
Diss. ETH No. 17055

Consistent Collision

and Self-Collision Handling

for Deformable Objects

A dissertation submitted to

ETH Zurich

for the degree of

Doctor of Sciences

presented by

Bruno Heinz Heidelberger
Dipl. Informatik-Ing. ETH

Swiss Federal Institute of Technology, ETH Zurich

born November 17, 1972

citizen of Hochfelden, ZH, Switzerland

accepted on the recommendation of

Prof. Markus Gross, examiner

Prof. Matthias Teschner, co-examiner

2007

ii

”The meeting of two personalities is like a collision of two deformable objects;

if there is any contact, both are transformed.”

To my beloved Tatjana

iv

v

Abstract

Interactive environments with dynamically deforming objects play an important role

in physically-based simulation and animation, ranging from computational surgery

to computer games. These environments require efficient and robust methods for ba-

sic simulation tasks, such as deformation, collision detection and collision response.

This thesis investigates novel collision handling components especially suited

for deformable objects. The focus lies on versatile techniques featuring efficient

data structures, self-collision support and n-body collision information while still

delivering interactive performance. All presented methods aim for visually-plausible

and consistent behavior, which is in accordance to the requirements of typical target

applications.

The first approach detects collisions and self-collisions of deformable objects

based on a variant of spatial partitioning. It employs a hashing scheme which allows

for very efficient n-body collision queries between different object primitives, such

as vertices, lines, triangles and tetrahedrons.

The second collision detection method generates a volumetric approximation of

the intersection volume to detect collisions and self-collisions. The computation of

the volumetric representation is done in image-space to take advantage of potential

graphics hardware acceleration. The technique allows for several volumetric collision

queries: An explicit representation of the intersection volume, a vertex-in-volume

check and a self-collision test.

Finally, a technique is proposed that computes consistent n-body penetration

depth information in order to reduce collision response artifacts. It considers a

set of close surface features to avoid discontinuities and it applies a propagation

scheme in case of large penetrations to minimize non-plausible, inconsistent collision

information.

A test suite composed of several carefully selected experiments is used to analyze

the characteristics and the performance of each presented technique. The methods

are also integrated into a hysteroscopy simulator and a complete framework for inter-

active simulation of dynamically deforming objects. Both applications demonstrate

the capability and applicability of the collision handling components presented in

this thesis.

vi Abstract

vii

Zusammenfassung

Interaktive Umgebungen, wie z.B. Chirurgiesimulationen oder Computerspiele, sind

wichtige Anwendungsgebiete der physikalisch basierten Simulation und Animation.

Sie benötigen effiziente und robuste Algorithmen zur Berechnung der Simulations-

prozesse wie Deformation, Kollisionserkennung und Kollisionsauflösung.

Diese Arbeit untersucht neuartige Komponenten zur Kollisionsbehandlung, die

speziell für deformierbare Objekte geeignet sind. Dabei liegt der Fokus auf viel-

seitig einsetzbaren Methoden, welche, basierend auf effizienten Datenstrukturen,

trotz Selbstkollisionserkennung und Vielkörperunterstützung interaktive Laufzeiten

erreichen. Alle vorgestellten Algorithmen erzeugen plausibles und konsistentes Simu-

lationsverhalten, um die Bedingungen der typischen Zielapplikationen zu erfüllen.

Der erste Ansatz erkennt Kollisionen und Selbstkollisionen mit Hilfe von Raum-

unterteilung. Dabei wird ein Hashingverfahren verwendet, welches sehr effiziente

Kollisionsanfragen zwischen unterschiedlichen Objektprimitiven, wie z.B. Punkte,

Linien, Dreiecke und Tetraeder, erlaubt.

Ein zweiter Ansatz zur Kollisionserkennung erzeugt eine volumetrische Approxi-

mation des Schnittvolumens, um Kollisionen und Selbstkollisionen zu finden. Die

Berechnung dieser Repräsentation wird im Bildraum durchgeführt und kann daher

von Grafikhardware beschleunigt werden. Die Methode erlaubt verschiedenartige,

volumetrische Kollisionsanfragen: Eine explizite Repräsentation des Schnittvolu-

mens, eine Überprüfung von Punkt-in-Volumen und ein Test auf Selbstkollision.

Ein weiterer Ansatz berechnet konsistente Eindringtiefen bei Vielkörpersimula-

tionen und reduziert so Artefakte bei der Kollisionsauflösung. Die Methode be-

trachtet eine Anzahl naheliegender Oberflächen, um unerwünschte Unstetigkeiten

zu verhindern. Zusätzlich minimiert ein Propagationsschema nicht plausible und

inkonsistente Resultate bei hoher Eindringtiefe.

Um die Eigenschaften und Leistung der vorgestellten Methoden zu validieren,

wird eine Reihe von aussagekräftigen Experimenten durchgeführt. Die Ansätze sind

auch integriert in eine Chirurgiesimulation und eine vollständige Umgebung zur

interaktiven Simulation von dynamisch deformierbaren Objekten. Beide Applika-

tionen demonstrieren die Fähigkeiten und die Anwendbarkeit der in dieser Arbeit

präsentierten Kollisionsbehandlungsmethoden.

viii Zusammenfassung

ix

Acknowledgements

First of all, I would like to thank my advisor Prof. Markus Gross for giving me

the opportunity to pursue my Ph.D. in the Computer Graphics Laboratory at ETH

Zurich. A special thanks to my co-advisor Prof. Matthias Teschner. It has been a

great experience to work with him.

I thank all my fellow colleagues at the Computer Graphics Laboratory who

have helped me along the way: Christoph Niederberger, Tim Weyrich, Silke Lang,

Richard Keiser, Denis Steinemann, Remo Ziegler, Edouard Lamboray, Stephan

Würmlin, Mark Pauly, Miguel A. Otaduy, Doo Young Kwon, Filip Sadlo, Martin

Wicke, Christian Sigg, Ronny Peikert, Michael Waschbüsch, Daniel Cotting, Robert

Sumner, Mario Botsch, Reto Lütolf, Dirk Bauer, Daniel Bielser, Martin Naef and

Matthias Zwicker.

Many thanks go to all my former students who have contributed to this work:

Andreas Wetzel, Robert Bargmann, Bernhard Wymann, Jonas Spillmann, Roger

Kehrer, Christof Schmid and Daniel Knoblauch.

Finally, I would like to express my gratitude to my family, and especially to my

wife, for their constant support during my studies and Ph.D.

This work was supported by the Swiss National Science Foundation (SNSF) as part

of the Swiss National Center of Competence in Research on Computer Aided and

Image Guided Medical Interventions (NCCR Co-Me) [Com01].

x Acknowledgements

xi

Abbreviations and Acronyms

AABB Axis-Aligned Bounding Box

ADF Adaptively Sampled Distance Fields

ARB Architecture Review Board

BEM Boundary Element Method

BSP Binary Space Partitioning

BV Bounding Volume

BVH Bounding-Volume Hierarchy

CCD Continuous Collision Detection

CEGUI Crazy Eddie’s GUI System

CFD Computational Fluid Dynamics

CPU Central Processing Unit

CSG Constructive Solid Geometry

DOP Discrete-Oriented Polytope

FEM Finite Element Method

FVM Finite Volume Method

GJK Gilbert, Johnson, Keerthi

GPU Graphics Processing Unit

GUI Graphical User Interface

KDS Kinetic Data Structures

KSP Kinetic Sweep and Prune

LCP Linear Complementarity Problems

LDC Layered Depth Cube

LDI Layered Depth Image

NCCR National Center of Competence in Research

OBB Oriented Bounding Box

OGRE Object-Oriented Graphics Rendering Engine

OR Operating Room

SAP Sweep and Prune

SDK Software Development Kit

SV Swept Volume

VoI Volume of Interest

xii Abbreviations and Acronyms

xiii

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem Statement . 2

1.3 Major Contributions . 4

1.4 Outline . 5

2 Related Work 7

2.1 Collision Pruning . 7

2.2 Collision Detection . 8

2.3 Collision Information . 15

2.4 Deformable Models . 16

2.5 Evaluation . 17

3 Test Suite 19

3.1 Overview . 19

3.2 Setup . 19

3.3 Test Cases . 20

4 Optimized Spatial Partitioning 29

4.1 Algorithm . 29

4.1.1 Primitive Hashing . 30

4.1.2 Intersection Test . 34

4.2 Parameters . 36

4.2.1 Hash Function . 36

4.2.2 Hash Table Size . 37

4.2.3 Grid Cell Size . 39

4.3 Results . 40

4.3.1 Time Complexity . 40

4.3.2 Experiments . 41

4.4 Discussion . 43

xiv Contents

5 Image-Space Collision Detection 49

5.1 Algorithm . 49

5.1.1 Volume-of-Interest . 50

5.1.2 LDI Generation . 52

5.1.3 Collision Query . 55

5.2 Implementations . 58

5.2.1 Ordered LDI . 58

5.2.2 Unordered LDI . 61

5.2.3 Software LDI . 63

5.3 Results . 64

5.3.1 Comparisons . 64

5.3.2 Experiments . 68

5.4 Discussion . 70

6 Consistent Penetration Depth Estimation 75

6.1 Algorithm . 76

6.1.1 Point Collisions . 77

6.1.2 Edge Intersections . 77

6.1.3 Penetration Depth and Direction 78

6.1.4 Propagation . 80

6.2 Results . 82

6.2.1 Comparisons . 82

6.2.2 Experiments . 83

6.3 Discussion . 85

7 Applications 91

7.1 DefCol Studio . 91

7.2 Hysteroscopy Simulator . 96

8 Conclusions 101

8.1 Summary . 101

8.2 Outlook . 103

Bibliography 105

Copyrights 117

Curriculum Vitae 119

1

1 Introduction

Interactive environments with dynamically deforming objects play an important role

in physically-based simulation and animation, ranging from computational surgery

to computer games. These environments require efficient and robust methods for ba-

sic simulation tasks, such as deformation, collision detection and collision response.

While efficient deformable models are well-investigated, the handling of collisions

between deformable structures only recently gained increasing attention.

1.1 Context

Two major applications in the fields of simulation and animation define the context

of this thesis: Surgery simulation and computer games. While all the methods

discussed in the following chapters can easily be applied to other environments, the

aforementioned context is used to thoroughly analyze and validate the presented

approaches.

Surgery simulation is one major application for deformable collision handling. In

general, these environments consist of various deformable organs and rigid surgical

tools interacting with each other. Collisions between objects occur very frequently

and need to be resolved as soon as they are detected to guarantee a realistic look and

feel. In addition to collision between multiple objects, various surgical procedures,

such as cutting, may lead to self-collision of soft tissue that also have to be taken care

of. Since interactive behavior is essential throughout the whole simulation period,

the algorithms for deformable collision handling are not only required to be efficient

but also robust under all circumstances.

Deformable collision handling methods are also useful in environments with an-

imated objects, such as computer games. Due to the ever increasing computational

power, more and more objects in game levels are either animated or physically sim-

ulated. Current computer games already feature articulated, skinned objects that

are driven by multiple pre-computed motion sequences. So called rag-doll effects

further improve the dynamic appearance of these skinned models. The next genera-

tion of computer games will support even more general and sophisticated deformable

models requiring specific algorithms to detect and resolve collisions at interactive

rates.

2 1. Introduction

1.2 Problem Statement

The focus of this thesis lies on the dynamic interaction between deformable objects

in interactive simulation environments. Hence the investigated methods should espe-

cially be suited for this type of models, such as soft tissue. However, since simulation

environments also contain rigid bodies, such as surgical instruments or bones, the

methods should not be restricted to deformable objects only. While collision han-

dling for rigid bodies is well-investigated, collision handling for deformable objects

introduces additional challenging problems.

Collision, Self-collision and Resting Contact

Deformable objects require a more advanced collision handling approach than rigid

objects due to their higher degree of freedom. In order to realistically simulate

interactions between deformable objects, all contact points including those due to

self-collisions have to be considered. This is in contrast to rigid body collision

handling where self-collisions are commonly neglected.

Depending on the applications, rigid body approaches can further be accelerated

by only handling one single contact point. This is not possible in case of deformable

objects. In addition, the problem of resting contact between deformable objects

needs special attention in order to guarantee a stable equilibrium.

Data Structures and Pre-processing

Collision handling approaches for rigid objects usually pre-compute sophisticated

and time-consuming data structures once at the beginning of the simulation. This

allows for efficient and fast collision detection afterwards. However, the nature of

deformable objects require that these pre-processed data structures have to be up-

dated frequently. These updates can be quite extensive in case of large deformations.

Therefore, pre-processed data structures are less efficient for deforming objects and

their practicability is questionable. This thesis investigates appropriate data struc-

tures that allow for efficient updates during the simulation. This also simplifies the

handling of topological changes, such as cutting.

The predominant object representations used in current simulation environments

with dynamically deforming objects are closed, volumetric tetrahedral meshes as

well as potentially open triangular meshes. Both types should be supported by the

collision handling components. This requirement imposes specific properties on the

underlying data structures which are investigated in this thesis.

1.2. Problem Statement 3

Consistent N-body Collision Information

Physically-based simulations typically use discrete time-steps in their simulation

loop. This leads to large penetrations, missed collisions, inconsistent collision in-

formation and other artifacts that need to be resolved in a robust way. It is not

sufficient to just detect the interference of objects. Instead, precise and consistent in-

formation such as penetration direction and depth is desired, so that an appropriate

collision response can be applied to the involved objects.

Simulation environments usually consist of multiple objects interacting with each

other. It is possible that more than two objects collide or are in contact at the same

time. To handle these likely events in a robust and plausible way, the collision

detection components and their data structures must be queried for such n-body

collisions. Then, after the detection, the collision response method should simulta-

neously resolve all collisions consistently.

Performance

Interactivity is a key characteristic in applications, such as surgery simulation and

computer games. These environments typically consist of multiple deforming objects

with a few thousand tetrahedrons each. It is required that they perform at inter-

active speed to be practicable. This defines hard constraints on the performance of

all methods, including the collision handling components.

In order to meet the interactive performance criteria, it may be necessary to

sacrifice accuracy for speed. Aiming at visually-plausible results, in contrast to

physically-correct ones, is a possibility in this context. Calculating the collision

information on a simplified approximation of the deformable object is an example

of such an approach.

Graphics Hardware Acceleration

With the increasing programmability of commodity graphics processing units (GPUs),

these chips are capable of performing more than the specific graphics computations

for which they were originally designed. They are now versatile coprocessors and

their high speed makes them useful for a variety of applications. Potential accelera-

tion of collision handling techniques through the use of such programmable GPUs,

as well as the limitations of such collision handling approaches, must be investigated.

Applications

The collision handling components should be integrated into a framework for in-

teractive simulation of dynamically deforming objects for a thorough analysis and

validation. They are also an essential part of a hysteroscopy simulator prototype

4 1. Introduction

developed by project members of the Swiss National Center of Competence in Re-

search on Computer Aided and Image Guided Medical Interventions (NCCR Co-Me)

[Com01]. This prototype provides an interactive surgical simulation environment

with deformable soft tissue, surgical instruments, haptic feedback and realistic ren-

dering.

1.3 Major Contributions

The goal of this thesis is the design and implementation of novel collision handling

components appropriate for physically-based simulation environments with dynam-

ically deforming objects. As a result of the demanding requirements, such as in-

teractive performance and guaranteed robustness, and the assumptions made, such

as discrete time-steps and n-body collisions, this thesis concentrates on visually-

plausible collision behavior. Still, within the restrictions given by the requirements,

it aims for methods that are as physically-correct as possible. Although all investi-

gated algorithms are especially suited for deformable objects, they are not restricted

to deformable objects, but also work with rigid bodies.

The contributions of this thesis can be summarized as follows:

• A method is presented that detects collisions and self-collisions of deformable

objects based on optimized spatial hashing. This method allows for very ef-

ficient n-body collision queries between different object primitives, such as

vertices, lines, triangles and tetrahedrons.

• A method is investigated which detects collisions and self-collisions of de-

formable objects based on a volumetric approximation of the intersection vol-

ume. This technique allows for three volumetric collision queries: An explicit

representation of the intersection volume, a vertex-in-volume test and a self-

collision test. All queries can be accelerated by graphics hardware.

• A method is proposed that eliminates typical errors in the computation of

collision information neglected in previous work. The novel method achieves a

consistent estimation of the penetration depth leading to a much more robust

collision handling. Furthermore, the method addresses the issue of large time-

steps and the corresponding collision handling artifacts.

• A complete framework for interactive simulation of dynamically deforming

objects and a hysteroscopy simulator are described that consist of all neces-

sary components for deformation, collision detection and collision response.

These environments are also used to analyze the performance of all methods

presented in this thesis.

1.4. Outline 5

Research results from the optimized spatial hashing approach have been pub-

lished in [Tes03]. The collision detection method based on an LDI decomposition

has been presented in [Hei03], [Hei03b] and its extension to self-collision detection in

[Hei04]. The technique for the consistent estimation of penetration depth has been

published in [Hei04c]. The interactive simulation framework for deformable objects

has been used in [Tes04], [Tes05], as well as in [Mue05].

1.4 Outline

The remainder of the thesis is outlined as follows:

• Chapter 2 reviews related work in collision handling. In particular, the appli-

cability of these methods for deformable objects and their resulting collision

information is investigated and evaluated.

• Chapter 3 introduces a test suite for collision handling between deformable

models. This collection of carefully selected experiments is carried out to an-

alyze the characteristics and the performance of each collision handling tech-

nique presented in the following chapters.

• Chapter 4 discusses a spatial partitioning approach that can be used for the

detection of n-body collisions and self-collisions between deformable objects.

It is based on an optimized spatial hashing technique that efficiently finds

intersections between various types of object primitives.

• Chapter 5 presents an image-space collision detection technique based on a

volumetric approximation of the intersection volume. Three possible imple-

mentations are discussed. The first two variants are accelerated by graphics

hardware whereas the third one is a software-only approach.

• Chapter 6 introduces a method to estimate a consistent penetration depth and

direction based on the information provided by one of the collision detection

approaches presented in the previous two chapters.

• Chapter 7 describes the framework for interactive simulation of dynamically

deforming objects and the hysteroscopy simulator prototype. Both applica-

tions are built upon components presented in the previous chapters.

• Chapter 8 summarizes this thesis and points out possible directions for future

research.

6 1. Introduction

7

2 Related Work

The process of finding all collisions in a scene is usually divided into a broad phase

and a narrow phase [Hub95, Zac01]. The broad phase takes all objects as input

and determines groups of objects that potentially collide, so called collision islands.

This collision pruning reduces the number of objects that must be simultaneously

treated by the near phase, thus improving the overall performance. The near phase

performs exact collision tests between all objects within the same collision island.

The output is a list of collisions with appropriate collision information that can be

used to compute an adequate collision response (see Fig. 2.1).

collision

pruning

collision

detection

collision

informationobjects

collision

islands
collision

pruning

collision

detection

collision

informationobjects

collision

islands

broad phase near phase

Figure 2.1: The collision detection process is usually divided into a broad phase and a
near phase.

This chapter presents one dedicated method that can be used to perform de-

formable collision pruning during the broad phase in Sec. 2.1. Various collision

detection methods for the near phase are presented in Sec. 2.2, followed by a brief

discussion in Sec. 2.3 about the resulting collision information. This thesis is then

motivated in Sec. 2.5 based on an evaluation of all the reviewed collision handling

methods with respect to the target applications (see Sec. 7). The focus through-

out the whole chapter lies on methods suitable for deformable models in interactive

environments.

2.1 Collision Pruning

Collision pruning in the broad phase is usually done by Sweep and Prune (SAP)

or by exact collision detection approaches that are adapted to consider only an

8 2. Related Work

approximation, e.g. the bounding volume, of the models (see Sec. 2.2 for details

about this type of methods).

Sweep and Prune, presented in [Coh95], maintains a sorted list for each of the

principal axes. The elements in the lists are intervals obtained by projecting the

geometry of the objects onto each axis. These lists are regularly updated with

current projections and sorted with insertion sort. Whenever a maximum and a

minimum swap positions on the list, a pair of intervals either begins or ceases to

intersect. A pair of objects can intersect only if their projected intervals intersect

on all three axes. Collision islands of objects with overlapping intervals are easily

found and maintained during the simulation. Sweep and Prune turns out to be a

simple and efficient method when used with deformable objects.

Kinetic Sweep and Prune (KSP) extends the basic method via a kinetic data

structure and supports continuous collision detection [Com05]. When paired with

continuous intersection tests, it is guaranteed to not miss any collisions even if they

happen in between consecutive time-steps.

2.2 Collision Detection

Collision detection methods can be classified into five groups: Bounding-volume hi-

erarchies, spatial subdivision, image-space techniques, stochastic methods and dis-

tance fields. Each class and their corresponding collision detection methods are

presented in the following sections.

2.2.1 Bounding-Volume Hierarchies

Bounding-volume hierarchies (BVHs) have proven to be among the most efficient

data structures for collision detection between rigid bodies. This is mostly due to the

fact that BVHs can be pre-computed prior to running the simulation. Unfortunately,

this pre-processing is not optimal for deformable objects since their BVHs must be

continuously updated during the simulation.

The basic idea of BVHs is to recursively partition the object primitives and

build a tree-like data structure. Internal nodes of the tree have links to all their

child nodes, whereas leaf nodes hold references to the associated object primitives.

Furthermore, each node in the tree contains a bounding volume (BV) that encloses

the associated primitives or child nodes with a smallest containing instance of some

specified type of shapes.

In the past, a wealth of shape types has been explored, such as spheres [Hub96,

Pal95], oriented bounding boxes (OBB) [Got96], discrete-oriented polytopes (DOP)

[Klo96], Boxtrees [Zac02, Aga02], axis-aligned bounding boxes (AABB) [Ber97,

Lar01], spherical shells [Kri98] and convex hulls [Ehm01]. Sophisticated BV types

2.2. Collision Detection 9

such as convex hulls tend to enclose the geometry very tight but the update and

collision test are computationally expensive. Simpler types, such as AABBs, can be

computed much faster but may result in many unnecessary hierarchy traversal steps

due to the poor approximation of the geometry.

Several strategies exist to construct BVHs, such as top-down [Got96], bottom-up

[Rou85] and insertion [Gol87]. For deformable objects, it is further advantageous to

cluster primitives not only based on their initial position but also on their connec-

tivity (see [Vol94, Vol95, Pro97]). In general, any strategy should try to minimize

the volumes of the children to achieve optimal BVHs [Zac02].

For the collision test of two objects, the BVHs are traversed top-down and pairs

of tree nodes are recursively tested for overlap. If the overlapping nodes are leaves

of the BVH, then the enclosed primitives are tested for exact intersection. If only

one node is a leaf while the other one is an internal node, the leaf node is tested

against each of the children of the internal node. If, however, both of the nodes

are internal nodes, it is tried to minimize the probability of intersection as fast as

possible. Therefore, the node with the smaller volume is tested against the children

of the larger node (see [Ber97]). This recursive procedure quickly zooms in on pairs

of nearby primitives. Large branches of the tree can be skipped as soon as the BV

of the corresponding root node is found to be non-overlapping.

In contrast to rigid objects, hierarchies for deformable objects need to be updated

in each time-step. The hierarchy can either be refitted or rebuilt. Refitting is much

faster than rebuilding, but for large deformations, the BVs tend to be less tight

and have larger overlap volumes. Nevertheless, refitting is about ten times faster

compared to a complete rebuild of an AABB hierarchy [Ber97].

The number of unnecessary node updates can be reduced using a hybrid method

[Lar01]. The top half of the tree is updated bottom-up whereas nodes in the bottom

half of the tree are only updated top-down when they are reached during the colli-

sion query. The drawback of this method is a higher memory requirement because

information about the primitives must not only be stored in the leaf nodes but also

in internal nodes.

Other approaches have been proposed to further accelerate the hierarchy update

by omitting or simplifying the update process for several time-steps (see [Mez03]).

For this purpose, the bounding volumes are inflated by a certain distance. As long

as the enclosed primitives do not move farther than this distance, the hierarchy does

not need to be updated.

If the deformation of the object is an interpolation between two or more morph

targets or a superposition of displacement fields, then the update can be performed

at very little extra costs (see [Lar03] and [Jam04]).

10 2. Related Work

2.2.2 Spatial Subdivision

Spatial subdivision is a simple and fast technique to accelerate collision detection in

case of moving and deforming objects. In contrast to BVHs, which work in object

space, spatial subdivision methods partition the primitives in world space.

The basic idea is to subdivide space into regions, called cells. Each cell maintains

a list of object primitives that are fully or partially contained in the cell. The main

difficulty in spatial subdivision is the choice of the data structure that is used to

represent the 3D space. This data structure has to be flexible and efficient with

respect to computational time and memory.

Early spatial subdivision approaches have been proposed for neighborhood queries,

e. g. in molecular dynamics. The computation of molecular atom interaction is ac-

celerated with a neighborhood search based on a uniform 3D grid (see [Lev66]).

Another related approach is presented in [Rab76], where a hash map is used to

represent the 3D grid.

Several spatial subdivision schemes have been proposed for collision detection

such as uniform grids [Tur90, Gan00, Zha00], octrees [Gre93, Ban95], BSP trees

[Fuc80, Mel00] or kd-trees [Tel91]. Spatial hashing has been applied to collision

detection for the first time in [Tur90]. A hierarchical extension was presented in

[Mir97] as part of a robot motion planning algorithm which is restricted to rigid

bodies. Combining spatial and object subdivision into a hybrid approach has been

shown in [Gre99]. A perfect multidimensional hash function can be used to pack

sparse primitive data into a compact table while retaining efficient random access

[Lef06]. However, this method is limited to rigid objects, since the perfect hash

construction is a nontrivial and thus costly operation.

When constructing spatial data structures, the objects can either be considered

for subdivision or they can be ignored. Object-dependent approaches, such as BSP

trees or kd-trees, split the 3D space based on the position and orientation of well

selected object primitives. Whereas the subdivision strategy of object-independent

approaches, such as uniform grids or octrees, is solely controlled by global parameters

like cell size or subdivision level.

Collision detection based on spatial subdivision is performed by first discretizing

the primitives of all objects into the cells. Then, within each cell that contains

more than one primitive, exact intersection tests are carried out to find collisions.

This clustering into cells highly reduces the number of necessary collision tests since

object primitives have to be tested only against other primitives sharing the same

cell.

For moving and deforming objects, it is necessary to update the spatial data

structures in each time-step. Updating object-dependent data is a lot more time-

consuming than object-independent data making the latter a much better choice for

2.2. Collision Detection 11

deformable objects. An interesting approach that allows adjacent cells to overlap

each other and thus reduce update costs has been presented in [Tha00].

2.2.3 Image-Space Techniques

Recently, several image-space techniques have been proposed for collision detection

[Tes05]. Since they usually do not require any pre-processing, they are especially

appropriate for environments with dynamically deforming objects. Furthermore,

image-space techniques can commonly be implemented using graphics hardware and

thus benefit from potential hardware acceleration.

The basic idea is to process projections of objects to accelerate collision queries.

This projection is usually done by rendering the object primitives into the frame

buffer. Since image-space techniques work with discretized representations, they do

not provide exact collision information. The accuracy of the collision detection de-

pends on the discretization error. Thus, accuracy and performance can be balanced

in a certain range by changing the resolution of the rendering process.

An early approach to image-space collision detection of convex objects has been

outlined in [Shi91]. In this method, the two depth layers of convex objects are

rendered into two separate depth buffers. At each pixel the interval from the smaller

depth value to the larger depth value approximately represents the object and is

efficiently used for interference checking. A similar approach has been presented

in [Bac99]. Both methods are restricted to convex objects which makes them not

applicable to geometrically complex or even deformable objects.

In [Mys95], an image-space technique is presented which detects collisions for

arbitrarily-shaped objects. In contrast to [Shi91] and [Bac99], this approach can

also process concave objects. However, the maximum allowed depth complexity is

limited. Additionally, object primitives have to be pre-sorted. Due to the required

pre-processing, this method cannot efficiently work with deforming objects.

A first application of image-space collision detection to dynamic cloth simulation

has been presented in [Vas01]. In this approach, an avatar is rendered from a front

and a back view to generate an approximate representation of its volume. This

volume is used to detect penetrating cloth particles. A first image-space approach

to collision detection in medical applications is presented in [Lom99], where the

intersection of a surgical tool with deformable tissue is detected by rendering the

interior of the tool.

In [Hof01], an image-space method is not only employed for collision detection,

but also for proximity tests. This method is restricted to 2D objects. In [Kim02] and

[Kim02b], closest-point queries are performed using bounding-volume hierarchies

along with a multi-pass rendering approach. In [Kno03], edge intersections with

surfaces can efficiently be detected in multi-body environments. However, the pro-

12 2. Related Work

posed technique is not robust in case of occluded edges. In [Bac02, Gov03, Gov05],

several image-space methods are combined for object, sub-object pruning and colli-

sion detection. The approach can handle objects with changing topology. However,

the setup is highly involved and does not scale well to more complex scenes.

Image-space techniques can be accelerated with graphics hardware. However,

due to buffer read-back delays and the limited flexibility of programmable graphics

hardware, it is not guaranteed that implementations on graphics hardware are faster

than specialized software solutions. As a rule of thumb, graphics hardware should

only be used for geometrically complex objects.

While image-space techniques efficiently detect collisions, they are limited in pro-

viding information that can be used for collision response by physically-based sim-

ulation environments. In many approaches, further post-processing of the provided

result is required to compute or to approximate information such as the penetration

depth and direction of colliding objects.

2.2.4 Stochastic Methods

So called inexact or stochastic methods have become a focus in collision detection

research recently. These approaches are motivated by several observations. First,

polygonal models are just an approximation of the true geometry. Second, the per-

ceived quality of most interactive 3D applications does not depend on exact simula-

tion, but rather on real-time response to collisions [Uno97, Sul03]. At the same time,

humans cannot distinguish between physically-correct and visually-plausible behav-

ior of objects [Bar96]. Therefore, depending on the application, it can be tolerated

to improve the performance of collision detection while degrading its precision.

A naive approach to stochastic collision detection is the selection of random pairs

of features as input to an exact intersection test. This method can be augmented

by ensuring that the sampling covers features from the entire body and that they

are already close enough. Exploiting temporal coherence can further increase the

performance, because a pair of close features at the current time-step may still be

interesting in the next time-step (see [Lin91]).

Combining stochastic methods with other collision detection approaches permits

to efficiently trade accuracy for speed. In [Kim04b], close features of the objects

are found by tracking randomly selected pairs of geometric primitives within a hi-

erarchy of DOPs. The bounding-volume hierarchy is used to narrow the regions

where random pairs are generated, therefore fewer random samples are necessary.

Additionally, by using a lazy hierarchy update, the cost in each time-step can be

significantly reduced.

Highly flexible structures, such as strands and cloth, have the possibility of

self-colliding at multiple points in space [Bar03]. The general stochastic collision

2.2. Collision Detection 13

approach is adapted in [Rag04] to detect collisions and self-collisions for such objects.

The proposed method utilizes two optimizations. First, a two-step update method

is used for computing the local distance minima for surface structures. Second,

collisions are propagated from the collision point in order to provide a robust collision

response. When a collision occurs, a recursive algorithm searches the neighborhood

for possible collisions where a unique response is applied.

A different approach to stochastic collision detection is presented in [Kle03].

Conceptually, the main idea of the algorithm is to consider sets of polygons at inner

nodes of a BVH. But instead of storing the polygons explicitly within the BVH,

only the probability of the existence of a pair of intersecting polygons is estimated

and stored. This has two advantages. First, the algorithm is truly time-critical.

The application can control the runtime of the algorithm by specifying the desired

quality of the collision detection. Second, the probabilities can guide the algorithm

to those parts of the BVH that allow for faster convergence of the estimate. In

contrast to traditional traversal schemes, the algorithm is guided by the probability

that a pair of BVs contains intersecting polygons.

2.2.5 Distance Fields

Distance fields specify the minimum distance to a closed surface for all points in

the field. The distance may be signed in order to distinguish between inside and

outside regions. Representing a closed surface by a distance field is advantageous,

because there are no restrictions about topology. Furthermore, the evaluation of

distances and normals needed for collision detection and response is extremely fast

and independent of the geometric complexity of the object.

Different data structures for representing distance fields have been proposed in

the literature. A uniform grid with stored distance information poses the simplest

form of a distance field. The drawbacks are the huge memory requirements and the

limited resolution when representing objects with sharp features.

In order to overcome these problems, an adaptively sampled distance field (ADF)

was proposed in [Fri00]. The data is stored in a hierarchy which is able to increase

the sampling rate in regions of fine detail. Although various spatial data structures

are suitable in general, ADFs are usually stored in an octree. For collision detection

purposes, special care has to be taken in order to guarantee continuity between

different levels of the tree. Whenever a cell is adjacent to a coarser cell, its corner

values have to be changed to match those of the interpolated values at the coarser

cell [Wes99, Bri03].

When using a BSP tree for distance fields, memory consumption can be reduced

even further [He97, Wu03]. This is achieved by using a piecewise linear approx-

imation of the distance field, which is not necessarily continuous. Unfortunately,

14 2. Related Work

the construction of a BSP tree is computationally expensive. Another problem may

arise from discontinuities between cells, since these cracks are not as easily resolved

as for ADFs.

Deformed distance fields have been used to estimate the penetration depth of

elastic polyhedral objects [Fis01]. In this method, an internal distance field is cre-

ated by a fast marching level set method while propagating distance information

only within the objects. During collision detection the distance fields are deformed

due to the geometry and used for an approximation of the penetration depth. Al-

though the distance field is only partially updated in deforming regions of the object,

experiments indicate that this method is not intended for real-time applications.

Updates of a distance field are a common bottleneck of all methods described

above. Several image-space approaches exist that accelerate these updates with

graphics hardware [Vas01, Hof01, Sig03, Sud04]. The presented results, however,

suggest that the generation is still not fast enough for interactive applications, where

distance fields of multiple deformable models have to be updated during run-time.

2.2.6 Continuous Collision Detection

Most well-known collision detection methods are discrete. They sample the objects

trajectories at discrete time instances and report intersections only. Discrete colli-

sion detection algorithms are generally simple to implement and therefore used very

frequently in interactive simulations. Unfortunately, they also exhibit various weak-

nesses. Besides the lack of physical realism due to the penetration, these methods

can miss collisions when objects are too thin or moving too fast. Adaptive time-steps

or predictive methods can be used to correct the artifacts in off-line applications,

but are usually not applicable to interactive applications that require a relatively

high and constant frame-rate.

Recently, several algorithms have been proposed for continuous collision detec-

tion (CCD). These approaches model the trajectory of the object between suc-

cessive discrete time instances as a continuous path and check the resulting path

for collisions. Different techniques have been used to model the trajectory includ-

ing linear interpolation between the vertex positions [Hub95, Bri02], screw motion

[Kim03] or arbitrary in-between motion [Red04]. At a broad level, the CCD al-

gorithms can be classified into four approaches: algebraic equation solving ap-

proaches [Can86, Red00], swept volume (SV) techniques [Abd02], adaptive bisection

[Red02, Sch02] and kinetic data structures (KDS) [Aga00]. These approaches have

been used to perform CCD at interactive rates for rigid objects [Red02, Kim03] and

articulated models or avatars in virtual environments [Red04, Red04b]. However,

no efficient algorithms are known for real-time CCD between general deformable

models.

2.3. Collision Information 15

2.3 Collision Information

In order to realistically simulate the behavior of colliding objects, an appropriate

collision response has to be considered. One idea commonly used in discrete-time

simulations is to generate forces which eventually separate colliding objects. These

response or penalty forces are computed for penetrating object vertices as a function

of their penetration depth which represents the distance and the direction to the

surface of the penetrated object. In case of deformable objects, this force compu-

tation is intended to reflect the fact that real colliding objects deform each other.

The deformation induces forces in the contact area which are approximated with

penetration depth approaches in virtual environments. Response forces commonly

consider additional features such as friction which is computed as a function of the

relative velocity of colliding structures and their penetration depth.

Penetration depth approaches work very well for sufficiently densely sampled

surfaces and in case of small penetrations. However, in interactive discrete-time sim-

ulations with discretized object representations, these two requirements are rarely

met. Depending on the size of the simulation time-step, large penetrations can

occur which result in the computation of non-plausible penetration depths and di-

rections. Furthermore, discrete surface representations can result in discontinuous

penetration directions.

Contact models and collision information for rigid and deformable bodies are

well-investigated. Analytical methods for calculating the forces between dynami-

cally colliding rigid bodies have been presented in [Moo88, Hah88, Bar89, Bar91,

Bar93, Bar94, Fau96, Pau04]. These approaches solve inequality-constrained prob-

lems which are formulated as linear complementarity problems (LCP). In addition

to analytical methods, a second class of collision response schemes is based on so-

called penalty forces. These approaches calculate response forces based on penetra-

tion depths in order to resolve colliding objects. First solutions have been presented

in [Ter87, Pla88]. Penalty-based approaches have been used in simulations with de-

formable objects, cloth and rigid bodies [Moo88, McK90, Des99]. A third approach

which directly computes contact surfaces of colliding deformable objects is presented

in [Gas93].

Due to their computational efficiency, penalty-based approaches are very appro-

priate for interactive simulations of deformable objects. They can consider various

elasto-mechanical object properties. Friction and further surface characteristics can

also be incorporated. Penalty forces are computed based on penetration depths

and there exist many approaches that compute the exact or approximative pene-

tration depth of two colliding objects which is defined as the minimum translation

that one object undergoes to resolve the collision. Exact penetration depth com-

putations can be based on Minkowski sums [Cam86, Gui86] or hierarchical object

16 2. Related Work

presentations [Dob93], while approximative solutions based on the GJK algorithm

[Gil88] and iteratively expanding polytopes have been presented in [Cam97, Ber01].

Further methods are based on object space discretizations [Fis01], employ graphics

hardware [Hof02, Sud04] or introduce incremental optimization steps [Kim04].

While existing approaches very efficiently compute the minimal penetration

depth, they do not address inconsistency problems of the result in discrete-time

simulations. A solution to this problem are continuous collision detection methods

(see Sec. 2.2.6). However, these approaches are computationally expensive compared

to discrete collision detection and not appropriate for deformable objects.

2.4 Deformable Models

Deformable models are not in the scope of this thesis but are a necessary prerequisite

for any deformable collision detection technique. This section gives a very brief

overview over the various approach in this field. A detailed survey can be found in

[Nea05].

Many methods and models have been proposed in computer graphics to sim-

ulate deformable objects ranging from finite difference approaches [Ter87], mass-

spring systems [Bar98, Des99], the Boundary Element Method (BEM) [Jam99],

the Finite Element Method (FEM) [Deb01, Mue02, Mue04c], the Finite Volume

Method (FVM) [Ter03] to implicit surfaces [Des95] and mesh-free particle systems

[Des96, Ton98, Mue04b].

In addition to approaches which mainly focus on the accurate simulation of

elasto-mechanical properties, there exist several acceleration strategies. Robust in-

tegration schemes for large time-steps have been investigated [Bar98] and multi-

resolution models have been proposed [Deb01, Cap02, Gri02]. To further improve

the performance, modal analysis approaches have been employed which can trade

accuracy for efficiency [Pen89, She02, Jam02]. Further, data-driven methods have

been presented where the pre-computed state space dynamics and pre-computed

impulse response functions are incorporated to improve the run-time performance

[Jam99]. In [Met92], dynamic models have been derived from global geometric de-

formations of solid primitives such as spheres, cylinders, cones or super-quadrics.

The test suite (see Chap. 3) and target applications of this thesis (see Chap. 7)

employ variants of the deformation models presented in [Tes04] and [Mue05].

The first approach considers deformable solids that are discretized into tetrahe-

drons and mass points. In order to compute the dynamic behavior of objects, forces

are derived at mass points from potential energies. These forces preserve distances

between mass points, the area of the object surface and the volume of each tetra-

hedrons. The material properties of a deformable object are described by weighted

stiffness coefficients of all considered potential energies. The model considers elastic

2.5. Evaluation 17

and plastic deformation and handles a large variety of material properties ranging

from stiff to fluid-like behavior which makes it a suitable method to be used in

surgery simulation.

The main idea of the second approach is to replace energies by geometric con-

straints and forces by distances of current positions to goal positions. These goal

positions are determined via a generalized shape matching of an undeformed rest

state with the current deformed state of the of mass points. Since points are al-

ways drawn towards well-defined locations, the overshooting problem of explicit

integration schemes is eliminated. The versatility of the approach in terms of object

representations that can be handled, the efficiency in terms of memory and compu-

tational complexity and the unconditional stability of the dynamic simulation make

the approach particularly interesting for computer games.

Finally, it is important to note that the collision handling methods presented

later in this thesis are very general and not bound to a specific deformable model.

Therefore, a wide range of applications should be able to directly benefit from this

work.

2.5 Evaluation

This section briefly evaluates the different collision detection classes when applied

to surgery simulation or other highly interactive environments such as computer

games. These kinds of applications define the context of this thesis (see Sec. 1.1)

and require efficient and robust collision handling techniques for deformable objects

(see Sec. 7.1 and 7.2).

Tab. 2.1 shows the different collision detection classes and their ratings in seven

criteria derived from the requirements of deformable collision detection presented

in Sec. 1.2. The rating for each criterion is either good (+), neutral (0) or bad (-).

Please note that there are several methods in each class and each of them features

slightly different strengths and weaknesses (see Sec. 2.2).

No class satisfies all the necessary criteria for an optimal collision detection

method for deformable objects. However, spatial subdivision looks like the best

overall candidate. Its main weakness is the inherent large memory requirement to

store the world cells. This issue motivates the optimized spatial hashing method

presented in Chap. 4. It is also based on spatial subdivision but addresses the high

memory consumption with the use of a hashing scheme. This leads to an optimal col-

lision detection solution with respect to the aforementioned context. Unfortunately,

the method does not map well onto graphics hardware.

Image-space techniques are much better in exploiting the computational power of

programmable GPUs. One such method based on LDIs, an approximate volumetric

object representation, is presented in Chap. 5. It is motivated by several weaknesses

18 2. Related Work

Class Def. Self-coll. Pre. N-body Info. Mem. GPU

BV Hierarchies 0 + - - + 0 no

Spatial Subdivision 0 + + + + - no

Image-Space Techniques 0 0 + 0 0 0 yes

Stochastic Methods + - + - + 0 no

Distance Fields - 0 - - + - yes

Opt. Spatial Hashing + + + + + + no

LDI + + + + 0 0 yes

Table 2.1: Evaluation of collision detection classes based on the following criteria: Ap-
plicability to deformable objects (Def.), self-collision support (Self-coll.), minimal pre-
processing (Pre.), n-body support (N-body), collision information quality (Info.), memory
usage (Mem.) and graphics hardware acceleration (GPU). The rating is either good (+),
neutral (0) or bad (-).

of other graphic hardware accelerated techniques such as insufficient self-collision

and n-body support.

An inherent flaw of discrete-time simulations are collision response artifacts such

as deep penetrations due to large time-steps. This open issue motivated the de-

velopment of a post-processing step that highly reduces artifacts and yields more

consistent and plausible collision response (see Chap. 6).

19

3 Test Suite

This chapter introduces a test suite for collision handling between deformable mod-

els. The suite consists of six experiments that are carried out to analyze the charac-

teristics and the performance of each collision handling technique presented in the

following chapters.

3.1 Overview

The experiments of the test suite are carefully selected to represent a broad range of

scenarios that typically appear in interactive simulation environments. The following

properties are considered:

• The scene complexity of the experiments ranges from a single object to

several dozens of objects. This allows for testing the scalability of the collision

handling methods with respect to the total number of objects in the scene.

• Varying the overall geometric complexity of the models leads to a detailed

analysis of the performance when the methods deal with either low-detail or

high-detail objects.

• The experiments have different types of rest states. Some of them end in a

contact-free state whereas other scenes finish with a stack of resting objects.

• The model variety in terms of complexity, shape and physical properties is

chosen to be different from one experiment to another.

• Detection of self-collisions is only enabled in the last two experiments to

reflect the fact that many interactive applications do selectively consider them.

3.2 Setup

The test suite is part of an interactive simulation environment for deformable objects

which is discussed in Sec. 7.1. This application includes all collision handling meth-

ods presented in the thesis and allows for robust measurements of computational

cost, number of collisions and other collision information during the simulation.

20 3. Test Suite

The objects in the test cases are all deformable and internally represented as

tetrahedral meshes. Their visual appearance is improved by adding a high-resolution

surface mesh to them. This mesh is deformed based on the underlying, coarser sim-

ulation geometry which is further used to perform collision detection and response.

Tab. 3.1 shows the geometric complexity and the physical material properties

of the objects used throughout the test suite. The underlying deformable model is

based on the work presented in [Tes04] which computes the dynamic behavior of

objects based on forces derived at mass points from potential energies. These forces

preserve distances between mass points and volumes of tetrahedrons. The material

properties of a deformable object are described by weighted stiffness coefficients of

these considered potential energies.

Object Vertices Tetrahedrons Vertex Stiffnesses Damping

Mass Distance Volume Coeff.

Head 66 143 0.02 100 10000 0.5

Ball 13 20 0.1 200 200 0.8

Pitbull 2482 7691 0.001 10 10 0

Membrane 242 500 0.01 200 100 0.2

Cow 332 969 0.01 200 500 0.3

Teddy 338 852 0.01 200 5000 0.3

Rod 909 2000 0.01 50 300 0.2

Table 3.1: Objects used in the test cases and their geometric complexity and material
properties.

To be able to compare the performance of the different collision handling methods

the simulation is pre-recorded and played back. This ensures that the comparisons

are based on the same simulation data. The measurements do not include collision

detection against the ground and walls of the environment.

3.3 Test Cases

The following Sec. 3.3.1 - 3.3.6 give a detailed description of the six test scenes. A

summary of the experiments can be found in Sec. 3.3.7.

3.3. Test Cases 21

3.3.1 Boldie Scene

The focus of this experiment lies on testing the performance of many low-resolution

objects that experience multiple collisions and finally find a stable rest state.

Section Experiment Objects Vertices Tetrahedrons Self-collision

3.3.1 Boldie 97 1313 2062 no

The experiment starts with a single head model inside a box. The bottom of

the model is fixed to the ground (top-left image). After a few seconds, dozens

of deformable ball models are dropped from the sky (top-right image). They either

collide with the head or the ground which results in a multitude of dynamic contacts

between the objects. All models in the scene are elastically deformed as a result of

these collisions (bottom-left image). The scene comes to a complete rest at the end

of the experiment where multiple resting contacts ensures that the models do not

penetrate each other (bottom-right image).

22 3. Test Suite

3.3.2 Pitbull Scene

The focus of this experiment lies on testing the performance of two high-resolution

objects that experience an intense collision impact before separating again.

Section Experiment Objects Vertices Tetrahedrons Self-collision

3.3.2 Pitbull 2 4962 19380 no

At the beginning of the experiment two opposing pitbull models approach each

other with a high velocity (top-left image). An intense impact happens when they

meet in midair and both models heavily bend in response to this (top-right image).

Still in contact, the two models fall to the ground and start separating again (bottom-

right image). In the end, they reach their final position and only a few number of

resting contacts remain between their feet (bottom-right image).

3.3. Test Cases 23

3.3.3 Mixed Scene

The focus of this experiment lies on testing the performance of collision handling

between several objects with different geometric or physical properties, such as small-

large, convex-concave, light-heavy and soft-rigid models.

Section Experiment Objects Vertices Tetrahedrons Self-collision

3.3.3 Mixed 8 746 1939 no

The models in this scene are dropped from a pre-defined height at the beginning

of the experiment (top-left image). Multiple dynamic collisions start to happen when

the lowest model reaches the ground (top-right image). The objects bounce away

from each other due to the collision response and the elastic deformation (bottom-

left image). After a while the scene comes to a rest when all models are completely

separated again (bottom-right image).

24 3. Test Suite

3.3.4 Membrane Scene

The focus of this experiment lies on testing the collision handling performance and

consistency of a stack of deformable objects that are influenced by a large number

of resting contacts.

Section Experiment Objects Vertices Tetrahedrons Self-collision

3.3.4 Membrane 10 2420 5000 no

No collisions exist at the start of the experiment when the membrane models are

dropped from a pre-defined height (top-left image). After the lowest membrane hits

the ground the following objects start to eventually build a stack (top-right image).

The collision response coupled with the elastic deformation leads to a separation of

several membranes at the top (bottom-left image). The experiment ends when the

stack of deformable models reaches an equilibrium due to the high number of resting

contacts (bottom-right image).

3.3. Test Cases 25

3.3.5 Rod Scene

The focus of this experiment lies on testing the performance of a highly deformable

model that experiences self-collisions.

Section Experiment Objects Vertices Tetrahedrons Self-collision

3.3.5 Rod 1 918 2000 yes

A long deformable rod falls to the ground at the beginning of the experiment

(top-left image). After the initial contact with the ground the model deforms and

self-collisions starts to occur (top-right image). Multiple dynamic self-collisions must

be handled in the middle of the impact where the model is heavily deformed (bottom-

left image). A few stable self-collisions still remain after the relaxation of the model

when it reaches the the final rest state (bottom-right image).

26 3. Test Suite

3.3.6 MultiRod Scene

The focus of this experiment lies on testing the collision handling performance and

consistency of highly deformable models that encounter collisions and self-collisions.

Section Experiment Objects Vertices Tetrahedrons Self-collision

3.3.6 MultiRod 4 3672 8000 yes

Four long deformable rods are placed next to each other in midair at the start of

the experiment (top-left image). The models are then dropped and start deforming

and colliding when hitting the ground (top-right image). Many collisions and self-

collisions emerge during the phase of the highest impact (bottom-left image). Many

contacts remain when all objects in the scene reached their stable rest state (bottom-

right image).

3.3. Test Cases 27

3.3.7 Scene Summary

Section Experiment Objects Vertices Tetrahedrons Self-collision

3.3.1 Boldie 97 1313 2062 no

3.3.2 Pitbull 2 4962 19380 no

3.3.3 Mixed 8 746 1939 no

3.3.4 Membrane 10 2420 5000 no

3.3.5 Rod 1 918 2000 yes

3.3.6 MultiRod 4 3672 8000 yes

Table 3.2: Summary of all test scenes.

28 3. Test Suite

29

4 Optimized Spatial Partitioning

As evaluated in Sec. 2.5, spatial subdivision is the most promising class of collision

detection methods in the context of this thesis. However, its main weakness is the

inherent large memory requirement for the world cells and the difficulty to choose

their optimal shape and size.

These issues motivated the optimized spatial hashing method presented in this

chapter. It is also based on spatial subdivision but addresses the high memory

consumption with the use of a hashing scheme. High performance is achieved by

investigating all involved parameters and identifying their optimal setting. This

leads to a highly efficient collision detection solution that is very well suited for the

interactive applications presented in Chap. 7.

Sec. 4.1 describes the different stages of the algorithm and possible implementa-

tions for several object primitive types. The parameters that influence the perfor-

mance of the method are presented and optimized in Sec. 4.2. Various experiments

are carried out after a closer look at the time complexity of the algorithm in Sec. 4.3.

A final discussion in Sec. 4.4 about the advantages and limitations of the method is

followed by directions for future research that concludes this chapter.

4.1 Algorithm

The basic idea of the algorithm is to first subdivide space into uniform rectangular

regions, called cells. Each cell of this grid maintains a list of object primitives that

are fully or partially contained in the cell. This clustering of object primitives highly

reduces the number of necessary collision tests since object primitives have only to

be tested against other primitives sharing the same cell.

Spatial subdivision is a simple and effective method, but the infinite number of

cells that are required to span the entire 3D space poses a significant implementation

problem. One solution is to restrict the partitioning to a certain region in space.

However, in a dynamic environment, this restricted region needs to be continuously

updated in order to enclose all moving and deforming objects.

A more efficient way is to employ a hash function that maps cells to a finite

number of hash table entries. This mapping is not unique and eventually leads to

so called hash collisions. However, these hash collisions can easily be detected and

resolved.

30 4. Optimized Spatial Partitioning

Algorithm Overview

The algorithm consists of the following two stages illustrated in Fig. 4.1:

• Stage 1 discretizes all object primitives with respect to 3D cells and maps

them to hash table entries.

• Stage 2 performs exact intersection tests between object primitives sharing

the same hash table entry.

primitive

hashing

exact

intersection test

intersecting

primitivesn objects

primitive

hashing

exact

intersection test

intersecting

primitivesn objects

1 2

Figure 4.1: The two stages of the spatial partitioning algorithm: 1) Primitive hashing and
2) exact intersection test.

The versatility of spatial hashing allows for collision queries between many dif-

ferent types of object primitives from several objects at the same time. The only

requirement is an appropriate discretization method and an intersection test suited

for the specific object primitive types. The rest of this chapter investigates two of

the most useful collision queries:

1. Collision and self-collision test between point and tetrahedron, which is nec-

essary when checking solid against solid (i.e. tetrahedral meshes).

2. Collision and self-collision test between line-segment and triangle, which is

necessary when checking surface against surface (i.e. triangle meshes).

4.1.1 Primitive Hashing

The first stage of the algorithm discretizes points, line-segments, triangles and tetra-

hedrons into cells in order to map them to entries in the spatial hash table. Given

the cell coordinates (i, j, k) with respect to a chosen grid cell size and origin, the

index h into the hash table is

4.1. Algorithm 31

h = H(i, j, k) (4.1)

whereH is an appropriate hash function (see Sec. 4.2.1). For the rest of this chapter,

without loosing generality, the origin of the grid is assumed to be at (0, 0, 0).

The grid cell size, which is used during primitive hashing, influences the number

of object primitives that are mapped to the same hash index. In case of larger cells,

the number of primitives per hash index increases and the overall intersection test

slows down. On the other hand, object primitives may also cover a larger number of

cells if the cell size is significantly smaller than the object primitive. This leads to

more collision tests in a larger number of hash entries. The performance thus highly

depends on an appropriate size of the grid cells as well as the hash table. Both are

investigated in more details later in this chapter (see Sec. 4.2.2 and 4.2.3).

Point Hashing

Spatial hashing of points is straightforward since points can only be contained in one

single cell at a time (see Fig. 4.2). Given a point p = (x, y, z), the indices (i, j, k) of

the corresponding cell are

(i, j, k) = (b x

sgrid

c, b y

sgrid

c, b z

sgrid

c) (4.2)

where sgrid is the grid cell size. The index h into the hash table can then be computed

with 4.1.

hash tableuniform grid entries

Figure 4.2: Points lie in only one grid cell and are hashed into a single hash table entry.

32 4. Optimized Spatial Partitioning

Line-Segment Hashing

In contrast to points, line-segments may intersect multiple cells (see Fig. 4.3). The

following voxel traversal algorithm is used to discretize a line-segment into cells:

Algorithm VoxelTraversal

(∗ Voxel traversal technique [Ama87] ∗)
Input: Start position (xs, ys, zs), End position (xe, ye, ze)

Output: Voxel list vlist

1. (x, y, z) ←(floor(xs), f loor(ys), f loor(zs))

2. (dx, dy, dz) ←(xe − xs, ye − ys, ze − zs)

3. (tx, ty, tz) ←((xs − x) ∗ dx, (ys − y) ∗ dy, (zs − z) ∗ dz)

4. vlist ←∅
5. for n ← 0 to abs(floor(xe)−x)+abs(floor(ye)−y)+abs(floor(ze)−z)

6. do vlist ←vlist ∪ V oxel(x, y, z)

7. if tx < ty
8. then if tx < tz
9. then x = x + sign(dx)

10. tx = tx + abs(1/dx)

11. else z = z + sign(dz)

12. tz = tz + abs(1/dz)

13. else if ty < tz
14. then y = y + sign(dy)

15. ty = ty + abs(1/dy)

16. else z = z + sign(dz)

17. tz = tz + abs(1/dz)

18. return vlist

The traversal algorithm consists of two phases: Initialization and incremental

traversal. The initialization phase begins by identifying the cell in which the line-

segment starts. It then computes the first crossing of the line-segment and the cell

borders with respect to each dimension of the grid. The second phase incrementally

chooses the next cell based on the nearest crossing until the line-segment ends. After

each step, the nearest crossings on all dimenstions are adjusted accordingly.

Given the start position p0 = (x0, y0, z0) and the end position p1 = (x1, y1, z1)

of a line-segment, the normalized input parameters of the above algorithm Voxel-

Traversal are

(xs, ys, zs) = (b x0

sgrid

c, b y0

sgrid

c, b z0

sgrid

c) (4.3)

(xe, ye, ze) = (b x1

sgrid

c, b y1

sgrid

c, b z1

sgrid

c) (4.4)

4.1. Algorithm 33

hash tableuniform grid entries

Figure 4.3: Line-segments may lie in several grid cells and are hashed into one or more
hash table entries.

where sgrid is the grid cell size. The algorithm returns a list vlist containing all voxels

that are intersected by the line-segment. For each voxel in this list the corresponding

hash table index h can be computed with 4.1.

Triangle and Tetrahedron Hashing

Similar to line-segments, triangles and tetrahedrons may intersect multiple cells (see

Fig. 4.4). Voxelization methods for polygons and polytopes exist (see [Kau87]), but

they tend to be inefficient for cases where the primitive is only contained in a few

cells. Unfortunately, the hashing algorithm relies on a low number of intersected

cells to achieve optimal performance. Therefore, a simpler but conservative hashing

approach is used that performs better in such scenarios.

The hashing for triangles is done by first computing an AABB of the triangle.

Then, for each cell that is intersected by the AABB, a test is performed that checks

if the same cell is also intersected by the plane defined by the triangle. An efficient

box-plane intersection test for this task can be found in [Gre94]. Finally, the triangle

is hashed into all cells that pass the intersection test. Hashing for tetrahedrons is

approximated even simpler: After computing the AABB of the tetrahedron, it is

hashed into all cells which intersect its AABB.

The approximation of triangles by planes and tetrahedrons by boxes causes the

primitives to be hashed into more cells than necessary. However, those false hash

entries are discarded by the subsequent, exact intersection test between object prim-

itives discussed in Sec. 4.1.2.

34 4. Optimized Spatial Partitioning

hash tableuniform grid entries

Figure 4.4: Triangles and tetrahedrons are hashed by discretizing a conservative approx-
imation. This may lead to hashed cells that are not really intersected by the primitives
themselves.

4.1.2 Intersection Test

In the first stage of the algorithm, object primitives are discretized into cells and

then hashed into hash table entries. The second stage performs exact collision tests

between all primitives within such a hash table entry. A collision is detected if an

object primitive intersects another one. If both primitives belong to the same object,

the test returns a self-collision.

Details about the two most useful tests, namely point against tetrahedron and

line-segment against triangle, are given next.

Point - Tetrahedron Collisions

In order to reduce the number of necessary intersection tests and improve the per-

formance, a point is first checked against the AABB of the tetrahedron. If the point

is outside the AABB, the exact intersection test below can be skipped as no collision

is possible.

The exact intersection test between a point p = (x, y, z) and a tetrahedron T
spanned by the points

p1 = (x1, y1, z1)

p2 = (x2, y2, z2)

p3 = (x3, y3, z3)

p4 = (x4, y4, z4)

is performed by calculating barycentric coordinates of p with respect to T . These

barycentric coordinates b = (b1, b2, b3, b4) are

4.1. Algorithm 35

(b1, b2, b3, b4) = (
D1

D
,
D2

D
,
D3

D
,
D4

D
) (4.5)

where the determinant D is first computed as

D =

∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣

If D = 0, the tetrahedron is degenerated (i.e. the points are coplanar) and the

collision test is aborted. If D <> 0 then D1, D2, D3, and D4 are computed as

D1 =

∣∣∣∣∣∣∣∣∣

x y z 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣

D2 =

∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x y z 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣

D3 =

∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x y z 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣

D4 =

∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x y z 1

∣∣∣∣∣∣∣∣∣

Finally, to be inside the tetrahedron T , the barycentric coordinates b = (b1, b2, b3, b4)

of a point p must satisfy

b1 ≥ 0

b2 ≥ 0

b3 ≥ 0

b4 ≥ 0

b1 + b2 + b3 + b4 = 1

Line-Segment - Triangle Intersections

Barycentric coordinates can also be used to test if a triangle A spanned by the

points

p1 = (x1, y1, z1)

p2 = (x2, y2, z2)

p3 = (x3, y3, z3)

36 4. Optimized Spatial Partitioning

intersects a line-segment L = (p,pend), where p is the start-point and pend the

end-point of the line-segment.

Denoting e = p − p1, e1 = p2 − p1, e2 = p3 − p1 and d = pend − p, the

barycentric coordinates b = (b1, b2) of the intersection point between line-segment

L and triangle A are




b1

b2

t


 =

1

(d× e2) · e1




(d× e2) · e
(e× e1) · d
(e× e1) · e2


 (4.6)

where t is the distance from p to the intersection point (see [Moe97] for more details).

The barycentric coordinates b = (b1, b2) and distance t of the intersection point

fulfill

b1 ≥ 0

b2 ≥ 0

b1 + b2 ≤ 1

0 ≤ t ≤ 1

if the line-segment L intersects with the triangle A.

4.2 Parameters

The characteristics of the hash function, the size of the hash table and the size of

a grid cell for spatial subdivision influence the performance of the presented algo-

rithm. This section investigates these important parameters and identifies possible

optimizations.

4.2.1 Hash Function

In the first stage of the algorithm, hash values are computed for all discretized prim-

itives. These hash values should be uniformly distributed to guarantee an adequate

performance of the algorithm. The hash function has to work with primitives of the

same object, that are close to each other, and with primitives of different objects,

that are farther away.

A hash function takes data values as input and returns an integer in the range of

available indices into the hash table. In general, there are four main characteristics

of a good hash function:

4.2. Parameters 37

1. The hash value is fully determined by the data being hashed. If something

else besides the input data is used to determine the hash value, then the result

is not as dependent upon the input data, thus allowing for a bad distribution

of the hash values.

2. The hash function uses all the input data. If the hash function does not

use all the input data, then slight variations to the input data would cause

an inappropriate number of similar hash values resulting in too many hash

collisions.

3. The hash function uniformly distributes the data across the entire set of pos-

sible hash values. If the hash function does not uniformly distribute the data,

a large number of hash collisions will result, cutting down on the efficiency of

the hash table.

4. The hash function generates very different hash values for similar input data.

In real world applications, many data sets contain very similar data elements.

These data elements should still be distributable over the whole hash table.

There are several ways for constructing such a hash function (see [McK90b]).

However, not all hash functions are equally suited for spatial hashing. In addition

to the above criteria, spatial hashing requires that the hash function performs best

when called many times on small input data. In order to reach the highest possible

computational efficiency, a good choice for the hash function H is

H(i, j, k) = (ip1 ⊗ jp2 ⊗ kp3) mod n (4.7)

where ⊗ denotes an XOR-operation, (i, j, k) are the cell coordinates, n the hash

table size and p1, p2, p3 large prime numbers.

Due to its simplicity, this function can be evaluated very efficiently. All involved

arithmetic instructions are trivial and natively supported on current CPUs. The

proposed function still fulfills all the above requirements of a good hash function

and performed very well in all simulation scenarios presented throughout this thesis.

4.2.2 Hash Table Size

The size of the hash table significantly influences the performance of the collision

detection algorithm. Larger hash tables reduce the risk of mapping different 3D

positions to the same hash index. Therefore, the algorithm generally works faster

with larger hash tables. On the other hand, the performance slightly decreases for

larger hash tables due to memory and cache management overhead. It is also known,

38 4. Optimized Spatial Partitioning

that hash functions work most efficiently if the hash table size is a prime number

[Cor90]. Fig. 4.5 shows the performance of the algorithm for a typical scenario with

a varying hash table size. If the hash table is significantly larger than the number of

object primitives, the risk of hash collisions is minimal. A setting that works very

well in practice is to choose the hash table size as a small multiple of the number of

object primitives.

0

10

20

30

40

50

60

70

80

90

100

97 1723 3371 5039

Hash Table Size

P
ri

m
it

iv
es

 p
er

 H
a
sh

 I
n

d
ex

0

5

10

15

20

25

30

35

40

T
im

e
[m

s]

Primitives per Hash Index

Time [ms]

Figure 4.5: Influence of the hash table size on the performance.

The hash table size also affects the computational cost for initializing the un-

derlying data structures. At the beginning of each simulation step, the hash table

is cleared and each hash table index is initialized with an empty entry. Thus, the

complexity of this process is linear in the number of hash table indices.

To avoid a full re-initialization of the hash table in each simulation step, the

hash table indices are labeled with a unique time stamp. Furthermore, there exists

a global time stamp that is incremented after each simulation step. Every time an

object primitive is hashed to a hash table index, the corresponding time stamp is

compared to the global time stamp. If they differ, the hash table index is first initial-

ized before adding the new entry. This lazy initialization scheme can dramatically

improve the performance of sparse scenes.

4.2. Parameters 39

4.2.3 Grid Cell Size

The grid cell size affects the number of object primitives, that are mapped to the

same hash table index. In case of larger grid cells, the number of primitives per

hash table index increases and the intersection test slows down as more primitives

have to be tested against each other. If the cell size is significantly smaller than the

object primitives, they cover a larger number of cells and need to be checked against

more hash table entries filled with object primitives.

A multitude of experiments have been carried out to find an optimal grid cell

size. The test scenarios consist of several thousand tetrahedrons placed at random

positions around the origin with varying density. Edge lengths of the tetrahedrons

differ up to a factor of 10 to account for variable object discretizations. All exper-

iments showed similar results and led to the same conclusion: The grid cell size

should be equal to the average extent of all object primitives to achieve optimal

performance. Fig. 4.6 illustrates a representative measurement of the influence of

the grid cell size on the number of collision tests, the number of cells per object

primitive and the collision detection time.

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5

Cell Size / Average Extent

C
o

ll
is

io
n

 T
es

ts
 [

1
0

0
k

]

C
el

ls
 p

er
 P

ri
m

it
iv

e

0

10

20

30

40

50

60

70

T
im

e
[m

s]

Collision Tests [100k]

Cells per Primitive

Time [ms]

Figure 4.6: Influence of the grid cell size on the performance and the number of primitives
per grid cell.

In practice, a good strategy is to initially set the grid cell size to the average

extent of all existing objects in the scene. It should then be periodically updated

40 4. Optimized Spatial Partitioning

whenever objects are added to or removed from the scene. Changes in topology or

geometric resolution of objects should also trigger an update.

A comparison of Fig. 4.5 and 4.6 illustrates, that the grid cell size has a more

significant impact on the performance than the hash table size or hash function. The

only exception is when the hash table size is much too small. Such configurations

should be avoided as they will cause a huge amount of hash collisions and an excessive

drop in performance.

4.3 Results

The first part of this section analyzes the theoretical time complexity of the opti-

mized spatial hashing algorithm. The second part carries out the test suite from

Chap. 3.

4.3.1 Time Complexity

Let S1 and S2 be the two sets of object primitives that should be tested for collision

against each other, and n1 and n2 the number of primitives in each set. To find

all intersecting pairs, a naive approach would be to test all object primitives in

S1 against all primitives in S2. This results in a time complexity in the order of

O(n1 · n2). The goal of the spatial hashing approach is to reduce this complexity to

O(n1 + n2).

During the first pass, all primitives of S1 are inserted into the hash table. This

takes O(n1 ·c) time where c is the average number of cells intersected by a primitive.

The hash table can be lazy initialized (see Sec. 4.2.2), so the time complexity is

independent of the hash table size.

In the second pass, the primitives of S2 are tested for collision against all prim-

itives of S1 in the local neighborhood. The time complexity of this pass is in the

order of O(n2 · c · p) where c is again the average number of cells intersected by a

primitive and p the average number of primitives of S1 per cell.

If the cell size is chosen to be proportional to the average primitive extent then

c is a constant. Furthermore, if the hash function does not produce hash collisions

and the hash table size is chosen to be proportional to the number of primitives in

the scene, the average number of primitives per cell p is constant too.

With both, c and p, being constant, the time complexity of the algorithm turns

out to be linearly dependent on the number of primitives. Since deformation algo-

rithms need to process all the primitives at each time step, linear time complexity for

collision detection does not increase the overall time complexity of the simulation.

4.3. Results 41

4.3.2 Experiments

The proposed method is part of an interactive simulation environment for deformable

objects (see Sec. 7.1). Within this application, various experiments have been carried

out to analyze the characteristics and the performance of the collision detection

technique. A detailed description of the test scenarios can be found in Chap. 3,

as they are referenced in several parts of this thesis. All timings presented in this

section have been measured on a PC Pentium 4, 3.2 GHz. The hash table size

is set to 49999, whereas the grid cell size is equal to the average edge length of

all tetrahedrons in the corresponding test scene (as suggested in Sec. 4.2.2 and

Sec. 4.2.3).

Boldie Scene

The first experiment consists of dropping dozens of balls on a head that is attached

to the ground (see Sec. 3.3.1). The timing measurements in Fig. 4.7 show that no

collisions exist at the beginning and during the first phase of the experiment. As

the objects start to approach each other, the computational cost slightly increases.

This is due to the increased number of nearby object primitives that are hashed into

the same hash index. The second phase then shows a steep rise in the number of

collisions when the balls hit the head and, in turn, other balls. The scene comes to

a rest in the last phase while the number of collisions and the computational cost

converge to an equilibrium. At the end of the experiment the collision detection

needs 4.7 ms to find 782 resting contacts between the 97 objects in the scene. The

maximum memory consumption for the hash table entries during the experiment is

10 KB. The average number of object primitives per non-empty grid cell is 9, the

maximum is 15.

Pitbull Scene

This scene features two highly-detailed pitbulls which collide in midair (see Sec. 3.3.2).

The heavy impact at the beginning of the experiment is clearly visible in the timing

measurements (see Fig. 4.8). A total of 270 collisions are detected in 21.8 ms at

the time of maximum penetration between the two objects. After a sharp decline,

the number of collisions increases again when the two pitbulls fall on each others

legs while hitting the ground. At the end of the experiment, 5 resting contacts

remain which are detected in 16.8 ms. The maximum memory consumption for the

hash table entries during the experiment is 39 KB. The average number of object

primitives per non-empty grid cell is 18, the maximum is 35.

42 4. Optimized Spatial Partitioning

Mixed Scene

During this experiment, different types of models undergo several dynamic colli-

sions before coming to a contact-free rest state on the ground (see Sec. 3.3.3). The

collision detection needs between 1.75 and 2.05 ms to find all collisions per frame

(see Fig. 4.9). Interestingly, the computational cost at the final rest state, when

no collisions exist, is slightly higher than during some earlier phases with several

collisions. The reason is that more object primitives are hashed into the same hash

index when all objects lie on the ground due to the alignment and size of the hash

grid cells. The maximum memory consumption for the hash table entries during the

experiment is 6 KB. The average number of object primitives per non-empty grid

cell is 19, the maximum is 29.

Membrane Scene

In this scene, ten membranes of different sizes are dropped to the ground where

they eventually stack up (see Sec. 3.3.4). As expected, the computation cost sharply

increases during the experiment as more and more collisions occur. Fig. 4.10 also

shows several moments when the membranes shortly bounce away from each other,

temporarily resulting in less collisions. Finally, 9.9 ms are required to find 1660

resting contacts between the 10 objects at the end of the experiment. The maximum

memory consumption for the hash table entries during the experiment is 19 KB. The

average number of object primitives per non-empty grid cell is 15, the maximum is

24.

Rod Scene

A highly deformable rod is tested for self-collisions in this experiment (see Sec. 3.3.5).

During the phase of maximum impact the collision detection needs 3.5 ms to find the

283 self-collisions. At the end of the experiment, these numbers drop to 2.6 ms for 71

self-collisions due to the relaxation of the rod (see Fig. 4.11). An interesting artifact

can be observed at the beginning of the timing measurements: The initial position

and orientation of the rod, which is then exactly aligned to the hash grid cells,

leads to a computational cost that is significantly higher than in later frames where

the rod is already bent and better distributed to the hash indices. The maximum

memory consumption for the hash table entries during the experiment is 7 KB. The

average number of object primitives per non-empty grid cell is 8, the maximum is

17.

4.4. Discussion 43

MultiRod Scene

Collisions and self-collisions of four rods are tested in this last experiment (see

Sec. 3.3.6). The timing measurements in Fig. 4.12 show that a total of 1411 collisions

and self-collisions are detected in 17.7 ms at the time of maximum impact. A total of

553 collisions and self-collisions remain when the objects finally find their rest states.

This collision detection at the end of the experiment takes 13.4 ms per frame. The

maximum memory consumption for the hash table entries during the experiment is

28 KB. The average number of object primitives per non-empty grid cell is 11, the

maximum is 28.

4.4 Discussion

Spatial partitioning is a simple and fast technique to accelerate collision detection

in case of moving and deforming objects. It is independent of topology changes

and provides a straight-forward solution to self-collision detection. Spatial parti-

tioning is not restricted to triangles, but naturally works with other primitive types

if appropriate discretization algorithms and intersection tests are implemented.

The basic spatial partitioning can be extended by a hash function to optimize

the memory footprint and overcome implementation problems, such as the need for

potentially infinite number of grid cells. Instead of computing the global bounding

box of all objects and explicitly performing a spatial partitioning, a hash function

is used that maps 3D positions to hash table entries, thus realizing a very efficient,

implicit spatial subdivision.

Various parameters influence the performance of the spatial hashing approach,

such as the shape and size of a grid cells, the hash function and the number of the

hash table entries. This chapter investigated these parameters and proposed several

ways to optimize them.

A larger hash table decreases the chance of hash collisions which in turn increases

the overall performance of the collision detection. The same is true if the hash

function is carefully chosen so that it matches the characteristics of the spatial

partitioning technique. Various experiments suggest that the optimal cell size is

about the same as the extent of a single object primitive, which confirms a similar

result that has been presented in [Ben77].

The presented method and its data structures are simple to implement, but turn

out to be cache unfriendly due to the random memory access during the primitive

hashing stage. This is most obvious when processing triangles and tetrahedrons

which span multiple grid cells.

In contrast to other collision detection methods, spatial hashing does not show

extreme performance fluctuations. This makes the computational cost more pre-

44 4. Optimized Spatial Partitioning

dictable which is important for interactive simulation environments. Unfortunately,

there is a higher computational cost for trivial non-collision cases compared to other

techniques. A simple solution to this problem is to use an efficient broad-phase

based on SAP to find collision island and isolated objects. Spatial hashing is then

performed for each collision island independently whereas isolated objects are com-

pletely ignored in later collision detection stages.

There exist numerous public domain collision detection libraries, such as RAPID

[Got96], PQP [Lar99] and SWIFT [Ehm00]. A direct performance comparison of

these methods with the optimized spatial partitioning is difficult, because they do

not really address the same task. All above collision detection libraries are designed

to work best with rigid bodies, whereas the spatial hashing has advantages when

handling deformable objects. Therefore, it is not surprising that each category

outperforms the other in their area of expertise.

The main advantage of the presented approach is its versatility. Despite the sim-

ple data structure, it allows to carry out n-body collision detection and self-collision

detection at the same time and in one single pass. It is even applicable to related

problems, such as proximity queries. The method supports deformable as well as

rigid objects consisting of several primitive types. The collision information provided

by the optimized spatial partitioning consists of pairs of intersecting object primi-

tives. This output can directly be used to compute a suited collision response. In

conclusion, the method is very efficient in physically-based simulation environments

with dynamically changing spatial distributions of deformable objects.

Directions for future work

In very heterogeneous scenes where the objects are composed of different sized prim-

itives, it is hard to find an optimal grid cell size. Unfortunately, the grid cell size

is one of the parameters that directly influences the performance of the spatial par-

titioning method. Further investigations should lead to an approach that handles

these scenarios in a more optimal manner. One possible way would be to apply hi-

erarchical techniques to make the spatial hashing more adaptive to primitive sizes.

Spatial and temporal coherence is not exploited in the presented method. Such

an extension could lead to better performance when many rigid, static or slow mov-

ing objects exist in the simulation. For example, static objects could permanently

be stored in the hash table and do not need to be updated in every time step.

A perfect multidimensional hash function [Lef06] would help to minimize hash

collisions and memory cache misses and thus increase the overall performance. Un-

fortunately, the construction of the perfect hash function is a nontrivial and costly

operation.

Parallel architectures, such as multi-core processors and special purpose add-on

4.4. Discussion 45

cards [Heg05], gain more and more popularity these days. The optimized spatial

partitioning method could greatly benefit from such additional computing power.

However, parallelizing the algorithm with its random memory access turns out to

be difficult.

46 4. Optimized Spatial Partitioning

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000

Frame

N
u

m
b

e
r
 o

f
C

o
ll

is
io

n
s

0

1

2

3

4

5

T
im

e
 [

m
s]

Number of Collisions

Time [ms]

Figure 4.7: Experiment: Boldie scene.

0

50

100

150

200

250

300

350

400

0 200 400 600 800 1000

Frame

N
u

m
b

e
r
 o

f
C

o
ll

is
io

n
s

14

15

16

17

18

19

20

21

22

23

T
im

e
 [

m
s]

Number of Collisions

Time [ms]

Figure 4.8: Experiment: Pitbull scene.

4.4. Discussion 47

0

10

20

30

40

50

60

0 400 800 1200 1600 2000

Frame

N
u

m
b

e
r
 o

f
C

o
ll

is
io

n
s

1.5

1.6

1.7

1.8

1.9

2.0

2.1

T
im

e
 [

m
s]

Number of Collisions

Time [ms]

Figure 4.9: Experiment: Mixed scene.

0

500

1000

1500

2000

0 200 400 600 800 1000 1200

Frame

N
u

m
b

e
r
 o

f
C

o
ll

is
io

n
s

0

2

4

6

8

10

12

T
im

e
 [

m
s]

Number of Collisions

Time [ms]

Figure 4.10: Experiment: Membrane scene.

48 4. Optimized Spatial Partitioning

0

50

100

150

200

250

300

350

400

0 250 500 750 1000 1250

Frame

N
u

m
b

e
r
 o

f
C

o
ll

is
io

n
s

1

2

3

4

T
im

e
 [

m
s]

Number of Collisions

Time [ms]

Figure 4.11: Experiment: Rod scene.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 250 500 750 1000 1250

Frame

N
u

m
b

e
r
 o

f
C

o
ll

is
io

n
s

0

2

4

6

8

10

12

14

16

18

20

T
im

e
 [

m
s]

Number of Collisions

Time [ms]

Figure 4.12: Experiment: MultiRod scene.

49

5 Image-Space Collision Detection

The optimized spatial hashing approach presented in the previous Chap. 4 is a highly

efficient collision detection method for deformable objects. However, it does not map

well onto graphics hardware to exploit the computational power of programmable

GPUs.

Image-space techniques are much better suited for graphic hardware acceleration

(see evaluation in Sec. 2.5). The method presented in this chapter is based on an

approximate volumetric representation of the deformable objects and was motivated

by several weaknesses, such as insufficient self-collision support, of other graphic

hardware accelerated techniques.

Sec. 5.1 describes the different stages of the algorithm and explains the possible

collision queries. Details of three different implementations of the algorithm can be

found in Sec. 5.2. The performance of these implementations are then compared

in Sec. 5.3 along with various other experiments. The chapter concludes with a

discussion about the advantages and limitations of the method followed by directions

for future research in Sec. 5.4.

5.1 Algorithm

The basic idea of the algorithm is to first compute an approximate volumetric rep-

resentation of the involved objects which is then used for several variants of collision

queries. The computation of the volumetric representation is done in image-space

to take advantage of potential graphics hardware acceleration.

Algorithm Overview

The algorithm consists of the following three stages illustrated in Fig. 5.1:

• Stage 1 computes the Volume-of-Interest (VoI). This VoI represents the vol-

ume where collision queries are actually performed.

• Stage 2 generates a separate volumetric representation for each object inside

the VoI. Note, that the generation is restricted to the VoI and all object

primitives outside the VoI are discarded.

• Stage 3 performs one (or more) of the following three collision queries:

50 5. Image-Space Collision Detection

a) Self-collision query of a single object.

b) Collision query between pairs of objects.

c) Collisions query between individual vertices and an object.

volume-of-interest

computation

volumetric

approximation collision query

1 object

1 object + vertices

intersection volume

vertices-in-volume

self-intersection volume

2 objects

volume-of-interest

computation

volumetric

approximation collision query

1 object

1 object + vertices

intersection volume

vertices-in-volume

self-intersection volume

2 objects

1 2 3

Figure 5.1: The three stages of the image-space algorithm: 1) Volume-of-Interest compu-
tation, 2) volumetric approximation and 3) collision queries.

5.1.1 Volume-of-Interest

The first stage of the algorithm computes a conservative region in space in which

collisions may actually happen. This VoI is used as criterion for an early abort test

and as domain for computations in the second and third stage of the algorithm.

a) b) c)a) b) c)

Figure 5.2: Volume-of-Interest for self-collision (a), collision between pairs of objects (2)
and collision between an object and individual vertices (c).

When testing for self-collision, the VoI is given by the AABB of the entire object.

For collision queries between pairs of objects or between individual vertices and an

object, the VoI is computed as intersection of the two AABBs (see Fig. 5.2). If

5.1. Algorithm 51

the two AABBs do not overlap, the corresponding objects cannot interfere and

the algorithm aborts. Otherwise, the intersection volume provides a VoI, which is

considered for further processing. Although AABBs do not provide an optimal (i. e.

smallest) bounding volume, they can be computed very efficiently. Furthermore, the

intersection of two AABBs is again an AABB which keeps subsequent stages of the

algorithm simple.

Alternative bounding volumes, such as oriented bounding boxes [Got96] or discrete-

oriented polytopes [Klo96], provide tighter fitting object approximations. However,

the computation of these representations is more involved and the resulting intersec-

tion volume can have a more complex shape making it much more difficult for further

processing. In addition, such structures are impractical for deforming objects, which

require a dynamic adaptation of the bounding volume.

The VoI consists of six faces defining the AABB. In order to simplify and ac-

celerate further computations, the faces of the VoI have to meet the following two

requirements:

1. To guarantee proper boundary conditions, there must exist at least one so-

called outside face with respect to each object. A face of the VoI is an outside

face if the object completely lies on one side of the plane defined by the face

(see Fig. 5.3).

a) b) c)a) b) c)

Figure 5.3: The VoI (a) defines outside faces for both involved objects (b and c).

2. Outside faces for pairs of objects should correspond to opposite sides of the

VoI (see Fig. 5.4). This simplifies the combination of both volumetric repre-

sentations in later stages.

In some cases, for instance when one box is entirely within another box, appro-

priate outside faces for both objects cannot be found. This problem is solved by

extending the VoI. If the outside face of one object is fixed, the opposite face of the

VoI can be scaled to touch the bounding box of the other object (see Fig. 5.5).

52 5. Image-Space Collision Detection

a) b) c)a) b) c)

Figure 5.4: Outside faces (a) should correspond to opposite sides of the VoI. Two possi-
bilities exist (b and c).

a) b) c)a) b) c)

Figure 5.5: No opposite outside faces may be found (a). In this case, the VoI is extended
(b) until a matching outside face pair is found (c).

5.1.2 LDI Generation

The second stage of the algorithm generates a separate Layered Depth Image (LDI)

for each object. Discretized at a predefined resolution, these LDIs represent an

explicit volumetric approximation of the corresponding object within the VoI.

An LDI basically consists of images or layers of depth values representing the

object surface. The depth values of the LDI can be interpreted as intersections of

parallel rays or 3D scan lines entering or leaving the object. Thus, an LDI classifies

the VoI into inside and outside regions with respect to an object. The concept is

similar in spirit to well-known scan-conversion algorithms that fill concave polygons

[Fol90]. Intersections of a scan line with a polygon represent transitions between

interior and exterior. The concept of using LDIs as a volumetric representation is

exemplified in Fig. 5.6.

In order to generate an LDI, the object is rendered multiple times using an

5.1. Algorithm 53

a) LDI b)

z1 z2 z3 z4

z z

a) LDI b)

z1 z2 z3 z4

z z

Figure 5.6: The intersections of parallel rays with object surface define an LDI (a) which
approximates the volume of the object (b).

orthogonal projection. The viewing parameters for the rendering process are de-

termined by the selected outside face of the VoI defining the near plane and the

opposite face defining the far plane. The remaining faces define top, bottom, left

and right of the rendering volume. If several eligible pairs of outside faces exist, the

ones with the smallest distance between them are chosen. This criterion is a fast

heuristic to optimize depth complexity assuming that depth complexity scales with

the distance between the two outside faces.

Objects are rendered nmax times for LDI generation, where nmax denotes the

depth complexity of the relevant part of the object within the VoI. Thus, the com-

putational complexity of the LDI generation is O(nmax). The first rendering pass

generates a single LDI layer and computes the value of nmax. If nmax > 1, additional

rendering passes 2 to nmax generate the remaining layers (see Fig. 5.7). For details

regarding the implementation variants, refer to Sec. 5.2.

Figure 5.7: A knot model and its volumetric approximation. The colors indicate the layer
within the LDI.

54 5. Image-Space Collision Detection

If an LDI is generated in the above way, entry points (front-faces) and exit points

(back-faces) alternate with respect to their depth. For closed objects, the first layer

is assumed to contain entry points, the second layer exit points and so on.

There are two parameters that influence the quality and performance of the

algorithm, namely the LDI resolution (see Fig. 5.8) and the render direction (see

Fig. 5.9).

a) b) c)

z z z

a) b) c)

z z z

Figure 5.8: The LDI resolution influences the accuracy and the performance.

The accuracy of the method can be adjusted by the user. In (x, y)-direction,

accuracy corresponds with the chosen LDI resolution. The accuracy in z-direction

is given by the depth-buffer resolution which is dependent on the chosen implemen-

tation (see Sec. 5.2). Qualitative comparisons between different LDI resolutions and

the impact on the performance are discussed in Sec. 5.3.

a) b) c)

z

z

z

a) b) c)

z

z

z

Figure 5.9: Changing the render direction leads to different volumetric approximations.

Compared to alternative data structures, such as bounding-volume hierarchies or

5.1. Algorithm 55

distance fields, the LDI representation is very memory efficient. Both the memory

consumption and the performance of the LDI generation depend on the geometric

complexity and the depth complexity of the objects. However, the results presented

in Sec. 5.3 suggest, that the number of LDI layers does not exceed reasonable values

even for complex objects. Furthermore, collision queries performed on the generated

LDIs are very efficient even in the case of a large number of LDI layers.

At the end of the second stage, there exists an LDI for all objects within the

VoI. Additional information, such as face orientation or normals, can also be gener-

ated and stored for each entry in the LDI. For example, the classification in entry

points (front-faces) and exit points (back-faces) is required for the self-collision query

described in the next stage.

5.1.3 Collision Query

The LDIs computed in the previous stage can be utilized to efficiently process a

variety of collision queries in the third stage of the algorithm.

Self-collision query of a single object

Self-collisions are detected by analyzing the order of entry and exit points within the

LDI. There exists no self-collision if they correctly alternate. If invalid sequences of

entry and exit points are detected, the operation provides the explicit representation

of the self-intersection volume (see Fig. 5.10).

Collision query between pairs of objects

Two LDIs can be combined to compute their intersection volume. The LDIs for

two colliding objects are both discretized with the same resolution on corresponding

sampling grids, but with opposite viewing directions. Hence, pixels in both LDIs

represent corresponding volume spans. Therefore, intersection volumes can be com-

puted by a pixel-wise intersection of the inside regions of both LDIs. A collision is

detected if the resulting intersection is non-empty. The sum of all pixel-wise inter-

section regions constitutes a discrete representation of the intersection volume (see

Fig. 5.11).

This collision query can also be considered as Boolean intersection operator on

the two volumetric objects. Such operations on solids are commonly used in con-

structive solid geometry (CSG) [Hof89]. By combining multiple levels of CSG oper-

ators, very complex objects can be produced from simple primitives, such as spheres

or boxes. There are three CSG operators available: Union, Intersection and Differ-

ence (see Fig. 5.12). Each operator acts upon two objects A and B and produces a

single object C as result:

56 5. Image-Space Collision Detection

a) LDI b)

z1 z2 z3 z4 z5 z6

z z

Figure 5.10: The self-collision query reports invalid ordering of entry and exit points (a)
as self-intersection volume (b).

• C = A∪B : The Union results in an object that encloses the combined space

occupied by the two given objects.

• C = A ∩ B : The Intersection results in an object that encloses the space

where the two given objects overlap.

• C = A − B : The Difference is order dependent and results in the parent

object minus the space where the child object intersected the parent object.

All three CSG operators can be applied to pairs of LDIs. However, only the

Boolean intersection of two LDIs is useful in the context of collision detection:

C = A ∩B

{
= ∅ : no collision

6= ∅ : collision
(5.1)

Collision query between individual vertices and an object

Individual vertices can also be tested against an LDI. To this end, the vertex is

transformed into the local coordinate system of the LDI. A collision is detected if

5.1. Algorithm 57

a) b) c)

z z z

a) b) c)

z z z

Figure 5.11: The collision query between pairs of objects reports the intersection volume
(c) based on the LDIs of the objects within the VoI (a and b).

Figure 5.12: The CSG operators (from left to right): Union, Intersection and Difference.

the transformed vertex intersects with an inside region (see Fig. 5.13). This query

can be used to compute collisions with atomic objects, such as particles or mass-

spring systems often used in cloth simulation.

58 5. Image-Space Collision Detection

a) b) c)

z z z

a) b) c)

z z z

Figure 5.13: The collision query between an object (a) and individual vertices (b) reports
a list of penetrating vertices (c). This is useful to test particle systems against objects in
the scene (top-right image).

5.2 Implementations

The VoI computation in stage 1 and the collision queries in stage 3 of the algorithm

do not significantly contribute to the overall computational cost (see Sec. 5.3). Since

the LDI generation in stage 2 is comparatively expensive, a detailed description of

three implementation variants is given in this section.

Two variants that exploit graphics hardware are addressed in Sec. 5.2.1 and

Sec. 5.2.2. Using the GPU for this task is obviously useful, since stage 2 of the

method basically rasterizes triangles. However, lack of flexibility in GPU implemen-

tations and the data read-back delay motivated a third implementation, which is

completely processed on the CPU (see Sec. 5.2.3).

5.2.1 Ordered LDI

The first implementation generates LDIs using a generalized depth peeling approach

on graphics hardware. As the name suggests, the technique peels away depth layer

by depth layer resulting in an LDI whose depth values are correctly sorted per LDI

5.2. Implementations 59

pixel. Fig. 5.14 illustrates the Ordered LDI generation.

a) b)

z1

z1
z

pass #1

a) b)

z1

z1
z

pass #1

z1 z2 z3

z1 z2 z3
z

pass #3

z1 z2 z3 z4 z5 z6

z1 z2 z3 z4
z

pass #n

Figure 5.14: The Ordered LDI generation processes the entry and exit points according to
their depth (a). This leads to an ordered LDI which does not need to be explicitly sorted
(b).

Depth Peeling

Depth peeling was originally introduced for correct rendering of transparent surfaces

in [Eve01]. The following modifications are made to make depth peeling suitable for

LDI generation:

• A flexible abort criterion is added so that a dynamic number of LDI layers can

be generated per object. This is in contrast to the original method that only

allows to render a predefined, fixed number of depth layers.

• Color information is not considered for LDI generation and is therefore dis-

carded.

• Back-faces and front-faces of an object are handled in two successive steps.

This allows to label all LDI entries accordingly for self-collision queries. This

separation also eliminates singularities of contour edges, which is a robustness

problem of the original approach. If back-faces and front-faces coincide, the

original algorithm produces a single depth value instead of two, thus falsifying

the inside-outside classification (see Fig. 5.15).

60 5. Image-Space Collision Detection

~

~

a) LDI b)

z1

?

?

z2 z3 z4

z z

a) LDI b)

z1

?

?

z2 z3 z4

z z

Figure 5.15: Successive steps for back- and front-faces eliminate potential singularities
within the LDI (a) that lead to incorrect inside-outside classifications (b).

Multi-Pass Rendering

In order to solve the singularity problem and to generate an LDI with additional

information on face orientation, the following multi-pass algorithm is performed

twice. The first pass processes front-faces, followed by a second pass for back-

faces. Two depth buffers with corresponding depth tests are used. One buffer is

active, one is passive. Switching between active and passive buffer is necessary (see

Alg. OrderedLDI).

Algorithm OrderedLDI

(∗ Ordered LDI Generation ∗)
Input: Viewing Parameters, Active and Passive Depth Buffer, Object

Output: Layered Depth Image LDI, Depth Complexity n

1. set V iewingParameters

2. n ←0

3. clear ActiveBuffer, LDI

4. set DepthTest1 to Depth < DepthActiveBuffer

5. set DepthTest2 to AlwaysPass

6. render Object into ActiveBuffer

7. while ActiveBuffer has changed

8. do LDIn ←ActiveBuffer

9. n ←n + 1

10. switch ActiveBuffer and PassiveBuffer

11. clear ActiveBuffer

12. set DepthTest2 to Depth > DepthPassiveBuffer

13. render Object into ActiveBuffer

14. return LDI, n

5.2. Implementations 61

This method was implemented using OpenGL 1.4 functionality and a few widely

used ARB extensions. The second depth test is provided by the GL ARB shadow

and GL ARB depth texture extensions and hardware-accelerated shadow-mapping

functionality (see [Eve01]). By enabling GL ARB occlusion query, the occlusion

query mode, the number of written fragments is automatically accumulated by the

GPU and queried after the rendering has completed. It is larger than zero if one

or more fragments have been rendered, which means that another valid layer of the

LDI has been produced and can be read back from the GPU. The multi-pass LDI

generation is aborted if the occlusion query returns zero written fragments.

5.2.2 Unordered LDI

The second implementation generates unsorted LDI layers using graphics hardware.

In contrast to the Ordered LDI approach, no second depth buffer and no depth

tests are required. Fragments are discarded with the help of a stencil test. Fig. 5.16

illustrates the Unordered LDI generation.

a) b)

pass #1

a) b)

pass #1

pass #3

z2 z1 z5 z6 z4 z3

z3 z1 z4 z2
z

pass #n

z2 z1 z5

z3 z1 z4
z

z2

z3
z

Figure 5.16: The Unordered LDI generation processes the entry and exit points in an
arbitrary order (a). This leads to an LDI which does need to be sorted (b).

Stencil Setup

In the first rendering pass, the stencil test configuration allows the first fragment

per pixel to pass, while the corresponding stencil value is incremented. Subsequent

fragments are discarded by the stencil test, but still increment the stencil buffer.

62 5. Image-Space Collision Detection

Hence, after the first rendering pass the depth buffer contains the first object layer

per pixel whereas the stencil buffer contains a map representing the depth com-

plexity. Thus, nmax is found by searching the maximum stencil value. Note, that

the max() computation constitutes a very small computational burden, given the

typical LDI resolution (see Sec. 5.3).

In consecutive passes, the rendering setup is similar to the first pass. However,

during the n-th rendering pass, only the first n fragments per pixel pass the stencil

test and, as a consequence, the resulting depth buffer contains the n-th LDI layer.

Since fragments are rendered in arbitrary order, the algorithm generates an un-

sorted LDI. However, the algorithm relies on consistency across the individual passes,

which is provided by the GPU. For further processing, the LDI is sorted per pixel.

Only the first np layers per pixel are considered, where np is the depth complexity

of this pixel. np is taken from the stencil buffer as computed in the first rendering

pass. If np is smaller than nmax, layers np + 1 to nmax do not contain valid LDI

values for this pixel and are discarded.

Multi-Pass Rendering

Similar to the Ordered LDI implementation, the following multi-pass algorithm is

performed once for front-faces and again for back-faces to provide information on face

orientation. A single depth buffer is employed, but no depth test is needed. A stencil

buffer with corresponding tests and operations is required (see Alg. UnorderedLDI).

Algorithm UnorderedLDI

(∗ Unordered LDI Generation ∗)
Input: Viewing Parameters, Depth Buffer, Stencil Buffer, Object

Output: Layered Depth Image LDI, Depth Complexity n

1. set V iewingParameters

2. n ←0

3. clear DepthBuffer, StencilBuffer, LDI

4. set StencilTest to Stencil <= n

5. set StencilOp to AlwaysIncrement

6. render Object into DepthBuffer

7. nmax ←max(StencilBuffer)

8. while n < nmax

9. do LDIn ←DepthBuffer

10. n ←n + 1

11. clear DepthBuffer, StencilBuffer

12. set StencilTest to Stencil <= n

13. render Object into DepthBuffer

14. return LDI, n

5.2. Implementations 63

This algorithm is implemented using core OpenGL 1.4 functionality. OpenGL

extensions are not employed. Each rendering pass requires a buffer read-back. Read-

ing back data from the GPU, however, can be expensive depending on the actual

hardware. We propose two methods for optimizing the data transfer using OpenGL

extensions. First, depth and stencil values of a pixel are usually stored in the same

32-bit word in the frame buffer. This allows to read-back both buffers in a single

pass using an OpenGL extension, such as GL NV packed depth stencil. Second,

all rendering passes can be performed independently from each other except for the

first pass. We exploit this fact to render individual layers into different regions of

the frame buffer. Once finished, the whole frame buffer is read back in a single pass.

This optimization reduces the number of read-backs to a maximum of two, assum-

ing that the frame buffer memory is sufficiently large. Thus, stalls in the rendering

pipeline are reduced and the performance of the algorithm is significantly improved.

5.2.3 Software LDI

The third implementation for LDI generation is completely processed on the CPU.

The investigation of this variant has been motivated by two drawbacks of GPU

implementations. First, detailed timing measurements of the two graphics-hardware

accelerated techniques have indicated that buffer read-backs are a main performance

bottleneck (see Sec. 5.3). Second, graphics hardware requires multiple passes for LDI

generation, since the output is restricted to one value per fragment in the frame

buffer. In contrast, a software-renderer does not suffer from this restriction, as it

can rasterize into multiple buffers at the same time. Therefore, a simplified software-

renderer has been implemented, which is especially designed for LDI generation.

Software Renderer

This simplified renderer only features basic frustum culling, face clipping, orthogonal

projection and rasterization of triangle meshes. The produced fragments are directly

stored in the LDI structure. This is in contrast to hardware-accelerated methods

which depend on an intermediate frame buffer that needs to be read back after each

rendering pass.

First, the software-renderer culls object triangles against the VoI. If necessary,

the remaining triangles are clipped against the VoI. This clipping might produce

additional triangles, as shown in [Sut74]. Then, the software-renderer rasterizes

all triangles that have passed the culling and clipping stages. The depth of each

generated fragment is stored in the LDI structure along with the information on face

orientation. Fragments rasterized at the same position in the LDI do not overwrite

each other, but result in the generation of an additional LDI layer for this pixel.

Fig. 5.17 illustrates the Software LDI generation.

64 5. Image-Space Collision Detection

a) b)

single pass

a) b)

single pass

z2 z1 z5 z6 z4 z3

z3 z1 z4 z2
z

Figure 5.17: The Software LDI generation processes all entry and exit points in a single
pass but arbitrary order (a). This leads to an LDI which does need to be sorted (b).

Single-Pass Rendering

The following single-pass algorithm is performed only once per object (see Alg. Soft-

wareLDI).

Algorithm SoftwareLDI

(∗ Software LDI Generation ∗)
Input: Viewing Parameters, Object

Output: Layered Depth Image LDI, Depth Complexity n

1. set V iewingParameters

2. clear LDI

3. for t ← 1 to #Triangles of Object

4. do for f ← 1 to #Fragments of Trianglet

5. do LDIn(xf , yf) ←Depthf

6. return LDI, n

The software-renderer generates fragments in arbitrary order, similar to the Un-

ordered LDI method. Therefore, per pixel sorting of the LDI is performed for further

processing.

5.3 Results

The first part of this section presents performance comparisons between the imple-

mentation variants described in Sec. 5.2. Three test scenarios employing different

collision queries are used for this. The second part carries out the test suite from

Chap. 3. All timings in this section have been measured on a PC Pentium 4, 3.2

GHz with a GeForce FX Ultra 5800 GPU.

5.3.1 Comparisons

The first comparison scenario features a dynamically deforming hand and a phone,

consisting of 4800 triangles and 900 triangles, respectively (see Fig. 5.18 and Fig. 5.19).

5.3. Results 65

Volumetric collision detection is performed between the hand and the phone. Addi-

tionally, the animated hand is tested for self-collisions. The LDI resolution is 64x64.

Tab. 5.1 shows timings for both collision queries.

Figure 5.18: Dynamic animation of a hand grabbing a phone. Volumetric collisions (red)
are detected. Refer to Tab. 5.1 for performance measurements.

Figure 5.19: Left, Middle: Collisions (red) and self-collisions (green) of the hand are
detected. Right: LDI representation with a resolution of 64x64. Refer to Tab. 5.1 for
performance measurements.

Method Collision Self-collision Overall

min [ms] max [ms] min [ms] max [ms] min [ms] max [ms]

Ordered 26.1 34.3 36.1 49.8 62.2 84.1

Unordered 8.6 11.1 11.0 16.2 19.6 27.3

Software 2.5 3.6 4.4 6.4 6.9 10.0

Table 5.1: Dynamic test sequence with an animated hand (4800 triangles) and a phone
(900 triangles). Minimum and maximum computational cost is given for collisions and
self-collisions. The resolution of the LDI is 64x64. Fig. 5.18 and Fig. 5.19 illustrate the
test.

The software LDI provides the best performance in this scenario, since data

transfer from and to the GPU significantly reduces the performance of the Ordered

66 5. Image-Space Collision Detection

and Unordered LDI approach. Data read-back is independent from the model geom-

etry. Therefore, rasterization performance of the graphics hardware is outweighed

by data read-back for small geometry. Furthermore, the Unordered LDI approach

is more efficient than the Ordered LDI approach. Although both methods require

about the same number of rendering passes, the rendering setup for the Ordered

LDI approach is more involved. All experiments indicate, that the Unordered LDI

approach is about three times faster compared to the Ordered LDI approach.

In the second scenario, arbitrarily placed particles are tested against the volume

of a dragon (see Fig. 5.20). The particles are randomly positioned within the AABB

of the model. The LDI resolution is 64x64. Three different scene complexities have

been tested with up to 500k triangles and 100k particles. Measurements are given

in Tab. 5.2.

Figure 5.20: Left: Dragon with 500k faces. Middle: LDI representation with a resolution
of 64x64. Right: Particles penetrating the volume of the dragon are detected. Performance
measurements are given in Tab. 5.2.

Method Model complexity

high [ms] medium [ms] low [ms]

Ordered 405.7 143.1 46.1

Unordered 202.9 67.1 21.8

Software 359.3 96.3 33.4

Table 5.2: Particles at arbitrary positions within the AABB of a dragon model are tested
against the volume. Measurements are given for three model complexities: High (520k
triangles, 100k particles), medium (150k triangles, 30k particles) and low (50k triangles,
10k particles). The LDI resolution is 64x64. Fig. 5.20 illustrates the test.

In this second experiment, the VoI encloses the entire model, i. e. all triangles

of the dragon have to be rendered. In highly complex scenes, most time is spent

for triangle rasterization and the read-back delay is less important. In this case, the

GPU-based Unordered LDI approach outperforms the software-renderer and a rate

5.3. Results 67

of 5Hz can be achieved for a highly complex scene with 500k triangles and 100k

particles.

The third experiment consists of a hat and a mouse model with fixed geomet-

ric complexity (see Fig. 5.21). Collisions during the simulation are detected using

varying LDI resolutions. Measurements are given in Tab. 5.3.

Figure 5.21: Left, middle: Dynamic animation of a mouse with 15000 faces and a hat with
1500 faces. The intersection volume (red) is shown. Right: Intersection volume with an
LDI resolution of 64x64. Performance measurements are given in Tab. 5.3.

Method LDI resolution

32x32 [ms] 64x64 [ms] 128x128 [ms]

Ordered 21.8 23.3 46.1

Unordered 7.2 7.9 15.5

Software 1.9 2.7 5.3

Table 5.3: Test with an animated hat (1500 triangles) and a mouse (15000 triangles).
Collisions are detected with intersected LDIs. LDI resolution varies from 32x32 to 128x128.
Fig. 5.21 illustrates the test.

Due to the moderate geometric complexity of the scene, the Software LDI shows

the best performance in the third experiment. It can be seen, that the LDI resolution

significantly influences the performance of our approach. In all methods, higher LDI

resolution requires more fragments to be rendered. Additionally, data read-back

slows down in case of higher LDI resolution for GPU-based approaches.

In general, all experiments show that the image-space approach to collision and

self-collision detection can be accelerated with graphics hardware for large envi-

ronments. However, in typical game environments, collisions are checked between

less complex models comparable to the third experiment. In such applications, the

CPU-based implementation provides the best performance.

68 5. Image-Space Collision Detection

5.3.2 Experiments

The software LDI method is part of an interactive simulation environment for de-

formable objects (see Sec. 7.1). Within this application, various experiments have

been carried out to analyze the characteristics and the performance of the collision

detection technique. A detailed description of the test scenarios can be found in

Chap. 3, as they are referenced in several parts of this thesis.

Boldie Scene

This first scene features a head that is attached to the ground and dozens of balls

that are dropped on it (see Sec. 3.3.1). Only AABB intersection tests on an object

level are performed in the beginning of the simulation. This results in the same

constant computational cost for all LDI resolutions until the first impact of a ball

is detected. This point in time is clearly visible in the timing measurements in

Fig. 5.22. After the first impact the number of collisions quickly increases and the

performance drops as LDIs with more and more layers have to be generated. At

the end of the experiment the collision detection needs 49.7 ms (32x32), 131.7 ms

(64x64) or 439.5 ms (128x128) to compute all the intersection volumes between the

97 objects. The maximum LDI depth complexity measured during the experiment is

4 which leads to a maximum memory consumption of 7 KB (32x32), 30 KB (64x64)

or 120 KB (128x128).

Pitbull Scene

Two highly-detailed pitbulls collide in midair in this experiment (see Sec. 3.3.2).

The timing measurement in Fig. 5.23 show the heavy impact and the increased

computational cost. A total of 1.7 ms (32x32), 1.9 ms (64x64) or 2.8 ms (128x128)

is required to find the intersection volume of the two bodies at the time of maxi-

mum intersection. The computational cost suddenly drops to a lower level when the

depth complexity of the involved LDIs decreases. The maximum LDI depth com-

plexity measured during the experiment is 18 which leads to a maximum memory

consumption of 72 KB (32x32), 288 KB (64x64) or 1152 KB (128x128).

Mixed Scene

Multiple dynamic collisions between different object types occur during this experi-

ment (see Sec. 3.3.3). After an initial rise of the computational cost, the performance

stays roughly at the same level, independent of the size of the intersection volume

(see Fig. 5.24). A closer analysis reveals that there are no point collisions left at

the end of the simulation but many AABBs of the objects still intersect and trigger

the LDI generation. This way, the collision detection needs 1.1 ms (32x32), 2.1

5.3. Results 69

ms (64x64) or 5.9 ms (128x128) to test for collisions when the objects reach the

contact-free rest state. The maximum LDI depth complexity measured during the

experiment is 10 which leads to a maximum memory consumption of 40 KB (32x32),

160 KB (64x64) or 640 KB (128x128).

Membrane Scene

A stack of ten membranes of different sizes is created in this experiment (see

Sec. 3.3.4). Fig. 5.25 shows a sharp performance drop that follows the time of im-

pact of the two lowest membranes. The computational cost increaes until it reaches

6.7 ms (32x32), 11.1 (64x64) or 25.8 ms (128x128) at the end of the simulation.

The intersection volumes vanish at the end of the experiment when the membranes

build a stable stack and only resting contacts remain. The maximum LDI depth

complexity measured during the experiment is 4 which leads to a maximum memory

consumption of 16 KB (32x32), 64 KB (64x64) or 256 KB (128x128).

Rod Scene

In this scene a highly deformable rod is tested for self-collisions (see Sec. 3.3.5). The

collision detection needs 1.2 ms (32x32), 2.3 ms (64x64) or 6.1 ms (128x128) to com-

pute the volume of self-intersection at the time of maximum impact (see Fig. 5.26).

There is not much performance fluctuations during the experiment because a full

LDI is needed to detect self-collisions in all the frames. The computational cost

at the beginning of the simulation is higher than expected due to an unfavorable

LDI render direction. The rod buckles at several locations when it hits the ground

resulting in a high depth complexity of the LDI. The maximum LDI depth com-

plexity measured during the experiment is 36 which leads to a maximum memory

consumption of 144 KB (32x32), 576 KB (64x64) or 2304 KB (128x128).

MultiRod Scene

Four rods are tested for collisions and self-collisions in this experiment (see Sec. 3.3.6).

When the objects finally find their rest state, a total of 17.0 ms (32x32), 28.7 ms

(64x64) or 62.2 ms (128x128) is needed to compute the volumes of intersection and

self-intersection (see Fig. 5.27). The slight performance drop over the course of the

experiment is caused by the collisions between the objects. Similar to the previous

scene, the performance fluctuations are minimal for self-collision detection. The

maximum LDI depth complexity measured during the experiment is 42 which leads

to a maximum memory consumption of 168 KB (32x32), 672 KB (64x64) or 2688

KB (128x128).

70 5. Image-Space Collision Detection

5.4 Discussion

Image-space methods for collision and self-collision detection are an interesting alter-

native to conventional techniques. Due to the fact that no pre-processing is required,

these methods are especially useful in dynamic environments with deformable ob-

jects. In addition, their mode of operation allows for implementations that are

accelerated by programmable graphics hardware.

Volumetric collision detection is enabled by using an LDI as the central data

structure. It represents the involved objects by a volumetric approximation making

it possible to execute different kinds of collision queries. Self-collisions are detected

by generating a full LDI of the whole object and testing for well-defined inside and

outside conditions. When testing two objects for collisions, two separate LDIs are

generated in their VoI and queried for overlapping regions. Finally, arbitrary points

can also be tested against the volume of an object by transforming their position to

the LDI coordinate system.

Image-space techniques can be accelerated with graphics hardware. However,

due to buffer read-back delays and the limited flexibility of programmable graphics

hardware, it is not always guaranteed that implementations on graphics hardware are

faster than software solutions. This chapter investigated and compared two GPU-

based implementations and one CPU-based implementation of the proposed collision

detection. Results suggest, that graphics hardware accelerates collision detection in

geometrically complex environments, while the CPU-based implementation provides

more flexibility and better performance in case of small environments.

LDI generation works with arbitrarily shaped objects, but is restricted to closed,

watertight surfaces, since it relies on the notion of inside and outside. For this

reason, the presented collision detection method requires that at least one object

meets these requirements to work properly.

Since image-space techniques work with discretized representations of objects,

they do not provide exact collision information. The accuracy of the collision de-

tection depends on the discretization error. Thus, accuracy and performance can

be balanced in a certain range by changing the resolution of the rendering process.

This tradeoff is controllable by the user. To increase the precision of the approxima-

tion, the object can also be rendered from multiple directions resulting in a Layered

Depth Cube (LDC) [Lis98].

The resolution of the LDI is not the only factor that influences the performance of

the method. The depth complexity plays an important role for the graphic hardware

accelerated implementations. A small change in the depth complexity can result in

a sudden erratic performance drop as more LDI layers need to be generated and

read back. Also, these fluctuations do not correlate with the size of the intersection

volume which makes them unpredictable. In contrast to this, the computational

5.4. Discussion 71

cost of the software implementation depends more on the geometric complexity of

the objects.

The main advantages of the proposed method is its scalable nature and the pos-

sibility to accelerate it with graphics hardware. Unfortunately, these are also the

limitations of the approach, due to approximation errors and read-back delays. The

image-space method allows for collision and self-collision detection between rigid as

well as deformable objects. The provided collision information is either an intersec-

tion volume for objects or an inside-outside information for points. In conclusion,

the presented image-space technique is efficient for approximative collision detec-

tion of simple scenes when done in software or geometrically complex scenes when

accelerated with graphics hardware.

Directions for future work

While the image-space technique efficiently detects collisions, it does not provide

collision information that can directly be used by common collision response meth-

ods in physically-based simulation environments. Additional post-processing of the

provided result is required to compute or to approximate information such as the

penetration depth or closest surface point of colliding objects. Further investigations

could lead to more sophisticated collision response approaches that directly work on

the explicit representation of the intersection volume.

The performance and feature set of graphics hardware keep evolving in a very

fast pace these days. New developments in this area could solve the problem of

multiple rendering passes and the delay of the LDI read-back. Furthermore, it

might be worthwhile to investigate solutions where the collision information does

not need to be read back to the CPU at all, but stays on the GPU for further

processing. Another option is to compute the full simulation cycle (deformation,

collision detection and collision response) on the GPU.

Many separate LDIs for the same object are computed when it collides with mul-

tiple objects. This happens a lot in situations with many resting contacts between

stacked objects. A clever method that combines all VoIs of an object into a single

one would improve the performance here.

72 5. Image-Space Collision Detection

0

0.1

0.2

0.3

0.4

0.5

0 1000 2000 3000 4000 5000

Frame

In
te

r
se

c
ti

o
n

 V
o

lu
m

e

0.1

1.0

10.0

100.0

1000.0

T
im

e
 [

m
s]

Intersection Volume (32)

Intersection Volume (64)

Intersection Volume (128)

Time (32) [ms]

Time (64) [ms]

Time (128) [ms]

Figure 5.22: Experiment: Boldie scene.

0

1

2

3

4

0 200 400 600 800 1000 1200

Frame

In
te

r
se

c
ti

o
n

 V
o

lu
m

e

0.0

0.1

1.0

10.0

100.0

T
im

e
 [

m
s]

Intersection Volume (32)

Intersection Volume (64)

Intersection Volume (128)

Time (32) [ms]

Time (64) [ms]

Time (128) [ms]

Figure 5.23: Experiment: Pitbull scene.

5.4. Discussion 73

0

1

2

3

0 400 800 1200 1600 2000 2400

Frame

In
te

r
se

c
ti

o
n

 V
o

lu
m

e

0.1

1.0

10.0

100.0

T
im

e
 [

m
s]

Intersection Volume (32)

Intersection Volume (64)

Intersection Volume (128)

Time (32) [ms]

Time (64) [ms]

Time (128) [ms]

Figure 5.24: Experiment: Mixed scene.

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

Frame

In
te

r
se

c
ti

o
n

 V
o

lu
m

e

0.01

0.10

1.00

10.00

100.00

T
im

e
 [

m
s]

Intersection Volume (32)

Intersection Volume (64)

Intersection Volume (128)

Time (32) [ms]

Time (64) [ms]

Time (128) [ms]

Figure 5.25: Experiment: Membrane scene.

74 5. Image-Space Collision Detection

0

1

2

3

4

0 200 400 600 800 1000 1200 1400

Frame

In
te

r
se

c
ti

o
n

 V
o
lu

m
e

0.1

1.0

10.0

100.0

T
im

e
 [

m
s]

Intersection Volume (32)

Intersection Volume (64)

Intersection Volume (128)

Time (32) [ms]

Time (64) [ms]

Time (128) [ms]

Figure 5.26: Experiment: Rod scene.

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200 1400

Frame

In
te

r
se

c
ti

o
n

 V
o

lu
m

e

0.1

1.0

10.0

100.0

T
im

e
 [

m
s]Intersection Volume (32)

Intersection Volume (64)

Intersection Volume (128)

Time (32) [ms]

Time (64) [ms]

Time (128) [ms]

Figure 5.27: Experiment: MultiRod scene.

75

6 Consistent Penetration Depth

Estimation

Penalty approaches can be used to efficiently resolve collisions of dynamically sim-

ulated rigid and deformable objects (see Sec. 2.3). These methods compute penalty

forces based on the penetration depth and direction of intersecting objects and there

exist many algorithms for estimating the exact penetration information. However,

in discrete-time simulations, this information can cause non-plausible collision re-

sponses in case of large penetrations or due to the object discretization. Fig. 6.1

and Fig. 6.2 illustrate these problems.

a) b)a) b)

Figure 6.1: Collision response based on the minimal penetration depth can lead to non-
plausible behavior in case of a large penetration (a). A novel penetration depth estimation
results in a consistent collision response (b).

This chapter presents a method to compute consistent n-body penetration depth

information in order to reduce collision response artifacts inherent to existing ap-

proaches. The method considers a set of close surface features to avoid discontinuous

penetration depths. Furthermore, a propagation scheme is applied in case of large

penetrations to avoid non-plausible, inconsistent depth information.

The different stages of the algorithm are presented in Sec. 6.1. The method is

then compared to the nearest-surface approach and tested in various experiments

in Sec. 6.2. Sec. 6.3 gives a final discussion about the advantages and limitations of

the method followed by directions for future research.

76 6. Consistent Penetration Depth Estimation

a) b)a) b)

Figure 6.2: Abrupt changes of the minimal penetration direction cause severe disconti-
nuities in the collision response (a). A smooth transition is achieved by the presented
method to estimate penetration depth (b).

6.1 Algorithm

This section provides an overview of the proposed algorithm followed by a detailed

description of its four stages.

The method takes a set of potentially colliding volumetric meshes as input and

computes consistent n-body penetration depths and directions for all colliding mesh

points. This collision information can then directly be used as input to any penalty-

based collision response scheme.

Algorithm Overview

The algorithm consists of the following four stages illustrated in Fig. 6.3:

• Stage 1 detects all colliding points in the scene based on a volumetric collision

detection method (see Sec. 6.1.1).

• Stage 2 identifies all colliding points adjacent to one or more non-colliding

points as border points. Furthermore, it detects all intersecting edges that

contain one non-colliding point and one border point. The exact intersection

point and corresponding surface normal of the penetrated surface are computed

for each intersection edge (see Sec. 6.1.2).

• Stage 3 approximates the penetration depth and direction for each border

point based on the adjacent intersection points and surface normals obtained

from the second stage (see Sec. 6.1.3).

• Stage 4 propagates the penetration depth and direction to all colliding points

that are not border points (see Sec. 6.1.4).

6.1. Algorithm 77

point

collisions

edge

intersections

penetration depth

and direction

consistent penetration

depth and directionn objects

point

collisions

edge

intersections

penetration depth

and direction

consistent penetration

depth and directionn objects

1 2 3

propagation

4

Figure 6.3: The four stages of the algorithm: 1) Collision detection, 2) border-point
calculations, 3) penetration depth approximation and 4) penetration depth propagation.

6.1.1 Point Collisions

The first stage detects all object points that collide with any volumetric mesh in

the scene. This volumetric collision detection is accomplished either by the spatial

hashing approach presented in Chap. 4 or the image-space technique in Chap. 5.

Figure 6.4: The first stage classifies all mesh points either as colliding points (black) or
non-colliding points (white).

At the end of the first stage, all mesh points in the scene are either classified as

colliding points or non-colliding points (see Fig. 6.4).

6.1.2 Edge Intersections

The second stage identifies all colliding points with at least one adjacent non-

colliding point as border points. The underlying idea is to classify colliding points

with respect to their penetration depth. Based on this information, the second stage

78 6. Consistent Penetration Depth Estimation

finds all intersecting edges that contain one non-colliding point and one border point.

Moreover, the exact intersection point of each of those edges with the surface along

with the corresponding surface normal of the penetrated mesh is computed. In or-

der to efficiently compute this information, the original spatial hashing approach

has been extended to handle collisions between edges and surfaces.

Figure 6.5: The second stage finds all intersecting edges (red) of the tetrahedral meshes
that contain one non-colliding point (white) and one border point (black). Furthermore,
the exact intersection point and the corresponding surface normal are computed for each
intersection edge.

In addition, the barycentric coordinates can also be used to interpolate a smooth

surface normal based on the three vertex normals of the face. This results in a

smooth approximation of the penetration direction (see Sec. 6.1.3).

Each edge can possibly intersect with more than one mesh face. Therefore, only

the intersection point nearest to the non-colliding point of the edge is considered in

further stages.

At the end of the second stage, each border point is adjacent to one or more

intersection edges. In addition, all intersecting edges have an exact intersection

point and a corresponding surface normal (see Fig. 6.5).

6.1.3 Penetration Depth and Direction

The third stage approximates the penetration depth and direction for all border

points based on the adjacent intersection points and surface normals computed in

the second stage.

First, the influence on a border point is computed for all adjacent intersection

points. This influence is dependent on the distance between an intersection and a

border point. The respective weighting function has to be positive for all non-zero

6.1. Algorithm 79

Figure 6.6: The third stage approximates the penetration depth and direction for all
border points based on the adjacent intersection points and surface normals.

distances and increasing for decreasing distances. Furthermore, it has to ensure

convergence to the penetration depth information with respect to a intersection

point xi if a colliding point p approaches xi. This leads to the following weighting

function for the influence ω(xi,p):

ω(xi,p) =
1

‖xi − p‖2 (6.1)

with xi denoting an intersection point and p denoting the border point. The weight-

ing function does not have to be normalized, since this would not avoid any normal-

ization steps in further processing. The weight is undefined for coinciding points.

However, the first stage ensures that there is no collision detected in this case. The

penetration depth d(p) of a border point p is now computed based on the influences

resulting from (6.1):

d(p) =

∑k
i=1(ω(xi,p) · (xi − p) · ni)∑k

i=1 ω(xi,p)
(6.2)

with ni denoting the unit surface normal of the penetrated object surface at the

intersection point. The number of intersection points adjacent to the border point

p is given by k. Finally, the penetration direction r̂(p) of a border point is computed

as a weighted average of the surface normals

80 6. Consistent Penetration Depth Estimation

r̂(p) =

∑k
i=1(ω(xi,p) · ni)∑k

i=1 ω(xi,p)
(6.3)

and the normalized penetration direction r(p) is obtained as

r(p) =
r̂(p)

‖r̂(p)‖ . (6.4)

At the end of the third stage, consistent penetration depths and directions have

been computed for all border points (see Fig. 6.6). In contrast to existing pene-

tration depth approaches that consider only one distance, the weighted averaging

of distances and directions provides a continuous behavior of the penetration depth

function for small displacements of colliding points and for colliding points that

are adjacent to each other. Non-plausible penetration directions due to the surface

discretization of the penetrated object are avoided.

6.1.4 Propagation

Based on the computed penetration depth information for border points, the fourth

stage propagates the information to all other colliding points that are not border

points (see Fig. 6.7). This is in contrast to existing penetration depth approaches

that compute the penetration depth for all points independently. The idea of the

propagation scheme is to avoid non-plausible penetration depths in case of large

penetrations.

Figure 6.7: Stage 4 propagates the penetration depth and direction to all colliding points
that are not border points.

6.1. Algorithm 81

The propagation is an iterative process that consists of the following two steps:

First, the current border points are marked as processed points. Second, a new

set of border points is identified from all colliding points that are adjacent to one

or more processed points. The iteration is aborted, if no new border points are

found. Otherwise, the penetration depth and direction for the new border points is

computed based on the information available from all adjacent processed points.

Similar to the method described in Sec. 6.1.3, a weighting function is used to

compute the influence µ(pj,p) of an adjacent processed point pj on a border point

p as

µ(pj,p) =
1

‖pj − p‖2 . (6.5)

Based on the influences µ(pj,p), the penetration depth d(p) of a border point

p is computed as

d(p) =

∑l
j=1(µ(pj,p) · ((pj − p) · r(pj) + d(pj)))∑l

j=1 µ(pj,p)
(6.6)

with r(pj) denoting the normalized penetration direction of the processed point pj

and d(pj) denoting its penetration depth. The number of processed points adjacent

to the border point p is given by l.

Figure 6.8: The algorithm computes consistent penetration depths and directions for all
colliding points.

Finally, the penetration direction r̂(p) is computed as a weighted average of the

penetration direction of the processed points adjacent to the border point as

82 6. Consistent Penetration Depth Estimation

r̂(p) =

∑l
j=1 µjrj∑l
j=1 µj

. (6.7)

and normalized with

r(p) =
r̂(p)

‖r̂(p)‖ . (6.8)

At the end of the fourth stage, all colliding points have a consistent penetration

depth and direction assigned (see Fig. 6.8).

6.2 Results

The first part of this section compares the quality and performance of the proposed

method with the standard closest-feature approach. Measurements for two test

scenarios employing the different methods are presented. The second part carries

out the test suite from Chap. 3. All timings in this section have been measured on

a PC Pentium 4, 3.2 GHz.

6.2.1 Comparisons

In a first test, two deformable cubes consisting of 1250 tetrahedrons are simulated.

Large penetrations between the objects occur due to the high relative velocity and

the discrete-time simulation. As illustrated in Fig. 6.9, the standard approach fails

to compute a consistent penetration depth. This results in a non-plausible collision

response. Employing the presented penetration depth approach to the same scenario

results in consistent, plausible penetration depth information.

The second scenario simulates 120 deformable spheres consisting of 2400 tetra-

hedrons. Starting from a random position, they build a stack of spheres. Com-

puting the penetration depth with the standard approach leads to heavy artifacts

(see Fig. 6.10). The spheres tend to stick together due to inconsistent handling of

penetrated object points. In this case, inconsistent penetration depths and response

forces cause non-plausible equilibrium states. By applying the presented penetration

depth approach, these response artifacts are avoided.

The presented approach scales linearly with the number of colliding points. In

all experiments presented in this section, an average time of 32 µs is needed for

resolving a colliding point. Most time is spent for detecting the edge intersections

required by the second stage of the method (see Sec. 6.1.2). Similar computational

costs are experienced to calculate the closest feature in the standard approach.

6.2. Results 83

Figure 6.9: In this example, the standard approach fails to compute a plausible collision
response (top row) whereas the presented method based on consistent penetration depth
estimation succeeds (bottom row).

6.2.2 Experiments

The proposed method is part of an interactive simulation environment for deformable

objects (see Sec. 7.1). Within this application, various experiments have been carried

out to analyze the characteristics and the performance of the penetration depth

technique. A detailed description of the test scenarios can be found in Chap. 3, as

they are referenced in several parts of this thesis.

Boldie Scene

Dozens of balls are dropped on a head that is attach to the ground in the first

experiment (see Sec. 3.3.1). No time is spent for penetration depth computation in

beginning of the simulation. The computational cost starts to raise as soon as the

first colliding point is detected (see Fig. 6.11). The number of edge intersections

quickly increases as more and more balls collide with the head and other balls. At

the end of the experiment the method considers 3840 edge intersections and needs

19.5 ms to find consistent penetration depths and directions for 782 resting contacts

between the 97 objects in the scene.

84 6. Consistent Penetration Depth Estimation

Figure 6.10: Inconsistent handling of penetrated points leads to spheres that stick together
(top row). The presented approach avoids these artifacts due to consistent penetration
depth estimation (bottom row).

Pitbull Scene

A heavy impact of two highly-detailed pitbulls occurs in this scene (see Sec.3.3.2).

As expected, the performance drop is most noticeable at the time of maximum

impact when consistent penetration depth and direction for 270 point collisions is

computed. The presented method provides this information based on 1062 edge

intersections found in 8.6 ms (see Fig. 6.12).

Mixed Scene

In this scene multiple collisions occur between different types of models (see Sec.3.3.3).

The dynamic nature of this experiment as well as the effect on the performance are

clearly visible in the timing measurements in Fig. 6.13. The method needs up to

1.4 ms to compute consistent penetration depth and direction for 54 colliding points

based on 223 edge intersections. When the objects in the scene reach the contact-free

rest state this computational cost drops to a negligible level.

6.3. Discussion 85

Membrane Scene

Ten different sized membranes fall to the ground before building a stack in this

experiment (see Sec. 3.3.4). The timing measurements in Fig. 6.14 show several

bounces of the membranes before they approach a stable rest state at the end of the

simulation. The number of edge intersections perfectly correlates with the number

of collisions and the computational cost to compute the consistent penetration depth

and direction. At the end of the simulation the presented methods needs 34.2 ms

for a total of 5582 edge intersections caused by 1660 collisions.

Rod Scene

Self-collisions of a highly deformable rod are detected in this experiment (see Sec. 3.3.5).

At the time of maximum impact the method needs 10.3 ms to find consistent pene-

tration depths and directions for 283 self-collisions. A total of 815 edge intersections

are found while doing this (see Fig. 6.15). When the rod starts to relax the num-

ber of self-collisions decreases as does the computational cost. Finally, 2.6 ms are

required to find 284 edge intersections and compute penetration information for 72

resting contacts at the end of the simulation.

MultiRod Scene

The last experiment tests four rods for collisions and self-collisions (see Sec. 3.3.6).

During the frames of maximum impact the presented method computes consistent

penetration information for 1411 colliding points in 58.1 ms and considers 4382

edge intersections for this. The timing measurements in Fig. 6.16 show that the

computational cost drops to 21.2 ms at the end of the simulation when 549 collisions

and 2265 edge intersections remain.

6.3 Discussion

The presented method to estimate consistent penetration information eliminates

many collision response artifacts inherent to existing penetration depth approaches

for discrete-time simulations. Instead of computing only the closest surface feature

for colliding points, a set of consistent surface features is considered to avoid dynamic

discontinuities of the penetration depth function. The penetration depth is only

computed for colliding points close to the surface, whereas consistent information is

propagated to colliding points with larger penetrations.

While the presented approach eliminates many collision response artifacts, there

still exist configurations where a plausible collision response can not be computed.

86 6. Consistent Penetration Depth Estimation

If a colliding object is entirely enclosed by the penetrated object, the presented al-

gorithm does not compute any penetration depth, since there are no border points.

The response scheme would not generate any forces until at least one object point

leaves the penetrated object. In contrast, standard approaches would compute pen-

etration depth information for all object points and probably resolve the collision

in an arbitrary direction. However, if at least one object point of a colliding ob-

ject is outside the penetrated object, the presented approach is likely to compute

more plausible and consistent penetration depth information for all colliding points.

Furthermore, there exist cases of objects crossing each other due to high relative ve-

locities, where neither the existing nor the proposed approach are able to compute

useful penetration depth information.

The presented approach does not compute the penetration depth according to

its definition. Instead of computing the shortest distance to the surface of the pen-

etrated object, the approach approximates the penetration depth only for points

close to the surface. For all colliding non-border points, the depth is propagated

from border points without considering the penetrated object. This supports con-

sistency and is desired for plausible simulations but leads to results that can differ

significantly from the actual definition of penetration depth. However, this disre-

gard of the definition eliminates many artifacts in the respective collision response

scheme. If colliding points converge to the surface of a penetrated object, the com-

puted penetration depth converges to the exact penetration depth.

The main advantage of the presented approach is its consistency. Despite the

simple idea it enhances discrete-time simulations a lot by computing plausible pene-

tration depth and direction for points of deformable objects. It requires information

about adjacent points and works best when the involved objects are discretized not

only on the surface but also inside. The algorithm is generally faster than stan-

dard penetration depth approaches due to the efficient propagation process. In

conclusion, the method is very efficient and dramatically enhances the robustness of

physically-based simulation with deformable objects.

Directions for future work

Further investigation is necessary if the simulation requires edge-edge collision han-

dling for a more precise interaction between models. In such a case the approach

needs to be extended so that it does not only compute consistent penetration depths

and directions for points but also for edges. This involves detecting edge-edge in-

tersections and a method to propagate the penetration information to deeper edges

and points.

The method could benefit from optimizations in situations with many resting

contacts. As example, at the end of the experiment with the stacked membranes

6.3. Discussion 87

(see Fig. 3.3.4), a lot of point collisions are detected which themselves trigger many

edge intersection tests. Unfortunately, the penetration depth of all these points is

so small that it is much more efficient and equally consistent to just take the nearest

surface.

Tighter coupling of the presented approach with other techniques could also lead

to promising insight. For example, combining the consistent penetration depth ap-

proach with continuous collision detection could further eliminate collision handling

artifacts and increase the robustness of simulation environments.

88 6. Consistent Penetration Depth Estimation

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000

Frame

N
u

m
b

e
r
 o

f
In

te
r
se

c
ti

o
n

s

0

5

10

15

20

25

T
im

e
 [

m
s]

Number of Intersections

Time [ms]

Figure 6.11: Experiment: Boldie scene.

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200

Frame

N
u

m
b

e
r
 o

f
In

te
r
se

c
ti

o
n

s

0

1

2

3

4

5

6

7

8

9

10

T
im

e
 [

m
s]

Number of Intersections

Time [ms]

Figure 6.12: Experiment: Pitbull scene.

6.3. Discussion 89

0

50

100

150

200

250

0 400 800 1200 1600 2000 2400

Frame

N
u

m
b

e
r
 o

f
In

te
r
se

c
ti

o
n

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 [

m
s]

Number of Intersections

Time [ms]

Figure 6.13: Experiment: Mixed scene.

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400

Frame

N
u

m
b

e
r
 o

f
In

te
r
se

c
ti

o
n

s

0

5

10

15

20

25

30

35

40

T
im

e
 [

m
s]

Number of Intersections

Time [ms]

Figure 6.14: Experiment: Membrane scene.

90 6. Consistent Penetration Depth Estimation

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400

Frame

N
u

m
b

e
r
 o

f
In

te
r
se

c
ti

o
n

s

0

2

4

6

8

10

12

14

T
im

e
 [

m
s]

Number of Intersections

Time [ms]

Figure 6.15: Experiment: Rod scene.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200 400 600 800 1000 1200 1400

Frame

N
u

m
b

e
r
 o

f
In

te
r
se

c
ti

o
n

s

0

10

20

30

40

50

60

70

T
im

e
 [

m
s]

Number of Intersections

Time [ms]

Figure 6.16: Experiment: MultiRod scene.

91

7 Applications

The collision handling methods described in this thesis are integrated into several

applications. This section presents two of them: An interactive simulation frame-

work (see Sec. 7.1) and a hysteroscopy simulator (see Sec. 7.2). Other projects,

such as a stent placement simulation [Hei04b] or a fluid simulation [Mue04] further

demonstrate the capability of the collision handling components.

7.1 DefCol Studio

DefCol Studio [Hei05] is a simulation framework that implements various methods

for deformable modeling and collision handling. It consists of a low-level simulation

development kit (DefCol SDK), a high-level simulation environment (DefCol Studio)

and a visualization module that is based on OGRE [Ogr05] and CEGUI [Ceg05].

DefCol SDK

The DefCol SDK implements a feature-complete simulation engine for deformable

objects. In addition to numerous integration methods it features all methods pre-

sented in this thesis and published in the following publications:

• Chap. 4: Optimized Spatial Partitioning

Optimized spatial hashing for collision detection of deformable objects [Tes03].

• Chap. 5: Image-Space Collision Detection

Real-time volumetric intersections of deforming objects [Hei03b].

Detection of collisions and self-collisions using image-space techniques [Hei04].

• Chap. 6: Consistent Penetration Depth Estimation

Consistent penetration depth estimation for deformable collision response [Hei04c].

The framework also includes the following components:

• A versatile and robust model for geometrically complex deformable solids

[Tes04].

• Meshless deformations based on shape matching [Mue05].

• Contact surface computation for coarsely sampled deformable objects [Spi05].

92 7. Applications

The platform-independent SDK is written in C++ and exposes the functionality

of the different algorithms through a clean, unified API. The user first creates a sim-

ulation instance and adds one or more models to it. So called draggers can be used

to link parts of different models together or attach them to user-defined positions in

space. Force fields that influence the models can be simulated by adding magnets

to the simulation instance. After defining the desired physical properties of all the

above entities, the simulation can be started and regularly queried for updates. Most

of the simulation parameters, such as collision handling method, deformation model,

integration scheme, physical model properties and dragger targets, can be modified

while the simulation is running. Additional features such as configurable timing

measurements, support for single/double-precision floating-point computations and

platform encapsulation complement the SDK package.

DefCol Studio

The DefCol Studio is a high-level simulation environment that is built upon the

DefCol SDK and the visualization module. It features an easy-to-use graphical user

interface (GUI) based on CEGUI [Ceg05] with tool menus, property windows, mouse

and keyboard shortcuts. DefCol Studio comes with scene management features, such

as creation, loading, cloning and destroying of not only models, but also cameras,

lights and draggers. A console window exposes the scripting functionality that

allows access to most of the simulation properties. Models in the scene can be

selected, dragged and moved directly with the mouse. All these interactions are

recorded and can be played back later if desired. To this end, a flexible parser

system processes all direct user input, scripts and data files and routes them to the

responsible component.

The high-quality rendering is based on OGRE, a powerful open-source rendering

engine [Ogr05]. It was extended to fully support deformable models and LDIs. The

visual appearance of the objects is improved by adding a high-resolution surface

mesh to them which deforms based on the underlying, coarser simulation geometry.

This surface mesh can be textured and enhanced by advanced shaders. Multiple

light sources with corresponding shadow volumes create realistically looking scenes

simulated and rendered at interactive rates. An export toolbox enables capturing of

screenshots, movies and POV-Ray scenes [Pov05] while the simulation is running.

7.1. DefCol Studio 93

Figure 7.1: The default scene of DefCol Studio with an open console window.

Figure 7.2: Scene properties window and the tool menu.

94 7. Applications

Figure 7.3: Simulation and object properties windows.

Figure 7.4: Different visualization methods: High-resolution, textured triangle mesh (left),
simulated tetrahedral mesh (middle) and the LDI representation (right).

7.1. DefCol Studio 95

Figure 7.5: Employing the dragging tool on a deformable model.

Figure 7.6: Complex scene simulated within DefCol Studio.

96 7. Applications

7.2 Hysteroscopy Simulator

Recent advances in interactive physically-based simulation have a significant influ-

ence on medical education, training and practice. They allow individuals to be

immersed in dynamic computer-generated, three-dimensional environments and can

provide realistic simulations of surgical procedures. Simulators for hysteroscopy

and other procedures offer the promise of improving training in a low risk environ-

ment. The performance of surgeons can be quantified by presenting them different

anatomical variations of pathologies.

Project members of the Swiss National Center of Competence in Research on

Computer Aided and Image Guided Medical Interventions (NCCR Co-Me) [Com01]

developed such a surgical simulator. The system provides an interactive simula-

tion environment for the most common techniques in diagnostic and operative hys-

teroscopy, namely cervical dilation, endometrial resection and ablation and lesion

excision.

The simulator is composed of multiple modules that are integrated into a generic

simulator platform. These components provide simulation of soft-tissue deformation,

collision handling, cutting and realistic rendering. In addition, a computational

fluid dynamics (CFD) module has been integrated for blood flow simulation and

a hysteroscopy tool serves as haptic input device to the simulator. Moreover, an

operating room (OR) was replicated in the lab and provides a standard hysteroscopic

environment for user interaction (see Fig. 7.7). In this setting, the training starts

as soon as the trainee enters the OR and it ends, when he leaves the room.

A typical simulation scene consists of one uterus model and one or more pathol-

ogy models (either myomas or polyps) as shown in Fig. 7.9 and 7.10. For each of

these deformable objects there exist a tetrahedral mesh for the soft-tissue simulation

and collision handling, as well as a high resolution triangle mesh for visualization.

A particle system is employed to simulate air bubbles that appear during the sur-

gical procedure. All mentioned models so far are influenced by other models and

the hydrometra and flow simulation inside the cavity of the uterus. The user can

further interact with the scene by directly controlling the exchangeable tool through

the haptic device attached to the simulator hardware. This tool is treated as rigid

body by the simulation and allows pushing, pulling and cutting of soft-tissue (see

Fig. 7.8).

Collision handling of deformable soft-tissue is one of the greatest challenges of

the simulator. As example, the insertion of a dilator into the simulated cervix is a

worst-case scenario since there is nearly complete overlap of one object by the other.

The hysteroscopy simulator relies on the collision handling components presented

in Chap. 4 and 6 to achieve consistent and robust results even in such difficult

scenarios.

7.2. Hysteroscopy Simulator 97

Figure 7.7: The setup of the hysteroscopy simulator with haptic device, control panel and
display.

Figure 7.8: Comparison of a real surgical procedure (top row) with a simulated procedure
(bottom row).

98 7. Applications

Figure 7.9: Ablation of a polyp. Deformable objects, such as the pathology and the uterus,
are tested for collisions with the surgical tool in order to cut the soft-tissue. Simulation
of air bubbles and bleeding enhances the visual appearance of the scene.

7.2. Hysteroscopy Simulator 99

Figure 7.10: Ablation of a myoma. The fluid simulation inside the cavity influences pieces
cut from the pathology, other tissue and air bubbles.

100 7. Applications

101

8 Conclusions

This chapter summarizes the results achieved in this thesis and gives an outlook on

further research directions and possible extensions.

8.1 Summary

Interactive environments with dynamically deforming objects require efficient and

robust collision handling. This thesis presented several methods that address the

specific issues of this task. They robustly handle volumetric collisions, self-collisions

and resting contacts based on versatile data structures that do not require pre-

processing. A collection of test scenarios is used throughout the whole thesis to

analyze the characteristics and the performance of each collision handling technique.

The results show that they provide interactive performance for typical simulation

environment complexities. While especially suited for deformable objects, the meth-

ods can also be applied to rigid bodies.

Optimized Spatial Partitioning

A spatial partitioning approach was presented that can be used for the detection of

collisions between deformable objects. It is based on an optimized spatial hashing

technique that efficiently finds intersections between various types of object primi-

tives. It is independent of topology changes and provides a straight-forward solution

to self-collision detection.

The main advantage of the presented approach is its versatility. Despite the

simple data structure it allows to carry out n-body collision detection and self-

collision detection at the same time and in one single pass. Various parameters

influence the performance of the spatial hashing approach, such as the shape and

size of a grid cells, the hash function and the number of the hash table entries. These

parameters were first analyzed, then optimized and finally discussed.

Image-Space Collision Detection

A method was introduced which detects collisions and self-collisions of deformable

objects based on an LDI decomposition of the intersection volume. This technique

102 8. Conclusions

allows for three volumetric collision queries: An explicit representation of the inter-

section volume, a vertex-in-volume check and a self-collisions test. Three possible

implementations are discussed. The first two variants are accelerated by graphics

hardware whereas the third one is a software-only approach.

The main advantages of the proposed method is its scalable nature and the

possibility to accelerate it with graphics hardware. Unfortunately, these are also

the limitations of the approach, due to approximation errors and read-back delays.

Accuracy and performance can be balanced in a certain range by changing the

resolution of the LDI structure. This tradeoff is controllable by the user.

Consistent Penetration Depth Estimation

A novel method to estimate consistent penetration information eliminates many

collision response artifacts inherent to existing penetration depth approaches. Fur-

thermore, the method addresses the issue of large time-steps and the corresponding

collision handling artifacts. Instead of computing only the closest surface feature for

colliding points, a set of consistent surface features is considered to avoid dynamic

discontinuities of the penetration depth function. The penetration depth is only

computed for colliding points close to the surface, whereas consistent information is

propagated to colliding points with larger penetrations.

The main advantage of the presented approach is its consistency. Despite the

simple idea, it enhances discrete-time simulations a lot by computing plausible pen-

etration depth and direction for points of deformable objects. The algorithm is

generally faster than standard penetration depth approaches due to the efficient

propagation process. The method is very efficient and dramatically enhances the

robustness of physically-based simulation with deformable objects.

DefCol Studio and Hysteroscopy Simulator

All above collision handling methods were integrated into DefCol Studio, a complete

framework for interactive simulation of dynamically deforming objects. It features

all necessary components for deformation, collision detection and collision response.

It consists of a low-level simulation development kit, a high-level simulation environ-

ment and a visualization module. This framework was used for a thorough analysis

and validation of all presented methods in this thesis.

The methods are also an essential part of a hysteroscopy simulator prototype

developed by project members of the Swiss National Center of Competence in Re-

search on Computer Aided and Image Guided Medical Interventions (NCCR Co-Me)

[Com01]. This prototype provides an interactive surgical simulation environment

with deformable soft tissue, surgical instruments, haptic feedback and realistic ren-

dering.

8.2. Outlook 103

8.2 Outlook

The presented methods are designed to work best with volumetric models. Further

research is necessary to apply them to deformable models such as cloth or thin shells

that do not exhibit a volume. A new definition of inside and outside needs to be

found for this. Even more difficult is the support of so called meshless models or

fluids that only consist of a set of points.

Discrete-time simulations inherently suffer from artifacts caused by high relative

velocities and large time steps, such as missed collisions or large penetrations. The

method for consistent estimation of penetration depth addresses these issues but

can not solve all of them. Adding continuous techniques to the presented methods

could further enhance their robustness.

Another interesting research area is the parallelization of collision handling meth-

ods. New multi-core processors, special purpose add-on cards and the increased fea-

ture set of graphics hardware promise additional computing power but require more

sophisticated algorithms. Synchronization of multiple threads, concurrent memory

access and data dependencies need to be investigated. Bundling several methods

or even the full simulation cycle (deformation, collision detection and collision re-

sponse) together on special hardware might also be worthwhile in this context.

104 8. Conclusions

105

Bibliography

[Abd02] K. Abdel-Malek, D. Blackmore, K. Joy. ”Swept volumes: Foundations,

perspectives, and applications.” Journal of Shape Modeling, submitted,

2002.

[Aga00] P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, L. Zhang. ”De-

formable free space tiling for kinetic collision detection.” Workshop on

Algorithmic Foundations of Robotics, 2000.

[Aga02] P. K. Agarwal, M. T. de Berg, J. G. Gudmundsson, M. Hammar, H.

J. Haverkort. ”Box-Trees and R-Trees with Near-Optimal Query Time.”

Journal of Discrete and Computational Geometry, vol 28:3, pp. 291–312,

2002.

[Ama87] J. Amanatides, A. Woo. ”A Fast Voxel Traversal Algorithm for Ray Trac-

ing.” Proceedings of Eurographics, pp. 3–9, 1987.

[Bac99] G. Baciu, W. Wong, H. Sun. ”RECODE: an image-based collision detec-

tion algorithm.” Journal of Visualization and Computer Animation, vol.

10, pp. 181–192, 1999.

[Bac02] G. Baciu, W. Wong. ”Hardware-assisted self-collision for deformable sur-

faces.” Proceedings of Symposium on Virtual Reality Software and Tech-

nology, pp. 129–136, 2002.

[Ban95] S. Bandi, D. Thalmann. ”An adaptive spatial subdivision of the object

space for fast collision detection of animating rigid bodies.” Proceedings

of Eurographics, pp. 259–270, 1995.

[Bar89] D. Baraff. ”Analytical Methods for Dynamic Simulation of Non-

penetrating Rigid Bodies.” Proceedings of SIGGRAPH, pp. 223–232,

1989.

[Bar91] D. Baraff. ”Coping with Friction for Non-Penetrating Rigid Body Simu-

lation.” Journal on Computer Graphics, vol. 25:4, pp. 31–40, 1991.

106 Bibliography

[Bar93] D. Baraff. ”Issues in Computing Contact Forces for Non-Penetrating

Rigid Bodies.” Algorithmica, vol. 10, pp. 292–352, 1993.

[Bar94] D. Baraff. ”Fast Contact Force Computation for Non-penetrating Rigid

Bodies.” Proceedings of SIGGRAPH, pp. 23–34, 1994.

[Bar98] D. Baraff, W. Witkin. ”Large steps in cloth simulation.” Proceedings of

SIGGRAPH, pp. 43–54, 1998.

[Bar03] D. Baraff, W. Witkin, M. Kass. ”Untangling cloth.” Proceedings of SIG-

GRAPH, pp. 862–870, 2003.

[Bar96] R. Barzel, J. Hughes, D. N. Wood. ”Plausible motion simulation for

computer graphics animation.” Proceedings of Computer Animation and

Simulation, pp. 183–197, 1996.

[Ber97] G. van den Bergen. ”Efficient collision detection of complex deformable

models using AABB trees.” Journal of Graphics Tools, vol. 2:4. pp. 1–13,

1997.

[Ber01] G. van den Bergen. ”Proximity Queries and Penetration Depth Computa-

tion on 3D Game Objects.” Proceedings of Game Developers Conference,

2001.

[Ben77] J. Bentley, D. Stanat, E. Williams. ”The complexity of fixed-radius near

neighbor searching.” Information Processing Letters, vol. 6:6, pp. 209–

212, 1977.

[Bri02] R. Bridson, R. Fedkiw, J. Anderson. ”Robust treatment of collisions,

contact and friction for cloth animation.” Proceedings of SIGGRAPH,

pp. 594–603, 2002.

[Bri03] R. Bridson, S. Marino, R. Fedkiw. ”Simulation of clothing with folds

and wrinkles.” Proceedings of Symposium on Computer Animation, pp.

28–36, 2003.

[Cam86] S. A. Cameron, R. K. Culley. ”Determining the Minimum Translational

Distance Between Two Convex Polyhedra.” Proceedings of Robotics and

Automation, pp. 591–596, 1986.

[Cam97] S. Cameron. ”Enhancing GJK: Computing Minimum and Penetration

Distance Between Convex Polyhedra.” Proceedings of Robotics and Au-

tomation, pp. 3112–3117, 1997.

Bibliography 107

[Can86] J. F. Canny. ”Collision detection for moving polyhedra.” Transactions on

Pattern Analysis and Machine Intelligence, vol. 8:22, pp. 200–209, 1986.

[Cap02] S. Capell, S. Green, B. Curless, T. Duchamp, Z. Popovic. ”Interactive

skeleton-driven dynamic deformations.” Proceedings of SIGGRAPG, pp.

586-593, 2002.

[Ceg05] Crazy Eddie’s GUI System, http://www.cegui.org.uk.

[Coh95] J. D. Cohen, M. C. Lin, D. Manocha, M. K. Ponamgi. ”I-COLLIDE: An

interactive and exact collision detection system for largescale environ-

ments.” Proceedings of Interactive 3D Graphics, pp. 189-196, 1995.

[Com01] Swiss National Center of Competence in Research on Computer Aided

and Image Guided Medical Interventions (NCCR Co-Me), Swiss National

Science Foundation (SNSF), http://www.co-me.ch.

[Com05] D. S. Coming, O. G. Staadt. ”Kinetic Sweep and Prune for Collision De-

tection.” Proceedings of Virtual Reality Interactions and Physical Simu-

lations, pp. 81-90, 2005.

[Cor90] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algorithms, The MIT

Press, 1990.

[Deb01] G. Debunne, M. Desbrun, M. P. Cani, A. H. Barr. ”Dynamic Real-Time

Deformations Using Space and Time Adaptive Sampling.” Proceedings of

SIGGRAPH, pp. 31–36, 2001.

[Des95] M. Desbrun, M. P. Cani. ”Animating soft substances with implicit sur-

faces.” Proceedings of SIGGRAPH, pp. 287–290, 1995.

[Des96] M. Desbrun, M. P. Cani. ”Smoothed particles: A new paradigm for an-

imating highly deformable bodies.” Proceedings of SIGGRAPH, pp. 61–

76, 1996.

[Des99] M. Desbrun, P. Schröder, A. Barr. ”Interactive Animation of Structured

Deformable Objects.” Proceedings of Graphics Interface, pp. 1–8, 1999.

[Dob93] D. Dobkin, J. Hershberger, D. Kirkpatrick, S. Suri. ”Computing the In-

tersection Depth of Polyhedra.” Algorithmica, vol. 9, pp. 518–533, 1993.

[Ehm00] S. Ehmann, M. Lin. ”SWIFT: Accelerated proximity queries between

convex polyhedra by multi-level voronoi marching.” Technical Report No.

TR00-026, University of North Carolina at Chapel Hill, 2000.

108 Bibliography

[Ehm01] S. Ehmann, M. C. Lin. ”Accurate and Fast Proximity Queries Between

Polyhedra Using Convex Surface Decomposition.” Computer Graphics

Forum, vol. 20:3, pp. 500–510, 2001.

[Eve01] C. Everitt. ”Interactive order-independent transparency.” Technical Re-

port, NVIDIA Corporation, 2001.

[Fau96] F. Faure. ”An Energy-Based Method for Contact Force Computation.”

Proceedings of Eurographics, pp. 357–366, 1996.

[Fis01] S. Fisher, M. C. Lin. ”Deformed Distance Fields for Simulation of Non-

Penetrating Flexible Bodies.” Proceedings of Computer Animation and

Simulation, pp. 99–111, 2001.

[Fol90] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes. Computer Graphics:

Principles and Practics, Addison-Wesley Publishing Company, 1990.

[Fri00] S. F. Fischer, R. N. Perry, A. P. Rockwood, T. R. Jones. ”Adaptively

sampled distance fields: A general representation of shape for computer

graphics.” Proceedings of SIGGRAPH, pp. 249-254, 2000.

[Fuc80] H. Fuchs, Z. M. Kedem, B. F. Naylor. ”On Visible Surface Generation

by A Priori Tree Structures.” Proceedings of SIGGRAPH, pp. 124–133,

1980.

[Gan00] F. Ganovelli, J. Dingliana, C. O’Sullivan. ”BucketTree: Improving colli-

sion detection between deformable objects.” Proceedings of Spring Con-

ference on Computer Graphics, pp. 156–163, 2000.

[Gas93] M. P. Gascuel. ”An Implicit Formulation for Precise Contact Modeling

Between Flexible Solids.” Proceedings of SIGGRAPH, pp. 313–320, 1993.

[Gil88] E. G. Gilbert, D. W. Johnson, S. S. Keerthi. ”A Fast Procedure for

Computing the Distance Between Objects in Three-Dimensional Space.”

Journal on Robotics and Automation, vol. 4, pp. 193–203, 1988.

[Gol87] J. Goldsmith, J. Salmon. ”Automatic Creation of Object Hierarchies for

Ray Tracing.” Computer Graphics and Applications, vol. 7:5, pp. 14–20,

1987.

[Got96] S. Gottschalk, M. C. Lin, D. Manocha. ”OBB-Tree: A Hierarchical Struc-

ture for Rapid Interference Detection.” Proceedings of SIGGRAPH, pp.

171–180, 1996.

Bibliography 109

[Gov03] N. Govindaraju, S. Redon, M. Lin, D. Manocha. ”CULLIDE: Interactive

collision detection between complex models in large environments using

graphics hardware.” Proceedings of Graphics Hardware, pp. 25–32, 2003.

[Gov05] N. Govindaraju, M. Lin, D. Manocha. ”Quick-CULLIDE: Efficient Inter-

and Intra-Object Collision Culling using Graphics Hardware.” Proceed-

ings of Virtual Reality, pp. 59-66, 2005.

[Gre93] N. Greene, M. Kass, G. Miller. ”Hierarchical Z-buffer Visibility.”, pp.

231–238, 1993.

[Gre94] N. Greene. ”Detecting Intersection of a Rectangular Solid and a Convex

Polyhedron.” Graphics Gems IV, pp. 74–82, 1994.

[Gre99] A. Gregory, M. Lin, S. Gottschalk, R. Taylor. ”H-COLLIDE: A Frame-

work for Fast and Accurate Collision Detection for Haptic Interaction.”

Proceedings of Virtual Reality, pp. 38–45, 1999.

[Gri02] E. Grinspun, P. Krysl, P. Schroeder. ”Charms: A simple framework for

adaptive simulation.” Proceedings of SIGGRAPH, pp. 281-290, 2002.

[Gui86] L. Guibas, R. Seidel. ”Computing Convolutions by Reciprocal Search.”

Proceedings of Symposium on Computational Geometry, pp. 90–99, 1986.

[Hah88] J. K. Hahn. ”Realistic Animation of Rigid Bodies.” Proceedings of SIG-

GRAPH, pp. 299–308, 1988.

[He97] T. He, A. Kaufman. ”Collision detection for volumetric objects.” Pro-

ceedings of Visualization, pp. 27–34, 1997.

[Heg05] M. Hegde. ”Physics, Gameplay and the Physics Processing Unit.” White

Paper, AGEIA Technologies Corporation, 2005.

[Hei03] B. Heidelberger, M. Teschner, M. Gross. ”Volumetric Collision Detection

for Deformable Objects.” Technical Report No. 395, Institute of Scientific

Computing, ETH Zurich, Switzerland, 2003.

[Hei03b] B. Heidelberger, M. Teschner, M. Gross. ”Real-time volumetric intersec-

tions of deforming objects.” Proceedings of Vision, Modeling, Visualiza-

tion, pp. 461–468, 2003.

[Hei04] B. Heidelberger, M. Teschner, M. Gross. ”Detection of Collisions and

Self-collisions Using Image-space Techniques.” Proceedings of Computer

Graphics, Visualization and Computer Vision, pp. 145–152, 2004.

110 Bibliography

[Hei04b] B. Heidelberger, M. Teschner, T. Frauenfelder, M. Gross. ”Collision Han-

dling of Deformable Anatomical Models for Real-Time Surgery Simula-

tion.” Journal of Technology and Health Care, IOS Press, pp. 235-243,

vol. 12:3, 2004.

[Hei04c] B. Heidelberger, M. Teschner, R. Keiser, M. Müller, M. Gross. ”Consis-

tent Penetration Depth Estimation for Deformable Collision Response.”

Proceedings of Vision, Modeling, Visualization, pp. 339–346, 2004.

[Hei05] B. Heidelberger, M. Teschner, J. Spillmann, M. Müller.

DefColStudio - Interactive Deformable Modeling Framework,

http://www.graphics.ethz.ch/∼brunoh/defcolstudio.html.

[Hof89] C. M. Hoffmann. ”Geometric and solid modeling: an introduction.” Mor-

gan Kaufmann Publishers Inc., ISBN 1-55860-067-1, 1989.

[Hof01] K. E. Hoff, A. Zaferakis, M. C. Lin, D. Manocha. ”Fast and simple 2D ge-

ometric proximity queries using graphics hardware.” Proceedings of Sym-

posium on Interactive 3D Graphics, pp. 145–148, 2001.

[Hof02] K. Hoff, A. Zaferakis, M. Lin, D. Manocha. ”Fast 3D Geometric Prox-

imity Queries Between Rigid and Deformable Models Using Graphics

Hardware Acceleration.” Technical Report No. TR02-004, University of

North Carolina and Chapel Hill, 2002.

[Hub95] P. M. Hubbard. ”Collision detection for interactive graphics applica-

tions.” Transactions on Visualization and Computer Graphics, vol. 1:3,

pp. 218-230, 1995.

[Hub96] P. M. Hubbard. ”Approximating polyhedra with spheres for time-critical

collision detection.” Transactions of Graphics, volume 15:3, pp. 179–210,

1996.

[Jam99] D. L. James, D. K. Pai. ”ArtDefo: accurate real time deformable ob-

jects.” Proceedings of SIGGRAPH, pp. 65-72, 1999.

[Jam02] D. L. James, D. K. Pai. ”Dyrt: Dynamic response textures for realtime

deformation simulation with graphics hardware.” Proceedings of SIG-

GRAPH, pp. 582-585, 2002.

[Jam04] D. L. James, D. K. Pai. ”BD-Tree: Output-Sensitive Collision Detection

for Reduced Deformable Models.” Proceedings of SIGGRAPH, pp. 393–

398, 2004.

Bibliography 111

[Kau87] A. Kaufman, E. Shimony. ”3D scan-conversion algorithms for voxel-based

graphics.” Proceedings of Interactive 3D Graphics, pp. 45–75, 1987.

[Kei04] R. Keiser, M. Müller, B. Heidelberger, M. Teschner, M. Gross. ”Contact

Handling for Deformable Point-Based Objects.” Proceedings of Vision,

Modeling, Visualization, pp. 315–322, 2004.

[Kim02] Y. Kim, M. Otaduy, M. Lin, D. Manocha. ”Fast Penetration Depth Com-

putation for Physically-based Animation.” Proceedings of Symposium on

Computer Animation, pp. 23–31, 2002.

[Kim02b] Y. J. Kim, K. E. Hoff, M. C. Lin, D. Manocha. ”Closest point query

among the union of convex polytopes using rasterization hardware.”

Journal of Graphics Tools, vol. 7:4, pp. 43–51, 2002.

[Kim03] B. Kim, J. Rossignac. ”Collision prediction for polyhedra under screw

motion.” Proceedings of Solid Modeling and Applications, pp. 4–10, 2003.

[Kim04] Y. J. Kim, M. C. Lin, D. Manocha. ”Incremental Penetration Depth Esti-

mation Between Convex Polytopes Using Dual-Space Expansion.” Trans-

actions on Visualization and Computer Graphics, vol. 10:2, pp. 152–163,

2004.

[Kim04b] S. Kimmerle, M. Nesme, F. Faure. ”Hierarchy Accelerated Stochastic

Collision Detection.” Proceedings of Vision, Modeling, Visualization, pp.

307–314, 2004.

[Kle03] J. Klein, G. Zachmann. ”ADB-trees: Controlling the error of time-critical

collision detection.” Proceedings of Vision, Modeling, Visualization, pp.

37–45, 2003.

[Klo96] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, K. Zikan.

”Efficient Collision Detection Using Bounding Volume Hierarchies of k-

DOPs.” Proceedings of SIGGRAPH, pp. 171–180, 1996.

[Kno03] D. Knott, D. Pai. ”CinDeR: Collision and interference detection in real-

time using graphics hardware.” Proceedings of Graphics Interface, pp.

73–80, 2003.

[Kri98] S. Krishnan, M. Gopi, M. C. Lin, D. Manocha, A. Pattekar. ”Rapid

and Accurate Contact Determination between Spline Models using Shell-

Trees.” Computer Graphics Forum, vol. 17:3, pp. 315–326, 1998.

112 Bibliography

[Lar99] E. Larsen, S. Gottschalk, M. Lin, D. Manocha. ”Fast proximity queries

with swept sphere volumes.” Technical Report No. TR99-018, University

of North Carolina at Chapel Hill, 1999.

[Lar01] T. Larsson, T. Akenine-Möller. ”Collision Detection for Continuously

Deforming Bodies.” Proceedings of Eurographics, Short Presentation, pp.

325–333, 2001.

[Lar03] T. Larsson, T. Akenine-Möller. ”Efficient Collision Detection for Models

Deformed by Morphing.” The Visual Computer, vol. 19:2, pp. 164–174,

2003.

[Lef06] S. Lefebvre, H. Hoppe. ”Perfect spatial hashing.” Proceedings of SIG-

GRAPH, pp. 579–588 , 2006.

[Lev66] C. Levinthal. ”Molecular model-building by computer.” Scientific Amer-

ican, vol 214, pp. 42–52, 1966.

[Lin91] M. C. Lin, J. F. Canny. ”A fast algorithm for incremental distance calcu-

lation.” Proceedings of Robotics and Automation, pp. 1008–1014, 1991.

[Lis98] D. Lischinski, A. Rappoport. ”Image-Based Rendering for Non-Diffuse

Synthetic Scenes.” Proceedings of Workshop on Rendering, pp. 301–314,

1998.

[Lom99] J. C. Lombardo, M.-P. Cani, F. Neyret. ”Real-time Collision Detection

for Virtual Surgery.” Proceedings of Symposium on Computer Animation,

pp. 82–91, 1999.

[McK90] M. McKenna, D. Zeltzer. ”Dynamic Simulation of Autonomous Legged

Locomotion.” Proceedings of SIGGRAPH, pp. 29–38, 1990.

[McK90b] B. J. McKenzie, R. Harries, T. Bell. ”Selecting a hash algorithm.”

Software-Practice & Experience, vol. 20:2, pp. 209–224, 1990.

[Met92] D. Metaxas, D. Terzopoulos. ”Dynamic deformation of solid primitives

with constraints.” Proceedings of SIGGRAPH, pp. 309-312, 1992.

[Mel00] S. Melax. ”Dynamic plane shifting BSP traversal.” Proceedings of Graph-

ics Interface, pp. 213–220, 2000.

[Mez03] J. Mezger, S. Kimmerle, O. Etzmuß. ”Hierarchical Techniques in Colli-

sion Detection for Cloth Animation.” Proceedings of Computer Graphics,

Visualization and Computer Vision, pp. 322–329, 2003.

Bibliography 113

[Mir97] B. Mirtich. ”Efficient algorithms for two-phase collision detection.” Tech-

nical Report No. TR-97-23, Mitsubishi Electric Research Laboratory,

1997.

[Moe97] T. Möller, B. Trumbore. ”Fast, minimum storage ray-triangle intersec-

tion.” Journal of Graphics Tools, vol 2:1, pp. 21–28, 1997.

[Moo88] M. Moore, J. Wilhelms. ”Collision Detection and Response for Computer

Animation.” Proceedings of SIGGRAPH, pp. 289–298, 1988.

[Mue02] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, B. Cutler. ”Stable Real-

Time Deformations.” Proceedings of Symposium on Computer Anima-

tion, pp. 49–54, 2002.

[Mue04] M. Müller, S. Schirm, M. Teschner, B. Heidelberger, M. Gross. ”Inter-

action of Fluids with Deformable Solids.” Proceedings of Symposium on

Computer Animation & Social Agents, pp. 159-171, 2004.

[Mue04b] M. Müller, M. Gross. ”Interactive virtual materials.” Proceedings of

Graphics Interface, pp. 239–246, 2004.

[Mue04c] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, M. Alexa. ”Point

based animation of elastic, plastic and melting objects.” Proceedings of

Computer Animation, pp. 141-151, 2004.

[Mue05] M. Müller, B. Heidelberger, M. Teschner, M. Gross. ”Meshless Deforma-

tions Based on Shape Matching.” Proceedings of SIGGRAPH, pp. 471–

478, 2005.

[Mue06] M. Müller, B. Heidelberger, M. Hennix, J. Ratcliff. ”Position Based Dy-

namics.” Proceedings of VRIPhys, pp. 71–80, 2006.

[Mys95] K. Myszkowski, O. Okunev, T. Kunii. ”Fast collision detection between

complex solids using rasterizing graphics hardware.” The Visual Com-

puter, vol. 11:9, pp. 497–512, 1995.

[Nea05] A. Nealen, M. Mller, R. Keiser, E. Boxerman, M. Carlson. ”Physically

Based Deformable Models in Computer Graphics.” Proceedings of Euro-

graphics (State of the Art Reports), pp. 71–94, 2005.

[Ogr05] OGRE - Object-Oriented Graphics Rendering Engine,

http://www.ogre3d.org.

[Sul03] C. O’Sullivan, J. Dingliana, T. Giang, M. K. Kaiser. ”Evaluating the

Visual Fidelity of Physically Based Animations.” Proceedings of SIG-

GRAPH, pp. 527–536, 2003.

114 Bibliography

[Pal95] I. J. Palmer, R. L. Grimsdale. ”Collision Detection for Animation using

Sphere-Trees.” Computer Graphics Forum, vol. 14:2, pp. 105–116, 1995.

[Pau04] M. Pauly, D. K. Pai, L. J. Guibas. ”Quasi-Rigid Objects in Contact.”

Proceedings of Symposium on Computer Animation, pp 109–119, 2004.

[Pen89] A. Pentland, J. Williams. ”Good vibrations: Modal dynamics for graph-

ics and animation.” Proceedings of SIGGRAPH, pp. 215-222, 1989.

[Pla88] J. C. Platt, A. H. Barr. ”Constraint Methods for Flexible Models.” Pro-

ceedings of SIGGRAPH, pp. 279–288, 1988.

[Pov05] POV-Ray - Persistence of Vision Raytracer, http://www.povray.org.

[Pro97] X. Provot. ”Collision and Self-Collision Handling in Cloth Model Dedi-

cated to Design Garments.” Proceedings of Graphics Interface, pp. 177–

189, 1997.

[Rab76] M. O. Rabin. ”Probabilistic algorithms.” Algorithms and complexity: new

directions and recent results, Academic Press, pp. 21–39, 1976.

[Rag04] L. Raghupathi, L. Grisoni, F. Faure, D. Marchal, M. P. Cani, C. Chaillou.

”An intestine surgery simulator: Real-time collision processing and vi-

sualization.” Transactions on Visualization and Computer Graphics, vol.

10:6, pp. 708–718, 2004.

[Red00] S. Redon, A. Kheddar, S. Coquillart. ”An algebraic solution to the prob-

lem of collision detection for rigid polyhedral objects.” Proceedings of

Robotics and Automation, pp. 3733–3738, 2000.

[Red02] S. Redon, A. Kheddar, S. Coquillart. ”Fast continuous collision detection

between rigid bodies.” Proceedings of Eurographics, pp. 279–288, 2002.

[Red04] S. Redon, Y. J. Kim, M. C. Lin, D. Manocha. ”Fast Continuous Colli-

sion Detection for Articulated Models.” Proceedings of Symposium Solid

Modeling and Applications, pp. 126-137, 2004.

[Red04b] S. Redon, Y. J. Kim, M. C. Lin, D. Manocha. ”Interactive and continuous

collision detection for avatars in virtual environments.” Proceedings of

Virtual Reality, pp. 117–124, 2004.

[Rou85] N. Roussopoulos, D. Leifker. ”Direct spatial search on pictorial databases

using packed R-trees.” Proceedings of SIGMOD, pp. 17–31, 1985.

[Sch02] F. Schwarzer, M. Saha, J. C. Latombe. ”Exact collision checking of robot

paths.” Workshop on Algorithmic Foundations of Robotics, 2002.

Bibliography 115

[She02] C. Shen, K. Hauser, C. Gatchalian, J. O’Brien. ”Model analysis for real-

time viscoelastic deformation.” Proceedings of SIGGRAPH (Conference

Abstracts and Applications), 2002.

[Shi91] M. Shinya, M. Forgue. ”Interference detection through rasterization.”

Journal of Visualization and Computer Animation, vol. 2, pp. 132-134,

1991.

[Sig03] C. Sigg, R. Peikert, M. Gross. ”Signed distance transform using graphics

hardware.” Proceedings of Visualization, pp. 83–90, 2003.

[Spi05] J. Spillmann, M. Teschner. ”Contact Surface Computation for Coarsely

Sampled Deformable Objects.” Proceedings of Vision, Modeling, Visual-

ization, pp. 289–296, 2005.

[Sud04] A. Sud, M. A. Otaduy, D. Manocha. ”DiFi: Fast 3D Distance Field

Computation Using Graphics Hardware.” Proceedings of Eurographics,

pp. 557–566, 2004.

[Sut74] I. E. Sutherland, G. W. Hodgman. ”Reentrant polygon clipping.” Com-

munications of the ACM, vol. 17:1, pp. 32–42, 1974.

[Tel91] S. J. Teller, C. H. Sequin. ”Visibility preprocessing for interactive walk-

throughs.” Proceedings of SIGGRAPH, pp. 61–71, 1991.

[Ter03] J. Teran, S. Blemker, V. N. T. Hing, R. Fedkiw. ”Finite volume meth-

ods for the simulation of skeletal muscle.” Proceedings of Symposium on

Computer Animation, pp. 68–74, 2003.

[Ter87] D. Terzopoulos, J. C. Platt, A. H. Barr. ”Elastically Deformable Models.”

Proceedings of SIGGRAPH, pp. 205–214, 1987.

[Tes03] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets, M. Gross. ”Op-

timized spatial hashing for collision detection of deformable objects.”

Proceedings of Vision, Modeling, Visualization, pp. 47–54, 2003.

[Tes04] M. Teschner, B. Heidelberger, M. Müller, M. Gross. ”A Versatile and Ro-

bust Model for Geometrically Complex Deformable Solids.” Proceedings

of Computer Graphics International, pp. 312–319, 2004.

[Tes05] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-

pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W.

Strasser, P. Volino. ”Collision Detection for Deformable Objects.” Com-

puter Graphics Forum, pp. 61–81, vol. 24:1, 2005.

116 Bibliography

[Tha00] U. Thatcher. ”Loose octrees.” Game Programming Gems, Charles River

Media, pp. 444–453, 2000.

[Ton98] D. Tonnesen. ”Dynamically Coupled Particle Systems for Geometric

Modeling, Reconstruction, and Animation.” PhD thesis, University of

Toronto, 1998.

[Tur90] G. Turk. ”Interactive collision detection for molecular graphics.” Techni-

cal Report No. TR90-014, University of North Carolina at Chapel Hill,

1990.

[Uno97] S. Uno, M. Slater. ”The sensitivity of presence to collision response.”

Proceedings of Virtual Reality Annual International Symposium, pp. 95-

103, 1997.

[Vas01] T. Vassilev, B. Spanlang, Y. Chrysanthou. ”Fast Cloth Animation on

Walking Avatars.” Proceedings of Eurographics, pp. 260–267, 2001.

[Vol94] P. Volino, N. Magnenat-Thalmann. ”Efficient Self-Collision Detection on

Smoothly Discretized Surface Animations using Geometrical Shape Reg-

ularity.” Computer Graphics Forum, vol. 13:3, pp. 155–166, 1994.

[Vol95] P. Volino, M. Courshesnes, N. Magnenat-Thalmann. ”Versatile and Effi-

cient Techniques for Simulating Cloth and Other Deformable Objects.”

Proceedings of SIGGRAPH, pp. 137–144, 1995.

[Wes99] R. Westermann, L. Kobbelt, T. Ertl. ”Real-time exploration of regu-

lar volume data by adaptive reconstruction of isosurfaces.” The Visual

Computer, vol 15:2, pp. 100–111, 1999.

[Wu03] J. Wu, L. Kobbelt. ”Piecewise linear approximation of signed distance

fields.” Proceedings of Vision, Modeling, Visualization, pp. 513-520, 2003.

[Zac01] G. Zachmann. ”Optimizing the collision detection pipeline.” Proceedings

of Game Technology Conference, 2001.

[Zac02] G. Zachmann. ”Minimal Hierarchical Collision Detection.” Proceedings

of Virtual Reality Software and Technology, pp. 121–128, 2002.

[Zha00] D. Zhang, M. Yuen. ”Collision detection for clothed human animation.”

Proceedings of Pacific Graphics, pp. 328–337, 2000.

117

Copyrights

3D Cafe 3D Cafe

Viewpoint Animation Engineering Inc. Cyberware Inc.

Marco Heidelberger Turbosquid

118 Copyrights

Turbosquid Turbosquid

Turbosquid NCCR Co-Me

Curriculum Vitae

Personal Data

Name: Bruno Heidelberger

Date of Birth: November 17, 1972

Place of Birth: Zurich, Switzerland

Education

2002 – 2005 Research and Teaching Assistent

Computer Graphics Laboratory

Swiss Federal Institute of Technology, Zurich, Switzerland

1997 – 2002 Studies in Computer Science

Swiss Federal Institute of Technology, Zurich, Switzerland

1992 – 1997 Studies in Economics and Business Administration

University of Zurich, Switzerland

1988 – 1992 Mathematical & Scientific High School

MNG Rämibühl, Zurich, Switzerland

Publications

[Mue06] M. Müller, B. Heidelberger, M. Hennix, J. Ratcliff. ”Position Based

Dynamics.” Proceedings of VRIPhys, pp. 71-80, 2006.

[Mue05] M. Müller, B. Heidelberger, M. Teschner, M. Gross. ”Meshless Defor-

mations Based on Shape Matching.” Proceedings of SIGGRAPH, pp.

471–478, 2005.

[Tes05] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-

pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann,

W. Strasser, P. Volino. ”Collision Detection for Deformable Objects.”

Computer Graphics Forum, pp. 61–81, vol. 24:1, 2005.

[Hei04c] B. Heidelberger, M. Teschner, R. Keiser, M. Müller, M. Gross. ”Con-

sistent Penetration Depth Estimation for Deformable Collision Re-

sponse.” Proceedings of Vision, Modeling, Visualization, pp. 339–346,

2004.

[Kei04] R. Keiser, M. Müller, B. Heidelberger, M. Teschner, M. Gross. ”Con-

tact Handling for Deformable Point-Based Objects.” Proceedings of

Vision, Modeling, Visualization, pp. 315–322, 2004.

[Mue04] M. Müller, S. Schirm, M. Teschner, B. Heidelberger, M. Gross. ”In-

teraction of Fluids with Deformable Solids.” Proceedings of Computer

Animation & Social Agents, pp. 159-171, 2004.

[Hei04] B. Heidelberger, M. Teschner, M. Gross. ”Detection of Collisions and

Self-collisions Using Image-space Techniques.” Proceedings of Com-

puter Graphics, Visualization and Computer Vision, pp. 145–152,

2004.

[Hei04b] B. Heidelberger, M. Teschner, T. Frauenfelder, M. Gross. ”Collision

Handling of Deformable Anatomical Models for Real-Time Surgery

Simulation.” Journal of Technology and Health Care, IOS Press, pp.

235-243, vol. 12:3, 2004.

[Tes04] M. Teschner, B. Heidelberger, M. Müller, M. Gross. ”A Versatile

and Robust Model for Geometrically Complex Deformable Solids.”

Proceedings of Computer Graphics International, pp. 312–319, 2004.

[Tes03] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets, M. Gross.

”Optimized spatial hashing for collision detection of deformable ob-

jects.” Proceedings of Vision, Modeling, Visualization, pp. 47–54,

2003.

[Hei03b] B. Heidelberger, M. Teschner, M. Gross. ”Real-time volumetric in-

tersections of deforming objects.” Proceedings of Vision, Modeling,

Visualization, pp. 461–468, 2003.

[Hei03] B. Heidelberger, M. Teschner, M. Gross. ”Volumetric Collision De-

tection for Deformable Objects.” Technical Report No. 395, Institute

of Scientific Computing, ETH Zurich, Switzerland, 2003.

