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Abstract

Arithmetic abilities are essential in modern society. Hegremany children suffer from
difficulties in learning mathematics, ranging from mild &vere numeracy problems. The
prevalence of developmental dyscalculia is about3686 in German speaking countries.
Children with developmental dyscalculia often develop atyxand aversion against the
subject and experience difficulties in school and later ofgssion. Despite the relatively
high prevalence, few targeted interventions for childrethwevelopmental dyscalculia
exist and only a fraction of these programs is computerhase

In this thesis, we present a complete loop in the data-ddeselopment of an intelligent
tutoring system for mathematics learning that overcomedithitations of previous work.
This process consists of three steps: The development aftarfiing environment, its
evaluation in user studies and the data-driven validatrmhisprovement of the system.

We first develoCalcularis, a computer-based training program for children with diffi-
culties in learning mathematics. The curriculum and cotseepthe system are theory-
based: The program transforms current neuro-cognitiveniysdnto the design of differ-
ent instructional games. A Bayesian network student mogeesenting different mathe-
matical skills and their dependencies, and a non-linearaclaigorithm ensure adaptation
of the training to the mathematical abilities of the indivad child. Furthermore, the pro-
gram features a bug library allowing recognition and rerataln of specific errors.

In a second step, we evaluatelcularis in two user studies to prove its effectiveness.
Based on the input data collected in these studies, we pedalata-driven validation and
improvement of the program in the third step.

We assess student model and controller properties andzarthky quality of our model via
logistic regression. The data-driven investigations leathe development and extensive
analysis of techniques for model validation. We improvedpron accuracy of the stu-
dent model by introducing eonstrained latent structured predictionethod for efficient
parameter learning in Bayesian networks. By applying a dimgieand classification ap-
proach, we are able to predict the mathematical charatitsrif the children. Moreover,
we also explore the possible addition of an engagement ntodellcularis.

Finally, we develop a data-driven diagnosis tool for depaiental dyscalculia based only
on input data. The integration of this tool intalcularis closes the loop of data-driven
development.






Zusammenfassung

In der heutigen Gesellschaft sind mathematiscaleidgkeiten sehr wichtig. Viele Kinder
haben jedoch grosse Schwierigkeiten mit der Zahlenveitarigeoder beim Rechnen. In
deutschsprachigendndern leiden etwa 3% 6% der Kinder unter Dyskalkulie. Kinder
mit Dyskalkulie entwickeln oft eine Abneigung gegen die NManhatik oder sogar Math-
ematikangst und haben Schwierigkeiten in der Schule uatespm Berufsleben. Trotz-
dem existieren nur wenige TherapieprogramiineKinder mit Dyskalkulie und nur ein
Bruchteil dieser Programme ist computerbasiert.

In dieser Dissertation beschreiben wir einen komplettekiud/der datengeétzten En-
twicklung einer intelligenten Lernumgebung. Dieser Zykhesteht aus drei Schritten:
Der Entwicklung einer ersten Lernumgebung, der Evaluatimser Umgebung in Be-
nutzerstudien sowie der datendésten Validierung und Verbesserung des Systems.

In einem ersten Schritt entwickeln witalcularis, ein intelligentes Trainingspro-
gramm fir Kinder mit mathematischen Schwierigkeiten. Die versdenen Spiele
von Calcularis basieren auf aktuellen Erkenntnissen aus der Neuropsygieol Ein
Bayes-Netz, das verschiedene mathematischi@gkeiten und deren Al@imgigkeiten
reprasentiert, sowie ein nicht-linearer Kontrollalgorithmersndglichen eine Anpassung
des Trainings an die mathematsichexhigkeiten der einzelnen Kinder.

In einem zweiten Schritt evaluieren wir die EffektétitvonCalcularis in zwei Benutzer-
studien. Basierend auf den Logfiles dieser Benutzerstudieheran und verbessern wir
das Programm in einem dritten Schritt.

Wir untersuchen die Eigenschaften des adaptiven Modetisdes Kontrollalgorithmus
und analysieren die Quéadit des Modells mittels einer logistischen Regression. Ausse
dem fuhren wir eine umfassende Analyse von verschiedenen Tieahur Modellva-
lidierung durch. Wir verbessern die Genauigkeit des adaptiModells durch einen
Algorithmus zum effizienten Erlernen der Parameter einee8&etzes. Mittels einer
Clustering- und Klasssifikationsmethode sagen wir die nmagtiischen Eigenschaften der
Kinder voraus. Ausserdem untersuchen wir diédlichkeit, ein Motivationsmodell zu
Calcularis hinzuzufigen.

Schlussendlich entwickeln wir ein datenbasiertes Diagiomd fur Dyskalkulie. Die
Erweiterung vonCalcularis durch dieses Tool schliesst den datenbasierten Entwick-
lungszyklus.
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CHAPTEHR

Introduction

Arithmetic skills are essential in modern society. Howewaany children expe-
rience difficulties in learning mathematics, ranging frondnto severe numeracy
problems. The prevalence of developmental dyscalculistisyated to about-3 6%
in German and English speaking countries (Lewis et al., 1$halev and von
Aster, 2008). Learning disabilities often lead to anxietyl aversion against the
subject (Rubinsten and Tannock, 2010) and to underperfarenarschool and later
in profession (Bynner, 1997).

Despite the relatively high prevalence of developmentsatdiculia, only a few sci-
entifically evaluated interventions exist, and only a fi@actof these programs is
computer-based. And yet, the computer presents an ineixpendgension to conven-
tional one-to-one therapy. Computers are an attractiveumeébr children and can
provide intensive training in a stimulating environmentelplayful environment in
combination with the fact that the computer is an emotignadiutral medium may
also lead to increased motivation and enhance positivecealfepts. Most impor-
tantly, educational software can be designed to adapt tadividual child’s abili-
ties, behavior or affective states. Existing computereldasterventions for number
processing (Wilson et al., 2006a; Fuchs et al., 2006; Lehkaal., 2011; Kucian
et al., 2011; Butterworth et al., 2011) are based on neuraiteg models of num-
ber processing and numerical development. This theotdiasis is an important
criterion for a sound targeted intervention. However, thisteng computer-based
interventions provide only limited user adaptability.

The field of intelligent tutoring systems provides a largeyof research in terms
of adaptivity and user modeling. A fundamental propertyhafse systems is their
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‘intelligence’,i.e., the adaptation to the student. Popular techniques foetmagstu-
dent knowledge include Bayesian Knowledge Tracing (Corlmettanderson, 1994)
or Performance Factors Analysis (Pavlik et al., 2009). lrmrhore, Markov Deci-
sion Processes are used for teaching planning (BrunskilRarsdell, 2011; Rafferty
etal., 2011) or diagnosing misconceptions (Rafferty eféll2). Bayesian network
models are employed to model and predict students’ learsiyigs (Kim et al.,
2012), engagement states (Baschera et al., 2011) and goalat{@b al., 2002).
Intelligent tutoring systems have been successfully eygalan different learning
domains, amongst others also for learning mathematicsdiiger et al., 1997; Ar-
royo et al., 2004; Rau et al., 2009). Existing systems in threalo of mathematics
are, however, designed for normal learning children andg@n specific aspects of
the domain.

The work presented in this thesis is concerned with the dewveént and the ef-
ficacy of computer-assisted therapy approaches for develofal dyscalculia. It
spans several areas of interest, including elements ohpygy, student modeling
and data mining. We address the limitations of previous viagrkombining knowl-
edge about developmental dyscalculia and mathematicarstahding with state of
the art modeling and data mining techniques. We first devislejtherapy software
Calcularis for developmental dyscalculia, drawing from the fields ofelepmen-
tal and neuro-psychology as well as intelligent tutoringtegns. In a second step,
the software is evaluated in two large user studies to prisvefiectiveness. The
input data collected in these user studies is then used falemalidation. We
investigate how existing models can be validated and ingmtdvased on log file
data. The data-driven investigations lead to the developrred extensive analysis
of techniques for model validation. Based on the collectedfie data, we also
address the question of how a computer-based system caifyidegpresent and
predict the knowledge and affective states of the user. \Wpgse a mathematical
knowledge representation along with efficient learning erierence methods that
outperform existing student models in prediction of knayge. By employing a
clustering and classification algorithm, we are able to istedathematical learning
characteristics of the children. Furthermore, we exploesaddition of a framework
for engagement modeling talcularis. Finally, we complet€alcularis with

a data-driven diagnosis tool, which is able to classifydreih as being at risk for
developmental dyscalculia based only on their input data.

In the following, we will give an overview of the performedsearch activities dur-
ing this thesis. We then present the principal contribiiohthe work, before out-
lining the structure of the thesis. Finally, we list the poations that have been
accepted in the context of this thesis.



1.1 Overview

1.1 Overview

In this thesis, we describe one complete loop in the dataedrilevelopment of an

intelligent tutoring system: From the development of a Bgsttem over the evalua-
tion in user studies to the data-driven validation and impnoeent of the system. A
conceptual overview of the performed research activittesrasulting publications

can be found in Fig. 1.1.

Calcularis. Computer-based therapy systems present inexpensivesaxismo con-
ventional one-to-one therapy by providing an adaptive aad-free learning envi-
ronment. The effectiveness of computer-based therapyamghas been proven by
several user studies targeting children with dyslexia §sr@nd \bgeli, 2007; Kast
et al., 2007) or ADHD (Klingberg et al., 2005).

In this thesis, we develop the computer-based therapymy@i@cularis for el-
ementary school children with developmental dyscalcutiaifficulties in learn-
ing mathematics. The training program combines knowledgriadevelopmen-
tal dyscalculia and mathematical understanding with sihtbe art modeling tech-
niques. We transform current neuro-cognitive findings thie design of different
instructional games. Furthermore, we use a special designumerical stimuli,
encoding the properties of numbers using visual cues sudwolass, forms and
topologies. This special design aims at enhancing therdiftgproperties of number
and hence facilitating number understanding. The traraff@rformation through
different channels also stimulates perception and fat#é the retrieval of mem-
ory (Lehmann and Murray, 2005; Shams and Seitz, 2008). Wdogngoncepts
from student modeling and machine learning, enabling tis¢esy to adapt to the
knowledge level of the user. A bug library, allowing recdagm and remediation of
specific errors of the children, completes the program.

We model the mathematical knowledge of the user with a dyodaiesian net-
work (Murphy, 2002). This network is a directed acyclic grappresenting differ-
ent mathematical skills as well as their hierarchy and ietationships. Compared
to previous approaches employing Hidden Markov Models (€br@dnd Anderson,
1994; Reye, 2004), our knowledge representation has threeadeantages. First,
we are able to consider all skills jointly within one modelec&nd, the ability to

model the hierarchy and the dependencies between diffekélst of a learning do-
main increases the representational power of the model. thindl the non-linear

structure conveys a more complex and adaptive control ithgoithan a simple lin-
ear hierarchy.

Based on the non-linear knowledge representation, we inteé control algorithm
that allows movement into different directions. Besidesaaaing to more difficult
skills, we allow the controller to select easier skills fraihing or pick remediation
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Figure 1.1: Thesis Overview: This work describes one complete loop in the datarddeeel-
opment of a computer-based training system. We first devE€lpularis (red), a
computer-based training program for learning mathematics. In a secqndrstesys-
tem is evaluated in twaser studies(green), proving its effectiveness. The collected
input data is used for modedlidation (blue). We perform a data-driven assessment of
student model and controller properties and analyze the quality of ourlwiadegis-
tic regression. We also improve the system regargimgliction (blue). We propose
a constrained structured prediction method for increasing the accuricy model.
By applying a clustering and classification approach, we are able to petddents’
mathematical characteristics. In addition, we explore the possibility of agldreme-
work for modeling affective states. In a final step, we close the loop adalte-driven
development: Oubyscalculia screener(red) is able to classify children as having
developmental dyscalculia based only on their input data.

skills for specific errors. By doing so, the path through thi# sktwork is different
for each child and targets the needs of the individual userthErmore, forgetting
and knowledge gaps are captured by the possibility to par&kill retrocession.

User studies When developing an intervention program, assessment aciual
clinical effectiveness by means of evaluation studiesssiegal. We evaluate the ef-
fectiveness ofalcularis in two user studies in Germany and Switzerland with ele-
mentary school children. The results demonstrate thadm@nilimprove significantly

in addition and subtraction regarding accuracy and saldimes. Furthermore, they
also exhibit a refined spatial number representation ataning. Our results con-
firm the findings of previous studies (Siegler and Booth, 2@xhth and Siegler,



1.1 Overview

2006, 2008; Halberda et al., 2008), which demonstratedfgignt correlations be-
tween arithmetical learning and the quality of numericagnmtude representation.

Validation. An important part when developing an intelligent tutorisygstem is
the data-driven validation of the student model and therocbatgorithm. We vali-
date our skill model by applying the often used approach dite Factors Mod-
els (Cen et al., 2007, 2008). This type of logistic regressiamael might, however,
suffer from underestimation of student learning when aaplo a mastery-learning
data set. We therefore extensively investigate, how studaming can be measured
in a mastery-based system. We suggest a variety of logegiession models and
analyze their properties. Furthermore, we also comparigiiren accuracy of the
different modeling techniques on unseen data.

In a second step, we perform a data-driven assessment oketleoded student
model and control algorithm according to different quadititeria. We demonstrate
that students show an increased mathematical performasecéhe training period
within the system using logistic regression. Furthermuore,assess the controller
design and show that the possibility of going back to eagi#is speeds up learning.
We do so by using a logistic regression approach with bagiptng. Finally, we
also demonstrate that the system adjusts rapidly to the lkedge state of the user.

Prediction. Prediction is a fundamental task of an intelligent tutgraystem. The
quality of the student model can be measured by its predicazuracyj.e., how
good the model is at prediction on unseen data. Most prewausk has focused
on what we will callshort-term predictionGiven the outcomes of tasks.1,n—1,
what will be the outcome of task? In this thesis, we investigashort-term pre-
diction as well aslong-term prediction Long-term predictions for example the
prediction of the overall training outcome, knowledge gapthe student or perfor-
mance in external training assessments. Another aspecedicgon that we will
explore is the possibility of a general framework for préidig engagement states of
the user.

Prediction of task outcomes of the student directly inflesntask selection and
therefore training efficiency. One of the most used appresith model student
knowledge is Bayesian Knowledge Tracing (Corbett and Anaers®94), a special
case of a Hidden Markov Model (Reye, 2004). Prediction acyucd this method
has been improved using clustering approaches (Pardos 20aPb) or individu-
alization techniques, such as learning student- and sdkific parameters (Pardos
and Heffernan, 2010a; Wang and Heffernan, 2012; Yudelsah,e2013) or mod-
eling the parameters per school class (Wang and Beck, 20h3thid thesis, we
will exploit the potential of dynamic Bayesian networks (Mby, 2002). As these
models usually do not exhibit a tree structure, they impsdlenges for inference
and learning. We introduce a method caltamhstrained structured prediction with
latent variabledor efficient parameter learning, yielding accurate andriptetable
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models. We apply a constrained optimization and demoresthait this regulariza-
tion through constraints improves prediction accuracy gimarantees model inter-
pretability. Furthermore, we also show that the increaspdasentational power of
our models yields significant improvements in predictioousacy over Bayesian
Knowledge Tracing (Corbett and Anderson, 1994).

Existing models are mostly focused on predicting studentedge,i.e., task out-

comes. In this thesis, we propose a method which prediatsitepcharacteristics of
students such as knowledge gaps and overall training ahient. We will use an

approach consisting of an offline clustering, followed byoafine classification of

children. At the end of the training, children are clustered subgroups of similar
mathematical performance based on their training charatits. The resulting sub-
groups can be interpreted according to theory and conceptg ¢he development
of mathematical understanding. During training, childaee classified to a specific
subgroup based on the training information available so Rrediction of future

performance and knowledge gaps is then performed usingaugpgrformation.

Affective modeling is receiving increasing attention doets recognized relevance
in learning. In general, affective models can be inferr@anfiseveral sources, such
as sensor data (Cooper et al., 2010; Heraz and Frasson, 2@d@sar input data
(Baker et al., 2004; Johns and Woolf, 2006; Arroyo and Wodf)2). In previous
work, Baschera et al. (2011) have developed an engagemeainitysr model in
spelling learning that can adapt the training to individstaldents based on data-
driven identification of engagement states from studentitinuilding upon this
model, we explore whether we can transfer the existing freonie to a more gen-
eral engagement dynamics model for multiple learning damain particular, we
focus on developmental dyslexia and dyscalculia. We argatethe assumption of
similar engagement patterns in the two cases is justifiedthnd, that a similar en-
gagement model would be beneficial. This work is a purely gzl exploration.
We provide a detailed assessment of similarities and dilssitres of the two cases
of developmental dyslexia and dyscalculia in terms of lggymlomain and student
model and analyze the re-usability of the engagement modspklling learning.

Dyscalculia screener The diagnosis of developmental dyscalculia (or a learning
disability in general) involves a range of standardizetstassessing children’s do-
main specific as well as domain general abilities. A compbésed diagnosis tool
would allow for an inexpensive, nationwide screening. lis thesis, we develop

a diagnosis tool, classifying children as being at risk fevalopmental dyscalcu-
lia based on their input data. We extract task dependenh (@sithe answer time)
as well as game dependent features from the log files callectthe user studies.
Those features will be pre-processed by applying kernekfoamations to make
them comparable. A pairwise clustering allows us to growgiuees according to
their similarities and to therefore reduce the number adctel features for classifi-
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cation. Classification is then performed using a Supportofddachine (Caruana
and Niculescu-Mizil, 2006; Statnikov et al., 2008) or a mabliistic classifier al-
lowing for an adaptive test time and providing informatidsoat the certainty of
the predicted label. The development of the diagnosis todlits integration into
Calcularis constitute the final step of this thesis and close the loomtd-driven

development.

1.2 Principal Contributions

In the following, we summarize the principle contributiafehe work presented in
this thesis:

e Computer-based therapy system for dyscalclli® introduceCalcularis, a new
computer-based training program for children with diffteed in learning mathe-
matics. The program combines theory and concepts of nuateievelopment with
state of the art modeling techniques. Its structure and gaare based on neuro-
cognitive models of number processing and numerical deveémt. Adaptivity is
ensured through a Bayesian network model representing thieematical skills of
the user and a non-linear control algorithm. Furthermdre siystem features a bug
library allowing adaptation to specific problems of the u3ére effectiveness of the
training program has been demonstrated in two user studies.

e Dynamic Bayesian network modé&Ve model the mathematical knowledge of the
user with a dynamic Bayesian network (Murphy, 2002) reprixsgriO0 different
mathematical skills and their relationships. Compared éwipus work employing
Bayesian Knowledge Tracing (Corbett and Anderson, 1994; Koged et al., 1997),
we are able to model the different skills of a learning donjaintly within a single
model, which increases the representational power of théemoWe present an
approach calledonstrained structured prediction with latent variabfes efficient
parameter learning in general graphical models and shavethaegularization via
parameter constraints improves prediction accuracy oeamdata. We furthermore
perform experiments on large-scale data sets from diffdeamning domains such
as mathematics, spelling learning and physics, demoimggrtitat the modeling of
skill hierarchies increases the predictive performance mbdel.

e Non-linear control algorithm We propose a non-linear control algorithm for task
selection. In contrast to other systems (Conati et al., 2B02dinger et al., 1997;
Gross and ¥dgeli, 2007), we allow forward (advancing to more difficukilis)
and backward (going back to easier skills) movements albagtiges of the skill
model’s graph structure as well as ‘jumps’ to remediatioilisstor specific errors.
This control design allows for an adaptation of the traingggjuence to the indi-
vidual child. Furthermore, forgetting and knowledge gapsimplicitly captured.
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We provide a data-driven validation of the control desigd damonstrate that this
non-linear design is beneficial for learning.

¢ Clustering and classificatior\We introduce a clustering and classification approach

for predicting external assessment results as well asitepoharacteristics such
as knowledge gaps and overall training achievement of thdreh. In a first step,
we cluster children according to individual learning taggies. Compared to pre-
vious approaches, we use the subgroup information not orimprove prediction
accuracy, but also to provide a valuable tool for expertsadyze individual learn-
ing patterns. The second step consists of a supervisedearissification during
training, enabling prediction of future performance. Wewhhat prediction accu-
racy of learning characteristics can be significantly impbby taking subgroup
information into account.

e Learning curve analysesmproving cognitive models of learners based on log file
data is a common approach. Prior work (Murray et al., 2018phdo explore the
potential parameter estimate biases that may result fraanfoam tutoring systems
that employ a mastery-learning mechanism whereby poouelests get assigned
tasks that better students do not. We extend this work byoexyl a wider set of
modeling techniques and by using a data set with additidnsgivations of longer-
term retention that provide a check on whether judged mastenaintained. We
investigate variations of logistic regression modelsudaotg the Additive Factors
Model (Cen et al., 2007, 2008) and others explicitly desigioeatljust for mastery-
based data. We extensively analyze properties and predliaticuracy of the differ-
ent models and discuss implications for use and interpoetat

e Dyscalculia screenerAbout 3— 6% of the children in German and English speak-
ing countries suffer from developmental dyscalculia (Leet al., 1994; Shalev and
von Aster, 2008). Diagnosis is conducted in a one-to-oningetvith an expert,
using standardized tests. We introduce a computer-baseess for developmen-
tal dyscalculia, indicating whether children are at risk fiois learning disability.
Classification is based on features extracted from log fila dé€alcularis. By
applying a probabilistic classifier, we are able to quarttiy uncertainty of the la-
bel and to adapt the test duration. Initial cross validatiouser study data yields a
classification accuracy of about 90% and an average tesofirié minutes.

1.3 Thesis outline

In this thesis, we first give an overview of related work in fiedds of number
processing and numerical development as well as studerglingdChapter 2). We
then introduce the three main parts of this work (see overne~ig. 1.1): Training

EnvironmentData Collection & EvaluatiorandAnalysis & Modeling We conclude
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by reviewing the main contributions of the thesis and sutigggotential future
work (Chapter 11). In the following, the structure of the #hraain parts of the
thesis is described.

In the first part, we introduce the dyscalculia therapy safé€alcularis in detall
(Chapter 3). We describe the general concepts, the diffgianes as well as the
student model and control algorithm of the system.

In the second part, we give the details of the two user studieducted in Germany
and Switzerland (Chapter 4). We describe the data collectdleise studies. Fur-
thermore, we present the design of the user study condutt®diizerland in 2012
along with first results and case studies.

The third part details the analyses, validation and imprmts conducted based on
the available user data. In Chapter 5, we validate the skilehof Calcularis
using learning curves. Furthermore, we analyze, assessangare a variety of
techniques for model validation. Chapter 6 describes the-diaten assessment of
the quality of the student model and the control mechanismedisas the analyses
of specific problems of the students. Chapters 7-9 deal widiption: We go
from short-term prediction of student answers (Chapter 1png-term prediction
of training achievement and knowledge gaps (Chapter 8) avdret prediction of
students’ engagement states (Chapter 9).

Chapter 10 closes the loop of data-driven development. Bas#tka training data,
we classify children into having developmental dyscakoli not and integrate the
developed dyscalculia screener into the training envirmm

1.4 Publications

In the context of this thesis, the following peer-reviewadlations have been
accepted.

e T. KASER, K. KOEDINGER, and M. GROSS (2014). Different parametersnsa
prediction: An analysis of learning curveBroceedings of EDM (London, UK, 4-7
July, 2014) pp. 52-59.

This paper provides an extensive analysis of modeling igales for fitting learning
curves. It assesses the properties of different models dsasi¢heir prediction
accuracy on unseen data.

e T. KASER, S. KLINGLER, A. G. SCHWING, and M. GROSS (2014). Beyond
Knowledge Tracing: Modeling Skill Topologies with Bayesidatworks.Proceed-
ings of ITS (Honolulu, Hawaii, 5-9 June, 2014p. 188-198[Best Paper Award]
This paper aims at increasing the representational powbeattudent model by em-
ploying dynamic Bayesian networks that are able to represdeihtopologies. The
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performance of this approach is evaluated on five largeesttatia sets of different
learning domains such as mathematics, spelling learnidghwpsics.

e T.KASER, A. G. SCHWING, T. HAZAN, and M. GROSS (2014). Computational
Education using Latent Structured Predictiétoceedings of AISTATS (Reykjavik,
Iceland, 22-25 April, 2014)pp. 540-548.

This paper employs a constrained latent structured prediepproach for parame-
ter learning and demonstrates the benefits of regularizéftimugh constraints.

e T.KASER, A. G. BUSETTO, B. SOLENTHALER, G.-M. BASCHERA, J. KOHN,
K. KUCIAN, M. VON ASTER, and M. GROSS (2013). Modelling and Qptzing
Mathematics Learning in ChildrefhJAIED: "Best of ITS 2012’ 23(1-4): 115-135.
This paper is an extended version of the ITS 2012 paper. itiges a detailed
description of the student model and control algorithmafcularis as well as an
extensive assessment of model and control properties.

e T. KASER, A. G. BUSETTO, B. SOLENTHALER, J. KOHN, M. VON ASTER,
and M. GROSS (2013). Cluster-Based Prediction of Mathemdtearning Pat-
terns.Proceedings of AIED (Memphis, USA, 9-13 July, 20p®) 389-399.

This paper uses a two-step approach consisting of clugtara classification to
predict learning characteristics of students.

e T. KASER, G.-M. BASCHERA, J. KOHN, K. KUCIAN, V. RICHTMANN, U.
GROND, M. GROSS, and M. VON ASTER (2013). Design and evatumatf
the computer-based training program Calcularis for enimgnaumerical cognition.
Frontiers in Developmental Psycholagy: 489.

This paper introduces the theory and concepts bebidularis as well as the
different games and describes the design and results ofrastusly conducted in
Switzerland along with two case studies.

e T. KASER, G.-M. BASCHERA, A. G. BUSETTO, S. KLINGLER, B. SOLEN-
THALER, J. M. BUHMANN, and M. GROSS (2012). Towards a Framekvtor
Modelling Engagement Dynamics in Multiple Learning DongitJAIED: "Best
of AIED 2011 - Part 2’ 22(2): 42-70.

This paper is an extended version of the AIED 2011 paper bytgaacet al. (2011).
It explores to possibility of a joint framework for engagemenodeling in develop-
mental dyslexia and dyscalculia.

e T. KASER, A. G. BUSETTO, G.-M. BASCHERA, J. KOHN, K. KUCIAN, M.
VON ASTER, and M. GROSS (2012). Modelling and Optimizing thedess of
Learning Mathematicroceedings of ITS (Chania, Greece, 14-18 June, 2(42)
389-398.

This paper describes the student model and control algowiitalcularis along
with first evaluations of model properties and training etifeeness.

10
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During the course of this thesis, the following peer-re\aevpapers have been ac-
cepted which are not directly related to the presented work.

J. KOHN, V. RICHTMANN, L. RAUSCHER, K. KUCIAN, T. KASER, U.
GROND, G. ESSER, and M. VON ASTER (2013). Das Mathematikanigstiiew
(MAI): Erste psychometrische i@ekriterien.Lernen und Lerngtrungen 2(3): 177-
189.

This paper describes the design and first results of an ieterfior assessing math
fear, developed in the context of the user studies @athcularis.

K. KUCIAN, J. KOHN, V. RICHTMANN, U. GROND, T. KASER, M. M.
HANNULA-SORMUNEN, G. ESSER, and M. VON ASTER (2012). Kinder
mit Dyskalkulie fokussieren spontan weniger auf Anzaldiggn. Lernen und
Lernsbrungen 1(4): 241-253.

This paper evaluates the SFON effect on data collected freen studies with
Calcularis.

Additional publications and book chapters during the tireaqal of this thesis:

T. KASER and M. VON ASTER (2013). Computerbasierte Lernprogramme
fur Kinder mit Rechenschache. In von Aster, M., & Lorenz, J. (Eds.),
Rechengirungen bei Kindern. Neurowissenschaft, Psychologieldgogik, 2. Auf-
lage Gottingen: Verlag Vandenhoek & Rupprecht, pp. 259-276.

This book chapter provides an overview of computer-basaditrg programs for
children with developmental dyscalculia and introducebcularis in detail.

T. KASER, K. KUCIAN, M. RINGWALD, G.-M. BASCHERA, M. VON ASTER,
and M. GROSS (2011). Therapy Software for Enhancing Nurae@ognition. In
J.Ozyurt, A. Anscliitz, S. Bernholt & J. Lenk (Eds.)nterdisciplinary perspectives
on cognition, education and the brain - Hanse-Stud\és. 7, pp. 207-216). Old-
enburg: BIS-Verlag.

This extended abstract gives an introduction into the agveént ofCalcularis.

11
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CHAPTEHR

Related Work

This chapter describes the related work in the differenasua research influenc-
ing this thesis. First, it covers work in the field of mathelmatearning, including
models of number processing and numerical development thasveharacteristics
of developmental dyscalculia. Second, the potential offuater-based training pro-
grams for mathematics learning is analyzed and existingezdional and computer-
based interventions for developmental dyscalculia areudsed. Third, the area of
intelligent tutoring systems is introduced. The differenmponents of an intelli-
gent tutoring system are described with a focus on studedeiimg. The student
modeling part gives an overview of different knowledge esentations and model-
ing techniques. Furthermore, an introduction to affecth@deling,i.e., modeling
the student’s engagement states is given. The final parto€hiapter discusses the
student modeling techniques relevant for this thesis initlet

2.1 Development of mathematical understanding

The computer-based training prograflcularis developed in this thesis is de-
signed for children with developmental dyscalculia or diffties in learning math-
ematics. It is therefore important to understand how nurpbacessing and numer-
ical understanding normally develop and what the charaties of developmental
dyscalculia are. In the following, we describe the cogeitivodels and concepts that
are relevant for our work and give a short introduction toallepmental dyscalculia.

13
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2.1.1 Neuro-cognitive models of number processing and numer ical
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development

Current neuropsychological models postulate distinctasgmtational modules, lo-
cated in different brain areas, which are relevant for adagnitive number pro-
cessing and calculation. One of the first models, the ‘trqude model’ (Dehaene
and Cohen, 1995) comprises a verbal module supporting cauatid number fact
retrieval, a visual-Arabic module required for solving ten arithmetic and an
analogue magnitude module (mental number line) for semantinber processing.
Lately, an fMRI meta-analysis enabled further insights supporting and domain-
general functions involved in solving arithmetic tasks andgested a modification
and extension of the triple-code model (Arsalidou and Tiay011). Results from
functional brain imaging in adults and children indicatattthe representation of the
mental number line emerges during the first years of schabldmparietal lobe due
to practice and experiences (Rivera et al., 2005; Ansari amth 2006; Kucian
et al., 2008). The initial assumption of the analogue magleitrepresentation being
notation-independent was challenged in 2007 (Cohen Kadaah 2007a). Nieder
(2012) recently showed that there are indeed notationrutkpe as well as notation-
independent neurons responding to numerosity.

While the triple-code model denotes the end state of nunietmzelopment, the

four-step developmental model (von Aster and Shalev, 2@6%gribes the path to
this end state. It divides the semantic representationldgna magnitude repre-
sentation) into an implicit core representation of magietand an explicit mental

number line, the latter considered as being a ‘representdtredescription’ of the

former (Karmiloff-Smith, 1992). The (inherited) core-8y% representation of car-
dinal magnitude provides the basic meaning of numbers (EyeBased on this

representation, children learn to associate a perceivedbauwith spoken and later
written and Arabic symbols. The process of linguistic (S2¢@nd Arabic (step 3)

symbolization is in turn a precondition for the developmeaird mental number line

(step 4). The different representations develop depenalintpe growing capacity

of domain-general functions like working memory.

Lately, other authors have suggested different models ahemical develop-
ment (Carey, 2001, 2004; Kucian and Kaufmann, 2009; Kaufmetnal., 2011;
Noél and Rousselle, 2011; Kaufmann and von Aster, 2012; VogeRaisari, 2012).
Some authors argue that developmental dyscalculia is ynamised by an early,
probably genetic, deficit of the basic non-symbolic magietsystem (Butterworth
et al., 2011), while others suggest that problems may arse tifferent develop-
mental reasons, including maladaptive learning expeeie@nd math anxiety. To
summarize, there is still an open debate about develophteajactories and rea-
sons for failure in learning mathematics. However, theegrseto be agreement that
based on early non-symbolic abilities to access and comparerical magnitudes,
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different components of semantic and symbolic representsare developing dur-
ing childhood and school years. These components devekgdban the increas-
ing capacity of domain-general functions and enable a ¢bikliccessively acquire
arithmetic skills.

2.1.2 Developmental dyscalculia

2.2

Developmental dyscalculia (DD) is a specific learning diggtaffecting the acqui-

sition of arithmetic skills (von Aster and Shalev, 2007). n@&c, neurobiological,

and epidemiological evidence indicates that DD is a braisell disorder, although
poor teaching and environmental deprivation have also besussed in its etiol-
ogy (Shalev, 2004).

DD is thought to have its neuropsychological basis due tmddd ‘number sense’,
which implies a deficit in very basic numerical skills suchrasnber compari-
son (Landerl et al., 2004; Rubinsten and Henik, 2005; Buttetw@005a,b). Be-
sides exhibiting fundamental deficits in number proces$tghen Kadosh et al.,
2007b; Mussolin et al., 2010; Kucian et al., 2006; Price gt24107), children with

DD also tend to suffer from difficulties in acquiring simplatametic procedures
and exhibit a deficit in fact retrieval (Ostad, 1997, 199%e Pprevalence of DD is
estimated to about 3-6% (Shalev and von Aster, 2008; Bad@88;1Lewis et al.,

1994) in English and German speaking countries.

Children with DD often show comorbidities with dyslexia (véster and Shalev,
2007; Ostad, 1998; Lewis et al., 1994; Badian, 1999; Barbatesi., 2005; Dirks

et al., 2008; Ackerman and Dykman, 1995) and ADHD (Shaywitale 1994,

Fletcher, 2005; Barbaresi et al., 2005). In addition, |leagrdisabilities frequently
lead to anxiety and aversion against the subject (Rubinstéannock, 2010) and
to underperformance in school and later in profession (Byrirg97).

Existing computer-based interventions

Using computer-based interventions for DD seems promidiigen teaching math-
ematics, the highly complex processes of domain-specifinitive development
need to be taken into account. The development of each shildherical abilities
often follows a different speed and is intertwined with tlegelopment of other cog-
nitive domains and domain-general abilities (von Aster Shdlev, 2007; Kucian
and Kaufmann, 2009; Kaufmann et al., 2011), leading to wifie mathematical
performance profiles (von Aster, 2000; Geary, 2004; Wilsod Behaene, 2007).
Computer-based trainings can be designed to adapt to aridadivchild’s abili-
ties and provide intensive training in a stimulating enmiment (Kullik, 2004). The
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training can for example adapt to cognitive (Naglieri ankdnrkon, 2000) or to perfor-

mance profiles of the children (von Aster, 2000; Geary, 200i#son and Dehaene,

2007). This individualization in combination with the fabiat the computer is an

emotionally neutral medium may also lead to increased rattii and enhance pos-
itive self-concepts as every learner gains feelings of es&¢Ashcraft and Faust,
1994; Spitzer, 2009).

In the past years, different meta-analyses have assessezfféicts of computer-
based instruction for mathematics learning, revealingtpesresults. Kulik and
colleagues (Kulik and Kulik, 1991; Kulik, 1994) computed average effect size
of 0.47 in elementary school. Other studies reported effieets ranging from 0.13
to 0.8 (Khalili and Shashaani, 1994; Fletcher-Flinn andvatta 1995). Li and Ma
(2010) found larger effects for elementary school than fighér education and
showed that special needs students especially benefit foomputer-based instruc-
tion.

Interventions specifically targeting children with DD arestly conventional. Tech-
niques include training programs for preschool childrensit of developing math-
ematical difficulties (Griffin et al., 1994; Van De Rijt and Vanit, 1998; Arnold
et al., 2002; Wright, 2003) as well as remedial programs femeintary school chil-
dren (Van Luit and Naglieri, 1999; Dowker, 2001, 2003; Fuehal., 2006; Wilson
et al., 2006a; Butterworth et al., 2011; Lenhard et al., 2Klician et al., 2011).
Programs designed for preschool children mostly focus ddibg basic-numerical
skills, whereas elementary school trainings target a moeahge of skills. Some
interventions address basic numerical skills and the ksitabent of the mental num-
ber line (Wilson et al., 2006a), while others train arithimé&ict knowledge (Van Luit
and Naglieri, 1999; Fuchs et al., 2006) or are aligned tolscloarricula (Lenhard
et al., 2011). Other effective approaches combine theitigiof basic-numerical
capacities with the training of arithmetical knowledge {@er, 2001, 2003; Kucian
etal., 2011).

There exist a few computer-based interventions in numbecgssing. The
computer-based interventitiimber Race for children with DD trains number com-
parisons and enhances the links between number and spaser{Wi al., 2006a).
Evaluation of the training revealed significant improvetsen basic numerical cog-
nition, but the effects did not generalize to counting othemietic (Wilson et al.,
2006b; Rasanen et al., 2009; Wilson et al., 200Rescue Calcularis is another
computer-based intervention for children with DD. It aimasrhprove the construc-
tion and access to the mental number line. The evaluatioheoptogram showed
that children with and without DD could benefit from the tiam (Kucian et al.,
2011). Elfe and Mathis is a computer-based training aligned to the German
scholar curriculum (Lenhard etal., 2011). Its evaluatiemdnstrated significant ef-
fects. Fuchs et al. (2006) presented a computer-basedgondgracquire fact knowl-
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edge, reporting significant effects in addition. Buttenhaet al. (2011) suggest the
use of adaptive interactive games for remediation. Theqeeg games train basic-
numerical skills (humber comparisons and counting) as asthe spatial number
representation and simple arithmetic facts.

The introduced previous studies demonstrate the efficacpwiputer-based inter-
vention in number processing. The presented programs,Jeswaostly focus on
specific skills and provide only limited adaptability.

On the other hand, existing adaptive computer-based tigupiograms (called in-
telligent tutoring systems) for learning mathematics aosthy designed for normal
performing children and focus on specific aspects of the donmEhe Cognitive

Tutor (Koedinger et al., 1997) is an intelligent tutoring systemteaching algebra
to high-school students. Other work includes a programretion learning (Rau
et al., 2009) or a web-based math test for high-school stadénroyo et al., 2004).

2.3 Intelligent Tutoring Systems (ITS)

Computer-assisted learning is gaining importance in ohildreducation. Intelli-
gent tutoring systems (ITS) are successfully employed fierdint fields of educa-
tion, such as physics (Conati et al., 2002), algebra (Koedtiagal., 1997) and read-
ing (Mostow et al., 1993). Computer-based therapy systenisdoning disabilities
have gained particular attention. Such systems presexpensive extensions to
conventional one-to-one therapy by providing an adaptidefaar-free learning en-
vironment. The effectiveness of computer-based therapgrams has been proven
by several user studies targeting children with dyslexieo§s and bgeli, 2007;
Kast et al., 2007), DD (Wilson et al., 2006a; Lenhard et @12 Kucian et al.,
2011), and ADHD (Klingberg et al., 2005).

In this section, we first describe the different componehtsgeneric ITS. We then
detail the most important component for this work, Btedent Modeglby introduc-
ing prior work on student modeling and giving an overview loé tmost popular
techniques. Finally, we introduce a newer field of ITS, whilgals with modeling
not only the knowledge state of the student, but also his€or dffective states.

2.3.1 Principal components of an ITS

An overview of ITS was presented by Shute and Psotka (1984dducing the main
components of a generic ITS: Knowledge of the dom&orfain Exper), know-
ledge of the learnerStudent Modégland knowledge of teaching strategidsitor).
These components and their relations are illustrated inZig(Shute and Psotka,
1994).
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Generate
problem

Present
problem

v

Student
solution

Bug

library Compare

solutions

Present
feedback

Update
student model

Figure 2.1: Program flow and principal components (denoted by ellipses) of aigdi& (Shute
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and Psotka, 1994): The system incorporates knowledge about thend@oanain Ex-
pert), knowledge of the learneSfudent Modéland knowledge about teaching strate-
gies (Tutor). The (optional)Bug Library contains a list of typical misconceptions for
the domain. The rectangles describe program decisions or actions.

In an ITS, a student learns mainly from solving problems #ratadjusted to the
student’s knowledge state. To select appropriate taskssybtem needs to assess
the current knowledge state of a student. Therefore, thmlikinowledge of the
student needs to be modeled by the system and updated basee ioteractions
of the student (for example the solved problems) with thimitng program. These
tasks are handled by ti&tudent Model Furthermore, the program also considers,
what the student needs to know. This knowledge about the ilosgiven by the
Domain Expert Finally, the system needs to decide how the selected prolde
presented. Information about the teaching strategy isaooed in theTutor.

Based on all these components, the training program selguoisbéem (task) and
presents it to the student. The solution of the student anebtpert solution are then
compared and the system gives a feedback to the student. aimeemof feedback is
defined in theTutor. Some systems also compare the student solution to thentonte
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of aBug Library. TheBug Library contains a list of typical errors (or misconcep-
tions) of the learning domain. Finally, ttf&udent Modeis updated based on the
solved problem, and the next problem is generated.

2.3.2 Student modeling

The Student Modeis a central component of an ITS. To improve the training out-
come, knowledge of performance profile, knowledge gapseanthing behaviors of
the student as well as an accurate performance prediceasaential. This is partic-
ularly important for students suffering from learning disies as the heterogeneity
of these children requires a high grade of individualizatio

A student model can be characterized by its form of reprasgnhe knowledge

of the learning domaine.g, mathematics. The most popular representations are
overlay models, perturbation models, and cognitive mofieéss, 1989). These
three categories are illustrated in Fig. 2.2 (Baschera, 2011

One of the first knowledge representations employed in stug@deling was the
overlay model (Barr et al., 1976). The overlay concept assuthat student knowl-
edge is a subset of the expert knowledge. The goal of thangpis to extend the
student knowledge until it conforms to the expert knowled®e overlay approach
assumes that all differences in knowledge between the istachel the expert stem
from a lack of student knowledge. This technique is theeefoot able to model
student misconceptions.

A technique that tackles the disadvantages of the overlpyoaph is the perturba-
tion model. In contrast to the overlay concept that modelg ocorrect knowledge,

the perturbation model takes faulty knowledge into accoum early and popu-
lar example for a perturbation model IEBUGGY (Burton, 1982), which models
students’ misconceptions or bugs in their basic mathemdaskills and thus pro-
vides a mechanism for explaining why a student is making dakés More re-

cently, Baschera and Gross (2010b) presented a Poissot-bagarbation model

for representing word-spelling errors.

The third main category for knowledge representation iscthgnitive model. This

model represents the student knowledge as a subset of théieegnodel of the

learning domain. It does not directly model domain knowkedgut independent
production rules or skills which allow to solve the exersisgd the domain. One of
the most popular approaches for building a cognitive magiBlayesian Knowledge
Tracing (Corbett and Anderson, 1994).

Current tutoring systems use a variety of approaches to nstuatdidnt learning. Most
of the techniques make use of a cognitive knowledge reptaisem, sometimes com-
bined with a perturbation model. Markov Decision Processesused for teaching
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Overlay Model Perturbation Model Cognitive Model

Rl D

Figure 2.2: Different student representations (illustration by Baschera (20Expert knowledge

is shaded gray, while the student knowledge is illustrated by the ruled dreasver-
lay and perturbation models are expert modeds, student knowledge is modeled as a
subset of the expert knowledge. In the cognitive model, student gredtdxnowledge
are represented as subsets of skills of the learning domain.

planning (Brunskill and Russell, 2011; Rafferty et al., 20143iagnosing miscon-
ceptions (Rafferty et al., 2012). A popular approach to regmé student learning
is Performance Factors Analysis (Pavlik et al., 2009). kbgiregression was pro-
posed for modeling student learning (Rafferty and Yudel&®97; Yudelson and
Brunskill, 2012; Rafferty et al., 2013). Furthermore, studemwledge and learn-
ing can be represented by Hidden Markov Models (Piech eR@l?2), Bayesian
networks (Brunskill and Russell, 2011; Gé@bez-Brenes and Mostow, 2012b,a) or
Bayesian Knowledge Tracing (Corbett and Anderson, 1994). ®ageNetworks
are also employed to model and predict students’ learnylgss{Kim et al., 2012),
engagement states (Baschera et al., 2011) and goals (Coakti2&02).

2.3.3 Affective modeling

20

Due to its relevance in learning, affective modeling is gajnincreasing impor-
tance. Motivation and positive self-concepts for exampfiience the learning out-
come (Ashcraft and Faust, 1994; Spitzer, 2009). The goahafective model is
to represent, identify and predict affective states of thuelent such as emotions,
motivation or attention.

Previous work in affective modeling can be divided into twoups. The first group

of models utilizes sensor data, while the second groupsreliestudent input data
only. Sensor measurements have the potential to directhsure a large number of
affective features. However, the measurements are udunaitgd to laboratory ex-

perimentation due to the expensive equipment needed. Thsurement of student
interaction data on the other hand provides the opportiaigbtain large data sets
from different experimental conditions. However, meamggts of affect based on
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student interaction are indirecte., the true affective state needs to be inferred from
the input data.

Models from the first group use a variety of sensors. Eye ingattata was for exam-
ple used to analyze students’ attention to hints (Muir anda@ip®012). A combina-
tion of eye tracking and interaction data was utilized tesify whether a student’s
behavior is conducive for learning (Kardan and Conati, 20C®nati (2002) pre-
sented a model based on heart-rate data to assess studéonaireaction during
interaction with an educational game. Other authors (HaralzFrasson, 2009) uti-
lized a combination of brainwave data (measuring the learmeental state) and
user input (indicating the learner’s affective state) tedict the correctness of user
answers. Furthermore, camera data is another option icti@enodeling (Cooper
et al., 2010).

The second group contains models relying on student ingatataly. Beck (2005)
suggested a model based on Item Response Theory (Wilson aBodak, 2004),
utilizing students’ response times to predict their engagy@. By employing a Hid-
den Markov Model, Johns and Woolf (2006) predicted studestivation. Further-
more, Arroyo and Woolf (2005) presented a Bayesian netwodedban features
extracted from log file data to infer students’ attitudescpptions and learning. A
Bayesian network model was also used to identify the atteatistate of the stu-
dent (Baschera et al., 2011).

2.4 Modeling techniques

In this thesis, we will draw from the fields of ITS, machinerl@ag and educational
data mining to represent and predict student knowledgeileg characteristics and
affective states. In section 2.3.2, we have given an owargigpopular techniques
for modeling student knowledge. In this section, we pro\addetailed discussion
of the modeling techniques relevant for this thesis.

Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) (Corbett and Anderson, 1994n example
for a cognitive model, representing the knowledge of thenlieg domain as a set
of skills or production rules. A BKT model is a special case ¢didden Markov
Model (HMM) (Reye, 2004). The hidden variable of the modelates the student
knowledgej.e., one skill. This variable is assumed to be binary as thécil either
be mastered by the student or not. The observations repitasé&s associated with
the respective skill. Observations are also binary: A studelves a task correctly
or not. From this description follows, that one BKT model pkitl $s needed to
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Figure 2.3: Structure of a BKT model for skils over T time steps. The hidden variabl&s
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(denoted by circles) represent the state of Sdller time, while the observed variables
O (denoted by rectangles) describe observations of Skitltimet.

represent the knowledge of the domain. Figure 2.3 illustrétte BKT model for an
example skillS,

The transition probabilitiep(s|s—1) of the network can be described by two pa-
rameters:p., the probability of a skill changing from the unknown to theokvn
state andog, the probability of forgetting a previously known skill. 9 the emis-
sion probabilities(ot|s ) are specified using two parameters. The guess probability
pg of getting a task correct despite not knowing the respediitt and the slip
probability ps of making a mistake when applying a known skill. The initiabip-
ability p(s;) of knowing a skill a-priori is described by the parameper In tradi-
tional BKT (Corbett and Anderson, 1994), the forget probapiti- is assumed to

be zero. Therefore, a BKT model can be completely specifiethdparameter set

0 = {po, PL, PG, Ps}-

An important task when using a BKT modeliigference Given the BKT param-
eters@ and a sequence of observatians = (Om1,...,0mt) With omt € {0,1} and
timet € {0,...,T} for a studentm, what is the probabilityp(S = 1|0m1,...,0mt)
that the skillSis in the known state at tim& Theinferencetask is usually eval-
uated after each solved problem of the student. Based on 8terfpy probability
P(S = 1|0m1,...,0mt) the system decides on the next task to be solved.

The second important task, thearningtask amounts to estimating the parameters
6 of the BKT model given some observations: Given a sequencésdrgations
Om = (Om1, -..,0Om¢t) With timet € {0,..., T} for them-th student wittm e {1,...M},
what are the parametefisthat maximize the likelihoogf],, p(om|8) of the available
data. Fitting the parametér of a BKT model increases prediction accuracy and
therefore allows for a better adaptation to the studentswedge.

Exhibiting a tree structure, BKT allows for efficient parasrdearning and accurate
inference. Popular techniques for learning in BKT includpextation maximiza-
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tion (Pardos and Heffernan, 2010b; Wang and Heffernan, 20ite-force grid
search (Baker et al., 2010) or gradient descent (Yudelsdn @04.3).

Dynamic Bayesian Networks

Bayesian networks (Pearl, 1988) are directed acyclic graphsre the nodes repre-
sent random variables and the arcs specify the relatiosdigfween these random
variables. These relationships can be specified using tondi probability tables
(CPT). A Bayesian network therefore describes a probabiigiridution. The ran-
dom variables can be discrete or continuous. In the follgyre will only discuss
the case, where a random variable can take two statess or false. If there is

a directed connection between a variafjleand a variablé/j, V; is called a parent
of Vj. The belief of a nod#®} of the network (probability that the random variable
takes the staterue) is conditioned over its paren{sa(V;) and therefore the joint
probability of a Bayesian network witN variables can be specified as follows:

p(V1,...,VN) = |_| pv, Wherepy, := p(vi|pa(Vi)). (2.1)

As in BKT, variables can be hidden or observed. Thereforeqmuortant task when
using Bayesian networksiisference Given some observations, what are the beliefs
of the hidden variables. As opposed to BKT, Bayesian netwooksad necessarily
exhibit a tree structure and therefore therencetask cannot be solved accurately.
However, there exists a variety of algorithms for approxariaference in Bayesian
networks such as loopy belief propagation (Kschischand.ef@06), fractional
belief propagation (Wiegerinck and Heskes, 2003) or teseeighted belief propa-
gation (Minka and Qi, 2003). As in BKT, the second importaskts learning

Dynamic Bayesian networks (DBN) (Murphy, 2002) are neededddehsequential
data. A DBN can be seen as the extension of a Bayesian networkime The
structure of the Bayesian network in time step 1 is copied to all time stegswith

t ={2,...,T}. Furthermore, directed connections between the nodesffefeatit
time slices are added. A HMM is the most simple example of a DANorithms for
inferenceandlearningfor Bayesian networks can be directly applied to DBNs. We
again interpret the variables of the DBN in terms of a learmogtext: The latent
variables represent skill§ and the observable variabl€s denote the associated
task outcomes. An example DBN ovErtime steps is given in Fig. 2.4, where the
circles denote the hidden variables and the rectanglessept observable nodes.

Employing DBNs (instead of BKT) in ITS has the potential to e&se the represen-
tational power of the student model and hence further impprediction accuracy.
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Oc,T

Figure 2.4: Graphical model of an example DBN ovEtime steps. The hidden variables (denoted

by circles) model the states of the three skills §, andS; over time. The rectangles
represent observations associated with the sRilivariableO,) andS; (variableQy).
Skill S, cannot be observed.

In contrast to BKT, DBNs are able to represent the hierarchyratadionships be-
tween the different skills of a learning domain. In ITS, DBNsvé been used to
model and predict students’ performance (Conati et al., 20@®%0 and Mitrovic,

2001), engagement states (Baschera et al., 2011), and @miat{ et al., 2002).
DBNs are also employed in user modeling (Horvitz et al., 1998)cognitive sci-

ences, DBNs are applied to model human learning (Frank andnbaum, 2010)
and understanding (Baker et al., 2005). Despite their beakpooperties to rep-
resent knowledge, DBNs have received less attention in studedeling as they
impose challenges for learning and inference.

In this thesis, we propose a DBN student model for represgnifferent mathemati-
cal skills (see Sec. 3.3). Furthermore, we demonstrate bewive thdearningtask
for DBNs efficiently (see Chapter 7). Our method guaranteassfidée parameter
estimates and shows a higher prediction accuracy on unsgaihdn BKT.

Logistic regression models

24

Logistic regression models are used in Item Response Th#&ery (Wilson and
De Boeck, 2004) to model the response (correct/wrong) of desttuto an item.
IRT is based on the idea that the probability of a correctaasp to an item is a
mathematical function of student and item parameters.

Although mainly used in computerized adaptive testing tedpat the probability
of a correct answer (Baker, 2001), IRT models (or models regpby IRT) have
been applied for various purposes. Jakiand Pélnek (2012) describe a model



2.4 Modeling techniques

which assumes an exponential relationship between pratdénmng ability and time
- based on IRT and collaborative filtering - to predict praoblsolving times. Re-
sponse times of a person on a set of test items were also f@edising a lognormal
model (van der Linden, 2006). Answer times have also beeshtogaedict students’
engagement states (Beck, 2005). Furthermore, Johns and (2@@6) proposed the
combination of an IRT model to predict student proficiencgt atHMM to infer stu-
dents’ motivation.

One of the most popular regression models for student muglédi the Additive
Factors Model (AFM) (Cen et al., 2007, 2008). It is widely ugedit learning
curves and to analyze and improve student learning. AFMs idehtify flat or ill-
fitting learning curves that indicate opportunities forotubr model improvement.
Consistently low error curves indicate opportunities tdlogate valuable student
time (Cen et al., 2007). Consistently high error curves witbrgi indicate a miss-
specified skill model that can be improved (Koedinger et2013; Stamper and
Koedinger, 2011), and used to design better instructior@mer and McLaughlin,
2010).

The AFM is a generalized linear mixed model (GLMM) (Boeck, p@pplying a
logistic regression. In a logistic regression model, theeobations of the students
follow a Bernoulli distribution. A Bernoulli distribution ia binomial distribution
with n = 1. Lettingypi € {0,1} denote the response of studgmnbn itemi, we
obtainyp; ~ Binomial(1, 75,). The linear componenty,; of the AFM can then be
formulated as follows:

logit(7Ti) = 9p+;Qik'(Bk+W<'Tpk)a (2.2)

with 8, ~ N(0,03). The AFM is a GLMM with a random effecf, for student
proficiency and fixed effectgy (difficulty) and y (learning rate) for the skilg,
(knowledge component). The learning rgteis constrained to be greater than or
equal to zero for AFMsq is 1, if itemi uses skillS, and 0 otherwise. Finallylpx
denotes the number of practice opportunities stugelnad at skillS,. The AFM
is related to the linear logistic test model (LLTM) (WilsoncaDe Boeck, 2004)
and the Rasch model (Wilson and De Boeck, 2004). When removanthitd term
(V- Tpi) of EQ. (2.2), we obtain an LLTM. Additionally assuming a gue-step skill
model (one skill per step) results in the Rasch model. Thatiotuof the AFM is
that the probability of a student getting a step correct apprtional to the amount
of required knowledge of the studey, plus the difficulty of the involved skillg
and the amount of learning gained from each practice oppibyti.

As the AFM is a GLMM, it can be fit using maximum likelihood, vehi involves
integration over the random effects (Breslow and Clayton,3)1.99ntegration is
performed using methods such as numeric quadrature or M&kain Monte Carlo
(MCMC).
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CHAPTEHR

Calcularis

The developed softwaglcularis is an intelligent tutoring system (ITS) for chil-
dren with developmental dyscalculia (DD) or difficultied@&arning mathematics. It
constitutes the core of this thesis as well as its first stdpdeveloped models and
analyses are based on log files collected in user studiesictatiwithCalcularis
(described in detail in Chapter 4) or from the first producsi@r sold since the be-
ginning of 2013. This chapter describes the developme@ibdfularis in detail.

3.1 Design Principles

The system ofalcularis is based on the special needs of children with DD and
aims at supporting the development of mathematical uraledstg in general. The
program transforms current neuro-cognitive findings i design of different in-
structional games. It combines the training of basic nuca¢cognition with the
training of different number representations and theienmiations, and with the
training of arithmetic abilities. The intervention relies three design principles:

1. Design of numerical stimuliA special number design enhancing the three dif-
ferent number representations (as specified by the tripdie-enodel (Dehaene
and Cohen, 1995) introduced in Sec. 2.1.1) is consistendy tisroughout the
training program. Furthermore, the three different numbedalities are shown
simultaneously at the end of each trial. The encoding oeckffit properties of
a number through different information channels suppdwsacquisition of the
different number representations and facilitates numhdetrstanding.
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2. Adaptability and scaffoldingrhe development of each child’s numerical abilities
often follows a different speed and is intertwined with tleelopment of other
cognitive domains and domain-general abilities (von Aatet Shalev, 2007; Ku-
cian and Kaufmann, 2009; Kaufmann et al., 2011), leadingfterdnt mathemat-
ical performance profiles (von Aster, 2000; Geary, 2004;s@hl and Dehaene,
2007). Our training system containSéudent Mode{described in Sec. 3.3) that
optimizes the learning process by providing a hierarchicgttuctured learning
environment teaching fundamental knowledge first (scdiifigf). Furthermore,
task selection and difficulty are adapted to the knowledgel lef the child. The
other component important for adaptivity is tBeg Library(detailed in Sec. 3.4):
It enables the system to recognize and address specificepnslaf a child.

3. Different types of knowledgd he intervention program aims to balance the ac-
quisition of conceptual knowledge with automation tragui€hildren are taught
conceptual knowledge before going over to automationitrginAn arithmetic
operation is for example first introduced and explained. diftbmetic operation
and its solution are then modeled using stimuli and finallgntal calculation is
trained.

In the following, we will explain the different components@lcularis in detail,
following the general structure of a learning program désct in Sec. 2.3. We first
introduce theTutor of the system by describing the curriculum (the structure) a
the games of the program as well as the special design formeahstimuli. In a
second step, we present tBaudent Modebf the program consisting of a dynamic
Bayesian network (DBN) (Murphy, 2002) representing mathearabskills and a
control algorithm. Finally, th&ug Libraryis specified.

3.2 Tutor

The Tutor defines the curriculum of the program as well as how domainvieage
is represented, utilized and communicated.Célcularis, a special design for
numerical stimuli is used to represent the properties ofrabmr. TheTutor also
specifies how the material should be instructédlcularis consists of multiple
games in a hierarchical structure that follows the natuesbtbpment of mathemat-
ical understanding.

3.2.1 Design for numerical stimuli
The special design for numerical stimuli is intended to ewleathe different num-

ber modalities and to strengthen the links between thenpdpties of numbers are
encoded with visual cues such as color, form and topologeg. digits of a number
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\ﬁ-—

Figure 3.1: Numerical stimuli for the number 35. Units are colored in green, tens in blde an
hundreds in red. The digits of a number are attached to the brancheambengraph
(left) to facilitate the acquisition of the Arabic notation. Numbers are construsied
colored blocks (center) to emphasize cardinality. The number line repaties with
integrated blocks (right) enhances the ordinality of numbers.

are attached to the branches of a graph and are represettedifi@rent colors ac-
cording to their positions in the place-value system: Uaitscolored in green, tens
in blue and hundreds in red (see Fig. 3.1 (left)). We assuethis representation
facilitates the acquisition of the Arabic notation as wellthe translation between
verbal and Arabic notation. The cardinal magnitude of num&emphasized by
representing the number as an assembly of one, ten and liupldieks. This rep-
resentation illustrates the fact that numbers are compotether numbers. The
blocks are linearly arranged from left to right (see Fig. @énter)) or are directly
integrated in the number line (see Fig. 3.1 (right)) to mdie ¢onnection to the
analogue magnitude module (Dehaene and Cohen, 1995).

3.2.2 Curriculum

The training program is composed of multiple games in a hedreal structure. Fig-
ure 3.2 shows the different areas of the training prograne. veision of the training
program employed in the user studies as well as in the actadupt version is con-
strained to specific areas of this structurguitive number understandingumber
representationgnd arithmetic operationswith natural numbers up to 1000. Fig-
ure 3.2 therefore illustrates the final vision of the traghprogram with solid and
dashed boxes representing the already integrated andahega components, re-
spectively.

Games are structured along number ranges and are furtlgedinto hierarchically
ordered areas:

1. Number representationsThis area focuses on different number modalities and
number understanding in general. It trains transcodingéet the different num-
ber representations. Furthermore, the three interpoef number are estab-
lished: Cardinality (quantity), ordinality (position in &guence) and relativity
(difference between two numbers). Games in this area ararbiecally ordered
according to the four-step developmental model (von Agster$halev, 2007).
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Figure 3.2: The training program is structured into the three main areasioiber representations
(blue),arithmetic operationggreen) andvord problemgred). These areas can be fur-
ther divided into different number ranges. The areastoftive number understanding
(purple) anddaily life (turquoise) complete the curriculum. Parts that have not yet been
implemented are marked with dashed lines.

2. Arithmetic operations This area trains arithmetic operations at different diffi-
culty levels. Task difficulty is determined by task comptgxthe magnitude of
numbers involved and the means (visual aids) availablelte gsbe task. At the
moment, the program contains only addition and subtradtisks.

3. Word problems A complete understanding of mathematical operationsiregu
the ability to associate a described situation with a mad#teal operation and
vice versa. This also presumes an understanding of thelanteaning of the
operation. The importance of word problems was confirmedheay HOGIK
user study (Weinert and Schneider, 1999): Mathematicébpaance in the 14
grade was highly correlated to performance in word problientise 2 grade.

Each area builds up on knowledge gained in previous areathanefore deepens
the previously acquired knowledge.
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An additional forth areaiftuitive number understandifgerves as a precondition
for the three areas described above. This area focuses amtanpprecursor abil-
ities (Landerl et al., 2004; Hannula and Lehtinen, 2005; adazo and Thompson,
2005; Krajewski and Schneider, 2009) such as subitizingponting. The fifth area

of the structure will teach mathematical concepts (suchm@sdr money) important

for dally life.

All games can also be categorized based on their complaxityedative importance.
Main games are complex games requiring a combination oitiabito solve them.

Support games train specific skills and serve as a prerégfiisi the main games.
Each area features exactly one main game and several sygmes. The main

games are the same for each number range; they just diffeelmardinal magnitude
of numbers used. The training path through the structureetsas each number
range from left to right starting with the number range frorh@®

3.2.3 Games

The training program consists of ten different types of gauttat are associated
with the different areas of the training program. By varyihg humbers used in the
games, we obtain 81 different types of tasks (task difficigiels).

Subitizing. Subitizing refers to the rapid and accurate judgment of memper-
formed for small numbers of items (up to four). In tisebitizing game
(see Fig. 3.3(a)), children are presented a number veraaliyell as in Arabic no-
tation. A box of items (or a number of fingers) shows up for atkeh amount of
time (200 ms) on the left side of the screen. Children havei¢& ethen the number
of items (or fingers) corresponds to the presented numbergaime belongs to the
area ofintuitive number understandirend is classified as a support game.

Estimation. TheEstimation game (see Fig. 3.3(b)) is a support game in the area
of number representationdn this game, a number in the range from 0-100 (or O-
1000) as well as three squares containing point sets artagesh Children need

to decide which point set corresponds to the given numbeg. arhount of time to
solve the task is limited to ten seconds in order to preveantng.

Transfer. TheTransfer game exists in different modes and aims to train transcod-
ing between different number representations. Childrer h@atranslate a spoken
number to the Arabic notation (as displayed in Fig. 3.3(c)}hey have to model

a number presented in Arabic notation using colored bloGke Transfer game
again belongs to the area nimber representatiorasnd is classified as a support
game.

Distance TheDistance game (see Fig. 3.3(d)) enhances the relative aspect of
number (number as a difference between two numbers). Chiliee to find the
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numbers that are larger (or smaller) by a given nundiban the displayed number.
In the number range from 0-18,can be 1, 2 or 3. In higher number rangess a
multiple of ten or hundred. This game is again a support gartiesi area ohumber
representations

Ordering. The Ordering game (see Fig. 3.3(e)) is a support game in the area
of number representationgraining ordinal number understanding. A sequence of
numbers is displayed for a period of five seconds. Children nealecide if the
sequence was sorted in ascending order.

Secret Number TheSecret Number game (see Fig. 3.3(f)), a support game in the
area ofnumber representationgrains the ability to assign a number to an interval.
Children have to guess a number in as few steps as possibr. esith guess, they
are told if the secret number is smaller or larger than theggnumber.

Landing. TheLanding game (see Fig. 3.3(g)) is the main game of the area of
number representatiorsmed at training spatial number representation. A purple
cone must be directed to the position of a given number on abeutine (with
indicated center) using a joystick. Numbers are presemtedribal or Arabic nota-
tion. In another game setting the cardinality of a given pset and the position of
this quantity on the number line have to be estimated. Theired)accuracy for a
correct solution is a deviance of less than 5%.

Slide Rule TheSlide Rule game (see Fig. 3.3(h)) is a support game belonging to
the area ofrithmetic operationsproviding an introduction to addition and subtrac-
tion using the part-whole scheme (Resnick, 1984). An opmrdask is presented
to the child, as well as a number line and a glass case camgagnnumber of unit
blocks (according to the first number of the task). The sizb@flass case must be
changed such that it contains the result of the task.

Plus-Minus. In the Plus-Minus game (see Fig. 3.3(i)), an arithmetic operation
given in Arabic notation must be modeled using colored kdqcie, ten, hundred).
Different strategies are allowed to find the result. This gasnassociated with the
area ofarithmetic operationgnd is classified as a support game.

Calculator. In theCalculator game (see Fig. 3.3(j)), mental addition and subtrac-
tion are trained. The child needs to type the result of anteshd{or subtraction)
task presented in Arabic notation. Thelculator game is the main game of the
area ofarithmetic operations

3.3 Student Model
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A fundamental component of an ITS is its student model: tihswgstem making the
teaching decisions. It selects the skills for training aetkdmnines the actions for the
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(a) Subitizing game.

(c) Transfer game.
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(e) Ordering game.

|

(9) Landing game.

(i) Plus-Minus game.

(b) Estimation game.

2] L0

(d) Distance game.

L
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(f) Secret Number game.

3 + 2

(h) S1lide Rule game.
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689 - 17 = [dJOdd

() Calculator game.

Figure 3.3: The first version ofalcularis consists of ten different types of games for the areas
of intuitive number understandin@), number representationd-g) andarithmetic
operationgh-j).

33



Calcularis

selected skill.Calcularis employs a dynamic Bayesian network (DBN) to repre-
sent the knowledge of the student and applies a specialigrisscontrol algorithm
for task selection. In this section, we will explain the krledge representation as
well as the control algorithm in detail.

3.3.1 Dynamic Bayesian network

34

The mathematical knowledge of the learner is modeled usiDld (see Sec. 2.4
for an introduction). The network consists of a directedcticygraphical model
representing different mathematical skills and their delemcies. Two skill§; and

$ have a (directed) connection if mastering sijlis a prerequisite for mastering
skill S,. As the skills cannot be directly observed, the system snfieem by pos-
ing tasks and evaluating user actions. Such observatiomdicate the presence of
a skill probabilistically. The posteriorp(s|o;) of the net are updated after each
time stept, i.e., each solved task, using the sum-product algorithm (lib@Aooij,
2010)). s denotes the states of all skil& of the network at timeé. The DBN
has a memory of 5,e., posteriors are calculated over the last five time steps and
thereforeo; = (0;_4,0t-3,0t—2,0t—1,0t) includes only the observations of the last
five time steps. We initialize all probabilities to 0.5 as werbt have any knowl-
edge about the mathematical proficiency of a learner at thebieg of the training
(the students are of different age and have different madkieat skill levels). This
initialization is in accordance with the principle of maxim entropy.

The skill net representation is ideal for modeling mathecadknowledge as the
learning domain exhibits a distinctively hierarchicausture. The structure of the
net was designed using experts’ advice and incorporatesidoknowledge. The
design of the net was inspired by the work from Falmagne €t1890). Like in
knowledge space theory, we order skills hierarchically asslime that some skills
can be surmised by others. The basic assumption is that o knskill S;, the
child needs to know all the precursor skills®f However, in our case, each skill is
assigned to exactly one task. Our work can also be relateattiajorder knowledge
structures (Desmarais et al., 1995) which also model depanels between skills as
conditional probabilities.

Our resulting student model contains 100 different skildlastrated in Fig. 3.4. Ta-
ble 3.1 explains the different skills of the skill net andithetation used in Fig. 3.4.
The presented skill net is the student model developed ®oathual version of the
training program and therefore covers only numbers up t® 0@ the areas of
intuitive number understandingumber representatiorendarithmetic operations
of the target structure (illustrated in Fig. 3.2). All gan@sthe training program
(introduced in Sec. 3.2.2) are associated with one or seskils of the student
model.
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36

Part A comprises the areas aftuitive number understandingnd number repre-
sentationsof the curriculum (detailed in Sec. 3.2.2). The skillsRart A are or-
dered and color-coded according to the different numbegesi®-10, 0-100, and
0-1000. Within each number range, the hierarchy followsfthe-step develop-
mental model (von Aster and Shalev, 2007): The linguistimisglization (step 2),
Arabic symbolization (step 3), and analogue magnitudeesprtation (step 4) de-
velop based on a (probably) inherited representation afical magnitude of num-
bers (step 1). Following this model, the transcoding betwine linguistic and
Arabic symbolization Yerbal—Arabic) is trained before giving the position of a
written number on a number linéfabic—Numberling. The skill Subitizingis
associated with th8ubitizing game, while theEstimationskill belongs to the
Estimation game. Furthermore, tHeransfer game trains the transcoding skills
Concrete—Arabic, Verbal—Arabic and Arabic—Concrete Skills Ordinal 1 and
Relativeare affiliated with thé®istance game,Ordinal 2 represents therdering
game andOrdinal 3 is associated with th8ecret Number game. Finally, the
Landing game covers the skill&rabic—Numberline Verbal-Numberlineand
Concrete~Numberline

Part B covers the area ddrithmetic operation®f the curriculum (see Sec. 3.2.2).
Skills in Part B can also be divided into the number ranges 0-10, 0-100 ar@D0-1
(color-coded in Fig. 3.4). Furthermore, they are orderembieting to their difficul-
ties. The difficulty of a task depends not only on the magmtoflthe numbers
included in the task and the complexity of the task, but alsdhe representation
of the task and the means allowed to solve it. A task such as&2B887’ (Addition
2,2) is considered more difficult than computing ‘13+5=18ddition 2,). On the
other hand, modeling ‘65+22=87" with one, ten and hundredkd Support Addi-
tion 2,2 is easier than calculating it mentally. And finally, taskedlving carrying
such as ‘65+27=92'Addition 2,2 TG are more complex to solve than tasks without
a carry. All skills training mental calculatior (g, Addition 2,9 are covered by the
Calculator game. Skills in the number range from 0-10 involving the usaate-
rial (such asSupport Addition 1 Jlare associated with tfBdide Rule game, while
thePlus-Minus game comprises such skills (for examg@lgpport Addition 3,1 HTC
in higher number ranges.

In general, each skill of the hierarchical network is asst@d with a taski,e., there
exists a game type for each skill in the network, as alreathiléd above. However,
some skills such as for exampBountingare not associated with any game and can
therefore not be observed.



3.3 Student Model

Table 3.1: Explanation of skills (by area) and notations used in the skill net (see Hij. 3

Area Notation Definition
Part A
Number Concrete Number represented as a set of objects.
Representa- Verbal Spoken number.
tions Arabic Written number.
Numberline Number represented as a position on a number line
Transcoding r1—r2 Translation of number from representation rl to r2.
Ordinal 1 Precursor and successor of a number need to be given
Ordinality  Relative Calculate !ndirect (+/-2, +/-3) precursor and succes-
sors of a given number.
Ordinal 2 Are the given numbers sorted in ascending order?
Ordinal 3 Guess a secret number.
Subitizing Simultaneous perception of numbers up to four.
Other Estimation Which of three displayed point sets corresponds to the
given number?
Counting Forward (and backward) counting.
Part B
Addition of two numbers. al and a2 denote the num-
Addition al, a2 ber of digits of the addends. TC denotes a ten crossing
and HC a hundred crossing.
Mental Subtraction of two numbers. s1 and s2 denote the num-
calculation gy piraction s1,s2 ber of digits of the minuend and the subtrahend. TC
denotes a ten crossing and HC a hundred crossing.
Addition TC Addition with carrying in the range from 0-20.
Subtraction TC ~ Subtraction with borrowing in in the ranganfirO-20.
Addition or subtraction of two numbers used for rep-
: etition. 01 and 02 denote the number of digits of the
Operation 01, 02 . .
operation. Operation 2,2 for example denotes any ad-
dition or subtraction skill in the number range 0-100.
Support Addition of two numbers. The task can be solved us-
Calculation Addition ing one, ten and hundred blocks.
concepts Support Subtraction of two numbers. The task can be solved
Subtraction using one, ten and hundred blocks.
Sets Understanding of operations on sets.
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3.3.2 Control algorithm
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Based on the estimation of student knowledge delivered bgtident modeli.e.,
the posterior probabilities of the skills, the control aifon needs to make the teach-
ing decisions. The selection of actions is rule-based amdlinear, the algorithm
allows forward (training of a more difficult skill) as well dmckward movements
(training of an easier skill). This controller design inases the set of possible ac-
tions (due to multiple precursors and successors). Thexefather than following
a specified sequence to the goal, learning paths are adagkieaiually, i.e., each
child trains different skills and hence plays different ganaluring training, as illus-
trated in Fig. 3.6. After each solved task, the controlléects one of the following
options based on the current state:

1. Stay. Continue the training of the current skill;
2. Go back Train a precursor skill;
3. Go forward: Train a successor skill;

The decision is based on the posterior probabilities dedtvéy the student model.
After each solved task, the controller fetches the postgriobability p(s t|o;) of

the skill § being trained at time. Then, p(sit|o;) is compared against a lower
and an upper threshold, denoted ;bg/(t) andpg (t). The resulting interval defines
the optimal training level: if the probability lies betweé#re thresholds, ‘Stay’ is
selected. In contrast, ‘Go Back’ and ‘Go forward’ are selédtep(s t|or) < p'a (t)

and if p(sit|or) > pg (t), respectively. Thresholds are not fixed, they converge with
the number of played samplag at skill S:

p5(t) = pd 1" and pd (t) = pL-uc"s. (3.1)

Initial values of the upperp@o) and lower ()'S?) thresholds as well as the change
rates [, Uc) are heuristically determined. The convergence of thestiolels ensures
a sufficiently large number of solved tasks per skill and prgs training the same
skill for too long without passing it.

When ‘Stay’ is selected, a new appropriate task (associatidtime same skill) is

built. Otherwise, a precursor (or successor) skill is geldkby fetching all precursor
(successor) skills of the current skill and feeding theno iatdecision tree. The
nodes of these trees encode selection rules that were ddgaiging experts’ advice.

The decision tree for the ‘Go Back’ option is displayed in RBdb(a). For this op-
tion, remediation skills are preferred: If errors matchpaiterns of the bug library
(see section Sec. 3.4) are detected, the relevant rentedskdil is trained. A typical
mistake in addition involving two-digit numbers would besom up all the digits,
i.e, ‘23 + 12 = 8’ (Addition 2,3. This mistake indicates that the child has not yet
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# remediation 0 # unplayed 0 all pre- .. 0
_> precursor skills? —> curgors __>_>.
support
n n n skills
unplayed
precursors

(a) Decision tree for the ‘Go back’ option.

Recursion skill S no 0 >@
W
support
yes¢ ni skills

select S

(b) Decision tree for the ‘Go forward’ option.

Figure 3.5: Decision trees for the ‘Go back’ (a) and ‘Go forward’ (b) options. eTiectangles
denote decision nodes, while the circles represent the end nodes. étdhsodes,
the candidate skill with lowest posterior probability (‘Go back’ option) or vtiste-
rior probability closest to & (‘Go forward’ option) is selected. The selection rules
encoded in the trees were designed using experts’ advice.

understood the Arabic notation system in the number raraye @-100. A remedia-
tion skill for this error is the training of the Arabic notati system in this rangee.,
decomposing numbers between 0 and 100 into tens and unithasmdtearning the
meaning of the digit position of a numbekr@bic—Concrets.

If the child did not commit any of the typical errors, the catier prefers unplayed
precursor skills. The hierarchical skill model assumes titia precursor skills of a
skill S are a prerequisite for knowing,. If the child fails skill S;, the controller
tries to find the particular precursor skill that might catise problem. For the
played precursor skills, the controller assumes that thid elfready knows them
(since they have been played and passed) and hence an uhpl@geirsor skill
is selected. Finally, main skills are preferred over suppkills. Therefore, if a
child fails in solving addition problems with two-digit nurars Addition 2,3 the
controller first checks if the child can do mental calculatie main skill) of simpler
addition problems (for exampl&ddition 2,). If this is the case, the support skill
modeling the operation with material is picked. If, howeude child also fails
in solving the simpler addition problem, this easier skileds to be trained first.
Hence, the main skills are always checked first.

If there is more than one candidate precursor skill aftessirgy the decision tree
(i.e., going through all the rules), the candidate skill with kneest posterior prob-
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ability is selected. Therefore, the controller selectsstki# where the child has the
lowest (estimated) proficiency.

The decision tree for the ‘Go Forward’ option is displayedrig. 3.5(b). For this
option, recursion skills are preferred. If a user fails testeaskill S, and goes back
to §, S is set as a recursion skill. After passifig the controller will return to
S. If a child for example fails solving addition problems wito-digit numbers
(Addition 2,3 and goes back to train an easier skilddition 2,3, the child will
return to the addition problems with two-digit numbefgidition 2,2 after passing
that easier skill.

If no recursion skill is set, the controller again preferamskills over support skills.

If the child masters solving addition problems with a twgitland a one-digit num-
ber (Addition 2, the controller will go further to ask addition problems ahving
two two-digit numbersAddition 2,3. This rule ensures that children having a good
mathematical knowledge take the fastest path through th@sk The support skill
modeling the same task using materfalpport Addition 2,pwill only be played if
the child does not master the mental calculation.

If there is more than one candidate successor skill at thektthe decision tree, the
candidate skill with posterior probability closest to Orbakimization of entropy)
is selected. This final rule ensures that the gain of knovdealgout the child is
maximized. To consolidate less sophisticated skills anddoease variability, the
controller uses selective recalls.

This control design exhibits the following advantages:
1. Adaptability. the network path targets the needs of the individual usgr @6).

2. Memory modelingforgetting and knowledge gaps are addressed by going back.

3. Locality: the controller acts upon current nodes and neighborsdengunreli-

able estimates of far nodes.

4. Generality the controller is domain-model independent: it can be usedrbi-

trary discrete structures.

3.4 Bug Library
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The program has access to a bug library storing typical @atierns (Gerster, 1982)
and is therefore able to adapt to specific errors of the amnldif a child commits
a typical error several times, the controller systemdticsglects actions for reme-
diation. Table 3.2 lists the typical error patterns stonedhie bug library, along

with examples and remediation tasks. For the araauaiber representationsnly

one pattern is stored for tHeanding game: Positioning the cone on the wrong
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e 1311 = B P RE
~la -
e~ B | g

B Addition 1,1 W Support Addition 2,1 [} Support Addition 2,2 Addition 2,1 TC

3+5=8 21+3=24 21+15=36 28+5=33
| Addition 1,1 TC [J] Addition 2,1 M Addition 2,2 ¥ Addition 2,2 TC
8+5=13 21+3=24 21+15=36 28+15=43

Figure 3.6: Skill sequences of three children in addition in the number range frerb@D. The no-
tation is consistent with Fig. 3.4 and is explained in Tab. 3.1. User 2 (middlesegy
and user 3 (bottom sequence) passed all skills in the range, while usersefuence)
did not pass this range within the training period. The length of the rectainglieates
the number of played samples at the respective skill.

side of the indicated center of the number line,, positioning the cone at a num-
ber < 50 when the given number is 50. For the area aodirithmetic operations
a range of error patterns are stored in the bug library. Sdntieese patterns can
be attributed to problems in counting or understanding #mgdoconcepts of addi-
tion and subtraction. Remediation skills for these errotgpas train simple addi-
tion and subtraction tasks with colored bloc&upport Addition/Subtraction 1)1
Other error patterns probably occur due to a lack in undedstg the Arabic no-
tation systemij.e., the meaning of the different positions of the digits. Aesttd
remediation action for these patterns is the training ofArebic notation system
(Arabic—Concretg. Another typical error is the switching of digits (twenfiye is
written as ‘52’) which is remediated by training transcagfrom spoken to written
numbers Yerbal—Arabic). Finally, problems with carrying or borrowing are also
addressedSupport Addition/Subtraction TICThe bug library was built based on
previous work identifying typical error patterns and theauses (Gerster, 1982).
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Table 3.2: Description of typical errors along with examples and remediation skills fatahgains
of number representation®\R) andarithmetic operationsseparate for addition (A)

and subtraction (S).

Description Example

Remediation

NR

A'S

A'S

A'S

A'S

A'S

A'S

Landing game: The child lands-
the cone on the wrong side of
the center (5, 50, or 500).

Correct result is missed by 5+3=7
(+/-1).

Addition instead of subtraction5 + 3 =2
(or vice versa).

Addition of all digits. 12+24=9

Switching of digits when read-24 - 3 =12
ing/writing a number.

Use of wrong digit order. 63-5=13

Forgetting the carry when 34+7=31

bridging to ten.

Addition/Subtraction of inner 34 + 13 =56
and outer digits.

Building the difference 34-17 =23

between digits.

Training of the ordering of
numbers according to their
magnitude Qrdinal 1).

Training of addition or subtrac-
tion with colored blocks $up-
port Addition/Subtraction 1)1

Training of addition or subtrac-
tion with colored blocks $up-
port Addition/Subtraction 1)1

Training of the Arabic nditan
system Arabic—Concretg.

Transcoding from spo-
ken to written notation
(Verbal—Arabic).

Training of the Arabatation
system Arabic—Concret¢.

Training of bridging to ten us-
ing colored blocks $upport
Addition/Subtraction T

Training of the Arabic notation
system Arabic—Concretg.

Training of the Arabic notation
system Arabic—Concretd.
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User studies

When developing a training or therapy program, assessmethiecdctual clinical
effectiveness by means of evaluation studies is esseritlaér studies are, how-
ever, not only important for evaluation of effectiveneas, &lso enable data collec-
tion: During training withCalcularis, all user actions (such as keyboard input
and keystrokes) along with respective timestamps are davked files. Such log
files allow for further analysis of user behavior and the ggapimodels (see Chap-
ter 5 and Chapter 6) and refinement of the models based on tieetedl data (as
described in chapters 7- 9).

In the first part of this thesis, the computer-based traipmogramCalcularis (de-
tailed in Chapter 3) along with a knowledge representatiomfathematical skills
was developed. In a second st€plcularis was evaluated in two user-studies.
One study was conducted in Germany and Switzerland by olabmyhtion part-
ners (University of Potsdam, University Children’s Hosp#arich) and included
134 children from 24 — 5" grade of elementary school: 64 children were diagnosed
with developmental dyscalculia (DD) and 70 were controldrien. Evaluation of
training effects is still under progress and therefore aitbet description of this
study and its results is not provided in this thesis. In tHiewang, we will refer to
this evaluation study aBMBF-study The second study, referred to as 8\&/ISS-
study was conducted in Switzerland and included 41 children witficulties in
learning mathematics.

In this chapter, we will describe the evaluation study caned in Switzerland, the
SWISS-studyn detail. We will first introduce the study design and thetisgants,
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before describing the external test measures. After thatyilV present and discuss
the results and limitations of the study.

4.1 Study design and participants

44

The SWISS-studycluded 41 children with difficulties in learning mathemcat Par-
ticipants were divided into a training group £ 20, 65% females) completing a
12-weeks training and a waiting group € 21, 666% females) starting with a 6-
weeks rest period before executing a 6-weeks training. Stidy design has two
advantages. First, the effects of a 12-weeks training casobegared to those of a
6-weeks training, assessing if children profit from a prgked training period. Sec-
ond, comparing the training effects of the training groughtmse of a waiting group
allows controlling for developmental and schooling effect

Mathematical performance of both groups was evaluatedeabéginning of the
study (), after six weekstf) and after 12 weeksd). Children were required to train
with the program five times per week, with daily training sess of 20 minutes. The
groups were matched according to age (training grou@é 9ears (SDo = 1.35);
waiting group: 98 (SDo = 1.33);t(39) = —0.04, p=.96), gender and intelligence
(training group CFT-score: 98 (SDo = 11.9); waiting group CFT-score: 93 (SD

o =14.1);1(39) = 0.07, p = .95) (Cattell et al., 1997; Weiss, 2006). Groups were
built by forming matched pairs of kids, followed by a quasndom assignment to
either the training or waiting group (ensuring that the nendf males was balanced
between the groups).

All participants were German-speaking and visited tPe3" grade of elementary
school. Children were indicated by parents and teacherstabitaxg difficulties

in learning mathematics. On average, arithmetic perfooegmeasured with the
Heidelberger RechenteBIRT (Haffner et al., 2005)) of the participants was around
the 18" percentile, corresponding to a T-score of 37 (HRT additiestdre: 3715
(SD o =7.69); HRT subtraction T-score: 2B (SDo = 8.77)). At the beginning of
the study{3), there was no significant difference in arithmetic perfanoe between
the groups (HRT additiort:(39) = 0.59, p = .55; HRT subtractiont(39) = —0.63,
p=.53).

Children performed the training at home with the exceptioarad mandatory train-
ing session per six weeks at our laboratory. Children redeavsticker per com-
pleted training session that they could put on their tragrpnogress sheet. During
the training period, all the input data of the children wagesia Therefore, the ex-
act training time of the children could be determined at theé ef the study and
children with an insufficient number of sessions were exatutiom the analysis.



4.2 Instruments

Parents gave informed consent and children received a giftalor their partici-
pation. TheSWISS-studwas conducted in context of tiB&MBF-study which was
approved by the ethics committee of the University of Patsda

4.2 Instruments

All children underwent a series of mathematical perforneaaed number process-
ing tests aty, to andts, detailed below. Furthermore, they completed a questioana
after the training, including questions on difficulty, matiion, and personal evalua-
tion of the training.

4.2.1 Heidelberger Rechentest (HRT)

Arithmetic performance was assessed using the additiosaitaction subtests of
the HRT (re-test reliability: addition; = .82, subtractionry; = .86). In these sub-
tests, children are presented a list of addition (subtagtasks ordered by difficulty.
The goal is to solve as many tasks as possible within two guthe maximum
number of correct tasks is 40. During the test sessions,dtigi@n subtest of the
HRT was always solved first, followed by the subtraction estst and the computer-
based tests described below.

4.2.2 Computer-based tests

Children also solved a series of computer-based matherhtdits, illustrated in
Fig. 4.1:

¢ Arithmetic (AC) (see Fig. 4.1(a)): In this test, children solve a series dfitamh
(subtraction) tasks. Trials are ordered by difficulty anelgented serially. The time
to solve the tasks is ten minutes. The maximum number of ddb&ks is 76.

e Number line (NL) (see Fig. 4.1(b)): In this test, children need to indicate fib-
sition of a given number (presented in Arabic notation ad aglverbally) on a
number line. The number line is represented on the screemas-dimensional
black line with labeled end points. The position of the numtan be indicated by
mouse-click. There are ten tasks in the number range frof NL 10), 20 tasks
between 0-100 (NL 100) and ten tasks between 0-1000 (NL 1000)

e Non-symbolic magnitude comparison (NC) In this test, children are presented
ten sets with - 9 black dots (excluding 5) for a period of 120 millisecondsilCh
dren need to indicate if the presented number of dots wadesnuallarger than 5.
The representation of the dots is balanced according teespéadtribution and area

45



User studies

: oo
8
(I) | 1=0
S
(a) Arithmetic test (AC). (b) Number line test (NL 10). (c) Estimation test.

Figure 4.1: Example tasks for the different subtests of the computer-based assésbnike AC,
children solve a series of addition (a) and subtraction tasks. The NL fd€ists of
indicating the position of a given number on a number line (b). In the Estimation tes
(c), children need to judge if the given point set is smaller or larger théay®licking
on the according buttons.

properties as described by Rubinsten and Sury (2011). Tlok blea is the same
for all trials. Half of the trials have a small extension (fidensity), while the other
half is spread out (low density). The layout of the tasks ésséime as for Estimation
(see Fig. 4.1(c)) with the exception that the number linesgo@m 0 to 10 with the
position of the 5 indicated.

e Estimation (see Fig. 4.1(c)): In this task, children are presented tyveets with
1—99 black dots (excluding 50). Children need to decide, if tresented sets are
smaller or larger than 50. Numbers are equally distributes the range. Confound-
ing visual factors are controlled as described in the NC.t&sknuli are shown for
a period of five seconds.

During the test sessions, the different tests were solvéiaeriollowing order: AC
addition, NL 10, NC, AC subtraction, NL 100, estimation, NLODO The computer-
based tests exist in three paralleled versions (one peruresasnt point). The ver-
sions were paralleled according to content and item difficltach version of the
addition and subtraction tests for example contains theesaumber of tasks be-
tween 0-10 and the same number of tasks involving carryirgpoowing.

4.2.3 Feedback questionnaire

Children completed a training evaluation questionnairdatend of the studyt).
Children indicated for each game, how much they liked it. Tdadeswas represented
through smileys, going from a laughing (4) to a crying (0) lemi The difficulty of
the training was judged on a scale from very easy (0) to veificdit (4). And
finally, children needed to indicate if the training helpbdrm on a scale from not
true (0) to absolutely correct (3).
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4.3 Results

To ensure a sufficient number of training sessions, onlydodil with at least 24
complete sessions after the 6-weeks training period wetaded in the evaluation
of the training. Thus, five children from the training group {echnical challenges,
1: <24 training sessions) and four children from the waitingugr¢l: abort of study,
3: < 24 training sessions) were excluded from the analysis. Xbkigions did not
change the matching of the groups. Table 4.1 gives an ovepfiehe training statis-
tics. Over the course of the 6-weeks training, there weregrfeant differences
between the training group and the waiting group regarciegiumber of training
sessionst(30) = —1.40, p = .17) or the number of solved taskg30) = —1.03,
p =.31). The two groups also showed a very similar average speednum-
ber of solved tasks per sessidii30) = 0.03, p = .98). Furthermore, the training
group and the waiting group progressed equally fast duteg@-weeks: There
were no significant differences in the highest reachedsskilhumber representa-
tions (t(30) = —0.04, p = .97) andarithmetic operationgt(30) = 0.26, p = .79).
Table 4.1 also illustrates a (probably) decreasing matimadver time: While the
children of the training group played on average23®essions during the first six
weeks, this number dropped to an average of 19 sessions gsetload part of the
training. Children also got a bit slower in the second piagt, they solved fewer
tasks per session. This slowdown is, however, probably dlleet increasing diffi-
culty of the tasks.

4.3.1 Quantitative analyses

A repeated measures general linear model (GLM) analysiscamaducted to evalu-
ate training effectst{ — t) as a within-subject factor and group (Training/Waiting)
as a between-subject factor. Post-hoc paired-sampléstwese used to test for dif-
ferences in performance for consecutive testing perigdstg, to —t3). Effect sizes

r were computed according to Field (2009). According to F{&rb9),r =0.1is a
small effectr = 0.3 a medium effect and= 0.5 a large effect. No corrections for
multiple testing were applied. Table 4.2 summarizes thenm@ad standard devi-
ations of the behavioral measures for all measurementgairdluding calculated
statistical results. There were no between-group perfocealifferences prior to
the intervention (at).

Arithmetic (AC addition and subtraction). The interaction between training

and group was significant for subtractiop£€ .028) and showed a trend for addi-
tion (p = .081). Both operations demonstrated medium effect sizedrésiion:

r = 0.39, addition:r = 0.31). The prolongation of the training from 6 to 12 weeks
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Table 4.1: Training statistics (standard deviatiomsn brackets) of the training group (n = 15) and

the waiting group (n = 17). For the 6-weeks training period, there werggmsficant
differences between the training group and the waiting group.

6-weeks period 6-weeks period 12-weeks period
Training group ~ Waiting group Training group

(t1—t2) (t2—t3) (t1 —t3)
# training sessions 30.2 (3.2) 32.4 (5.2) 49.2 (2.6)
# totally solved tasks 1635.0 (293) 1737.0 (266) 2575.0)414
# solved tasks per session 54.0 (7.2) 54.0 (5.7) 52.2 (7.0)
Highest skill reachet
(Number representatiops 38.6 (8.3) 38.7(8.4) 40.5(6.8)
Highest skill reached 40.5 (14.7) 39.1 (15.5) 43.0 (15.1)

(Arithmetic operations
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a The skills of the adaptive model are divided into the contets of the training program described
in Sec. 3.2.2. Skills in each area are ordered by their numbtr the easiest skill having the lowest
number.

(t2 —t3) yielded an additional trend of improvement (additign= .072; subtraction:
p = .066).

HRT (addition and subtraction). The interaction between training and group
was significant only for subtraction (subtractiop:= .002; additionp = .375),
where children showed a large effect size=(0.52). The prolongation of the
training yielded an additional improvement, which was gigant only for addition
(p=.004).

Number line (NL). The quality of the spatial number representation was miedsu
by calculating the distance (percentage) and the variahtieeadistance between
the correct and the indicated location of the number on thebau line. In the
number range from 0-10, children tended to locate the cbpesition on the num-
ber line more accurately after training £ .058) and showed decreased variance
(p=.022). The interaction between training and group was sicamifi only for the
variance (meanp = .12; variance:p = .034). Children demonstrated medium ef-
fect sizes for both measures (mean: 0.28, variancer = 0.38). The prolongation
of the training did not yield any further benefit. In the numbenge from 0-100,
interaction between training and group was not significar@gn: p = .33; variance:

p = .50). The prolongation of the training had a beneficial effestan: p = .042;
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Table 4.2: Training effects of training group TG (n = 15) and waiting group WG (n ¥di¥ mathematical performance (MegngSD 0)).
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Tp<.l,*p<.05 *p<.01,***p < .001

@ number of correctly solved tasks

b distance (percentage) from correct position
¢ variance of distance (percentage) from correct position

d time (t1-t2) x group

€ Effect sizes of interaction timefty) x group. r = .10: small effect, r = .30: medium effect, r = .Tge effect
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Table 4.3: Characteristics of the three example cases. The children included in thetcalses
were girls of similar age with a number of complete training sessions close to 30.

Sex Age Class Played sessions Solvedtasks Tasks per Session
Anne female 8;11 3 28 1272 45.4
Eva female 9;8 4 33 1803 54.6
Jane female  9;10 4 33 1795 54.4

variance:p = .05). In the number range from 0-1000, children tended totéotiee
numbers more accurately only after 12 weeks (mgera:.096; variancep = .331).

NC and Estimation. In these two tasks, the interaction between training andgr
was not significant (Estimatiorp = .11; NC: p = .65). Unexpectedly, the waiting
group showed a significant improvement in the Estimatioh fes= .039). This
significant result stems from outliers with large improvemé&hildren with two
correct answers &t and 17 correct answerstaj due to not understanding the task
attq.

Feedback questionnaire Children generally liked the training (average scor€: 3
(SD o = 0.55), scale: G- 4) and rated its difficulty as appropriate (average rating:
1.7 (SDo =0.74), scale: 0-4). They also reported that the training helped them
to improve in mathematics (average scorel D o = 0.89), scale: G- 3). For
both groups, there was no correlation between the ratimgghéodifficulty and the
liking (training group: p = —0.07, p = .82; waiting group: p = 0.25, p = .38).
Furthermore, there were no significant differences betwleescores of the training
and the waiting group.

4.3.2 Qualitative analyses

To (qualitatively) assess the concept of the student moutktize controller, we con-
ducted case studies with three children for different dorsaf the learning program.
We were patrticularly interested in analyzing the path tgfotihe skill net for differ-
ent children and the association of training success witterprogram with external
pre- and post-test results. Furthermore, the case studieslp an illustration of the
concept of the learning program and the operation of therotbert In the following,
the path through the skill net and the training success oWastdected children is
described. The children and their training charactegssie depicted in Tab. 4.3.
The analyses stem from the 6-weeks training period.

Subtraction 0— 100 The first case study includes Anne and Jane. We analyzed
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Figure 4.2: Skill sequences (a) and number of played samples (b) in subtractionOkbod for
Anne and Jane. The skills correspond to the subtraction skills of the $tobetel
illustrated in Fig. 3.4 and explained in Tab. 3.1. While Jane took the direct patinh
the section and needed few samples to master the subtraction skills, Arquenese
exhibits several branches and she therefore spent more time in sulotractio

their learning paths (path through the skill net) for sutiticn in the range from
0-100. Figure 4.2 illustrates the sequence of skills of tixe ¢hildren and the re-
spective numbers of played samples. It becomes clearhdaith through the skill
net is different for each child (see Fig. 4.2(a)). While Jayaktthe straight path
through the subtraction section, the path of Anne exhil@t®al branches as she
had to go back and consolidate more basic skills. This faatss demonstrated
in Fig. 4.2(b). Jane needed in total only 71 samples to passithtraction 6- 100
section, whereas Anne solved 241 samples to work throughptuit of the skill
net. The external training effects in subtraction from @ Itheasured by the AC
subtraction test, Sec. 4.2.2) support this result. In th@imeasurement before the
training, Jane solved in total 40 tasks, 39 of them correoe \#as already proficient
in subtraction tasks between 0-100 before the training.ohtrast, Anne solved in
total 26 tasks, 10 of them correct. After the training, Annanaged to solve 23
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Figure 4.3: Average distance (in %) from correct position over the course of theirica(a) as
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well as skill sequences in the arearafmber representatiorfsom 0-100 (b) for Eva
and Jane. The skills correspond to the number representation §kftsA) of the

student model illustrated in Fig. 3.4 and explained in Tab. 3.1. Jane mastergdlth
directly, while Eva had to go back and rehearse easier skills.

tasks correctly; she especially improved in subtractimoliing borrowing. Also
Jane showed an improvement after the training, she solveéas48 correctly. How-
ever, most of her improvement stemmed from subtractionstaskhe range from
0-1000 (the AC subtraction test contains 32 tasks betwe#d0)-the rest of the
tasks is in the range from 0-1000).

Number line 0-10Q For Eva and Jane, the ability to place a number on a num-
ber line (between 0-100) was compared. This ability is &dimby the skills
Arabic—Numberlineand Verbal-Numberlinein the number range from 0-100 of
the skill net (see Fig. 3.4). Before the training, Eva managedask with an aver-
age distance of 14% (measured by the NL 100 test, Sec. 4.2.2). In contrasg Jan
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reached an average distance of%. Thus, Jane was already more accurate than
Eva at the beginning of the training. This fact was confirmednd) the course

of the training. While Eva needed 127 samples, to pass thectgp skill, Jane
passed with only 21 samples. The maximum deviation for a Eatogoe rated as
correct was 5%. Figure 4.3(a) displays the improvementesuowver the course of
the training. Recorded input data from all children shows thast samples exhibit
an error of 0- 20% with only a few samples lying above this range. Thereffitre
ting has been done using a generalized linear regressiorlpassuming a Poisson
distribution of the data. The sample indices have been narebbetween 0 and 1.

The training sequences in the areanaimber representationa the number range
from 0-100 of the two children show the same picture (see4R(b)). Jane took the
direct path through the skill net, whereas Eva had to go bewgral times. After the
training, Eva achieved an average deviation & in the NL 100 test and Jane’s
average deviation wasB%. While Eva improved significantly, Jane stagnated on a
high level.

4.4 Discussion

Although many children experience difficulties in learnmgthematics, few studies
have investigated targeted interventions based on neagoHo/e findings of the typ-
ical and atypical development of mathematical abilitiesthis thesis, we developed
a computer-based intervention targeting children witfidifties in learning math-
ematics and performed a first evaluation of its effectiven&he results achieved
are promising and show significant improvements in subtracnd number rep-
resentation. Moreover, they confirm the behavioral effetisined in a previous
study employing the computer-based training progkascue Calcularis (Ku-
cian et al., 2011).

Training. The first pilot study was conducted not only to assess theaeffi of

the training program but also the practicality and adaptahlof the learning en-
vironment. Feedback from children who have completed tamitryg and rated
the difficulty level of the learning program as appropriatenfirms that the qual-
ity of the adaptation and the estimation of the children'®wledge were suffi-
cient. The evaluation of the feedback questionnaire alpp@us the improvement
of mathematical performance measured in the externat t€stsaaverage, children
reported that the training had improved their mathemapealormance. This sub-
jective feeling of improvement and learning success migg @anhance positive
self-concepts (Ashcraft and Faust, 1994; Spitzer, 2009¢relver, children also
indicated that they liked to train with the program. The papity of the learning

environment is beneficial as training can only be succedstié children are mo-
tivated. Furthermore, the finding demonstrates that thepcden is an attractive
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medium for children and is in line with previous studies (iKuhnd Kulik, 1991,
Schoppek and Tulis, 2010; Kucian et al., 2011).

Behavioral effects. The results of the user study reveal positive training éffec
in mathematical skills after completion of the training. @hen significantly im-
proved their subtraction skills over the course of the 6kseeaining: They were
not only able to solve more complex subtraction problemsd{ome-large effect in
the AC subtraction test) but also solved subtraction teessief (large effect in HRT).
This improvement in subtraction supports the notion of égo@hathematical under-
standing as subtraction is considered as a main indicatdinéodevelopment of the
spatial number line representation (Dehaene, 2011). &umibre, the decrease in
problem solution times can be seen as a shift to increasecetaieval (Geary et al.,
1991; Lemaire and Siegler, 1995; Barrouillet and Fayol, 1988dan et al., 2003).
Compared to subtraction, children demonstrated smallectsfin addition (medium
effectin the AC addition test). This may be due to the adapiature of the interven-
tion: Addition and subtraction tasks are trained in patdtie each difficulty level.
As children performed better in addition in the pre-testytheceived more training
in subtraction during the intervention. Interestinglye thaiting group did not show
significant training effects in the HRT subtests after titeweeks trainingtp — t3).
This fact might stem from the low number of participants onfrthe adaptability of
the training program leading to a different training trageyg for each child.

Children were also able to locate the position of a number onnaber line more
accurately after training. In the number range between,@kE)deviation from the
correct position was reduced by 33% after six weeks. Chileéspecially also re-
duced the variance (medium-large effect size). No furtimprovement was yield by
the prolongation of the training. Yet, most children pasedskills in the number
range from 0-10 in the first few weeks and thus did not traimis tange anymore in
the second part of the training. In the number range betwei00there was no sig-
nificant interaction. However, the training effect was #igant after three months
(reduction of deviation about 30%). This delay is probahle do the fact, that
some of the children arrived at this level only in the secoad pf the training. Bet-
ter performance in the number line task indicates refinemktite internal mental
number line and more accurate access to it and confirms thkksre$ previous stud-
ies (Siegler and Booth, 2004; Booth and Siegler, 2006, 200®efida et al., 2008)
which demonstrated significant correlations between metical learning and the
guality of numerical magnitude representation.

No significant training effects were observed in the NC antihizgion tests. These
results however need to be interpreted with caution becaiseiling effects. At
the pre-tests, children solved on average 80% of the NC a¥%gdof3he Estimation
tasks correctly. Furthermore, some children even readieethaiximum score. This
result is in line with previous findings (NMband Rousselle, 2011).
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For most of the tasks tested before and after training, pgaton of the training
from six weeks to 12 weeks yielded a beneficial effect. Therawgment of the
training group over the whole training periad { t3) was significant for all tests ex-
cept the Estimation and NC tests. In some tasks (for examiplEdQ and NL 1000),
the effects of the second part of the training were similanigher to those of the
first part. This may be due to two facts: First, as the traiciongers the number range
from 0-1000, most children had not worked through the wh@ming after the first
six weeks. Second, the intervention trains different abgdj whose effects support
each other. It has been shown that the training of concephaaledge and number
representations leads to an improvement also in mentallasilon (Kaufmann et al.,
2003, 2005). Furthermore, the training of arithmetic opers implicitly deepens
the knowledge of number representations. These suppaffegts between the
different abilities, however, need time to develop (Kaufimat al., 2003, 2005).
The prolongation of the training time from six to 12 weeksshmuobably led to a
strengthening of the mutual effects between the traininguimber representations
and the training in arithmetic operations.

Although a training program focusing on a broad range of erattical skills and
showing a high degree of individualization seems benefitialso poses challenges
for evaluation. First, training a variety of skills shorgethe training time of each
specific skill and thus leads to smaller training effectanasitioned above. Second,
due to the high adaptability of the program, each child pessa different train-
ing trajectory,i.e., the children train different skills over the course of trening.
Therefore, training progress is difficult to compare andirgistencies in training
effects may be observed.

Limitations. Some limitations regarding the participants and the stleygn have
to be considered. First, there were no measurements dogreaaft2-weeks rest
period. Thus, for the 12-weeks training period, the tragnaffects could not be
compared to the effects of a rest period. Regarding the signifieffects of the 6-
weeks training, we conclude that also the effects of the &2ks training period can
be plausibly attributed to the training.

Second, children were not tested according to common ieritdrDD. Children
were indicated by parents and teachers as exhibiting difésuin learning math-
ematics. Generally, participants indeed demonstratedthemetical performance
below the 28" percentile in the pre-tests (the four children performibgwe the
25N percentile had insufficient grades in math). As describe8en. 4.1, the par-
ticipants’ mean score even demonstrated an arithmetiopeaince around the 10
percentile. It has been shown that the cognitive charatiesiof low performing
children are indeed dependent on the cut-off criterion usemvever, children ful-
filling a softer criterion exhibit similar difficulties to tse fulfilling stronger criteria,
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but to a smaller extent (Murphy et al., 2007). Therefore,less strict criterion for
deficits in mathematical performance seems also informativ

Third, the effects of the training period were only compaiethose of a rest period.
No comparison to a control training was conducted. As thg fiflot study was
designed to evaluate the concepts used in the training gmo@nd to assess its
adaptability, the design used seems sufficient. BB F-study we also compare
the effects to a control training.



CHAPTEHR

Learning curve analysis

When building a computer-based learning program, it is nbt essential to assess
the effectiveness of the training, but also the quality amafracteristics of its compo-
nents. In a first step (detailed in Chapter 4), we have evaluhteeffectiveness of
Calcularis in two user-studies: ThBMBF-studyand theSWISS-studyBased on
the log file data collected in these two studies - containihgseer actions (such as
keyboard input and keystrokes) along with respective tiemeps - we validated the
skill model ofCalcularis by employing an Additive Factors Model (AFM) (Cen
et al., 2007, 2008).

AFMs are popular models for analyzing and improving studeatning. However,
applying such models to data from tutoring systems that eyngimastery-learning
mechanism whereby poorer students get assigned tasksetibat students do not
may result in potential parameter estimate biases. Weftirerpropose a range of
alternative logistic regression models for model valiolatand extensively analyze
and evaluate them on the data collected in the user studies.

To facilitate the model validation conducted in this chapewell as the data-driven
analyses performed in Chapter 6, we introduce the concepepikills’. Key skills
are defined in terms of subject-dependent difficulty, theythe most difficult skills
for the user to pass. More formally,

Definition 5.1. A skill § is akey skill for a user U, that is $€ Ky, if the user went
back to a precursor skill $at least once before passing.S

From this follows that the set of key skiliSy may be different for each user (and
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it typically is). In the sequence shown in Fig. 3.6, user 2 makey skills, while
user 3 has one key skill (colored in green) and user 1 hasaidwsyr skills.

In the following, we first explain the validation of the skithodel used in
Calcularis by employing the widely used approach of AFMs. We then pre@bs
ternate logistic regression models, explicitly desigreeadjust for mastery-learning.
Finally, we provide a detailed evaluation and comparisothefdifferent models
regarding their properties as well as prediction accuracygew data.

5.1 Validation of skill model using AFM
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AFMs are widely used for model validation. Flat learningvag can for example
be an indication for an underestimation of student knowde(igen et al., 2007).
Based on AFMs, skill models can be refined and improved (Kagiet al., 2013;
Stamper and Koedinger, 2011), which inspired the designowtininstructional
tasks (Koedinger et al., 2010). In the following analyses, agsess addition and
subtraction skills ofalcularis using AFMs.

The data set used for the experimental evaluation was tetlec theBMBF-study
(see Chapter 4). It contains recorded log files from 134 ppatits (69% females).
64 participants (73% females) were diagnosed with devedopah dyscalculia (DD)
and 70 participants (66% females) were control children (d@g collected log
files contain six weeks of training with at least 24 completessons (of 20 minutes)
per child. On average, children completed®8essions (S = 3.3). Over the
course of the training, each child solved 1521 tasks ¢SB269), while the number
of solved tasks per session corresponded t@ B2D o = 7.2).The following analy-
ses as well as the experimental evaluation include all mddéind subtraction skills
in the number range from 0-100 of the skill model@flcularis, resulting in a
total of 20 skills included. These skills are colored in dankquoise in Fig. 3.4. The
notation of the different skills is explained in Tab. 3.1rBar analyses, we include
only so called ‘regular’ samplese., random re-tests of already mastered skills are
excluded, which results in a data set containin{336 tasks. We assume that the
random re-tests help to prevent forgetting, but do not ieducther learning.

To validate the skill model ofalcularis, we fit a standard AFM (see Eq. (2.2))
with the following parameters to our data set: the randomct#l, for student pro-
ficiency, the fixed effecBy (difficulty) and the fixed effecii (Ilearning rate) for the
skills S. The fitted random effedd, amounts to 51 (SDo = 0.867), the fixed
effectsBx andy are displayed in Tab. 5.1. Only seven skille.( 35% of the skills)
show significantly positive slopegi(> 0). Skill Support Subtraction 2,&xhibits
the largest learning rate witlg = 0.836 (SDo = 0.411), whileSupport Addition 1,1
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possesses a large negative learning rate with —0.042 (SDo = 0.001). There-
fore, the model predicts little or no learning for most of didls.

The high interceptg - the intercept of3x = 3.26 for Addition 1,1is equivalent to

an initial probability of 096 of being correct - suggest that some of the skills might
be very easy for the students, which causes ceiling effasts.therefore tried to
explain the flat learning curves with the following two hypeses:

1. Students might not have improved in all skills presenhadnalysis, but only in
skills they had problems with.

2. Due to ceiling effects, students might not have loweresir tlrror rate, but be-
came faster (smaller answer times) in answering the tasks.

3. The skill specification of the model might be suboptimal.

In our first hypothesis, we only assessed the key skills (sfe91) of the children.
Fitting an AFM over the key skills of the children naturallyepents ceiling effects.
Not unexpectedly, the fitted model exhibits a lower studemtewce withg, = 0.11
(SD 0 = 0.33) as all children tend to start with lower intercepts inithpgoblem
skills. The fitted fixed effects are both significant wfth = 0.33 (SD o = 0.03)
and y = 0.006 (SDo = 0.0004). The significantly positive slope indicates that
on average children improved with every opportunity theg tapply a key skill,
which confirms our first hypothesis.

To investigate the second hypothesis, we fit an AFM over @itamh and subtraction
skills, but instead of using the answers of the childrenr@xifwrong), we used their
answer times (in milliseconds). To fit this model, we adapted AFM to apply a
Poisson (instead of a logistic) regression. Letfipg= [0, o[ denote the answer time
of studentp on itemi, we obtainyp; ~ PoigApi). The linear componenty,; of the
Poisson-AFM can then be formulated as

log(Api) = ep‘f’ZQik'(ﬁk‘f'W‘Tpk)- (5.1)

The fitted random effed, amounts to @1 (SDo = 0.45), the fixed effectgy and

¥ are displayed in Tab. 5.2. In the case of the Poisson-AFMathegslopesy) in-
dicate that children got faster with each opportunity. Falt $\ddition 1,1children
for example started with an average answer time.69&econds and improved to
an average of @5 seconds after ten tasks. Of the 20 investigated skillshbsv
significantly negative slopes. The sk8upport Subtraction 2,2xhibits a signifi-
cantly positive slope withy, = 0.0004, however, the learning rate of this skill was
positive (4 = 0.006) when applying the standard AFM (see Tab. 5.1).Aetdition
1,1 TG Subtraction 1,1Subtraction 2,land Support Addition 2,thildren neither
improved in learning rate (see Tab. 5.1) nor in answer tinseg (Tab. 5.2). Our
second hypothesis therefore holds true for the majorithefnvestigated skills.
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Table 5.1: Fixed effectsBx and yk of the AFM for the different skills5; along with standard devi-
ations (in brackets) and significance values. Only 35% of the skills shavifisantly

positive learning rateg.

Skill

B« (SD o)

¥ (SD o)

Support Addition 1,1
Support Subtraction 1,1
Addition 1,1
Subtraction 1,1

Support Addition 2,1
Support Addition 1,1 TC

Support Subtraction 2,1

Support Subtraction 1,1 TC

Addition 2,1
Addition 1,1 TC
Subtraction 2,1
Subtraction 1,1 TC
Addition 2,1 TC
Subtraction 2,1 TC
Support Addition 2,2
Support Subtraction 2,2
Addition 2,2
Subtraction 2,2
Addition 2,2 TC

Subtraction 2,2 TC

2.77 (0.13)%**
3.21 (0.20)***
3.26 (0.22)**
3.11 (0.15)**
1.38 (0.34)**
1.20 (0.26)***
1.56 (1.45)
0.93 (0.11)**
1.99 (0.11)**
1.93 (0.11)**
2.04 (0.10)***
1.65 (0.01)**
1.42 (0.10)**
1.04 (0.10)***
2.20 (0.45)**
0.53 (0.17)*
1.54 (0.12)**
0.97 (0.10)***
1.23 (0.10)**

0.17 (0.09F

-0.042 (0.001)***

-0.007 (0.022)
-0.012 (0.030)
-0.020 (0.008)*
-0.011 (0.009)
0.024 (0.011)

0.836 (0.411)

0.009 (0.001)***

0.006 (0.002)**
0.001 (0.004)

-0.001 (0.001)

-0.007 (0.002)***

-0.002 (0.001)
0.002 (0.002)
0.016 (0.018)
0.006 (0.003)
0.014 (0.004)**
0.004 (0.002)
-0.002 (0.003)

-0.003 (0.002)

Tp<.l,*p<.05 *p<.01, ***p < .001
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Table 5.2: Fixed effect3x andy of the Poisson-AFM for the different skil& along with standard

deviations (in brackets) and significance values. Negative yriadicate a decrease of
answer times. Children significantly improved their answer times for 75% okilig. s

Skill

B« (SD o)

Yk (SD o)

Support Addition 1,1

Support Subtraction 1,1

Addition 1,1
Subtraction 1,1

Support Addition 2,1

Support Addition 1,1 TC
Support Subtraction 2,1

Support Subtraction 1,1 TC

Addition 2,1
Addition 1,1 TC
Subtraction 2,1
Subtraction 1,1 TC
Addition 2,1 TC
Subtraction 2,1 TC

Support Addition 2,2

Support Subtraction 2,2

Addition 2,2
Subtraction 2,2
Addition 2,2 TC

Subtraction 2,2 TC

9.40 (0.0393)***
9.05 (0.0393)***
9.07 (0.0393)***
8.93 (0.0393)***
9.99 (0.0393)***
1.01 (0.0393)***
1.05 (0.0392)***
1.03 (0.0392)***
9.34 (0.0393)***
9.26 (0.0393)***
9.49 (0.0392)***
9.55 (0.0392)***
9.85 (0.0392)***
1.01 (0.0392)***
1.07 (0.0393)***
1.06 (0.0393)***
9.73 (0.0393)***
1.00 (0.0393)***
1.02 (0.0392)***

1.04 (0.0392)*+*

-0.0230 (0.000037)***
-0.0054 (0.000057)***
-0.0298 (0.000079)***
0.0033 (0.000028)***
0.0007 (0.000025)***
-0.0052 (0.000027 )***
-0.2042 (0.000673)***
-0.0030 (0.000003)***
-0.0002 (0.000007)***
0.0000 (0.000013)

0.0018 (0.000007)***
-0.0007 (0.000005)***
-0.0019 (0.000005)***
-0.0056 (0.000007)***
-0.0199 (0.000032)***
0.0004 (0.000009)***
-0.0042 (0.000013)***
-0.0033 (0.000006)***
-0.0041 (0.000007)***

-0.0043 (0.000005)***

Tp<.l,*p<.05 *p<.01,***p <.001
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The conducted analyses confirm our first hypothesis: Overdhese of the training,
children improved on their key skills. However, as the sdteyfs skills tends to be
different for every child, we cannot make statements abdmiirhprovement on spe-
cific skills. Our second hypothesis was only partially canéd: Some of the skills
show neither positive learning rates nor decreasing answes with increasing op-
portunity count. These flat learning curves do, howevercoote unexpected. From
previous work (Murray et al., 2013), we know that learningves are prone to stu-
dent attrition when applied to data generated by a maséanyring algorithm such
as Bayesian Knowledge Tracing (BKT) (Corbett and Anderson4t98s students
are aligned by opportunity count, the right hand side of gaering curve fitted by
an AFM is dominated by students, who require a large numbeppbrtunities to
master a skill, which might in turn lead to underestimatibirearning ratess. Be-
fore considering a revision of the skill model as suggestethb third hypothesis,
we therefore investigated the use of alternate logisticesegion models for valida-
tion. In the next sections, we introduce variations of lagisegression models and
discuss their parameter estimations and prediction ofhiegiin the data.

5.2 Alternative logistic regression models
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Learning curves are averaged over many students. The ARMsathe students
by opportunity count. When applied to mastery-learning diatanay suffer from
student attrition with increasing numbers of opportusitié/e therefore propose al-
ternative logistic regression models that adjust for mgdt@sed data and therefore
reduce the introduced bias.

Learning Gain Model (LG) . With the LG model, we introduce a new alternative
to the AFM. The LG model avoids student attrition by alignthg students at their
first sample (when they start the training) and at their lastde, i.e., when they end
the training (independent of whether they mastered théakilot). The LG model

is a variation of the AFM (see Eq. (2.2)). Lettigg < {0,1} denote the response of
studentp on itemi, we obtainyp; ~ Binomial(1, 1,). The linear componerty; of
the LG model is then defined as

logit( i) = 6p + ZQik - (Bc+ Yk Npi), (5.2)

where the random effe@, denotes the student proficiency. The fixed effgcte-
scribes the difficulty and the fixed effegtthe learning rate of a skif (knowledge
component).qy is 1, if itemi uses skillS; and 0 otherwise Ny € [0,1] denotes
the (normalized) number of practice opportunities stugelmad at skillS., i.e., we
normalize over all opportunities studgmhad at skillS, during the training. Rather
than measuring the amount learned per opportunity, thisshegtimates the learn-
ing gain of the students over the course of the training.
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Alternative logistic regression models To adjust for mastery-based data, alterna-
tive ways to fitting the curves have been proposed in prewaur& (Murray et al.,
2013) for BKT. In the following, we reformulate these suggess and apply them to
logistic regression models. Théastery-Aligned Model (MA) can be formulated
using Eq. (2.2) for the linear component of the AFM, but wittlifferent definition
of Tpk. For the MA model, we count backwardB; is the number of opportunities
studentp had at skill§, as seen from mastery,,x is O at mastery, 1 at one oppor-
tunity before mastery and so on. Thus, the MA model aligndesits at mastery,
which solves the problem of student attrition. A differerdynto deal with student
attrition is to group students by the number of opportusitieeded to first master a
skill. The linear component of thiBisaggregated Model (DIS)can be defined as
follows:

logit(75i) = Bp+ G (Bcm+ Yem: Tpk), (5.3)
k,m

where the difficultyBcm and the learning ratg n are fit by skill §; and mastery
groupm. By combining the MA and the DIS models, tiMastery-Aligned and
Disaggregated Model (DISMA)can be constructed. This model disaggregates stu-
dents into groups based on the number of opportunities deau# mastering the
skill and furthermore aligns the students at mastery.

All the newly introduced models are again generalized lineaxed models
(GLMM) (Boeck, 2008) as the linear predictap; contains random effects (for the
students) in addition to the fixed effects (for the skills).

5.3 Comparison of model properties

To evaluate the different logistic regression models agit firoperties, and to assess
which modeling technique should be used to quantify legrimnmastery-based data
sets, we conducted two experiments on the data set alsoardbd model validation
via AFMs (described in Sec. 5.1). In a first experiment, wedyaeal the parameter
fit of different regression models and evaluated their parémce in prediction of
new items. Furthermore, we compared prediction accuracggression models to
that of traditional BKT. We used all the samples until the dfgh mastered a skill
and predicted the outcome of the first re-test. In a secondrarpnt, we evaluated
the prediction accuracy of regression models as well as BKé&mwgeneralizing to
new students. We fitted the model based on a subset of stuslahisredicted the
outcome for the rest of the students.

Prediction accuracy for both experiments was measuredgugia root mean
squared error (RMSE), the accuracy (number of correctly ipted student suc-
cesses/failures based on a threshold 8f 8nd the area under the ROC curve (AUC).
Prediction accuracy was computed using bootstrap aggoegaith re-sampling
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(n= 200) in the first experiment and a student-stratified 10-fotbs validation in
the second experiment.

Fitting for the regression models was don&insing thelme4 package. To be able
to compare the parameter fit of the different models, we didcoastrainy to be
greater than or equal to zero. Parameters for BKT were eddriat maximizing
the likelihood of the observed data (see Sec. 2.4) using dai®lead simplex op-
timization (Nelder and Mead, 1965). This minimization teicjue does not require
the computation of gradients and is for example availabf@imsearch of Mat1lab.
The following constraints were imposed on the paramefgys: 0.3 andps < 0.3.

For our analyses, we used two versions of the data set dedanlSec. 5.1. The
first version (denoted agersion lin the following) contains the samples of all chil-
dren at the respective skills (original data set), and tloerse version (denoted as
Version 2in the following) includes only children that mastered tespective skills.
Version 2of the data set makes the inclusion of the MA and DISMA modeksible.
However, it excludes students not mastering a skill fromahalysis, which leads
to a more homogeneous data set, but due to the drop-out of chddyen with DD,
also to a less interesting data set. While the original daté\V&esion ) contains
36350 tasks\ersion 2of the data set contains only 'Z@4 tasks.

5.3.1 Analysis of the parameter fit

In this experiment, we investigated the parameter fit ofdhegyression models on
the data seVersion 1 The AFM, the LG model and the DIS model. The three
models obtain very different parameter estimations forstme data. As already
observed in Sec. 5.1 (detailed results in Tab. 5.1), the ARddlipts learning (posi-
tive ) for 35% of the skills. The LG model on the other hand fits pesitearning
ratesy for all skills and the DIS model obtains positive learnintesa m for 92%

of the cases. Hence, the models predict very different atsafiearning in the data
and we therefore analyze their residuals and predictioaraces in the following.

Residual analyses
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All three models tend to overestimate the outcome for badlfygoming students
and underestimate the outcome for well performing studentss finding is also
visible in Fig. 5.1, which displays the mean residualwith r = fitted outcome
- true outcomeby estimated student proficien@. Furthermore, the residuals
are strongly correlated to student proficienpgdy = —0.9621, p ¢ = —0.9612,
ppis = —0.9532). These results are as expected, because the moael€tums are
averaged over all the students. While the residuaee very similar for the AFM
and the LG models, the DIS model exhibits less variance idestuproficiency. As
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Figure 5.1: Mean residuals by estimated student proficiend, for the AFM (left), the DIS
(center) and the LG (right) model. All three models tend to overestimate theroatco
for weak performers and underestimate for well performing students.

the students are grouped by the number of opportunitiesegeedmaster a skill,
student proficiency within a group is more homogeneous.

For the AFM and the LG model, we also analyzed the mean rdsiduae-
garding the skill parameterf¢ and y from the models. There are no signif-
icant correlations between skill difficultyfy and mean residuals, neither for
the AFM (papm = 0.1677 parpm = -4798) nor for the LG modelg g = 0.3777,
parm = .1066). From Fig. 5.2(a), which displays the mean residudly esti-
mated skill difficulty B, it is also obvious that these measures are not related for
both models. The residuatsare also not correlated to the estimated learning rate
W (parm = 0.2058, parm = .3840; p g = 0.1051, p.¢ = .6592) as displayed in
Fig. 5.2(b). Figure 5.2(b) demonstrates how different taemeter fits of the two
models are regarding the learning rayesThe AFM fits learning rateg, in a very
small range around 0 and 45% of the learning rates are nofisantly different
from zero. The outlier stems from a skill played by only twodsnts resulting in a
total of 14 solved tasks for this skill. Learning ratgditted by the LG model are all
positive and exhibit a larger variance.

The mean residualsover time are displayed in Fig. 5.3. For the AFM and the DIS
model, an averaging window & 10) was used to compute the mean residuals
with increasing opportunity count. Both models underedntiae outcome for less
than 20 opportunities and overestimate it for larger nusbEor the AFM, this ob-
servation is confirmed by the significant positive correlatbetween the opportunity
count and the mean residualgoary = 0.3950,parm < .001). This result probably
stems from the fact that the well performing students makeskills much faster
and therefore student numbers drop with higher opportwatynts. The DIS model
exhibits a lower variance, as this model groups the studsntise number of oppor-
tunities needed to master a skill and thus student perfazenathin a group is more
homogeneousop;s = 0.0860,pp;s = .4785). For the LG model, the mean residuals
r are plotted by the normalized opportunity count in Fig. 5i@ht). The LG model
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Figure 5.2: Mean residuals by estimated skill difficultyBx (a) and learning rateg (b) for the
AFM and LG models. For both models, residualare neither correlated to the skill

difficulty Sk nor to the learning rateg.

underestimates the outcome in the beginning and in the etdwerestimates in-
between. Through normalizing the opportunity count, wgrathe beginning and
the end of the training for each student. We therefore end itlp wore observa-
tions from low performing students in the middle and the nhaderestimates the
outcome in this part.

Re-test prediction

The residual analyses demonstrate that the models inténpreame data very differ-
ently, i.e., the parameter fit and properties of the modelg adot. To validate these
different parameter fits, we computed the prediction aayufar the first re-test
(data set/ersion 3 and compared it to a BKT model. The observed mean outcome
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Table 5.3: Prediction accuracy of first re-test for data ¥etsion land2. The values in brackets
denote the standard deviation. The best model per error measure igdrbaiéle Per-
formance of the AFM, LG and MA models is very similar, while the DIS and DISMA
models exhibit lower prediction accuracy. The AFM, LG and MA models algpear-
form BKT regarding predictive performance.

RMSE Accuracy AUC
AFM 0.3562 (0.0101) 0.8391 (0.0119) 0.6825 (0.0230)
Dataset: LG 0.3587 (0.0125) 0.8451 (0.0113) 0.6778 (0.0250)
Versionl  pis 0.3780 (0.0140)  0.8394 (0.0122)  0.6054 (0.0255)
BKT 0.3614 (0.0111)  0.8428 (0.0118)  0.6033 (0.0250)
AFM 0.3563 (0.0114)  0.8474(0.0123)  0.6622 (0.0250)
LG 0.3666 (0.0124)  0.8416 (0.0107)  0.6602 (0.0245)
\[/);t;jftz DIS 0.3765(0.0141)  0.8416 (0.0120)  0.5998 (0.0290)
MA 0.3633(0.0117)  0.8401 (0.0114)  0.6508 (0.0255)
DISMA  0.3783(0.0133)  0.8396 (0.0116)  0.6011 (0.0256)
BKT 0.3613(0.0111)  0.8423(0.0115)  0.6102 (0.0302)

over all re-tests is high with.8419. The AFM underestimates the true outcome
with an average prediction of&87, while the LG (average predictiord@08) and
DIS models (average prediction9d88) overestimate the true outcome. Prediction
accuracy for the different models is listed in Tab. 5.3. THeMAshows the best
RMSE RMSEfrp = 0.3562) and AUC RMSEyc = 0.6825), while the LG model
exhibits the highest accuraci¢curacys = 0.8451). As the performance of stu-
dents is generally high, RMSE and AUC are, however, bettelityumeasures than
accuracy. The LG model performs second best in RMBE $E s = 0.3587) and
AUC (AUC_g = 0.6778). However, the small differences between the AFM aad th
LG model along with the high variances of the error measurdgate that there
are no significant differences between the two models. Ti&rBddel on the other
hand demonstrates a considerably higher RMBE $ky s = 0.3780) and also ex-
hibits a low AUC AUCp s = 0.6054) compared to the two other regression models.
The DIS model estimates the paramet@¢s, and y m by skill and mastery group.
The resulting large number of parameters produces ovegitferformance on the
training data set supports the overfitting hypothesis: Ti&rodel outperforms the
AFM and the LG model in RMSE, accuracy and AUC on the training dat.

Interestingly, the AFM and the LG model also outperform theTBiKodel. The
RMSE of BKT RMSEkt = 0.3614) is higher than those of the two regression
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Figure 5.3: Mean residuals by opportunity count for the AFM (left) and the DIS model (center)
and by normalized opportunity count for the LG model (right). The AFM ang
models underestimate the outcome for small opportunity counts and overestimate f
larger numbers. The LG model underestimates the outcome in the beginnimg and
the end and overestimates in-between.

models, but standard deviations are again large. BKT exhéspecially a lower
performance in AUCAUCgkT = 0.6033). The better performance of the regression
models might come from two facts: First, the regression risofiethe parameter
6, for the individual student’s proficiency, while traditidrBKT does not do any
student individualization. Second, BKT assumes that threreiforgetting, while
the regression models are allowed to fit negative learnitesia. However, the
time between mastering a skill and the first re-test tendge tofg. On average, the
first re-test was done after 140 opportunities. A logistgression analysis shows,
that there is indeed a small, but significant amount of fangg{(intercept = 1.8545,
slope =-0.0012) in the data. The probability of being cdreganastery amounts
to 0.8647 and decreases tB@19 after 140 opportunities. Note, however, that the
forgetting hypothesis is only valid for the AFM, as learnragesy; are all positive

for the LG model.

Experiments on data set

Version 2

To be able to include the MA and DISMA models in our analysesailgo evaluated
prediction accuracy for the first re-test based on dat¥ession 2

For this version of the data set, the LG and MA models predisitiye learning
ratesy, for 100% of the skills, while the AFM fits positive learningeay, for 54%
of the skills. The DIS and DISMA models show positive leagiiatesy m, for 90%
of the mastery groups. Residualef the DISMA model are very similar to those
of the DIS model and we therefore only discuss the mean ralsddor the MA
model. Figure 5.4 displays the mean residudly estimated student proficienéy
(left), skill difficulty Bk (center left), learning rateg (center right) and opportunity
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Figure 5.4: Mean residuals by estimated student proficien@y (left), skill difficulty B¢ (center
left), learning rates (center right) and opportunity count (right) for the MA model.
The MA model tends to overestimate weak performers and underestimateesell p
forming students. Residuatsare again uncorrelated {8 and . The MA model
overestimates the outcome in the beginning and underestimates it with increpsing o
portunity count.

count (right). Similarly to the other models, the MA modehds to overestimate
the weaker students and underestimate the well perforntudgests (see Fig. 5.4
(left)). The correlation between estimated student prexficy 6, and mean residu-
alsr is again stronggua = —0.9497, pma < .001). As for the other models, mean
residualg are uncorrelated to skill difficultygx (oma = 0.2916, pua = .3118) and
to learning ratesk (oma = —0.2993, pya = .2986). The MA model fits positive
learning ratesy for all skills § (see Fig. 5.4 (center right)). To compute the mean
residuals by opportunity count, we again used an averaging window (0). Un-
like the other models, the MA model overestimates the outcomthe beginning
and underestimates it with increasing opportunity courttis Tesult is due to the
mastery alignment of the model: As well performing studer@sd less opportuni-
ties to master a skill, student attrition occurs in the beijig, where only weaker
students remain in the analysis.

We again validated the parameter fit of the different modglpredicting the first
re-test and comparing prediction accuracy to BKT. Predictiocuracy for the dif-
ferent models is listed in Tab. 5.3. The AFM performs bestalberror measures
(RMSEgm = 0.3563, AUCARMm = 0.6622). The performance of the LG model
(RMSEg = 0.3666,AUC ¢ = 0.6602) is again very close to that of the AFM. In-
terestingly, the MA model performs well in RMSRKSEya = 0.3633) and also
exhibits a large AUCAUCya = 0.6508). The high variances again indicate that dif-
ferences between the AFM, the LG and the MA models are notifgignt. The DIS
and DISMA models perform considerably worse in RMSE and AU&htthe best
three regression models. The performance of BKT is simildhédfirst version of
the data set, with an RMSRRMSEkT = 0.3613) in the range of the best regression
models and a significantly lower AUR Cgkt = 0.6102).
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Table 5.4: Prediction accuracy of student-stratified cross-validation for dat&esston land2.

The values in brackets denote the standard deviations. The best modeiqgyremea-
sure is marked bold. Interestingly, the AFM and LG models again outperBifh
regarding prediction accuracy.

RMSE Accuracy AUC
AFM 0.4200 (0.0184)  0.7525(0.0300) 0.6693 (0.0222)
Data set:
Version 1 LG 0.4164 (0.0175)  0.7583(0.0248) 0.6931 (0.0211)
BKT 0.4236 (0.0216)  0.7546 (0.0304) 0.6688 (0.0244)
AFM 0.4008 (0.0247)  0.7850 (0.0296)  0.6755 (0.0335)
Data set:
Version 2 LG 0.3936 (0.0241) 0.7859 (0.0295)  0.7199 (0.0260)
BKT 0.4032 (0.0241)  0.7849 (0.0297)  0.6810 (0.0289)

5.3.2 Generalization to new students

In a second experiment, we investigated how well the differegression models
generalize to new students using a student-stratified [0efwss validation. We
also compared prediction accuracy of the logistic regoessiodels to those of BKT,
as this is an often used approach in student modeling. Foshe¥ents (i.e., the stu-
dents in the test set), the number of opportunities to magerot known, therefore
only the AFM and the LG model were included in this analysigediction accuracy
along with standard deviations for the regression modelsedsas BKT is listed
in Tab. 5.4. The LG model shows the best performance in ablremeasures for
Version 1of the data set. The performance of the AFM is very close todhéhe
LG model in RMSE RMSE = 0.4164,RMSEry = 0.4200). The high variance
indicates that there are no significant differences betwleeitwo models regarding
RMSE. The AUC of the LG model is, however, considerably highan that of the
AFM (AUC g = 0.6931,AUCarm = 0.6693).

Both regression models again outperform BKT in RMEB8SEkT = 0.4236) and
AUC (AUCgkT = 0.6688), but the high variance indicates that there are nafsign
cant differences in RMSE between all three models and alstnn®tC between
the AFM and the BKT model.

The results foNersion 2of the data set show a similar picture. As expected, all
models demonstrate a higher prediction accuracywésion 2of the data set. As
this version of the data set includes only students thatenedta skill, overall per-
formance is more homogeneous and therefore predictiorsisrea
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5.4 Discussion

AFMs are widely used to analyze and improve student lear(@en et al., 2007;
Koedinger et al., 2013; Stamper and Koedinger, 2011). Hewé&FMs are prone to
student attrition when applied to data from mastery legmnis students are aligned
by opportunity count, the right hand side of the learningveuitted by an AFM is
dominated by students, who require a large number of opipitids to master a skill,
which might in turn lead to underestimation of learning saie Indeed, Murray
et al. (2013) observed that averaging over different stigdesth different initial
knowledge states and learning rates may result in aggdedening curves that
appear to show little student learning, even though a mattarning student model
such as BKT identified the students as mastering the skillsratime. This issue
can be solved by using alternative models for fitting therleay curves (Murray
et al., 2013). Our experiments on data from a mastery-legrstudent model (DBN
skill model) with confirmed learning (significant improvenmén external post-tests)
support these results: AFM fitted positive learning raidsr about half of the skills
and only 70% of the positivg were significantly different from zero. We therefore
extensively evaluated alternative modeling techniquesntalyze mastery-learning
data. Indeed, alternative models such as the LG and MA m@deticted positive
learning for all skills and learning rateg and generally showed a higher variance,
i.e., learning rates differed from skill to skill. Our remitlemonstrate that different
(although very similar) regression models explain the sdata in a different way
and that alternative regression models predict differattepns of learning. When
applying AFM to mastery-learning data sets, flat learninyes might therefore not
necessarily represent an insufficient skill model (whicksinot mean that the skill
model cannot be improved), but suggest the use of an aliezmabddeling technique
for validation of results.

Despite the different parameter fits, prediction accurddh@ regression models is
very similar. When it comes to generalizing to new studemis,tG model shows
the most accurate prediction. However, as we observe a laighnce in accuracy
measures, there is most likely no significant differencergdtion accuracy be-
tween the AFM and the LG model. Although the AFM performs hegiredicting
the first re-test, the high variance of the error measureisatek that there is no
significant difference between the AFM, the LG and the MA nisd&he disaggre-
gated models (DIS, DISMA) perform significantly worse thae bther regression
models. As the disaggregation into different subpoputetimcreases the number
of parameters, the lower performance of these models miglulule to overfitting.
This hypothesis is supported by the fact that the disagtgdgaodels outperform
the other regression models on the training data set inralt eveasures. Nonethe-
less, Murray et al. (2013) demonstrated the potential Gfglisegated models. Pre-
diction accuracy of these models should therefore be etesdwan larger data sets.
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We also compared the regression models to BKT, an approatisttraditionally
used for student modeling. BKT models are outperformed byt oidke regression
models when it comes to prediction accuracy on unseen ddta.AFM and the
LG model show a higher accuracy when predicting the firsest-tvhile the AFM,
the LG and the MA model generalize better to new students Bt&h Although
these differences are probably not significant (due to tgh fariance in the error
measures), they are still interesting. One reason for théewation might be that
BKT does not model forgetting. Our analyses have, howevenystthat there is
forgetting in the data. As the LG and MA models fit only postlearning ratesg,
this explanation is only valid for the AFM model. Another sea for the superiority
of the logistic regression models could be that traditi@tal does not have any stu-
dent individualization. However, Yudelson et al. (2013)astrated on a different
data set that a student individualized paramete(probability of knowing a skill
a-priori) does not lead to significant improvements. Thaoedor the difference in
prediction accuracy between BKT and logistic regressionetsotherefore needs to
be investigated further.
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CHAPTEHR

Evaluation of student model and
controller properties

In the previous chapter (Chapter 5), we performed a datawamalidation of the
skill model ofCalcularis. In this chapter, we extend this data-driven validation by
assessing the quality of the student model and the controhamesm based on the
input data collected in the user studies. Furthermore, s@ w@e the collected data
to understand properties of the users and the differentenadtical skills. To con-
duct the analyses, we define important and desirable eriferiquality assessment:

1. Effectiveness of the training prograiwith no doubt, a learning program should
be effective. We have already demonstrated that partitspemprove over
the course of the training in external mathematical pertoroe tests (detailed
in Chapter 4). In this chapter, we show that participants destnated an in-
creased mathematical performance over the training pevitdn the system
(see Sec. 6.1).

2. Assessment of controller desigihe controller design ofalcularis allows
forward and backward movements within the skill net. In &2, we show that
this control mechanism significantly speeds up learning.

3. Adaptability Another desirable property is the fast adaptation of thegm@am
to the mathematical knowledge of the user. In Sec. 6.3, weodstrate that
Calcularis adapts rapidly to the knowledge level of the children.

In the second part of this chapter (see Sec. 6.4), we andigzeerformance of the
users in the program as well as properties of skills. Suclys@es.can lead to a better
understanding of the mathematical knowledge of the users.
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All the analyses conducted in the following are based ondheesdata set. Input data
consists of input logs recorded from 63 participants (71%des) of theBMBF-
studyand theSWISS-stud{see Chapter 4). All children exhibited developmental
dyscalculia (DD) or difficulties in learning mathematicsheTlog files contain six
weeks of training with at minimum 24 complete sessions (ofr2Qutes) per user.
On average, each user completedd28essions (S = 2.4). The total number of
solved tasks was 1540 (S = 276), while the number of solved tasks per session
corresponded to 51 (SDo = 7.9).

6.1 System-internal improvement analysis

74

To quantify the improvement within the system, we condudttenl different analy-
ses, one analysis using the error rates of the children ad@mance measure and

a second analysis (only for thending game, see Sec. 3.2.2) assessing the spatial
number representation of the children.

In the first analysis, we used the error rates of the childsem@erformance measure.
We estimated the learning rate over the key skills(see Def. 5.1) from all available
samples (both if the participant mastered the key skillsndutraining or not) by
applying a variation of the Learning Gain model (LG) definediec. 5.2. Letting
Ypi € {0,1} denote the response of chifdon a task associated with a key skif,
we obtainypi ~ Binomial(1, 11,). We adjust the LG model to only include key skills
and formulate the linear component of the model as

logit(7ti) = 9p+ZCIik'(B+V'ka), (6.1)

with § € Ky for every childp. Furthermorefy, ~ A/ (O, 05) represents the profi-
ciency of childp, while x, € [0,1] denotes the (normalized) number of practice op-
portunities childp had at key skillS.. qix is 1, if itemi uses skillS, and 0 otherwise.
The fixed effec{3 describes the average key skill difficulty and the fixed dffethe
learning rate. We fit a model for all key skills. Furthermaose, also divide the key
skills in categorie€ (Addition, Subtraction Number representatiopsand fit a sep-
arate model per category. The resulting model over all kdisgkC = All) exhibits

an estimated mean improvement of &% (95% confidence interval [9.21,0.23)).
The learning curves for the different categories along Withexact coefficients for
the fixed effecty3 andy are displayed in Fig. 6.1.

In a second analysis, we investigated the accuracy of emlolr theLanding game
(skills Arabic—Numberling Verbal-NumberlineandConcrete->Numberlinan the
skill net illustrated in Fig. 3.4): In this game, we can notyomeasure the error
rate (correct or wrong) but also the distance (in %) from theect position to
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representations Y 0.94 (0.06) < le-4 [0.821.06]

Figure 6.1: The percentage of correctly solved tasks (of key skills) increasestbgetraining
period by 218% for all skills (top). The normalized sample indices (Time[x]) are
displayed on the x-axis, while the y-axis shows the ratio of correct sokitiomprove-
ments foraddition (add),subtraction(sub) andhumber representation®umrep) are
in the same range. Exact coefficients for the fixed effects of the fitted Inadmteg
with standard deviation (in brackets) are plotted by respective signitcgig.) and
confidence intervals (ci) (bottom).

assess performance. We again employ a variation of the LGhtoestimate the
improvement of the children. Letting, € [0,100 denote the distance (from the
correct position) childo achieved in a taskassociated with a landing skii, we
obtainyp; ~ PoigApi). We therefore define the linear component of the model as

log(Api) = 9p+ZQi| “(B+Y-Xp), (6.2)

where§ € {Arabic—Numberline Verbal--Numberline Concrete--Numberling.
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Figure 6.2: Landing accuracy in the number range 0-10 (left) and 0-100 (right&sas over time
(top). The x-axis denotes the normalized sample indices (Time[x]), while-tpasy
displays the deviance from the correct position. Exact coefficientseditted model
along with standard deviation (in brackets) are plotted by respective smgmi (sig.)
and confidence intervals (ci) (bottom).

Furthermore 8, ~ N (0, og) represents the proficiency of childl (in terms of a
distance)xp € [0, 1] denotes the normalized number of practice opportunitiéd ch
p had at skill§. gy is 1, if itemi uses skill§ and 0 otherwise. The fixed effeft
denotes the initial average distance from the correctipositvhile y describes the
improvement in accuracy. We fit a separate model for the numavgges 0-10 and
0-100. The resulting models for the number ranges 0-10 ab@00along with the
exact coefficients for the fixed effects are displayed in 5ig.

Over time, children achieved greater accuracy when giviiegobsition of a number
on a number line (Fig. 6.2 (top)). The significanceyin both number ranges
demonstrates the significant improvement in accuracy @=B(bottom)).

The clear lines of points visible at 10%, 20% and 30% in Fig.(&p left) arise from
the nature of thé.anding game: Children need to indicate the position of a given
number by steering a falling cone with the joystick. If thggbck is not moved, the
cone will always land at the position of the five (in the numtaarge 0-10), which
leads to deviations of exactly 10% (if the given number was 8)p 20% (if the
given number was 3 or 7) or 30% (if the given number was 2 or 8).
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Figure 6.3: lllustration of a going back case (left): A user fails a si§land has to rehearse one or
several easier skills before coming back to trginThe direct improvemertd (right)
is the difference between the initial correct ratexgt = 0) after going back and the
achieved correct rate (agx = 1) before going backrax andrgy (right) denote the
learning rates before and after going back.

6.2 Assessment of control mechanism

Employing a dynamic Bayesian network (DBN) (Murphy, 20023stut model has
also implications on the control mechanism: Due to the gstplcture of the skill
hierarchy, most skills have several precursor and succegdts. This structure
implies that in order to master a sk}, all precursor skills o0&, need to be known
and therefore it seems to be natural to allow forward (adwgnto more difficult

skills) and backward (going back to easier skills) movemm@fthe controller.

In this analysis, we demonstrate that the possibility to gokito easier (played or
unplayed) skills yields a significant beneficial effect. Viiew that the children not
only immediately start reducing the rate of mistakes, bat they also learn faster.
The log files recorded 973 individual cases of going back. @mage, 206 cases
(SD o =121) of going back are recorded per user. Figure 6.3 (leftpiittes the
definition of a going back cade All casesk in which users play a certain skill
(samplesg k), go back to one or several easier skills, and finally pags tilecome
back to the current skill (sampleg ) are incorporated in the analysis. The variable
xg k therefore denotes all tasks before going back, wkilg stands for the tasks
solved after going back. We normalizg andxgx and thereforexa x € [0,1] and
Xgk € [0,1]. From Fig. 6.4 it can be seen that the number of going baclscasees

a lot among the usersge., the users exhibit very different levels of mathematical
knowledge.

For our analysis, we proceed as follows: Per each going besakcwe estimate the
correct rate over timea k (Cg k) separately for the samples before going bagk
and the samples after going bagl. Fitting is performed via logistic regression us-
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Figure 6.4: Number of going back times per user sorted in ascending order (left)isimidbdtion

over number of going back cases (right). The equal distribution of dzde§ numbers
demonstrates the heterogeneity of mathematical knowledge of the children.

ing bootstrap aggregation (Breiman, 1996) with resamplBg 200). We therefore
obtain learning curves for each going back cksed measure the following prop-
erties of the curves (illustrated in Fig. 6.3 (right)): Theedt improvement is the
difference between the initial correct raigy (atxa = 0) after going back and the
achieved correct rates i (atxg = 1) before going back. The improvement in learn-
ing ratery is the difference in learning rate ovesx andcg (i.e., Ik = rax — e x)-

From Fig. 6.5 (top), we can see that the distributions avémean overdy) andr
(mean overry) are well approximated by normal distributions with meansager
than 0. The rate of correct taskisis increased by Q4 while the learning rate

r is even increased by.86 after going back. Both measurements are positive on
average and a two-sided t-test indicates their statiftisagnificant difference from

O (statistics detailed in Fig. 6.5 (bottom)).

6.3 Controller adaptability
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To provide an effective training, fast adaptation to thevdealge level of the stu-
dent is important. At the beginning of the training perioldl participants start with
the lowest (easiest) skill of the skill nés(bitizing see Fig. 3.4) and then advance
through the skill net depending on their performance.

We therefore define the adaptation tiftigti, | as the period between the stiarof
the training and the first time the user hits one of his keylski, (see Def. 5.1).
Thus, this analysis measures how long it took the user tgeami a training area,
where she or he exhibits difficulties.

On average, the participants reached thejy after solving 148 tasks (SD
o = 1226). The number of complete sessions played up to this poiat2ida(SD
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Figure 6.5: Distributions over direct improvemeldT(top left) and improvement in learning rate
r (top right). Both measures are well approximated by a normal distribution with
u > 0. Statistics for the improvement after going back (bottom): Mean improvement
U, significance of mean (sig.), standard deviatiol, @nd confidence intervals (ci).

o = 1.97). These results show that the model rapidly adjusts tstdte of knowl-
edge of the user. The fast adaptability is also confirmed byfdht that 524% of
the children hit their first key skill already in the numbenga 0-10, 38.% of chil-
dren in the number range 0-100 and onl$% of the children in the number range
0-1000. The fast adaptation to the child’s knowledge ersstirat each child trains
at the optimal difficulty level already after a few days ofnrag.

6.4 Analysis of key skills

As children pursue different trajectories through thelskdt during the training
period, they tend to show various patterns of key skills.sNariety is evidenced
in Fig. 3.6: While user 2 has no key skills in the displayed namiange, user 3
has one key skill Addition 2,2 TG and user 1 has three key skilladdition 2,1
Addition 2,2and Addition 2,2 TQ in addition between 0-100. Despite this variety,
some skills seem to be difficult for most of the children anastimore likely to be
key skills: Nine skills were key skills for more than one thif the children. Of
these skills, five were subtraction skills, four number esentation skills and one
an addition skill. Even more than 50% of the children had [gwis with the top
three key skills: Indicating the position of a number on a bemline from 0-100
(Arabic—Numberlindan Fig. 3.4) was difficult for 52% of the children. This resigit
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(left), additionskills (center) andubtractionskills (right). Fornumber representations
andaddition skills, normalized key skill numbers follow an exponential distribution.
For subtractionskills, they follow a normal distribution.

in line with previous work, which observed deficits of memtamber representation
in children with DD (Kucian et al., 2006; Mussolin et al., ZDPrice et al., 2007).
More than 50% of the children also had problems in subtractidh borrowing
in the number range from 0-10@&¢btraction 2,1 TCand Subtraction 2,2 Tdn
Fig. 3.4). This result again confirms the link between sudbima and spatial number
representation (Dehaene, 2011).

By definition, key skills demonstrate in which areas the usedsbit difficulties.
Therefore, we can also assess the performance of the udéias thie system by
their number of key skills. The normalized number of keylsk# computed as the
number of key skills divided by the number of totally playddlls. On average, the
normalized number of key skills per user wa20(SD o = 0.14). This number
can be interpreted as follows: On average, the children Hadutties with 27% of
the skills that they played. When breaking this number dowmtine different cate-
gories of the training progranmgmber representationadditionandsubtractior), it
can be seen that most problems arosguibtraction The normalized number of key
skills was 026 (SDo = 0.19) innumber representationd.17 (SDo = 0.2) in ad-
dition and 037 (SDo = 0.15) insubtraction The distributions over the normalized
key skill numbers in the different categories are displaiyeldig. 6.6. Interestingly,
we observe that the normalized key skill numbersdddition and number repre-
sentationsskills follow an exponential distribution. The long tail thfe distribution
demonstrates that most children did not have difficultieth@se categories. Rather,
only few children had strong difficulties in these categari®n the other hand, the
normalized number of key skills isubtractionis significantly higher than in the two
other categories (indicated by a two-sided t-tgst: .001 for both categories).



6.5 Discussion

6.5 Discussion

In this chapter, we have assessed the quality of the studed¢lnand the control
mechanism based on the log file data collected in the uselest(gee Chapter 4).
The analyses were conducted to demonstrate the effectisarighe program and
the controller design as well as its adaptability. Furthemenwe also analyzed prop-
erties of users and key skills.

In a first analysis, we estimated the learning rate of thelodi over their key skills
Ku. Our suggested logistic regression model normalizes thertynity count over
time (i.e., start of the training= 0, end of the training= 1) and therefore measures
the learning gain over the course of the training. The eséthenean improvement
of 21.8% overky demonstrates that children were able to improve in areasevhe
they had problems. Interestingly, subtraction exhibitsveelr improvement than ad-
dition. Given the external training effects (detailed ircS4.3), we would expect
the opposite. However, children have a lot more subtradteyskills than addition
key skills. Therefore, despite the average improvemenski#tbeing higher for ad-
dition, the total improvement is still higher for subtraxti Furthermore, the higher
number of key skills in subtraction leads to more practicgubtraction skills.

In a second analysis, we estimated the improvement in acguhen positioning
a number on a number line (skillsrabic—+Numberline Verbal-Numberlineand
Concrete~»Numberlinein the skill net illustrated in Fig. 3.4). Children improved
significantly in both number ranges, which demonstratedine® spatial number
representation. The improved number line representasiconsistent with the sig-
nificant improvement in subtraction, as subtraction is @ered the main indicator
for numerical understanding (Dehaene, 2011). Furtherptioiseresult also confirms
previous studies (Siegler and Booth, 2004; Booth and Sie2086, 2008; Halberda
et al., 2008) which demonstrated significant correlaticta/ben arithmetic abilities
and the quality of numerical magnitude representation.

In contrast to previous work (Corbett and Anderson, 1994; Bauk Sison, 2006;
Koedinger et al., 1997) employing a linear skill hierarchych as Bayesian Knowl-
edge Tracing (BKT) (Corbett and Anderson, 1994)), our DBN s$tnecis non-linear
and we therefore also allow backward movements (to easi&s)si the controller.
Our analysis demonstrates that children reduce the ratestdkes immediately af-
ter going back to an easier skill and also exhibit a highemieg rate. Our model
therefore implicitly addresses forgetting and knowledgpsy

Fast adaptability to the knowledge state of the user is itaporfor effective

teaching, as children tend to exhibit very different mathgoal performance pro-
files (von Aster, 2000; Geary, 2004; Wilson and Dehaene, R0 student model
of Calcularis is able to adapt to the knowledge state of the user witHirs@ssions
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on average. Therefore, the users train in areas where tlveypgnablems already in
the first week of the training.

The results of our key skills analyses demonstrate thasesdribit different mathe-
matical problems and very different numbers of key skillae3e results are in line
with literature (von Aster, 2000; Geary, 2004; Wilson anchBene, 2007), which
demonstrates that children show different mathematicdbpeance profiles. De-
spite this variety, some skills are difficult for all childre They tend to have most
difficulties in subtraction (as illustrated in Fig. 6.6), mh again confirms the exter-
nal training effects measured in the user studies (see S3)c. 4



CHAPTER

Latent structured prediction

A key feature of an intelligent tutoring system (ITS) is tliaptation of the learning
content and the difficulty level to the individual studenhelselection of problems
is based on the estimation and prediction of the studentsviadge by the student
model. Therefore, modeling and predicting student knogéeaccurately is a fun-
damental task of an ITS.

Probabilistic models are widely used for representingireging and predicting
student knowledge. One of the most popular approaches issBay&nowledge
Tracing (BKT) (Corbett and Anderson, 1994), a special casekdidden Markov
Model (HMM) (Reye, 2004). As the prediction accuracy of a iobstic model is
dependent on its parameters, an important task when usingiBpgarameter learn-
ing. Recently, the prediction accuracy of BKT models has begroved using
clustering approaches (Pardos et al., 2012b) or indivigai@n techniques, such as
learning student- and skill-specific parameters (Parddd+aifernan, 2010a; Wang
and Heffernan, 2012; Yudelson et al., 2013) or modeling #rampeters per school
class (Wang and Beck, 2013).

In this chapter, we present a different approach for imprg\prediction accuracy
of probabilistic models. We increase the representatipoaker of the model by em-
ploying more complex dynamic Bayesian networks (DBN) (Mur@02), repre-

senting the different skills of a learning domain as wellfesitdependencies jointly
in one model. Utilizing models without a tree structure, Bwer, imposes chal-
lenges for inference and learning. We therefore use canstiastructured predic-
tion with latent variables to learn the parameters of thevagk. The regularization

via constraints naturally enforces model interpretapbéihd we demonstrate, that
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the constraint setting also improves the prediction aayucd the model. Further-
more, we compare the performance of the more complex ht@calanodels to that
of BKT on large-scale data sets from different learning dorsai

7.1 Structured learning for data-driven education

When employing DBNSs, we consider the different skills of am#ag domain jointly
within a single model. Student knowledge is representedguinary latent vari-
ables,.e., each variable represents knowledge about one specilli¢fekiexample
addition). We further assume that a skill can either be medtby the student or
not. The latent variables are updated based on the corssotrfistudents’ answers
to questions that test the skill under investigation, hewslegervations are also bi-
nary. We also model the dependencies between the diffekéist €.g, two skills
S andS, are conditionally dependent,$ is a prerequisite for masterirsy. In the
following subsections, we describe the parameter leartaiskyin detail.

7.1.1 Probabilistic Notation

The learning task of a DBN model can be described as followsthke set ofN
variables of the model be denotedWy={V; | i € {1,...,N}}. In addition, consider

an input space objeét denoting the set of skills of the model and the corresponding
task specific output spage representing a sequence of answers. Furthermore, we
let # denote the domain of the unobserved variables, missing answers and the
unobserved binary variables denoting whether a skill istenad. Moreover, we let
Ym = (Ym1,-.-,YmT) represent a sequencebbinary answers from ther-th student.

As T is student dependenite., every student completes a different number of tasks
during the training/’, ) and also depend on the student. During learning, we are
interested in finding the parametétshat maximize the likelihood of the observed
data,i.e., the likelihood of a training séP consisting of D| input- and output-space
object pairgxm,Ym) € Xm x Ym. The log likelihood of the model is then given by

L(B) = z In (; P(Ym,hm |Xm79)> ) (7.1)
(Xm,Ym) m

where we marginalize over the states of the latent variahjefr studentm. The
joint probability p(ym, hm | Xm, 6) of the model for studentis defined as

P(Ym,hm [Xm, ) =[] P(Vini =Vmi | PalVini) =Vm patvpm) =[] Piimikmi> ~ (7-2)
| |

wherepa(Vm) are the parents ofy;, while v, andvmm(\,m ) are the realizations

of the random variablééy,; andpa(Vn;), i.e., the states assigned\l@i andpa(Vim;)
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given by (Ym,hm). Furthermore, we lefi m := vmj andkm := Vin,pa(Vy) 10 sim-

plify the notation. Thereforep;j, k,; denotes exactly one entry in the conditional
probability table (CPT) o¥/m,.

7.1.2 Log-linear formulation

The log-likelihood of a DBN can alternatively be formulatesing a log-linear
model. This formulation is flexible and predominantly usedacent literature (Laf-
ferty et al., 2001; Schwing et al., 2012). Therefore, wenmidate the learning task
in the following. Letg: Y x % — RF denote a mapping from the latent spa¢e
and the observed spagéto anF-dimensional feature vector. The log likelihood
from Eg. (7.1) can then be reformulated to

Lw) =y )In (;exp(WT(p(xm,ym,hm)—In(Z))), (7.3)

(Xm 7Ym m

whereZ is a normalizing constant ang denotes the weights of the model. Next,
we show that this log-linear formulation of the log-likebibd is equivalent to the
traditional probabilistic notation. Comparing Eq. (7.3Hq. (7.1), it follows that

1 1
|__| Pijmikmi = Z eXpWT¢(XmaYm7hm) = Zesz Wi—r(ﬂ(xm;Ymmm): (7.4)
i |

and therefore 1
Vi, j. K pijc = 5 expw’ @(v), (7.5)

wherev are the realizations of all random variablesvirwith j € vandk Cc v. A
feature vector and weightsv that fulfill Eq. (7.5) can be specified as follows: con-
sider the CPT describing the relationship between a n@gdend itsn— 1 parent
nodespa(Va). The CPT for thesa nodes contains™entries. Lek € {0,1}"* de-
note one possible assignment of states to the parent padeés). We can therefore
definep(Va=1| pa(Va) =k) =1—p(Va=0] pa(Va) =k) = 1— paok. TO continue,
let Pay,k = 3 €XPWak (1— 2va), which leads to the feature functigg(v) = 1— 2va
and normalizatio@ = expwa i (1 —2Va) /(€XPWa k (1 —2Va) +exXp(—Wak (1—2Va))).
The probabilitieg; € 0 are therefore proportional (in the log domain) to the wesght
w; € w and we can easily switch between the two notations. We olti@noint
distribution as a product of the exponential terms whichglates to a weighted lin-
ear combination of feature vector entries in the exponedtthus fulfills Eq. (7.5).
From this formulation also follows that we nee®2 parameters to specify a CPT
includingn skills.
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7.1.3 Optimization
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We subsequently solve the learning problem by optimizirggldg-linear model of
the data. Performing maximum likelihood we choose the wsighsuch that the
model assigns highest probability to the trainingBetNote that for clarification of
notation we neglect dependence of variaMesd spaced’, ) and# on the student
min the following. Furthermore, we will also explicitly inciite estimations,e., y
andh denote estimations forandh. We therefore reformulate Eq. (7.3) as

L(w) = Z Inp(y | x,w), (7.6)
(x,y)eD

with p(§ | x,w) O p, expw’ @(x.9,h). If the data is independent and
identically distributed (i.i.d.), minimization of the native log likelihood
—In[p(w) [y p(y | w)] yields the following optimization

. C
n;”n§||WH%_ Z In p(y ’ X7W)7
yeD

with a log-quadratic prior functiop(w).

Considering optimization of the aforementioned non-coraest function we com-
monly follow the expectation maximization (EM) approacte(@pster et al., 1977)
or more generally the concave convex procedure (CCCP) (YuideRangarajan,
2003). We linearize the concave term by computing its gradiethe current iterate
and subsequently minimize a convex objective. This stegmtidal to optimizing
HMMs via EM, is guaranteed to converge to a stationary p@niperumbudur and
Lanckriet, 2009).

But contrasting HMMs, neither linearization of the concaagt mor minimization
of the resulting convex objective is computationally tedote for general models. To
our benefit and as indicated before and detailed below, #raezits of the feature
vectorg(x,y, h) typically decompose into functions depending only on a frexd-
tion of variables. This can be employed to approximate theative. Recently,
Schwing et al. (2012) showed that a convex approximationitgdmore efficient
learning of parameters than its non-convex counterpartte Nt interpretability
of the parameterss is not guaranteed, particularly since guarantees exisbrityr
converging to a local optimum. However, interpretabilitgplies some form of
expectation regarding the parameters. In the following,thexefore propose to
constrain the parameter space. This is useful since dompierts are capable of
restricting the range of acceptable parameters, it is reasonable to assume the
guess probabilitypgyessto be less than.@ (Corbett and Anderson, 1994, Yudelson
etal., 2013).
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7.2 Learning with constrained parameters

To formulate the constrained optimization, we fég,x,w) = —Inp(y | x,w), i.e.,
explicitly,

£_<X,y,W) - |nZexp(fi(X,§/, F],W) —In z eXp(’[}(X,y, F],W)
97h ﬁEH

while the potential is given aé(x,y,h,w) =w'@(x,y,h). Then we augment the
learning task to read as tlgenstrainedoptimization problem
. C ~
minZJ(w(z+ Y lxy,w) st wec, (7.7)
w2
(x,y)eD

with C denoting a convex set. Leaving the constraint set aside ptlgram pos-
sesses the same difficulty as the original tagk, we minimize a non-convex objec-
tive operating on exponentially sized sets. Being intetestehe quality of duality
based approximations, we subsequently follow Schwing. 2@l 2).

We first note that an upper-bound to the program given in Eq) (8 stated by the
following cost function:

C A~ o~ R "
EHWH§+(Z) In % exp(e(x,¥,h,w)) —H(dy)) = Eqy,, [0y hw)] |, (7.8)
Xy .n

with H denoting the entropy an@ indicating computation of the expectation. Im-
portantly, the upper bound allows dividing the program itm@ parts which are
iterated alternating when following the CCCP procedure: onotie hand a mini-
mization w.r.t. the distributior ) ranging over the latent spabec 7 for every
sample(x,y). This task is often referred to as ‘latent variable predittiask’. On
the other hand a minimization w.r.t. the weight vectoisubject to constraints.
Both problems remain intractable without further modifioas. However, we no-
tice that minimization to find the distributiorg, \, directly follows Schwing et al.
(2012) and we can incorporate their approximation withautfer modification.

Due to the additional constraint set it is the second taslkchvinequires specific
attention. The relevant excerpt from the linearized proggasen in Eq. (7.7) reads
as follows:

min Y |nzexprcp(x,y,ﬁ)—wTd+9||wy|§. (7.9)
weC £ 2
(XY)ED  §h

We note that the vector of empirical meaths RF contains information from the
observed variables as well as information from the linedion of the concave part.
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Algorithm 1 (Structured Prediction with Constrained Param eter Spaces).
Let Pxy).r ((97 h)f> = Zk:reRk Wik @ r (Xv (97 h)r)

Repeat until convergence:

1. Update Lagrange multipliers{(x,y),r,p € P(r), (y,h);

2. Perform a gradient step and project the result onto thstaint setC:

U(x,y),par((yyh)r) = In Z (eXp((;’(xy),r((yah)r)_ /\(x7y),pﬁp’((yah)p’)
(y~h)p\(y7h)r p’eP(p)
+ Z A(x,y),r’%p(()’yh)r/)))
r'eC(p)\r
1 .
Ay)r—p((y;h)r) O 5P| <(P(x,y)7r((yah)r)+plzp( )“(x,y),p’—ﬂ((yvh)r))
epP(r

Hix.y),p—r ((y,h)r)

W Re[w — yOwf(A,wW)]

Figure 7.1: An algorithm for learning parameters of structured models within constrgiaeme-
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ter spaces.

This task differs from the standard structured predictioogpam in an additional
regularization w.r.t. the constraint st Although assumed to be convex subse-
quently, this additional regularization makes the prograare challenging to solve

in general. We subsequently show the approximations redjtir obtain an efficient
algorithm based on projected gradients. To this end, wesfiasé the dual program
of the task given in Eq. (7.9).

Claim1. The dual program of the constrained structured predicticaskt
(see Eq(7.9)) reads as

. C
max S H(Py) (M) + S [IR[FI3-CZ Re[2.
Py €8x yTe D

where we maximize the entropy H of distributions, \p restricted to the
probability simplexAy.3, over the complete data space. The projection of

z=1% (d — 3 (xy).9.7 Poxy) (9,ﬁ)¢(x,9,ﬁ)> onto the constraint set is denoted
by R [7] and d< RF refers to the vector of empirical means.

Proof: We introduce a temporary varialgéx, y, ﬁ) =w'(x,9, ﬁ) to decouple the
soft-max function from the norm minimization in Eq. (7.9)p@®nizing w.r.t. both,
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w andg, we obtain the entropy as the conjugate dual of the soft-nvirimizing
the norm subject to constraints yields the projection ofdtierence between the
empirical means vectat and its estimate onto the constraint SetWe note that
C = R yields the solution given by Hazan and Urtasun (2010), whichcludes
the proof. [

The aforementioned summation over exponentially sizesvgigtin the primal prob-
lem manifests itself in distributiong, ) over respective simplexesy . Instead
of working with a full joint distribution over the set of allgssible solutiong’ x H,
we operate with corresponding margindlg ) for sample(x,y) and respective
marginalization constraints. The marginals are choseordowy to the variable
dependence structure introduced within the feature vesixry, h).

More formally, let the k-th element of the feature vector be given by
&(X,y,h) = Srer, G (X, (y,h)r) wherer specifies a restriction of the function
to a subset of the observed and unobserved variables. Tro# a#itrestrictions

for the k-th element of the feature vector is referred to Ra. All in all we
therefore consider the marginas, ) ((y,h)r) which are required to fuffill the
marginalization constraints,e., we enforce them to be consistent amongst each
other. Importantly, this means that we neglect the expealemimber of constraints
within the marginal polytope by adopting its local approaiion (Wainwright and
Jordan, 2008). In addition to usage of marginals, we apprate the joint entropy

H<p(x,y)) ~yH (b(x,y),r)-

To obtain an approximated convex primal, we introduce Lageamultipliers

Axy)r—p((Y,h)r) for each marginalization constraint that ties together tesiric-

tionsr and p. We obtain the approximated, convex and constrained pramdbl-

lows: c

min 30 S exp@ey.((9,R)) —d w3 w2, (7.10)
(xy).r (9,h)

where we denote the re-parameterized potential via

Qe (900 = S w@r (9.0 +F Asp((5.0)r)
kreRy peP(r)

=Y o)),
ceC(r)

whereP(r) is the set containing the parent regions af the region graph, while
C(r) contains the child regions of(Schwing et al., 2012). The Lagrange multipliers
Ar—p and Ac_,; denote the messages that are sent along the edges of the regio
graph (Schwing et al., 2012). The derivation follows Hazad &rtasun (2010)
and Schwing et al. (2012) and we recover the constrairt bgtcomputing the dual

for the projectionP.. Intuitively we push energy between different restrictions
such that we can find a weight vecterwhich minimizes the objective subjectfo
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Constrained structured prediction with latent variables.
Repeat until convergence:

1. Solve the approximate ‘latent variable prediction’ lntnvergence and up-
date the empirical mearks

2. Perform a single iteration of ‘constrained structureedption’ as detailed in
Fig. 7.1.

Figure 7.2: Algorithm for constrained structured prediction with latent variables.
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This formulation differs from Hazan and Urtasun (2010) iattthe domain for the
parametersv is constrained by the convex g&t We proceed by iterating between
updates for the Lagrange multiplieksand the model parametenswhich guaran-
tees convergence for the convex cost function. Note thanagation of the program
givenin Eq. (7.10) w.r.tA is unconstrained. Therefore we follow a block-coordinate
descent scheme.

Let f(w,A) denote the cost function of the program given in Eq. (7.10xing
A, f is a smooth, convex but non-linear functionvinand a well-known method
to address the constraint minimization bfwv.r.t. w is the projected gradient algo-
rithm (Rockafellar, 1970). We use the gradient of the smoat$t-unction as a
descent direction, perform a step and project the resutt thrat constraint set.

It is important to note that a single projection step is sidfit for convergence
guarantees since block-coordinate descent methods aplyedo decrease the cost
function at every iteration which is ensured after a singtggztion. We summarize
this observation in the following claim.

Claim 2. The algorithm outlined in Fig. 7.1 guarantees convergentéhe con-
strained structured prediction program given in E@.10)

Proof: Strong convexity admits block-coordinate descewnlatps (Tseng, 1993)e.,
iterating between updates for weightsand Lagrange multipliera. The require-
ment of decreasing the cost function is met for the updates dv.and also ensured
by a single projection oiv ontoC, which consequently proves the claim. [

Combining the structured prediction algorithm outlined ig.F.1 with the ‘latent
variable prediction task’ we obtain the algorithm given iig.F7.2 which we will
refer to asconstrained structured prediction with latent variahles



7.3 Model specification and parametrization

Figure 7.3: Structure of the graphical model for an example DBN withime steps. Circular
nodes represent skills, while the rectangles denote the tasks associditatiose
skills. The weights of the model are assumed to be stationary (time-invariant),
the parameters are shared over the different time slices.

7.3 Model specification and parametrization

DBNs can be specified and parametrized in different ways. ingiction, we in-
troduce the parametrization used for the experimentatatian of our method (de-
scribed in Sec. 7.4 and Sec. 7.5). Note, however, that theogea algorithm is
independent of the used parametrization. Therefore, trenpetrization introduced
in the following can be easily extended.

As in BKT, we can interpret the parameters of a DBN in terms oBarlimg context.
Figure 7.3 illustrates the graphical model of a simple DBNhwitree skillsS;, S
andSs overT time steps. Two of the skills, andS3) have associated tasks repre-
sented by gray rectangles, while skl cannot be observed. To specify the CPTs
of this example DBN, we emploly = 22 weights that can be associated with a pa-
rameter sef. We subsequently use to denote proportionality in the log domain,
i.e., Wi >~ pj is equivalent tov; [J expp;.

Let O3z denote the task associated with skik. Then the parameters
Woo >~ P(O3t =0 | St =0) =1—pg andwpy ~ p(O3t = 0 | St = 1) = ps
represent the guess and slip probabilities. Similawyg and w19 are associ-
ated with pg and ps as evident from Fig. 7.3. This association with guess and
slip probabilities is important for choosing appropriatenstraints: pg and ps
have been constrained in previous work (Corbett and Anders®®4; Yudelson

et al., 2013), a usual bound & < 0.3 and ps < 0.3. Furthermore, parameters

We >~ Pp(Sit =0|Sit-1=0)=1—p.andw; ~ p(St =0| St-1=1) = pr
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are associated with learning and forgetting; the same haldsforwg andwg. It
seems appropriate to limit these probabilities to be leas 6 - a forget proba-
bility pr > 0.5 would lead to a model assuming a student that constantefer
previously learned content.

Skills § and S, are prerequisites for knowing skifls, i.e., the probability that
skill S3 is mastered in time step depends not only on the state of sk#i in
the previous time step, but also on the statessofind S in the current time
step. Thereforevip~ p(S3t = 0| S31-1 = 0,S1t = 0,S¢ = 0) = 1— pLo, Where
pLo denotes the probability that the student lea®slespite not knowinds and
S. We will again constrairp g as we assume afAND relationship for precursor
skills in the model: In order to mast&;, S; andS need to be known. The skKill
model ofCalcularis (see Fig. 3.4) is also based on this assumption. In addition,
Wiz~ p(St=0|St-1=1,St =1,St = 1) = pr1, the probability of forgetting
a previously learned skill. We will constrain this probdliffor the reasons stated
in the paragraph above.

Furthermore, we setyy ~ 1 — pyw if | € {11,1213} and wj ~ 1 — pgy if

| € {14,15,16}, wherep_u denotes the probability that the student legBngiven
that he knows at least one of the precursor skillSpfMoreover,pry is the proba-
bility that the student forgets the previously known si] when eithelS; or S, or
none of them are known. Note that this parametrization isnglication as it will
allow us to set one bound for several weights.

Finally, the parametens; with | € {2, 3,4,5} describe the dependencies between the
different skills. We letyy ~ 1 — ppo, if | € {2,3,4} andws ~ pp1, Whereppo is the
probability of knowing a skill despite having mastered op#rt of the prerequisite
skills andpp1 denotes the probability of failing a skill given that all puesor skills
have been mastered already. This parametrization is agaived from theAND
relationship assumed for precursor skills, as describedealiMoreover, we refer to
the probability of knowing a skill a-priori vi@g. Note thatwg andw; are associated
with po. The DBN illustrated in Fig. 7.3 can therefore be describethbyparameter

setd = {po, PG, PL, PF, PLO: PE1, PLM: PEM, PP, PP1}-

7.4 Evaluation of regularization

To assess the influence of the regularization with conggain the prediction accu-
racy of the model, we evaluated our constrained approaciangmall) real data
experiments. In particular, we compared the accuracy oapproach to that of an
unconstrained setting. Furthermore, we also checked stigamodel using parame-
ters chosen by experts: As the constraints are selected basgomain knowledge,
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we expect the expert parameters to be in the same range asrtdrmaqiers learned
by our approach.

For our experiments, we used log file data from 126 particdgpahtheBMBF-study

From the 126 children (69% females), 57 were diagnosed aadndevelopmental
dyscalculia (DD) and 69 were control children (CC). On aveidgklren completed
289 sessions (S = 3.3). The number of solved tasks was 1523 (8- 270)

and the number of solved tasks per session correspondedt¢H20 = 7.2).

The prediction accuracy was computed as follows: given afsebservations for
the DBN, we predicted the state of the unobserved nodes anidptbthe root
mean squared error (RMSE), the classification error (CEfieguency of predicted
state not equaling true state) and the area under the RO€ QMJC). If not noted
otherwise, convex learning stops when the improvementeptimal is less than
10~° or the maximum number of iterations exceeds 500. In caserwftaints the
stopping criterion is met if the primal improves by less tBah0° or 300 iterations
are exceeded. For inference, we limited the number of megsagpsing iterations to
100.

7.4.1 Number understanding

In a first experiment, we looked at two skills taught in the temrange from O-
100. Figure 7.4 illustrates the model, which is an extracthef skill model of
Calcularis (illustrated in Fig. 3.4). SkillS; (Ordinal 1 in Fig. 3.4) represents
knowledge of the concept of ordinal number understandieg, understanding a
number as a position in a sequence. There exists no execriskeis skill, hence
no observations are available. The concept of relative mumbderstanding is rep-
resented by skil&, (Relativein Fig. 3.4). Relative number understanding denotes
the ability to understand a number as a difference betweemtunbers. We cannot
directly observe this ability, but the results of an exex@ssociated with it. These
results are referred to by rectangles which denote the méad a particular ‘task’.
For this experiment, we used a maximumlof 50 time-steps (task outcomes) per
child (mean: 2216 (SD 998)). One child with no observations at skl was ex-
cluded from the analysis.

The model representing this task empléys= 11 parameters to specify the condi-
tional probabilities that define the network illustratedHig. 7.4. The parametriza-
tion of the graphical model is performed as described in 3&&. Following this
section, parametensy andwig are associated with the guess probabifity and

the slip probabilityps, which are commonly assumed to be lower thad (€orbett
and Anderson, 1994; Yudelson et al., 2013). This upper btnamglates to the con-
straintswg > 0.4236 andvig < —0.4236. Furthermore, from Sec. 7.3 we know that
parametersvs andwg are associated with learning and forgetting. We limit these
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Figure 7.4: Structure of the graphical model used for the number understandiregiegnt for
T time steps. SkillS; denotes knowledge about the ordinality of numb&sd{nal
1in Fig. 3.4), whileS, represents knowledge about the concept of relative number
understandingRelativein Fig. 3.4).

probabilities to be lower than.8, yieldingws > 0.4236 andwg < —0.4236. The
aforementioned constraints define the&et

We refer to seC, as the constraints within the s€f, augmented by the follow-
ing restrictions. Sincevs andw, are also related to learning and forgetting (see
again Sec. 7.3), we utilize constraints identical to thasevg andwg: w3 > 0.4236
andwy < —0.4236. Similarly, we definevg > 0.4236 andw; < —0.4236. In ad-
dition, the hierarchical skill model afalcularis assumes that the number under-
standing abilityS; is a prerequisite for relative number understandmnvon Aster
and Shalev, 2007). Hence we restugt andw, by assuming that the probability
of knowing S, given §; is larger than &7, while we let the probability of know-
ing S despite not knowing be smaller than @, which yieldsw; > 0.4236 and
wo < —0.4236. Configuration€3 andC4 constrain the same parameterasand

Co, but are more restrictive by replacingdGand 07 with 0.2 and 08.

After learning the model parameters using only the obsetragding data, predic-
tion on the test data is performed as follows: we assume ‘Task be given and
predict the outcome of ‘Task 2'. Afterward, we employ resdtom both ‘Task 1’
and ‘Task 2’ to predict the outcome of ‘Task 3’ and continugtedict ‘Taskk’,
ke {4,5,...,50} assuming the preceding task outcomes to be given.

The performance results provided in Tab. 7.1 are computied d9-fold cross val-
idation. The most accurate results (per error measure) arkeah in bold. We
observe our constrained learning approach to outperfoparéparameters as well
as the unconstrained solution for most error metrics. Afsounconstrained opti-
mizationC = 0 yields good prediction results with the following parderevalues:
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Expert C=0 C=0C C=0Cy C=0C3 C=0Cy

RMSE 0.464 0.393 0.382 0.379 0.374 0.373
CE 0.346 0.213 0.213 0.213 0.202 0.202
AUC 0.625 0.500 0.606 0.591 0.615 0.615

Table 7.1: Different error measures for the number understanding experimenip&uason of un-
constrained and constrained conditions to previous work using a donyaént éKaser
et al., 2012). The best model per error measure is marked in bold. Ghkreation
through constraints improves prediction accuracy (as compaiee-td).

W1, ...,Wg are set to 0, which results in uniform distributions for tlee@ding CPTs.
The parameteraiyg andwyg are set to values smaller tharll (over all folds). The
model therefore predicts a correct outcome with a proldgihiigher than (88, in-
dependent of previous observations and the state of themidodes. As the investi-
gated skill was easy to solve for most children, this modail&is a high prediction
accuracy. Itis, however, not interpretable with respet¢iLbman learning. Note that
expert parameters generally yield a good AUC, but exhibitgh RMSE and CE.
This result is not unexpected, as the expert parameterafit to the training data.

7.4.2 Subtraction

The four skills investigated in this experiment are diffégrsubtraction skills in the
number range from 6 100. The graphical model, which is again an extract of the
skill model used irCalcularis (see Fig. 3.4), is illustrated in Fig. 7.5. The nota-
tion of the different skills is explained in Tab. 3.1. SK#f denotes a subtraction
task without borrowing and a single-digit number as the rsitgnd Subtraction
2,1) while skill S3 also represents a subtraction task without borrowing, bt a
two-digit subtrahendSubtraction 2,2 S, denotes subtraction with borrowing and
a single-digit subtrahend(btraction 2,1 TCand$, denotes the ability to do sub-
traction with borrowing and two two-digit numberSybtraction 2,2 T¢ The rect-
angles denote results of an exercise associated with the SKiS; andS;. Again,
we used a maximum of = 50 time-steps (task outcomes) per child (mean543
(SD o = 10.47)). To specify the conditional probabilities of the gragath model
(Fig. 7.5), we employe#& = 33 parameters.

The constrained configurations for this experiment follbve tlomain knowledge
introduced in the first experiment. More specificallyy denotes the follow-
ing constraints:w; > 0.4236,Vi € {9,11,15,19,27,29,31} while w; < —0.4236,
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Figure 7.5: Structure of the graphical model ovEitime steps used for the subtraction experiment.
Skill S denotes skilSubtraction 2,1S representSubtraction 2,1 TCskill S3 stands
for Subtraction 2,22andS; describes skilBubtraction 2,2 TCThe model is an extract
of the skill model illustrated in Fig. 3.4.

Vi € {10,14,18 26,28,30,32}. The second configuratioG, augments the set
C1 by addingw; > 0.4236,Vi € {1,3,5,6,7,12 16,20,21,22} andw; < —0.4236,
Vi € {2,4,8,13/17,23 24,25}. Again, configurationgs andC4 constrain the same
parameters aS; andC,, but are more restrictive by replacingd@36 and—0.4236
with 0.6913 and-0.6913.

Prediction was done as described in the first experimentrangdrformance results
provided in Tab. 7.2 were again computed using 10-fold cvadislation. We ob-
serve again significant improvements of our constraint @ggr compared to the
expert parameters as well as the unconstrained settingemrat metrics. We high-
light the improvement of the classification error b@% when learning our com-
putational education model within a constrained paramgpece CEc, = 0.325,
CEc, =0.268).

7.5 Comparison to non-hierachical models

In a second evaluation, we assessed the prediction accafd2BNs in compari-
son to non-hierarchical modelse., BKT models representing only one skill. We
performed this evaluation to demonstrate the benefits ofetsadith higher repre-
sentational power. We performed experiments on five dasdresh various learning
domains. The data sets were collected with different totpgystems and contain
data from elementary school students up to university siisdeWe compare the
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Expert C=0 C:C]_ C:CZ CZCg C:C4

RMSE 0.489 0.469 0.453 0.436 0.446 0.433
CE 0.398 0.325 0.313 0.287 0.302 0.268
AUC 0.555 0.561 0.641 0.674 0.621 0.682

Table 7.2: Different error measures for subtraction. Comparison of differenfigurations to pre-
vious work using a domain expert @ser et al., 2012). The best model per error measure
is marked in bold. The constrained optimization outperforms the expert peranaes
well as the unconstrained configuration regarding all error measures.

prediction accuracy of DBNs modeling skill topologies wilie tperformance of tra-
ditional BKT models.

Fitting the BKT models was done using Yudelson et al. (2018phang skill-
specific parameters and using gradient descent for optiimiza As described
by Yudelson et al. (2013), we set the forget probabipgyto 0, while ps and pg
were bounded by.3. In the following, we will denote this constrained BKT versi
as BKTc.

We used constrained latent structured prediction (as ibestim Sec. 7.2) to learn
the parameters of the DBN models. All models were parametraacording
to Sec. 7.1 and we imposed the constraints described in tlosvilng on the pa-
rameter seP of the different models to ensure interpretable parametews our
first constraint set;, we letpp < 0.3 for D € {G,S/L,F,LO,F1} to ensure that
parameters associated with guessing, slipping, learmddga@getting remain plau-
sible. The constraints of can be directly turned into constraints wn For the ex-
ample DBN (Fig. 7.3), the constraints translate into theofelhg linear constraints
on the weights foC1: w; > 0.4236, ifi € {6,8,10,18 20} andw; < —0.4236, if

i €{7,9,17,1921}. For the second constraint €&t we augmented; by limiting
pp < 0.3if D € {LM,FM, PO, P1}, yieldingw; > 0.4236, ifi € {2,3,4,11,12,13}
andw; < —0.4236, ifi € {5,14,15 16} for the example DBN (Fig. 7.3). The addi-
tional constraints ensure that parameters are consisténtive hierarchy assump-
tions of the model. The constraint séxsandC4 bound the same parametersCas
andC», but are more restrictive by replacing 0.3 by 0.2. Note tlaistraints were
selected according to Sec. 7.3.

Prediction was again performed as follows: we assumed tkeraation at time
t =1 to be given and predicted the outcome at tinveith t € {2,..., T} based on
the previoud — 1 observations. The number of observatidnfor the different ex-
periments is the minimal number of observations coverihgkdlls of the according
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experiment. The exact number of observatidns given in the description of each
experiment. To assess prediction accuracy, we again mdtiel following error
measures: Root mean squared error (RMSE), classification@Ed@ratio of incor-
rectly predicted student successes and failures basedhvashold of (6) and the
area under the ROC curve (AUC). All error measures were caledlusing cross-
validation. Statistical significance was computed using@asided t-test, correcting
for multiple comparisons (Bonferroni-Holm).

Note that we selected skills, where users showed low pednca for our experi-
ments, in order to make learning and prediction more chgiien In the following,

we describe the DBNs for the five data sets and discuss thechogdaccuracy for
our models as well as for BKI

7.5.1 Number representation
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For the first experiment, we used data collected fi@abcularis. The data set
contains log files of 1581 children training with the produetsion ofCalcularis
with at least five sessions of 20 minutes per user. The logdflése product version
were collected in an uncontrolled setting and thereforenatgaphic information
about the children is not available. Furthermore, the tngiistatistics of the users
differ a lot. On average, children completed.2@essions (S = 19.2). The
total number of solved tasks was 1395 (8DB= 1087), while the number of solved
tasks per session corresponded tb 4D o = 20.8). The graphical model used
in this experiment (see Fig. 7.3) is an excerpt of the skildeloof Calcularis
(illustrated in Fig. 3.4, see Tab. 3.1 for an explanatiorhefriotation used). Skif
(Arabic) represents knowledge about the Arabic notation sys@eicularis does
not contain any tasks associated with this skill. The abibtassign a number to an
interval is denoted b¥s, (Ordinal 3). The task associated with this skill is to guess
a number in as few steps as possible. Fin&kenotes the ability to indicate the
position of a number on a number linkrébic—Numberlind. We used a maximum
of T =100 observations per child for learning and prediction getsied the CPTs
of the graphical model witk = 22 weights.

Prediction errors for the constraint s€igo C4 as well as BKE are given in Tab. 7.3.
The constrained DBN approach yields significant and largeorgments in pre-
diction accuracy compared to BKT We highlight the improvement in accuracy
by 114% (CEkt. = 0.3141, CE, = 0.2783) and the reduction of the RMSE by
3.8% (RMSEsk . = 0.4550, RMSE;, = 0.4378). Also note the large improvement
achieved in AUC (AUGkT. = 0.5975, AUG, = 0.7093).



7.5 Comparison to non-hierachical models

Figure 7.6: Graphical model for the subtraction experiment for the first two time stepsniodel
contains eight subtraction skill§y...S and $;,...S) and one number representation
skill (Ss) with associated tasks (denoted by rectangles). Two of the sEillarid

$) cannot be observed. The model is an excerpt of the skill model (ge&.B) of
Calcularis.

7.5.2 Subtraction

The second experiment is based on the same data set as thexpesiment (de-
scribed in Sec. 7.5.1). This time, however, we investigatdatraction and number
representation skills. The graphical model (see Fig. &.@)gain an excerpt of the
skill model of Calcularis (illustrated in Fig. 3.4, see Tab. 3.1 for an explanation
of the notation used). Subtraction skills are ordered atnogrto their difficulty,
which is determined by the magnitude of involved numberss tamplexity and the
means allowed to solve a task. Skis (Subtraction 2,}, S (Subtraction 2,1 T(;

Sz (Subtraction 2,2, & (Subtraction 2,2 TCandSs (Operation 2,2 denote subtrac-
tion tasks in the number range-Q00. We emphasize that there are no observation
nodes associated with andS;. The number representation sk (Relativg rep-
resents knowledge about the relational aspect of numbenifeuas a difference
between other numbers) in the number rangd@00. Finally, skillsS; (Support
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Table 7.3:Prediction accuracy of the experiments, comparing BKith different constraint sets

for the DBN models. The best result for each error measure is markdd Sanifi-
cant improvements compared to BK@are also indicated (*). Our hierarchical models
outperform BKT: over all data sets and in all error measures.

BKT¢ (C=C C=C (C=C3 C=C

Number RMSE 0.4550 0.4469* 0.4452* 0.4416*0.4378

. CE 0.3141 0.3279 0.278% 0.307S 0.2831*
representation

AUC 0.5975 0.7072* 0.7093* 0.7087* 0.7049*

RMSE 0.4368 0.4417 0.4215* 0.4385 0.4216*

Subtraction CE 0.2818 0.2812 0.2588* 0.2757* 0.2580*

AUC 0.5996 0.6157* 0.6870* 0.6332*0.6916*

RMSE 0.4530 0.4521 0.4272* 0.4465* 0.4244*

Physics CE 0.2930 0.2893* 0.2677* 0.2870*0.2616*

AUC 0.5039 0.6511* 0.6971* 0.6795*0.7007*

RMSE 0.3379 0.3335* 0.3254* 0.3321* 0.3267*

Algebra CE 0.1461 0.1466 0.1392* 0.1466 0.1379*

AUC 0.5991 0.6682* 0.7004* 0.6718*0.7007*

RMSE 0.4504 0.45Z1 0.4495* 0.4492* 0.4472*

Spelling CE 0.2898 0.2863 0.2914 0.288z 0.2906

AUC 0.5029 0.5695* 0.5771* 0.5735*0.5804*

*

100

p<.05

Subtraction 3,}, g (Subtraction 3,1andSy (Subtraction 3,1 TErepresent subtrac-
tion in the number range 0-1000. A maximumilof= 100 observations per child was
used for learning and prediction. Specification of the CPTgHe model requires
F = 86 weights.

The resulting prediction accuracy for this experiment (Sale. 7.3) again demon-
strates that the DBN model outperforms BKTWith a reduction of the RMSE by
3.5% (RMSEkt. = 0.4368, RMSE, = 0.4215) and an increase of the accuracy
by 8.4% (CEskT. = 0.2818, CE, = 0.2580), improvements confirm the results ob-
served in the first experiment. Also the growth in AUC (AklG. = 0.5996, AUC,
=0.6916) is again substantial.



7.5 Comparison to non-hierachical models

Figure 7.7: Graphical model for the physics experiment for the first two time steps. nidcel
consists of four modulesvectors(S;), Translational KinematicSy), Statistics(Sz)
andDynamicy(S&;). The rectangles represent the tasks associated with the modules.

7.5.3 Physics

This experiment is based on the ‘USNA Physics Fall 2005’ dataaccessed via
DataShop (Koedinger et al., 2010). Data originate from ddests of the United
States Naval Academy and were collected friames?2, an ITS for physics (Conati
et al., 2002). The tutor uses rule-based algorithms to lsaldtion graphs that iden-
tify all possible solutions of the different tasks. Based lo@se graphs, a Bayesian
network is constructed to assess the general physics kdgellef the student as
well as the progress for the problem at hand.

We used the different modules of the data set as skills foreaperiment. The
graphical model is depicted in Fig. 7.7. Note that we intemdily used a simplified
skill model to avoid introducing incorrect assumptions andissess if even non-
experts can exploit skill structures using our proposechouat. The model consists
of the following modules:Vectors(S;), Translational Kinematic§S,), Statistics
(S3) andDynamicqS;). These modules consist of more complex tasks for the given
topic, i.e., calculating total forces in a system (see example by Cenaili (2002)).

A maximum of T = 500 observations per student were considered for learmdg a
prediction and the model is describedby= 33 weights.

In this experiment, the benefits of the DBN model are again tsgk Tab. 7.3): the
accuracy is increased by 76 (CEsk . = 0.2930, Ck, = 0.2616) while the RMSE
is reduced by 8% (RMSEkT. = 0.4530, RMSE, = 0.4244) and the AUC grows
t0 0.7007 (AUGgk T, = 0.5039).
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H
{S)-(Srim, S9-(Sy
4 4
(a) Graphical model for algebra experi- (b) Graphical model for spelling experi-
ment over the first two time steps. ment over the first two time steps.

Figure 7.8: Graphical models for the algebra (a) and spelling (b) experiments. Thbralghodel

includes four skills dealing with word problems involving calculations with whole

numbers. The spelling model consists of three modules containing incriyadiffig
cult words.

7.5.4 Algebra

For this experiment, we used data from the KDD Cup 2010 EducakData Mining
Challenge lgttp://psicdatashop.web.cmu.edu/KDDQu he data set contains log
files of 6043 students that were collected by@hgnitive Tutor (Koedingeretal.,
1997), an ITS for mathematics learning. The student moddlexgpin this system is
based on BKT.

We used the units of the ‘Bridge to Algebra’ course as skillsdar experiment
and selected four units of increasing difficulty, where stutd have to solve word
problems involving calculations with whole numbers. Thapjical model for
this experiment is illustrated in Fig. 7.8(a). Sk8{ (e.g, 728624 701312) de-
notes written addition and subtraction tasks without aagAporrowing, whileS,
involves carrying/borrowingd.g, 728624- 703303).S3 (e.g, 33564x 18) and%
(e.g, 10810+ 46) represent long multiplications and divisions. Notet the skill
model is again simplified for the reasons explained in theskRlyexperiment. We

used a maximum of = 500 observations per student for learning and prediction

and specified the CPTs of the model employing: 29 weights.

Similarly to the previous experiments, the DBN model sigaifity outperforms
BKTc (see Tab. 7.3). The RMSE is reduced by% (RMSEkt. = 0.3379,
RMSE;, = 0.3254), while accuracy is increased h$% (Cksk1. = 0.1461, Clg, =
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0.1379) and the AUC increases t&/007 (AUGsk . = 0.5991). Note that DBN and
BKT¢ both perform better than in the other experiments as the reglormance of
students in the involved skills makes learning and preaficgasier.

7.5.5 Spelling learning

The last experiment uses data collected frogbuster, an ITS for elementary
school children with dyslexia (Gross ana§eli, 2007). The data set at hand con-
tains data of 7265 German-speaking childraybuster groups the words of a
language into hierarchically ordered modules with respetheir frequency of oc-
currence in the language corpus as well as a word difficultgsues. The latter is
computed based on the word length, the number of dysleXallgiand the number
of silent letters contained in the word.

We used these modules as skills to build our graphical meeeltig. 7.8(b)). Skills
S, & and S3 denote the modules 3, 4 and 5 witligbuster. Word examples
are ‘warum’ (‘why’, &), ‘Donnerstag’ (‘'Thursday’S;) and ‘Klapperschlange’ (‘rat-
tlesnake’S3). We use a maximum &f = 200 observations per child for the learning
and prediction tasks and parametrized the model usiag21 weights.

While the DBN model still significantly outperforms BlTin this experiment (see
Tab. 7.3), the magnitudes of improvement are small: the RMSEduced by 0%
(RMSEgkt, = 0.4504, RMSE, = 0.4472), the highest AUC amounts to5804
(AUCgkT. = 0.5029) and there is no significant improvement in CE.

7.6 Discussion

The goal of this work irshort-time predictioni.e., predicting the outcome of task
t + 1 given the outcome of thieprevious tasks, was to provide an efficient method
for parameter learning that yields accurate prediction|eAteeping parameters in-
terpretable. We have solved this task by introducing anrdhgu calledconstrained
structured prediction with latent variablé¢described in Sec. 7.2).

The results of the first experiments (detailed in Sec. 7.#4)atestrate that introduc-
ing domain knowledge in the form of parameter constrainssahawo-fold benefit.
On one hand, the introduced parameter constraints guarantaeterpretable model.
On the other hand, the proposed restrictions lead to impnewe of the error met-
rics. Introducing restrictions on the parameter space isgodarly beneficial for
more complex models as well as for more difficult skills. Foficllt skills where
children change from the unlearnt to the learnt state afierestraining time, the
unconstrained optimization converges to a solution cléaseduniform distribution
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(of correct and wrong outcomes), while the introduced donkaiowledge enables
more precise modeling of learning.

The results of the second evaluation (detailed in Sec. &B)odhstrate that more
complex DBN models outperform BKT in prediction accuracy. Rararchical
learning domains, CE can be reduced by 10%, while improvesnehRMSE by
5% are feasible. The DBN models generally exhibit a signifigamigher AUC
than BKT, which indicates that they are better at discrimingafailures from suc-
cesses. As expected, adding skill topologies has a muchesrbahefit for learning
domains that are less hierarchical in nature (such as sgédarning). The results
obtained on the physics and algebra data sets show that ewple sierarchical
models improve prediction accuracy significantly. A domexpert employing a
more detailed skill topology and more complex constraimns seuld probably ob-
tain an even higher accuracy on these data sets. The usesafitieeparametrization
and constraint sets for all experiments demonstrates #et lassumptions about
learning hold across different learning domains and thesfilproach is easy to use.



CHAPTEHR

Cluster-based prediction

In a computer-based therapy system, knowledge of perfarenarofile, knowledge
gaps and learning behaviors of the student as well as anaequerformance pre-
diction are essential to improve diagnostics and intergardutcome. This is partic-
ularly important for students suffering from learning disiies as the heterogeneity
of these children requires a high grade of individualizatiomm Chapter 7, we have
improved what we will call theshort-term prediction Using our latent structured
prediction algorithm, we improved the accuracy when praaticthe outcome of
taskt + 1 given the outcome of the previous tasks. In this chapter, we aim at
improving thelong-term predictiorof the system: We try to predict external assess-
ment results as well as learning characteristics of theesiisdsuch as knowledge
gaps and overall training achievement.

Given the high diversity of students using a computer-basaoing system, cluster-
ing approaches have proven to be useful to detect small anddreneous groups of
learners. In fact, amongst others, clustering approaces heen employed to im-
proveshort-term predictioraccuracy. The precision of Bayesian Knowledge Trac-
ing (BKT) (Corbett and Anderson, 1994) can be increased ususjezing (Pardos
et al., 2012b) and multiple classification models can algorave performance pre-
diction within a system (Gong et al., 2012). Moreover, ausig (Trivedi et al.,
2011) and co-clustering (Trivedi et al., 2012) approachexeassfully improved
post-test score predictions. Furthermore, ensemble rmgtbifer a way to increase
prediction accuracy by training different types of studewotels (Baker et al., 2011;
Pardos et al., 2012a). Clustering can also be used to gaghinsn learning char-
acteristics of the students. Bootstrap aggregated clagtéing et al., 2007) iden-
tified different subtypes of children with dyslexia. Otheitleors used offline clus-
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8.1

tering followed by online classification to analyze and jcethe students’ input
behaviors (Amershi and Conati, 2009; Kardan and Conati, 2011)

Our model uses online and offline cluster informationléorg-term prediction The
approach is articulated in three steps: In a first step, wat@lichildren according
to individual learning trajectories. Compared to previoppraaches, we use the
subgroup information not only to improve prediction acoyrdut also to provide
a valuable tool for experts to analyze individual learniagt@rns. The second step
consists of a supervised online classification during ingiand in the third step, we
predict future performance based on cluster assignment.

In the following, we first specify the three steps in detafidoe presenting the results
of our experimental evaluation on a data set consistinggfiles from theBMBF-
study(described in Chapter 4).

Clustering, classification and prediction

The three steps of our approach are clustering (offlinegsdiaation (online) and
prediction (online). To be able to perform the first two stepe need to extract
and process the features for clustering and classificatien,features which are
able to identify subgroups with similar mathematical paise In the following,

we therefore first specify the extracted features as welhadd¢ature processing
pipeline used for clustering and classification. We thernlarpghe clustering and
classification steps in detail. Finally, we explain how periance prediction can be
done based on cluster information.

8.1.1 Feature extraction and processing
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From the log files, we identified a set of recorded features;hvttescribe local and
global properties of the user’s training performance. Tétecentains cumulative
as well as per skill measures, and covers performance, leettavior and timing.
Table 8.1 lists the features, which are evaluated after gasfing session.

Having continuous and discrete feature types as well asrdift scales, we process
the features to make them comparable. The processingmeghlistrated in Fig. 8.1
(top) is used for the clustering as well as the classificateaiures. Depending
on their nature, features are processed before calculptingiise similaritiess;
(between each pair of samples (students)d j). The resulting similarity matrices
S are transformed into a Kernel and summed up to obtain thdagitgimatrix K.
Finally, K is transformed to a distance matbxusing a constant shiff) = #features

- K).



8.1 Clustering, classification and prediction

Table 8.1: Extracted features and abbreviations (bold) used in the following. Eterieset covers
performance, error behavior and timing of the users and contains cuveudativell as
per skill measuresPart AandPart B are consistent with Fig. 3.4.

Feature Description

HighestSkills Indices of highest skills foPart AandPart B.

Number ofPassedSkills Total number of skills passed.

PlayedSkills Indices of played skills foPart AandPart B. Set feature.
PassTimes Accumulated time (from start of training) in seconds until

passing a skill. Not passed skills are setto

Samples peskill are set oo,

Key Skills? Indices of problem skills. Set feature.

AnswerTimes Mean answer time per skill. Not played skills are set.to
PerformancePer Skill Mean performance (correct trials/all trials) per skill. tNo

played skills are set to 0.

a Key skill S If a user went back to a precursor skill at least once befassipgS (see Def. 5.1).

The employed processing modules are listed in Fig. 8.1¢bottFor theOperation
step (colored yellow in Fig. 8.1), we have three differerd@-processing operations
available: The logarithmLglnv) naturally deals with outliers, while taking the
inverse (nv, Loginv) removes theo values. The Beta cumulative distribution func-
tion (Beta) is applied to performance features: The range of this featype is
limited to the interval0, 1]. We hypothesize that performance differences between
children are larger near the boundaries,, that it is more difficult to improve the
ratio of correctly solved tasks from®to 0.9 than from 05 to 0.6. We also use three
differentSimilarity Measuregcolored red in Fig. 8.1): The L1-nornb{) computes
the absolute distance between two features and is appliggeféormance or time
features. The Jaccard indel3) is commonly applied to compute the similarity be-
tween two sets. An8D denotes the shortest path between two sgjllandsg on the
skill net (illustrated in Fig. 3.4): The shortest path betweskill Arabic—Concrete
andVerbal—-Numberlineis for exampleSD = 3 as three edges of the graph need to
be traversed to readferbal—~Numberline In a third step, we appliernel transfor-
mations(colored blue in Fig. 8.1) to the feature} is used for sets: It is invariant
under set sizes and ensures that transformed data poirgsihavength. The stan-
dard Gaussian Kernel3K) is shift invariant, its sensitivity can be influenced by
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fq Feature processing pipeline K4
Feature _ . p Operation ) . + > K
extraction . on feature .
f Kn—1
Operation Similarity measures Kernel transformations

LYV Je EnR)/(FUF) R
Loginv:  1/log(f) CONNUSUIM o
Beta:  betacd (1, 5, 5)° [

& Cumulative distribution function of Beta distribution Wwitr, 3 = 0.5.
b Shortest path between skills on the skill net .

Figure 8.1: Feature processing pipeline (top) and processing modules employedtorefdF in
case of a set feature) (bottom). Features are pre-processed {(yedifawe computing
pairwise similarities (red). The resulting similarity matrices are transformed into a
Kernel (blue). The different processing modules can be combinéitleaily.

y. TheRK is also an exponential kernel, but more sensitive tharGiKe which is
useful to capture small differences in for example perforoga The modules of the
different steps of the processing pipeline can be combinitrarily.

8.1.2 Offline clustering

An inherent property of the controller design @ilcularis is its adaptability.
Rather than following a specified sequence of skills to thd,dearning paths are
individually adapted for each child. Form and maxima of tleéwork paths vary
depending on the learning characteristics of a studentRgge8.5). These varia-
tions suggest that clustering the children on the basisef thajectories identifies
subgroups of children with similar mathematical learningfies. Furthermore, the
use of the trajectory features allows for modeling the dgwalent of mathemati-
cal learning over time. Clustering is performed offline,, taking into account all
training sessions of the children.

Children are clustered at the end of the training using ttajgdeatures. These
features take into consideration how far the children caorend the training (and
how fast they arrived there) as well how they reached thiatpdihe selected fea-
tures arePT evaluated per part and number range (6 dimensiéas; B1o, A1o0,
B1oo, A1000 B1oog and PS (set features foPart A and Part B). Part A and Part
B are consistent with Fig. 3.4 and therefore correspond tatmeains ofnumber
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representationgPart A) andarithmetic operationgPart B). PT is processed using
Loginv — L1 — GK which yields the similarity matriX 1. For PT, we apply the
inverse of the logarithm of the featurkeqginv) as a pre-processing step. The loga-
rithm naturally removes outliers, while taking the inveremoves theo values that
occur asPT is set towo for not passed (mastered) skills. As we are dealing with a
time feature, we use the L1-norfhl) as a distance measure and apply a Gaussian
Kernel (GK) to obtainK;. The pipelineJC — JK used forPSresults inK, and

K3. As we are dealing with a set featuleS contains skill indices) we apply the
similarity measure and kernel transformation defined fts: k- andJK. The com-
bined similarity matrixK (K = K1+ K2+ K3) is finally transformed to the distance
matrix D (D = 3 - K) used for clustering.

As the measurements are characterized by relatiasthey represent dissimilari-
ties between each pair of studen#nd j, we perform pairwise-clustering (PC) (Hof-
mann and Buhmann, 1997) & Through a kernel transformation, dissimilarity val-
ues can be interpreted as distances between points in dljyusgaer-dimensional)
Euclidean space. As shown by the Constant Shift Embeddimgforamation, PC
exhibits a cost which is equivalent to that of K-means in tiielllean embedding
of the similarity data (Roth et al., 2003). The optimal numbkclustersk* can be
determined by the Bayesian Information Criterion (BIC) (Pedeg Moore, 2000),
calculating the effective number of parameters as the naretktrace of the kernel
transformation matrix (Haghir Chehreghani et al., 2012).

8.1.3 Online classification

We classify students after each training session and usactwding cluster infor-
mation for performance prediction. The tracked data allessigning a student to
the cluster of children showing similar knowledge and leagrpatterns. The simi-
larities shared with other students are useful to predettaining performance of
the subject, either within the tutoring system or by exteassessments.

The features used for clustering represent global measumgsare thus not opti-
mized for early classification. As all children start therinag at the lowest skill
level (A1), their trajectories tend to be similar during early tragnend do not pro-
vide information about future performance. This fact i®alsible in Fig. 8.5: The
trajectories of the two users look similar regarding thernis and maxima for about
the first 400 tasks. Therefore, we use additional featurgsifdd in Tab. 8.1) taking
into account local differences. Whik¢S, NPS, PSandKS are cumulative features,
PT, SS AT andPPSare evaluated per skill. The features contain informatlooua
time, performance and specific problems of the children. Ouke different nature
of the features AT is for example measured in seconds, wikl® is a set of skill
indices - we again process the features using the pipelustréted in Fig. 8.1. All
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PT.  f41-Ta100—> Loginv > EiNN->IIICKEEOHIE> K+.1 - 4,100

Figure 8.2: Extracted features for online classification and according procesgietines. The
features use the processing pipeline and modules explained in Fig. 8.éndeg on
their nature, features are preprocessed (yellow) before computinggesimilarities
(red). The resulting similarity matrices are then transformed into Kernels)(blue

features and the processing modules applied to them aragkshin Fig. 8.2. We
again use the Jaccard indedD() and a set kernelJK) for the so called set features
(PS KS). As mentioned before, the Beta cumulative distributidatg), followed by
the L1-norm [1) and an exponential kerndRK) are used for performance features
(PP9S. The time featureHT, AT) use the pipeline explained in the previous section
(Sec. 8.1.2)SSis pre-processed using the inverse, as the number of safoplas-
played skills is set teo. To measure the distance in the highest reached skifi,
we compute the shortest path on the skill r&D). The obtained similarity matrices
K; are transformed to distance matrié@shrough a constant shifb{ = 1 —K;).

Feature processing yields a set of more than 400 distanc&esatFeature selection
is performed by ranking the features according to their ele@f correlation to the
correct labels (of the clustering). An optimal matfixis computed, which is a
square-matrix containing the pairwise hamming distanedsden the labels of the
samplesT (i, j) =0, if the samplesand | belong to the same cluster, and, j) =1
otherwise. For each matrly, we compute the distanck to the optimal matrix with
the Frobenius normdt = ||(T — Dj)||r. The features are then sorted in ascending
order by their distancet. For classification, the best combinatibrnof the ten
features with minimal distance to the optimal matfix21° possibilities) is used.
The distance matribD is obtained by adding up the distance matri€gsof the
featured; contained irb. Classification is performed by using a k-nearest neighbors
scheme orD. The best combinatioh and the optimak are found using a 9-fold
cross validation. The classification accuracy is computedhe same folds (not
nested).
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8.1.4 Performance Prediction

The online classification algorithm described in Sec. 8hables us to assign chil-
dren to a cluster after each played session of the training. cévi therefore use

cluster information to predict the student’s future pemfance, training success and
mathematical characteristics. We identified a set of isterg features (see Tab. 8.2)
that we like to predict. These features can be attributeduodifferent areas:

1. Long-term training performancéAS, NR, HS): End level reached within the
tutoring system. We predict the passed skiSand the passed number ranges
NR (Ao-10, Bo-10+, Bo-10+, Ao-100, Bo-100+, Bo-100—: Ao-1000 Bo-1000+,
Bo_1000—) during the training, and the level reached (highest k| separately
for Part A andPart B) at the end of the training. Fdtart B, we also distinguish
between addition (+) and subtraction (-).

2. Short-term training performancNSS NSR): Prediction of student responses.
The number of trialdlS needed to pass a skill are predicted, as well as the number
of trialsNRSto pass a range. Both measures are only predicted for skiligés)
that were passed by the cluster majority as well as by theséesple.

3. Individual knowledge gap@<S, KNR): Identification of particular deficient ar-
eas of knowledge of the student. We identify key skilS and individual prob-

lem areasKA (Ao-10, Bo-10+, Bo-10+, Ao-100 Bo-100+, Bo-100—, Ao-1000
Bo_1000+, Bo—1000—) Of the children.

4. External test result$EPT): Prediction of external post-test scores. We predict
the scores for the external addition and subtraction testglcted in the user
studies (see Chapter 4): The HRT and the AC (detailed in SBk. 4.

Prediction of features is performed using cluster infoiorat(as described in
Tab. 8.2). The prediction of long-term training performaug interesting for analy-
sis as the predicted features are correlated to the leatmaijegtories. The identifica-
tion of knowledge gaps helps to find subtypes of mathemdaeahing patterns and
can be used to increase the degree of individualization, (@utfing more emphasis
on the training of key number ranges). Prediction of extetest results is espe-
cially important for model validation. The prediction ofshterm performance can
be used to improve adaptation (e.g., minimizing frustrgtio

8.2 Evaluation of proposed algorithm

To evaluate the accuracy of classification and predictionwfmethod, we used
log files collected from participants from tiBMBF-study(described in Chapter 4).
The data set at hand contains 88 participants (68% femad@sparticipants (72%
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Table 8.2:Predicted features (abbreviations in bold) along with error measufgsdenotes the

predicted value,f; the actual value of the feature, and CE the classification error:

#(f, # fy) /#played JC (Jaccard Index)SD (skill distance) and.1 (L1 norm) correspond
to the distance measures described in Fig. 8.1 (red). Prediction for akahgeés is per-
formed using cluster information.

PAS

NR

HS

NSS

NSR

EPT

KS

KNR

Description Error measures
Indices of passed skills during training. A skill is predidt
. S . JC
as passed, if the cluster majority passed it.
Indices of passed number ranges during training. A range
. : : A : JC
is predicted as passed, if the cluster majority passed it.
Indices of highest skills passed by cluster majority during sD

training (separately foPart AandPart B).

# samples needed to pass a skill (cluster mean). Predicted ..
: o median(1/|ft|)
only for skills passed by cluster majority.

# samples needed to pass a number range (cluster mea%’edian(_l/]f )
Predicted only for ranges passed by cluster majority. t
Absolute and relative (#correct tasks/#tasks) post tesesc L1

(cluster mean)HRT+, HRT-, AC+, AC-.

Indices of key skills (see Def. 5.1). A skill is classified a&E Recall. Precision
key skill, if the cluster majority has problems. ’ '

Indices of key number ranges. A range is classified as kg% Recall. Precision
number range, if it contains at least one key skill. ’ '

females) were diagnosed with developmental dyscalculi2)(Bnd 38 participants
(63% females) were control children (CC). The log files stenmfigix weeks of

training and contain 27 complete training sessions (of 2Qutes) per child. On

average, each child solved 1430 tasks (8B- 212) during the six weeks. The
number of solved tasks per session corresponded.8o(SD o = 7.8).

In the following, we first describe the resulting clusterd arterpret them according
to the mathematical characteristics of the children. Tinnanalyze the classifica-
tion accuracy over time as well as the predictive perforreasfour method.

8.2.1 Resulting clusters and interpretation
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(a) BIC score by cluster number. (b) Resulting clusters in three dimensions.

Figure 8.3: The best BIC score is reached for= 6 clusters (a). This result is supported by the
clear separability of the transformed data in three dimensions (b).

10 20 30 40 50 60 70 80

Figure 8.4: Similarity matrix used as an input for the offline clustering (left). Similarity matrix
sorted by group label after clustering (right). The red color denotds similarity,
while blue denotes low similarity. The six resulting clusters are clearly visible ®n th
diagonal of the sorted similarity matrix (right).

cluster numbers is illustrated in Fig. 8.3(a). This ressisupported by the clear
separability of the transformed data in three dimensioisp|ayed in Fig. 8.3(b).

The six clusters are also clearly visible on the diagondiesorted similarity matrix:
Figure 8.4 (left) illustrates the similarity matrix used for clustering, while Fig. 8.4
(right) shows the sorted similarity matrix. The x- and y-sxé the matrices denote
the sample indices. High similarities are displayed in sehile blue denotes low
similarity.

The six resulting clusters (denoted BY,....C6) can also be interpreted regarding
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Figure 8.5: Example trajectories of two children from clusters C1 (left) and C6 (rightcrdss
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denotes a task played at the actual difficulty level while a dot denoteslamare-test
of an already mastered skill. Red stands for a wrong answer, bluerf@ctogreen for
neutral. The child from cluster C6 mastered all the skills of the training progiféer
about 900 tasks, while the child from C1 showed difficulties in mastering tlis.sk

the characteristics and distinct learning patterns of théents, which are reflected
in their training trajectories. Two example trajectoriésbildren from cluster<1

and C6 are displayed in Fig. 8.5. While the student from clusEérfinished the
training,i.e., passed the most difficult skill of the program after abd gasks, the
student from cluste€1 mastered only about 50% of the skills over the course of the
training.

A detailed description of the different clusters is givenrab. 8.3. We list demo-
graphic information about the cluster members, such asghe Burthermore, we
look at the cluster size, with special attention to whether ¢luster members are
classified as having DD. And finally, we also investigate abtaristics from the
training with Calcularis: How many skills did the children master during the
training and what level did they reach? In which areas of taming program did
the cluster members exhibit problems?

The children assigned ©1 have only passed the number range from 0-10. The dif-
ficulties with number representatiorBKy,,, = 1.00) as well as procedural knowl-
edge PPg,,, = 0.99) imply an early disorder of numerical functions. Indeatfd,
children of this group were diagnosed with DD. ChildrenG@ have passed the
number range 6 100 for Part B (arithmetic operationg but exhibit difficulties in
Part A (number representatiofs This learning patternRPa,,, = 1.00) suggests
problems with domain-specific functions such as quantitygarison and symbolic
representation. In contrast @2, children inC3 passed the number range 0-100
for Part A, but not forPart B. This observation indicates intact number processing,

but difficulties in understanding and executing proced({R%;. . = 0.99) . The
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Table 8.3:Data per cluster@1l,...,C: Number of childrerNC (%), mean ag&G (SD a), number of

passed skillNPS, probability of having problemBP in different areas and number ranges
of the training.NC andAG are given for all samples as well as only for CC and DD children.
Number ranges mastered during training are marked bold. The propoftawiidren with

DD decreases with increasing cluster performance.

C1 C2 C3 C4 C5 C6

NC

AG

NPS

PP

al 13(14.77) 5(5.68) 16(18.18) 9(10.23) 30(34.09) 15 (17.05)
CC 0 (0.00) 2(40.00) 5(31.25) 4(44.40) 16(53.30) 11 (73.30)
DD 13(100.0) 3(60.00) 11(68.75) 5(55.60) 14 (46.70)4 (26.70)

all  9.26(0.87) 8.18(0.42) 8.60(0.67) 8.52(1.29) 8.783).98.53 (0.87)

cc - 8.06 (0.03) 8.10(0.49) 7.52(0.27) 8.16(0.53) 8.11 (0.44
DD 9.26(0.87) 8.26(0.58) 8.82(0.64) 9.32(1.21) 9.49 (p.78.67 (0.71)
A B 12,9 12,14 15,12 19, 22 22,25 22,30
A1o 0.80 0.95 0.79 0.31 0.39 0.19
B1o 0.68 0.20 0.57 0.11 0.14 0.14
A100 1.00 1.00 0.94 0.91 0.89 0.49
B1oo 0.99 0.98 0.99 0.96 0.87 0.30
A1000 X X X 0.98 0.72 0.56
B1ooo X X X 0.98 0.99 1.00

clustersC4 andC5 have passed the number range 0-100 for both parts and the num-
ber range 0-1000 foPart A, respectively.C6 is the best performing cluster, with
children having passed all number ranges and thus finisteetaiming. The perfor-
mance differences between clusté4 C5andC6 are probably due to differences

in capacity and availability of domain-general functioasténtion, working mem-

ory, processing speed). Notab4, C5andC6 contain children with DD (26%

in C6). This fact can be attributed to age differences: childréh WD belonging

to clusterCé attend the @ or 5" grade of elementary school. The interpretation of
learning patterns confirms the usefulness of trajectorgrmétion for clustering.

8.2.2 Classification Accuracy

Classification is performed online after each training sessiVe classify the chil-
dren to a particular subgroup depending on their curremtitrg status and compute
classification accuracy using cross validation. As exmkatiassification accuracy
increases with the number of available training sessidinstfiated in Fig. 8.6). Five
sessions are already sufficient for our algorithm (blue)uster 50% of the children
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Classification accuracy

0.2

1 5 10 15 20 25 27
Number of sessions

Figure 8.6: Classification accuracy over time. Accuracy using offline feature$, (fieel algorithm

described in Sec. 8.1.3 (blue) and portion of children classified corracttya direct
neighbor cluster (light blue). Five sessions are enough for our méihaee) to classify
50% of the children correctly.

correctly. The accuracy is further increased to 60% afteseéskions, and 70% is
reached after 19 played sessions. A random assignment wesudtt in 166% of
correctly classified children. An accuracy of.39% could be reached by assigning
all children to the largest cluster (C5, see Tab. 8.3).

Considering that some neighboring clusters are close to@hen (for instanceC1
and C2 are statistically distinguishable but similar), the assignt of a child to
a direct neighbor of the correct cluster will not signifidgrdeteriorate prediction
quality. The estimation of the percentage of children assito the correct cluster
or its direct neighbor (light blue) yields a success ratd@ighan 70% already after
five sessions. The classification with the global featuresider clustering (red)
performs worse for small numbers of sessions, and equallyafter 20 sessions.
This behavior highlights the importance of using local Gees for classification at
an early stage in the training.

8.2.3 Predictive Performance
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The online classification after each training session aléov predicting students’
performance in the four selected areas (detailed in Tah.&&ed on cluster infor-
mation. In the following, we analyze prediction accuracytwo ways: We first

investigate prediction accuracy at the end of the trainafte( 27 sessions) for dif-
ferent cluster numbers. In a second step, we look at onlinfenpeance prediction
and compute predictive performance after each trainingieesising the optimal
number ofk* = 6 clusters.
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(a) Offline prediction errors for selected fea- (b) Predictive performance for six clusters
tures by cluster number. over the course of the training.

Figure 8.7: Offline prediction errors for selected features plotted by the number sfezki (a).
Prediction errors tend to decrease with increasing cluster number amétstaghen
reaching the optimal number &f = 6 clusters. Predictive performance increases over
the course of the training (b). The abbreviations of the features pamesto those
defined in Tab. 8.2.

Prediction errors after 27 sessions (offline predictionjeaealculated fok = 1 to

k = 10 clusters using a cross validation. Prediction for thecijgefeatures was
computed as described in Tab. 8.2. Figure 8.7(a) shows #wigtion errors for
selected features. For most of the features, predictiaredecrease with an in-
creasing number of clusters upkbo= 6 clusters and stagnate afterwaMiSSand
NSR however, do not show a high cluster dependency. As theserésaare pre-
dicted for skills (number ranges) mastered by the clustgornityy the number of
skills (number ranges) for which we can predi$S(NSR) depends oiPAS (NR).
The exact errors for all features of the four selected amdeiled in Tab. 8.2) for
k =1 andk* = 6 clusters are listed in Tab. 8.4. Most errors were signiflgan
reduced (indicated by a two-sided t-test corrected for iplelicomparisons with
Bonferroni-Holm) by using the cluster information. The hgediction accuracy of
the long-term training performanc@AS, NR, HS) shows that clustering the chil-
dren based on trajectory features is indeed meaningfulth&umore, the accurate
prediction of post-test resulSEPT demonstrates the correlation between achieve-
ment in external assessments and in-tutor performancehasdtoves the validity
of the student model. The promising results in the identiticeof knowledge gaps
(KS, KNR) provide a valuable tool in the analysis of learning patesnd allow
experts to elaborate individualized learning strategies.

The accurate predictions of knowledge gaps together wighgthod prediction of
short-term training performancédN§S, NSR enable a tutoring system to better
adapt the training to individual children. This, howeverguires online perfor-
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Table 8.4: Offline prediction errors fok = 1 andk* = 6 clusters. FoEPT features, absolute
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and relative errors (in brackets) are given and the number&k$oand KNR denote
classification error, recall and precision. THS error is given forPart A and Part B.
The abbreviations of the features correspond to those defined in ‘PabviBst errors
are significantly reduced by using the cluster information.

Feature Prediction error (k = 1) Prediction error (k* = 6)
PAS 0.28 0.13*

NR 0.25 0.00*

HS 2.69,5.72 0.34*, 1.34*

NSS 0.32 0.31

NSR 0.27 0.26

HRT + 4.70 (0.12) 3.69* (0.09%)

HRT- 5.67 (0.14) 4.50% (0.11%)

AT + 3.26 (0.16) 2.61* (0.13%)

AT- 2.98 (0.15) 2.33%(0.12%)

KS 0.24,0.10, 0.95 0.22*,0.33%,0.73*
KNR 0.35, 0.90, 0.55 0.19%, 0.82*, 0.74*
*p<.01

mance prediction. Online prediction errors for the relé¥aatures were computed
after each session using cross validation and relying ostelunformation from
the classification. Predictive performance over time fdected features is illus-
trated in Fig. 8.7(b). As expected, the prediction errogsethel on the classification
accuracy (see also Fig. 8.6)., prediction errors decrease with increasing classifi-
cation accuracy. As already observed in the offline prealictask, NSSandNSR
are cluster independent and therefore, prediction ertoitlsese features do not de-
crease with increasing classification accuracy. Perfoc@amlong-term prediction
is again good: Already after five sessions, prediction srfor NR andPAS drop
below 025. Results in identification of knowledge gapsS; KNR) are also promis-
ing: Prediction errors for these features are arou@dafter five sessions. The good
prediction accuracy reached already after few trainingsvalto draw conclusions
about short-term performance and knowledge gaps.



8.3 Discussion

8.3 Discussion

Training individualization is essential in an intelligentoring system (ITS). Most
research has focused short-time performance predictioifhe method proposed in
this chapter is geared tong-time performance predictiorPrior knowledge about
training outcome and mathematical characteristics of tilelren is potentially in-

teresting for teachers and therapeutics.

Students training with a computer-based program often shbigh diversity. This
is especially true for our data sets, as they contain log fiitea children with and
without DD. Clustering children into subgroups with similearning patterns seems
therefore promising. And indeed, our results demonsttaiethe prediction accu-
racy can be improved when taking clustering informatioo extcount. Our findings
are in line with previous studies (Baker et al., 2011; Pard@d.£2012a,b; Trivedi
etal., 2011; Gong et al., 2012; Trivedi et al., 2012) empigylustering algorithms
for improving short-time performance prediction.

The clusters obtained using our algorithm can be intergrateording to mathe-
matical characteristics of the children. The interpretagiof the weakest clusters
(C1, C2andC3) are particularly interesting as they can be mapped to tiereint
subtypes of DD proposed by von Aster (2000).

Online classification to different subgroups has the paemnd gain knowledge

about the children early in the training and to make pregdingiof future perfor-
mance. The online classification of the children to a paldicsubgroup has shown
to be an inherent problem in the beginning of the training, dyuusing local fea-
tures the classification accuracy was notably improvedylemgaccurate prediction
of students’ future performance. Therefore, our approdabffbne clustering fol-

lowed by an online classification seems suitable for makamg{term predictions
and contributes to a better understanding of a child’s iegroharacteristics and
thus to a better support for children with learning difficest

119



Cluster-based prediction

120



CHAPTEHR

Affective modeling

The learning outcome of a student working with a (computesell) training pro-
gram is strongly influenced by the affective states of the. Uselistracted or bored
student will not learn efficiently. Also negative emotiongls as frustration or fear
might slow down learning. Affective modeling provides thespibility of detecting

states which are obstructive for learning and to interveremingly.

In general, affective models can be inferred from severatcas, such as sensor
data (Cooper et al., 2010; Heraz and Frasson, 2009) or usgtrdafa (Baker et al.,
2004; Johns and Woolf, 2006; Arroyo and Woolf, 2005; Basceesl., 2011). Ex-
isting affective models, however, focus mostly on one dpelgarning domain or
are designed for a specific training program. In this work(tlveoretically) explore
the possibility of a general framework for engagement leaxfocusing on learning
disabilities.

We will start our investigations based on an engagement hfodspelling learn-
ing in children with dyslexia presented by Baschera et al1{20 The model can
adapt the training to individual students based on a dataidentification of en-
gagement states from student input. We argue that that wrgdion of similar
engagement patterns in children with developmental dgatal(DD) or dyslexia is
justified and, thus, that a similar engagement model woulodoeficial.

In the following, we will first introduce characteristics @yslexia and the computer-
based spelling trainingybuster (Gross and dgeli, 2007; Kast et al., 2007), on
which the model presented by Baschera et al. (2011) is basedsécond step, we
will assess comorbidities and similarities in engagemetitben the two learning
disabilities. We will then extend the introduced framewtwkhe more general case
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9.1

of engagement modeling. Finally, we will analyze the rehilgg of the engagement
model for spelling learning and define desirable propeuiea general model of
engagement dynamics for software tutoring.

Learning disabilities and engagement

Developmental dyslexia and DD are both specific learninghiigies inferring a
lack of success in language processing and mathematipsategly. In this section,
we discuss the case of dyslexia along with existing inter@arprograms. Further-
more, we introduce the domain of spelling learning as wethascomputer-based
training prograndybuster (Gross and \dgeli, 2007; Kast et al., 2007). And finally,
we highlight the similarities between the two learning 8iies which indicate the
presence of similar engagement patterns. Note that a eldtiautroduction to DD
and the training prograrmalcularis can be found in Chapter 2 and Chapter 3,
respectively.

9.1.1 Dyslexia
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Developmental dyslexia is a specific learning disabilitychraffects the acquisition
of reading and writing skills (World Health Organizatior§aB). Children with de-
velopmental dyslexia tend to exhibit inconsistent ortlapdryy speed and accuracy
problems, as well as difficulty in segmenting and manipnaphonemes in words.
In addition to poor writing and reading skills, poor speecbduction and spelling
are other symptoms of developmental dyslexia (Goswami3R00urrently, devel-
opmental dyslexia is thought to originate from a neurolabdisorder with genetic
origin (Galaburda et al., 1985, 2006; Schulte-Korne et2004; Demonet et al.,
2004; Ziegler et al., 2005). The prevalence of this disgbi§ estimated to range
from 5% to 17.5% in English speaking countries (Shaywit28)9 and to about
10% in German speaking countries (Russeler et al., 2006).

There exist a lot of intervention programs to remediate bgraental dyslexia that
have been scientifically evaluated in children (and adulisgse programs predom-
inantly aim at training auditory and visual functions usagproaches such as low-
level auditory perceptual learning (Tallal, 2004; Robicledl., 2002; Santos et al.,
2007; Besson et al., 2007; Gaab et al., 2007; Uther et al.,)2p@#ctice of speech-
like auditory stimuli (O’'Shaughnessy and Swanson, 200Qcht et al., 2006),
practice of specific manipulations of speech-like signéddlél, 2004), improvement
of high- and low-level visual functions (Bacon et al., 200@rlsso et al., 2006) and
combined training of auditory and visual functions (Kujatal., 2001). Other inter-
vention techniques combine the training of reading andnygiskills (Vadasy et al.,
2000; Edwards, 2003; Shaywitz et al., 2004). Lately, a fewtirmuodal training
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programs have been proposed as well (Kujala et al., 2003sGrod \bgeli, 2007;
Kast et al., 2007).

9.1.2 Spelling learning

Spelling a word can be seen as translating from spoken |gegteawritten lan-
guage. In an alphabetic language, like for example Englisheyman, the spoken
phonemes need to be matched to graphemes. This matchingusigae because
some phonemes can be matched to several graphemes (farcestae phoneme
It/ can be matched to the graphemes ‘f’ and ‘v’ in German). $lling learning,
different models have been proposed so far. One model ftarine suggests that
spelling is learnt through the identification of implicitcuexplicit rules (Hilte and
Reitsma, 2011; Ehri, 2000; Cassar and Treiman, 1997; LanddrR&itsma, 2005;
Pacton et al., 2001). Children build up a mental print lexjdmurt also abstract reg-
ularities from print and are taught rules that underliertisgelling system. It has
been shown that children already use phonological and notwgital rules from an
early age. Another model suggests that spelling of new wigrtésarnt by analogy
to known words called reference words (Bosse et al., 2003; Galini985; Marsh
et al., 1980; Martinet et al., 2004; Nation and Hulme, 19998). Both of these
presented models imply that spelling learning is a rattwar-hierarchicalprocess.
Rather than learning and understanding concepts and sésthgt build up on each
other, the process consists of memorizing the phonemdignap matching and its
irregularities or of building analogies to existing words.

9.1.3 Dybuster

Dybuster (Gross and ¥geli, 2007; Kast et al., 2007) is a multi-modal training{ro
gram for spelling learning. The central idea of the traingodtware is to recode a
sequential textual input string into a multi-modal repreagon using a set of codes.
These codes reroute textual information through multiplistorted visual and au-
ditory cues. This training strategy builds up the memorgrggth of graphemes and
phonemes. Visual cues include colors, shapes and topaBaged on the informa-
tion theoretical model abybuster, eight different colors are used in the software.
The mapping of letters to colors is the result of a multi-ahbjee optimization. For
example, letters easily confused by dyslexics, e.g., ‘nal ‘afy map to visually dis-
tinct colors. The idea is to associate colors with letterslbminate mistakes due
to letter confusion. The shapes are: spheres for smaltdeitglinders for capital
letters, and pyramids for the umlauts. The graph structumalyi shows the de-
composition of a word into syllables and graphemes. An autdit auditory code
computes a word-specific melody that is played to the usenveméering a word.
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BFOE SR

Figure 9.1: The three learning games bfbuster (illustration by Baschera and Gross (2010a)):
Color game to train the associations between colors and letters (tokefph game
for the training of the syllable structure (top right) awelrd Learning game with
visual presentation of the different cues (bottom center).

The different codes not only transfer information, but a8mulate different senses.
This multi-sensory stimulation enhances perception aotitites the retrieval of
memory (Lehmann and Murray, 2005; Shams and Seitz, 2008).

The tree different games Dffbuster are illustrated in Fig. 9.1 (Baschera and Gross,
2010a). In thecolor game (Fig. 9.1 (top left)), children learn the associatibes
tween colors and letters. Children need to remember the calbthe different
letters: The color fades out over time and children need ¢& fhie right one. In
the Graph game, children graphically segment a word into its syllalaed letters
(Fig. 9.1 (top right)). These first two games are played ab#gnning of the train-
ing to learn the codes that are integratedjbuster. In the third gaméiord
Learning, representing the actual learning game, the program pieenalterna-
tive representations (graph, colors, shapes) of a word @lg(center)). A voice
dictates a word and the children hear a melody computed frenmivolved letters
and the lengths of the syllables. Children then need to typevtrd on the keyboard.
To avoid displaying completely misspelled words, the fregrmprogram provides im-
mediate visual and auditory feedback to errors. The sequeihwords presented to
the child is adapted to the skill level and the error profiléhaf children.

In Dybuster, the selection of words to be prompted is adapted to thelekél of the
children. The word selected to be trained next is the wortl e highest progress
potential with respect to training time. The knowledge es@ntation is an estimate
of individual mal-rule difficulties. Mal-rules define diffent error types which a
child can commit. Possible error categories are, e.g.tagation errors, typing
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errors (depending on key distance or for technical reastetgr confusion (visual
or auditory similarity) or erroneous phoneme-graphemechiayj. As immediate
feedback is presented after an erroneous letter, errosifitation is ambiguous,
i.e., different deficits can lead to the same final error. Tal @éth this ambiguity,
Dybuster uses an inference algorithm for perturbation models baseBaisson
regression (Baschera and Gross, 2010b). The algorithm igréesto handle un-
classified input with multiple errors described by indepsrtdnal-rules. During the
training, the representation of the student’s mastery efdbmain is continuously
updated after each entered word. Based on these estimatesietipn of further
spelling performance and a classification of committedrsrfor each individual
student can be estimated. In addition to this spelling kedgt representation, the
word selection controller accounts for the optimal time @petition (time until a
previously misspelled word is repeated).

9.1.4 Comorbidities and similarities in engagement

Developmental dyslexia and DD, both brain-based disorddten exhibit comor-
bidity, which is the co-occurrence of two or more disorderghe same individ-
ual. Studies show that individuals with DD do often show laage difficulties as
well, and vice versa, that dyslexic individuals often suffem difficulties in arith-
metic (von Aster and Shalev, 2007; Ostad, 1998; Lewis efil&P4; Badian, 1999;
Barbaresi et al., 2005; Dirks et al., 2008; Ackerman and Dykm&95). More im-
portantly, children with these learning disabilities oftexhibit comorbidities with
ADHD (Shaywitz et al., 1994; Germaret al., 2010; Fletcher, 2005; Barbaresi et al.,
2005). In addition, children with learning disabilitiesteri show anxiety or aver-
sion against the subject (Rubinsten and Tannock, 2010)h&umbre, they tend to
underperform in school and later in profession (Bynner, 19%%ese facts suggest
that children with learning disabilities will exhibit lomnirinsic motivation and atten-
tional problems and thus, monitoring of engagement dynaimécomes even more
important. Since similar implications are relevant for thw learning disabilities,
we assume the appearance of similar engagement statev&omg®ental dyslexia
and DD.

9.2 General engagement dynamics modeling framework

To define a framework for building a general engagement dycemodel, we ex-
tract and analyze the main steps of the model for engagemngaatdcs in spelling

learning (Baschera et al., 2011). The resulting model is aunyn Bayesian net-
work (DBN) (Murphy, 2002) representing different affectistates as well as their
relationships. In brief, we can define the following framekvo
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1. Indicator definition : An indicator variable, giving an indication of the engage-
ment state of the children needs to be determined to labelatae This variable
can be measured using sensor data (Cooper et al., 2010; Hher&zasson, 2009)
or by relying entirely on input data as in the engagement rifodspelling learn-
ing. Entirely data-driven indicators are usually noisy dmghly dependent on
the learning domain.

2. Feature extraction: A set of recorded features needs to be extracted. This set
contains measures of input and error behavior, timing, ani&tons of the learn-
ing setting induced by the system controller. Possibleufeatwere proposed in
previous work (Baker et al., 2004; Johns and Woolf, 2006; yarand Woolf,
2005; Baschera et al., 2011). The set of meaningful featsresrangly influ-
enced by the learning environment.

3. Feature selection To select the features, the relation between the extrdeted
tures and the indicator variable needs to be estimated xmmple by using a
LASSO logistic regression.

4. Model building: In a final step, the graphical model needs to be inferred
from data. The parameters of the DBN can be estimated usingctadmn
maximization (EM) (Dempster et al., 1977). The quality offetient graphi-
cal models can be assessed by computing the Bayesian Infom@titerion
(BIC). Model validation can also be performed with ApproximatSet Cod-
ing (Haghir Chehreghani et al., 2012).

This framework gives an overview of the steps to be takendeioto build a model
for engagement dynamics in any domain. Steps 1 and 2 aretiessdren trying to
find a valid model. These two initial steps, however, are alghly dependent on
the particular learning domain and the learning environmge indicator function
and the set of features that we applied for the engagemerglnmospelling learning
are therefore not directly applicable to other domainst{@glearning mathematics)
for the purpose of modeling engagement dynamics.

9.3 Engagement model for mathematics learning
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Constructing a model of engagement dynamics requires aigéreanework to sup-
port generalization of engagement behavior. We start l®rriefy to the previously
developed model for engagement dynamics in spelling legr{BBaschera et al.,
2011) and explore its re-usability. Furthermore, we assesdimitations of the

existing model and provide suggestions on how to overcom® th

As discussed above, steps 1 and 2 of the general framewoesseatial. They high-
light the dependence on the learning domain and on the spec¥ironment and
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can therefore not directly be applied to another learningala or training environ-
ment. Steps 3 and 4 on the other hand are independent of thenigdomain or the
training environment. In the following, we therefore firsisass the first two steps
of the engagement model for spelling learning to identifyplarts of the model that
can be reused. Furthermore, we define desirable propeftasiondicator function
(step 1) and a feature set (step 2) applicable to learningmeigl and make a first
draft of a possible general feature set.

9.3.1 Indicator Function

The model for engagement dynamics in spelling learning tise®rror repetition

probability (ERP) as a noisy indicator. If the student is inistrdcted state, more
careless errors will occur which are unlikely to be repeéitd ERP). If the student
is in a non-receptive state (inhibits learning), commitecbrs will probably be re-
peated (high ERP). This indicator function is meaningfulenttie following (strict)

assumptions:

e Stationary learning environment: The learning environhmmsists of only one
type of task (here the typing of words).

e Non-hierarchical learning domain: The learning works inca-hierarchical way,
for example through memorization. This assumption meaatsatword is learned
through memorizing the spelling in the casegbuster.

The learning environment for mathematics learnigglcularis) as well as the

learning domain do not fulfill these propertieGalcularis consists of a number
of skills at varying difficulty levels, each of them deperglion each other. Perfor-
mance or error measures can thus not easily be compared dicecdifferent skills.

Furthermore, mathematics learning is very hierarchicalsidies knowing rules or
building procedural knowledge, conceptual knowledge éustnding the ‘why’)

needs to be built. If a child commits an error such as ‘12-5t3hakes no sense to
repeat exactly the same task after a certain amount of titme cfiild needs to learn
how a task including a carry is handled. Having learned tbrgcept, the child can
solve all tasks involving carrying.

How should an appropriate indicator function for a hierazahlearning domain and
a learning environment employing different skills lookdik Why do we need an in-
dicator function in the first place? As we rely on input datdypono ground truth
about the emotional state of the user is available. The adidunction represents
the emotional state (for example engagement) over timetargidrovides us with a
labeling of the data and therefore we deal with supervisadhiag instead of unsu-
pervised learning. Assuming an interplay between humanilegand affective dy-
namics (Kort et al., 2001), an indicator based on perforraaneasures in the learn-
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ing environment can be selected. However, being in an enigsigée is a necessary
but not sufficient condition for learning. The indicator @tion therefore needs to
differentiate between different reasons for low progresbé environment. Besides
not being engaged, the tasks posed can be too easy or toalt{ffict matching the
skill level of the user) or there can be task comprehensiohlpms. All these cases
need to be taken into account. Furthermore, the indicatation needs to consider
the hierarchical structure of the skills and the dependsnamong them and thus
also account for previous knowledge. Still, an indicatordtion relying purely on
input data will always be an approximation of ground-trutfhe input data can,
however, be enhanced to increase the reliability of thecatdr. Calcularis, for
example, also records careless input of the children sucareom key strokes or
mouse clicks. These inputs give an additional indicatiothefengagement state.

9.3.2 Feature Set

128

The set of features used for the engagement dynamics moseeiling learning is

very specific and in particular also very much adapted to ¢aening domain and
the learning environment used. Table 9.1 (Baschera et dl1)23ts and describes
all the extracted features of the model.

The features used can be divided into three categoriesurfésan theTiming cat-
egory are useful to indicate attention, but also partidylgpecific to the learning
environment. Features such as the input tRteand its variancéRV assume an
environment where the results are entered via the keyboatdvaiere the typing
velocity is meaningful, which is not the case f@alcularis. Also features such
asTfE andTtNE assume an immediate feedback on the error (before the csld h
typed the whole result). On the other hand, think tiie and off timeOT indi-
cate the child’s performance also in the mathematics lagrenvironment. Also in
the second category focusing bwput & error behavior only few features can be
re-used. Help callsHC) are for example not possible in every environment. The
FC feature is only meaningful if feedback on errors is givereadty while the child
enters the result. And tH@PEfeature is specific to the learning domain. In contrast,
features such as repetition err&K) or error frequencyEF) describe general er-
ror behavior (Does the user repeat errors? How many err@s the user make?)
and thus are meaningful for any learning domain. The thitegmy Controller
Induced is completely dependent on the learning environment, esetfeatures are
induced by the controller of the particular environmentbl&e0.2 discusses which
features are specific to the learning domain and the envieohof spelling learning,
and which features could be reused for the mathematicsiteggemvironment.

As is evident from Tab. 9.2, the given feature set is spedifickesigned for the
spelling learning environment, yielding very good resulsr this reason, most of
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Table 9.1: Extracted features and abbreviations (bold) used in the following (Baseh al., 2011).
The feature set includes timing and behavioral as well as controller iddaaéures.

Feature Description

Timing

InputRate Number of keystrokes per second.

InputRateVariance Variance of thiR .

Think Time Time from dictation of word to first input letter of studen

Timefor Error
Timeto NoticeError
Off Time

Input & Error Behavior
Help Calls
FinishedCorrectly
SamePositionError

RepetitionError

Error Frequency

Controller Induced
Timeto Repetition

L ettersto Repetition

Time from last correct input letter to erroneous inpitdr.
Time from error input letter to first corrective action.
Longest time period between two subsequent letter snput

Number of help calls (repeating the dictation).

True if all errors are corrected when enter key esped.

True if multiple errors occur at one letter position oiard.
State of previous input of the same word (three staf@srect/
Erroneous Not Observejl

Relative entropy (Kullback and Leibler, 1951) from observed
expected error distribution (given by the student model (Basa
and Gross, 2010b)) over last five inputs. Positive valueohbre
tained from larger errors numbers, negative values fromliema
ones.

Time from erroneous input to respective word tiéipa.
Number of entered letters from erroneous input to respeatord
repetition.

the features cannot be directly applied to a different liegrdomain or a different
learning environment such as mathematics learning. Hayexe can divide the
features designed for the spelling learning environmettt dhfferent feature cat-
egories and derive a general feature set from those. We aseatkgoriesnput
behavior, problem statement, problem-solving behavierfggmanceand environ-
ment Table 9.3 shows the categories as well as our suggesti@adgeneral feature
set associated with these categories for engagement dymamdeling.

The features of the comprehensive feature set can be usediffement learning
domains and environments and are particularly suitablehferarchical learning
domains such as mathematics learning. Table 9.4 demastiat most features
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Table 9.2: Assessment of feature set for the engagement dynamics model in spediminte
Most features cannot be directly reused for the mathematics learningpemeént as
they are specific to spelling learning and théuster environment.

Feature Assessment Reason

Timing

InputRate NoO Input. rate not meaningful for mathematics
learning.

InputRateVariance No Same reason as for the.

. : Can be replaced by answer time, i.e., the time
Think Time . P
ves the child needs to answer the task.

Timefor Error NoO iny meaningful in an environment with imme-
diate feedback on errors.

Timeto Notice Error NO Feedback is only given after the whole result
has been entered.

: Could be redefined to be the time until the child

Off Time Yes :
starts answering the task.

Input & error behaviour

Help Calls No No help calls possible in the environment.

FinishedCorrectly No Feedback is only given after the whole result
has been entered.

SamePositionError No Only meaningful for spelling learning.

RepetitionError Yes Might t_)e replacgd by assessing the previous op-
portunity the child had to apply a certain skill.
Student model needs to compute expected error

Error Frequency Yes o
distribution.

Controller Induced

Timeto Repetition No Repetition of exactly same task is not done.

L ettersto Repetition No Repetition of exactly same task is not done.

could be directly applied to the mathematics learning emmrent, such as the one
provided byCalcularis.

9.4 Discussion

In this chapter, we explored the idea of transferring exgstesults in the context of
engagement modeling in spelling learning to general apptios for learning dis-
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abilities. Our assumptions are scientifically justified g significant co-occurrence
of dyslexia and DD with ADHD and the similar implications $Las anxiety and low
intrinsic motivation of the two learning disabilities. Bhobservation constitutes a
clear indicator of the existence of similar engagement oyos, thereby suggesting
general measures and models of engagement.

We performed a detailed analysis of similarities and défferes of the two disabil-
ities as well as the according learning environments. Oatyais of the learning

domain and the learning environments, of their correspandiudent models, as
well as of the experimental data, suggests that the modalpfelting learning can

be extended to the case of mathematics learning. Our findimgs, however, that

indicator functions and features are specific to the legrdomain. Table 9.5 sum-
marizes the similarities and dissimilarities of the twoastigated cases.

From this comparison we conclude that there are substaiiffialences in the learn-
ing domain, which in turn directly influence the learning romment and the stu-
dent model. Furthermore, these differences indirectlgcfthe experimental data
as well. Therefore, the application of the indicator fuastand of the feature set
specified for the model of engagement dynamics in spelliagiag is fairly sophis-

ticated. Rather, a more general indicator function and a cehgmsive feature set
need to be defined. At present, this is an area of active r@sear
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Table 9.3: Sketch of a general feature set (abbreviations in bold) for engadenoeieling derived
from the spelling learning environment. Extracted features are consigtlrgrevious
work (Baker et al., 2004).

Generalized feature

Description

Input behaviour
InputType
Valid I nput

I nput Statistics

Problem-oriented nput

Problem statement
ProblemDifficulty
ProblemType
ProblemFamiliarity

Problem-solving behavior

Time toSolution
Time LastSolutions
Time Deviation

AnswerTime
ProblemApproach

Help Usage

Performance
Correctness oAnswer
AnswerAssessment

Error Information
Error Repetition
Error Frequency
Error Count

Environment

Time BetweenProblems
Similar ProblemsCount
Work BetweenProblems
SessionDuration

Time of theDay

The type of the input, e.g., mouse, keyboard, pull-dowenumetc.
True if the input is valid, e.g., input string only cang&numbers.
Statistics of the input as for example mean inptg or input rate
variance.

True if the input is related to the problem, e.g., useéemext into
the answer.

Ideally an overall measure of the problem diffigult
The kind of problem at hand.
True if the user is familiar with the kind of pradoh.

Total time spent on this problem until solution.

Total time spent on the lasproblems.

Standard deviation from mean time to solution fids kind of prob-
lem.

Time until user starts answering the problem after she g prob-
lem statement.

The user’s approach to the problem, e.qg., trial amd, systematic,
etc.

If a help system is available how is it used, e.g., freqyuef use.

Assessment of user answer: correct, wrong or misptiooe
User performance meets model expectationsp@sterior proba-
bility).
Information about the committed error, e.gelspg error.
Number of errors in the past for the same kind objam.
Frequency of certain error types.
Number of errors similar to the current error in the faptoblems.

Time from last similar problem to this one.

Number of problems similar to the current one in therasbblems.
Amount of work between the current and the last ampifoblem.
Duration of the training session.
Time of the day the training session takes place.
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Table 9.4: Assessment of the general feature set (introduced in Tab. 9.3) faratfe of math-
ematics learning. Most features of this general set could be directly dpjpliéhe
Calcularis environment.

Generalized feature Assessment Reason

Input behaviour

InputType Yes Mouse, keyboard, joystick.

Valid I nput Yes Input is a valid number.

I nput Statistics No Input statistics not meaningful for the specifi
environment.

Problem-orientednput  Yes Click at the right place (where you should click).

Problem statement

ProblemDifficulty Yes Can directly be derived from the student model.

ProblemType Yes Trained skill.

ProblemFamiliarity Yes True if the user has trained the same skilbbef

Problem-solving

Time to Solution Yes Directly applicable.

Time LastSolutions Yes Directly applicable.

Time Deviation Yes Directly applicable.

AnswerTime Yes Directly applicable.

ProblemApproach Yes Problem omission can be detected.

Help Usage No No help system available.

Performance

Correctness oAnswer Yes Directly applicable.

AnswerAssessment Yes Comparison of student’s performance against
estimated model performance.

Error Information Yes Directly applicable using the bug libraryecS3.4).

Error Repetition No Repetition of exactly same task is not done.

Error Frequency Yes Directly applicable using the bug library (Se4).

Error Count Yes Directly applicable using the bug library (Sec)3.4

Environment

Time BetweenProblems  Yes Time from last problem that trained the samé tskil
this one.

Similar ProblemsCount  Yes Number of problems that trained the same skill in the
lastn problems.

Work BetweenProblems Yes Amount of work between last problem that trathed
same skill and this one.

SessionDuration Yes Directly applicable.

Time of theDay Yes Directly applicable.
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Table 9.5: Comparison of the two cases of DD and dyslexia in terms of the learning domein a
environment as well as the student model and the experimental data avéitable
Dybuster andCalcularis.

Category Dyslexia Dyscalculia (DD)

Learning disability Brain-based disorder Brain-based disorder
Comorbidities (DD, ADHD) Comorbidities (Dyslexia, ADHD)
Aversion & anxiety against theAversion & anxiety against the
subject subject

Learning domain  Static (non-hierarchical) Hierarchical
Learning through memorizationConceptual knowledge important
& analogies

Learning One main learning game Range of games ordered hierarchi-

environment cally
Multi-modal cues recode textualVisual cues encode properties of
input string number

Difficulty of word adapted to user Selection of games and dask
adapted to user

Student model Poisson-based perturbation model Dynamic Bayesian network
Selection of word with highestNon-linear, rule-based task selec-
progress potential tion

Experimental data Input logs with inputs, errors andinput logs with inputs, errors and
timestamps timestamps
Input from keyboard Input from keyboard, mouse and

joystick
No additional information Recording of invalid inputs
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CHAPTEHR

Classification of children with
developmental dyscalculia

Developmental dyscalculia (DD) has an estimated prevalef@%— 6% in Ger-
man speaking countries (Shalev and von Aster, 2008). It bas bhown that basic
number processing and understanding capabilities aahuirpreschool are essen-
tial for later mathematical performance (Landerl et alQ£2annula and Lehtinen,
2005; Mazzocco and Thompson, 2005; Krajewski and Schne206®). Therefore,
early intervention and detection are important.

However, the diagnosis of DD involves the assessment of tié's numerical as
well as domain general abilities by standardized testss&stéandardized tests are
time consuming and need to be conducted by an expert. A cempased diagno-
sis tool would allow for an inexpensive and mostly unsupsEdiscreening in the
classroom and indicate children at risk for DD.

So far, few computer-based tests for DD existscalculium (Beacham and Trott,
2005) is a screening tool for students in higher educatidme f®ol was evaluated
with 19 students and demonstrated a sensitivity 0883and a specificity of 93%.
Dyscalculia Screener Digital (Butterworth, 2003) is a computer-based test
that assesses basic numerical capacities of children frimni4 years. This test has
been standardized in the UK.

In this chapter, we describe the development of a compused screening tool for
DD. The tool is purely data-driven and is based on the log itaffomCalcularis.
Test duration is adaptive, with a maximum duration of 30 rtesuln the following,
we describe the features extracted from the available datae#l as the feature
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selection. We then introduce the algorithms for static atapéve classification and
finally evaluate the accuracy of the test. The work presemtdtis chapter was
developed in the context of a master thesis (Klingler, 2048jch contains further
details about the applied approach.

10.1 Feature extraction
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The screener tool is based on log files from 89 participaniteated in theBMBF-
study(see Chapter 4). 49 children (73% females) were diagnosédidt while the
other 40 children (65% females) were control children (CC)children completed

a minimum of 26 training sessions. On average, children ¢eteq 295 sessions
(SD o = 1.8). Over the course of the training, participants solvedwarage 1541
tasks (SDo = 231), the number of solved tasks per session corresponde?2i3o
(SD 0 = 7.3). There were 28 participants if®grade, 46 children from ther®
grade and 15 children visiting thé'4grade of elementary school. As the children
visiting the 4" grade were all diagnosed with DD, they were excluded from the
analyses unless noted otherwise.

For the classification task, we extracted three differeatiufiee groups from the data:
Skill dependentgame dependerand path dependenfeatures. The extracted fea-
tures for all groups are listed in Tab. 10.1 (Klingler, 2013)

Skill dependenteatures provide information about tasks associated wipegific
skill. We for example extract the average performari®eof the children (ratio of
correctly solved tasks) per skill. Furthermore, we alsessthe average answer
time (AT) of the children at each skill. We expect children with DD how a lower
average performance and longer answer times, particutarigkills from the area
of arithmetic operations. It has been shown that childreth WD exhibit the same
mathematical problems as control children, but to a largéere (Murphy et al.,
2007). Furthermore, children with DD tend to suffer fromfidiilties in acquir-
ing simple arithmetic procedures and exhibit a deficit irt fatrieval (Ostad, 1997,
1999). In addition, we also count the number of typical nkist&a(TM ) the child
commits at each skill (see Sec. 3.4 for the list of typicaltakes contained in the
bug library of Calcularis).

Path dependerfeatures provide important information about a child’sriag per-
formance. InCalcularis, each child pursues a different path through the skill
network (illustrated in Fig. 3.4),e., the learning path is individually adapted to the
children. Figure 3.6 displays the skill sequences of thi#erdnt users in addition
between 0-100. We therefore extract the skill sequerd8sij of the children over a
given time period. Furthermore, we also collect the traosst between skillSESN)
during this time period. The time period is limited by the nmaxm test duration.
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Table 10.1:Extracted features and abbreviations (bold) used in the following (Klingl@t3).
Some features are specific to a certain game, while others can be usdidskilisa
Path dependent features look at the training sequence of the children.

Feature Description

Skill dependent features

Performance Ratio of correctly solved tasks at a specific.skill

AnswerTime Average answer time at a specific skill.

Typical Mistakes Number of typical mistakes committed at a specifit sk

Path dependent features

NodesSkill Net Set of skills trained during a given time period.

EdgesSkill Net Set of transitions (between skills) made during a given
time period.

Game dependent features

Estimation Ratio between number of overestimates and task.cou

SecretNumber Ratio by which the remaining interval is reduced.

Ordering Ratio of false positive and incorrectly solved tasks

Landing Distance to correct position of the given number.

As opposed to general features such as for example the atisvegmwhich can be
extracted for each skilgame dependerieatures make only sense for skills asso-
ciated with a specific game. For tligtimation game (see Sec. 3.2.3), we for
example extract the ratio between the number of overestsraatd the number of
solved tasksK), i.e. we assess how often the children overestimated the pessent
point sets. In the&ecret Number game (see Sec. 3.2.3), children have to guess a
number in a given interval. After each guess, they are tblihei secret number is
smaller or larger than the guessed number. Our initial @ealyrave demonstrated
that control children tend to apply a more elaborate styatélgen guessing. We
therefore measure the average ratio by which the remaintegval is reduced after
each guessN). In theOrdering game (see Sec. 3.2.3) children have to decide if
a given sequence of numbers is sorted in ascending ordeg, tterassess the ratio
bet-ween the number of false positiveé®.( examples incorrectly indicated as cor-
rectly sorted) and the total number of incorrectly solvesk$aQ). For theLanding
game (see Sec. 3.2.3), we extract the distance betweensh®pandicated by the
child and the correct position of the given numblej.(
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Figure 10.1: Processing pipeline yielding the pairwise feature distance mdirigerving as an

input for the clustering algorithm. Feature valdesre processed (turquoise) before
computing pairwise distances (purple).

10.2 Feature selection
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Extracting the feature types described in Tab. 10.1 yieltsaal100 features. We

expect that some of these features are correlated. Furbheymach feature corre-
sponds to a set of tasks the children have to solve. Thus,uimder of features

directly influences the test duration, which is limited. Werefore only select the
best subset of the features for classification. To find thpsesentative subset, we
cluster the different features into groups of similar featuand choose only one
representative feature per cluster for classification.

To be able to cluster the features, we need a pairwise sityil@measure between
each pair of featurel§ andF;. However, the different feature types have very differ-
ent ranges and a direct comparison between the featureséfdhe not meaningful.
For example AT measures the average answer time in seconds, Whdienotes a
performance value between 0 and 1. We therefore need togwdlce features to
obtain the pairwise distance matiixfor the clustering. The according processing
pipeline is displayed in Fig. 10.1.

In a first step, we apply &ernel transformatiorto the different features to make
them comparable: We compute a similarity matfixe [0, 1]NXN for every feature
F, whereN denotes the number of children. Therefokg,contains the pairwise
similarities between each pair of childrgnand k regarding featurds. We use
different kernels for the different feature types. For thevaer timeAT , we combine
a Gaussian Kernel with a log transform to obtain
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Kar(,2) = ex|D(||Iog<x> - Iog(z)||2> | (10.1)

wherex andz denote the respective feature values. The log transforseiiLfor re-
moving outliers and was successfully used in previous egptins (see Chapter 8).
For the performance featur& we use a Beta cumulative distribution combined
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with a Gaussian kernel. We assume that learning can be ntbldgle logistic func-
tion: This function exhibits a small gradient near the imééboundaries and a larger
gradient in between. We approximate this property by udiedkernel function

|betacd x) — betacd f(z)||2>7 10.2)

Kp(x.2) = exp( -

with x andz representing the respective feature values. Agtta dependerfea-
turesNSN andESN are set features, we apply a Jaccard kernel transformation t
them:

KNSNESN(X,Z) = 2X07 — 1, (10.3)

whereX andZ denote the values of the respectpath dependenteatures. For
the SN features, values can be put into different categories:d\@liesses reducing
the remaining interval and invalid guesses (outside thergiaterval). For the valid
guesses, the kernel should be sensitive to small diffesertea the invalid guesses,
the differences between the actual values are not impoNémtombine a Gaussian
Kernel with an exponential transformation to model thisgaiy and obtain

exp(—x) — exp(~2) —2||2> | (10.4)

a—te

with x andz again representing the respective feature values. Fottadl deatures
(TM E,O,L), we apply a standard Gaussian kernel.

In a second step, we compypairwise distancedetween the obtained similarity
matriceskK;. We compute the distance between each pair of featgrandF;j by
calculating the Frobenius norm between their similaritgnasK; andK;:

Djj = ||Ki — K| - (10.5)

The resulting matriXD can be directly used for clustering. As the measurements are
characterized by relationgg., they represent dissimilarities between each pair of

featuresk andF;j, we perform pairwise-clustering (PC) (Hofmann and Buhmann,

1997) onD.

The optimal number of clustels’ can be determined by the Bayesian Informa-
tion Criterion (BIC) (Pelleg and Moore, 2000), calculating tbffective num-
ber of parameters as the normalized trace of the kernel ftnanation ma-
trix (Haghir Chehreghani et al., 2012). A second possibtlityleterminek* is the

139



Classification of children with developmental dyscalculia

use of the maximum test duratioit We choose* as the maximum number of
clusters yielding an expected test duration smaller than

10.3 Static classification - Support Vector Machines

In this section, we present a firstatic classificatiorapproach for classifying the
children into a group with DD and a control group. We call tipp@ach static, as
the resulting model will be based on a fixed set of featuresthe selected features
will be the same for all children. We are dealing with a supsad classification,e.,
the training data provided to the algorithm are all labeled.

Support vector machines (SVM) are among the best perforalgngyithms for clas-
sifying data into two groups (Caruana and Niculescu-MizZllQ@; Statnikov et al.,
2008). Furthermore, SVMs have a convex loss function anefbee convergence
to the global minimum is guaranteed. Moreover, the quad@tgramming prob-
lems posed by SVMs can be solved iteratively, which allowsitng on large data
sets (Shalev-Shwartz et al., 2007). We therefore train a $MMur static classifi-
cation problem. A detailed introduction to SVMs can be foim(Bishop, 2006).

SVMs are linear classifiers. For data not linearly separablbe original space,
we can apply kernel transformations to find a separating fpyaee in a (possibly)
higher dimensional space, constructed in a nonlinear way the original space.
An illustration of this so called kernel trick is given in Figj0.2 (Klingler, 2013).

From the feature selection (described in Sec. 10.2), we appeopriate kernelk;
available for each feature type. To allow the SVM to use aldkailable data and
incorporate the information provided by each feature tyygeneed to combine these
kernels. The kernd{ sy that combines all th& feature kernel&; is given by

F
Ksym = S Ki. (10.6)
2,

Note that we need to normalize the kerni¢|sbefore combining them to ensure that
the ranges of the matrix values are the same for each k&rnele., each kernel
equally contributes t& sy -

10.4 Adaptive classification

140

The model presented in Sec. 10.3 is based on a given numbeatofés and there-
fore tasks. This model is only able to make a classificatisetaon full observ-
ability, i.e., all feature values have to be known for classification tif@more, the
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Figure 10.2: Illustration of the kernel trick (illustration adapted from Klingler (2013)) e orig-
inal spaceY (a) the two groups are not separable with a linear classifier. After trans-
formation (b), they can be linearly separated using a hyperplane.

output of the static model is binary. It would, however, b@dao have not just
a binary answer to the classification task, but a certaintsisuee for the predicted
group label.

In this section, we develop a model that adapts the test tntieetindividual child,
i.e., the features used for classification as well as the lenfytheotest vary over
the children. Furthermore, this model will output a protigbinstead of a binary
answer.

10.4.1 Probabilistic classifier

Using a probabilistic classifier, we obtain an uncertaingasure for the group label
and can stop the test early. We therefore employ a Bayesiarorieto solve the
classification task. The resulting Bayesian network istithted in Fig. 10.3 (Klin-
gler, 2013). We denote the group label Yyi.e., Y = 1 for control children and

Y = 0 for children with DD. Furthermore, lefi denote the value of featukg for

a childm. We assume that the available featuFgsi € {1,...,F} are condition-
ally independent givelr. Note that this assumption is valid because of our feature
selection step (described in Sec. 10.2): We cluster fesitute groups of similar
features and choose only one representative feature gtecliCorrelation between
the clusters therefore tends to be low.
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Figure 10.3: Structure of the graphical model for the probabilistic classifier (Klingled,3. The
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group label is denoted by (blue), while theF (red) represent the features. We
assume the different features to be independent.

Given our assumptions, the probability of the network (fachéld m) illustrated
in Fig. 10.3 can be written as

F
p(f1,.... fry) = (_upﬁi\y)) -P(Y); (10.7)

where the probabilitiep( fily) are drawn from a continuous or discrete probabil-
ity distribution (depending on the feature type). We assanm®rmal distribution
for the featuresNSN, ESN, E, SN, O andL. A Beta distribution is used for the
performance featur® and a Gamma distribution for the answer time featiife
Furthermore, featur&@M employs a Poisson distribution. For each combination of
feature type and probability distribution, we computed aimam likelihood opti-
mization on the data as well as the BIC. For each feature typeh&rechose the
probability distribution that best models the data, basethe BIC score. Parame-
ters are given by the maximum likelihood optimization. Thi®pprobability p(y)
can be determined by the estimated prevalence of DD (Shatkvan Aster, 2008).
To classify a childn, we need to compute the posterior probability of the grobplla

Y givenN observed featuref:

(M, p(filY = 1)) - p(Y = 1)
p(fl,..., fN)

p(Y = 1/fy,..., fn) = (10.8)

Note that due to the independence assumption, we can dégaviial observability,
i.e.,, N < F. FurthermoreN grows with the number of observed features. After
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observing the first featurfe,, we can comput@(Y = 1|f1). Having observeé,, we
infer p(Y = 1|f4, f2) and so on. The predicted group lalyetan then be computed
as

g 1 p(Y=1f,...fn)>T
0 otherwise.

10.4.2 Online feature selection

We have already pre-selected a seffdéatures via clustering (see Sec. 10.2). Deal-
ing with an adaptive classification, the online feature@ea answers the following
two questions:

1. In what order should we acquire the features? An optinaggmng would select
the most informative features for the test first.

2. When should the model stop acquiring new features,at which point in time
should the model output the final answer?

Order of features

To determine the optimal ordering of the tasks, we have toptdenthe amount of
group information contained in each feature. We prefeniest where the feature
values differ a lot across the groups (DD and CC) and are simvitéin the group.

To assess the quality of each feat&rewe use a statistical test. Lt—?t be the vector
containing the feature values of tit feature for the children with DD, whil&"
contains the values of the CC children. For each fedtymee perform dawo-sample
t-testto test if the mean values of the according normal distrdngiare equal. We
therefore obtain @-value p; for each feature. We then order the features by sorting
their p-values in ascending ordere., the feature with the lowegi-value is asked
first. We denote this criterion as tegnificance decisian

Another option for ordering the features (denotedndisience decisionis to select
the features based on their possible influence on the outdostByps= {F1,...,R}

be the set of observed features after timend letfyps denote the values of the
features inFyps The next feature that will be observedhs 1. Furthermore, let
Ffut denote the set of unobserved featuresfapdhe respective feature values. We
choose the featurg; that contradicts the current belief of the model the most:
If the current estimate(Y = 1/fops) > T, i.e., the model believes that the child
belongs to the control group, we pi€k.1 such thap(Y = 1|fops, fr+1) is minimized.
However, the values of the featureskp,; are not known. We therefore perform a
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worst case approximation and compute the index of the nexurfe based on the
already observed valudsfrom the training set

t+1=argmax max p, m(Y =O0lfops, fi(”)), (10.9)
i,FeFry ne{l,... N} fi

wheren € {1,...,N} are the indices of the children in the training set af[(fa de-
notes the value of featurg for child n from the training set. If the current be-
lief of the model was that the child exhibits DD, we would piEk 1 such that
P(Y = 1fops, fr+1) is maximized. The formula for this maximization can be diec
derived from Eq. (10.9).

Stopping criterion
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We assessed three different possibilities for selecting@ping criterion. The first
simplest approach is the use of upper and lower threshdidise kcurrent belief of
the model is either above the upper or below the lower thildske finish the test.
We call this approach thiareshold stop

In a second approach (denotedeapected worst stQpwe compute a worst case
approximation to the set of future features;;. For simplification of notation, let
P(Lfar) denotep(Y = 1fops, frut ) in the following. To derive the approximation, we
computepyt,,) by using

(M ek PUIY = 1)) - (M gery, PiIlY =1)) - p(Y =1)

— 10.10

P(ajfan) P(fobs, frut) ( )
To simplify the notation even more, we define

ay = ( p(fi|y)> . Byi= < p(ﬁlv))
i,Fi€Fops i,FecFy
and can therefore rewrite Equation 10.10 as
ay-Pr-p(Y =1) =
_ — ) 10.11
Pt = ag-Bo-p(Y =0) +ar- B pY=1) 1+ —ggﬁfgﬁii% Ho

To compute the posterior probability fy,,), we therefore just need to calculate
Bo and fB;, all the other variables are already known. Again, we do moivkthe
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values of the features iR ;. To estimategBy and 1, we therefore again make use
of feature values from the training set that maximally cadict the current belief
state of the model. Lef be the set of unobserved feature indice&4i. For every
featureF € Fy, the feature value can be taken from a different chijldThus, the
estimate f0|1§o and[?l is given by

—({nl,...,nm}): _

- H n: f Y - O n; f Y - O
Fo _Po [i.FieFro Py (il ) I',l Py (fil )7 (10.12)
[31 Bl rli,l:.eFfut pf(ni)(fi‘Y = 1) i, FEFut pf(ni)<fi‘Y = 1)

wheref (M) denotes the value of featufefor child n; from the training set.

Let us assume that the current estimate of the modelYs= 1[fops) > 7. We
therefore want to minimiz@yr,,). From Eq. (10.11), we know that this is equal to

maximizing the estimatgy/B1. To maximize this estimator, we proceed as follows:
For every featur&; € Fit, we pick the feature values of a chitgin the training set
such that(p;m) (filY = 0))/(psm) (filY = 1)) is maximized. From Equation 10.12

it follows that this procedure maximizef.%)/ﬁl. Having estimateqﬁo/ﬁl, we can
computepyr,,)- If Py > T, 1.€., the future (worst case) belief is the same as the
current belief of the model, we can stop the test.

If the current belief of the model was that the child exhil3, we would select the
feature values of each featufee Fry such thatpyr,,) is maximized. The proce-
dure for this maximization can be directly derived from EIf).(.1) and Eq. (10.12).

The third stopping criterion (denoted asxt worst stopis similar to the second one,
however, instead of estimating the worst case using altéuieaturess € Fiy;, we

look only at the next featurl_. ;. We therefore want to select the next featbyre;

such that it maximally contradicts the current belief of thedel. Again, the values

of the features itfrs; are not known. We therefore perform a worst case approxima-
tion and compute the index of the next feature based on thadlrobserved values

fi from the training set using Eq. (10.9). If the estimatgy,,) does not contradict
the current belief of the model, we can stop the test.

10.5 Assessment of static and adaptive classification

We evaluated the classification accuracy of the static am@daptive approach on
log files from theBMBF-study(described in Sec. 10.1) by usingnasted10-fold
cross validation: We randomly split the data into 10 foldseqtial size. We then
divided each fold into a training set and a test set. The mselelction,i.e., the
selection of the hyperparameters of the model was then npeefb individually on
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each training set using bootstrapping. For the static ifiesson approach, hyper-
parameters are for example the choice of kernels or kermahpeters (such as in
the Gaussian kernel). A hyperparameter for the adaptigsitieation if for example
the choice of the probability distributions for the feawrd he fitted models were
then (again individually) tested on each test set. By empbpthe nested validation,
we do not only cross validate the performance of the modé¢lalso the model se-
lection process. A detailed introduction to nested vaiatatan be found in (Hastie
etal., 2001).

To assess the quality of our models, we evaluated the clzesin accuracy as well
as its sensitivity and specificity. The sensitivity is cortgglias the ratio between
the number of true positives (children correctly classif@sdhaving DD) and the
total number of children with DD. We therefore measured, lgowd the model is

at finding the children with DD. The specificity is defined as thtio between the
true negatives (children correctly classified as being CC)thedotal number of

CC. The specificity therefore describes the test’s abilityxdwee a condition (in

our case DD) correctly.

10.5.1 Static model evaluation
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To select the features for the SVM, we performed a clusteaimd) chose only one
representative feature per cluster. The optimal numbetustersk® can be deter-
mined using the BIC, calculating the effective number of paatems as the normal-
ized trace of the kernel transformation matrix used for t@e Fhe resulting BIC for
1 to 100 clusters is displayed in Fig. 10.4 (Klingler, 2013).

According to the BIC score the optimal number of clusterk®is= 2. This result
is not satisfactoryi.e., selecting only two features leads to a bad performingsclas
fier. We therefore limited the number of clusterskto= 16 based on the maximum
test duration. Per feature, we included five tasks, whicddea 80 tasks in the
test. In the following we will refer to this asemi-automated feature selectiorhe
features selected using this approach are listed in TaB. (Kdingler, 2013). We
also assessed the performance of manually, expert-baksateskfeatures: We ex-
tractedNSN andESN (described in Tab. 10.1) based on the first 40 tasks the child
solved during the training and on 40 other tasks startingnfséill Addition 1,1 TC
(see Fig. 3.4). We call thimanual feature selectioim the following. With this ap-
proach, the test has the same number of tasks (80), but wadadé more features,
i.e., we can include all the skill and game dependent featuegydhe chosen path.

In Sec. 10.2, we designed custom kernels for the differeatufe types. To show
the benefits of these custom kernels, we compared the ataswifi with the custom
kernels to a classification employing a standard Gaussianekfor all feature types.
For this analysis, we performed the feature selection eynpdhesemi-automated
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Figure 10.4: Model selection using the BIC score (Klingler, 2013). The optimal numbdusters
is k* = 2 (marked with a red circle). This result is not satisfactory as the seledtion o

only two features leads to a bad classifier.
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Figure 10.5: Classification accuracy over the different folds of the 10-fold cradis&tion employ-
ing custom kernels (blue) and standard kernels (red) (Klingler, 2008y custom
designed kernels improve the classification accuracy.

feature selectiorapproach. The resulting classification accuracy for theediht
kernels is displayed in Fig. 10.5 (Klingler, 2013). The SVMmoying our custom
kernels outperforms the model using standard kernels brga faargin.

Having selected the features as well as the kernels, we cduage the classifica-
tion accuracy for the different combinations by employihg hested 10-fold cross
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Table 10.2:List of features selected with tlsemi-automated feature selectiapproach (Klingler,
2013) along with corresponding games (see Sec. 3.2.3) and skills (sex4jigThe
abbreviations of the feature types are consistent with Tab. 10.1.
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Feature type Game Skill

AT Calculator Addition 1,1 TC

AT Calculator Subtraction 1,1 TC

AT Calculator Addition 3,1 TC

AT Ordering Ordinal 2, 0-100

AT Calculator Subtraction 2,2

AT Calculator Subtraction 2,1

P Calculator Addition 1,1 TC

P Calculator Subtraction 1,1 TC

P Transfer Verbal/Concrete»Arabic, 0-1000
P Calculator Subtraction 1,1

P Transfer Verbal/Concrete»Arabic, 0-100
P Estimation Estimation

P Slide rule Support Subtraction 1,1

™ Landing Arabic—Numberline, 0-1000
™ Calculation Addition 2,1

™ Landing Verbal-Numberline, 0-100
™ Landing Verbal-Numberline, 0-10

SN Secret number  Ordinal 3, 0-100

validation. Applying a custom kernel combined with timanual feature selection
exhibits a mean classification accuracy 08® (SD o = 0.05). When using the
semi-automated feature selectidhe resulting classification accuracy amounts to
0.86 (SDo = 0.04). Employing standard Gaussian kernels for all featysesycom-
bined with amanual feature selectioresults in an average classification accuracy
of 0.66 (SDo = 0.05).
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Table 10.3:Performance comparison of the Bayesian network classifier regardfagedt com-
binations of task ordering approaches and stopping criteria (KlingléB)2a he best
Bayesian network classifier reaches an accuracya# after on average 35 tasks.

Feature ordering Stopping criterion A(CSCS raa)c y Sensitivity Specificity #tasks
significance decision next worst stop .99(0.05) 0.92 0.91 35
significance decision threshold (0.04) 0.91 0.88 30
influence decision expected worst stop.890.04) 0.92 0.88 75
significance decision expected worst stop890.05)  0.90 0.88 70
influence decision threshold 8¥(0.06) 0.89 0.85 35
influence decision next worst stop 80(0.89) 0.85 0.91 35

10.5.2 Evaluation of adaptive model

In order to select the features of the adaptive model, weepted different ap-
proaches regarding the ordering of the tasks as well as thypisg criterion
(see Sec. 10.4.2). We evaluated the classification accofabg Bayesian network
classifier by employing different combinations of featurdesing and stopping cri-
teria. From Tab. 10.3 (Klingler, 2013) it becomes obviolst the best accuracy is
reached by applying thgignificance decisioto determine the ordering of the fea-
tures and th@ext worst stogriterion to decide when the test can be finished. The
last column of Tab. 10.3 displays the average number of tas&ded to come to a
decision. The accuracy of the Bayesian network classifiest (tese) is better than
the accuracy reached with the static SVM classifieB§QSD o = 0.05)). Further-
more, the adaptive model needs on average 35 tasks to glassifild, while the
static SVM classifier needs 80 tasks.

For the Bayesian network classifier, we used different thstions to model the
data (described in Sec. 10.4.1). We compared the perfoenaina Bayesian net-
work classifier using these fitted distributions for eachtdeatype to a Bayesian
network classifier employing only normal distributions.€eNROC (receiver operat-
ing characteristics) curve of these two models is displapefig. 10.6 (Klingler,
2013). For both models, we used all the features selectetidogemi-automated
feature selectiompproach. Again, modeling the data using different distrdms
proves to be beneficial.
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Figure 10.6:ROC curves for the Bayesian network classifier using normal distributiafysto

model the data (red) and using our fitted distributions (blue). Each pothieacurves
corresponds to a different probability threshel@t which the model decides that a
child is a control child (Klingler, 2013). Modeling the data with fitted distributiens
beneficial for classification accuracy.

10.6 Discussion
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In this chapter, we have introduced a static and an adaptatbod for classifying
children into two groups: One group with DD and one contralugr. The adaptive
Bayesian network classifier outperforms the static SVM di@ssegarding classifi-
cation accuracy (SVM: .88 (SDo = 0.05), Bayesian network:.92 (SDo = 0.05))
as well as test length (SVM: 80 tasks, Bayesian network: 3&}a# reason for this
might be that it is not always beneficial to pick as many fesgas possible for clas-
sification: Some features not differentiating well betwelea group labels might
actually deteriorate classification accuracy. The Bayes&work classifier has a
further advantage: By adapting the thresholdsed for deciding if a child belongs
to the control group, we can tune the sensitivity and spdgifi@lues,i.e., an expert
can decide if the sensitivity or the specificity of the cléssis more important.

The performance of our classifier is comparable to that afteyg computer-based
screener tools regarding sensitivity and specificityscalculium (Beacham and
Trott, 2005) reaches a sensitivity of82 and a specificity of @2, while our best

Bayesian network classifier exhibits a higher sensitivit2) and a comparable
specificity (091). Furthermore, the average test duration for our best Sayaet-

work classifier is low with 14 minutes.
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Regarding the selected features, our test compares wediiidatd tests for DD. Our
screener includes many of the skills (such as number cosganr spatial num-
ber representation) described in previous work (Butterwettal., 2011). Further-
more, feature types such as performance, answer times piv@ltynistakes were
employed in other screening tools as well (Beacham and T20@5; Butterworth,
2003).

Our presented screening tool has two main limitations. tFHine classifiers were
trained and evaluated based on data from a user study. Lagofilehildren con-
tain six weeks of training data. Therefore, the data set at ltmntains learning
effects as well as adaptation effects (to the training emvirent). Second, the dis-
tribution between the group labels was close to a uniforrtridigion: 49 children
were diagnosed with DD, while the other 40 children were C@chin. The actual
prevalence of DD is, however, estimated to be@%. In a next step, the screening
tool therefore needs to be evaluated in school classes,aramgpts results to those
of standardized tests.
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CHAPTEHR

Conclusion

In this thesis, we presented a complete loop in the datawldevelopment of an in-
telligent tutoring system. We started by designing and @np@ntingCalcularis, a
computer-based training program for children with difftead in learning mathemat-
ics. This included the complete development of all comp&efithe system,e., a
curriculum along with appropriate games and a special ddsignumerical stimuli,
a dynamic Bayesian network student model with a non-lineatrobalgorithm, and
a bug library containing typical errors and misconceptiohthe domain. In a sec-
ond step, we evaluated the first versiorcal cularis in two user studies to prove
its effectiveness. Based on the collected data from theskestuwe assessed the
quality of the student model and the control algorithm iniedtistep. By applying
logistic regression, we validated the structure of the Bayesetwork. Further-
more, we improved the existing student model on the basiseofdllected log files:
We suggested a constrained latent structured learningitdgoto improve predic-
tion accuracy as well as a cluster-based prediction meitrddrg-term predictions
of student characteristics. Moreover, we also invest@j@iessible extensions in
engagement modeling. Finally, we extend®d cularis by a screening tool for
developmental dyscalculia.

In the following, we will review the principle contributi@of the thesis and discuss
the limitations and further work.
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We developed the intelligent tutoring syst@ai cularis (described in Chapter 3)
aimed at children with developmental dyscalculia or diffies in learning mathe-
matics. The curriculum of the software is based on actualares regarding neuro-
cognitive models of numerical development (von Aster andl&h 2007). Further-
more, we developed a special design for numerical stimitigusolors, forms and
topologies to represent properties of numbers. This dasigrtended to enhance
the different number modalities and to strengthen the lb&tg/een them. Moreover,
the transfer of information through different channelsstiates perception and fa-
cilitates the retrieval of memory (Lehmann and Murray, 2086ams and Seitz,
2008). Calcularis features a dynamic Bayesian network student model (Murphy,
2002). Compared to previous work using Bayesian KnowledgefiggCorbett and
Anderson, 1994; Koedinger et al., 1997), we are able to mibedhierarchy and de-
pendencies between the different skills of a learning dam@his graph structure
also supports the non-linear control algorithm: In coritta®ther systems (Conati
et al., 2002; Koedinger et al., 1997; Gross anag¥li, 2007), we allow backward
movements in the hierarchy (going back to easier skills)e attached bug library
also adds to this strategy: If the child commits typical esraemediation skills,
which are not necessarily direct precursors of the actuthl ake trained.

The evaluation ofalcularis in two user studies (detailed in Chapter 4) demon-
strated the effectiveness of the program. Children impreiguaificantly in addition
and subtraction over a training period of six weeks reg@rdmrrectness and prob-
lem solution times. This decrease in problem solution tices be seen as a shift
to increased fact retrieval (Geary et al., 1991; Lemaire Siedler, 1995; Barrouil-
let and Fayol, 1998; Jordan et al., 2003). After three moofhsaining, children
also demonstrated a refined spatial number representatorfiiyming the results
of previous studies (Siegler and Booth, 2004; Booth and Sieg(96, 2008; Hal-
berda et al., 2008) which demonstrated significant corcglatbetween arithmetical
learning and the quality of numerical magnitude represmmtaLast but not least,
children liked to play with the training program and repdrteat the training im-
proved their mathematical abilities.

In Chapter 5, we validated the skill model ©@d1cularis using learning curves.
We explored the potential parameter estimate biases thatresalt when fitting

learning curves to data from tutoring systems that emplowsteny-learning mech-
anism. To analyze these biases, we investigated a wide sebaéling techniques
and used the re-tests of previously mastered skiltirtularis to check whether
judged mastery is retained. We investigated variationsgistic regression models
including the Additive Factors Model (Cen et al., 2007, 2088y others that were
explicitly designed to adjust for mastery-based data. Werestvely analyzed prop-
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erties and prediction accuracy of the different models ascbdsed implications for
use and interpretation.

A further validation, namely the data-driven assessmetit@fuality of the student
model and the controller, was conducted in Chapter 6. Ouysealdemonstrated
that the developed model adjusts rapidly to the knowledage sif the user. Further-
more, the non-linear design of the control algorithm is lherad for learning.

In Chapter 7, we improved the accuracy of the dynamic Bayesamank student
model (Murphy, 2002). We introduced a method caltedstrained structured pre-
diction with latent variablesor efficiently learning the parameters of a probabilistic
graphical model. Our regularization of the parameter spaceonstraints improves
prediction accuracy while ensuring an interpretable modfé¢ demonstrated that
our method outperforms the original model using expert ipatars as well as pa-
rameters fitted with an unconstrained optimization. Furtitee, we conducted ex-
periments on large-scale data sets from different leardorgains and proved that
our fitted Bayesian network models also significantly outpenfprevious work ap-
plying Bayesian Knowledge Tracing (Yudelson et al., 2013)riediction accuracy.

We also introduced aluster-based prediction methddr the long-term prediction
of mathematical characteristics of the students (see Ch&@ptd®y using a cluster-
ing and classification approach, we are able to predict tkeatitraining outcome,
external post-test results as well as specific mathematrodlems of the children
based on cluster information. Our results are in line witevpous work (Baker
et al., 2011; Pardos et al., 2012a,b; Trivedi et al., 201Ing>et al., 2012; Trivedi
et al., 2012) demonstrating that the use of cluster infolenatmproves prediction
accuracy.

Furthermore, we also investigated the possibility of edieg Calcularis to not
only adapt to the knowledge, but also to engagement statee akers. In Chapter 9,
we explored the possibility of a general framework for eregagnt learning, focus-
ing on learning disabilities. We started our exploratioasddl on an engagement
model for spelling learning (Baschera et al., 2011). Ourys®d demonstrated that
the model can be generalized and thus applied to differamileg domains. Some
parts of the model, however, remain specific to the domain.

Finally, we also extendedalcularis with a diagnosis tool for computer-based
screening of developmental dyscalculia based on input dHbte static and adap-
tive classification approaches introduced in Chapter 1tbéxdnhigh accuracy (best
adaptive classifier: .02) along with high sensitivity and specificity. The values
are comparable to the performance of previous screening tBeacham and Trott,
2005). Furthermore, the average test duration when empgdie adaptive classifi-
cation algorithm is with 14 minutes very short.
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The presented work covers different areas of interest,imgnfgom psychology to
student modeling. In this section, we will investigate timeitlations of this thesis
and discuss potential future work in the different areas.

The user studies have demonstrated larger improvementithimatic operations
(addition and subtraction) than in number representatidowever, the different
number representations as well as number understandirengrg are very impor-
tant for later mathematical performance (Landerl et alDZ®Hannula and Lehtinen,
2005; Mazzocco and Thompson, 2005; Krajewski and Schne2®®9). Further-
more, the observations of the study supervisors as well aglata analyses have
shown that children do not acquire enough conceptual krayeeén the domain of
arithmetic operationsWe therefore plan the introduction of new games (and 3kills
in both areas of the training program. In thember representatiorsrea, games
training number comparisons and structured sets will begded. For the area of
arithmetic operationsgames introducing the concepts of addition and subtnastio
(such as a balance) as well as games for learning numbeictadts be added.

By applying ouratent structured prediction methpae have already improved the
prediction accuracy of the existing student model. Howewer Bayesian network
student model can handle only discrete binary variables,all the skills of the
model are assumed to be binary (mastered or not) and alsou&simes are either
correct or wrong.

A possible extension would be the introduction of multidmei®nal observations
nodes. This would allow us to model the task outcome morerately. For the
Landing game, we could for example apply three statesrrect, close far away.
For addition and subtraction tasks, the answer time of thiereim could be cap-
tured by additional states such@srect, but too slowAnswer times in arithmetic
operations are very important as they give an indicatioheftrategy used to solve
the task. Children with developmental dyscalculia tend fapnmature strategies
and exhibit a deficit in fact retrieval (Ostad, 1997, 1999).

A further step towards a more accurate model of student leuyd is the introduc-
tion of continuous task outcomes. In thending game, children have to indicate
the position of a given number on a number line. Instead afgiaibinary variable
to represent the task outcome, the distance from the cqooeition could be di-
rectly modeled using for example a normal distribution. @Gardus task outcomes,
however, represent a challenge for learning and inferesi@eed as parameter inter-
pretability. Instead of guess and slip probabilities, threamand standard deviation
of the distribution would be fitted. Despite these challeng®ntinuous (or multi-
dimensional) task outcomes present an interesting direétr future work, as the
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increase of the representational power of the student nfasethe potential to im-
prove prediction accuracy.

Prediction accuracy could, however, also be improved oexisting student model

by adapting learning and prediction. Given the high diwgrsf students using a tu-
toring system, a clustering approach could be used to fgentbgroups of children

with similar mathematical learning patterns. Parametetddcthen be fit by sub-

group. Our work on long-term prediction of mathematicalrelcteristics (see Chap-
ter 8) has already demonstrated the potential of a clugtenl classification ap-
proach. Furthermore, clustering approaches have beernasegdrove the accuracy
of Bayesian Knowledge Tracing models (Pardos et al., 2012b).

Another (similar) possibility for improving prediction egracy of the existing model

is the use of individualization techniques. Individualiaa techniques have been
used to increase prediction accuracy of Bayesian Knowledgeilg models (Par-
dos and Heffernan, 2010a; Wang and Heffernan, 2012; Yudesal., 2013; Wang

and Beck, 2013). The resulting improvements were, howewdy,roarginal.

Affective modeling is gaining importance in computer-ldhgelucation due to the
recognized influence of affective states on the learningame. Our work pre-
sented in engagement modeling was a pure theoretical extiolor We have shown
that the engagement model for spelling learning (Bascheeh,e2011) could be
extended to a general framework for modeling engagemenrardigs. An obvi-
ous next step would therefore be to apply the suggested gen@mework to the
Calcularis data set. However, a pure data-driven modeling approacliresgan
indicator functionj.e., a function providing the affective state of the childr&here-
fore, a combination of sensor measurements and input datassgromising. Cam-
era data can for example easily be collected by using integjdaptop cameras or
webcams. Labeled camera data provide a direct measureiniet affective state
and could replace the indicator function used in the engagémodel for spelling
learning (Baschera et al., 2011).

A further exciting possibility for measuring affective &ga would be an eye tracking
system. Such a system would not only provide informatioruatice student’s atten-
tion, but could also be used to assess graphical featuzs ofilaris. With such a
system, we could for example validate the special designudaterical stimuli used
in Calcularis.

It would also be interesting to explore the possibility of ange version of
Calcularis. Games could be embedded in a complex world. Furthermoee; ch
acters and a story could be added to the environment. A glagfuronment along
with a storyline could increase motivation of children. dddfor motivational ele-
ments could be found in literature on game design (Fullestaa., 2004).
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The latest addition tGalcularis is the diagnosis tool for developmental dyscalcu-
lia. However, this tool was trained and evaluated based tafdam a user study and
therefore the data set at hand contains learning effectekhssvadaptation effects
(to the training environment). Furthermore the distribatbetween the group labels
was close to a uniform distribution, while the actual premak of developmental
dyscalculia is estimated to be-36% (Shalev and von Aster, 2008). This tool there-
fore needs to be assessed in real life, with students from school classes. This
assessment will allow for a comparison of the computerdbaseeener with stan-
dardized tests. Depending on the number of participatinigireim, the tool could
be standardized as well. Currently, the tool is only ava#ldbt children in 29 and

3 grade. An extension to younger children would be highly @déxdé: It has been
shown that basic number processing and understandingitagslacquired in pre-
school are essential for later mathematical performaneederl et al., 2004; Han-
nula and Lehtinen, 2005; Mazzocco and Thompson, 2005; Wekjeand Schneider,
2009). Therefore, early detection and intervention araéligignportant and would
enable optimal support for children with developmentalodysulia.
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