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Abstract

Arithmetic abilities are essential in modern society. However, many children suffer from
difficulties in learning mathematics, ranging from mild to severe numeracy problems. The
prevalence of developmental dyscalculia is about 3%−6% in German speaking countries.
Children with developmental dyscalculia often develop anxiety and aversion against the
subject and experience difficulties in school and later in profession. Despite the relatively
high prevalence, few targeted interventions for children with developmental dyscalculia
exist and only a fraction of these programs is computer-based.

In this thesis, we present a complete loop in the data-drivendevelopment of an intelligent
tutoring system for mathematics learning that overcomes the limitations of previous work.
This process consists of three steps: The development of a first training environment, its
evaluation in user studies and the data-driven validation and improvement of the system.

We first developCalcularis, a computer-based training program for children with diffi-
culties in learning mathematics. The curriculum and concepts of the system are theory-
based: The program transforms current neuro-cognitive findings into the design of differ-
ent instructional games. A Bayesian network student model representing different mathe-
matical skills and their dependencies, and a non-linear control algorithm ensure adaptation
of the training to the mathematical abilities of the individual child. Furthermore, the pro-
gram features a bug library allowing recognition and remediation of specific errors.

In a second step, we evaluateCalcularis in two user studies to prove its effectiveness.
Based on the input data collected in these studies, we performa data-driven validation and
improvement of the program in the third step.

We assess student model and controller properties and analyze the quality of our model via
logistic regression. The data-driven investigations leadto the development and extensive
analysis of techniques for model validation. We improve prediction accuracy of the stu-
dent model by introducing aconstrained latent structured predictionmethod for efficient
parameter learning in Bayesian networks. By applying a clustering and classification ap-
proach, we are able to predict the mathematical characteristics of the children. Moreover,
we also explore the possible addition of an engagement modelto Calcularis.

Finally, we develop a data-driven diagnosis tool for developmental dyscalculia based only
on input data. The integration of this tool intoCalcularis closes the loop of data-driven
development.
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Zusammenfassung

In der heutigen Gesellschaft sind mathematische Fähigkeiten sehr wichtig. Viele Kinder
haben jedoch grosse Schwierigkeiten mit der Zahlenverarbeitung oder beim Rechnen. In
deutschsprachigen Ländern leiden etwa 3%−6% der Kinder unter Dyskalkulie. Kinder
mit Dyskalkulie entwickeln oft eine Abneigung gegen die Mathematik oder sogar Math-
ematikangst und haben Schwierigkeiten in der Schule und später im Berufsleben. Trotz-
dem existieren nur wenige Therapieprogramme für Kinder mit Dyskalkulie und nur ein
Bruchteil dieser Programme ist computerbasiert.

In dieser Dissertation beschreiben wir einen kompletten Zyklus der datengestützten En-
twicklung einer intelligenten Lernumgebung. Dieser Zyklus besteht aus drei Schritten:
Der Entwicklung einer ersten Lernumgebung, der Evaluationdieser Umgebung in Be-
nutzerstudien sowie der datengestützten Validierung und Verbesserung des Systems.

In einem ersten Schritt entwickeln wirCalcularis, ein intelligentes Trainingspro-
gramm f̈ur Kinder mit mathematischen Schwierigkeiten. Die verschiedenen Spiele
von Calcularis basieren auf aktuellen Erkenntnissen aus der Neuropsychologie. Ein
Bayes-Netz, das verschiedene mathematische Fähigkeiten und deren Abhängigkeiten
repr̈asentiert, sowie ein nicht-linearer Kontrollalgorithmusermöglichen eine Anpassung
des Trainings an die mathematsichen Fähigkeiten der einzelnen Kinder.

In einem zweiten Schritt evaluieren wir die Effektivität vonCalcularis in zwei Benutzer-
studien. Basierend auf den Logfiles dieser Benutzerstudien validieren und verbessern wir
das Programm in einem dritten Schritt.

Wir untersuchen die Eigenschaften des adaptiven Modells und des Kontrollalgorithmus
und analysieren die Qualität des Modells mittels einer logistischen Regression. Ausser-
dem f̈uhren wir eine umfassende Analyse von verschiedenen Techniken zur Modellva-
lidierung durch. Wir verbessern die Genauigkeit des adaptiven Modells durch einen
Algorithmus zum effizienten Erlernen der Parameter eines Bayes-Netzes. Mittels einer
Clustering- und Klasssifikationsmethode sagen wir die mathematischen Eigenschaften der
Kinder voraus. Ausserdem untersuchen wir die Möglichkeit, ein Motivationsmodell zu
Calcularis hinzuzuf̈ugen.

Schlussendlich entwickeln wir ein datenbasiertes Diagnosetool für Dyskalkulie. Die
Erweiterung vonCalcularis durch dieses Tool schliesst den datenbasierten Entwick-
lungszyklus.
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through the ups and downs of my Ph.D. This work would not have been possible without
your enduring love, understanding and support.

This thesis was funded by the CTI-grant 11006.1.

vii



viii



Contents

Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Principal Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Related Work 13

2.1 Development of mathematical understanding . . . . . . . . . .. . . . . 13
2.1.1 Neuro-cognitive models of number processing and numerical de-

velopment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Developmental dyscalculia . . . . . . . . . . . . . . . . . . . . . 15

2.2 Existing computer-based interventions . . . . . . . . . . . . .. . . . . . 15
2.3 Intelligent Tutoring Systems (ITS) . . . . . . . . . . . . . . . . .. . . . 17

2.3.1 Principal components of an ITS . . . . . . . . . . . . . . . . . . 17
2.3.2 Student modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Affective modeling . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Modeling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Calcularis 27

3.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Tutor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Design for numerical stimuli . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Curriculum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Student Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Dynamic Bayesian network . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Control algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Bug Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

User studies 43

4.1 Study design and participants . . . . . . . . . . . . . . . . . . . . . .. . 44
4.2 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Heidelberger Rechentest (HRT) . . . . . . . . . . . . . . . . . . 45
4.2.2 Computer-based tests . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



Contents

4.2.3 Feedback questionnaire . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Quantitative analyses . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.2 Qualitative analyses . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Learning curve analysis 57

5.1 Validation of skill model using AFM . . . . . . . . . . . . . . . . . .. . 58
5.2 Alternative logistic regression models . . . . . . . . . . . . .. . . . . . 62
5.3 Comparison of model properties . . . . . . . . . . . . . . . . . . . . . .63

5.3.1 Analysis of the parameter fit . . . . . . . . . . . . . . . . . . . . 64
5.3.2 Generalization to new students . . . . . . . . . . . . . . . . . . .70

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Evaluation of student model and controller properties 73

6.1 System-internal improvement analysis . . . . . . . . . . . . . .. . . . . 74
6.2 Assessment of control mechanism . . . . . . . . . . . . . . . . . . . .. 77
6.3 Controller adaptability . . . . . . . . . . . . . . . . . . . . . . . . . . .78
6.4 Analysis of key skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Latent structured prediction 83

7.1 Structured learning for data-driven education . . . . . . .. . . . . . . . 84
7.1.1 Probabilistic Notation . . . . . . . . . . . . . . . . . . . . . . . 84
7.1.2 Log-linear formulation . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Learning with constrained parameters . . . . . . . . . . . . . . .. . . . 87
7.3 Model specification and parametrization . . . . . . . . . . . . .. . . . . 91
7.4 Evaluation of regularization . . . . . . . . . . . . . . . . . . . . . .. . . 92

7.4.1 Number understanding . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.2 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5 Comparison to non-hierachical models . . . . . . . . . . . . . . . .. . . 96
7.5.1 Number representation . . . . . . . . . . . . . . . . . . . . . . . 98
7.5.2 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5.3 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5.4 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.5.5 Spelling learning . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Cluster-based prediction 105

8.1 Clustering, classification and prediction . . . . . . . . . . . .. . . . . . 106
8.1.1 Feature extraction and processing . . . . . . . . . . . . . . . .. 106

x



Contents

8.1.2 Offline clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.1.3 Online classification . . . . . . . . . . . . . . . . . . . . . . . . 109
8.1.4 Performance Prediction . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Evaluation of proposed algorithm . . . . . . . . . . . . . . . . . . .. . . 111
8.2.1 Resulting clusters and interpretation . . . . . . . . . . . . .. . . 112
8.2.2 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . 115
8.2.3 Predictive Performance . . . . . . . . . . . . . . . . . . . . . . . 116

8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Affective modeling 121

9.1 Learning disabilities and engagement . . . . . . . . . . . . . . .. . . . 122
9.1.1 Dyslexia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.1.2 Spelling learning . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.1.3 Dybuster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.1.4 Comorbidities and similarities in engagement . . . . . . .. . . . 125

9.2 General engagement dynamics modeling framework . . . . . .. . . . . 125
9.3 Engagement model for mathematics learning . . . . . . . . . . .. . . . 126

9.3.1 Indicator Function . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.3.2 Feature Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Classification of children with developmental dyscalculia 135

10.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
10.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.3 Static classification - Support Vector Machines . . . . . .. . . . . . . . 140
10.4 Adaptive classification . . . . . . . . . . . . . . . . . . . . . . . . . .. 140

10.4.1 Probabilistic classifier . . . . . . . . . . . . . . . . . . . . . . .141
10.4.2 Online feature selection . . . . . . . . . . . . . . . . . . . . . . 143

10.5 Assessment of static and adaptive classification . . . . .. . . . . . . . . 145
10.5.1 Static model evaluation . . . . . . . . . . . . . . . . . . . . . . . 146
10.5.2 Evaluation of adaptive model . . . . . . . . . . . . . . . . . . . .149

10.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Conclusion 153

11.1 Review of principal contributions . . . . . . . . . . . . . . . . . .. . . . 154
11.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 159

xi





C H A P T E R 1
Introduction

Arithmetic skills are essential in modern society. However, many children expe-
rience difficulties in learning mathematics, ranging from mild to severe numeracy
problems. The prevalence of developmental dyscalculia is estimated to about 3−6%
in German and English speaking countries (Lewis et al., 1994; Shalev and von
Aster, 2008). Learning disabilities often lead to anxiety and aversion against the
subject (Rubinsten and Tannock, 2010) and to underperformance in school and later
in profession (Bynner, 1997).

Despite the relatively high prevalence of developmental dyscalculia, only a few sci-
entifically evaluated interventions exist, and only a fraction of these programs is
computer-based. And yet, the computer presents an inexpensive extension to conven-
tional one-to-one therapy. Computers are an attractive medium for children and can
provide intensive training in a stimulating environment. The playful environment in
combination with the fact that the computer is an emotionally neutral medium may
also lead to increased motivation and enhance positive self-concepts. Most impor-
tantly, educational software can be designed to adapt to an individual child’s abili-
ties, behavior or affective states. Existing computer-based interventions for number
processing (Wilson et al., 2006a; Fuchs et al., 2006; Lenhard et al., 2011; Kucian
et al., 2011; Butterworth et al., 2011) are based on neuro-cognitive models of num-
ber processing and numerical development. This theoretical basis is an important
criterion for a sound targeted intervention. However, the existing computer-based
interventions provide only limited user adaptability.

The field of intelligent tutoring systems provides a large body of research in terms
of adaptivity and user modeling. A fundamental property of these systems is their
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Introduction

‘intelligence’, i.e., the adaptation to the student. Popular techniques for modeling stu-
dent knowledge include Bayesian Knowledge Tracing (Corbett and Anderson, 1994)
or Performance Factors Analysis (Pavlik et al., 2009). Furthermore, Markov Deci-
sion Processes are used for teaching planning (Brunskill andRussell, 2011; Rafferty
et al., 2011) or diagnosing misconceptions (Rafferty et al.,2012). Bayesian network
models are employed to model and predict students’ learningstyles (Kim et al.,
2012), engagement states (Baschera et al., 2011) and goals (Conati et al., 2002).
Intelligent tutoring systems have been successfully employed in different learning
domains, amongst others also for learning mathematics (Koedinger et al., 1997; Ar-
royo et al., 2004; Rau et al., 2009). Existing systems in the domain of mathematics
are, however, designed for normal learning children and focus on specific aspects of
the domain.

The work presented in this thesis is concerned with the development and the ef-
ficacy of computer-assisted therapy approaches for developmental dyscalculia. It
spans several areas of interest, including elements of psychology, student modeling
and data mining. We address the limitations of previous workby combining knowl-
edge about developmental dyscalculia and mathematical understanding with state of
the art modeling and data mining techniques. We first developthe therapy software
Calcularis for developmental dyscalculia, drawing from the fields of developmen-
tal and neuro-psychology as well as intelligent tutoring systems. In a second step,
the software is evaluated in two large user studies to prove its effectiveness. The
input data collected in these user studies is then used for model validation. We
investigate how existing models can be validated and improved based on log file
data. The data-driven investigations lead to the development and extensive analysis
of techniques for model validation. Based on the collected log file data, we also
address the question of how a computer-based system can identify, represent and
predict the knowledge and affective states of the user. We propose a mathematical
knowledge representation along with efficient learning andinference methods that
outperform existing student models in prediction of knowledge. By employing a
clustering and classification algorithm, we are able to predict mathematical learning
characteristics of the children. Furthermore, we explore the addition of a framework
for engagement modeling toCalcularis. Finally, we completeCalcularis with
a data-driven diagnosis tool, which is able to classify children as being at risk for
developmental dyscalculia based only on their input data.

In the following, we will give an overview of the performed research activities dur-
ing this thesis. We then present the principal contributions of the work, before out-
lining the structure of the thesis. Finally, we list the publications that have been
accepted in the context of this thesis.

2



1.1 Overview

1.1 Overview

In this thesis, we describe one complete loop in the data-driven development of an
intelligent tutoring system: From the development of a firstsystem over the evalua-
tion in user studies to the data-driven validation and improvement of the system. A
conceptual overview of the performed research activities and resulting publications
can be found in Fig. 1.1.

Calcularis. Computer-based therapy systems present inexpensive extensions to con-
ventional one-to-one therapy by providing an adaptive and fear-free learning envi-
ronment. The effectiveness of computer-based therapy programs has been proven by
several user studies targeting children with dyslexia (Gross and V̈ogeli, 2007; Kast
et al., 2007) or ADHD (Klingberg et al., 2005).

In this thesis, we develop the computer-based therapy system Calcularis for el-
ementary school children with developmental dyscalculia or difficulties in learn-
ing mathematics. The training program combines knowledge about developmen-
tal dyscalculia and mathematical understanding with stateof the art modeling tech-
niques. We transform current neuro-cognitive findings intothe design of different
instructional games. Furthermore, we use a special design for numerical stimuli,
encoding the properties of numbers using visual cues such ascolors, forms and
topologies. This special design aims at enhancing the different properties of number
and hence facilitating number understanding. The transferof information through
different channels also stimulates perception and facilitates the retrieval of mem-
ory (Lehmann and Murray, 2005; Shams and Seitz, 2008). We employ concepts
from student modeling and machine learning, enabling the system to adapt to the
knowledge level of the user. A bug library, allowing recognition and remediation of
specific errors of the children, completes the program.

We model the mathematical knowledge of the user with a dynamic Bayesian net-
work (Murphy, 2002). This network is a directed acyclic graph representing differ-
ent mathematical skills as well as their hierarchy and interrelationships. Compared
to previous approaches employing Hidden Markov Models (Corbett and Anderson,
1994; Reye, 2004), our knowledge representation has three main advantages. First,
we are able to consider all skills jointly within one model. Second, the ability to
model the hierarchy and the dependencies between differentskills of a learning do-
main increases the representational power of the model. Andthird, the non-linear
structure conveys a more complex and adaptive control algorithm than a simple lin-
ear hierarchy.

Based on the non-linear knowledge representation, we introduce a control algorithm
that allows movement into different directions. Besides advancing to more difficult
skills, we allow the controller to select easier skills for training or pick remediation

3
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Training Environment

Calcularis

� Theory & Concepts
[Frontiers13]

� Student model & Control
[ITS12] [IJAIED13]

Dyscalculia screener

� Classification

Data Collec!on & Evalua!on

User Studies

[Frontiers 13]

Log files

Analysis & Modeling

Validation

� Model & Control properties
[ITS12] [IJAIED13]

� Learning curves
[EDM 14]

Prediction

� Cluster-based prediction
[AIED13]

� Latent structured prediction
[AISTATS14]
[ITS14] (Best Paper Award)

?

� Affective modeling
[IJAIED12]

Figure 1.1: Thesis Overview: This work describes one complete loop in the data-driven devel-
opment of a computer-based training system. We first developCalcularis (red), a
computer-based training program for learning mathematics. In a second step, the sys-
tem is evaluated in twouser studies(green), proving its effectiveness. The collected
input data is used for modelvalidation (blue). We perform a data-driven assessment of
student model and controller properties and analyze the quality of our model via logis-
tic regression. We also improve the system regardingprediction (blue). We propose
a constrained structured prediction method for increasing the accuracy of the model.
By applying a clustering and classification approach, we are able to predict students’
mathematical characteristics. In addition, we explore the possibility of a general frame-
work for modeling affective states. In a final step, we close the loop of thedata-driven
development: OurDyscalculia screener(red) is able to classify children as having
developmental dyscalculia based only on their input data.

skills for specific errors. By doing so, the path through the skill network is different
for each child and targets the needs of the individual user. Furthermore, forgetting
and knowledge gaps are captured by the possibility to perform skill retrocession.

User studies. When developing an intervention program, assessment of theactual
clinical effectiveness by means of evaluation studies is essential. We evaluate the ef-
fectiveness ofCalcularis in two user studies in Germany and Switzerland with ele-
mentary school children. The results demonstrate that children improve significantly
in addition and subtraction regarding accuracy and solution times. Furthermore, they
also exhibit a refined spatial number representation after training. Our results con-
firm the findings of previous studies (Siegler and Booth, 2004;Booth and Siegler,

4



1.1 Overview

2006, 2008; Halberda et al., 2008), which demonstrated significant correlations be-
tween arithmetical learning and the quality of numerical magnitude representation.

Validation . An important part when developing an intelligent tutoringsystem is
the data-driven validation of the student model and the control algorithm. We vali-
date our skill model by applying the often used approach of Additive Factors Mod-
els (Cen et al., 2007, 2008). This type of logistic regressionmodel might, however,
suffer from underestimation of student learning when applied to a mastery-learning
data set. We therefore extensively investigate, how student learning can be measured
in a mastery-based system. We suggest a variety of logistic regression models and
analyze their properties. Furthermore, we also compare prediction accuracy of the
different modeling techniques on unseen data.

In a second step, we perform a data-driven assessment of the developed student
model and control algorithm according to different qualitycriteria. We demonstrate
that students show an increased mathematical performance over the training period
within the system using logistic regression. Furthermore,we assess the controller
design and show that the possibility of going back to easier skills speeds up learning.
We do so by using a logistic regression approach with bootstrapping. Finally, we
also demonstrate that the system adjusts rapidly to the knowledge state of the user.

Prediction. Prediction is a fundamental task of an intelligent tutoring system. The
quality of the student model can be measured by its prediction accuracy,i.e., how
good the model is at prediction on unseen data. Most previouswork has focused
on what we will callshort-term prediction: Given the outcomes of tasks 1, ...,n−1,
what will be the outcome of taskn? In this thesis, we investigateshort-term pre-
diction as well aslong-term prediction. Long-term predictionis for example the
prediction of the overall training outcome, knowledge gapsof the student or perfor-
mance in external training assessments. Another aspect of prediction that we will
explore is the possibility of a general framework for predicting engagement states of
the user.

Prediction of task outcomes of the student directly influences task selection and
therefore training efficiency. One of the most used approaches to model student
knowledge is Bayesian Knowledge Tracing (Corbett and Anderson, 1994), a special
case of a Hidden Markov Model (Reye, 2004). Prediction accuracy of this method
has been improved using clustering approaches (Pardos et al., 2012b) or individu-
alization techniques, such as learning student- and skill-specific parameters (Pardos
and Heffernan, 2010a; Wang and Heffernan, 2012; Yudelson etal., 2013) or mod-
eling the parameters per school class (Wang and Beck, 2013). In this thesis, we
will exploit the potential of dynamic Bayesian networks (Murphy, 2002). As these
models usually do not exhibit a tree structure, they impose challenges for inference
and learning. We introduce a method calledconstrained structured prediction with
latent variablesfor efficient parameter learning, yielding accurate and interpretable
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models. We apply a constrained optimization and demonstrate that this regulariza-
tion through constraints improves prediction accuracy andguarantees model inter-
pretability. Furthermore, we also show that the increased representational power of
our models yields significant improvements in prediction accuracy over Bayesian
Knowledge Tracing (Corbett and Anderson, 1994).

Existing models are mostly focused on predicting student knowledge,i.e., task out-
comes. In this thesis, we propose a method which predicts learning characteristics of
students such as knowledge gaps and overall training achievement. We will use an
approach consisting of an offline clustering, followed by anonline classification of
children. At the end of the training, children are clusteredinto subgroups of similar
mathematical performance based on their training characteristics. The resulting sub-
groups can be interpreted according to theory and concepts about the development
of mathematical understanding. During training, childrenare classified to a specific
subgroup based on the training information available so far. Prediction of future
performance and knowledge gaps is then performed using subgroup information.

Affective modeling is receiving increasing attention due to its recognized relevance
in learning. In general, affective models can be inferred from several sources, such
as sensor data (Cooper et al., 2010; Heraz and Frasson, 2009) and user input data
(Baker et al., 2004; Johns and Woolf, 2006; Arroyo and Woolf, 2005). In previous
work, Baschera et al. (2011) have developed an engagement dynamics model in
spelling learning that can adapt the training to individualstudents based on data-
driven identification of engagement states from student input. Building upon this
model, we explore whether we can transfer the existing framework to a more gen-
eral engagement dynamics model for multiple learning domains. In particular, we
focus on developmental dyslexia and dyscalculia. We argue that the assumption of
similar engagement patterns in the two cases is justified and, thus, that a similar en-
gagement model would be beneficial. This work is a purely theoretical exploration.
We provide a detailed assessment of similarities and dissimilarities of the two cases
of developmental dyslexia and dyscalculia in terms of learning domain and student
model and analyze the re-usability of the engagement model for spelling learning.

Dyscalculia screener. The diagnosis of developmental dyscalculia (or a learning
disability in general) involves a range of standardized tests assessing children’s do-
main specific as well as domain general abilities. A computer-based diagnosis tool
would allow for an inexpensive, nationwide screening. In this thesis, we develop
a diagnosis tool, classifying children as being at risk for developmental dyscalcu-
lia based on their input data. We extract task dependent (such as the answer time)
as well as game dependent features from the log files collected in the user studies.
Those features will be pre-processed by applying kernel transformations to make
them comparable. A pairwise clustering allows us to group features according to
their similarities and to therefore reduce the number of selected features for classifi-
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cation. Classification is then performed using a Support Vector Machine (Caruana
and Niculescu-Mizil, 2006; Statnikov et al., 2008) or a probabilistic classifier al-
lowing for an adaptive test time and providing information about the certainty of
the predicted label. The development of the diagnosis tool and its integration into
Calcularis constitute the final step of this thesis and close the loop of data-driven
development.

1.2 Principal Contributions

In the following, we summarize the principle contributionsof the work presented in
this thesis:

• Computer-based therapy system for dyscalculia: We introduceCalcularis, a new
computer-based training program for children with difficulties in learning mathe-
matics. The program combines theory and concepts of numerical development with
state of the art modeling techniques. Its structure and games are based on neuro-
cognitive models of number processing and numerical development. Adaptivity is
ensured through a Bayesian network model representing the mathematical skills of
the user and a non-linear control algorithm. Furthermore, the system features a bug
library allowing adaptation to specific problems of the user. The effectiveness of the
training program has been demonstrated in two user studies.

• Dynamic Bayesian network model: We model the mathematical knowledge of the
user with a dynamic Bayesian network (Murphy, 2002) representing 100 different
mathematical skills and their relationships. Compared to previous work employing
Bayesian Knowledge Tracing (Corbett and Anderson, 1994; Koedinger et al., 1997),
we are able to model the different skills of a learning domainjointly within a single
model, which increases the representational power of the model. We present an
approach calledconstrained structured prediction with latent variablesfor efficient
parameter learning in general graphical models and show that our regularization via
parameter constraints improves prediction accuracy on unseen data. We furthermore
perform experiments on large-scale data sets from different learning domains such
as mathematics, spelling learning and physics, demonstrating that the modeling of
skill hierarchies increases the predictive performance ofa model.

• Non-linear control algorithm: We propose a non-linear control algorithm for task
selection. In contrast to other systems (Conati et al., 2002;Koedinger et al., 1997;
Gross and V̈ogeli, 2007), we allow forward (advancing to more difficult skills)
and backward (going back to easier skills) movements along the edges of the skill
model’s graph structure as well as ‘jumps’ to remediation skills for specific errors.
This control design allows for an adaptation of the trainingsequence to the indi-
vidual child. Furthermore, forgetting and knowledge gaps are implicitly captured.
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We provide a data-driven validation of the control design and demonstrate that this
non-linear design is beneficial for learning.

• Clustering and classification: We introduce a clustering and classification approach
for predicting external assessment results as well as learning characteristics such
as knowledge gaps and overall training achievement of the children. In a first step,
we cluster children according to individual learning trajectories. Compared to pre-
vious approaches, we use the subgroup information not only to improve prediction
accuracy, but also to provide a valuable tool for experts to analyze individual learn-
ing patterns. The second step consists of a supervised online classification during
training, enabling prediction of future performance. We show that prediction accu-
racy of learning characteristics can be significantly improved by taking subgroup
information into account.

• Learning curve analyses: Improving cognitive models of learners based on log file
data is a common approach. Prior work (Murray et al., 2013) began to explore the
potential parameter estimate biases that may result from data from tutoring systems
that employ a mastery-learning mechanism whereby poorer students get assigned
tasks that better students do not. We extend this work by exploring a wider set of
modeling techniques and by using a data set with additional observations of longer-
term retention that provide a check on whether judged mastery is maintained. We
investigate variations of logistic regression models including the Additive Factors
Model (Cen et al., 2007, 2008) and others explicitly designedto adjust for mastery-
based data. We extensively analyze properties and prediction accuracy of the differ-
ent models and discuss implications for use and interpretation.

• Dyscalculia screener: About 3−6% of the children in German and English speak-
ing countries suffer from developmental dyscalculia (Lewis et al., 1994; Shalev and
von Aster, 2008). Diagnosis is conducted in a one-to-one setting with an expert,
using standardized tests. We introduce a computer-based screener for developmen-
tal dyscalculia, indicating whether children are at risk for this learning disability.
Classification is based on features extracted from log file data of Calcularis. By
applying a probabilistic classifier, we are able to quantifythe uncertainty of the la-
bel and to adapt the test duration. Initial cross validationon user study data yields a
classification accuracy of about 90% and an average test timeof 14 minutes.

1.3 Thesis outline

In this thesis, we first give an overview of related work in thefields of number
processing and numerical development as well as student modeling (Chapter 2). We
then introduce the three main parts of this work (see overview in Fig. 1.1):Training
Environment, Data Collection & EvaluationandAnalysis & Modeling. We conclude
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by reviewing the main contributions of the thesis and suggesting potential future
work (Chapter 11). In the following, the structure of the three main parts of the
thesis is described.

In the first part, we introduce the dyscalculia therapy softwareCalcularis in detail
(Chapter 3). We describe the general concepts, the differentgames as well as the
student model and control algorithm of the system.

In the second part, we give the details of the two user studiesconducted in Germany
and Switzerland (Chapter 4). We describe the data collected in these studies. Fur-
thermore, we present the design of the user study conducted in Switzerland in 2012
along with first results and case studies.

The third part details the analyses, validation and improvements conducted based on
the available user data. In Chapter 5, we validate the skill model of Calcularis
using learning curves. Furthermore, we analyze, assess andcompare a variety of
techniques for model validation. Chapter 6 describes the data-driven assessment of
the quality of the student model and the control mechanism aswell as the analyses
of specific problems of the students. Chapters 7-9 deal with prediction: We go
from short-term prediction of student answers (Chapter 7) tolong-term prediction
of training achievement and knowledge gaps (Chapter 8) over to the prediction of
students’ engagement states (Chapter 9).

Chapter 10 closes the loop of data-driven development. Based on their training data,
we classify children into having developmental dyscalculia or not and integrate the
developed dyscalculia screener into the training environment.

1.4 Publications

In the context of this thesis, the following peer-reviewed publications have been
accepted.

• T. K ÄSER, K. KOEDINGER, and M. GROSS (2014). Different parameters - same
prediction: An analysis of learning curves.Proceedings of EDM (London, UK, 4-7
July, 2014), pp. 52-59.
This paper provides an extensive analysis of modeling techniques for fitting learning
curves. It assesses the properties of different models as well as their prediction
accuracy on unseen data.

• T. K ÄSER, S. KLINGLER, A. G. SCHWING, and M. GROSS (2014). Beyond
Knowledge Tracing: Modeling Skill Topologies with BayesianNetworks.Proceed-
ings of ITS (Honolulu, Hawaii, 5-9 June, 2014), pp. 188-198.[Best Paper Award]
This paper aims at increasing the representational power ofthe student model by em-
ploying dynamic Bayesian networks that are able to representskill topologies. The
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performance of this approach is evaluated on five large-scale data sets of different
learning domains such as mathematics, spelling learning and physics.

• T. K ÄSER, A. G. SCHWING, T. HAZAN, and M. GROSS (2014). Computational
Education using Latent Structured Prediction.Proceedings of AISTATS (Reykjavik,
Iceland, 22-25 April, 2014), pp. 540-548.
This paper employs a constrained latent structured prediction approach for parame-
ter learning and demonstrates the benefits of regularization through constraints.

• T. K ÄSER, A. G. BUSETTO, B. SOLENTHALER, G.-M. BASCHERA, J. KOHN,
K. KUCIAN, M. VON ASTER, and M. GROSS (2013). Modelling and Optimizing
Mathematics Learning in Children.IJAIED: ”Best of ITS 2012”, 23(1-4): 115-135.
This paper is an extended version of the ITS 2012 paper. It provides a detailed
description of the student model and control algorithm ofCalcularis as well as an
extensive assessment of model and control properties.

• T. K ÄSER, A. G. BUSETTO, B. SOLENTHALER, J. KOHN, M. VON ASTER,
and M. GROSS (2013). Cluster-Based Prediction of Mathematical Learning Pat-
terns.Proceedings of AIED (Memphis, USA, 9-13 July, 2013), pp. 389-399.
This paper uses a two-step approach consisting of clustering and classification to
predict learning characteristics of students.

• T. K ÄSER, G.-M. BASCHERA, J. KOHN, K. KUCIAN, V. RICHTMANN, U.
GROND, M. GROSS, and M. VON ASTER (2013). Design and evaluation of
the computer-based training program Calcularis for enhancing numerical cognition.
Frontiers in Developmental Psychology, 4: 489.
This paper introduces the theory and concepts behindCalcularis as well as the
different games and describes the design and results of a user study conducted in
Switzerland along with two case studies.

• T. K ÄSER, G.-M. BASCHERA, A. G. BUSETTO, S. KLINGLER, B. SOLEN-
THALER, J. M. BUHMANN, and M. GROSS (2012). Towards a Framework for
Modelling Engagement Dynamics in Multiple Learning Domains. IJAIED: ”Best
of AIED 2011 - Part 2”, 22(2): 42-70.
This paper is an extended version of the AIED 2011 paper by Baschera et al. (2011).
It explores to possibility of a joint framework for engagement modeling in develop-
mental dyslexia and dyscalculia.

• T. K ÄSER, A. G. BUSETTO, G.-M. BASCHERA, J. KOHN, K. KUCIAN, M.
VON ASTER, and M. GROSS (2012). Modelling and Optimizing the Process of
Learning Mathematics.Proceedings of ITS (Chania, Greece, 14-18 June, 2012), pp.
389-398.
This paper describes the student model and control algorithm of Calcularis along
with first evaluations of model properties and training effectiveness.
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During the course of this thesis, the following peer-reviewed papers have been ac-
cepted which are not directly related to the presented work.

• J. KOHN, V. RICHTMANN, L. RAUSCHER, K. KUCIAN, T. K ÄSER, U.
GROND, G. ESSER, and M. VON ASTER (2013). Das Mathematikangstinterview
(MAI): Erste psychometrische G̈utekriterien.Lernen und Lernstörungen, 2(3): 177-
189.
This paper describes the design and first results of an interview for assessing math
fear, developed in the context of the user studies withCalcularis.

• K. KUCIAN, J. KOHN, V. RICHTMANN, U. GROND, T. K ÄSER, M. M.
HANNULA-SORMUNEN, G. ESSER, and M. VON ASTER (2012). Kinder
mit Dyskalkulie fokussieren spontan weniger auf Anzahligkeiten. Lernen und
Lernsẗorungen, 1(4): 241-253.
This paper evaluates the SFON effect on data collected from user studies with
Calcularis.

Additional publications and book chapters during the time period of this thesis:

• T. K ÄSER and M. VON ASTER (2013). Computerbasierte Lernprogramme
für Kinder mit Rechenschẅache. In von Aster, M., & Lorenz, J. (Eds.),
Rechensẗorungen bei Kindern. Neurowissenschaft, Psychologie, Pädagogik, 2. Auf-
lage. Göttingen: Verlag Vandenhoek & Rupprecht, pp. 259-276.
This book chapter provides an overview of computer-based training programs for
children with developmental dyscalculia and introducesCalcularis in detail.

• T. K ÄSER, K. KUCIAN, M. RINGWALD, G.-M. BASCHERA, M. VON ASTER,
and M. GROSS (2011). Therapy Software for Enhancing Numerical Cognition. In
J.Özyurt, A. Anscḧutz, S. Bernholt & J. Lenk (Eds.),Interdisciplinary perspectives
on cognition, education and the brain - Hanse-Studies(Vol. 7, pp. 207-216). Old-
enburg: BIS-Verlag.
This extended abstract gives an introduction into the development ofCalcularis.
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C H A P T E R 2
Related Work

This chapter describes the related work in the different areas of research influenc-
ing this thesis. First, it covers work in the field of mathematics learning, including
models of number processing and numerical development as well as characteristics
of developmental dyscalculia. Second, the potential of computer-based training pro-
grams for mathematics learning is analyzed and existing conventional and computer-
based interventions for developmental dyscalculia are discussed. Third, the area of
intelligent tutoring systems is introduced. The differentcomponents of an intelli-
gent tutoring system are described with a focus on student modeling. The student
modeling part gives an overview of different knowledge representations and model-
ing techniques. Furthermore, an introduction to affectivemodeling,i.e., modeling
the student’s engagement states is given. The final part of this chapter discusses the
student modeling techniques relevant for this thesis in detail.

2.1 Development of mathematical understanding

The computer-based training programCalcularis developed in this thesis is de-
signed for children with developmental dyscalculia or difficulties in learning math-
ematics. It is therefore important to understand how numberprocessing and numer-
ical understanding normally develop and what the characteristics of developmental
dyscalculia are. In the following, we describe the cognitive models and concepts that
are relevant for our work and give a short introduction to developmental dyscalculia.
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2.1.1 Neuro-cognitive models of number processing and numer ical
development

Current neuropsychological models postulate distinct representational modules, lo-
cated in different brain areas, which are relevant for adultcognitive number pro-
cessing and calculation. One of the first models, the ‘triple-code model’ (Dehaene
and Cohen, 1995) comprises a verbal module supporting counting and number fact
retrieval, a visual-Arabic module required for solving written arithmetic and an
analogue magnitude module (mental number line) for semantic number processing.
Lately, an fMRI meta-analysis enabled further insights intosupporting and domain-
general functions involved in solving arithmetic tasks andsuggested a modification
and extension of the triple-code model (Arsalidou and Taylor, 2011). Results from
functional brain imaging in adults and children indicate that the representation of the
mental number line emerges during the first years of school inthe parietal lobe due
to practice and experiences (Rivera et al., 2005; Ansari and Dhital, 2006; Kucian
et al., 2008). The initial assumption of the analogue magnitude representation being
notation-independent was challenged in 2007 (Cohen Kadosh et al., 2007a). Nieder
(2012) recently showed that there are indeed notation-dependent as well as notation-
independent neurons responding to numerosity.

While the triple-code model denotes the end state of numerical development, the
four-step developmental model (von Aster and Shalev, 2007)describes the path to
this end state. It divides the semantic representation (analogue magnitude repre-
sentation) into an implicit core representation of magnitude and an explicit mental
number line, the latter considered as being a ‘representational redescription’ of the
former (Karmiloff-Smith, 1992). The (inherited) core-system representation of car-
dinal magnitude provides the basic meaning of numbers (step1). Based on this
representation, children learn to associate a perceived number with spoken and later
written and Arabic symbols. The process of linguistic (step2) and Arabic (step 3)
symbolization is in turn a precondition for the developmentof a mental number line
(step 4). The different representations develop dependingon the growing capacity
of domain-general functions like working memory.

Lately, other authors have suggested different models of numerical develop-
ment (Carey, 2001, 2004; Kucian and Kaufmann, 2009; Kaufmannet al., 2011;
Noël and Rousselle, 2011; Kaufmann and von Aster, 2012; Vogel and Ansari, 2012).
Some authors argue that developmental dyscalculia is mainly caused by an early,
probably genetic, deficit of the basic non-symbolic magnitude system (Butterworth
et al., 2011), while others suggest that problems may arise from different develop-
mental reasons, including maladaptive learning experiences and math anxiety. To
summarize, there is still an open debate about developmental trajectories and rea-
sons for failure in learning mathematics. However, there seems to be agreement that
based on early non-symbolic abilities to access and comparenumerical magnitudes,
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different components of semantic and symbolic representations are developing dur-
ing childhood and school years. These components develop based on the increas-
ing capacity of domain-general functions and enable a childto successively acquire
arithmetic skills.

2.1.2 Developmental dyscalculia

Developmental dyscalculia (DD) is a specific learning disability affecting the acqui-
sition of arithmetic skills (von Aster and Shalev, 2007). Genetic, neurobiological,
and epidemiological evidence indicates that DD is a brain-based disorder, although
poor teaching and environmental deprivation have also beendiscussed in its etiol-
ogy (Shalev, 2004).

DD is thought to have its neuropsychological basis due to a limited ‘number sense’,
which implies a deficit in very basic numerical skills such asnumber compari-
son (Landerl et al., 2004; Rubinsten and Henik, 2005; Butterworth, 2005a,b). Be-
sides exhibiting fundamental deficits in number processing(Cohen Kadosh et al.,
2007b; Mussolin et al., 2010; Kucian et al., 2006; Price et al., 2007), children with
DD also tend to suffer from difficulties in acquiring simple arithmetic procedures
and exhibit a deficit in fact retrieval (Ostad, 1997, 1999). The prevalence of DD is
estimated to about 3-6% (Shalev and von Aster, 2008; Badian, 1983; Lewis et al.,
1994) in English and German speaking countries.

Children with DD often show comorbidities with dyslexia (vonAster and Shalev,
2007; Ostad, 1998; Lewis et al., 1994; Badian, 1999; Barbaresiet al., 2005; Dirks
et al., 2008; Ackerman and Dykman, 1995) and ADHD (Shaywitz et al., 1994;
Fletcher, 2005; Barbaresi et al., 2005). In addition, learning disabilities frequently
lead to anxiety and aversion against the subject (Rubinsten and Tannock, 2010) and
to underperformance in school and later in profession (Bynner, 1997).

2.2 Existing computer-based interventions

Using computer-based interventions for DD seems promising. When teaching math-
ematics, the highly complex processes of domain-specific cognitive development
need to be taken into account. The development of each child’s numerical abilities
often follows a different speed and is intertwined with the development of other cog-
nitive domains and domain-general abilities (von Aster andShalev, 2007; Kucian
and Kaufmann, 2009; Kaufmann et al., 2011), leading to different mathematical
performance profiles (von Aster, 2000; Geary, 2004; Wilson and Dehaene, 2007).
Computer-based trainings can be designed to adapt to an individual child’s abili-
ties and provide intensive training in a stimulating environment (Kullik, 2004). The
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training can for example adapt to cognitive (Naglieri and Johnson, 2000) or to perfor-
mance profiles of the children (von Aster, 2000; Geary, 2004;Wilson and Dehaene,
2007). This individualization in combination with the factthat the computer is an
emotionally neutral medium may also lead to increased motivation and enhance pos-
itive self-concepts as every learner gains feelings of success (Ashcraft and Faust,
1994; Spitzer, 2009).

In the past years, different meta-analyses have assessed the effects of computer-
based instruction for mathematics learning, revealing positive results. Kulik and
colleagues (Kulik and Kulik, 1991; Kulik, 1994) computed anaverage effect size
of 0.47 in elementary school. Other studies reported effectsizes ranging from 0.13
to 0.8 (Khalili and Shashaani, 1994; Fletcher-Flinn and Gravatt, 1995). Li and Ma
(2010) found larger effects for elementary school than for higher education and
showed that special needs students especially benefit from computer-based instruc-
tion.

Interventions specifically targeting children with DD are mostly conventional. Tech-
niques include training programs for preschool children atrisk of developing math-
ematical difficulties (Griffin et al., 1994; Van De Rijt and VanLuit, 1998; Arnold
et al., 2002; Wright, 2003) as well as remedial programs for elementary school chil-
dren (Van Luit and Naglieri, 1999; Dowker, 2001, 2003; Fuchset al., 2006; Wilson
et al., 2006a; Butterworth et al., 2011; Lenhard et al., 2011;Kucian et al., 2011).
Programs designed for preschool children mostly focus on building basic-numerical
skills, whereas elementary school trainings target a broader range of skills. Some
interventions address basic numerical skills and the establishment of the mental num-
ber line (Wilson et al., 2006a), while others train arithmetic fact knowledge (Van Luit
and Naglieri, 1999; Fuchs et al., 2006) or are aligned to scholar curricula (Lenhard
et al., 2011). Other effective approaches combine the training of basic-numerical
capacities with the training of arithmetical knowledge (Dowker, 2001, 2003; Kucian
et al., 2011).

There exist a few computer-based interventions in number processing. The
computer-based interventionNumber Race for children with DD trains number com-
parisons and enhances the links between number and space (Wilson et al., 2006a).
Evaluation of the training revealed significant improvements in basic numerical cog-
nition, but the effects did not generalize to counting or arithmetic (Wilson et al.,
2006b; R̈as̈anen et al., 2009; Wilson et al., 2009).Rescue Calcularis is another
computer-based intervention for children with DD. It aims to improve the construc-
tion and access to the mental number line. The evaluation of the program showed
that children with and without DD could benefit from the training (Kucian et al.,
2011). Elfe and Mathis is a computer-based training aligned to the German
scholar curriculum (Lenhard et al., 2011). Its evaluation demonstrated significant ef-
fects. Fuchs et al. (2006) presented a computer-based program to acquire fact knowl-
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edge, reporting significant effects in addition. Butterworth et al. (2011) suggest the
use of adaptive interactive games for remediation. The proposed games train basic-
numerical skills (number comparisons and counting) as wellas the spatial number
representation and simple arithmetic facts.

The introduced previous studies demonstrate the efficacy ofcomputer-based inter-
vention in number processing. The presented programs, however, mostly focus on
specific skills and provide only limited adaptability.

On the other hand, existing adaptive computer-based training programs (called in-
telligent tutoring systems) for learning mathematics are mostly designed for normal
performing children and focus on specific aspects of the domain. TheCognitive
Tutor (Koedinger et al., 1997) is an intelligent tutoring system for teaching algebra
to high-school students. Other work includes a program for fraction learning (Rau
et al., 2009) or a web-based math test for high-school students (Arroyo et al., 2004).

2.3 Intelligent Tutoring Systems (ITS)

Computer-assisted learning is gaining importance in children’s education. Intelli-
gent tutoring systems (ITS) are successfully employed in different fields of educa-
tion, such as physics (Conati et al., 2002), algebra (Koedinger et al., 1997) and read-
ing (Mostow et al., 1993). Computer-based therapy systems for learning disabilities
have gained particular attention. Such systems present inexpensive extensions to
conventional one-to-one therapy by providing an adaptive and fear-free learning en-
vironment. The effectiveness of computer-based therapy programs has been proven
by several user studies targeting children with dyslexia (Gross and V̈ogeli, 2007;
Kast et al., 2007), DD (Wilson et al., 2006a; Lenhard et al., 2011; Kucian et al.,
2011), and ADHD (Klingberg et al., 2005).

In this section, we first describe the different components of a generic ITS. We then
detail the most important component for this work, theStudent Model, by introduc-
ing prior work on student modeling and giving an overview of the most popular
techniques. Finally, we introduce a newer field of ITS, whichdeals with modeling
not only the knowledge state of the student, but also his (or her) affective states.

2.3.1 Principal components of an ITS

An overview of ITS was presented by Shute and Psotka (1994), introducing the main
components of a generic ITS: Knowledge of the domain (Domain Expert), know-
ledge of the learner (Student Model) and knowledge of teaching strategies (Tutor).
These components and their relations are illustrated in Fig. 2.1 (Shute and Psotka,
1994).
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Figure 2.1: Program flow and principal components (denoted by ellipses) of a generic ITS (Shute
and Psotka, 1994): The system incorporates knowledge about the domain (Domain Ex-
pert), knowledge of the learner (Student Model) and knowledge about teaching strate-
gies (Tutor). The (optional)Bug Librarycontains a list of typical misconceptions for
the domain. The rectangles describe program decisions or actions.

In an ITS, a student learns mainly from solving problems thatare adjusted to the
student’s knowledge state. To select appropriate tasks, the system needs to assess
the current knowledge state of a student. Therefore, the initial knowledge of the
student needs to be modeled by the system and updated based onthe interactions
of the student (for example the solved problems) with the training program. These
tasks are handled by theStudent Model. Furthermore, the program also considers,
what the student needs to know. This knowledge about the domain is given by the
Domain Expert. Finally, the system needs to decide how the selected problem is
presented. Information about the teaching strategy is contained in theTutor.

Based on all these components, the training program selects aproblem (task) and
presents it to the student. The solution of the student and the expert solution are then
compared and the system gives a feedback to the student. The manner of feedback is
defined in theTutor. Some systems also compare the student solution to the content
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of a Bug Library. TheBug Library contains a list of typical errors (or misconcep-
tions) of the learning domain. Finally, theStudent Modelis updated based on the
solved problem, and the next problem is generated.

2.3.2 Student modeling

The Student Modelis a central component of an ITS. To improve the training out-
come, knowledge of performance profile, knowledge gaps and learning behaviors of
the student as well as an accurate performance prediction are essential. This is partic-
ularly important for students suffering from learning disabilities as the heterogeneity
of these children requires a high grade of individualization.

A student model can be characterized by its form of representing the knowledge
of the learning domain,e.g., mathematics. The most popular representations are
overlay models, perturbation models, and cognitive models(Kass, 1989). These
three categories are illustrated in Fig. 2.2 (Baschera, 2011).

One of the first knowledge representations employed in student modeling was the
overlay model (Barr et al., 1976). The overlay concept assumes, that student knowl-
edge is a subset of the expert knowledge. The goal of the training is to extend the
student knowledge until it conforms to the expert knowledge. The overlay approach
assumes that all differences in knowledge between the student and the expert stem
from a lack of student knowledge. This technique is therefore not able to model
student misconceptions.

A technique that tackles the disadvantages of the overlay approach is the perturba-
tion model. In contrast to the overlay concept that models only correct knowledge,
the perturbation model takes faulty knowledge into account. An early and popu-
lar example for a perturbation model isDEBUGGY (Burton, 1982), which models
students’ misconceptions or bugs in their basic mathematical skills and thus pro-
vides a mechanism for explaining why a student is making a mistake. More re-
cently, Baschera and Gross (2010b) presented a Poisson-based perturbation model
for representing word-spelling errors.

The third main category for knowledge representation is thecognitive model. This
model represents the student knowledge as a subset of the cognitive model of the
learning domain. It does not directly model domain knowledge, but independent
production rules or skills which allow to solve the exercises of the domain. One of
the most popular approaches for building a cognitive model is Bayesian Knowledge
Tracing (Corbett and Anderson, 1994).

Current tutoring systems use a variety of approaches to modelstudent learning. Most
of the techniques make use of a cognitive knowledge representation, sometimes com-
bined with a perturbation model. Markov Decision Processesare used for teaching

19



Related Work

Overlay Model Perturbation Model Cognitive Model

Figure 2.2: Different student representations (illustration by Baschera (2011)):Expert knowledge
is shaded gray, while the student knowledge is illustrated by the ruled areas. The over-
lay and perturbation models are expert models,i.e., student knowledge is modeled as a
subset of the expert knowledge. In the cognitive model, student and expert knowledge
are represented as subsets of skills of the learning domain.

planning (Brunskill and Russell, 2011; Rafferty et al., 2011) or diagnosing miscon-
ceptions (Rafferty et al., 2012). A popular approach to represent student learning
is Performance Factors Analysis (Pavlik et al., 2009). Logistic regression was pro-
posed for modeling student learning (Rafferty and Yudelson,2007; Yudelson and
Brunskill, 2012; Rafferty et al., 2013). Furthermore, student knowledge and learn-
ing can be represented by Hidden Markov Models (Piech et al.,2012), Bayesian
networks (Brunskill and Russell, 2011; González-Brenes and Mostow, 2012b,a) or
Bayesian Knowledge Tracing (Corbett and Anderson, 1994). Bayesian Networks
are also employed to model and predict students’ learning styles (Kim et al., 2012),
engagement states (Baschera et al., 2011) and goals (Conati etal., 2002).

2.3.3 Affective modeling

Due to its relevance in learning, affective modeling is gaining increasing impor-
tance. Motivation and positive self-concepts for example influence the learning out-
come (Ashcraft and Faust, 1994; Spitzer, 2009). The goal of an affective model is
to represent, identify and predict affective states of the student such as emotions,
motivation or attention.

Previous work in affective modeling can be divided into two groups. The first group
of models utilizes sensor data, while the second group relies on student input data
only. Sensor measurements have the potential to directly measure a large number of
affective features. However, the measurements are usuallylimited to laboratory ex-
perimentation due to the expensive equipment needed. The measurement of student
interaction data on the other hand provides the opportunityto obtain large data sets
from different experimental conditions. However, measurements of affect based on
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student interaction are indirect,i.e., the true affective state needs to be inferred from
the input data.

Models from the first group use a variety of sensors. Eye tracking data was for exam-
ple used to analyze students’ attention to hints (Muir and Conati, 2012). A combina-
tion of eye tracking and interaction data was utilized to classify whether a student’s
behavior is conducive for learning (Kardan and Conati, 2013). Conati (2002) pre-
sented a model based on heart-rate data to assess student emotional reaction during
interaction with an educational game. Other authors (Herazand Frasson, 2009) uti-
lized a combination of brainwave data (measuring the learner’s mental state) and
user input (indicating the learner’s affective state) to predict the correctness of user
answers. Furthermore, camera data is another option in affective modeling (Cooper
et al., 2010).

The second group contains models relying on student input data only. Beck (2005)
suggested a model based on Item Response Theory (Wilson and DeBoeck, 2004),
utilizing students’ response times to predict their engagement. By employing a Hid-
den Markov Model, Johns and Woolf (2006) predicted student motivation. Further-
more, Arroyo and Woolf (2005) presented a Bayesian network based on features
extracted from log file data to infer students’ attitudes, perceptions and learning. A
Bayesian network model was also used to identify the attentional state of the stu-
dent (Baschera et al., 2011).

2.4 Modeling techniques

In this thesis, we will draw from the fields of ITS, machine learning and educational
data mining to represent and predict student knowledge, learning, characteristics and
affective states. In section 2.3.2, we have given an overview of popular techniques
for modeling student knowledge. In this section, we providea detailed discussion
of the modeling techniques relevant for this thesis.

Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) (Corbett and Anderson, 1994)is an example
for a cognitive model, representing the knowledge of the learning domain as a set
of skills or production rules. A BKT model is a special case of aHidden Markov
Model (HMM) (Reye, 2004). The hidden variable of the model denotes the student
knowledge,i.e., one skill. This variable is assumed to be binary as the skill can either
be mastered by the student or not. The observations represent tasks associated with
the respective skill. Observations are also binary: A student solves a task correctly
or not. From this description follows, that one BKT model per skill is needed to
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Figure 2.3: Structure of a BKT model for skillS over T time steps. The hidden variablesSt

(denoted by circles) represent the state of skillSover time, while the observed variables
Ot (denoted by rectangles) describe observations of skillSat timet.

represent the knowledge of the domain. Figure 2.3 illustrates the BKT model for an
example skillS.

The transition probabilitiesp(st |st−1) of the network can be described by two pa-
rameters:pL, the probability of a skill changing from the unknown to the known
state andpF , the probability of forgetting a previously known skill. Also the emis-
sion probabilitiesp(ot |st) are specified using two parameters. The guess probability
pG of getting a task correct despite not knowing the respectiveskill and the slip
probability pS of making a mistake when applying a known skill. The initial prob-
ability p(s1) of knowing a skill a-priori is described by the parameterp0. In tradi-
tional BKT (Corbett and Anderson, 1994), the forget probability pF is assumed to
be zero. Therefore, a BKT model can be completely specified by the parameter set
θ = {p0, pL, pG, ps}.

An important task when using a BKT model isinference: Given the BKT param-
etersθ and a sequence of observationsom = (om,1, ...,om,t) with om,t ∈ {0,1} and
time t ∈ {0, ...,T} for a studentm, what is the probabilityp(St = 1|om,1, ...,om,t)

that the skillS is in the known state at timet? Theinferencetask is usually eval-
uated after each solved problem of the student. Based on the posterior probability
p(St = 1|om,1, ...,om,t) the system decides on the next task to be solved.

The second important task, thelearning task amounts to estimating the parameters
θ of the BKT model given some observations: Given a sequence of observations
om = (om,1, ...,om,t) with time t ∈ {0, ...,T} for them-th student withm∈ {1, ...M},
what are the parametersθ that maximize the likelihood∏m p(om|θ) of the available
data. Fitting the parameterθ of a BKT model increases prediction accuracy and
therefore allows for a better adaptation to the student’s knowledge.

Exhibiting a tree structure, BKT allows for efficient parameter learning and accurate
inference. Popular techniques for learning in BKT include expectation maximiza-
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tion (Pardos and Heffernan, 2010b; Wang and Heffernan, 2012), brute-force grid
search (Baker et al., 2010) or gradient descent (Yudelson et al., 2013).

Dynamic Bayesian Networks

Bayesian networks (Pearl, 1988) are directed acyclic graphs, where the nodes repre-
sent random variables and the arcs specify the relationships between these random
variables. These relationships can be specified using conditional probability tables
(CPT). A Bayesian network therefore describes a probability distribution. The ran-
dom variables can be discrete or continuous. In the following, we will only discuss
the case, where a random variable can take two states:true or false. If there is
a directed connection between a variableVi and a variableVj , Vi is called a parent
of Vj . The belief of a nodeVi of the network (probability that the random variable
takes the statetrue) is conditioned over its parentspa(Vi) and therefore the joint
probability of a Bayesian network withN variables can be specified as follows:

p(v1, ...,vN) = ∏
i

pvi wherepvi := p(vi |pa(Vi)). (2.1)

As in BKT, variables can be hidden or observed. Therefore, an important task when
using Bayesian networks isinference: Given some observations, what are the beliefs
of the hidden variables. As opposed to BKT, Bayesian networks do not necessarily
exhibit a tree structure and therefore theinferencetask cannot be solved accurately.
However, there exists a variety of algorithms for approximate inference in Bayesian
networks such as loopy belief propagation (Kschischang et al., 2006), fractional
belief propagation (Wiegerinck and Heskes, 2003) or tree-reweighted belief propa-
gation (Minka and Qi, 2003). As in BKT, the second important task is learning.

Dynamic Bayesian networks (DBN) (Murphy, 2002) are needed to model sequential
data. A DBN can be seen as the extension of a Bayesian network over time: The
structure of the Bayesian network in time stept = 1 is copied to all time stepst with
t = {2, ...,T}. Furthermore, directed connections between the nodes of different
time slices are added. A HMM is the most simple example of a DBN.Algorithms for
inferenceandlearning for Bayesian networks can be directly applied to DBNs. We
again interpret the variables of the DBN in terms of a learningcontext: The latent
variables represent skillsSi and the observable variablesOi denote the associated
task outcomes. An example DBN overT time steps is given in Fig. 2.4, where the
circles denote the hidden variables and the rectangles represent observable nodes.

Employing DBNs (instead of BKT) in ITS has the potential to increase the represen-
tational power of the student model and hence further improve prediction accuracy.
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t = 1 t = 2 t = T
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Figure 2.4: Graphical model of an example DBN overT time steps. The hidden variables (denoted
by circles) model the states of the three skillsSa, Sb andSc over time. The rectangles
represent observations associated with the skillsSa (variableOa) andSc (variableOc).
Skill Sb cannot be observed.

In contrast to BKT, DBNs are able to represent the hierarchy andrelationships be-
tween the different skills of a learning domain. In ITS, DBNs have been used to
model and predict students’ performance (Conati et al., 2002; Mayo and Mitrovic,
2001), engagement states (Baschera et al., 2011), and goals (Conati et al., 2002).
DBNs are also employed in user modeling (Horvitz et al., 1998). In cognitive sci-
ences, DBNs are applied to model human learning (Frank and Tenenbaum, 2010)
and understanding (Baker et al., 2005). Despite their beneficial properties to rep-
resent knowledge, DBNs have received less attention in student modeling as they
impose challenges for learning and inference.

In this thesis, we propose a DBN student model for representing different mathemati-
cal skills (see Sec. 3.3). Furthermore, we demonstrate how to solve thelearningtask
for DBNs efficiently (see Chapter 7). Our method guarantees plausible parameter
estimates and shows a higher prediction accuracy on unseen data than BKT.

Logistic regression models

Logistic regression models are used in Item Response Theory (IRT) (Wilson and
De Boeck, 2004) to model the response (correct/wrong) of a student to an item.
IRT is based on the idea that the probability of a correct response to an item is a
mathematical function of student and item parameters.

Although mainly used in computerized adaptive testing to predict the probability
of a correct answer (Baker, 2001), IRT models (or models inspired by IRT) have
been applied for various purposes. Jarus̃ek and Pelánek (2012) describe a model
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which assumes an exponential relationship between problemsolving ability and time
- based on IRT and collaborative filtering - to predict problem solving times. Re-
sponse times of a person on a set of test items were also predicted using a lognormal
model (van der Linden, 2006). Answer times have also been used to predict students’
engagement states (Beck, 2005). Furthermore, Johns and Woolf (2006) proposed the
combination of an IRT model to predict student proficiency and a HMM to infer stu-
dents’ motivation.

One of the most popular regression models for student modeling is the Additive
Factors Model (AFM) (Cen et al., 2007, 2008). It is widely usedto fit learning
curves and to analyze and improve student learning. AFMs help identify flat or ill-
fitting learning curves that indicate opportunities for tutor or model improvement.
Consistently low error curves indicate opportunities to reallocate valuable student
time (Cen et al., 2007). Consistently high error curves with poor fit indicate a miss-
specified skill model that can be improved (Koedinger et al.,2013; Stamper and
Koedinger, 2011), and used to design better instruction (Koedinger and McLaughlin,
2010).

The AFM is a generalized linear mixed model (GLMM) (Boeck, 2008) applying a
logistic regression. In a logistic regression model, the observations of the students
follow a Bernoulli distribution. A Bernoulli distribution isa binomial distribution
with n = 1. Letting ypi ∈ {0,1} denote the response of studentp on item i, we
obtainypi ∼ Binomial(1,πpi). The linear componentπpi of the AFM can then be
formulated as follows:

logit(πpi) = θp+∑
k

qik · (βk+ γk ·Tpk), (2.2)

with θp ∼ N (0,σ2
θ ). The AFM is a GLMM with a random effectθp for student

proficiency and fixed effectsβk (difficulty) and γk (learning rate) for the skillSk

(knowledge component). The learning rateγk is constrained to be greater than or
equal to zero for AFMs.qik is 1, if item i uses skillSk and 0 otherwise. Finally,Tpk

denotes the number of practice opportunities studentp had at skillSk. The AFM
is related to the linear logistic test model (LLTM) (Wilson and De Boeck, 2004)
and the Rasch model (Wilson and De Boeck, 2004). When removing the third term
(γk ·Tpk) of Eq. (2.2), we obtain an LLTM. Additionally assuming a unique-step skill
model (one skill per step) results in the Rasch model. The intuition of the AFM is
that the probability of a student getting a step correct is proportional to the amount
of required knowledge of the studentθp, plus the difficulty of the involved skillsβk

and the amount of learning gained from each practice opportunity γk.

As the AFM is a GLMM, it can be fit using maximum likelihood, which involves
integration over the random effects (Breslow and Clayton, 1993). Integration is
performed using methods such as numeric quadrature or Markov Chain Monte Carlo
(MCMC).
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C H A P T E R 3
Calcularis

The developed softwareCalcularis is an intelligent tutoring system (ITS) for chil-
dren with developmental dyscalculia (DD) or difficulties inlearning mathematics. It
constitutes the core of this thesis as well as its first step. All developed models and
analyses are based on log files collected in user studies conducted withCalcularis
(described in detail in Chapter 4) or from the first product version sold since the be-
ginning of 2013. This chapter describes the development ofCalcularis in detail.

3.1 Design Principles

The system ofCalcularis is based on the special needs of children with DD and
aims at supporting the development of mathematical understanding in general. The
program transforms current neuro-cognitive findings into the design of different in-
structional games. It combines the training of basic numerical cognition with the
training of different number representations and their interrelations, and with the
training of arithmetic abilities. The intervention relieson three design principles:

1. Design of numerical stimuli: A special number design enhancing the three dif-
ferent number representations (as specified by the triple-code model (Dehaene
and Cohen, 1995) introduced in Sec. 2.1.1) is consistently used throughout the
training program. Furthermore, the three different numbermodalities are shown
simultaneously at the end of each trial. The encoding of different properties of
a number through different information channels supports the acquisition of the
different number representations and facilitates number understanding.
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2. Adaptability and scaffolding: The development of each child’s numerical abilities
often follows a different speed and is intertwined with the development of other
cognitive domains and domain-general abilities (von Asterand Shalev, 2007; Ku-
cian and Kaufmann, 2009; Kaufmann et al., 2011), leading to different mathemat-
ical performance profiles (von Aster, 2000; Geary, 2004; Wilson and Dehaene,
2007). Our training system contains aStudent Model(described in Sec. 3.3) that
optimizes the learning process by providing a hierarchically structured learning
environment teaching fundamental knowledge first (scaffolding). Furthermore,
task selection and difficulty are adapted to the knowledge level of the child. The
other component important for adaptivity is theBug Library(detailed in Sec. 3.4):
It enables the system to recognize and address specific problems of a child.

3. Different types of knowledge: The intervention program aims to balance the ac-
quisition of conceptual knowledge with automation training. Children are taught
conceptual knowledge before going over to automation training. An arithmetic
operation is for example first introduced and explained. Thearithmetic operation
and its solution are then modeled using stimuli and finally, mental calculation is
trained.

In the following, we will explain the different components of Calcularis in detail,
following the general structure of a learning program described in Sec. 2.3. We first
introduce theTutor of the system by describing the curriculum (the structure) and
the games of the program as well as the special design for numerical stimuli. In a
second step, we present theStudent Modelof the program consisting of a dynamic
Bayesian network (DBN) (Murphy, 2002) representing mathematical skills and a
control algorithm. Finally, theBug Library is specified.

3.2 Tutor

TheTutor defines the curriculum of the program as well as how domain knowledge
is represented, utilized and communicated. InCalcularis, a special design for
numerical stimuli is used to represent the properties of a number. TheTutor also
specifies how the material should be instructed.Calcularis consists of multiple
games in a hierarchical structure that follows the natural development of mathemat-
ical understanding.

3.2.1 Design for numerical stimuli

The special design for numerical stimuli is intended to enhance the different num-
ber modalities and to strengthen the links between them. Properties of numbers are
encoded with visual cues such as color, form and topology. The digits of a number
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Figure 3.1: Numerical stimuli for the number 35. Units are colored in green, tens in blue and
hundreds in red. The digits of a number are attached to the branches of a number graph
(left) to facilitate the acquisition of the Arabic notation. Numbers are constructedusing
colored blocks (center) to emphasize cardinality. The number line representation with
integrated blocks (right) enhances the ordinality of numbers.

are attached to the branches of a graph and are represented with different colors ac-
cording to their positions in the place-value system: Unitsare colored in green, tens
in blue and hundreds in red (see Fig. 3.1 (left)). We assume that this representation
facilitates the acquisition of the Arabic notation as well as the translation between
verbal and Arabic notation. The cardinal magnitude of number is emphasized by
representing the number as an assembly of one, ten and hundred blocks. This rep-
resentation illustrates the fact that numbers are composedof other numbers. The
blocks are linearly arranged from left to right (see Fig. 3.1(center)) or are directly
integrated in the number line (see Fig. 3.1 (right)) to make the connection to the
analogue magnitude module (Dehaene and Cohen, 1995).

3.2.2 Curriculum

The training program is composed of multiple games in a hierarchical structure. Fig-
ure 3.2 shows the different areas of the training program. The version of the training
program employed in the user studies as well as in the actual product version is con-
strained to specific areas of this structure:intuitive number understanding, number
representationsandarithmetic operationswith natural numbers up to 1000. Fig-
ure 3.2 therefore illustrates the final vision of the training program with solid and
dashed boxes representing the already integrated and the planned components, re-
spectively.

Games are structured along number ranges and are further divided into hierarchically
ordered areas:

1. Number representations: This area focuses on different number modalities and
number understanding in general. It trains transcoding between the different num-
ber representations. Furthermore, the three interpretations of number are estab-
lished: Cardinality (quantity), ordinality (position in a sequence) and relativity
(difference between two numbers). Games in this area are hierarchically ordered
according to the four-step developmental model (von Aster and Shalev, 2007).
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Figure 3.2: The training program is structured into the three main areas ofnumber representations
(blue),arithmetic operations(green) andword problems(red). These areas can be fur-
ther divided into different number ranges. The areas ofintuitive number understanding
(purple) anddaily life (turquoise) complete the curriculum. Parts that have not yet been
implemented are marked with dashed lines.

2. Arithmetic operations: This area trains arithmetic operations at different diffi-
culty levels. Task difficulty is determined by task complexity, the magnitude of
numbers involved and the means (visual aids) available to solve the task. At the
moment, the program contains only addition and subtractiontasks.

3. Word problems: A complete understanding of mathematical operations requires
the ability to associate a described situation with a mathematical operation and
vice versa. This also presumes an understanding of the actual meaning of the
operation. The importance of word problems was confirmed by the LOGIK
user study (Weinert and Schneider, 1999): Mathematical performance in the 11th

grade was highly correlated to performance in word problemsin the 2nd grade.

Each area builds up on knowledge gained in previous areas andtherefore deepens
the previously acquired knowledge.
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An additional forth area (intuitive number understanding) serves as a precondition
for the three areas described above. This area focuses on important precursor abil-
ities (Landerl et al., 2004; Hannula and Lehtinen, 2005; Mazzocco and Thompson,
2005; Krajewski and Schneider, 2009) such as subitizing or counting. The fifth area
of the structure will teach mathematical concepts (such as time or money) important
for daily life.

All games can also be categorized based on their complexity and relative importance.
Main games are complex games requiring a combination of abilities to solve them.
Support games train specific skills and serve as a prerequisite for the main games.
Each area features exactly one main game and several supportgames. The main
games are the same for each number range; they just differ by the cardinal magnitude
of numbers used. The training path through the structure traverses each number
range from left to right starting with the number range from 0-10.

3.2.3 Games

The training program consists of ten different types of games that are associated
with the different areas of the training program. By varying the numbers used in the
games, we obtain 81 different types of tasks (task difficultylevels).

Subitizing. Subitizing refers to the rapid and accurate judgment of number per-
formed for small numbers of items (up to four). In theSubitizing game
(see Fig. 3.3(a)), children are presented a number verballyas well as in Arabic no-
tation. A box of items (or a number of fingers) shows up for a limited amount of
time (200 ms) on the left side of the screen. Children have to click when the number
of items (or fingers) corresponds to the presented number. The game belongs to the
area ofintuitive number understandingand is classified as a support game.

Estimation. TheEstimation game (see Fig. 3.3(b)) is a support game in the area
of number representations. In this game, a number in the range from 0-100 (or 0-
1000) as well as three squares containing point sets are displayed. Children need
to decide which point set corresponds to the given number. The amount of time to
solve the task is limited to ten seconds in order to prevent counting.

Transfer. TheTransfer game exists in different modes and aims to train transcod-
ing between different number representations. Children have to translate a spoken
number to the Arabic notation (as displayed in Fig. 3.3(c)) or they have to model
a number presented in Arabic notation using colored blocks.TheTransfer game
again belongs to the area ofnumber representationsand is classified as a support
game.

Distance. The Distance game (see Fig. 3.3(d)) enhances the relative aspect of
number (number as a difference between two numbers). Children have to find the
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numbers that are larger (or smaller) by a given numberx than the displayed number.
In the number range from 0-10,x can be 1, 2 or 3. In higher number ranges,x is a
multiple of ten or hundred. This game is again a support game in the area ofnumber
representations.

Ordering . The Ordering game (see Fig. 3.3(e)) is a support game in the area
of number representations, training ordinal number understanding. A sequence of
numbers is displayed for a period of five seconds. Children need to decide if the
sequence was sorted in ascending order.

Secret Number. TheSecret Number game (see Fig. 3.3(f)), a support game in the
area ofnumber representations, trains the ability to assign a number to an interval.
Children have to guess a number in as few steps as possible. After each guess, they
are told if the secret number is smaller or larger than the guessed number.

Landing. The Landing game (see Fig. 3.3(g)) is the main game of the area of
number representationsaimed at training spatial number representation. A purple
cone must be directed to the position of a given number on a number line (with
indicated center) using a joystick. Numbers are presented in verbal or Arabic nota-
tion. In another game setting the cardinality of a given point set and the position of
this quantity on the number line have to be estimated. The required accuracy for a
correct solution is a deviance of less than 5%.

Slide Rule. TheSlide Rule game (see Fig. 3.3(h)) is a support game belonging to
the area ofarithmetic operations, providing an introduction to addition and subtrac-
tion using the part-whole scheme (Resnick, 1984). An operation task is presented
to the child, as well as a number line and a glass case containing a number of unit
blocks (according to the first number of the task). The size ofthe glass case must be
changed such that it contains the result of the task.

Plus-Minus. In the Plus-Minus game (see Fig. 3.3(i)), an arithmetic operation
given in Arabic notation must be modeled using colored blocks (one, ten, hundred).
Different strategies are allowed to find the result. This game is associated with the
area ofarithmetic operationsand is classified as a support game.

Calculator. In theCalculator game (see Fig. 3.3(j)), mental addition and subtrac-
tion are trained. The child needs to type the result of an addition (or subtraction)
task presented in Arabic notation. TheCalculator game is the main game of the
area ofarithmetic operations.

3.3 Student Model

A fundamental component of an ITS is its student model: the subsystem making the
teaching decisions. It selects the skills for training and determines the actions for the
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(a) Subitizing game. (b) Estimation game.

(c) Transfer game. (d) Distance game.

(e) Ordering game. (f) Secret Number game.

(g) Landing game. (h) Slide Rule game.

(i) Plus-Minus game. (j) Calculator game.

Figure 3.3: The first version ofCalcularis consists of ten different types of games for the areas
of intuitive number understanding(a), number representations(b-g) andarithmetic
operations(h-j).
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selected skill.Calcularis employs a dynamic Bayesian network (DBN) to repre-
sent the knowledge of the student and applies a specially designed control algorithm
for task selection. In this section, we will explain the knowledge representation as
well as the control algorithm in detail.

3.3.1 Dynamic Bayesian network

The mathematical knowledge of the learner is modeled using aDBN (see Sec. 2.4
for an introduction). The network consists of a directed acyclic graphical model
representing different mathematical skills and their dependencies. Two skillsSa and
Sb have a (directed) connection if mastering skillSa is a prerequisite for mastering
skill Sb. As the skills cannot be directly observed, the system infers them by pos-
ing tasks and evaluating user actions. Such observationso indicate the presence of
a skill probabilistically. The posteriorsp(st|ot) of the net are updated after each
time stept, i.e., each solved task, using the sum-product algorithm (libDAI (Mooij,
2010)). st denotes the states of all skillsSi of the network at timet. The DBN
has a memory of 5,i.e., posteriors are calculated over the last five time steps and
thereforeot = (ot−4,ot−3,ot−2,ot−1,ot) includes only the observations of the last
five time steps. We initialize all probabilities to 0.5 as we do not have any knowl-
edge about the mathematical proficiency of a learner at the beginning of the training
(the students are of different age and have different mathematical skill levels). This
initialization is in accordance with the principle of maximum entropy.

The skill net representation is ideal for modeling mathematical knowledge as the
learning domain exhibits a distinctively hierarchical structure. The structure of the
net was designed using experts’ advice and incorporates domain knowledge. The
design of the net was inspired by the work from Falmagne et al.(1990). Like in
knowledge space theory, we order skills hierarchically andassume that some skills
can be surmised by others. The basic assumption is that to know a skill Sa, the
child needs to know all the precursor skills ofSa. However, in our case, each skill is
assigned to exactly one task. Our work can also be related to partial order knowledge
structures (Desmarais et al., 1995) which also model dependencies between skills as
conditional probabilities.

Our resulting student model contains 100 different skills as illustrated in Fig. 3.4. Ta-
ble 3.1 explains the different skills of the skill net and their notation used in Fig. 3.4.
The presented skill net is the student model developed for the actual version of the
training program and therefore covers only numbers up to 1000 and the areas of
intuitive number understanding, number representationsandarithmetic operations
of the target structure (illustrated in Fig. 3.2). All gamesof the training program
(introduced in Sec. 3.2.2) are associated with one or several skills of the student
model.
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Part A comprises the areas ofintuitive number understandingand number repre-
sentationsof the curriculum (detailed in Sec. 3.2.2). The skills inPart A are or-
dered and color-coded according to the different number ranges 0-10, 0-100, and
0-1000. Within each number range, the hierarchy follows thefour-step develop-
mental model (von Aster and Shalev, 2007): The linguistic symbolization (step 2),
Arabic symbolization (step 3), and analogue magnitude representation (step 4) de-
velop based on a (probably) inherited representation of cardinal magnitude of num-
bers (step 1). Following this model, the transcoding between the linguistic and
Arabic symbolization (Verbal→Arabic) is trained before giving the position of a
written number on a number line (Arabic→Numberline). The skill Subitizingis
associated with theSubitizing game, while theEstimationskill belongs to the
Estimation game. Furthermore, theTransfer game trains the transcoding skills
Concrete→Arabic, Verbal→Arabic and Arabic→Concrete. Skills Ordinal 1 and
Relativeare affiliated with theDistance game,Ordinal 2 represents theOrdering
game andOrdinal 3 is associated with theSecret Number game. Finally, the
Landing game covers the skillsArabic→Numberline, Verbal→Numberlineand
Concrete→Numberline.

Part B covers the area ofarithmetic operationsof the curriculum (see Sec. 3.2.2).
Skills in Part B can also be divided into the number ranges 0-10, 0-100 and 0-1000
(color-coded in Fig. 3.4). Furthermore, they are ordered according to their difficul-
ties. The difficulty of a task depends not only on the magnitude of the numbers
included in the task and the complexity of the task, but also on the representation
of the task and the means allowed to solve it. A task such as ‘65+22=87’ (Addition
2,2) is considered more difficult than computing ‘13+5=18’ (Addition 2,1). On the
other hand, modeling ‘65+22=87’ with one, ten and hundred blocks (Support Addi-
tion 2,2) is easier than calculating it mentally. And finally, tasks involving carrying
such as ‘65+27=92’ (Addition 2,2 TC) are more complex to solve than tasks without
a carry. All skills training mental calculation (e.g., Addition 2,2) are covered by the
Calculator game. Skills in the number range from 0-10 involving the use of mate-
rial (such asSupport Addition 1,1) are associated with theSlide Rule game, while
thePlus-Minus game comprises such skills (for exampleSupport Addition 3,1 HC)
in higher number ranges.

In general, each skill of the hierarchical network is associated with a task,i.e., there
exists a game type for each skill in the network, as already detailed above. However,
some skills such as for exampleCountingare not associated with any game and can
therefore not be observed.
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Table 3.1:Explanation of skills (by area) and notations used in the skill net (see Fig. 3.4).

Area Notation Definition

Part A

Number
Representa-
tions

Concrete Number represented as a set of objects.

Verbal Spoken number.

Arabic Written number.

Numberline Number represented as a position on a number line.

Transcoding r1→r2 Translation of number from representation r1 to r2.

Ordinality

Ordinal 1 Precursor and successor of a number need to be given.

Relative
Calculate indirect (+/-2, +/-3) precursor and succes-
sors of a given number.

Ordinal 2 Are the given numbers sorted in ascending order?

Ordinal 3 Guess a secret number.

Other

Subitizing Simultaneous perception of numbers up to four.

Estimation
Which of three displayed point sets corresponds to the
given number?

Counting Forward (and backward) counting.

Part B

Mental
calculation

Addition a1, a2
Addition of two numbers. a1 and a2 denote the num-
ber of digits of the addends. TC denotes a ten crossing
and HC a hundred crossing.

Subtraction s1,s2
Subtraction of two numbers. s1 and s2 denote the num-
ber of digits of the minuend and the subtrahend. TC
denotes a ten crossing and HC a hundred crossing.

Addition TC Addition with carrying in the range from 0-20.

Subtraction TC Subtraction with borrowing in in the range from 0-20.

Operation o1, o2

Addition or subtraction of two numbers used for rep-
etition. o1 and o2 denote the number of digits of the
operation. Operation 2,2 for example denotes any ad-
dition or subtraction skill in the number range 0-100.

Calculation
concepts

Support
Addition

Addition of two numbers. The task can be solved us-
ing one, ten and hundred blocks.

Support
Subtraction

Subtraction of two numbers. The task can be solved
using one, ten and hundred blocks.

Sets Understanding of operations on sets.
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3.3.2 Control algorithm

Based on the estimation of student knowledge delivered by thestudent model,i.e.,
the posterior probabilities of the skills, the control algorithm needs to make the teach-
ing decisions. The selection of actions is rule-based and non-linear, the algorithm
allows forward (training of a more difficult skill) as well asbackward movements
(training of an easier skill). This controller design increases the set of possible ac-
tions (due to multiple precursors and successors). Therefore, rather than following
a specified sequence to the goal, learning paths are adapted individually, i.e., each
child trains different skills and hence plays different games during training, as illus-
trated in Fig. 3.6. After each solved task, the controller selects one of the following
options based on the current state:

1. Stay: Continue the training of the current skill;

2. Go back: Train a precursor skill;

3. Go forward : Train a successor skill;

The decision is based on the posterior probabilities delivered by the student model.
After each solved task, the controller fetches the posterior probability p(si,t |ot) of
the skill Si being trained at timet. Then, p(si,t |ot) is compared against a lower
and an upper threshold, denoted bypl

Si
(t) andpu

Si
(t). The resulting interval defines

the optimal training level: if the probability lies betweenthe thresholds, ‘Stay’ is
selected. In contrast, ‘Go Back’ and ‘Go forward’ are selected if p(si,t |ot) < pl

Si
(t)

and if p(si,t |ot) > pu
Si
(t), respectively. Thresholds are not fixed, they converge with

the number of played samplesnSi at skill Si :

pl
Si
(t) = pl0

Si
· lc

nSi and pu
Si
(t) = pu0

Si
·uc

nSi . (3.1)

Initial values of the upper (pu0
Si

) and lower (pl0
Si

) thresholds as well as the change
rates (lc, uc) are heuristically determined. The convergence of the thresholds ensures
a sufficiently large number of solved tasks per skill and prevents training the same
skill for too long without passing it.

When ‘Stay’ is selected, a new appropriate task (associated with the same skill) is
built. Otherwise, a precursor (or successor) skill is selected by fetching all precursor
(successor) skills of the current skill and feeding them into a decision tree. The
nodes of these trees encode selection rules that were designed using experts’ advice.

The decision tree for the ‘Go Back’ option is displayed in Fig.3.5(a). For this op-
tion, remediation skills are preferred: If errors matchingpatterns of the bug library
(see section Sec. 3.4) are detected, the relevant remediation skill is trained. A typical
mistake in addition involving two-digit numbers would be tosum up all the digits,
i.e., ‘23 + 12 = 8’ (Addition 2,2). This mistake indicates that the child has not yet
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# remediation
skills?

# unplayed
precursor skills?

# main skills?

n

0

unplayed
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cursors

n
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skillsn

0 0

(a) Decision tree for the ‘Go back’ option.

Recursion skill S
set?

# main skills?

yes

no

n
support

skills

0

select S

(b) Decision tree for the ‘Go forward’ option.

Figure 3.5: Decision trees for the ‘Go back’ (a) and ‘Go forward’ (b) options. The rectangles
denote decision nodes, while the circles represent the end nodes. At theend nodes,
the candidate skill with lowest posterior probability (‘Go back’ option) or withposte-
rior probability closest to 0.5 (‘Go forward’ option) is selected. The selection rules
encoded in the trees were designed using experts’ advice.

understood the Arabic notation system in the number range from 0-100. A remedia-
tion skill for this error is the training of the Arabic notation system in this range,i.e.,
decomposing numbers between 0 and 100 into tens and units andthus learning the
meaning of the digit position of a number (Arabic→Concrete).

If the child did not commit any of the typical errors, the controller prefers unplayed
precursor skills. The hierarchical skill model assumes that the precursor skills of a
skill Sa are a prerequisite for knowingSa. If the child fails skill Sa, the controller
tries to find the particular precursor skill that might causethe problem. For the
played precursor skills, the controller assumes that the child already knows them
(since they have been played and passed) and hence an unplayed precursor skill
is selected. Finally, main skills are preferred over support skills. Therefore, if a
child fails in solving addition problems with two-digit numbers (Addition 2,2) the
controller first checks if the child can do mental calculation (= main skill) of simpler
addition problems (for exampleAddition 2,1). If this is the case, the support skill
modeling the operation with material is picked. If, however, the child also fails
in solving the simpler addition problem, this easier skill needs to be trained first.
Hence, the main skills are always checked first.

If there is more than one candidate precursor skill after crossing the decision tree
(i.e., going through all the rules), the candidate skill with thelowest posterior prob-
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ability is selected. Therefore, the controller selects theskill where the child has the
lowest (estimated) proficiency.

The decision tree for the ‘Go Forward’ option is displayed inFig. 3.5(b). For this
option, recursion skills are preferred. If a user fails to master skillSa and goes back
to Sb, Sa is set as a recursion skill. After passingSb, the controller will return to
Sa. If a child for example fails solving addition problems withtwo-digit numbers
(Addition 2,2) and goes back to train an easier skill (Addition 2,1), the child will
return to the addition problems with two-digit numbers (Addition 2,2) after passing
that easier skill.

If no recursion skill is set, the controller again prefers main skills over support skills.
If the child masters solving addition problems with a two-digit and a one-digit num-
ber (Addition 2,1) the controller will go further to ask addition problems involving
two two-digit numbers (Addition 2,2). This rule ensures that children having a good
mathematical knowledge take the fastest path through the skill net. The support skill
modeling the same task using material (Support Addition 2,2) will only be played if
the child does not master the mental calculation.

If there is more than one candidate successor skill at the endof the decision tree, the
candidate skill with posterior probability closest to 0.5 (maximization of entropy)
is selected. This final rule ensures that the gain of knowledge about the child is
maximized. To consolidate less sophisticated skills and toincrease variability, the
controller uses selective recalls.

This control design exhibits the following advantages:

1. Adaptability: the network path targets the needs of the individual user (Fig. 3.6).

2. Memory modeling: forgetting and knowledge gaps are addressed by going back.

3. Locality: the controller acts upon current nodes and neighbors, avoiding unreli-
able estimates of far nodes.

4. Generality: the controller is domain-model independent: it can be usedon arbi-
trary discrete structures.

3.4 Bug Library

The program has access to a bug library storing typical errorpatterns (Gerster, 1982)
and is therefore able to adapt to specific errors of the children. If a child commits
a typical error several times, the controller systematically selects actions for reme-
diation. Table 3.2 lists the typical error patterns stored in the bug library, along
with examples and remediation tasks. For the area ofnumber representations, only
one pattern is stored for theLanding game: Positioning the cone on the wrong
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Addition 1,1

3+5=8

Addition 1,1 TC

8+5=13

Support Addition 2,1

21+3=24

Addition 2,1

21+3=24

Support Addition 2,2

21+15=36

Addition 2,2

21+15=36

Addition 2,1 TC

28+5=33

Addition 2,2 TC

28+15=43

Figure 3.6: Skill sequences of three children in addition in the number range from 0−100. The no-
tation is consistent with Fig. 3.4 and is explained in Tab. 3.1. User 2 (middle sequence)
and user 3 (bottom sequence) passed all skills in the range, while user 1 (top sequence)
did not pass this range within the training period. The length of the rectanglesindicates
the number of played samples at the respective skill.

side of the indicated center of the number line,i.e., positioning the cone at a num-
ber< 50 when the given number is> 50. For the area ofarithmetic operations,
a range of error patterns are stored in the bug library. Some of these patterns can
be attributed to problems in counting or understanding the basic concepts of addi-
tion and subtraction. Remediation skills for these error patterns train simple addi-
tion and subtraction tasks with colored blocks (Support Addition/Subtraction 1,1).
Other error patterns probably occur due to a lack in understanding the Arabic no-
tation system,i.e., the meaning of the different positions of the digits. A selected
remediation action for these patterns is the training of theArabic notation system
(Arabic→Concrete). Another typical error is the switching of digits (twenty-five is
written as ‘52’) which is remediated by training transcoding from spoken to written
numbers (Verbal→Arabic). Finally, problems with carrying or borrowing are also
addressed (Support Addition/Subtraction TC). The bug library was built based on
previous work identifying typical error patterns and theircauses (Gerster, 1982).
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Table 3.2:Description of typical errors along with examples and remediation skills for thedomains
of number representations(NR) andarithmetic operations, separate for addition (A)
and subtraction (S).

Description Example Remediation

NR Landing game: The child lands
the cone on the wrong side of
the center (5, 50, or 500).

- Training of the ordering of
numbers according to their
magnitude (Ordinal 1).

A, S Correct result is missed by 1
(+/- 1).

5 + 3 = 7 Training of addition or subtrac-
tion with colored blocks (Sup-
port Addition/Subtraction 1,1).

A, S Addition instead of subtraction
(or vice versa).

5 + 3 = 2 Training of addition or subtrac-
tion with colored blocks (Sup-
port Addition/Subtraction 1,1).

A Addition of all digits. 12 + 24 = 9 Training of the Arabic notation
system (Arabic→Concrete).

A, S Switching of digits when read-
ing/writing a number.

24 - 3 = 12 Transcoding from spo-
ken to written notation
(Verbal→Arabic).

A, S Use of wrong digit order. 63 - 5 = 13 Training of the Arabic notation
system (Arabic→Concrete).

A, S Forgetting the carry when
bridging to ten.

34 + 7 = 31 Training of bridging to ten us-
ing colored blocks (Support
Addition/Subtraction TC).

A, S Addition/Subtraction of inner
and outer digits.

34 + 13 = 56 Training of the Arabic notation
system (Arabic→Concrete).

S Building the difference
between digits.

34-17 = 23 Training of the Arabic notation
system (Arabic→Concrete).
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C H A P T E R 4
User studies

When developing a training or therapy program, assessment ofthe actual clinical
effectiveness by means of evaluation studies is essential.User studies are, how-
ever, not only important for evaluation of effectiveness, but also enable data collec-
tion: During training withCalcularis, all user actions (such as keyboard input
and keystrokes) along with respective timestamps are savedto log files. Such log
files allow for further analysis of user behavior and the applied models (see Chap-
ter 5 and Chapter 6) and refinement of the models based on the collected data (as
described in chapters 7- 9).

In the first part of this thesis, the computer-based trainingprogramCalcularis (de-
tailed in Chapter 3) along with a knowledge representation for mathematical skills
was developed. In a second step,Calcularis was evaluated in two user-studies.
One study was conducted in Germany and Switzerland by our collaboration part-
ners (University of Potsdam, University Children’s Hospital Zurich) and included
134 children from 2nd−5th grade of elementary school: 64 children were diagnosed
with developmental dyscalculia (DD) and 70 were control children. Evaluation of
training effects is still under progress and therefore a detailed description of this
study and its results is not provided in this thesis. In the following, we will refer to
this evaluation study asBMBF-study. The second study, referred to as theSWISS-
study, was conducted in Switzerland and included 41 children withdifficulties in
learning mathematics.

In this chapter, we will describe the evaluation study conducted in Switzerland, the
SWISS-study, in detail. We will first introduce the study design and the participants,
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before describing the external test measures. After that, we will present and discuss
the results and limitations of the study.

4.1 Study design and participants

TheSWISS-studyincluded 41 children with difficulties in learning mathematics. Par-
ticipants were divided into a training group (n = 20, 65% females) completing a
12-weeks training and a waiting group (n = 21, 66.6% females) starting with a 6-
weeks rest period before executing a 6-weeks training. Thisstudy design has two
advantages. First, the effects of a 12-weeks training can becompared to those of a
6-weeks training, assessing if children profit from a prolonged training period. Sec-
ond, comparing the training effects of the training group tothose of a waiting group
allows controlling for developmental and schooling effects.

Mathematical performance of both groups was evaluated at the beginning of the
study (t1), after six weeks (t2) and after 12 weeks (t3). Children were required to train
with the program five times per week, with daily training sessions of 20 minutes. The
groups were matched according to age (training group: 9.96 years (SDσ = 1.35);
waiting group: 9.98 (SDσ = 1.33);t(39)=−0.04,p= .96), gender and intelligence
(training group CFT-score: 93.8 (SDσ = 11.9); waiting group CFT-score: 93.5 (SD
σ = 14.1); t(39) = 0.07, p= .95) (Cattell et al., 1997; Weiss, 2006). Groups were
built by forming matched pairs of kids, followed by a quasi-random assignment to
either the training or waiting group (ensuring that the number of males was balanced
between the groups).

All participants were German-speaking and visited the 2nd-5th grade of elementary
school. Children were indicated by parents and teachers as exhibiting difficulties
in learning mathematics. On average, arithmetic performance (measured with the
Heidelberger RechentestHRT (Haffner et al., 2005)) of the participants was around
the 10th percentile, corresponding to a T-score of 37 (HRT addition T-score: 37.15
(SDσ = 7.69); HRT subtraction T-score: 37.29 (SDσ = 8.77)). At the beginning of
the study (t1), there was no significant difference in arithmetic performance between
the groups (HRT addition:t(39) = 0.59, p= .55; HRT subtraction:t(39) =−0.63,
p= .53).

Children performed the training at home with the exception ofone mandatory train-
ing session per six weeks at our laboratory. Children received a sticker per com-
pleted training session that they could put on their training progress sheet. During
the training period, all the input data of the children was saved. Therefore, the ex-
act training time of the children could be determined at the end of the study and
children with an insufficient number of sessions were excluded from the analysis.
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Parents gave informed consent and children received a smallgift for their partici-
pation. TheSWISS-studywas conducted in context of theBMBF-study, which was
approved by the ethics committee of the University of Potsdam.

4.2 Instruments

All children underwent a series of mathematical performance and number process-
ing tests att1, t2 andt3, detailed below. Furthermore, they completed a questionnaire
after the training, including questions on difficulty, motivation, and personal evalua-
tion of the training.

4.2.1 Heidelberger Rechentest (HRT)

Arithmetic performance was assessed using the addition andsubtraction subtests of
the HRT (re-test reliability: additionrtt = .82, subtractionrtt = .86). In these sub-
tests, children are presented a list of addition (subtraction) tasks ordered by difficulty.
The goal is to solve as many tasks as possible within two minutes. The maximum
number of correct tasks is 40. During the test sessions, the addition subtest of the
HRT was always solved first, followed by the subtraction subtests and the computer-
based tests described below.

4.2.2 Computer-based tests

Children also solved a series of computer-based mathematical tests, illustrated in
Fig. 4.1:

• Arithmetic (AC) (see Fig. 4.1(a)): In this test, children solve a series of addition
(subtraction) tasks. Trials are ordered by difficulty and presented serially. The time
to solve the tasks is ten minutes. The maximum number of solved tasks is 76.

• Number line (NL) (see Fig. 4.1(b)): In this test, children need to indicate the po-
sition of a given number (presented in Arabic notation as well as verbally) on a
number line. The number line is represented on the screen as aone-dimensional
black line with labeled end points. The position of the number can be indicated by
mouse-click. There are ten tasks in the number range from 0-10 (NL 10), 20 tasks
between 0-100 (NL 100) and ten tasks between 0-1000 (NL 1000).

• Non-symbolic magnitude comparison (NC): In this test, children are presented
ten sets with 1−9 black dots (excluding 5) for a period of 120 milliseconds. Chil-
dren need to indicate if the presented number of dots was smaller or larger than 5.
The representation of the dots is balanced according to spatial distribution and area
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(a) Arithmetic test (AC).

1

(b) Number line test (NL 10). (c) Estimation test.

Figure 4.1: Example tasks for the different subtests of the computer-based assessment. In the AC,
children solve a series of addition (a) and subtraction tasks. The NL 10 consists of
indicating the position of a given number on a number line (b). In the Estimation test
(c), children need to judge if the given point set is smaller or larger then 50by clicking
on the according buttons.

properties as described by Rubinsten and Sury (2011). The black area is the same
for all trials. Half of the trials have a small extension (high density), while the other
half is spread out (low density). The layout of the tasks is the same as for Estimation
(see Fig. 4.1(c)) with the exception that the number line goes from 0 to 10 with the
position of the 5 indicated.

• Estimation (see Fig. 4.1(c)): In this task, children are presented twenty sets with
1−99 black dots (excluding 50). Children need to decide, if the presented sets are
smaller or larger than 50. Numbers are equally distributed over the range. Confound-
ing visual factors are controlled as described in the NC task. Stimuli are shown for
a period of five seconds.

During the test sessions, the different tests were solved inthe following order: AC
addition, NL 10, NC, AC subtraction, NL 100, estimation, NL 1000. The computer-
based tests exist in three paralleled versions (one per measurement point). The ver-
sions were paralleled according to content and item difficulty. Each version of the
addition and subtraction tests for example contains the same number of tasks be-
tween 0-10 and the same number of tasks involving carrying orborrowing.

4.2.3 Feedback questionnaire

Children completed a training evaluation questionnaire at the end of the study (t3).
Children indicated for each game, how much they liked it. The scale was represented
through smileys, going from a laughing (4) to a crying (0) smiley. The difficulty of
the training was judged on a scale from very easy (0) to very difficult (4). And
finally, children needed to indicate if the training helped them on a scale from not
true (0) to absolutely correct (3).
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4.3 Results

To ensure a sufficient number of training sessions, only children with at least 24
complete sessions after the 6-weeks training period were included in the evaluation
of the training. Thus, five children from the training group (4: technical challenges,
1: <24 training sessions) and four children from the waiting group (1: abort of study,
3: < 24 training sessions) were excluded from the analysis. The exclusions did not
change the matching of the groups. Table 4.1 gives an overview of the training statis-
tics. Over the course of the 6-weeks training, there were no significant differences
between the training group and the waiting group regarding the number of training
sessions (t(30) = −1.40, p = .17) or the number of solved tasks (t(30) = −1.03,
p = .31). The two groups also showed a very similar average speed,i.e., num-
ber of solved tasks per session (t(30) = 0.03, p = .98). Furthermore, the training
group and the waiting group progressed equally fast during the 6-weeks: There
were no significant differences in the highest reached skills in number representa-
tions (t(30) = −0.04, p = .97) andarithmetic operations(t(30) = 0.26, p = .79).
Table 4.1 also illustrates a (probably) decreasing motivation over time: While the
children of the training group played on average 30.2 sessions during the first six
weeks, this number dropped to an average of 19 sessions in thesecond part of the
training. Children also got a bit slower in the second part,i.e., they solved fewer
tasks per session. This slowdown is, however, probably due to the increasing diffi-
culty of the tasks.

4.3.1 Quantitative analyses

A repeated measures general linear model (GLM) analysis wasconducted to evalu-
ate training effects (t1− t2) as a within-subject factor and group (Training/Waiting)
as a between-subject factor. Post-hoc paired-sample t-tests were used to test for dif-
ferences in performance for consecutive testing periods (t1− t2, t2− t3). Effect sizes
r were computed according to Field (2009). According to Field(2009),r = 0.1 is a
small effect,r = 0.3 a medium effect andr = 0.5 a large effect. No corrections for
multiple testing were applied. Table 4.2 summarizes the means and standard devi-
ations of the behavioral measures for all measurement points, including calculated
statistical results. There were no between-group performance differences prior to
the intervention (att1).

Arithmetic (AC addition and subtraction) . The interaction between training
and group was significant for subtraction (p = .028) and showed a trend for addi-
tion (p = .081). Both operations demonstrated medium effect sizes (subtraction:
r = 0.39, addition:r = 0.31). The prolongation of the training from 6 to 12 weeks
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Table 4.1:Training statistics (standard deviationsσ in brackets) of the training group (n = 15) and
the waiting group (n = 17). For the 6-weeks training period, there were nosignificant
differences between the training group and the waiting group.

6-weeks period
Training group

(t1− t2)

6-weeks period
Waiting group

(t2− t3)

12-weeks period
Training group

(t1− t3)

# training sessions 0030.2 (3.2) 0032.4 (5.2) 0049.2 (2.6)

# totally solved tasks 1635.0 (293) 1737.0 (266) 2575.0 (414)

# solved tasks per session 0054.0 (7.2) 0054.0 (5.7) 0052.2 (7.0)

Highest skill reacheda

(Number representations)
0038.6 (8.3) 0038.7 (8.4) 0040.5 (6.8)

Highest skill reacheda

(Arithmetic operations)
0040.5 (14.7) 0039.1 (15.5) 0043.0 (15.1)

a The skills of the adaptive model are divided into the contentareas of the training program described
in Sec. 3.2.2. Skills in each area are ordered by their number, with the easiest skill having the lowest
number.

(t2− t3) yielded an additional trend of improvement (addition:p= .072; subtraction:
p= .066).

HRT (addition and subtraction) . The interaction between training and group
was significant only for subtraction (subtraction:p = .002; additionp = .375),
where children showed a large effect size (r = 0.52). The prolongation of the
training yielded an additional improvement, which was significant only for addition
(p= .004).

Number line (NL) . The quality of the spatial number representation was measured
by calculating the distance (percentage) and the variance of the distance between
the correct and the indicated location of the number on the number line. In the
number range from 0-10, children tended to locate the correct position on the num-
ber line more accurately after training (p = .058) and showed decreased variance
(p= .022). The interaction between training and group was significant only for the
variance (mean:p = .12; variance:p = .034). Children demonstrated medium ef-
fect sizes for both measures (mean:r = 0.28, variance:r = 0.38). The prolongation
of the training did not yield any further benefit. In the number range from 0-100,
interaction between training and group was not significant (mean:p= .33; variance:
p= .50). The prolongation of the training had a beneficial effect(mean:p= .042;
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Table 4.2:Training effects of training group TG (n = 15) and waiting group WG (n = 17) on mathematical performance (Meansµ (SD σ )).

Mathematical performance t1 t2 t-score
(t2− t1)

F-scored t3 t-score
(t3− t2)

ESe

AC Additiona TG 25.9 (10.8) 30.0 (14.1) -2.38*
13.26+

34.4 (17.7) -1.95+
0.31

WG 27.4 (10.7) 26.1 (12.0) -0.56 29.4 (11.7) -1.90+

AC Subtractiona
TG 19.2 (12.7) 24.7 (17.1) -2.77*

15.32*
28.8 (17.9) -1.99+

0.39
WG 19.6 (10.2) 18.9 (10.7) -0.39 26.3 (14.5) -4.11**

NL10, meanb
TG 13.2 (10.1) 09.3 (10.6) -2.06+

12.56
17.5 (5.0) -0.81

0.28
WG 10.3 (10.4) 12.3 (11.6) -0.65 16.1 (4.2) -2.70*

NL10, varc
TG 10.2 (6.3) 06.9 (6.5) -2.58*

14.92*
16.7 (4.6) -0.15

0.38
WG 07.4 (6.4) 09.4 (7.6) -1.02 14.9 (3.3) -3.10**

NL100, meanb
TG 10.2 (4.8) 09.6 (6.4) -0.62

10.98
17.6 (3.3) -2.24*

0.18
WG 13.5 (6.0) 11.3 (5.7) -1.72 19.3 (7.0) -1.35

NL100, varc
TG 07.7 (3.4) 08.2 (5.1) -0.39

10.47
16.2 (3.0) -2.15*

0.12
WG 09.7 (4.3) 09.1 (5.2) -0.59 18.2 (5.8) -0.79

NL1000, meanb
TG 18.5 (10.9) 16.1 (7.5) -1.61

10.70
12.9 (6.7) -1.79+

0.15
WG 18.0 (7.3) 17.4 (8.1) -0.44 12.6 (5.6) -4.20**

NL1000, varc
TG 13.3 (7.1) 11.9 (5.7) -0.84

10.00
10.0 (6.4) -1.01

0.00
WG 13.5 (5.6) 12.0 (5.7) -1.13 10.0 (4.4) -1.87+

Estimationa
TG 15.1 (3.9) 14.9 (3.2) -0.12

12.85
15.8 (2.1) -1.25

0.29
WG 13.6 (4.5) 16.3 (2.2) -2.25* 15.9 (2.9) -0.61

NCa TG 07.9 (1.9) 08.1 (1.5) -0.39
10.21

18.4 (1.6) -0.59
0.08

WG 07.4 (2.3) 07.8 (2.2) -0.94 18.0 (1.8) -0.19

HRT Additiona TG 18.7 (5.4) 20.4 (5.6) -2.47*
10.81

22.5 (5.4) -3.46**
0.16

WG 18.5 (4.8) 19.4 (4.3) -1.27 20.4 (5.7) -1.5

HRT Subtractiona
TG 15.3 (6.1) 19.8 (5.3) -4.85***

11.38**
20.2 (6.2) -0.59

0.52
WG 16.9 (6.3) 16.9 (5.6) -0.06 18.4 (5.7) -1.5

+ p<.1, * p< .05, ** p < .01, *** p < .001
a number of correctly solved tasks
b distance (percentage) from correct position
c variance of distance (percentage) from correct position
d time (t1-t2) x group
e Effect sizes of interaction time (t1-t2) x group. r = .10: small effect, r = .30: medium effect, r = .50:large effect
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Table 4.3:Characteristics of the three example cases. The children included in the case studies
were girls of similar age with a number of complete training sessions close to 30.

Sex Age Class Played sessions Solved tasks Tasks per Session

Anne female 8;11 3 28 1272 45.4

Eva female 9;8 4 33 1803 54.6

Jane female 9;10 4 33 1795 54.4

variance:p= .05). In the number range from 0-1000, children tended to locate the
numbers more accurately only after 12 weeks (mean:p= .096; variance:p= .331).

NC and Estimation. In these two tasks, the interaction between training and group
was not significant (Estimation:p= .11; NC: p= .65). Unexpectedly, the waiting
group showed a significant improvement in the Estimation test (p = .039). This
significant result stems from outliers with large improvement (children with two
correct answers att1 and 17 correct answers att2) due to not understanding the task
at t1.

Feedback questionnaire. Children generally liked the training (average score: 3.0
(SD σ = 0.55), scale: 0−4) and rated its difficulty as appropriate (average rating:
1.7 (SDσ = 0.74), scale: 0−4). They also reported that the training helped them
to improve in mathematics (average score: 2.1 (SD σ = 0.89), scale: 0− 3). For
both groups, there was no correlation between the ratings for the difficulty and the
liking (training group: ρ = −0.07, p = .82; waiting group:ρ = 0.25, p = .38).
Furthermore, there were no significant differences betweenthe scores of the training
and the waiting group.

4.3.2 Qualitative analyses

To (qualitatively) assess the concept of the student model and the controller, we con-
ducted case studies with three children for different domains of the learning program.
We were particularly interested in analyzing the path through the skill net for differ-
ent children and the association of training success withinthe program with external
pre- and post-test results. Furthermore, the case studies provide an illustration of the
concept of the learning program and the operation of the controller. In the following,
the path through the skill net and the training success of a few selected children is
described. The children and their training characteristics are depicted in Tab. 4.3.
The analyses stem from the 6-weeks training period.

Subtraction 0−100. The first case study includes Anne and Jane. We analyzed
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(a) Skill sequences of Anne (top) and Jane (bottom).
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(b) Number of played samples for Anne (left) and Jane (right).

Figure 4.2: Skill sequences (a) and number of played samples (b) in subtraction from0-100 for
Anne and Jane. The skills correspond to the subtraction skills of the student model
illustrated in Fig. 3.4 and explained in Tab. 3.1. While Jane took the direct path through
the section and needed few samples to master the subtraction skills, Anne’s sequence
exhibits several branches and she therefore spent more time in subtraction.

their learning paths (path through the skill net) for subtraction in the range from
0-100. Figure 4.2 illustrates the sequence of skills of the two children and the re-
spective numbers of played samples. It becomes clear, that the path through the skill
net is different for each child (see Fig. 4.2(a)). While Jane took the straight path
through the subtraction section, the path of Anne exhibits several branches as she
had to go back and consolidate more basic skills. This fact isalso demonstrated
in Fig. 4.2(b). Jane needed in total only 71 samples to pass the subtraction 0−100
section, whereas Anne solved 241 samples to work through this part of the skill
net. The external training effects in subtraction from 0-100 (measured by the AC
subtraction test, Sec. 4.2.2) support this result. In the initial measurement before the
training, Jane solved in total 40 tasks, 39 of them correct. She was already proficient
in subtraction tasks between 0-100 before the training. In contrast, Anne solved in
total 26 tasks, 10 of them correct. After the training, Anne managed to solve 23
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(a) Average distance (in %) from correct position over time for Eva (left) and Jane (right).

Estimation

Concrete->Arabic

Verbal->Arabic

Arabic->ConcreteOrdering

Arabic->Numberline

Verbal->Numberline

(b) Skill sequences of Eva (top) and Jane (bottom).

Figure 4.3: Average distance (in %) from correct position over the course of the training (a) as
well as skill sequences in the area ofnumber representationsfrom 0-100 (b) for Eva
and Jane. The skills correspond to the number representation skills (Part A) of the
student model illustrated in Fig. 3.4 and explained in Tab. 3.1. Jane mastered the skills
directly, while Eva had to go back and rehearse easier skills.

tasks correctly; she especially improved in subtraction involving borrowing. Also
Jane showed an improvement after the training, she solved 49tasks correctly. How-
ever, most of her improvement stemmed from subtraction tasks in the range from
0-1000 (the AC subtraction test contains 32 tasks between 0-100; the rest of the
tasks is in the range from 0-1000).

Number line 0-100. For Eva and Jane, the ability to place a number on a num-
ber line (between 0-100) was compared. This ability is trained by the skills
Arabic→NumberlineandVerbal→Numberlinein the number range from 0-100 of
the skill net (see Fig. 3.4). Before the training, Eva managedthe task with an aver-
age distance of 11.4% (measured by the NL 100 test, Sec. 4.2.2). In contrast, Jane
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reached an average distance of 5.4%. Thus, Jane was already more accurate than
Eva at the beginning of the training. This fact was confirmed during the course
of the training. While Eva needed 127 samples, to pass the respective skill, Jane
passed with only 21 samples. The maximum deviation for a sample to be rated as
correct was 5%. Figure 4.3(a) displays the improvement curves over the course of
the training. Recorded input data from all children shows that most samples exhibit
an error of 0−20% with only a few samples lying above this range. Therefore, fit-
ting has been done using a generalized linear regression model, assuming a Poisson
distribution of the data. The sample indices have been normalized between 0 and 1.

The training sequences in the area ofnumber representationsin the number range
from 0-100 of the two children show the same picture (see Fig.4.3(b)). Jane took the
direct path through the skill net, whereas Eva had to go back several times. After the
training, Eva achieved an average deviation of 6.5% in the NL 100 test and Jane’s
average deviation was 5.1%. While Eva improved significantly, Jane stagnated on a
high level.

4.4 Discussion

Although many children experience difficulties in learningmathematics, few studies
have investigated targeted interventions based on neuro-cognitive findings of the typ-
ical and atypical development of mathematical abilities. In this thesis, we developed
a computer-based intervention targeting children with difficulties in learning math-
ematics and performed a first evaluation of its effectiveness. The results achieved
are promising and show significant improvements in subtraction and number rep-
resentation. Moreover, they confirm the behavioral effectsobtained in a previous
study employing the computer-based training programRescue Calcularis (Ku-
cian et al., 2011).

Training . The first pilot study was conducted not only to assess the efficacy of
the training program but also the practicality and adaptability of the learning en-
vironment. Feedback from children who have completed the training and rated
the difficulty level of the learning program as appropriate,confirms that the qual-
ity of the adaptation and the estimation of the children’s knowledge were suffi-
cient. The evaluation of the feedback questionnaire also supports the improvement
of mathematical performance measured in the external tests: On average, children
reported that the training had improved their mathematicalperformance. This sub-
jective feeling of improvement and learning success might also enhance positive
self-concepts (Ashcraft and Faust, 1994; Spitzer, 2009). Moreover, children also
indicated that they liked to train with the program. The popularity of the learning
environment is beneficial as training can only be successfulif the children are mo-
tivated. Furthermore, the finding demonstrates that the computer is an attractive
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medium for children and is in line with previous studies (Kulik and Kulik, 1991;
Schoppek and Tulis, 2010; Kucian et al., 2011).

Behavioral effects. The results of the user study reveal positive training effects
in mathematical skills after completion of the training. Children significantly im-
proved their subtraction skills over the course of the 6-weeks-training: They were
not only able to solve more complex subtraction problems (medium-large effect in
the AC subtraction test) but also solved subtraction tasks faster (large effect in HRT).
This improvement in subtraction supports the notion of a better mathematical under-
standing as subtraction is considered as a main indicator for the development of the
spatial number line representation (Dehaene, 2011). Furthermore, the decrease in
problem solution times can be seen as a shift to increased fact retrieval (Geary et al.,
1991; Lemaire and Siegler, 1995; Barrouillet and Fayol, 1998; Jordan et al., 2003).
Compared to subtraction, children demonstrated smaller effects in addition (medium
effect in the AC addition test). This may be due to the adaptive nature of the interven-
tion: Addition and subtraction tasks are trained in parallel for each difficulty level.
As children performed better in addition in the pre-test, they received more training
in subtraction during the intervention. Interestingly, the waiting group did not show
significant training effects in the HRT subtests after their6-weeks training (t2− t3).
This fact might stem from the low number of participants or from the adaptability of
the training program leading to a different training trajectory for each child.

Children were also able to locate the position of a number on a number line more
accurately after training. In the number range between 0-10, the deviation from the
correct position was reduced by 33% after six weeks. Childrenespecially also re-
duced the variance (medium-large effect size). No further improvement was yield by
the prolongation of the training. Yet, most children passedthe skills in the number
range from 0-10 in the first few weeks and thus did not train in this range anymore in
the second part of the training. In the number range between 0-100, there was no sig-
nificant interaction. However, the training effect was significant after three months
(reduction of deviation about 30%). This delay is probably due to the fact, that
some of the children arrived at this level only in the second part of the training. Bet-
ter performance in the number line task indicates refinementof the internal mental
number line and more accurate access to it and confirms the results of previous stud-
ies (Siegler and Booth, 2004; Booth and Siegler, 2006, 2008; Halberda et al., 2008)
which demonstrated significant correlations between arithmetical learning and the
quality of numerical magnitude representation.

No significant training effects were observed in the NC and Estimation tests. These
results however need to be interpreted with caution becauseof ceiling effects. At
the pre-tests, children solved on average 80% of the NC and 75% of the Estimation
tasks correctly. Furthermore, some children even reached the maximum score. This
result is in line with previous findings (Noël and Rousselle, 2011).
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For most of the tasks tested before and after training, prolongation of the training
from six weeks to 12 weeks yielded a beneficial effect. The improvement of the
training group over the whole training period (t1− t3) was significant for all tests ex-
cept the Estimation and NC tests. In some tasks (for example NL 100 and NL 1000),
the effects of the second part of the training were similar orhigher to those of the
first part. This may be due to two facts: First, as the trainingcovers the number range
from 0-1000, most children had not worked through the whole training after the first
six weeks. Second, the intervention trains different abilities, whose effects support
each other. It has been shown that the training of conceptualknowledge and number
representations leads to an improvement also in mental calculation (Kaufmann et al.,
2003, 2005). Furthermore, the training of arithmetic operations implicitly deepens
the knowledge of number representations. These supportingeffects between the
different abilities, however, need time to develop (Kaufmann et al., 2003, 2005).
The prolongation of the training time from six to 12 weeks thus probably led to a
strengthening of the mutual effects between the training innumber representations
and the training in arithmetic operations.

Although a training program focusing on a broad range of mathematical skills and
showing a high degree of individualization seems beneficial, it also poses challenges
for evaluation. First, training a variety of skills shortens the training time of each
specific skill and thus leads to smaller training effects, asmentioned above. Second,
due to the high adaptability of the program, each child pursues a different train-
ing trajectory,i.e., the children train different skills over the course of thetraining.
Therefore, training progress is difficult to compare and inconsistencies in training
effects may be observed.

Limitations . Some limitations regarding the participants and the studydesign have
to be considered. First, there were no measurements done after a 12-weeks rest
period. Thus, for the 12-weeks training period, the training effects could not be
compared to the effects of a rest period. Regarding the significant effects of the 6-
weeks training, we conclude that also the effects of the 12-weeks training period can
be plausibly attributed to the training.

Second, children were not tested according to common criteria of DD. Children
were indicated by parents and teachers as exhibiting difficulties in learning math-
ematics. Generally, participants indeed demonstrated a mathematical performance
below the 25th percentile in the pre-tests (the four children performing above the
25th percentile had insufficient grades in math). As described inSec. 4.1, the par-
ticipants’ mean score even demonstrated an arithmetic performance around the 10th

percentile. It has been shown that the cognitive characteristics of low performing
children are indeed dependent on the cut-off criterion used. However, children ful-
filling a softer criterion exhibit similar difficulties to those fulfilling stronger criteria,
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but to a smaller extent (Murphy et al., 2007). Therefore, ourless strict criterion for
deficits in mathematical performance seems also informative.

Third, the effects of the training period were only comparedto those of a rest period.
No comparison to a control training was conducted. As this first pilot study was
designed to evaluate the concepts used in the training program and to assess its
adaptability, the design used seems sufficient. In theBMBF-study, we also compare
the effects to a control training.
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C H A P T E R 5
Learning curve analysis

When building a computer-based learning program, it is not only essential to assess
the effectiveness of the training, but also the quality and characteristics of its compo-
nents. In a first step (detailed in Chapter 4), we have evaluated the effectiveness of
Calcularis in two user-studies: TheBMBF-studyand theSWISS-study. Based on
the log file data collected in these two studies - containing all user actions (such as
keyboard input and keystrokes) along with respective timestamps - we validated the
skill model ofCalcularis by employing an Additive Factors Model (AFM) (Cen
et al., 2007, 2008).

AFMs are popular models for analyzing and improving studentlearning. However,
applying such models to data from tutoring systems that employ a mastery-learning
mechanism whereby poorer students get assigned tasks that better students do not
may result in potential parameter estimate biases. We therefore propose a range of
alternative logistic regression models for model validation and extensively analyze
and evaluate them on the data collected in the user studies.

To facilitate the model validation conducted in this chapter as well as the data-driven
analyses performed in Chapter 6, we introduce the concept of ‘key skills’. Key skills
are defined in terms of subject-dependent difficulty, they are the most difficult skills
for the user to pass. More formally,

Definition 5.1. A skill Sa is akey skill for a user U, that is Sa ∈KU , if the user went
back to a precursor skill Sb at least once before passing Sa.

From this follows that the set of key skillsKU may be different for each userU (and
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it typically is). In the sequence shown in Fig. 3.6, user 2 hasno key skills, while
user 3 has one key skill (colored in green) and user 1 has several key skills.

In the following, we first explain the validation of the skillmodel used in
Calcularis by employing the widely used approach of AFMs. We then propose al-
ternate logistic regression models, explicitly designed to adjust for mastery-learning.
Finally, we provide a detailed evaluation and comparison ofthe different models
regarding their properties as well as prediction accuracy on new data.

5.1 Validation of skill model using AFM

AFMs are widely used for model validation. Flat learning curves can for example
be an indication for an underestimation of student knowledge (Cen et al., 2007).
Based on AFMs, skill models can be refined and improved (Koedinger et al., 2013;
Stamper and Koedinger, 2011), which inspired the design of novel instructional
tasks (Koedinger et al., 2010). In the following analyses, we assess addition and
subtraction skills ofCalcularis using AFMs.

The data set used for the experimental evaluation was collected in theBMBF-study
(see Chapter 4). It contains recorded log files from 134 participants (69% females).
64 participants (73% females) were diagnosed with developmental dyscalculia (DD)
and 70 participants (66% females) were control children (CC).The collected log
files contain six weeks of training with at least 24 complete sessions (of 20 minutes)
per child. On average, children completed 28.9 sessions (SDσ = 3.3). Over the
course of the training, each child solved 1521 tasks (SDσ = 269), while the number
of solved tasks per session corresponded to 52.7 (SDσ = 7.2).The following analy-
ses as well as the experimental evaluation include all addition and subtraction skills
in the number range from 0-100 of the skill model ofCalcularis, resulting in a
total of 20 skills included. These skills are colored in darkturquoise in Fig. 3.4. The
notation of the different skills is explained in Tab. 3.1. For our analyses, we include
only so called ‘regular’ samples,i.e., random re-tests of already mastered skills are
excluded, which results in a data set containing 36′350 tasks. We assume that the
random re-tests help to prevent forgetting, but do not induce further learning.

To validate the skill model ofCalcularis, we fit a standard AFM (see Eq. (2.2))
with the following parameters to our data set: the random effectθp for student pro-
ficiency, the fixed effectβk (difficulty) and the fixed effectγk (learning rate) for the
skills Sk. The fitted random effectθp amounts to 0.751 (SDσ = 0.867), the fixed
effectsβk andγk are displayed in Tab. 5.1. Only seven skills (i.e., 35% of the skills)
show significantly positive slopes (γk > 0). Skill Support Subtraction 2,1exhibits
the largest learning rate withγk = 0.836 (SDσ = 0.411), whileSupport Addition 1,1
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possesses a large negative learning rate withγk = −0.042 (SDσ = 0.001). There-
fore, the model predicts little or no learning for most of theskills.

The high interceptsβk - the intercept ofβk = 3.26 for Addition 1,1is equivalent to
an initial probability of 0.96 of being correct - suggest that some of the skills might
be very easy for the students, which causes ceiling effects.We therefore tried to
explain the flat learning curves with the following two hypotheses:

1. Students might not have improved in all skills present in the analysis, but only in
skills they had problems with.

2. Due to ceiling effects, students might not have lowered their error rate, but be-
came faster (smaller answer times) in answering the tasks.

3. The skill specification of the model might be suboptimal.

In our first hypothesis, we only assessed the key skills (see Def. 5.1) of the children.
Fitting an AFM over the key skills of the children naturally prevents ceiling effects.
Not unexpectedly, the fitted model exhibits a lower student variance withθp = 0.11
(SD σ = 0.33) as all children tend to start with lower intercepts in their problem
skills. The fitted fixed effects are both significant withβk = 0.33 (SDσ = 0.03)
and γk = 0.006 (SDσ = 0.0004). The significantly positive slope indicates that
on average children improved with every opportunity they had to apply a key skill,
which confirms our first hypothesis.

To investigate the second hypothesis, we fit an AFM over all addition and subtraction
skills, but instead of using the answers of the children (correct/wrong), we used their
answer times (in milliseconds). To fit this model, we adaptedthe AFM to apply a
Poisson (instead of a logistic) regression. Lettingypi ∈ [0,∞[ denote the answer time
of studentp on itemi, we obtainypi ∼ Pois(λpi). The linear componentλpi of the
Poisson-AFM can then be formulated as

log(λpi) = θp+∑
k

qik · (βk+ γk ·Tpk). (5.1)

The fitted random effectθp amounts to 0.21 (SDσ = 0.45), the fixed effectsβk and
γk are displayed in Tab. 5.2. In the case of the Poisson-AFM, negative slopes (γk) in-
dicate that children got faster with each opportunity. For skill Addition 1,1children
for example started with an average answer time of 8.69 seconds and improved to
an average of 6.45 seconds after ten tasks. Of the 20 investigated skills, 15show
significantly negative slopes. The skillSupport Subtraction 2,2exhibits a signifi-
cantly positive slope withγk = 0.0004, however, the learning rate of this skill was
positive (γk = 0.006) when applying the standard AFM (see Tab. 5.1). ForAddition
1,1 TC, Subtraction 1,1, Subtraction 2,1andSupport Addition 2,1children neither
improved in learning rate (see Tab. 5.1) nor in answer times (see Tab. 5.2). Our
second hypothesis therefore holds true for the majority of the investigated skills.
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Table 5.1:Fixed effectsβk andγk of the AFM for the different skillsSk along with standard devi-
ations (in brackets) and significance values. Only 35% of the skills show significantly
positive learning ratesγk.

Skill βk (SD σ ) γk (SD σ )

Support Addition 1,1 -2.77 (0.13)*** -0.042 (0.001)***

Support Subtraction 1,1 -3.21 (0.20)*** -0.007 (0.022)***

Addition 1,1 -3.26 (0.22)*** -0.012 (0.030)***

Subtraction 1,1 -3.11 (0.15)*** -0.020 (0.008)***

Support Addition 2,1 -1.38 (0.34)*** -0.011 (0.009)***

Support Addition 1,1 TC -1.20 (0.26)*** -0.024 (0.011)***

Support Subtraction 2,1 -1.56 (1.45)*** - 0.836 (0.411)***

Support Subtraction 1,1 TC -0.93 (0.11)*** -0.009 (0.001)***

Addition 2,1 -1.99 (0.11)*** -0.006 (0.002)***

Addition 1,1 TC -1.93 (0.11)*** -0.001 (0.004)***

Subtraction 2,1 -2.04 (0.10)*** -0.001 (0.001)***

Subtraction 1,1 TC -1.65 (0.01)*** -0.007 (0.002)***

Addition 2,1 TC -1.42 (0.10)*** -0.002 (0.001)***

Subtraction 2,1 TC -1.04 (0.10)*** -0.002 (0.002)***

Support Addition 2,2 -2.20 (0.45)*** -0.016 (0.018)***

Support Subtraction 2,2 -0.53 (0.17)*** -0.006 (0.003)+**

Addition 2,2 -1.54 (0.12)*** -0.014 (0.004)***

Subtraction 2,2 -0.97 (0.10)*** -0.004 (0.002)***

Addition 2,2 TC -1.23 (0.10)*** -0.002 (0.003)***

Subtraction 2,2 TC -0.17 (0.09)+** -0.003 (0.002)***

+ p<.1, * p< .05, ** p < .01, *** p < .001
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5.1 Validation of skill model using AFM

Table 5.2:Fixed effectsβk andγk of the Poisson-AFM for the different skillsSk along with standard
deviations (in brackets) and significance values. Negative ratesγk indicate a decrease of
answer times. Children significantly improved their answer times for 75% of the skills.

Skill βk (SD σ ) γk (SD σ )

Support Addition 1,1 9.40 (0.0393)*** -0.0230 (0.000037)***

Support Subtraction 1,1 9.05 (0.0393)*** -0.0054 (0.000057)***

Addition 1,1 9.07 (0.0393)*** -0.0298 (0.000079)***

Subtraction 1,1 8.93 (0.0393)*** -0.0033 (0.000028)***

Support Addition 2,1 9.99 (0.0393)*** -0.0007 (0.000025)***

Support Addition 1,1 TC 1.01 (0.0393)*** -0.0052 (0.000027)***

Support Subtraction 2,1 1.05 (0.0392)*** -0.2042 (0.000673)***

Support Subtraction 1,1 TC 1.03 (0.0392)*** -0.0030 (0.000003)***

Addition 2,1 9.34 (0.0393)*** -0.0002 (0.000007)***

Addition 1,1 TC 9.26 (0.0393)*** -0.0000 (0.000013)***

Subtraction 2,1 9.49 (0.0392)*** -0.0018 (0.000007)***

Subtraction 1,1 TC 9.55 (0.0392)*** -0.0007 (0.000005)***

Addition 2,1 TC 9.85 (0.0392)*** -0.0019 (0.000005)***

Subtraction 2,1 TC 1.01 (0.0392)*** -0.0056 (0.000007)***

Support Addition 2,2 1.07 (0.0393)*** -0.0199 (0.000032)***

Support Subtraction 2,2 1.06 (0.0393)*** -0.0004 (0.000009)***

Addition 2,2 9.73 (0.0393)*** -0.0042 (0.000013)***

Subtraction 2,2 1.00 (0.0393)*** -0.0033 (0.000006)***

Addition 2,2 TC 1.02 (0.0392)*** -0.0041 (0.000007)***

Subtraction 2,2 TC 1.04 (0.0392)*** -0.0043 (0.000005)***

+ p<.1, * p< .05, ** p < .01, *** p < .001
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The conducted analyses confirm our first hypothesis: Over thecourse of the training,
children improved on their key skills. However, as the set ofkeys skills tends to be
different for every child, we cannot make statements about the improvement on spe-
cific skills. Our second hypothesis was only partially confirmed: Some of the skills
show neither positive learning rates nor decreasing answertimes with increasing op-
portunity count. These flat learning curves do, however, notcome unexpected. From
previous work (Murray et al., 2013), we know that learning curves are prone to stu-
dent attrition when applied to data generated by a mastery-learning algorithm such
as Bayesian Knowledge Tracing (BKT) (Corbett and Anderson, 1994): As students
are aligned by opportunity count, the right hand side of the learning curve fitted by
an AFM is dominated by students, who require a large number ofopportunities to
master a skill, which might in turn lead to underestimation of learning ratesγk. Be-
fore considering a revision of the skill model as suggested by the third hypothesis,
we therefore investigated the use of alternate logistic regression models for valida-
tion. In the next sections, we introduce variations of logistic regression models and
discuss their parameter estimations and prediction of learning in the data.

5.2 Alternative logistic regression models

Learning curves are averaged over many students. The AFM aligns the students
by opportunity count. When applied to mastery-learning data, it may suffer from
student attrition with increasing numbers of opportunities. We therefore propose al-
ternative logistic regression models that adjust for mastery-based data and therefore
reduce the introduced bias.

Learning Gain Model (LG) . With the LG model, we introduce a new alternative
to the AFM. The LG model avoids student attrition by aligningthe students at their
first sample (when they start the training) and at their last sample, i.e., when they end
the training (independent of whether they mastered the skill or not). The LG model
is a variation of the AFM (see Eq. (2.2)). Lettingypi ∈ {0,1} denote the response of
studentp on itemi, we obtainypi ∼ Binomial(1,πpi). The linear componentπpi of
the LG model is then defined as

logit(πpi) = θp+∑
k

qik · (βk+ γk ·Npk), (5.2)

where the random effectθp denotes the student proficiency. The fixed effectβk de-
scribes the difficulty and the fixed effectγk the learning rate of a skillSk (knowledge
component).qik is 1, if item i uses skillSk and 0 otherwise.Npk ∈ [0,1] denotes
the (normalized) number of practice opportunities studentp had at skillSk., i.e., we
normalize over all opportunities studentp had at skillSk during the training. Rather
than measuring the amount learned per opportunity, this model estimates the learn-
ing gain of the students over the course of the training.
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Alternative logistic regression models. To adjust for mastery-based data, alterna-
tive ways to fitting the curves have been proposed in previouswork (Murray et al.,
2013) for BKT. In the following, we reformulate these suggestions and apply them to
logistic regression models. TheMastery-Aligned Model (MA) can be formulated
using Eq. (2.2) for the linear component of the AFM, but with adifferent definition
of Tpk. For the MA model, we count backwards:Tpk is the number of opportunities
studentp had at skillSk as seen from mastery.Tpk is 0 at mastery, 1 at one oppor-
tunity before mastery and so on. Thus, the MA model aligns students at mastery,
which solves the problem of student attrition. A different way to deal with student
attrition is to group students by the number of opportunities needed to first master a
skill. The linear component of thisDisaggregated Model (DIS)can be defined as
follows:

logit(πpi) = θp+∑
k,m

qik · (βk,m+ γk,m ·Tpk), (5.3)

where the difficultyβk,m and the learning rateγk,m are fit by skill Sk and mastery
groupm. By combining the MA and the DIS models, theMastery-Aligned and
Disaggregated Model (DISMA)can be constructed. This model disaggregates stu-
dents into groups based on the number of opportunities needed until mastering the
skill and furthermore aligns the students at mastery.

All the newly introduced models are again generalized linear mixed models
(GLMM) (Boeck, 2008) as the linear predictorπpi contains random effects (for the
students) in addition to the fixed effects (for the skills).

5.3 Comparison of model properties

To evaluate the different logistic regression models and their properties, and to assess
which modeling technique should be used to quantify learning in mastery-based data
sets, we conducted two experiments on the data set also used for the model validation
via AFMs (described in Sec. 5.1). In a first experiment, we analyzed the parameter
fit of different regression models and evaluated their performance in prediction of
new items. Furthermore, we compared prediction accuracy ofregression models to
that of traditional BKT. We used all the samples until the children mastered a skill
and predicted the outcome of the first re-test. In a second experiment, we evaluated
the prediction accuracy of regression models as well as BKT when generalizing to
new students. We fitted the model based on a subset of studentsand predicted the
outcome for the rest of the students.

Prediction accuracy for both experiments was measured using the root mean
squared error (RMSE), the accuracy (number of correctly predicted student suc-
cesses/failures based on a threshold of 0.5) and the area under the ROC curve (AUC).
Prediction accuracy was computed using bootstrap aggregation with re-sampling
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(n= 200) in the first experiment and a student-stratified 10-foldcross validation in
the second experiment.

Fitting for the regression models was done inR using thelme4 package. To be able
to compare the parameter fit of the different models, we did not constrainγk to be
greater than or equal to zero. Parameters for BKT were estimated by maximizing
the likelihood of the observed data (see Sec. 2.4) using a Nelder Mead simplex op-
timization (Nelder and Mead, 1965). This minimization technique does not require
the computation of gradients and is for example available infminsearch of Matlab.
The following constraints were imposed on the parameters:pg≤ 0.3 andps≤ 0.3.

For our analyses, we used two versions of the data set described in Sec. 5.1. The
first version (denoted asVersion 1in the following) contains the samples of all chil-
dren at the respective skills (original data set), and the second version (denoted as
Version 2in the following) includes only children that mastered the respective skills.
Version 2of the data set makes the inclusion of the MA and DISMA models possible.
However, it excludes students not mastering a skill from theanalysis, which leads
to a more homogeneous data set, but due to the drop-out of manychildren with DD,
also to a less interesting data set. While the original data set (Version 1) contains
36′350 tasks,Version 2of the data set contains only 20′784 tasks.

5.3.1 Analysis of the parameter fit

In this experiment, we investigated the parameter fit of three regression models on
the data setVersion 1: The AFM, the LG model and the DIS model. The three
models obtain very different parameter estimations for thesame data. As already
observed in Sec. 5.1 (detailed results in Tab. 5.1), the AFM predicts learning (posi-
tive γk) for 35% of the skills. The LG model on the other hand fits positive learning
ratesγk for all skills and the DIS model obtains positive learning ratesγk,m for 92%
of the cases. Hence, the models predict very different amounts of learning in the data
and we therefore analyze their residuals and prediction accuracies in the following.

Residual analyses

All three models tend to overestimate the outcome for badly performing students
and underestimate the outcome for well performing students. This finding is also
visible in Fig. 5.1, which displays the mean residualsr with r = fitted outcome
- true outcomeby estimated student proficiencyθp. Furthermore, the residualsr
are strongly correlated to student proficiency (ρAFM = −0.9621,ρLG = −0.9612,
ρDIS=−0.9532). These results are as expected, because the models’ predictions are
averaged over all the students. While the residualsr are very similar for the AFM
and the LG models, the DIS model exhibits less variance in student proficiency. As
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Figure 5.1: Mean residualsr by estimated student proficiencyθp for the AFM (left), the DIS
(center) and the LG (right) model. All three models tend to overestimate the outcome
for weak performers and underestimate for well performing students.

the students are grouped by the number of opportunities needed to master a skill,
student proficiency within a group is more homogeneous.

For the AFM and the LG model, we also analyzed the mean residuals r re-
garding the skill parametersβk and γk from the models. There are no signif-
icant correlations between skill difficultyβk and mean residualsr, neither for
the AFM (ρAFM = 0.1677, pAFM = .4798) nor for the LG model (ρLG = 0.3777,
pAFM = .1066). From Fig. 5.2(a), which displays the mean residualsr by esti-
mated skill difficultyβk, it is also obvious that these measures are not related for
both models. The residualsr are also not correlated to the estimated learning rate
γk (ρAFM = 0.2058, pAFM = .3840; ρLG = 0.1051, pLG = .6592) as displayed in
Fig. 5.2(b). Figure 5.2(b) demonstrates how different the parameter fits of the two
models are regarding the learning ratesγk. The AFM fits learning ratesγk in a very
small range around 0 and 45% of the learning rates are not significantly different
from zero. The outlier stems from a skill played by only two students resulting in a
total of 14 solved tasks for this skill. Learning ratesγk fitted by the LG model are all
positive and exhibit a larger variance.

The mean residualsr over time are displayed in Fig. 5.3. For the AFM and the DIS
model, an averaging window (n = 10) was used to compute the mean residualsr
with increasing opportunity count. Both models underestimate the outcome for less
than 20 opportunities and overestimate it for larger numbers. For the AFM, this ob-
servation is confirmed by the significant positive correlation between the opportunity
count and the mean residualsr (ρAFM = 0.3950,pAFM < .001). This result probably
stems from the fact that the well performing students masterthe skills much faster
and therefore student numbers drop with higher opportunitycounts. The DIS model
exhibits a lower variance, as this model groups the studentsby the number of oppor-
tunities needed to master a skill and thus student performance within a group is more
homogeneous (ρDIS= 0.0860,pDIS= .4785). For the LG model, the mean residuals
r are plotted by the normalized opportunity count in Fig. 5.3 (right). The LG model
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(a) Mean residualsr by estimated skill difficulty
βk for the AFM (top) and the LG model (bottom).
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Figure 5.2: Mean residualsr by estimated skill difficultyβk (a) and learning ratesγk (b) for the
AFM and LG models. For both models, residualsr are neither correlated to the skill
difficulty βk nor to the learning ratesγk.

underestimates the outcome in the beginning and in the end and overestimates in-
between. Through normalizing the opportunity count, we align the beginning and
the end of the training for each student. We therefore end up with more observa-
tions from low performing students in the middle and the model overestimates the
outcome in this part.

Re-test prediction

The residual analyses demonstrate that the models interpret the same data very differ-
ently, i.e., the parameter fit and properties of the models vary a lot. To validate these
different parameter fits, we computed the prediction accuracy for the first re-test
(data setVersion 1) and compared it to a BKT model. The observed mean outcome
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Table 5.3:Prediction accuracy of first re-test for data setVersion 1and2. The values in brackets
denote the standard deviation. The best model per error measure is marked bold. Per-
formance of the AFM, LG and MA models is very similar, while the DIS and DISMA
models exhibit lower prediction accuracy. The AFM, LG and MA models also outper-
form BKT regarding predictive performance.

RMSE Accuracy AUC

Data set:
Version 1

AFM 0.3562 (0.0101) 0.8391 (0.0119) 0.6825 (0.0230)

LG 0.3587 (0.0125) 0.8451 (0.0113) 0.6778 (0.0250)

DIS 0.3780 (0.0140) 0.8394 (0.0122) 0.6054 (0.0255)

BKT 0.3614 (0.0111) 0.8428 (0.0118) 0.6033 (0.0250)

Data set:
Version 2

AFM 0.3563 (0.0114) 0.8474 (0.0123) 0.6622 (0.0250)

LG 0.3666 (0.0124) 0.8416 (0.0107) 0.6602 (0.0245)

DIS 0.3765 (0.0141) 0.8416 (0.0120) 0.5998 (0.0290)

MA 0.3633 (0.0117) 0.8401 (0.0114) 0.6508 (0.0255)

DISMA 0.3783 (0.0133) 0.8396 (0.0116) 0.6011 (0.0256)

BKT 0.3613 (0.0111) 0.8423 (0.0115) 0.6102 (0.0302)

over all re-tests is high with 0.8419. The AFM underestimates the true outcome
with an average prediction of 0.8287, while the LG (average prediction 0.9108) and
DIS models (average prediction 0.9488) overestimate the true outcome. Prediction
accuracy for the different models is listed in Tab. 5.3. The AFM shows the best
RMSE (RMSEAFM = 0.3562) and AUC (RMSEAUC = 0.6825), while the LG model
exhibits the highest accuracy (AccuracyLG = 0.8451). As the performance of stu-
dents is generally high, RMSE and AUC are, however, better quality measures than
accuracy. The LG model performs second best in RMSE (RMSELG = 0.3587) and
AUC (AUCLG = 0.6778). However, the small differences between the AFM and the
LG model along with the high variances of the error measures indicate that there
are no significant differences between the two models. The DIS model on the other
hand demonstrates a considerably higher RMSE (RMSEDIS = 0.3780) and also ex-
hibits a low AUC (AUCDIS = 0.6054) compared to the two other regression models.
The DIS model estimates the parametersβk,m andγk,m by skill and mastery group.
The resulting large number of parameters produces overfitting. Performance on the
training data set supports the overfitting hypothesis: The DIS model outperforms the
AFM and the LG model in RMSE, accuracy and AUC on the training data set.

Interestingly, the AFM and the LG model also outperform the BKT model. The
RMSE of BKT (RMSEBKT = 0.3614) is higher than those of the two regression
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Figure 5.3: Mean residualsr by opportunity count for the AFM (left) and the DIS model (center)
and by normalized opportunity count for the LG model (right). The AFM andDIS
models underestimate the outcome for small opportunity counts and overestimate for
larger numbers. The LG model underestimates the outcome in the beginning andin
the end and overestimates in-between.

models, but standard deviations are again large. BKT exhibits especially a lower
performance in AUC (AUCBKT = 0.6033). The better performance of the regression
models might come from two facts: First, the regression models fit the parameter
θp for the individual student’s proficiency, while traditional BKT does not do any
student individualization. Second, BKT assumes that there is no forgetting, while
the regression models are allowed to fit negative learning rates γk. However, the
time between mastering a skill and the first re-test tends to be long. On average, the
first re-test was done after 140 opportunities. A logistic regression analysis shows,
that there is indeed a small, but significant amount of forgetting (intercept = 1.8545,
slope = -0.0012) in the data. The probability of being correct at mastery amounts
to 0.8647 and decreases to 0.8419 after 140 opportunities. Note, however, that the
forgetting hypothesis is only valid for the AFM, as learningratesγk are all positive
for the LG model.

Experiments on data set Version 2

To be able to include the MA and DISMA models in our analyses, we also evaluated
prediction accuracy for the first re-test based on data setVersion 2.

For this version of the data set, the LG and MA models predict positive learning
ratesγk for 100% of the skills, while the AFM fits positive learning ratesγk for 54%
of the skills. The DIS and DISMA models show positive learning ratesγk,m for 90%
of the mastery groups. Residualsr of the DISMA model are very similar to those
of the DIS model and we therefore only discuss the mean residuals r for the MA
model. Figure 5.4 displays the mean residualsr by estimated student proficiencyθp

(left), skill difficulty βk (center left), learning ratesγk (center right) and opportunity
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Figure 5.4: Mean residualsr by estimated student proficiencyθp (left), skill difficulty βk (center
left), learning ratesγk (center right) and opportunity count (right) for the MA model.
The MA model tends to overestimate weak performers and underestimate well per-
forming students. Residualsr are again uncorrelated toβk andγk. The MA model
overestimates the outcome in the beginning and underestimates it with increasing op-
portunity count.

count (right). Similarly to the other models, the MA model tends to overestimate
the weaker students and underestimate the well performing students (see Fig. 5.4
(left)). The correlation between estimated student proficiencyθp and mean residu-
alsr is again strong (ρMA =−0.9497,pMA < .001). As for the other models, mean
residualsr are uncorrelated to skill difficultyβk (ρMA = 0.2916,pMA = .3118) and
to learning ratesγk (ρMA = −0.2993, pMA = .2986). The MA model fits positive
learning ratesγk for all skills Sk (see Fig. 5.4 (center right)). To compute the mean
residualsr by opportunity count, we again used an averaging window (n= 10). Un-
like the other models, the MA model overestimates the outcome in the beginning
and underestimates it with increasing opportunity count. This result is due to the
mastery alignment of the model: As well performing studentsneed less opportuni-
ties to master a skill, student attrition occurs in the beginning, where only weaker
students remain in the analysis.

We again validated the parameter fit of the different models by predicting the first
re-test and comparing prediction accuracy to BKT. Prediction accuracy for the dif-
ferent models is listed in Tab. 5.3. The AFM performs best forall error measures
(RMSEAFM = 0.3563, AUCAFM = 0.6622). The performance of the LG model
(RMSELG = 0.3666,AUCLG = 0.6602) is again very close to that of the AFM. In-
terestingly, the MA model performs well in RMSE (RMSEMA = 0.3633) and also
exhibits a large AUC (AUCMA = 0.6508). The high variances again indicate that dif-
ferences between the AFM, the LG and the MA models are not significant. The DIS
and DISMA models perform considerably worse in RMSE and AUC than the best
three regression models. The performance of BKT is similar tothe first version of
the data set, with an RMSE (RMSEBKT = 0.3613) in the range of the best regression
models and a significantly lower AUC (AUCBKT = 0.6102).
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Table 5.4:Prediction accuracy of student-stratified cross-validation for data setVersion 1and2.
The values in brackets denote the standard deviations. The best model per error mea-
sure is marked bold. Interestingly, the AFM and LG models again outperformBKT
regarding prediction accuracy.

RMSE Accuracy AUC

Data set:
Version 1

AFM 0.4200 (0.0184) 0.7525 (0.0300) 0.6693 (0.0222)

LG 0.4164 (0.0175) 0.7583 (0.0248) 0.6931 (0.0211)

BKT 0.4236 (0.0216) 0.7546 (0.0304) 0.6688 (0.0244)

Data set:
Version 2

AFM 0.4008 (0.0247) 0.7850 (0.0296) 0.6755 (0.0335)

LG 0.3936 (0.0241) 0.7859 (0.0295) 0.7199 (0.0260)

BKT 0.4032 (0.0241) 0.7849 (0.0297) 0.6810 (0.0289)

5.3.2 Generalization to new students

In a second experiment, we investigated how well the different regression models
generalize to new students using a student-stratified 10-fold cross validation. We
also compared prediction accuracy of the logistic regression models to those of BKT,
as this is an often used approach in student modeling. For newstudents (i.e., the stu-
dents in the test set), the number of opportunities to mastery is not known, therefore
only the AFM and the LG model were included in this analysis. Prediction accuracy
along with standard deviations for the regression models aswell as BKT is listed
in Tab. 5.4. The LG model shows the best performance in all error measures for
Version 1of the data set. The performance of the AFM is very close to that of the
LG model in RMSE (RMSELG = 0.4164,RMSEAFM = 0.4200). The high variance
indicates that there are no significant differences betweenthe two models regarding
RMSE. The AUC of the LG model is, however, considerably higherthan that of the
AFM (AUCLG = 0.6931,AUCAFM = 0.6693).
Both regression models again outperform BKT in RMSE (RMSEBKT = 0.4236) and
AUC (AUCBKT = 0.6688), but the high variance indicates that there are no signifi-
cant differences in RMSE between all three models and also notin AUC between
the AFM and the BKT model.
The results forVersion 2of the data set show a similar picture. As expected, all
models demonstrate a higher prediction accuracy forVersion 2of the data set. As
this version of the data set includes only students that mastered a skill, overall per-
formance is more homogeneous and therefore prediction is easier.
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5.4 Discussion

AFMs are widely used to analyze and improve student learning(Cen et al., 2007;
Koedinger et al., 2013; Stamper and Koedinger, 2011). However, AFMs are prone to
student attrition when applied to data from mastery learning: As students are aligned
by opportunity count, the right hand side of the learning curve fitted by an AFM is
dominated by students, who require a large number of opportunities to master a skill,
which might in turn lead to underestimation of learning rates γk. Indeed, Murray
et al. (2013) observed that averaging over different students with different initial
knowledge states and learning rates may result in aggregated learning curves that
appear to show little student learning, even though a mastery-learning student model
such as BKT identified the students as mastering the skills at run time. This issue
can be solved by using alternative models for fitting the learning curves (Murray
et al., 2013). Our experiments on data from a mastery-learning student model (DBN
skill model) with confirmed learning (significant improvement in external post-tests)
support these results: AFM fitted positive learning ratesγk for about half of the skills
and only 70% of the positiveγk were significantly different from zero. We therefore
extensively evaluated alternative modeling techniques toanalyze mastery-learning
data. Indeed, alternative models such as the LG and MA modelspredicted positive
learning for all skills and learning ratesγk and generally showed a higher variance,
i.e., learning rates differed from skill to skill. Our results demonstrate that different
(although very similar) regression models explain the samedata in a different way
and that alternative regression models predict different patterns of learning. When
applying AFM to mastery-learning data sets, flat learning curves might therefore not
necessarily represent an insufficient skill model (which does not mean that the skill
model cannot be improved), but suggest the use of an alternative modeling technique
for validation of results.

Despite the different parameter fits, prediction accuracy of the regression models is
very similar. When it comes to generalizing to new students, the LG model shows
the most accurate prediction. However, as we observe a high variance in accuracy
measures, there is most likely no significant difference in prediction accuracy be-
tween the AFM and the LG model. Although the AFM performs bestin predicting
the first re-test, the high variance of the error measures indicates that there is no
significant difference between the AFM, the LG and the MA models. The disaggre-
gated models (DIS, DISMA) perform significantly worse than the other regression
models. As the disaggregation into different subpopulations increases the number
of parameters, the lower performance of these models might be due to overfitting.
This hypothesis is supported by the fact that the disaggregated models outperform
the other regression models on the training data set in all error measures. Nonethe-
less, Murray et al. (2013) demonstrated the potential of disaggregated models. Pre-
diction accuracy of these models should therefore be evaluated on larger data sets.
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We also compared the regression models to BKT, an approach that is traditionally
used for student modeling. BKT models are outperformed by most of the regression
models when it comes to prediction accuracy on unseen data. The AFM and the
LG model show a higher accuracy when predicting the first re-test, while the AFM,
the LG and the MA model generalize better to new students thanBKT. Although
these differences are probably not significant (due to the high variance in the error
measures), they are still interesting. One reason for this observation might be that
BKT does not model forgetting. Our analyses have, however, shown that there is
forgetting in the data. As the LG and MA models fit only positive learning ratesγk,
this explanation is only valid for the AFM model. Another reason for the superiority
of the logistic regression models could be that traditionalBKT does not have any stu-
dent individualization. However, Yudelson et al. (2013) demonstrated on a different
data set that a student individualized parameterp0 (probability of knowing a skill
a-priori) does not lead to significant improvements. The reason for the difference in
prediction accuracy between BKT and logistic regression models therefore needs to
be investigated further.
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C H A P T E R 6
Evaluation of student model and

controller properties

In the previous chapter (Chapter 5), we performed a data-driven validation of the
skill model ofCalcularis. In this chapter, we extend this data-driven validation by
assessing the quality of the student model and the control mechanism based on the
input data collected in the user studies. Furthermore, we also use the collected data
to understand properties of the users and the different mathematical skills. To con-
duct the analyses, we define important and desirable criteria for quality assessment:

1. Effectiveness of the training program: With no doubt, a learning program should
be effective. We have already demonstrated that participants improve over
the course of the training in external mathematical performance tests (detailed
in Chapter 4). In this chapter, we show that participants demonstrated an in-
creased mathematical performance over the training periodwithin the system
(see Sec. 6.1).

2. Assessment of controller design: The controller design ofCalcularis allows
forward and backward movements within the skill net. In Sec.6.2, we show that
this control mechanism significantly speeds up learning.

3. Adaptability: Another desirable property is the fast adaptation of the program
to the mathematical knowledge of the user. In Sec. 6.3, we demonstrate that
Calcularis adapts rapidly to the knowledge level of the children.

In the second part of this chapter (see Sec. 6.4), we analyze the performance of the
users in the program as well as properties of skills. Such analyses can lead to a better
understanding of the mathematical knowledge of the users.
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Evaluation of student model and controller properties

All the analyses conducted in the following are based on the same data set. Input data
consists of input logs recorded from 63 participants (71% females) of theBMBF-
studyand theSWISS-study(see Chapter 4). All children exhibited developmental
dyscalculia (DD) or difficulties in learning mathematics. The log files contain six
weeks of training with at minimum 24 complete sessions (of 20minutes) per user.
On average, each user completed 29.8 sessions (SDσ = 2.4). The total number of
solved tasks was 1540 (SDσ = 276), while the number of solved tasks per session
corresponded to 51.7 (SDσ = 7.9).

6.1 System-internal improvement analysis

To quantify the improvement within the system, we conductedtwo different analy-
ses, one analysis using the error rates of the children as a performance measure and
a second analysis (only for theLanding game, see Sec. 3.2.2) assessing the spatial
number representation of the children.

In the first analysis, we used the error rates of the children as a performance measure.
We estimated the learning rate over the key skillsKU (see Def. 5.1) from all available
samples (both if the participant mastered the key skills during training or not) by
applying a variation of the Learning Gain model (LG) defined in Sec. 5.2. Letting
ypi ∈ {0,1} denote the response of childp on a taski associated with a key skillSk,
we obtainypi ∼ Binomial(1,πpi). We adjust the LG model to only include key skills
and formulate the linear component of the model as

logit(πpi) = θp+∑
k

qik · (β + γ ·xpk), (6.1)

with Sk ∈ KU for every childp. Furthermore,θp ∼ N (0,σ2
θ ) represents the profi-

ciency of childp, while xpk∈ [0,1] denotes the (normalized) number of practice op-
portunities childp had at key skillSk. qik is 1, if item i uses skillSk and 0 otherwise.
The fixed effectβ describes the average key skill difficulty and the fixed effect γ the
learning rate. We fit a model for all key skills. Furthermore,we also divide the key
skills in categoriesC (Addition, Subtraction, Number representations) and fit a sep-
arate model per category. The resulting model over all key skills (C = All ) exhibits
an estimated mean improvement of 21.8% (95% confidence interval =[0.21,0.23]).
The learning curves for the different categories along withthe exact coefficients for
the fixed effectsβ andγ are displayed in Fig. 6.1.

In a second analysis, we investigated the accuracy of children in theLanding game
(skills Arabic→Numberline, Verbal→NumberlineandConcrete→Numberlinein the
skill net illustrated in Fig. 3.4): In this game, we can not only measure the error
rate (correct or wrong) but also the distance (in %) from the correct position to
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All
β 0.06 (0.05) 0.22 [-0.03 0.14]

γ 0.95 (0.04) < 1e-4 [0.87 1.03]

Addition
β -0.14 (0.09) 0.13 [-0.33 0.04]

γ 1.36 (0.11) < 1e-4 [1.14 1.59]

Subtraction
β 0.11 (0.08) 0.15 [-0.04 0.27]

γ 0.79 (0.07) < 1e-4 [0.66 0.93]

Number
representations

β 0.08 (0.07) 0.26 [-0.06 0.21]

γ 0.94 (0.06) < 1e-4 [0.82 1.06]

Figure 6.1: The percentage of correctly solved tasks (of key skills) increases over the training
period by 21.8% for all skills (top). The normalized sample indices (Time[x]) are
displayed on the x-axis, while the y-axis shows the ratio of correct solutions. Improve-
ments foraddition (add),subtraction(sub) andnumber representations(numrep) are
in the same range. Exact coefficients for the fixed effects of the fitted model along
with standard deviation (in brackets) are plotted by respective significance (sig.) and
confidence intervals (ci) (bottom).

assess performance. We again employ a variation of the LG model to estimate the
improvement of the children. Lettingypi ∈ [0,100] denote the distance (from the
correct position) childp achieved in a taski associated with a landing skillSl , we
obtainypi ∼ Pois(λpi). We therefore define the linear component of the model as

log(λpi) = θp+∑
l

qil · (β + γ ·xpl), (6.2)

whereSl ∈ {Arabic→Numberline, Verbal→Numberline, Concrete→Numberline}.
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γ -0.54 (0.02) < 1e-4 [-0.57 -0.51]

Figure 6.2: Landing accuracy in the number range 0-10 (left) and 0-100 (right) increases over time
(top). The x-axis denotes the normalized sample indices (Time[x]), while the y-axis
displays the deviance from the correct position. Exact coefficients of the fitted model
along with standard deviation (in brackets) are plotted by respective significance (sig.)
and confidence intervals (ci) (bottom).

Furthermore,θp ∼ N (0,σ2
θ ) represents the proficiency of childp (in terms of a

distance).xpl ∈ [0,1] denotes the normalized number of practice opportunities child
p had at skillSl . qil is 1, if item i uses skillSl and 0 otherwise. The fixed effectβ
denotes the initial average distance from the correct position, while γ describes the
improvement in accuracy. We fit a separate model for the number ranges 0-10 and
0-100. The resulting models for the number ranges 0-10 and 0-100 along with the
exact coefficients for the fixed effects are displayed in Fig.6.2.

Over time, children achieved greater accuracy when giving the position of a number
on a number line (Fig. 6.2 (top)). The significance ofγ in both number ranges
demonstrates the significant improvement in accuracy (Fig.6.2 (bottom)).

The clear lines of points visible at 10%, 20% and 30% in Fig. 6.2 (top left) arise from
the nature of theLanding game: Children need to indicate the position of a given
number by steering a falling cone with the joystick. If the joystick is not moved, the
cone will always land at the position of the five (in the numberrange 0-10), which
leads to deviations of exactly 10% (if the given number was 4 or 6), 20% (if the
given number was 3 or 7) or 30% (if the given number was 2 or 8).
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Figure 6.3: Illustration of a going back case (left): A user fails a skillSi and has to rehearse one or
several easier skills before coming back to trainSi . The direct improvementdk (right)
is the difference between the initial correct rate (atxA,k = 0) after going back and the
achieved correct rate (atxB,k = 1) before going back.rA,k andrB,k (right) denote the
learning rates before and after going back.

6.2 Assessment of control mechanism

Employing a dynamic Bayesian network (DBN) (Murphy, 2002) student model has
also implications on the control mechanism: Due to the graphstructure of the skill
hierarchy, most skills have several precursor and successor skills. This structure
implies that in order to master a skillSa, all precursor skills ofSa need to be known
and therefore it seems to be natural to allow forward (advancing to more difficult
skills) and backward (going back to easier skills) movements of the controller.

In this analysis, we demonstrate that the possibility to go back to easier (played or
unplayed) skills yields a significant beneficial effect. We show that the children not
only immediately start reducing the rate of mistakes, but that they also learn faster.
The log files recorded 973 individual cases of going back. On average, 20.6 cases
(SD σ = 12.1) of going back are recorded per user. Figure 6.3 (left) illustrates the
definition of a going back casek: All casesk in which users play a certain skill
(samplesxB,k), go back to one or several easier skills, and finally pass them to come
back to the current skill (samplesxA,k) are incorporated in the analysis. The variable
xB,k therefore denotes all tasks before going back, whilexA,k stands for the tasks
solved after going back. We normalizexA,k andxB,k and thereforexA,k ∈ [0,1] and
xB,k ∈ [0,1]. From Fig. 6.4 it can be seen that the number of going back cases varies
a lot among the users,i.e., the users exhibit very different levels of mathematical
knowledge.

For our analysis, we proceed as follows: Per each going back casek, we estimate the
correct rate over timecA,k (cB,k) separately for the samples before going backxB,k

and the samples after going backxA,k. Fitting is performed via logistic regression us-
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Figure 6.4: Number of going back times per user sorted in ascending order (left) and distribution
over number of going back cases (right). The equal distribution of goingback numbers
demonstrates the heterogeneity of mathematical knowledge of the children.

ing bootstrap aggregation (Breiman, 1996) with resampling (B = 200). We therefore
obtain learning curves for each going back casek and measure the following prop-
erties of the curves (illustrated in Fig. 6.3 (right)): The direct improvementdk is the
difference between the initial correct ratecA,k (at xA = 0) after going back and the
achieved correct ratecB,k (at xB = 1) before going back. The improvement in learn-
ing raterk is the difference in learning rate overcA,k andcB,k (i.e., rk = rA,k− rB,k).

From Fig. 6.5 (top), we can see that the distributions overd̄ (mean overdk) and ¯r
(mean overrk) are well approximated by normal distributions with means greater
than 0. The rate of correct tasks̄d is increased by 0.14 while the learning rate
r̄ is even increased by 0.36 after going back. Both measurements are positive on
average and a two-sided t-test indicates their statistically significant difference from
0 (statistics detailed in Fig. 6.5 (bottom)).

6.3 Controller adaptability

To provide an effective training, fast adaptation to the knowledge level of the stu-
dent is important. At the beginning of the training period, all participants start with
the lowest (easiest) skill of the skill net (Subitizing, see Fig. 3.4) and then advance
through the skill net depending on their performance.

We therefore define the adaptation time[t0, tKU ] as the period between the startt0 of
the training and the first time the user hits one of his key skills tKU (see Def. 5.1).
Thus, this analysis measures how long it took the user to arrive in a training area,
where she or he exhibits difficulties.

On average, the participants reached theirtKU after solving 148.3 tasks (SD
σ = 122.6). The number of complete sessions played up to this point was 2.1 (SD
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Figure 6.5: Distributions over direct improvement̄d (top left) and improvement in learning rate
r̄ (top right). Both measures are well approximated by a normal distribution with
µ > 0. Statistics for the improvement after going back (bottom): Mean improvement
µ, significance of mean (sig.), standard deviation (σ ), and confidence intervals (ci).

σ = 1.97). These results show that the model rapidly adjusts to thestate of knowl-
edge of the user. The fast adaptability is also confirmed by the fact that 52.4% of
the children hit their first key skill already in the number range 0-10, 38.1% of chil-
dren in the number range 0-100 and only 9.5% of the children in the number range
0-1000. The fast adaptation to the child’s knowledge ensures that each child trains
at the optimal difficulty level already after a few days of training.

6.4 Analysis of key skills

As children pursue different trajectories through the skill net during the training
period, they tend to show various patterns of key skills. This variety is evidenced
in Fig. 3.6: While user 2 has no key skills in the displayed number range, user 3
has one key skill (Addition 2,2 TC) and user 1 has three key skills (Addition 2,1,
Addition 2,2andAddition 2,2 TC) in addition between 0-100. Despite this variety,
some skills seem to be difficult for most of the children and thus more likely to be
key skills: Nine skills were key skills for more than one third of the children. Of
these skills, five were subtraction skills, four number representation skills and one
an addition skill. Even more than 50% of the children had problems with the top
three key skills: Indicating the position of a number on a number line from 0-100
(Arabic→Numberlinein Fig. 3.4) was difficult for 52% of the children. This resultis
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Figure 6.6: Distribution over normalized number of key skills fornumber representationsskills
(left), additionskills (center) andsubtractionskills (right). Fornumber representations
andaddition skills, normalized key skill numbers follow an exponential distribution.
Forsubtractionskills, they follow a normal distribution.

in line with previous work, which observed deficits of mentalnumber representation
in children with DD (Kucian et al., 2006; Mussolin et al., 2010; Price et al., 2007).
More than 50% of the children also had problems in subtraction with borrowing
in the number range from 0-100 (Subtraction 2,1 TCand Subtraction 2,2 TCin
Fig. 3.4). This result again confirms the link between subtraction and spatial number
representation (Dehaene, 2011).

By definition, key skills demonstrate in which areas the usersexhibit difficulties.
Therefore, we can also assess the performance of the users within the system by
their number of key skills. The normalized number of key skills is computed as the
number of key skills divided by the number of totally played skills. On average, the
normalized number of key skills per user was 0.27 (SDσ = 0.14). This number
can be interpreted as follows: On average, the children had difficulties with 27% of
the skills that they played. When breaking this number down into the different cate-
gories of the training program (number representations, additionandsubtraction), it
can be seen that most problems arose insubtraction. The normalized number of key
skills was 0.26 (SDσ = 0.19) in number representations, 0.17 (SDσ = 0.2) in ad-
dition and 0.37 (SDσ = 0.15) insubtraction. The distributions over the normalized
key skill numbers in the different categories are displayedin Fig. 6.6. Interestingly,
we observe that the normalized key skill numbers foraddition andnumber repre-
sentationsskills follow an exponential distribution. The long tail ofthe distribution
demonstrates that most children did not have difficulties inthese categories. Rather,
only few children had strong difficulties in these categories. On the other hand, the
normalized number of key skills insubtractionis significantly higher than in the two
other categories (indicated by a two-sided t-test:p< .001 for both categories).
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6.5 Discussion

6.5 Discussion

In this chapter, we have assessed the quality of the student model and the control
mechanism based on the log file data collected in the user studies (see Chapter 4).
The analyses were conducted to demonstrate the effectiveness of the program and
the controller design as well as its adaptability. Furthermore, we also analyzed prop-
erties of users and key skills.

In a first analysis, we estimated the learning rate of the children over their key skills
KU . Our suggested logistic regression model normalizes the opportunity count over
time (i.e., start of the training= 0, end of the training= 1) and therefore measures
the learning gain over the course of the training. The estimated mean improvement
of 21.8% overKU demonstrates that children were able to improve in areas where
they had problems. Interestingly, subtraction exhibits a lower improvement than ad-
dition. Given the external training effects (detailed in Sec. 4.3), we would expect
the opposite. However, children have a lot more subtractionkey skills than addition
key skills. Therefore, despite the average improvement perskill being higher for ad-
dition, the total improvement is still higher for subtraction. Furthermore, the higher
number of key skills in subtraction leads to more practice insubtraction skills.

In a second analysis, we estimated the improvement in accuracy when positioning
a number on a number line (skillsArabic→Numberline, Verbal→Numberlineand
Concrete→Numberlinein the skill net illustrated in Fig. 3.4). Children improved
significantly in both number ranges, which demonstrates a refined spatial number
representation. The improved number line representation is consistent with the sig-
nificant improvement in subtraction, as subtraction is considered the main indicator
for numerical understanding (Dehaene, 2011). Furthermore, this result also confirms
previous studies (Siegler and Booth, 2004; Booth and Siegler,2006, 2008; Halberda
et al., 2008) which demonstrated significant correlations between arithmetic abilities
and the quality of numerical magnitude representation.

In contrast to previous work (Corbett and Anderson, 1994; Beckand Sison, 2006;
Koedinger et al., 1997) employing a linear skill hierarchy (such as Bayesian Knowl-
edge Tracing (BKT) (Corbett and Anderson, 1994)), our DBN structure is non-linear
and we therefore also allow backward movements (to easier skills) of the controller.
Our analysis demonstrates that children reduce the rate of mistakes immediately af-
ter going back to an easier skill and also exhibit a higher learning rate. Our model
therefore implicitly addresses forgetting and knowledge gaps.

Fast adaptability to the knowledge state of the user is important for effective
teaching, as children tend to exhibit very different mathematical performance pro-
files (von Aster, 2000; Geary, 2004; Wilson and Dehaene, 2007). The student model
of Calcularis is able to adapt to the knowledge state of the user within 2.1 sessions
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on average. Therefore, the users train in areas where they have problems already in
the first week of the training.

The results of our key skills analyses demonstrate that users exhibit different mathe-
matical problems and very different numbers of key skills. These results are in line
with literature (von Aster, 2000; Geary, 2004; Wilson and Dehaene, 2007), which
demonstrates that children show different mathematical performance profiles. De-
spite this variety, some skills are difficult for all children. They tend to have most
difficulties in subtraction (as illustrated in Fig. 6.6), which again confirms the exter-
nal training effects measured in the user studies (see Sec. 4.3).
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C H A P T E R 7
Latent structured prediction

A key feature of an intelligent tutoring system (ITS) is the adaptation of the learning
content and the difficulty level to the individual student. The selection of problems
is based on the estimation and prediction of the student’s knowledge by the student
model. Therefore, modeling and predicting student knowledge accurately is a fun-
damental task of an ITS.

Probabilistic models are widely used for representing, estimating and predicting
student knowledge. One of the most popular approaches is Bayesian Knowledge
Tracing (BKT) (Corbett and Anderson, 1994), a special case of aHidden Markov
Model (HMM) (Reye, 2004). As the prediction accuracy of a probabilistic model is
dependent on its parameters, an important task when using BKTis parameter learn-
ing. Recently, the prediction accuracy of BKT models has been improved using
clustering approaches (Pardos et al., 2012b) or individualization techniques, such as
learning student- and skill-specific parameters (Pardos and Heffernan, 2010a; Wang
and Heffernan, 2012; Yudelson et al., 2013) or modeling the parameters per school
class (Wang and Beck, 2013).

In this chapter, we present a different approach for improving prediction accuracy
of probabilistic models. We increase the representationalpower of the model by em-
ploying more complex dynamic Bayesian networks (DBN) (Murphy, 2002), repre-
senting the different skills of a learning domain as well as their dependencies jointly
in one model. Utilizing models without a tree structure, however, imposes chal-
lenges for inference and learning. We therefore use constrained structured predic-
tion with latent variables to learn the parameters of the network. The regularization
via constraints naturally enforces model interpretability and we demonstrate, that
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the constraint setting also improves the prediction accuracy of the model. Further-
more, we compare the performance of the more complex hierarchical models to that
of BKT on large-scale data sets from different learning domains.

7.1 Structured learning for data-driven education

When employing DBNs, we consider the different skills of a learning domain jointly
within a single model. Student knowledge is represented using binary latent vari-
ables,i.e., each variable represents knowledge about one specific skill (for example
addition). We further assume that a skill can either be mastered by the student or
not. The latent variables are updated based on the correctness of students’ answers
to questions that test the skill under investigation, henceobservations are also bi-
nary. We also model the dependencies between the different skills, e.g., two skills
Sa andSb are conditionally dependent, ifSa is a prerequisite for masteringSb. In the
following subsections, we describe the parameter learningtask in detail.

7.1.1 Probabilistic Notation

The learning task of a DBN model can be described as follows: let the set ofN
variables of the model be denoted byV = {Vi | i ∈ {1, . . . ,N}}. In addition, consider
an input space objectX denoting the set of skills of the model and the corresponding
task specific output spaceY representing a sequence of answers. Furthermore, we
letH denote the domain of the unobserved variables,i.e., missing answers and the
unobserved binary variables denoting whether a skill is mastered. Moreover, we let
ym = (ym,1, ...,ym,T) represent a sequence ofT binary answers from them-th student.
As T is student dependent,i.e., every student completes a different number of tasks
during the training,X ,Y andH also depend on the student. During learning, we are
interested in finding the parametersθ that maximize the likelihood of the observed
data,i.e., the likelihood of a training setD consisting of|D| input- and output-space
object pairs(xm,ym) ∈ Xm×Ym. The log likelihood of the model is then given by

L(θ) = ∑
(xm,ym)

ln

(

∑
hm

p(ym,hm | xm,θ)

)

, (7.1)

where we marginalize over the states of the latent variableshm for studentm. The
joint probability p(ym,hm | xm,θ) of the model for studentm is defined as

p(ym,hm |xm,θ) =∏
i

p(Vm,i =vm,i | pa(Vm,i) =vm,pa(Vm,i)) =∏
i

pi jm,ikm,i , (7.2)

wherepa(Vm,i) are the parents ofVm,i, while vm,i andvm,pa(Vm,i) are the realizations
of the random variablesVm,i andpa(Vm,i), i.e., the states assigned toVm,i andpa(Vm,i)
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given by(ym,hm). Furthermore, we letj i,m := vm,i andkm,i := vm,pa(Vm,i) to sim-
plify the notation. Therefore,pi jm,ikm,i denotes exactly one entry in the conditional
probability table (CPT) ofVm,i.

7.1.2 Log-linear formulation

The log-likelihood of a DBN can alternatively be formulated using a log-linear
model. This formulation is flexible and predominantly used in recent literature (Laf-
ferty et al., 2001; Schwing et al., 2012). Therefore, we reformulate the learning task
in the following. Letφ : Y ×H→ R

F denote a mapping from the latent spaceH
and the observed spaceY to anF-dimensional feature vector. The log likelihood
from Eq. (7.1) can then be reformulated to

L(w) = ∑
(xm,ym)

ln

(

∑
hm

exp
(

w>φ(xm,ym,hm)− ln(Z)
)

)

, (7.3)

whereZ is a normalizing constant andw denotes the weights of the model. Next,
we show that this log-linear formulation of the log-likelihood is equivalent to the
traditional probabilistic notation. Comparing Eq. (7.3) toEq. (7.1), it follows that

∏
i

pi jm,ikm,i =
1
Z

expw>φ(xm,ym,hm) =
1
Z

exp∑
i

w>i φi(xm,ym,hm), (7.4)

and therefore

∀i, j,k : pi jk =
1
Z

expw>i φi(v), (7.5)

wherev are the realizations of all random variables inV with j ∈ v andk ⊂ v. A
feature vectorφ and weightsw that fulfill Eq. (7.5) can be specified as follows: con-
sider the CPT describing the relationship between a nodeVa and itsn− 1 parent
nodespa(Va). The CPT for thesen nodes contains 2n entries. Letk ∈ {0,1}n−1 de-
note one possible assignment of states to the parent nodespa(Va). We can therefore
definep(Va= 1 | pa(Va) = k) = 1− p(Va= 0 | pa(Va) = k) = 1− pa,0,k. To continue,
let pa,va,k =

1
Z expwa,k(1−2va), which leads to the feature functionφa(v) = 1−2va

and normalizationZ= expwa,k(1−2va)/(expwa,k(1−2va)+exp(−wa,k(1−2va))).
The probabilitiespi ∈ θ are therefore proportional (in the log domain) to the weights
wi ∈ w and we can easily switch between the two notations. We obtainthe joint
distribution as a product of the exponential terms which translates to a weighted lin-
ear combination of feature vector entries in the exponent and thus fulfills Eq. (7.5).
From this formulation also follows that we need 2n−1 parameters to specify a CPT
includingn skills.
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7.1.3 Optimization

We subsequently solve the learning problem by optimizing the log-linear model of
the data. Performing maximum likelihood we choose the weights w such that the
model assigns highest probability to the training setD. Note that for clarification of
notation we neglect dependence of variablesV and spacesX ,Y andH on the student
m in the following. Furthermore, we will also explicitly indicate estimations,i.e., ŷ
andĥ denote estimations fory andh. We therefore reformulate Eq. (7.3) as

L(w) = ∑
(x,y)∈D

ln p(y | x,w), (7.6)

with p(ŷ | x,w) ∝ ∑ĥ∈Hexpw>φ(x, ŷ, ĥ). If the data is independent and
identically distributed (i.i.d.), minimization of the negative log likelihood
− ln[p(w)∏y p(y | w)] yields the following optimization

min
w

C
2
‖w‖22− ∑

y∈D
ln p(y | x,w),

with a log-quadratic prior functionp(w).

Considering optimization of the aforementioned non-convexcost function we com-
monly follow the expectation maximization (EM) approach (Dempster et al., 1977)
or more generally the concave convex procedure (CCCP) (Yuille and Rangarajan,
2003). We linearize the concave term by computing its gradient at the current iterate
and subsequently minimize a convex objective. This step, identical to optimizing
HMMs via EM, is guaranteed to converge to a stationary point (Sriperumbudur and
Lanckriet, 2009).

But contrasting HMMs, neither linearization of the concave part nor minimization
of the resulting convex objective is computationally tractable for general models. To
our benefit and as indicated before and detailed below, the elements of the feature
vectorφ(x,y,h) typically decompose into functions depending only on a small frac-
tion of variables. This can be employed to approximate the objective. Recently,
Schwing et al. (2012) showed that a convex approximation admits more efficient
learning of parameters than its non-convex counterpart. Note that interpretability
of the parametersw is not guaranteed, particularly since guarantees exist foronly
converging to a local optimum. However, interpretability implies some form of
expectation regarding the parameters. In the following, wetherefore propose to
constrain the parameter space. This is useful since domain experts are capable of
restricting the range of acceptable parameters,e.g., it is reasonable to assume the
guess probabilitypguessto be less than 0.3 (Corbett and Anderson, 1994; Yudelson
et al., 2013).
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7.2 Learning with constrained parameters

To formulate the constrained optimization, we let¯̀(y,x,w) = − ln p(y | x,w), i.e.,
explicitly,

¯̀(x,y,w)= ln∑
ŷ,ĥ

expφ̂(x, ŷ, ĥ,w)− ln ∑
ĥ∈H

expφ̂(x,y, ĥ,w)

while the potential is given aŝφ(x,y,h,w) = w>φ(x,y,h). Then we augment the
learning task to read as theconstrainedoptimization problem

min
w

C
2
‖w‖22+ ∑

(x,y)∈D

¯̀(x,y,w) s.t. w ∈ C, (7.7)

with C denoting a convex set. Leaving the constraint set aside, this program pos-
sesses the same difficulty as the original task,i.e., we minimize a non-convex objec-
tive operating on exponentially sized sets. Being interested in the quality of duality
based approximations, we subsequently follow Schwing et al. (2012).

We first note that an upper-bound to the program given in Eq. (7.7) is stated by the
following cost function:

C
2
‖w‖22+ ∑

(x,y)



ln∑
ŷ,ĥ

exp(φ̂(x, ŷ, ĥ,w))−H(q(x,y))−Eq(x,y) [φ̂(x,y, ĥ,w)]



 , (7.8)

with H denoting the entropy andE indicating computation of the expectation. Im-
portantly, the upper bound allows dividing the program intotwo parts which are
iterated alternating when following the CCCP procedure: on theone hand a mini-
mization w.r.t. the distributionq(x,y) ranging over the latent spaceĥ ∈ H for every
sample(x,y). This task is often referred to as ‘latent variable prediction task’. On
the other hand a minimization w.r.t. the weight vectorw subject to constraintsC.
Both problems remain intractable without further modifications. However, we no-
tice that minimization to find the distributionsq(x,y) directly follows Schwing et al.
(2012) and we can incorporate their approximation without further modification.

Due to the additional constraint set it is the second task which requires specific
attention. The relevant excerpt from the linearized program given in Eq. (7.7) reads
as follows:

min
w∈C

∑
(x,y)∈D

ln∑
ŷ,ĥ

expw>φ(x, ŷ, ĥ)−w>d+
C
2
‖w‖22. (7.9)

We note that the vector of empirical meansd ∈ R
F contains information from the

observed variables as well as information from the linearization of the concave part.
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Algorithm 1 (Structured Prediction with Constrained Param eter Spaces).
Let φ̃(x,y),r((ŷ, ĥ)r) = ∑k:r∈Rk

wkφk,r(x,(ŷ, ĥ)r).

Repeat until convergence:

1. Update Lagrange multipliers:∀(x,y), r, p∈ P(r),(y,h)r

µ(x,y),p→r((y,h)r) = ln ∑
(y,h)p\(y,h)r

(exp(φ̃(x,y),r((y,h)r)− ∑
p′∈P(p)

λ(x,y),p→p′((y,h)p′)

+ ∑
r ′∈C(p)\r

λ(x,y),r ′→p((y,h)r ′)))

λ(x,y),r→p((y,h)r) ∝
1

1+ |P(r)|

(

φ̂(x,y),r((y,h)r)+ ∑
p′∈P(r)

µ(x,y),p′→r((y,h)r)

)

− µ(x,y),p→r((y,h)r)

2. Perform a gradient step and project the result onto the constraint setC:

w← PC [w− γ∇w f (λ ,w)]

Figure 7.1: An algorithm for learning parameters of structured models within constrainedparame-
ter spaces.

This task differs from the standard structured prediction program in an additional
regularization w.r.t. the constraint setC. Although assumed to be convex subse-
quently, this additional regularization makes the programmore challenging to solve
in general. We subsequently show the approximations required to obtain an efficient
algorithm based on projected gradients. To this end, we firststate the dual program
of the task given in Eq. (7.9).

Claim 1. The dual program of the constrained structured prediction task
(see Eq.(7.9)) reads as

max
p(x,y)∈∆ ∑

(x,y)∈D

H(p(x,y)(ŷ, ĥ))+
C
2
‖PC [z]‖

2
2−Cz>PC [z] ,

where we maximize the entropy H of distributions p(x,y) restricted to the
probability simplex∆Y×H over the complete data space. The projection of

z = 1
C

(

d−∑(x,y),ŷ,ĥ p(x,y)(ŷ, ĥ)φ(x, ŷ, ĥ)
)

onto the constraint setC is denoted

by PC [z] and d∈ R
F refers to the vector of empirical means.

Proof: We introduce a temporary variableg(x, ŷ, ĥ) = w>φ(x, ŷ, ĥ) to decouple the
soft-max function from the norm minimization in Eq. (7.9). Optimizing w.r.t. both,

88



7.2 Learning with constrained parameters

w andg, we obtain the entropy as the conjugate dual of the soft-max.Minimizing
the norm subject to constraints yields the projection of thedifference between the
empirical means vectord and its estimate onto the constraint setC. We note that
C = R

F yields the solution given by Hazan and Urtasun (2010), whichconcludes
the proof.

The aforementioned summation over exponentially sized sets within the primal prob-
lem manifests itself in distributionsp(x,y) over respective simplexes∆Y×H. Instead
of working with a full joint distribution over the set of all possible solutionsY ×H,
we operate with corresponding marginalsb(x,y) for sample(x,y) and respective
marginalization constraints. The marginals are chosen according to the variable
dependence structure introduced within the feature vectorφ(x, ŷ, ĥ).

More formally, let the k-th element of the feature vector be given by
φk(x,y,h) = ∑r∈Rk

φk,r(x,(y,h)r) where r specifies a restriction of the function
to a subset of the observed and unobserved variables. The setof all restrictions
for the k-th element of the feature vector is referred to viaRk. All in all we
therefore consider the marginalsb(x,y),r((y,h)r) which are required to fulfill the
marginalization constraints,i.e., we enforce them to be consistent amongst each
other. Importantly, this means that we neglect the exponential number of constraints
within the marginal polytope by adopting its local approximation (Wainwright and
Jordan, 2008). In addition to usage of marginals, we approximate the joint entropy
H(p(x,y))≈ ∑r H(b(x,y),r).

To obtain an approximated convex primal, we introduce Lagrange multipliers
λ(x,y),r→p((y,h)r) for each marginalization constraint that ties together tworestric-
tions r and p. We obtain the approximated, convex and constrained primalas fol-
lows:

min
w∈C,λ

∑
(x,y),r

ln ∑
(ŷ,ĥ)r

expφ̂(x,y),r((ŷ, ĥ)r)−d>w+
C
2
‖w‖22 , (7.10)

where we denote the re-parameterized potential via

φ̂(x,y),r((ŷ, ĥ)r) = ∑
k:r∈Rk

wkφk,r((x, ŷ, ĥ)r)+∑
p∈P(r)

λr→p((ŷ, ĥ)r)

− ∑
c∈C(r)

λc→r((ŷ, ĥ)c),

whereP(r) is the set containing the parent regions ofr in the region graph, while
C(r) contains the child regions ofr (Schwing et al., 2012). The Lagrange multipliers
λr→p and λc→r denote the messages that are sent along the edges of the region
graph (Schwing et al., 2012). The derivation follows Hazan and Urtasun (2010)
and Schwing et al. (2012) and we recover the constraint setC by computing the dual
for the projectionPC . Intuitively we push energyλ between different restrictions
such that we can find a weight vectorw which minimizes the objective subject toC.
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Constrained structured prediction with latent variables.
Repeat until convergence:

1. Solve the approximate ‘latent variable prediction’ until convergence and up-
date the empirical meansd.

2. Perform a single iteration of ‘constrained structured prediction’ as detailed in
Fig. 7.1.

Figure 7.2: Algorithm for constrained structured prediction with latent variables.

This formulation differs from Hazan and Urtasun (2010) in that the domain for the
parametersw is constrained by the convex setC. We proceed by iterating between
updates for the Lagrange multipliersλ and the model parametersw which guaran-
tees convergence for the convex cost function. Note that optimization of the program
given in Eq. (7.10) w.r.t.λ is unconstrained. Therefore we follow a block-coordinate
descent scheme.

Let f (w,λ ) denote the cost function of the program given in Eq. (7.10). Fixing
λ , f is a smooth, convex but non-linear function inw and a well-known method
to address the constraint minimization off w.r.t. w is the projected gradient algo-
rithm (Rockafellar, 1970). We use the gradient of the smooth cost-function as a
descent direction, perform a step and project the result onto the constraint setC.

It is important to note that a single projection step is sufficient for convergence
guarantees since block-coordinate descent methods only require to decrease the cost
function at every iteration which is ensured after a single projection. We summarize
this observation in the following claim.

Claim 2. The algorithm outlined in Fig. 7.1 guarantees convergence of the con-
strained structured prediction program given in Eq.(7.10).

Proof: Strong convexity admits block-coordinate descent updates (Tseng, 1993),i.e.,
iterating between updates for weightsw and Lagrange multipliersλ . The require-
ment of decreasing the cost function is met for the updates w.r.t. λ and also ensured
by a single projection ofw ontoC, which consequently proves the claim.

Combining the structured prediction algorithm outlined in Fig. 7.1 with the ‘latent
variable prediction task’ we obtain the algorithm given in Fig. 7.2 which we will
refer to asconstrained structured prediction with latent variables.
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Figure 7.3: Structure of the graphical model for an example DBN withT time steps. Circular
nodes represent skills, while the rectangles denote the tasks associated with those
skills. The weights of the model are assumed to be stationary (time-invariant),i.e.,
the parameters are shared over the different time slices.

7.3 Model specification and parametrization

DBNs can be specified and parametrized in different ways. In this section, we in-
troduce the parametrization used for the experimental evaluation of our method (de-
scribed in Sec. 7.4 and Sec. 7.5). Note, however, that the proposed algorithm is
independent of the used parametrization. Therefore, the parametrization introduced
in the following can be easily extended.

As in BKT, we can interpret the parameters of a DBN in terms of a learning context.
Figure 7.3 illustrates the graphical model of a simple DBN with three skillsS1, S2

andS3 overT time steps. Two of the skills (S2 andS3) have associated tasks repre-
sented by gray rectangles, while skillS1 cannot be observed. To specify the CPTs
of this example DBN, we employF = 22 weights that can be associated with a pa-
rameter setθ . We subsequently use' to denote proportionality in the log domain,
i.e., wi ' pi is equivalent towi ∝ exppi .

Let O3 denote the task associated with skillS3. Then the parameters
w20 ' p(O3,t = 0 | S3,t = 0) = 1− pG and w21 ' p(O3,t = 0 | S3,t = 1) = pS

represent the guess and slip probabilities. Similarly,w18 and w19 are associ-
ated with pG and pS as evident from Fig. 7.3. This association with guess and
slip probabilities is important for choosing appropriate constraints: pG and pS

have been constrained in previous work (Corbett and Anderson, 1994; Yudelson
et al., 2013), a usual bound ispG ≤ 0.3 and pS≤ 0.3. Furthermore, parameters
w6 ' p(S1,t = 0 | S1,t−1 = 0) = 1− pL and w7 ' p(S1,t = 0 | S1,t−1 = 1) = pF
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are associated with learning and forgetting; the same holdstrue for w8 andw9. It
seems appropriate to limit these probabilities to be less than 0.5 - a forget proba-
bility pF > 0.5 would lead to a model assuming a student that constantly forgets
previously learned content.

Skills S1 and S2 are prerequisites for knowing skillS3, i.e., the probability that
skill S3 is mastered in time stept depends not only on the state of skillS3 in
the previous time step, but also on the states ofS1 and S2 in the current time
step. Thereforew10' p(S3,t = 0 | S3,t−1 = 0,S1,t = 0,S2,t = 0) = 1− pL0, where
pL0 denotes the probability that the student learnsS3 despite not knowingS1 and
S2. We will again constrainpL0 as we assume anAND relationship for precursor
skills in the model: In order to masterS3, S1 andS2 need to be known. The skill
model ofCalcularis (see Fig. 3.4) is also based on this assumption. In addition,
w17' p(S3,t = 0 | S3,t−1 = 1,S1,t = 1,S2,t = 1) = pF1, the probability of forgetting
a previously learned skill. We will constrain this probability for the reasons stated
in the paragraph above.

Furthermore, we setwl ' 1− pLM if l ∈ {11,12,13} and wl ' 1− pFM if
l ∈ {14,15,16}, wherepLM denotes the probability that the student learnsS3 given
that he knows at least one of the precursor skills ofS3. Moreover,pFM is the proba-
bility that the student forgets the previously known skillS3, when eitherS1 or S2 or
none of them are known. Note that this parametrization is a simplification as it will
allow us to set one bound for several weights.

Finally, the parameterswl with l ∈ {2,3,4,5} describe the dependencies between the
different skills. We letwl ' 1− pP0, if l ∈ {2,3,4} andw5' pP1, wherepP0 is the
probability of knowing a skill despite having mastered onlypart of the prerequisite
skills andpP1 denotes the probability of failing a skill given that all precursor skills
have been mastered already. This parametrization is again derived from theAND
relationship assumed for precursor skills, as described above. Moreover, we refer to
the probability of knowing a skill a-priori viap0. Note thatw0 andw1 are associated
with p0. The DBN illustrated in Fig. 7.3 can therefore be described bythe parameter
setθ = {p0, pG, pL, pF , pL0, pF1, pLM, pFM, pP0, pP1}.

7.4 Evaluation of regularization

To assess the influence of the regularization with constraints on the prediction accu-
racy of the model, we evaluated our constrained approach in two (small) real data
experiments. In particular, we compared the accuracy of ourapproach to that of an
unconstrained setting. Furthermore, we also checked against a model using parame-
ters chosen by experts: As the constraints are selected based on domain knowledge,

92



7.4 Evaluation of regularization

we expect the expert parameters to be in the same range as the parameters learned
by our approach.

For our experiments, we used log file data from 126 participants of theBMBF-study.
From the 126 children (69% females), 57 were diagnosed as having developmental
dyscalculia (DD) and 69 were control children (CC). On averagechildren completed
28.9 sessions (SDσ = 3.3). The number of solved tasks was 1523 (SDσ = 270)
and the number of solved tasks per session corresponded to 52.8 (SDσ = 7.2).

The prediction accuracy was computed as follows: given a setof observations for
the DBN, we predicted the state of the unobserved nodes and provided the root
mean squared error (RMSE), the classification error (CE, i.e.,frequency of predicted
state not equaling true state) and the area under the ROC curve (AUC). If not noted
otherwise, convex learning stops when the improvement of the primal is less than
10−9 or the maximum number of iterations exceeds 500. In case of constraints the
stopping criterion is met if the primal improves by less than5·10−6 or 300 iterations
are exceeded. For inference, we limited the number of message passing iterations to
100.

7.4.1 Number understanding

In a first experiment, we looked at two skills taught in the number range from 0-
100. Figure 7.4 illustrates the model, which is an extract ofthe skill model of
Calcularis (illustrated in Fig. 3.4). SkillS1 (Ordinal 1 in Fig. 3.4) represents
knowledge of the concept of ordinal number understanding,i.e., understanding a
number as a position in a sequence. There exists no exercise for this skill, hence
no observations are available. The concept of relative number understanding is rep-
resented by skillS2 (Relativein Fig. 3.4). Relative number understanding denotes
the ability to understand a number as a difference between two numbers. We cannot
directly observe this ability, but the results of an exercise associated with it. These
results are referred to by rectangles which denote the outcome of a particular ‘task’.
For this experiment, we used a maximum ofT = 50 time-steps (task outcomes) per
child (mean: 22.16 (SD 9.98)). One child with no observations at skillS2 was ex-
cluded from the analysis.

The model representing this task employsF = 11 parameters to specify the condi-
tional probabilities that define the network illustrated inFig. 7.4. The parametriza-
tion of the graphical model is performed as described in Sec.7.3. Following this
section, parametersw9 and w10 are associated with the guess probabilitypG and
the slip probabilityps, which are commonly assumed to be lower than 0.3 (Corbett
and Anderson, 1994; Yudelson et al., 2013). This upper boundtranslates to the con-
straintsw9≥ 0.4236 andw10≤−0.4236. Furthermore, from Sec. 7.3 we know that
parametersw5 andw8 are associated with learning and forgetting. We limit these
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Figure 7.4: Structure of the graphical model used for the number understanding experiment for
T time steps. SkillS1 denotes knowledge about the ordinality of numbers (Ordinal
1 in Fig. 3.4), whileS2 represents knowledge about the concept of relative number
understanding (Relativein Fig. 3.4).

probabilities to be lower than 0.3, yieldingw5 ≥ 0.4236 andw8 ≤ −0.4236. The
aforementioned constraints define the setC1.

We refer to setC2 as the constraints within the setC1, augmented by the follow-
ing restrictions. Sincew3 andw4 are also related to learning and forgetting (see
again Sec. 7.3), we utilize constraints identical to those for w5 andw8: w3≥ 0.4236
andw4 ≤ −0.4236. Similarly, we definew6 ≥ 0.4236 andw7 ≤ −0.4236. In ad-
dition, the hierarchical skill model ofCalcularis assumes that the number under-
standing abilityS1 is a prerequisite for relative number understandingS2 (von Aster
and Shalev, 2007). Hence we restrictw1 andw2 by assuming that the probability
of knowing S2 given S1 is larger than 0.7, while we let the probability of know-
ing S2 despite not knowingS1 be smaller than 0.3, which yieldsw1 ≥ 0.4236 and
w2 ≤ −0.4236. ConfigurationsC3 andC4 constrain the same parameters asC1 and
C2, but are more restrictive by replacing 0.3 and 0.7 with 0.2 and 0.8.

After learning the model parameters using only the observedtraining data, predic-
tion on the test data is performed as follows: we assume ‘Task1’ to be given and
predict the outcome of ‘Task 2’. Afterward, we employ results from both ‘Task 1’
and ‘Task 2’ to predict the outcome of ‘Task 3’ and continue topredict ‘Taskk’,
k∈ {4,5, . . . ,50} assuming the preceding task outcomes to be given.

The performance results provided in Tab. 7.1 are computed using 10-fold cross val-
idation. The most accurate results (per error measure) are marked in bold. We
observe our constrained learning approach to outperform expert parameters as well
as the unconstrained solution for most error metrics. Also the unconstrained opti-
mizationC = /0 yields good prediction results with the following parameter values:
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Expert C = /0 C = C1 C = C2 C = C3 C = C4

RMSE 0.464 0.393 0.382 0.379 0.374 0.373

CE 0.346 0.213 0.213 0.213 0.202 0.202

AUC 0.625 0.500 0.606 0.591 0.615 0.615

Table 7.1:Different error measures for the number understanding experiment. Comparison of un-
constrained and constrained conditions to previous work using a domain expert (Käser
et al., 2012). The best model per error measure is marked in bold. The regularization
through constraints improves prediction accuracy (as compared toC = /0).

w1, ...,w8 are set to 0, which results in uniform distributions for the according CPTs.
The parametersw9 andw10 are set to values smaller than−1 (over all folds). The
model therefore predicts a correct outcome with a probability higher than 0.88, in-
dependent of previous observations and the state of the hidden nodes. As the investi-
gated skill was easy to solve for most children, this model exhibits a high prediction
accuracy. It is, however, not interpretable with respect tohuman learning. Note that
expert parameters generally yield a good AUC, but exhibit a high RMSE and CE.
This result is not unexpected, as the expert parameters are not fit to the training data.

7.4.2 Subtraction

The four skills investigated in this experiment are different subtraction skills in the
number range from 0−100. The graphical model, which is again an extract of the
skill model used inCalcularis (see Fig. 3.4), is illustrated in Fig. 7.5. The nota-
tion of the different skills is explained in Tab. 3.1. SkillS1 denotes a subtraction
task without borrowing and a single-digit number as the subtrahend (Subtraction
2,1) while skill S3 also represents a subtraction task without borrowing, but with a
two-digit subtrahend (Subtraction 2,2). S2 denotes subtraction with borrowing and
a single-digit subtrahend (Subtraction 2,1 TC) andS4 denotes the ability to do sub-
traction with borrowing and two two-digit numbers (Subtraction 2,2 TC). The rect-
angles denote results of an exercise associated with the skills S2, S3 andS4. Again,
we used a maximum ofT = 50 time-steps (task outcomes) per child (mean: 43.59
(SD σ = 10.47)). To specify the conditional probabilities of the graphical model
(Fig. 7.5), we employedF = 33 parameters.

The constrained configurations for this experiment follow the domain knowledge
introduced in the first experiment. More specifically,C1 denotes the follow-
ing constraints:wi ≥ 0.4236,∀i ∈ {9,11,15,19,27,29,31} while wi ≤ −0.4236,
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Figure 7.5: Structure of the graphical model overT time steps used for the subtraction experiment.
Skill S1 denotes skillSubtraction 2,1, S2 representsSubtraction 2,1 TC, skill S3 stands
for Subtraction 2,2andS4 describes skillSubtraction 2,2 TC. The model is an extract
of the skill model illustrated in Fig. 3.4.

∀i ∈ {10,14,18,26,28,30,32}. The second configurationC2 augments the set
C1 by addingwi ≥ 0.4236,∀i ∈ {1,3,5,6,7,12,16,20,21,22} andwi ≤ −0.4236,
∀i ∈ {2,4,8,13,17,23,24,25}. Again, configurationsC3 andC4 constrain the same
parameters asC1 andC2, but are more restrictive by replacing 0.4236 and−0.4236
with 0.6913 and−0.6913.

Prediction was done as described in the first experiment and the performance results
provided in Tab. 7.2 were again computed using 10-fold crossvalidation. We ob-
serve again significant improvements of our constraint approach compared to the
expert parameters as well as the unconstrained setting in all error metrics. We high-
light the improvement of the classification error by 5.9% when learning our com-
putational education model within a constrained parameterspace (CEC/0 = 0.325,
CEC4 = 0.268).

7.5 Comparison to non-hierachical models

In a second evaluation, we assessed the prediction accuracyof DBNs in compari-
son to non-hierarchical models,i.e., BKT models representing only one skill. We
performed this evaluation to demonstrate the benefits of models with higher repre-
sentational power. We performed experiments on five data sets from various learning
domains. The data sets were collected with different tutoring systems and contain
data from elementary school students up to university students. We compare the
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Expert C = /0 C = C1 C = C2 C = C3 C = C4

RMSE 0.489 0.469 0.453 0.436 0.446 0.433

CE 0.398 0.325 0.313 0.287 0.302 0.268

AUC 0.555 0.561 0.641 0.674 0.621 0.682

Table 7.2:Different error measures for subtraction. Comparison of different configurations to pre-
vious work using a domain expert (Käser et al., 2012). The best model per error measure
is marked in bold. The constrained optimization outperforms the expert parameters as
well as the unconstrained configuration regarding all error measures.

prediction accuracy of DBNs modeling skill topologies with the performance of tra-
ditional BKT models.

Fitting the BKT models was done using Yudelson et al. (2013), applying skill-
specific parameters and using gradient descent for optimization. As described
by Yudelson et al. (2013), we set the forget probabilitypF to 0, while pS and pG

were bounded by 0.3. In the following, we will denote this constrained BKT version
as BKTC.

We used constrained latent structured prediction (as described in Sec. 7.2) to learn
the parameters of the DBN models. All models were parametrized according
to Sec. 7.1 and we imposed the constraints described in the following on the pa-
rameter setθ of the different models to ensure interpretable parameters. For our
first constraint setC1, we let pD ≤ 0.3 for D ∈ {G,S,L,F,L0,F1} to ensure that
parameters associated with guessing, slipping, learning and forgetting remain plau-
sible. The constraints onθ can be directly turned into constraints onw. For the ex-
ample DBN (Fig. 7.3), the constraints translate into the following linear constraints
on the weights forC1: wi ≥ 0.4236, if i ∈ {6,8,10,18,20} andwi ≤ −0.4236, if
i ∈ {7,9,17,19,21}. For the second constraint setC2, we augmentedC1 by limiting
pD ≤ 0.3 if D ∈ {LM,FM,P0,P1}, yieldingwi ≥ 0.4236, if i ∈ {2,3,4,11,12,13}
andwi ≤ −0.4236, if i ∈ {5,14,15,16} for the example DBN (Fig. 7.3). The addi-
tional constraints ensure that parameters are consistent with the hierarchy assump-
tions of the model. The constraint setsC3 andC4 bound the same parameters asC1

andC2, but are more restrictive by replacing 0.3 by 0.2. Note that constraints were
selected according to Sec. 7.3.

Prediction was again performed as follows: we assumed the observation at time
t = 1 to be given and predicted the outcome at timet with t ∈ {2, ...,T} based on
the previoust−1 observations. The number of observationsT for the different ex-
periments is the minimal number of observations covering all skills of the according

97



Latent structured prediction

experiment. The exact number of observationsT is given in the description of each
experiment. To assess prediction accuracy, we again provide the following error
measures: Root mean squared error (RMSE), classification error CE (ratio of incor-
rectly predicted student successes and failures based on a threshold of 0.5) and the
area under the ROC curve (AUC). All error measures were calculated using cross-
validation. Statistical significance was computed using a two-sided t-test, correcting
for multiple comparisons (Bonferroni-Holm).

Note that we selected skills, where users showed low performance for our experi-
ments, in order to make learning and prediction more challenging. In the following,
we describe the DBNs for the five data sets and discuss the prediction accuracy for
our models as well as for BKTC.

7.5.1 Number representation

For the first experiment, we used data collected fromCalcularis. The data set
contains log files of 1581 children training with the productversion ofCalcularis
with at least five sessions of 20 minutes per user. The log filesof the product version
were collected in an uncontrolled setting and therefore, demographic information
about the children is not available. Furthermore, the training statistics of the users
differ a lot. On average, children completed 20.7 sessions (SDσ = 19.2). The
total number of solved tasks was 1395 (SDσ = 1087), while the number of solved
tasks per session corresponded to 75.5 (SD σ = 20.8). The graphical model used
in this experiment (see Fig. 7.3) is an excerpt of the skill model of Calcularis
(illustrated in Fig. 3.4, see Tab. 3.1 for an explanation of the notation used). SkillS1

(Arabic) represents knowledge about the Arabic notation system.Calcularis does
not contain any tasks associated with this skill. The ability to assign a number to an
interval is denoted byS2 (Ordinal 3). The task associated with this skill is to guess
a number in as few steps as possible. Finally,S3 denotes the ability to indicate the
position of a number on a number line (Arabic→Numberline). We used a maximum
of T = 100 observations per child for learning and prediction and specified the CPTs
of the graphical model withF = 22 weights.

Prediction errors for the constraint setsC1 toC4 as well as BKTC are given in Tab. 7.3.
The constrained DBN approach yields significant and large improvements in pre-
diction accuracy compared to BKTC. We highlight the improvement in accuracy
by 11.4% (CEBKTC = 0.3141, CEC2 = 0.2783) and the reduction of the RMSE by
3.8% (RMSEBKTC = 0.4550, RMSEC4 = 0.4378). Also note the large improvement
achieved in AUC (AUCBKTC = 0.5975, AUCC2 = 0.7093).
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Figure 7.6: Graphical model for the subtraction experiment for the first two time steps. The model
contains eight subtraction skills (S1,...S5 andS7,...S9) and one number representation
skill (S6) with associated tasks (denoted by rectangles). Two of the skills (S1 and
S6) cannot be observed. The model is an excerpt of the skill model (see Fig. 3.4) of
Calcularis.

.

7.5.2 Subtraction

The second experiment is based on the same data set as the firstexperiment (de-
scribed in Sec. 7.5.1). This time, however, we investigatedsubtraction and number
representation skills. The graphical model (see Fig. 7.6) is again an excerpt of the
skill model ofCalcularis (illustrated in Fig. 3.4, see Tab. 3.1 for an explanation
of the notation used). Subtraction skills are ordered according to their difficulty,
which is determined by the magnitude of involved numbers, task complexity and the
means allowed to solve a task. SkillsS1 (Subtraction 2,1), S2 (Subtraction 2,1 TC),
S3 (Subtraction 2,2), S4 (Subtraction 2,2 TC) andS5 (Operation 2,2) denote subtrac-
tion tasks in the number range 0−100. We emphasize that there are no observation
nodes associated withS1 andS5. The number representation skillS6 (Relative) rep-
resents knowledge about the relational aspect of number (number as a difference
between other numbers) in the number range 0−1000. Finally, skillsS7 (Support
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Table 7.3:Prediction accuracy of the experiments, comparing BKTC with different constraint sets
for the DBN models. The best result for each error measure is marked bold. Signifi-
cant improvements compared to BKTC are also indicated (*). Our hierarchical models
outperform BKTC over all data sets and in all error measures.

BKT C C = C1 C = C2 C = C3 C = C4

Number
representation

RMSE 0.4550 0.4469* 0.4452* 0.4416*0.4378*
CE 0.3141 0.3279* 0.2783* 0.3079* 0.2831*

AUC 0.5975 0.7072* 0.7093* 0.7087* 0.7049*

Subtraction
RMSE 0.4368 0.4417* 0.4215* 0.4389* 0.4216*

CE 0.2818 0.2812* 0.2588* 0.2757* 0.2580*
AUC 0.5996 0.6157* 0.6870* 0.6332* 0.6916*

Physics
RMSE 0.4530 0.4521* 0.4272* 0.4465* 0.4244*
CE 0.2930 0.2893* 0.2677* 0.2870*0.2616*
AUC 0.5039 0.6511* 0.6971* 0.6795* 0.7007*

Algebra
RMSE 0.3379 0.3335* 0.3254* 0.3321* 0.3267*

CE 0.1461 0.1466* 0.1392* 0.1466* 0.1379*
AUC 0.5991 0.6682* 0.7004* 0.6718* 0.7007*

Spelling
RMSE 0.4504 0.4521* 0.4495* 0.4492* 0.4472*
CE 0.2898 0.2893* 0.2914* 0.2882* 0.2906*
AUC 0.5029 0.5695* 0.5771* 0.5735* 0.5804*

* p< .05

Subtraction 3,1), S8 (Subtraction 3,1) andS9 (Subtraction 3,1 TC) represent subtrac-
tion in the number range 0-1000. A maximum ofT = 100 observations per child was
used for learning and prediction. Specification of the CPTs for the model requires
F = 86 weights.

The resulting prediction accuracy for this experiment (seeTab. 7.3) again demon-
strates that the DBN model outperforms BKTC. With a reduction of the RMSE by
3.5% (RMSEBKTC = 0.4368, RMSEC2 = 0.4215) and an increase of the accuracy
by 8.4% (CEBKTC = 0.2818, CEC4 = 0.2580), improvements confirm the results ob-
served in the first experiment. Also the growth in AUC (AUCBKTC = 0.5996, AUCC4

= 0.6916) is again substantial.
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Figure 7.7: Graphical model for the physics experiment for the first two time steps. Themodel
consists of four modules:Vectors(S1), Translational Kinematics(S2), Statistics(S3)
andDynamics(S4). The rectangles represent the tasks associated with the modules.

7.5.3 Physics

This experiment is based on the ‘USNA Physics Fall 2005’ dataset accessed via
DataShop (Koedinger et al., 2010). Data originate from 77 students of the United
States Naval Academy and were collected fromAndes2, an ITS for physics (Conati
et al., 2002). The tutor uses rule-based algorithms to buildsolution graphs that iden-
tify all possible solutions of the different tasks. Based on these graphs, a Bayesian
network is constructed to assess the general physics knowledge of the student as
well as the progress for the problem at hand.

We used the different modules of the data set as skills for ourexperiment. The
graphical model is depicted in Fig. 7.7. Note that we intentionally used a simplified
skill model to avoid introducing incorrect assumptions andto assess if even non-
experts can exploit skill structures using our proposed methods. The model consists
of the following modules:Vectors(S1), Translational Kinematics(S2), Statistics
(S3) andDynamics(S4). These modules consist of more complex tasks for the given
topic, i.e., calculating total forces in a system (see example by Conatiet al. (2002)).
A maximum ofT = 500 observations per student were considered for learning and
prediction and the model is described byF = 33 weights.

In this experiment, the benefits of the DBN model are again high(see Tab. 7.3): the
accuracy is increased by 10.7% (CEBKTC = 0.2930, CEC4 = 0.2616) while the RMSE
is reduced by 6.3% (RMSEBKTC = 0.4530, RMSEC4 = 0.4244) and the AUC grows
to 0.7007 (AUCBKTC = 0.5039).
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(a) Graphical model for algebra experi-
ment over the first two time steps.
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(b) Graphical model for spelling experi-
ment over the first two time steps.

Figure 7.8: Graphical models for the algebra (a) and spelling (b) experiments. The algebra model
includes four skills dealing with word problems involving calculations with whole
numbers. The spelling model consists of three modules containing increasingly diffi-
cult words.

7.5.4 Algebra

For this experiment, we used data from the KDD Cup 2010 Educational Data Mining
Challenge (http://pslcdatashop.web.cmu.edu/KDDCup). The data set contains log
files of 6043 students that were collected by theCognitive Tutor (Koedinger et al.,
1997), an ITS for mathematics learning. The student model applied in this system is
based on BKT.

We used the units of the ‘Bridge to Algebra’ course as skills for our experiment
and selected four units of increasing difficulty, where students have to solve word
problems involving calculations with whole numbers. The graphical model for
this experiment is illustrated in Fig. 7.8(a). SkillS1 (e.g., 728624− 701312) de-
notes written addition and subtraction tasks without carrying/borrowing, whileS2

involves carrying/borrowing (e.g., 728624−703303).S3 (e.g., 33564×18) andS4

(e.g., 10810÷46) represent long multiplications and divisions. Note that the skill
model is again simplified for the reasons explained in the Physics experiment. We
used a maximum ofT = 500 observations per student for learning and prediction
and specified the CPTs of the model employingF = 29 weights.

Similarly to the previous experiments, the DBN model significantly outperforms
BKTC (see Tab. 7.3). The RMSE is reduced by 3.7% (RMSEBKTC = 0.3379,
RMSEC2 = 0.3254), while accuracy is increased by 5.6% (CEBKTC = 0.1461, CEC4 =
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0.1379) and the AUC increases to 0.7007 (AUCBKTC = 0.5991). Note that DBN and
BKTC both perform better than in the other experiments as the highperformance of
students in the involved skills makes learning and prediction easier.

7.5.5 Spelling learning

The last experiment uses data collected fromDybuster, an ITS for elementary
school children with dyslexia (Gross and Vögeli, 2007). The data set at hand con-
tains data of 7265 German-speaking children.Dybuster groups the words of a
language into hierarchically ordered modules with respectto their frequency of oc-
currence in the language corpus as well as a word difficulty measure. The latter is
computed based on the word length, the number of dyslexic pitfalls and the number
of silent letters contained in the word.

We used these modules as skills to build our graphical model (see Fig. 7.8(b)). Skills
S1, S2 and S3 denote the modules 3, 4 and 5 withinDybuster. Word examples
are ‘warum’ (‘why’, S1), ‘Donnerstag’ (‘Thursday’,S2) and ‘Klapperschlange’ (‘rat-
tlesnake’,S3). We use a maximum ofT = 200 observations per child for the learning
and prediction tasks and parametrized the model usingF = 21 weights.

While the DBN model still significantly outperforms BKTC in this experiment (see
Tab. 7.3), the magnitudes of improvement are small: the RMSE is reduced by 0.7%
(RMSEBKTC = 0.4504, RMSEC4 = 0.4472), the highest AUC amounts to 0.5804
(AUCBKTC = 0.5029) and there is no significant improvement in CE.

7.6 Discussion

The goal of this work inshort-time prediction, i.e., predicting the outcome of task
t +1 given the outcome of thet previous tasks, was to provide an efficient method
for parameter learning that yields accurate prediction, while keeping parameters in-
terpretable. We have solved this task by introducing an algorithm calledconstrained
structured prediction with latent variables(described in Sec. 7.2).

The results of the first experiments (detailed in Sec. 7.4) demonstrate that introduc-
ing domain knowledge in the form of parameter constraints has a two-fold benefit.
On one hand, the introduced parameter constraints guarantee an interpretable model.
On the other hand, the proposed restrictions lead to improvement of the error met-
rics. Introducing restrictions on the parameter space is particularly beneficial for
more complex models as well as for more difficult skills. For difficult skills where
children change from the unlearnt to the learnt state after some training time, the
unconstrained optimization converges to a solution closedto a uniform distribution
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(of correct and wrong outcomes), while the introduced domain knowledge enables
more precise modeling of learning.

The results of the second evaluation (detailed in Sec. 7.5) demonstrate that more
complex DBN models outperform BKT in prediction accuracy. Forhierarchical
learning domains, CE can be reduced by 10%, while improvements of RMSE by
5% are feasible. The DBN models generally exhibit a significantly higher AUC
than BKT, which indicates that they are better at discriminating failures from suc-
cesses. As expected, adding skill topologies has a much smaller benefit for learning
domains that are less hierarchical in nature (such as spelling learning). The results
obtained on the physics and algebra data sets show that even simple hierarchical
models improve prediction accuracy significantly. A domainexpert employing a
more detailed skill topology and more complex constraint sets could probably ob-
tain an even higher accuracy on these data sets. The use of thesame parametrization
and constraint sets for all experiments demonstrates that basic assumptions about
learning hold across different learning domains and thus the approach is easy to use.
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C H A P T E R 8
Cluster-based prediction

In a computer-based therapy system, knowledge of performance profile, knowledge
gaps and learning behaviors of the student as well as an accurate performance pre-
diction are essential to improve diagnostics and intervention outcome. This is partic-
ularly important for students suffering from learning disabilities as the heterogeneity
of these children requires a high grade of individualization. In Chapter 7, we have
improved what we will call theshort-term prediction: Using our latent structured
prediction algorithm, we improved the accuracy when predicting the outcome of
task t + 1 given the outcome of thet previous tasks. In this chapter, we aim at
improving thelong-term predictionof the system: We try to predict external assess-
ment results as well as learning characteristics of the students such as knowledge
gaps and overall training achievement.

Given the high diversity of students using a computer-basedtraining system, cluster-
ing approaches have proven to be useful to detect small and homogeneous groups of
learners. In fact, amongst others, clustering approaches have been employed to im-
proveshort-term predictionaccuracy. The precision of Bayesian Knowledge Trac-
ing (BKT) (Corbett and Anderson, 1994) can be increased using clustering (Pardos
et al., 2012b) and multiple classification models can also improve performance pre-
diction within a system (Gong et al., 2012). Moreover, clustering (Trivedi et al.,
2011) and co-clustering (Trivedi et al., 2012) approaches successfully improved
post-test score predictions. Furthermore, ensemble methods offer a way to increase
prediction accuracy by training different types of studentmodels (Baker et al., 2011;
Pardos et al., 2012a). Clustering can also be used to gain insight on learning char-
acteristics of the students. Bootstrap aggregated clustering (King et al., 2007) iden-
tified different subtypes of children with dyslexia. Other authors used offline clus-
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tering followed by online classification to analyze and predict the students’ input
behaviors (Amershi and Conati, 2009; Kardan and Conati, 2011).

Our model uses online and offline cluster information forlong-term prediction. The
approach is articulated in three steps: In a first step, we cluster children according
to individual learning trajectories. Compared to previous approaches, we use the
subgroup information not only to improve prediction accuracy, but also to provide
a valuable tool for experts to analyze individual learning patterns. The second step
consists of a supervised online classification during training and in the third step, we
predict future performance based on cluster assignment.

In the following, we first specify the three steps in detail before presenting the results
of our experimental evaluation on a data set consisting of log files from theBMBF-
study(described in Chapter 4).

8.1 Clustering, classification and prediction

The three steps of our approach are clustering (offline), classification (online) and
prediction (online). To be able to perform the first two steps, we need to extract
and process the features for clustering and classification,i.e., features which are
able to identify subgroups with similar mathematical patterns. In the following,
we therefore first specify the extracted features as well as the feature processing
pipeline used for clustering and classification. We then explain the clustering and
classification steps in detail. Finally, we explain how performance prediction can be
done based on cluster information.

8.1.1 Feature extraction and processing

From the log files, we identified a set of recorded features, which describe local and
global properties of the user’s training performance. The set contains cumulative
as well as per skill measures, and covers performance, errorbehavior and timing.
Table 8.1 lists the features, which are evaluated after eachtraining session.

Having continuous and discrete feature types as well as different scales, we process
the features to make them comparable. The processing pipeline illustrated in Fig. 8.1
(top) is used for the clustering as well as the classificationfeatures. Depending
on their nature, features are processed before calculatingpairwise similaritiessi j

(between each pair of samples (students)i and j). The resulting similarity matrices
Si are transformed into a Kernel and summed up to obtain the similarity matrix K .
Finally, K is transformed to a distance matrixD using a constant shift (D = #features
- K ).
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Table 8.1:Extracted features and abbreviations (bold) used in the following. The feature set covers
performance, error behavior and timing of the users and contains cumulative as well as
per skill measures.Part AandPart Bare consistent with Fig. 3.4.

Feature Description

HighestSkills Indices of highest skills forPart AandPart B.

Number ofPassedSkills Total number of skills passed.

PlayedSkills Indices of played skills forPart AandPart B. Set feature.

PassTimes
Accumulated time (from start of training) in seconds until
passing a skill. Not passed skills are set to∞.

Samples perSkill
Number of samples needed to pass a skill. Not passed skills
are set to∞.

KeySkillsa Indices of problem skills. Set feature.

AnswerTimes Mean answer time per skill. Not played skills are set to∞.

PerformancePerSkill
Mean performance (correct trials/all trials) per skill. Not
played skills are set to 0.

a Key skill S: If a user went back to a precursor skill at least once before passingS(see Def. 5.1).

The employed processing modules are listed in Fig. 8.1 (bottom). For theOperation
step (colored yellow in Fig. 8.1), we have three different pre-processing operations
available: The logarithm (LogInv ) naturally deals with outliers, while taking the
inverse (Inv , LogInv ) removes the∞ values. The Beta cumulative distribution func-
tion (Beta) is applied to performance features: The range of this feature type is
limited to the interval[0,1]. We hypothesize that performance differences between
children are larger near the boundaries,i.e., that it is more difficult to improve the
ratio of correctly solved tasks from 0.8 to 0.9 than from 0.5 to 0.6. We also use three
differentSimilarity Measures(colored red in Fig. 8.1): The L1-norm (L1) computes
the absolute distance between two features and is applied for performance or time
features. The Jaccard index (JC) is commonly applied to compute the similarity be-
tween two sets. AndSDdenotes the shortest path between two skillssA andsB on the
skill net (illustrated in Fig. 3.4): The shortest path between skill Arabic→Concrete
andVerbal→Numberlineis for exampleSD= 3 as three edges of the graph need to
be traversed to reachVerbal→Numberline. In a third step, we applyKernel transfor-
mations(colored blue in Fig. 8.1) to the features.JK is used for sets: It is invariant
under set sizes and ensures that transformed data points have unit length. The stan-
dard Gaussian Kernel (GK ) is shift invariant, its sensitivity can be influenced by
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Operation Similarity measures Kernel transformations
Inv: g 01/f JC:g (Fi∩Fj )/(Fi∪Fj ) JK: g 2S−1

LogInv: 01/log(f) L1:g ||f i− f j ||1 GK: g exp(−S2/(2·σ2))

Beta:g 0betacd f(f, .5, .5)a SD:g min(f i− f j )
b RK: g exp(−S/σ)

a Cumulative distribution function of Beta distribution with α,β = 0.5.
b Shortest path between skills on the skill net .

Figure 8.1: Feature processing pipeline (top) and processing modules employed on featuref (F in
case of a set feature) (bottom). Features are pre-processed (yellow) before computing
pairwise similarities (red). The resulting similarity matrices are transformed into a
Kernel (blue). The different processing modules can be combined arbitrarily.

γ. TheRK is also an exponential kernel, but more sensitive than theGK , which is
useful to capture small differences in for example performance. The modules of the
different steps of the processing pipeline can be combined arbitrarily.

8.1.2 Offline clustering

An inherent property of the controller design ofCalcularis is its adaptability.
Rather than following a specified sequence of skills to the goal, learning paths are
individually adapted for each child. Form and maxima of the network paths vary
depending on the learning characteristics of a student (seeFig. 8.5). These varia-
tions suggest that clustering the children on the basis of their trajectories identifies
subgroups of children with similar mathematical learning profiles. Furthermore, the
use of the trajectory features allows for modeling the development of mathemati-
cal learning over time. Clustering is performed offline,i.e., taking into account all
training sessions of the children.

Children are clustered at the end of the training using trajectory features. These
features take into consideration how far the children came during the training (and
how fast they arrived there) as well how they reached this point. The selected fea-
tures arePT evaluated per part and number range (6 dimensions:A10, B10, A100,
B100, A1000, B1000) and PS (set features forPart A and Part B). Part A and Part
B are consistent with Fig. 3.4 and therefore correspond to thedomains ofnumber
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representations(Part A) andarithmetic operations(Part B). PT is processed using
LogInv → L1→ GK which yields the similarity matrixK1. For PT, we apply the
inverse of the logarithm of the feature (LogInv ) as a pre-processing step. The loga-
rithm naturally removes outliers, while taking the inverseremoves the∞ values that
occur asPT is set to∞ for not passed (mastered) skills. As we are dealing with a
time feature, we use the L1-norm(L1) as a distance measure and apply a Gaussian
Kernel (GK ) to obtainK1. The pipelineJC→ JK used forPS results inK2 and
K3. As we are dealing with a set feature (PS contains skill indices) we apply the
similarity measure and kernel transformation defined for sets: JC andJK . The com-
bined similarity matrixK (K = K1+K2+K3) is finally transformed to the distance
matrix D (D = 3 - K ) used for clustering.

As the measurements are characterized by relations,i.e., they represent dissimilari-
ties between each pair of studentsi and j, we perform pairwise-clustering (PC) (Hof-
mann and Buhmann, 1997) onD. Through a kernel transformation, dissimilarity val-
ues can be interpreted as distances between points in a (usually higher-dimensional)
Euclidean space. As shown by the Constant Shift Embedding transformation, PC
exhibits a cost which is equivalent to that of K-means in the Euclidean embedding
of the similarity data (Roth et al., 2003). The optimal numberof clustersk∗ can be
determined by the Bayesian Information Criterion (BIC) (Pellegand Moore, 2000),
calculating the effective number of parameters as the normalized trace of the kernel
transformation matrix (Haghir Chehreghani et al., 2012).

8.1.3 Online classification

We classify students after each training session and use theaccording cluster infor-
mation for performance prediction. The tracked data allowsassigning a student to
the cluster of children showing similar knowledge and learning patterns. The simi-
larities shared with other students are useful to predict the training performance of
the subject, either within the tutoring system or by external assessments.

The features used for clustering represent global measuresand are thus not opti-
mized for early classification. As all children start the training at the lowest skill
level (A10), their trajectories tend to be similar during early training and do not pro-
vide information about future performance. This fact is also visible in Fig. 8.5: The
trajectories of the two users look similar regarding their forms and maxima for about
the first 400 tasks. Therefore, we use additional features (detailed in Tab. 8.1) taking
into account local differences. WhileHS, NPS, PSandKS are cumulative features,
PT, SS, AT andPPSare evaluated per skill. The features contain information about
time, performance and specific problems of the children. Dueto the different nature
of the features -AT is for example measured in seconds, whileKS is a set of skill
indices - we again process the features using the pipeline illustrated in Fig. 8.1. All
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SD GK ( = 1)σHS: K1A, K1Bf1A, f1B

L1 GK ( = 1)σNPS: K2f2

JC JKPS: K3A, K3Bf3A, f3B

LogInv L1 GK ( = 0.1)σPT: K4,1 - K4,100f4,1 - f4,100

Inv L1 GK ( = 0.1)σSS: K5,1 - K5,100f5,1 - f5,100

JC JKKS: K6f6

LogInv L1 GK ( = 0.1)σAT: K7,1 - K7,100f7,1 - f7,100

Beta L1 RK ( = 1)σPPS: K8,1 - K8,100f8,1 - f8,100

Figure 8.2: Extracted features for online classification and according processing pipelines. The
features use the processing pipeline and modules explained in Fig. 8.1: Depending on
their nature, features are preprocessed (yellow) before computing pairwise similarities
(red). The resulting similarity matrices are then transformed into Kernels (blue).

features and the processing modules applied to them are displayed in Fig. 8.2. We
again use the Jaccard index (JD) and a set kernel (JK ) for the so called set features
(PS, KS). As mentioned before, the Beta cumulative distribution (Beta), followed by
the L1-norm (L1) and an exponential kernel (RK ) are used for performance features
(PPS). The time features (PT, AT ) use the pipeline explained in the previous section
(Sec. 8.1.2).SSis pre-processed using the inverse, as the number of samplesfor un-
played skills is set to∞. To measure the distance in the highest reached skills (HS),
we compute the shortest path on the skill net (SD). The obtained similarity matrices
K i are transformed to distance matricesDi through a constant shift (Di = 1−K i).

Feature processing yields a set of more than 400 distance matrices. Feature selection
is performed by ranking the features according to their degree of correlation to the
correct labels (of the clustering). An optimal matrixT is computed, which is a
square-matrix containing the pairwise hamming distances between the labels of the
samples:T(i, j) = 0, if the samplesi and j belong to the same cluster, andT(i, j) = 1
otherwise. For each matrixDi, we compute the distancedt to the optimal matrix with
the Frobenius norm:dt = ||(T−Di)||F . The features are then sorted in ascending
order by their distancedt. For classification, the best combinationb of the ten
features with minimal distance to the optimal matrixT (210 possibilities) is used.
The distance matrixD is obtained by adding up the distance matricesDi of the
featuresf i contained inb. Classification is performed by using a k-nearest neighbors
scheme onD. The best combinationb and the optimalk are found using a 9-fold
cross validation. The classification accuracy is computed on the same folds (not
nested).
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8.1.4 Performance Prediction

The online classification algorithm described in Sec. 8.1.3enables us to assign chil-
dren to a cluster after each played session of the training. We can therefore use
cluster information to predict the student’s future performance, training success and
mathematical characteristics. We identified a set of interesting features (see Tab. 8.2)
that we like to predict. These features can be attributed to four different areas:

1. Long-term training performance(PAS, NR, HS): End level reached within the
tutoring system. We predict the passed skillsPSand the passed number ranges
NR (A0−10, B0−10+, B0−10+, A0−100, B0−100+, B0−100−, A0−1000, B0−1000+,
B0−1000−) during the training, and the level reached (highest skillHS, separately
for Part A andPart B) at the end of the training. ForPart B, we also distinguish
between addition (+) and subtraction (-).

2. Short-term training performance(NSS, NSR): Prediction of student responses.
The number of trialsNSneeded to pass a skill are predicted, as well as the number
of trialsNRS to pass a range. Both measures are only predicted for skills (ranges)
that were passed by the cluster majority as well as by the testsample.

3. Individual knowledge gaps(KS, KNR ): Identification of particular deficient ar-
eas of knowledge of the student. We identify key skillsKS and individual prob-
lem areasKA (A0−10, B0−10+, B0−10+, A0−100, B0−100+, B0−100−, A0−1000,
B0−1000+, B0−1000−) of the children.

4. External test results(EPT): Prediction of external post-test scores. We predict
the scores for the external addition and subtraction tests conducted in the user
studies (see Chapter 4): The HRT and the AC (detailed in Sec. 4.2).

Prediction of features is performed using cluster information (as described in
Tab. 8.2). The prediction of long-term training performance is interesting for analy-
sis as the predicted features are correlated to the learningtrajectories. The identifica-
tion of knowledge gaps helps to find subtypes of mathematicallearning patterns and
can be used to increase the degree of individualization (e.g., putting more emphasis
on the training of key number ranges). Prediction of external test results is espe-
cially important for model validation. The prediction of short-term performance can
be used to improve adaptation (e.g., minimizing frustration).

8.2 Evaluation of proposed algorithm

To evaluate the accuracy of classification and prediction ofour method, we used
log files collected from participants from theBMBF-study(described in Chapter 4).
The data set at hand contains 88 participants (68% females).50 participants (72%
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Table 8.2:Predicted features (abbreviations in bold) along with error measures.fp denotes the
predicted value,ft the actual value of the feature, and CE the classification error:
#(fp 6= ft)/#played. JC (Jaccard Index),SD (skill distance) andL1 (L1 norm) correspond
to the distance measures described in Fig. 8.1 (red). Prediction for all the features is per-
formed using cluster information.

Description Error measures

PAS
Indices of passed skills during training. A skill is predicted
as passed, if the cluster majority passed it.

JC

NR
Indices of passed number ranges during training. A range
is predicted as passed, if the cluster majority passed it.

JC

HS
Indices of highest skills passed by cluster majority during
training (separately forPart AandPart B).

SD

NSS
# samples needed to pass a skill (cluster mean). Predicted
only for skills passed by cluster majority.

median(L1/|ft|)

NSR
# samples needed to pass a number range (cluster mean).
Predicted only for ranges passed by cluster majority.

median(L1/|ft|)

EPT
Absolute and relative (#correct tasks/#tasks) post test score
(cluster mean):HRT+ , HRT- , AC+, AC-.

L1

KS
Indices of key skills (see Def. 5.1). A skill is classified as
key skill, if the cluster majority has problems.

CE, Recall, Precision

KNR
Indices of key number ranges. A range is classified as key
number range, if it contains at least one key skill.

CE, Recall, Precision

females) were diagnosed with developmental dyscalculia (DD), and 38 participants
(63% females) were control children (CC). The log files stem from six weeks of
training and contain 27 complete training sessions (of 20 minutes) per child. On
average, each child solved 1430 tasks (SDσ = 212) during the six weeks. The
number of solved tasks per session corresponded to 52.9 (SDσ = 7.8).

In the following, we first describe the resulting clusters and interpret them according
to the mathematical characteristics of the children. Then,we analyze the classifica-
tion accuracy over time as well as the predictive performance of our method.

8.2.1 Resulting clusters and interpretation

The optimal number of clusters was estimated using the BIC (see Sec. 8.1.2), the
best BIC score was reached fork∗ = 6 clusters. The BIC score for the different
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Figure 8.3: The best BIC score is reached fork∗ = 6 clusters (a). This result is supported by the
clear separability of the transformed data in three dimensions (b).
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Figure 8.4: Similarity matrix used as an input for the offline clustering (left). Similarity matrix
sorted by group label after clustering (right). The red color denotes high similarity,
while blue denotes low similarity. The six resulting clusters are clearly visible on the
diagonal of the sorted similarity matrix (right).

cluster numbers is illustrated in Fig. 8.3(a). This result is supported by the clear
separability of the transformed data in three dimensions, displayed in Fig. 8.3(b).

The six clusters are also clearly visible on the diagonal of the sorted similarity matrix:
Figure 8.4 (left) illustrates the similarity matrixD used for clustering, while Fig. 8.4
(right) shows the sorted similarity matrix. The x- and y-axes of the matrices denote
the sample indices. High similarities are displayed in red,while blue denotes low
similarity.

The six resulting clusters (denoted byC1,...,C6) can also be interpreted regarding
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Figure 8.5: Example trajectories of two children from clusters C1 (left) and C6 (right). Across
denotes a task played at the actual difficulty level while a dot denotes a random re-test
of an already mastered skill. Red stands for a wrong answer, blue for correct, green for
neutral. The child from cluster C6 mastered all the skills of the training program after
about 900 tasks, while the child from C1 showed difficulties in mastering the skills.

the characteristics and distinct learning patterns of the students, which are reflected
in their training trajectories. Two example trajectories of children from clustersC1
andC6 are displayed in Fig. 8.5. While the student from clusterC6 finished the
training,i.e., passed the most difficult skill of the program after about 900 tasks, the
student from clusterC1mastered only about 50% of the skills over the course of the
training.

A detailed description of the different clusters is given inTab. 8.3. We list demo-
graphic information about the cluster members, such as the age. Furthermore, we
look at the cluster size, with special attention to whether the cluster members are
classified as having DD. And finally, we also investigate characteristics from the
training with Calcularis: How many skills did the children master during the
training and what level did they reach? In which areas of the training program did
the cluster members exhibit problems?

The children assigned toC1have only passed the number range from 0-10. The dif-
ficulties with number representations (PPA100 = 1.00) as well as procedural knowl-
edge (PPB100 = 0.99) imply an early disorder of numerical functions. Indeed,all
children of this group were diagnosed with DD. Children inC2 have passed the
number range 0−100 forPart B (arithmetic operations), but exhibit difficulties in
Part A (number representations). This learning pattern (PPA100 = 1.00) suggests
problems with domain-specific functions such as quantity comparison and symbolic
representation. In contrast toC2, children inC3 passed the number range 0-100
for Part A, but not forPart B. This observation indicates intact number processing,
but difficulties in understanding and executing procedures(PPB100 = 0.99) . The
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Table 8.3:Data per cluster (C1,...,C6): Number of childrenNC (%), mean ageAG (SDσ ), number of
passed skillsNPS, probability of having problemsPP in different areas and number ranges
of the training.NC andAG are given for all samples as well as only for CC and DD children.
Number ranges mastered during training are marked bold. The proportion of children with
DD decreases with increasing cluster performance.

C1 C2 C3 C4 C5 C6

NC
all 13 (14.77) 50(5.68) 16 (18.18) 9 (10.23) 30 (34.09) 15 (17.05)
CC 00 0(0.00) 2 (40.00) 05 (31.25) 4 (44.40) 16 (53.30) 11 (73.30)
DD 13 (100.0) 3 (60.00) 11 (68.75) 5 (55.60) 14 (46.70)04 (26.70)

AG
all 9.26 (0.87) 8.18 (0.42) 8.60 (0.67) 8.52 (1.29) 8.78 (0.93) 8.53 (0.87)
CC - 8.06 (0.03) 8.10 (0.49) 7.52 (0.27) 8.16 (0.53) 8.11 (0.44)
DD 9.26 (0.87) 8.26 (0.58) 8.82 (0.64) 9.32 (1.21) 9.49 (0.78) 9.67 (0.71)

NPS A, B 12, 9 12, 14 15, 12 19, 22 22, 25 22, 30

PP

A10 0.80 0.95 0.79 0.31 0.39 0.19
B10 0.68 0.20 0.57 0.11 0.14 0.14
A100 1.00 1.00 0.94 0.91 0.89 0.49
B100 0.99 0.98 0.99 0.96 0.87 0.30
A1000 x x x 0.98 0.72 0.56
B1000 x x x 0.98 0.99 1.00

clustersC4andC5have passed the number range 0-100 for both parts and the num-
ber range 0-1000 forPart A, respectively.C6 is the best performing cluster, with
children having passed all number ranges and thus finished the training. The perfor-
mance differences between clustersC4, C5 andC6 are probably due to differences
in capacity and availability of domain-general functions (attention, working mem-
ory, processing speed). Notably,C4, C5 andC6 contain children with DD (26.7%
in C6). This fact can be attributed to age differences: children with DD belonging
to clusterC6 attend the 4th or 5th grade of elementary school. The interpretation of
learning patterns confirms the usefulness of trajectory information for clustering.

8.2.2 Classification Accuracy

Classification is performed online after each training session. We classify the chil-
dren to a particular subgroup depending on their current training status and compute
classification accuracy using cross validation. As expected, classification accuracy
increases with the number of available training sessions (illustrated in Fig. 8.6). Five
sessions are already sufficient for our algorithm (blue) to cluster 50% of the children
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Figure 8.6: Classification accuracy over time. Accuracy using offline features (red), the algorithm
described in Sec. 8.1.3 (blue) and portion of children classified correctlyor to a direct
neighbor cluster (light blue). Five sessions are enough for our method(blue) to classify
50% of the children correctly.

correctly. The accuracy is further increased to 60% after 14sessions, and 70% is
reached after 19 played sessions. A random assignment wouldresult in 16.̄6% of
correctly classified children. An accuracy of 34.09% could be reached by assigning
all children to the largest cluster (C5, see Tab. 8.3).

Considering that some neighboring clusters are close to eachother (for instance,C1
and C2 are statistically distinguishable but similar), the assignment of a child to
a direct neighbor of the correct cluster will not significantly deteriorate prediction
quality. The estimation of the percentage of children assigned to the correct cluster
or its direct neighbor (light blue) yields a success rate higher than 70% already after
five sessions. The classification with the global features used for clustering (red)
performs worse for small numbers of sessions, and equally well after 20 sessions.
This behavior highlights the importance of using local features for classification at
an early stage in the training.

8.2.3 Predictive Performance

The online classification after each training session allows for predicting students’
performance in the four selected areas (detailed in Tab. 8.2) based on cluster infor-
mation. In the following, we analyze prediction accuracy intwo ways: We first
investigate prediction accuracy at the end of the training (after 27 sessions) for dif-
ferent cluster numbers. In a second step, we look at online performance prediction
and compute predictive performance after each training session using the optimal
number ofk∗ = 6 clusters.
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(a) Offline prediction errors for selected fea-
tures by cluster number.
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(b) Predictive performance for six clusters
over the course of the training.

Figure 8.7: Offline prediction errors for selected features plotted by the number of clusters (a).
Prediction errors tend to decrease with increasing cluster number and stagnate when
reaching the optimal number ofk∗ = 6 clusters. Predictive performance increases over
the course of the training (b). The abbreviations of the features correspond to those
defined in Tab. 8.2.

Prediction errors after 27 sessions (offline prediction) were calculated fork = 1 to
k = 10 clusters using a cross validation. Prediction for the specific features was
computed as described in Tab. 8.2. Figure 8.7(a) shows the prediction errors for
selected features. For most of the features, prediction errors decrease with an in-
creasing number of clusters up tok∗ = 6 clusters and stagnate afterward.NSSand
NSR however, do not show a high cluster dependency. As these features are pre-
dicted for skills (number ranges) mastered by the cluster majority, the number of
skills (number ranges) for which we can predictNSS(NSR) depends onPAS (NR).
The exact errors for all features of the four selected areas (detailed in Tab. 8.2) for
k = 1 andk∗ = 6 clusters are listed in Tab. 8.4. Most errors were significantly
reduced (indicated by a two-sided t-test corrected for multiple comparisons with
Bonferroni-Holm) by using the cluster information. The highprediction accuracy of
the long-term training performance (PAS, NR, HS) shows that clustering the chil-
dren based on trajectory features is indeed meaningful. Furthermore, the accurate
prediction of post-test resultsEPT demonstrates the correlation between achieve-
ment in external assessments and in-tutor performance and thus proves the validity
of the student model. The promising results in the identification of knowledge gaps
(KS, KNR) provide a valuable tool in the analysis of learning patterns and allow
experts to elaborate individualized learning strategies.

The accurate predictions of knowledge gaps together with the good prediction of
short-term training performance (NSS, NSR) enable a tutoring system to better
adapt the training to individual children. This, however, requires online perfor-
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Table 8.4:Offline prediction errors fork = 1 andk∗ = 6 clusters. ForEPT features, absolute
and relative errors (in brackets) are given and the numbers forKS andKNR denote
classification error, recall and precision. TheHS error is given forPart A andPart B.
The abbreviations of the features correspond to those defined in Tab. 8.2. Most errors
are significantly reduced by using the cluster information.

Feature Prediction error (k = 1) Prediction error (k ∗ = 6)

PAS 0.28 0.13*

NR 0.25 0.00*

HS 2.69, 5.72 0.34*, 1.34*

NSS 0.32 0.31

NSR 0.27 0.26

HRT+ 4.70 (0.12) 3.69* (0.09*)

HRT- 5.67 (0.14) 4.50* (0.11*)

AT+ 3.26 (0.16) 2.61* (0.13*)

AT- 2.98 (0.15) 2.33* (0.12*)

KS 0.24, 0.10, 0.95 0.22*, 0.33*, 0.73*

KNR 0.35, 0.90, 0.55 0.19*, 0.82*, 0.74*

* p< .01

mance prediction. Online prediction errors for the relevant features were computed
after each session using cross validation and relying on cluster information from
the classification. Predictive performance over time for selected features is illus-
trated in Fig. 8.7(b). As expected, the prediction errors depend on the classification
accuracy (see also Fig. 8.6),i.e., prediction errors decrease with increasing classifi-
cation accuracy. As already observed in the offline prediction task,NSSandNSR
are cluster independent and therefore, prediction errors of these features do not de-
crease with increasing classification accuracy. Performance in long-term prediction
is again good: Already after five sessions, prediction errors for NR andPAS drop
below 0.25. Results in identification of knowledge gaps (KS, KNR) are also promis-
ing: Prediction errors for these features are around 0.2 after five sessions. The good
prediction accuracy reached already after few trainings allows to draw conclusions
about short-term performance and knowledge gaps.
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8.3 Discussion

Training individualization is essential in an intelligenttutoring system (ITS). Most
research has focused onshort-time performance prediction. The method proposed in
this chapter is geared tolong-time performance prediction. Prior knowledge about
training outcome and mathematical characteristics of the children is potentially in-
teresting for teachers and therapeutics.

Students training with a computer-based program often showa high diversity. This
is especially true for our data sets, as they contain log filesfrom children with and
without DD. Clustering children into subgroups with similarlearning patterns seems
therefore promising. And indeed, our results demonstrate that the prediction accu-
racy can be improved when taking clustering information into account. Our findings
are in line with previous studies (Baker et al., 2011; Pardos et al., 2012a,b; Trivedi
et al., 2011; Gong et al., 2012; Trivedi et al., 2012) employing clustering algorithms
for improving short-time performance prediction.

The clusters obtained using our algorithm can be interpreted according to mathe-
matical characteristics of the children. The interpretations of the weakest clusters
(C1, C2 andC3) are particularly interesting as they can be mapped to the different
subtypes of DD proposed by von Aster (2000).

Online classification to different subgroups has the potential to gain knowledge
about the children early in the training and to make predictions of future perfor-
mance. The online classification of the children to a particular subgroup has shown
to be an inherent problem in the beginning of the training, but by using local fea-
tures the classification accuracy was notably improved, enabling accurate prediction
of students’ future performance. Therefore, our approach of offline clustering fol-
lowed by an online classification seems suitable for making long-term predictions
and contributes to a better understanding of a child’s learning characteristics and
thus to a better support for children with learning difficulties.
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C H A P T E R 9
Affective modeling

The learning outcome of a student working with a (computer-based) training pro-
gram is strongly influenced by the affective states of the user. A distracted or bored
student will not learn efficiently. Also negative emotions such as frustration or fear
might slow down learning. Affective modeling provides the possibility of detecting
states which are obstructive for learning and to intervene accordingly.

In general, affective models can be inferred from several sources, such as sensor
data (Cooper et al., 2010; Heraz and Frasson, 2009) or user input data (Baker et al.,
2004; Johns and Woolf, 2006; Arroyo and Woolf, 2005; Bascheraet al., 2011). Ex-
isting affective models, however, focus mostly on one specific learning domain or
are designed for a specific training program. In this work, we(theoretically) explore
the possibility of a general framework for engagement learning, focusing on learning
disabilities.

We will start our investigations based on an engagement model for spelling learn-
ing in children with dyslexia presented by Baschera et al. (2011). The model can
adapt the training to individual students based on a data-driven identification of en-
gagement states from student input. We argue that that the assumption of similar
engagement patterns in children with developmental dyscalculia (DD) or dyslexia is
justified and, thus, that a similar engagement model would bebeneficial.

In the following, we will first introduce characteristics ofdyslexia and the computer-
based spelling trainingDybuster (Gross and V̈ogeli, 2007; Kast et al., 2007), on
which the model presented by Baschera et al. (2011) is based. In a second step, we
will assess comorbidities and similarities in engagement between the two learning
disabilities. We will then extend the introduced frameworkto the more general case
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of engagement modeling. Finally, we will analyze the re-usability of the engagement
model for spelling learning and define desirable propertiesof a general model of
engagement dynamics for software tutoring.

9.1 Learning disabilities and engagement

Developmental dyslexia and DD are both specific learning disabilities inferring a
lack of success in language processing and mathematics, respectively. In this section,
we discuss the case of dyslexia along with existing intervention programs. Further-
more, we introduce the domain of spelling learning as well asthe computer-based
training programDybuster (Gross and V̈ogeli, 2007; Kast et al., 2007). And finally,
we highlight the similarities between the two learning disabilities which indicate the
presence of similar engagement patterns. Note that a detailed introduction to DD
and the training programCalcularis can be found in Chapter 2 and Chapter 3,
respectively.

9.1.1 Dyslexia

Developmental dyslexia is a specific learning disability which affects the acquisition
of reading and writing skills (World Health Organization, 1993). Children with de-
velopmental dyslexia tend to exhibit inconsistent orthography speed and accuracy
problems, as well as difficulty in segmenting and manipulating phonemes in words.
In addition to poor writing and reading skills, poor speech production and spelling
are other symptoms of developmental dyslexia (Goswami, 2003). Currently, devel-
opmental dyslexia is thought to originate from a neurological disorder with genetic
origin (Galaburda et al., 1985, 2006; Schulte-Korne et al.,2004; Demonet et al.,
2004; Ziegler et al., 2005). The prevalence of this disability is estimated to range
from 5% to 17.5% in English speaking countries (Shaywitz, 1998), and to about
10% in German speaking countries (Russeler et al., 2006).

There exist a lot of intervention programs to remediate developmental dyslexia that
have been scientifically evaluated in children (and adults). These programs predom-
inantly aim at training auditory and visual functions usingapproaches such as low-
level auditory perceptual learning (Tallal, 2004; Robichonet al., 2002; Santos et al.,
2007; Besson et al., 2007; Gaab et al., 2007; Uther et al., 2006), practice of speech-
like auditory stimuli (O’Shaughnessy and Swanson, 2000; Hatcher et al., 2006),
practice of specific manipulations of speech-like signals (Tallal, 2004), improvement
of high- and low-level visual functions (Bacon et al., 2007; Lorusso et al., 2006) and
combined training of auditory and visual functions (Kujalaet al., 2001). Other inter-
vention techniques combine the training of reading and writing skills (Vadasy et al.,
2000; Edwards, 2003; Shaywitz et al., 2004). Lately, a few multi-modal training
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programs have been proposed as well (Kujala et al., 2001; Gross and V̈ogeli, 2007;
Kast et al., 2007).

9.1.2 Spelling learning

Spelling a word can be seen as translating from spoken language to written lan-
guage. In an alphabetic language, like for example English or German, the spoken
phonemes need to be matched to graphemes. This matching is not unique because
some phonemes can be matched to several graphemes (for instance, the phoneme
/f/ can be matched to the graphemes ‘f’ and ‘v’ in German). Forspelling learning,
different models have been proposed so far. One model for instance suggests that
spelling is learnt through the identification of implicit and explicit rules (Hilte and
Reitsma, 2011; Ehri, 2000; Cassar and Treiman, 1997; Landerl and Reitsma, 2005;
Pacton et al., 2001). Children build up a mental print lexicon, but also abstract reg-
ularities from print and are taught rules that underlie their spelling system. It has
been shown that children already use phonological and morphological rules from an
early age. Another model suggests that spelling of new wordsis learnt by analogy
to known words called reference words (Bosse et al., 2003; Campbell, 1985; Marsh
et al., 1980; Martinet et al., 2004; Nation and Hulme, 1996, 1998). Both of these
presented models imply that spelling learning is a rathernon-hierarchicalprocess.
Rather than learning and understanding concepts and strategies that build up on each
other, the process consists of memorizing the phoneme-grapheme matching and its
irregularities or of building analogies to existing words.

9.1.3 Dybuster

Dybuster (Gross and V̈ogeli, 2007; Kast et al., 2007) is a multi-modal training pro-
gram for spelling learning. The central idea of the trainingsoftware is to recode a
sequential textual input string into a multi-modal representation using a set of codes.
These codes reroute textual information through multiple undistorted visual and au-
ditory cues. This training strategy builds up the memory strength of graphemes and
phonemes. Visual cues include colors, shapes and topology.Based on the informa-
tion theoretical model ofDybuster, eight different colors are used in the software.
The mapping of letters to colors is the result of a multi-objective optimization. For
example, letters easily confused by dyslexics, e.g., ‘m’ and ‘n’, map to visually dis-
tinct colors. The idea is to associate colors with letters toeliminate mistakes due
to letter confusion. The shapes are: spheres for small letters, cylinders for capital
letters, and pyramids for the umlauts. The graph structure finally shows the de-
composition of a word into syllables and graphemes. An additional auditory code
computes a word-specific melody that is played to the user when entering a word.
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Figure 9.1: The three learning games ofDybuster (illustration by Baschera and Gross (2010a)):
Color game to train the associations between colors and letters (top left),Graph game
for the training of the syllable structure (top right) andWord Learning game with
visual presentation of the different cues (bottom center).

The different codes not only transfer information, but alsostimulate different senses.
This multi-sensory stimulation enhances perception and facilitates the retrieval of
memory (Lehmann and Murray, 2005; Shams and Seitz, 2008).

The tree different games ofDybuster are illustrated in Fig. 9.1 (Baschera and Gross,
2010a). In theColor game (Fig. 9.1 (top left)), children learn the associationsbe-
tween colors and letters. Children need to remember the colors of the different
letters: The color fades out over time and children need to pick the right one. In
theGraph game, children graphically segment a word into its syllables and letters
(Fig. 9.1 (top right)). These first two games are played at thebeginning of the train-
ing to learn the codes that are integrated inDybuster. In the third gameWord
Learning, representing the actual learning game, the program presents the alterna-
tive representations (graph, colors, shapes) of a word (Fig. 9.1 (center)). A voice
dictates a word and the children hear a melody computed from the involved letters
and the lengths of the syllables. Children then need to type the word on the keyboard.
To avoid displaying completely misspelled words, the training program provides im-
mediate visual and auditory feedback to errors. The sequence of words presented to
the child is adapted to the skill level and the error profile ofthe children.

In Dybuster, the selection of words to be prompted is adapted to the skilllevel of the
children. The word selected to be trained next is the word with the highest progress
potential with respect to training time. The knowledge representation is an estimate
of individual mal-rule difficulties. Mal-rules define different error types which a
child can commit. Possible error categories are, e.g., capitalization errors, typing
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errors (depending on key distance or for technical reasons), letter confusion (visual
or auditory similarity) or erroneous phoneme-grapheme matching. As immediate
feedback is presented after an erroneous letter, error classification is ambiguous,
i.e., different deficits can lead to the same final error. To deal with this ambiguity,
Dybuster uses an inference algorithm for perturbation models based on Poisson
regression (Baschera and Gross, 2010b). The algorithm is designed to handle un-
classified input with multiple errors described by independent mal-rules. During the
training, the representation of the student’s mastery of the domain is continuously
updated after each entered word. Based on these estimates, a prediction of further
spelling performance and a classification of committed errors for each individual
student can be estimated. In addition to this spelling knowledge representation, the
word selection controller accounts for the optimal time to repetition (time until a
previously misspelled word is repeated).

9.1.4 Comorbidities and similarities in engagement

Developmental dyslexia and DD, both brain-based disorders, often exhibit comor-
bidity, which is the co-occurrence of two or more disorders in the same individ-
ual. Studies show that individuals with DD do often show language difficulties as
well, and vice versa, that dyslexic individuals often suffer from difficulties in arith-
metic (von Aster and Shalev, 2007; Ostad, 1998; Lewis et al.,1994; Badian, 1999;
Barbaresi et al., 2005; Dirks et al., 2008; Ackerman and Dykman, 1995). More im-
portantly, children with these learning disabilities often exhibit comorbidities with
ADHD (Shaywitz et al., 1994; Germanò et al., 2010; Fletcher, 2005; Barbaresi et al.,
2005). In addition, children with learning disabilities often show anxiety or aver-
sion against the subject (Rubinsten and Tannock, 2010). Furthermore, they tend to
underperform in school and later in profession (Bynner, 1997). These facts suggest
that children with learning disabilities will exhibit low intrinsic motivation and atten-
tional problems and thus, monitoring of engagement dynamics becomes even more
important. Since similar implications are relevant for thetwo learning disabilities,
we assume the appearance of similar engagement states for developmental dyslexia
and DD.

9.2 General engagement dynamics modeling framework

To define a framework for building a general engagement dynamics model, we ex-
tract and analyze the main steps of the model for engagement dynamics in spelling
learning (Baschera et al., 2011). The resulting model is a dynamic Bayesian net-
work (DBN) (Murphy, 2002) representing different affectivestates as well as their
relationships. In brief, we can define the following framework:

125



Affective modeling

1. Indicator definition : An indicator variable, giving an indication of the engage-
ment state of the children needs to be determined to label thedata. This variable
can be measured using sensor data (Cooper et al., 2010; Heraz and Frasson, 2009)
or by relying entirely on input data as in the engagement model for spelling learn-
ing. Entirely data-driven indicators are usually noisy andhighly dependent on
the learning domain.

2. Feature extraction: A set of recorded features needs to be extracted. This set
contains measures of input and error behavior, timing, and variations of the learn-
ing setting induced by the system controller. Possible features were proposed in
previous work (Baker et al., 2004; Johns and Woolf, 2006; Arroyo and Woolf,
2005; Baschera et al., 2011). The set of meaningful features is strongly influ-
enced by the learning environment.

3. Feature selection: To select the features, the relation between the extractedfea-
tures and the indicator variable needs to be estimated, for example by using a
LASSO logistic regression.

4. Model building : In a final step, the graphical model needs to be inferred
from data. The parameters of the DBN can be estimated using expectation
maximization (EM) (Dempster et al., 1977). The quality of different graphi-
cal models can be assessed by computing the Bayesian Information Criterion
(BIC). Model validation can also be performed with Approximation Set Cod-
ing (Haghir Chehreghani et al., 2012).

This framework gives an overview of the steps to be taken in order to build a model
for engagement dynamics in any domain. Steps 1 and 2 are essential when trying to
find a valid model. These two initial steps, however, are alsohighly dependent on
the particular learning domain and the learning environment. The indicator function
and the set of features that we applied for the engagement model in spelling learning
are therefore not directly applicable to other domains (such as learning mathematics)
for the purpose of modeling engagement dynamics.

9.3 Engagement model for mathematics learning

Constructing a model of engagement dynamics requires a generic framework to sup-
port generalization of engagement behavior. We start by referring to the previously
developed model for engagement dynamics in spelling learning (Baschera et al.,
2011) and explore its re-usability. Furthermore, we assessthe limitations of the
existing model and provide suggestions on how to overcome them.

As discussed above, steps 1 and 2 of the general framework areessential. They high-
light the dependence on the learning domain and on the specific environment and
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can therefore not directly be applied to another learning domain or training environ-
ment. Steps 3 and 4 on the other hand are independent of the learning domain or the
training environment. In the following, we therefore first assess the first two steps
of the engagement model for spelling learning to identify the parts of the model that
can be reused. Furthermore, we define desirable properties of an indicator function
(step 1) and a feature set (step 2) applicable to learning in general and make a first
draft of a possible general feature set.

9.3.1 Indicator Function

The model for engagement dynamics in spelling learning usesthe error repetition
probability (ERP) as a noisy indicator. If the student is in a distracted state, more
careless errors will occur which are unlikely to be repeated(low ERP). If the student
is in a non-receptive state (inhibits learning), committederrors will probably be re-
peated (high ERP). This indicator function is meaningful under the following (strict)
assumptions:

• Stationary learning environment: The learning environment consists of only one
type of task (here the typing of words).

• Non-hierarchical learning domain: The learning works in a non-hierarchical way,
for example through memorization. This assumption means that a word is learned
through memorizing the spelling in the case ofDybuster.

The learning environment for mathematics learning (Calcularis) as well as the
learning domain do not fulfill these properties.Calcularis consists of a number
of skills at varying difficulty levels, each of them depending on each other. Perfor-
mance or error measures can thus not easily be compared across the different skills.
Furthermore, mathematics learning is very hierarchical. Besides knowing rules or
building procedural knowledge, conceptual knowledge (understanding the ‘why’)
needs to be built. If a child commits an error such as ‘12-5=3’, it makes no sense to
repeat exactly the same task after a certain amount of time. The child needs to learn
how a task including a carry is handled. Having learned this concept, the child can
solve all tasks involving carrying.

How should an appropriate indicator function for a hierarchical learning domain and
a learning environment employing different skills look like? Why do we need an in-
dicator function in the first place? As we rely on input data only, no ground truth
about the emotional state of the user is available. The indicator function represents
the emotional state (for example engagement) over time and thus provides us with a
labeling of the data and therefore we deal with supervised learning instead of unsu-
pervised learning. Assuming an interplay between human learning and affective dy-
namics (Kort et al., 2001), an indicator based on performance measures in the learn-
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ing environment can be selected. However, being in an engaged state is a necessary
but not sufficient condition for learning. The indicator function therefore needs to
differentiate between different reasons for low progress in the environment. Besides
not being engaged, the tasks posed can be too easy or too difficult (not matching the
skill level of the user) or there can be task comprehension problems. All these cases
need to be taken into account. Furthermore, the indicator function needs to consider
the hierarchical structure of the skills and the dependencies among them and thus
also account for previous knowledge. Still, an indicator function relying purely on
input data will always be an approximation of ground-truth.The input data can,
however, be enhanced to increase the reliability of the indicator. Calcularis, for
example, also records careless input of the children such asrandom key strokes or
mouse clicks. These inputs give an additional indication ofthe engagement state.

9.3.2 Feature Set

The set of features used for the engagement dynamics model inspelling learning is
very specific and in particular also very much adapted to the learning domain and
the learning environment used. Table 9.1 (Baschera et al., 2011) lists and describes
all the extracted features of the model.

The features used can be divided into three categories. Features in theTiming cat-
egory are useful to indicate attention, but also particularly specific to the learning
environment. Features such as the input rateIR and its varianceIRV assume an
environment where the results are entered via the keyboard and where the typing
velocity is meaningful, which is not the case forCalcularis. Also features such
asTfE andTtNE assume an immediate feedback on the error (before the child has
typed the whole result). On the other hand, think timeTT and off timeOT indi-
cate the child’s performance also in the mathematics learning environment. Also in
the second category focusing onInput & error behavior, only few features can be
re-used. Help calls (HC) are for example not possible in every environment. The
FC feature is only meaningful if feedback on errors is given already while the child
enters the result. And theSPEfeature is specific to the learning domain. In contrast,
features such as repetition error (RE) or error frequency (EF) describe general er-
ror behavior (Does the user repeat errors? How many errors does the user make?)
and thus are meaningful for any learning domain. The third category (Controller
Induced) is completely dependent on the learning environment, as these features are
induced by the controller of the particular environment. Table 9.2 discusses which
features are specific to the learning domain and the environment of spelling learning,
and which features could be reused for the mathematics learning environment.

As is evident from Tab. 9.2, the given feature set is specifically designed for the
spelling learning environment, yielding very good results. For this reason, most of
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Table 9.1:Extracted features and abbreviations (bold) used in the following (Baschera et al., 2011).
The feature set includes timing and behavioral as well as controller induced features.

Feature Description

Timing

InputRate Number of keystrokes per second.

InputRateVariance Variance of theIR .

Think Time Time from dictation of word to first input letter of student.

Time for Error Time from last correct input letter to erroneous input letter.

Time to NoticeError Time from error input letter to first corrective action.

Off Time Longest time period between two subsequent letter inputs.

Input & Error Behavior

HelpCalls Number of help calls (repeating the dictation).

FinishedCorrectly True if all errors are corrected when enter key is pressed.

SamePositionError True if multiple errors occur at one letter position of aword.

RepetitionError
State of previous input of the same word (three states:Correct /
Erroneous/ Not Observed).

Error Frequency

Relative entropy (Kullback and Leibler, 1951) from observedto
expected error distribution (given by the student model (Baschera
and Gross, 2010b)) over last five inputs. Positive values areob-
tained from larger errors numbers, negative values from smaller
ones.

Controller Induced

Time to Repetition Time from erroneous input to respective word repetition.

Lettersto Repetition
Number of entered letters from erroneous input to respective word
repetition.

the features cannot be directly applied to a different learning domain or a different
learning environment such as mathematics learning. However, we can divide the
features designed for the spelling learning environment into different feature cat-
egories and derive a general feature set from those. We use the categoriesinput
behavior, problem statement, problem-solving behavior, performanceandenviron-
ment. Table 9.3 shows the categories as well as our suggestion fora general feature
set associated with these categories for engagement dynamics modeling.

The features of the comprehensive feature set can be used fordifferent learning
domains and environments and are particularly suitable forhierarchical learning
domains such as mathematics learning. Table 9.4 demonstrates that most features
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Table 9.2:Assessment of feature set for the engagement dynamics model in spelling learning.
Most features cannot be directly reused for the mathematics learning environment as
they are specific to spelling learning and theDybuster environment.

Feature Assessment Reason

Timing

InputRate No
Input rate not meaningful for mathematics
learning.

InputRateVariance No Same reason as for theIR .

Think Time Yes
Can be replaced by answer time, i.e., the time
the child needs to answer the task.

Time for Error No
Only meaningful in an environment with imme-
diate feedback on errors.

Time to NoticeError No
Feedback is only given after the whole result
has been entered.

Off Time Yes
Could be redefined to be the time until the child
starts answering the task.

Input & error behaviour

HelpCalls No No help calls possible in the environment.

FinishedCorrectly No
Feedback is only given after the whole result
has been entered.

SamePositionError No Only meaningful for spelling learning.

RepetitionError Yes
Might be replaced by assessing the previous op-
portunity the child had to apply a certain skill.

Error Frequency Yes
Student model needs to compute expected error
distribution.

Controller Induced

Time to Repetition No Repetition of exactly same task is not done.

Lettersto Repetition No Repetition of exactly same task is not done.

could be directly applied to the mathematics learning environment, such as the one
provided byCalcularis.

9.4 Discussion

In this chapter, we explored the idea of transferring existing results in the context of
engagement modeling in spelling learning to general applications for learning dis-
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abilities. Our assumptions are scientifically justified by the significant co-occurrence
of dyslexia and DD with ADHD and the similar implications such as anxiety and low
intrinsic motivation of the two learning disabilities. This observation constitutes a
clear indicator of the existence of similar engagement dynamics, thereby suggesting
general measures and models of engagement.

We performed a detailed analysis of similarities and differences of the two disabil-
ities as well as the according learning environments. Our analysis of the learning
domain and the learning environments, of their corresponding student models, as
well as of the experimental data, suggests that the model forspelling learning can
be extended to the case of mathematics learning. Our findingsshow, however, that
indicator functions and features are specific to the learning domain. Table 9.5 sum-
marizes the similarities and dissimilarities of the two investigated cases.

From this comparison we conclude that there are substantialdifferences in the learn-
ing domain, which in turn directly influence the learning environment and the stu-
dent model. Furthermore, these differences indirectly affect the experimental data
as well. Therefore, the application of the indicator function and of the feature set
specified for the model of engagement dynamics in spelling learning is fairly sophis-
ticated. Rather, a more general indicator function and a comprehensive feature set
need to be defined. At present, this is an area of active research.
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Table 9.3:Sketch of a general feature set (abbreviations in bold) for engagement modeling derived
from the spelling learning environment. Extracted features are consistentwith previous
work (Baker et al., 2004).

Generalized feature Description

Input behaviour
InputType The type of the input, e.g., mouse, keyboard, pull-down menu, etc.
Valid Input True if the input is valid, e.g., input string only contains numbers.
InputStatistics Statistics of the input as for example mean input rate or input rate

variance.
Problem-orientedInput True if the input is related to the problem, e.g., user enters text into

the answer.

Problem statement
ProblemDifficulty Ideally an overall measure of the problem difficulty.
ProblemType The kind of problem at hand.
ProblemFamiliarity True if the user is familiar with the kind of problem.

Problem-solving behavior
Time toSolution Total time spent on this problem until solution.
Time LastSolutions Total time spent on the lastn problems.
Time Deviation Standard deviation from mean time to solution for this kind of prob-

lem.
AnswerTime Time until user starts answering the problem after she sees the prob-

lem statement.
ProblemApproach The user’s approach to the problem, e.g., trial and error, systematic,

etc.
HelpUsage If a help system is available how is it used, e.g., frequency of use.

Performance
Correctness ofAnswer Assessment of user answer: correct, wrong or misconception.
AnswerAssessment User performance meets model expectations (e.g., posterior proba-

bility).
Error Information Information about the committed error, e.g., spelling error.
Error Repetition Number of errors in the past for the same kind of problem.
Error Frequency Frequency of certain error types.
Error Count Number of errors similar to the current error in the lastn problems.

Environment
Time BetweenProblems Time from last similar problem to this one.
Similar ProblemsCount Number of problems similar to the current one in the lastn problems.
Work BetweenProblems Amount of work between the current and the last similar problem.
SessionDuration Duration of the training session.
Time of theDay Time of the day the training session takes place.
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Table 9.4:Assessment of the general feature set (introduced in Tab. 9.3) for thecase of math-
ematics learning. Most features of this general set could be directly applied to the
Calcularis environment.

Generalized feature Assessment Reason

Input behaviour
InputType Yes Mouse, keyboard, joystick.
Valid Input Yes Input is a valid number.
InputStatistics No Input statistics not meaningful for the specific

environment.
Problem-orientedInput Yes Click at the right place (where you should click).

Problem statement
ProblemDifficulty Yes Can directly be derived from the student model.
ProblemType Yes Trained skill.
ProblemFamiliarity Yes True if the user has trained the same skill before.

Problem-solving
Time toSolution Yes Directly applicable.
TimeLastSolutions Yes Directly applicable.
TimeDeviation Yes Directly applicable.
AnswerTime Yes Directly applicable.
ProblemApproach Yes Problem omission can be detected.
HelpUsage No No help system available.

Performance
Correctness ofAnswer Yes Directly applicable.
AnswerAssessment Yes Comparison of student’s performance against

estimated model performance.
Error Information Yes Directly applicable using the bug library ( Sec. 3.4).
Error Repetition No Repetition of exactly same task is not done.
Error Frequency Yes Directly applicable using the bug library (Sec. 3.4).
Error Count Yes Directly applicable using the bug library (Sec. 3.4).

Environment
TimeBetweenProblems Yes Time from last problem that trained the same skill to

this one.
Similar ProblemsCount Yes Number of problems that trained the same skill in the

lastn problems.
Work BetweenProblems Yes Amount of work between last problem that trainedthe

same skill and this one.
SessionDuration Yes Directly applicable.
Time of theDay Yes Directly applicable.
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Table 9.5:Comparison of the two cases of DD and dyslexia in terms of the learning domain and
environment as well as the student model and the experimental data availablefrom
Dybuster andCalcularis.

Category Dyslexia Dyscalculia (DD)

Learning disability Brain-based disorder Brain-based disorder
Comorbidities (DD, ADHD) Comorbidities (Dyslexia, ADHD)
Aversion & anxiety against the
subject

Aversion & anxiety against the
subject

Learning domain Static (non-hierarchical) Hierarchical
Learning through memorization
& analogies

Conceptual knowledge important

Learning
environment

One main learning game Range of games ordered hierarchi-
cally

Multi-modal cues recode textual
input string

Visual cues encode properties of
number

Difficulty of word adapted to user Selection of games and tasks
adapted to user

Student model Poisson-based perturbation model Dynamic Bayesian network
Selection of word with highest
progress potential

Non-linear, rule-based task selec-
tion

Experimental data Input logs with inputs, errors and
timestamps

Input logs with inputs, errors and
timestamps

Input from keyboard Input from keyboard, mouse and
joystick

No additional information Recording of invalid inputs
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developmental dyscalculia

Developmental dyscalculia (DD) has an estimated prevalence of 3%− 6% in Ger-
man speaking countries (Shalev and von Aster, 2008). It has been shown that basic
number processing and understanding capabilities acquired in preschool are essen-
tial for later mathematical performance (Landerl et al., 2004; Hannula and Lehtinen,
2005; Mazzocco and Thompson, 2005; Krajewski and Schneider, 2009). Therefore,
early intervention and detection are important.

However, the diagnosis of DD involves the assessment of the child’s numerical as
well as domain general abilities by standardized tests. These standardized tests are
time consuming and need to be conducted by an expert. A computer-based diagno-
sis tool would allow for an inexpensive and mostly unsupervised screening in the
classroom and indicate children at risk for DD.

So far, few computer-based tests for DD exist.Dyscalculium (Beacham and Trott,
2005) is a screening tool for students in higher education. The tool was evaluated
with 19 students and demonstrated a sensitivity of 83.3% and a specificity of 92.3%.
Dyscalculia Screener Digital (Butterworth, 2003) is a computer-based test
that assesses basic numerical capacities of children from 6to 14 years. This test has
been standardized in the UK.

In this chapter, we describe the development of a computer-based screening tool for
DD. The tool is purely data-driven and is based on the log file data fromCalcularis.
Test duration is adaptive, with a maximum duration of 30 minutes. In the following,
we describe the features extracted from the available data as well as the feature
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selection. We then introduce the algorithms for static and adaptive classification and
finally evaluate the accuracy of the test. The work presentedin this chapter was
developed in the context of a master thesis (Klingler, 2013), which contains further
details about the applied approach.

10.1 Feature extraction

The screener tool is based on log files from 89 participants, collected in theBMBF-
study(see Chapter 4). 49 children (73% females) were diagnosed with DD, while the
other 40 children (65% females) were control children (CC). All children completed
a minimum of 26 training sessions. On average, children completed 29.5 sessions
(SD σ = 1.8). Over the course of the training, participants solved on average 1541
tasks (SDσ = 231), the number of solved tasks per session corresponded to52.3
(SD σ = 7.3). There were 28 participants in 2nd grade, 46 children from the 3rd
grade and 15 children visiting the 4th grade of elementary school. As the children
visiting the 4th grade were all diagnosed with DD, they were excluded from the
analyses unless noted otherwise.

For the classification task, we extracted three different feature groups from the data:
Skill dependent, game dependentandpath dependentfeatures. The extracted fea-
tures for all groups are listed in Tab. 10.1 (Klingler, 2013).

Skill dependentfeatures provide information about tasks associated with aspecific
skill. We for example extract the average performance (P) of the children (ratio of
correctly solved tasks) per skill. Furthermore, we also assess the average answer
time (AT ) of the children at each skill. We expect children with DD to show a lower
average performance and longer answer times, particularlyfor skills from the area
of arithmetic operations. It has been shown that children with DD exhibit the same
mathematical problems as control children, but to a larger extent (Murphy et al.,
2007). Furthermore, children with DD tend to suffer from difficulties in acquir-
ing simple arithmetic procedures and exhibit a deficit in fact retrieval (Ostad, 1997,
1999). In addition, we also count the number of typical mistakes (TM ) the child
commits at each skill (see Sec. 3.4 for the list of typical mistakes contained in the
bug library of Calcularis).

Path dependentfeatures provide important information about a child’s training per-
formance. InCalcularis, each child pursues a different path through the skill
network (illustrated in Fig. 3.4),i.e., the learning path is individually adapted to the
children. Figure 3.6 displays the skill sequences of three different users in addition
between 0-100. We therefore extract the skill sequences (NSN) of the children over a
given time period. Furthermore, we also collect the transitions between skills (ESN)
during this time period. The time period is limited by the maximum test duration.
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Table 10.1:Extracted features and abbreviations (bold) used in the following (Klingler, 2013).
Some features are specific to a certain game, while others can be used for all skills.
Path dependent features look at the training sequence of the children.

Feature Description

Skill dependent features
Performance Ratio of correctly solved tasks at a specific skill.
AnswerTime Average answer time at a specific skill.
TypicalM istakes Number of typical mistakes committed at a specific skill.

Path dependent features
NodesSkill Net Set of skills trained during a given time period.
EdgesSkill Net Set of transitions (between skills) made during a given

time period.

Game dependent features
Estimation Ratio between number of overestimates and task count.
SecretNumber Ratio by which the remaining interval is reduced.
Ordering Ratio of false positive and incorrectly solved tasks.
Landing Distance to correct position of the given number.

As opposed to general features such as for example the answertime, which can be
extracted for each skill,game dependentfeatures make only sense for skills asso-
ciated with a specific game. For theEstimation game (see Sec. 3.2.3), we for
example extract the ratio between the number of overestimates and the number of
solved tasks (E), i.e. we assess how often the children overestimated the presented
point sets. In theSecret Number game (see Sec. 3.2.3), children have to guess a
number in a given interval. After each guess, they are told, if the secret number is
smaller or larger than the guessed number. Our initial analyses have demonstrated
that control children tend to apply a more elaborate strategy when guessing. We
therefore measure the average ratio by which the remaining interval is reduced after
each guess (SN). In theOrdering game (see Sec. 3.2.3) children have to decide if
a given sequence of numbers is sorted in ascending order. Here, we assess the ratio
bet-ween the number of false positives (i.e., examples incorrectly indicated as cor-
rectly sorted) and the total number of incorrectly solved tasks (O). For theLanding
game (see Sec. 3.2.3), we extract the distance between the position indicated by the
child and the correct position of the given number (L ).
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Figure 10.1:Processing pipeline yielding the pairwise feature distance matrixD serving as an
input for the clustering algorithm. Feature valuesf are processed (turquoise) before
computing pairwise distances (purple).

10.2 Feature selection

Extracting the feature types described in Tab. 10.1 yields afew 100 features. We
expect that some of these features are correlated. Furthermore, each feature corre-
sponds to a set of tasks the children have to solve. Thus, the number of features
directly influences the test duration, which is limited. We therefore only select the
best subset of the features for classification. To find this representative subset, we
cluster the different features into groups of similar features and choose only one
representative feature per cluster for classification.

To be able to cluster the features, we need a pairwise similarity measure between
each pair of featuresFi andFj . However, the different feature types have very differ-
ent ranges and a direct comparison between the features is therefore not meaningful.
For example,AT measures the average answer time in seconds, whileP denotes a
performance value between 0 and 1. We therefore need to process the features to
obtain the pairwise distance matrixD for the clustering. The according processing
pipeline is displayed in Fig. 10.1.

In a first step, we apply aKernel transformationto the different features to make
them comparable: We compute a similarity matrixK i ∈ [0,1]N×N for every feature
Fi, whereN denotes the number of children. Therefore,K i contains the pairwise
similarities between each pair of childrenj and k regarding featureFi. We use
different kernels for the different feature types. For the answer timeAT , we combine
a Gaussian Kernel with a log transform to obtain

κAT(x,z) = exp

(

‖log(x)− log(z)‖2

2σ2

)

, (10.1)

wherex andz denote the respective feature values. The log transform is useful for re-
moving outliers and was successfully used in previous applications (see Chapter 8).
For the performance featuresP, we use a Beta cumulative distribution combined
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with a Gaussian kernel. We assume that learning can be modeled by a logistic func-
tion: This function exhibits a small gradient near the interval boundaries and a larger
gradient in between. We approximate this property by using the kernel function

κP(x,z) = exp

(

‖betacd f(x)−betacd f(z)‖2

2σ2

)

, (10.2)

with x andz representing the respective feature values. As thepath dependentfea-
turesNSN andESN are set features, we apply a Jaccard kernel transformation to
them:

κNSN,ESN(X,Z) = 2
X∩Z
X∪Z −1, (10.3)

whereX andZ denote the values of the respectivepath dependentfeatures. For
theSN features, values can be put into different categories: Valid guesses reducing
the remaining interval and invalid guesses (outside the given interval). For the valid
guesses, the kernel should be sensitive to small differences. For the invalid guesses,
the differences between the actual values are not important. We combine a Gaussian
Kernel with an exponential transformation to model this property and obtain

κP(x,z) = exp

(

‖exp(−x)−exp(−z)−2‖2

2σ2

)

, (10.4)

with x andz again representing the respective feature values. For all other features
(TM ,E,O,L ), we apply a standard Gaussian kernel.

In a second step, we computepairwise distancesbetween the obtained similarity
matricesK i. We compute the distance between each pair of featuresFi andFj by
calculating the Frobenius norm between their similarity matricesK i andK j :

Dij =
∥

∥K i−K j
∥

∥

F . (10.5)

The resulting matrixD can be directly used for clustering. As the measurements are
characterized by relations,i.e., they represent dissimilarities between each pair of
featuresFi andFj , we perform pairwise-clustering (PC) (Hofmann and Buhmann,
1997) onD.

The optimal number of clustersk∗ can be determined by the Bayesian Informa-
tion Criterion (BIC) (Pelleg and Moore, 2000), calculating theeffective num-
ber of parameters as the normalized trace of the kernel transformation ma-
trix (Haghir Chehreghani et al., 2012). A second possibilityto determinek∗ is the
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use of the maximum test durationT: We choosek∗ as the maximum number of
clusters yielding an expected test duration smaller thanT.

10.3 Static classification - Support Vector Machines

In this section, we present a firststatic classificationapproach for classifying the
children into a group with DD and a control group. We call the approach static, as
the resulting model will be based on a fixed set of features,i.e., the selected features
will be the same for all children. We are dealing with a supervised classification,i.e.,
the training data provided to the algorithm are all labeled.

Support vector machines (SVM) are among the best performingalgorithms for clas-
sifying data into two groups (Caruana and Niculescu-Mizil, 2006; Statnikov et al.,
2008). Furthermore, SVMs have a convex loss function and therefore convergence
to the global minimum is guaranteed. Moreover, the quadratic programming prob-
lems posed by SVMs can be solved iteratively, which allows training on large data
sets (Shalev-Shwartz et al., 2007). We therefore train a SVMfor our static classifi-
cation problem. A detailed introduction to SVMs can be foundin (Bishop, 2006).

SVMs are linear classifiers. For data not linearly separablein the original space,
we can apply kernel transformations to find a separating hyperplane in a (possibly)
higher dimensional space, constructed in a nonlinear way from the original space.
An illustration of this so called kernel trick is given in Fig. 10.2 (Klingler, 2013).

From the feature selection (described in Sec. 10.2), we haveappropriate kernelsK i

available for each feature type. To allow the SVM to use all the available data and
incorporate the information provided by each feature type,we need to combine these
kernels. The kernelKSVM that combines all theF feature kernelsK i is given by

KSVM =
F

∑
i=1

K i . (10.6)

Note that we need to normalize the kernelsK i before combining them to ensure that
the ranges of the matrix values are the same for each kernelK i, i.e., each kernel
equally contributes toKSVM .

10.4 Adaptive classification

The model presented in Sec. 10.3 is based on a given number of features and there-
fore tasks. This model is only able to make a classification based on full observ-
ability, i.e., all feature values have to be known for classification. Furthermore, the
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Figure 10.2: Illustration of the kernel trick (illustration adapted from Klingler (2013)): Inthe orig-
inal spaceX (a) the two groups are not separable with a linear classifier. After trans-
formation (b), they can be linearly separated using a hyperplane.

output of the static model is binary. It would, however, be good to have not just
a binary answer to the classification task, but a certainty measure for the predicted
group label.

In this section, we develop a model that adapts the test time to the individual child,
i.e., the features used for classification as well as the length of the test vary over
the children. Furthermore, this model will output a probability instead of a binary
answer.

10.4.1 Probabilistic classifier

Using a probabilistic classifier, we obtain an uncertainty measure for the group label
and can stop the test early. We therefore employ a Bayesian network to solve the
classification task. The resulting Bayesian network is illustrated in Fig. 10.3 (Klin-
gler, 2013). We denote the group label byY, i.e., Y = 1 for control children and
Y = 0 for children with DD. Furthermore, letfi denote the value of featureFi for
a child m. We assume that the available featuresFi, i ∈ {1, ...,F} are condition-
ally independent givenY. Note that this assumption is valid because of our feature
selection step (described in Sec. 10.2): We cluster features into groups of similar
features and choose only one representative feature per cluster. Correlation between
the clusters therefore tends to be low.
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Y

F1 F2 FF

Figure 10.3:Structure of the graphical model for the probabilistic classifier (Klingler, 2013). The
group label is denoted byY (blue), while theFi (red) represent the features. We
assume the different features to be independent.

Given our assumptions, the probability of the network (for achild m) illustrated
in Fig. 10.3 can be written as

p( f1, ..., fF ,y) =

(

F

∏
i=1

p( fi |y)

)

· p(y), (10.7)

where the probabilitiesp( fi |y) are drawn from a continuous or discrete probabil-
ity distribution (depending on the feature type). We assumea normal distribution
for the featuresNSN, ESN, E, SN, O andL . A Beta distribution is used for the
performance featureP and a Gamma distribution for the answer time featureAT .
Furthermore, featureTM employs a Poisson distribution. For each combination of
feature type and probability distribution, we computed a maximum likelihood opti-
mization on the data as well as the BIC. For each feature type, wethen chose the
probability distribution that best models the data, based on the BIC score. Parame-
ters are given by the maximum likelihood optimization. The prior probability p(y)
can be determined by the estimated prevalence of DD (Shalev and von Aster, 2008).
To classify a childm, we need to compute the posterior probability of the group label
Y givenN observed featuresfi :

p(Y = 1| f1, ..., fN) =
(∏N

i=1 p( fi |Y = 1)) · p(Y = 1)
p( f1, ..., fN)

(10.8)

Note that due to the independence assumption, we can deal with partial observability,
i.e., N ≤ F . Furthermore,N grows with the number of observed features. After
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observing the first featureF1, we can computep(Y = 1| f1). Having observedF2, we
infer p(Y = 1| f1, f2) and so on. The predicted group labelŶ can then be computed
as

Ŷ =

{

1 p(Y = 1| f1, ..., fn)> τ
0 otherwise.

10.4.2 Online feature selection

We have already pre-selected a set ofF features via clustering (see Sec. 10.2). Deal-
ing with an adaptive classification, the online feature selection answers the following
two questions:

1. In what order should we acquire the features? An optimal ordering would select
the most informative features for the test first.

2. When should the model stop acquiring new features,i.e., at which point in time
should the model output the final answer?

Order of features

To determine the optimal ordering of the tasks, we have to compute the amount of
group information contained in each feature. We prefer features, where the feature
values differ a lot across the groups (DD and CC) and are similarwithin the group.
To assess the quality of each featureFi, we use a statistical test. Letf0

i be the vector
containing the feature values of theith feature for the children with DD, whilef1

i
contains the values of the CC children. For each featureFi, we perform atwo-sample
t-testto test if the mean values of the according normal distributions are equal. We
therefore obtain ap-valuepi for each feature. We then order the features by sorting
their p-values in ascending order,i.e., the feature with the lowestp-value is asked
first. We denote this criterion as thesignificance decision.

Another option for ordering the features (denoted asinfluence decision), is to select
the features based on their possible influence on the outcome. Let Fobs= {F1, ...,Ft}
be the set of observed features after timet and let fobs denote the values of the
features inFobs. The next feature that will be observed isFt+1. Furthermore, let
Ff ut denote the set of unobserved features andffut the respective feature values. We
choose the featureFt+1 that contradicts the current belief of the model the most:
If the current estimatep(Y = 1|fobs) > τ, i.e., the model believes that the child
belongs to the control group, we pickFt+1 such thatp(Y = 1|fobs, ft+1) is minimized.
However, the values of the features inFf ut are not known. We therefore perform a
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worst case approximation and compute the index of the next feature based on the
already observed valuesfi from the training set

t +1= argmax
i,Fi∈Ff ut

max
n∈{1,...,N}

p
f (n)i

(Y = 0|fobs, f (n)i ), (10.9)

wheren ∈ {1, ...,N} are the indices of the children in the training set andf (n)i de-
notes the value of featureFi for child n from the training set. If the current be-
lief of the model was that the child exhibits DD, we would pickFt+1 such that
p(Y = 1|fobs, ft+1) is maximized. The formula for this maximization can be directly
derived from Eq. (10.9).

Stopping criterion

We assessed three different possibilities for selecting a stopping criterion. The first
simplest approach is the use of upper and lower thresholds. If the current belief of
the model is either above the upper or below the lower threshold, we finish the test.
We call this approach thethreshold stop.

In a second approach (denoted asexpected worst stop), we compute a worst case
approximation to the set of future featuresFf ut. For simplification of notation, let
p(1|fall) denotep(Y = 1|fobs, ffut ) in the following. To derive the approximation, we
computep(1|fall) by using

p(1|fall) =
(∏i,Fi∈Fobs

p( fi |Y = 1)) · (∏i,Fi∈Ff ut
p( fi |Y = 1)) · p(Y = 1)

p(fobs, ffut )
. (10.10)

To simplify the notation even more, we define

αy :=

(

∏
i,Fi∈Fobs

p( fi |y)

)

, βy :=

(

∏
i,Fi∈Ff ut

p( fi |y)

)

and can therefore rewrite Equation 10.10 as

p(1|fall) =
α1 ·β1 · p(Y = 1)

α0 ·β0 · p(Y = 0)+α1 ·β1 · p(Y = 1)
=

1

1+ α0·β0·p(Y=0)
α1·β1·p(Y=1)

. (10.11)

To compute the posterior probability ofp(1|fall), we therefore just need to calculate
β0 andβ1, all the other variables are already known. Again, we do not know the
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values of the features inFf ut. To estimateβ0 andβ1, we therefore again make use
of feature values from the training set that maximally contradict the current belief
state of the model. LetI be the set of unobserved feature indices inFf ut. For every
featureFi ∈ Ff ut, the feature value can be taken from a different childni . Thus, the
estimate forβ̂0 andβ̂1 is given by

β̂0

β̂1
=

β0

β1
({n1, ...,n|I |})=

∏i,Fi∈Ff ut
pf (ni )( fi |Y = 0)

∏i,Fi∈Ff ut
pf (ni )( fi |Y = 1)

= ∏
i,Fi∈Ff ut

pf (ni )( fi |Y = 0)

pf (ni )( fi |Y = 1)
, (10.12)

where f (ni) denotes the value of featureFi for child ni from the training set.

Let us assume that the current estimate of the model isp(Y = 1|fobs) > τ. We
therefore want to minimizep(1|fall). From Eq. (10.11), we know that this is equal to

maximizing the estimatêβ0/β̂1. To maximize this estimator, we proceed as follows:
For every featureFi ∈F f ut, we pick the feature values of a childni in the training set
such that(pf (ni )( fi |Y = 0))/(pf (ni )( fi |Y = 1)) is maximized. From Equation 10.12

it follows that this procedure maximizeŝβ0/β̂1. Having estimatedβ̂0/β̂1, we can
computep(1|fall). If p(1|fall) > τ, i.e., the future (worst case) belief is the same as the
current belief of the model, we can stop the test.

If the current belief of the model was that the child exhibitsDD, we would select the
feature values of each featureFi ∈ Ff ut such thatp(1|fall) is maximized. The proce-
dure for this maximization can be directly derived from Eq. (10.11) and Eq. (10.12).

The third stopping criterion (denoted asnext worst stop) is similar to the second one,
however, instead of estimating the worst case using all future featuresFi ∈ Ff ut, we
look only at the next featureFt+1. We therefore want to select the next featureFt+1

such that it maximally contradicts the current belief of themodel. Again, the values
of the features inFf ut are not known. We therefore perform a worst case approxima-
tion and compute the index of the next feature based on the already observed values
fi from the training set using Eq. (10.9). If the estimatep(1|fall) does not contradict
the current belief of the model, we can stop the test.

10.5 Assessment of static and adaptive classification

We evaluated the classification accuracy of the static and the adaptive approach on
log files from theBMBF-study(described in Sec. 10.1) by using anested10-fold
cross validation: We randomly split the data into 10 folds ofequal size. We then
divided each fold into a training set and a test set. The modelselection,i.e., the
selection of the hyperparameters of the model was then performed individually on
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each training set using bootstrapping. For the static classification approach, hyper-
parameters are for example the choice of kernels or kernel parameters (such asσ in
the Gaussian kernel). A hyperparameter for the adaptive classification if for example
the choice of the probability distributions for the features. The fitted models were
then (again individually) tested on each test set. By employing the nested validation,
we do not only cross validate the performance of the model, but also the model se-
lection process. A detailed introduction to nested validation can be found in (Hastie
et al., 2001).

To assess the quality of our models, we evaluated the classification accuracy as well
as its sensitivity and specificity. The sensitivity is computed as the ratio between
the number of true positives (children correctly classifiedas having DD) and the
total number of children with DD. We therefore measured, howgood the model is
at finding the children with DD. The specificity is defined as the ratio between the
true negatives (children correctly classified as being CC) andthe total number of
CC. The specificity therefore describes the test’s ability to exclude a condition (in
our case DD) correctly.

10.5.1 Static model evaluation

To select the features for the SVM, we performed a clusteringand chose only one
representative feature per cluster. The optimal number of clustersk∗ can be deter-
mined using the BIC, calculating the effective number of parameters as the normal-
ized trace of the kernel transformation matrix used for the PC. The resulting BIC for
1 to 100 clusters is displayed in Fig. 10.4 (Klingler, 2013).

According to the BIC score the optimal number of clusters isk∗ = 2. This result
is not satisfactory,i.e., selecting only two features leads to a bad performing classi-
fier. We therefore limited the number of clusters tok∗ = 16 based on the maximum
test duration. Per feature, we included five tasks, which leads to 80 tasks in the
test. In the following we will refer to this assemi-automated feature selection. The
features selected using this approach are listed in Tab. 10.2 (Klingler, 2013). We
also assessed the performance of manually, expert-based selected features: We ex-
tractedNSN andESN (described in Tab. 10.1) based on the first 40 tasks the child
solved during the training and on 40 other tasks starting from skill Addition 1,1 TC
(see Fig. 3.4). We call thismanual feature selectionin the following. With this ap-
proach, the test has the same number of tasks (80), but we can include more features,
i.e., we can include all the skill and game dependent features along the chosen path.

In Sec. 10.2, we designed custom kernels for the different feature types. To show
the benefits of these custom kernels, we compared the classification with the custom
kernels to a classification employing a standard Gaussian kernel for all feature types.
For this analysis, we performed the feature selection employing thesemi-automated
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Figure 10.4:Model selection using the BIC score (Klingler, 2013). The optimal number of clusters
is k∗ = 2 (marked with a red circle). This result is not satisfactory as the selection of
only two features leads to a bad classifier.
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Figure 10.5:Classification accuracy over the different folds of the 10-fold cross validation employ-
ing custom kernels (blue) and standard kernels (red) (Klingler, 2013). Our custom
designed kernels improve the classification accuracy.

feature selectionapproach. The resulting classification accuracy for the different
kernels is displayed in Fig. 10.5 (Klingler, 2013). The SVM employing our custom
kernels outperforms the model using standard kernels by a large margin.

Having selected the features as well as the kernels, we can evaluate the classifica-
tion accuracy for the different combinations by employing the nested 10-fold cross
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Table 10.2:List of features selected with thesemi-automated feature selectionapproach (Klingler,
2013) along with corresponding games (see Sec. 3.2.3) and skills (see Fig. 3.4). The
abbreviations of the feature types are consistent with Tab. 10.1.

Feature type Game Skill

AT Calculator Addition 1,1 TC

AT Calculator Subtraction 1,1 TC

AT Calculator Addition 3,1 TC

AT Ordering Ordinal 2, 0-100

AT Calculator Subtraction 2,2

AT Calculator Subtraction 2,1

P Calculator Addition 1,1 TC

P Calculator Subtraction 1,1 TC

P Transfer Verbal/Concrete→Arabic, 0-1000

P Calculator Subtraction 1,1

P Transfer Verbal/Concrete→Arabic, 0-100

P Estimation Estimation

P Slide rule Support Subtraction 1,1

TM Landing Arabic→Numberline, 0-1000

TM Calculation Addition 2,1

TM Landing Verbal→Numberline, 0-100

TM Landing Verbal→Numberline, 0-10

SN Secret number Ordinal 3, 0-100

validation. Applying a custom kernel combined with themanual feature selection
exhibits a mean classification accuracy of 0.88 (SD σ = 0.05). When using the
semi-automated feature selection, the resulting classification accuracy amounts to
0.86 (SDσ = 0.04). Employing standard Gaussian kernels for all feature types com-
bined with amanual feature selectionresults in an average classification accuracy
of 0.66 (SDσ = 0.05).
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Table 10.3:Performance comparison of the Bayesian network classifier regarding different com-
binations of task ordering approaches and stopping criteria (Klingler, 2013). The best
Bayesian network classifier reaches an accuracy of 0.92 after on average 35 tasks.

Feature ordering Stopping criterion
Accuracy
(SD σ )

Sensitivity Specificity #tasks

significance decision next worst stop 0.92(0.05) 0.92 0.91 35

significance decision threshold 0.91(0.04) 0.91 0.88 30

influence decision expected worst stop 0.89(0.04) 0.92 0.88 75

significance decision expected worst stop 0.89(0.05) 0.90 0.88 70

influence decision threshold 0.87(0.06) 0.89 0.85 35

influence decision next worst stop 0.87(0.89) 0.85 0.91 35

10.5.2 Evaluation of adaptive model

In order to select the features of the adaptive model, we presented different ap-
proaches regarding the ordering of the tasks as well as the stopping criterion
(see Sec. 10.4.2). We evaluated the classification accuracyof the Bayesian network
classifier by employing different combinations of feature ordering and stopping cri-
teria. From Tab. 10.3 (Klingler, 2013) it becomes obvious that the best accuracy is
reached by applying thesignificance decisionto determine the ordering of the fea-
tures and thenext worst stopcriterion to decide when the test can be finished. The
last column of Tab. 10.3 displays the average number of tasksneeded to come to a
decision. The accuracy of the Bayesian network classifier (best case) is better than
the accuracy reached with the static SVM classifier (0.88 (SDσ = 0.05)). Further-
more, the adaptive model needs on average 35 tasks to classify a child, while the
static SVM classifier needs 80 tasks.

For the Bayesian network classifier, we used different distributions to model the
data (described in Sec. 10.4.1). We compared the performance of a Bayesian net-
work classifier using these fitted distributions for each feature type to a Bayesian
network classifier employing only normal distributions. The ROC (receiver operat-
ing characteristics) curve of these two models is displayedin Fig. 10.6 (Klingler,
2013). For both models, we used all the features selected by the semi-automated
feature selectionapproach. Again, modeling the data using different distributions
proves to be beneficial.
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Figure 10.6:ROC curves for the Bayesian network classifier using normal distributionsonly to
model the data (red) and using our fitted distributions (blue). Each point onthe curves
corresponds to a different probability thresholdτ at which the model decides that a
child is a control child (Klingler, 2013). Modeling the data with fitted distributionsis
beneficial for classification accuracy.

10.6 Discussion

In this chapter, we have introduced a static and an adaptive method for classifying
children into two groups: One group with DD and one control group. The adaptive
Bayesian network classifier outperforms the static SVM classifier regarding classifi-
cation accuracy (SVM: 0.88 (SDσ = 0.05), Bayesian network: 0.92 (SDσ = 0.05))
as well as test length (SVM: 80 tasks, Bayesian network: 35 tasks). A reason for this
might be that it is not always beneficial to pick as many features as possible for clas-
sification: Some features not differentiating well betweenthe group labels might
actually deteriorate classification accuracy. The Bayesiannetwork classifier has a
further advantage: By adapting the thresholdτ used for deciding if a child belongs
to the control group, we can tune the sensitivity and specificity values,i.e., an expert
can decide if the sensitivity or the specificity of the classifier is more important.

The performance of our classifier is comparable to that of existing computer-based
screener tools regarding sensitivity and specificity.Dyscalculium (Beacham and
Trott, 2005) reaches a sensitivity of 0.82 and a specificity of 0.92, while our best
Bayesian network classifier exhibits a higher sensitivity (0.92) and a comparable
specificity (0.91). Furthermore, the average test duration for our best Bayesian net-
work classifier is low with 14 minutes.
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Regarding the selected features, our test compares well to standard tests for DD. Our
screener includes many of the skills (such as number comparison or spatial num-
ber representation) described in previous work (Butterworth et al., 2011). Further-
more, feature types such as performance, answer times and typical mistakes were
employed in other screening tools as well (Beacham and Trott,2005; Butterworth,
2003).

Our presented screening tool has two main limitations. First, the classifiers were
trained and evaluated based on data from a user study. Log files of children con-
tain six weeks of training data. Therefore, the data set at hand contains learning
effects as well as adaptation effects (to the training environment). Second, the dis-
tribution between the group labels was close to a uniform distribution: 49 children
were diagnosed with DD, while the other 40 children were CC children. The actual
prevalence of DD is, however, estimated to be 3−6%. In a next step, the screening
tool therefore needs to be evaluated in school classes, comparing its results to those
of standardized tests.
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C H A P T E R 11
Conclusion

In this thesis, we presented a complete loop in the data-driven development of an in-
telligent tutoring system. We started by designing and implementingCalcularis, a
computer-based training program for children with difficulties in learning mathemat-
ics. This included the complete development of all components of the system,i.e., a
curriculum along with appropriate games and a special design for numerical stimuli,
a dynamic Bayesian network student model with a non-linear control algorithm, and
a bug library containing typical errors and misconceptionsof the domain. In a sec-
ond step, we evaluated the first version ofCalcularis in two user studies to prove
its effectiveness. Based on the collected data from these studies, we assessed the
quality of the student model and the control algorithm in a third step. By applying
logistic regression, we validated the structure of the Bayesian network. Further-
more, we improved the existing student model on the basis of the collected log files:
We suggested a constrained latent structured learning algorithm to improve predic-
tion accuracy as well as a cluster-based prediction method for long-term predictions
of student characteristics. Moreover, we also investigated possible extensions in
engagement modeling. Finally, we extendedCalcularis by a screening tool for
developmental dyscalculia.

In the following, we will review the principle contributions of the thesis and discuss
the limitations and further work.
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Conclusion

11.1 Review of principal contributions

We developed the intelligent tutoring systemCalcularis (described in Chapter 3)
aimed at children with developmental dyscalculia or difficulties in learning mathe-
matics. The curriculum of the software is based on actual research regarding neuro-
cognitive models of numerical development (von Aster and Shalev, 2007). Further-
more, we developed a special design for numerical stimuli using colors, forms and
topologies to represent properties of numbers. This designis intended to enhance
the different number modalities and to strengthen the linksbetween them. Moreover,
the transfer of information through different channels stimulates perception and fa-
cilitates the retrieval of memory (Lehmann and Murray, 2005; Shams and Seitz,
2008). Calcularis features a dynamic Bayesian network student model (Murphy,
2002). Compared to previous work using Bayesian Knowledge Tracing (Corbett and
Anderson, 1994; Koedinger et al., 1997), we are able to modelthe hierarchy and de-
pendencies between the different skills of a learning domain. This graph structure
also supports the non-linear control algorithm: In contrast to other systems (Conati
et al., 2002; Koedinger et al., 1997; Gross and Vögeli, 2007), we allow backward
movements in the hierarchy (going back to easier skills). The attached bug library
also adds to this strategy: If the child commits typical errors, remediation skills,
which are not necessarily direct precursors of the actual skill, are trained.

The evaluation ofCalcularis in two user studies (detailed in Chapter 4) demon-
strated the effectiveness of the program. Children improvedsignificantly in addition
and subtraction over a training period of six weeks regarding correctness and prob-
lem solution times. This decrease in problem solution timescan be seen as a shift
to increased fact retrieval (Geary et al., 1991; Lemaire andSiegler, 1995; Barrouil-
let and Fayol, 1998; Jordan et al., 2003). After three monthsof training, children
also demonstrated a refined spatial number representation,confirming the results
of previous studies (Siegler and Booth, 2004; Booth and Siegler, 2006, 2008; Hal-
berda et al., 2008) which demonstrated significant correlations between arithmetical
learning and the quality of numerical magnitude representation. Last but not least,
children liked to play with the training program and reported that the training im-
proved their mathematical abilities.

In Chapter 5, we validated the skill model ofCalcularis using learning curves.
We explored the potential parameter estimate biases that may result when fitting
learning curves to data from tutoring systems that employ a mastery-learning mech-
anism. To analyze these biases, we investigated a wide set ofmodeling techniques
and used the re-tests of previously mastered skills inCalcularis to check whether
judged mastery is retained. We investigated variations of logistic regression models
including the Additive Factors Model (Cen et al., 2007, 2008)and others that were
explicitly designed to adjust for mastery-based data. We extensively analyzed prop-
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erties and prediction accuracy of the different models and discussed implications for
use and interpretation.

A further validation, namely the data-driven assessment ofthe quality of the student
model and the controller, was conducted in Chapter 6. Our analyses demonstrated
that the developed model adjusts rapidly to the knowledge state of the user. Further-
more, the non-linear design of the control algorithm is beneficial for learning.

In Chapter 7, we improved the accuracy of the dynamic Bayesian network student
model (Murphy, 2002). We introduced a method calledconstrained structured pre-
diction with latent variablesfor efficiently learning the parameters of a probabilistic
graphical model. Our regularization of the parameter spacevia constraints improves
prediction accuracy while ensuring an interpretable model. We demonstrated that
our method outperforms the original model using expert parameters as well as pa-
rameters fitted with an unconstrained optimization. Furthermore, we conducted ex-
periments on large-scale data sets from different learningdomains and proved that
our fitted Bayesian network models also significantly outperform previous work ap-
plying Bayesian Knowledge Tracing (Yudelson et al., 2013) inprediction accuracy.

We also introduced acluster-based prediction methodfor the long-term prediction
of mathematical characteristics of the students (see Chapter 8). By using a cluster-
ing and classification approach, we are able to predict the overall training outcome,
external post-test results as well as specific mathematicalproblems of the children
based on cluster information. Our results are in line with previous work (Baker
et al., 2011; Pardos et al., 2012a,b; Trivedi et al., 2011; Gong et al., 2012; Trivedi
et al., 2012) demonstrating that the use of cluster information improves prediction
accuracy.

Furthermore, we also investigated the possibility of extending Calcularis to not
only adapt to the knowledge, but also to engagement states ofthe users. In Chapter 9,
we explored the possibility of a general framework for engagement learning, focus-
ing on learning disabilities. We started our explorations based on an engagement
model for spelling learning (Baschera et al., 2011). Our analyses demonstrated that
the model can be generalized and thus applied to different learning domains. Some
parts of the model, however, remain specific to the domain.

Finally, we also extendedCalcularis with a diagnosis tool for computer-based
screening of developmental dyscalculia based on input data. The static and adap-
tive classification approaches introduced in Chapter 10 exhibit a high accuracy (best
adaptive classifier: 0.92) along with high sensitivity and specificity. The values
are comparable to the performance of previous screening tools (Beacham and Trott,
2005). Furthermore, the average test duration when employing the adaptive classifi-
cation algorithm is with 14 minutes very short.
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Conclusion

11.2 Future work

The presented work covers different areas of interest, ranging from psychology to
student modeling. In this section, we will investigate the limitations of this thesis
and discuss potential future work in the different areas.

The user studies have demonstrated larger improvements in arithmetic operations
(addition and subtraction) than in number representation.However, the different
number representations as well as number understanding in general are very impor-
tant for later mathematical performance (Landerl et al., 2004; Hannula and Lehtinen,
2005; Mazzocco and Thompson, 2005; Krajewski and Schneider, 2009). Further-
more, the observations of the study supervisors as well as our data analyses have
shown that children do not acquire enough conceptual knowledge in the domain of
arithmetic operations. We therefore plan the introduction of new games (and skills)
in both areas of the training program. In thenumber representationsarea, games
training number comparisons and structured sets will be designed. For the area of
arithmetic operations, games introducing the concepts of addition and subtractions
(such as a balance) as well as games for learning number factscould be added.

By applying ourlatent structured prediction method, we have already improved the
prediction accuracy of the existing student model. However, our Bayesian network
student model can handle only discrete binary variables,i.e., all the skills of the
model are assumed to be binary (mastered or not) and also taskoutcomes are either
correct or wrong.

A possible extension would be the introduction of multidimensional observations
nodes. This would allow us to model the task outcome more accurately. For the
Landing game, we could for example apply three states:correct, close, far away.
For addition and subtraction tasks, the answer time of the children could be cap-
tured by additional states such ascorrect, but too slow. Answer times in arithmetic
operations are very important as they give an indication of the strategy used to solve
the task. Children with developmental dyscalculia tend to apply immature strategies
and exhibit a deficit in fact retrieval (Ostad, 1997, 1999).

A further step towards a more accurate model of student knowledge is the introduc-
tion of continuous task outcomes. In theLanding game, children have to indicate
the position of a given number on a number line. Instead of using a binary variable
to represent the task outcome, the distance from the correctposition could be di-
rectly modeled using for example a normal distribution. Continuous task outcomes,
however, represent a challenge for learning and inference as well as parameter inter-
pretability. Instead of guess and slip probabilities, the mean and standard deviation
of the distribution would be fitted. Despite these challenges, continuous (or multi-
dimensional) task outcomes present an interesting direction for future work, as the
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increase of the representational power of the student modelhas the potential to im-
prove prediction accuracy.

Prediction accuracy could, however, also be improved on theexisting student model
by adapting learning and prediction. Given the high diversity of students using a tu-
toring system, a clustering approach could be used to identify subgroups of children
with similar mathematical learning patterns. Parameters could then be fit by sub-
group. Our work on long-term prediction of mathematical characteristics (see Chap-
ter 8) has already demonstrated the potential of a clustering and classification ap-
proach. Furthermore, clustering approaches have been usedto improve the accuracy
of Bayesian Knowledge Tracing models (Pardos et al., 2012b).

Another (similar) possibility for improving prediction accuracy of the existing model
is the use of individualization techniques. Individualization techniques have been
used to increase prediction accuracy of Bayesian Knowledge Tracing models (Par-
dos and Heffernan, 2010a; Wang and Heffernan, 2012; Yudelson et al., 2013; Wang
and Beck, 2013). The resulting improvements were, however, only marginal.

Affective modeling is gaining importance in computer-based education due to the
recognized influence of affective states on the learning outcome. Our work pre-
sented in engagement modeling was a pure theoretical exploration. We have shown
that the engagement model for spelling learning (Baschera etal., 2011) could be
extended to a general framework for modeling engagement dynamics. An obvi-
ous next step would therefore be to apply the suggested general framework to the
Calcularis data set. However, a pure data-driven modeling approach requires an
indicator function,i.e., a function providing the affective state of the children.There-
fore, a combination of sensor measurements and input data seems promising. Cam-
era data can for example easily be collected by using integrated laptop cameras or
webcams. Labeled camera data provide a direct measurement of the affective state
and could replace the indicator function used in the engagement model for spelling
learning (Baschera et al., 2011).

A further exciting possibility for measuring affective states would be an eye tracking
system. Such a system would not only provide information about the student’s atten-
tion, but could also be used to assess graphical features ofCalcularis. With such a
system, we could for example validate the special design fornumerical stimuli used
in Calcularis.

It would also be interesting to explore the possibility of a game version of
Calcularis. Games could be embedded in a complex world. Furthermore, char-
acters and a story could be added to the environment. A playful environment along
with a storyline could increase motivation of children. Ideas for motivational ele-
ments could be found in literature on game design (Fullertonet al., 2004).
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Conclusion

The latest addition toCalcularis is the diagnosis tool for developmental dyscalcu-
lia. However, this tool was trained and evaluated based on data from a user study and
therefore the data set at hand contains learning effects as well as adaptation effects
(to the training environment). Furthermore the distribution between the group labels
was close to a uniform distribution, while the actual prevalence of developmental
dyscalculia is estimated to be 3−6% (Shalev and von Aster, 2008). This tool there-
fore needs to be assessed in real life,i.e., with students from school classes. This
assessment will allow for a comparison of the computer-based screener with stan-
dardized tests. Depending on the number of participating children, the tool could
be standardized as well. Currently, the tool is only available for children in 2nd and
3rd grade. An extension to younger children would be highly desirable: It has been
shown that basic number processing and understanding capabilities acquired in pre-
school are essential for later mathematical performance (Landerl et al., 2004; Han-
nula and Lehtinen, 2005; Mazzocco and Thompson, 2005; Krajewski and Schneider,
2009). Therefore, early detection and intervention are highly important and would
enable optimal support for children with developmental dyscalculia.
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Jarũsek, P. and Pelánek, R. (2012). Analysis of a Simple Model of Problem SolvingTimes.
In Proceedings of Intelligent Tutoring Systems, pages 379–388.

Johns, J. and Woolf, B. (2006). A Dynamic Mixture Model to Detect Student Motivation
and Proficiency. InProceedings of the AAAI Conference on Artificial Intelligence, pages
163–168.

Jordan, N. C., Hanich, L., and Uberti, H. Z. (2003). The development of arithmetic con-
cepts and skills. recent research and theory. In Baroody, A. and Dowker, A., editors,
Mathematical thinking and learning disabilities, pages 359–389. Erlbaum, Mahwah
(NJ).

Kardan, S. and Conati, C. (2011). A framework for capturing distinguishing user interac-
tion behaviours in novel interfaces. InProceedings of Educational Data Mining, pages
159–168.

Kardan, S. and Conati, C. (2013). Comparing and Combining Eye Gaze and Interface
Actions for Determining User Learning with an Interactive Simulation. InProceedings
of User Modelling, Adaptation and Personalization, pages 215–227.

Karmiloff-Smith, A. (1992).Beyond Modularity. MIT Press.
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