
Diss. ETH No. 19248

Hardware Architectures for
Point-Based Graphics

A dissertation submitted to

ETH Zurich

for the Degree of

Doctor of Sciences

presented by

Simon Heinzle
Dipl. Informatik-Ing., ETH Zurich, Switzerland
born 12 October 1981
citizen of Austria

accepted on the recommendation of

Prof. Dr. Markus Gross, examiner
Prof. Dr. Andreas Peter Burg, co-examiner
Prof. Dr. Philipp Slusallek, co-examiner

2010

ii

Abstract

Point-based geometries have emerged as interesting and valuable alternative to
triangles and polygons. Points as graphics primitives are conceptually more simple
and provide superior flexibility, especially for objects with high geometric and
appearance detail. However, triangles are still the most prominent primitive in
computer graphics. One reason is the limited support for point-based graphics
in modern graphics accelerators, which have been optimized for triangles as
rendering primitives.

In this thesis, we analyze the fundamental differences between triangle-based
graphics and point-based graphics for hardware acceleration and identify the
limitations and bottlenecks of current graphics processors (GPUs). We then develop
new algorithms and hardware architectures for point-based graphics to augment
and extend todays graphics processors.

More specifically, we develop a novel point rendering algorithm based on el-
liptical weighted average (EWA) splatting. We extend the theoretical basis of
EWA splatting into the time dimension to incorporate motion-blur for point-based
rendering. We present a GPU implementation and analyze the differences and
bottlenecks of current hardware architectures. Based on the previous analysis, we
present a streamlined EWA splatting algorithm for static scenes and develop a
novel hardware architecture for the acceleration of point rendering. The novel
architecture fits seamlessly into current, triangle based rendering architectures and
is designed to complement triangle rendering. Striving towards a more general
point acceleration architecture, we then develop a hardware architecture dedicated
to the general and efficient processing of point-sampled geometry. It focuses on
the fundamental and computationally most expensive operations on point sets
and supports a wide range of point graphics algorithms as well as other graphics
algorithms.

We present hardware implementations for both architectures and provide a detailed
analysis of hardware costs, performances, and bottlenecks, and we compare the
results to the respective GPU implementations. The developed architectures could
be integrated into existing triangle-based architectures to complement triangles at
modest additional hardware cost in order to accelerate point-graphics efficiently
on today’s GPUs.

iii

iv

Zusammenfassung

Punktbasierte Geometrie hat sich als interessante und wertvolle Alternative zu
Dreiecken und Polygonen erwiesen. Punkte als Grafikprimitive sind konzeptionell
einfacher und auch wesentlich flexibler, vor allem für Objekte mit detaillierter
Geometrie. Trotzdem sind Dreiecke immer noch die am meisten verbreiteten
Primitive in der Computergrafik. Ein Grund dafür ist die limitierte Unterstützung
von punktbasierter Grafik in modernen Grafikbeschleunigern, die für Dreiecke als
Renderingprimitive optimiert wurden.

Diese Dissertation untersucht die fundamentalen Unterschiede zwischen dreiecks-
und punktbasierter Grafik im Bezug auf Hardwarebeschleunigung. In einem ersten
Schritt werden die Einschränkungen und Engpässe bestehender Grafikprozessoren
(GPU) analysiert. Basierend auf dieser Analyse werden dann neue Algorithmen
und Hardware-Architekturen für punktbasierte Grafik vorgestellt, mit denen beste-
hende Grafikprozessoren ergänzt und erweitert werden können.

Im Detail wird ein neuartiger Algorithmus zum Zeichnen von Punkten basierend
auf Elliptical Weighted Average (EWA) Splatting entwickelt. Die theoretische
Grundlage von EWA Splatting wird in die zeitliche Dimension erweitert um soge-
nannte Bewegungsunschärfe zu modellieren. Der Algorithmus wird in auf einem
Grafikprozessor implementiert um die Unterschiede und Engpässe bestehender
Grafikarchitekturen besser zu verstehen. Basierend auf dieser Analyse wird eine
neuartige Hardwarearchitektur vorgestellt die für EWA Splatting von statischen
Objekten optimiert ist. Die neuartige Architektur fügt sich nahtlos in bestehende
Grafikprozessoren ein die für Dreiecke optimiert sind. Im nächsten Schritt wird
eine neuartige Architektur für die effiziente und verallgemeinerte Verarbeitung von
Punktgeometrie eingeführt, mit Fokus auf den grundlegenden und rechnerisch
teuersten Operationen auf Punktmengen. Diese neue Architektur unterstützt
dann eine breite Palette von Punktgrafikalgorithmen sowie allgemeingültigere
Grafikalgorithmen.

Beide Architekturen wurden mittels Hardwareimplementierungen verifiziert und
bezüglich Hardwarekosten, Performance und Engpässen analysiert. Die entwick-
elten Architekturen können in bestehende Hardwarearchitekturen für Dreiecke
integriert werden um diese mit einer effizienten Unterstützung für Punkte zu
ergänzen.

v

vi

Acknowledgments

My sincere thanks go to my advisor Prof. Markus Gross. His enthusiasm for point-
based graphics during my undergraduate lectures motivated me to work towards
the first dedicated hardware architectures for points. His continuing support for
my work, his expert advice, and his outstanding scientific intuition finally made
it possible to achieve my eager goals. Furthermore, I would like to thank Prof.
Philipp Slusallek and Prof. Andreas Peter Burg for their ongoing interest in my
work, the insightful discussions, and for agreeing to co-examine this thesis.

I am deeply thankful to Prof. Tim Weyrich who taught me everything about
software engineering, scientific writing, and how to conduct computer graphics
research. My further thanks go to Stephan Oetiker – he taught me how to design
and implement such big VLSI systems. Without the help of those two mentors, I
would have had a much harder time in the past years.

Many thanks go to all my additional collaborators that contributed in various ways
to this thesis: Timo Aila, Sebastian Axmann, Mario Botsch, Diego Browarnik, Flavio
Carbognani, Daniel B. Fasnacht, Norbert Felber, Cyril Flaig, Gaël Guennebaud,
Hubert Kaeslin, Yoshihiro Kanamori, Peter Luethi, Sebastian Mall, Tomoyuki
Nishita, Kaspar Rohrer, Olivier Saurer, Andreas Schmidt, and Johanna Wolf.

Special thanks go to all the past and present members of the Computer Graphics
Laboratory, the Applied Geometry Group, and the Scientific Visualization Group
at ETH as well as to the folks at Disney Research for the work- and non-work
related discussion throughout the years, and more importantly, for being great
friends and colleagues.

I would like to thank my friends and family, especially my parents which supported
me in my education – without them I would not be where I am right now. Last
but not least, I would like to thank Julie for her love, understanding, and her
indispensable support during the stressful deadline times.

vii

viii

Contents

Introduction 1
1.1 Rendering point sampled surfaces 2
1.2 Processing of unstructured point sets 3
1.3 Principal contributions . 4
1.4 Thesis outline . 5
1.5 Publications . 5

Related work 7
2.1 Point-based rendering . 7
2.2 Point-based surface definitions . 9
2.3 Graphics hardware . 11

EWA surface splatting 19
3.1 EWA framework . 20
3.2 Surface resampling . 22

3.2.1 Object space EWA resampling filter 22
3.2.2 Screen space EWA resampling filter 23

3.3 Rendering algorithms . 24
3.3.1 Forward mapping algorithm 25
3.3.2 Backward mapping algorithm 26

3.4 Conclusion . 27

Motion blur for EWA surface splatting 29
4.1 Motion blur in computer graphics 31
4.2 Extended EWA surface splatting . 33

4.2.1 The continuous spatio-temporal screen space signal 34
4.2.2 Time-varying EWA surface splatting 35
4.2.3 Temporal reconstruction . 36

4.3 Rendering . 37
4.3.1 The 3D spatio-temporal reconstruction filter 38
4.3.2 Sampling of the reconstruction filter 39
4.3.3 Bounding volume restriction 41
4.3.4 Visibility . 43
4.3.5 Discussion . 44

ix

Contents

4.4 GPU implementation . 45
4.4.1 Visibility passes 1 and 2 . 45
4.4.2 Background visibility passes 3 and 4 46
4.4.3 Blending pass 5 . 47
4.4.4 Normalization pass 6 . 48
4.4.5 Sampling of the motion path 48

4.5 Results and limitations . 48
4.6 Conclusion . 50

Hardware architecture for surface splatting 53
5.1 Overview . 54
5.2 Performance of EWA surface splatting on current GPUs 55
5.3 Design overview . 56
5.4 Rendering pipeline . 57

5.4.1 Rasterization setup . 58
5.4.2 Rasterization . 61
5.4.3 Ternary depth test . 62
5.4.4 Attribute accumulation . 62
5.4.5 Normalization . 63
5.4.6 Fragment shading and tests 64

5.5 Hardware architecture . 66
5.5.1 Rasterization setup and splat splitting 66
5.5.2 Splat reordering . 67
5.5.3 Rasterization and early tests 70
5.5.4 Accumulation and reconstruction buffer 71

5.6 Implementations . 74
5.6.1 VLSI prototype . 74
5.6.2 FPGA implementation . 75
5.6.3 OpenGL integration . 77

5.7 Results . 78
5.7.1 Performance measurements 79
5.7.2 Scalability . 81

5.8 Conclusions and future work . 83

Processing unit for point sets 85
6.1 Overview . 85
6.2 Moving Least Squares surfaces . 88
6.3 Data structures for meshless operators 90
6.4 Spatial search and coherent cache . 91

6.4.1 Neighbor search using kd-trees 91
6.4.2 Coherent neighbor cache . 94

6.5 A hardware architecture for generic point processing 96

x

Contents

6.5.1 Overview . 96
6.5.2 kd-tree traversal unit . 98
6.5.3 Coherent neighbor cache unit 99
6.5.4 Processing module . 99

6.6 Prototype implementation . 101
6.6.1 System setup . 102
6.6.2 kd-tree traversal unit . 102
6.6.3 Coherent neighbor cache unit 105
6.6.4 Processing module . 105
6.6.5 Resource requirements and extensions 106
6.6.6 GPU implementation . 107

6.7 Results and discussions . 108
6.7.1 Performance analysis . 109
6.7.2 GPU integration . 112

6.8 Conclusion . 115

Conclusion 117
7.1 Review of principal contributions . 117
7.2 Discussion and future work . 119

Notation 121
A.1 General mathematical notation . 121
A.2 Processing of point sets . 122
A.3 EWA surface splatting . 122

Glossary 125

Bibliography 129

Curriculum Vitae 141

xi

C H A P T E R 1
Introduction

Triangles and polygons have been the dominant primitive in computer
graphics for the last four decades. Many applications such as numerical
simulations, surface scanning, or procedural modeling generate millions
of tiny triangle primitives – a trend that has been even more accelerated
by the rapid evolution of computing machinery. Due to this explosion of
the geometric complexity, however, polygonal meshes become difficult to
maintain, and constitute a significant overhead in terms of storage demand
and computational complexity for maintaining its connectivity. Furthermore,
the rendering of tiny triangles can become inefficient, and can even lead to
visual errors – the so called aliasing artifacts.

Point-based graphics has evolved into an interesting and valuable alternative
due to the conceptual simplicity and superior flexibility of points as graphics
primitives. Levoy and Whitted first suggested points [LW85] as represen-
tation for objects with high geometric and appearance detail. Since then,
researchers have developed a variety of powerful algorithms and pipelines for
the efficient representation, processing, manipulation and rendering of point-
sampled geometry during the last decade [GP07]. However, triangles are still
the most prominent graphics primitive, mainly due to the excellent support
for polygonal meshes on current graphics processors. These processors have
become ubiquitous in today’s computers, but their support of rendering and
processing of unstructured points is still only limited.

1

Introduction

Motivated by the limited support for point-based graphics in today’s graphics
processors, this thesis investigates the following two research questions:
What are the fundamental differences between points and triangles with
respect to hardware architectures? And how can existing architectures be
improved to offer dedicated support for point primitives in an efficient way?
To understand the problems in detail, this thesis analyzes and develops novel
hardware architectures for the rendering and geometry processing of point
sets.

The following two sections will present a more detailed overview on point
rendering in Section 1.1 and point processing in Section 1.2. The main contri-
butions of this thesis are given in Section 1.3 before an outline of the rest of
the thesis is given in Section 1.4.

1.1 Rendering point sampled surfaces

Point rendering is particularly interesting for highly complex models whose
triangle representations require millions of tiny primitives which in turn
then project to only a few pixels. Well-established among point rendering
methods is the technique of elliptical weighted average (EWA) surface splat-
ting [ZPBG01]. EWA splatting allows to render high-quality anti-aliased
images of geometric objects that are given by a sufficiently dense sets of
sample points. The idea is to approximate local regions of the surface by
planar elliptical Gaussian reconstruction kernels in object space – the so-called
surface splats. The final surface is then rendered by blending these splats in
screen space. Before the final blending step, the splats are combined with
a low-pass filter to avoid aliasing in the case of minification. This aliasing
sampling artifact can be especially problematic in the case of rendering micro-
polygons. A detailed introduction into EWA surface splatting is given in
Chapter 3.

In its original formulation, the EWA surface splatting framework does not
contain a notion of time and generates still frames depicting a perfect instant
in time. It therefore lacks realism due to the absence of motion blur. This
thesis analyzes the original framework, and extends EWA surface splatting
into the time domain to directly and efficiently support motion blur for a new
sensation of dynamics in Chapter 4.

Although surface splatting can be implemented on state-of-the-art pro-
grammable GPUs, these implementations usually require multiple passes.
The main reason is that GPUs are optimized and designed for polygonal

2

1.2 Processing of unstructured point sets

rendering and therefore fundamentally different to point rendering. Unfor-
tunately, the differences manifest themselves in a performance gap of an
order of magnitude compared to triangle rendering. This thesis presents a
hardware architecture that extends traditional polygon-based architectures to
support surface splatting more efficiently in Chapter 5, and then shows that
point-based primitives are amenable to efficient hardware implementations.

1.2 Processing of unstructured point sets

A significant amount of research has been devoted to understand meshless
surface representations better. It turns out that many point processing meth-
ods can be similarly decomposed into two distinct computational steps: the
first step constitutes the computation of a neighborhood around a given spa-
tial position, whereas the second step is usually an operator or computational
procedure that processes this neighborhood. Examples for fundamental point-
graphics operators are weighted averages or covariance analysis, examples
for higher-level operators include normal estimation or moving least squares
(MLS) approximations [ABCO+01]. Very often, the spatial queries to collect
adjacent points constitute the computationally most expensive part of the
processing.

However, efficient hardware acceleration for both computational steps – the
computation of the neighborhood as well as the stream processing of that
neighborhood – is virtually unavailable, as no architecture is able to support
both computations simultaneously very well. The main reason for this is the
fundamental difference in these two algorithms. While the single instruction,
multiple data (SIMD) paradigm of current graphics processing units (GPUs)
is very well suited to efficiently implement most stream operators on a neigh-
borhood of points, a variety of limitations including the SIMD processing
pattern leave GPUs less suited for efficient neighborhood queries. Conversely,
general-purpose processors (such as central processing units, CPUs) feature
a relatively small number of floating point units and therefore are less suited
for stream operators, but perform better in the recursive traversals of the
spatial search.

We investigate a more general hardware architecture for point processing and
rendering in Chapter 6. The new architecture alleviates most of the aforemen-
tioned problems, while still providing lightweight hardware architecture.

3

Introduction

1.3 Principal contributions

In the scope of this thesis we developed new algorithms and novel architec-
tures for point based graphics. Our three main contributions are:

1. Extension of the theoretical basis of the EWA splatting framework
in the time dimension to incorporate motion-blur for point-based
rendering. The conceptual elegance of the approach lies in replacing
the 2D Gaussian kernels by 3D Gaussian kernels which unify both
the spatial and temporal component. The derived result naturally
fits into the EWA splatting algorithm such that the final image can
be computed as a weighted sum of warped and bandlimited kernels.
Its rendering algorithm shows strong parallels to the original EWA
rendering. In addition to the correct rendering approach, this thesis
provides an approximative implementation by the description of an
entire point rendering pipeline using vertex, geometry and fragment
program capabilities of current GPUs. The results of this research are
presented in Chapter 4.

2. A hardware architecture for accelerated rendering of point primi-
tives using an optimized and streamlined version of EWA surface
splatting, based on our analysis and extensions of the original EWA
framework. A central feature of the design is the seamless integra-
tion of the architecture into a conventional, OpenGL-like graphics
pipeline to complement triangle rendering. Some of the novel design
concepts include a ternary depth test and the usage of an on-chip
pipelined heap data structure for making the memory accesses more
coherent. Furthermore, we developed a computationally stable eval-
uation scheme for perspectively correct splats. As a proof of concept,
different versions of the pipeline have been implemented both on
reconfigurable FPGA boards and as ASIC prototypes, and have been
integrated into an OpenGL-like software implementation. The results
of this research are presented in Chapter 5.

3. A hardware architecture dedicated to the general and efficient pro-
cessing of point-sampled geometry. The new architecture was de-
veloped as a more general point graphics pipeline and focuses on
the fundamental and computationally most expensive operations on
point sets. More specifically, the architecture supports neighborhood
searches as well as stream algorithms such as moving least squares
approximations. It comprises of a configurable kd-tree based neigh-
bor search module and a programmable processing module. The
spatial search module supports k-nearest neighbor queries and range

4

1.4 Thesis outline

queries, and it features a novel caching mechanism to exploit the
spatial coherence inherent in a variety of point processing algorithms.
The architecture was implemented as an FPGA prototype and proves
to be lean and lightweight. Therefore, it could be integrated with
existing hardware platforms, or combined with a rendering archi-
tecture for EWA surface splatting to provide a general and versatile
point-processing and rendering platform. The results of this research
are presented in Chapter 6.

1.4 Thesis outline

The thesis is organized as follows. Chapter 2 revises previous work in the
fields of point-based surface definitions, rendering of point sets and hardware
architectures for computer graphics. Work directly related to more specific
concepts will be presented in their respective chapters. Chapter 3 will review
the concept of EWA surface splatting which is essential to understand the
rest of the thesis. Chapter 4 introduces the extension of the EWA framework
in the time dimension for motion blur. Chapter 5 then presents a hardware
architecture for EWA surface splatting that could be integrated into tradi-
tional triangle rendering pipelines. Chapter 6 will then present our hardware
architecture for general processing of point sets. Finally, the conclusion of the
this thesis is given in Chapter 7.

A list of the notation used in all the paragraphs can be found in Appendix A,
a glossary of frequently used terms and abbreviations can be found in Ap-
pendix B.

1.5 Publications

In the context of this thesis, following publications have been accepted.

S. HEINZLE, J. WOLF, Y. KANAMORI, T. WEYRICH, T. NISHITA, and M. GROSS.
Motion Blur for EWA Surface Splatting. In Computer Graphics Forum (Proceed-
ings of Eurographics 2010), Norrköping, Sweden, May 2010.

This paper extends the theoretical basis of the EWA splatting framework in
the time dimension to incorporate motion-blur for point-based rendering.

5

Introduction

S. HEINZLE, G. GUENNEBAUD, M. BOTSCH, and M. GROSS. A Hardware Pro-
cessing Unit for Point Sets. In Proceedings of the 23rd SIGGRAPH/Eurographics
Conference on Graphics Hardware, Sarajevo, Bosnia and Herzegovina, June
2008.

This paper presents a hardware architecture dedicated to the general and
efficient processing of point-sampled geometry. This paper received with the
Best Paper Award.

S. HEINZLE, O. SAURER, S. AXMANN, D. BROWARNIK, A. SCHMIDT, F. CARBOG-
NANI, P. LUETHI, N. FELBER, and M. GROSS. A Transform, Lighting and
Setup ASIC for Surface Splatting. In Proceedings of International Symposium on
Circuits and Systems (ISCAS), Seattle, USA, May 2008.

This paper presents an ASIC implementation of the transform and lighting,
and setup stages of surface splatting.

T. WEYRICH, S. HEINZLE, T. AILA, D. B. FASNACHT, S. OETIKER, M. BOTSCH,
C. FLAIG, S. MALL, K. ROHRER, N. FELBER, H. KAESLIN, and M. GROSS.
A Hardware Architecture for Surface Splatting In Transactions on Graphics
(Proceedings of ACM SIGGRAPH), San Diego, August 2007.

This paper presents a hardware architecture for surface splatting and presents
two prototype implementations (ASIC and FPGA).

6

C H A P T E R 2
Related work

Point-based graphics has experienced a considerable amount of research in
the areas of modeling, processing, and rendering. In this chapter, we revisit
previous work on point rendering (Section 2.1) and point-based surface
definitions (Section 2.2). Furthermore, we then revisit graphics hardware
architectures (Section 2.3). For an excellent overview of point-based graphics
and a compilation of different works in this area we would like to refer the
reader to the book ”Point-Based Graphics” [GP07].

2.1 Point-based rendering

The birth of point-based graphics. The possibility of using points as render-
ing primitives to display curved surfaces was first suggested in the pioneering
report of Levoy and Whitted [LW85]: a grid of area-less points is transformed
to screen space and its density is estimated. Then, a radially symmetric
Gaussian filter is applied at all pixel positions and the contribution of each
source point is computed. Although this method allows for anti-aliased
rendering of points, the radius of the filter is dependent both on the source
density and the display sample density. As a drawback, the method requires
knowledge about neighborhoods of the source points.

7

Related work

Due to the rapidly increasing complexity of geometric models, the idea of
using points gained more interest a decade later. The work by Grossman and
Dally [GD98] proposed to render point samples without connectivity. Their
method uses dense point clouds with pre-filtered textures, and performs
forward mapping of area-less points. The resulting holes due to the forward
projection are then filled with a push-pull algorithm performed on the final
pixel values. The QSplat multiresolution point rendering system [RL00] by
Rusinkiewicz and Levoy introduced a hierarchical data structure and an
associated rendering algorithm to interactively display huge point clouds. A
hierarchy of bounding spheres is used to represent an object, each level in the
hierarchy represents a refined version of its parent level object. The rendering
algorithm then traverses the data structure until its a sphere projects to a
given size, and finally renders the resulting pixel. The work by Pfister et
al. [PZvBG00] introduced surfels as surface elements, similar to pixels as
pixel elements. A surfel is represented as a tangent disk of the object, and
is associated with a normal, a radius and sample values. The associated
rendering algorithm uses a hierarchical representation of the object similar
to [RL00].

High-quality elliptical weighted average splatting for rendering. None of
the work so far addressed the problem of aliasing in image space. Zwicker et
al. [ZPBG02] introduced elliptical weighted average (EWA) surface splatting,
a high-quality rendering algorithm for surfaces represented by irregularly
spaced point samples. EWA point samples are defined by elliptical disks
spanning a reconstruction filter – so-called splats – which overlap in space
and therefore are able to effectively avoid holes in the resulting image. The
authors introduced a rigorous mathematical framework with anisotropic
texture filtering based on a screen space formulation of texture filtering
approach by Heckbert [Hec89]. By the use of a texture pre-filter in image
space aliasing can be prevented in the case of minification, i.e. when points
fall between the pixel sampling points. As EWA surface splatting will be
used in this thesis, we present the algorithm in more detail on Chapter 3.

EWA surface splatting has since been extended and reformulated extensively.
Ren et al. [RPZ02] introduced an object space reformulation of EWA splatting
and implemented the pipeline using conventional GPUs. Their method
employs semi-transparent quads with an elliptical texture to approximate the
point cloud, and uses multiple passes to approximate the visibility of splats.
Zwicker et al. [ZRB+04] showed that the original formulation of the EWA
splatting algorithm can lead to artifacts in extreme perspective views due to
the linear approximation of the projection on the framework. They proposed a

8

2.2 Point-based surface definitions

new technique to express the splat shape in image space using homogeneous
coordinates and is able to compute EWA splatting more accurately. The GPU
implementation is performed using multiple passes for visibility splatting,
accumulation of the visible splats, and a final normalization step.

Botsch et al. [BSK04] introduced a perspectively correct scan conversion of
circular splat primitives by locally intersecting the viewing rays with the
splat primitive. The reconstruction filter is then evaluated perspectively
correct in object space, however the image space pre-filter needs to be ap-
proximated with this method. In addition to the new scan conversion, the
authors introduced per-pixel lighting by accumulating the normal infor-
mation, and by evaluating the lighting equation after the surface has been
reconstructed. The method was implemented using a multiple passes on
the GPU similar to the perspective accurate splatting approach [ZRB+04].
Botsch et al. [BHZK05] then extended the method to handle elliptical splats
and deferred shading using EWA surface splatting, and presented an opti-
mized rendering algorithm again using multiple GPU passes. Guennebaud
et al. [GBP06] introduced another perspectively correct approach to rasterize
elliptical splats, however using fewer operations for the rasterization as
Botsch et al. [BHZK05]. The algorithm also allows for incremental updates
in the rasterization and the authors introduce a new approximation to the
screen space filter approximation. Furthermore, the authors show how to
blend triangle meshes and splats and how to render transparent point-based
models. Zhang and Pajarola [ZP06] presented the first GPU implementation
of EWA surface splatting that can be implemented in a single pass. The
algorithm furthermore supports transparent point surfaces by introducing
additional rendering passes. The idea of is to introduce deferred blending to
delay the final visibility test to a image post-processing pass: a given point
set is partitioned into multiple groups of splats that don’t overlap in image
space. However, the method requires a pre-sorting of the static model data
and cannot be applied to dynamic point sets.

2.2 Point-based surface definitions

A central problem in point-based graphics techniques is the definition of a
meshless surface representation that approximates or interpolates a set of
input points continuously. While various different representations have been
devised [GP07], the most important and successful class of such meshless
representations is the class of point set surfaces. This class encompasses
functional smooth surface approximations of irregular data using moving
least squares (MLS) [She68]. Pioneered for the reconstruction of manifolds by

9

Related work

Levin [Lev01, Lev03], it was first introduced to computer graphics by Alexa
et al. [ABCO+01, ABCO+03]. In their work, a point set surface is defined
as the set of stationary points of an iterative projection operator. At each
step of the projection, a planar parametrization is estimated around a local
neighborhood, and then a bivariate polynomial is fit over this reference plane.

However, this polynomial approach was relatively expensive to compute
and its alternatives relatively unexplored. Significant effort has been devoted
to better understand and analyze the properties and limitations of point set
surfaces [AK04a, AK04b, AA09] and to develop more efficient computational
schemes. By omitting the polynomial fitting step, Amenta at Kil [AK04a]
showed that the same surface can be defined and computed by weighted
centroids and a smooth gradient field. This definition avoids the planar
parametrization issues in the case of sparse sampling, and greatly simplifies
the representation.

Adamson and Alexa [AA04] introduced a simple projection scheme based on
iterative plane fits. In each iteration step a local planar tangent frame of a the
surface is estimated around a small neighborhood and used for the projection.
While yielding the same surface as the original definition [ABCO+03], such a
plane fit becomes unstable especially for low sampling rates. To overcome
this problem, Guennebaud and Gross [GG07] proposed to fit higher order
algebraic surface such as spheres instead and showed its stability under low
sampling densities. Using a spherical fit with appropriate normal constraints,
this approach yields an efficient closed form solution of the underlying alge-
braic point set surface APSS [GGG08] and has been shown to resemble to the
planar solution [AA04] when omitting the higher order terms.

However, all MLS based techniques presented so far can only reconstruct
smooth surfaces. Various approaches have been proposed to overcome this
limitation. One such class relies of an explicit representation of sharp features
by using cell complexes [AA06] or tagged point clouds [GG07] to separate
the input samples into different components. A more challenging task is to
automatically detect or enhance features present in the input point cloud. A
relatively new approach to preserve sharp features has been presented by
Öztireli et al. [OGG09]. Their approach is inspired by robust statistics which
naturally preserves any kind of high frequency features, from sharp edges to
fine details, without any special handling or segmentation. The idea is based
on statistic kernel regression, a popular method to estimate the conditional
expectation of a random variable [TMF+07], and it can be implemented as a
projection procedure with a projection procedure similar to [AA04]. Öztireli
shows that their method is very robust over a variety of undersampled objects
or noisy objects while still preserving sharp features.

10

2.3 Graphics hardware

Rendering using point-based surface definitions. Adams and
Alexa [AA03] ray-trace point set surfaces [ABCO+01] based on MLS.
Their method builds an enclosing sphere structure on top of the point
samples in which the surface is contained in a pre-process step and uses this
structure to intersect the ray near the surface to guess a good starting point.
Then, the point on the viewing ray is iteratively projected onto the surface
and the viewing ray is intersected with the local polynomial approximation
of the surface. In a similar spirit, Adams et al. [AKP+05] also construct
a tight bounding sphere hierarchy, which is then subsequently updated
for dynamic data. Similar to the previous work, the authors first intersect
with the bounding sphere hierarchy and repeatedly project the point on the
ray with the surface until convergence. A different approach using point
set surfaces is to iteratively upsample the point set surface to render the
surface. Guennebaud et al. [GGG08] developed a adaptive, view-dependent
upsampling scheme for the algebraic point set surface definition [GG07],
and simply generate small splats which are subsequently rendered using a
standard splatting algorithm such as [BHZK05]. Unfortunately, none of the
methods for point set surfaces has been extended to support textured objects.

2.3 Graphics hardware

Conventional graphics hardware. Virtually all commercially available
graphics hardware is based on triangle rasterization. In these architectures
the object vertices are first transformed to the screen space coordinate system.
Then the lighting equation is evaluated on each vertex before the vertices are
assembled to triangles. The triangles are then possibly clipped to the view
frustum, and rasterization converts the triangles to individual fragments or
pixels. Finally the fragments are shaded and various tests such as scissor,
alpha, stencil and depth test are performed before the frame buffer blending
is performed.

Clark [Cla82] presented a first VLSI architecture dedicated to computer graph-
ics performing floating point matrix transformations, clipping, perspective
and orthographic projections, and viewport transformations. It was fully
implemented in floating point and already exhibited a very high performance
compared to the commercially available floating point co-processors in that
era.

Fuchs et al. [FGH+85] developed the pixel-planes system for general rasteriza-
tion of polygons. Their idea was to push logic into a so-called smart memory:
for each pixel address (x,y) the memory is able to evaluate a configurable

11

Related work

function f (x,y) = Ax + By + C for each pixel to determine whether to store
the value or not. The smart framebuffer then can be used to perform scan
conversion of polygons with z-Buffer visibility computation and shading.
The Pixel-Planes 5 project by Fuchs et al. [FPE+89] extended on the original
Pixel-Planes project by subdividing the framebuffer into tiles, with rasterizers
directly assigned to tiles. Each of the rasterizer chips contained the ”smart-
memory” as presented already in their first version. While their architecture
proved to be very scalable, commodity memory chips became more and more
dense and did not leave no room for logic in their highly integrated memory
arrays.

With the increasing size of screen resolutions and associated memory sizes,
Whitton [Whi84] suggested to tile the framebuffers for more parallelism.
Pineda [Pin88] presented an algorithm for polygon rasterization suitable for
such parallel hardware implementations. Every directed edge of a polygon is
represented by a linear edge function that separates the image space into left
and right points. A pixel is then inside the polygon if it is on the same side of
each directed edge. As the values of the edge functions can be interpolated
similar to color and depth values, the algorithm is suited well for high-
performance hardware implementations and has been subsequently used in
many graphics processors [FPE+89, Ake93, MBDM97, MMG+98, SCS+08].
Olano and Greer [OG97] presented a new triangle scan conversion algorithm
using half-edge functions [Pin88], performed entirely in homogeneous coor-
dinates. By using homogeneous coordinates, the algorithm avoids the costly
clipping tests and is more amenable to hardware implementation as it allows
for heavy pipelining of the processing.

The RealityEngine graphics system [Ake93] marked a new generation
of multi-board graphics systems. It featured multiple off-the-shelf pro-
grammable floating point processors designated to geometry processing,
which were operating in multiple-instruction multiple-data (MIMD) fashion,
whereas the rasterization processors were fixed function ASICs. It was able
to render lighted, smooth shaded, depth buffered, texture mapped, and anti-
aliased triangles. Texture filtering was performed using mip-mapping. The
system featured multiple boards such as geometry boards for the transform
and lighting computations, and raster memory boards containing the rasteri-
zation units and framebuffer memory. The InfiniteReality engine [MBDM97]
extended on its predecessor, the RealityEngine. It improved on the Reali-
tyEngine by having a geometry distributor, a scheduler to better load balance
between the different geometry engine. Furthermore, the off-the-shelf geom-
etry processors were substituted with a custom design, where each processor
was basically a SIMD floating point engine. Again, all geometry processor
chips were coupled in MIMD fashion. As further optimization the frame

12

2.3 Graphics hardware

buffer was tiled in vertical strips for better load-balancing of the fragment
stages.

McCormack et al. [MMG+98] presented the first single-chip, unified memory
3D graphics accelerator for fast rasterizing of triangles. Their system used
the half-plane edge functions and optimized memory bandwidth by batching
of fragments and chunking fragment generation to allow to prefetch mem-
ory and by employing texture caching. The system supported z-buffered,
Gouraud shaded rasterization of triangles and lines with trilinear perspec-
tively correct texture mapping. The next-generation consumer GPUs [Mor00]
supported early culling by the use of a hierarchical z-buffer to avoid the
execution of fragments that would be discarded later. Further optimizations
included tile-based data compression for reduced memory bandwidth, stencil
buffers for faster per-tile tests, and fast-clear bits to avoid buffer clears.

At this time, the continuous improvement of semi-conductor technologies
fueled the explosive increase in computational power in GPUs. Lindholm et
al. [LKM01] presented the first programmable, single-chip mass-market GPU
featuring user-programmable vertex and pixel engines. It was implemented
as NVIDIA’s GeForce3 GPU. The processor was the first coarse grained SIMD
processor allowing for high floating point throughput at modest chip area.
The authors furthermore presented a power programming interface and
made GPU programming accessible for a wide audience. The ATI Xenos
architecture[Dog05] introduced a unified shader architecture where vertex
and pixel shaders are executed on the same shader cores. The architecture al-
lowed for improved intra-chip load balancing by allocating its programmable
shader units dynamically to vertex and fragment processing.

Hasselgren and Akenine-Möller [HAM07] presented a programmable culling
unit (PCU) placed right before the pixel shader to make the graphics pipeline
even more programmable and efficient. Although pixel shaders do support
a ’kill’-operation to cull fragments, the use of the operation seldom makes
the execution faster on current GPUs due to the SIMD processing. The
PCU executes a cull program before pixel shading starts and then decides
conservatively whether to invoke pixel shading for a given tile or not.

Intel entered the 3D graphics market with the Larrabee architecture [SCS+08].
Instead of using a coarse grained SIMD approach, the architecture was based
on the x86 Pentium architecture featuring multiple cores. The cores are
operated in MIMD fashion, and are interconnected with a ring network. The
Pentium cores itself have been augmented with a SIMD vector processor
supporting fine grained SIMD within the cores. Only texture filtering is
implemented as fixed function logic. All other parts of the rendering pipeline
including rasterization and z-buffer handling are implemented entirely in

13

Related work

software. Inherent to the x86 architecture, Larrabee also features multiple lev-
els of caches transparent to the user. The software rendering pipelining used
binning of the screen space primitives according to its destination tiles, and
assigned them dynamically to the rasterization processes. Due to the flexible
software design dynamic load balancing can be implemented depending on
the graphics application.

With the increasing geometric complexity in computer graphics triangles
have become very small, which result in an overhead for the rasterization
setup that assumes triangles to cover a large amount of pixels. Fatahalian
et al. [FLB+09] showed a new strategy to rasterize so-called micropolygons
by simply testing the micropolygons against randomized screen-samples.
Furthermore, they showed how their rasterization algorithm can be extended
to support motion blur and defocus as well by sampling the micropolygons in
space and in time. Unfortunately, the impact and speed gains against current
rasterizers remains unclear in the paper. More importantly, their approach
does not resolve aliasing artifacts which can occur during minification.

Very recently commercially available graphics hardware converged towards
more and more programmable computing machines, and can be considered
programmable stream-processors. The CUDA architecture and software de-
velopment kit [NVI07] exposed direct access to the GPU for general purpose
computing and enabled software developers to take full advantage of the
parallelism on such graphic board. Driven by this advancement towards gen-
eral purpose programmable GPU, the state-of-the art commercial hardware
supporting DirectX 11 [Mic10] took these concepts and integrated them into
the graphics pipeline for even more configurable support in rendering. The
most remarkable advances include geometry shaders to generate new geom-
etry on the fly, programmable tessellation units for subdivision of polygons
before rasterization, and DirectCompute shaders that enable programmers to
write and read to independent memory locations with atomic operations for
more flexibility during rendering. An illustration on the evolution of graphics
hardware can be found in Figure 2.1.

Experimental graphics hardware. A few architectures consist of mul-
tiple rasterization nodes and create the final image by using composi-
tion [FPE+89, MEP92, TK96]. While the scalability can be particularly good
in these architectures, certain newer features such as occlusion queries are
difficult to implement efficiently. The Talisman architecture [TK96] tried to
exploit both spatial and temporal coherence in computer animation to reduce
the complexity and cost of hardware architectures. Their idea was to render
each object into an independent image layer, and then re-use those images

14

2.3 Graphics hardware

Input Assembler

Vertex Shader

Hull Shader

Tessellator

Domain Shader

Geometry ShaderGeometry Shader

Rasterizer

Pixel Shader

Output Merger

Fixed function unit Programmable unit

M
em

ory access

DirectX 11
Input Assembler

Vertex Shader

Geometry ShaderGeometry Shader

Rasterizer

Pixel Shader

Output Merger

M
em

ory access

DirectX 10
Input Assembler

Vertex Shader

Rasterizer

Pixel Shader

Output Merger

M
em

ory access

DirectX 8

Figure 2.1: Evolution of programmable graphics hardware.

directly. For changing objects those layers are updated frequently whereas
for stationary objects the images could be reused directly. For fast updates,
an affine transformation can be additionally applied to the individual image
layers in order to approximate real rendering updates. After all updates
have been performed, the individual layers are composited to a final image.
Molnar et al. [MEP92] presented their PixelFlow architecture that similar
to traditional pipelines rasterizes a polygonal primitive. However, instead
of assigning the individual rasterizers to individual portions of the screen,
each rasterizer processes a portion of the object. A compositor network
finally receives the generated pixels and combines them to the resulting
screen image. The authors used a logic enhanced memory compositor similar
to pixel planes, and supported supersampling by anti-aliasing as well as
deferred shading.

The SaarCOR architecture [SWS02] used a fixed function architecture for ray
casting instead of rasterization to display triangle meshes. A more flexible,
programmable ray processing unit [WSS05] built on this work and was imple-
mented as a coarse grained SIMD architecture, similar to commercial GPUs.
The architecture featured novel hardware concepts for ray-tracing, such as

15

Related work

a dedicated fixed function ray traversal unit that implemented a kd-tree
acceleration structure. The SIMD engine can be used to implement advanced
effects, such as soft shadows, global illumination techniques, as well as the
”spawning” of new threads by generating additional secondary rays using
a special trace instruction. To alleviate the bandwidth bottleneck of ray-
tracing, the architecture furthermore used chunking of spatially similar rays
for increased memory locality. The same authors extended the architecture to
support dynamic scenes using a B-KD tree [WMS] as spatial index structure,
and furthermore estimated the area requirements and performance character-
istics of an ASIC implementation of the mentioned architecture [WBS06].

A few experimental hardware architectures have been proposed for the ren-
dering of non-polygonal primitives. The WarpEngine [PEL+00] resembles
to an image-based rendering chip using real world images augmented with
per-pixel depth as its rendering primitive. The pixels in the input images are
treated as connected samples, warped to screen, and additional samples are
interpolated bilinearly based on the original ones in order to avoid holes in
the image reconstruction. Herout and Zemcik [HZ05] describe a prototype
architecture that uses circular constant-colored splats as rendering primitives.
The splats are directly visualized on the screen without any blending, and
therefore image quality and anti-aliasing are not addressed with this archi-
tecture. The same authors [AH04] presented an approach how the forward
splatted ellipses can be rasterized incrementally. Unfortunately, such an
approach cannot be used for parallel rasterizers. The follow up work [ZP09]
presented an improved version of their previous system [HZ05] by making
multiple units of the pipeline parallel, without addressing the problem of bet-
ter image quality. Majer et al. [MWA+08] presented a hardware architecture
for point rendering using multiple FPGAs. The architecture projects area-less
points that are shaded, transformed and projected to screen, and directly
visualized on the screen. However, holes appear when the resolution of the
mesh does not meet the sampling requirements of the screen, and aliasing
may occur.

Whitted and Kajiya [WK05] proposed making the graphics pipeline fully
programmable by replacing polygonal primitives with fully programmable
procedural primitives which remain procedural throughout the pipeline.
A single processor array would then handle geometric as well as shading
elements in a unified way. A so-called programmable sampling controller
then replaces the standard rasterizer by generating point samples of the
surface without triangles as intermediate representation. Ideally, the sam-
pling density would be controlled adaptively in order to guarantee hole-free
reconstruction and avoid superfluous sampling, and their method coarsely
samples the object in its parameter space and projects those samples to image

16

2.3 Graphics hardware

to determine the sampling radius in screen space in a first pass. In the second
pass, they refine the sampling based on the sparse sampling. However, a
non-negligible amount of oversampling cannot be avoided with their method.
As expected, the input bandwidth is tiny however at the cost of very high
internal computation.

Stewart et al. [SBM04] describe a triangle rasterization-based architecture that
maintains a view-independent rendering of the scene. The idea is to generate
a wide set of views simultaneously by replacing the 2D framebuffer with a 4D
framebuffer which exhibits strong similarity with light-fields [LH96]. Input
primitives are very finely subsampled into point samples associated with
irradiance maps which are then casted into the 4D framebuffer. The output
images for potentially large number of view points can then be reconstructed
from this view-independent representation. Meinds and Barenbrug [MB02]
explain a novel texture mapping architecture that uses a forward splatting
instead of the traditional reverse texture fetch. In their approach, texture
samples are splatted to screen space and then reconstructed in screen space
with a pixel pre-filter to calculate the coverage. The authors show high-
quality anisotropic and anti-aliased texture filtering can be achieved with this
approach at modest cost.

17

Related work

18

C H A P T E R 3
EWA surface splatting

The elliptical weighted average (EWA) surface splatting framework by
Zwicker et al. [ZPBG01, ZPBG02] describes a high quality method for an-
tialiased rendering of point sampled surfaces. In this chapter, we will review
the framework which is essential to understand following chapters.

EWA surface splatting assumes so-called splats as input data. Splats can
be considered as point samples that have been extended in space along the
tangential plane of the sampled surface. Intuitively, splats are represented as
ellipses in object space that mutually overlap with its neighbors. Each splat is
associated with an elliptical Gaussian reconstruction kernel which is used to
blend neighboring splats to achieve high visual quality.

Similarly to Heckbert’s texture filtering approach [Hec89], the splats and its
reconstruction kernels are projected to screen space, and additionally con-
volved with a band-limiting image space pre-filter. The pre-filter guarantees
that aliasing artifacts due to minification can effectively be avoided. Then,
the screen space reconstruction kernels are rasterized and accumulated to
form the final rendered surface.

Zwicker et al. [ZPBG01] formulated the point rendering process as a resam-
pling problem. Section 3.1 establishes the theoretical basis for EWA surface
splatting used in the resampling process. Section 3.2 then shows how splats
defined in object space can be resampled to the screen space. Section 3.3

19

EWA surface splatting

Reconstruction kernel Reconstruction kernel

a
u

World Space

a
a

u

M T V P [1]

m(u)

k

u’kk

a[2]
k

r (u)k

Source space Screen space

r’ (x’)k

a[2]’
k

a[1]’
k

parametrized in 2D surface domain warped to 2D image domain
Resampling kernel

Screen space

ρ (x’)k

filtered with anti-aliasing kernel

h(x’)*

Figure 3.1: Overview of EWA surface splatting. An object surface is represented by a
set of sample points Pk defined by a center uk and two tangential vectors
a[1]k ,a[2]k . The tangential vectors span a 2-dimensional frame in which the
surface is defined, the so called source space. In particular, they span elliptical
reconstruction kernels on the surface. These reconstruction kernels are then
projected into the 2-dimensional image space yielding the projected reconstruc-
tion kernel. Finally, the kernels are convolved with an anti-aliasing pre-filter
in image space to avoid aliasing due to minification. The intermediate step
for the world space was just included for illustration purposes.

finally presents practical rendering algorithms that implement the EWA
surface splatting.

3.1 EWA framework

In the EWA splatting framework, a surface is represented as a set of irreg-
ularly spaced samples Pk – also called splats. Each splat Pk is associated
with a position uk and two tangent axes a[1]k ,a[2]k which span an ellipsoidal
reconstruction kernel rk(u). Additionally, an attribute sample wk describes
the appearance of the surface1. See Figure 3.1 for an illustration.

The continuous surface attribute function f (u) is then defined over a local
surface parametrization u:

f (u) = ∑
k∈N

wkrk(u) , (3.1)

i.e. it is expressed as a weighted sum over all attribute samples. The domain
of f (u) will be denoted as source space in the following text.

1The attribute sample wk is defined as a scalar unit without loss of generality for the derivation.
In practice the sample could also be a vector unit, e.g. the diffuse color in RGB color space

20

3.1 EWA framework

The point rendering process can now be formulated as resampling process
from source space to screen space. First, Equation (3.1) is projected to screen
space. Then, the screen space kernels are low-pass filtered to avoid aliasing
due to minification. The resulting filtered kernels are finally resampled to the
pixel grid to render the point-sampled surface. The following three subsection
will present more details on the resampling process.

1. Projection from source to screen space

The continuous attribute function (Eq. 3.1) is projected from source space to
screen space using the projective mapping

m(u) : R2→R2. (3.2)

The mapping is linear in its arguments, it is locally invertible, and it assigns a
surface point u to its corresponding screen position x′. Using this mapping
the screen space signal can be formulated as

g(x′) = f (m−1(x′)). (3.3)

By combining Equations (3.1) and (3.3) the screen space signal reformulates
to

g(x′) = ∑
k∈N

wkr′k(x
′) , (3.4)

where

r′k(x
′) = rk(m−1(x′)) (3.5)

represents one reconstruction kernel projected to screen space. Therefore,
all reconstruction kernels can be projected to screen before their sum is com-
puted.

2. Bandlimitation of the screen space signal

The screen space signal (Eq. 3.4) is then bandlimited using an anti-aliasing
pre-filter h(x′):

g′(x′) = g(x′) ∗ h(x′)

=
∫

R2
g(ξ)h(x− ξ)dξ

= ∑
k∈N

wkρk(x′) . (3.6)

21

EWA surface splatting

The filtered resampling kernels ρk(x) are given as

ρk(x′) =
∫

R2
r′k(ξ)h(x

′ − ξ)dξ. (3.7)

The bandlimitation guarantees that no reconstruction filter falls between the
pixel sampling grid, and effectively avoids aliasing due to minification.

3. Sampling of the continuous output function

Exploiting the linearity of the projection operator, Equation (3.6) then states
that each reconstruction kernel rk can be projected and filtered individually
to derive the resampling kernels ρk. Finally, the contributions of these kernels
can be summed up in screen space and sampled along the pixel grid to arrive
at the final output image.

3.2 Surface resampling

This section presents the resampling process based on the EWA framework:
First, the object space reconstruction filters are introduced. Then we show
how the screen space warp to calculate the filtered resampling kernels in
screen space can be derived. In contrast to Zwicker et al. [ZPBG02], we use
homogeneous coordinates for this derivation.

3.2.1 Object space EWA resampling filter

EWA surface splatting uses elliptical Gaussians as reconstruction kernels
and low-pass filters since they provide two features that are crucial for EWA
splatting: Gaussians are closed under affine mappings and convolution. A
two-dimensional elliptical Gaussian G2

Q(x) with conic matrix Q is defined as:

G2
Q(x) =

|Q2x2|
2π

e−
1
2 xTQx. (3.8)

The conic matrix is defined as:

Q =

 Q2x2
∗
∗

∗ ∗ ∗

 = T−T

 1 0 0
0 1 0
0 0 0

T−1 , (3.9)

22

3.2 Surface resampling

where Q2x2 denotes the upper 2x2 submatrix, and Q is constructed with

T =

[
a[1] a[2] u
0 0 1

]
. (3.10)

In this definition the elliptical Gaussian is centered at position u ∈ R2, and
oriented and scaled along the two main axes a[1],a[2] ∈ R2.

Any arbitrary affine transformation can easily be applied: let u = Mx be the
affine transformation. The resulting new Gaussian then transforms to

G2
Q(Mx) = |M2x2|G2

M−TQM−1(x) . (3.11)

Convolving of two Gaussians with variance matrices V and Y can simply
achieved by adding the respective conic matrices:

(G2
V ∗ G2

Y)(x) = G2
V+Y(x) . (3.12)

These two properties are used in the following resampling step to simplify
the computations.

3.2.2 Screen space EWA resampling filter

The object space resampling filter is first mapped from source space to camera
space, perspectively projected to screen, and bandlimited to avoid aliasing.
The resulting screen space EWA resampling filters can then be rasterized
along the pixel grid.

Mapping from source space to object space. The points u = [u0,u1,1]
are mapped from the local surface parametrization to camera space
ûk = [û0, û1, û2,1]. This mapping is defined as

xk = MTku, (3.13)

where M ∈ R4 ×R4 is the model-view matrix that transforms points from
object space to the camera system, and Tk ∈ R4 ×R3 defines the mapping
from the local surface parametrization to object space:

Tk =

[
a[1]k a[2]k uk
0 0 1

]
. (3.14)

The two axes a[1]k and a[2]k define the shape and planar orientation of the
Gaussian ellipsoid, the point uk defines the center of the ellipsoid in space.

23

EWA surface splatting

Perspective projection. The camera space points x are projected using the
projection matrix P combined with the viewport transformation V. The pro-
jection is finally achieved by dividing by the depth coordinate. Unfortunately,
the perspective transformation does not constitute an affine transformation.
Zwicker et al. [ZPBG02] approximated the projection a Taylor expansion Jk
at point xk:

Jk =
∂

∂x
(VPxk). (3.15)

The Taylor expansion Jk ∈ R3 ×R4 then constitutes an affine approximation
of the projection.

Screen space reconstruction kernel. The full projection step can now be
described as a affine transformation given by

x′ = mk(u) = (JkMTk)u . (3.16)

Conveniently, the reconstruction kernel in screen space can be expressed as a
Gaussian with variance matrix (JkMTk), as Gaussians are closed under affine
transformations (Eq. 3.11):

r′k(x
′) = |JkMTk|GV′k

(x′), (3.17)

with the new conic matrix

V′k = (JkMTk)
−TQ(JkMTk)

−1 . (3.18)

Bandlimitation. As a last step, a Gaussian low-pass filter h = GVh is ap-
plied. By using the property that a convolution of two Gauss kernels can
be expressed by the addition of its variance matrices (Eq. 3.12), the final
reconstruction filter is expressed as:

ρk(x) = r′k ∗ h
= |Vk|GV′k+VH(x′). (3.19)

The lowpass-filter conic matrix is usually chosen to be VH = diag(1,1,0). The
following section will now give practical rendering algorithms for this screen
space mapping.

3.3 Rendering algorithms

The resampling procedure presented in the previous section has been im-
plemented mainly using two different approaches, backward and forward

24

3.3 Rendering algorithms

mapping algorithms. Forward mapping algorithms transform all input splats
to screen space and rasterize the resulting screen space reconstruction ker-
nels, following the procedure defined in Section 3.2 very closely. Backward
mapping algorithms in contrast use a ray casting approach to intersect the
viewing rays with the reconstruction kernels in object space.

The original formulation of EWA splatting [ZPBG01] uses a forward mapping
approach based on the affine approximation of the projection (see previous
Section 3.2.2). We will present this approach in the following Section 3.3.1
and discuss the implications of this approximation.

To overcome some of the limitations of the forward mapping, various ap-
proaches using a backward mapping approach have been proposed. We
will discuss these options in the following Section 3.3.2 and show how this
approach can be used within a rasterization framework.

3.3.1 Forward mapping algorithm

In general, this rendering algorithm closely follows the strategy of Sec-
tion 3.2.2, with some practical changes and optimizations.

The Gaussian reconstruction filter decays very fast and will have negligible
contribution on points far away from its center. Therefore, the Gaussians are
usually cut off at a given (low) function value, and therefore the splat’s extent
in space can be limited drastically.

Furthermore, the definition of the local surface parametrization omits the
problem of visibility, and therefore requires a mechanism to detect the visible
and hidden surfaces. While different strategies including front to back or-
dering are possible, Zwicker et al. [ZPBG01] use a z-buffer approach: a new
depth value is compared to the already stored depth value in the z-buffer.
If the difference between the two depths is smaller than a given threshold,
the contribution is added to the current pixel. In Chapter 5 we will present a
ternary depth test similar to this definition.

The algorithm is performed as follows:

1. For each input splat Pk:

a) Construct the screen space reconstruction filter with conic ma-
trix V′k (Eq. 3.18) by using an affine approximation Jk of the
projection.

b) Construct the filtered resampling filter ρk.

25

EWA surface splatting

c) Determine position and extent of the bounding box of the sur-
face splat based on the cutoff value. For each pixel inside the
bounding box:

i. Evaluate the filtered Gaussian resampling filter ρk(x′).

ii. Determine visibility of splat at current pixel.

iii. If the splat belongs to the visible surface, accumulate with
current pixel value.

2. Normalize final pixel values by accumulated weights.

One important property of EWA surface splatting can be observed in this
algorithm. The Gaussian filters do usually not form a partition of unity, and
therefore the accumulated weights for the visible surface do not sum up to
one. As a result, the final pixel values have to be normalized as soon as all
splats belonging to a surface have been splatted. Only after the normalization
step, the surface is completely reconstructed.

Unfortunately, the Jacobian is only a very coarse approximation of the pro-
jection. This leads to strong perspective distortions often occurring around
object edges, which in turn lead to computationally very unstable results.
Whereas a solution for this problem has been proposed [ZRB+04] by using
more accurate perspective approximations, this solution comes at increase
the computational burden by an order of magnitude.

Another solution to this problem will be presented in the next section: the
projection can be evaluated exactly at the cost of approximating the screen
space filter instead.

3.3.2 Backward mapping algorithm

To overcome the errors introduced by the affine approximation of the projec-
tion, Botsch et al. [BSK04, BHZK05] proposed a simple backward algorithm.
Their algorithm processes each splat independently, estimates its screen space
bounding box and subsequently casts viewing rays to the tangential frame of
the splat. In the tangential frame the value of the Gaussian can be evaluated
perspectively correct. However, the backward mapping algorithm cannot
evaluate the screen space anti-aliasing pre-filter h(x′) correctly anymore,
which can be approximated instead.

The algorithm can be described as follows:

1. For each input splat Pk:

26

3.4 Conclusion

a) Determine/estimate position and extent of bounding box of
surface splat based on the cutoff value.

b) For each pixel inside the bounding box:

i. Intersect viewing ray with the tangent frame of Pk.

ii. Evaluate the object space Gaussian reconstruction filter
r(u).

iii. Approximate screen space filter in object space.

iv. Determine visibility of splat at current pixel.

v. If the splat belongs to the visible surface, accumulate with
current pixel value.

2. Normalize final pixel values by accumulated weights.

This approach leads to computationally much more stable results, and the
approximation of the anti-aliasing pre-filter does not introduce any visible
artifacts. For more information on the approximation of the pre-filter please
refer to [BSK04, BHZK05].

Due to the superiority in terms of stability we will use and extend this
backward mapping in the following chapters.

3.4 Conclusion

This chapter revisited the EWA surface splatting framework, and we derived
the resampling procedure using affine coordinates. Rendering algorithms
based on the resampling procedure can be classified into direct forward
mapping algorithms, and backward mapping algorithms. Backward algo-
rithms are computationally more correct and stable, and variants of backward
algorithms will be used in the following chapters.

In the next chapter, the original framework will be extended in the time
domain to support the generation of motion-blurred images with point-
sampled geometry directly.

27

EWA surface splatting

28

C H A P T E R 4
Motion blur for EWA surface splatting

The EWA surface splatting framework presented in the previous chapter
generates still frames, which depict a perfect instant in time, and therefore
lacks realism and the sensation of dynamics due to the absence of motion blur.
The term motion blur denotes the visual effect that appears in still images
or film sequences when objects moving with rapid velocity are captured.
The image is perceived as smeared or blurred along the direction of the
relative motion to the camera. The reason for this is that the image taken
by a camera in fact is an integration of the incoming light over the period
of exposure. This appears natural to us because the human eye behaves in
a similar way. To achieve this effect in computer graphics the most correct
approaches are either temporal supersampling, that is, producing frames as
a composite of many time instants sampled above the Nyquist frequency,
or – which is theoretically more justified – bandlimiting the incoming signal
before sampling to guarantee that its Nyquist frequency is met.

In this chapter we propose a new method for applying motion blur to EWA
surface splatting. Section 4.1 will give an overview on related work for motion
blur. In Section 4.2 we then present a consistent extension of the theoretical
basis of the EWA splatting framework into the time dimension. The novel
extension includes a temporal visibility to mathematically represent motion-
blurred images with point-sampled geometry. The conceptual elegance of
our approach lies in replacing the 2D Gaussian kernels which continuously

29

Motion blur for EWA surface splatting

Figure 4.1: EWA motion blur examples rendered with our GPU implementation.

reconstruct the point-sampled surface by 3D Gaussian kernels which unify
a spatial and temporal component. By use of these kernels the scene can
be reconstructed continuously in space as well as time. Additionally, the
incoming signal can be bandlimited before sampling to guarantee that its
Nyquist frequency is met. The derived result naturally fits into the EWA
splatting algorithm such that the final image can be computed as a weighted
sum of warped and bandlimited kernels.

Based on the developed mathematical framework, we introduce a rendering
algorithm with strong parallels to the original EWA surface splatting in
Section 4.3. This algorithm applies ellipsoids with spatial and temporal
dimensionality as new rendering primitives. Specifically, the surface splats
are extended by a temporal dimension along the instantaneous velocity
vector. The emerging ellipsoids automatically adapt to the local length of
the piecewise linearized motion trajectory. We then present how temporal
visibility can be solved by using an adapted A-Buffer [Car84] algorithm.

We provide an approximation of the rendering algorithm by the description
of an entire point rendering pipeline using vertex, geometry and fragment
program capability of current GPUs in Section 4.4. Finally we conclude with a
discussion of the introduced approximations and their effect on image quality
and rendering performance in Section 4.5. In addition, we compare results of
the software implementation using A-Buffers and the GPU approximation
with ground truth images generated by temporally highly supersampled
traditional EWA surface splatting. Finally we will conclude this chapter with
an outlook for future work in Section 4.6.

30

4.1 Motion blur in computer graphics

4.1 Motion blur in computer graphics

A well-argued discussion on motion blur is provided by the work of Sung
et al. [SPW02]. There the authors define the problem of motion blur based
on the rendering equation and categorize previous work according to the
respective approach to approximate this equation:

i(ω, t) = ∑
l

∫
Ω

∫
T

r(ω, t)︸ ︷︷ ︸
Shutter

gl(ω, t)︸ ︷︷ ︸
Visibility

Ll(ω, t)︸ ︷︷ ︸
Luminance

dtdω . (4.1)

The function i(ω, t) represents the incoming luminance from a solid angle ω

at time t. The sum iterates through all l objects in the scene and integrates
the luminance Ll(ω, t) over the total solid angle Ω from the environment, in
the exposure time T. The term r(ω, t) describes a shutter reconstruction filter,
and gl(ω, t) describes the visibility function.

Monte Carlo integration methods such as Distributed Raytracing [CPC84,
Coo86] try to approximate the integral directly by stochastic supersampling.
However, due to the randomly distributed oversampling, a large number
of samples is usually required to avoid excessive noise and such to achieve
visually plausible results. In a similar context, the frameless rendering ap-
proach [BFMZ94] presents an alternative to traditional frame-based rendering
and simulates motion blur directly via immediate randomized pixel updates.
In their approach, pixels are updated in random order with the latest available
input parameters, and displayed immediately on the screen. Therefore, an
image on the screen is a mixture of past and present images and can thus be
considered a highly undersampled version of Distributed Raytracing.

Haeberli and Akeley [HA90] achieved motion blur by supersampling mul-
tiple scenes rasterized at different time instants and therefore approximate
Equation (4.1) directly. Nevertheless, to avoid banding artifacts the complete
scene must be rendered at a frequency higher than the Nyquist frequency
of the element with the fastest motion. In the case of a nearly static scene
with a small number of fast moving objects, their approach produces an
unnecessary high constant number of samples. Recent work by Egan et
al. [ETH+09] observed that motion blur is caused by a shear in the space-time
signal as well as in the frequency domain. Based on the frequency analysis
an adaptive sampling scheme can be derived. Combining this sampling with
a sheared reconstruction filter then produces high-quality results with lower
sampling rates as compared to previous supersampling methods. Fatahalian
et al. [FLB+09] presented an approach to render micropolygons with motion
blur by stochastically sampling the volumes swept by moving polygons.

31

Motion blur for EWA surface splatting

Their approach unfortunately comes at very high computational cost, and is
still inefficient in terms of sample test efficiency.

Most other works reduce the complexity of the problem by making assump-
tions on the scene behavior and/or employing further simplifications. The
work of Korein and Badler [KB83] presents an approach that computes the
exact per-pixel visible intervals for each geometry element based on their
continuous movement, assuming constant shading and a temporal box filter.
They validate their method by applying it to screen space circular disks with
constant shading. The small set of the disk’s properties are then interpolated
over time to determine the exact intervals which are subsequently used to
calculate to final motion-blurred image. The method we propose uses a
similar approach for EWA surface splats to resolve the temporal visibility.
Grant [Gra85] proposes a stationary 4D representation for 3D polyhedra in
linear motion to compute temporally continuous visible polyhedra in the 3D
image plane. This approach relies on a temporal box filter and assume con-
stant shading over time. However, linear movements of polygonal surfaces
do not result in planar surfaces in every case and subsequently cannot be
represented by 4D polyhedra correctly.

Further methods are based on a geometric morphing of the objects or the in-
troduction of new geometry. In the case of particle systems, [Ree83] suggests
rendering particle points without area as line segments. [Cat84] uses a circular
filter at every pixel to accumulate the contributions of a geometric primitive.
The author shows that motion blur can be achieved by morphing the filter or,
as he proposes, by morphing the objects in screen space. This morphing is
performed per pixel, and converts the temporal contribution of the primitive
to a spatial contribution for motion blurred images. Unfortunately, shading
and texturing cannot be applied for his method. [WZ96] assumes that a
human viewer cannot distinguish correct motion blur from approximations
for interactive frame rates. The authors therefore approximate motion blur
by constructing new semi-transparent geometry based on the motion vector.
However, their method cannot handle the visibility function and inter-object
relations correctly.

Another field is constituted of various post-processing techniques which op-
erate on the synthesized images and disregard the actual geometry. Potmesil
and Chakravarty [PC83] produce motion blur by a convolution of the ren-
dered still image with a point spread function derived from the motion of the
objects. The two-and-a-half-D motion blur algorithm [ML85] handles multi-
ple scene objects by convolving them individually, followed by a composition
in a back-to-front manner. In comparison, similar to other post-processing
techniques [Max90, Shi93, CW93], these approaches cannot adapt to local

32

4.2 Extended EWA surface splatting

properties of the geometry and cannot address the situation where moving
objects cannot be separated into non-overlapping layers in depth.

The work of [MMS+98] proposes a splatting approach for volumetric ren-
dering and shows how motion blur can be achieved by constructing new
footprint functions based on circular splats and their respective motion vector
in the image plane. However, the visibility problem cannot be solved using
their method. The method of [GM04] extends this approach for EWA surface
splatting by focusing on strong motion hints instead of photo-realistic motion
blur. Their method combines a static, sharp image of the scene with blurred
motion hint ellipses constructed from the original object using its motion
vectors. Their approach uses a simplified version of EWA surface splatting as
described by Zwicker et al. [ZPBG01], and – similar to our work – constructs
three-dimensional reconstruction kernels by convolving the two-dimensional
object space ellipses with a low-pass filter along the motion direction. How-
ever, their method directly projects the kernels to an affine screen space
approximation, and neglects the temporal visibility. It is therefore not able to
reproduce photo-realistic motion blur. A more detailed discussion about the
differences to our approach is presented in Section 4.3.5.

In comparison to the previous work presented here our method solves the
motion blur equation by supersampling the objects in world space and by
combining the samples analytically using a reconstruction filter. The follow-
ing section will present this approach in more detail.

4.2 Extended EWA surface splatting

To formulate the problem of motion blur we interpret an image as a 2D signal
in screen space. For an instantaneous image at time t, the intensity at screen
space position x is given by the continuous spatio-temporal screen space
signal g(x, t). A motion-blurred image which captures the scene over the
exposure period T is represented by GT(x). The intensity value at position
x is generated by a weighted integration of incoming intensities over the
exposure time:

GT(x) =
∫

T
a(t)g(x, t)dt , (4.2)

where a(t) denotes a time-dependent weighting function used to model the
influence of the camera shutter and the medium which captures the scene.
The process of generating GT(x) can be considered as a resampling problem
of g(x, t).

33

Motion blur for EWA surface splatting

P(t)k

r (u,t)k

End Ellipse

Start Ellipse

Motion Trajectory

3D Gaussian Reconstruction Kernels Super-Sampling of 2D KernelsMotion of a 2D Reconstruction Kernel

R (u)k tk

Figure 4.2: A single 2D splat moving along its motion trajectory (left). We place volu-
metric kernels that comprise the spatial and temporal domain of the moving
2D splat (center) along the motion trajectory. In comparison, an approach
consisting of a pure accumulation of temporal supersamples would require a
high number of sampled 2D splats (right).

In the following subsections we extend the original EWA framework [Hec89,
ZPBG02] presented in Chapter 3 by a time dimensionality and introduce a
temporal visibility function to determine occluded surface parts. We then
introduce three-dimensional reconstruction kernels representing a local, lin-
ear approximation of the points’ motion trajectories, very much like the
two-dimensional reconstruction kernels of EWA splatting do in the spatial
domain. The algorithm presented in Section 4.3 finally renders these kernels
to the screen.

4.2.1 The continuous spatio-temporal screen space signal

We extend the continuous surface function defined in Equation (3.1) by a time
dimensionality to f (u, t). Similar to Section 3.1 the surface is defined over a
local surface parametrization u, also called the source space.

The projective mapping from Equation (3.2) is then redefined as

m(u, t) : R2 ×R→R2 ×R (4.3)

which maps the continuous surface function from source space to screen
space. It is locally invertible for a fixed time instant t and assigns a surface
point u to its corresponding screen position x. Using this mapping the screen
space signal (Eq. 3.3) can be reformulated as spatio-temporal signal

g(x, t) = f (m−1(x, t), t) . (4.4)

The continuous surface function f (u, t) itself is represented by the set {Pk(t)}
of time-dependent, irregularly spaced point samples. Each point Pk(t) is

34

4.2 Extended EWA surface splatting

associated with an ellipsoidal reconstruction kernel rk(u, t) which is cen-
tered at a position uk(t) at time t. The continuous surface function f (u, t) is
reconstructed similarly to Equation (3.1) by the weighted sum

f (u, t) = ∑
k∈N

wk(t)rk(u, t) , (4.5)

where wk(t) denotes the attribute value of the k-th point sample at time t.

We define the projective mapping m(u, t) individually for each reconstruction
kernel as mk(u, t) to simplify the following derivations.

4.2.2 Time-varying EWA surface splatting

To extend EWA surface splatting correctly into the time dimension the visibil-
ity function vk(x, t) needs to be introduced. This function defines the visibility
of any surface point u(t) = m−1

k (x, t) in the local parametrization plane of
point sample Pk(t) at time t from the camera viewpoint. By combining
Equations (4.4) and (4.5) the spatio-temporal screen space signal reformulates
to

g(x, t) = ∑
k∈N

wk(t)vk(x, t)r′k(x, t) , (4.6)

where r′k(x, t) = rk(m−1
k (x, t), t) represents a reconstruction kernel projected

to screen space. Similar to Zwicker et al. [ZPBG02], we bandlimit the spatio-
temporal screen space signal with a spatio-temporal anti-aliasing filter h(x, t):

g′(x, t) = g(x, t) ∗ h(x, t)

=
∫

T

∫
R2

g(ξ,τ)h(x− ξ, t− τ)dξdτ

= ∑
k∈N

wk(t)ρk(x, t) (4.7)

where the filtered resampling kernels ρk(x, t) are given as

ρk(x, t) =
∫

T

∫
R2

vk(ξ,τ)r′k(ξ,τ)h(x− ξ, t− τ)dξdτ . (4.8)

The visibility is dependent on the reconstruction kernels, and ρk(x, t) can
be evaluated as follows. In the first step, all reconstruction kernels are fil-
tered using h(x, t). The visibility is then determined based on the filtered
reconstruction kernels leading to the filtered resampling kernels.

The above equations state that we can first project and filter each reconstruc-
tion kernel rk(u, t) individually to derive the resampling kernels ρk(x, t). As a

35

Motion blur for EWA surface splatting

consequence the contributions of these kernels can be accumulated in screen
space where occluded parts are masked out by the filtered visibility functions
v′k(x, t). This separation simplifies the computation, as the attribute function
can be arbitrary, while the visibility function is well defined by the geometry
and its associated motion.

The equations presented so far are very similar to the original formulation in
Section 3.1. All functions and filters have been extended by a time domain,
and a visibility function has been introduced to handle occlusions. In the
next section the extensions will be used for the temporal reconstruction of
point sampled surfaces.

4.2.3 Temporal reconstruction

In analogy to a spatial reconstruction of f (u, t) we sample the motion tra-
jectories of Pk(t) in time and subsequently build a reconstruction which is
also continuous over time. To achieve this we employ ellipsoidal 3D recon-
struction kernels Rktk

(u) which define linearized trajectory patches of the
moving point samples, similarly to the 2D reconstruction kernels that define
linearized patches of the surface in the original EWA splatting algorithm.
These new reconstruction kernels are centered at the point-sample positions
uktk

= uk(tk) and are constructed by convolving the elliptical 2D Gaussian
kernels rk(x, tk) with a 1D Gaussian along the instantaneous velocity vector.
The surface function is now continuously reconstructed as follows:

f (u, t) = ∑
k∈N

∑
tk

wk(t)Rktk
(u) . (4.9)

Combining this result with Equation (4.4) leads to the following equation for
the continuous spatio-temporal screen space signal g(x, t):

g(x, t) = ∑
k∈N

∑
tk

wk(t)vktk
(x, t)R′ktk

(x) , (4.10)

where R′ktk
(x) = Rktk

(m−1
k (x, tk)) are the reconstruction kernels projected to

screen space. The time index tk reflects that the sampling times are chosen
adaptively for the respective point-sample trajectories depending on the
motion and shading changes over time, see Figure 4.2 for an illustration. The
actual sampling we used in our implementation is described in Section 4.4.5.

36

4.3 Rendering

An explicit expression for the bandlimited spatio-temporal screen space signal
of Equation (4.7) can then be expressed as:

g′(x, t) = g(x, t) ∗ h(x, t)
= ∑

k∈N

∑
tk

wk(t)ρ̂ktk
(x, t) , (4.11)

with the filtered resampling kernels ρ̂ktk
(x, t):

ρ̂ktk
(x, t) =

∫
T

∫
R2

vktk
(ξ,τ)R′ktk

(ξ,τ)h(x− ξ, tk − τ)dξdτ . (4.12)

The resampling kernels ρ̂ktk
(x, t) are again evaluated by first filtering the

reconstruction kernels and then determining the visibility based on the fil-
tered reconstruction kernels. We use the A-Buffer approach presented in
Section 4.3.4 to resolve the visibility in practice: in a first step, the visibility
function is computed by determining which filtered reconstruction kernels
contribute to a single pixel. The visibility is then used as temporal opacity
contribution for each kernel when evaluating the integral in Equation (4.2).

4.3 Rendering

This section briefly gives an overview of the rendering algorithm before
going into detail. First, the reconstruction filters R′ktk

(x) are constructed in a

similar way to EWA surface splatting. The two axes a[1],a[2] span the plane
of the original 2D surface splat and a third temporal axis a[3] is constructed
based on the motion vector m. The latter is determined as the difference
vector between the start and end positions of a point with respect to the time
window of the temporal supersample and the temporal axis is constructed as
a[3] = α

2 m, where α controls the variance in the time domain.

The reconstruction filter is projected to screen space, sampled at the pixel
locations by rasterization and accumulated to the current image. We use a
backward mapping algorithm similar to Section 3.3.2 to integrate the filter
in a perspectively correct manner along the direction of the viewing ray. To
reduce the computational complexity we also limit the extent of the filter
to a fixed cut-off value and can therefore limit the extent of the filter to a
bounding polygon in screen space.

The correct visibility is computed using an A-Buffer approach to separate
distinct portions of the surface, according to the time interval the surface has
been visible. After all visible filter integration values have been accumulated

37

Motion blur for EWA surface splatting

the result needs to be normalized since, in general, the EWA filters do not
form a partition of unity in space.

The following subsections will provide details on the construction of the
resampling filter, the integration of the resampling filter along the viewing
ray, the bounding volume and the visibility A-Buffer.

4.3.1 The 3D spatio-temporal reconstruction filter

In analogy to EWA surface splatting we choose ellipsoidal Gaussians G3
Q(x) as

3D reconstruction kernels Rktk
(x) = G3

Qktk
(x) and as low-pass filters. Addition-

ally to the properties of being closed under affine mappings and convolution,
another property is that the line integral of a 3D Gaussian resembles to a 2D
Gaussian, as will be seen later in this section. Using these properties we then
can analytically compute samples for the rasterization.

We define a 3D ellipsoidal Gaussian G3
Q(x) with the 4x4 quadric matrix Q

using homogeneous coordinates x = [x y z 1]T similar to Section 3.2.1 as:

G3
Q(x) =

√
δ3|Q|

π3 e−δ xTQx , (4.13)

where the Gaussian is normalized to the unit volume integral. The scaling
factor δ controls the variance of the Gaussian. The quadric matrix Q can be
decomposed into Q = T−TDT−1, where the 4x4 transformation matrix T is
constructed out of the three arbitrary, independent axis vectors a[1], a[2], a[3]

spanning the Gaussian centered at point u:

T =

[
a[1] a[2] a[3] u
0 0 0 1

]
, (4.14)

and D = diag(1,1,1,0) is a diagonal matrix.

From a geometric viewpoint the three axis vectors span a skewed coordinate
system, that is to say, the system of the Gaussian filter, see Figure 4.3. A point
in space is transformed into the coordinate system of the Gaussian filter by
T−1x and the weight of the filter is evaluated based on the distance of this
point to the origin.

The correct screen space bandlimiting filter is approximated by evaluating it
in object space similar to [GBP06]. We first estimate the spacing of the pixel
grid in object space. If the length of the axes, projected onto this estimation,

38

4.3 Rendering

a
a

a

T-1

T
e[1]

e[2]

e[3]x
T-1x

Object Space Parameter Space

[3]

[2]

[1]

Figure 4.3: We construct the 3D reconstruction kernels based on the two original splat
axes a[1],a[2] and the instantaneous motion vector m. The matrix T is used
to transform points and lines from object space to the respective parameter
space. In parameter space an iso-level of the reconstruction kernel can be
interpreted as the unit sphere.

does not match the filter width, we enlarge the axes to the size of the filter
radius.

The next section will show how to integrate a reconstruction filter along the
viewing ray.

4.3.2 Sampling of the reconstruction filter

To evaluate the contribution of a single 3D Gaussian to a pixel, the Gaussian
is integrated along the path of the viewing ray within the integration time
which equals the time of exposure. The viewing ray for a pixel can be put
in parametrized form as r(s) = p + s d, where p = [xw yw 0 1]T denotes the
pixel position in window coordinates and vector d = [0 0 1 0]T represents the
viewing direction of the ray. In a first step the viewing ray is transformed
into the parameter system of the ellipsoid:

r̃(s) = (V · P ·M · T)−1 r(s) = p̃ + s d̃ , (4.15)

where V, P and M denote the viewport, projection and model-view matrix,
respectively.

In a next step r̃(s) is transformed to the integration line l(t). The integra-
tion line parametrizes the position on the ray at integration time t. Let

39

Motion blur for EWA surface splatting

p̃′ = p̃xyz/p̃w and d̃′ = d̃xyz be the de-homogenized vectors. The integration
line is then defined as

l(t) = b + ft , (4.16)

with the transformed support point and direction

b = p̃′ − p̃′z
d̃′z

d̃′, f = − d̃′

d̃′z
, (4.17)

where b is projected along r̃(s) to time z = 0 and f is the direction from point a
time z = 0 to the point at time z = 1. Recall that the z-axis in parameter space
represents the temporal dimensionality. Figure 4.4 illustrates this conversion.
The integral along the 3D Gaussian visible in the time interval [ta, tb] becomes∫ tb

ta
G3(l(t)dt =

∫ tb

ta
e−δ lT(t)l(t)dt

=
∫ tb

ta
e−δ (bTb+2bTf t+fTf t2) (4.18)

=
∫ tb

ta
e−δ lT

xy(t)lxy(t)︸ ︷︷ ︸
Spatial

· e−δ t2︸ ︷︷ ︸
Temporal

dt ,

where the normalization of the Gaussian is performed implicitly by the
transformation from the viewing ray to the integration ray. The solution for
the finite integral is given as

∫ tb

ta
G3(l(t))dt =

√
πe−

δ(bTbfTf−(bTf)2)
fTf

2
√

δfTf
· (erf(f (tb))− erf(f (ta))) , (4.19)

where

f (x) =

√
δ

fTf

(
fTf · x + bTf

)
, erf(x) =

2√
π

∫ x

0
e−t2

dt . (4.20)

The Gauss error function erf(x) cannot be computed analytically and will be
stored as a look-up table for performance reasons.

Note that a closed solution only exists for the infinite integral, and will be
given for completeness:

∫ ∞

−∞
G3

I (i(t)dt =

√
πe−

δ(bTbfTf−(bTf)2)
fTf

√
δfTf

. (4.21)

However, due to the visibility function the bounded integral in Equation (4.19)
needs to be evaluated for correct results.

40

4.3 Rendering

a a

a
w = t = -1

w = t = 1

w = t = 0
b

f

a
a

a[1]

[2]

[3]

(VPMT)-1

VPMT

r(s)
r(s)~

Viewing ray r(s)
in world space

Integration line l(t)
in parameter space

l(t) = b + t f

ta

tb

[1] [2]

[3]

Figure 4.4: To evaluate the line integral along the viewing ray r(s) it is first transformed
to the parameter space viewing ray r̃(s) and finally normalized to the integra-
tion line l(t). The integration line, again, is normalized to the time interval
[−1,1] which represents the total integration period. The integral is evaluated
in the time interval [ta, tb] in which the kernel is visible.

4.3.3 Bounding volume restriction

Theoretically the Gaussian reconstruction filters need to be evaluated on
the whole image plane. Nevertheless, the Gaussian decays very fast and
rays through pixel locations farther than a certain cut-off distance from the
projected kernel center have negligible contributions to the image. To simplify
the computations for the visibility we therefore bound the evaluation of the
line integral by bounding the Gaussian filter with a 3D tube.

The tube is defined as xTT−TDxyT−1x = 0 in object space, where
Dxy = diag(1,1,0,−1) is a diagonal 4x4 matrix and T is identical to
the variance matrix of the ellipsoid in Equation (4.14). Intersection points
between a ray and the tube are then determined by inserting Equation (4.15)
into this relation and solving the quadratic equation

r(s)T(VPMT)−TDxy(VPMT)−1r(s) =

r̃xy(s)Tr̃xy(s) = 0 . (4.22)

In addition to the quadratic equation we bound the tube by the two ellipses
lying on the cut-off planes r̃z(s) = ±1 and arrive at the bounding cylinder.

41

Motion blur for EWA surface splatting

In the same way as the ellipsoid volume is constrained in object space, its
extent in screen space can be bounded by the projection of the cylinder. The
bounding box computation of the latter can be performed similarly to Sigg et
al. [SWBG06b]: First, the two axis-aligned bounding boxes of the bounding
ellipses are computed. Then the convex hull polygon of these bounding boxes
is computed.

The exact derivation for the bounding box computation of the bounding
ellipses can be found in Section 5.4.1 of the following chapter. The convex
hull polygon of the two bounding boxes can then be determined efficiently
by comparing each of the four corresponding corner pairs separately. For
each pair the following simple relation holds: If one of the two vertices lies
in the inside quadrant the inside vertex is discarded. The inside quadrant
is defined by the two lines of the bounding box adjacent to the vertex. In
case the vertex is not in the inside quadrant both vertices are connected. This
simple algorithm can be organized in a way that it yields a sorted list of
points defining the convex hull and can be directly used as an output for a
triangle strip by interleaving the vertex order.

The following Listing 4.1 shows the pseudo-code for one of the four quadrant
cases, the other three cases can be solved accordingly. By careful ordering of
the cases, a point list defining a convex polygon is produced. See Figure 4.5
for an illustration of the algorithm for all four cases. The numerically stable
and efficient method to compute the bounding boxes of the bounding ellipses
can be found later in Section 5.4.1 when the hardware architecture for surface
splatting is presented.

Listing 4.1: Bounding polygon computation example for quadrant I.

Vector2 ul1; // Upper left corner of bounding box 1
Vector2 ul2; // Upper left corner of bounding box 2

float d = (ul1 .x− ul2.x) ∗ (ul1.y − ul2.y)
float min = MIN(ul1, ul2); // Component wise minimum
float max = MAX(ul1, ul2); // Component wise maximum

if (d < 0) { // Outside quadrant case
return Vertex2D(min.x, max.y) and Vertex2D(max.y, min.x);

} else { // Inside quadrant case
return Vertex2D(min.x, min.y);

}

42

4.3 Rendering

1

2

3

4 5

6

7

8 1,2

3,4 5,6

7,8

Outside quadrant cases Inside quadrant cases

I

IIIII

IV I IV

IIIII

Figure 4.5: Convex hull of two axis-aligned screen space bounding boxes. The algorithm
compares the corresponding four corners of the boxes in counter-clockwise
order. If none of the two corresponding corners lie within the inside quadrant
of the other corner, both corners belong to the convex hull (left). Otherwise
the corner located in the inside quadrant is discarded (right).

4.3.4 Visibility

The visibility of a surface point is a discontinuous, non-bandlimited function.
The optimal strategy to solve the visibility problem for motion-blurred EWA
surface splatting in terms of visual quality is similar to the approach proposed
by [KB83]. As a result of the integration of all kernels along the viewing rays,
the time intervals in which each single kernel is visible at a pixel are known.
These integration intervals [tn

a , tn
b] are furthermore associated with a depth

interval [dn
a ,dn

b], resembling the sorted lists of the A-Buffer method [Car84].

Our adopted A-Buffer algorithm iterates over the intervals starting with
the earliest time interval. All subsequent time intervals are compared for
temporal and depth overlap using a ternary depth test commonly used in
EWA surface splatting. In case both a temporal and depth overlap is detected,
the intervals belong to reconstruction kernels associated with the same sur-
face. Therefore, they are weighted and accumulated to the current pixel
value and finally normalized. If there is only a temporal overlap present, the
depth interval of the later time interval is adjusted accordingly by removing
the occluded interval from it. After all intervals have been processed, the
visibility functions vk(x, t) of all reconstruction kernels contributing to the
pixel are known. The final pixel value is calculated based on Equation (4.2)

43

Motion blur for EWA surface splatting
D

ep
th

Time

D
ep

th

Time

Surface 1

Surface 2

Surface 3

Surface 1
Surface 2

Surface 3

Depth-time intervals stored in A-Bu�er Separated intervals for integration

Figure 4.6: The adopted A-Buffer algorithm for visibility culling. The A-Buffer con-
tains the time-depth intervals of all splats passing through a pixel in the
integration period, as shown for one pixel in the left graph. Our visibility
culling algorithm determines whether splats overlap in depth and in time,
and subsequently clips hidden splats that do not overlap in depth for a given
time interval, as shown on the right graph. The resulting three intervals
are integrated and normalized separately before the final pixel value can be
calculated based on Equation (4.2).

by summing up all contributions weighted with the time-dependent shutter
function a(t). Figure 4.6 shows an illustration of this algorithm for one pixel.

The visibility algorithm as described above could be implemented efficiently
on a ray-tracer which naturally traverses the objects in a roughly sorted depth
order. Section 4.4 presents an approximative strategy to solve the visibility
problem on modern GPUs.

4.3.5 Discussion

This rendering framework is able to produce realistic motion blur by ex-
tending the EWA surface splatting framework in its theoretical basis. Some
results are shown in Figures 4.9a and 4.10a. Our method determines the
temporal visibility of the ellipsoidal reconstruction kernels and is able to
render motion-blurred scenes using accurate surface contributions dependent
on their visibility.

Similar to our work, the method of [GM04] also constructs three-dimensional
reconstruction kernels by convolving the two-dimensional object space el-
lipses with a low-pass filter along the motion direction. In a subsequent step,
the reconstruction kernels are projected to screen space ellipses and used for
rendering.

44

4.4 GPU implementation

However, our framework and its rendering algorithm differ substantially
from [GM04]. Their work combines a static image of the scene combined with
blurred motion hint ellipses. The static scene is generated using the original
EWA surface splatting algorithm, whereas the blurred motion hint ellipses
are rendered using a modified technique. Furthermore, their work neglects
the temporal visibility and cannot separate the spatial contributions of the
motion ellipses and consequently their opacity is not accurate. The results
of this limitation are the striping artifacts and disturbing over-blending in
areas with high overlap of motion ellipses. Therefore it cannot reproduce
photo-realistic motion blur as our approach.

4.4 GPU implementation

The GPU implementation approximates the rendering framework using
multiple render passes as depicted in Figure 4.7:

1. The first pass renders elliptical splats at the start time of the inte-
gration period into the depth buffer only. The result is used as an
approximation for the subsequent depth tests.

2. The second pass renders elliptical splats at the end time of the inte-
gration period, similar to step 1.

3. The third pass approximates the visibility against static objects and
the background by determining the earliest instant of time in which
geometry is visible for every pixel.

4. The fourth pass determines the latest instant of time in which geome-
try is visible for every pixel, similar to step 3.

5. The fifth pass blends all visible reconstruction kernels into the accu-
mulation buffer.

6. The sixth pass performs the normalization of the blended kernels.

The following sections provide details on these steps.

4.4.1 Visibility passes 1 and 2

The first two passes render the scene to the depth buffer only by making use
of elliptical discs as rendering primitives. The first pass renders the scene at
the start of the integration period, whereas the second pass renders the same
scene transformed to the end of the integration period. Similar to [BHZK05],

45

Motion blur for EWA surface splatting

Placeholder Teaser

Passes 1 & 2 Passes 3 & 4

Pass 5 Pass 6

Start / end
visibility

Kernel blending Normalization

t / t
computation

min max

Figure 4.7: The GPU implementation uses six passes to synthesize motion-blurred images.
The first two passes approximate the visibility of the surface function at the
start and end of the exposure time (left). The subsequent passes three and
four approximate the visibility of the object in relation to the background
by computing the per-pixel time intervals during which geometry is visible
(middle left). After all reconstruction kernels have been blended (middle right),
the accumulated values are normalized and the rendered object is composed
with the background (right).

the elliptical discs are rendered without blending to determine the visible
surface at a single time instant for each pixel.

The resulting two depth buffers are then applied during the subsequent steps
to approximate the kernel visibilities. The depth test works as follows. For
every ellipsoid its minimum depth at the current fragment is determined
and compared to the corresponding entries of both depth buffers. If the ellip-
soid is visible in either one of the depth buffers the processing is continued,
otherwise the rest of the computations for this fragment can be discarded.

4.4.2 Background visibility passes 3 and 4

In a next step we approximate the solution for the visibility problem with
respect to the background or static objects by estimating the total fraction

46

4.4 GPU implementation

of time in which any of the kernels is contributing to a pixel. The fifth pass
reuses the same vertex and geometry shader as described here.

The vertex shader constructs the velocity vector based on the transformation
matrices of the start and end frame. The normals of the 2D splats at the
start and end frame are computed to perform back-face culling in case both
normals are facing away from the camera. In a following step the screen space
bandlimiting filter is approximated by means of ensuring that the projection
of the axes equals at least the size of the filter radius. Based on the outcome
of the filter the three axis vectors a[1],a[2],a[3] are constructed. To avoid
numerical issues during the transformation of the viewing ray we enforce a
minimum length of the velocity axis a[3] as well as a minimum angle between
the a[1],a[2] plane and a[3]. Then, based on the axis vectors a[1],a[2],a[3] and the
kernel center u, the transformation matrix (PMT)−1 is constructed. Similar
to [SWBG06b] we compute the two axis-aligned bounding boxes for the start
and end frame ellipses. Instead of simply taking the combined axis-aligned
bounding box, we send both bounding boxes to the geometry shader to
construct a tighter bounding primitive.

The geometry shader combines the two axis-aligned bounding boxes to a
convex octagon with the method described earlier in Section 4.3.3. The
vertices of the octagon are computed in counter-clockwise order and some of
the neighboring vertex pairs may consist of the same vertex. Accordingly to
simplify the computations in the geometry shader we always output eight
vertices for a triangle strip resulting in up to six triangles.

The fragment shader estimates the time intervals in which the ellipsoids are
visible. The idea is to determine the earliest time instance tmin and the latest
time instance tmax at which any reconstruction kernel is covering the pixel.
The viewing ray is first transformed from camera space to parameter space
and intersected with the cylinder. The z-component of the intersection points
can directly be used as the integration interval [t′min, t′max] of a single kernel.
The depth test ensures that only the smaller or greater values, respectively,
are written to the depth buffer. At the end of the rendering cycle the two
depth buffers contain the earliest and the latest times per pixel when any of
the kernels becomes visible.

Pass 6 later uses [tmin, tmax] as an approximation of the correct time intervals.

4.4.3 Blending pass 5

In this pass the vertex and geometry program of the passes 3 and 4 are
reused. The fragment shader transforms the viewing ray to the integration

47

Motion blur for EWA surface splatting

ray and performs the integration. To evaluate exp(x) and erf(x) we utilize
look-up tables which are stored in textures. As an approximation, all visible
reconstruction kernels are blended using the integration weight of their whole
integration period. To perform an accurate visibility test partial occlusions
during the kernel integration period would have to be resolved as will be
discussed later.

4.4.4 Normalization pass 6

In a final step the rendered image is normalized by the sum of the kernel
weights. The resulting image is combined with the background where the
blending weight is given by the integral

∫ tmax
tmin

e−t2
dt reusing the time interval

information acquired in the fourth and fifth pass.

4.4.5 Sampling of the motion path

To support fast, non-linear movements we resample the motion path in the
case of such movements. The motion path is split into equidistant time frames
and all 6 passes are performed on the sampled sub-sets individually. The
results of each iteration are accumulated into an accumulation texture, and
each sample is weighted using the integral

∫ tsubframei+1
tsubframei

e−t2
dt. Furthermore, a

higher sampling of the motion path helps to reduce visible artifacts due to the
approximation of the visibility function. This approach allows us therefore to
trade rendering speed for correctness of the result. Note that this is similar
to supersampling, however, a much lower amount of samples is generally
needed.

4.5 Results and limitations

The GPU implementation is able to achieve high-quality pictures at compet-
itive frame rates compared to the pure temporal supersampling approach.
Figures 4.1 and 4.8 show some sample renderings and comparisons. Table 4.1
lists the corresponding temporal supersampling rates and performance fig-
ures for all examples in this paper. All results have been computed on an
NVIDIA GeForce 280 GPU.

The crucial benefit of our approach is that the volumetric kernels adapt
automatically to the speed of the motion. In cases where an object moves at
varying speeds a pure temporal supersampling would usually sample the

48

4.5 Results and limitations

Table 4.1: Performance comparisons for the depicted examples, measured using an
NVIDIA GTX 280. The supersampling factors ’x’ have been chosen for
similar visual quality.

Figure 3D Kernels Super sampling Point
x Points/s x Points/s count

4.1.a 4 1.80M 30 1.44M 350k
4.1.b 2 4.63M 25 2.91M 466k
4.8.a/4.8.e 4 1.91M 30 1.78M 554k
4.8.b/4.8.f 12 0.42M 40 0.46M 303k
4.8.c/4.8.g 12 0.63M 80 0.65M 310k
4.8.d/4.8.h 1 1.65M 60 0.50M 825k

complete animation at a constant rate nevertheless, whereas the volumetric
kernels adapt implicitly.

As a limitation inter-object relationships cannot be handled correctly on the
GPU because the visibility cannot be computed exactly, see Figure 4.9. The
proposed approximation using the depth images is only able to exhibit a
binary visibility function based on the visibility of the ellipsoids in the start
and end frame. Additionally, artifacts may occur due to the approximated
back-face culling where kernels may get falsely discarded or accepted.

The visibility passes for determining tmin and tmax try to approximate the total
time during which any geometry is visible at a fragment. This information is
used to blend the blurred image with the background. As only the earliest and
latest time instants are determined, problems arise if, for example, geometry
is only visible shortly at the beginning and the end of the time interval, see
Figure 4.10. However, our approximation would classify the whole interval
as being covered by kernels.

While objects moving at similar speed are blended in a plausible way, fast
moving objects cannot be blended plausibly with slow moving objects due
to the above mentioned approximations. Although our framework has been
designed for generality, the visibility approximation limits the applicability
of the GPU algorithm to scenes where different objects do not exhibit simul-
taneous overlaps in time and depth intervals. However, the artifacts which
arise in this case can be alleviated by increasing the temporal supersampling
rate along the motion trajectory which sacrifices rendering performance in
favor of quality.

49

Motion blur for EWA surface splatting

(a)

(e) (f) (g) (h)

(b) (c) (d)

Figure 4.8: Comparison of the result images rendered with our GPU implementation
(a-d) and images rendered with supersampling of conventional EWA surface
splatting framework (e-h), performance figures are given in Table 4.1. Figures
(a,b): dragon is rotating along the depth axis. Figures (b,f): colored knot
rotating around the up and depth axis. Figures (c,g): fast rotating face and
Igea heads, the heads moving along depth axes and overlap the face. Figures
(d,h): book moving towards the camera.

4.6 Conclusion

In this chapter we have introduced a new method for rendering dynamic
point-based geometry with motion blur effects based on EWA surface splat-
ting. We have extended the theoretical basis of the EWA framework in
a conceptually elegant and consistent way and consequently provided a
mathematical representation of motion-blurred images with point-sampled
geometry. Our method replaces the 2D surface splats of the original EWA
surface splatting framework by 3D kernels which unify a spatial and temporal
component. This allows for a continuous reconstruction of the scene in space
as well as time and the motion-blurred image is computed as a weighted
sum of warped and bandlimited kernels. Accordingly, we have described
an approximation of the theoretical algorithm by means of a six-pass GPU
rendering algorithm. Our point rendering pipeline applies ellipsoids with
spatial and temporal dimensionality as new rendering primitives and exploits
vertex, geometry and fragment program capability of current GPUs. Our
framework for point splatting maintains generality by avoiding any assump-
tions or constraints on the nature of the captured scene such as motion or

50

4.6 Conclusion

(a) (b)

(d)(c)

Figure 4.9: Inter-object relations can only be handled using a higher sampling due to the
visibility approximation on the GPU. Figure (a) A-Buffer software implemen-
tation. GPU implementation: (b) 1 sample, (c) 4 samples, (d) 8 samples.

lighting.

As result, we identified several shortcomings of todays graphics architec-
tures. First, a tertiary depth test deciding whether surface splats occlude,
overlap or are hidden can only be approximated using the binary depth test
of current GPUs. Therefore, multiple passes including a normalization pass
are needed to render even static point-sampled scenes. Second, the absence
of a more configurable framebuffer to support A-buffer implementations to
solve for visibility requires additional multiple passes and has a significant
impact on the quality vs. speed tradeoff. Only a very recent paper by Yang
et al. [YHGT10] showed how linked lists can be constructed in real-time
on newest, state-of-the-art DirectX 11 GPUs. Their approach seems very
promising to support our A-buffer data structure and to achieve higher visual
quality at faster rendering speeds for EWA motion blur.

51

Motion blur for EWA surface splatting

A-Bu�er 1x 2x 12x

A-Bu�er 1x 2x 8x 8x 15x 30x

12x 20x 40x
3D kernels 2D supersampling

Figure 4.10: Left: 3D kernels rendered with the A-Buffer software implementation and
with different sampling rates for the GPU implementation. Right: 2D kernel
supersampling with varying sampling rate. The visibility approximation
for the GPU produces artifacts when geometry has been visible only shortly
once at the beginning and once at the end of the integration interval. As a
solution, the number of temporal samples can be increased. The A-Buffer
implementation does not suffer from those artifacts.

In the following chapter we will revisit point-based rendering and its differ-
ences to traditional triangle-based rendering again, with focus on hardware
architectures. Based on the analysis in this chapter we will present a novel
hardware architecture for point-based rendering that complements triangle
rendering instead of replacing it.

52

C H A P T E R 5
Hardware architecture for surface

splatting

In this chapter, we present a novel architecture for hardware-accelerated
rendering of point primitives. The architecture combines the advantages of
triangles and point-based representations. Our pipeline focuses on a refined
version of the elliptical weighted average (EWA) surface splatting for static
scenes, and alleviates some of the bottlenecks analyzed and presented in the
previous chapter. A central feature of our design is the seamless integration
of the architecture into conventional, OpenGL-like graphics pipelines so as to
complement triangle-based rendering.

The specific properties of the EWA splatting algorithm required a variety
of novel design concepts including a ternary depth test and using an on-
chip pipelined heap data structure for making the memory accesses of splat
primitives more coherent. In addition, we develop a computationally stable
evaluation scheme for perspectively corrected splats. We implement our ar-
chitecture both on reconfigurable FPGA boards as well as on ASIC prototypes,
and we integrate it into an OpenGL-like software implementation. Finally, we
present a detailed performance analysis using scenes of various complexity
to show that surface splatting is suited for hardware implementations.

53

Hardware architecture for surface splatting

5.1 Overview

The rendering pipeline used for our hardware architecture is based on a
stream-lined variant of EWA surface splatting for static scenes which has been
introduced in Chapter 3. The design philosophy of the presented hardware
architecture is motivated by the desire to seamlessly integrate high quality
point rendering into modern graphics architectures to complement their
strengths and features. The specific properties of EWA rendering required a
variety of novel concepts and make our design different from conventional
graphics architectures. For instance, multiple splats belonging to one surface
have to be accumulated all before the final surface can be displayed. Also,
splats belonging to different surfaces have to be separated from each other.
Due to these differences, previous implementations of EWA surface splatting
required multiple GPU passes and could not keep up with the performance
of triangle based rendering, which is especially true for our extended version
of EWA splatting for motion blur presented in Chapter 4.

We will show that our architecture addresses the issues for stationary scenes
and renders splats efficiently in single pass. Furthermore, using deferred
shading of the splat surfaces allows us to apply virtually any fragment
shading program to the reconstructed surface. Some of the central novel
features of our design include a constant-throughput pipelined heap data
structure on chip for presorting of the splat primitives and to obtain better
cache coherence. In addition, we have developed a ternary depth test unit
for surface separation. We also present a novel, perspectively corrected splat
setup which is faster than previous methods and has significantly improved
numerical stability.

We implemented two prototype versions of our architecture on Field-
Programmable Gate Arrays (FPGA) and Application-Specific Integrated
Circuit (ASIC), and we also designed a graphics board for the latter, see Fig-
ure 5.1. Furthermore, we demonstrate the integration into existing pipelines
in Mesa 3D, an OpenGL-like software implementation [Mes]. The analysis of
our research prototypes shows that the proposed architecture is well suited
for integration into conventional GPUs, providing high efficiency, scalability,
and generality, and we achieved a theoretical peak performance of over 17.5
million splats/sec while operating at a comparably slow clock frequency of
70 MHz on the FPGA implementation.

The rest of this chapter is organized as follows. We will briefly revisit the
performance issues regarding implementations of the EWA surface splat-
ting framework on GPUs to motivate our design in Section 5.2, and give a
comparison to traditional triangle rendering. A design overview is given

54

5.2 Performance of EWA surface splatting on current GPUs

Figure 5.1: Point rendering system featuring an ASIC implementation of our point
rendering architecture. The system runs stand-alone, independent from a
host PC.

in Section 5.3. The rendering pipeline used for our hardware architecture is
then outlined in Section 5.4. Our algorithms and hardware architecture are
described in Section 5.5. The characteristics of our FPGA, ASIC, and Mesa
implementations are outlined (Section 5.6), and the seamless integration of
the new functionality into existing APIs is covered in Section 5.6.3. Finally,
Section 5.7 provides test results, and Section 5.8 discusses the limitations and
weaknesses of the current design and lists potential future work.

5.2 Performance of EWA surface splatting on current GPUs

While the EWA splatting framework (Chapter 3) can be implemented on
modern programmable GPUs, the result is a relatively inefficient multi-pass
algorithm. Based on the analysis presented in Chapter 4, the following
performance issues can be identified in particular:

• There is no dedicated rasterizer unit, which would efficiently traverse
the bounding rectangle of a splat and identify the pixels the splat

55

Hardware architecture for surface splatting

overlaps. As a result, this stage has to be implemented as a fragment
shader program.

• Accurate accumulation and normalization of attributes cannot be
done in a single pass due to the lack of necessary blending modes.

• The depth values must be accumulated and normalized exactly like
other attributes, and thus a normalizing depth test hardware unit
would be required for single-pass rendering. Such a unit has to sup-
port the ternary depth test (pass, fail, accumulate) of EWA splatting.

• The attribute accumulation imposes a heavy burden on frame buffer
caches due to the overlap of splat kernels, and current caches may
not be optimal for the task.

We will address these issues in the following sections and present our novel
hardware architecture for EWA splatting. The design focuses on stationary
two-dimensional splats for the ease of implementation. Most of the intro-
duced concepts, however, are also applicable to the extension of the EWA
surface splatting algorithm for motion blur.

5.3 Design overview

Our hardware architecture aims to complement the existing triangle render-
ing functionality with EWA splats, and make maximum re-use of existing
hardware units of current GPUs.

The new algorithms used by our splat rasterization unit are described in
Sections 5.4.1 and 5.4.2. In order to provide maximum performance and
flexibility, we designed the pipeline to render EWA splats in a single pass. For
that, a ternary depth test (Section 5.4.3) and extended blending functionality
(Sections 5.4.4 and 5.4.5) are needed.

In terms of integration into existing GPUs, a particular challenge is that the
execution model of splatting is different from triangle rasterization. While
individual triangles represent pieces of surfaces, in splatting a part of the
surface is properly reconstructed only after all the contributing splats have
been accumulated and the sum has been normalized (this also concerns depth
values). We achieve this by routing the splats through a frame buffer-sized
surface reconstruction buffer before proceeding with fragment shading, tests,
and frame buffer blending using the existing units. In effect, this architectural
detail implements deferred shading [DWS+88, BHZK05] for splats, and as a
result any fragment shading program can be used.

56

5.4 Rendering pipeline

Figure 5.2 illustrates the overall design, which will be detailed in the following
sections.

We chose to implement a custom reconstruction buffer due to performance
reasons. An efficient implementation needs double buffering, fast clears,
tracking of dirty pixels, high-performance accumulation of pixels, and direct
feeding of normalized dirty fragments to the shader. We omitted support for
A-buffer like structures for simplicity and without loss of generality. Note
that if our pipeline was embedded into a GPU that already supported this
functionality for off-screen surfaces and A-buffer structures, those resources
could be reused.

In order to significantly improve the caching efficiency over typical frame
buffer caches, we propose a novel reordering stage in Section 5.5.2. This is a
crucial improvement because the accesses to the surface reconstruction buffer
may require a substantial memory bandwidth if the on-chip caches are not
working well.

5.4 Rendering pipeline

In this section, we will outline our modified EWA surface splatting pipeline
optimized for hardware implementations.

A splat is defined by its center u, and two tangential vectors a[1] and a[2], as
illustrated in Figure 3.1. The tangential vectors span the splat’s local coordi-
nate system that carries a Gaussian reconstruction kernel1. a[1] and a[2] may
be skewed to allow for the direct deformation of splat geometry [PKKG03].
In addition, each splat has a variable-length attribute vector s that contains
surface attributes to be used by vertex, tessellation, geometry and fragment
shading units.

The splat transform and lighting computations are similar to vertex process-
ing, and thus the existing vertex shader units can be re-used. Table 5.1 lists
the computations required in various stages of our EWA surface splatting
pipeline. The corresponding triangle pipeline2 operations are shown for
comparison purposes only, and may not exactly match any particular GPU.

1Gaussians are widely used because they lead to simple closed form formulas. Alternatives such
as low-degree B-spline filters might produce sharper images while being somewhat more costly
to evaluate.

2This triangle rasterization code uses edge functions to obtain affine barycentric coordinates that
are used for a pixel-inside-triangle test and depth interpolation. The barycentric coordinates are
then perspective corrected, after which any vertex parameter can be interpolated to the current
pixel by using them as weights.

57

Hardware architecture for surface splatting

Frame Buffer

splat

fragments

splattrigger
on

state
change

Modern GPU EWA Splatting Extension

Vertex Shader

Tesselation/Shaders

Geometry Shader

Rasterization

Fragment Shader

Fragment Tests

Blending

For all dirty Pixels
Normalize

and
Clear

Accumulate or Replace

Conflict Check

Surface
Reconstruction

Buffer

Rasterization
Setup

Rasterization
Setup

Early
Fragment Tests

Ternary
Depth Test

Rasterization

triangle

Figure 5.2: The integration of EWA surface splatting into a conventional graphics
pipeline. For splat primitives the triangle rasterization is bypassed, all other
existing resources are reused. The key element is the surface reconstruction
buffer. On state changes, readily reconstructed fragments are fed back into
the traditional graphics pipeline.

Both the triangle and splat codes could be somewhat simplified, but are
shown in this form for notational convenience.

The remainder of this section describes the rest of the proposed EWA splatting
pipeline in detail.

5.4.1 Rasterization setup

The rasterization setup computes per-splat variables for the subsequent raster-
ization unit, which then in turn identifies the pixels overlapped by a projected
splat. The triangle pipeline includes specialized units that perform the same
tasks for triangles, although the exact computations are quite different. For

58

5.4 Rendering pipeline

y1

y2
x1 x2

x1h

y1h

x1
h y1

h

a a

a

)c)b)a

[1]

[2]

[3]

Figure 5.3: Splat bounding box computation. The screen space bounding rectangle (a)
corresponds to the splat’s bounding frustum in camera space (b). Transforma-
tion into local splat coordinates maps the frustum planes to tangential planes
of the unit sphere (c).

the splat rasterization to be efficient, the setup unit needs to provide a tight
axis-aligned bounding rectangle for the projected splat. Additionally, our
ternary depth test needs to know the splat’s depth range.

Previous bounding rectangle computations for perspective accurate splats
have used either a centralized conic representation of the splat [ZRB+04] or
relied on fairly conservative approximations. According to our simulations,
the method of Botsch et al. [BSK04] overestimates the bounding rectangle by
an average factor of four, as it is limited to square bounding boxes leading to
inefficient rasterization. Gumhold’s [Gum03] computation does not provide
axis-aligned bounding boxes, which would result in setup and rasterization
costs similar to triangle rasterization. The conic-based approach suffers from
severe numerical instabilities near object silhouettes, and its setup cost is
also rather high. Especially when the rendering primitives are tiny, it is
beneficial to reduce the setup cost at the expense of increased per-fragment
cost [MBDM97].

We developed a new algorithm for computing tight bounds without the need
for matrix inversions and a conic centralization, i.e., without the operations
that make the conic-based approach unstable. Moreover, unlike some of the
previous approaches, our technique remains stable also for near-degenerate
splats.

Our approach works on u′, a[1]
′
, and a[2]

′
in camera space and computes the

axis-aligned bounding rectangle under a projective transform P. The key idea
is to treat the splat as a degenerate ellipsoid: points on the splat correspond
to the set of points within the unit sphere in the local splat coordinate system

59

Hardware architecture for surface splatting

spanned by a[1]
′
, a[2]

′
, and a[3]

′
, where a[3]

′
is reduced to zero length. The

splat in clip space is built by this unit sphere under the projective mapping
PS with

S =

(
a[1]
′

a[2]
′

0 u′

0 0 0 1

)
, (5.1)

where S maps point within the system of the unit sphere into the world
coordinate system.

Finding the bounding rectangle coordinates x1, x2, y1, and y2 in clip space
(see Figure 5.3a), corresponds to finding the planes that are adjacent to the
splat in clip space (Figure 5.3b):

p> · hx = p> · (−1,0,0, x)>= 0 (5.2)

p> · hy = p> · (0,−1,0,y)>= 0 , (5.3)

with p ∈R4 denoting a point on the plane. Mapping these planes to the local
splat coordinate system by the inverse transformation (PS)−1 then yields

h̄x = (PS)>hx (5.4)

h̄y = (PS)>hy . (5.5)

The transformed planes then define the tangential planes to the unit sphere
in (a[1]

′
,a[2]

′
,a[3]

′
) (see Figure 5.3c). Hence, the splat’s bounding rectangle

can be determined by solving for so that h̄x and h̄y have unit-distances to
the origin. For homogeneous coordinates, unit-distance to the origin is given
when following condition is fulfilled:

h̄>x D h̄x = 0 (5.6)

h̄>y D h̄y = 0 , (5.7)

with D = diag(1,1,0,−1).

The resulting quadratic equations can then be solved for x1, x2 and for y1,y2.
Analogously, the depth extent of the splat can be computed starting from
hz = (0,0,−1,z)>.

Note that the transformation of the homogeneous normals needs to be per-
formed with the inverse transpose of the desired transformation (PS)−1,
and therefore avoids explicit inversion of S (and P). This is the reason for
stability in degenerate cases. The computation can be considered a special
case of the quadric bounding box computation by Sigg et al. [SWBG06a].
This bounding box computation is also used in Section 4.3.3 to compute the
bounding ellipses for the three-dimensional reconstruction kernels.

60

5.4 Rendering pipeline

Table 5.1 shows the resulting computation for the rasterizer setup, providing
x1, x2 = p1 ± h1, and y1,y2 = p2 ± h2. The third, degenerate column of S has
been removed as an optimization.

5.4.2 Rasterization

Our rasterization unit traverses all sample positions within the bounding box
and computes for each sample the intersection point s of the corresponding
viewing ray and the object space plane defined by the splat. The sample
lies inside the splat if the distance ρ from s to the splat’s center is within a
specified cutoff radius. For samples inside the splat, ρ is used to compute
the fragment weight w f = k(ρ2), with k denoting the reconstruction kernel
function.

A conic-based rasterization [ZRB+04] was not used due to its high setup
cost and numerical instabilities. Botsch et al. [BSK04] project each pixel to
the splat’s tangential frame. In order to be fast, the splats are defined by
orthogonal tangential vectors that are scaled inversely to the splat extent.
However, the reciprocal scaling leads to instabilities for near-degenerate
splats, and orthogonality is a pre-condition that cannot be guaranteed in our
case.

Section 4.3.2 presented a method to compute the contribution of three-
dimensional reconstruction kernels analytically. Table 5.1 shows how the
ray-splat intersection can be computed very efficiently in the case of two-
dimensional reconstruction kernels. The viewing ray through the sample
position (x,y) is represented as an intersection of two planes (−1,0,0, x)>

and (0,−1,0,y)> in clip space. The planes are transformed into the splat’s
coordinate system using the matrix T, as computed by the rasterization setup.
The point s follows by intersecting the projected planes k and l with the
splat plane. Due to the degeneracy of the splat’s coordinate system, the
computation of s and the distance to splat’s origin ρ2 requires very few
operations.

We use the EWA screen space filter approximation by Botsch et al. [BHZK05].
This filter can easily be applied by clamping ρ2 to min{ρ2,‖(x,y)− (c′′x , c′′y)‖2},
and by limiting the bounding box extents hi to a lower bound of one.

61

Hardware architecture for surface splatting

5.4.3 Ternary depth test

EWA surface splatting requires a ternary z-test during surface reconstruction.
Rather than the two events z-pass and z-fail, it has to support three conditions

z-fail, zd < zs − ε

z-pass, zd > zs + ε

z-blend, otherwise
. (5.8)

The additional case z-blend triggers the accumulation of overlapping splats.
An ε-band around incoming splat fragments defines whether a fragment it
belongs to the same surface patch and needs to be blended. The size of the ε

is computed from the splat’s depth range hz as

ε = hz · ε∆z + εbias , (5.9)

in which the following two parameters offer further flexibility and control:

ε∆z Scales the depth extents of the splat, usually set to 1.0.

εbias Accounts for numerical inaccuracies, comparable to glPolygonOff-
set’s parameter unit.

The ternary depth test is used only for surface reconstruction and does not
make the regular depth test obsolete. The integration into a triangle pipeline
still requires the traditional depth test.

It remains to be mentioned that the software implementations described by
Pfister et al. [PZvBG00] and Räsänen [R0̈2] use deep depth buffers to store
additional information for the blending criterion, similar to the A-Buffer used
in Chapter 4. However, in our tests the benefits did not justify the resulting
big impact on additional storage costs and complexity of a deep depth buffer
for EWA splatting without motion blur.

5.4.4 Attribute accumulation

Our pipeline supports two kinds of splat attributes: typical continuous at-
tributes need to be blended, whereas cardinal ones (e.g., material identifiers)
must not.

Unless the ternary depth test fails, all continuous attributes in ss are weighted
by the local kernel value w f . If the test resulted in z-pass, weight wd and
attributes sd currently stored in the reconstruction buffer are replaced by

(wd,sd) :=
{

(w f ,w f · ss), for continuous attributes
(w f ,ss), for cardinal attributes

. (5.10)

62

5.4 Rendering pipeline

On z-blend, continuous attributes are blended to the reconstruction buffer:

(wd,sd) := (wd + w f ,sd + w f · ss) . (5.11)

Cardinal attributes cannot be blended. Instead, the destination value depends
on whether the incoming or stored weight is greater:

(wd,sd) :=
{

(w f ,ss), wd < w f
(wd,sd), wd ≥ w f

. (5.12)

As a result of the maximum function, a splat’s cardinal attributes are written
to its screen space Voronoi cell with respect to the surrounding splats. (See
also Hoff III et al. [HKL+99].)

Please note that the depth is accumulated in the same manner as the continu-
ous attributes. As a consequence, the depth values of the accumulation buffer
need to be normalized by the accumulated weight before the ternary depth
test is evaluated.

5.4.5 Normalization

Once the accumulation is complete, all continuous attributes must be nor-
malized with the accumulated weight before sending the fragments to the
fragment shader units.

s f = sd/wd. (5.13)

A crucial point in our design is deciding when the accumulation is complete,
and the fragment has to be released from the surface reconstruction buffer.

This is trivially the case when triangle data follows splats. However, detecting
the separation between two splat surfaces is more involved. The accumulated
splats define a surface only after all affecting splats have been processed, and
thus the completion of a surface cannot be reliably deduced from individual
splats or the accumulated values. Therefore our design needs to utilize
higher-level signals. We currently consider the end of glDrawElements() and
glDrawArrays(), and the glEnd() after rendering individual splats to indicate
the completion of a surface. Other scenarios include changing a fragment
shader program, texture pointers, render target, or the set of splat attributes to
accumulate, i.e., whenever the subsequent fragment shading would become
ambiguous.

63

Hardware architecture for surface splatting

Symbols
u,n,a[1],a[2] Center, normal, and two tangent vectors
u′,n′,a[1]

′
,a[2]

′
Transformed to camera space

u′′ Center projected to screen space
ss,v, f Splat, vertex, and fragment attribute vectors
M, P Model-view matrix, projection matrix
T Transformation from clip space to canonical splat
ti i-th column of T
>,−> Transpose, inverse transpose
k(),w f Reconstruction kernel function, k() at a fragment
ρ Distance from splat’s origin in object space
A Area of a triangle
〈〉,×,? Dot, cross, and component-wise product
diag(a,b, c,d) Diagonal matrix with entries a,b, c,d

Transform and lighting (using vertex shader)
EWA Surface Splat Triangle (for each vertex)

u′′ = PMu
u′ = Mu
a[1]
′
= Ma[1], a[2]

′
= Ma[2]

ñ′ = a[1]
′ × a[2]

′

〈u′, ñ′〉 > 0 ?⇒ back− face,kill
n′ = ñ′/‖ñ′‖
ss = lighting(s,u′,n′)

u′′ = PMu
u′ = Mu

ñ′ = M−>n

n′ = ñ′/‖ñ′‖
sv = lighting(s,u′,n′)

Table 5.1: Top: Symbols used for this derivation Bottom left: Our splat rendering
pipeline. Bottom right: The corresponding triangle pipeline operations.

5.4.6 Fragment shading and tests

Once the normalized fragments emerge from the reconstruction buffer, they
are fed to fragment shader units. Basically this implements deferred shading
for splat surfaces, and fragment shading programs can be executed exactly
like they would be for fragments resulting from triangles. As a result the
performance, applicability, and generality of splatting are significantly im-
proved.

As a final step, the fragment tests and frame buffer blending are executed
using existing units. As an optimization, similarly to current GPUs (see
Section 2.3), some of the fragment tests can be executed already at the time of
splat rasterization for early fragment culling.

64

5.4 Rendering pipeline

Rasterization setup (fixed function)
EWA Surface Splat, i ∈ [1 . . . 3] Triangle, i ∈ [1 . . . 3]

T = (P

(
a[1]
′
a[2]
′
0 u′

0 0 0 1

)
)>

D = diag(1,1,0,−1)

d = 〈t4, Dt4〉
Center of projected splat:
pi =

1
d 〈ti, Dt4〉

Half extents of bounds:

hi =
√

p2
i −

1
d 〈ti, Dti〉

pi = (c′′ix
, c′′iy)

A = [(p3 − p1)× (p2 − p1)]z
A < 0 ?⇒ back− face,kill

Edge functions:
N1 = (p1y − p2y ,p2x − p1x)

N2 = (p2y − p3y ,p3x − p2x)

N3 = (p3y − p1y ,p1x − p3x)

ei = (Ni,−〈Ni,p1〉) ∈ R1×3

Bounding rectangle:
brmin = min(pi)
brmax = max(pi)

Rasterization (fixed function)
EWA Surface Splat
∀(x,y) ∈ [c′′x ± hx, c′′y ± hy]

Triangle
∀(x,y) ∈ br, i ∈ [1 . . . 3]

k = −t1 + xt4
l = −t2 + yt4
s = l4(k1,k2)− k4(l1, l2)

Distance to splat’s origin:
ρ2 = 〈s,s〉/(k1l2 − k2l1)2

ρ2 > cutoff2 ?⇒ outside,kill
w f = k(ρ2)

Barycentric coordinates:
bi = 〈ei, (x,y,1)〉/A
bi < 0 ?⇒ outside,kill

Perspective correction:
ci = biw1w2w3/wi
r = ∑ ci
b′i = ci/r
s f = ∑ b′isvi

Table 5.2: Left: Our splat rendering pipeline. Right: The corresponding triangle pipeline
operations are shown for comparison purposes. The computation of per-
fragment attributes s f for EWA splats is described in Sections 5.4.3–5.4.5.

65

Hardware architecture for surface splatting

T&L Rast. Setup Splat Splitter

Normalization

Surface
Reconstruction

Buffer
(DRAM)

Rast. 1

Rast. 2

Rast. n

F. Tests

F. Tests

F. Tests

SRAM

Fragment Ops

Conventional
Rasterizer Acc 1

Acc m
...

.

.

.

n-smallest

Reordering
Stage

Cache
Tile 2

Cache
Tile n

Cache
Tile 1

Acc 1

Acc m
...

Acc 1

Acc m
...

Figure 5.4: Hardware architecture of the EWA surface splatting extension.

5.5 Hardware architecture

This section describes the impact of the proposed pipeline on the hardware
architecture. While parts of the operations, such as the transform and lighting
stage, can be mapped to existing hardware components of a GPU, some of the
concepts introduced require additional hardware units. Figure 5.4 provides
an overview over the proposed hardware extension. The remainder discusses
the extensions in more detail.

5.5.1 Rasterization setup and splat splitting

The rasterization setup was implemented as a fully pipelined fixed-function
design, which computes the bounding rectangle of a splat along with the
depth extents as well as the necessary matrix composition.

In order to simplify cache management, we further subdivide the bounding
rectangle of a splat according to 8× 8 pixel tile boundaries. This decision is
consistent with modern frame buffer caches that work using M×M pixel
tiles [Mor00], and thus allows us to maintain a direct mapping of rasteriz-
ers to cached tiles. Our tile-based reconstruction buffer cache shares the
infrastructure of existing frame buffer caches.

The splat splitter unit clips the bounding rectangles against the boundaries
of the 8× 8 pixel tiles of the reconstruction buffer before reordering the for
better cache coherence. This results in potentially multiple copies of a splat
so that the copies differ only in their bounding rectangle parameters. Due to
the small size of splats, the number of additionally generated splat copies is
generally not significant.

66

5.5 Hardware architecture

5.5.2 Splat reordering

Motivation The small size of EWA splats along with the relatively high
overdraw during accumulation put an exceptionally high burden on the re-
construction buffer cache. A careful ordering of the splats during a preprocess
helps only to certain extent, and does not apply to procedural geometry or
other dynamically constructed or dynamically transformed splats. When
investigating the reconstruction buffer cache hit rates, we concluded that sig-
nificant improvements can be achieved by introducing a new pre-rasterization
cache that stores splats in spatially ordered manner. The splats are then
drawn from the cache so that all splats inside a particular tile are rasterized
consecutively. We refer to this process as “splat reordering”. In our tests
the reordering reduced the reconstruction buffer bandwidth requirements
considerably (Section 5.7), especially for small cache sizes.

What we want to maintain is a list of splats for each reconstruction buffer
tile, and then select one tile at a time and rasterize all the splats inside
that tile as a batch. A seemingly straightforward method for achieving
this is to use N linked lists on chip. However, in order to support large
output resolutions, there cannot be a separate list for each reconstruction
buffer tile. As a result, the approach is highly vulnerable when more than N
concurrent lists would be needed. Furthermore, linked lists are not ideally
suited for hardware implementation, although some implementations have
been proposed [JLBM05]. As alternative to the overhead of N concurrent lists,
hash-based solutions have been proposed for collision detection [THM+03].
Unfortunately, hash collisions occur frequently for small sized hash tables
and can trigger a substantial amount of cache misses.

After initial experiments with these data structures, we switched to a another
solution.

Processing order of tiles Ideally the tiles should be processed in an order
that maximizes the hit rate of the reconstruction buffer cache. According
to our tests, one of the most efficient orders is the simplest one: visiting all
non-empty tiles in a scan-line order (and rasterizing all the splats inside the
current tile). This round robin strategy is competitive against more involved
methods that are based on either timestamps or the number of cached splats
per tile. One reason for this behavior is that in the scan-line order each tile
is left a reasonable amount of time to collect incoming splats. The other
strategies are more likely to process a tile prematurely, and therefore suffer in
cases when more splats follow after the tile has already been evicted from the
reconstruction buffer cache.

67

Hardware architecture for surface splatting

We decided to implement the scan-line order using a priority queue that sorts
the incoming splats by their tile index. As will be shown, our implementation
executes several operations in parallel and provides constant-time insertions
and deletions to the queue. To ensure a cyclic processing order of tiles, the
typically used less than (<) ordering criterion of the priority queue has to be
modified. Assuming that the currently processed tile index (the front element
of the queue) is Ic, we define the new ordering criterion of the priority queue
i ≺Ic j as

false, i < Ic ≤ j
true, j < Ic ≤ i
i < j, otherwise

(5.14)

It can be shown that introducing this variable relation into any sorting data
structure, its internal structure stays consistent as long as Ic is adjusted to
I′c only if there is no remaining element i with (i = Ic) and (Ic ≺I′c i) and
(i ≺Ic I′c). Note that these three conditions correspond to the inequality
Ic ≤ i < I′c interpreted cyclically.

Pipelined heap A heap is a completely balanced binary tree that is linearly
stored in breadth-first order, and can be used to implement a priority queue.
It is well suited for hardware implementations, as the child and parent nodes
of a given node index can be found using simple shift and increment opera-
tions on the indices. This means that no pointers are required, and the data
structure has no storage overhead. The data structure must always fulfill the
heap condition, i.e., that a parent node key is less than or equal to the keys
in its two child nodes. As a consequence, the smallest element of a heap is
always stored at the root node, which is the core property of a priority queue.

Unfortunately, a heap is not ideal when high throughput is required. Insertion
and removal of heap elements require O(logn) operations, where n is the
number of elements in the heap. Figure 5.5 (a) and (b) show that the two basic
heap operations, SIFT-UP and SIFT-DOWN, traverse the tree levels in opposite
directions. However, if it were possible to reverse the traversal direction for
one of the two operations, they could be parallelized to propagate through
the levels without collision [RK88].

This can be achieved by adding auxiliary buffers between the heap levels
that can hold one element each, see Figure 5.5 (c). For SIFT-DOWN∗, the path
that the operation takes through the heap tree is known in advance as it is
the same fixed path as for the SIFT-UP: the propagation is going to traverse
all heap levels before finally an element is stored at the first free leaf, that is,

68

5.5 Hardware architecture

5

2

4 4

6

3
1

5

1

3

sift-up
I.

II.

sift-down
I.

II.

sift-down*

I.

II.

2

7

3

55

3

25

2

1

(a) (b) (c)

Figure 5.5: Heap operations. Roman numbers refer to two independent examples of each
operation. Dashed arrows denote required comparisons, solid arrows move
operations, and bold boxes the new element. (a) In SIFT-UP ON INSERTION

the new element is inserted to the last leaf node ascending in the hierarchy
until the local heap condition is met. (b) In SIFT-DOWN ON DELETION the
root node is replaced with the last leaf, descending until the heap condition is
re-established. The different propagation directions of (a) and (b) make parallel
execution of the O(logn) operations impossible. (c) In modified SIFT-DOWN*
ON INSERTION, the introduction of auxiliary registers between heap levels
allow to propagate inserted elements downward. The path for this operation
is known in advance (in red).

at the end of the linearized heap. Consequently, this target address is passed
to SIFT-DOWN∗ with every element that is inserted, tying the execution to
that path. Figure 5.6 shows the resulting comparison operations along the
propagation path of an inserted element. Figure 5.7 shows an example of
a full deletion operation using SIFT-DOWN ON DELETION, Figure 5.8 shows
an example of a full insertion operation using SIFT-UP ON INSERTION, and
Figure 5.9 shows an example of a full insertion operation with auxiliary
buffers using the SIFT-DOWN* ON INSERTION operation.

SIFT-DOWN ON DELETION usually requires the last element of the heap to be

Figure 5.6: The path an insertion process takes on SIFT-DOWN∗ is known in advance.
Elements are propagated using a chain of auxiliary buffers. Dashed arrows
denote element comparisons.

69

Hardware architecture for surface splatting

moved to the root node before it sifts down the hierarchy. This procedure
has to be adapted in case non-empty auxiliary buffers exist. In this case, the
element with the highest target address is removed from its auxiliary buffer
and put at the root node instead. It is then sifting down again until the heap
condition is met.

Our implementation resembles the design Ioannou and Katevenis [IK01]
proposed for network switches. Each heap level is accompanied by a separate
controlling hardware unit that holds the auxiliary buffer. The controller
receives insertion and deletion requests from the preceding level, updates
a memory location in the current level, and propagates the operation to the
successive heap level. Each heap level is stored in a separate memory bank
and is exclusively accessed by the separate controller unit. The controller
units work independently and share no global state. This makes the design
easily scalable. The only global structure is a chain that connects all auxiliary
buffers to remove an advancing element for root replacement.

Using this design, insertion and removal have constant throughput (two
cycles in our FPGA implementation), independent of the heap size. This
makes it ideal for hardware implementation of the splat reordering strategy
that we propose. The improvement offered by the reordering stage over
conventional caches will be investigated in Section 5.7.

5.5.3 Rasterization and early tests

The rasterization was implemented as a fully pipelined fixed-function design.
Each splat sample is evaluated independently, allowing for a moderate degree
of parallelization within the rasterizer. However, as splats are expected to
cover very few pixels, a more efficient parallelization can be obtained by
using multiple rasterizers that work on different splats in parallel.

As described in Section 5.5.1, it makes sense to map each rasterizer exclu-
sively to a single cache tile. Let n rasterizers process tile indices I1 . . . In. The
reordering stage then needs to issue entries of these n keys in parallel. This
can be achieved by wrapping the reordering stage by a unit that maintains
n FIFOs that feed the rasterizers. The new stage receives splats from the
reordering stage until an (n + 1)st key In+1 � {I1 . . . In} occurs. This key is
held until one of the rasterizer FIFOs is empty and ready to process key In+1.
A useful property is that In+1 is a look-ahead on the next tile to be processed.
Consequently, it can be used to trigger a reconstruction buffer cache prefetch
to reduce the wait cycles introduced when exchanging the loaded cache tile
with new data. In case a rasterizer unit is already working on a splat to

70

5.5 Hardware architecture

(a) (b)

(d)(c)

4

5

6

1

2

8

7

4 3

52 68 4 3 7Storage: 4

Remove top

1

Move last element

to top

6

6

1

4

5

6

2

8

7

4 3

52 8 4 3 7Storage: 46

4

5

6

2

8

7

4 3

52 8 4 3 7Storage: 4 6

34

5 6

2

8

7

4

52 8 43 7Storage: 4 6

Figure 5.7: Example for a SIFT-DOWN ON DELETION operation. Dashed arrows rep-
resent the performed comparisons. Solid arrows denote the performed move
operations. The bold red box is highlighting the element that is moved in
the current step. First, the top element is removed and the last element is
inserted at the beginning of the heap (a). The newly inserted element is then
successively compared with both child elements (b). The smallest of the three
compared elements is moved to the parent node, and subsequently used for
the next comparison (c). Once both child elements are bigger or a leaf node is
reached, the SIFT DOWN operation stops (d).

be inserted into the reordering unit, the FIFO wrapper intercepts such keys
I1 . . . In and by-passes them directly to the respective FIFOs.

After the rasterization, side-effect free, early fragment tests are performed to
eliminate unnecessary fragments early.

5.5.4 Accumulation and reconstruction buffer

The splat fragments are dispatched to the accumulation units in a round robin
fashion, and each unit receives a full attribute vector for accumulation into
the reconstruction buffer. The accumulators were implemented as scalar units
in order to ensure good hardware utilization for any configurable number

71

Hardware architecture for surface splatting

(a) (b)

(d)(c)

1

5 2

6 8

7

4 3

1 5 2 6 8 4 3 7Storage:

4

4

new element

1

5 2

6 8

7

4 3

1 5 2 6 8 4 3 7Storage:

4

4

4

5

6

1

2

8

7

4 3

1 52 68 4 3 7Storage: 4

4

6

1

5 2

8

7

4 3

1 5 2 8 4 3 7Storage: 4 6

Figure 5.8: Example for a SIFT-UP ON INSERTION operation. Dashed arrows represent
the performed comparisons. Solid arrows denote the performed move oper-
ations. The bold red box is highlighting the element that is moved in the
current step. A new element is inserted at the end of the heap (a). The new
element is then successively compared with its parent node (b). If the new
element is smaller than the parent node it is moved up, and subsequently used
for the next comparison (c). Once the parent node is smaller or the root node
has been reached, the SIFT-UP operation stops.

of attributes. As the accumulators can work on different splats at a time, the
design remains efficient even for very small splats with a high number of
attributes.

Due to the accumulation of multiple splats per pixel, the surface reconstruc-
tion buffer needs to provide space for all attributes at a precision that exceeds
8 bits per channel, ideally using a floating point format. Hence, it usually
requires more space than the frame buffer, and it needs to be allocated in
external memory. Its caching requirements are similar to those of the frame
buffer, and therefore the caching architecture can be shared with the frame
buffer.

72

5.5 Hardware architecture

1

5 2

6 8

7

4 3

1 5 2 6 8 4 3 7Storage:

new element

4

Aux. Chain: 4

Destination

1

2

6 8

7

4 3

1 4 2 6 8 4 3 7Storage:

Aux. Chain:

Destination

5

4

5

1

2

6 8

7

4 3

1 4 2 6 8 4 3 7Storage:

Aux. Chain:

Destination

5

4

5

(a)

(c) (d)

5

6

4

1

2

8

7

4 3

1 4 2 5 8 4 3 7Storage:

Aux. Chain: 6

Destination

5

6

4

1

2

8

7

4 3

1 4 2 8 4 3 7Storage:

Aux. Chain:

5

Destination

6

(f)(e)

1

5 2

6 8

7

4 3

1 5 2 6 8 4 3 7Storage:

4

Aux. Chain: 4

Destination

(b)

Figure 5.9: Example for a SIFT-UP DOWN* INSERTION operation, using the same data
as for the SIFT-UP ON INSERTION example from Figure 5.8. Dashed arrows
represent the performed comparisons. Solid arrows denote the performed move
operations. The bold red box is highlighting the element that is moved in the
current step. A new element is inserted in the auxiliary buffer of the first
level and compared to the first element of the heap (a). If the new element is
bigger than the top element, the new element is passed to the auxiliary buffer
of the next level. In the next level the new element is subsequently compared
to the element lying on the path to the destination (b). If the new element is
smaller than the existing element, the new element is moved to its place and
the element is passed to the auxiliary buffer of the next level (c). The element
in the auxiliary buffer is then subsequently compared with the element lying
on the path (d) and exchanged in case the element is smaller (e). Once the
destination leaf is reached, the item from the auxiliary buffer is written to that
position (f).

73

Hardware architecture for surface splatting

5.6 Implementations

We evaluated the proposed rendering architecture using three prototype
implementations, the early VLSI prototype, an advanced FPGA prototype
and an implementation of an OpenGL extension for surface splatting.

5.6.1 VLSI prototype

An early experiment uses an Application-Specific Integrated Circuit (ASIC)
implementation of parts of our architecture to show that the heap data struc-
ture efficiently reduces bandwidth requirements and allows high-quality
EWA surface splatting at moderate memory bandwidth.

We built a custom chip that contains a splat splitter, a reordering stage that
holds up to 1024 surface splats, a rasterizer, and a blending stage that supports
three color channels, depth, and weight. All computations and the reconstruc-
tion buffer use fixed-point representations. A small on-chip cache provides
enough space to store a single reconstruction buffer tile. Due to limited die
area, transform and lighting and rasterization setup are implemented on
two parallel DSP boards, each of them featuring two DSPs that transmit the
rasterizer input to the memory-mapped ASIC. This implementation still uses
a splat setup according to [ZRB+04].

The ASIC has been manufactured in a 0.25 µm process using 25 mm2 die area,
and operates at a maximum frequency of 196 MHz. A custom-built printed
circuit board (PCB) inter-connects the DSP and the ASIC, holds the recon-
struction buffer memory, and provides a USB2.0 communication channel to a
PC. The PCB finally displays the normalized reconstruction buffer via DVI
output. Two joysticks directly attached to the DSP boards allow to optionally
control the configuration independent from a PC. Figure 5.10 shows the final
system.

To further evaluate the resource requirements of a full splatting pipeline,
we designed a second custom ASIC implementing the transform, lighting
and rasterization setup stages for EWA surface splatting. The pipeline was
implemented with full IEEE 754 single precision floating point arithmetic and
exploits much less resources in terms of chip surface and power dissipation
than the DSP units, while achieving similar performance. Due to the restricted
chip size we employed resource sharing3 of arithmetic units at a high level: for

3Resource sharing (also referred to as multiplexing or time sharing) is often employed in VLSI
design when the cost of fully parallel processing is unaffordable. The idea is to re-use certain
building blocks in order to trade throughput against chip area.

74

5.6 Implementations

Figure 5.10: Our prototype board with an ASIC implementation of the EWA splatting
rasterizer.

example, the transformation from world space to clip space performs similar
computations on the position and the two tangent axes. The bounding box
computation performs very similar computations on the separate dimensions.
By applying high-level resource sharing, the number of floating point units
used in the design was reduced by about 50% to 46 adders, 70 multipliers, 5
inverse and 2 inverse square roots.

The ASIC has been manufactured in a 0.18 µm process using 8.2 mm2 die area,
and operates at frequencies up to 147 MHz with 300 mW power dissipation.

Figure 5.11 shows the floor plans of both setup and rasterizer ASICs.

5.6.2 FPGA implementation

In order to further investigate our architecture, we aimed at a complete
and improved implementation of the proposed architecture, based on Field-
Programmable Gate Arrays (FPGA). We again partitioned the design into two
major blocks, Setup and Rasterization, distributed over two FPGAs. T&L and
the rasterization setup are performed on a Virtex 2 Pro 2VP70-5 board with
128 MB DDR DRAM and 8 MB DDR2 SRAM. A Virtex 2 Pro VP100-6 board
with 256 MB DDR DRAM and 16 MB DDR2 SRAM holds the reordering stage

75

Hardware architecture for surface splatting

Transform & Lighting ASIC

World to Screen
Lighting

Data I/O
Bounding box& Culling

Axis scaling & Angle computation

Rasterizer
Framebu�er Caching

Data I/O
Normalization

Heap Logic and Storage Global control

Rasterizer ASIC

Figure 5.11: ASIC floorplans for the transform and lighting ASIC (left) and the raster-
izer ASIC (right). The chip dimensions have been normalized according
to the manufacturing process and both floorplans are drawn in scale for
comparison.

and the rasterization pipeline. The two boards are inter-connected using a
2 GB/s LVDS communication. See Figure 5.12 for a schematic.

Our design runs at an internal clock of 70 MHz. The DRAM transfers up to
1.1 GB/s, while the SRAM, running at 125 MHz, provides a bandwidth of
4 GB/s.

Surface splats are uploaded to the first FPGA over the PCI bus. It is possible
to define simple display lists to render scenes from within the FPGA’s local
memory. After the setup stage, the rasterization input is transferred to the sec-
ond FPGA. There the reordering stage can store tile indices and 16-bit pointers
for 4095 splats in 12 heap levels on chip. All the attributes and other per-splat
data are stored temporarily in external SRAM, and have to be retrieved when
the respective splat exits the reordering stage again. This requires a small
memory management unit. The attributes are represented and manipulated
as 16-bit floating-point numbers in the same format as the half-precision
floating point format as defined for OpenGL as extension [NVI].

Our prototype features two parallel rasterizers that process the same splat
at a time, using pixel-interleaving. Each rasterizer is accompanied by four
accumulation units. For splats with up to 4 surface attributes, this allows

76

5.6 Implementations

Reordering

Recon. Buffer

Rasterizers

Inter-C
hip-C

om
 TX

Reorder Mem

Acc

Cache

PCI Output

Splat Mem

Control

PCI Input

T&L

In
te

r-
C

hi
p-

C
om

 T
X

2VP70-5 2VP100-6

64
DDR DRAM

128
DDR SRAM

64
DDR DRAM

Setup Rasterizer

Rast.
Setup

Figure 5.12: Two FPGAs, coupled to implement a fixed-function Transform&Lighting
stage followed by the proposed rasterization architecture.

blending two fragments every cycle, leading to a theoretical peak perfor-
mance of 140 M blended fragments/s. Larger attribute vectors lead to a
decreased pixel output. Our design currently supports up to 14 attributes per
splat. Additionally, FLIPQUAD sampling [AMS03] is supported for improved
silhouette anti-aliasing.

In order to simulate the embedding of our extension into an existing GPU,
we pass the normalized output from the second FPGA to the GPU as one or
multiple textures. Rendering a screen-sized quad with this texture effectively
passes the normalized fragments from our reconstruction buffer to the frag-
ment stage of the graphics card. This allows to apply additional operations,
such as a fragment program.

5.6.3 OpenGL integration

Although the proposed extension is not specific to a particular graphics API,
we demonstrate its integration into OpenGL. The integration was tested by
embedding an additional rasterization module into Mesa [Mes], an OpenGL-
like software rendering library. The module contains a software simulation
of the splat splitter, a reordering stage, and the splat rasterization pipeline.
Apart from this, the only required extensions to Mesa were the API additions
and a hook to detect state changes that trigger a release of surface fragments.
All relevant parameters, such as the current attribute selection could naturally
be retrieved from the OpenGL context.

77

Hardware architecture for surface splatting

On the API side, EWA surface splats were seamlessly integrated with other
rendering primitives, hiding most of the specifics of the new primitive from
the user. For instance, the newly introduced reconstruction buffer is hidden
from the user. All API extensions were built as a regular OpenGL extension,
which enables the rendering of individual as well as arrays of splats. For
example, one can render splats similarly to GL POINTS:

glBegin(GL_SPLATS_EXT);

glColor3f(1, 1, 1);

glTangentOne3fEXT(1, 0, 0);

glTangentTwo3fEXT(0, 1, 0);

glVertex3f(0, 0, 0);

glEnd();

Analogously, vertex arrays can be used as with any other rendering primitive:

glEnableClientState(GL_VERTEX_ARRAY);

glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_FIRST_TANGENT_ARRAY_EXT);

glEnableClientState(GL_SECOND_TANGENT_ARRAY_EXT);

glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer (3, GL_FLOAT, 0, colors);

glTangentOnePointerEXT(GL_FLOAT, 0, us);

glTangentTwoPointerEXT(GL_FLOAT, 0, vs);

glDrawArrays(GL_SPLATS_EXT, 0, count);

We evaluated the use of EWA surface splats within an OpenGL application
using this extension. As an example of a fairly complex OpenGL application,
we chose the game Quake 2. We replaced some models in the game by
point-sampled objects. Apart from the respective calls to the splat exten-
sion, no further changes to the code were required. Figure 5.13 shows two
screenshots.

5.7 Results

Table 5.3 shows statistics of three representative scenes that cover a range
of typical splatting scenarios. The scenes vary in screen coverage, average
splat size, and average overdraw. Scene 1 features mostly splat radii that
are larger than a pixel, while Scene 2 shows a minification situation. See
the magnified inset in Scene 2 to judge the anti-aliasing quality. Scene 3
combines a wide range of splat sizes in a single view, see Figure 5.14. The

78

5.7 Results

Figure 5.13: The integration of EWA splat objects into this existing, fairly complex
OpenGL application did not require any changes of the surrounding GL
code.

displayed statistics were obtained in 512× 512 resolution with FLIPQUAD

supersampling enabled. The screen-shots partly show deferred shading as
described in Section 5.6.2.

5.7.1 Performance measurements

The theoretical peak performance of our rasterizer ASIC prototype is 200 M
fragments per second. Artificial test vectors were capable of reproducing
this value, and measurements at a 512× 512 resolution resulted in a peak
performance of 3 M splats per second (10 M splats/s at 128 × 128). With
realistic scenes, the design’s throughput is limited by the DSP performance.
The four parallel DSPs process 2.5 M splats/s, of which typically 1 to 1.25
M splats/s reach the ASIC after back-face culling, driving the ASIC close to
its maximum fill rate. The T&L and splat setup ASIC was designed to meet
the input rate of the rasterizer and is able to process 2.94 M splats per second.

The theoretical peak performance of our FPGA is 17.5 M splats and 140 M
fragments per second. The setup chip is capable of processing 26.7 M splat-
s/s. The pipelined heap, which operates at 35 MHz, allows for a maximum
throughput of 17.5 M splats/s. The inter-FPGA communication provides a
constant throughput of 30 M splat/s and is therefore no bottleneck in the
prototype implementations. Rasterizers and accumulators run at 70 MHz,
issuing two fragments per cycle for up to four attributes per fragment. With
data from our representative test scenes, each of the FPGA’s units reaches its
nominal throughput. As expected, the fragment throughput scales linearly
with the number of attributes exceeding four, which means that the attribute

79

Hardware architecture for surface splatting

Scene 1 Scene 2 Scene 3
Splat count 101 685 101 685 465 878
Coverage 31.2% 1.3% 43.5%
Overdraw 6.8 27.7 17.6
Samples / splat 19.36 3.5 12.6
Shading deferred T&L deferred
Attributes 14 3 6

Table 5.3: Test scenes used for evaluation, rendered using the FPGA.

Figure 5.14: ASIC rendering of an irregularly sampled surface. On the right, the splats
have been artificially shrunk to illustrate the sample distribution. Images
show photographs taken off a screen.

80

5.7 Results

accumulators are kept busy at all times. Due to space restrictions, the ras-
terizer FPGA contains cache logic for only a single cache tile. This becomes
manifest in reduced performance when measuring the fully integrated graph-
ics pipeline. For average scenes, the splat throughput ranges from only 0.7 to
2 M splats/s, with measured peak performances of up to 4 M splats/s. The
single-tile reconstruction buffer cache disallows prefetching, which stalls the
pipeline whenever a new cache tile is being accessed. Due to the relatively
high current logic utilization of the rasterizer FPGA is only 82% (64% flip-
flops, 82% LUTs), routing and timing restrictions make it very difficult to
add the required additional cache logic. Hence, investigations with a bigger,
next-generation FPGA would be necessary for higher performance.

In order to evaluate the efficiency of the proposed reordering architecture,
we simulate its performance in comparison to a classical caching architecture.
Our measurements assume, rather optimistically, that the classical tile cache
is fully associative and uses a least-recently used (LRU) policy. The tile size
is set to 8× 8 pixels. Assuming that a certain die area allowing for a fixed
amount of on-chip memory is given, we simulate different partitionings
between the pipelined heap and the LRU cache. Beginning with a pure
LRU cache, we continually reduce the number of cache tiles, down to two
remaining tiles, filling the remaining on-chip memory with a pipelined heap.
Graph 1 shows the resulting bandwidth requirements for different memory
fractions occupied by the heap, assuming a budget of 16, 64, and 256 kB
on-chip memory, respectively. As can be seen, trading cache memory for a
reordering stage improves the external memory bandwidth requirements.

5.7.2 Scalability

Compared to our FPGA’s theoretical peak performance of 17.5 M splats per
second at a rather low clock frequency, the NVIDIA GeForce GT 280 is able
to render between 40 M and 70 M splats per second at much higher core
clock frequency of 602 MHz. The GT 280 performs shader computations
even at 1296 MHz with an external memory bandwidth of up to 141.7 GB/s.
Judging from our ASIC design that runs 196 MHz on a fairly low-end man-
ufacturing process (0.25µ), scaling to ≥500 MHz seems plausible using a
modern (≤ 0.065µ) process. That transition alone would give ∼200 M splats
per second.

Most of the functional units (splat splitter, rasterization, fragment tests, ac-
cumulation, and normalization) in Figure 5.4 are pipelined fixed function
designs that can process one splat or fragment per cycle. Further paral-
lelization of these units can be achieved by duplication, and the relative

81

Hardware architecture for surface splatting

050

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

Heap Memory Fraction

B
an

dw
id

th
 R

eq
ui

re
m

en
ts

 [M
B

it/
s]

16 kB
64 kB
256 kB

Graph 1: Bandwidth simulation of Scene 1, showing the effect for varying
heap / cache memory ratio, for a total of 16, 64, and 256 kB on-chip memory
each. Shown: bandwidth requirements to reconstruction buffer with respect to the
fraction of heap memory.

number of rasterizers or accumulators can be trivially modified. The current
implementation of the reordering stage has a throughput of two cycles per
splat. The throughput is limited by the heap deletion operation, but it should
be possible to optimize that into a single cycle by further engineering. Further
parallelism could also be achieved by duplication and then assigning a subset
of frame buffer tiles to each unit.

Both ASIC evaluations can give a hint on the impact of scaling the design
to a full sized ASIC. The GT200 GPU chip from NVIDIA was manufactured
with 575 mm2 with a 65nm process4. Normalizing the areas of our designs
to a 65nm process, the areas resemble to 1.62 mm2 for the rasterizer, and 1.06
mm2 for the transform and lighting and setup ASIC. The total area combined
therefore only represents 0.5% of the die area of the GT200 GPU.

In terms of gate count our design is very small compared to modern GPUs,
and thus clock speed improvements as well as duplication of the necessary

4At the time of writing, NVIDIA released their GT 400 chip. The chip was manufactured at 40nm
with a die size of 529 mm2, which is equivalent to a chip with 1397 mm2 in a 65nm process

82

5.8 Conclusions and future work

units seem possible. We therefore estimate that for a full scale design it would
be realistic to achieve the impressive performance above 500 million splats
per second.

5.8 Conclusions and future work

We have described and analyzed our EWA splatting hardware design, and
listed the limitations and open issues on the way to a full-scale EWA splatting
system. We have also proposed a method for embedding the splatting func-
tionality into OpenGL. We believe that efficient support for splatting would
be a valuable addition, also because splats have other uses beside surface
representation, e.g., visualization of indirect illumination [GKBP05] that has
been decoupled from the (possibly polygonal) scene geometry.

We designed the entire splatting pipeline as dedicated hardware units in
order to freely study what kind of architecture would be most suitable for the
operations required by splatting. Some of the deviations from current GPU
architectures could in fact be beneficial for triangle rendering as well. For
example, it would be possible to use the pipelined heap for improving the
coherence of texture fetches and frame buffer accesses in triangle rendering.

Cache size and the amount of parallelism in our current research prototypes
are still modest due to the limited capacity of our FPGAs. The latest genera-
tion FPGAs would offer much higher capacity. This would allow to exploit
the parallelism further, and to carry out more detailed performance and
scalability analysis.

As the proposed EWA splatting pipeline does not utilize deep buffers or A-
Buffer like implementations, it can reconstruct only one layer (e.g. the closest
one) of a splat surface for each pixel and does not support the motion-blur
EWA sampling approach directly. An additional depth test would have to be
included to the splatting pipeline in order to avoid reconstructing occluded
surfaces and to support, for example, depth peeling for order-independent
transparency [Eve01]. However, the most recent DirectX 11 GPUs have been
shown to support novel data-structures such as linked lists [YHGT10] for the
framebuffer, and could be used to support these deep buffers without the
need for additional hardware for surface splatting. Shadow map lookups, on
the other hand, can be implemented in the fragment shader and require no
additional units.

While triangle rasterization architectures have been studied for decades,
splat rasterization is a relatively unexplored field. It might be possible to
simplify the splat setup and rasterization algorithms further. Also, it would

83

Hardware architecture for surface splatting

be worthwhile to study the numerical accuracy required in the fixed-function
units, as the savings in die area could be significant.

In the same spirit as polygons can be tessellated in modern GPUs, point
clouds can be supersampled from a control point surface. The rendering
architecture presented in this chapter, however, does not support such upsam-
pling. While the most recent DirectX 11 GPUs [Mic10] added programmable
tessellation units that allow for a wide variety of tessellation procedures on
polygonal meshes, point sampled surfaces cannot be upsampled directly
using these new units due to the the lack of explicit connectivity information.
The following chapter will therefore investigate a more general hardware
architecture for point processing that computes this connectivity information
on the fly. Based on the found neighborhood, the architecture is then able to
compute point upsampling as well as a wide range of other point processing
algorithms efficiently.

84

C H A P T E R 6
Processing unit for point sets

This chapter introduces a more general hardware architecture for geometry
processing of point sampled data. The new architecture is designed to com-
plement the rendering architecture presented in the previous chapter. Our
design is focuses on fundamental and computationally expensive operations
on point sets including k-nearest neighbors search, moving least squares
approximation, and others. Our architecture includes a configurable process-
ing module allowing users to implement custom operators and to run them
directly on the chip. A key component of our design is the spatial search
unit based on a kd-tree performing both kNN and εN searches. It utilizes
stack recursions and features a novel advanced caching mechanism allowing
direct reuse of previously computed neighborhoods for spatially coherent
queries. In our FPGA prototype, both modules are multi-threaded, exploit full
hardware parallelism, and utilize a fixed-function data path and control logic
for maximum throughput and minimum chip surface. A detailed analysis
demonstrates the performance and versatility of our design.

6.1 Overview

Point sampled geometries have proven to be a flexible and robust repre-
sentation for upsampling and deformation of surfaces [GP07]. While the

85

Processing unit for point sets

architecture presented in the previous Chapter 5 focused on the rendering
of point primitives, it does not support the manipulation of the input point
mesh for applications such as animation or tessellation. In this chapter, we
will therefore present a more general architecture to support the processing
of point-sampled data.

A main characteristic of point-based representations is the lack of connectivity.
It turns out that many point processing methods can be decomposed into two
distinct computational steps. The first one includes the computation of some
neighborhood of a given spatial position, while the second one is an operator
or computational procedure that processes the selected neighbors. Such oper-
ators include fundamental, atomic ones like weighted averages or covariance
analysis, as well as higher-level operators, such as normal estimation or
moving least squares (MLS) approximations [Lev01, ABCO+01]. Very often,
the spatial queries to collect adjacent points constitute the computationally
most expensive part of the processing. In this paper, we present a custom
hardware architecture to accelerate both spatial search and generic local
operations on point sets in a versatile and resource-efficient fashion.

Spatial search algorithms and data structures are very well investi-
gated [Sam06] and are utilized in many different applications. The most
commonly used computations include the well known k-nearest neighbors
(kNN) and the Euclidean neighbors (εN) defined as the set of neighbors
within a given radius. kNN search is of central importance for point
processing since it automatically adapts to the local point sampling rates.

Among the variety of data structures to accelerate spatial search, kd-
trees [Ben85] are the most commonly employed ones in point processing, as
they balance time and space efficiency very well. Unfortunately, hardware
acceleration for kd-trees is non-trivial. While the SIMD design of current
GPUs is very well suited to efficiently implement most point processing
operators, a variety of architectural limitations leave GPUs less suited for
efficient exact kd-tree implementations. For instance, recursive calls are not
supported due to the lack of managed stacks. In addition, dynamic data
structures, like priority queues, cannot be handled efficiently. They produce
incoherent branching and either consume a lot of local resources or suffer
from the lack of flexible memory caches. Conversely, current general-purpose
CPUs feature a relatively small number of floating point units combined with
a limited ability of their generic caches to support the particular memory
access patterns generated by the recursive traversals in spatial search. The
resulting inefficiency of kNN implementations on GPUs and CPUs is a central
motivation for our work.

86

6.1 Overview

In this chapter, we present a novel hardware architecture dedicated to the
efficient processing of unstructured point sets. Its core comprises a config-
urable, kd-tree based, neighbor search module (implementing both kNN
and εN searches) as well as a programmable processing module. Our spatial
search module features a novel advanced caching mechanism that specifically
exploits the spatial coherence inherent in our queries. The new caching
system allows to save up to 90% of the kd-tree traversals depending on the
application. The design includes a fixed function data path and control logic
for maximum throughput and lightweight chip area. Our architecture takes
maximum advantage of hardware parallelism and involves various levels
of multi-threading and pipelining. The programmability of the processing
module is achieved through the configurability of FPGA devices and a custom
compiler.

Our lean, lightweight design can be seamlessly integrated into existing mas-
sively multi-core architectures like GPUs. Such an integration of the kNN
search unit could be done in a similar manner as the dedicated texturing units,
where neighborhood queries would be directly issued from running kernels
(e.g., from vertex/fragment shaders or CUDA programs). The programmable
processing module together with the arithmetic hardware compiler could
be used for embedded devices [Vah07, Tan06], or for co-processors to a CPU
using front side bus FPGA modules [Int07].

The prototype is implemented on FPGAs and provides a driver to invoke the
core operations conveniently and transparently from high level programming
languages. Operating at a rather low frequency of 75 MHz, its performance
competes with CPU reference implementations. When scaling the results to
frequencies realistic for ASICs, we are able to beat CPU and GPU implemen-
tations by an order of magnitude while consuming very modest hardware
resources.

Our architecture is geared toward efficient, generic point processing by sup-
porting two fundamental operators: Cached kd- tree-based neighborhood
searches and generic meshless operators, such as MLS projections. These
concepts are widely used in computer graphics, making our architecture
applicable to as diverse research fields as point-based graphics, computational
geometry, global illumination and meshless simulations.

The rest of this chapter is organized as follows. We will first revisit the family
of moving least squares surfaces as an illustrative example for point-graphics
operators in Section 6.2. We then review related work on data structures
for meshless operations in Section 6.3. We will present the fundamentals on
spatial searching and our new coherent cache in Section 6.4. In Section 6.5 we
introduce our hardware architecture for generic point processing and describe

87

Processing unit for point sets

the neighbor search module and the processing module and its involved
algorithms. We then give more details on the actual FPGA implementation
of the presented pipeline, and discuss the resource requirements in terms of
FPGA resources in Section 6.6. To evaluate our design and to demonstrate
the versatility of the architecture, we will show some implemented examples
in Section 6.7 and give detailed performance analysis for the architecture and
its submodules. Section 6.8 then concludes this chapter and gives an outlook
on future work.

6.2 Moving Least Squares surfaces

To understand the needs of point processing operators better, we will review
the family of moving least squares (MLS) surfaces in this section. Point
set surfaces [ABCO+01] are implicitly defined by a given control point set.
A projection procedure then projects any point near the surface onto the
surface. The MLS surface [Lev01] is then defined as the points projecting
onto themselves.

One instructive example is the projection operator defined by Alexa and
Adamson [AA04]. It is an efficient MLS operator using planes for the im-
plicit definition of the surface. The approximating surface of a point set
P = {pi ∈ R3} is implicitly defined as the zero set of the function:

Ŝ = {x ∈ R3| f (x) = 0} . (6.1)

The function f (x) is defined based on local planar approximations of the
surface:

f (x) = n(x)T(a(x)− x) . (6.2)

The two functions a and n are then defined over a neighborhood N(x) of
points near a query point x. The function a defines a weighted average of the
neighborhood and can be described as

a(x) =
∑N(x) θ(‖x− pi‖)pi

∑N(x) θ(‖x− pi‖)
, (6.3)

where θ(‖x − pi‖) is a weighting function. The function n denotes the
weighted average of all the normals within the neighborhood and is com-
puted very similarly as

n(x) =
∑N(x) θ(‖x− pi‖)ni

∑N(x) θ(‖x− pi‖)
. (6.4)

88

6.2 Moving Least Squares surfaces

a(x)
n(x) x’

x

a(x’)
n(x’)

x’’

x

Figure 6.1: Two steps of the almost orthogonal projection procedure based on plane fits.
The algorithm projects a query point x onto a surface defined by the input
point cloud, where each point is associated with a normal. In a each projection
step, n(x) and a(x) define the current orthogonal frame onto which the query
point x is projected iteratively.

Using this definition, Alexa and Adamson [AA04] define a simple iterative
projection procedure that projects points onto the surface:

1. Set x′ = x as start point.

2. Calculate the k nearest neighbors to x′ to gather the neighborhood
N(x′).

3. Compute the averaged neighbor a(x′) and normal n(x′).

4. Project x onto the current tangent plane defined by a(x′) and n(x′):
x′ = x− n(x′)T(a(x′)− x)n(x′).

5. Evaluate stop criterion: if ‖n(x′)T(a(x′)− x′)‖ > ε, go back to 2.

Two steps of this projection operator are illustrated in Figure 6.1.

In fact, most meshless operators are performed in a similar strategy: in a first
step, the neighborhood around a point is computed. Then, a projection or
refinement is calculated based on this neighboring point cloud and the whole
loop is evaluated again until a final stop criterion is met.

This concludes the brief introduction on MLS based surface definitions, and
we will now present related work on data structures for meshless opera-
tors and details on spatial searching and our caching strategy used for our
architecture.

89

Processing unit for point sets

6.3 Data structures for meshless operators

A key feature of meshless approaches is the lack of explicit neighborhood
information which typically has to be evaluated on the fly. The large variety
of spatial data structures for point sets [Sam06] evidences the importance of
efficient access to neighbors in point clouds. A popular and simple approach
is to use a fixed-size grid in which points are sorted. However, this method
does not prune the empty space and is thus inefficient in terms of memory
storage. The grid file [NHS84] uses a directory structure to divide the space
into multiple blocks. All grid cells and contained points are then grouped and
indexed from the directory structure. Similarly, locality-preserving hashing
schemes [IMRV97] provide better use of space by mapping multi-dimensional
grid coordinates to a hash-table of lower dimensionality. However, due to the
mapping to some lower dimensional space the calculation of the hash-index
may produce collisions and then deteriorate performance. In both cases the
respective grid sizes have to be carefully aligned to the query range to achieve
optimal performance.

In contrast to grid-like structures, the quadtree [FB74] imposes a hierarchi-
cal access structure onto a regular grid using a d-dimensional d-ary search
tree. The tree is constructed by splitting the space into 2d regular subspaces,
and empty space can be discarded efficiently by pruning the corresponding
tree branches. However, the footprint of the tree might be relatively big
and traversing the tree might become expensive due to the d number of
indirections per node. The kd-tree [Ben85], one of the most popular spatial
data structures, splits the space successively into two half-spaces along one
dimension. It thus combines efficient space pruning with small memory
footprint. Very often, the kd-tree is used for k-nearest neighbors search on
point data of moderate dimensionality because of its optimal expected-time
complexity of O(log(n) + k) [FBF77, Fil79], where n is the number of points
in the tree. Extensions of the initial concept include the kd-B-tree [Rob81], a
bucket variant of a kd-tree, where the partition planes do not need to pass
through the data points. Instead of storing data points in the internal leaves,
points are stored linearly in bins or buckets. In the following, we will use the
term kd-tree to describe this class of spatial search structures.

Approximate kNN queries on the GPU have been presented by Ma et
al. [MM02] for photon mapping, where a locality-preserving hashing scheme
similar to the grid file was applied for sorting and indexing point buckets. In
the work of Purcell et al. [PDC+03], a uniform grid constructed on the GPU
was used to find the nearest photons, however this access structure performs
only well on similarly sized search radii. Zhou et al. [ZHWG08] presented

90

6.4 Spatial search and coherent cache

an algorithm for constructing kd-trees on the GPU for raytracing and photon
mapping. The paper uses an approximated k-nearest neighbors search on the
GPU: instead of finding the true k-nearest neighbors, the algorithm iteratively
performs a range search. In each iteration, the new search range is corrected
towards the true range defined by the k-nearest neighbors. The paper shows
how the GPU search can be applied to point cloud modeling and we will give
a comparison to its method later in this chapter.

In the context of ray tracing, various hardware implementations of kd-tree
ray traversal have been proposed. These include dedicated units [WSS05,
WMS06] and GPU implementations based either on a stack-less [FS05,
PGSS07] or, more recently, a stack-based approach [GPSS07]. Most of these
algorithms accelerate the kd-tree traversal by exploiting spatial coherence
using packets of multiple rays [WBWS01] and are targeted for ray-triangle
intersection. Unfortunately, the more generic access pattern of kNN queries is
different to ray traversal, and the k nearest neighbor search usually requires a
sorted priority list of the currently found neighbors.

In order to take advantage of spatial coherence in nearest neighbor queries,
we introduce a coherence neighbor cache system, which allows us to directly
reuse previously computed neighborhoods. This caching system, as well as
the kNN search on kd-tree, are presented in detail in the next section.

6.4 Spatial search and coherent cache

In this section we will first briefly review the kd-tree based neighbor search
and then present how to take advantage of the spatial coherence of the queries
using our novel coherent neighbor cache algorithm.

6.4.1 Neighbor search using kd-trees

The kd-tree [Ben85] is a multidimensional search tree for point data. It re-
cursively splits the space along a splitting plane that is perpendicular to one
of the coordinate axes and hence can be considered a special case of binary
space partitioning trees [FKN80].

In its original version every node of the tree stores a point, and the splitting
plane has to pass through that point. A more commonly used approach is to
store points, or buckets of points, in the leaf nodes only. Figure 6.2 shows an
example of a balanced 2-dimensional kd-tree which stores the points in the
leaves. Note that balanced kd-trees are always superior in terms of storage

91

Processing unit for point sets

1 2

3 4

5 6
7
8

1 2 3 4 5 6 7 8

x

y y

x x x y

Figure 6.2: The kd-tree data structure: The left image shows a point-sampled object in
2D, and the respective spatial subdivision computed by a kd-tree. The right
image displays the kd-tree, points are stored in the leaf nodes.

overhead, and also exhibit good properties for nearest neighborhood search-
ing. Balanced kd-trees furthermore can always be constructed in O(n log2 n)
for n points [OvL80].

εN search

An εN search, also called ball or range query, aims to find all the neighbors
around a query point qi within a given radius ri. It is performed using the
kd-tree data structure as follows (Listing 6.1): the algorithm traverses the
tree recursively down to the half space in which the query point is contained
until a leaf node is encountered. At the leaf node, all points that lie within
the query radius ri are added to the result list. Then, the algorithm enters the
backtracking stage and recursively ascends and descends into the other half
spaces if the distance from the query point to the half space is smaller than ri.

Listing 6.1: Recursive search of the εN in a kd-tree.

Point query; // Query point
float radius; // Query radius
List list; // Output list

void find range(Node node) {
if (node.is leaf) {

// Loop over all points contained by the leaf’s bucket
// and insert in output list if contained within search radius
for (each point p in node)

if (distance(p,query) < radius)
list.insert(p);

92

6.4 Spatial search and coherent cache

} else {
partition dist = distance(query, node.partition plane);
// decide whether going left or right first
if (partition dist > 0) {

// descend to left branch first
find range(node.left);
// recurse: evaluate other half−space only if it is close enough
if (radius > abs(partition dist))

find range(node.right);
} else {

// descend to right branch first
find range(node.right);
// recurse: evaluate other half−space only if it is close enough
if (radius > abs(partition dist))

find range(node.left);
}
}

kNN search

Very similar to the εN search, the k-nearest neighbors search in a kd-tree is
performed as follows (Listing 6.2): the algorithm traverses the tree recursively
down the half space in which the query point is contained until a leaf node
is encountered. At the leaf node, all points contained in that cell are sorted
into a priority queue of length k. In a backtracking stage, the algorithm then
recursively ascends and descends into the other half spaces if the distance
from the query point to the farthest point in the priority queue is greater than
the distance of the query point to the cutting plane. The priority queue is
initialized with elements of infinite distance.

Intuitively, this resembles to a modified εN search: the algorithm starts with
an infinite search radius and reduces this radius successively as points are
sorted into the priority queue. In most applications it is desirable to bound
the maximum number of found neighbors also for the εN search, and thus the
kNN search can be used to find the k-nearest neighbors where the maximum
distance of the selected neighbors is bound by ri. This behavior can then be
trivially achieved by initializing the priority queue with placeholder elements
at a distance ri.

Note that in high-level programming languages, the stack implicitly stores all
important context information upon a recursive function call and reconstructs

93

Processing unit for point sets

the context when the function terminates. As we will discuss subsequently,
this stack has to be implemented and managed explicitly in a dedicated
hardware architecture.

Listing 6.2: Recursive search of the kNN in a kd-tree.

Point query; // Query Point
PriorityQueue pqueue; // Priority Queue of length k

void find nearest (Node node) {
if (node.is leaf) {

// Loop over all points contained by the leaf’s bucket
// and sort into priority queue.
for (each point p in node)

if (distance(p,query) < pqueue.max())
pqueue.insert(p);

} else {
partition dist = distance(query, node.partition plane);
// decide whether going left or right first
if (partition dist > 0) {

// descend to left branch first
find nearest(node.left);
// recurse: evaluate other half space only if it is close enough
if (pqueue.max() > abs(partition dist))

find nearest(node.right);
} else {

// descend to right branch first
find nearest(node.right);
// recurse: evaluate other half space only if it is close enough
if (pqueue.max() > abs(partition dist))

find nearest(node.left);
}
}

6.4.2 Coherent neighbor cache

Several applications such as up-sampling or surface reconstruction issue
densely sampled queries. In these cases, it is likely that the neighborhoods of
multiple query points are the same or very similar. The coherent neighbor
cache (CNC) exploits this spatial coherence to avoid multiple computations of

94

6.4 Spatial search and coherent cache

(k+1)NN

kNN

qi
qj ei

2ei

qi
qj

ri

αri
rj

(a) (b)

Figure 6.3: The principle of our coherent neighbor cache algorithm. (a) In the case of
kNN search the neighborhood of qi is valid for any query point qj within the
tolerance distance ei. (b) In the case of εN search, the extended neighborhood
of qi can be reused for any ball query (qj,rj) which is inside the extended ball
(qi,αri).

similar neighborhoods. The basic idea is to compute slightly more neighbors
than necessary, to cache these extended neighborhood and to use the results
for subsequent, spatially close queries.

Assume a query of the kNN of the point qi is to be performed (Figure ??a).
Instead of looking for the k nearest neighbors, we compute the k + 1 nearest
neighbors Ni = {p1, ...,pk+1}. Let ei be half the difference of the distances
between the query point and the two farthest neighbors:

ei =
‖pk+1 − qi‖ − ‖pk − qi‖

2
. (6.5)

Then, ei defines a tolerance radius around qi such that the kNN of any point
inside this ball are guaranteed to be equal to Ni \ {pk+1} and could therefore
re-use the this neighborhood.

Therefore, the cache stores a list of the m most recently used neighborhoods
Ni together with their respective query point qi and their computed tolerance
radius ei. Given a new query point qj, we need to determine whether a
suitable neighborhood has been found earlier. If the cache contains a neigh-
borhood Ni such that ‖qj−qi‖< ei, then this neighborhood Nj = Ni is reused.
In case of a cache miss, a full kNN search is performed and its result stored in
the cache.

In order to further reduce the number of cache misses, it would be possible
to compute even bigger neighborhoods, i.e., the k + c nearest ones. However,

95

Processing unit for point sets

for c 6= 1 the extraction of the true kNN this would then require to sort the
set Ni for every cache hit, and would therefore require much bigger cache
logic and also prevent the simple sharing of the neighborhood by multiple
processing threads.

Moreover, in many applications it is preferable to tolerate some approxima-
tion in the neighborhood computation. Given any positive real ε, a data point
p is a (1 + ε)-approximate k-nearest neighbor (AkNN) of q if its distance from q
is within a factor of (1 + ε) of the distance to the true k-nearest neighbor. As
we show in our results, computing AkNN is sufficient in most applications.
This tolerance mechanism is accomplished by computing the value of ei as
follows,

ei =
‖pk+1 − qi‖ · (1 + ε)− ‖pk − qi‖

2 + ε
. (6.6)

The extension of the caching mechanism to ball queries is depicted in Fig-
ure 6.3b. Let ri be the query radius associated with the query point qi.
First, an extended neighborhood of radius αri with α > 1 is computed. The
resulting neighborhood Ni can be reused for any ball query (qj,rj) with
‖qj − qi‖ < αri − rj. Finally, the subsequent processing operators have to
check for each neighbor its distance to the query point in order to remove
the wrongly selected neighbors. The value of α is a tradeoff between the
cache hit rate and the overhead to compute the extended neighborhood. If an
approximate result is sufficient, then a (1 + ε)-AkNN like mechanism can be
accomplished by reusing Ni if the coherence test ‖qj−qi‖< (αri− rj) · (1+ ε)
holds true.

6.5 A hardware architecture for generic point processing

In this section we will describe our hardware architecture supporting the
previously introduced algorithms for spatial searching, as well as a reconfig-
urable point processing module. In particular, we will focus on the design
decisions and features underlying our processing architectures, while the
implementation details will be described in in Section 6.6.

6.5.1 Overview

Our architecture is designed to provide an optimal compromise between
flexibility and performance. Figure 6.4 shows a high-level overview of the
architecture. The two main modules, the neighbor search module and the

96

6.5 A hardware architecture for generic point processing

Neighbor Search ModuleNeighbor Search Module

Processing Module

Coherent Neighbor
Cache

Kd-tree
Traversal

Global
Thread
Control

Init
Loop

Kernel
Finalize

kd-tree
cache
data

cache

External DRAM

Figure 6.4: High-level overview of our architecture. The two modules ”Neighbor Search”
and ”Processing” can be operated separately or in tandem.

processing module, can both be operated separately or in tandem. A global
thread control unit manages user input and output requests as well as the
module’s interface to the driver and subsequently to high level programming
languages, such as C++. The thread control could furthermore serve as
interface to our point rendering architecture presented in Section 5.3, and
would be integrated in conjunction with the tessellation stage after the vertex
shader stages in Figure 5.2.

The core of our architecture is the configurable neighbor search module, which
is composed of a kd-tree traversal unit and a coherent neighbor cache unit.
We designed this module to support both kNN and εN queries with maximal
sharing of resources. The module uses fixed function data paths and control
logic for maximum throughput and for small chip area consumption. We
furthermore designed every functional unit to take maximum advantage of
hardware parallelism. Multi-threading and pipelining were applied to hide
memory and arithmetic latencies. The fixed function data path also allows for
minimal thread-storage overhead. All external memory accesses are handled
by a central memory manager and supported by data and kd-tree caches.

In order to provide optimal performance on limited hardware, our processing
module is also implemented using a reconfigurable fixed function data path
design. Programmability is achieved through the configurability feature of
FPGA devices and by using a custom hardware compiler for arithmetic in-
structions. The integration of our architecture with existing or future general
purpose computing units like GPUs is discussed in section 6.7.2.

A further fundamental design decision is that the kd-tree construction is

97

Processing unit for point sets

currently performed by the host CPU and transferred to the subsystem. This
decision is justified given that the tree construction can often be accomplished
in a preprocess for static point sets, whereas neighbor queries have to be car-
ried out at runtime for most point processing algorithms. More importantly,
our experiments have also shown that for moderately sized dynamic data
sets, the kd-tree construction times are negligible compared to the query
times.

Before going into detail, it is instructive to describe the procedural and data
flows of a generic operator applied to some query points: After a request for
a given query point is issued, the coherent neighbor cache is checked first. If
a cached neighborhood can be reused, a new processing request is generated
immediately. If no such neighborhood can be found, a new neighbor search
thread is issued. Once a neighbor search thread is terminated, the least
recently used neighbor cache entry is replaced with the attributes of the
found neighbors and a processing thread is generated. The processing thread
loops over the neighbors and writes the results into the output buffer, from
where they are eventually read back by the host.

In all subsequent figures, blue indicates memory while green stands for arith-
metic and control logic.

6.5.2 kd-tree traversal unit

The kd-tree traversal unit is designed to receive a query (q,r) and to return at
most the k-nearest neighbors of q within a radius r. The value of k is assumed
to be constant for a batch of queries.

This unit starts a query by initializing the priority queue with empty ele-
ments at distance r, and then performs the search following the algorithm
of Listing 6.2. Although this algorithm is a highly sequential operation,
we can identify three main blocks to be executed in parallel due to their
independence in terms of memory access. As depicted in Figure 6.5, these
blocks include NODE TRAVERSAL, STACK RECURSION, and LEAF PROCESSING.

The NODE TRAVERSAL subunit traverses the path from the current node down
to the leaf cell containing the query point. Memory access patterns include
reading of the kd-tree data structure and writing to a dedicated STACK. This
stack is explicitly managed by our architecture and contains all traversal
information for backtracking. Once a leaf is reached, the LEAF PROCESSING

subunit gathers all points contained in that leaf node and inserts the into one
of the PRIORITY QUEUES of length k. Memory access patterns include reading
point data from external memory and read-write access to the priority queue.

98

6.5 A hardware architecture for generic point processing

Processing Modulekd-tree Traversal Unit

Thread and
Traversal
Control

External Ram

Node Traversal

Stack Recursion

Leaf Processing Priority Queues

kd-tree
nodes

Stacks

Figure 6.5: Top level view of the kd-tree traversal unit.

After a leaf node has been left, backtracking is performed by recurring up the
stack until a new downward path is identified in the STACK RECURSION unit.
The only memory access is reading the stack.

6.5.3 Coherent neighbor cache unit

The coherent neighbor cache unit (CNC), depicted in Figure 6.6, maintains
a list of the m most recently used neighborhoods in a least recently used
order (LRU). For each cache entry the list of neighbors Ni, its respective query
position qi, and a generic scalar comparison value ci, as defined in Table 6.1,
are stored. The coherence check unit uses the latter two values to determine
possible cache hits and issues a full kd-tree search otherwise.

The neighbor copy unit updates the neighborhood caches with the results from
the kd-tree search and computes the comparison value ci according to the
current search mode. For correct kNN results, the top element corresponding
to the (k + 1)NN needs to be skipped. If εN queries have been issued, all ele-
ments that are further than the search radius need to be discarded. Note that
this module works very similar for both kNN and εN, the subtle differences
for the execution are summarized in Table 6.1.

6.5.4 Processing module

The processing module, depicted in Figure 6.7, is composed of three customiz-
able blocks: an initialization step, a loop kernel executed sequentially for
each neighbor, and a finalization step. The three steps can be globally iterated

99

Processing unit for point sets

Coherent
Neighbor
Cache

Processing
Module

neighbors0

query
request

c0 q0

...

LR
U

 C
ac

he
M

an
ag

er

Coherence Check

K
d-

tr
ee

 T
ra

ve
rs

al

Neighbor
Copy

neighbors0c0 q0

neighbors0c0 q0

Figure 6.6: Top level view of coherent neighbor cache unit.

Processing ModuleProcessing Module

Thread
Control

Initialization/Reset
(configurable)

Loop Kernel
(configurable)

Finalization
(configurable)

Neighbor Cache

output buffer

M
ulti-threaded

R
egister B

ank

Figure 6.7: Top level view of our programmable processing module.

Search mode kNN εN
ci = ei (Eq. 6.6) distance of top element

Skip top element: always if it is the empty element

Coherence test: ‖qj − qi‖ < ci ‖qj − qi‖ < ci − rj
Generated query: (qj,∞) (qj,αrj)

Table 6.1: Differences between kNN and εN searches in the coherent neighbor cache unit.

multiple times, where the finalization step controls the termination of the
loop. This outer loop can then be used to implement a big variety of graphics
algorithms, e.g., an iterative MLS projection procedure or meshless fluid
computations. Listing 6.3 shows an instructive control flow of the processing
module.

100

6.6 Prototype implementation

Listing 6.3: Top-level view of the type of algorithm that can implemented by the processing
module.

Vertex neighbors[k]; // custom type
OutputType result; // custom type
int count = 0;
do {

init(query data, neighbors[k], count);
for (i=1..k)

kernel(query data, neighbors[i]);
} while (finalization(query data, count++, &result));

All modules have access to the query data (position, radius, and custom
attributes) and exchange data through a shared register bank. The initial-
ization step furthermore has access to the farthest neighbor, which can be
especially useful to, e.g., estimate the sampling density. All modules operate
concurrently, but on different threads.

The three customizable blocks are specified using a pseudo assembly lan-
guage which our arithmetic compiler transforms into fixed function data
paths and control logic. The compiler supports various kinds of floating
point and integer arithmetic operations, comparison operators, and reads
and conditional writes to the shared register bank. Fixed size loops can be
achieved using loop unrolling, variable loops can be achieved using the full
computation loop as described in Listing 6.3. The compiler can either generate
optimized, high-performance full throughput data paths, or can employ
resource sharing for smaller throughput and smaller resource footprint in
case of limited hardware resources.

This arithmetic hardware compiler would be particularly interesting for
embedded FPGA devices or FPGA coprocessors [Vah07, Tan06, Int07]. For
such systems, software developers can develop arithmetic loops efficiently
without knowledge of hardware design using our compiler. When embedded
into a GPU as presented in Section 5.3, this module would rather share the
unified shader architecture present in such architectures instead of using
FPGA reprogrammability.

6.6 Prototype implementation

This section describes the prototype implementation of the presented archi-
tecture using Field Programmable Gate Arrays (FPGAs). We will focus on the
key issues and non-trivial implementation aspects of our system. At the end

101

Processing unit for point sets

of the section, we will also briefly sketch some possible optimizations of our
current prototype, and describe our GPU based reference implementation
that will be used for comparisons in the result section.

6.6.1 System setup

The two modules, neighbor search and processing, are mapped onto two
different FPGAs. Each FPGA is equipped with a 64 bit DDR DRAM interface
and both are integrated into a PCI carrier board, with a designated PCI bridge
for host communication. The two FPGAs communicate via dedicated LVDS
DDR communication units. The nearest neighbors information is transmitted
through a 64 bit channel, the results of the processing operators are sent
back using a 16 bit channel. Although the architecture would actually fit
onto a single Virtex2 Pro chip, but we strived to cut down the computation
times for the mapping, placing, and routing steps in the FPGA synthesis. The
communication does not degrade performance and adds only a negligible
latency to the overall computation.

6.6.2 kd-tree traversal unit

We will now revisit the kd-tree traversal unit of the neighbor search module
illustrated in Figure 6.5 and discuss its five major units from an implementa-
tional perspective.

The following implementation allows up to 16 parallel threads operating
in the kd-tree traversal unit. A detailed view of the stack, stack recursion,
and node traversal units is presented in Figure 6.8. The node traversal unit
determines the distance of the query point to the half planes, pushes the path
to the further half plane onto a shared stack for subsequent backtracking,
and continues the traversal in the nearer half plane. The stack recursion unit
retrieves unprocessed paths from the stack in the backtracking phase of the
algorithm, compares the distance of the half-plane to the query point with
the current search radius. If the distance is bigger than the radius, the unit
continues the backtracking. If the distance is smaller, a new traversal request
is issued. Both units are fully pipelined and can accept a new request in every
clock cycle.

Each of the parallel threads has its own small lightweight stack, managed
by the stack unit. Compared to general purpose architectures, however,
our stacks are much lighter and are therefore stored on-chip to maximize
performance. Only pointers to unprocessed tree paths as well as the distances

102

6.6 Prototype implementation

Node Traversal StackNode Traversal

Control Squared plane distance

Stack Recursion

<

T
hr

ea
d

an
d

tr
av

er
sa

l c
on

tr
ol

Push

Pop

M
u

lti-th
read

ed
S

tack S
to

rag
e

Stack pointersPop from stack

Recursion done

Control

Leaf Processing

kd-tree

Figure 6.8: Detailed view of the sub-units and the storage of the node traversal, stack
recursion and stack units. These units are responsible of descending down
the tree, keeping track of the paths not taken in the stack, and recurring up
the tree.

of the query point to the bounding plane need to be stored. Therefore, each
stack entry is composed of 6 bytes only, 2 bytes store the next tree address
and 4 bytes store the floating point distance. For practical reasons we bound
the tree depth to reasonable maximum, and therefore the stack is bound as
well. Our current implementation includes 16 parallel stacks: one for each
thread and each stack having a depth of size 16. The stack supports one push
operation to any stack and pop operation from any other stack in parallel in
the same clock cycle. New stack operations can be issued in every clock cycle.

The leaf processing and priority queue units are presented in greater detail
in Figure 6.9. The leaf processing unit manages the access to external memory
whenever a thread arrives at a leaf. It requests all points contained in the leaf
node and calculates the distances to the query point. The leaf points are then
inserted into the thread’s priority queue. The priority queue unit manages the
priority queues of all threads. Similar to the stack unit, there are 16 priority
queues on-chip. The queues store the distances as well as pointers to the point
data cache. Our implementation uses a fully sorted parallel register bank of
length 32 and therefore supports up to 32 nearest neighbors. It allows the
insertion of one element in every clock cycle. Note that this fully sorted bank
works well for small queue sizes because of the associated short propagation
paths and small area overhead. For larger k, a constant time priority queue
similar to the pipelined heap [WHA+07] could be used. The pipelined heap
is presented in Chapter 5.

For ease of implementation, the kd-tree structure is currently stored linearly
on-chip in the spirit of a heap: Given the address i in memory, the two

103

Processing unit for point sets

Priority QueueLeaf Processing

Distance Calculation

Thread and traversal control

Multi-threaded
Queue Storage

Point Data
Cache

External DRAM

In
se

rt

Point Request Queue
Top

Read

Le
af

 T
ra

ve
rs

al
M

an
ag

er CNC

Figure 6.9: Detailed view of the leaf processing and parallel priority queue units. The
sub-units load external data, compute distance and resort the parallel priority
queues.

corresponding children are stored at locations 2i and 2i + 1. We bound the
maximum tree depth to 14 levels. The internal nodes and the leaves are
stored in separate blocks where points are associated with leaf nodes only.
The 214− 1 internal nodes store the splitting planes (32 bit floating point), the
dimension (2 bit enumerator) and a flag indicating when an internal nodes
is a leaf (1 bit). This additional bit allows to support unbalanced kd-trees as
well. The 214 leaf nodes store begin and end pointers to the point buckets in
the off-chip DRAM (25 bits each).

The total storage requirement of the full kd-tree is therefore 170 kBytes only.
A tree using a pointer representation would require 217 kBytes for a fully
balanced tree1.

In case of an unbalanced leaf, a so-called ’internal leaf’ then needs to be
mapped to a leaf node. Instead of storing the address, the corresponding leaf
point address aleaf for any given internal node address ainternal is then found
by

aleaf = ainternal 2d−l(internal) , (6.7)

The full tree depth is denoted by d, and l(internal) denotes the tree level at
which the internal node is located. Note that this computation essentially
shifts the internal address such that the leading 1 in the address is then located
in the most significant bit of the tree address.

1This calculation has been performed for a storage optimized tree in pointer representation: 2
bit are used to denote the dimension, 1 bit whether the node is internal and external, and 50
bit are combined storage: either the splitting plane and the two pointer to the children can be
combined in 50 bit in case of an internal node, otherwise the start and end pointers to the point
buckets can be stored

104

6.6 Prototype implementation

6.6.3 Coherent neighbor cache unit

The coherent neighbor cache (CNC) unit (Figure 6.6) can store eight cached
neighborhoods and contains a single coherence check sub-unit. This sub-unit
tests incoming queries for cache hits by iterating over all eight entries. The
LRU cache manager unit maintains the list of caches in least recently used
(LRU) order and synchronizes queries between the processing module and
the kd-tree search unit using a multi-reader write lock primitive. These locks
can be either acquired for reading or writing and allows multiple threads to
read from a cache entry simultaneously, but writing threads must acquire an
exclusive ownership. For a higher number of cache entries, the processing
time increases linearly due to the iteration step. As a remedy, however,
additional coherence test units could be used to partition the workload and
hence reduce the number of iterations.

As the neighbor search unit processes multiple queries in parallel, it is impor-
tant to carefully align the processing order. Usually, subsequent queries are
likely to be spatially coherent and would eventually be issued concurrently
to the neighbor search unit. Therefore, the neighbor search unit would then
search for spatially similar neighborhoods at the same time and would render
the CNC useless. To prevent this problem, the queries should be interleaved.
In the current system this task is left to the user, which allows to optimally
align the interleaving based on the nature of the queries.

6.6.4 Processing module

The processing module (Figure 6.7) is composed of three reconfigurable
custom units managed by a processing controller. The reconfigurable units rep-
resent FPGA blocks that can be reprogrammed by FPGA reconfiguration. The
units communicate through a multi-threaded quad-port bank of 16 registers.
The repartitioning of the four ports to the three custom units is automatically
determined by our hardware compiler.

Depending on the processing operator, our compiler might produce a high
number of floating point operations thus leading to significant latency, which
is, however, hidden by pipelining and multi-threading. Our implementation
allows for a maximum of 128 threads operating in parallel and is able to
process up to one neighbor per clock cycle. In addition, a more fine-grained
multi-threading scheme iterating over 8 sub-threads is used to hide the la-
tency of the accumulation in the loop kernel.

105

Processing unit for point sets

In case the algorithm to be implemented cannot fit into the reconfigurable
blocks, our hardware compiler offers the possibility to employ automatic
resource sharing. The user can specify a lower rate at which queries can be
issued. The lower the rate, the higher the possibility to re-use arithmetic
operators for different parts of the algorithm, and the lower the maximum
throughput.

6.6.5 Resource requirements and extensions

Our architecture was designed using minimal on-chip resources. As a result,
the neighbor search module is very lean and uses a very small number of
arithmetic units only, as summarized in Table 6.2. The number of arithmetic
units of the processing module depends entirely on the processing operator.
Their complexity is therefore limited by the resources of the targeted FPGA
device. Table 6.2 shows two such examples.

The prototype has been partitioned into the neighbor search module inte-
grated on a Virtex2 Pro 100 FPGA, and the processing module was integrated
on a Virtex2 Pro 70 FPGA. The utilization of the neighbor search FPGA
was 23’397 slice flip flops (27% usage) and 33’799 LUTs (38% usage). The
utilization of the processing module in the example of a MLS projection
procedure based on plane fits [AA04] required 31’389 slice flip flops (47%
usage) and 35’016 LUTs (53% usage).

The amount of on-chip RAM required by the current prototype is summarized
in Table 6.3, omitting the buffers for PCI transfer and inter-chip communi-
cation which are not relevant for the architecture. This table also includes a
possible variant using one bigger FPGA only. The architecture then could
be equipped with generic shared caches to access the external memory. The
tree structure would also be stored off-chip and hence alleviate the current

Arithmetic
Unit

kd-tree
Traversal

CNC
Covariance

Analysis
SPSS

Projection

Add/Sub 6 6 38 29
Mul 4 6 49 32
Div 0 0 2 3
Sqrt 0 2 2 2

Table 6.2: Usage of arithmetic resources for the two units of our neighbor search module,
and two processing examples.

106

6.6 Prototype implementation

Data
Current

Prototype
Off-chip kd-tree &
shared data cache

Thread data 1.36 kB (87 B/thd) 1.36 kB
Traversal stack 2 kB (8×16 B/thd) 2 kB
kd-tree 170 kB (depth: 14) 16 kB (cache)
Priority queue 3 kB (6×32 B/thd) 4 kB
DRAM manager 5.78 kB 5.78 kB
Point data cache 16 kB (p-queue unit) 16 kB (shared cache)
Neighbor caches 8.15 kB (1044B/cache) 1.15 kB (148 B/cache)
Total 206.3 kB 46.3 kB

Table 6.3: On-chip storage requirements for our current and planned, optimized version
of the neighbor search module.

limitation on the maximum tree depth. Furthermore, such caches would
make our current point data cache obsolete and reduce the neighbor cache foot-
print by storing references to the point attributes only. Finally, this would not
only optimize on-chip RAM usage, but also reduce the memory bandwidth
to access the point data for the leaf processing unit, and hence speed up the
overall process.

6.6.6 GPU implementation

For comparison, we implemented a kd-tree based kNN search algorithm using
NVIDIA’s CUDA. Similar to the FPGA implementation it uses lightweight
stacks and priority queues which are stored in local memory. Storing the
stacks and priority queues in fast shared memory would limit the number
of threads drastically and actually degrade performance compared to using
local memory. The neighbor lists are written and read in a large buffer stored
in global memory. We implemented the subsequent processing algorithms as
a second, distinct kernel. Owing to the GPU’s SIMD design, implementing a
CNC mechanism is not feasible and would only decrease the performance.

In contrast to the correct implementation, the paper by Zhou et al. [ZHWG08]
uses an iterative range search to achieve an approximated k-nearest-neighbors
search. In a first step, a conservative radius is estimated that contains at
least k points. Then, the algorithm iteratively performs range searches and
adjusts the range towards the true range defined by the k-nearest neighbors
in each search step. The range adjustment is estimated using a histogram.

107

Processing unit for point sets

Unfortunately, this approach cannot yield the true nearest neighbors unless a
high number of iterations is used.

Figure 6.10: A series of successive smoothing operations. The model size is 134k points
and a neighborhood of k = 16 has been used for the MLS projections. Only
MLS software code had to be replaced by FPGA driver calls.

Figure 6.11: A series of successive simulation steps of the 2D breaking dam scenario. The
SPH simulation is using adaptive particle resolutions kNN queries up to
k = 30. Only kNN software code has been replaced by FPGA driver calls.

6.7 Results and discussions

To demonstrate the versatility of our architecture, we implemented and
analyzed several meshless processing operators. These include a few core
operators which are entirely performed on-chip: covariance analysis, iterative
MLS projection based on either plane fit [AA04] or spherical fit [GG07], and a
meshless adaptation of a nonlinear smoothing operator for surfaces [JDD03].
We integrated these core operators into more complex procedures, such as a
MLS based resampling procedure, as well as a normal estimation procedure
based on covariance analysis [HDD+92].

We also integrated our prototype into existing publicly available software
packages. For instance, in PointShop 3D [ZPKG02] the numerous MLS calls
for smoothing, hole filling, and resampling [WPK+04] have been replaced
by calls to our drivers. See Figure 6.10 for the smoothing operation. Fur-
thermore, an analysis of a fluid simulation research code [APKG07] based
on smoothed particle hydrodynamics (SPH) showed that all the computations

108

6.7 Results and discussions

involving neighbor search and processing can easily be accelerated, while
the host would still be responsible for collision detection and kd-tree updates
(Figure 6.11).

6.7.1 Performance analysis

Both FPGAs, a Virtex2 Pro 100 and a Virtex2 Pro 70, operate at a clock
frequency of 75 MHz. We compare the performance of our architecture to
similar CPU and GPU implementations optimized for each platform, on a
2.2 GHz Intel Core Duo 2 equipped with a NVIDIA GeForce 8800 GTS GPU.
Our results were obtained for a surface data-set of 100k points in randomized
order and with a dummy operator that simply reads the neighbor attributes.
Note that our measurements do not include transfer costs from and to the host
CPU, since our hardware device lacks an efficient transfer interface between
the host and the device; the FPGA included a PCI interface that could only
sustain data rates below 100 MB/s for read/write DMA transfers, as opposed
to GB/s for the highly optimized PCI express interface of the GPU.

General performance analysis

Figure 6.12 demonstrates the high performance of our design for generic,
incoherent kNN queries. The achieved on-chip FPGA query performance is
about 68% and 30% of the throughput of the CPU and GPU implementations,
respectively, although our FPGA clock rate is 30 times lower than that of the
CPU, and it consumes considerably fewer resources. Moreover, with the MLS
projection additionally enabled, our prototype exhibits the same performance
as with the kNN queries only, and outperforms the CPU implementation.

Finally, note that when the CNC is disabled our architecture produces fully
sorted neighborhoods for free, which is beneficial for a couple of applica-
tions. As shown in Figure 6.12 adding such a sort to our CPU and GPU
implementations has a non-negligible impact, in particular for the GPU.

Our FPGA prototype, integrated into the fluid simulation [APKG07],
achieved half of the performance of the CPU implementation. The main
reason for this is because up to 30 neighbors per query had to be read back
over the slow PCI transfer interface. In the case of the smoothing operation
of PointShop 3D [WPK+04], our prototype achieved speed ups of a factor
of 3, including PCI communication. The reasons for this speed up are two-
fold: first, for MLS projections, only the projected positions need to be read
back. Second, the kd-tree of PointShop 3D is not as highly optimized as our

109

Processing unit for point sets

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0

200

400

600

800

1000

1200

1400

1600

1800

2000

CPU, kNN
CPU + SPSS
CPU + SORT
GPU, kNN
GPU + SPSS
GPU + SORT
FPGA
FPGA + MLS

nb neighbors

k
q

u
e

ri
e

s/
se

c
o

n
d

k
qu

er
ie

s/
se

co
nd

FPGA
FPGA + MLS
CPU

 + MLS projection

=k

CUDA

 + SORT

Figure 6.12: Performance of kNN searches and MLS projections as a function of the
number of neighbors k. For this measurements the input points have been
used as query points.

reference CPU implementation used for the other comparisons. Note that
using a respective ASIC implementation and a more advanced PCI Express
interface, the performance of our system would be considerably higher.

System bottleneck

The bottleneck of our prototype is the kd-tree traversal, and it did not outper-
form the processing module for all tested operators. In particular, the off-chip
memory accesses in the leaf processing unit represent the limiting bottleneck
in the kd-tree traversal. Consequently, the nearest neighbor search does not
scale well above 4 threads, while supporting up to 16 threads.

More specifically, the theoretical maximum bandwidth to the external DRAM
available in our FPGA boards is 1.2 GB/s, which is very small compared to
the theoretical 64 GB/s available on the NVIDIA GeForce 8800 GTS. One
possible straight-forward solution would therefore be to increase the memory
bandwidth, or to employ a least-recently-used caching strategy for the DRAM
accesses to increase the overall performance of our system.

110

6.7 Results and discussions

Coherent neighbor cache analysis

In order to evaluate the efficiency of our coherent neighbor cache with re-
spect to the level of coherence, we implemented a resampling algorithm that
generates b× b query points for each input point, uniformly spread over its
local tangent plane [GGG08]. All results for the CNC were obtained with 8
caches. The best results were obtained for ball queries (Figure 6.13), where
even an up-sampling pattern of 2× 2 is enough to save up to 75% of the
kd-tree traversals, thereby showing the CNC’s ability to significantly speed
up the overall computation. Figure 6.14 depicts the behavior of the CNC with
both exact and (1+ ε)-approximate kNN with an upsampling pattern of 8× 8.
Whereas the cache hit rate remains relatively low for exact kNN especially
with such a large neighborhoods, already a small tolerance (ε = 0.1) allows
to save more than 50% of the kd-tree traversals. For incoherent queries, the
CNC results in a slight overhead due to the search of larger neighborhoods.
The GPU implementation does not include a CNC, but owing to its SIMD
design and texture caches, its performance significantly drops down as the
level of coherence decreases.

While these results clearly demonstrate the general usefulness of our CNC
algorithm, they also show the CNC hardware implementation to be slightly
less effective than the CPU-based CNC. The reasons for this behavior are two-
fold. First, from a theoretical point of view, increasing the number of threads
while keeping the same number of caches decreases the hit rate for the CNC.
This behavior could be compensated by increasing the number of caches.
Second, our current prototype consistently checks all caches sequentially
while our CPU implementation stops at the first cache hit, at a much lower
clock frequency.

An analysis of the (1 + ε)-approximate kNN in terms of cache hit rate and
relative error can be found in Figures 6.15 and 6.16. These results show that
already small values of ε are sufficient to significantly increase the percentage
of cache hits, while maintaining a very low error for the MLS projection.
In fact, the error is of the same order as the numerical order of the MLS
projection in case of exact neighbor queries. Even larger tolerance values like
ε = 0.5 lead to visually acceptable results, which is due to the weight function
of the MLS projection that results in low influence of the farthest neighbors.

Comparison to Zhou et al. [ZHWG08]

Zhou et al. [ZHWG08] implemented point cloud modeling using a k-nearest-
neighbor search on GPUs. Their implementation achieved 9.1 million queries

111

Processing unit for point sets

per second, for a neighborhood of size 10. For the same neighborhood
and similar model size, our exact GPU implementation yields about 1.8
million queries per second (Figure 6.12). We believe this performance gap
is due to the following three reasons. First, the authors use approximate
nearest neighbors search and can therefore tolerate some error at the benefit
of performance. Second, the tree built by Zhou et al. is more optimized for
neighborhood searches. In fact, the authors claim that mid-point splitting
as used for our tree construction results in poor tree structures. Third, the
application used by Zhou et al. exhibits high spatial locality, whereas our
analysis in Figure 6.12 uses spatially randomized queries. The performance
of our GPU implementation however also increases with locality, as can be
seen in Figures 6.13 and 6.14.

6.7.2 GPU integration

Our results show that the GPU implementation of kNN search is only slightly
faster than our current FPGA prototype and CPU implementation. More-
over, with a MLS projection operator on top of a kNN search, we observe
a projection rate between 0.4M and 3.4M projections per second, while the
same hardware is able to perform up to 100M of projections per second using
precomputed neighborhoods [GGG08]. Actually, the kNN search consumes
more than 97% of the computation time. This poor performance is partly due
to the divergence in the tree traversal, but even more important, due to the
priority queue insertion in O(log k), which infers many incoherent execution
paths. On the other hand, our design optimally parallelizes the different steps
of the tree traversal and allows the insertion of one neighbor into the priority
queue in a single cycle.

These results motivate the integration of our lightweight neighbor search
module into such a massively multi-core architecture. Indeed, a dedicated
ASIC implementation of our module could be further optimized and run
at a much higher frequency and could improve the performance by more
than an order of magnitude. Such an integration could be done in a similar
manner as the dedicated texturing units, or the programmable tessellation
units of current GPUs [Mic10]. In conjunction with the previously proposed
rendering architecture for surface splatting in Chapter 5, a full point process-
ing and rendering pipeline could provide extremely high geometric detail
at low bandwidth. In such a context, our processing module would then
be replaced by more generic computing units. Nevertheless, we empha-
size that the processing module still exhibits several advantages. First, it
allows to optimally use FPGA devices as co-processors to CPUs or GPUs,

112

6.7 Results and discussions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1000

2000

3000

4000

5000

6000

7000

8000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU
CPU + CNC
CPU, % cache hit
CUDA
FPGA
FPGA + CNC
FPGA, %

k
q

u
e

ri
e

s
/s

e
co

n
d

%
 cache hits

k
qu

er
ie

s/
se

co
nd

FPGA
FPGA + CNC
CPU

=b

CPU + CNC
CUDA
% cache hits

Figure 6.13: Number of ball queries per second for an increasing level of coherence.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

250

500

750

1000

1250

1500

1750

2000

0%

25%

50%

75%

100%

CPU, no cache
CPU, CNC, e=0.1
CPU, % cache hit, e=0.1
CUDA
FPGA, ANN
FPGA, ANN, %
FPGA
FPGA, % hits
FPGA, no cache

k
qu

er
ie

s/
s

%
 cache hitsk

qu
er

ie
s/

se
co

nd

FPGA
FPGA + CNC
FPGA + CNC + AkNN

% cache hits

=b

CPU
CPU + CNC + AkNN
CUDA

Figure 6.14: Number of kNN queries per second for an increasing level of coherence. The
approximate kNN (AkNN) results with k = 30 neighbors were obtained
with ε = 0.1.

which can be expected to become more and more common in the upcoming
years [Vah07, Tan06, Int07]. Second, unlike the SIMD design of GPU’s mi-
croprocessors, our custom design with three sub-kernels allows for optimal
throughput, even in the case of varying length neighbor loops.

113

Processing unit for point sets

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

k=8 (error)

error (k=16)
cache hit (k=16)
error (k=32)
cache hit (k=32)A

ve
ra

ge
 e

rr
or

%
 cache hits

k=8
k=16
k=32
% cache hits

=ε

A
ve

ra
ge

 e
rr

or

Figure 6.15: Error versus efficiency of the (1 + ε)-approximate k-nearest neighbor mech-
anism as function of the tolerance value ε. The error corresponds to the
average distance for a model of unit size. The percentages of cache hit were
obtained with 8 caches and patterns of 8×8.

Figure 6.16: MLS reconstructions with, from left to right, exact kNN (34 s), and AkNN
with ε = 0.2 (12 s) and ε = 0.5 (10 s). Without our CNC the reconstruction
takes 54 s.

114

6.8 Conclusion

6.8 Conclusion

We presented a novel hardware architecture for efficient nearest-neighbor
searches and generic meshless processing operators. In particular, our kd-
tree based neighbor search module features a novel and dedicated caching
mechanism exploiting the spatial coherence of the queries. Our results
show that neighbor searches can be accelerated efficiently by identifying
independent parts in terms of memory access. Our architecture is imple-
mented in a fully pipelined and multi-threaded manner and suggests that
its lightweight design could be easily integrated into existing computing or
graphics architectures, and hence be used to speed up applications depending
heavily on data structure operations. When scaled to realistic clock rates, our
implementation achieves speedups of an order of magnitude compared to
reference implementations. Our experimental results prove the high benefit
of a dedicated neighbor search hardware.

This architecture should be combined with the rendering architecture pre-
sented in Chapter 5 for a general point chip: while the processing architecture
would be responsible for the processing and supersampling of a coarse input
point cloud in the sense of modern tessellation units, the rendering architec-
ture then would rasterize the generated samples in screen space.

A current limitation of the design is its off-chip tree construction. An extended
architecture could construct or update the tree on-chip to avoid expensive
host communication. Zhou et al. [ZHWG08] suggest that the tree construction
should be optimized for k-nearest-neighbor searches, and their method could
be used to construct the tree. Furthermore, a more configurable spatial data
structure processors in order to support a wider range of data structures and
applications could be very useful for a broader range of application.

115

Processing unit for point sets

116

C H A P T E R 7
Conclusion

This thesis presented an analysis of point-based graphics in the context
of hardware acceleration. First we extended the EWA surface splatting
framework to the time domain, and then analyzed and identified the main
bottlenecks and shortcomings of existing hardware architectures with respect
to point rendering. We then introduced novel architectural elements and
concepts to enhance hardware support for point based rendering. Finally,
we investigated a generalized hardware architecture for the processing of
point sets to support novel algorithms, such as tessellation or surface smooth-
ing, which showed great potential to accelerate point-based graphics and to
alleviate shortcomings of previous architectures.

7.1 Review of principal contributions

We extended the EWA surface splatting framework by a time domain to
support motion-blur for point-based rendering. Conceptually we replaced
the 2D Gaussian kernels encoding the surface domain by 3D Gaussian kernels
encoding the surface in the time domain. The 3D kernels unify the spatial and
temporal component, and represent a linearized sampling of a moving surface
in time. The derived result naturally fits into the EWA splatting algorithm
in such that the final image can be computed as a weighted sum of warped

117

Conclusion

and bandlimited kernels. We presented a rendering algorithm with strong
parallels to the original EWA rendering: the 3D kernels are integrated along
the viewing ray and accumulated with kernels belonging to the same surface
patch, which are then combined with temporally overlapping surfaces using
an A-Buffer like approach. Additionally to the correct rendering approach,
we provided an approximative implementation of the entire point rendering
pipeline using vertex, geometry and fragment program capabilities of current
GPUs. The correct algorithm was able to produce high-quality motion blur
for point based objects, the GPU implementation was limited in terms of
visual quality and performance due to incompatibilites of modern GPUs with
point-based rendering.

Based on the results of the previous analysis, we then introduced a ren-
dering architecture for surface splatting to overcome the limitations of the
available graphic processors. The architecture used a refined version of
EWA surface splatting optimized for hardware implementations. Central
to our design decisions was the seamless integration of the architecture
into conventional, OpenGL-like graphics pipelines, and the architecture was
designed to complement triangle rendering instead of replacing it. We strived
to re-use as much existing hardware concepts such as the vertex and fragment
processor, however the fundamental differences of EWA surface splatting
also required some novel design concepts. The rasterization part has been
completely redesigned to support a ternary depth test and the reconstruction
buffer, which can only be released as soon as a surface has been completely
reconstructed. Furthermore, we introduced an on-chip pipelined heap to
reorder screen space points and to make accesses to the reconstruction buffer
memory more coherent. We implemented different versions of the pipeline
both on reconfigurable FPGA boards and ASIC prototypes to demonstrate
the performance of the proposed pipeline, and we integrated the pipeline
into an OpenGL-like software implementation to prove the usability of the
combined triangle-splat rendering approach.

Finally, we generalized the rendering architecture by developing a hard-
ware architecture for the processing of unstructured point sets. Our new
design supported the two computationally most expensive operations on
point sets: the neighborhood search and the stream processing of the found
neighborhood. A central design decision was the fixed function kd-tree-based
neighborhood search in conjunction with a novel caching mechanism to
exploit the spatial coherency of many point processing operators. The stream
processing was then achieved using the reconfigurability of FPGA devices:
we developed a hardware compiler able to transform assembler-like code
to FPGA blocks which in turn can directly be plugged into the processing
module. The prototype implementation showed versatility and very good

118

7.2 Discussion and future work

results even at low clock frequencies and at low memory bandwidth. The
neighbor search module proved to be very lean and lightweight, and could
be integrated as valuable co-processor block in other hardware architectures
at low cost. Although the processing module was very similar to available
stream processing units, the concept of FPGA reconfigurability could be used
for hybrid systems containing FPGA logic.

7.2 Discussion and future work

This thesis investigated the hardware acceleration of point-based graphics
by combining general purpose processing with small fixed function units
targeted for point-processing, for example the k-nearest-neighbor search or
the ternary depth test for the rasterization of splats. Within the time-frame
of this thesis, the state-of-the-art GPU architectures became more and more
programmable and converged very close towards multi-core CPUs. While
many parts of the original pipeline such as geometry processing or tessellation
became programmable, there are still open issues that limit point-graphics
algorithms to take full advantage of such architectures. We see the following
areas for future work.

Programmable tessellation units. With the advent of programmable tes-
sellation new possibilities for upsampling of point sampled data have become
possible. However, point based graphics relies strongly on unstructured point
sets, whereas tessellation requires explicit knowledge of neighbors. One of
the questions that arises is how to incorporate a nearest neighborhood search
tightly with tessellation units in order to provide maximum performance
for upsampling of point based models to the pixel level. Moreover, it is not
yet clear how this tessellation could be effectively combined with polygonal
meshes, or if there is potential to even sample polygonal models with points
for more efficient rendering.

Micro-point rendering instead of micro-polygon rendering. Current tes-
sellation units are able to generate highly detailed triangle meshes containing
millions of tiny triangles. Although micro-polygon rendering methods have
been devised for such cases, points are a much simpler representation. How-
ever, in its current EWA formulation, such micro-points are not yet being
rendered as efficient as possible. By developing a simpler splatting scheme,
micro-points could probably outperform micro-polygons by an order of
magnitude, while requiring less complicated hardware architectures with
smaller memory footprint.

119

Conclusion

A complete point-graphics hardware pipeline. Ideally, the full hardware
graphics pipeline would include both the generation of point rendering
primitives from a sparse input point point cloud as well as the rendering of
those primitives using EWA surface splatting. Furthermore, a tessellation
unit that converts triangle representations to point representations on the
fly would provide a general purpose rendering architecture that supports
even the traditional rendering and production pipelines. The generation of
point primitives would be performed using an architecture similar to our
general point processor used as general purpose tessellator, and the output
would then be forwarded to the EWA surface splatting architecture. Such a
combined architecture looks very promising as the input bandwidth could
be decreased by orders of magnitude, and the architecture could adaptively
upsample micro-points to match the resolution required for the display.

A programmable data structure processor. The fixed-function architecture
for neighborhood queries showed that parts of a recursive search on tree-like
structures can be parallelized quite efficiently. To make such an architecture
more general, those separate fixed function parts could be replaced by small
lightweight processors performing data structure shaders, and could be used
as co-processor to current architectures. Furthermore, the general caches
could be replaced by programmable caching controllers to adapt to special
access patterns of different data structure searches. A programmable data
structure processor then could be used to implement recursive searches
on hierarchical data-structures more efficiently and with higher hardware
utilization as the data-parallel multi-core GPUs. Therefore, the GPU itself
would concentrate on the stream processing of data being supplied by the
data structure processor.

120

A P P E N D I X A
Notation

This appendix covers the used notation, split into the associated chapters.

A.1 General mathematical notation

N . Set natural numbers.
R .Set of real numbers.
Rn . Set of real n-vectors.
Rm×n Set of real m × n matrices with m rows and n

columns.
a ∈ RnBold lowercase letters are denoting column vec-

tors of any dimension.
axy . Two component sub-vector of a, containing the x

and y component only.
A ∈ Rm×n Bold uppercase letters are denoting matrices of

any dimension.
A2×2 2× 2 sub-matrix of A, containing the upper 2x2

block of A
a(·), A(·) ∈ R Scalar functions.
a(·) ∈ Rn Vector functions.

121

Notation

A = {. . .} Set of properties or values.
∗ . Convolution operator.
aT,AT Transposed vector / matrix.
A−1 Inverse of matrix A.
‖a‖ . L2-norm of a vector a.
|A| . Determinant of matrix A.
e· . Exponential function.
diag(a1, . . . , an) n× n diagonal matrix, with a1, . . . , an as diagonal

elements

A.2 Processing of point sets

S . Defining set of a surface.
Ŝ . Approximating set of a surface.
θ(x) Weight function.
pi . Points of a surface.
ni . Associated normals of the surface.
x . A point in space.
q . Query point.
r . Search radius.
ei . Tolerance distance.
ai .Memory location.

A.3 EWA surface splatting

Pk . Point k
rk(·) Elliptical 2D reconstruction kernel of Pk.
Rk(·) Ellipsoidal 3D reconstruction kernel of Pk.

a[1]k ,a[2]k Axis vectors spanning coordinate frame of rk(·).
a[1]k ,a[2]k ,a[3]k Axis vectors spanning coordinate frame of IRk(·).
ck . Center of coordinate frame of Pk.
sk . Attribute sample vector of Pk.
u . Point in tangent frame.

122

A.3 EWA surface splatting

x′ .Point in screen frame.
x . Point in world frame.
M . Modelview matrix.
P . Projection matrix.
Tk . Axis transformation from coordinate frame of Pk

to object space.
Vk .Variance matrix of Pk.
G2

V(·)2-dimensional Gaussian with 3x3 variance matrix
V.

G3
V(·)3-dimensional Gaussian with 4x4 variance matrix

V.
f (·) Source space attribute function of surface.
m(·)Projective mapping from source space to screen

space.
g(·) Screen space attribute function of surface.
h(·) Screen space anti-alias pre-filter.
ρk(·)Filtered screen space resampling kernel.
v(·) Visibility function.
i ≺I j Cyclic ordering criterion, defined in Section 5.5.2.

123

Notation

124

A P P E N D I X B
Glossary

A-BufferAnti-aliased, area-averaged, accumulation buffer,
defined by Carpenter [Car84]

APSS Algebraic point set surfaces, defined by Guen-
nebaud et al. [GG07].

AkNN Approximated k spatially nearest neighbors.
API Application programming interface.
ASIC Application specific integrated circuit.
ATI .ATI Technologies, a manufacturer of GPUs.
C++ A programming language.
CNC Coherent neighbor cache.
CPUCentral processing unit. Main processing chip

inside a computer system.
CUDA Compute unified device architecture, a software

development kit for GPUs and marketing term by
NVIDIA.

DDR Double data rate.
DDR2, DDR3 Double data rate protocols for DRAM.
DMA Direct memory access.
DRAM Dynamic random access memory.

125

Glossary

DSP Digital signal processor.
DVI Digital visual interface.
EWA Elliptical weighted average.
EWA splatting Elliptical weighted average surface splatting, a

method to render high-quality anti-aliased im-
ages from 3D point models.

εN . Range search for all points contained in a given
euclidian radius.

FIFO First in first out.
FPGA Field programmable gate array, which can be con-

sidered reconfigurable logic.
GPU Graphics processing unit, a chip used for acceler-

ation of 3D graphics.
IC . Integrated circuit.
IEEE Institution of Electrical and Electronics Engineers,

a non-profit professional organization.
k-d tree Spatial data structure commonly used for point

graphics and ray tracing.
kNN k spatially nearest neighbors.
LRU Least recently used, a processing order often em-

ployed in caches.
LUT Look-up table, an element commonly found in

FPGAs.
LVDSLow voltage differential signaling.
MHz Clock frequency of ICs: the number of clock ticks

per second in millions.
MLSMoving least squares.
mW Milli-Watt.
NVIDIA A manufacturer of GPUs.
OpenGLOpen Graphics Library, a rendering pipeline.
PCB Printed circuit board.
PCI .Peripheral Component Interface.
PSS .Point set surfaces.
SIMD Single instruction, multiple data.

126

SRAM Static random access memory.
SPH Smoothed particle hydrodynamics.
SPSS Simple point set surfaces as defined by Adamson

and Alexa [AA04].
T&L Transform and lighting.
USB Universal serial bus protocol.
Virtex2 Pro A FPGA chip manufactured by Xilinx.
Xilinx A manufacturer of FPGA chips.
Z-Buffer Depth buffer.

127

Glossary

128

Bibliography

[AA03] Anders Adamson and Marc Alexa. Ray tracing point set surfaces. In
Conference on Shape Modeling and Applications, 2003.

[AA04] M. Alexa and A. Adamson. On normals and projection operators for
surfaces defined by point sets. In Proceedings of Symposium on Point
Based Graphics, pages 149–155, 2004.

[AA06] Anders Adamson and Marc Alexa. Point-sampled cell complexes. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pages 671–680, New
York, NY, USA, 2006. ACM Press.

[AA09] Marc Alexa and Anders Adamson. Interpolatory point set surfaces—
convexity and hermite data. ACM Transactions on Graphics, 28(2):1–10,
2009.

[ABCO+01] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. Silva.
Point set surfaces. In Proc. IEEE Visualization, pages 21–28, San Diego,
CA, 2001.

[ABCO+03] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman,
David Levin, and Claudio T. Silva. Computing and rendering point
set surfaces. IEEE Transactions on Visualization and Computer Graphics,
9(1):3–15, 2003.

Bibliography

[AH04] Julien Reptin Adam Herout, Pavel Zemcik. Hardware implementa-
tion of ewa for point-based three-dimensional graphics rendering.
International Conference on Computer Vision and Graphics, 32:593–598,
2004.

[AK04a] Nina Amenta and Yong Joo Kil. Defining point-set surfaces. ACM
Transactions on Graphics (Proc. SIGGRAPH 2004), 23(3):264–270, 2004.

[AK04b] Nina Amenta and Yong Joo Kil. The domain of a point set surface.
pages 139–147, 2004.

[Ake93] Kurt Akeley. RealityEngine graphics. In Computer Graphics (Proc.
ACM SIGGRAPH ’93), pages 109–116, 1993.

[AKP+05] Bart Adams, Richard Keiser, Mark Pauly, Leonidas Guibas, Markus
Gross, and Philip Dutré. Efficient raytracing of deforming point-
sampled surfaces. Computer Graphics Forum, 24(3), 2005.

[AMS03] Tomas Akenine-Möller and Jacob Ström. Graphics for the masses: a
hardware rasterization architecture for mobile phones. ACM Transac-
tions on Graphics (Proc. SIGGRAPH ’03), 22(3):801–808, 2003.

[APKG07] Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas.
Adaptively sampled particle fluids. In ACM Transactions on Graphics
(Proc. ACM SIGGRAPH 2007), volume 26, page 48, 2007.

[Ben85] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, pages 509–517, 1985.

[BFMZ94] Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen J. Scher
Zagier. Frameless rendering: double buffering considered harmful.
In SIGGRAPH, pages 175–176. ACM, 1994.

[BHZK05] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. High-quality
surface splatting on today’s GPUs. In Proc. Eurographics Symposium
on Point-Based Graphics 2005, pages 17–24, Stony Brook, Long Island,
USA, 2005.

[BSK04] M. Botsch, M. Spernat, and L. Kobbelt. Phong splatting. In Proc.
Eurographics Symposium on Point-Based Graphics 2004, pages 25–32,
Zurich, Switzerland, 2004.

[Car84] L. Carpenter. The a-buffer, an antialiased hidden surface method.
In Computer Graphics, volume 18 of Computer Graphics (Proc. ACM
SIGGRAPH ’84), pages 103–108, 1984.

[Cat84] Edwin Catmull. An analytic visible surface algorithm for independent
pixel processing. In SIGGRAPH, pages 109–115. ACM, 1984.

130

Bibliography

[Cla82] James Clark. The geometry engine: A VLSI geometry system for
graphics. In Computer Graphics (Proc. ACM SIGGRAPH ’82), volume 16,
pages 127–133. ACM, 1982.

[Coo86] R. L. Cook. Stochastic sampling in computer graphics. In SIGGRAPH,
pages 51–72. ACM, 1986.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray
tracing. In SIGGRAPH, pages 137–145. ACM, 1984.

[CW93] Shenchang Eric Chen and Lance Williams. View interpolation for
image synthesis. In SIGGRAPH, pages 279–288. ACM, 1993.

[Dog05] Michael Doggett. Xenos: XBOX360 GPU. Presentation at Eurograph-
ics, 2005.

[DWS+88] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and
Neil Hunt. The triangle processor and normal vector shader: a VLSI
system for high performance graphics. In Computer Graphics (ACM
SIGGRAPH ’88), volume 22, pages 21–30. ACM, 1988.

[ETH+09] Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and
Ravi Ramamoorthi. Frequency analysis and sheared reconstruction
for rendering motion blur. ACM Transactions on Graphics (SIGGRAPH),
28(3):1–13, 2009.

[Eve01] Cass Everitt. Interactive order-independent transparency. Technical
report, Nvidia, 2001.

[FB74] Raphael A. Finkel and Jon Louis Bentley. Quad trees: A data structure
for retrieval on composite keys. Acta Informatica, 4(1):1–9, 1974.

[FBF77] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for
finding best matches in logarithmic expected time. ACM Transactions
on Mathematical Software, pages 209–226, 1977.

[FGH+85] Henry Fuchs, Jack Goldfeather, Jeff Hultquist, Susan Spach, John
Austin, Frederick Brooks, John Eyles, and John Poulton. Fast spheres,
shadows, textures, transparencies, and imgage enhancements in pixel-
planes. In Computer Graphics (Proc. ACM SIGGRAPH ’85), volume 19,
pages 111–120. ACM, 1985.

[Fil79] Y. V. Silva Filho. Average case analysis of region search in balanced
k-d trees. Information Processing Letters, 8(5), 1979.

[FKN80] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible surface
generation by a priori tree structures. In Computer Graphics (Proc.
ACM SIGGRAPH 1980), pages 124–133, 1980.

131

Bibliography

[FLB+09] Kayvon Fatahalian, Edward Luong, Solomon Boulos, Kurt Akeley,
William R. Mark, and Pat Hanrahan. Data-parallel rasterization of
micropolygons with defocus and motion blur. In Proceedings of the
Conference on High Performance Graphics 2009, pages 59–68, 2009.

[FPE+89] Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack Goldfeather,
David Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs, and Laura
Israel. Pixel-planes 5: a heterogeneous multiprocessor graphics sys-
tem using processor-enhanced memories. In Computer Graphics (Proc.
ACM SIGGRAPH ’89), volume 23, pages 79–88. ACM, 1989.

[FS05] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a
gpu raytracer. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics Hardware, pages 15–22, 2005.

[GBP06] G. Guennebaud, L. Barthe, and M. Paulin. Splat/mesh blending,
perspective rasterization and transparency for point-based rendering.
In Proc. Eurographics Symposium on Point-Based Graphics 2006, Boston,
MA, 2006.

[GD98] J. P. Grossman and W. Dally. Point sample rendering. In Rendering
Techniques ’98, pages 181–192. Springer, 1998.

[GG07] Gaël Guennebaud and Markus Gross. Algebraic point set surfaces.
ACM Transactions on Graphics (Proc. ACM SIGGRAPH 2007), 26(3):23,
2007.

[GGG08] Gaël Guennebaud, Marcell Germann, and Markus Gross. Dynamic
sampling and rendering of algebraic point set surfaces. Computer
Graphics Forum, 27(2):653–662, 2008.

[GKBP05] Pascal Gautron, Jaroslav Krivánek, Kadi Bouatouch, and Sumanta
Pattanaik. Radiance cache splatting: A GPU-friendly global illumina-
tion algorithm. In Proc. Eurographics Symposium on Rendering, pages
55–64, 2005.

[GM04] X. Guan and K. Mueller. Point-based surface rendering with motion
blur. In Point-Based Graphics. Eurographics, 2004.

[GP07] Markus Gross and Hanspeter Pfister. Point-Based Graphics. The Mor-
gan Kaufmann Series in Computer Graphics. Morgan Kaufmann
Publishers, 2007.

[GPSS07] Johannes Günther, Stefan Popov, Hans-Peter Seidel, and Philipp
Slusallek. Realtime ray tracing on GPU with BVH-based packet
traversal. In Symposium on Interactive Ray Tracing, pages 113–118,
2007.

132

Bibliography

[Gra85] Charles W. Grant. Integrated analytic spatial and temporal anti-
aliasing for polyhedra in 4-space. In SIGGRAPH, pages 79–84. ACM,
1985.

[Gum03] S. Gumhold. Splatting illuminated ellipsoids with depth correction.
In Proc. 8th International Fall Workshop on Vision, Modelling and Visual-
ization 2003, pages 245–252, 2003.

[HA90] Paul Haeberli and Kurt Akeley. The accumulation buffer: hardware
support for high-quality rendering. In Computer Graphics (Proc. ACM
SIGGRAPH ’90), volume 24, pages 309–318. ACM, 1990.

[HAM07] Jon Hasselgren and Thomas Akenine-Möller. PCU: the programmable
culling unit. In SIGGRAPH, page 92, 2007.

[HDD+92] H. Hoppe, T. DeRose, T. Duchampt, J. McDonald, and W. Stuetzle.
Surface reconstruction from unorganized points. In Computer Graphics,
SIGGRAPH 92 Proceedings, pages 71–78, Chicago, IL, 1992.

[Hec89] P. Heckbert. Fundamentals of texture mapping and image warping.
Master’s thesis, University of California at Berkeley, Department of
Electrical Engineering and Computer Science, 1989.

[HKL+99] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast com-
putation of generalized Voronoi diagrams using graphics hardware.
In Computer Graphics (Proc. ACM SIGGRAPH 99), pages 277–286, 1999.

[HZ05] Adam Herout and Pavel Zemcik. Hardware pipeline for rendering
clouds of circular points. In Proc. WSCG 2005, pages 17–22, 2005.

[IK01] A. Ioannou and M. Katevenis. Pipelined heap (priority queue) man-
agement for advanced scheduling in high speed networks. In Proc.
IEEE Int. Conf. on Communications, 2001.

[IMRV97] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh
Vempala. Locality-preserving hashing in multidimensional spaces. In
STOC ’97: Proceedings of the twenty-ninth annual ACM symposium on
Theory of computing, pages 618–625, 1997.

[Int07] Intel. Intel QuickAssist technology accelerator abstraction layer white
paper. In Platform-level Services for Accelerators Intel Whitepaper, 2007.

[JDD03] Thouis R. Jones, Frédo Durand, and Mathieu Desbrun. Non-iterative,
feature-preserving mesh smoothing. ACM Transactions on Graphics,
22(3):943–949, 2003.

133

Bibliography

[JLBM05] Gregory S. Johnson, Juhyun Lee, Christopher A. Burns, and William R.
Mark. The irregular z-buffer: Hardware acceleration for irregular
data structures. ACM Transactions on Graphics, 24(4):1462–1482, 2005.

[KB83] Jonathan Korein and Norman Badler. Temporal anti-aliasing in com-
puter generated animation. In SIGGRAPH, pages 377–388. ACM,
1983.

[Lev01] D. Levin. Mesh-independent surface interpolation. In Advances in
Computational Mathematics, 2001.

[Lev03] D. Levin. Mesh-independent surface interpolation. In Geometric
Modeling for Scientific Visualization, pages 181–187, 2003.

[LH96] M. Levoy and P. Hanrahan. Light field rendering. In Computer Graph-
ics, SIGGRAPH 96 Proceedings, pages 31–42, New Orleans, LS, 1996.

[LKM01] Erik Lindholm, Mark J. Kligard, and Henry Moreton. A user-
programmable vertex engine. In Computer Graphics (Proc. ACM
SIGGRAPH ’01), pages 149–158, 2001.

[LW85] M. Levoy and T. Whitted. The use of points as display primitives.
Technical Report TR 85-022, The University of North Carolina at
Chapel Hill, Department of Computer Science, 1985.

[Max90] Nelson Max. Polygon-based post-process motion blur. The Visual
Computer, 6:308–314, 1990.

[MB02] Koen Meinds and Bart Barenbrug. Resample hardware for 3D graph-
ics. In Proc. ACM SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 17–26, 2002.

[MBDM97] John S. Montrym, Daniel R. Baum, David L. Dignam, and Christo-
pher J. Migdal. InfiniteReality: a real-time graphics system. In
Computer Graphics (Proc. ACM SIGGRAPH ’97), pages 293–302. ACM
Press, 1997.

[MEP92] Steven Molnar, John Eyles, and John Poulton. PixelFlow: high-speed
rendering using image composition. In Computer Graphics (Proc. ACM
SIGGRAPH ’92), volume 26, pages 231–240. ACM, 1992.

[Mes] Mesa. The Mesa 3D graphics library. http://www.mesa3d.org/.

[Mic10] Microsoft. The DirectX software development kit.
http://msdn.microsoft.com/directx, 2010.

[ML85] Nelson L. Max and Douglas M. Lerner. A two-and-a-half-D motion-
blur algorithm. SIGGRAPH, pages 85–93, 1985.

134

Bibliography

[MM02] Vincent C. H. Ma and Michael D. McCool. Low latency photon map-
ping using block hashing. In Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS conference on Graphics Hardware, pages 89–99, 2002.

[MMG+98] Joel McCormack, Robert McNamara, Christopher Gianos, Larry Seiler,
Norman P. Jouppi, and Ken Correll. Neon: a single-chip 3d work-
station graphics accelerator. In HWWS ’98: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, pages
123–132, New York, NY, USA, 1998. ACM.

[MMS+98] Klaus Mueller, Torsten Mller, J. Edward Swan, Roger Crawfis, Naeem
Shareef, and Roni Yagel. Splatting errors and antialiasing. IEEE TVCG,
4(2):178–191, 1998.

[Mor00] Steve Morein. ATI Radeon – HyperZ Technology. ACM
SIGGRAPH/Eurographics Workshop on Graphics Hardware,
Hot3D session, 2000.

[MWA+08] Mateusz Majer, Stefan Wildermann, Josef Angermeier, Stefan Hanke,
and Jürgen Teich. Co-design architecture and implementation for
point-based rendering on fpgas. In Proceedings of the IEEE/IFIP In-
ternational Symposium on Rapid System Prototyping, pages 142–148,
2008.

[NHS84] J. Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The grid file:
An adaptable, symmetric multikey file structure. ACM Transactions
on Database Systems, 9(1):38–71, 1984.

[NVI] NVIDIA. The NV half float OpenGL extension. Specification Docu-
ment.

[NVI07] NVIDIA. CUDA: Compute unified device architecture.
http://www.nvidia.com/cuda, 2007.

[OG97] Marc Olano and Trey Greer. Triangle scan conversion using 2d homo-
geneous coordinates. In Proc. ACM SIGGRAPH/Eurographics Workshop
on Graphics Hardware, pages 89–95, 1997.

[OGG09] Cengiz Oztireli, Gael Guennebaud, and Markus Gross. Feature
preserving point set surfaces based on non-linear kernel regression.
Computer Graphics Forum, 28(2), 2009.

[OvL80] M.H. Overmars and J. van Leeuwen. Dynamic multi-dimensional
data structures based on quad- and k-d trees. Technical Report RUU-
CS-80-02, Institute of Information and Computing Sciences, Utrecht
University, 1980.

135

Bibliography

[PC83] Michael Potmesil and Indranil Chakravarty. Modeling motion blur
in computer-generated images. In SIGGRAPH, pages 389–399. ACM,
1983.

[PDC+03] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann
Jensen, and Pat Hanrahan. Photon mapping on programmable graph-
ics hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics Hardware, pages 41–50, 2003.

[PEL+00] Voicu Popescu, John Eyles, Anselmo Lastra, Josh Steinhurst, Nick
England, and Lars Nyland. The WarpEngine: An architecture for the
post-polygonal age. In Computer Graphics (Proc. ACM SIGGRAPH ’00),
pages 433–442, 2000.

[PGSS07] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp
Slusallek. Stackless kd-tree traversal for high performance GPU ray
tracing. Computer Graphics Forum (Proc. of EUROGRAPHICS 2007),
26(3), September 2007. Proceedings of Eurographics.

[Pin88] Juan Pineda. A parallel algorithm for polygon rasterization. In
Computer Graphics (Proc. ACM SIGGRAPH ’88), volume 22, pages
17–20. ACM, 1988.

[PKKG03] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape modeling with
point-sampled geometry. ACM Transactions on Graphics (Proc. SIG-
GRAPH ’03), 22(3):641–650, 2003.

[PZvBG00] H. Pfister, M. Zwicker, J. van Baar, and M Gross. Surfels: Surface
elements as rendering primitives. In Computer Graphics (Proc. ACM
SIGGRAPH ’00), pages 335–342, 2000.

[R0̈2] Jussi Räsänen. Surface splatting: Theory, extensions and implementa-
tion. Master’s thesis, Helsinki University of Technology, 2002.

[Ree83] W. T. Reeves. Particle systems – a technique for modeling a class
of fuzzy objects. In Computer Graphics, volume 17 of SIGGRAPH 83
Proceedings, pages 359–376, 1983.

[RK88] V. N. Rao and V. Kumar. Concurrent access of priority queues. IEEE
Trans. Comput., 37(12):1657–1665, 1988.

[RL00] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point ren-
dering system for large meshes. In Computer Graphics, SIGGRAPH
2000 Proceedings, pages 343–352, Los Angeles, CA, 2000.

[Rob81] John T. Robinson. The k-d-b-tree: a search structure for large multidi-
mensional dynamic indexes. In SIGMOD ’81: Proceedings of the 1981

136

Bibliography

ACM SIGMOD international conference on Management of data, pages
10–18, 1981.

[RPZ02] L. Ren, H. Pfister, and M. Zwicker. Object-space EWA surface splat-
ting: A hardware accelerated approach to high quality point render-
ing. Computer Graphics Forum, 21(3):461–470, 2002.

[Sam06] Hanan Samet. Foundations of Multidimensional and Metric Data Struc-
tures, chapter Multidimensional Point Data, pages 1–190. Morgan
Kaufmann, 2006.

[SBM04] Jason Stewart, Eric Bennett, and Leonard McMillan. Pixelview: A
view-independent graphics rendering architecture. In Proc. ACM
SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages 75–84,
2004.

[SCS+08] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael
Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sug-
erman, Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and
Pat Hanrahan. Larrabee: a many-core x86 architecture for visual
computing. ACM Transactions on Graphics, 27(3):1–15, 2008.

[She68] Donald Shepard. A two-dimensional interpolation function for
irregularly-spaced data. In Proceedings of the ACM national conference,
pages 517–524, 1968.

[Shi93] Mikio Shinya. Spatial anti-aliasing for animation sequences with
spatio-temporal filtering. In SIGGRAPH, pages 289–296. ACM, 1993.

[SPW02] K. Sung, A. Pearce, and C. Wang. Spatial-temporal antialiasing. IEEE
TVCG, 8(2):144–153, 2002.

[SWBG06a] C. Sigg, T. Weyrich, M. Botsch, and M. Gross. GPU-based ray-casting
of quadratic surfaces. In Proc. Eurographics Symposium on Point-Based
Graphics 2006, pages 59–65, Boston, MA, 2006.

[SWBG06b] Christian Sigg, Tim Weyrich, Mario Botsch, and Markus Gross. GPU-
based ray-casting of quadratic surfaces. In Point-Based Graphics, pages
59–65. Eurographics, 2006.

[SWS02] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. SaarCOR: A
hardware achitecture for ray tracing. In Proc. Workshop on Graphics
Hardware 2002, pages 27–36, 2002.

[Tan06] Yankin Tanurhan. Processors and FPGAs quo vadis. IEEE Computer
Magazine, 39(11):106–108, 2006.

137

Bibliography

[THM+03] M. Teschner, B. Heidelberger, M. Mller, D. Pomeranerts, and M. Gross.
Optimized spatial hashing for collision detection of deformable ob-
jects. In Proc. Vision, Modeling, Visualization VMV, pages 47–54, 2003.

[TK96] Jay Torborg and James T. Kajiya. Talisman: commodity realtime 3D
graphics for the PC. In Computer Graphics (Proc. ACM SIGGRAPH ’96),
pages 353–363, 1996.

[TMF+07] Hiroyuki Takeda, Student Member, Sina Farsiu, Peyman Milanfar,
and Senior Member. Kernel regression for image processing and
reconstruction. IEEE Transactions on Image Processing, 16:349–366,
2007.

[Vah07] Frank Vahid. It’s time to stop calling circuits hardware. IEEE Computer
Magazine, 40(9):106–108, 2007.

[WBS06] Sven Woop, Erik Brunvand, and Philipp Slusallek. Estimating per-
formance of a ray-tracing asic design. In Proc. IEEE Symposium on
Interactive Ray Tracing, 2006.

[WBWS01] Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek.
Interactive rendering with coherent ray tracing. Computer Graphics
Forum, 20(3):153–164, 2001.

[WHA+07] Tim Weyrich, Simon Heinzle, Timo Aila, Daniel Fasnacht, Stephan
Oetiker, Mario Botsch, Cyril Flaig, Simon Mall, Kaspar Rohrer, Nor-
bert Felber, Hubert Kaeslin, and Markus Gross. A hardware architec-
ture for surface splatting. ACM Transactions on Graphics (Proc. ACM
SIGGRAPH 2007), 26(3):90–11, 2007.

[Whi84] Mary Whitton. Memory design for raster graphics displays. IEEE
Computer Graphics and Applications, 4(3):48–65, 1984.

[WK05] Turner Whitted and James Kajiya. Fully procedural graphics. In Proc.
ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages
81–90, 2005.

[WMS] Sven Woop, Gerd Marmitt, and Philipp Slusallek. B-KD Trees for
Hardware Accelerated Ray Tracing of Dynamic Scenes. In Proceedings
of Graphics Hardware.

[WMS06] Sven Woop, Gerd Marmitt, and Philipp Slusallek. B-kd trees for hard-
ware accelerated ray tracing of dynamic scenes. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics Hardware,
pages 67–77, 2006.

138

Bibliography

[WPK+04] T. Weyrich, M. Pauly, R. Keiser, S. Heinzle, S. Scandella, and M. Gross.
Post-processing of scanned 3D surface data. In Proc. Eurographics Sym-
posium on Point-Based Graphics 2004, pages 85–94, Zurich, Switzerland,
2004.

[WSS05] Sven Woop, Jörg Schmittler, and Philipp Slusallek. RPU: a pro-
grammable ray processing unit for realtime ray tracing. ACM Transac-
tions on Graphics (SIGGRAPH 2005), 24(3):434–444, 2005.

[WZ96] Matthias M. Wloka and Robert C. Zeleznik. Interactive real-time
motion blur. The Visual Computer, 12(6):283–295, 1996.

[YHGT10] Jason C. Yang, Austin Hensley, Holger Gruen, and Nicolas Thibieroz.
Real-time concurrent linked list construction on the GPU. In Euro-
graphics Symposium on Rendering, pages 277–286, 2010.

[ZHWG08] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-
tree construction on graphics hardware. ACM Transactions Graphics
(SIGGRAPH Asia), 27(5):1–11, 2008.

[ZP06] Y. Zhang and R. Pajarola. Single-pass point rendering and transparent
shading. In Point-Based Graphics, pages 37–48. Eurographics, 2006.

[ZP09] Herout Adam Zemcik Pavel, Marsik Lukas. Point cloud rendering in
fpga. In Proc. WSCG, pages 517–524, 2009.

[ZPBG01] M. Zwicker, H. Pfister., J. Van Baar, and M. Gross. Surface splatting.
In Computer Graphics (Proc. ACM SIGGRAPH ’01), pages 371–378, Los
Angeles, CA, 2001.

[ZPBG02] M. Zwicker, H. Pfister, J. Van Baar, and M. Gross. EWA splatting.
IEEE Transactions on Visualization and Computer Graphics, 8(3):223–238,
2002.

[ZPKG02] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop 3D: An in-
teractive system for point-based surface editing. In Computer Graphics,
SIGGRAPH 2002 Proceedings, pages 322–329, San Antonio, TX, 2002.

[ZRB+04] Matthias Zwicker, Jussi Räsänen, Mario Botsch, Carsten Dachsbacher,
and Mark Pauly. Perspective accurate splatting. In Proc. Graphics
Interface, pages 247–254, 2004.

139

Bibliography

140

Curriculum Vitae

Simon Heinzle

Personal Data

Oct. 12, 1981 Born in Feldkirch, Austria
Nationality Austria

Education

Sep. 4, 2010 Ph.D. defense.

Apr. 2006 – Sep. 2010 Research assistant and Ph. D. student at the Computer Graphics
Laboratory of the Swiss Federal Institute of Technology (ETH)
Zurich, Prof. Markus Gross.

Mar. 2006 Diploma degree in Computer Science.
Oct. 2000 – Jan. 2006 Diploma Studies of Computer Science, ETH Zurich, Switzerland.

Specialization: Computer Graphics; Complementary studies:
VLSI design and testing.

Curriculum Vitae

Awards

June 2008 Best Paper Award ”A Hardware Processing Unit for Point Sets”
at Graphics Hardware 2008.

Scientific Publications

S. HEINZLE, J. WOLF, Y. KANAMORI, T. WEYRICH, T. NISHITA, and M. GROSS. Motion
Blur for EWA Surface Splatting. In Computer Graphics Forum (Proceedings of Eurographics
2010), Norrköping, Sweden, May 2010.

S. HEINZLE, G. GUENNEBAUD, M. BOTSCH, and M. GROSS. A Hardware Processing Unit
for Point Sets. In Proceedings of the 23rd SIGGRAPH/Eurographics Conference on Graphics
Hardware, Sarajevo, Bosnia and Herzegovina, June 2008. Was awarded with the Best Paper
Award.

S. HEINZLE, O. SAURER, S. AXMANN, D. BROWARNIK, A. SCHMIDT, F. CARBOGNANI, P.
LUETHI, N. FELBER, and M. GROSS. A Transform, Lighting and Setup ASIC for Surface
Splatting. In Proceedings of International Symposium on Circuits and Systems (ISCAS), Seattle,
USA, May 2008.

T. WEYRICH, S. HEINZLE, T. AILA, D. B. FASNACHT, S. OETIKER, M. BOTSCH, C. FLAIG, S.
MALL, K. ROHRER, N. FELBER, H. KAESLIN, and M. GROSS. A Hardware Architecture for
Surface Splatting In Transactions on Graphics (Proceedings of ACM SIGGRAPH), San Diego,
August 2007.

T. WEYRICH, M. PAULY, R. KEISER, S. HEINZLE, S. SCANDELLA, and M. GROSS. Post-
processing of Scanned 3D Surface Data In Proceedings of Eurographics Symposium on Point-
Based Graphics, Zurich, Switzerland, June 2004.

Employment

From Oct. 2010 Post-doctoral researcher at The Walt Disney Company Schweiz
AG, Disney Research Zurich.

Apr. 2006 – Sep. 2010 Research assistant at ETH Zurich, Zurich, Switzerland.

Oct. 2003 – Mar. 2005 Teaching assistant at ETH Zurich, Zurich, Switzerland

Mar. 2005 – Jun. 2005 Internship at AdNovum Informatik AG, Zurich, Switzerland.

142

