in each frame. Instead, the neutral character mesh is passed on to the rigging
stage, where artists augment the static surface with a series of geometric
functions that transform whole parts of the character surface. These de-

1

Introduction

formers feature freely adjustable input parameters to control the extent of
the deformation, effectively providing a user with a set of high-level con-
trols to more intuitively pose the character. The entirety of these functions
and its parameters is simply called a rig, and is further passed on to the
keyframe animation stage of the pipeline. In this third stage, the character
is brought to life by letting the rig parameters follow trajectories over time
that are interpolated from keyframes that artist set at certain key poses. The
modeling, rigging, and keyframing stages all involve a significant deal of
manual effort that involve several tedious yet crucial tasks to achieve a final
animation corresponding exactly to what a director envisioned.

Meanwhile, the field of computer graphics has made many advances in sur-
face modeling and deformation, physically-based simulation, and anima-
tion synthesis. It might sound somewhat surprising at first that only few of
these state-of-the-art methods have been embraced by the animation indus-
try. While there are a variety of different reasons for this slow adoption of
research results into production and the everyday workflow of artists creat-
ing animation, one likely explanation could be that many of these methods
propose workflows different from the ones commonly used. Since the estab-
lished tools and processes have proven so effective and reliable, the success
of these long-standing animation systems had the adverse effect of letting
skepticism prevail over potential usefulness when considering a novel tool
that breaks tradition with familiar approaches.

In this work, we attempt to overcome this gap between state-of-the-art com-
puter graphics research and the toolkits of animators by purposely design-
ing our methods from an animator’s perspective. We do this by treating the
character rig—being created by an artist, not a programmer or researcher—
as the central concept that our framework needs to support and build upon.
We will show that character rigs are not a mere mechanism used by artists
to facilitate the creation of animations, but that they span a deformation space
that can be exploited to develop novel simulation systems that fit directly
into an artist’s workflow. This thesis explores rig deformation spaces in three
different context and proposes concrete applications in the fields of physical
simulation of secondary motion, sketch-based character posing, and efficient
subspace simulation of tight-fitting clothing. Our aim is to demonstrate the
mathematical potential of rigs in computer graphics research, and to estab-
lish the rig deformation subspace as a valuable asset in the design of fu-
ture animation systems. We believe that this concept has far-reaching conse-
quences which could enable its application to topics beyond those treated in
this work.

2

1.1 Overview

1.1 Overview

In this section, we will give an overview over three proposed applications
that we will use to showcase the power of a character rig’s deformation
space. While the motivations for developing novel methods in these areas
slightly differ, they all share the goal of providing novel artist-friendly ani-
mation tools.

1.1.1 Efficient Rig-Space Physics Simulation

Creating believable and compelling character motions is arguably the central
challenge in animated movie productions. While manually posing a charac-
ter for each animation keyframe allows artists to create very expressive ani-
mations, this process is tedious when it comes to creating secondary motion
such as the bulging of muscles or jiggling of fat. Hahn and colleagues [2012]
recently presented rig-space physics, a method to augment keyframed ani-
mations with automatically computed secondary motion. The basic idea of
rig-space physics is to use physics-based simulation in rig space, the charac-
ter’s space of motion. As a key advantage over conventional physics-based
simulation, the rig-space approach results in animation curves that can be
easily edited by artists. But while rig-space physics can automatically gen-
erate secondary motion with high visual quality, it entails a significant com-
putational burden that slows production and prohibits its use in interactive
environments. In this work, we will present a method that offers a signif-
icant computational improvement over the work of Hahn and colleagues
[2012], while maintaining all its benefits and the same level of quality.

1.1.2 Sketch Abstractions for Character Posing

In classic 2D animation, artists draw each pose of a character by hand us-
ing pencil and paper. This tangible connection is a powerful interface that
gives artists direct control over a character’s shape. In 3D animation, pos-
ing a character is a more involved endeavor, since it entails the coordinated
movement of thousands of vertices. To make this process tractable, rigging
artists carefully craft character rigs that define the space of meaningful de-
formations in terms of abstract rigging parameters. Animators determine a
character’s pose indirectly by choosing values for these parameters. In order
to accommodate the full range of expressive deformation, a production char-
acter rig may employ hundreds or thousands of different rigging controls,
varying in complexity from blend shapes to skeletal deformation to complex

3

Introduction

procedural functions. Naturally, navigating this huge parameter space is a
challenging task that can tax even the best animators. Our work attempts to
bring the direct control offered by sketching into the 3D animation pipeline
with a sketch-based posing system that utilizes customized character sketch
abstractions.

1.1.3 Subspace Clothing Simulation

Clothing plays a central role in compelling animation by contributing to the
style and personality of animated characters while evoking the impression
of realism and complexity that comes from detailed folding patterns. On
a practical level, a great deal of clothing used in animated films consists
of close-fitting garments that move along with the body. For example, a
sweater may not show noticeable dynamics under normal body motion, but
it will exhibit noticeable buckling patterns at the arm bends and oblique
torsional folds rising up from the waist. Frictional contacts and the over-
all nonlinear nature of cloth mean that these quasi-static folds depend not
only on the current pose but also on the path taken in pose space to arrive
at the present body configuration. This property gives clothing an infinite
source of diversity and detail—and also shows that cloth simulation is an
indispensable tool in feature animation, even for close-fitting garments.

Although simulation systems can compute the deformation of cloth at a
remarkable level of realism and detail, they incur an extremely high com-
putational cost. Subspace methods have proven very effective at reducing
computational cost for other applications such as finite-element based solid
simulation. These methods are most effective when deformations are small
or predictable. In such cases, one can construct a low-dimensional linear
subspace whose basis remains constant over time, thus delivering high com-
putational efficiency. Unfortunately, due to hysteresis and its inherent non-
linear nature, cloth deformations are generally neither small nor predictable,
which is seemingly at odds with subspace simulation and probably explains
why so few attempts have been made so far in this direction. In this thesis,
we will present a subspace simulation technique in the context of clothing
simulation that attempts to overcome these challenges and that improves
the performance of state-of-the-art cloth simulation codes significantly while
still reproducing the rich deformations of a full-space solution.

4

1.2 Principal Contributions

1.2 Principal Contributions

The principal contributions of the work presented in this thesis to the field
of computer graphics are as follows:

• A flexible optimization framework targeted at the simulation of
physical objects and the matching of character poses while making
use of character rig’s deformation space. The key feature of our sys-
tem is to minimize objective functions consisting of arbitrary energy
terms both in full space and projected into arbitrary subspaces. This
carefully designed abstraction layer allows a single solver to handle
all of the numerical optimizations required for the applications pre-
sented in this work, in particular the simulation of an elastic solid
in a rig’s deformation space, the optimization of a character pose
to match a user drawn sketch, and the reduced simulation of tight-
fitting clothing worn by a virtual character. Over the course of this
thesis, we will see how this core solver can be further optimized to
obtain the maximum runtime performance when targeting these in-
dividual applications.

• A novel method targeting the rig-space simulation of physical sec-
ondary motion of a virtual character. Our method offers significant
performance improvements over the state-of-the-art approach to the
problem by Hahn and colleagues [2012], while achieving the same
level of quality in simulation results. We achieve this by providing a
linearized formulation of the rig-space dynamics, a physics-based
volumetric skinning method, and a deferred Jacobian evaluation
scheme. Taken together, these three components allow our method
to achieve performance improvements of up to two orders of mag-
nitude over the original rig-space physics method on production-
quality rigs.

• The concept of sketch abstractions comprising an iconographic 2D
representation of a virtual character from a particular viewpoint.
Our method brings direct control to character posing by providing
a sketch-based posing system that directly matches a user drawn
sketch with the sketch abstraction. We achieve this by formulating
a nonlinear iterative closest point energy that directly optimizes the
distance between the input sketch and the sketch abstraction as de-
formed by the character rig. A custom regularizer is employed to
address the underconstrained nature of the problem and resolve po-
tential 3D depth ambiguities.

5

Introduction

• An adaptive subspace simulation algorithm that enables the reduced
simulation of tight-fitting clothing worn by a virtual character. We
propose the use of the underlying character rig as a kinematic ref-
erence, which allows the construction of a linear subspace in an un-
transformed space where deformations do not exhibit rotations in-
duced by the pose of the character. To enable fast runtime simu-
lations with a very low number of subspace dimensions, we intro-
duce an adaptive basis selection scheme that computes a suitable
simulation space for the current pose on-the-fly. The basis vectors
are precomputed and stored in a pose space database, which allows
our method to both offer significant speedups over full-space simu-
lations, as well as generalize to motions with novel poses that were
not part of the training examples.

1.3 Thesis Outline

This thesis is organized as follows: After the current Chapter 1 giving an
introduction to the thesis, we will discuss related work on deformable mod-
els, rigging, subspace simulation, sketch-based posing and cloth simulation
methods in Chapter 2. In Chapter 3, we will lay the mathematical founda-
tions for the thesis and describe a simulation framework that we will use
throughout this work. We will start by discussing the simulation of physical
objects, before we proceed to energy minimization techniques that are used
to advance them in time. Further, we will describe the subspace simulation
of physical objects in a reduce space, state the analytic formulas and deriva-
tives of some important types of rigs, and will give an introduction to con-
tact handling. Chapter 4 will address the problem of efficiently simulating
secondary motion effects in rig space. After investigating the state-of-the-
art solver in rig-space simulation, we will propose several new techniques
to significantly improve the performance of rig-space physics simulation,
while retaining the same level of quality. In Chapter 5, we will apply the
concept of rig-space optimization to the problem of sketch-based posing. To
this end, we introduce the novel concept of sketch abstractions, which pro-
vide a means to perform the matching optimization completely in 2D and
bridges the gap between arbitrary 3D rigs and drawn 2D curves. The sub-
sequent Chapter 6 will investigate the problem of performing reduced sim-
ulations of cloth, and introduce an algorithm that is able to simulate tight-
fitting clothing using an adaptive subspace selection scheme. We will first
introduce the data structure of a pose space database, which we rely on to
select basis vectors from during the runtime of our adaptive subspace sim-

6

1.4 Publications

ulation technique, before stating and explaining the individual steps of our
algorithm. Chapter 7 will conclude the thesis and discuss limitations, as well
as potential avenues for future work. A description of the mathematical no-
tation used throughout this work is provided in the Appendix.

1.4 Publications

In the context of this thesis, the following peer-reviewed publications have
been accepted:

• F. HAHN, B. THOMASZEWSKI, S. COROS, R. SUMNER and M.
GROSS. Efficient Simulation of Secondary Motion in Rig-Space. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, pp. 165-171, 2013.
We present an efficient method for augmenting keyframed charac-
ter animations with physically-simulated secondary motion. Our
method achieves a performance improvement of one to two orders
of magnitude over previous work without compromising on quality.

• F. HAHN, B. THOMASZEWSKI, S. COROS, R. SUMNER, F. COLE, M.
MEYER, T. DEROSE, M. GROSS. Subspace Clothing Simulation Us-
ing Adaptive Bases. ACM Transactions on Graphics, vol. 33, no. 3, pp.
105:1-105:9, 2014.
We present a new approach to clothing simulation using low-
dimensional linear subspaces with adaptive bases.

• F. HAHN, F. MUTZEL, B. THOMASZEWSKI, S. COROS, M. NITTI, M.
GROSS, R. SUMNER. Sketch Abstractions for Character Posing. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, 2015.
We propose a sketch-based posing system for rigged 3D characters
that allows artists to create custom sketch abstractions on top of a
character’s actual shape. A sketch abstraction is composed of rigged
curves that form an iconographic 2D representation of the character
from a particular viewpoint.

The contents of all these papers are included in this thesis, but the individual
notations were harmonized to build upon the core simulation framework
described in Chapter 3. Furthermore, additional technical details for each
of the three applications are provided in this work, which should make it
possible to implement the methods and reproduce the showcased results
without consulting external sources.

7

Introduction

8

C H A P T E R 2
Related Work

This chapter lists some of the related work on rigging, physically-based sim-
ulation, and subspace optimization in the context of the three applications
we are going to present in this thesis.

2.1 Efficient Rig-Space Physics Simulation

Designing and animating digital characters is a central problem in computer
graphics. We refer the interested reader to the recent survey by McLaughlin
and colleagues [2011] for an overview of the many challenges involved in
this task. In this section, we focus on existing work related to the problem of
creating secondary motions in the context of the Efficient Rig-Space Simulation
method that we will present in Chapter 4.

2.1.1 Rigging

Before characters can be animated, they first have to be modeled and rigged.
During modeling, artists define the surface mesh of a character, and the
rigging stage requires them to specify how this surface mesh deforms as
a function of a relatively small number of rig parameters. The map be-
tween the rig parameters and the deformation of the surface mesh can be
defined using a variety of different techniques: linear blend or dual quater-
nion skinning [Magnenat-Thalmann et al., 1989; Kavan et al., 2008], wire

9

Related Work

deformations [Singh and Fiume, 1998] or blend shapes [Lewis et al., 2000;
Sloan et al., 2001], to name a few. Many of these techniques are complemen-
tary, and there is no single best solution for all applications. Furthermore,
the choice of which of the techniques are eventually used also depends on
other factors such as personal preference. In order to afford a maximum
level of generality, we follow Hahn and colleagues [2012] and do not make
any assumptions about the underlying rig. Consequently, we evaluate the
rig and its derivatives through function calls to the modeling and animation
software.

2.1.2 Deformable Models

Physics-based simulation is a natural choice for creating secondary motion
effects such as flesh and fat jiggling as a character moves. Since the pioneer-
ing work of Terzopoulos and colleagues [1987], many simulation methods
that can potentially be used for this purpose have been introduced. A com-
prehensive review of these works is outside the scope of this thesis, but the
survey article of Nealen and colleagues [2006] provides more details on this
topic.

Most of the methods for simulating volumetric objects require the simula-
tion domain to be spatially discretized into tetrahedrons [Irving et al., 2004].
The characters used in animation environments are typically represented
by surface meshes only, but there are many well-established tools such as
Tetgen, NetGen, and gmsh for generating tetrahedral meshes from bound-
ary representations. A more fundamental difference between physics-based
simulation and character animation is that simulations endow each vertex of
the mesh with individual degrees of freedom. To the extent that the motion
must obey physics, the vertices are thus free to move independently from
each other. This setup is in stark contrast to character animation, where the
high-resolution surface mesh is constrained to deform only in the subspace
defined by the rig. This representational mismatch typically implies that
simulation must take place at a later stage of the animation pipeline and
that results cannot easily be edited by animators.

The rig-space physics method of Hahn and colleagues [2012] was specifically
designed to bypass this challenge, but it still needs to compute the motion of
the internal vertices. This entails the solution of large systems of equations
and consequently leads to high computational costs. Although there are
simulation methods that do not require a volumetric representation, these
are not without limitations. Shell models [Grinspun et al., 2003], for instance,
can, in principle, be used to compute secondary motions on the character’s

10

2.1 Efficient Rig-Space Physics Simulation

surface. However, shell models lack volume preservation by definition and
thus cannot account for the natural bulging of flesh and other soft tissue.
As another alternative, the boundary element method [James and Pai, 1999]
condenses a volumetric problem to one with degrees of freedom only on
the surface. However, this method only works well for linear problems and
is therefore not attractive for modeling the highly nonlinear deformations
exhibited by production-quality characters.

To alleviate these limitations, we aim to formulate an explicit, linear map
that returns the position of interior vertices as a function of the configuration
of the surface mesh. In effect, the deformation of the rig is automatically
propagated everywhere in the interior of the simulation mesh, allowing for
a very efficient implementation of subspace physics.

2.1.3 Subspace Physics

Reduced model methods for deformable objects are typically used to im-
prove simulation speed. The underlying idea is to formulate the equations of
motion in a low-dimensional subspace onto which the full-dimensional sim-
ulation model is projected. These subspaces can be defined by applying di-
mensionality reduction on sequences of meshes obtained through full simu-
lations [James and Fatahalian, 2003], by embedding objects in low-resolution
lattices [Faloutsos et al., 1997], by analyzing the vibration modes of an ob-
ject [Barbič et al., 2009], or by using dual quaternion skinning to express
the deformation of an object as a function of a small number of reference
frames [Gilles et al., 2011]. While these methods are typically optimized for
efficiency, rig-space physics is designed to operate in the deformation sub-
spaces defined by arbitrary animation rigs. This generality, however, comes
at a heavy computational price, which we aim to significantly lower with
the method we propose.

2.1.4 Skinning

One of the key contributions of our method is that it enables the use of a
deformation energy defined on a volumetric mesh, but without the need for
additional internal degrees of freedom. We construct an explicit, example-
based linear map that outputs the configuration of the internal vertices as
a function of the surface mesh of the character. This approach is inspired
by existing methods that compute skinning weights to map the motion of
a set of coordinate frames onto a surface mesh [Magnenat-Thalmann et
al., 1989]. There are many methods that aim to improve the quality of

11

Related Work

skinning. Multi-linear methods [Wang and Phillips, 2002] use additional
weights to improve the quality, as does the recent method of Jacobson and
colleagues [2012]. Kavan and colleagues [2008] show that nonlinear skin-
ning formulations can also lead to better quality, but our goal is to construct
a linear map between surface and internal vertices. Another two groups
of methods improves skinning using example shapes [Lewis et al., 2000;
Sloan et al., 2001; Kry et al., 2002], or automatically compute skinning
weights by optimizing for smoothness properties [Baran and Popović, 2007;
Jacobson and Sorkine, 2011]. The recent method by Kavan and colleagues
[2012] automatically computes optimized skinning weights by minimizing
an elastic energy, which is similar in spirit to our approach. However, our
skinning method does not try to alter the deformation of the surface mesh
but defines the behavior of the interior.

Other research [James and Twigg, 2005; Hasler et al., 2010; Kavan et al., 2010;
Le and Deng, 2012] specifically targets the problem of skinning animations,
which entails finding transformations and corresponding skinning weights
to best approximate a sequence of deforming meshes. Our work is closely
related to these approaches. We first obtain a set of example deformations
for the tetrahedral mesh by using physics-based simulation on a small num-
ber of artist-generated character poses. We then optimize for a sparse set
of skinning weights that best explains the behavior of the internal vertices
through the surface deformation.

Related methods to compute skinning weights create a low-resolution cage
from the surface mesh and compute, for each internal vertex, the har-
monic [Joshi et al., 2007], mean-value [Ju et al., 2005] or Green coordi-
nates [Lipman et al., 2008]. While these methods lead to smooth deforma-
tion fields, they are not without drawbacks. Besides the fact that an artist
needs to model and rig the cage, harmonic coordinates are expensive to com-
pute, mean-value coordinates can lead to non-conformal interpolation, and
the geometry interpolated using Green coordinates is not guaranteed to re-
main inside the control cage, which, for our problem setting, would result
in inverted tetrahedrons. In addition, the deformation fields generated with
these methods are disconnected from the elastic model used to represent the
characters. We therefore resort to an example-based skinning method whose
resulting deformation fields reflect the nature of the underlying material.

2.2 Sketch Abstractions for Character Posing

Researchers have long recognized the great potential of sketch-based user
interfaces for a wide range of tasks in computer graphics. In this section, we

12

2.2 Sketch Abstractions for Character Posing

give an overview of this diverse field and analyze how different techniques
relate to our setting of Sketch Abstractions for Character Posing that we will
present in Chapter 5.

2.2.1 Sketch-Based Modeling

Sketch-based modeling is a challenging task in which a user’s sketch is used
to create a 3D shape. Depth ambiguities make the problem inherently in-
tractable, since infinitely many different 3D objects can project to the same
2D camera image [Olsen et al., 2009]. To address this challenge, Igarashi and
colleagues [1999] propose the use of drawn contours together with smooth-
ness assumptions for 3D freeform sketch design, which can be further ex-
tended to support hidden segments and cusps [Karpenko and Hughes, 2006]
or the automatic incorporation of rigging elements during the modeling pro-
cess [Borosán et al., 2012]. Wyvill and colleagues [2005] follow a similar ap-
proach, but model the target object as an implicit surface, while Kraevoy,
Sheffer, and van de Panne [2009] employ a 3D template to resolve ambigu-
ities in drawn contours and recover a global deformation. Other work in
this area uses additional annotations to mark features such as symmetries,
cross-sections or alignment cues to restrict the space of possible solutions
[Gingold et al., 2009].

Existing sketch-based modeling methods focus on the direct mapping of fea-
tures in the input sketch to the 3D geometry, linking the quality of the results
to the sketching ability of the user. Our method targets a different prob-
lem. We focus on sketch abstractions on top of artist-designed rigs, allowing
character designers to expose pose and shape variability to the sketch-based
posing system at the level of detail that matches their design intent for the
character.

2.2.2 Mesh Deformation

Mesh deformation using sketch-based interfaces is an appealing alterna-
tive to traditional shape editing methods. SilSketch [Nealen et al., 2005;
Zimmermann et al., 2007] allows the user to redraw screen-space silhouette
strokes of a model and adjusts the 3D vertex positions so that the silhouette
matches the input stroke. Curves derived from 2D cartoons can serve as con-
straints in the volumetric graph Laplacian [Zhou et al., 2005] to apply styl-
ized deformations to 3D meshes. Kho and Garland’s method [2005] provides
an intuitive interface for deforming unstructured polygon meshes in which
screen-space curves define a region of interest over the mesh. Redrawing or

13

Related Work

manipulating the curve induces a mesh deformation. The FiberMesh sys-
tem of Naelen and colleagues [2007] represents a hybrid approach between
editing and freeform modeling. While the initial model is created using a
sketch-based modeling paradigm, the strokes used to draw the shape remain
on the 3D mesh and allow intuitive and interactive sketch-based editing of
the geometry.

These mesh deformation methods operate in a global space and focus on
deformations applied directly to vertices. However, in professional anima-
tion production pipelines, the animation workflow revolves around setting
keyframes on rig parameters. A character’s rig is carefully constructed to ex-
press the space of desired and allowable deformations. Moving vertices ar-
bitrarily, as is done with mesh deformation systems, breaks the consistency
that the rig affords. Our system instead targets an artist-designed subspace
in the form of a character rig, allowing the artist to determine what type of
variability is appropriate and how that variability is exposed via the sketch
abstraction. Thus, our generated poses always conform to the artist’s origi-
nal design intent, since the optimization takes place within the artist-created
subspace defined by the character rig.

2.2.3 Retrieval-and-Composition

Retrieval-and-composition represents another approach for sketch-based
modeling that is inspired by classical information retrieval algorithms.
Funkhouser and colleagues [2004] implement a system based on a database
of 3D models that can be queried via keywords or existing parts of shapes.
The retrieved meshes can then be composed into a new mesh via cut and
paste operations. Lee and Funkhouser [2008] extend this method with
sketch-based querying in order to enable a sketch, cut and paste 3D modeling
process. Shin and Igarashi [2007] use a similar system for the sketch-based
composition of scenes.

While these systems allow quick composition of detailed, artist-created ob-
jects, general-purpose customization beyond extraction and rigid transfor-
mation is difficult. Furthermore, retrieval-and-composition algorithms of-
ten require the user to embed strokes in 3D by drawing on different planes
to assist the 3D retrieval process. As we show in our results, our system
can enhance retrieval-and-composition algorithms by incorporating artist-
controlled shape variability via arbitrary rigging controls as well as a more
iconographic 2D representation of objects via the sketch abstraction.

14

2.2 Sketch Abstractions for Character Posing

2.2.4 Sketch-Based Posing

Sketch-based posing uses sketching interfaces for shape changes that con-
form to a character’s rig or other pose-based parameterizations, often in the
form of a skeletal structure. Early work in this field focuses on estimating
bone positions from a 2D stick-figure representation [Davis et al., 2003]. Lin
and colleagues [2010] explore the stick figure sketching paradigm in the con-
text of designing sitting poses. The method of Wei and Chai [2011] lets users
sketch bone positions that are then matched with natural human body poses
from a large motion capture database, which Choi and colleagues [2012] ex-
tend to support the retrieval of whole motion sequences. Motivated by tech-
niques from hand-drawn animation, Guay and colleagues [2013] infer the
principal pose of a character from a single 2D input curve, the line of action.
In order to support extreme deformations, Öztireli and colleagues [2013]
combine the sketching of curved, stretchable bones with a novel skinning
method that supports extreme rotations.

While powerful, these methods target skeletal rigging formulations and use
a prescribed sketching methodology irrespective of the design intent of the
character’s creator. In contrast, the distinguishing aspect of our work is that
we offer the character designer the ability to explicitly construct the repre-
sentation, in the form of a sketch abstraction, that is used to sketch new
character poses. In addition, our formulation generalizes to arbitrary rigging
controls and does not restrict the type of deformers used to rig the character.

Other sketch-based posing systems target facial animation. Researchers use
statistical models of captured [Lau et al., 2009] or generated [Gunnarsson
and Maddock, 2010] face shapes in place of traditional character rigs to
recover face poses that match sketched curves. In contrast, Miranda and
colleagues [2012] provide a facial sketching interface specialized for bone-
based rigs that derives bone deformations from sketched curves. While
these methods prescribe a particular rig type that may not match animation
workflows, the work of Chang and Jenkins [2006] supports arbitrary face
rigs with a black-box optimization system that aligns sketched reference and
target curves. This functionality matches our on-the-fly generation of sketch
abstractions. However, while the method of Chang and Jenkins [2006] is de-
signed for non-hierarchical articulation and is limited to fewer than 20 rig-
ging variables, our method supports arbitrary rigs with hundreds of vari-
ables. Furthermore, the core focus of our work is not on aligning individ-
ual source and target curves but on allowing artists to build more elaborate
sketch representations that can be used with our efficient posing system.

Finally, in the field of mechanical design, Coros and colleagues [2013] sketch

15

Related Work

the desired motion curves for end-effectors of mechanical assemblies, essen-
tially defining an animation curve via sketch input. In a similar fashion,
methods have been proposed that do not create entirely new geometry, but
instead pose an existing character using sketched user input.

2.3 Subspace Clothing Simulation

In this section, we discuss related methods and previous work with respect
to the Subspace Clothing Simulation method that we will present in Chapter 6.

2.3.1 Cloth Simulation

Cloth simulation is a well-explored field and existing works are far too nu-
merous to be listed here. The work of Baraff and Witkin [1998] was a major
breakthrough in terms of computational efficiency and even though the fol-
lowing 15 years have seen many improvements, high-resolution cloth simu-
lation is still very time-consuming.

Nevertheless, there are many methods that aim for faster cloth simulation.
One line of work combines simulation on a coarse base mesh with a fast
method for adding geometric details. The method of Rohmer and colleagues
[2010] adds geometrically generated wrinkles based on the strain field of the
coarse simulation. Mueller and Chentanez [2010] attach a high-resolution
mesh to a coarse simulation, whose deformation is determined using fast
static solves.

Another stream of work exploits precomputed data to avoid run-time sim-
ulations altogether. De Aguiar and colleagues [2010] present a technique
for learning a linear conditional cloth model that can be trained with data
from physics-based simulations. The method achieves very fast computa-
tion times, but it primarily targets low-complexity cloth with little folding.
The method of Guan and colleagues [2012] factors clothing deformations
into components due to body shape and pose, and learns a linear model in
order to quickly dress different characters without run-time simulations. An
alternative way of exploiting precomputed data was suggested by Kim and
colleagues [2013], who create an exhaustive set of secondary motion to ac-
company a given primary motion graph. Since no run-time simulation is
required, this method is very fast. However, the character’s range of mo-
tion has to be small enough to fit a motion graph, which is not the case for
production-level character animations. Kim and Vendrovsky [2008] make

16

2.3 Subspace Clothing Simulation

use of precomputed data to drive the deformation of clothing using the an-
imated underlying model of the character wearing it. While our method
also relies on this correspondence between pose and cloth deformation, we
perform a physical simulation to achieve faithful results rather than merely
interpolating motions from the input data.

Yet another class of methods combines coarse simulations and precomputed
data. Feng and colleagues [2010] describe an approach which decomposes
a high-resolution simulation into mid- and fine-scale deformations. For the
mid-scale deformations, the mesh is further decomposed into a set of bone
clusters for which skinning weights are fit in a way similar to [James and
Twigg, 2005], while fine-scale details are added based on a PCA-analysis of
residual vectors as in [Kry et al., 2002]. Both mid- and fine-scale details are
then driven by a coarse scale simulation, which is fast enough to yield real-
time rates. Focussing on fitted clothing, Wang and colleagues [2010] present
an example-based approach that augments coarse simulations with pose-
dependent detail meshes obtained from a wrinkle database. The wrinkle
database stores per-joint wrinkle meshes that are precomputed from high-
resolution simulations and merged together at run time. Targeting the more
general case of free-flowing cloth, Kavan and colleagues [2011] describe a
method for learning linear upsampling operators from high-resolution sim-
ulations. With similar goals, Zurdo and colleagues [2013] combine multi-
resolution and pose-space deformation (PSD) techniques in order to aug-
ment coarse simulations with example-based wrinkles.

Similar to these works, our method uses data from high-resolution simula-
tions, but rather than augmenting a coarse simulation, we construct a low-
dimensional subspace that allows for fast simulation of detailed clothing
deformations.

Finally, another option for performance improvements is to leverage the pro-
cessing power of parallel architectures [Selle et al., 2009]. However, while
significant acceleration factors have been reported for large data of around
two million triangles [Selle et al., 2009], the improvements for typical prob-
lem sizes are rather modest.

2.3.2 Subspace Simulation

Subspace simulation is generally most attractive when high-resolution mod-
els undergo low-rank deformations. The problem of subspace integration
and model reduction for the simulation of elastics was originally formu-
lated in the field of engineering [Krysl et al., 2001], but we focus on works

17

Related Work

from computer graphics for the sake of conciseness. In this context, the
method of Barbič and James [2005] was the first to demonstrate, and un-
leash, the potential of model reduction for accelerating the computation of
elastic deformations on high-resolution meshes. Subsequent work by An
and colleagues [2008] showed that a selective evaluation of elemental con-
tributions, also known as cubature, can improve the asymptotic complex-
ity of subspace methods. While subspace methods can be very efficient for
cases with small or predictable deformations, the generalization is made dif-
ficult by the discrepancy between a low-dimensional basis and a large range
of deformations. Kim and colleagues [2009] address this problem with a
hybrid solution that combines subspace and full-space simulation and, for
each step, decides which one to use. One technically interesting aspect of
this work is the use of an adaptive basis that is dynamically updated with
results from the full-space solver, on which our method also relies. How-
ever, our updates are much more frequent (once per Newton iteration) and
do not require online full-space simulation. While most subspace methods
rely on a linear basis, Hahn and colleagues [2012] simulate the deformation
of a character’s fat and muscles in the nonlinear subspace induced by its rig.

The problem of detecting and resolving collisions in the context of subspace
simulation has recently gained attention. Barbič and James [2010] showed
how bounding volume hierarchies can be enhanced by certificates that al-
low aggressive culling of overlapping tests, and Zheng and James [2012]
extended this approach to also consider deformation energy. Wong and
colleagues [2013] propose a method for efficient self collision culling for
skeleton-driven deforming meshes. While we do not address subspace self-
collision culling in this work and simply resort to full-space collision resolu-
tion, we note that many of these ideas could also be applied to our setting of
subspace simulation using adaptive bases.

Harmon and colleagues [2013] dynamically augment the subspace basis
with analytical functions that model deformations due to individual contact
points. Since these augmentation vectors only add very localized displace-
ments, they are able to project their current subspace coordinate vector into
the new basis whenever it changes to ensure temporal coherence. In our
case, the basis regularly incurs drastic changes which motivates the use of a
more sophisticated approach to obtain smooth transitions.

2.3.3 Pose-Space Deformation

The concept of making shape depend on positions in a pose space was origi-
nally proposed by Lewis and colleagues [Lewis et al., 2000] and further ex-

18

2.3 Subspace Clothing Simulation

tended in the context of example-based deformations [Sloan et al., 2001],
medical imaging [Kurihara and Miyata, 2004] and real-time applications
[Kry et al., 2002]. The skeletal shape deformation method by Weber and
colleagues [2007] is similar in spirit, but based on a differential surface repre-
sentation. Meyer and Anderson [2007] proposed Key Point Subspace Accel-
eration and soft caching to accelerate pose-dependent deformation queries.
Zurdo and colleagues [2013] use PSDs to enhance a low-resolution simu-
lation with example-based wrinkle details. The quality of pose-space de-
formation methods heavily depends on the way the scattered-data interpo-
lation problem in pose space is resolved. To this end, Lee [2009] explored
the space of basis functions, while Bengio and Goldenthal [2013] propose a
simplicial interpolation scheme to make the interpolation space more con-
trollable.

Similar to these works, our method is also based on the assumption that
deformations are inherently pose-dependent. However, instead of interpo-
lating deformations in pose space, we select them automatically from nearby
locations and let our solver handle the transitions between them.

19

Related Work

20

C H A P T E R 3
Foundations

In the previous chapters, we have given an overview over previous research
related to the work in this thesis. In this chapter, we will introduce the math-
ematical framework that will be used throughout this work. We will touch
on several topics that will later see use in the subsequent chapters on appli-
cations to Efficient Rig-Space Physics Simulation, Sketch Abstractions for Char-
acter Posing, and Subspace Clothing Simulation. To begin with, an overview
over physical objects and their simulation over time will be provided, be-
fore we head deeper into optimization techniques in the sections on energy
minimization and subspace simulation. Further, we will discuss some ana-
lytic forms of commonly used rigs, as well as give a brief description of the
contact handling methods we use.

3.1 Physics

This section introduces the various layers of abstractions we will use to
model physical objects for their simulation over time. While we will state
some of the derivations related to the physical material models, the finite
element method and the time integration used in this work, the presented
model will allow us to later look at physical simulations on a much higher
level—even without having to fully understand them anymore. In fact, we
will arrive at the formulation of a flexible objective function that we sim-
ply have to minimize with respect to its parameters in order to advance the
simulation forward in time.

21

Foundations

3.1.1 Deformable Objects and Elements

We assume that the deformable object we are interested in simulating can
be modeled as an elastic object represented by a a sequence of n vertices
x1, x2, . . . , xn. In the typical three-dimensional case, each of the vertices
xi ∈ R3 can be stacked up to form a state vector of dimensions 3n:

x =
[
(x1)x, (x1)y, (x1)z, (x2)x, (x2)y, (x2)z, . . . , (xn)x, (xn)y, (xn)z

]T (3.1)

While a lower-case x denotes deformed positions, we will use the capital X
to denote the undeformed positions of the vertices and also refer to it as the
object’s rest state.

Depending on the type of elastic object we are simulating, the vertices are
connected by primitives such as edges, triangles or tetrahedrons to which
we will refer as deformable elements. The state of an element e is not defined
in terms of the full state vector x, but by a subset of size 3m of the dimensions
of x, where m is the number of vertices an element refers to. For example, an
edge element would use m = 2, while m = 3 would be used for a triangle
element, and m = 4 for a tetrahedron element. We refer to the deformed
state vector of an element containing only these dimensions of x as xe ∈ R3m.
Analogously, the undeformed state of an element referring to a subset of the
dimensions of X is called Xe ∈ R3m. Together, the vertices and the elements
of a deformable object form a simulation mesh.

Given a user-specified mass density ρ, we apply standard mass lumping by
computing the masses of each element in the object’s rest state and then dis-
tributing it to the element’s vertices in equal parts, resulting in a diagonal
mass matrix M ∈ R3n×3n. Not all of the deformable elements necessarily
contribute mass: For a deformable shell, a triangular area element will typ-
ically contribute mass, while a hinge element connecting two triangles over
a shared edge will not.

3.1.2 Elastic Energy

The behavior of the deformable object is governed by an elastic energy Welastic,
whose precise form is defined by a deformation measure and a material law.
Following the conventions of the finite element method (FEM), we discretize
the continuous physical energy over the surface or volume of the object as
the sum of per-element energy density measures We

elastic such that

Welastic(x, X) = ∑
element e

Ve(Xe) ·We
elastic(x

e, Xe), (3.2)

22

3.1 Physics

where Ve denotes the generalized volume of the element. For edges, the gen-
eralized volume denotes their edge length, for triangles, it denotes their sur-
face area, and for tetrahedrons their volume.

While this flexible elastic energy formulation supports a wide variety of ma-
terial laws, we will focus on two specific ones for the simulation of elastic
solids and cloth respectively. We will now look at both cases individually
and state their specific instantiation of We

elastic in Equation (3.2).

Elastic Solids

Letting xe = (xe
1, . . . xe

4) and Xe = (Xe
1, . . . Xe

4) denote the deformed and un-
deformed positions of a given tetrahedral element, we compute its deforma-
tion gradient as

F = dD−1 ∈ R3×3, (3.3)

where d, D ∈ R3×3 are matrices whose columns hold the deformed and
undeformed edge vectors xe

i − xe
1 and Xe

i − Xe
1 for 2 ≤ i ≤ 4, respectively.

The Green strain is then given as

E =
1
2

(
FTF− I3

)
∈ R3×3, (3.4)

where I3 ∈ R3×3 denotes the identity matrix.

Using a modified St. Venant-Kirchhoff material as described by Martin and
colleagues [2011], the elastic energy density per element is obtained as

We
elastic(x

e, Xe) = µ · 1
2
‖E‖2

F + λ ·
(

1− Ve(xe)

Ve(Xe)

)
, (3.5)

where ‖ · ‖F is the Frobenius norm, and µ, λ are material parameters. The
first parameter µ controls the amount of resistance of the solid to stretching
and shearing, while the second parameter λ controls the resistance to vol-
ume changes of the solid, while implicitly preventing element inversions.

Cloth

Stretching Resistance Let xe = (xe
1, xe

2, xe
3) and Xe = (Xe

1, Xe
2, Xe

3) denote
the deformed and undeformed positions of a given triangle element, re-
spectively. Following Thomaszewski and colleagues [2008], we use constant
strain triangles (CST) to resist stretching. To this end, we follow the standard
approach and notation from Bonet and Wood [1997] and first define shape

23

Foundations

functions with respect to a two-dimensional parameterization of the cloth,
which is motivated by the observation that we can look at cloth as a 2D sur-
face embedded in 3D space. The three shape functions of a single triangle
for each of its three nodes are given as:

N1(ξ1, ξ2) = 1− ξ1 − ξ2

N2(ξ1, ξ2) = ξ1

N3(ξ1, ξ2) = ξ2

(3.6)

The scalars ξ1 and ξ2 represent material coordinates in 2D, and deriving the
shape function with respect to them yields

∂N
∂ξ

=

−1 −1
1 0
0 1

 , (3.7)

where N = [N1, N2, N3]
T and ξ = [ξ1, ξ2]

T.

Let T ∈ R3×3 be the transformation matrix that rotates the undeformed tri-
angle nodes Xe of an element to the xy-plane while preserving relative axis
orientations, and Ť ∈ R2×3 its truncated form without the third row. The un-
deformed triangle nodes in 2D coordinates on the xy-plane are then given
as X̌e =

(
X̌e

1, X̌e
2, X̌e

3
)
, where

X̌e
i = ŤXe

i ∈ R2 (3.8)

We can now express any point p̌ in the xy-plane as a function of the material
coordinates ξ, and vice versa:

p̌(ξ1, ξ2) = X̌e
1 + ξ1 ·

(
X̌e

2 − X̌e
1
)
+ ξ2 ·

(
X̌e

3 − X̌e
1
)

(3.9)

Making use of Equation (3.8), the Jacobian of p̌ with respect to the material
coordinates ξ is then given as

∂p̌
∂ξ

=
[
X̌e

2 − X̌e
1 X̌e

3 − X̌e
1
]
= ŤD ∈ R2×2, (3.10)

where D ∈ R3×2 is the matrix whose two columns hold the undeformed
edge vectors Xe

2 − Xe
1 and Xe

3 − Xe
1 in 3D space.

Combining Equations (3.7) and (3.10), we can now compute the shape func-
tion derivatives of a triangular element with respect to its 2D positions p̌ on
the xy-plane as

∂N
∂p̌

=
∂N
∂ξ

(
∂p̌
∂ξ

)−1

∈ R3×2, (3.11)

24

3.1 Physics

where we made use of the chain rule. Rather than computing the inverse of
∂p̌
∂ξ , we compute each row of ∂N

∂p̌ separately by solving the linear system

(
∂p̌
∂ξ

)T (∂Ni

∂p̌

)T
=

(
∂Ni

∂ξ

)T
(3.12)

for i = 1, 2, 3 with different right-hand sides to prevent numerical instabili-
ties.

Given the deformed nodal positions xe, we can now compute the deformation
gradient as the following sum of outer produces:

F =

(
xe

1

)T
∂N1

∂p̌
+

(
xe

2

)T
∂N2

∂p̌
+

(
xe

3

)T
∂N3

∂p̌
∈ R3×2 (3.13)

Analogously to the solid model from Equation (3.4), the Green strain is ob-
tained as

E =
1
2

(
FTF− I2

)
∈ R2×2, (3.14)

where I2 ∈ R2×2 denotes the identity matrix.

Again using the simplified St. Venant-Kirchhoff material, we compute the
elastic stretching energy density as:

We
stretch(x

e, Xe) = µ · 1
2
‖E‖2

F , (3.15)

where ‖ · ‖F is the Frobenius norm, and µ a material parameter that controls
the amount of in-plane resistance to stretching of the cloth.

Bending Resistance Since the presented stretching energy We
stretch is purely

two-dimensional and thus only resists in-plane deformation of each cloth tri-
angle, we need an additional energy term to incorporate bending resistance.
We choose the hinge element approach by Grinspun and colleagues [2003],
which resists angular deformation over each inner edge of the mesh that is
shared by two triangles.

Even though the angle between two triangles is a one-dimensional measure,
a hinge element refers to four vertices to describe both triangles including
the shared edge. Let xe = (xe

1, . . . xe
4) and Xe = (Xe

1, . . . Xe
4) denote the de-

formed and undeformed positions of a given hinge element, respectively,
where vertices 1 and 2 define the shared edge and vertices 3 and 4 define

25

Foundations

the opposite corners of the two triangles. The two deformed normals of the
triangles can then be computed as

ne
1 =

(
xe

1 − xe
0
)
× (xe

2 − xe
0)∥∥(xe

1 − xe
0
)
×
(
xe

2 − xe
0
)∥∥

2
,

ne
2 =

(xe
3 − xe

0)×
(
xe

1 − xe
0
)∥∥(xe

3 − xe
0
)
×
(
xe

1 − xe
0
)∥∥

2
,

(3.16)

and the two undeformed normals Ne
1 and Ne

2 can be computed by replacing
xe

i with Xe
i .

The deformed dihedral angle θ between the two adjacent triangles can then
be computed as

θe = arccos
(
(ne

1)
T ne

2

)
, (3.17)

while the undeformed dihedral angle Θe is computed by replacing ne
1 and

ne
2 with Ne

1 and Ne
2.

The elastic bending energy density is now given as the quadratic one-
dimensional spring potential

We
bending(x

e, Xe) = kbending ·
1
2
(θe −Θe)2 , (3.18)

where kbending is a material parameter controlling the amount of bending
resistance for the cloth.

Final Energy To compute the combined elastic energy Welastic(x, X) for the
cloth model, we instantiate Equation (3.2) twice: Once, we use We

stretch from
Equation (3.15) to get Wstretch, and then We

bending from Equation (3.18) to get
Wbending. This results in a final cloth model energy of

Welastic(x, X) = Wstretch(x, X) + Wbending(x, X). (3.19)

Note that there is no need to introduce additional weighting factors between
the energy terms since the material parameters µ and k already provide the
necessary degrees of freedom to accomplish that. Since the stretching energy
was defined as a 2D measure, the generalized volume Ve from Equation (3.2)
measures the surface area for all triangular elements. In the case of the bend-
ing energy, the hinge elements measure the angular deformation over a 1D
edge, so the generalized volume Ve in that case measures the edge length.
We also disable mass contribution for the hinge elements to prevent double
counting the vertices used by both stretching and bending elements.

26

3.1 Physics

3.1.3 External Energy

Similar to the elastic energy of a deformable object, we will also model the
external forces acting on it as energy potentials. This will enable the use
of a flexible variational energy minimization framework to be introduced in
Section 3.1.4. We will specifically look at gravitational energy, constraint energy
and contact energy potentials here, but it is worth noting that the eventual
solver framework will support arbitrary potentials, which we will make use
of for the Sketch Abstractions for Character Posing application in Section 5.2.

Gravitational Energy We will generally denote the y axis as the ”up axis”,
resulting in a gravitational acceleration of [0,−g, 0]T, where g is a parame-
ter specifying the gravitational strength of the simulated world. Given the
deformed object positions x, the gravitational energy is then obtained as

Wgravity(x) =
n

∑
i=1

mi · g · (xi)y, (3.20)

where mi denotes the mass of vertex i of the deformable object.

Constraint Energy We will model point constraints by attaching springs
with zero rest length to them. Given a set C = {c1, c2, . . . , cnc} of nc con-
strained vertex indices, constraint coefficients kconstraint ∈ Rnc and attach-
ment points c1, c2, . . . , cnc ∈ R3, the constraint energy is given as

Wconstraint(x) =
nc

∑
i=1

(kconstraint)i ·
1
2
‖xci − ci‖2 (3.21)

Contact Energy Even though we will address contact handling in more
detail in Section 3.5, external contact of the deformable model with other ob-
jects can be resolved with simple directional spring potentials if small pene-
trations between the objects are acceptable. Let P = {p1, p2, . . . , pnp} denote
the set of np penetrating vertex indices, np

1 , np
2 , . . . np

np the contact normals for
each penetrating vertex, and sp

1 , sp
2 , . . . , sp

np for each deformable model vertex
the closest point on the surface of the external object in contact. Following
McAdams and colleagues [2011], the resulting contact energy measure is

Wcontact(x) =
np

∑
i=1

kcontact ·
1
2
(
xpi − sp

i
)T

Ni
(
xpi − sp

i
)

, (3.22)

27

Foundations

where Ni = (1− α) · np
i
(
np

i
)T

+ α · I3, and I3 ∈ R3×3 denotes the identity
matrix. The spring coefficient kcontact controls the amount of contact resis-
tance that should be applied, while the parameter α ∈ [0, 1] controls the
amount of frictional resistance that should be applied at the contact points.

3.1.4 Equations of Motion

To simulate dynamics for our deformable objects, we adopt the variational
energy approach from Martin and colleagues [2011]. We will start with the
equations of motion (EOM) corresponding to Newton’s second law for de-
formable materials

ρ · ẍ = f(x), (3.23)

where ρ denotes mass density, f the sum of all continuous force densities
acting on the object for the continuous solution x(t) over time t.

Following the derivation by Liu and colleagues [2013], we apply the finite
element method and discretize over space and time using the implicit Euler
method, where the state at time t is denoted by the superscript t. Using a
time step of size h, we arrive at the following coupled system of discrete
equations of motion:

xt+1 = xt + h · vt+1

vt+1 = vt + h ·M−1f
(

xt+1
) (3.24)

Solving the first line of the system in Equation (3.24) for the current and next
velocities vt and vt+1 yields:

vt =
xt − xt−1

h

vt+1 =
xt+1 − xt

h

(3.25)

We can now decouple the system in Equation (3.24) by inserting the veloci-
ties from Equation (3.25) into its second line to obtain

M
(

xt+1 − 2xt + xt−1

h

)
= h · f

(
xt+1

)
, (3.26)

where we have also multiplied with the discrete mass matrix M from the left.
Because the forces f are typically a higher-order function of the unknown
positions xt+1, Equation (3.26) is a nonlinear problem that we are aiming to
solve.

28

3.1 Physics

Using the variational formulation by Martin and colleagues [2011], we can
now express the solution of Equation (3.26) as an optimization problem. We
start by expressing the forces f as the negative gradient of an energy poten-
tial W:

f(x) = − ∂

∂x
W(x) (3.27)

The objective function can now be stated as:

H(x) =
1

2h2

(
x− 2xt + xt−1

)T
M
(

x− 2xt + xt−1
)
+ h ·W(x) (3.28)

Minimizing this objective function corresponds to solving Equation (3.26)
because setting its gradient ∂H

∂x to zero, denoting its minimizer by xt+1, and
applying Equation (3.27) results in exactly the same term. This formulation
is highly flexible because it supports arbitrary energy potentials to be in-
cluded in W by defining it as the sum of the different potentials we have
introduced before:

W(x) = Welastic(x) + Wgravity(x) + Wconstraint(x) + Wcontact(x) (3.29)

We can further simplify the objective function (3.28) if we look at its first part
as an imaginary momentum energy potential Wmomentum

Wmomentum(x) =
1

2h3

(
x− 2xt + xt−1

)T
M
(

x− 2xt + xt−1
)

. (3.30)

Equation (3.28) then reduces to

H(x) = h ·∑
W∈W

W(x), (3.31)

where W = {Wmomentum, Welastic, Wgravity, Wconstraint, Wcontact} denotes the
set of used energy potentials.

3.1.5 Static Problems

The potential energy formulation of the objective function in Equation (3.31)
easily admits solving static problems as well. By excluding Wmomentum from
the potential setW and setting h = 1, the minimizer of H(x) will be the static
solution of the deformable object with respect to the boundary conditions set
by the two potentials Wconstraint and Wcontact. This is because setting the gra-
dient ∂H

∂x to zero is equivalent to requiring that all forces acting on the object
sum to zero, providing the necessary conditions for a static equilibrium.

29

Foundations

If neither Wconstraint nor Wcontact provide necessary boundary conditions for
the static problem, the objective function H(x) will be unbounded below
and no minimizer will exist. A practical example for this case would be a de-
formable object on which only elastic energy and gravity is acting, such that
W = {Welastic, Wgravity}. Since no other constraints prevent the object from
falling, no static solution exists since the object would simply fall to negative
infinity in the limit. This problem does not occur in the dynamic case when
Wmomentum is part of the potential set, since the momentum energy poten-
tial effectively acts as a regularizer on the indefinite optimization problem:
Even though the object will continue falling indefinitely with increasing ve-
locity, the amount of distance it can travel in one time step will always be
limited because Wmomentum counteracts any motion shorter or longer than
what would be expected if the current velocity was maintained.

Another interesting case with static problems arises when there is no single
solution that minimizes the objective function H(x), but a whole space of
minimizers. We will refer to these minimizers as a null space, since it refers
to all states x for which ∂

∂x H(x) = 0. A typical example of such a situation
would be a case where the constraints provided by Wconstraint admit any ro-
tation around a certain axis. If we simulate a deformable object where only
single vertex is constrained, any rotation around the axis of gravity of a state
x will not change the objective function H(x) because all energy potentials
inW are invariant to such transformations. Since we will be using an itera-
tive solver to minimize H(x), the actual solution from the null space that we
obtain will depend on the provided initial guess.

3.1.6 Energy Derivatives

In the following Section 3.2, we will describe a numerical approach to min-
imize the objective function from Equation (3.31). Since we will use a
gradient-based approach, we need to be able to evaluate the first and sec-
ond derivatives of H(x) with respect to the state vector x efficiently. The
simplified objective function formulation from Equation (3.31) allows us to
look at the energy potentials inW individually since the derivative of a sum
is simply the sum of the derivatives. For Wmomentum, Wgravity, Wconstraint and
Wcontact, determining analytic derivatives is trivial since these potentials can
be expressed as a sum over all the n vertices in x of the simulated object.
Once again using the linearity of the derivative operator, the three gradient
dimensions corresponding to the i-th vertex will only depend on the vertex
xi. The same holds for the Hessian, which will thus be sparse except for a
3× 3 block on the diagonal for each vertex.

30

3.2 Energy Minimization

The only remaining potential we need to consider is the elastic energy
Welastic. If we apply the linear derivative operator to the sum over the de-
formable elements of the object from Equation (3.2), we can see that we need
to consider the derivative with respect to only 3m out of the total 3n dimen-
sions, while the remaining dimensions will be zero. However, since the elas-
tic energy terms described for the solid and cloth models in Equations (3.5),
(3.15) and (3.18) are complex functions, obtaining their analytic derivatives
even with respect to these 3m dimensions is challenging. Rather then deriv-
ing the gradients and Hessians manually, we thus choose to compute them
symbolically using the Maple computer algebra software by Maplesoft. We
then export the resulting expressions as ANSI C source code and compile
them directly into our software, providing efficient evaluation of the deriva-
tives at runtime. As an alternative approach, automatic differentiation tech-
niques could be used to achieve a similar effect.

3.2 Energy Minimization

3.2.1 Solver Considerations

The variational framework introduced in Section 3.1.4 allows us to look at
the physical simulation problem of a deformable object without considering
any specific details of the underlying physical laws or the discretization of
the differential equations of motion anymore. In fact, we can now simulate
physics even without understanding it—we can simply look at the objec-
tive function H(x) from Equation (3.31) as a vector valued scalar function
H : R3n → R that we aim to minimize using any numerical algorithm.

Our method of choice will be the Newton-Raphson method, which has sev-
eral appealing properties that make it a solid approach for the minimization
of the objective function H(x):

• It has quadratic convergence properties when provided with a rea-
sonable initial guess, which is easy to achieve at least for dynamic
problems where we can simply start with the solution from the pre-
vious time step.

• It makes use of the fact that the analytic formulation of the objective
function H(x) is known, and that we can thus derive formulas for
the first and second derivative.

• Since it is an iterative method, it can be aborted early even when
true convergence has not been reached yet, which we will make use

31

Foundations

of often if the difference in geometry will not be visible in order not
to waste computational resources.

The Newton-Raphson method also has a few shortcomings, all of which we
will attempt to address in this section:

• It is not inherently robust and may overshoot the solution or even
diverge. We will address this problem by using a line search scheme
that adjusts the step size taken by our solver to make sure the value
of the objective function decreases at an appropriate rate.

• Every iteration requires the solution to a linear system of equations
with a size equal to the dimensions of x, which can be very large in
our case. We will alleviate this issue by exploiting the sparsity of the
objective function’s Hessian, which enables the use of a fast sparse
Cholesky factorization solver.

• Even when using a sparse solver, finding the solution to the linear
system can still pose a problem when the Hessian of the objective
function is not positive definite. We will make use of a regularization
scheme that is able to recover from indefinite Hessians.

Any other unconstrained optimization technique that applies to the objec-
tive function H(x) could be used in place of the Newton-Raphson method.
Alternatives include other gradient-based methods such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method, as well as derivative-free meth-
ods such as particle swarm optimization.

3.2.2 Newton-Raphson Iterations

In order to derive the fixed-point iteration scheme used by the Newton-
Raphson method, we will start by stating the optimization problem as

xt+1 = arg min
x

H(x), (3.32)

where H(x) is defined as in Equation (3.31). We will refer to the solution
xt+1 as unknown state or next state.

The necessary condition for a solution to Equation (3.32) is obtained by set-
ting the gradient of the objective function to zero:

∂

∂x
H(x) = 0 (3.33)

32

3.2 Energy Minimization

The gradient is a nonlinear function of the positions x that we assume to be
too complex to invert. We therefore linearize it by constructing a first-order
Taylor expansion around the known current state xt:(

∂

∂x
H(x)

)T
≈
(

∂

∂x
H
(
xt))T

︸ ︷︷ ︸
g

+
∂2

∂x2 H
(
xt)︸ ︷︷ ︸

H

(
x− xt)︸ ︷︷ ︸

∆x

(3.34)

We will also refer to the gradient g in its transposed form as current gradient
and to H as current Hessian.

By using the condition from Equation (3.33) for the linear approximation
of the gradient in Equation (3.34), we obtain the following linear system of
equations for the unknown search direction ∆x:

H∆x = −g (3.35)

We can now formulate the Newton-Raphson fixed-point iteration scheme,
where we will denote the k-th iteration’s values by appending [k]:

x[k + 1] = x[k] + α[k] ·∆x[k] (3.36)

We initialize the iteration using the current state by setting x[0] = xt, and we
employ a line search strategy that we will describe in Section 3.2.5 to choose
the step size α[k] ∈ [0, 1] in every iteration. We abort the iteration when the
gradient norm ‖g[k]‖2 falls below a certain threshold σgradient, or when a cer-
tain maximum number of iterations kmax is reached. We set σgradient = 0.001
and kmax = 20 for all of our examples.

3.2.3 Linear System Solving

The main challenge in using the Newton-Raphson scheme lies in solving the
linear system of equations (3.35) efficiently and robustly. Since the system
matrix is the current Hessian H of the objective functions and has dimen-
sions of 3n× 3n, the number of matrix entries grows quadratically with the
number of vertices of the objects, which suggests that a solve might become
intractable for high mesh resolutions. However, let us recall the definition
of the objective function H(x) from Equation (3.31): The individual energy
potentials inW only operate on small subsets of vertices of the model rather
than the whole state vector x. This means that only Hessian entries whose
respective vertex pairs share such a subset will be nonzero, and we can thus
represent it as a sparse matrix. Further, since the structure of the deformable

33

Foundations

model’s elements is already known at the time of its creation, the sparsity of
the Hessian will remain the same for the entire simulation.

Given that the sparsity of the Hessian is known and remains constant, we
can precompute a symbolic Cholesky factorization of ∂2H

∂x2 and use it to effi-
ciently evaluate a lower triangular matrix L at runtime such that:

H = LLT (3.37)

Substituting y = LT∆x, we first solve the following linear system for y by
forward substitution:

Ly = −g (3.38)

With y in hand, we can now solve for ∆x by back substitution as follows:

LT∆x = y (3.39)

We use the CHOLMOD algorithm from the SuiteSparse library [Chen et al.,
2008] to perform these steps.

3.2.4 Hessian Regularization

The previously presented sparse Cholesky factorization solver scheme will
only work if the current Hessian H is positive definite, since otherwise no
lower triangular L satisfying the condition from Equation (3.37) exists. Un-
fortunately, this is not guaranteed to be the case for our objective function
H(x) if we are evaluating its second derivative too far away from the min-
imizer. Even if we were able to solve the system in Equation (3.35) for a
Hessian H that is not positive definite, the resulting search direction ∆x
might not be a descending direction. To see this, let us look at the direc-
tional derivative of the objective function at the current state towards the
search direction ∆x:

∇∆xH
(
xt) = (∂

∂x
H
(
xt))∆x = gT∆x = −∆xTH∆x (3.40)

If the Hessian H is positive definite, we can be sure that ∆x will be a de-
scending direction because the definition of positive definiteness states that

∀x : xTHx > 0. (3.41)

To overcome this issue and ensure that our system matrix is always posi-
tive definite, we use the Hessian regularization technique described by No-
cedal and Wright [2006] and add multiples of the identity matrix I3n to H

34

3.2 Energy Minimization

until H + τ · I3n becomes positive definite by successively increasing τ. We
test for positive definiteness by running the Cholesky algorithm and check-
ing if it terminates with success. Once it does, we use the decomposed
Cholesky factor L corresponding to H + τ · I3n to solve for ∆x using Equa-
tions (3.38) and (3.39). Since the resulting search direction ∆x was not us-
ing the correct system matrix and thus does not satisfy the condition from
Equation (3.35), the energy decrease of the Newton-Raphson iteration will
typically be smaller and lose its quadratic convergence property. In prac-
tice, however, we noticed that only a few such steps have to be taken before
H becomes positive definite again and the algorithm continues to converge
quadratically from there on.

3.2.5 Line Search

We will now discuss how to choose the step size α used for the fixed-point it-
eration in Equation (3.36). In an ideal setting, we would always choose α = 1
which guarantees quadratic convergence to the minimum of H(x) when we
are close enough to it. Since this is not always the case for a nonlinear ob-
jective function such as H(x), we need to be careful to prevent overshooting
and make sure that each step we take decreases its value sufficiently.

To this end, we follow Nocedal and Wright [2006] and consider the value of
the objective function as a function of the step size α:

φ (α) = H (x[k] + α ·∆x[k]) (3.42)

Using the chain rule, we can easily compute the derivative of φ at the current
state x[k] as

φ′(0) = gT∆x[k] (3.43)

To exclude step sizes α[k] that insufficiently decrease the objective function
from being chosen, we require the Armijo condition to hold for a small posi-
tive constant c:

φ (α[k]) ≤ φ(0) + c · α[k] · φ′(0) (3.44)

We choose c = 0.0001 for all our examples.

We then look for a suitable α[k] as close as possible to 1 by following these
steps as described by Nocedal and Wright [2006]:

1. Attempt a full step using α = 1 and return it if it matches the condi-
tion of Equation (3.44).

2. Since we now know φ(0), φ′(0) and φ(1), we use them to interpolate
a quadratic polynomial in α and compute its minimum αqmin. If
αqmin satisfies Equation (3.44), we return it.

35

Foundations

3. Since we now also know φ
(
αqmin

)
, we interpolate a cubic polyno-

mial in α and compute its minimum αcmin. If αcmin satisfies Equa-
tion (3.44), we return it.

4. We continue to do cubic interpolations as in the previous step by
using φ(0), φ′(0) and the last two computed minima from previous
polynomial interpolations.

An example implementation of this algorithm can be found in the work of
Press and colleagues [2007].

3.3 Subspace Simulation

In the previous section, we described an efficient and practical approach to
finding the minimizer of an objective function H(x) that stems from an un-
derlying physics problem. In this section, we will vary the problem slightly
by assuming that the vertex positions x of the deformable model are not ac-
tually the unknown quantity, but rather the resulting deformation of a rig
controlling the vertices of the object as specified by a vector of rig parame-
ters. When minimizing the objective function in the rig’s subspace with re-
spect its parameters, we obtain a method that directly allows the generation
of physical rig configurations. This approach—called Rig-Space Physics—
was first described by Hahn and colleagues [2012] and enables interesting
applications that allow artists to add physical secondary motions to rigged
characters directly on top of existing keyframed animations. While we will
outline the basic mathematical problem and its solution in this section, we
will later see in Chapter 4 how it can be solved more efficiently for our Ef-
ficient Rig-Space Physics Simulation application. These optimizations will be
reused to implement our interactive Sketch Abstractions for Character Posing
system in Chapter 5. Even though this section uses the rig-space optimiza-
tion problem to describe our subspace simulation framework, it also directly
applies to arbitrary other subspaces, as we will later show in Chapter 6 in
the context of our Subspace Clothing Simulation method.

3.3.1 Rig Spaces

We previously assumed that the vertices x of the deformable model are con-
trolled by our simulation and thus have to be solved for. For the subspace
simulation problem, we will now assume that the vertex positions x are a
nonlinear function of r parameters p ∈ Rr that we will call the rig mapping:

x : Rr → R3n (3.45)

36

3.3 Subspace Simulation

We will call the domain of the rig mapping a rig space, as it represents a
space of possible parameter configurations admitted by the rig. As before,
we will use a lower-case p to denote deformed parameters, and assume that
there exists an undeformed or rest parameter configuration denoted by capital
P such that x(P) = X.

We intentionally make very few assumptions about the structure of the rig
mapping x(p) and only require that we have access to a black box that can
evaluate it efficiently. In particular, this means that we do not necessarily
have access to an analytic formula for x(p), and also might not be able to
derive it symbolically. The reason for these weak requirements is that this
allows the rig mapping to be provided by an external rigging system used
by artists such as the ones found in Autodesk Maya or Blender. Since those
software packages allow rigging artists to build rigs of virtual characters
from a large selection of geometric deformers as well as to compose them
into complex hierarchies, the resulting mappings x(p) vary greatly between
rigs, their structure is hard to predict, and their analytic formulation is—at
least in the case of proprietary systems—often not available. We will lift the
black box rig assumption for the Subspace Clothing Simulation application in
Chapter 6 where we will use a specially constructed and analytically known
rig to speed up simulations.

3.3.2 Subspace Physics

Given a rig space and a matching rig mapping x(p), we will reformulate our
original physical simulation problem and the objective function from Equa-
tion (3.31). Instead of looking for a minimizing deformation xt+1 for H(x),
we will now in each time step look for an optimal next parameter configuration
pt+1 that minimizes the objective function in the rig space:

pt+1 = arg min
p

H (x(p)) (3.46)

While the solution pt+1 to this minimization problem might not be optimal
for H(x) in the global sense, it attempts to find an optimal admissible pose
of the rig that also minimizes the physical energy potentials as far as the rig
space allows it. We will see in later chapters that this is a very powerful
concept that enables many novel applications.

To solve the optimization problem from Equation (3.46), we reuse the same
Newton-Raphson solver framework that we previously introduced in Sec-
tion 3.2 with a few modifications. By simply reformulating the linearization

37

Foundations

from Equation (3.34) to approximate the objective function in terms of the
rig parameters p, we obtain:(

∂

∂p
H (x(p))

)T
≈
(

∂

∂p
H
(
x
(
pt)))T

︸ ︷︷ ︸
r

+
∂2

∂p2 H
(
x
(
pt))︸ ︷︷ ︸

K

(
p− pt)︸ ︷︷ ︸

∆p

(3.47)

As before, we will refer to the gradient r in its transposed form as the cur-
rent reduced gradient and to K as current reduced Hessian. We can derive the
reduced gradient r analytically using the transpose of the chain rule:

r =
(

∂

∂p
H
(
x
(
pt)))T

=

 ∂

∂p
x
(
pt)︸ ︷︷ ︸

J

T (

∂

∂x
H
(
x
(
pt)))T

︸ ︷︷ ︸
g

= JTg (3.48)

We will call J the rig Jacobian as it describes the change in the deformation of
the rigged vertices x with respect to changes in the rig parameters p.

Analogously, the reduced Hessian K can be derived as

K =
∂2

∂p2 H
(
x
(
pt)) =

 ∂

∂p
x
(
pt)︸ ︷︷ ︸

J

T

∂2

∂x2 H
(
x
(
pt))︸ ︷︷ ︸

H

∂

∂p
x
(
pt)︸ ︷︷ ︸

J

+
∂2

∂p2 x
(
pt)︸ ︷︷ ︸

T

:
(

∂

∂x
H
(
x
(
pt)))T

︸ ︷︷ ︸
g

= JTHJ + T : g,

(3.49)

where the operator : denotes a contraction between the rank-3 tensor
T ∈ R3n×r×r and the current gradient g over the x dimension.

Setting the linear approximation from Equation (3.47) to zero again results
in a linear system of equations for the unknown reduced search direction ∆p:

K∆p = −r (3.50)

Unlike the system in Equation (3.35) for the full-space physics problem, the
system matrix in Equation (3.50) does not have any known sparsity struc-
ture: Assuming a black-box rig without a known analytical formulation, we
have to estimate J and T using a dense finite differentiation scheme, result-
ing in a dense K even when projecting a sparse H in Equation (3.49). Using

38

3.3 Subspace Simulation

central differences, we approximate the rig derivatives as

Jij =
1
2δ

(
x
(
pt + δ · ej

)
− x

(
pt − δ · ej

))
i

Tijk =
1

4δ2

(
x
(
pt + δ · ej + δ · ek

)
− x

(
pt − δ · ej + δ · ek

)
− x

(
pt + δ · ej − δ · ek

)
+ x

(
pt − δ · ej − δ · ek

))
i
,

(3.51)

where ej ∈ Rr denotes a unit vector that is zero in all dimensions except the
j-th in which it is one, and δ ∈ R is the finite difference step size. We choose
δ = 0.001 for all of our rigs.

Our assumption is that the rig provides a high-level mechanism to deform
the vertices of the deformable object, and thus that r � n. Since K is gener-
ally not sparse, we need to solve a small dense system. While the Cholesky
decomposition approach described in Section 3.2.3 would also apply to
Equation (3.50) if K is positive definite, we found that we can achieve better
performance in the dense case when using a QR factorization approach. To
this end, we decompose the reduced Hessian K into an orthogonal matrix Q
and an upper triangular matrix R such that:

K = QR (3.52)

Multiplying both sides of the linear system (3.50) by QT from the left and
using Equation (3.52), we obtain

QTK∆p = QTQ︸ ︷︷ ︸
Ir

R∆p = R∆p = QTr, (3.53)

where we made use of the orthogonality of Q. Using this transformation,
we can now easily solve for ∆p by using back substitution on the triangu-
lar system matrix R with QTr as the right-hand side. We use the LAPACK
library routines to perform these operations.

As in the sparse case, we employ the Hessian regularization routine as de-
scribed in Section 3.2.4 on K to ensure that ∆p is a descending direction, and
we use the linear search strategy outlined in Section 3.2.5 to prevent over-
shooting problems.

3.3.3 Rig-Space Physics Simulation

Given a rigged virtual character and a keyframed animation, Hahn and
colleagues [2012] used the described subspace simulation method to add

39

Foundations

Figure 3.1: Example result of the Rig-Space Physics simulation method: Given a char-
acter rig and a set of keyframes for some of its parameters, the method auto-
matically produces animation curves for the remaining parameters.

secondary motion effects to the animation by using the unkeyframed pa-
rameters of the character as rig mapping. Since the deformation of most
artist-created rigs does not extend to the interior of the character and only
deforms its surface, special care needs to be taken when modeling the char-
acter as an elastic solid using the model described in Section 3.1.2. Hahn
and colleagues [2012] solve this problem by extending the rig mapping and
pretending that there are 3n− 3ns additional rig parameters controlling the
positions of the n− ns interior vertices directly, where ns denotes the number
of surface vertices. An example result of this method applied to the virtual
elephant character Prof. Peanuts can be seen in Figure 3.1.

While the additional degrees of freedom controlling the interior vertices suc-
cessfully bridge the gap between the rigged surface and the volume of the
deformable solid, they also introduce a large overhead to the method since
they have to be solved for, thus significantly increasing the solver runtime.
In Chapter 4 of this work, we will first provide a recap of the original rig-
space physics system by Hahn and colleagues [2012] in Section 4.2.1, and
then propose an extension to the simulation framework that obsoletes the
solve for interior vertices—and thus achieves much improved performance.

3.4 Analytic Rigs

For all of the contributions and applications to be presented in this thesis,
the key concepts are formed by looking at a rig as a space of potential defor-
mations rather than a mere helper tool for artists. We specifically designed
two of our methods to support black-box rigs for which we can only evaluate
their deformation but have no access to their analytic formula. Treating a
rig as a black box has the significant advantage of enabling our system to

40

3.4 Analytic Rigs

work with professional production-grade rigs created in commercial anima-
tion packages such as Autodesk Maya. These rigging systems allow artists
to select from a large variety of geometric deformers and rigging techniques,
while also encouraging them to freely combine them into complex deforma-
tion hierarchies. Supporting arbitrary rigs also means that our methods are
applicable to existing rigs, rather than rigs specifically designed to be used
with our methods.

While the black-box rigging approach provides the user with the largest de-
gree of flexibility, it also often comes at a significant cost when combined
with simulation methods such as those presented in this work. All of our
applications require some sort of derivative of the rig—either with respect
to the rig parameters or the rest positions—which have to be estimated us-
ing numerical techniques. In the previous Section 3.3.2, we encountered an
example of the former case in Equation (3.51) where both the Jacobian and
the second-order tensor derivative of the rig had to be approximated using
finite differences. Since finite difference estimations replace the exact evalu-
ation of a derivative formula by repeated evaluations of the rig itself, their
runtime performance directly depends on the evaluation time of the rig and
the number of rigging controls. For complex rigs with many parameters,
this causes the rig derivative approximation to quickly become the perfor-
mance bottleneck of the whole system, and often impedes interactive use of
our methods.

To circumvent this issue, we attempt to clone the whole character rig and
its deformation behavior as created in Maya and rebuild it in our own
system using an analytic formulation. We can then access the rig and its
derivatives quickly during the simulation in our system, and later write
the resulting rig parameters back to Maya once the solve is completed.
While this is not possible for complex rigging hierarchies consisting of many
different deformers—the mathematical expressions of which might even
be undisclosed—there are two important exceptions where the problem is
worth tackling:

• The de facto standard technique to build facial rigs is blendshape mod-
eling, for which the analytic formulation is straightforward.

• At its base level, rigging artists almost always start with a skeletal
hierarchy of bones when designing a character rig. The character’s
surface is then bound to the skeleton using linear blend skinning (LBS),
the formulation for which is well known.

In the following subsections, we will derive the necessary derivatives for

41

Foundations

these two techniques and describe how the implementations can be de-
signed to exactly match Maya’s deformation behavior.

3.4.1 Rigid Transformation

As an introductory example, we will look at a simplistic rig that performs
only rigid transformations of an object before looking at the more compli-
cated cases of blendshapes and linear blend skinning. The rigid transforma-
tion rig applies the same transformation to all vertices of the undeformed
object, exposing six rig parameters tx, ty, tz, rx, ry, rz ∈ R for translation
and rotation with respect to the three coordinate axes. Its parameter vector
is thus given as:

p = (tx, ty, tz, rx, ry, rz) ∈ R6 (3.54)

Its analytic rig mapping for a vertex xi is given as

xi(p) = Rz(rz)Ry(ry)Rx(rx)Xi +

tx
ty
tz

 , (3.55)

where Xi denotes the vertex in its undeformed state. The matrices
Rx, Ry, Rz ∈ R3×3 in Equation (3.55) denote the standard 3D rotation
matrices with respect to the three unit axes.

In this work, we are interested in two different derivatives with respect to a
rig mapping such as the one in Equation (3.55). The first is the Jacobian of the
rig’s deformed vertices x with respect to the rig parameter vector p, which
is required to perform rig-space simulations as described in Section 3.3.2 as
well as in Chapters 4 and 5. We will typically denote evaluations of this rig
Jacobian at specific pose configurations by J. The rig derivative of the rigid
transformation rig with respect to the translational parameters is given as:

∂

∂tx
xi(p) =

1
0
0

 ∂

∂ty
xi(p) =

0
1
0

 ∂

∂tz
xi(p) =

0
0
1

 (3.56)

The rig derivative of the rigid transformation rig with respect to the rota-
tional parameter rx is given as:

∂

∂rx
xi(p) = Rz(rz)Ry(ry)

∂

∂rx
Rx(rx)Xi

∂

∂ry
xi(p) = Rz(rz)

∂

∂ry
Ry(ry)Rx(rx)Xi

∂

∂rz
xi(p) =

∂

∂rz
Rz(rz)Ry(ry)Rx(rx)Xi

(3.57)

42

3.4 Analytic Rigs

Both the translational components from Equation (3.56) and the rotational
components from Equation (3.57) for all vertices can then be assembled to
the full Jacobian matrix ∂x

∂p ∈ Rn×r.

For the Subspace Clothing Simulation application we will describe in Chap-
ter 6, we will use the rig mapping as a kinematic reference rather than a
subspace deformation. To this end, we will require the derivative of its
deformed vertices x with respect to the undeformed state X, and will typ-
ically denote evaluations of this rig rest state Jacobian by B. In the case of
the rigid transformation rig, Equation (3.55) is linear in the undeformed po-
sitions X and only accesses the undeformed vertex with the same index as
the deformed vertex for which it computes the deformation. Hence, the rest
state Jacobian is a block diagonal matrix ∂x

∂X ∈ R3n×3n consisting of n blocks
Bi ∈ R3×3 given as:

Bi =
∂

∂Xi
xi(p) = Rz(rz)Ry(ry)Rx(rx) (3.58)

3.4.2 Blendshapes

The blendshape technique is typically used to build facial rigs as it allows to
specify poses as sparse offsets to a neutral pose, mimicking the activations
of facial muscles in the human body. Given r poses R1, R2, . . . , Rr ∈ R3n,
the parameter vector p ∈ Rr of a blendshape rig comprises a real valued
activation level for each pose. Its deformation is defined as:

x(p) = X +
r

∑
i=1

(p)i ·
(

Ri − X
)

(3.59)

The Jacobian of a blendshape rig with respect to one of the activation param-
eters is easily obtained as:

∂

∂pi
x(p) = Ri − X (3.60)

Similarly, the rest state Jacobian of the blendshape rig can be computed as

∂

∂X
x(p) =

(
1−

r

∑
i=1

(p)i

)
· I3n, (3.61)

where I3n denotes an identity matrix of size 3n× 3n.

43

Foundations

3.4.3 Linear Blend Skinning

Definition

Linear blend skinning is a widely used technique for binding the surface of
a character to a skeletal hierarchy of bones. While it has some shortcomings
such as the ”candy wrapper” and ”collapsing elbow” artifacts, it remains a
popular choice for characters rigs in both movie and games production be-
cause of its intuitive controls and wide availability in animation toolkits and
game engines. The core idea of the technique is to express the transforma-
tion of each joint of a skeleton as a recursive function based on the trans-
formations of its parent joint, to which it is connected to by a bone. Every
point on a character’s surface mesh is then expressed as a weighted combi-
nation of the character’s corresponding rest position point transformed into
the coordinate frames of multiple joints. Formally, the linear blend skinning
transformation of a vertex xi using a rig with m joints is given as

xi(p) =
[
I3 0

] m

∑
j=1

(W)ij · Cj(p)X̂i, (3.62)

where the joint transformations Cj ∈ R4×4 transforming the undeformed
positions X̂i ∈ R4 lifted to homogeneous space are controlled by joint an-
gles and bone scales exposed as rig parameters in p. The matrix W ∈ Rn×m

in Equation (3.62) stores the skinning weights for each vertex of the character
surface with respect to all of the joints of the skeleton. Since it is desirable for
skinned vertices to only have the support of a few nearby joints, W is typi-
cally very sparse. Rather than performing a true unprojection from homoge-
neous space in Equation (3.62), we simply discard the fourth dimension by
multiplying with

[
I3 0

]
∈ R3×4 after the skinning transformations. Since

we only use the fourth dimension to express translations as transformation
matrices, the multiplication with this matrix is equivalent to the unprojec-
tion in this case while greatly simplifying the following derivations of the
rig Jacobians.

Joint Transformations

The matrices Cj first transform the undeformed vertices X̂ into the respec-
tive joint’s undeformed coordinate frame corresponding to the neutral rig
pose p0, which we call forward transformation. The undeformed vertices in
local coordinates are then transformed back to world space according to the

44

3.4 Analytic Rigs

current pose p of the skeleton, which we refer to as backward transformation.
The transformation of the j-th joint is thus given as

Cj(p) = Cback
j (p)Cfor

j , (3.63)

where only the backward transformation Cback
j is a function of the rig pa-

rameters p, and the forward transformation Cfor
j only depends on p0.

Before we can state the forward and backward transformations in Equa-
tion (3.63), we need to further distinguish between local base and pose trans-
formations. The former refer to local translation, scaling and rotation trans-
formations to the parent joint’s coordinate system already present in the rig’s
neutral pose p0, whereas the latter refer to scaling and rotation offsets caused
by the deformed rig parameters p. The forward transformation of a joint is
defined by only its base transformations, and is recursively given as

Cfor
j =

(
Sbase

j

)−1 (
Rbase

j

)−1 (
Tbase

j

)−1
Cfor

parent(j), (3.64)

where parent(j) denotes the index of the parent joint of the j-th joint
and we define the forward parent transformation of a root joint to be
Cfor

parent(root) = I4 as the recursion’s base case. The transformations Rbase
j ,

Tbase
j and Sbase

j in Equation (3.64) are local rotation, translation and scaling
matrices of the joint in its neutral pose p0. The backward transformation of
a joint is defined by both its base transformations and its pose transforma-
tions, and is recursively given as

Cback
j (p) = Cback

parent(j)(p)T
base
j Rbase

j Sbase
j Rpose

j (p)Spose
j (p), (3.65)

where we define the backward parent transformation of a root joint to
be Cback

parent(root)(p) = I4 as the recursion’s base case. The transformations

Rpose
j (p) and Spose

j (p) in Equation (3.65) are local rotation and scaling ma-
trices of the joint in its current pose p.

Rig Jacobians

Let us now look at the Jacobian of the deformed positions x with respect to
the rig parameters p for a linear blend skinning rig. Deriving Equation (3.62)
with respect to a single parameter pk, we obtain:

∂

∂pk
xi(p) =

[
I3 0

] m

∑
j=1

(W)ij ·
∂

∂pk
Cj(p)X̂i (3.66)

45

Foundations

Since the forward transformations Cfor
j are not functions of p, we only need

to derive the backward transformations to compute the joint transformation
derivatives in Equation (3.66):

∂

∂pk
Cj(p) =

∂

∂pk
Cback

j (p)Cfor
j (3.67)

At first glance, computing the backward joint transformation derivative
in Equation (3.67) seems intractable since expanding Cback

j (p) using Equa-
tion (3.65) results in a large transformation chain of many factors that in-
dividually depend on the rig parameter vector p. Applying the chain rule
to such a transformation chain would lead to a combinatorical explosion of
subproducts which we would be unable to handle. However, closer inspec-
tion reveals that each rig parameter pk only affects a single local transforma-
tion matrix of its respective joint in the transformation chain. Further, the
derivative is zero if a rig parameter pk refers to a joint that is not in the chain
from the root of the skeleton to the j-th joint. For a specific rig parameter pk,
we can thus rewrite Equation (3.65) as

Cback
j (pk) =

{
FpreL(pk)Fpost if joint of pk is in chain of joint j
0 else

, (3.68)

for some constant prefix and postfix transformations Fpre and Fpost indepen-
dent of pk, and where L(pk) is either a local pose rotation or scaling matrix
depending on pk. In the first case of Equation (3.68), the backward joint
transformation derivative we need to compute for Equation (3.67) is now
easily obtained as:

∂

∂pk
Cback

j (p) = Fpre(p)
∂

∂pk
L(pk)Fpost(p) (3.69)

Luckily, the computation of the rest state derivative of a linear blend skin-
ning rig is much more straightforward than its rig parameter derivative.
Since Equation (3.62) is linear in the undeformed positions X and only ac-
cesses the undeformed vertex with the same index as the deformed vertex
for which it computes the deformation, the structure of the rest state Jaco-
bian ∂x

∂X ∈ R3n×3n of a linear blend skinning rig is the same as with the rigid
transformation rig we have seen in Section 3.4.1. It is given as a block diag-
onal matrix with n blocks Bi ∈ R3×3 defined as:

Bi(p) =
∂

∂Xi
xi(p) =

[
I3 0

] m

∑
j=1

(W)ij · Cj(p) (3.70)

46

3.4 Analytic Rigs

Matching Maya Behavior

The presented formulation of an analytic linear blend skinning rig differs
slightly from the one present in Autodesk Maya in that Maya joints do not
explicitly distinguish between base and pose transformations, and include
some additional factors. Concretely, the Maya C++ API Reference defines the
transformation of a joint as follows: [Autodesk, 2015]

matrix = [S] * [RO] * [R] * [JO] * [IS] * [T]

(where ’*’ denotes matrix multiplication).

These matrices are defined as follows:

[S] : scale

[RO] : rotateOrient (attribute name is rotateAxis)

[R] : rotate

[JO] : jointOrient

[IS] : parentScaleInverse

[T] : translate

Since Maya multiplies points to be transformed from the left rather than
from the right as in our case in Equation (3.62), we can imitate Maya’s joint
hierarchy behavior by assigning for each joint:

Tbase ← [T]

Rbase ← [JO]

Rpose ← [R]

Spose ← [S]

(3.71)

The assignment from Equation (3.71) will replicate the Maya behavior ex-
actly as long as the following assumptions hold:

• We assume [RO] to be an identity matrix, which we found to be the
case for all of the artist-created rigs we used.

• We assume [IS] to be an identity matrix, which is the case if the Seg-
ment Scale Compensate option for the joint is disabled. Even though
this attribute is enabled by default for newly created joints in Maya,
supporting it would greatly increase the complexity of the rig’s de-
formation and derivative complexity, since it makes scaling values
of a joint also affect the transformations of its parents.

• We assume [T] not to be part of the pose and the animation of the
character. This is rarely a problem since Maya does not properly
support runtime translation of joints anyway if skin is attached to
them.

47

Foundations

3.5 Contact Handling

For two of the applications presented later in this work—the Efficient Rig-
Space Physics Simulation and the Subspace Clothing Simulation methods to be
described in Chapters 4 and 6—we will be interested in simulating phys-
ical contact and collisions plausibly. While contact handling is not a core
requirement of these systems, it is nevertheless a crucial ingredient to cre-
ate compelling results that showcase the strengths and applicability of the
methods. In fact, even supposedly trivial examples involving the simulation
of deformable objects may result in contact. When simulating a cylindrical
tube under the effects of gravity that is attached at one central point, the
two sides of the tube are likely to collide with each other when falling down
under the influence of the gravitational forces. Clothing represents another
example where contact occurs on a frequent basis, since it typically collides
with the skin of the character wearing it, as well as with itself in the case of
wrinkling and folding.

We will distinguish two kinds of contact and will address them separately
because of their particular effect on the simulation of a deformable object:

• External contact occurs between a simulated deformable object and
another entity present in the virtual environment, which is typically
another animated object or a ground plane. For this case, we will
make the simplifying assumption that the motion of the external ob-
ject is predefined and is not affected by the contact event. In other
words, dropping a simulated rubber ball onto the ground will cause
the ball to deform, but not the ground. We will also only consider
cases where a vertex of the deformable object crosses the surface
boundary of a triangle of an external object.

• Internal contact occurs between some part of a simulated deformable
object and another part of the same object. For solid objects, we con-
sider cases where a vertex penetrates the volume of a tetrahedral
element that it is not part of. For cloth, we consider the cases where
a vertex or an edge crosses the surface boundary of a triangular ele-
ment that it is not part of.

3.5.1 Collision Detection

As described before, we take a primitive-based approach to the detection
and resolution of contact, and break events down to individual groups of
vertices or edges rather than computing an exact collision volume. Thus,

48

3.5 Contact Handling

the objective of the collision detection step is to consider the current state
of all objects in the simulated environment as input and produce a list of
vertex-tetrahedron, vertex-triangle or edge-edge pairs that are either in close
proximity or already colliding. A straightforward way to achieve this would
be to enumerate all possible combinations of vertices and triangles as well as
edge pairs and check whether their distance falls below a certain threshold.
However, this approach is not very efficient because of the quickly exploding
number of combinations especially for high-resolution objects.

Instead of a brute force search, we opt to use a specialized spatial data struc-
ture to prevent unnecessary distance checks. One special requirement is that
the data structure needs to be able to be efficiently updated since we are us-
ing it to store deforming geometry. We use the well-known bounding volume
hierarchy (BVH) approach with sphere volumes to efficiently track our geom-
etry and test it for collisions. We start the construction of a BVH tree for an
object by creating a single enclosing volume containing all of the triangles
or tetrahedrons, which we will refer to as elements. The volume is then re-
cursively split into subvolumes by using the rule described in Algorithm 1.

Algorithm 1: Recursive volume splitting algorithm for the BVH tree construction.
1: function SPLITVOLUME(v)
2: compute centroids of all elements in v
3: determine dimension with maximum distance between centroids
4: sort elements by their centroids in determined dimension
5: create two child volumes vleft and vright
6: assign first half of sorted elements to vleft
7: resize vleft to fit its elements
8: if number of elements in vleft > 1 then
9: SPLITVOLUME(vleft)

10: add vleft as child node of v
11: end if
12: assign second half of sorted elements to vright
13: resize vright to fit its elements
14: if number of elements in vright > 1 then
15: SPLITVOLUME(vright)
16: add vright as child node of v
17: end if
18: end function

At runtime, the BVH tree can be efficiently updated by recursively resizing
the sphere volumes according to the updated positions of the correspond-
ing object. Starting with the root volume, we update the data structure by

49

Foundations

resizing the bounding spheres bottom-up using the routine outlined in Al-
gorithm 2.

Algorithm 2: Recursive volume update algorithm for BVH trees.
1: function UPDATEVOLUME(v)
2: if v has child nodes vleft and vright then
3: UPDATEVOLUME(vleft)
4: UPDATEVOLUME(vright)
5: resize v to fit vleft and vright
6: else
7: resize v to fit its elements using new vertex positions
8: end if
9: end function

To detect proximity events between two objects, we recursively collide their
bounding volume hierarchies starting with their root volumes. Whenever
we encounter two colliding volumes that represent inner nodes of the tree,
we split up the larger one and recursively collide the child volumes with the
smaller one. Once we reach two volumes that do not enclose child volumes
and thus represent leaves of the BVH tree, we report a proximity event for
the volume pair. The recursive collision routine is described in Algorithm 3.
In order to detect internal collisions of an object, the collision routine is called
to collide the root volume of the object with itself.

Once all proximity events for volume pairs have been collected, we divide
them each further into the three different primitive proximity event types that
we handle:

• If the two volumes enclose two triangles, we combine each of the
vertices with the triangle they are not part of to generate 6 vertex-
triangle primitive proximity events.

• If the two volumes enclose two triangles, we combine each of the
edges with each edge of the triangle they are not part of to generate
18 edge-edge primitive proximity events.

• If the two volumes enclose two tetrahedrons, we combine each of
the vertices with the tetrahedron they are not part of to generate 8
vertex-tetrahedron primitive proximity events.

50

3.5 Contact Handling

Algorithm 3: Recursive collision algorithm for two BVH tree volumes.
1: function COLLIDEVOLUMES(v, w)
2: if volumes v and w collide then
3: if v has child nodes vleft and vright then
4: if w has child nodes wleft and wright then
5: if v is larger than w then
6: COLLIDEVOLUMES(vleft, w)
7: COLLIDEVOLUMES(vright, w)
8: else
9: COLLIDEVOLUMES(v, wleft)

10: COLLIDEVOLUMES(v, wright)
11: end if
12: else
13: COLLIDEVOLUMES(vleft, w)
14: COLLIDEVOLUMES(vright, w)
15: end if
16: else
17: if w has child nodes wleft and wright then
18: COLLIDEVOLUMES(v, wleft)
19: COLLIDEVOLUMES(v, wright)
20: else
21: report proximity event for (v, w)
22: end if
23: end if
24: end if
25: end function

3.5.2 Penalty-Based Collision Resolution

The first approach we will describe to handle detected collisions is based
on a penalty-based energy potential that we add to our physical objective
function H(x). A simple form of such a penalty potential suitable for ex-
ternal contact was already introduced earlier in Section 3.1.3. The general
idea is to allow small penetrations between objects, but to then introduce a
force proportional to the penetration depth that counteracts this contact. We
model these forces as spring potentials with zero rest length, which in its
simplest form is given by the Wcontact potential from Equation (3.22). Denot-
ing the vertices of the i-th triangle in contact by t1, t2 and t3, we compute its
contact normal as:

np
i =

(t2 − t1)× (t3 − t1)

‖(t2 − t1)× (t3 − t1)‖2
(3.72)

51

Foundations

In the tetrahedral case, we instead use the three vertices of the closest surface
triangle to the i-th tetrahedron in contact.

In order to install a contact spring, we need to find the closest point sp
i on the

surface triangle plane to the penetrating vertex xi. To this end, we begin by
expressing sp

i in terms of the triangle vertices using barycentric coordinates:

sp
i = λ1 · t1 + λ2 · t2 + (1− λ1 − λ2) · t3 (3.73)

Ideally, we would have sp
i = xi, and since the barycentric coordinates λ1

and λ2 are unknown, we can reorder Equation (3.73) to obtain the overcon-
strained linear system

[
t1 − t3 t2 − t3

] [λ1
λ2

]
=
[
xi − t3

]
, (3.74)

which we solve in a least-squares sense by performing a direct solve on
the corresponding normal equations. The desired closest surface point sp

i
is then obtained by plugging the optimized barycentric coordinates from
Equation (3.74) back into Equation (3.73).

Once the barycentric coordinates λ1 and λ2 are known, expressing sp
i in

terms of the triangle vertices also provides us with a suitable way of han-
dling internal contact where the surface triangle vertices t1, t2 and t3 are
themselves part of the deformable object’s state x. Following Barbič and
James [2008], we only compute the normal ni and the barycentric coordi-
nates λ1 and λ2 once as we detect the collision, but then express sp

i in terms
of the varying unknown vertex positions corresponding to the surface trian-
gle corners. This approximative approach avoids degeneracies that can arise
for more physically accurate penalty models while still producing plausi-
ble results in practice. The downside of this method is that the potential
Wcontact(x) now refers to four different vertices of the deformable objects,
which results in entries to Hessian locations that were previously assumed
to be sparse. This forces us to recompute the sparsity structure of H and
recompute the symbolic Cholesky factorization from Equation (3.37), incur-
ring a small loss in performance.

3.5.3 Impulse-Based Contact Resolution

While the previously described penalty force approach works well for de-
formable solids, it is generally not applicable to cloth simulation. Even if a
cloth surface is oriented and we can distinguish a ”left” side from a ”right”

52

3.5 Contact Handling

side, cloth is able to fold over itself and thus internal contact can occur be-
tween all combinations of sides: left on left, left on right, and right on right.
Since we only keep track of the current and the previous cloth state, allowing
even small penetrations would cause problems in future time steps where
we would be unable to distinguish between a contact about to occur and a
contact that already occurred but was not fully resolved yet.

To alleviate this issue, we do not make use of the penalty-based contact reso-
lution method and use an impulse-based scheme instead, which is based on
the premise that we will never allow any collisions to occur over the course
of a simulated time step. The simulation framework for a single time step is
adapted to follow these steps:

1. We perform a regular simulation of the time step by minimizing our
physical objective function H(x) to obtain xt+1, potentially introduc-
ing penetrations in contact cases.

2. We detect all collisions introduced in xt+1.

3. We filter xt+1 by applying impulses to colliding vertices that prevent
the collisions from occurring.

4. We continue with the simulation of the next time step using the fil-
tered xt+1 as current state.

In practice, we implement the third step using the approach described by
Bridson and colleagues [2002] and compute the relative velocity between
each vertex-triangle and edge-edge primitive proximity event pair. If the
relative velocity is large enough enough to cause a collision during the cur-
rent time step, we apply a stopping impulse that is distributed equally to
all four vertices participating in the contact. We only apply the full impulse
magnitude in the principal direction of contact, and scale the residual tan-
gential velocities by a factor β ∈ [0, 1], which provides the user with control
over the amount of exerted friction during the contact.

While this simple technique is very effective at resolving most of the contact
cases arising in practice, it provides no theoretical guarantees that would
allow us to always maintain the invariant that the cloth mesh should be
collision-free. The reason for this is that we only resolve penetrations per
primitive, but the stopping impulse we apply might very well cause addi-
tional collisions of the involved vertices with other faces or edges. Bridson
and colleagues [2002] note that even iterating the filtering step does not al-
ways resolve all collisions and may become stuck in cycles. We thus recheck
for collisions after the first filtering iteration, and employ the surface track-
ing routines from the ElTopo library by Brochu and Bridson [2009] if any

53

Foundations

penetrations remain. While the surface tracking routine is much less effi-
cient than the primitive-based impulse filtering, it is guaranteed to always
return a collision-free mesh for arbitrarily complex cases. We noticed that
our solver only invokes these routines in rare cases of heavily interlocked
contact, which on average only results in a small performance penalty.

54

C H A P T E R 4
Efficient Rig-Space Physics Simulation

Figure 4.1: Our method augments hand-crafted character animations such as this sumo
wrestler with high-quality secondary motion, using an efficient rig-space
simulation method.

4.1 Overview

In Section 3.3.3, we described the Rig-Space Physics method presented by
Hahn and colleagues [2012] that allows artists to add secondary motion
effects to an existing rigged virtual character directly by automatically

55

Efficient Rig-Space Physics Simulation

keyframing rig parameters not used by the artist. While the method success-
fully bridges the gap between the traditional keyframe animation paradigm
digital artists are used to and the world of physics-based simulation, its ad-
vantages come at a heavy computational price. Since all the interior ver-
tices of the simulated elastic solid are treated as additional degrees of free-
dom aside from the rig parameters, the size of the linear system to com-
pute the Newton search direction directly scales with the resolution of the
tetrahedral mesh. Furthermore, the subspace system matrix is dense, which
makes the problem even more difficult to solve. Even though Hahn and col-
leagues [2012] address this sparsity problem and propose the use of a spe-
cialized Schur complement decomposition strategy for the resulting reduced
Hessian, the number of degrees of freedom remains one of the bottlenecks
of their system.

In this chapter, we present a novel method that offers a significant compu-
tational improvement over the work of Hahn and colleagues [2012] while
maintaining the same level of quality. This advance is made possible by
three main contributions:

• a linearized formulation of rig-space dynamics using rig parameters
as the only degrees of freedom,

• a physics-based volumetric skinning method that allows our algo-
rithm to compute the position of internal vertices solely from the
surface vertices, and

• a deferred Jacobian evaluation scheme that significantly reduces the
number of required rig evaluations.

Taken together, these contributions allow a performance improvement of
one to two orders of magnitude over the original rig-space physics method
on production-quality rigs, as shown in Figure 4.1.

4.2 Method

Our method comprises three novel core contributions which we will intro-
duce and describe in detail in this section. Before we do so, we provide a
short technical recap on the original rig-space physics solver by Hahn and
colleagues [2012] to highlight its shortcomings. We will then propose our ex-
tensions to the method, as well as provide the necessary derivative formulas
required to reimplement our system and reproduce our results.

56

4.2 Method

4.2.1 Rig-Space Physics Recap

Let us recall the generic rig-space energy minimization framework we pre-
sented earlier in Section 3.3. At its core, we formalized the minimiza-
tion problem as a minimization of the objective function H(x) from Equa-
tion (3.31) over the unknown rig parameters p as described in Equa-
tion (3.46). However, since artist-designed rigs of virtual characters in prac-
tice only deform the ns surface points {si} ⊂ {xi} but not the nn internal
nodes {ni} = {xi} \ {si}, the rig mapping is defined as s(p) rather than as
x(p). To bridge this gap between the surface rig and the vertices of the tetra-
hedral simulation mesh, Hahn and colleagues [2012] propose to reformulate
the optimization problem from Equation (3.46) in terms of both rig parame-
ters p and internal nodes n to:

{pt+1, nt+1} = arg min
p,n

H ({s(p), n}) (4.1)

To minimize the objective function with respect to both p and n, we need to
consider the reduced derivatives with respect to those two vectors. The two
reduced gradient vector strips are given as

rp =

(
∂

∂p
H
({

s
(
pt) , nt}))T

=

 ∂

∂p
s
(
pt)︸ ︷︷ ︸

Js

T (

∂

∂s
H
({

s
(
pt) , nt}))T

︸ ︷︷ ︸
gs

= (Js)
Tgs,

rn =

(
∂

∂n
H
({

s
(
pt) , nt}))T

︸ ︷︷ ︸
gn

= gn.

(4.2)

The reduced second derivatives of the objective function with respect to both

57

Efficient Rig-Space Physics Simulation

p and n are given as three Hessian block matrices:

Kpp =
∂2

∂p2 H
({

s
(
pt) , nt})

=

 ∂

∂p
s
(
pt)︸ ︷︷ ︸

Js

T

∂2

∂s2 H
({

s
(
pt) , nt})︸ ︷︷ ︸

Hss

∂

∂p
s
(
pt)︸ ︷︷ ︸

Js

+
∂2

∂p2 s
(
pt)︸ ︷︷ ︸

Ts

:
(

∂

∂s
H
({

s
(
pt) , nt}))T

︸ ︷︷ ︸
gs

= (Js)
T HssJs + Ts : gs,

Kpn =
∂2

∂p∂n
H
({

s
(
pt) , nt})

=

 ∂

∂p
s
(
pt)︸ ︷︷ ︸

Js

T

∂2

∂s∂n
H
({

s
(
pt) , nt})︸ ︷︷ ︸

Hsn

= (Js)
T Hsn,

Knn =
∂2

∂n2 H
({

s
(
pt) , nt})︸ ︷︷ ︸

Hnn

= Hnn

(4.3)

With these two reduced gradient strips and three Hessian blocks in hand, we
can now assemble the reduced gradient and Hessian for the linear system in
Equation (3.50) as

r =
[

rp
rn

]
and K =

[
Kpp Kpn(

Kpn
)T Knn

]
, (4.4)

which we can then solve for the unknown step direction ∆{p, n}. Since the
elements of Knn are simply a subset of the elements of the sparse full-space
Hessian H, Knn is also sparse. However, no sparsity information is available
for Kpp and Kpn, leading to dense parts of the resulting reduced Hessian K
and rendering the use of a sparse linear solver inefficient. To alleviate this
issue, Hahn and colleagues [2012] propose to use a Schur Complement Solver
scheme to speed up the linear system solve of Equation (3.50) using the sub-
space derivative components from Equation (4.4). The idea of the scheme is

58

4.2 Method

to perform a block Gauss elimination step on Equation (4.4), resulting in two
decomposed systems of equations that sequentially solve for step directions
for rig parameters ∆p and internal nodes ∆n, respectively:(

Kpp −Kpn (Knn)
−1 (Kpn

)T
)

∆p = rp −Kpn (Knn)
−1 rn

Knn∆n = rn −
(
Kpn

)T
∆p

(4.5)

Since Knn is sparse, it can be prefactored as in Equation (3.37) and never has
to be explicitly inverted. Further, the only dense linear system to be solved
is the one for ∆p, which is assumed to be small since in practice the number
of rig subspace parameters is a lot smaller than the number of vertices in the
simulation mesh.

As demonstrated by Hahn and colleagues [2012], the above formulation af-
fords high-quality simulations of secondary motion and other physics-based
detail in rig space. However, the resulting algorithm is computationally in-
tensive for two primary reasons. First, minimizing Equation (4.1) with a
Newton-Raphson scheme requires the first and second derivatives Js and Ts
of the rig s with respect to its parameters p. Since the rig is generally not
available in analytic form, these derivatives have to be estimated using fi-
nite differences for each iteration of the solver. Second, the dimension of the
resulting system is comparatively high, considering that only the free rig pa-
rameters are required. In the remainder of this section, we describe a method
that greatly accelerates computations without compromising quality.

Our goal is to develop a formulation of rig-space physics that affords the
same level of quality but is significantly faster. We achieve this target by es-
tablishing a linearized formulation, eliminating the internal degrees of free-
dom using volumetric skinning, and using a deferred Jacobian evaluation.

4.2.2 Linear Rig Approximation

We start by linearizing the rig at the beginning of every time step as:

s(p) ≈ s̃(p) = s
(
pt)+ ∂

∂p
s
(
pt)︸ ︷︷ ︸

Js

·
(
p− pt) , (4.6)

This simplification is reminiscent of the semi-implicit Euler scheme de-
scribed by Baraff and Witkin [1998], which relies on linearized forces. How-
ever, an important difference of our approach is that we linearize the rig
but not the elastic forces and, as a result, the equations of motion remain

59

Efficient Rig-Space Physics Simulation

nonlinear. Using nonlinear as opposed to linearized elastic forces leads to
improved stability and requires only a few evaluations of elastic energy gra-
dients and Hessians, which are significantly faster to compute than evaluat-
ing Js. As a direct computational advantage of the rig linearization, we need
to evaluate the rig Jacobian Js only once per time step and, moreover, the
second-order derivatives Ts of the rig vanish altogether and are no longer
required to compute the reduced Hessian blocks in Equation (4.3).

4.2.3 Physics-based Volumetric Skinning

In the original rig-space physics method by Hahn and colleagues [2012], the
problem variables consist of the rig parameters p and the position of the
internal vertices n. While a typical rig might feature around 100 rig param-
eters, the resolution of the character mesh is usually a lot larger with tens of
thousands of vertices. Besides the fact that the internal vertices contribute
significantly more degrees of freedom than the rig parameters, the internal
vertices serve only a helper role in the computation of the internal energy
for a given set of rig parameters. They are not visible in the resulting anima-
tion and of no interest to the artist. We would like to establish a formulation
in which only the truly relevant variables, namely the rig parameters, are
exposed as degrees of freedom.

To this end, we start by assuming that the positions of the internal vertices
are always defined by the boundary vertices through static equilibrium con-
ditions:

ñ(p) = arg min
n

Welastic ({s(p), n}) . (4.7)

While this formula defines a unique mapping from rig parameters to inter-
nal vertices, the corresponding function is implicit: it requires minimizing
the elastic energy and thus solving a set of nonlinear equations. Since do-
ing so would be computationally expensive, our goal is to approximate this
implicit nonlinear map by an explicit linear function.

One option is to use cage-based deformation techniques such as Harmonic
coordinates [Joshi et al., 2007] or Green coordinates [Lipman et al., 2008]
that are used for deforming a high resolution embedded surface with an en-
veloping mesh. There are, however, two drawbacks to these approaches.
First, an artist needs to design and rig a cage since there are no reliable au-
tomatic methods for this task. Second, while the deformation field inside
the cage is smooth, the corresponding vertex positions will generally be far
from their equilibrium positions as dictated by the underlying elastic mate-

60

4.2 Method

Figure 4.2: An impulse vector applied along the horizontal image axis results in a swing-
ing motion for the elephant’s trunk, providing us with a sequence of surface
deformations and corresponding internal deformations.

rial. This disparity leads to an overestimation of the elastic energy and, in
turn, severely affects the dynamics of the character.

In contrast to typical cage-based modeling problems, we have explicit
knowledge about how the internal deformation field should evolve as a
function of the surface mesh. Namely, for every surface configuration, we
can compute the internal vertex positions by minimizing a nonlinear elastic
energy. This observation motivates an example-based approach in order to
compute an optimal linear approximation to the internal deformation field.
We first describe how to generate a set of example poses and then explain
how to compute the linear map.

Generating Example-Poses

We assume that there is a small set of about five to ten artist-generated poses
that are representative of the typical range of motion during animation. In
a production environment, such poses are typically created as a means of
testing the character during the rigging stage and are referred to as calis-
thenics. Given these basic poses, we generate an augmented example set by
applying a small number of impulse vectors to the surface of the character.
Each of the impulse vectors defines initial velocities for the character that
we use to perform a few steps of dynamic simulation by solving the original
rig-space physics problem from Equation (4.1) for the free rig parameters p
as well as the corresponding equilibrium positions ñ(p) of the internal ver-
tices. The result of this process, which we refer to as shaking, is a sequence

61

Efficient Rig-Space Physics Simulation

of surface positions and corresponding internal deformation which we add
to the example set. In this way, we can generate a wider range of poses that
also reflects the influence of the simulated rig parameters p on the internal
vertices n. A few poses resulting from this process are shown in Figure 4.2.

Example-Based Skinning

The shaking process provides us with a set of mex deformed example config-
urations {si, ñi} of the whole simulation mesh, comprising both surface and
internal vertices that correspond to different poses of the character. For each
internal vertex ñj ∈ R3, we then seek to find weights w̃j ∈ Rns with respect
to the surface vertices s that best explain the position of the internal vertex
ñi

j in all the mex different example poses:

w̃j = arg min
wj

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

s1

1 · · · s1
n

...
smex

1 · · · smex
n

1 · · · 1

︸ ︷︷ ︸

S

wj −

ñ1

j
...

ñmex
j
1

︸ ︷︷ ︸

ñj
ex

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

= arg min
wj

∥∥∥Swj − ñj
ex

∥∥∥2

2

(4.8)

In the above system, each row stands for three equations representing the x,
y and z components, while the last row asks that weights sum to one, which
ensures that the internal vertices transform correctly under rigid transfor-
mations of the surface. After solving the above problem for every vertex, we
obtain a linear map between surface and internal vertices

ñ(p) = W̃s(p), (4.9)

where W̃ ∈ R3nn×3ns denotes the skinning matrix. It is defined as

W̃ =
[
w̃1 · · · w̃nn

]T ⊗ I3 =

(
w̃1)

1 · I3 · · ·
(
w̃1)

ns
· I3

...
(w̃nn)1 · I3 · · · (w̃nn)ns

· I3

 , (4.10)

where I3 ∈ R3×3 denotes an identity matrix and⊗ is the Kronecker product.
Due to its similarity to linear blend skinning, we refer to this map ñ(p) as
physics-based volumetric skinning.

62

4.2 Method

The formulation of the optimization problem in Equation (4.8) is not yet
practical. First, it allows weights to be negative, which, as reported by
James and Twigg [2005], can lead to overfitting: large positive and negative
weights can lead to a better fit, but outside the training data, undesirable
deformations occur. Second, it assumes dense correspondences since each
internal vertex can potentially be influenced by every surface point. This
property deteriorates run-time performance and, as shown in Section 4.3,
we found that dense correspondences again give rise to overfitting. A prac-
tical explanation for this undesirable behavior is that dense correspondences
do not respect the inherent locality of the problem: the position of the inter-
nal vertices is directly influenced only by a certain neighbor set of close-by
surface vertices. Despite this locality, the dense correspondence scheme can
still use remote surface vertices in order to better explain the position of a
given internal vertex if the training data so happens to support this pre-
diction. However, remote correspondences do not generalize well to data
outside the training set, resulting in the aforementioned overfitting.

Ideally, we would like to choose the smallest set of close-by surface vertices
that yields a robust fit to the training data. Alas, automatically computing
such a neighbor set is challenging. Thresholding based on Euclidean dis-
tance is difficult to implement robustly since it is unclear how to choose the
cutoff value. Internal vertices in some regions, such as the elephant’s belly,
can be much further away from the surface than in other regions, like the
arms.

Sparse Correspondences

Our solution to this problem is to ask for a sparse set of correspondences that
yields a fit to the training data with a guaranteed upper bound on the error.
To this end, we augment the optimization problem from Equation (4.8) with
two components:

1. We add a sparse regularizer to the minimization problem that penal-
izes the L1-norm ‖wj‖1 of the weight vector, thus favoring a sparse
set of correspondences. We choose the SmoothL1 regularizer pro-
posed by Schmidt and colleagues [2007], which approximates the
non-differentiable L1 operator using a smooth approximation of the
absolute value function parameterized by a parameter α that con-
verges to the exact absolute value function as α→ ∞:

|x| ≈ 1
α

(
log
(
1 + exp (−αx)

)
+ log

(
1 + exp (αx)

))
(4.11)

63

Efficient Rig-Space Physics Simulation

2. We add a hard constraint on the weights wj as proposed by James
and Twigg [2005] that forces them all to be positive:

∀k :
(

wj
)

k
≥ 0 (4.12)

In this way, we eliminate overfitting since only those vertices are used that
are actually required to explain the behavior of an internal vertex, while also
preventing counter-intuitive negative weights. At the same time, we avoid
the problem of having to heuristically determine the right sets of neighbors
a priori. As another advantage, the significantly reduced neighbor set also
speeds up computations at run-time.

Rather than applying both the L1 regularization from Equation (4.11) and the
non-negativity constraint from Equation (4.12) at the same time, we found
it beneficial to alternate between the two. We will refer to a solve of the
optimization problem from Equation (4.8) using the sparse regularizer as
SOLVEL1, and solve it starting from some initial value using an iterative
Newton-Raphson scheme alike the one previously described in Section 3.2.
In each iteration, we successively increase α until the solver converges. On
the other hand, solving the optimization problem using the non-negativity
constraint results in a nonlinear least squares (NLLS) problem, which we
solve using a quadratic programming (QP) solver. We use the Mosek library
[ApS, 2015] as our QP algorithm of choice, and will refer to invocations of it
as SOLVENNLS. Each call to SOLVEL1 or SOLVENNLS requires the index j
of the internal node to optimize for and an initial set of correspondences S0
used to populate the system matrix S. In addition to an optimized weight
vector wj, the two routines also return the residual error res of the optimiza-
tion problem in Equation (4.8) after minimization.

Our method for computing sparse weights is described in Algorithm 4.
Starting from a conservative or even full set of correspondences S0, we first
determine the initial error res0 of the fit using SOLVENNLS (line 3). We
then iteratively solve the L1-regularized version of the optimization prob-
lem using SOLVEL1 (line 8) and remove the surface vertices with the smallest
weights from the correspondence set (line 7). The iteration is stopped when-
ever removing an additional vertex would lead to a residual error larger
than a given threshold value τres or a residual error higher than a threshold
factor τratio times the initial residual res0. We set τres to 0.1% of the size of
the character’s bounding box and chose τratio = 1.5 for all of our examples.
After the iteration is stopped, we recompute the final weights again without
the L1-regularizer using SOLVENNLS (line 10).

The results of our sparse correspondence algorithm are small sets of surface
vertices and corresponding weights that explain the behavior of the internal

64

4.2 Method

Algorithm 4: Finding a sparse correspondence set for skinning
1: function SPARSECORRESPONDENCES(S0)
2: for all internal vertices j do
3:

(
w̃j, res0

)
← SOLVENNLS(j, S0)

4: res← res0
5: S ← S0
6: while res < τres or res

res0
< τratio do

7: reduce S and w̃j by smallest weight
8:

(
w̃j, res

)
← SOLVEL1(j, S , w̃j)

9: end while
10:

(
w̃j, res

)
← SOLVENNLS(j, S)

11: end for
12: end function

vertices in a robust and efficient way. As we show in Section 4.3, using sparse
correspondences improves both the computational efficiency at runtime and
eliminates overfitting.

4.2.4 Deferred Jacobian Evaluation

Even when keeping the Jacobian Js constant per time step, its evaluation
still constitutes a major part of the total computational cost. Yet, due to
the inherent temporal coherence in animations, the Jacobian often does not
change significantly from one time step to the next. Ideally, we would like to
recompute the Jacobian only when necessary. While it is—to some extent—
acceptable to trade accuracy for performance, we cannot compromise on sta-
bility. We therefore need a robust indicator for evaluating the error incurred
by keeping the same Jacobian over multiple time steps.

In order to quantify the error of the current approximation, we compare the
end-of-time-step positions s̃

(
pt+1) predicted by the linear approximation

from Equation (4.6) to the actual positions s
(
pt+1) evaluated using the orig-

inal rig mapping. A natural metric for this difference is the kinetic energy
due to the difference in position over the time step h which is given by

∆Ekin =
1

2h

(
s̃
(

pt+1
)
− s

(
pt+1

))T
Ms

(
s̃
(

pt+1
)
− s

(
pt+1

))
, (4.13)

where Ms denotes a diagonal matrix containing the parts of the mass matrix
M that refer to the surface vertices s.

Computing this indicator requires only one rig evaluation, but it provides
us with valuable information about the linearity of the rig around the cur-

65

Efficient Rig-Space Physics Simulation

rent set of parameters and in the direction of the character’s motion. Taking
an optimistic approach, we always attempt to reuse the existing Jacobian to
step the rig parameters forward in time. We then evaluate the indicator and,
if it signals too high a degree of nonlinearity, we roll back to the beginning of
the step, compute the Jacobian Js, and simulate again. While this approach
is always robust and efficient in many cases, animations with rapid motion
and extreme deformations can lead to an excessive number of rollbacks, ef-
fectively undoing the advantage of deferred Jacobian evaluation. In order to
decrease the number of such rollbacks, we use an additional indicator that
estimates the linearity of the rig in the relevant direction without requiring a
full simulation step: Instead of solving for pt+1 first, we simply estimate the
end-of-time-step parameters p̃ using a linear extrapolation of the past two
states as

p̃ = pt +
(

pt − pt−1
)
= 2 · pt − pt−1. (4.14)

As shown in Section 4.3, this indicator leads to significantly fewer rollbacks
while limiting the number of Jacobian reevaluations.

4.2.5 Implementation

With our physics-based skinning method, the rig-space physics objective
function of Equation (4.1) now only depends on the free rig parameters p
such that

H(p) = H ({s(p), ñ(p)})

= H

{s(p), W̃s(p)
}︸ ︷︷ ︸

x(s(p))

= H(x(s(p))),

(4.15)

where we have made use of the volumetric skinning formulation from Equa-
tion (4.9) for the step on the second line.

We perform time stepping by minimizing H(p) using Newton’s method as
described in Section 3.3, which requires the reduced gradient r and the re-
duced Hessian k of H with respect to the parameters p. While each iteration
reevaluates the the full-space gradient g and the full-space Hessian H, the
rig Jacobian J now stays constant.

Using the chain rule and the full-space gradient strips notation from Equa-

66

4.3 Results

tion (4.2), the reduced gradient r simplifies to:

r =
(

∂

∂p
H
(
x
(
s
(
pt))))T

=

 ∂

∂p
s
(
pt)︸ ︷︷ ︸

Js

T (

∂

∂s
x
(
s
(
pt)))T (∂

∂x
H
(
x
(
s
(
pt))))T

︸ ︷︷ ︸
g

= (Js)
T [Is W̃

]T g

= (Js)
T
(

gs + W̃Tgn

)
(4.16)

Using both the chain rule, the product rule, and the full-space Hessian blocks
notation from Equation (4.3), the reduced Hessian K is given as:

K =
∂2

∂p2 H
(
x
(
s
(
pt)))

=

 ∂

∂p
s
(
pt)︸ ︷︷ ︸

Js

T (

∂

∂s
x
(
s
(
pt)))T ∂2

∂x2 H
(
x
(
s
(
pt)))︸ ︷︷ ︸

H

∂

∂s
x
(
s
(
pt)) ∂

∂p
s
(
pt)︸ ︷︷ ︸

Js

= (Js)
T [Is W̃

]T H
[
Is W̃

]
Js

= (Js)
T
(

Hss + HsnW̃ + W̃T (Hsn)
T + W̃THnnW̃

)
Js

(4.17)

As can be seen from Equations (4.16) and (4.17), the previously required
solve for the interior vertices n has now successfully been replaced by a
slightly more involved subspace projection involving the optimized sparse
skinning matrix W̃.

4.3 Results

In this section, we present results of our method and compare its simulation
performance to previous work. We also validate the physics-based skinning
method by comparing it to a state-of-the-art alternative approach.

67

Efficient Rig-Space Physics Simulation

Solver
Trunk
tframe sp

Belly
tframe sp

Sumone
tframe sp

Rig-Space Physics
[Hahn et al., 2012] 7.24 ×1 46.5 ×1 — —

statically solved interior,
per-frame Jacobian

0.37 ×19 0.53 ×86 2.82 ×1.0

statically solved interior,
deferred Jacobian

0.39 ×18 0.39 ×118 2.48 ×1.1

skinned interior,
per-frame Jacobian

0.12 ×56 0.27 ×168 1.04 ×2.7

skinned interior,
deferred Jacobian

0.13 ×53 0.13 ×348 0.58 ×4.9

Table 4.1: Timings for the elephant walk cycle (Trunk, Belly) and the Sumone anima-
tion on an Intel Core i7-930 4 x 2.8Ghz using per-frame and deferred Jaco-
bian evaluation, as well as static solves and skinning for the internal vertices.
tframe is computation time per frame in seconds, and sp is the speedup.

4.3.1 Rig-Space Simulation

To achieve a fair comparison to the original rig-space physics system [Hahn
et al., 2012], we apply our method to the elephant walk cycle animation from
the original work as was seen in Figure 3.1, using the same parameter values
as reported in the corresponding paper. To be consistent with the results of
Hahn and colleagues [2012], we simulate the trunk and the belly of the ele-
phant separately, which are controlled through 13 trunk and 36 belly rig pa-
rameters, respectively. Taking the animation produced by rig-space physics
as the ground truth, we compare the simulation time as well as the differ-
ence in geometric deformation to our method using several different solver
settings.

The results of these comparisons are summarized in Table 4.1 and a visual
comparison for an exemplary frame is shown in Figure 4.3. As a first test,
we only applied the rig linearization technique described in Section 4.2.2
(row 2), which already results in a significant speedup compared to the ref-
erence method (row 1). Yet, our physics-based volumetric skinning and its
associated dimension reduction described in Section 4.2.3 achieves another
drastic speedup (rows 4 and 5). We achieved the highest speedups of factors
of up to 348 when further enabling the deferred Jacobian evaluation scheme
described in Section 4.2.4 (rows 3 and 5). Despite these significant accel-
erations, the quality of the animation remains the same. Visually, the dif-
ferences between the original method and our approach are imperceptible,

68

4.3 Results

Figure 4.3: A visual comparison between rig-space physics [Hahn et al., 2012] on the
left, and our method for a selected frame on the right.

as the maximum difference of an individual vertex position remains below
1.40% of the character’s height for all frames, and the average difference is
even lower with 0.08%.

Table 4.1 also indicates that our deferred Jacobian evaluation scheme (rows
3 and 5) is very effective for the belly of the elephant, whereas there is no
speedup for the trunk. This result occurs because the rig is mostly linear in
the region of the belly and our method can thus leverage the full potential of
the deferred Jacobian evaluation. For the trunk, however, the rig is based on
a nonlinear wire deformer and its Jacobian changes significantly in virtually
every step of the animation. Deferred Jacobian evaluation is therefore not
helpful for this example, but our linearity predictor is able to detect the non-
linearity of the rig and triggers Jacobian updates for 280 out of 360 frames.
In contrast, when simulating the trunk with deferred Jacobian updates but
without the predictor, 281 frames had to be resimulated, resulting in a severe
performance penalty.

Our second example is an animation of a sumo wrestler, Sumone, performing
a characteristic foot stomp followed by vigorous head shaking. In addition
to the usual pose controls, this character also has a total of 174 rig parameter
for secondary motion, all of which we simulate simultaneously using our
method. An exemplary frame of this animation is shown in Figure 4.4, which
showcases the ability of our method to achieve lively and organic-looking

69

Efficient Rig-Space Physics Simulation

Figure 4.4: An exemplary frame from an input animation without secondary motion
(left), and with secondary motion for belly, chest, hair, and cheeks simulated
using our method (right).

motion for the character’s belly, chest, cheeks, and hair. On the performance
side, simulating this large number of rig parameters with the original rig-
space physics solver is out of reach, whereas our method takes less than one
second per animation frame. The timings for this animation are also listed
in Table 4.1. Similar to the first example, our physics-based skinning offers a
significant speedup, as does the deferred Jacobian evaluation.

4.3.2 Skinning

In order to analyze the efficiency of our skinning method, we compared
it to the non-negative least squares (NNLS) solver described by James and
Twigg [2005]. We quantify the performance of these approaches by plotting
the resulting elastic energy for the individual frames of the elephant belly
animation as shown in Figure 4.5. We start by using the NNLS scheme on
a large set of 500 closest surface vertices for each internal vertex. We mea-
sure the distance between internal and surface vertices in a geodesic sense
by marching along the volume mesh. In this way, we ensure that a surface
vertex on the belly is not erroneously quantified as close to an internal vertex
of an arm or the trunk.

70

4.3 Results

Figure 4.5: Elastic energy plots for 64 frames of the elephant belly animation using static
solve (blue), NNLS with 500 correspondences (red), NNLS with 20 corre-
spondences (purple), and our physics-based skinning (green).

As can be seen from Figure 4.5, the elastic energy obtained with NNLS
weights on this large correspondence set (red curve) is significantly higher
than the ground truth (blue curve), except for the regions around the three
frames which were part of the training set. Moreover, the ground truth
shows a regular saw-tooth pattern, but the NNLS solution exhibits two pro-
nounced spikes where the elastic energy is approximately five times higher
than the reference value. Reducing the per-vertex correspondence set to
the 20 closest surface vertices even leads to slightly worse behavior (purple
curve). However, starting from the same 20 correspondences per internal
vertex, our physics-based skinning method is not only able to reduce the
average number of correspondences to 5.56, it also leads to a much closer
tracking of the reference data (green curve). This behavior can be explained
by the fact that our sparsity-based weight computation scheme only keeps
correspondences that are actually required, thus eliminating overfitting. As
a final comparison, using NNLS with only the 5 closest surface vertices leads
to unusable behavior due to extreme overfitting, and we were not able to
generate an elastic energy curve for this setting (not shown).

In our system, the skinning weights have to be computed only once in a pre-
processing step. The elephant mesh we used features 1328 interior vertices
and 761 surface vertices. We trained the physics-based volumetric skinning
for the belly and the trunk using 74 simulated poses. The initial correspon-
dence sets of 20 surface vertices per internal vertex were reduced to an aver-

71

Efficient Rig-Space Physics Simulation

age of 5.52 and 5.55 in 30s and 29s per vertex for the trunk and belly, respec-
tively. The Sumone mesh consists of 967 interior and 1302 surface vertices
and we used 77 poses to train the skinning for the interior vertices. The
initial correspondence sets of 20 surface vertices per internal vertex were
reduced to 6.87 on average in 16.5s per vertex.

4.4 Summary and Outlook

We presented an efficient method for augmenting keyframed character ani-
mations with physically-simulated secondary motion. Our method achieves
a performance improvement of one to two orders of magnitude over the ref-
erence solution by Hahn and colleagues [2012] from previous work without
compromising on quality and while inheriting all of its benefits. This per-
formance is based on a linearized formulation of rig-space dynamics that
uses only rig parameters as degrees of freedom, a physics-based volumetric
skinning method that allows our method to predict the motion of internal
vertices solely from deformations of the surface, as well as a deferred Ja-
cobian update scheme that drastically reduces the number of required rig
evaluations. We demonstrated the performance of our method by compar-
ing it to previous work and showcased its potential on a production-quality
character rig.

In the next chapter, we will focus on a different application and a different
optimization problem, while still making use of the powerful rig-space opti-
mization concept and its runtime optimizations presented here. Further, the
idea of using skinning as a tool to provide reference positions to a simulation
system will be revisited in the later Chapter 6 on Subspace Clothing Simula-
tion, where we will apply it to provide a kinematic reference for a simulated
garment.

72

C H A P T E R 5
Sketch Abstractions for Character Posing

Figure 5.1: A stick-figure sketch abstraction allowed an artist to pose this 3D character
using our sketch-based posing system, creating a run cycle in 3:05 minutes.
The red lines show the sketched curves.

5.1 Overview

In the previous chapter, we have seen how rig spaces can be used to enable
artists to perform simulations of physical effects such as secondary motion
and volume conservation, and directly add them to existing character ani-
mations. In this chapter, we will explore the power of the rigging concept
and the deformation space it spans in the context of character posing, which

73

Sketch Abstractions for Character Posing

represents one of the crucial steps artists follow when creating keyframes to
design new animations. While the focus for solving this problem is not on
physics-based simulation, we will show that the energy minimization frame-
work and the rig-space simulation concept introduced in Chapter 3 can be
readily applied to character posing. In addition, some of the optimizations
of the subspace solver proposed in Chapter 4 directly translate to the setting
as well and will be reused. We will return to physics simulation in the next
chapter.

Our work attempts to bring the direct control offered by sketching into the
3D animation pipeline with a sketch-based posing system that utilizes cus-
tomized character sketch abstractions. A sketch abstraction is a set of rigged
curves that form an iconographic 2D representation of the character from a
particular viewpoint. Just as riggers currently craft the set of meaningful de-
formations for a character, in our system they also build this 2D abstraction
to expose pose and shape variability at the level of granularity that is mean-
ingful for the character. For example, a stick-figure representation could be
used for overall skeletal posing while a torso outline could give further con-
trol over body shape. The distinguishing characteristic of our method is that
it does not prescribe the sketch representation a priori, but rather empowers
the rigging artist to encode the sketch representation that is most appropri-
ate for the character in question.

Our core technical contribution focuses on enabling sketch-based posing
within this setup with an optimization system that takes a new sketch as
input and minimizes a nonlinear iterative closest point energy based on the
2D distance between this input sketch and the character’s sketch abstrac-
tion. Solving this optimization problem with the rigging variables as un-
knowns aligns the character’s pose to the input sketch. A custom regularizer
addresses the underconstrained nature of the problem to select favorable
poses. When rigging formulas and derivatives are available, our numerical
method solves for poses extremely efficiently, under 400ms in our examples.
Our system can also support arbitrary rigging controls offered by commer-
cial software packages by treating the rigging system as a black box, albeit
with a higher computational cost.

On the conceptual level, our primary contribution is the idea of a sketch
abstraction for sketch-based posing using an artist-designed iconographic
representation of the character. This technique relies on the technical contri-
butions of our 2D nonlinear iterative closest point energy formulation, regu-
larization, and optimization procedure that form a bridge between arbitrary
3D rigs and drawn 2D curves. Together, our system offers a more direct
workflow for posing 3D characters in which the artist has the freedom to

74

5.2 Method

prescribe the sketch representation that is most meaningful for the character
to be animated.

We demonstrate our system’s flexibility with several examples showing dif-
ferent artist-designed sketch abstractions used for sketch-based posing. For
full-body posing, we show both a stick-figure representation that roughly
follows a character’s skeleton as well as an outline representation that tracks
the outline of different body parts. We further demonstrate that sketch ab-
stractions can be applied to individual components of a character authored
separately. In this setting, the user can create a variety of customized crea-
tures by sketching individual components such as a body, legs, heads, wings,
and tails. The sketch abstraction for each part is much simpler than the ac-
tual 3D shape, showing that a simple iconographic sketch can result in a
complex character design. Finally, we show that a sketch abstraction can
also be generated on-the-fly by projecting a drawn curve onto the charac-
ter’s mesh. Redrawing this curve in the desired position allows the user to
dynamically pose the character.

5.2 Method

We develop our sketch-based posing system in the context of existing ani-
mation production workflows where 3D character models are created and
rigged using animation software packages. In this setting, the model’s ver-
tices define the space of all possible deformations, while the rig defines the
subspace of meaningful ones. This rig may employ a range of controls, in-
cluding skeletal kinematics, blend shapes, or arbitrary nonlinear procedural
deformations to accommodate the character’s range of expressive deforma-
tion. As with our efficient rig-space simulation system presented earlier in
Chapter 4, our system can treat the rig as a black box, taking the character
mesh and a list of arbitrary rig parameters as input. When analytic formu-
las for the rigging procedures are available, our method can utilize them for
improved performance.

In order to provide a connection between the character’s rigging controls
and 2D input sketches, we enhance the classical rig parameterization with
a sketch abstraction of the character from a particular viewpoint that is de-
formed by the same controls as the surface mesh. The character designer can
author this sketch abstraction by creating and rigging a set of curves along-
side the character’s mesh. Or, alternatively, it can be created on-the-fly at
runtime by drawing a curve onto the surface of the character which is then
carried along as the character deforms. In either case, projecting the curves

75

Sketch Abstractions for Character Posing

into the camera’s viewing plane yields a 2D representation of the charac-
ter’s current pose. Since the rig now simultaneously influences both the
3D character and the projected 2D sketch abstraction, our system effectively
connects these two representations, allowing us to control the character’s 3D
shape by minimizing a 2D matching energy while using the rig parameters
as unknowns. Given a new 2D sketch, we define an optimization problem in
the form of a nonlinear iterative closest point (ICP) objective that attempts to
align the character’s 2D sketch abstraction to match the user-defined sketch.
Since the optimization problem is expressed over the rig parameters, min-
imizing the ICP energy also deforms the 3D shape to match the sketch. A
regularization term is used to resolve ambiguities in the large space of po-
tential 3D deformations matching the 2D sketch.

5.2.1 Sketch Abstraction

As explained earlier in Section 4.2.1, typical artist-designed character rigs
only deform their surface vertices s, but additional interior vertices n might
be required to represent them at as volume. Since we will not be simulat-
ing physics in this character posing context, we do not need such a volume
representation or a distinction between surface and interior vertices. For no-
tational simplicity, we will simply refer to the surface vertices as x for the
remainder of this chapter.

In this case, a character rig defines a mapping from a set of rig parame-
ters p to a corresponding surface deformation x(p) as in Equation (3.45). A
2D sketch abstraction of the model enhances the rig with l deformed points
z = (z1, z2, . . . , zl), giving rise to the extended rig mapping:

p→ {x(p), z(p)} (5.1)

Our system supports arbitrary abstractions to give the rigging artist full con-
trol over the sketch representation of a character, but we also support gener-
ating them on-the-fly based on the character’s surface rig x(p). To automati-
cally extend a rig mapping by a sketch abstraction z, we project an arbitrary
source curve—2D or 3D—onto the surface mesh and compute barycentric
coordinates (αi, βi, γi) of each curve point with respect to its three closest
surface vertices xi

a, xi
b and xi

c. Denoting the camera projection matrix by
C ∈ R2×3, we obtain the i-th 2D point of the sketch abstraction as:

zi(p) = C
(

αi · xi
a(p) + βi · xi

b(p) + γi · xi
c(p)

)
(5.2)

Expressing the sketch abstraction z as a function of the rig deformation x
allows us to easily transfer the surface deformation to the source curve based
on the same rig parameters p.

76

5.2 Method

5.2.2 Matching Optimization

Sampling the input stroke provides us with a set of 2D points of size m given
as y = (y1, y2, . . . , ym) that we are looking to match with the model’s sketch
abstraction z. Since we would ideally like all points of the sketch abstraction
z to coincide with some permutation of the user-drawn 2D points in y, we
define our matching energy as

Wmatch(ω, z(p)) =
l

∑
i=1

m

∑
j=1

ωij ·
∥∥yj − zi(p)

∥∥2
2 , (5.3)

where ωij denotes potential correspondence between points zi and yj, asso-
ciating them with each other. Further, we require there to be at least one
correspondence entry for each yi and each zj to exclude trivial solutions:

∀i ∃j : ωij ≥ 1 ∧ ∀j ∃i : ωij ≥ 1 (5.4)

To minimize Wmatch, we follow the well known iterative closest point (ICP)
approach and alternate between the following two stages:

• We fix the rig parameters as p̂ and thus also the 2D representation
ẑ = z (p̂), and compute optimal correspondences ω that minimize
Wmatch for the specific p̂.

• We fix the correspondences as ω̂, and minimize Wmatch with respect
to the rig parameters p.

Correspondences

We provide two procedures to optimize for the first ICP stage, where the
choice of which to use is predefined for each sketch abstraction. In the first
procedure, we perform an arc-length parameterized resampling using the
same number of sample points for both the user sketch and the model’s 2D
sketch abstraction. We then establish straightforward one-to-one correspon-
dences between ẑ and y for ωij ∈ {0, 1} by considering the drawing direction
of both strokes. This procedure is best suited for matching line sketches as
it makes sure that no direction flipping problems will occur, and it trivially
satisfies the condition from Equation (5.4).

The second procedure is used for the matching of more complicated gestures
such as circular shapes that do not necessarily have a clearly defined start-
ing point or direction. After again performing an arc-length parameterized
resampling with the same number of sample points for both the user sketch

77

Sketch Abstractions for Character Posing

and the 2D sketch abstraction of the model, we first compute forward corre-
spondences aij ∈ {0, 1} from ẑ to y by simply assigning the closest match yj to
every point ẑi. Inversely, we compute backward correspondences bij ∈ {0, 1} by
assigning the closest sketch abstraction point ẑi to each user-drawn sketch
point yj. We then combine aij and bij to many-to-many correspondences by
summing them:

ωij = aij + bij (5.5)

By construction, the following properties hold for the forward correspon-
dences and the backward correspondences:

∀i :
l

∑
j=1

aij = 1 and ∀j :
m

∑
i=1

bij = 1 (5.6)

Consequently, the combined weights satisfy ωij ∈ {0, 1, 2} and also the con-
dition from Equation (5.4). We found that this second greedy matching
procedure produces good results and is much faster than exact solutions
to the underlying minimum bipartite matching problem such as the ones
computed using variants of the Hungarian algorithm.

Subspace Optimization

In the second stage, our goal is to minimize the matching energy Wmatch
by modifying the parameters p that control the sketch abstraction z of the
model. Since the correspondences ω̂ are now fixed, we are effectively inter-
ested in the following optimization problem:

pt = arg min
p

Wmatch (ω̂, z(p)) , (5.7)

Even though we are not performing a simulation over time, we will retain
the t superscript to mark the optimized rig parameter vector after the t-th
ICP iteration.

Closer inspection reveals that Equation (5.7) is in fact an instance of the rig-
space optimization problem we have seen earlier in Section 3.3.2, since set-
ting h = 1 and defining the energy potential set as W = {Wmatch (ω̂, ·)}
in Equation (3.31) results in an objective function H compatible with Equa-
tion (3.46). Hence, we can make use of the subspace optimization method
described in Section 3.3.2, while also employing the rig linearization tech-
nique introduced in Section 4.2.2 to achieve better performance. We will
denote the required rig Jacobian of the sketch abstraction z with respect to
the rig parameters p by Jz. If no formula for the rig mapping of the char-
acter is known, we estimate Jz using finite differences as in Equation (3.51)

78

5.2 Method

around the initial parameter vector P. Otherwise, we assume that Jz can be
computed analytically. Since Wmatch is a quadratic function in terms of z, its
derivatives with respect to z to compute the full-space gradient g and the
full-space Hessian H are trivially obtained.

5.2.3 Regularization

Even though the matching energy Wmatch introduced before is well-defined,
the optimization problem in Equation (5.7) is generally underconstrained as
potentially many subspace parameter configurations p—originally deform-
ing the surface points x in 3D—map to the same 2D point set z, resulting in
an infinitely large set of candidate solutions. Further, many of these candi-
dates correspond to surface representations x in 3D that are distorted even
though the 2D points z match perfectly. To eliminate this null space of am-
biguous solutions, we redefine our optimization problem as

pt = arg min
p

H(p), (5.8)

where we have added three regularization components to the objective func-
tion H:

H(p) = Wmatch(ω̂, z(p)) + Wpose(p) + Wplane(x(p)) + Wdist(x(p)) (5.9)

The first component is a L2 regularizer that favors solutions with the least
amount of required change from the initial pose:

Wpose(p) = λpose ·
∥∥∥p− p0

∥∥∥2

2
(5.10)

The second component favors deformations of the 3D surface points x
within their viewing plane and is given by

Wplane(x(p)) = λplane ·
n

∑
i=1

(
vT (xi(p)− Xi)

)2
, (5.11)

where v is the viewing direction of the camera and Xi = xi (P) denotes the
position of vertex i prior to optimization.

The third component favors local deformations by penalizing deformations
in regions far away from the user sketch. For each initial 3D vertex Xi, we
precompute its distance di to the closest point of the initial 2D representation

79

Sketch Abstractions for Character Posing

point Zi projected onto the undeformed surface X. We then regularize the
distance using the term

Wdist(p) = λdist ·
n

∑
i=1

di

dmax
‖xi(p)− Xi‖2

2 , (5.12)

where dmax = maxi di. We chose λpose = 0.5, λplane = 0.01 and λdist = 0.001
for all of our examples.

Subspace Derivatives

Since the regularized objective function H from Equation (5.9) we are mini-
mizing now also directly depends on p and x(p), the derivatives r and K for
the Newton-Raphson iterations from Equation (3.50) need to be adjusted:

r = rmatch+ rpose+ rplane+ rdist

K = Kmatch+Kpose+Kplane+Kdist
(5.13)

As mentioned before, the matching component of the objective function rep-
resents a rig-space optimization problem with respect to the 2D sketch ab-
straction rig mapping z(p). The same is true for the viewing plane and
distance regularization components with respect to the 3D surface rig map-
ping x(p). We can thus instantiate the reduced gradient formula from Equa-
tion (3.48) and the reduced Hessian formula from Equation (3.49). Denoting
the Jacobian of the 3D surface rig x with respect to rig parameters p by Jx,
we obtain:

rmatch = (Jz)
T gmatch Kmatch = (Jz)

T Hmatch Jz

rplane = (Jx)
T gplane Kplane = (Jx)

T Hplane Jx

rdist = (Jx)
T gdist Kdist = (Jx)

T Hdist Jx

(5.14)

As with gmatch and Hmatch, the full-space derivatives gplane, gdist, Kplane
and Kdist are easily obtained analytically since both Wplane and Wdist are
quadratic functions in terms of x.

The remaining pose regularization component Wpose is directly defined in
terms of the rig parameters p and thus does not require a subspace pro-
jection. Its derivatives rpose and Kpose are trivially obtained since Wpose is
another quadratic function, this time in terms of p.

80

5.2 Method

Coarsening

While the parameter-based regularization term Wpose is inexpensive to com-
pute, the vertex-based regularization terms Wplane and Wdist come at a higher
cost. Since the objective function H from Equation (5.9) to minimize now
also directly depends on x(p), the derivatives in Equation (5.13) also con-
sider the vertex Jacobian Jx as we have seen from Equation (5.14). Even if
Jx can be computed efficiently, its dimensions of 3n× r effectively make the
computation time of these subspace derivatives depend on the resolution of
the 3D mesh, which impedes interactive use. To alleviate this issue, we pre-
process the initial surface X by clustering its vertices Xi using the k-means
algorithm with the Euclidean distance measure. By projecting the k clus-
ter centers back to the surface X we obtain a vertex subset R ⊂ {xi} that
we use as representative elements to compute coarsened variants of the two
vertex-based regularization terms:

Wplane(x(p)) ≈ λplane ·
n
k ∑

xi∈R

(
vT (xi(p)− Xi)

)2

Wdist(x(p)) ≈ λdist ·
n
k ∑

xi∈R

di

dmax
‖xi(p)− Xi‖2

2

(5.15)

Since these coarsened regularization terms only depend on the representa-
tive elements in R, only k rows of Jx need to be computed and multiplied.
In our implementation, we never explicitly construct the full Jacobian Jx, ef-
fectively making the regularized optimization problem independent of the
mesh resolution n. We use k = 200 clusters for all of our examples.

5.2.4 Linear Blend Skinning Rigs

Our method supports arbitrary rig mappings for both the character’s sur-
face and its sketch abstraction. In particular, we also support black-box rigs
for which we can only evaluate their deformation but have no access to their
analytic formula. This enables our method to pose existing rigs created in
commercial animation packages such as Autodesk Maya, which allow artists
to freely combine various rigging techniques into complex deformation hi-
erarchies. While black-box rigs impose no construction constraints on the
rigging artists, posing them using our method requires several seconds of
computation time for the costly finite difference estimation of the Jacobians
Jz and Jx, making it cumbersome for interactive use. However, in case the

81

Sketch Abstractions for Character Posing

Example dim p dim x dim z Runtime
Elephant 132 6162 200 304ms
Cartoon Man (Stick figure) 91 6708 380 260ms
Cartoon Man (Outline) 91 6708 706 373ms
Face 44 19671 200 8922ms
Dragon 25 46380 200 100ms

Table 5.1: Average runtimes per solver invocation until convergence is reached for the
different applications and examples measured on an Intel Core i7 930 8 x
2.8GHz.

character rig was designed using the well-known linear blend skinning tech-
nique, we can obtain analytic expressions of the Jacobians for efficient eval-
uation. The analytic form of the linear-blend skinning rig with its deriva-
tives was described earlier in Section 3.4.3. Using Equations (3.66), (3.67)
and (3.69) from that section, the Jacobians Jx and Jz are now easily obtained,
only requiring derivatives of the transformation matrices Cj with respect to
p in addition to the skinning weights W and the initial surface X.

5.3 Results

In this section, we show how our sketch-based posing framework can be
applied to various sketch abstractions designed for different applications.
While the number of solver invocations varies depending on the application
and the user’s interaction with our system, we provide the average solver
timings for all examples in Table 5.1. Our system is implemented within
Autodesk Maya and utilizes Maya’s rigging system and user interface to
make it as intuitive as possible to the artist using it.

The Cartoon Man, Elephant and Dragon characters use linear-blend skinning
rigs designed by a rigging artist, which expose their joint angles and bone
scales as rig parameters. Since the analytic formulas for these rigs are avail-
able as instances of Equation (3.62) from Section 3.4.3, posing them using our
method is achieved in under 400ms. We used the first of the two described
correspondence procedures for Elephant and Cartoon Man with the stick-figure
abstraction, and the second procedure for Dragon and Cartoon Man with the
outline representation.

The Face character uses a complex combination of blendshapes, bone trans-
formations, nonlinear bend and twist deformers, and Maya expressions.
Our system can nonetheless work with this complex rig by computing the

82

5.3 Results

Figure 5.2: Example poses for the Cartoon Man character using the stick-figure ab-
straction (top) and the outline abstraction (bottom).

necessary derivatives using finite differences, albeit with a slower runtime
of 9s. Profiling reveals that 95% of the computation time for the Face charac-
ter is spent within Maya on rig evaluations for finite differences estimations,
which suggests that significant speedups similar to the linear-blend skinning
case would be possible if the rigging system provided analytic derivatives.
We also used the first of the two described correspondence procedures for
the Face example.

5.3.1 Redraw Posing

For this first application, we assume that the rigging artist designed one
or more sketch abstractions for the character, providing us with a complete
extended rig mapping. Our Cartoon Man character features two such repre-
sentations for the user to choose from:

83

Sketch Abstractions for Character Posing

Figure 5.3: Cartoon Man falling animation created with our method.

• a stick-figure representation that closely follows the bones of the char-
acter’s skeleton, and

• an outline representation skinned to the character’s surface.

We created several expressive poses from crude stick-figure and outline
sketches that can be seen in Figure 5.2, as well as a walking animation shown
in Figure 5.1. Further, an animation of the Cartoon Man falling backwards
created using our system can be found in Figure 5.3. To facilitate the corre-
spondence computation, we require the user to draw the different curves in
a prescribed order, which improves the runtime of the algorithm roughly by
a factor of two because the solver converges faster. Given a few more ICP
iterations, we observed results of similar quality even when the drawing or-
der was not prescribed. Because our system works with normal character
rigs within Maya, it enhances existing animation workflows while still al-
lowing artists to adjust rig parameters directly. For the falling animation,
the artist made a few manual fine-scale adjustments to the spine joint angles
for two of the poses.

5.3.2 Character Individualization

In this application, we use our posing system to accommodate sketch-based
character individualization, allowing novice users to design their own virtual
character from simple sketches using predefined adaptive model parts. Our

84

5.3 Results

Figure 5.4: Our database of six dragon body parts (left) and their corresponding sketch
abstractions (right).

work enhances other efforts toward character individualization [Hecker et
al., 2008] by incorporating sketch-based control as well as more general-
ized shape customization, which is based on the underlying support of our
method for sketch abstractions on top of arbitrary character rigs. To demon-
strate this concept, we created a small database of six dragon body parts
modeled and rigged by an expert artist: Torso, Wings, Head, Tail, Front Legs
and Hind Legs. Each part also contains an embedded sketch abstraction that
additionally serves as an identifier to perform the classification of the drawn
part. To allow the parts to match a broad range of user-drawn shapes, the
rigs expose the local scaling parameters of the underlying bones used to skin
the models in addition to typical posing controls such as joint translation and
rotation.

Instead of imposing a drawing order or requiring the user to specify which
body part he or she is drawing, we use a database of 2D sketches containing
several example instances of each body part together with a state-of-the-
art category recognition approach [Eitz et al., 2012] to classify each drawn
stroke. We then instantiate the detected part and optimize for both its shape
and pose parameters simultaneously to place it into the scene. After explor-
ing the current model in 3D, the user can choose to either redraw the stroke
and repeat the fitting of the part, or continue to add new parts to the model.

We used our system to create a variety of dragons with different body shapes
and numbers of extremities. We also allow simple animations of the created
models by offsetting the matched rig parameters p with time-varying values
from predefined animation curves provided for each body part. The differ-

85

Sketch Abstractions for Character Posing

Figure 5.5: Results for the dragon individualization application: 3D results (left), the
corresponding input sketches (right, blue), and the optimized 2D represen-
tations (right, yellow).

86

5.3 Results

Figure 5.6: The rest pose of the Elephant character (left) was transformed into two dif-
ferent poses using our draw-over posing system.

ent dragon parts and their corresponding sketch abstractions are shown in
Figure 5.4. A few selected dragon character examples created in our system
with their corresponding input sketch drawings and the optimized sketch
abstractions are shown in Figure 5.5.

5.3.3 Draw-Over Posing

In a third application, we enable draw-over posing of characters without pre-
defined sketch abstractions. We first let the user create a custom abstraction
by drawing a stroke onto the character mesh, and then match it to a second
drawn stroke, effectively letting him or her choose what the best sketch rep-
resentation is for the desired deformation. To demonstrate our draw-over
posing system, we applied it to two different character rigs: Elephant and
Face. The former is a complex production-quality linear blend skinning rig
based on a skeletal structure with 49 joints. As a case in point, we down-
loaded the latter rig from the internet. It is a facial rig that features a large
variety of complex controls combining various rigging techniques [Baskin,
2014]. Even without understanding how this rig works or which controls
are available, we were able to successfully use our method to pose it, show-
casing the ability of our system to extend to arbitrary deformers. Some of
the resulting poses of experimental posing sessions for both of these rigs are
shown in Figures 5.6 and 5.7.

87

Sketch Abstractions for Character Posing

Figure 5.7: The Face rig (left) was posed with 11 stroke pairs (middle) using our system
to produce an expressive shape (right). Many thanks to Jason Baskin for
making this rig freely available online [Baskin, 2014].

5.4 Summary and Outlook

In this chapter, we proposed a sketch-based posing system for rigged 3D
characters that allows artists to create custom sketch abstractions on top of a
character’s actual shape. A sketch abstraction is composed of rigged curves
that form an iconographic 2D representation of the character from a partic-
ular viewpoint. When provided with a new input sketch, our optimization
system minimizes a nonlinear iterative closest point energy to find the rig-
ging parameters that best align the character’s sketch abstraction to the in-
put sketch. A custom regularization term addresses the underconstrained
nature of the problem to select favorable poses. Although our system sup-
ports arbitrary black-box rigs, we showed how to optimize computations
when rigging formulas and derivatives are available. We demonstrated our
system’s flexibility with examples showing different artist-designed sketch
abstractions for both full body posing and the customization of individual
components of a modular character. Finally, we showed that simple sketch
abstractions can be built on the fly by projecting a drawn curve onto the
character’s mesh. Redrawing the curve allows the user to dynamically pose
the character. Taken together, our system enables a new form of intuitive
sketch-based posing in which the character designer has the freedom to pre-
scribe the sketch abstraction that is most meaningful for the character.

While we will lay aside the concept of rig-space optimization in the next
chapter about Subspace Clothing Simulation, we will make different use of the

88

5.4 Summary and Outlook

deformation space that a character rig provides. Further, we will continue
to employ analytic linear blend skinning rigs as a powerful tool to obtain
the maximal performance for our simulation systems. Rather than using the
analytic version of the rig’s Jacobian with respect to its rig parameters, we
will incorporate the rig rest state Jacobian to embed an object’s deformation
in the unrotated space provided by the rig’s skeletal bone hierarchy.

89

Sketch Abstractions for Character Posing

90

C H A P T E R 6
Subspace Clothing Simulation

Figure 6.1: Example result of our method: A close-fitting sweater exhibits wrinkles and
torsional folds under the effects of gravity and as the underlying torso is
twisting. This example used only 12 adaptively chosen basis vectors and ran
18 times faster than a full simulation.

6.1 Overview

In the previous chapters, we have seen how the concept of a rig’s defor-
mation space can be used to formulate optimization problems that oper-
ate directly in an environment that artists can create and control them-
selves. The resulting methods fit nicely into the workflow of standard ani-

91

Subspace Clothing Simulation

mation pipelines, but they also implicitly assume that all possible deforma-
tion needs to be accounted for a priori at the rigging stage before motions
or poses are created. Since the solvers are restricted to finding solutions in-
side the rig subspace, neither the rig-space physics simulation system nor
the sketch-based posing system are able to produce poses that reach be-
yond what the rigging artist envisioned and embedded in the rig as controls.
While this was a design choice rather than a limitation of these methods,
there are other use cases for physical simulations where such a restriction
of the possible deformations in advance is undesirable. One such scenario
is the simulation of cloth in the form of a garment worn by a virtual char-
acter. While physics-based simulation is a well-explored field and tools for
cloth are readily available, they are known for being notoriously slow since
even single simulation frames require dozens of seconds of computation. In
this chapter, we will explore the use of subspace methods in the context of
clothing simulation to obtain increased runtime performance over existing
full-space simulations.

Our method relies on two key insights. First, we note that subspace simu-
lation is effective only when it can take advantage of structure in the sim-
ulation. And, although the movement of free-flowing cloth is largely arbi-
trary and unstructured, the movement of clothing—especially close-fitting
clothing—does indeed contain a great deal of structure. We thus employ
a kinematic deformation model as reference state that takes advantage of
the structure of clothing simulation by capturing rotations that would oth-
erwise prevent the use of a linear subspace—ill-suited for modeling rota-
tional motions—from succeeding. Our second insight is that the rich de-
formations seen in clothing cannot be reproduced adequately with a global,
low-dimensional basis. However, around a particular pose, the local space
of deformations is much lower-dimensional. This observation motivates an
adaptive, pose-dependent basis and allows our system to represent a broad
range of complex wrinkles and folds while maintaining a small set of active
basis vectors at any point during the simulation.

With these core insights in hand, we present a subspace approach to clothing
simulation that uses a dynamically updated subspace basis in order to best
reflect the deformations around the current pose. Our prototype implemen-
tation improves the performance of state-of-the-art cloth simulation codes
by a factor of up to 22 while still reproducing the rich set of of wrinkles and
folds evident in the full-space solution.

92

6.2 Method

6.2 Method

We will begin by briefly outlining the pipeline of our method in Section 6.2.1,
before introducing the central concept and proposing a possible design of
the pose-space database in Section 6.2.2. After these descriptions, we will
formally state all of the necessary ingredients for our adaptive subspace sim-
ulation method in Section 6.2.3.

6.2.1 Pipeline

As input, we expect a linear blend skinning (LBS) rig for the character, in-
cluding a rigid skeleton, an undeformed surface mesh, and a set of skinning
weights that determine how the surface mesh deforms according to the pose
of the character. Furthermore, we assume that there are animation sequences
provided that are representative of the typical motion that is expected dur-
ing animation. In a production environment, these animation clips could
correspond to the calisthenics sequences that are typically set up for test-
ing the rig. Finally, we expect geometry for the clothing to be provided and
pre-positioned in a way that fits the neutral pose of the character. Using the
input rig and the pre-positioned clothing for the neutral pose, we construct a
kinematic deformation model for the clothing that will serve as the reference
state during subspace simulation.

Given this input data, our pipeline follows the following stages, which are
also visualized in Figure 6.2:

• Training Stage: For each of the input animations, we perform a full-
space cloth simulation. The resulting cloth configurations are associ-
ated with the corresponding poses of the character. Typically, these
animations will lead to multiple cloth configurations for the same
point in pose space. For example, this will always be the case when
the same animation is run at different speeds. But also simple mo-
tion like bending and straightening an arm will generally lead to dif-
ferent cloth configurations due to collisions, friction, and the overall
nonlinear nature of clothing.

• Pose-Space Database Construction: The training stage provides us
with a data structure that holds all simulation results associated with
their corresponding points in pose space. However, we eventually
need a data structure that provides us with a subspace basis for any
point in pose space. To this end, we cluster the simulation data in

93

Subspace Clothing Simulation

c) Basis Selection

a) Training Stage
b) Pose Space

Database Construction

d) Subspace Simulation

Precomputation

Runtime

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

1

3

10

16

gradient

undo

Figure 6.2: Overview of our pipeline: (a) We perform full-space cloth simulation to cre-
ate training data — shown in blue. (b) We construct a Pose-Space Database
— a simplified 2D view with four sites and 16 basis vectors in total is il-
lustrated. (c) At runtime, we adaptively select vectors from the database to
obtain a basis for the current pose — in this case two from the yellow site, one
from the green one, one from the blue one, plus gradient and undo vector. (d)
We solve the subspace simulation problem using the selected basis — shown
in orange.

94

6.2 Method

pose space and perform PCA on each cluster. We keep the most im-
portant modes and associate them with the pose-space point corre-
sponding to the center of the cluster. We refer to such a database
entry as a site.

• Basis Selection and Subspace Simulation: For each step of the sub-
space simulation, we want to retrieve a basis according to the current
pose of the character and the current state of the clothing. Since the
character’s pose will generally not coincide with any of the sites, we
need a way to construct the set of basis vectors from its surrounding
sites. Our approach is to select basis vectors from neighboring sites
considering their distance in pose space and how well they match
the current dynamic state of the clothing.

6.2.2 Pose-Space Database

As one of the key concepts of our approach, the pose-space database (PSDB)
is a data structure that holds bases within sites distributed across pose space.
During subspace simulation, the PSDB is responsible for providing a low-
dimensional basis that describes the behavior of the clothing around a given
current pose. There are a number of questions that we must answer in order
to design such a PSDB. We must find an adequate pose-space parameteri-
zation, we have to determine how to associate data with pose, and we have
to decide which information to extract and store from the large amount of
training data.

Relation between Pose and Clothing Deformation

A central question that influences subsequent design decisions is whether
we should assume a locality relation between the character’s pose and the
deformation of its clothing. Clearly, the deformations induced by moving
the shoulder are most significant around the shoulder—but how far do they
extend? Wang and colleagues [2010] segment the clothing mesh into parts
according to the body joints and assume that each joint influences only the
two clothing segments adjacent to it. While this approach has the advan-
tage that localized data can be stored per joint, a disadvantage is that far-
reaching deformation effects such as the torsional folds at the waist that
arise when moving the shoulder—which can be seen in Figure 6.1 or by self-
experimentation—are not captured. We consider such effects to be essential
for our target application and therefore assume that each change in pose can
potentially induce deformations everywhere in the clothing. Consequently,

95

Subspace Clothing Simulation

we associate deformation data with character poses represented by points in
pose space.

Our method is based on the key observation that tight-fitting clothing typ-
ically exhibits motions very similar to those of the character wearing the
garment. Thus, if we can extend the character’s pose to a neutral state of the
cloth model, this can serve as an initial reference state for our subspace sim-
ulation. To this end, we extend the skinning of the underlying linear blend
skinning rig of the character model to the cloth mesh to build a kinematic
cloth reference, which we will describe in more detail in Section 6.2.3.

Pose-Space Parameterization

We assume a linear blend skinning rig as input, which we parameterize by
joint angles and bone scales as described earlier in Section 3.4.3. The natu-
ral way of representing the pose of the character is thus by a rig parameter
vector holding those angle and scale values for each joint. However, this
approach is not without problems when applied to our task of building a
database for two reasons:

• First, the number of angles required to describe the pose of a charac-
ter is typically quite large—already 57 for our Torso model. Sampling
in such a high-dimensional space is impracticable since, unless there
are truly redundant dimensions, the likelihood that two samples are
far away from each other is very high—a phenomenon known as the
curse of dimensionality.

• For another, many rigs exhibit redundant controls around the clav-
icle and the shoulder that can be convenient for an artist but prob-
lematic in our context when associating deformations with poses.

An alternative approach is to measure the distance between two poses by the
amount of induced difference in geometry of the corresponding meshes. This
approach allows for more intuition as to what distance means, and it avoids
the problem of redundancies. We perform a Principal Component Analysis
(PCA) on all the posed meshes in the training data, truncating the basis ac-
cording to significance in singular values, and normalizing the dimensions
to have equal variance. This results in a transformation to a coordinate space
where the L2 distance is such a desired measure.

96

6.2 Method

Data Generation and Model Reduction

We perform simulation runs for each of the input animations and associate
the clothing shape for each time step with its corresponding character pose.
Storing such a massive amount of data is neither practical nor useful and
we would prefer a form which captures the diversity of deformations in a
concise way. Principal Component Analysis with truncation is a natural can-
didate for this purpose as it provides a principled way to balance between
the captured variability of the data and the dimensionality of the approxi-
mation. Since PCA on the training data produces global deformation modes,
the method of Neumann and colleagues [2013] could alternatively be used
to create localized basis vectors.

We observed that even performing a global PCA often results in basis vectors
with small magnitudes for large areas of the model. Since this is sufficient
for our subspace simulation setting, we choose this simple approach over
more involved localized ones. Also, rather than constructing a single basis
from all training data, our approach relies on many separately computed
bases distributed across pose space. In this way, we can exploit the fact that
deformations can be approximated with a low-dimensional basis when the
current pose is close to a known one, but still account for the large variability
of deformations across pose space.

Basis Creation

In order to construct a set of distributed bases, we must decide how many
sites with corresponding local bases to use, where to put them, and what
data to use for each site. We note that, once the number of sites is deter-
mined, the question of where to place the sites and which data points to
associate with them is answered in a natural way using Voronoi partition-
ing. We found that two to three sites per input animation work well when
using calisthenics-like input sequences that cycle through one specific mo-
tion. We then run the k-means algorithm in order to compute the desired
number of clusters, obtaining the pose-space locations of the sites and the
sets of data belonging to them.

Before we can analyze the clusters, there is one more transformation that
needs to be applied to the data. If we were to perform PCA directly on the
geometry of the clothing as returned by the full-space simulator, the vari-
ability would be dominated by the motion of the body, i.e., rotations of its
joints. However, we are not interested in changes that are captured by the
kinematic model, we want to analyze how the clothing changes its shape

97

Subspace Clothing Simulation

relative to the kinematic model. For this reason, we optimize for a displace-
ment vector prior to the skinning transformation of the cloth’s current kine-
matic reference.

Once this transformation is applied to all data points, we are all set for ana-
lyzing the data. For each site, we perform Principal Component Analysis on
the full-space training example sets obtained from the clustering. The result-
ing basis vectors are then stored with their sites in the pose-space database,
indexed by the site’s corresponding pose-space location.

Data Retrieval

Once the PSDB is populated, the question is how to retrieve data at run time:
Given a pose for the character, what data should be returned? Obviously,
since the pose will generally not coincide with one of the sites, we cannot just
return one of the bases but need a retrieval scheme for returning adequate
inbetween data that reflects the influence of neighboring sites.

One possibility for a such a retrieval scheme would be to interpolate be-
tween the bases of different sites. This bears the promise that a smooth basis
interpolation would translate into temporal smoothness for the simulation.
Unfortunately, constructing a principled scheme for bases interpolation ap-
pears to be difficult. While interpolating pairs of vectors can be done easily,
extending this concept to interpolating between sets of vectors—or whole
bases—is difficult because the correspondence between vectors in differ-
ent sets is unclear. But even without this problem, it remains questionable
whether an interpolated basis is meaningful to begin with.

For these reasons, we settled for an approach that only uses basis vectors
from the original sites. More concretely, when the database is queried with
a given pose, we create a pool of candidate basis vectors that includes the
vectors of all sites that are within a search radius in pose space from the
current pose. The subspace simulator then selects a set of basis vectors from
this candidate pool as explained in Section 6.2.3.

6.2.3 Adaptive Subspace Simulation

After motivating and discussing the different design choices for our system,
we will now proceed to providing the mathematical details of our adaptive
subspace simulation algorithm. To this end, we will once more pass over
all the stages of the pipeline, while this time treating them in a much more
formal way than previously.

98

6.2 Method

Input

As briefly mentioned earlier, the input to our method consists of the follow-
ing components:

• A linear blend skinning rig of a virtual character as described in Sec-
tion 3.4.3, including surface geometry of the character, a joint hierar-
chy, as well as a skinning weight matrix W.

• An undeformed cloth mesh X corresponding to the neutral pose P of
the character.

• A sequence of l rig parameter configurations e1, e2, . . . , el ∈ Rr to be
used as training poses.

We begin by simulating the cloth mesh using the character’s surface mesh as
collision body for each of the l frames, resulting in as many clothing defor-
mations f1, f2, . . . , fl ∈ R3n for each of these poses. To perform these unre-
duced simulations in full space, we use the physical model introduced ear-
lier in Section 3.1 with the elastic cloth model from Section 3.1.2 to provide
stretching and bending energies. We perform the minimization of the physi-
cal energy as described in Section 3.2, while using the impulse-based contact
model from Section 3.5.3 to resolve both self-collisions within the cloth as
well as contact with the underlying character mesh. A few selected training
poses of the clothing simulated in full space can be seen in Figure 6.3.

Kinematic Cloth Reference

The basis of our subspace simulator is a kinematic cloth reference, which we
construct by extending the skinning transformation of the linear blend skin-
ning rig onto the clothing. In the neutral pose P of the character, we find for
each vertex Xi of the pre-positioned clothing the closest point on the charac-
ter’s surface. To instantiate Equation (3.62) from Section 3.4.3 for the cloth,
we then determine skinning weights WR corresponding to the bones of the
linear blend skinning rig using barycentric interpolation of the character’s
original skinning weights W. As this process might introduce stair-stepping
artifacts when the cloth is not very tightly fitting the character, we run a few
iterations of Laplacian smoothing to avoid the hard discontinuities. In more
complicated cases, an example-based automatic skinning approach such as
the one by James and Twigg [2005] could be employed.

Rather than looking at the linear blend skinning transformation as a function
of the rig parameters p like we did in earlier chapters, we will rewrite it as

99

Subspace Clothing Simulation

Figure 6.3: Sample frames of three of the training sequences we used as input for our
method. From top to bottom: Arms Bend, Twist, Plane.

100

6.2 Method

a function of an untransformed state x̌ that replaces the neutral mesh X in
Equation (3.62). The kinematic reference of the current pose in then given as

r (x̌)i = ϕLBS (x̌; p)i =
[
I3 0

] m

∑
j=1

(
WR

)
ij
· Cj(p) ˆ̌xi, (6.1)

where we consider p to be a metaparameter of the LBS function ϕLBS, and
where ˆ̌xi denotes the untransformed vertex x̌i lifted to homogeneous 4D
space. Unlike the original LBS formulation, the kinematic reference in Equa-
tion (6.1) is an invertible function.

Pose-Space Parameterization

To construct a pose-space parameterization, we begin by evaluating the cloth
skinning for each of the poses and assembling them as:

S =
[
ϕLBS

(
X; e1) ϕLBS

(
X; e2) . . . ϕLBS

(
X; el)] ∈ R3n×l (6.2)

Following the steps of Principal Component Analysis, we first subtract the
mean column s̄ of S from all columns to obtain S̄, and then then perform a
Singular Value Decomposition (SVD) on the matrix S̄ to obtain:

S̄ = U︸︷︷︸
∈R3n×3n

Λ︸︷︷︸
∈R3n×r

VT︸︷︷︸
∈Rr×r

(6.3)

Truncating the all except the first u columns of U results in a projection ma-
trix Ũ ∈ R3n×u that we will use as pose-space parameterization:

z(x) = ŨTx ∈ Ru (6.4)

We used u = 4 for all of our examples, but a suitable value could also be
automatically obtained by considering the magnitudes of the singular values
in Λ.

Subspace Cloth Model

Unlike the applications in the previous chapters, we are not interested in
a rig-space projection as described in Section 3.3. Rather, we are looking
to minimize the physical energy in a linear subspace with respect to a re-
duced coordinate vector q ∈ Rr. Using a subspace basis encoded by a
matrix A ∈ R3n×r containing the basis vectors in its columns, a full-space
displacement vector can be computed from the subspace coordinates as:

u(q) = Aq (6.5)

101

Subspace Clothing Simulation

The simplest approach to now compute the full-space cloth vertex positions
x would be to directly add the displacements in world space as:

x(q) = X + u(q) (6.6)

The disadvantage of the formulation in Equation (6.6) is that all displace-
ments are computed with respect to a single neutral mesh X, and thus none
of the pose information is taken into account. We can improve the model
to incorporate this information by basing the displacements on the current
pose of the cloth rig:

x(q) = ϕLBS (X; p) + u(q) (6.7)

While the formulation in Equation (6.7) improves the situation, the sub-
space coordinates q still result in world-space displacements u. However,
a world-space displacement is only meaningful for the pose at which it was
computed—rotations induced by the rig by would immediately invalidate
the displacement. We therefore choose to compute untransformed displace-
ments ǔ with respect to the untransformed setting, and then make use of the
kinematic cloth reference from Equation (6.1) to compute

x(q) = ϕLBS

X + ǔ(q)︸ ︷︷ ︸
x̌(q)

; p

 = ϕLBS (x̌(q); p) = r (x̌(q)) , (6.8)

where x̌ denotes the untransformed clothing state. The formulation from
Equation (6.8) has the advantage that a displacement vector for a given pose
will look plausible throughout a certain region in pose space.

Site Creation

Pose-Space Clustering To create the sites for our pose-space database, we
first obtain their location by clustering the pose-space positions of all train-
ing poses. Using the pose-space parameterization from Equation (6.4) and
the skinned cloth matrix from Equation (6.2), we compute the positions of
the training poses in pose-space as:

zi = z((S)i) = z
(

ϕLBS

(
X; ei

))
= ŨT ϕLBS

(
X; ei

)
(6.9)

We then run the k-means algorithm on the l parameters zi in order to com-
pute a desired number of k clusters with centroids that we will denote as sj

102

6.2 Method

Figure 6.4: Using the inverse kinematic cloth reference, we untransformed the three full-
space deformation frames from Figure 6.3 to the neutral pose of the rig. The
small images on the bottom right of each deformation show the ”subtracted”
rig deformation.

103

Subspace Clothing Simulation

and use as descriptors of the different sites. Further, each full-space training
cloth deformation fi is assigned to the site with the closest descriptor sj to its
parameterized pose zi based on L2 distance. The training set Dj of the site j
is then given as:

Dj =

fi

∣∣∣∣∣∣ j = arg min
ĵ

∥∥∥zi − s ĵ
∥∥∥

2

 (6.10)

Basis Vector Generation For each site j of the pose-space database, we
untransform the full-space cloth deformations in its training set Dj using
the inverse of the kinematic cloth reference from Equation (6.1). Figure 6.4
shows the effect of this transformation for the three full-space cloth deforma-
tions previously seen in Figure 6.3. Despite those three deformations being
assigned to different sites by our pose-space clustering algorithm, the un-
transformation successfully brings them to a common space independent of
the site they originate from and removes all rotational deformation compo-
nents due to the character’s skeletal motion.

We then perform Principal Component Analysis on the untransformed cloth
deformations of the training set Dj. This is carried out analogously to the
PCA for the pose-space parameterization in Equation (6.3), except that we
do not use a fixed number of columns to truncate the respective SVD factor
U. Instead, we truncate the basis when the ratio between the corresponding
singular value and the largest singular value drops below a given threshold
value εPCA. We used εPCA = 0.01 for all of our examples. The resulting basis
vectors in the columns of the truncated respective Ũ are then stored with the
site in the pose-space database, indexed by the corresponding pose-space
location sj of the site.

Subspace Optimization

System Assembly In every time step, our subspace simulation system
solves the following optimization problem:

qt+1 = arg min
q

H(r(x̌(q))) (6.11)

To minimize the objective function in Equation (6.11), we again use the sub-
space simulation framework described in Section 3.3. Rather than an artist-
created rig, the kinematic reference r applied to the undeformed cloth con-
figuration x̌ determined by the unknown coefficients q takes up the role of

104

6.2 Method

the rig in Equation (3.46). The Jacobian required to compute the reduced
derivatives in Equation (3.48) and Equation (3.49) can be obtained using the
chain rule as

J =
∂

∂q
r
(
x̌
(
qt)) = ∂

∂x̌
r
(
x̌
(
qt))︸ ︷︷ ︸

B

∂

∂q
x̌
(
qt)︸ ︷︷ ︸

A

= BA, (6.12)

where B is the rest state derivative of the linear blend skinning rig as defined
in Section 3.4.3 by Equation (3.70).

The resulting reduced system of Equation (3.50) is dense but only of dimen-
sions r× r instead of n× n for the full-space variant. For a typical example
like the sweater, the dimension of the reduced space was r = 12, while the
full-space clothing had 3n = 88530 degrees of freedom. Indeed, the cost of
solving the reduced system is negligible, but the assembly can take up a sig-
nificant fraction of the overall computation time. The main contributors are
the computation of the full-space Hessian H and the multiplications with
the projection matrix J.

Solver Optimizations In our experiments, we found that simulations in
a linear subspace exhibit very good convergence and are generally much
less susceptible to instabilities than in full space. In particular, we never en-
countered indefinite systems—a major struggle for full-space simulation—
removing the need for line-search and expensive regularization altogether.
Similar to the Efficient Rig-Space Physics Simulation application from Chap-
ter 4, we also found that, even when reusing the same full-space Hessian
over many times steps, stability was not affected and the visual impact on
the simulation results was minimal. Our approach is therefore to keep the
Hessian constant and only do one Newton step by default. Only if the norm
of the current basis vectors projected onto the full-space gradient is still
above a threshold σ, we recompute the full-space Hessian H and perform
further steps. Choosing σ = 0.1 worked well for all our examples.

Basis Construction

Adaptive Basis Selection Our subspace integration algorithm selects a
new set of basis vectors in every iteration of the Newton solver. We would
like this basis to be low-dimensional, and we want it to capture the deforma-
tions that the clothing can undergo around the current character pose. Given
the current pose, the pose-space database provides a pool of candidate vec-
tors, typically much larger than the desired dimension of the subspace. We

105

Subspace Clothing Simulation

Figure 6.5: Using a fixed basis of 100 vectors for the Torso Twist sequence produces
large jumps between different cloth poses. The three frames shown here were
captured within a short duration of only 0.12 seconds.

therefore select a subset of vectors according to how far away the site is from
the current pose and how well a given vector fits the current configuration.

Each iteration of the Newton-Raphson algorithm solves the full-space linear
problem H∆x = −g from Equation (3.35) projected into the current sub-
space. Clearly, if we can find a basis that spans the full-space solution H−1g,
we will be able to accurately solve the full-space linear problem in the sub-
space. How helpful is a given basis vector ai for this purpose? Assuming
that H is positive definite, we know that ai and g must have a positive dot
product for ai to be a descent direction for the objective function H from
Equation (3.31). Put differently, if this dot product is zero, ai cannot help in
solving the full-space system. This observation motivates a selection scheme
that gives preference to basis vectors that are well-aligned with the gradient
at the current configuration.

More concretely, when the database is queried with a given runtime pose
zt, we create a pool of candidate basis vectors that includes the vectors of
all sites that are within a search radius ρ in pose space from that pose. We
typically set ρ to the average distance between the sites in the pose space.
To let the subspace simulator select a set of basis vectors from this candidate
pool, we then transform all basis vectors in the pool to world space using
the kinematic reference and project them onto the full-space gradient g. We
use the resulting dot products as a score and pick untransformed versions of
the r best ones to form our subspace basis A. In order to give preference to
vectors from sites close to the current pose, we additionally scale the score
with the inverse distance before sorting. We note that there is no need to

106

6.2 Method

Figure 6.6: One frame of the Torso Twist sequence when simulated with only the gradi-
ent as basis (left), adaptive basis selection without adding the gradient to the
basis (middle), and our method using the gradient in addition to the adaptive
basis selection.

maintain an orthogonal basis since potential redundancies do not cause any
adverse effect.

In order to analyze the efficiency of our selection scheme, we compared it to
using a fixed basis created from extracting 100 PCA vectors from the train-
ing data for simulation. We noticed that even though the fixed basis is able
to reproduce deformations for many individual poses correctly, it tends to
jump between them, making the resulting animation not smooth as can be
seen in Figure 6.5.

Adding the Gradient Even though blindly following the negative gradient
direction leads to poor convergence results for minimization problems in
general, we observed that adding the full-space gradient g as a basis vector
leads to significantly improved simulation results, as can be seen in Figure
6.6. Doing this guarantees that the solution to the subspace problem will
always reduce the objective function H from Equation (3.35) while at the
same time enlarging the range of possible deformations, which could be one
possible explanation for this positive effect.

Incremental State Updates and Undo Vector A particular aspect of our
approach is that we always start optimizing with the subspace coordinates q
equal to zero as initial guess in each Newton-Raphson iteration, which leads
to the step direction ∆q being equivalent to the subspace coordinates q. Af-
ter solving and before starting the next iteration, we then update the full-

107

Subspace Clothing Simulation

space configuration x with the subspace displacements Aq. This becomes
necessary because—as a notable difference to existing works—the full-space
configuration is generally not in the span of the current subspace basis. In-
deed, due to the large range of deformations observed in clothing, we find
that it is impractical to restrict the full-space solution in this way while still
obtaining the same degree of variability in clothing shape. However, when
the basis changes in every iteration, it is not possible to change the compo-
nent of the current state that is not in the span of the current basis. We solve
this problem by always adding the difference vector x̌− X to the basis, thus
allowing the clothing to undo the solution of the previous step, if necessary.

Final Algorithm

Algorithm 5: Subspace integration with adaptive basis.
1: while further iterations necessary do
2: update full-space state x← r(x̌)
3: (H, g)← COMPUTEFULLSPACESYSTEM(x)
4: A← CONSTRUCTADAPTIVEBASIS(g)
5: (K, r)← COMPUTEREDUCEDSYSTEM(g, H, A)
6: solve reduced system Kq = −r for q
7: update untransformed state x̌← x̌ + Aq
8: end while

The required steps to perform the simulation of one time step in our adaptive
subspace setting are summarized in Algorithm 5. During subspace simula-
tion, we always preserve the invariant that the current cloth deformation is
the transformed version of the untransformed deformation x̌ with respect
to the linear blend skinning rig. COMPUTEFULLSPACESYSTEM comprises
the computation of the full-space derivatives as described in Section 3.1.6,
while only recomputing the Hessian H if necessary. CONSTRUCTADAPTIVE-
BASIS performs the adaptive basis selection as previously described in this
section. COMPUTEREDUCEDSYSTEM uses the Jacobian from Equation (6.12)
to project the full-space derivatives into the subspace as detailed in Equa-
tions (3.48) and (3.49) of Section 3.3.2. All of the steps in Algorithm 5 are
understood to be performed with respect to the current rig configuration pt

of the underlying character.

108

6.3 Results

6.3 Results

In this section, we present results of our adaptive subspace simulation
method and compare it to full-space simulation. We further explore the abil-
ity of our method to generalize to motions not present in the training data.

6.3.1 Setup

For the Torso example, we first ran a state-of-the-art cloth simulation code on
the Shirt mesh with 29,510 vertices and 58,660 triangles to generate around
10,000 frames of training data for our method. Some of the resulting defor-
mations can be seen in Figure 6.3. Using this training data, we automatically
created a pose-space database using 18 sites with 10 to 20 basis vectors each,
resulting in a total number of 212 basis vectors. Four of the basis vectors are
visualized in Figure 6.7 and are shown with respect to the pose of the site
that they are associated with.

6.3.2 Validation

We first validated our subspace simulation method by running it on the
same animations that were used to create the training data. One such ex-
ample for the Twist animation can be seen in Figure 6.1. Using our fast sub-
space simulation method, we were able to obtain total runtime speedups of
up to 22x over the full-space simulation. Comparing only the simulation
time yields a speedup of up to 60x. The timings and speedups for all tested
sequences of the Torso example are reported in Table 6.1. We also ran our
pipeline on a second Legs rig wearing a pair of pants and obtained results
similar to the Torso example. A sample frame of the Legs Bend sequence can
be seen in Figure 6.8.

We observed no visual differences between the naı̈ve subspace solver and
the optimized solver as described in Section 6.2.3. Increasing the size of
our adaptive basis also only has small effects on the resulting deformations
when using the same pose-space database. Increasing the number of vec-
tors per site in the pose-space database by reducing εPCA also has no no-
ticeable effect unless combined with an increased adaptive basis size. While
we observed slightly more dynamics in the formation of the wrinkles in the
clothing, this gain comes at a significant computational cost.

109

Subspace Clothing Simulation

Sequence nframes
Full Space

tframe

Collisions
tframe

Torso Twist 1701 13.20s 0.47s
Torso Arms Bend 1451 14.09s 0.41s
Torso Arms Up 1251 16.32s 0.45s
Torso Arms Down 1251 12.95s 0.40s
Torso Lean Back 601 12.68s 0.48s
Torso Lean Forward 601 12.59s 0.46s
Torso Plane 1501 12.41s 0.47
Torso Yo 1176 — 0.39
Torso Gym 4701 — 0.42

Sequence nframes
Naı̈ve Subspace

tframe tsp ssp
Torso Twist 1701 1.11s 12x 20x
Torso Arms Bend 1451 0.95s 15x 25x
Torso Arms Up 1251 1.29s 13x 19x
Torso Arms Down 1251 1.17s 11x 16x
Torso Lean Back 601 1.40s 9x 13x
Torso Lean Forward 601 1.35s 9x 14x
Torso Plane 1501 1.23s 10x 16x
Torso Yo 1176 1.05s — —
Torso Gym 4701 1.07s — —

Sequence nframes
Optimized Subspace

tframe tsp ssp
Torso Twist 1701 0.71s 18x 52x
Torso Arms Bend 1451 0.63s 22x 60x
Torso Arms Up 1251 0.92s 18x 34x
Torso Arms Down 1251 0.89s 15x 25x
Torso Lean Back 601 0.82s 16x 37x
Torso Lean Forward 601 1.07s 12x 20x
Torso Plane 1501 0.90s 14x 28x
Torso Yo 1176 0.86s — —
Torso Gym 4701 0.82s — —

Table 6.1: Timings and speedups for the Torso sequences we simulated on an Intel Core
i7-3930K 6 x 3.2Ghz where tframe is computation time per frame in seconds,
tsp is the total speedup over the full-space simulation and ssp is the simu-
lation speedup (not counting collision time) over the full-space simulation.
Yo and Gym are generalization examples that did not appear in the training
data, and we did not need to run the full-space solver for them.

110

6.3 Results

6.3.3 Generalization to Novel Poses

Even though we use global bases that deform all vertices of the cloth to con-
struct our subspaces, many of the basis vectors tend to be sparse and local
even though we do not ask for this explicitly. For this reason, different basis
vectors from different sites can combine into new configurations that were
not in the training data set. To demonstrate the ability of our method to gen-
eralize to new motions, we created two new animations that are not part of
our training set and explore new portions of pose space. The Yo sequence
simultaneously combines both twisting and arm bending, while Gym is a
longer sequence that comprises a variety of upper body motions. Figure 6.9
shows that our method is able to generalize to these previously unseen ani-
mations and produce compelling folds and wrinkles.

In the more general case where no similar input motions are available at
all from the training data, we cannot expect to produce deformations with
detail close to what a full-space solver would provide. In those cases, our
method transitions smoothly back to the skinned basis of our kinematic cloth
reference—that is, the displacements ǔ tend to zero. To demonstrate this,
we created a simple cylindrical piece of cloth wrapped around a bending
tube, but only simulated full-space training data for motions in the horizon-
tal plane to create the pose-space database. When using our subspace sim-
ulation technique on a sequence that bends the tube vertically, our solver
still converges and does not generate additional artifacts, as shown in Fig-
ure 6.10.

6.3.4 Application to Elastic Solids

Even though we presented our adaptive subspace simulation method for the
computation of wrinkles and folds in tight-fitting clothing, the assumption
that a physical deformation is closely related to a character’s pose also holds
for the flesh on its body. To investigate whether the proposed algorithm also
extends to this case, we tried to apply it to an elastic solid model with a
tetrahedral volume mesh of a character using the elastic energy formulation
described in Section 3.1.2. However, while the kinematic reference described
in Section 6.2.3 is sufficient to build a subspace model for simulating cloth-
ing, it is not yet applicable to elastic solids due to its lack of articulation. The
simulated clothing such as the one in Figure 6.3 was implicitly articulated by
contact with the surface of the underlying character wearing the garment. In
contrast, all vertices of the character in the solid case are driven by the simu-
lation and we need to take the skeletal input motion explicitly into account.

111

Subspace Clothing Simulation

We achieve this by constraining all vertices within a radius δ of the charac-
ter’s bones in the rest pose to their respective closest points on the skeleton.
This has the same effect as treating the bones as rigid components inside the
elastic solid that drive the motion, while the visible surface of the character
remains fully governed by the physical simulation. We used ten percent of
the smallest diameter of the character’s limbs as value for δ.

As a simple test, we ran the adaptive subspace simulation algorithm on 300
animated frames of an Octopus character rig, with a pose-space database cre-
ated from full-space training data generated using the same input frames.
The number of vertices of the tetrahedral simulation mesh was chosen such
that the resulting full-space simulation time roughly matches the one for the
cloth as in Table 6.1. Using this setup, our adaptive subspace solver achieved
a speedup of 11x, and some of the resulting simulated frames can be ob-
served in Figure 6.11. We did not enable any contact handling for this test.
Interestingly, the subspace simulation is visually almost indistinguishable
from the full-space simulation, and unlike in our clothing examples we no-
ticed no loss of dynamic motion. The tradeoff seems to be that the speedup
factor for our subspace solid simulation is significantly lower than the one
we observed in the cloth case. However, the reasons for this phenomenon
were not thoroughly investigated.

6.4 Summary and Outlook

We presented a new approach to clothing simulation using low-dimensional
linear subspaces with temporally adaptive bases. Our method exploits
full-space simulation training data in order to construct a pool of low-
dimensional bases distributed across pose space. For this purpose, we inter-
pret the simulation data as offsets from a kinematic deformation reference
that captures the global shape of clothing due to body pose. During sub-
space simulation, we select low-dimensional sets of basis vectors according
to the current pose of the character and the state of its clothing. Thanks to
this adaptive basis selection scheme, our method is able to reproduce diverse
and detailed folding patterns with only a few basis vectors. Our experiments
demonstrate the feasibility of subspace clothing simulation and indicate its
potential in terms of quality and computational efficiency.

While the subspace clothing simulation method presented here does not per-
form a rig-space optimization as the methods of the previous chapters, it
demonstrates that rigs can be a powerful building block to develop novel
simulation tools. Even though previous subspace simulation methods were

112

6.4 Summary and Outlook

unable to handle the complicated case of cloth simulation, taking the under-
lying character motion provided by a rig into account allowed us to tackle
subspace simulation of tight-fitting clothing. In the next chapter, we will
conclude the work presented in this thesis and discuss future directions and
limitations of the different discussed methods.

113

Subspace Clothing Simulation

Figure 6.7: Visualization of four basis vectors extracted from four different sites in our
PSDB. The color intensity indicates the relative amount by which regions
move when exciting the respective basis vector (dark: no motion, bright
green: strong motion).

114

6.4 Summary and Outlook

Figure 6.8: Pants example: Deformations for one frame of the Legs Bend sequence us-
ing full-space simulation (left) and adaptive subspace simulation with our
method (right).

115

Subspace Clothing Simulation

Figure 6.9: Top: The Yo sequence exhibits simultaneous torsional folds and wrinkles
around the armpits, which was not in the training data. Middle / Bottom:
Two frames of the Gym sequence showing the combined effects of leaning
back and stretching out the arms / twisting and bending the arms.

116

6.4 Summary and Outlook

Figure 6.10: When simulating this cloth with a PSDB featuring only motions in the
horizontal plane, our method reproduces plausible wrinkling when bending
the left end of the tube to the front (top). When moving to a pose very far
from the training data, our solver produces deformations very close to the
skinned basis (bottom).

117

Subspace Clothing Simulation

Figure 6.11: From left to right, top to bottom: Six frames of adaptive subspace simula-
tion of the Octopus character’s body exhibiting jiggling due to the inertia
caused by the skeletal input animation.

118

C H A P T E R 7
Conclusion

This chapter concludes the thesis by discussing the presented methods of
this work and their contributions, as well as limitations and potential av-
enues for future work.

7.1 Discussion

In Chapter 1 of this work, we gave an introduction to the field of computa-
tional methods for virtual character animation, and stated the motivation for
the different applications presented in the thesis. Relevant previous work re-
lated to the different areas touched on by these applications was discussed
in Chapter 2. We then continued to lay the mathematical foundations of the
simulation framework of our choice in Chapter 3, and described the physical
model, the energy minimization technique, as well as the subspace solver
we use. The chapter also touched on some analytic forms of widely used
rigs and on contact handling strategies for the physics-based simulations.
We used this simulation framework and its solver components for all of the
main contributions of the thesis, which were presented in the context of the
individual applications in the subsequent chapters.

For the first application of Efficient Rig-Space Physics Simulation in Chapter 4,
we revisited the problem of simulating the surface of a virtual character in
the deformation subspace defined by its artist-designed rig, which was first
explored by Hahn and colleagues [2012] in their original Rig-Space Physics
system. While this original system first demonstrated the concept of solving

119

Conclusion

for a physically plausible deformation of the character mesh by optimizing
for the degrees of freedoms in the rig parameters rather than the surface ver-
tex positions, its mathematical formulation rendered its performance pro-
hibitively slow for practical use. Furthermore, the original system was only
able to handle dozens of rig parameters at a time, while practical rigs used
for the industrial production of animated movies or video games often ex-
pose hundreds of rig parameters, making the method unable to deal with
some real-world examples. We addressed this problem by proposing a novel
formulation of the problem that is computationally much more efficient, as
well as several solver optimizations to obtain the maximal simulation per-
formance.

We proceeded to reuse several of these optimized subspace techniques for
the Sketch Abstractions for Character Posing application presented in Chap-
ter 5. Rather than optimizing for a physically plausible pose of a rigged
character, we proposed an optimization framework that solves for a charac-
ter pose best matching a user-drawn sketch. Since matching a 2D sketch with
the 3D pose of a virtual character is a highly underconstrained problem, we
proposed the concept of a 2D sketch abstraction embedded into the charac-
ter rig and driven by its controls to define a fully two-dimensional matching
energy. A series of regularization terms helps resolve the remaining depth
ambiguities. In addition to finding the pose of an existing character rig best
matching a drawn sketch, we also demonstrated the ability of our method
to be used for character individualization. By also using the user drawing as
a descriptor for a model part from a database of pre-rigged character com-
ponents, our system can enable novice users to assemble complex virtual
characters with varying topologies from a sequence of drawn 2D strokes.

In Chapter 6, we used the rigging concept to design and implement a Sub-
space Clothing Simulation solver for tight-fitting garments worn by virtual
characters. Even though previous subspace physics techniques were unable
to tackle the hard problem of solving for cloth deformations in a reduced
space, we were able to formulate an adaptive subspace simulation frame-
work applicable to our clothing case. By transferring the skinning of the
underlying character rig to the cloth mesh and using it as a kinematic refer-
ence, we were able to remove most of the nonlinear deformations exhibited
by the cloth and untransform it back to a space where a linear subspace ba-
sis is powerful enough to express the remaining motions. Rather than using
a single subspace for the whole simulation, we further proposed the use of
a pose-space database to let the solver adapt even better to the change in
pose of the character. We demonstrated the ability of our method to achieve
significant speedups over unreduced full-space simulations, as well as its
ability to generalize to novel motions not contained in its training data.

120

7.2 Limitations and Future Work

7.2 Limitations and Future Work

The focus of this work was to apply the idea of treating a character rig as a
deformation space rather than just a practical tool for artists to various topics
in the field of virtual character animation. Concretely, we looked at the three
use cases of placing keyframes to animate a character rig, matching user-
drawn sketches to pose a character rig, and using a character rig to drive
the physical deformation of simulated cloth. We believe that the concept
is powerful enough to extend to other stages of the animation pipeline and
enable novel applications, in particular:

• In typical animation pipelines, modeling and rigging are two sepa-
rate stages that are performed by different specialized artists work-
ing in different departments of a studio producing character anima-
tion. Recent work has explored methods that enable the coupled
design of a character model and its rig by automatically fitting a
skeleton to a sculpted body [Baran and Popović, 2007; Borosán et
al., 2012]. It would be interesting to go beyond skeletal rigs and de-
velop methods that can fit arbitrary black-box rigging hierarchies to
a character as it is modeled.

• Once a character rig is created, it becomes difficult to change the be-
havior of its rig parameters without affecting existing poses or ani-
mations that have already been created. An automatic method could
be used to optimize in the new rig space for a configuration that best
matches a sequence of given deformations. A related application
would be the retargeting of animations for one character to another
character with potentially very different rigging, or even the match-
ing of motion capture data with the controls of a complex produc-
tion rig. While some retargeting methods such as the one proposed
by Hecker and colleagues [2008] are available, they typically only
apply to skeletal rigs rather than hierarchies of arbitrary geometric
deformers, like the ones used by artists in practice.

• Since real-world character rigs used for the production of animated
movies tend to expose hundreds of rig parameters driving a large
variety and whole hierarchies of different geometric deformers, their
evaluation tends to become very slow, making them barely interac-
tive enough for animators to work with them. It would thus be very
useful to have access to rig optimization methods that tackle this
performance problem. Once possible approach would be to approxi-
mate the rig’s deformation space using interpolation techniques, and
then use the approximated rig in place of the real one if the interpola-

121

Conclusion

tion error is small enough. While Meyer and colleagues [2007] have
proposed an interpolation approach to speed up the evaluation of
facial rigs, it would be interesting to explore the optimization of rigs
controlling the full body pose of a character.

• As we have seen in Chapter 6, the motion of simulated objects is
often driven by an articulated character rig and their deformations
exhibit high correlation with the character’s pose. Rather than per-
forming a subspace simulation to increase the performance of gener-
ating physical secondary motion for an object, an interesting alterna-
tive approach would be to directly ”bake” the offsets that a physical
simulation would produce into the rig. Kry and colleagues [2002]
have proposed such a system for static poses using pose-space de-
formation rigging to handle the interpolation of the deformations,
but it would be interesting to extend this idea to dynamic simula-
tions and arbitrary rigging mechanisms.

While these ideas about using rig deformation spaces for novel applications
were more general in nature, we will describe further limitations and po-
tential future work directions specific to the three applications described in
Chapters 4, 5 and 6 in the following subsections.

7.2.1 Efficient Rig-Space Physics Simulation

Editing the material stiffness for individual rig parameters is not currently
supported by our method. As a related challenge, it can be cumbersome to
find material parameters that yield soft behavior around the rest state but do
not lead to excessive deformations for fast motion. A promising direction for
future work involves investigating the intuitive design and art direction of
such materials. In this endeavor, our method could provide quick feedback
on the outcome.

For the examples shown in Section 4.3 of this work, we used a constant time
step size 0.01s, which is a fraction of the upper bound as dictated by the
number of frames per second. But while parts of an animation might actu-
ally admit this maximum step size, sequences with rapid motion and large
deformations will typically require smaller steps in order to maintain sta-
bility. An adaptive time stepping scheme could exploit this fact, thereby
increasing robustness and efficiency.

Our system currently uses a single rest state mesh and extreme character
poses can potentially lead to very distorted or even inverted elements. An

122

7.2 Limitations and Future Work

Figure 7.1: Enabling limb scaling parameters for the Cartoon Man character can lead
to negative scaling values, resulting in artifacts.

interesting avenue for future work would be to investigate remeshing ap-
proaches or even meshless discretizations. Our method seems to invite such
adaptive approaches since it uses only the free rig parameters as real de-
grees of freedom, making adaptations to the underlying mesh a lightweight
process.

7.2.2 Sketch Abstractions for Character Posing

Our work provides a novel sketch-based posing framework that allows pos-
ing using artist-created 2D iconographic representations of animated charac-
ters. Although we demonstrate several applications enabled by our method,
existing limitations in our work direct us to areas of future research. One
limitation comes from the fact that the quality of the results ultimately de-
pends greatly on the 2D matching quality. The uniform arc-length sampling
of the sketch abstraction and the target user sketch may not be optimal in
cases where a partial match could lead to better results or if the user de-
sired non-uniform stretching along the stroke direction. Rusinkiewicz and
Levoy [2001] introduced the concept of normal space sampling, which could
be applied to potentially improve our method. Guay and colleagues [2013]
report better perceived matching results for their line of action posing sys-
tem when considering tangent differences between source and target strokes.
For best results, sketches must be made in a prescribed order. This limi-
tation could be alleviated by using the smart scribbles method of Noris and
colleagues [2012].

Since our method completely operates in the deformation space spanned
by the extended rig mapping, we cannot express poses beyond the limits

123

Conclusion

of what the rigging controls allow. While this intended behavior gives the
artist full control over the character’s range of poses, it can lead to situations
where our method is unable to match sketches that described a pose outside
the space of rig deformations. Another limitation arises from the fact that
our optimization treats all rig parameters as dimensions of an unbounded
continuous vector space, and thus does not adhere to any parameter bounds.
For the Cartoon Man character, we had to disable the scaling parameters on
the limb bones to prevent our solver from finding solutions with negative
scaling parameters that invert limbs in order to better match the sketch. One
example of such a problematic pose is shown in Figure 7.1. For a future
version of our system, we would like to investigate numeric methods to add
bounds to selected parameters.

One of the core contributions of our work is the generic and flexible energy
formulation that is independent of the particular choice of rigging formu-
lation. We believe that this numeric formulation could also impact other
sketching paradigms. We would like to extend our system to allow sil-
houette sketching and line of action drawing [Zimmermann et al., 2007;
Guay et al., 2013] by automatically generating sketch abstractions for these
tasks. Since users would not have to know the specifics of the complex rig-
ging mechanisms involved in modeling a 3D character, they could simply
choose the abstraction that best matches their intention, further bridging the
gap between the worlds of 2D and 3D animation.

Both our draw-over and redraw posing methods fit well into the commonly
employed keyframe animation workflow for the creation of 3D motions
for feature films and video games. While individual poses can easily be
sketched using our system, typical animation systems only allow indirect
control over the interpolation between these keyframe poses by, for exam-
ple, adjusting the tangents of the temporally varying rig control curves. It
would therefore be interesting to consider motion lines and other temporal
cues well-known from sketchy 2D character animation and directly trans-
late them into 3D transitions between poses, as explored in the recent work
by Guay and colleagues [2015].

7.2.3 Subspace Clothing Simulation

While we are able to faithfully reproduce wrinkles and folds for our test ex-
amples, one limitation of our method is the limited ability to reproduce dy-
namics. Nevertheless, we feel that performing a dynamic simulation is use-
ful since it makes the deformations depend on past history. This enables the
reproduction of hysteresis effects where different deformations are achieved

124

7.2 Limitations and Future Work

for the same pose depending on the motion path that lead to it. The obser-
vation that real wrinkles tend to move semi-rigidly in the normal direction
of their fold could motivate the use of more a sophisticated basis vector cre-
ation than PCA. On a related note, shaping the subspace vectors manually
to reflect the desired deformation could enable stylization and artist control.

Previous work by An and colleagues [2008] and Kim and colleagues [2009]
showed that the performance of subspace simulations can be significantly
increased using cubature. The underlying idea is to evaluate the full-space
energy and its derivatives approximately using a small number of key ele-
ments. However, compared to typical deformations for volumetric solids,
the folds observed in cloth are large and localized, making efficient cubature
challenging and thus an interesting avenue for future research.

We currently handle collisions uniformly on a per-vertex basis for both our
full-space and subspace simulation methods. Our initial tests suggest that
culling-based subspace collision techniques could be adapted to our setting,
promising an additional potential speedup for our subspace method.

Another limitation is that it is currently not possible to adapt the material
properties of the clothing in the subspace. Consequentially, the look of the
cloth is determined by the full-space simulation that was used to generate
the training data. While changing stiffness and bending coefficients would
be easily possible, the physical interpretation of this is unclear and the re-
sults would be difficult to predict. That said, enabling fast subspace res-
imulation to explore the effect of different material properties would be an
interesting application.

125

Conclusion

126

A P P E N D I X A
Notation

A.1 Symbols, Variables and Operators

Scalars will typically be denoted using lower-case variables. For instance,
x could be a variable storing the position of a vertex on the x axis.

Vectors will typically be denoted using boldface lower-case variables, for
instance a, and will be laid out as a column unless otherwise mentioned. To
define a vector and its elements explicitly, we will use the square bracket no-
tation using [and]. For example, a vertex v ∈ R3 containing the dimensions
x, y, and z could be defined as:

v =

x
y
z

 (A.1)

To access individual elements of a vector, we will use the bracket subscript op-
erator using (and) as well as a subscript containing the index of the desired
vector dimension. In the case of the vector a, the notation (a)i refers to the
i-th element of the vector.

One notable exception to writing vectors as boldface lower-case variables
occurs when we distinguish between deformed and undeformed physical
states. In those cases, we will often denote the undeformed state as boldface
upper-case X, which corresponds to a deformed state x.

127

Notation

Matrices will typically be denoted using boldface upper-case variables, for
instance A. To define a matrix and its elements explicitly, we will again use
the square bracket notation using [and]. For example, a matrix A ∈ R2×3

could be defined as:

A =

[
1 2 3
4 5 6

]
(A.2)

We will again employ the bracket subscript operator using (and) to ac-
cess elements of a matrix. A subscript with one index refers to a specific
column of a matrix, whereas a subscript with two indices refers to a single
matrix entry. For example, (A)i ∈ Rn refers to the i-th column of the matrix
A ∈ Rm×n, but (A)ij ∈ R refers to the element in the i-th row and the j-th
column of A.

Transposes are indicated by a superscript T. For instance, if A ∈ Rm×n,
then AT ∈ Rn×m is its transpose matrix. If a ∈ Rm is a column vector, then
aT denotes its row vector representation.

Matrix and Vector Multiplications are expressed as simple concatenations
without any explicit symbol. For example, AB denotes the multiplication
between matrices A and B, while aTb denotes the scalar product, also called
dot product, between vectors a and b of matching size.

Scalar Multiplication of a vector or matrix is written using the · symbol
to make it visually more distinguishable from matrix multiplication. For
example, k · A denotes a matrix of the same size as A with each element
multiplied by the scalar k ∈ R. If A ∈ Rm×n is a matrix and b ∈ Rn a
compatible vector, then (A)ij · b ∈ Rn denotes a scalar multiplication, while
Ab ∈ Rm would be a matrix-vector multiplication. We omit the · symbol for
scalar multiplications with fractions for aesthetic reasons.

Cross Products between two three-dimensional vectors are denoted by the
× symbol. Given two vectors x = [x1, x2, x3]

T and y = [y1, y2, y3]
T, their

cross product is defined as:

x× y =

x2 · y3 − x3 · y2
x1 · y3 − x3 · y1
x1 · y2 − x2 · y1

 ∈ R3 (A.3)

128

A.2 Matrix and Vector Derivatives

Identity Matrices with ones on the diagonal and zeros otherwise are al-
ways called In, and their subscript n denotes their dimension. For example,
I3 ∈ R3×3 represents a 3D identity matrix.

Inverses of regular square matrices are indicated by a superscript −1. For
example, if A ∈ Rm×m is a regular matrix, then A−1 ∈ Rm×m is its inverse
such that AA−1 = A−1A = Im.

Norms of vectors and matrices are written using two enclosing ‖ symbols,
where an additional subscript denotes the type of norm. For example, the
L2 norm of a vector a is expressed as ‖a‖2, while the Frobenius norm of a
matrix A is expressed as ‖A‖F.

A.2 Matrix and Vector Derivatives

Throughout this thesis, we are often making use of derivatives of or with re-
spect to vectors, often resulting in matrices or in some cases in even higher-
order tensors. When writing derivatives in the form of matrix multiplica-
tions, there are two competing notations that can be used, depending on
how the derivative of one vector x ∈ Rm with respect to another vector
y ∈ Rn is laid out:

• In the numerator layout, the derivative is expressed as a matrix
∂x
∂y ∈ Rm×n and is equal to the Jacobian matrix of x with respect to

y. As a consequence, the gradient ∂x
∂s with respect to a scalar s should

be laid out as a row vector.

• In the denumerator layout, the derivative is expressed as a matrix
∂x
∂y ∈ Rn×m and is equal to the transposed Jacobian matrix of x with

respect to y. As a consequence, the gradient ∂x
∂s with respect to a

scalar s should be laid out as a column vector.

In this work, we will use the former numerator layout whenever possible,
but will sometimes introduce variables that refer to the transpose of a deriva-
tive to simplify some of the formulas.

The most important identity for our derivations is the chain rule. As an ex-
ample, let x : Rn → Rm, y : Rk → Rn and z ∈ Rk. Then the derivative of

129

Notation

x(y(z)) with respect to z is given by the chain rule as:

∂

∂z
x(y(z))︸ ︷︷ ︸
∈Rm×k

=
∂

∂y
x(y(z))︸ ︷︷ ︸
∈Rm×n

∂

∂z
y(z)︸ ︷︷ ︸

∈Rn×k

(A.4)

Another identity we sometimes use is the product rule. As an example, let
x : Rn → Rm, y : Rn → Rm and z ∈ Rn. Then the gradient of x(z)Ty(z)
with respect to z is given as

∂

∂z
x(z)Ty(z)︸ ︷︷ ︸
∈Rn

= x(z)T ∂

∂z
y(z)︸ ︷︷ ︸

∈Rm×n

+y(z)T ∂

∂z
x(z)︸ ︷︷ ︸

∈Rm×n

, (A.5)

where the left-hand side is understood to be laid out as a column vector. In
most cases in this thesis, one of the Jacobians in Equation (A.5) is zero and
we will simply state the nonzero term without writing out the product rule
explicitly.

In order to perform Newton-Raphson iterations as described in Section 3.2.2,
we require the second derivative of a scalar function with respect to its pa-
rameter vector. However, we cannot simply apply the gradient operator
twice since the first applications results in a row vector which is incompati-
ble with the second application. Since we assume the Hessian matrix to be
symmetric, we circumvent this problem by simply defining it as the gradi-
ent of the transposed gradient in a slight abuse of notation. For example,
the second derivative of the scalar function S : Rn → R with respect to the
vector x ∈ Rn is given as:

∂2

∂x2 S(x) =
∂

∂x

(
∂

∂x
S(x)

)T
∈ Rn×n (A.6)

130

References

[An et al., 2008] Steven S. An, Theodore Kim, and Doug L. James. Optimizing
cubature for efficient integration of subspace deformations. ACM Trans. Graph.,
27(5):165:1–165:10, December 2008.

[ApS, 2015] MOSEK ApS. The mosek c optimizer api manual version 7.1 (revi-
sion 32) [Online; accessed Jul 24th, 2015], http://docs.mosek.com/7.1/capi/
index.html, 2015.

[Autodesk, 2015] Autodesk. Autodesk maya 2014 c++ api reference [On-
line; accessed Jun 9th, 2015], http://docs.autodesk.com/MAYAUL/2014/ENU/
Maya-API-Documentation/cpp_ref/class_m_fn_ik_joint.html, 2015.

[Baraff and Witkin, 1998] David Baraff and Andrew Witkin. Large steps in cloth
simulation. In Proceedings of SIGGRAPH 98, Annual Conference Series, pages
43–54, 1998.

[Baran and Popović, 2007] Ilya Baran and Jovan Popović. Automatic rigging and
animation of 3d characters. ACM Trans. Graph., 26(3), July 2007.

[Barbič and James, 2005] Jernej Barbič and Doug L. James. Real-time subspace
integration for st. venant-kirchhoff deformable models. ACM Trans. Graph.,
24(3):982–990, July 2005.

[Barbič and James, 2008] Jernej Barbič and Doug L. James. Six-dof haptic ren-
dering of contact between geometrically complex reduced deformable models.
IEEE Trans. Haptics, 1(1):39–52, January 2008.

http://docs.mosek.com/7.1/capi/index.html
http://docs.mosek.com/7.1/capi/index.html
http://docs.autodesk.com/MAYAUL/2014/ENU/Maya-API-Documentation/cpp_ref/class_m_fn_ik_joint.html
http://docs.autodesk.com/MAYAUL/2014/ENU/Maya-API-Documentation/cpp_ref/class_m_fn_ik_joint.html

References

[Barbič and James, 2010] Jernej Barbič and Doug L. James. Subspace self-collision
culling. ACM Trans. Graph., 29(4):81:1–81:9, July 2010.

[Barbič et al., 2009] Jernej Barbič, Marco da Silva, and Jovan Popović. Deformable
object animation using reduced optimal control. ACM Trans. Graph., 28(3):53:1–
53:9, July 2009.

[Baskin, 2014] Jason Baskin. Mike and Tina character rig 2.5.0 [Online; ac-
cessed Jan 20th, 2015], http://www.creativecrash.com/maya/downloads/

character-rigs/c/mike-and-tina-character-rig, 2014.

[Bengio and Goldenthal, 2013] Julien Cohen Bengio and Rony Goldenthal. Sim-
plicial interpolation for animating the hulk. In ACM SIGGRAPH 2013 Talks,
SIGGRAPH ’13, pages 7:1–7:1, 2013.

[Bonet and Wood, 1997] J. Bonet and R. D. Wood. Nonlinear Continuum Mechanics
for Finite Element Analysis. Cambridge Univ. Press, 1997.

[Borosán et al., 2012] Péter Borosán, Ming Jin, Doug DeCarlo, Yotam Gingold,
and Andrew Nealen. Rigmesh: Automatic rigging for part-based shape mod-
eling and deformation. ACM Trans. Graph., 31(6):198:1–198:9, November 2012.

[Bridson et al., 2002] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust
treatment of collisions, contact and friction for cloth animation. ACM Trans.
Graph., 21(3):594–603, July 2002.

[Brochu and Bridson, 2009] Tyson Brochu and Robert Bridson. Robust topologi-
cal operations for dynamic explicit surfaces. SIAM Journal on Scientific Comput-
ing, 31(4):2472–2493, 2009.

[Chang and Jenkins, 2006] Edwin Chang and Odest Chadwicke Jenkins. Sketch-
ing articulation and pose for facial animation. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 271–280, 2006.

[Chen et al., 2008] Yanqing Chen, Timothy A. Davis, William W. Hager, and
Sivasankaran Rajamanickam. Algorithm 887: Cholmod, supernodal sparse
cholesky factorization and update/downdate. ACM Trans. Math. Softw.,
35(3):22:1–22:14, October 2008.

[Choi et al., 2012] Myung Geol Choi, Kyungyong Yang, Takeo Igarashi, Jun Mi-
tani, and Jehee Lee. Retrieval and visualization of human motion data via stick
figures. Comput. Graph. Forum, 31(7-1):2057–2065, 2012.

[Coros et al., 2013] Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris,
Shinjiro Sueda, Moira Forberg, Robert W. Sumner, Wojciech Matusik, and
Bernd Bickel. Computational design of mechanical characters. ACM Trans.
on Graphics, 32(4):83:1–83:12, July 2013.

132

http://www.creativecrash.com/maya/downloads/character-rigs/c/mike-and-tina-character-rig
http://www.creativecrash.com/maya/downloads/character-rigs/c/mike-and-tina-character-rig

References

[Davis et al., 2003] James Davis, Maneesh Agrawala, Erika Chuang, Zoran
Popović, and David Salesin. A sketching interface for articulated figure anima-
tion. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 320–328, 2003.

[de Aguiar et al., 2010] Edilson de Aguiar, Leonid Sigal, Adrien Treuille, and Jes-
sica K. Hodgins. Stable spaces for real-time clothing. ACM Trans. Graph.,
29(4):106:1–106:9, July 2010.

[Eitz et al., 2012] Mathias Eitz, James Hays, and Marc Alexa. How do humans
sketch objects? ACM Trans. Graph., 31(4):44:1–44:10, July 2012.

[Faloutsos et al., 1997] Petros Faloutsos, Michiel van de Panne, and Demetri Ter-
zopoulos. Dynamic free-form deformations for animation synthesis. IEEE
Trans. on Visualization and Computer Graphics, 3(3), 1997.

[Feng et al., 2010] Wei-Wen Feng, Yizhou Yu, and Byung-Uck Kim. A deforma-
tion transformer for real-time cloth animation. ACM Trans. Graph., 29(4):108:1–
108:9, July 2010.

[Funkhouser et al., 2004] Thomas Funkhouser, Michael Kazhdan, Philip Shilane,
Patrick Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David
Dobkin. Modeling by example. ACM Trans. Graph., 23(3):652–663, August 2004.

[Gilles et al., 2011] Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Di-
nesh K. Pai. Frame-based elastic models. ACM Trans. Graph., 30(2):15:1–15:12,
April 2011.

[Gingold et al., 2009] Yotam Gingold, Takeo Igarashi, and Denis Zorin. Struc-
tured annotations for 2d-to-3d modeling. ACM Trans. Graph., 28(5):148:1–148:9,
December 2009.

[Grinspun et al., 2003] Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Pe-
ter Schröder. Discrete shells. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 62–67, 2003.

[Guan et al., 2012] Peng Guan, Loretta Reiss, David A. Hirshberg, Alexander
Weiss, and Michael J. Black. Drape: Dressing any person. ACM Trans. Graph.,
31(4):35:1–35:10, July 2012.

[Guay et al., 2013] Martin Guay, Marie-Paule Cani, and Rémi Ronfard. The line
of action: An intuitive interface for expressive character posing. ACM Trans.
Graph., 32(6):205:1–205:8, November 2013.

[Guay et al., 2015] Martin Guay, Rémi Ronfard, Michael Gleicher, and Marie-
Paule Cani. Space-time sketching of character animation. ACM Trans. Graph.,
34(4):1, May 2015.

133

References

[Gunnarsson and Maddock, 2010] Orn Gunnarsson and Steve C. Maddock.
Sketch-based posing of 3d faces for facial animation. In Theory and Practice
of Computer Graphics, pages 223–230, 2010.

[Hahn et al., 2012] Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski,
Robert Sumner, Stelian Coros, and Markus Gross. Rig-space physics. ACM
Trans. Graph., 31(4):72:1–72:8, July 2012.

[Harmon and Zorin, 2013] David Harmon and Denis Zorin. Subspace integration
with local deformations. ACM Trans. Graph., 32(4):107:1–107:10, July 2013.

[Hasler et al., 2010] Nils Hasler, Thorsten Thormählen, Bodo Rosenhahn, and
Hans-Peter Seidel. Learning skeletons for shape and pose. In Proc. of Symp.
on Interactive 3D Graphics ’10, 2010.

[Hecker et al., 2008] Chris Hecker, Bernd Raabe, Ryan W. Enslow, John DeWeese,
Jordan Maynard, and Kees van Prooijen. Real-time motion retargeting to highly
varied user-created morphologies. ACM Trans. Graph., 27(3):27:1–27:11, August
2008.

[Igarashi et al., 1999] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka.
Teddy: A sketching interface for 3d freeform design. In Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’99, pages 409–416, 1999.

[Irving et al., 2004] G. Irving, J. Teran, and R. Fedkiw. Invertible finite elements
for robust simulation of large deformation. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 131–140, 2004.

[Jacobson and Sorkine, 2011] Alec Jacobson and Olga Sorkine. Stretchable and
twistable bones for skeletal shape deformation. ACM Trans. Graph., 30(6):165:1–
165:8, December 2011.

[Jacobson et al., 2012] Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović,
and Olga Sorkine. Fast automatic skinning transformations. ACM Trans. Graph.,
31(4):77:1–77:10, July 2012.

[James and Fatahalian, 2003] Doug L. James and Kayvon Fatahalian. Precomput-
ing interactive dynamic deformable scenes. ACM Trans. Graph., 22(3):879–887,
July 2003.

[James and Pai, 1999] Doug L. James and Dinesh K. Pai. Artdefo: Accurate real
time deformable objects. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’99, pages 65–72, 1999.

[James and Twigg, 2005] Doug L. James and Christopher D. Twigg. Skinning
mesh animations. ACM Trans. Graph., 24(3):399–407, July 2005.

134

References

[Joshi et al., 2007] Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and
Tom Sanocki. Harmonic coordinates for character articulation. ACM Trans.
Graph., 26(3), July 2007.

[Ju et al., 2005] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates
for closed triangular meshes. ACM Trans. Graph., 24(3):561–566, July 2005.

[Karpenko and Hughes, 2006] Olga A. Karpenko and John F. Hughes. Smooths-
ketch: 3d free-form shapes from complex sketches. ACM Trans. Graph.,
25(3):589–598, July 2006.

[Kavan and Sorkine, 2012] Ladislav Kavan and Olga Sorkine. Elasticity-inspired
deformers for character articulation. ACM Trans. Graph., 31(6):196:1–196:8,
November 2012.

[Kavan et al., 2008] Ladislav Kavan, Steven Collins, Jiřı́ Žára, and Carol
O’Sullivan. Geometric skinning with approximate dual quaternion blending.
ACM Trans. Graph., 27(4):105:1–105:23, November 2008.

[Kavan et al., 2010] L. Kavan, P.-P. Sloan, and C. O’Sullivan. Fast and efficient
skinning of animated meshes. Computer Graphics Forum, 29(2):327–336, 2010.

[Kavan et al., 2011] Ladislav Kavan, Dan Gerszewski, Adam W. Bargteil, and
Peter-Pike Sloan. Physics-inspired upsampling for cloth simulation in games.
ACM Trans. Graph., 30(4):93:1–93:10, July 2011.

[Kho and Garland, 2005] Youngihn Kho and Michael Garland. Sketching mesh
deformations. In Proceedings of the 2005 Symposium on Interactive 3D Graphics
and Games, I3D ’05, pages 147–154, 2005.

[Kim and James, 2009] Theodore Kim and Doug L. James. Skipping steps in
deformable simulation with online model reduction. ACM Trans. Graph.,
28(5):123:1–123:9, December 2009.

[Kim and Vendrovsky, 2008] Tae-Yong Kim and Eugene Vendrovsky. Driven-
shape: A data-driven approach for shape deformation. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 49–55,
2008.

[Kim et al., 2013] Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian,
Adrien Treuille, and James F. O’Brien. Near-exhaustive precomputation of sec-
ondary cloth effects. ACM Trans. Graph., 32(4):87:1–87:8, July 2013.

[Kraevoy et al., 2009] Vladislav Kraevoy, Alla Sheffer, and Michiel van de Panne.
Modeling from contour drawings. In Proceedings of the 6th Eurographics Sympo-
sium on Sketch-Based Interfaces and Modeling, SBIM ’09, pages 37–44, 2009.

135

References

[Kry et al., 2002] Paul G. Kry, Doug L. James, and Dinesh K. Pai. Eigenskin: Real
time large deformation character skinning in hardware. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 153–
159, 2002.

[Krysl et al., 2001] P. Krysl, S. Lall, and J. E. Marsden. Dimensional model reduc-
tion in non-linear finite element dynamics of solids and structures. International
Journal for Numerical Methods in Engineering, 51:479–504, 2001.

[Kurihara and Miyata, 2004] Tsuneya Kurihara and Natsuki Miyata. Modeling
deformable human hands from medical images. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 355–363, 2004.

[Lau et al., 2009] Manfred Lau, Jinxiang Chai, Ying-Qing Xu, and Heung-Yeung
Shum. Face poser: Interactive modeling of 3d facial expressions using facial
priors. ACM Trans. Graph., 29(1):3:1–3:17, December 2009.

[Le and Deng, 2012] Binh Huy Le and Zhigang Deng. Smooth skinning decom-
position with rigid bones. ACM Trans. Graph., 31(6):199:1–199:10, November
2012.

[Lee and Funkhouser, 2008] Jeehyung Lee and Thomas Funkhouser. Sketch-
based search and composition of 3d models. In Proceedings of the Fifth Euro-
graphics Conference on Sketch-Based Interfaces and Modeling, SBM’08, pages 97–
104, 2008.

[Lee, 2009] Gene S. Lee. Evaluation of the radial basis function space. In ACM
SIGGRAPH ASIA 2009 Sketches, SIGGRAPH ASIA ’09, pages 42:1–42:1, 2009.

[Lewis et al., 2000] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space de-
formation: A unified approach to shape interpolation and skeleton-driven de-
formation. In Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’00, pages 165–172, 2000.

[Lin et al., 2010] Juncong Lin, Takeo Igarashi, Jun Mitani, and Greg Saul. A
sketching interface for sitting-pose design. In Proceedings of the Seventh Sketch-
Based Interfaces and Modeling Symposium, SBIM ’10, pages 111–118. Eurographics
Association, 2010.

[Lipman et al., 2008] Yaron Lipman, David Levin, and Daniel Cohen-Or. Green
coordinates. ACM Trans. Graph., 27(3):78:1–78:10, August 2008.

[Liu et al., 2013] Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav
Kavan. Fast simulation of mass-spring systems. ACM Trans. Graph., 32(6):214:1–
214:7, November 2013.

136

References

[Magnenat-Thalmann et al., 1989] N. Magnenat-Thalmann, R. Laperrière, and
D. Thalmann. Joint-dependent local deformations for hand animation and ob-
ject grasping. In Proc. of Graphics Interface ’88, 1989.

[Martin et al., 2011] Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun,
and Markus Gross. Example-based elastic materials. ACM Trans. Graph.,
30(4):72:1–72:8, July 2011.

[McAdams et al., 2011] Aleka McAdams, Yongning Zhu, Andrew Selle, Mark
Empey, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. Efficient elas-
ticity for character skinning with contact and collisions. ACM Trans. Graph.,
30(4):37:1–37:12, July 2011.

[McLaughlin et al., 2011] Tim McLaughlin, Larry Cutler, and David Coleman.
Character rigging, deformations, and simulations in film and game production.
In ACM SIGGRAPH 2011 Courses, 2011.

[Meyer and Anderson, 2007] Mark Meyer and John Anderson. Key point sub-
space acceleration and soft caching. ACM Trans. Graph., 26(3), July 2007.

[Miranda et al., 2012] José Carlos Miranda, Xenxo Alvarez, João Orvalho, Diego
Gutierrez, A. Augusto Sousa, and Verónica Orvalho. Sketch express: A sketch-
ing interface for facial animation. Computers & Graphics, 36(6):585 – 595, 2012.

[Müller and Chentanez, 2010] Matthias Müller and Nuttapong Chentanez. Wrin-
kle meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 85–92, 2010.

[Nealen et al., 2005] Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel
Cohen-Or. A sketch-based interface for detail-preserving mesh editing. ACM
Trans. Graph., 24(3):1142–1147, July 2005.

[Nealen et al., 2006] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Box-
erman, and Mark Carlson. Physically based deformable models in computer
graphics. Computer Graphics Forum, 25(4):809–836, 2006.

[Nealen et al., 2007] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc
Alexa. Fibermesh: Designing freeform surfaces with 3d curves. ACM Trans.
Graph., 26(3), July 2007.

[Neumann et al., 2013] Thomas Neumann, Kiran Varanasi, Stephan Wenger,
Markus Wacker, Marcus Magnor, and Christian Theobalt. Sparse localized de-
formation components. ACM Trans. Graph., 32(6):179:1–179:10, November 2013.

[Nocedal and Wright, 2006] J. Nocedal and S. J. Wright. Numerical Optimization.
Springer, New York, 2nd edition, 2006.

137

References

[Noris et al., 2012] G. Noris, D. Sýkora, A. Shamir, S. Coros, B. Whited, M. Sim-
mons, A. Hornung, M. Gross, and R. Sumner. Smart scribbles for sketch seg-
mentation. Computer Graphics Forum, 31(8):2516–2527, 2012.

[Olsen et al., 2009] Luke Olsen, Faramarz F. Samavati, Mario Costa Sousa, and
Joaquim A. Jorge. Sketch-based modeling: A survey. Computers & Graphics,
33(1):85 – 103, 2009.

[Öztireli et al., 2013] A. Cengiz Öztireli, Ilya Baran, Tiberiu Popa, Boris Dalstein,
Robert W. Sumner, and Markus Gross. Differential blending for expressive
sketch-based posing. In Proceedings of the ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, pages 155–164, 2013.

[Press et al., 2007] William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes 3rd Edition: The Art of Scientific Computing.
3 edition, 2007.

[Rohmer et al., 2010] Damien Rohmer, Tiberiu Popa, Marie-Paule Cani, Stefanie
Hahmann, and Alla Sheffer. Animation wrinkling: Augmenting coarse cloth
simulations with realistic-looking wrinkles. ACM Trans. Graph., 29(6):157:1–
157:8, December 2010.

[Rusinkiewicz and Levoy, 2001] Szymon Rusinkiewicz and Marc Levoy. Efficient
variants of the ICP algorithm. In 3-D Digital Imaging and Modeling, pages 145–
152, 2001.

[Schmidt et al., 2007] Mark Schmidt, Glenn Fung, and Rómer Rosales. Fast op-
timization methods for l1 regularization: A comparative study and two new
approaches. In Machine Learning: ECML 2007, volume 4701 of Lecture Notes in
Computer Science, pages 286–297, 2007.

[Selle et al., 2009] Andrew Selle, Jonathan Su, Geoffrey Irving, and Ronald Fed-
kiw. Robust high-resolution cloth using parallelism, history-based collisions,
and accurate friction. IEEE Transactions on Visualization and Computer Graphics,
15(2):339–350, March 2009.

[Shin and Igarashi, 2007] Hyojong Shin and Takeo Igarashi. Magic canvas: Inter-
active design of a 3-D scene prototype from freehand sketches. In Proceedings
of Graphics Interface 2007, GI ’07, pages 63–70, 2007.

[Singh and Fiume, 1998] Karan Singh and Eugene Fiume. Wires: A geometric
deformation technique. In Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’98, pages 405–414, 1998.

[Sloan et al., 2001] Peter-Pike J. Sloan, Charles F. Rose, III, and Michael F. Cohen.
Shape by example. In Proceedings of the Symposium on Interactive 3D Graphics,
pages 135–143, 2001.

138

References

[Terzopoulos et al., 1987] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt
Fleischer. Elastically deformable models. In Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’87, pages
205–214, 1987.

[Thomaszewski et al., 2008] Bernhard Thomaszewski, Simon Pabst, and Strasser
Wolfgang. Asynchronous cloth simulation. In Proceedings of Computer Graphics
International 08, 2008.

[Wang and Phillips, 2002] Xiaohuan Corina Wang and Cary Phillips. Multi-
weight enveloping: Least-squares approximation techniques for skin anima-
tion. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 129–138, 2002.

[Wang et al., 2010] Huamin Wang, Florian Hecht, Ravi Ramamoorthi, and
James F. O’Brien. Example-based wrinkle synthesis for clothing animation.
ACM Trans. Graph., 29(4):107:1–107:8, July 2010.

[Weber et al., 2007] Ofir Weber, Olga Sorkine, Yaron Lipman, and Craig Gots-
man. Context-aware skeletal shape deformation. Computer Graphics Forum,
26(3):265–274, 2007.

[Wei and Chai, 2011] Xiaolin K. Wei and Jinxiang Chai. Intuitive interactive
human-character posing with millions of example poses. Computer Graphics
and Applications, IEEE, 31(4):78–88, July 2011.

[Wong et al., 2013] Sai-Keung Wong, Wen-Chieh Lin, Chun-Hung Hung, Yi-
Jheng Huang, and Shing-Yeu Lii. Radial view based culling for continuous self-
collision detection of skeletal models. ACM Trans. Graph., 32(4):114:1–114:10,
July 2013.

[Wyvill et al., 2005] B. Wyvill, K. Foster, P. Jepp, R. Schmidt, M. C. Sousa, and
J. A. Jorge. Sketch based construction and rendering of implicit models. In
Proceedings of the Eurographics Conference on Computational Aesthetics in Graphics,
Visualization and Imaging, pages 67–74, 2005.

[Zheng and James, 2012] Changxi Zheng and Doug L. James. Energy-based
self-collision culling for arbitrary mesh deformations. ACM Trans. Graph.,
31(4):98:1–98:12, July 2012.

[Zhou et al., 2005] Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao,
Baining Guo, and Heung-Yeung Shum. Large mesh deformation using the vol-
umetric graph laplacian. ACM Trans. Graph., 24(3):496–503, July 2005.

[Zimmermann et al., 2007] Johannes Zimmermann, Andrew Nealen, and Marc
Alexa. SilSketch: Automated sketch-based editing of surface meshes. In

139

References

Proceedings of the Eurographics Workshop on Sketch-based Interfaces and Modeling,
pages 23–30, 2007.

[Zurdo et al., 2013] Javier S. Zurdo, Juan P. Brito, and Miguel A. Otaduy. Animat-
ing wrinkles by example on non-skinned cloth. IEEE Trans. Vis. Comput. Graph.,
19(1):149–158, January 2013.

140

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	1.1 Overview
	1.1.1 Efficient Rig-Space Physics Simulation
	1.1.2 Sketch Abstractions for Character Posing
	1.1.3 Subspace Clothing Simulation

	1.2 Principal Contributions
	1.3 Thesis Outline
	1.4 Publications

	Related Work
	2.1 Efficient Rig-Space Physics Simulation
	2.1.1 Rigging
	2.1.2 Deformable Models
	2.1.3 Subspace Physics
	2.1.4 Skinning

	2.2 Sketch Abstractions for Character Posing
	2.2.1 Sketch-Based Modeling
	2.2.2 Mesh Deformation
	2.2.3 Retrieval-and-Composition
	2.2.4 Sketch-Based Posing

	2.3 Subspace Clothing Simulation
	2.3.1 Cloth Simulation
	2.3.2 Subspace Simulation
	2.3.3 Pose-Space Deformation

	Foundations
	3.1 Physics
	3.1.1 Deformable Objects and Elements
	3.1.2 Elastic Energy
	Elastic Solids
	Cloth

	3.1.3 External Energy
	3.1.4 Equations of Motion
	3.1.5 Static Problems
	3.1.6 Energy Derivatives

	3.2 Energy Minimization
	3.2.1 Solver Considerations
	3.2.2 Newton-Raphson Iterations
	3.2.3 Linear System Solving
	3.2.4 Hessian Regularization
	3.2.5 Line Search

	3.3 Subspace Simulation
	3.3.1 Rig Spaces
	3.3.2 Subspace Physics
	3.3.3 Rig-Space Physics Simulation

	3.4 Analytic Rigs
	3.4.1 Rigid Transformation
	3.4.2 Blendshapes
	3.4.3 Linear Blend Skinning
	Definition
	Joint Transformations
	Rig Jacobians
	Matching Maya Behavior

	3.5 Contact Handling
	3.5.1 Collision Detection
	3.5.2 Penalty-Based Collision Resolution
	3.5.3 Impulse-Based Contact Resolution

	Efficient Rig-Space Physics Simulation
	4.1 Overview
	4.2 Method
	4.2.1 Rig-Space Physics Recap
	4.2.2 Linear Rig Approximation
	4.2.3 Physics-based Volumetric Skinning
	Generating Example-Poses
	Example-Based Skinning
	Sparse Correspondences

	4.2.4 Deferred Jacobian Evaluation
	4.2.5 Implementation

	4.3 Results
	4.3.1 Rig-Space Simulation
	4.3.2 Skinning

	4.4 Summary and Outlook

	Sketch Abstractions for Character Posing
	5.1 Overview
	5.2 Method
	5.2.1 Sketch Abstraction
	5.2.2 Matching Optimization
	Correspondences
	Subspace Optimization

	5.2.3 Regularization
	Subspace Derivatives
	Coarsening

	5.2.4 Linear Blend Skinning Rigs

	5.3 Results
	5.3.1 Redraw Posing
	5.3.2 Character Individualization
	5.3.3 Draw-Over Posing

	5.4 Summary and Outlook

	Subspace Clothing Simulation
	6.1 Overview
	6.2 Method
	6.2.1 Pipeline
	6.2.2 Pose-Space Database
	Relation between Pose and Clothing Deformation
	Pose-Space Parameterization
	Data Generation and Model Reduction
	Basis Creation
	Data Retrieval

	6.2.3 Adaptive Subspace Simulation
	Input
	Kinematic Cloth Reference
	Pose-Space Parameterization
	Subspace Cloth Model
	Site Creation
	Subspace Optimization
	Basis Construction
	Final Algorithm

	6.3 Results
	6.3.1 Setup
	6.3.2 Validation
	6.3.3 Generalization to Novel Poses
	6.3.4 Application to Elastic Solids

	6.4 Summary and Outlook

	Conclusion
	7.1 Discussion
	7.2 Limitations and Future Work
	7.2.1 Efficient Rig-Space Physics Simulation
	7.2.2 Sketch Abstractions for Character Posing
	7.2.3 Subspace Clothing Simulation

	Notation
	A.1 Symbols, Variables and Operators
	A.2 Matrix and Vector Derivatives

	References

