
Diss. ETH No. 20757

Discontinuous Galerkin FEM in
Computer Graphics

A dissertation submitted to

ETH Zurich

for the Degree of

Doctor of Sciences

presented by

Peter Kaufmann
Dipl. Informatik-Ing., ETH Zurich, Switzerland
born February 13, 1980
citizen of Meinisberg (BE), Switzerland

accepted on the recommendation of

Prof. Dr. Markus Gross, examiner
Prof. Dr. Olga Sorkine-Hornung, co-examiner
Prof. Dr. Mario Botsch, co-examiner

2013

ii

Abstract

The finite element method (FEM) is the method of choice for computing the nu-
merical solution to many problems that can be formulated as partial differential
equations (PDEs) on irregular domains. Today, it is used in almost every field of
engineering and was also quickly adopted by computer graphics research where it
is now heavily used in the areas of physically-based simulation and geometric mod-
eling. In contrast to standard FEM, which we also refer to as continuous Galerkin
FEM (CG FEM), discontinuous Galerkin FEM (DG FEM) allows its basis functions
to be discontinuous across elements. The lost coupling between elements is then
restored by introducing penalty terms that act to reduce these discontinuities. Just
like CG FEM, DG FEM has a solid mathematical foundation and can be shown to
converge to the exact solution under certain conditions.

The reduced continuity requirements of DG FEM result in several advantages,
which this thesis aims to exploit in the context of computer graphics: elements
can have arbitrary shapes; the creation of a valid element mesh as well as the
modification of the mesh over time are simplified; each element is endowed with
its own set of basis functions, and the quality of the approximation to the exact
solution can be chosen on a per-element basis. The work presented here applies
DG FEM in the context of physically-based simulation of deformable solids and
shells, as well as image warping. The method is applied to linear as well as non-
linear problems, defined through second and fourth order elliptic PDEs in two
and three spatial dimensions. In each of these applications, different aspects of
DG FEM are at the focus of attention. For the simulation of deformable solids, the
arbitrary element shapes allow for topological changes without further element
remeshing. Combined with an exact integration scheme and corotated elasticity,
this enables applications such as the efficient simulation of progressive cutting,
dynamic mesh refinement, and a novel mesh generation approach. In the context
of shell simulations, a DG method for the Kirchhoff-Love shell equations is merged
with the extended FEM (XFEM) to come up with a novel method for the simulation
of highly detailed cutting and fracturing of shells through the use of enrichment
textures. For image warping, DG FEM enables the generation of adaptive meshes
with higher order basis functions to make the problem of temporally consistent
video warping more tractable.

iii

iv

Zusammenfassung

Die Methode der finiten Elemente (FEM) ist die bevorzugte Methode zur Sim-
ulation vieler Probleme welche als partielle Differentialgleichungen in einem ir-
regulären Gebiet formuliert werden können. Die Methode wird heute in praktisch
jedem Teilgebiet der Ingenieurwissenschaften eingesetzt und fand auch rasch im
noch relativ jungen Gebiet der Computergrafik Anwendung, dabei vorwiegend
bei physikalisch basierten Simulationen sowie der geometrischen Modellierung.
Im Gegensatz zur üblichen FEM, welche wir auch als continuous Galerkin FEM (CG
FEM) bezeichnen, verwendet die discontinuous Galerkin FEM (DG FEM) Ansatz-
funktionen, welche über Elementgrenzen hinweg unstetig sein können. Die
dadurch verlorene Kopplung der Elemente wird durch neu eingeführte Terme,
welche die Diskontinuitäten penalisieren, wiederhergestellt. Ebenso wie CG FEM
hat auch die DG FEM eine fundierte mathematische Basis, und es kann gezeigt
werden, dass die Methode unter gewissen Umständen zur exakten analytischen
Lösung konvergiert.

Die reduzierten Stetigkeitsanforderungen der DG FEM führen zu einer Vielzahl
von Vorteilen, welche diese Dissertation im Kontext der Computergrafik anwendet:
Elemente können beliebige Formen annehmen; Die Aufteilung eines Gebietes in
Elemente sowie die dynamische Anpassung dieser Aufteilung werden vereinfacht;
Jedes Element hat seine eigenen Ansatzfunktionen und die Güte, mit welcher
ein Element die exakte Lösung zu approximieren vermag, kann für jedes Ele-
ment einzeln gewählt werden. Die vorliegende Arbeit verwendet DG FEM zur
physikalisch basierten Simulation von deformierbaren Festkörpern und Schalen,
sowie dem Verformen von Bildern. Die Methode wird dabei auf lineare sowohl
als auch nichtlineare Probleme angewendet, welche durch elliptische Differen-
tialgleichungen zweiter und vierter Ordnung in zwei und drei Raumdimensio-
nen definiert sind. Für jede der gezeigten Anwendungen liegt der Schwerpunkt
wieder auf einem anderen Aspekte der DG FEM. Bei der Simulation von verform-
baren Festkörpern wird es dank der beliebigen Elementformen möglich, topolo-
gische Änderungen zu simulieren ohne dabei die zerschnittenen Elemente weiter
aufteilen zu müssen. Kombiniert mit einem exakten Integrationsschema und ko-
rotierter Elastizität ermöglicht dies Anwendungen wie die effiziente Simulation
der graduellen Zerschneidung von Objekten, eine dynamische Verfeinerung der
Elemente, sowie ein neuer Ansatz zur Erzeugung der initialen Elementaufteilung.

v

Im Kontext der Schalensimulationen wird eine DG Methode für die Kirchhoff-Love
Schalengleichungen mit der erweiterten FEM (extended FEM) zusammengeführt
um eine neue Methode zur Simulation von detaillierten Schnitten und Brüchen
unter Verwendung von Anreicherungstexturen (enrichment textures) zu kreieren.
Bei Anwendungen in der Bildverformung erlaubt DG FEM die Erzeugung von
adaptiven Elementaufteilungen mit Ansatzfunktionen höherer Ordnung, welche
das Berechnen der zeitlich konsistenten Verformung von Videomaterial weniger
aufwändig machen.

vi

Acknowledgments

First and foremost, I want to thank my advisor Prof. Markus Gross for not giving
up on convincing me that doing a Ph.D. in computer graphics is not such a bad
idea after all, and for introducing me to the fascinating topic of discontinuous
Galerkin FEM. His broad knowledge in computer graphics and his vision of what
could be achieved with the DG method were of great value and always driving me
forward during my Ph.D.

I was very lucky to have Prof. Mario Botsch as a supervisor. He taught me the “dos
and don’ts” of paper writing and I benefited tremendously from his guidance. His
uncompromised attention to detail, his pragmatic way of approaching and solving
a problem, and the way he kept his desk completely uncluttered even during the
most stressful deadlines had a lasting impression on me. I also thank Prof. Eitan
Grinspun for the continued collaborations, for showing us how to clearly formulate
an idea and how to put that “spin” on a paper. Special thanks go to Dr. Sebastian
Martin, whom I had the pleasure of collaborating with on several projects. Having
someone like him to talk to about my projects, on a daily basis, proved to be
invaluable. Working together towards a deadline, the countless hours we spent
fleshing out new ideas on the whiteboard, and the resulting “Eureka” moments
were clearly some of the most rewarding parts of my Ph.D. Big thanks to all the
other people I had the chance of collaborating with and who also contributed
in various ways to this thesis: Dr. Oliver Wang, Prof. Olga Sorkine-Hornung,
Dr. Alex Sorkine-Hornung and Dr. Aljoscha Smolic. In addition I want to thank
Prof. Christoph Schwab, Prof. N. Sukumar and Prof. Max Wardetzky for the
inspiring and helpful discussions.

Thanks to the past and present members of Disney Research Zurich, the Computer
Graphics Lab, the former Applied Geometry Group, and the Interactive Geometry
Lab for making Zurich not only one of the hotspots for graphics research, but also
a great place to be and spend time with friends. I especially thank Dr. Gian-Marco
Baschera for his support and for contributing a lot toward the enjoyable work
environment by being a great long term office mate.

I am also very grateful for the continuous support I received from my friends
and family, especially my parents who supported me in so many ways during my
studies.

vii

This thesis is dedicated to Elisabeth Maderthaner who taught me an awful lot
about discontinuities in real life. Lisi, I am proud of you and incredibly glad you
found your way back home again.

viii

Contents

Introduction 1
1.1 Overview . 2
1.2 Principal Contributions . 5
1.3 Thesis Outline . 6
1.4 Publications . 7

Related Work 9
2.1 Discontinuous Galerkin FEM . 10
2.2 Physically Based Simulation . 10

2.2.1 Simulation of Deformable Solids 11
2.2.2 Simulation of Thin Shells . 13

2.3 Image Warping . 14

Fundamentals 17
3.1 Introduction to DG FEM . 18

3.1.1 CG FEM . 19
3.1.2 DG Primal Formulation . 21
3.1.3 DG Weak Form . 24

3.2 DG FEM For Non-Linear Problems 28
3.2.1 DG Derivative . 29
3.2.2 Choice of Fluxes . 31
3.2.3 Discretization and Lifting Operators 31
3.2.4 Stabilization . 32

3.3 Non-Linear Elasticity . 32
3.3.1 Continuum Formulation . 33
3.3.2 Discretization and Solution 36

3.4 Linear Elasticity . 37
3.4.1 Continuum Formulation . 38
3.4.2 Discretization and Solution 39

3.5 Kirchhoff-Love Shell Mechanics . 40
3.5.1 Shell Geometry . 41
3.5.2 Shell Mechanics . 42

3.6 Outlook . 44

ix

Contents

Simulation of Deformable Solids 47
4.1 Overview . 48
4.2 Linear Elasticity using DG FEM . 49

4.2.1 DG Weak Form . 49
4.2.2 Discretization and Matrix Assembly 51

4.3 Arbitrary Polyhedral Elements . 55
4.3.1 Divergence Theorem Integration 57
4.3.2 Integration Algorithm . 60
4.3.3 Evaluation . 61

4.4 Stiffness Warping . 61
4.4.1 Element and Face Contributions 62
4.4.2 Non-Nodal Basis Functions 63
4.4.3 Warped Assembly . 63

4.5 MLS-Based Surface Embedding . 64
4.6 Collisions . 66
4.7 Results . 68
4.8 Discussion and Outlook . 73

Enrichment Textures for Shells 75
5.1 Overview . 76
5.2 Discontinuous Galerkin FEM Thin Shells 77

5.2.1 Shell Model . 77
5.2.2 Stiffness Matrix Assembly . 79
5.2.3 Dynamic Simulation . 85
5.2.4 Corotational DG FEM Shells 85

5.3 XFEM Basics . 87
5.4 Enrichment Textures . 89

5.4.1 Single Cut . 90
5.4.2 Multiple Cuts . 91
5.4.3 Rendering . 91

5.5 Progressive Cutting . 94
5.5.1 Single Cut . 94
5.5.2 Multiple Cuts . 96
5.5.3 Multiple Elements . 98

5.6 Results . 99
5.7 Discussion and Outlook . 105

Non-Linear Image Warping 107
6.1 Overview . 108
6.2 FEM for Image Warping . 109

6.2.1 Continuous Warping . 109
6.2.2 FEM Discretization . 110

x

Contents

6.3 Application Specifics . 112
6.3.1 Deformation Energy Densities 112
6.3.2 Basis Functions . 116
6.3.3 Mesh Construction . 118
6.3.4 Additional Constraints . 118

6.4 Results . 121
6.5 Discussion and Outlook . 123

Conclusion 125
7.1 Discussion . 125
7.2 Future Work . 127

Derivations and Proofs 131
A.1 Derivation of IP DG Weak Form for Linear Elasticity 131

A.1.1 Strong Form . 132
A.1.2 Local Weak Form . 132
A.1.3 Global Weak Form . 133

A.2 Basis for Multiple Complete Cuts . 135

Notation and Theorems 137
B.1 Mathematical Notation . 137
B.2 Theorems . 139

Bibliography 141

Curriculum Vitae 153

xi

C H A P T E R 1
Introduction

Figure 1.1: The CG FEM (left) and DG FEM (right) solutions to a 2D elasticity problem
using three elements. One edge is constrained, while a force is applied to the
opposite edge. Colors indicate the area influenced by each basis function.

Finite element methods (FEMs) have become an indispensable tool in com-
puter graphics. Their primary use is for the physically-based simulation of
deformable objects or fluids, with applications that range from computer
animation to surgery simulation. But thanks to their solid mathematical foun-
dation, they find more and more applications in other areas where problems
can be formulated as partial differential equations (PDEs), such as in the field
of geometric modeling. As with every tool, people tend to stretch the limits
of what is possible with FEM, which can lead to problems: meshes containing
badly shaped elements (slivers) cause numerical issues, or convergence may

1

Introduction

be slow in some situations (locking). However, FEMs are still an active field
of research and new variants that address these issues are constantly being
developed. This thesis focuses on one such method, namely the discontinuous
Galerkin FEM (DG FEM) [Cockburn, 2003], and investigates its application to
problems in computer graphics.

DG FEM is a variant of the FEM that is characterized by its use of per-element
basis functions. In standard continuous Galerkin FEM (CG FEM), each node
of the element mesh is associated with a basis function, and a basis function
assumes non-zero values in all elements that share the node. In contrast, in a
typical DG FEM, each basis function assumes non-zero values only within
exactly one element. As this inherently decouples the elements from each
other, a “glue” energy is introduced, defined through a so-called numerical
flux, that ties the elements back together. This additional energy term can be
derived mathematically and just like CG FEM, the DG formulation is accurate,
in the sense that the approximation converges toward the exact solution
of the involved PDE under element refinement (while making additional
assumptions, for example on the quality of the element mesh).

In comparison to CG FEM, the use of DG FEM enables adaptive refinement
of mesh elements (h-refinement) and of the basis functions’ polynomial degree
(p-refinement) in a simple and efficient manner. Elements can assume arbitrary
shapes and compared to CG FEM, the rules on mesh topology are less strict.
The increased flexibility of DG FEM is what this thesis tries to exploit in
several areas of computer graphics. Oftentimes additional advantages will
emerge from the use of DG FEM: for the simulation of deformable solid
objects, it allows for the exact integration of basis functions over polyhedral
elements. For thin shells, it simplifies the computation of additional basis
functions that can be used to represent detailed cuts and fracture curves. For
image warping, it enables a simple adaptive quad-tree meshing approach.

1.1 Overview

This thesis presents applications of DG FEM to three different areas of com-
puter graphics: the adaptive simulation of deformable solids, simulation of
shell cutting and fracturing, and image warping with temporal consistency.

Simulation of Deformable Solids. In computer graphics, FEM simula-
tions of deformable objects are mostly based on tetrahedral or hexahedral
meshes. While this allows for simple and efficient implementations, topo-
logical changes of the simulation domain require complex and error-prone

2

1.1 Overview

remeshing to maintain a consistent simulation mesh. However, dynamically
adjusting the mesh is of crucial importance in several simulation scenarios,
including fracture, interactive cutting in medical applications, or adaptive
refinement of complex domains.

The use of more general polyhedral elements in FEM was shown to con-
siderably simplify cutting and fracture simulations [Wicke et al., 2007;
Martin et al., 2008]. However, the strict conformity constraints of standard
FEM require comparatively complex shape functions for those elements. In
a slightly different context, the discontinuous element meshes of the PriMo
framework enable adaptive mesh refinement for interactive shape deforma-
tion [Botsch et al., 2006; 2007]. However, due to the missing physical accuracy
this method is not directly useful for physically-based simulations.

This work proposes a flexible and efficient simulation technique for coro-
tated linear elasticity based on the discontinuous Galerkin finite element
method. The presented approach conceptually generalizes the aforemen-
tioned techniques, and overcomes their limitations by combining their respec-
tive strengths: thanks to its convergence properties the DG FEM formulation
is physically accurate and converges to the exact solution under element re-
finement. Similar to PriMo, the DG approach supports arbitrary polyhedral
elements and discontinuous meshes with weakly enforced continuity, thereby
allowing for easy and flexible mesh restructuring.

Enrichment Textures for Shells. The simulation of thin-walled structures,
i.e. shells, has a long-standing history in computer graphics. Not only do they
require a different mathematical treatment when compared to the simulation
of solid objects, they also exhibit dramatic failure modes such as buckling,
tearing, and fracturing. Simulating such phenomena requires identifying
the location of discontinuities and predicting the response of neighboring
material, but even representing such discontinuities is a non-trivial task.
Works in the graphics and mechanics communities have considered adaptive
refinement methods, which are well-suited for gradual variations in the scale
of relevant features, but require too many levels of refinement to sharply
resolve creases or fractures.

In an alternative point of departure, the extended finite element method
(XFEM) enriches the representation with the specific basis functions required
to capture the desired discontinuity. In doing so, XFEM introduces (unlike
refinement) only a negligible number of new unknowns, and keeps the
original mesh connectivity intact.

3

Introduction

In this work the XFEM is extended toward the goals of graphical simulation
by representing the discontinuities in enrichment textures that allow for a
resolution much higher than that of the simulation mesh. While the presented
method applies to arbitrary finite element methods in 2D and could even
be extended to 3D, we focus on its application to shell simulations based
on DG FEM. There are two good reasons for using DG FEM in this context:
on one hand, DG FEM is a convenient approach to shell simulation because
it can circumvent the strict C1 continuity requirement imposed by the thin
shell equations. On the other hand, the reduced continuity requirements
also simplify the computation of the enrichment textures in our XFEM-based
method.

Non-Linear Image Warping. Content-aware warping has recently been
shown to be a powerful tool in a wide range of image editing applications.
Warping techniques avoid difficult graphics problems such as reconstructing
geometry, global illumination, and animation, while still providing convinc-
ing results. Such methods modify existing scenes by overlaying a mesh and
solving for an optimal, locally-varying deformation that minimizes some
application-specific set of constraints.

In traditional solutions, the constraints are defined in terms of vertex finite
differences computed on a regular grid, or by discretizing the image into
a quad mesh and computing per-quad energies from the distortion of grid
edges. The error function is then minimized, generally by formulating it as
a large sparse system of equations. However, these methods tightly couple
error terms with the mesh structure, making it difficult to extend the problem
formulation into new domains. Without carefully designing these error
terms, there is also no guarantee for convergence when increasing the mesh
resolution. Instead, this work introduces a unifying representation for a wide
range of image editing tasks by using a finite element method that includes
existing finite difference metrics as a special case. A single robust mathematical
formulation of the general continuous image warping problem, combined with
a finite element discretization, allows us to leverage deformation knowledge
from mechanics and geometry communities.

Given this continuous framework, it becomes easier to validate and justify
the use of specific energy functions that drive the warping. This work dis-
cusses how existing energy functions can be phrased in a continuous sense,
and proposes simple novel energy functions with added benefits, such as
effective prevention of warp inversions without resorting to workarounds or
incorporating inequality constraints that require quadratic programming to
solve.

4

1.2 Principal Contributions

In addition, this work presents a novel non-linear discontinuous Galerkin
FEM formulation that allows working with meshes of arbitrary connectivity,
with support for hanging nodes (edge nodes that do not belong to all elements
that share the edge) that traditional FEMs cannot support. The DG FEM
formulation also allows for higher order basis functions, where the order of
the basis can be freely chosen on a per-element basis. This allows the sampling
of high-resolution image information, while still performing a minimization
on a small number of elements, and it improves the smoothness of the results
with fewer elements.

1.2 Principal Contributions

This thesis makes the following main contributions:

• A DG FEM-based simulation method for solids supporting arbi-
trary polyhedral elements and topological changes. We present sev-
eral extensions to the DG FEM that ultimately allow for the flexible
and efficient simulation of deformable models for computer graph-
ics applications. One key problem is the integration of functions
over volumetric elements. While numerical integration is typically
employed here, this work presents a fast and accurate volumetric
integration technique for arbitrary polyhedral elements. To allow
for large deformations while only using a simple linear elasticity
model, the stiffness warping approach is generalized to DG FEM. To
embed high-resolution surface meshes in coarse DG FEM meshes
despite the inherent discontinuous nature of their displacement fields,
a smooth interpolation method based on moving least squares (MLS)
interpolation is presented (Chapter 4).

• Harmonic Enrichment Textures. We present a unified XFEM frame-
work based on harmonic enrichment functions, which allows for multi-
ple, intersecting, and arbitrarily-shaped cuts per element, while being
easy to define, compute, and use. Furthermore, a discrete representa-
tion of the enrichment functions using enrichment textures simplifies
the specification and computation of cuts and paves the way for the
future incorporation of GPU-based techniques (Chapter 5).

• Enriched, Corotated DG FEM Thin Shells. The application of en-
richment textures to thin shell simulations allows for the representa-
tion of discontinuities such as creasing, tearing, cutting and fracture.
Using a new corotational extension to Noels’s linear DG FEM thin

5

Introduction

shells, accurate simulations of the material’s dynamic response to
time-varying discontinuities can be computed (Chapter 5).

• DG FEM Warping Framework. We propose a novel, general repre-
sentation for continuous locally-varying image warping that models
deformation using a DG finite element method, offering advantages
such as arbitrary mesh connectivity, a well defined, continuous prob-
lem formulation, well behaved convergence properties, and support
for higher order basis. These properties in turn allow for highly adap-
tive meshes that reduce the number of degrees of freedom and make
the computation of temporally stable video retargeting solutions more
tractable (Chapter 6).

• Continuous Warping Formulation. We formulate existing grid and
cell-based image warping energies as continuous deformation energy
densities. This allows us to relate them to material models known
from continuum mechanics and analyze their invariance to transla-
tion, scaling and rotation. This approach further enables us to reuse
principles from existing material models to find warp energies with
certain desirable properties such as lack of self-intersections (Chap-
ter 6).

1.3 Thesis Outline

This thesis is organized as follows: Chapter 2 discusses related work in the
fields of FEM, DG FEM, simulation of deformable solids, shells, and image
warping. Chapter 3 provides an introduction to the discontinuous Galerkin
finite element method and its relation to standard (continuous) FEM for linear
as well as non-linear elliptic problems. As this work focuses on the simulation
of deformable objects, an introduction to non-linear elasticity theory is pro-
vided, followed by its reduction to a fully linear theory. Finally, the volumetric
theory is applied to the special case of thin objects, which reproduces the stan-
dard Kirchhoff-Love thin shell model. In Chapter 4, the DG FEM is applied to
linear elasticity and extended further to allow for large deformations through
corotation. By using a novel analytic integration approach, the method can
be applied to arbitrary polyhedral elements, which allows for simple mesh
generation, adaptivity, and topological changes without re-meshing of the
cut elements. Chapter 5 applies DG FEM to a corotated shell model to reduce
the continuity requirements of the underlying basis functions. This, in turn,
enables the development of a new method inspired by the extended finite
element method (XFEM) which allows for the simulation of progressive cuts

6

1.4 Publications

and very detailed fracturing even when the underlying simulation mesh uses
a coarse discretization. Chapter 6 applies the DG FEM in a slightly different
context, namely the computation of optimal image warps. A non-linear DG
FEM formulation is used here, as it allows for the definition of warp energies
that disallow element inversions and thus produce non-intersecting image
warps. Chapter 7 concludes the thesis and discusses its main contributions
and potential future work. Additional material and proofs are given in the
Appendices.

1.4 Publications

In the context of this thesis, the following publications have been accepted.

P. KAUFMANN, S. MARTIN, M. BOTSCH, and M. GROSS. Flexible Simulation
of Deformable Models Using Discontinuous Galerkin FEM, Proceedings of
the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(Dublin, Ireland, July 7-9, 2008), pp. 105–115, 2008.

P. KAUFMANN, S. MARTIN, M. BOTSCH, and M. GROSS. Flexible Simulation of
Deformable Models Using Discontinuous Galerkin FEM, Journal of Graphical
Models, 2009, Special Issue of ACM SIGGRAPH / Eurographics Symposium on
Computer Animation 2008, vol. 71, no. 4, pp. 153–167, 2009.

P. KAUFMANN, S. MARTIN, M. BOTSCH, E. GRINSPUN, and M. GROSS. Enrich-
ment Textures for Detailed Cutting of Shells, Proceedings of ACM SIGGRAPH
(New Orleans, USA, August 3-7, 2009), ACM Transactions on Graphics, vol. 28,
no. 3, pp. 50:1–50:10, 2009.

P. KAUFMANN, O. WANG, A. HORNUNG, O. SORKINE, A. SMOLIC, and M.
GROSS. Finite Element Image Warping, Proceedings of Eurographics (Girona,
Spain, May 6-10, 2013), Computer Graphics Forum, vol. 32, no. 2, 2013

7

Introduction

8

C H A P T E R 2
Related Work

Figure 2.1: Visualization of topics related to this thesis.

The finite element method has a long history in computer graphics. It has
been commonly used in domains such as physically based animation [Ter-
zopoulos and Fleischer, 1988a], and remains the method of choice for the
simulation of deformable objects. Recent applications include geometric
modeling [Jacobson et al., 2010] and surface parameterization [Sharf et al.,
2007]. One can distinguish between linear FEM where the corresponding
energy function is quadratic in the unknowns and its minimum can be found
by solving a sparse linear system, and the more general case of nonlinear
FEM applicable to nonlinear minimization problems [Bonet and Wood, 1997].

9

Related Work

Next to the “standard textbook” FEM [Hughes, 2000], a number of variants
exist, including discontinuous Galerkin FEM (DG FEM) [Arnold et al., 2001],
mixed FEM [Arnold, 1990], and extended FEM (XFEM) [Moës et al., 1999].

This chapter presents some of the related work on FEM relevant to computer
graphics, with a focus on the physically based simulation of deformable
solids and shells. In their corresponding contexts, related work on alternative
methods such as finite difference approaches and meshless methods will be
mentioned as well.

2.1 Discontinuous Galerkin FEM

The discontinuous Galerkin finite element method was first proposed by
Reed and Hill [1973] as a method for solving neuron transport problems. The
basic idea of DG FEM, i.e., employing discontinuous shape functions and
weakly enforcing boundary constraints and inter-element continuity through
penalty forces, is rather old [Babuška and Zlámal, 1973; Douglas and Dupont,
1976]. In the last decade, however, DG FEM regained increasing attention in
applied mathematics [Arnold et al., 2001; Cockburn, 2003] and has since been
successfully applied to hyperbolic, parabolic, elliptic, and mixed problems.

The main strength of DG FEM is its support for irregular, non-conforming
meshes, and for shape functions of different polynomial degree, which in
combination allows for flexible hp-refinement. In applied mathematics and
mechanics, DG FEM has successfully been employed for linear and nonlinear
elasticity [Lew et al., 2004; Ten Eyck and Lew, 2006; Wihler, 2006], where
it was shown to provide an accuracy similar to CG FEM at comparable
computational cost. Another advantage of DG FEM is the absence of locking
even for nearly incompressible deformable objects [Wihler, 2006]. The method
can be customized for higher order continuity, such as weakly enforcing C1

continuity using only C0 continuous basis functions. This makes DG FEM a
practical choice for the simulation of linear [Noels and Radovitzky, 2008] and
non-linear [Noels, 2009] shells. DG FEM can also be combined with other
methods. For example, a combination of DG FEM and extended FEM (XFEM)
was studied by Gracie et al. [2008].

2.2 Physically Based Simulation

In computer graphics, Terzopoulos et al. [1987] pioneered the use physically-
based methods for graphics application, and they have since been successfully

10

2.2 Physically Based Simulation

employed for the simulation of deformable solids [Müller et al., 2002], thin
shells [Grinspun et al., 2003], cloth [Baraff and Witkin, 1998], and fluids [Stam,
1999]. For the related work presented here, our focus is on the simulation
of deformable solid objects and shells. In both cases, we also look at exist-
ing approaches for the simulation of fracture, cutting, and mesh adaptivity.
What these effects have in common is that they require changes to the under-
lying discretization, which in turn is closely dependent on the underlying
simulation method.

2.2.1 Simulation of Deformable Solids

Most real-world materials exhibit a highly non-linear deformation behavior
when put under stress, and the need to handle large rotational deformations
of objects leads to non-linear deformation models. However, since physical
accuracy is not the primary goal in most graphics applications, one can often
resort to the physically plausible, robust, and efficient corotated linear elastic-
ity [Müller and Gross, 2004; Hauth and Strasser, 2004] instead of running a
full non-linear simulation. To alleviate some of the problems associated with
FEM simulations, such as locking for nearly incompressible materials, meth-
ods have been introduced that automatically reduce the physical accuracy of
the simulation when these problems occur [Irving et al., 2007]. For a more
detailed survey of this topic the reader may consult Nealen et al. [2006].

Cutting & Fracture of Solids. The simulation of cutting and fracture of de-
formable objects dates back to the pioneering work of Terzopoulos et al. [1987;
1988b], and was brought to the forefront by O’Brien and Hodgins [1999]
in their work on brittle (and ductile [2002]) fracture of volumetric elastica.
As an alternative to simulation, some have considered purely procedural
approaches [Desbenoit et al., 2005]. However, we focus our discussion to
physically simulated material response in the presence of cuts and fracture.

When combined with FEM, the topological changes induced by cutting pose
two distinct challenges: first, to adapt basis functions, boundary conditions,
and to update the stiffness matrix; second, to restructure the underlying mesh
connectivity so as to represent the newly-created surfaces at a high resolution.
Most research has focused on solid objects, where the problem of updating
mesh connectivity is particularly challenging.

Apart from simply removing the primitives of the underlying element
mesh touched by the cutting plane [Forest et al., 2002], fracturing of de-
formable solids can efficiently be performed by restricting cuts to exist-

11

Related Work

ing element boundaries or predefined positions [Müller and Gross, 2004;
Terzopoulos and Fleischer, 1988b]. However, these approaches are typ-
ically not accurate enough for more sophisticated simulations. Splitting
individual elements allows for precise fracturing and cutting, but in turn
requires element decompositions [Bielser et al., 1999; Bielser and Gross, 2000;
Bielser et al., 2003] and/or general remeshing [O’Brien and Hodgins, 1999;
O’Brien et al., 2002; Steinemann et al., 2006a]. When accommodating the
crack surface, special care has to be taken to avoid numerically unstable sliver
elements. Similarly, Bargteil et al. [2007] performed remeshing to remove
degenerate elements during large plastic deformations.

Meshless approaches intrinsically avoid remeshing by using particles instead
of a simulation mesh [Müller et al., 2004a]. While this considerably simpli-
fies the actual topological changes, the material distance, which controls the
mutual influence of simulation nodes, has to be adjusted. This can be accom-
plished either by recomputing special shape functions [Pauly et al., 2005] or
by updating a distance graph [Steinemann et al., 2006b]. Note, however, that
these approaches still require resampling in order to guarantee a sufficiently
dense discretization in the vicinity of cracks and cuts.

A mesh-based alternative to remeshing is the virtual node algorithm [Molino
et al., 2004], which, instead of splitting elements, duplicates them and embeds
the surface in both copies. While the original approach was limited to cutting
each element at most three times, its generalization [Sifakis et al., 2007a;
2007b] overcomes this restriction by embedding a high-resolution two-
dimensional material boundary mesh in the coarser tetrahedral mesh. These
two works served as the foundation for the efficient fracture of rigid materials
proposed by Bao et al. [2007].

Wicke et al. [2007] and Martin et al. [2008] avoid remeshing of cut elements
into consistent tetrahedra by directly supporting general polyhedra in FEM
simulations. The drawback of their methods, however, is the comparatively
complex computation and integration of the employed generalized barycen-
tric shape functions.

Adaptive Simulation. The steadily growing complexity of geometric objects
as well as of physical models results in an increasing demand for adaptive
simulations, allowing to concentrate computing resources to interesting re-
gions of the simulation domain [Debunne et al., 2001; Grinspun et al., 2002;
Capell et al., 2002; Otaduy et al., 2007]. When adaptively refining the mesh,
special care has to be taken to avoid or to properly handle hanging nodes.

12

2.2 Physically Based Simulation

This problem can be circumvented by subdividing basis functions instead of
elements [Grinspun et al., 2002; Capell et al., 2002]. However, in order to en-
sure linear independence of basis functions, Grinspun et al. [2002] restrict the
refinement to one level difference between neighboring elements. In contrast,
the hybrid simulation [Sifakis et al., 2007b] allows for multi-level hanging
nodes by constraining them to edges using either hard or soft constraints.

Another approach for reducing computational complexity is to embed a high
resolution surface mesh into a coarser simulation mesh [Faloutsos et al., 1997;
Capell et al., 2002; Molino et al., 2004; Müller and Gross, 2004; Müller et al.,
2004b; James et al., 2004; Sifakis et al., 2007b]. The nodal displacements of
the coarse mesh are then interpolated onto the surface mesh. A similar space
deformation approach was employed for interactive shape deformation in
Botsch et al. [2007], where furthermore a discontinuous mesh with “glue-like”
continuity energies allowed for easy and flexible mesh refinement.

2.2.2 Simulation of Thin Shells

Shells were amongst the first objects to be simulated in computer graph-
ics [Terzopoulos et al., 1987] and a huge variety of models is in use to-
day. Approaches using explicit stretch, bending and shearing forces are
typically used for cloth simulations [Baraff and Witkin, 1998; Bridson et
al., 2002]. More accurate models can be derived by applying geometric
operators over triangle meshes [Grinspun et al., 2003] that approximate a
physically-motivated thin shell deformation energy. Finite element based
shell models can directly be derived from the continuum formulation of
shell mechanics. However, they must use basis functions that are able
to reproduce C1 continuous displacements fields and finding such basis
functions for irregular meshes is a non-trivial task. As a solution to this
problem, some approaches introduce additional non-nodal degrees of free-
dom such as derivatives at edge mid-points [Zienkiewicz and Taylor, 2000]
while others circumvent the problem by increasing the support of basis
functions over more elements [Cirak et al., 2000]. Further specialized
models exist, for example to handle cloth with non-flat rest state [Brid-
son et al., 2003] or inextensible cloth and shells [Goldenthal et al., 2007;
English and Bridson, 2008].

Shell Cutting & Fracturing. The graphical simulation of shell cutting and
fracture has recently received specific attention. Mesh-based methods such
as those of Boux de Casson and Laugier [2000], who tear discrete models of
cloth [Baraff and Witkin, 1998; Choi and Ko, 2002], and Gingold et al. [2004],

13

Related Work

who fracture discrete shells [Grinspun et al., 2003], split meshes along existing
edges. Müller [2008] describes a fast method for simulating tearing cloth
using position based dynamics. Guo et al. [2006] and Wicke et al. [2005]
propose meshless methods so as not to be limited by mesh connectivity.
The approach presented in this work differs in that it targets the widely-
used mesh-based setting, but seeks to do so without restricting cuts to mesh
resolution by turning to basis enrichment in an FEM context.

Basis Enrichment & XFEM. An alternative way of implementing cutting
and fracture simulations is by directly modifying the underlying basis func-
tions. The CHARMS framework enriches the FEM basis [Grinspun et al.,
2002] and supports topological changes, but cutting and fracture are not
considered. The XFEM method, introduced by Belytschko and Black [1999],
explicitly targets fracture. Since XFEM has been explored over the past
decade, a more comprehensive summary requires a thorough survey, such as
the one by Abdelaziz and Hamouine [2008]; only a couple of representative
works are discussed in this section. Moës et al. [1999] explicitly consider
multiple straight-line crack tips within one element. Moës et al. [2002] further
studied curved crack tips in three dimensions. Huang et al. [2003] simu-
late multiple cracks, but the example problem (mudcracks) assumes that
cracks do not intersect. Stazi et al. [2003] consider higher-order elements
and quadratic cracks. In general, this body of work employs (in order to
accurately resolve strain) elemental radii orders of magnitude smaller than
the characteristic radii of crack shapes; furthermore, for improved quadrature,
they partition a split element into subdomains (sometimes with a hierarchical
construction). This makes it challenging to consider complex cut shapes. This
work considers the diametric opposite: finely-detailed cuts inside one or a
few elements.

2.3 Image Warping

Traditional image-based warping is a long running and large area of re-
search within computer graphics. Beier et al. [1992] present a classic example
of mesh-based image warping that morphs between images by mapping
features. More recently, advances in computing power have allowed for
content-aware image warping techniques that compute globally optimal dis-
tortions of images. These methods have been successful in a wide range of
applications, such as: media retargeting [Shamir and Sorkine, 2009], video
stabilization [Liu et al., 2009], fish-eye lens distortion correction [Carroll et

14

2.3 Image Warping

al., 2009], perspective modification [Carroll et al., 2010], stereoscopic edit-
ing [Lang et al., 2010], and image-based rendering [Chaurasia et al., 2011].

Discretizations. Most image warping solvers operate on a uniform grid,
discretize their deformation energies using finite difference-type methods,
and solve the resulting optimization problem using iterative methods [Shamir
and Sorkine, 2009]. With the exception of a few methods, FEM has been
largely ignored in the image warping domain. One such method proposes
the use of finite elements in medical image warping for registration [Gee,
1994]. However, in this case, a simple linear finite element model is used.

Deformation Energies. Depending on the application, image warping ap-
proaches use different energy terms to penalize different kinds of image
distortion. One can either penalize all deformations except for transla-
tions [Shamir and Sorkine, 2009], penalize rotations [Wang et al., 2008;
Laffont et al., 2010], allow rotations but penalize scaling [Wang et al., 2010],
or penalize all deformations except similarity transformations [Zhang et al.,
2009]. More recently, Panozzo et al. [2012] demonstrated that very convinc-
ing image warping results can be achieved in real time by only allowing
axis-aligned deformations.

Temporally Stable Video Retargeting. In the context of video retarget-
ing, previous methods that compute solutions for full video sequences
have had to choose between two options: representing videos with a
sparsely sampled mesh, which gives insufficient control over regions that
require high-frequency changes in distortion [Wang et al., 2010], or using
a dense representation, which quickly scales beyond reasonable computa-
tion for video sequences. As a result, many methods have attempted to
reduce the effects of temporal artifacts while solving for local deformations
by enforcing neighboring frame consistency on a frame-by-frame or win-
dowed basis [Guttmann et al., 2009; Krähenbühl et al., 2009; Greisen et al.,
2012], or by introducing motion-aware importance maps [Wang et al., 2009;
Niu et al., 2010]. Alternative methods entirely avoid a solve over the whole
video cube by treating the spatial and temporal components of the video
retargeting problem independently [Wang et al., 2011]

In contrast to previous methods, this work presents a method that can solve a
full sequence of frames at once without sacrificing accuracy, using an adaptive
FEM mesh to substantially reduce the total number of degrees of freedom
of the problem without harming visual quality. Non-uniform meshes have

15

Related Work

previously been employed in the context of image warping. For example,
using meshes with multiple levels of refinement for a content-aware zooming
application [Laffont et al., 2010]. In this case, a Delaunay triangulation creates
an initial mesh with denser mesh levels created by triangle subdivision.
However, this method can only use a combination of several fixed-resolution
meshes.

16

C H A P T E R 3
Fundamentals

Figure 3.1: DG FEM solutions of a 2D Poisson problem for different discretization levels.

This chapter provides an introduction to the discontinuous Galerkin finite
element method (DG FEM) by first considering the ‘standard’ case of applying
continuous Galerkin (CG) FEM to a model problem, then showing how the
derivation of DG methods differs from the more traditional approaches
(Section 3.1). In Section 3.2, a more generic derivation for DG FEM is shown,
which will also be applicable to non-linear problems.

One of the main applications of FEM in computer graphics is the dynamic
simulation of deformable objects, and the idea of applying DG FEM to the
same kind of problems follows naturally. In order to derive the correspond-
ing partial differential equations (PDEs), we need a basic understanding
of continuum mechanics for the non-linear and the simplified linear case
(Section 3.3 and Section 3.4). The simulation of deformable objects that are
thin in one spatial direction requires special treatment, and the derivation of
the corresponding equations is shown in Section 3.5.

17

Fundamentals

3.1 Introduction to DG FEM

This section introduces the concepts of DG FEM and points out the main
differences to standard CG FEM. More details on CG FEM can be found in
textbooks such as Bathe [1995] and Hughes [2000], while the survey articles
of Arnold et al. [2001] and Cockburn [2003] provide a useful introduction to
DG FEM.

Model Problem. In the following, both CG and DG FEM are discussed
based on a simple 2D Poisson problem with homogeneous Dirichlet boundary
constraints

−∆u = f in Ω ⊂ IR2, u = 0 on ∂Ω, (3.1)

where u : Ω→ IR is an unknown function and f : Ω→ IR a given forcing term
(see Fig. 3.2). Using index notation, the 2D Poisson problem can be written as

−∑
i

u,ii = f in Ω,

with the coma denoting partial differentiation with respect to the indicated
spatial dimension, e.g. u,2 = ∂u/∂x2 = ∂u/∂y for x = (x1, x2)

T = (x,y)T.

Ω

𝜕Ω

𝑥1

𝑥2

Figure 3.2: Domain and boundary of a 2D Poisson problem.

Strong Form, Weak Form, Energy Minimization. The so-called strong
form (3.1) of the problem, which defines the PDE for which we need to
find a solution, is not the only way of formulating the problem. Depending
on the context and the approach taken, other representations can seem more
natural and provide us with additional insights into the problem. For the
problems considered in this context, the solutions to the PDE are actually
minimizers for a potential energy functional E[u]. When looking at elasticity
problems for example, this energy functional corresponds directly to the
physical deformation energy of the simulated system. To find a solution u for
which the energy functional assumes a (local) minimum, one can require its

18

3.1 Introduction to DG FEM

first variation δE[u] to be equal to zero. This results in the so-called weak form
which employs a test function v and plays a fundamental role in the FEM.
Converting a problem from its strong form to the weak form (or the other way
around) is a standard technique, but requires the involved functions to fulfill
some smoothness criteria. Also, the strong form can be recovered directly
from the energy functional by applying the Euler-Lagrange equation. Fig. 3.3
shows the relations and transitions between these three representations.

One way of succinctly describing the FEM is by considering it to be a method
for solving the discretized weak form (see Section 3.1.1). An alternative
point of view is to directly discretize the energy, making fewer assumptions
on the underlying problem and applying standard techniques for function
minimization (see Section 3.3). The classical FEM steps, such as computing
per-element stiffness matrices and updating a global stiffness matrix, will
emerge automatically as substeps of the minimization algorithm.

−Δ𝑢 = 𝑓 in Ω

Strong Form

𝐸 𝑢 =
1

2
∫Ω 𝛻𝑢 2 − ∫Ω𝑓𝑢

Variational Problem

Energy Functional

∫Ω𝛻𝑢 ⋅ 𝛻𝑣 = ∫Ω𝑓𝑣 ∀𝑣

Weak Form
Euler-Lagrange

Equation

𝛿𝐸 𝑢 𝑣 = 0

1. Integration by parts

2. Fund. lemma of calculus

of variations

1. Test function v

2. Integration by parts

Figure 3.3: Relations between the strong form, weak form and energy minimization
problem for the model problem.

3.1.1 CG FEM

The integration by parts identity states that for all scalar functions u,v ∈ H1(Ω)
it holds that ∫

Ω
u,i v =

∫
∂Ω

u v ni −
∫

Ω
u v,i , (3.2)

where ni is the i-th component of the outward unit normal of ∂Ω. The Sobolev
space Hk(Ω) is defined as Hk(Ω) := {w

∣∣w ∈ L2(Ω), . . . , Dkw ∈ L2(Ω)}, i.e. it

19

Fundamentals

contains all functions whose derivatives up to order k are square integrable,
as L2(Ω) := {w

∣∣∫
Ω |w|2 < ∞}.

The standard FEM approach is to multiply the above so-called strong form (3.1)
by a suitable scalar test function v, resulting in

−∆u v = f v ∀v,

and performing an integration by parts using (3.2), yielding the weak form

aCG(u,v) :=
∫

Ω
∇u · ∇v =

∫
Ω

f v, (3.3)

which is defined in terms of the bilinear form aCG(·, ·). The goal is to find a
function u, such that the weak form (3.3) holds for all suitable test functions
v vanishing on the boundary ∂Ω.

Discretization. In order to discretize (3.3) the domain Ω is partitioned into
finite elements K ∈ T (see Fig. 3.4). On top of this tessellation a set of basis
functions {N1, . . . , Nn} with Ni : Ω→ IR is defined and used to approximate
u as

u(x) ≈
n

∑
i=1

ui Ni(x) . (3.4)

For a weak form containing m’th partial derivatives, standard FEM requires
basis functions Ni from the Sobolev space Hm(Ω). This in particular restricts
the basis functions to be conforming, i.e., Cm continuous within and Cm−1

continuous across elements [Hughes, 2000]. For our Poisson example with
weak form (3.3) the Ni therefore have to be C0 continuous across elements.

𝑥1

𝑥2

Figure 3.4: One possible tessellation of the domain Ω using triangular elements.

Approximating both u and v by the shape functions Ni and exploiting the
bilinearity of a(·, ·) leads to

∑
ij

viKijuj = ∑
i

vi fi ∀vi

20

3.1 Introduction to DG FEM

Figure 3.5: Bilinear continuous basis functions (top row) and quadratic polynomial
discontinuous basis functions (bottom row) associated with the corner element
of a regular 3× 3 quad mesh.

with Kij = aCG
(

Ni, Nj
)

and fi =
∫

Ω f Ni. Choosing vi = δik for k = 1, . . . ,n,
where δ denotes the Kronecker delta, leads to a system of n linear equations
that can be written in matrix notation as

K ·

 u1
...

un

 =

 f1
...
fn

 , (3.5)

where the matrix K consists of entries (K)ij = Kij. This linear system is solved
for the unknown coefficients ui to find the discretized solution to the original
problem.

3.1.2 DG Primal Formulation

In contrast to the above approach, DG FEM allows for non-conforming or
discontinuous shape functions Ni (see Fig. 3.5), thereby resulting in discontin-
uous approximations of u. The weak form will therefore first be formulated
for each element K ∈ T individually, and those are to be combined by taking
the discontinuities across neighboring elements into account. Before doing
so, the second order PDE of the strong form (3.1) is split into two first order
PDEs by introducing the helper function σ : Ω→ IR2:

σ =∇u , −∇ · σ = f (3.6)

or using index notation,

σ = (σ1,σ2)
T = (u,1,u,2)

T , −∑
i

σi,i = f .

21

Fundamentals

To derive the weak form of a single element K, these two equations are
multiplied by scalar- and vector-valued test functions v and τ, respectively.
Integrating the result by parts over K yields additional boundary integrals
over ∂K, leading to the local weak form of element K∫

K
σ · τ = −

∫
K

u∇ · τ +
∫

∂K
u τ · nK, (3.7)∫

K
σ · ∇v =

∫
K

f v +
∫

∂K
v σ · nK, (3.8)

where nK denotes the unit outward normal of K.

The global weak form, which integrates over the whole domain Ω, is built by
summing up the individual elements’ weak forms (3.7), (3.8). Note that in CG
FEM the boundary integrals over interior edges would cancel out, eventually
leading to (3.3). In the DG setting, however, u and σ are discontinuous across
elements, hence requiring special attention to be paid to the integrals over
∂K.

To account for that, the DG formulation replaces the functions u and σ in
those boundary integrals by their so-called numerical fluxes û and σ̂, respec-
tively. The fluxes are responsible for “gluing together” the functions u and
σ across element boundaries, which is achieved by some penalty term that
weakly enforces continuity. Concrete examples for the fluxes û and σ̂ will be
presented later. For now they can be imagined as the average of the function
values from both sides of the edge. This yields the global weak form∫

Ω
σ · τ = −

∫
Ω

u∇ · τ + ∑
K∈T

∫
∂K

û τ · nK, (3.9)

∫
Ω

σ · ∇v =
∫

Ω
f v + ∑

K∈T

∫
∂K

v σ̂ · nK. (3.10)

After introducing the fluxes û and σ̂, the helper function σ can be removed
by choosing τ = ∇v in (3.9) and inserting the result into (3.10). Applying
integration by parts once more then leads to∫

Ω
∇u · ∇v + ∑

K∈T

∫
∂K

((û− u)∇v− v σ̂) · nK =
∫

Ω
f v. (3.11)

In the above equations each interior edge e, shared by two elements K− and
K+, is integrated over twice, since e ⊂ ∂K− and e ⊂ ∂K+. In order to exploit
this, let us for a function q on e denote by

q± := q|∂K±

22

3.1 Introduction to DG FEM

𝐾−

𝐾+

𝑒 𝐧−

𝐧+

𝑞+
𝑞−

Figure 3.6: Adjacent elements K− and K+ sharing edge e along with their corresponding
outward unit normals n− and n+ and bi-valued function q± evaluated on
either side of the edge.

its function value taken from either ∂K+ or ∂K−, respectively (see Fig. 3.6).
With this we define1 the average operator {·} and the jump operator J·K for
scalar-valued functions u and vector-valued functions σ as

{u} :=
1
2
(
u− + u+

)
, JuK := u−n− + u+n+, (3.12)

{σ} :=
1
2
(
σ− + σ+

)
, JσK := σ− · n− + σ+ · n+,

with “ ·” denoting the vector dot product. Note that the average operator
maps scalars to scalars and vectors to vectors, whereas the jump operator
swaps these representations. With those operators, and with

Γ := ∪K∂K and Γ◦ := Γ \ ∂Ω

denoting the set of all edges and all interior edges, respectively, we can avoid
integrating twice over interior edges and simplify (3.11) to

aDG(u,v) :=
∫

Ω
∇u · ∇v (3.13)

+
∫

Γ
(Jû− uK · {∇v} − JvK · {σ̂})

+
∫

Γ◦
({û− u} · J∇vK− {v} · Jσ̂K)

=
∫

Ω
f v.

This equation is called the primal formulation, and is the DG equivalent to the
CG weak form (3.3). It differs in the framed edge integrals only, which —
with suitable fluxes û and σ̂ — penalize the discontinuities across elements,
as discussed in the following.

1Unfortunately, several conflicting definitions of these operators are used in the literature. In order
to stay consistent with existing work, slightly different definitions will have to be employed in
other parts of this thesis.

23

Fundamentals

3.1.3 DG Weak Form

The actual choice of numerical fluxes is where the various DG FEM methods
differ, and it is an important design decision, since the fluxes determine
important properties like consistency, symmetry, and stability of the finite
element method. In the following, only two particular choices of fluxes will
be presented, along with a discussion of their consequences. For an in-depth
discussion of different fluxes and their respective properties the reader is
referred to Arnold et al. [2001].

BZ Method. Since fluxes are responsible for weakly enforcing inter-element
continuity, i.e., for “gluing” neighboring elements, a straightforward ap-
proach is to penalize the squared jump (u− − u+)2. This corresponds to the
method of Babuška and Zlámal [1973], denoted by BZ, which employs the
fluxes

û := u|K , σ̂ := −ηe JuK .

ηe is a penalty term that can assume different values for each edge e. Inserting
the fluxes into (3.13) and simplifying the resulting equations by exploiting
the identities

{{·}} = {·} , {J·K} = J·K , J{·}K = JJ·KK = 0,

leads to the weak form of the BZ method

aBZ(u,v) :=
∫

Ω
∇u · ∇v +

∫
Γ

ηe JuK · JvK (3.14)

=
∫

Ω
f v,

which differs from the CG weak form (3.3) in the framed penalty term. This
term is weighted by a scalar function ηe = η ‖e‖−1 inversely proportional to
the edge length ‖e‖. Analyzing the internal energy

aBZ(u,u) =
∫

Ω
∇u · ∇u +

∫
Γ

ηe JuK · JuK

reveals that the BZ method in fact penalizes the squared jump
JuK · JuK = (u− − u+)2.

Just as in CG FEM, approximating u and v by shape functions Ni as in (3.4)
leads to a linear system equivalent to (3.5), with matrix entries determined
by Kij = aBZ

(
Ni, Nj

)
. The important difference is the contribution of edges,

i.e., the framed integral over Γ in (3.14). Note that for continuous functions

24

3.1 Introduction to DG FEM

u and v, as in the case of CG FEM, this integral would vanish, since then
JuK = JvK = 0 and v = 0 on ∂Ω, thereby reproducing the CG weak form (3.3).

The BZ method is geometrically intuitive and easy to implement. Moreover,
it is stable in the sense that the stiffness matrix K is positive definite for any
η > 0. However, as detailed in Arnold et al. [2001], the method is not consistent:
A continuous solution u of the problem might not satisfy the BZ weak form
(3.14). Consequently, the approximate solution u does in general not converge
toward the exact solution under element refinement.

Consistency Example. As a simple example showing that the BZ method
is not consistent, consider the continuous solution u = x2 and the resulting
forcing term −∆u = f = −2. v can be chosen such that it is equal to one
inside an internal element K1 with positive area AK1 , and vanishes inside all
other elements. As a result, ∇v = 0 inside each element and the first term in
(3.14) vanishes. The second term vanishes because u is continuous and thus
JuK = 0, resulting in aBZ = 0. However, the right-hand side of (3.14) is equal
to
∫

K1 f = −2AK1 < 0, and thus the weak form is not satisfied in this case.

IP Method. A more accurate alternative to the BZ method is the so-called
interior penalty (IP) method [Douglas and Dupont, 1976], whose fluxes are
defined as

û := {u} , σ̂ := {∇u} − ηe JuK . (3.15)

Inserting them into (3.13) and simplifying terms yields the IP weak form

aIP(u,v) :=
∫

Ω
∇u · ∇v (3.16)

−
∫

Γ
(JvK ·{∇u} + JuK ·{∇v} − ηe JuK ·JvK)

=
∫

Ω
f v.

The IP method uses three individual penalty terms in the framed Γ-integral:

• The first term ensures consistency: Any continuous solution u of the
problem (3.1) also satisfies the DG weak form (3.16).

• The second term achieves symmetry of the bilinear form aIP(u,v), and
thereby also of the stiffness matrix K.

• The last term ensures stability: For a sufficiently large penalty η it
guarantees aIP(u,u) > 0, i.e., K to be positive definite.

25

Fundamentals

IP, η=1 BZ, η=1 BZ, η=100
Figure 3.7: Solution of ∆u = 2, with Dirichlet boundary conditions corresponding to

u(x,y) = x2, using quadratic shape functions Ni on a 4× 4 quad mesh. The
consistent IP method finds the exact solution x2 independently of the penalty
η, since x2 lies in the space of shape functions. This is not the case for the
inconsistent BZ method, although increasing η improves the approximation
by decreasing the jumps JuK.

The IP fluxes are one of few choices to yield a stable as well as consistent DG
method. Consistency guarantees that if a continuous solution of either (3.3) or
(3.16) exists in the space of shape functions Ni, then the IP method will find
this solution as a function u with JuK = 0 (see Fig. 3.7).

Consistency Example. In the previous section, we have shown that the
BZ method is not consistent by applying it to a simple example using the
continuous solution u = x2 with forcing term −∆u = f = −2. v was chosen
to be piecewise constant, assuming a value of 1 inside a particular element K1

and 0 everywhere else. Applying the IP weak form to this example, we find
that most of the terms in (3.16) vanish due to ∇v = 0 and JuK = 0, resulting
in the equation

−
∫

Γ
JvK ·{∇u} =

∫
Ω

f v.

Applying the definitions of the jump and average operators, and writing f as
f = −∇ · ∇u, we get

−
∫

Γ
(v−n− + v+n+) · ∇u = −

∫
Ω
∇ · ∇u v.

If we now take into account that v = 1 only inside element K1, and v = 0
everywhere else, this simplifies to∫

∂K1
n · ∇u =

∫
K1
∇ · ∇u.

26

3.1 Introduction to DG FEM

CG bilinear

DG IP linear

DG IP quadratic

!"
"

!"
!

!"
#

!"
$

!"
%

!"
&

!"
!'

!"
!&

!"
!%

!"
!$

!"
!#

!"
!!

!"
"

()*+,-

.
#
)/
00
+
0

)

)

12)345/60)789:
12);<6*06=4>)789:
12)345/60)7?@:
12);<6*06=4>)7?@:
A2)B4345/60

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

dofs

c
o

n
d

it
io

n
 n

u
m

b
e

r

DG linear (BZ)
DG quadratic (BZ)
DG linear (IP)
DG quadratic (IP)
CG bilinear

Figure 3.8: Solution of the Poisson equation −∆u = f on a regular quadrilateral grid of
resolutions 22, 42, 82, and 162, using CG FEM and DG FEM.

This equation, however, is nothing else but the divergence theorem applied
to ∇u (see Eq. (B.4)), so it holds true and shows that the IP method is in fact
consistent for this particular example.

Polynomial Basis Functions. Furthermore, due to consistency and stability
the IP method converges under refinement towards the exact solution of the
PDE, with a convergence rate determined by the degree of Ni [Arnold et al.,
2001].

This leads to the main advantage of DG FEM: The missing conformity con-
straints allow simple polynomials {1, x,y, x2, xy, . . . ,yk} of degree k to be used
as basis functions for each element K. The convergence behavior of linear and
quadratic DG basis functions is demonstrated in Fig. 3.8, which also shows
bilinear CG FEM for comparison. As expected, the IP method converges
regularly, at a rate similar to CG for linear shape functions, and at a faster
rate for quadratic ones. By consequence, the jumps decrease under element
refinement, eventually reconstructing the exact, continuous solution [Cock-
burn, 2003]. For the same number of DOFs and basis functions of the same
degree, CG FEM can be observed to be more accurate than DG FEM by a
constant factor.

27

Fundamentals

CG bilinear

DG IP linear

DG IP quadratic

!"
"

!"
!

!"
#

!"
$

!"
%

!"
&

!"
!'

!"
!&

!"
!%

!"
!$

!"
!#

!"
!!

!"
"

()*+,-

.
#
)/
00
+
0

)

)

12)345/60)789:
12);<6*06=4>)789:
12)345/60)7?@:
12);<6*06=4>)7?@:
A2)B4345/60

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

dofs

c
o

n
d

it
io

n
 n

u
m

b
e

r

DG linear (BZ)
DG quadratic (BZ)
DG linear (IP)
DG quadratic (IP)
CG bilinear

CG bilinear

DG IP linear

DG IP quadratic

!"
"

!"
!

!"
#

!"
$

!"
%

!"
&

!"
!'

!"
!&

!"
!%

!"
!$

!"
!#

!"
!!

!"
"

()*+,-

.
#
)/
00
+
0

)

)

12)345/60)789:
12);<6*06=4>)789:
12)345/60)7?@:
12);<6*06=4>)7?@:
A2)B4345/60

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

dofs

c
o

n
d

it
io

n
 n

u
m

b
e

r

DG linear (BZ)
DG quadratic (BZ)
DG linear (IP)
DG quadratic (IP)
CG bilinear

Figure 3.9: Error plots for the solution of the Poisson equation on a regular grid. The plots
compare the L2 errors ‖∆u + f ‖ and the condition numbers of the stiffness
matrix K for the BZ and IP method using linear and quadratic basis functions,
and also include bilinear CG FEM as a reference.

While the use of polynomial basis functions already simplifies simulations on
regular 2D grids, the true value of this added flexibility will be demonstrated
in Chapter 4, in the context of elasticity simulations on irregular 3D meshes
of dynamically changing topology.

3.2 DG FEM For Non-Linear Problems

For the problems considered so far, the corresponding energy was always
quadratic in u and the weak form linear in u. Discretizing the weak form then
resulted in a linear system to be solved for the unknown degrees of freedom.
However, many practical applications of the FEM such as the simulation of
solids using accurate material models result in energy minimization problems
that do not follow this simple form. This section shows how discontinuous
Galerkin finite element methods can be derived for these kind of problems,
following the derivations of Arnold et al. [2001] and Ten Eyck and Lew [2006].

Non-Linear Problem. In particular, we consider the problem of minimizing
an energy functional of the form

E[u] =
∫

Ω
W(x,∇u)

where the energy density function W can non-linearly depend on the position
x and the first derivatives of u. Note that the forcing term

∫
Ω f u has been

omitted for simplicity, but adding it back in would be trivial.

28

3.2 DG FEM For Non-Linear Problems

For the Poisson problem considered in the earlier derivations, the energy
density would correspond to

WPoisson(x,∇u) =
1
2
∇u · ∇u,

so we can still recover this example as a special case of the non-linear problem.
We will however treat W as an arbitrary smooth function of x and ∇u from
now on.

3.2.1 DG Derivative

Applying the integration by parts theorem Eq. (B.3) to a sufficiently smooth
scalar valued function u and a vector valued function z over element K gives∫

K
∇u · z =

∫
∂K

u nK · z−
∫

K
u∇ · z (3.17)

with nK denoting the outward unit normal of element K. This is sound as long
as u and z are continuously differentiable on the closure of Ω. However, what
we are actually interested in is the case where u is a bi-valued function on ∂K
and the integral over ∂K is using the numerical flux û, an approximation to
the bi-valued function, instead of u. Replacing u by the numerical flux û on
∂K and replacing ∇u by the so-called DG derivative DDGu gives∫

K
DDGu · z =

∫
∂K

û nK · z−
∫

K
u∇ · z. (3.18)

As will be shown later, given a numerical flux û, we can find a DG derivative
DDGu such that the above equation holds for all elements K. Note that
if u is continuous over all of Ω and û = u, we recover DDGu = ∇u. For
discontinuous u, DDGu will be an alternative version of the gradient of u that
takes into account the numerical fluxes on the element boundaries. We can
then use DDGu in place of ∇u in the energy minimization functional to get

E[u] =
∫

Ω
W(x, DDGu) = ∑

K

∫
K

W(x, DDGu). (3.19)

This energy allows u to be discontinuous across elements, and after dis-
cretizing u using finite element basis functions, can be minimized using a
Newton method, see Section 3.3.2. What remains is the computation of the
DG derivative DDGu given numerical fluxes û.

29

Fundamentals

Finding the DG Derivative. Computing the sum of Eq. (3.18) over all ele-
ments K and making use of the definition of the jump and average operators
as defined in (3.12) we get

∑
K

∫
K

DDGu · z =
∫

Γ
JûK · {z}+

∫
Γ
{û} JzK−∑

K

∫
K

u∇ · z.

Here, Γ is the union of all element edges and we assume the jump and
average operators to be appropriately defined for edges on ∂Ω. Performing
the same summation for (3.17) gives

∑
K

∫
K
∇u · z =

∫
Γ
JuK · {z}+

∫
Γ
{u} JzK−∑

K

∫
K

u∇ · z.

Subtracting these two equations results in

∑
K

∫
K
(DDGu−∇u) · z =

∫
Γ
Jû− uK · {z}+

∫
Γ
{û− u} JzK .

Next, the linear lifting operators R and L are defined as∫
Ω

R(u) · z = −
∫

Γ
u · {z}

and ∫
Ω

L(u) · z = −
∫

Γ
u JzK .

The computation of these lifting operators will be shown when looking at the
discretization of the problem. For now, it is sufficient to know that they allow
us to convert edge integrals to area integrals and thus allow us to write the
above equation as

∑
K

∫
K
(DDGu−∇u−R(Ju− ûK)− L({u− û})) · z = 0.

As z is arbitrary, this defines the DG derivative as

DDGu =∇u + R(Ju− ûK) + L({u− û}).

Note that as mentioned earlier, it follows from this definition that DDGu =∇u
if u is continuous and û = u. Also note that this can be trivially extended to
vector fields u, in which case DDGu is a two-tensor instead of a vector.

30

3.2 DG FEM For Non-Linear Problems

3.2.2 Choice of Fluxes

In the DG FEM derivation shown in Section 3.1.2, numerical fluxes had to
be defined for both the function u and its gradient σ. However in the more
generic derivation shown in this section, we only need to define the flux of u
while derivatives are automatically taken care of by the lifting operators.

One common choice of flux [Lew et al., 2004; Bassi and Rebay, 1997; Brezzi et
al., 2000] is to set

û = {u}
on interior edges. The DG derivative then simplifies to

DDGu =∇u + R(JuK). (3.20)

3.2.3 Discretization and Lifting Operators

Just as described in Section 3.1.2, the function u is discretized using per-
element basis functions Ni that are sufficiently smooth within elements and
assume non-zero values only within exactly one element:

u(x) =
n

∑
i=1

uiNi(x)

Recall that ui are the degrees of freedom of the problem.

In order to discretize the lifting operator, we need to define an additional set
of per-element basis functions Lj which serve as a basis for the derivatives
∇u. For example, when using linear per-element basis functions Ni, it is
sufficient to have one constant derivative basis function LK for each element
K which assumes a value of 1 in element K and vanishes in all other elements.

With this discretization, the lifting operator R becomes a linear transformation
between the derivative basis Lj and the basis Ni and can be expressed using
a 3-tensor Radi as

R(nu) = R(n∑
a

uaNa) = ∑
a

uaR(nNa) = ∑
a,d,i

uaeiLdRadi (3.21)

where ei is the i-th standard basis vector. Recalling the definition of the lifting
operator ∫

Ω
R(u) · z = −

∫
Γ

u · {z}
and using u = nNa and z = eiL f while discretizing R we get

∑
d

(∫
Ω

LdL f

)
Radi = −

∫
Γ

Nani
{

L f
}

31

Fundamentals

where ni is the i-th component of the outward unit normal n. Radi can now
be computed by inverting the mass matrix with entries Md f =

∫
Ω LdL f . This

inversion can be computed efficiently because of the element-wise basis func-
tions, causing the mass matrix to be block-diagonal. Note that the coefficients
Radi only depend on the discretization but not on the degrees of freedom, so
they can be precomputed and stored in the element for which Ld assumes
non-zero-values.

The total energy Eq. (3.19) can now be computed in terms of degrees of
freedom ui using an appropriate definition of the DG derivative such as
Eq. (3.20) and by discretizing the lifting operator R with Eq. (3.21) using the
precomputed factors Radi.

3.2.4 Stabilization

For some non-linear problems, the stability of the DG discretization can be
improved by introducing a stabilization term [Ten Eyck and Lew, 2006]. One
possible way of achieving this is by adding the following term (boxed) to the
energy E

E[u] = ∑
K

∫
K

W(x, DDGu) +
β

h

∫
Γ
Ju− ûK · Ju− ûK

where β is a positive penalty weight and h a measure of the mesh fineness.

3.3 Non-Linear Elasticity

One of the most common applications of FEM is the simulation of deformable
objects. The corresponding partial differential equations can be derived from
basic principles from continuum mechanics. In this section, the most simple
case of a hyperelastic material is considered. A material is termed hyperelastic
if the work done by the stresses during a deformation process only depends
on the initial state of the material and its current state, independently of the
deformation path [Bonet and Wood, 1997]. In particular, an object made out
of a hyperelastic material will return to its undeformed rest state when the
external forces and boundary conditions are removed (and if the dynamic
simulation is damped).

32

3.3 Non-Linear Elasticity

3.3.1 Continuum Formulation

Deformation Energy. Consider a 3D object with material coordinates
X = (X1, X2, X3)

T ∈Ω ⊂ IR3 with a deformation field ϕ : Ω→ IR3, mapping
a point X to x = (x1, x2, x3)

T = ϕ(X). We are interested in finding the defor-
mation energy E for a given deformation field ϕ. To this end, a deformation
energy density Ψ[ϕ](X) is defined, describing the deformation energy of an
infinitesimal material volume at position X. Note that we consider Ψ to be
a functional at this point, so we do not have to specify yet how exactly it
depends on ϕ. The deformation energy density is integrated over the whole
domain Ω to get the total deformation energy functional

E[ϕ] =
∫

Ω
Ψ[ϕ](X). (3.22)

The object is at rest if E is in a local minimum with respect to the deformation
field ϕ. To solve this problem, we have to find a configuration ϕ such that the
first variation of E vanishes, i.e. δE[ϕ] = 0, given some boundary conditions.

Deformation Energy Densities. In order to define meaningful energy den-
sities Ψ, and establish their dependency on ϕ, we first need to introduce
a couple of quantities describing the local deformation of an infinitesimal
material volume. The 3× 3 deformation gradient F with entries

(F(X))ij = Fij(X) =
∂ϕi

∂Xj

∣∣∣∣
X

measures the local (linearized) behavior of the deformation at position X. In
the following, the dependency on X will not be stated explicitly but is tacitly
assumed. The symmetric right Cauchy-Green tensor C is defined as

C = FTF

and allows for the definition of the Green strain tensor E

E =
1
2
(C− I).

The deformation gradient F can be decomposed into a rotational component
R and a stretch component U as F = RU. The right Cauchy-Green tensor can
now be written as C = UTRTRU = UTU. In other words, C (and consequently
also E) is invariant under rotations.

As the energy density Ψ only depends on the local (linearized) deformation
of the material and the local material properties, it is a function of the de-
formation gradient F and the position X. However, assuming homogeneous

33

Fundamentals

material properties, and noting that for physical applications Ψ must be
invariant under rigid body motions, it can be simplified to be a function
of C only, i.e. Ψ(C). Additionally assuming that the material behavior is
isotropic, i.e. identical in any direction, Ψ will only depend on the three scalar
invariants of the tensor C [Bonet and Wood, 1997]:

IC = tr C
I IC = tr CC = ||C||2
I I IC = detC = J2

where J = detF, so one can write Ψ(IC, I IC, I I IC).

Stresses. In an equilibrium configuration, the variation of the deformation
energy must vanish. Expressing this in terms of the Green strain gives

δE[ϕ] =
∫

Ω

∂Ψ

∂E
: δE[ϕ]. (3.23)

The colon operator “ :” denotes the tensor product between two matrices A
and B or between a matrix A and a 4-tensor C as

A :B := ∑
ij

AijBij,

A :C := ∑
ij

AijCijkl,

C :A := ∑
kl

CijklAkl.

For energy densities that are expressed in terms of C, the partial derivative
with respect to E is trivial to compute as

∂Ψ

∂Eij
= ∑

kl

∂Ψ

∂Ckl

∂Ckl
∂Eij

= 2
∂Ψ

∂Cij
.

The term ∂Ψ/∂E actually has a physical meaning: it corresponds to the
second Piola-Kirchhoff stress tensor and is usually denoted by the symbol S.
When applied to an area element with undeformed unit normal vector N and
undeformed area dA, it returns a non-physical force in the reference coordinate
system. This can be expressed as

F−1f = SNdA,

where f is the actual physical force acting on the area element. The pair S, E
is said to be work conjugate, because their product corresponds to the work

34

3.3 Non-Linear Elasticity

per volume. The definition of stresses (such as the second Piola-Kirchhoff
stress S) in terms of deformation measures (such as the right Cauchy-Green
tensor C) is known as the constitutive equation of the material.

Another useful quantity is the first Piola-Kirchhoff stress denoted by P, which
relates to the second Piola-Kirchhoff stress as S = F−1P. It returns the physical
force when being applied to an undeformed area element:

f = PNdA.

Finally, the Cauchy stress σ relates the area element with deformed unit normal
vector n and deformed area da to the physical force f:

f = σ nda.

Note that the first and second Piola-Kirchhoff stress and the Cauchy stress
are merely different representations of the same physical stress, i.e. of a force
acting on an area element. They only differ in whether the deformed or the
undeformed area element is considered, and whether the force is represented
in deformed or undeformed coordinates.

Constitutive Equations. One particularly simple material model is the St.
Venant-Kirchhoff material, whose energy density per unit volume, expressed in
E, is

Ψ(E) =
1
2

λ(trE)2 + µE : E.

Computing the derivative with respect to E gives the corresponding second
Piola-Kirchhoff stress

S = λ(trE)I + 2µE, (3.24)

with λ (Lamé’s first parameter) and µ (shear modulus) denoting material
parameters. These can be expressed in terms of the materials Young’s modulus
E, describing the stiffness of the material (not to be confused with the defor-
mation energy E), and its Poisson’s ratio ν, describing how well the material
preserves its volume under stress (to first order in the strain):

λ =
νE

(1 + ν)(1− 2ν)
,

µ =
E

2(1 + ν)
.

Note that with the constitutive equation (3.24), the second Piola-Kirchhoff
stress turns out to be linear in E, a fact we will make use of when considering
linear elasticity in the following section.

35

Fundamentals

3.3.2 Discretization and Solution

To find a deformation field ϕ that minimizes the total deformation energy
(3.22), ϕ first needs to be discretized as a linear combination of basis functions
Ni:

ϕ(X) ≈
n

∑
i=1

xiNi(X) with xi ∈ IR3.

This defines the deformation field in terms of n unknown vector degrees of
freedom x1, . . . ,xn. For given DOF values, the deformation gradient F can
now be computed as

F(X) =
∂ϕ

∂X

∣∣∣∣
X
=

n

∑
i=1

xi

(
∂Ni

∂X

∣∣∣∣
X

)T

,

and from this the right Cauchy-Green tensor C = FTF can be expressed in
terms of the DOFs. Any deformation energy density depending only on C
can now be expressed in terms of the DOFs as well. Introducing the vector
d = (xT

1 , . . . ,xT
n)

T = (d1, . . . ,d3n)
T of length 3n containing all scalar DOFs, the

deformation energy can be explicitly computed as

E(d) =
∫

Ω
Ψ(C(X,d)).

Non-Linear Optimization. To minimize this energy, a standard Newton-
Raphson method can be employed [Nocedal and Wright, 2000]. Starting with
an initial guess d for the DOFs, the increment ∆d of d is found by solving the
linear system

H(d)∆d = −f(d) (3.25)

where the 3n force vector f contains the first derivatives of the energy E with
respect to the DOFs as

(f(d))i =
∂E
∂di

∣∣∣∣
d

and the sparse 3n× 3n Hessian matrix H contains the second derivatives of
E:

(H(d))ij =
∂2E

∂di∂dj

∣∣∣∣
d
.

After the increment ∆d has been found, the DOFs are updated as

d← d + ∆d.

A few important details need to be considered at this point. First, for the
increment ∆d to point in a direction of decreasing energy E, H needs to be

36

3.4 Linear Elasticity

positive definite. As this may not always be the case when simulating elastic
deformations, a simple workaround consists in adding a multiple of the
identity matrix to H, i.e. modifying H to

H←H + βI

where β ≥ 0 is a small value, but large enough to render the updated H
positive definite. In a practical implementation, one can use a direct solver
based on a sparse sparse Cholesky factorization [Chen et al., 2008; Schenk et
al., 2001] to find the update ∆d. If H is not positive definite, the factorization
will fail and β needs to be increased. Adding a multiple of the identity to H
can be interpreted as letting the solution ∆d point more towards the direction
of steepest descent, as for H = I, (3.25) would simplify to ∆d = −f(d).

Second, the increment ∆d, although pointing in a direction of decreasing
energy E, may be too large, resulting in an increase in energy. To guarantee
that a local minimum is found, the update should be changed to

d← d + α∆d

where α ≤ 1 is chosen such that E(d + α∆d) < E(d). This can be achieved by
starting with α = 1 and halving α until the criterion is met.

In Algorithm 3.1, LinSolve solves a system of linear equations. ApplyHardCon-
straints modifies H and f such that for all constrained vector DOFs i, fi = 0,
Hii = I and Hij = Hji = 0 for j 6= i. ComputeHf computes the first and second
derivatives of E with respect to the DOFs, which similarly to ComputeE can
be evaluated on a per-element basis when the algorithm is applied in the
context of FEM problems.

3.4 Linear Elasticity

For small deformations, it suffices to consider a linearized version of elasticity,
where the relationship between stress and strain is linear, and the strain is
linear in the deformation. This simplification is well suited for computer
graphics applications, because the resulting deformation behavior is already
quite plausible. However, as the strain is linear in the deformation, it is no
longer invariant under rotations, leading to artifacts whenever the object is
rotated. To amend this, a so-called corotational approach is usually employed,
which rotates the material elements back to their undeformed state before
computing stresses. This will be further detailed in Chapter 4 and only the
purely linear case is considered in this section.

37

Fundamentals

1 Solve(dinit)
2 d← dinit
3 do
4 E← ComputeE(d)
5 H,f← ComputeHf(d)
6 H,f← ApplyHardConstraints(H, f)
7 Find small β ≥ 0 s.t. H + βI is pos. def.
8 ∆d← LinSolve((H + βI)∆d = −f)
9 Find large α ≤ 1 s.t. ComputeE(d + α∆d) < E

10 d+= α∆d
11 while ||f||2 > tol

12 return d
13 end

Algorithm 3.1: Newton-Raphson solver minimizing the energy E.

Similar derivations of CG FEM for linear elasticity can be found in
many textbooks (e.g., Hughes [2000]) and also in the recent survey by
Nealen et al. [2006].

3.4.1 Continuum Formulation

Material Linearity. Writing the variation of the deformation energy (3.23)
in terms of the second Piola-Kirchhoff stress S gives

δE[ϕ] =
∫

Ω
S : δE[ϕ].

Assuming the simple St. Venant-Kirchhoff material model (3.24), the second
Piola-Kirchhoff stress is linear in E and can be written as

Sij = ∑
kl
CijklEkl

where the elasticity 4-tensor C emerges with entries

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (3.26)

If we further assume that the initial state of the object corresponds to a
stress-free rest state, the deformation energy can be written as

E =
∫

Ω
E : C : E,

which is quadratic in the Green strain E. In the following, we will linearize E
with respect to displacement DOFs, turning E into a quadratic function of the
DOFs.

38

3.4 Linear Elasticity

Geometric Linearity. Defining the displacement field u as

u(X) =ϕ(X)− X

and linearizing the Green strain E in u results in the linear Cauchy strain tensor
ε with entries

εij =
1
2
(

∂ui

∂Xj
+

∂uj

∂Xi
).

Using vector notation, this is equivalent to

ε(u) =
1
2

(
∇u +∇uT

)
. (3.27)

Quadratic Energy and Strong Form. Using the linearized strain, the second
Piola-Kirchhoff stress then becomes S = C : ε and the quadratic deformation
energy is

E =
∫

Ω
ε : C : ε.

Assuming small deformations u, the first and second Piola-Kirchhoff stress
and the Cauchy stress are equivalent. In linear elasticity, one typically uses
the symbol σ to denote the linearized stress, and one writes

σ(u) = C : ε(u) , (3.28)

which is the definition of a Hookean material, where the Cauchy strain is
linearly related to the stress through the symmetric 4-tensor C.

Another way of deriving the deformation energy is by considering the static
equilibrium between internal forces (due to linearized stresses) and external
forces f, which is expressed by

−∇ · σ(u) = f. (3.29)

This equation constitutes the strong form of the linear elasticity problem and
can be used as a starting point for finding the weak form and the deformation
energy. Conversely, the strong form is nothing else but the Euler-Lagrange
equation of the underlying energy minimization problem.

3.4.2 Discretization and Solution

Equations (3.28) and (3.29), in combination with suitable boundary constraints
on ∂Ω, constitute the strong form of elastostatics. Multiplying them by test

39

Fundamentals

functions, integrating by parts over Ω, and combining the resulting equations
yields the weak form of CG FEM:

aCG(u,v) :=
∫

Ω
ε(v) : C : ε(u) =

∫
Ω

f · v, (3.30)

Analogous to (3.4) and (3.5), discretizing u as

u(X) ≈
n

∑
i=1

uiNi(X) with ui ∈ IR3 (3.31)

leads to a 3n× 3n linear system KU = F with

Kij = aCG
(

Ni, Nj
)
· I3 ∈ IR3×3,

Ui = ui ∈ IR3,

Fi =
∫

Ω
f Ni ∈ IR3,

where I3 denotes the 3× 3 identity matrix.

3.5 Kirchhoff-Love Shell Mechanics

This section reviews the basic equations of the Kirchhoff-Love shell theory
in order to establish the required notation and introduce quantities that will
be referred to in subsequent chapters. A rather concise derivation of the
thin-shell theory is given in Cirak et al. [2000], while the detailed derivations
can be found in Simo and Fox [1989].

The Kirchhoff-Love theory for thin shells makes two main assumptions
[Wempner and Talaslidis, 2003]:

• The height of the shell is assumed to be small compared to its overall
size.

• A vector normal to the shell that is transformed according to the
local deformation of the shell always remains normal to the shell and
un-stretched.

The first assumption allows for first-order approximations in the direction
normal to the shell, while the second assumption results in shearing defor-
mations being neglected.

40

3.5 Kirchhoff-Love Shell Mechanics

𝜉1 𝜉2

ℎ

𝜉1

𝜉2

ℎ 𝝋0,1 𝝋0,2
𝒕0

𝝋,1
𝝋,2 𝒕

𝑥1, 𝑋1

𝑥3, 𝑋3
𝑥2, 𝑋2

Figure 3.10: Undeformed (left) and deformed (right) configurations of a shell with local
coordinate systems at positions ϕ0(ξ

1,ξ2) and ϕ(ξ1,ξ2), respectively.

3.5.1 Shell Geometry

The deformation of a thin shell can be fully described by the deformation of
its mid-surface, which is a two-dimensional surface embedded in IR3. The
shell extends up to distance h/2 from the mid-surface, where h is the height
of the shell. The mid-surface is parameterized using curvilinear coordinates
(ξ1,ξ2)T ∈Ω ⊂ IR2, which allows us to define the current (deformed) config-
uration of the shell using a function ϕ(ξ1,ξ2) : Ω→ IR3. Similarly, the initial
(undeformed) configuration of the shell is defined by a function ϕ0(ξ

1,ξ2).

The surface basis vectors (tangent vectors) of the deformed and unde-
formed configuration, respectively, can be computed as ϕ,α(ξ1,ξ2) and
ϕ0,α(ξ

1,ξ2). Note that here and in the following, Greek indices indicate
values 1 and 2, while a comma denotes partial differentiation. For example,

ϕ,α(ξ1,ξ2) = ∂ϕ(ξ1,ξ2)
∂ξα . In the following, the explicit dependency of these quan-

tities on (ξ1,ξ2) will be dropped, so we simply write ϕ instead of ϕ(ξ1,ξ2).

As any normal to the shell surface will always stay normal to the shell under
deformation, the deformed surface normal vector t can be computed from
the basis vectors as

t =
ϕ,1 ×ϕ,2

‖ϕ,1 ×ϕ,2‖
and similarly for the undeformed surface normal vector t0. The three vectors
ϕ,1, ϕ,2 and t define a local coordinate system for a point (ξ1,ξ2)T on the
mid-surface of the shell (see Fig. 3.10).

The deformed configuration can also be described relatively to the unde-
formed configuration, using a displacement field u : Ω→ IR3 that defines the
displacement of each point on the mid-surface. The deformed configuration
can thus be written as

ϕ=ϕ0 + u. (3.32)

41

Fundamentals

3.5.2 Shell Mechanics

The Kirchhoff-Love shell equations can be derived from the volumetric elas-
ticity theory as follows: introducing a third coordinate ξ3 extending into the
normal direction, we can parameterize any position X ∈ IR3 relative to the
mid-surface:

X(ξ1,ξ2,ξ3) =ϕ0(ξ
1,ξ2) + ξ3t0(ξ

1,ξ2)

and the corresponding deformed position is

x(ξ1,ξ2,ξ3) =ϕ(ξ1,ξ2) + ξ3t(ξ1,ξ2).

The partial derivatives of the deformed position are

∂x
∂ξ1 =ϕ,1 + ξ3t,1

∂x
∂ξ2 =ϕ,2 + ξ3t,2

∂x
∂ξ3 = t,

and correspondingly for the undeformed position X.

Recalling the definition of the Green strain from Section 3.3

E =
1
2
(FTF− I)

and noting that the deformation gradient F can be written as

F =
∂x
∂X

=
∂x
∂ξ

∂ξ

∂X
=

∂x
∂ξ

(
∂X
∂ξ

)−1

,

the Green strain E becomes

E =
1
2
(FTF− I) =

1
2

((
∂X
∂ξ

)−T(∂x
∂ξ

)T ∂x
∂ξ

(
∂X
∂ξ

−1
)
− I

)

=

(
∂X
∂ξ

)−T
Eξ

(
∂X
∂ξ

)−1

where

Eξ =
1
2

((
∂x
∂ξ

)T ∂x
∂ξ
−
(

∂X
∂ξ

)T ∂X
∂ξ

)
.

is the Green strain in the (ξ1,ξ2,ξ3)T coordinate system. The products of
partial derivatives of x and X with respect to ξ are the metric tensors, and
Eξ is thus proportional to the difference between the metric tensor of the
undeformed and the deformed configuration.

42

3.5 Kirchhoff-Love Shell Mechanics

To first order in the shell thickness direction ξ3, the strain Eξ decomposes into
two tensors ε and ρ:

Eξ
ij = εij + ξ3ρij.

From the assumption that the normal t is always normal to ϕ,1 and ϕ,2
and t · t = 1, it follows that εi3 = ε3i = ρi3 = ρ3i = 0. The Green strain Eξ

can thus be represented as a 2× 2 matrix. Furthermore, using the identity
ϕ,α · t,β = −ϕ,αβ · t following from (t ·ϕ,α),β = 0, one can shown that ε corre-
sponds to the difference between the first fundamental form of the undeformed
and the deformed configuration, and ρ to the difference between the second
fundamental form of the undeformed and the deformed configuration. The
tensor ε only depends on the local basis vectors (i.e., first derivatives of ϕ)
and is known as the stretching or membrane strain tensor, while the tensor ρ is
referred to as the bending strain tensor and also depends on derivatives of the
basis vectors, thus measuring the local change in curvature.

Describing the deformed configuration ϕ in terms of the displacement field
u according to (3.32), to first order in u the membrane strain two-tensor ε

becomes
εαβ(u) :=

1
2
(ϕ0,α · u,β + u,α ·ϕ0,β) (3.33)

and the bending strain two-tensor ρ becomes

ραβ(u) := ϕ0,αβ · t0
1
j̄0
(u,1 · (ϕ0,2 × t0)− u,2 · (ϕ0,1 × t0))

+
1
j̄0
(u,1 · (ϕ0,αβ ×ϕ0,2)− u,2 · (ϕ0,αβ ×ϕ0,1))

−u,αβ · t0. (3.34)

In the above equation, j̄0 is the determinant of the Jacobian of the undeformed
mid-surface, defined as

j̄0 := ‖ϕ0,1 ×ϕ0,2‖. (3.35)

Note that quantities such as ϕ0, t0 and j̄0 depend on the undeformed configu-
ration only and can thus be precomputed for any position (ξ1,ξ2)T.

Computing stresses from strains using a linear constitutive law, a formulation
for the deformation energy can be found, which, by applying the variational
principle, leads to the weak formulation

a(u,v) = f (v),

43

Fundamentals

which must hold for all test functions v : Ω→ IR3. The right-hand side f
represents external forces, and the weak form a(u,v) is defined as

a(u,v) :=
∫

Ω
εαβ(v)Hαβγδ

n εγδ(u)dS

+
∫

Ω
ραβ(v)Hαβγδ

m ργδ(u)dS . (3.36)

Note that Einstein sum notation is in effect here, meaning that repeated
indices are summed over.

In the above weak form,Hn andHm define the constitutive relations between
stress and strain. They are defined as

Hαβγδ
n :=

Eh
1− ν2H

αβγδ, (3.37)

Hαβγδ
m :=

Eh3

12(1− ν2)
Hαβγδ, (3.38)

where

H := ν(ϕ ,α
0 ·ϕ

,β
0)(ϕ ,γ

0 ·ϕ ,δ
0)

+
1
2
(1− ν)(ϕ ,α

0 ·ϕ
,γ
0)(ϕ ,δ

0 ·ϕ
,β
0)

+
1
2
(1− ν)(ϕ ,α

0 ·ϕ ,δ
0)(ϕ ,γ

0 ·ϕ
,β
0).

ϕ ,1
0 and ϕ ,2

0 denote the contravariant basis vectors. Defining the symmetric
metric tensor G as

G :=
[

ϕ0,1 ·ϕ0,1 ϕ0,1 ·ϕ0,2
ϕ0,2 ·ϕ0,1 ϕ0,2 ·ϕ0,2

]
,

the contravariant basis vectors can be computed as | |
ϕ ,1

0 ϕ ,2
0

| |

 =

 | |
ϕ0,1 ϕ0,2
| |

G−T. (3.39)

Note that the constitutive relations (3.37) and (3.38) also depend on the
Young’s modulus E and Poisson’s ratio ν of the material.

3.6 Outlook

After introducing the basics of PDEs and their related representations, this
chapter presented the fundamental concepts of FEM and DG FEM, for linear

44

3.6 Outlook

as well as non-linear problems. It also discussed the basics of linear and
non-linear elasticity and a physically sound specialization to linear shell
mechanics.

The following chapters will combine these theories, showing how DG FEM
can be applied in the context of linear and non-linear elasticity problems as
well as linear corotational shell simulations. In each of these areas, the focus
will be on different features of the DG FEM, and different aspects of DG FEM
will be taken advantage of to come up with solutions that improve over the
state of the art.

45

Fundamentals

46

C H A P T E R 4
Simulation of Deformable Solids

Figure 4.1: A discontinuous Galerkin-based simulation method for deformable solids
allows for the simulation of arbitrary polyhedral elements, enabling topology
changes without remeshing. Sharpening a pencil consisting of a single convex
element (left). Cutting a bunny out of a cube (right).

In this chapter, a simulation technique for elastically deformable objects based
on the discontinuous Galerkin finite element method is proposed. In contrast
to traditional FEM, it overcomes the restrictions of conforming basis functions
by allowing for discontinuous elements with weakly enforced continuity con-
straints. This added flexibility enables the simulation of arbitrarily shaped,
convex and non-convex polyhedral elements, while still using simple polyno-
mial basis functions. For the accurate strain integration over these elements,

47

Simulation of Deformable Solids

an analytic technique based on the divergence theorem is presented. Being
able to handle arbitrary elements eventually allows for simple and efficient
techniques for volumetric mesh generation, adaptive mesh refinement, and
robust cutting. Furthermore, the presented DG method does not to suffer
from locking artifacts even for nearly incompressible materials, a problem
that in standard FEM requires special handling.

After having introduced the main concepts of DG FEM based on a simple 2D
Poisson problem in Section 3.1, this chapter shows how to derive equations
and techniques for 3D linear elasticity (Section 4.2). DG FEM is extended fur-
ther by directly simulating arbitrary polyhedra (Section 4.3), by generalizing
stiffness warping to DG FEM (Section 4.4), and by using embedded simula-
tion (Section 4.5) with suitable collision handling (Section 4.6). Equipped with
those techniques, the versatility of the presented framework is demonstrated
on a set of different applications in Section 4.7.

4.1 Overview

In computer graphics, FEM simulations of deformable objects are usually
based on simple tetrahedral or hexahedral meshes. To simulate topological
changes due to cutting or fracturing of material, one has to split elements and
perform a remeshing step in order to avoid ill-shaped elements and to main-
tain a reasonable mesh quality. Due to the relaxed conformity constraints, a
DG FEM-based approach allows for arbitrary convex and non-convex poly-
hedral elements, which greatly simplifies the mesh restructuring step. In the
context of cutting and fracturing the approach presented in this work is most
similar to Wicke et al. [2007] and Martin et al. [2008], but it is more flexible
and more efficient due to the use of simple polynomial shape functions.

Furthermore, in order to support flexible simulations of deformable mod-
els for computer graphics applications, this work extends DG FEM by the
following components:

• The simulation of arbitrary polyhedral elements using simple and ef-
ficient polynomial basis functions and a fast and accurate volumetric
integration technique (Section 4.3).

• A generalization of stiffness warping to discontinuous polyhedral
elements, thereby allowing linear strain measures to be used even in
the presence of large deformations (Section 4.4).

• For embedded simulations: the reconstruction of a smooth displace-
ment field from the discontinuous mesh, based on moving least

48

4.2 Linear Elasticity using DG FEM

squares (MLS) interpolation (Section 4.5), along with a suitable colli-
sion handling technique (Section 4.6).

The versatility of the presented approach is demonstrated on several exam-
ples, including slicing-based mesh generation, adaptive stress-based element
refinement, flexible and efficient cutting, and locking analysis (Section 4.7).

4.2 Linear Elasticity using DG FEM

The basic concepts of DG FEM have been introduced on the 2D Poisson
problem in Section 3.1.2. Based on this introduction, this section shows how
the same approach can be applied to the simulation of 3D linearly elastic
deformations as presented in Section 3.4.

4.2.1 DG Weak Form

The derivation of the DG weak form for linear elasticity closely follows the
procedure presented in Sections 3.1.2 and 3.1.3, where the derivation of a
DG method for the 2D Poisson problem has been shown. Equations (3.28)
and (3.29), which constitute the strong form of elastostatics, are multiplied by
test functions and integrated over each element K, yielding the individual
elements’ weak forms. Those are summed up, fluxes û and σ̂ are introduced,
and the two resulting equations are combined into one. The resulting equa-
tion corresponds to (3.11) for the Poisson problem, and is to be simplified
using the average and jump operators.

Those, however, have to be slightly redefined for vector-valued functions u
and matrix-valued functions σ on a face f shared by two elements K− and
K+, such that the jump operator maps vectors to matrices and vice versa.
Using the outer product u⊗ n := unT we define

{u} :=
1
2
(
u− + u+

)
, JuK := u− ⊗ n− + u+ ⊗ n+,

{σ} :=
1
2
(
σ− + σ+

)
, JσK := σ−n− + σ+n+.

BZ Method. Minimizing the jump JuK : JuK = ‖u− − u+‖2 by choosing the
fluxes of Babuška and Zlámal [1973] leads to the weak form of the BZ method,
which uses aBZ instead of aCG in (3.30):

aBZ(u,v) :=
∫

Ω
ε(v) :C : ε(u) +

∫
Γ

η f JuK : JvK . (4.1)

49

Simulation of Deformable Solids

Figure 4.2: Comparison between CG FEM (left), DG FEM (center), and the elastically
coupled rigid cells of PriMo (right). The DG method conceptually spans
the whole space from CG to PriMo, since for sufficiently large penalties η it
approximates the CG results, and for an extremely stiff material and lower
penalty η it reproduces the rigid cells of PriMo.

The penalty parameter η f is defined per face f according to Hansbo and Lar-
son [2002]:

η f = η · area(f) ·
(

1
vol(K−)

+
1

vol(K+)

)
(4.2)

using a global penalty parameter η > 0, which was typically in the order of
101–102 for the simulations shown in this work.

The internal elastic energy of the deformed object can then be written as

aBZ(u,u) =
∫

Ω
σ(u) : ε(u) +

∫
Γ

η f
∥∥u− − u+

∥∥2 ,

which reveals an interesting connection to both CG FEM and the elastically
coupled rigid cells of PriMo [Botsch et al., 2006]: CG computes elastic energies
within elements only, using the Ω-integral, whereas PriMo employs only the
“glue” energy between elements, represented by the Γ-integral.

Since BZ is based on both energy terms, with properly chosen penalty weight
and material stiffness it can reproduce both methods, and can hence be
considered as their generalization (see Fig. 4.2). As such, it combines the
strengths of both approaches, since it inherits the physical accuracy of CG
FEM, as well as the flexibility in element shapes and meshing of PriMo [Botsch
et al., 2007], as will be demonstrated in Section 4.3.

The BZ penalty term is equivalent to both the glue energy of PriMo [Botsch et
al., 2006] and the soft bindings employed by Sifakis et al. [2007b]. However,
as already discussed in Section 3.1.3 and shown in Fig. 3.7, the BZ method
is not consistent and therefore does not provide any convergence guarantees.
Our experiments have nevertheless shown the BZ method to be very well
suited for applications aiming at physically plausible deformations only.

50

4.2 Linear Elasticity using DG FEM

IP Method. However, if physical accuracy is important, other DG fluxes,
such as those of the IP method, should be chosen instead. For linear elasticity,
the weak form of the IP method [Douglas and Dupont, 1976] is defined by

aIP(u,v) :=
∫

Ω
ε(v) : C : ε(u) (4.3)

−
∫

Γ

(
JvK :{σ(u)}

+ JuK :{σ(v)} − η f JuK : JvK
)
.

A detailed derivation of this weak form can be found in Section A.1.

Analogous to the Poisson problem (3.16), the three penalty terms ensure con-
sistency, symmetry, and stability, and the method is guaranteed to converge
under element refinement. Moreover, the IP method is still relatively easy to
implement (see Section 4.2.2). While other (more complex) numerical fluxes
exist (e.g., Ten Eyck and Lew [2006], Wihler [2006]), for our applications the
BZ and IP methods performed very well and have been fully sufficient.

4.2.2 Discretization and Matrix Assembly

Discretization. To implement DG FEM for linear elasticity, we discretize u
and v using n basis functions and set up the stiffness matrix K:

u(x) ≈
n

∑
i=1

uiNi(x) with ui ∈ IR3, (4.4)

v(x) ≈
n

∑
i=1

viNi(x) with vi ∈ IR3. (4.5)

Note that in this context, x ∈Ω ⊂ IR3 denotes a position in the undeformed
configuration. Since this is very similar to CG FEM, the reader is referred
to Hughes [2000] and Nealen et al. [2006] for more details on the following
derivations.

Using a 3× 3n interpolation matrix H(x) built from the basis functions Ni(x)

H(x) =

 N1(x) 0 0 N2(x) 0 0
0 N1(x) 0 0 N2(x) 0 . . .
0 0 N1(x) 0 0 N2(x)

and a 3n vector U containing the unknown coefficients ui ∈ IR3, the discretiza-
tion (4.4) of u can be written in matrix notation as u(x) =H(x)U. Equivalently,
the test function v can be represented as v(x) = H(x)V.

51

Simulation of Deformable Solids

Moreover, using Voigt notation, stress and strain can be represented by 6D
vectors σ̄ and ε̄ composed of the independent entries of the symmetric 3× 3
matrices σ and ε (defined in Equations (3.27) and (3.28)), respectively:

σ̄(u) = (σ11, σ22, σ33, σ23, σ13, σ12)
T,

ε̄(u) = (ε11, ε22, ε33, 2ε23, 2ε13, 2ε12)
T.

This leads to the matrix notation of the linear stress-strain relationship

σ̄(u(x)) = C̄ ε̄(u(x)) = C̄B(x)U, (4.6)

with a constant symmetric 6× 6 matrix C̄ built from the coefficients of the
constitutive tensor C (see Eq. (3.26)),

C̄ =

2µ + λ λ λ 0 0 0
λ 2µ + λ λ 0 0 0
λ λ 2µ + λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 ,

and a 6× 3n matrix B(x) containing first derivatives of the basis functions Ni:

B(x) =

N1,1(x) 0 0 N2,1(x) 0 0
0 N1,2(x) 0 0 N2,2(x) 0
0 0 N1,3(x) 0 0 N2,3(x) . . .
0 N1,3(x) N1,2(x) 0 N2,3(x) N2,2(x)

N1,3(x) 0 N1,1(x) N2,3(x) 0 N2,1(x)
N1,2(x) N1,1(x) 0 N2,2(x) N2,1(x) 0

For the assembly of the stiffness matrix we use the above matrix notations
to write the IP weak form (4.3) in terms of element contributions (Ω-integrals)
and face contributions (Γ-integrals). Note that for the BZ method (4.1) only the
last of the three face contributions in (4.3) is needed.

The element contributions are written in terms of element stiffness matrices
KK as in CG FEM: ∫

Ω
ε(v) :C : ε(u) = ∑

K∈T
VTKKU (4.7)

with KK =
∫

K
BT(x) C̄B(x) .

52

4.2 Linear Elasticity using DG FEM

After expanding the operators {·} and J·K, and exploiting n−= −n+, the first
two face contributions of f = K− ∩ K+ have the form

JvK :{σ(u)} =
((

v+ − v−
)
⊗ n+

)
:

1
2
(
σ−(u) + σ+(u)

)
.

To write this in matrix notation, we need a 6× 3 matrix

N f :=

 n+
1 0 0 0 n+

3 n+
2

0 n+
2 0 n+

3 0 n+
1

0 0 n+
3 n+

2 n+
1 0

T

,

and differences and averages of matrices B and H

HJK
f :=

(
H+

f −H−f
)

, B{}f :=
1
2

(
B+

f + B−f
)

,

which themselves are defined through restrictions

B±f := B|K± , H±f := H|K± ,

containing only the entries of B or H corresponding to basis functions of K±.

With these matrices we can define three stiffness matrices K f 1, K f 2, and K f 3
for each face f :

K f 1 =
∫

f
−HJK

f
T

NT
f C̄B{}f ,

K f 2 =
∫

f
−B{}f

T
C̄N f HJK

f ,

K f 3 =
∫

f
η f HJK

f
T

HJK
f .

The three face contributions in (4.3) can now be written in terms of these face
stiffness matrices as

−
∫

Γ
JvK : {σ(u)} = ∑

f∈T
VTK f 1 U, (4.8)

−
∫

Γ
JuK :{σ(v)} = ∑

f∈T
VTK f 2 U, (4.9)

∫
Γ

η f JuK : JvK = ∑
f∈T

VTK f 3 U. (4.10)

The global 3n× 3n stiffness matrix K can therefore be assembled by doing
one pass over all elements K ∈ T and accumulating their contributions KK,

53

Simulation of Deformable Solids

and a second pass over all faces f ∈ T that accumulates their contributions
K f i. Equivalently to CG, the external force vector F is assembled from the
elements’ contributions

∫
K H(x)T f. Note that even for linear basis functions

the integrands H(x) are not constant, requiring integration techniques as
discussed in Section 4.3. The discretized weak form

VTKU = VTF

has to hold for all test functions v, i.e., all vectors V, leading to the linear
system KU = F to be solved for the static solution U.

Assembly. The assembly of element and face stiffness matrices into the
global stiffness matrix K can be formulated most easily in terms of individual
3× 3 matrices. Let KK[i,j] denote the 3× 3 submatrix of KK corresponding to
the global stiffness matrix entry Kij. The matrices KK[i,j] can be precomputed
for all elements K using (4.7), and only those matrices that are non-zero need
to be stored. Due to symmetry it holds that KK[i,j] = KK[j,i]

T, which further
reduces the number of matrices to be precomputed. Similarly, K f 1[ij] and
K f 3[ij] can be precomputed for all faces f . Note that K f 3[ij] = K f 3[ji]

T and
K f 2[ij] = K f 1[ji]

T, so K f 2 does not need to be precomputed explicitly.

Kij can now be defined in terms of element and face contributions as follows:

Kij = ∑
K

KK[ij] + ∑
f

(
K f 1[ij] + K f 1[ji]

T + K f 3[ij]

)
.

Using a notation where the operator ← denotes assembly into the global
stiffness matrix for all K, f , this can equivalently be written as:

Kij← KK[ij]

Kij← K f 1[ij]

Kji← K f 1[ij]
T

Kij← K f 3[ij]

Boundary Conditions. Dirichlet boundary constraints can be prescribed in
DG FEM as weak or strong constraints. The latter simply removes some
DOFs from the system, i.e., fixes the coefficients ui for the corresponding Ni.
Weak boundary conditions are imposed by appropriately defining averages
and jumps at boundary elements. For a prescribed displacement g this means
to define the function values on the “free” side of boundary faces f ∈ ∂Ω as

u− := g, σ−(u) := σ+(u) ,
v− := 0, σ−(v) := σ+(v) .

54

4.3 Arbitrary Polyhedral Elements

Time Integration. Dynamic simulations of deformable objects with time-
varying U(t) and F(t) require additional inertial and damping forces, result-
ing in the governing equations

MÜ + DU̇ + KU = F, (4.11)

with mass matrix M and damping matrix D, equivalent to CG FEM [Nealen
et al., 2006]. The 3× 3 submatrices of the mass matrix M can be computed as

Mij = ρ∑
K

∫
K

Ni(x)Nj(x) I3,

where ρ is the uniform density of the object. The damping matrix D is usually
computed as a linear combination of the stiffness matrix K and the mass
matrix M.

In order to guarantee stability a semi-implicit Euler time-integration is
employed: Integrating the system forward in time from state (Uk,U̇k) to
(Uk+1,U̇k+1) using a time step size ∆t, the new DOFs and their acceleration
are expressed in terms of the new velocities as

Uk+1 ≈ Uk + U̇k+1∆t,

Ük+1 ≈
U̇k+1 − U̇k

∆t
,

resulting in U̇k+1 being the only unknown for time step k + 1. Formulating
the governing equations (4.11) for time step k + 1 and reordering the resulting
terms gives the sparse, symmetric, positive definite linear system

(K∆t2 + D∆t + M) U̇k+1 = (F−KUk)∆t + MU̇k (4.12)

to be solved for U̇k+1 in each time step, from which in turn the values of the
DOFs Uk+1 can be computed.

Two kinds of linear system solvers were applied to the resulting equations:
preconditioned conjugate gradients [Saad and van der Vorst, 2000] and sparse
Cholesky factorization [Toledo et al., 2003]. While both worked well in all
the experiments performed, the Cholesky solver turned out to scale better
to larger problems thanks to its quasi-linear asymptotic complexity, as also
observed in Botsch et al. [2005].

4.3 Arbitrary Polyhedral Elements

The main advantage of DG FEM is the possibility to use non-conforming,
discontinuous shape functions Ni. This added flexibility allows us to em-
ploy simple degree-k polynomials {1, x,y,z, xy, . . . ,zk} as (non-nodal) basis

55

Simulation of Deformable Solids

Figure 4.3: Examples of possible element shapes include the common tetrahedral and
hexahedral elements (left), as well as arbitrary convex and non-convex poly-
hedra (middle). It is even possible to treat the whole simulation domain as
one single element (right).

functions within each element K. In this work, either 4 linear or 10 quadratic
basis functions were used per element. Notice that k should be ≥ 1, since
then the DG method can exactly reproduce rigid motions, yielding a linear,
continuous displacement function u without jumps [Cockburn, 2003].

In contrast to nodal basis functions, these non-nodal basis functions no longer
depend on the element shape, thereby enabling us to work with arbitrar-
ily shaped elements. For practical reasons, however, element shapes are
restricted to convex or non-convex polyhedra (i.e., planar faces and linear
edges, see Fig. 4.3), which still is considerably more flexible than the convex
polyhedra with triangulated faces of Wicke et al. [2007]. Compared to the
harmonic shape functions of Martin et al. [2008], which also allow for non-
convex elements, our polynomial basis functions are simpler and therefore
more efficient to compute.

For a practical implementation we have to accurately and efficiently compute
integrals of the form∫

K
NaNb,

∫
K

∂Na

∂xi

∂Nb
∂xj

,
∫

f
NaNb,

∫
f

∂Na

∂xi
Nb,

over elements K and faces f , since they are the building blocks for the matrix
assembly described in Section 4.2.2. While tetrahedra or hexahedra can
be integrated analytically, general polyhedral elements with nodal basis
functions typically require numerical integration, which trades accuracy
for performance [Wicke et al., 2007]. In contrast, as will be shown in the
following section, polynomial functions can be integrated analytically over a
polyhedron. By using polynomial basis functions, all of the aforementioned
element integrals can thus be computed exactly up to numerical round-off
errors.

56

4.3 Arbitrary Polyhedral Elements

 𝑝(𝒙)
𝐾

 = …
𝑓𝑓∈𝜕𝐾

 = …
𝑒𝑒∈𝜕𝑓𝑓∈𝜕𝐾

 = 𝑔(𝒑1,… , 𝒑𝑛)

Figure 4.4: The basic idea of divergence theorem-based volume integration: an integral
over a polyhedron K is reduced to a sum of area integrals, a sum of line
integrals, and finally becomes a function of the polyhedron’s nodal positions.

4.3.1 Divergence Theorem Integration

Using the divergence theorem, the volume integral of a degree-k polynomial
p over an element K can be reduced to an area integral of a degree-(k + 1)
polynomial q over its boundary ∂K, i.e., to a sum of integrals over its faces.
Each face integral can in turn be reduced to line integrals over its edges e ∈ ∂ f ,
which in the end results in degree-(k + 3) polynomials in the edge endpoints
(see Fig. 4.4).

Divergence Theorem. For a function f : IR3→ IR and a constant 3-vector d
the following variant of the divergence theorem holds:∫

Ω
∇ f · d dΩ =

∫
Γ

f d · n dΓ, (4.13)

where Ω is a volume bounded by the surface Γ. (4.13) also holds if Ω is a
planar surface in IR3 and Γ is the boundary of that surface. In this case, d
must be orthogonal to the normal of the surface.

Volume Integration. We want to integrate a function p : IR3 → IR over a
polyhedral volume element K

J =
∫

K
p(x) dx

with x = (x1, x2, x3)
T. Assuming the existence of a function q : IR3→ IR and a

non-zero vector d with the property p(x) =∇q(x) · d, the integrand can be
substituted. Applying the divergence theorem (4.13) gives

J =
∫

K
∇q(x) · d dx =

∫
Γ

q(x) d · n dA = ∑
f∈∂K

∫
f
q(x) dA d · n f (4.14)

57

Simulation of Deformable Solids

where n f is the outward unit normal vector of element face f . Using the (yet
to be defined) function q and vector d, we are thus able to express the volume
integral of a function p as a sum of surface integrals of a function q.

Surface Integration. To transition from surface integrals to line integrals,
we start with the integral of a function q : IR3→ IR over a planar face f :

I =
∫

f
q(x) dA.

Let n f = (n f
1 ,n f

2 ,n f
3)

T be the unit normal of the face. We assume that the
boundary of the face consists of m straight edges, where the e-th edge connects
nodes pe and pe+1, e ∈ {1, . . . ,m}, and pm+1 := p1. The plane equation of f is
x · n f − C = 0 with C := p1 · n f .

Following Mirtich’s [1996] approach of projecting surface integrals onto
coordinate planes, the face f is projected onto either the x1 = 0, x2 = 0 or
x3 = 0 plane, depending on the face’s orientation. We want the projected face
to have non-zero area, thus it is reasonable to use the maximum component
of n f as the direction of projection, i.e. to project face f onto the xd = 0
plane with d = argmaxi |n f

i |. Let the unit vector ed = (δ1d,δ2d,δ3d)
T denote

the direction of projection where δij is the Kronecker delta.

A point x = (x1, x2, x3)
T on f is projected to x̂ = (x̂1, x̂2, x̂3)

T on f̂ with

x̂i = (1− δid)xi.

Using the plane equation of f , the inverse mapping (from x̂ to x) can be found
to be

xd =
C− x̂d+1n f

d+1 − x̂d+2n f
d+2

n f
d

,

xd+1 = x̂d+1,
xd+2 = x̂d+2,

where the indices of x and x̂ are assumed to wrap around, i.e. x4 := x1,
x5 := x2, and so on.

The integral I can now be computed as

I =
1

|n f
d |

∫
f̂
q̂(x̂) dx̂ with q̂(x̂) := q(x(x̂)).

58

4.3 Arbitrary Polyhedral Elements

Assuming the existence of a function r̂ : IR3 → IR and a non-zero vector d̂
satisfying q̂(x̂) =∇r̂(x̂) · d̂ and ed · d̂ = 0, the divergence theorem (4.13) can
be applied to the projected face f̂ :

I =
1

|n f
d |

∫
f̂
∇r̂(x̂) · d̂ dx̂ =

1

|n f
d |

∑
ê∈∂ f̂

∫
ê
r̂(x̂)ds d̂ · n̂ê.

Here, the integral over the boundary of f̂ has been replaced by a sum over
integrals over the projected face’s edges ê. n̂ê is the outward unit normal of
edge ê on the projection plane.

Line Integration. As all edges are assumed to be straight, they can be
parameterized as

x̂(t) = p̂ê(1− t) + p̂ê+1t

with 0≤ t ≤ 1 and projected nodes p̂ê. The integral becomes

I =
1

|n f
d |

∑
ê∈ f̂

l̂ê
∫ 1

0
r̂(x̂(t))dt d̂ · n̂ê

where l̂ê := ||p̂ê+1 − p̂ê|| is the length of the projected edge ê. The normal of
the projected edge ê can be found to be

n̂ê =
1
l̂ê

sign(n f
d)(p̂ê+1 − p̂ê)× ed.

The factor sign(n f
d) is required in order to ensure that the normal of the

projected edge is always pointing outwards. The integral now simplifies to

I =
1

n f
d

∑
e∈ f

∫ 1

0
r̂(x̂(t))dt (pe+1 − pe) · (ed × d̂) (4.15)

where we have made use of the fact that p̂e · (ed × d̂) = pe · (ed × d̂).

Volume to Nodal Positions. Using (4.15) to compute the face integral in
(4.14) finally gives a closed form for the computation of J =

∫
K p(x):

J = ∑
f∈∂K

1

n f
d

∑
e∈ f

(∫ 1

0
r̂(x̂(t))dt

)
(pe+1 − pe) · (ed × d̂)(d · n f) (4.16)

If p is a polynomial in x, q can be computed by integrating p in direction xd,
then substituting x̂ for x in q to get q̂. Integration of q̂ in direction d̂ gives
r̂(x̂). Parameterizing x̂ with t and analytically computing the integral

∫ 1
0 then

results in a polynomial in pe and pe+1. The integral (4.16) thus evaluates to a
polynomial in the nodal positions of the polyhedral element K.

59

Simulation of Deformable Solids

4.3.2 Integration Algorithm

The following steps show how to compute
∫

K p(x)dx for an arbitrary polyno-
mial p(x) with x = (x1, x2, x3)

T.

1. Integrate p(x) formally to obtain the polynomial q(x) in x:

q(x)←
∫

p(x)dx1

2. Perform the following three steps for i ∈ {1,2,3}, with j and k defined
as j = (i mod 3) + 1 and k = ((i + 1) mod 3) + 1.

a) Transform q(x) into the polynomial q̂(x̂,n) in x̂ = (x̂1, x̂2, x̂3)
T

with the symbolical constant n = (n1,n2,n3)
T by performing the

following substitutions:

xi→
1
ni
− x̂j

nj

ni
− x̂k

nk
ni

,

xj→ x̂j,

xk→ x̂k

b) Integrate q̂(x̂,n) formally to obtain the polynomial r̂(x̂,n) in x̂:

r̂(x̂,n)←
∫

q̂(x̂,n)dx̂j

c) Integrate formally over the edge connecting a = (a1, a2, a3)
T and

b = (b1,b2,b3)
T to get a polynomial in a and b:

Pi(a,b,n)← (bk − ak)
∫ 1

0
r̂(a (1− t) + b t,n)dt

3. The integral over the volume can now be computed as follows, where
n f = (n f

1 ,n f
2 ,n f

3)
T defines the plane of face f as {x ∈ IR3|x · n f = 1}.

d f ∈ {1,2,3} is the direction of projection for face f which must be

chosen such that n f
d f
6= 0. ae and be are the start and end points of

edge e. ∫
K

p(x)dx = ∑
f∈∂K

n f
1

n f
d f

∑
e∈∂ f

Pd f
(ae,be,n f)

In a practical implementation, a code generation tool would be used to create
the code for computing the polynomials Pi, i ∈ {1,2,3}, for one particular
polynomial p(x).

60

4.4 Stiffness Warping

10
−4

10
−2

10
0

10
2

10
4

10
−15

10
−10

10
−5

10
0

Duration [ms]

E
rr

or

Uniform Sampling
Monte−Carlo Integration
Divergence Theorem

Figure 4.5: Comparison of different numerical integration methods to the analytic method
based on the divergence theorem. In this example the function f (x,y,z) = x2

was integrated over the corner-cut cube model shown on the right.

4.3.3 Evaluation

Fig. 4.5 compares the analytic integration to different numerical schemes
in terms of accuracy and performance. While the method based on the
divergence theorem is exact up to round-off errors, it is also reasonably
efficient: a straightforward numerical integration still shows an error of about
10−2 for the same computation time. Compared to CG FEM using the mean
value polyhedral elements of Wicke et al. [2007], the exact integration method
is faster by an order of magnitude.

4.4 Stiffness Warping

Under large rotational deformations, linear FEM shows artifacts such as an
unrealistic increase in volume. To avoid the cost of a full nonlinear simulation
but still get physically plausible deformations in these cases, a corotated
formulation can be employed, which computes elastic forces in a rotated
coordinate frame defined for each element [Müller and Gross, 2004; Hauth
and Strasser, 2004].

In linear CG FEM, the forces acting on the nodes of an element K are com-
puted from nodal displacements U and the element stiffness matrix KK de-
fined in (4.7) as follows:

FK = KKU = KK

(
X− X0

)
, (4.17)

61

Simulation of Deformable Solids

with X and X0 denoting the deformed and undeformed nodal positions,
respectively. In order to avoid the aforementioned rotational artifacts, the
corotational, or warped stiffness approach [Müller and Gross, 2004; Hauth and
Strasser, 2004] first reverts the element’s rotation, computes displacements
and forces in the un-rotated state, and re-rotates the resulting forces:

FK = RK KK

(
RT

KX− X0
)

, (4.18)

where RK is a block-diagonal matrix containing the 3× 3 rotation matrix of
element K on its diagonal.

This approach cannot be directly applied to DG for two reasons. First, the
contributions resulting from integrals over interior faces are associated with
two elements and require special treatment. Second, in case non-nodal basis
functions are used, we will no longer be solving for nodal displacements, and
X0 in (4.17) needs to be generalized to a set of degrees of freedom defining
the undeformed state of the object in terms of the basis functions Ni.

4.4.1 Element and Face Contributions

Element contributions (4.7) can be treated just as in CG FEM using (4.18).
We determine the rotations of general polyhedra by first fitting an affine
transformation to the nodal displacements in the least squares sense, and then
extracting its rotational component RK using polar decomposition [Hauth
and Strasser, 2004].

Note that for face contributions (4.8), (4.9), (4.10) we cannot simply apply
(4.18) using the face’s rotation, since that would lead to ghost forces and
instabilities similar to the per-vertex stiffness warping of [Müller et al., 2002].
Moreover, the corotational method is only required to correct artifacts due to
linear strain ε̄ = BU, and hence is not needed for (4.10).

For the face contributions (4.8) and (4.9) it is crucial that the strains B+
f U and

B−f U, which constitute B{}f , are computed consistently with the strains of the
element contributions (4.18) of K+ and K−. This requires to use the elements’
rotations R+

f and R−f for correcting B+
f U and B−f U, respectively. We therefore

have to split up the stiffness matrices K f 1 and K f 2 w.r.t. strain contributions
from either K+ or K−, yielding the four stiffness matrices

K±f 1 := −1
2

∫
f
HJK

f
T

NT
f C̄B±f ,

K±f 2 := −1
2

∫
f
B±f

TC̄N f HJK
f ,

62

4.4 Stiffness Warping

where (·)± again denotes either (·)+ or (·)−. These stiffness matrices allow
for a consistent warping of a face f ’s contributions, such that we get five
corotated contributions:

F±f 1 = R±f K±f 1

(
R±f

TX− X0
)

,

F±f 2 = R±f K±f 2

(
R±f

TX− X0
)

,

F f 3 = K f 3
(
X− X0) .

4.4.2 Non-Nodal Basis Functions

In order to use stiffness warping for non-nodal basis functions, we need
to generalize the definition of the vector X0 representing the undeformed
state. To this end, we have to find x0 = (x0

1
T, . . . ,x0

n
T
)T satisfying the identity

∑i X0
i Ni(x) ≡ x. For nodal basis functions, this vector would contain the

nodal positions of the undeformed mesh. Since for each element K our non-
nodal basis functions always contain the linear polynomials (see Section 4.3),
finding X0 is trivial. For each element K, if its linear basis functions are

NiK(x) = x, NjK(x) = y, NkK(x) = z,

we simply set the corresponding coefficients to

x0
iK = (1,0,0)T, x0

jK = (0,1,0)T, x0
kK

= (0,0,1)T,

and use x0
lK
= (0,0,0)T for all its other basis functions. This results in a vector

X0 representing the undeformed state, based on which stiffness warping can
be performed just as for nodal basis functions.

Note that for quadratic or higher order basis functions, stiffness warping
only removes the global element rotation, whereas local rotations due to
bending might remain. While this was not a problem in all of the experiments
performed, such cases can easily be detected and the respective elements can
be refined (see Section 4.7).

4.4.3 Warped Assembly

To formulate the assembly of the stiffness matrix (see Section 4.2.2) in the
presence of stiffness warping, we need to first split up (4.18) into a term
proportional to U and a static force term as follows:

RK KK RT
K U = FK + RK KK (I3n −RT

K)X
0.

63

Simulation of Deformable Solids

Every time the element rotations change, the warped element contributions
are to be re-assembled as follows:

Kij← RK KK[ij] R
T
K

Fi← RK KK[ij] (I3 −RT
K)X

0
j

Note that contrary to the notation used previously, RK and R±f denote 3× 3
rotation matrices here. The face contributions are assembled as follows:

Kij← R±f K±f 1[ij] R
±
f

T

Fi← R±f K±f 1[ij] (I3 −R±f
T
)X0

i

Kji← R±f K±f 1[ij]
T R±f

T

Fj← R±f K±f 1[ij]
T
(I3 −R±f

T
)X0

j

Kij← K f 3[ij]

4.5 MLS-Based Surface Embedding

When it comes to the simulation of complex models, a common approach
for keeping computation costs low is to embed a high resolution surface
mesh into a lower resolution simulation mesh. The latter can be simulated
efficiently, and its displacement field u(x) is used to deform the surface mesh
[Faloutsos et al., 1997; Müller et al., 2004b; James et al., 2004; Sifakis et al.,
2007b]. In DG FEM, the discontinuous displacement u cannot be applied
directly to the high resolution surface, since it would lead to gaps and self-
intersections.

In a first step, discontinuities are removed by stitching the simulation
mesh. For each node x0

i ∈ T , the average of its different displacements
u|K
(
x0

i
)

corresponding to its incident elements K ∈ Ni is computed, similar
to Botsch et al. [2006]:

ũi =
1
|Ni| ∑

K∈Ni

u|K
(

x0
i

)
. (4.19)

This results in a deformed, continuous simulation mesh, which is sufficient
for visualizing the simulation mesh itself.

The averaged nodal displacements have to be interpolated within elements in
order to deform the embedded mesh. For tetrahedral or hexahedral elements
this amounts to simple linear or trilinear interpolation, respectively. For more

64

4.5 MLS-Based Surface Embedding

Figure 4.6: Comparison of embedding techniques. Stitching the discontinuous simula-
tion mesh, followed by barycentric interpolation, leads to C0 artifacts (left). In
contrast, the presented smooth MLS-based embedding yields a considerably
higher surface quality (right).

general convex or non-convex polyhedra, mean value coordinates [Floater
et al., 2005; Ju et al., 2005] or harmonic coordinates [Joshi et al., 2007] can
be employed. All these methods, however, correspond to a non-smooth,
generalized barycentric C0 interpolation, resulting in clearly visible shading
artifacts for coarse simulation meshes (see Fig. 4.6, left).

Botsch et al. [2007] employ globally supported radial basis functions for high
quality interpolation, but the involved dense linear systems are prohibitive for
complex simulation meshes. To overcome these limitations, and inspired by
meshless methods [Müller et al., 2004a; Pauly et al., 2005], this work proposes
a smooth embedding based on moving-least-squares (MLS) interpolation.

If we denote by x0
i the nodes of the undeformed simulation mesh, and by ũi

their averaged displacements, then the displacement at a material point x is
computed by fitting an affine transformation, which amounts to minimizing
the weighted least square error

Emls(x) =
1
2 ∑

i
θ
(∥∥∥x− x0

i

∥∥∥) ∥∥∥C(x)T p
(

x0
i

)
− ũi

∥∥∥2
, (4.20)

with p(x,y,z) = (1, x,y,z)T and θ(d) a (truncated) Gaussian weight
function. Computing ∂Emls/∂p = 0 results in a 4 × 4 linear system
A(x)C(x) = b(x) that yields the coefficients C(x) for the interpolated dis-
placement ũ(x) = C(x)T p(x) at the position x. This MLS-based embedding
has several interesting properties:

• The smoothness of the interpolation is determined by the weighting
kernels θ, resulting in a high quality embedding for our choice of
Gaussian kernels (see Fig. 4.6, right).

65

Simulation of Deformable Solids

• The use of linear polynomials p(x), in combination with the parti-
tion of unity property of MLS shape functions, guarantees the exact
reproduction of linear displacements u, i.e., in particular of rigid
motions [Fries and Matthies, 2004].

• Since the approach is entirely meshless it can be used to interpolate
within arbitrarily shaped elements. Choosing the support radius of
θ proportional to the local sampling density at x0

i (e.g., distances to
one-ring neighbors), yields smooth interpolations even for irregular
meshes.

• An accurate approximation of higher order polynomial displacements
u only requires to add more samples (x0

i , ũi) to (4.20), such as edge,
face, or element midpoints.

• The interpolated displacement ũ(x) of a vertex x of the embedded
mesh linearly depends on C(x), which in turn linearly depends on the
ũi used in (4.20), which finally linearly depend on ui through (4.19)
and (4.4). Hence, by combining these linear relationships, the weights
θ
(∥∥x− x0

i

∥∥) as well as the set N (x) of relevant basis functions Ni can
be precomputed, such that during the simulation only

ũ(x) = ∑
i∈N(x)

θ
(∥∥∥x− x0

i

∥∥∥)Ni(x)ui =: ∑
i∈N(x)

Wi(x)ui (4.21)

has to be evaluated as a linear combination of the DOFs ui.

4.6 Collisions

Since collision handling is not the focus of this work, it has been restricted
to simple penalty-based collision response within the semi-implicit time
integration. The basic approach is equivalent to CG FEM, therefore only the
differences due to the discontinuous displacement field u are discussed here.

Suppose that in the current time step we detect a collision at a displaced
material point xc + ũ(xc). Since we use the interpolated displacement ũ of
(4.21), xc can be an arbitrary embedded point, e.g., a vertex of the embedded
surface mesh. Nodal collisions using the stitched displacement (4.19) is just a
special case of this formulation.

For collision response a penalty force proportional to the penetration depth is
added to the system. Consider an oriented collision plane with outward unit

66

4.6 Collisions

Figure 4.7: Collision handling on the nodes of the simulation mesh (left) and the vertices
of the embedded mesh (right).

normal vector n and p being an arbitrary point on the plane. The penetration
depth d can be computed as

d = p · n− (xc + ũ(xc)) · n.

Defining a collision force proportional to the penetration depth yields

f(xc) = k dn = Aũ(xc) + b

with A =−k nnT and b = k nnT(p− xc), where k is the collision penalty. This
force is used in the semi-implicit solver whenever d > 0. The corresponding
penalty energy is

Ecoll(xc) =
1
2

ũ(xc)
T Aũ(xc) + ũ(xc)

T b,

which after inserting the definition of ũ in (4.21) becomes

1
2 ∑

i,j
uT

i Wi(xc)AWj(xc)uj + ∑
i

uT
i Wi(xc)b.

Since this collision energy corresponds to an external force, it has to be either
subtracted from the internal potential energy 1

2UTKU or to be added to the
external energy UTF. Hence, we can incorporate the collision energy Ecoll
into the system (4.11) by updating 3× 3 blocks of the stiffness matrix K and
3-vectors of the external force F (see Section 4.2.2):

Kij −= Wi(xc)AWj(xc) ,

Fi += bWi(xc) ,

for all i, j ∈ N (xc), i.e., the set of basis functions Wi, respectively Ni, influenc-
ing the collision point xc (see (4.21)).

67

Simulation of Deformable Solids

Method Resolution #DOFs Spars. Int. Ass. Solve
BZ lin. 10×10×10 12k 0.28% 532 22 656
IP lin. 10×10×10 12k 0.62% 1437 87 734
CG trilin. 15×15×15 12k 0.58% 3750 41 641
BZ quad. 10×10×10 30k 0.28% 3062 152 7797
IP quad. 10×10×10 30k 0.64% 8344 621 8484

Table 4.1: Comparison of BZ and IP with linear/quadratic basis functions to trilinear
CG FEM for 3D elasticity. The mesh resolution is chosen to match the DOFs
of DG and CG. The table lists matrix sparsity and timings (in ms) for volume
integration, matrix assembly, and the solution of the linear system (taken on
an Intel Core2 Duo 2.4 GHz).

If the simulation mesh is also used for visualization, simple nodal collisions
are sufficient in most cases, as for instance for the examples shown in Sec-
tion 4.7. However, for embedded simulations collisions should be detected
and handled on the vertices of the embedded surface (see Fig. 4.7).

4.7 Results

This section demonstrates how the possibility to use arbitrary polyhedral
elements and simple polynomial shape functions can be exploited to derive
a versatile and efficient simulation technique. Before presenting specific
example applications, the general advantages and disadvantages of DG FEM
compared to CG FEM are discussed.

DG FEM versus CG FEM for Linear Elasticity. A quantitative comparison
between CG and DG using BZ/IP penalties and linear/quadratic basis func-
tions, based on a 2D Poisson problem with analytically known solution has
already been shown in Chapter 3, see Fig. 3.8. In addition, Table 4.1 gives
some statistics and timings of the same five methods for 3D linear elasticity.
Note that even for the same mesh and basis functions DG provides more
degrees of freedom (DOFs) than CG, since nodes can “split” due to discon-
tinuous displacements. The plots and timings are therefore with respect to
DOFs.

The only additional parameter compared to CG FEM is the penalty weight
η in (4.2), (4.3), which has to be sufficiently high to guarantee stability. One
simple strategy to find a suitable penalty is to start with a low value and
double it until K is positive definite. This worked well for all experiments
performed in the context of this work and typically leads to η in the order

68

4.7 Results

Figure 4.8: Intersecting the bunny with a hex-grid generates 41 elements (left). Closeup
view of a non-convex element (right).

of 101–102. Note that η should not be too high, since otherwise the method
resembles CG and does not exploit its additional DOFs (Fig. 4.2).

The missing consistency terms of BZ (see (4.1), (4.3)) allow for sparser matri-
ces and higher efficiency. Furthermore, the method is stable for any positive
penalty η. Although lacking theoretical convergence guarantees, BZ shows a
reasonable convergence behavior in practice and gives visually convincing
results. We therefore consider it well suited for typical graphics applica-
tions requiring physically plausible deformations only. For more accurate
simulations the IP method is the better choice. Highly accurate results can
be achieved using more complex numerical fluxes in combinations with
nonlinear strain measures [Ten Eyck and Lew, 2006].

As has been shown in Fig. 3.8, both DG methods lead to higher condition
numbers of the linear systems, which, however, has not been a problem in all
our examples, for both the conjugate gradients solver as well as the sparse
Cholesky factorization.

Since standard CG FEM is slightly more efficient than DG FEM for the same
number of DOFs and basis functions of the same degree (Table 4.1) and also
easier to implement, it will stay the preferred method for many applications.
However, as soon as topological changes of the simulation mesh are required
or if complex element shapes have to be simulated, the higher flexibility of
DG FEM pays off, as for instance in the following examples.

Mesh Generation by Hexahedral Slicing. A challenge in simulating de-
formable objects is the preservation of surface detail without introducing
an excessive amount of simulation primitives. Commonly used approaches
include voxelization of the object’s volume or tetrahedrization. While vox-
elization is simple to implement and results in well-behaved elements, it

69

Simulation of Deformable Solids

Figure 4.9: A bar (36 hex-elements) is dynamically refined during bending. 1-to-8
subdivision results in 274 elements (left), whereas 1-to-2 refinement yields 77
elements (right).

cannot accurately represent surface details unless a high number of elements
is used. On the other hand, tetrahedral meshes can accurately represent
objects defined by surface meshes, but result in a higher number of elements.

Using arbitrary elements in DG FEM gives rise to an interesting mesh genera-
tion algorithm that decouples the number of elements (and thus the DOFs)
from the resolution of the surface mesh. Combining the strengths of both
voxelization and tetrahedrization, the simulation mesh is generated by in-
tersecting the object with a hexahedral grid. Each intersected cell then corre-
sponds to a finite element, resulting in hexahedral elements in the interior
and arbitrary polyhedra at the object’s surface (see Fig. 4.8). Note that the
strain energy is integrated over the exact volume of the object, whereas a
pure embedded simulation could in this case lead to an erroneous coupling
of the bunny’s ears.

Dynamic Adaptivity. In order to make optimal use of the available compu-
tational resources, it is often desirable to adaptively enhance the resolution
of a dynamic simulation around a specific area of interest. Using arbitrary
elements in a DG framework allows for easy and flexible refinement.

We chose a simple criterion based on stress concentration, refining an element
when its largest absolute principal stress exceeds a given threshold. For the
actual topological refinement, we can, e.g., perform a regular 1-to-8 subdivi-
sion of hexahedral elements, conceptually similar to Grinspun et al. [2002].
An interesting alternative is the more flexible 1-to-2 split along the plane per-
pendicular to the principal stress direction, which generates fewer elements
for the same refinement threshold (see Fig. 4.9).

70

4.7 Results

CG linear DG linear DG quadratic CG linear DG linear DG quadraticCG linear

Figure 4.10: A suspended cube consisting of 750 tetrahedra deforming under its own
weight, simulated with linear CG FEM and linear/quadratic DG FEM (IP
method), using a Poisson’s ratio of ν = 0.3 (left) and ν = 0.499 (right).
While DG gives the expected, symmetric solution, CG shows severe locking
artifacts in the nearly incompressible case, even after mesh refinement.

Note that the refinement of an element is in no way restricted by the refine-
ment level of its neighbors. When splitting an element, one can simply copy
the parent’s coefficients for displacement ui and velocity u̇i to its children.
This heuristic causes slight popping artifacts in dynamic simulations, which
could be avoided by a more sophisticated projection technique.

Cutting. Using DG FEM for cutting simulations has a couple of advantages
over existing methods. Being able to simulate arbitrary elements avoids
complex remeshing of the simulation domain (see Fig. 4.1), similar in spirit
to Molino et al. [2004], Wicke et al. [2007] and Sifakis et al. [2007a]. Further-
more, thanks to the analytic integration the contributions of newly created
elements can be computed very efficiently and accurately, avoiding the need
for expensive numerical integration during the simulation. By storing and
reusing individual edge and face integrals, after splitting an element we only
need to recompute integrals over edges and faces intersecting the cut plane.

Poorly shaped elements with negligible volume cause numerical problems,
equivalently to CG FEM. However, those elements can effectively be avoided
by simply merging them with neighboring elements, exploiting the fact
that our method is not restricted to convex elements. Note that also for
mesh generation and dynamic refinement we either prevent the generation
of degenerate elements, or remove them by the mentioned sliver merging
technique.

Locking. In the case of nearly incompressible materials, as the Poisson’s
ratio ν approaches the limit value of 0.5, standard FEM is known to exhibit
an overly stiff behavior termed locking.

71

Simulation of Deformable Solids

10
−10

10
−8

10
−6

10
−4

10
−2

10
8

10
10

10
12

10
14

10
16

10
18

10
20

Volume

C
on

di
tio

n
N

um
be

r

Figure 4.11: Mesh of nine elements. As the volume of the innermost tetrahedral element
decreases, the condition number of the global stiffness matrix increases.

An intuitive explanation for this phenomenon is provided by the counting
argument [Irving et al., 2007]: Each element introduces an additional volume
constraint in order to preserve its volume locally. However, a continuous
FEM mesh with n nodes has only 3n degrees of freedom, while in the specific
case of a tetrahedral mesh, the number of elements is at least 4n, resulting in
an overconstrained system.

On the other hand, the additional degrees of freedom present in discontin-
uous Galerkin FEM allow the method to effectively circumvent locking, as
demonstrated in Fig. 4.10. In this example, increasing the number of elements
will not prevent locking in the CG FEM case. Also note that the locking CG
FEM solution is strongly influenced by the topology of the simulation mesh,
resulting in an asymmetric solution, whereas the DG FEM solution is free of
such artifacts.

Sliver Elements. In standard FEM with nodal basis functions, the computa-
tion of shape functions and their derivatives typically involves the inversion
of a Jacobian matrix, causing numerical problems for ill-shaped elements.
This affects the integration of basis functions over the element as well as other
uses of basis functions such as the interpolation of nodal quantities.

This particular problem can be avoided in DG FEM, as basis functions are
defined in global coordinates. However, elements of small volume still cause
problems in DG FEM. As stated in Shewchuck [2002], the condition number
of the stiffness matrix of a tetrahedral mesh is related to the ratio between
the volume of the largest and the smallest element. A similar behavior can be
observed in DG FEM, as shown in Fig. 4.11.

72

4.8 Discussion and Outlook

On the other hand, we note that in DG FEM elements with locally small
features do not cause problems, as long as the total volume of the element
stays reasonably large (Fig. 4.12). Note that in order to compute the condition
number of the stiffness matrices in those examples, appropriate boundary
constraints were introduced in order to get a unique solution to the static
problem.

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
3

10
4

Epsilon

C
on

di
tio

n
N

um
be

r

Figure 4.12: Single non-convex element with a locally thin feature. Even as the height ε

of the narrowed middle section approaches zero, the condition number of the
stiffness matrix stays finite.

4.8 Discussion and Outlook

In this chapter, a novel simulation technique for deformable models based
on discontinuous Galerkin FEM was presented. The main advantage of
DG FEM is the flexibility to use discontinuous shape functions, which was
exploited for the efficient simulation of arbitrary polyhedral elements. The
presented generalization of stiffness warping enables physically plausible
large-scale deformations, and the novel MLS-based surface embedding allows
to simulate complex models in the DG framework.

The versatility of this approach was presented on conceptually simple, effi-
cient, and robust techniques for mesh generation, adaptive refinement, and
cutting. While there are successful methods for each individual problem,
the presented approach provides an interesting alternative that handles all
problems in a single, consistent DG FEM framework.

Promising directions for future work include nonlinear elasticity simulations
of both solids and shells, which would benefit even more from the flexibility
offered by DG FEM. In particular, the next chapter shows how DG FEM
can reduce the continuity requirements for thin shell simulations and allow

73

Simulation of Deformable Solids

for the representation of small features and changing topology through the
means of enrichment textures.

74

C H A P T E R 5
Enrichment Textures for Shells

Figure 5.1: Starting from a single shell element, the proposed method is able to capture
complex deformations and topological changes by simply enriching the el-
ement’s basis functions through texture maps (left). Fracturing a bunny
triangle mesh (right).

After having applied the discontinuous Galerkin finite element method to the
simulation of deformable solids as presented in the previous chapter, it only
seems natural to think about how the simulation of thin objects, i.e. shells, can
benefit from the reduced continuity requirements offered by DG FEM. With
that in mind, this chapter presents a method for simulating highly detailed
cutting and fracturing of thin shells using low-resolution simulation meshes.

75

Enrichment Textures for Shells

Instead of refining or remeshing the underlying simulation domain to resolve
complex cut paths, custom-designed basis functions are introduced that
enrich the approximation by accurately representing these detailed features.

The proposed approach generalizes the extended finite element method
(XFEM) by storing the enrichment basis functions in enrichment textures,
which allows for fracture and cutting discontinuities at a resolution much
finer than the underlying mesh, similar to image textures for increased visual
resolution. Furthermore, harmonic enrichment functions can handle multiple,
intersecting, arbitrarily shaped, progressive cuts per element in a simple and
unified framework.

By using an underlying shell simulation based on discontinuous Galerkin
FEM, the restrictive requirement of C1 continuous shell basis functions is
relaxed and thus simpler, C0 continuous XFEM enrichment functions can be
used. The DG shell method is further extended by a corotational formulation
that allows for the plausible simulation of large deformations while keeping
the computational cost low.

5.1 Overview

In order to simulate the deformation behavior of thin shells, it is not sufficient
to formulate their mechanical behavior as described in Section 3.5. We also
need to provide an appropriate discretization, which due to the curvilinear co-
ordinates and the involved differential equation (a fourth-order elliptic PDE)
is non-trivial. Discontinuous Galerkin FEM provides a rather elegant way of
solving this problem, by reducing the continuity requirements between ele-
ments from C1 to C0. After presenting the DG FEM-based discretization and
basis functions for quad and triangle elements, corotation will be introduced
such that large deformations can be simulated without the artifacts typically
observed for geometrically linear models.

The proposed method is then presented as a texture-based variant of the
XFEM which is able to handle multiple cuts and partial cuts in a natural way,
whereas traditional XFEM approaches need to handle those as special cases.
The method is also able to cut through meshes consisting of several elements
while keeping the support of the new basis functions local to the elements
intersected by the cut.

Next to shell simulation and topological changes, rendering is also an impor-
tant aspect of the proposed method. The simulated features will be at the
scale of a texture pixel rather than the size of a finite element, and simply

76

5.2 Discontinuous Galerkin FEM Thin Shells

tessellating the elements at a high resolution for rendering is not the best pos-
sible approach. Instead, a renderer employing a geometry shader is proposed
that is able to resolve details at the texture level even for coarse tessellations.

5.2 Discontinuous Galerkin FEM Thin Shells

This section describes an implementation of the discontinuous Galerkin finite
element method for thin shells presented by Noels and Radovitzky [2008].
Building on the Kirchhoff-Love shell theory presented in Chapter 3, the DG
weak form is reviewed and the assembly of the stiffness matrix is described
in detail. Extending on this previous work, a corotational extension to the
method is presented which allows for the simulation of large rotational
deformations without the typical linearization artifacts of a linear shell model.

5.2.1 Shell Model

Eq. (5.1) shows again the weak form for the Kirchhoff-Love shell model
as it has already been presented in Section 3.5.2. This weak form could
be discretized using a standard finite element approach [Hughes, 2000;
Zienkiewicz and Taylor, 2000].

a(u,v) :=
∫

Ω
εαβ(v)Hαβγδ

n εγδ(u)dS

+
∫

Ω
ραβ(v)Hαβγδ

m ργδ(u)dS (5.1)

However, a closer look at the weak form reveals that due to the second deriva-
tives in the bending strain it represents a fourth order elliptic PDE, which
implies that appropriate basis functions must lie in the Sobolev space H2(Ω),
i.e. have square-integrable first and second order derivatives [Hughes, 2000].
Unfortunately, constructing suitable shell functions on irregular meshes is a
rather complex task. A variety of approaches are in use, such as ignoring the
continuity requirements or introducing additional variables, e.g. derivatives
at edge mid-points [Zienkiewicz and Taylor, 2000]. Other approaches use
non-local interpolation schemes [Cirak et al., 2000].

A DG FEM approach for thin shells avoids the problem by only requiring
basis functions that are C0 across elements and enforcing C1 continuity in
a weak sense. The formulation results in additional integrals over element
edges, which effectively introduce a deformation energy term which penal-
izes discontinuities in the derivatives.

77

Enrichment Textures for Shells

In the case of DG FEM as described in Noels and Radovitzky [2008], the weak
form becomes

aDG(u,v) := ∑
K

aK(u,v) + ∑
e

ae(u,v) (5.2)

for elements K and interior edges e (edges with neighboring elements on both
sides). aK corresponds to the weak form (3.36) evaluated on element K. ae is
defined on interior edges as follows:

ae(u,v) :=∫
e
J∆t(v)K ·ϕ0,γν−δ {Hm} J∆t(u)K ·ϕ0,αν−β ηe dΓ

+
∫

e

{
ραβ(v)Hmϕ0,γ

}
ν−δ · J∆t(u)K dΓ

+
∫

e
J∆t(v)K ·

{
ραβ(u)Hmϕ0,γ

}
ν−δ dΓ. (5.3)

Considering an edge e, element K+ lies on the left-hand side of the directed
edge and element K− on the right-hand side. Quantities associated with
either element are superscripted with a − or +, respectively. J·K is the jump
operator, defined in this context as

JvK := v+ − v−

and {·} the average operator, with its usual definition

{v} :=
1
2
(v+ + v−),

{v} :=
1
2
(v+ + v−)

for v ∈ IR3 and v ∈ IR. Note that the definitions of the jump and average
operators used in the context of shells are different from the ones used in
Section 3.1.2 for solid FEM. ηe is a penalty factor for edge e which depends
on a global penalty parameter η and the local element size as follows:

ηe =
η

he

where he is the characteristic size of the edge. The characteristic size is
computed from the areas and circumferences of the two adjacent elements
using

he = min
(|A+|
|∂A+| ,

|A−|
|∂A−|

)
.

78

5.2 Discontinuous Galerkin FEM Thin Shells

In the above weak form, ∆t(u) is the change of the normal vector, which can
be computed as

∆t(u) =
1
j̄0

(
ϕ0,1 × u,2 −ϕ0,2 × u,1

+ t0 u,1 · (t0 ×ϕ0,2)

− t0 u,2 · (t0 ×ϕ0,1)
)
. (5.4)

ν− = (ν−1 ,ν−2)T is the outer unit normal of K− represented in the conjugate
basis ϕ,α

0 , see (3.39).

Note that the first term in (5.3) penalizes the jump of the change of the normal
vector t on the edge. In other words, J∆t(u)K is zero if the displacement field u
changes the normals t− and t+ on either side of the edge in the same way. The
other two terms in (5.3) are responsible for making the formulation consistent
and symmetric, see Arnold et al. [2001].

5.2.2 Stiffness Matrix Assembly

This section describes in detail how the stiffness matrix K can be computed
from element and edge contributions. Instead of following the formulation of
Noels and Radovitzky [2008], Voigt notation will be employed here in order
to avoid tensor notation and provide a more tangible implementation.

Basis Function Discretization. The undeformed shell surface is defined in
terms of basis functions Na : Ω→ IR as

ϕ0 = ∑
a

NaXa
0,

where Xa
0 ∈ IR3 is the initial position of node a. It follows that the undeformed

surface basis vectors can be computed as

ϕ0,α = ∑
a

Na
,αXa

0,

by differentiating the basis functions Na with respect to ξ1 and ξ2. Similarly,
the displacement field u is discretized as

u = ∑
a

Naua

with nodal displacements ua. Representing the solution u as well as the test
function v in terms of the basis functions Na results in a linear system

KU = F, with

{
Kij = aDG(I3Ni,I3N j)

Fi =
∫

Ω f Ni
, (5.5)

79

Enrichment Textures for Shells

which is solved for the degrees of freedom U = (u1T, . . . ,unT)T, given external
forces f.

Quad and Triangle Elements. As proposed in Noels and Radovitzky [2008],
quadrangular elements with 8 nodes and bi-quadratic basis functions can be
employed. The basis functions are:

N1 = −1
4
(−1 + ξ2)(−1 + ξ1)(ξ1 + ξ2 + 1)

N2 = −1
4
(−1 + ξ2)(1 + ξ1)(ξ1 − ξ2 − 1)

N3 =
1
4
(1 + ξ2)(1 + ξ1)(ξ1 + ξ2 − 1)

N4 =
1
4
(1 + ξ2)(−1 + ξ1)(ξ1 − ξ2 + 1)

N5 =
1
2
(1− ξ1ξ1)(1− ξ2)

N6 =
1
2
(1− ξ2ξ2)(1 + ξ1)

N7 =
1
2
(1− ξ1ξ1)(1 + ξ2)

N8 =
1
2
(1− ξ2ξ2)(1− ξ1)

for element coordinates (ξ1,ξ2) with −1≤ ξ1,ξ2 ≤ 1.

When working with triangular 6-node elements, the following quadratic basis
functions can be used

N1 = 1− 3ξ1 − 3ξ2 + 2ξ1ξ1 + 4ξ1ξ2 + 2ξ2ξ2

N2 = ξ1(2ξ1 − 1)
N3 = ξ2(2ξ2 − 1)
N4 = −4ξ1(−1 + ξ1 + ξ2)

N5 = 4ξ1ξ2

N6 = −4ξ2(−1 + ξ1 + ξ2)

where ξ1,ξ2 ≥ 0 and ξ1 + ξ2 ≤ 1. The node numbering for the two elements
is depicted in Fig. 5.2.

80

5.2 Discontinuous Galerkin FEM Thin Shells

Figure 5.2: Node numbering for the quadrangular (left) and triangular element (right).

Element Contributions. Similar to Cirak et al. [2000], the membrane strain
two-tensor can be represented in Voigt notation as

ε̂ :=

 ε11
ε22

ε12 + ε21

 .

The membrane strain in Voigt notation can then be computed as

ε̂ = ∑
a

B̂a
nua

where the 3× 3 matrix B̂a
n is made up of three row vectors:

B̂a
n :=

 ba
n11

T

ba
n22

T

ba
n12

T + ba
n21

T

3×3

with
ba

nαβ :=ϕ0,αNa
,β.

Similarly, the bending strain can be written in Voigt notation as

ρ̂ :=

 ρ11
ρ22

2ρ12

 ,

which can be computed as

ρ̂ = ∑
a

B̂a
mua

81

Enrichment Textures for Shells

where the 3× 3 matrix B̂a
m is made up of three row vectors:

B̂a
n :=

 ba
m11

T

ba
m22

T

2ba
m12

T

3×3

with

ba
mαβ := ϕ0,αβ · t0

1
j̄0

(
Na

,1(ϕ0,2 × t0)− Na
,2(ϕ0,1 × t0)

)
+

1
j̄0

(
Na

,1(ϕ0,αβ ×ϕ0,2)− Na
,2(ϕ0,αβ ×ϕ0,1)

)
−Na

,αβt0. (5.6)

Next, we define the Voigt notation matrix Ĥ as

Ĥ :=

 H1111 H1122 H1112

H2211 H2222 H2212

H1211 H1222 H1212

 ,

whereH is the constitutive tensor defined in (3.39). The constitutive tensors
for membrane and bending stresses (in Voigt notation) can thus be defined as

Ĥn :=
Eh

1− ν2 Ĥ

and

Ĥm :=
Eh3

12(1− ν)2 Ĥ.

The assembly of an element’s membrane stiffness into the global stiffness
matrix K can finally be written as

Kab+=
∫

B̂a
n

TĤnB̂b
n dS , (5.7)

where Kab is the 3× 3 block of the stiffness matrix at position (a,b). Similarly,
bending stiffness contributions are assembled using

Kab+=
∫

B̂a
m

TĤmB̂b
m dS . (5.8)

During the element assembly, (5.7) and (5.8) are computed for all pairs of
element basis functions a,b for all elements and added to the global stiffness
matrix K as described above.

82

5.2 Discontinuous Galerkin FEM Thin Shells

Edge Contributions. For the computation of edge contributions, a local
coordinate system on the edge e is defined as follows: the undeformed
normal vector te

0 at a point on the edge is set to the normalized average of the
adjacent elements’ normal vectors at that point, i.e.

te
0 :=

t+0 + t−0
‖t+0 + t−0 ‖

. (5.9)

The directed edge is parameterized with t ∈ [−1,1]. A function
ξ+e (t) = (ξ1+

e (t),ξ2+
e (t))T determines the position of the edge in local

coordinates of element K+. The first basis vector (along the edge) can thus be
defined as

ϕe
0,1 :=

∂ϕ+
0 (ξ

+
e (t))

∂t
=ϕ+

0,1
∂ξ1+

e (t)
∂t

+ϕ+
0,2

∂ξ2+
e (t)
∂t

. (5.10)

Finally, define

ϕe
0,2 :=

te
0 ×ϕe

0,1

‖te
0 ×ϕe

0,1‖
. (5.11)

Note that ϕe
0,2 is equal to the outward unit normal ν− of element K−. Com-

puting j̄0 in this local coordinate system according to (3.35), it becomes the
curve length Jacobian.

The assembly of edge e results in the following contributions to the global
stiffness matrix K:

Kab +=
∫
(∆̃ta±

)TN̂TĤmN̂∆̃tb±
ηe sasb dΓ

+
1
2

∫
(B̂a±

m)T(Ĥ±P)
TN̂∆̃tb±sb dΓ

+
1
2

∫
(∆̃ta±

)TN̂Ĥ±P B̂b±
m sa dΓ. (5.12)

Note that a,b ∈ B+ ∪ B−, where B+ and B− are the sets of basis functions
used by elements K+ and K−, respectively. Depending on which element
the basis function is taken from, quantities are either evaluated in K+ or K−.
Ĥ±P is evaluated in the same element as the matrix B̂±m related to the bending
strain. sa ∈ {−1,1} assumes a value of 1 if the basis function a is taken from
element K+ and −1 if taken from element K−.

Note that Ĥm is evaluated in the local edge coordinate system. ∆̃ta is related
to the change of surface normal and is defined as

∆̃ta :=
1
j̄0
([ϕ0,1]× − t0(t0 × ϕ0,1)

T)Na
,2

− 1
j̄0
([ϕ0,2]× − t0(t0 × ϕ0,2)

T)Na
,1 (5.13)

83

Enrichment Textures for Shells

with

[ϕ0,α]× :=

 0 −ϕ3
0,α ϕ2

0,α
ϕ3

0,α 0 −ϕ1
0,α

−ϕ2
0,α ϕ1

0,α 0

 . (5.14)

As the local edge coordinate system is orthogonal and ϕe
0,2 = ν− and

‖ϕe
0,2‖ = 1, it follows that ν−1 = 0 and ν−2 = 1. This fact can be used to

construct the matrix N̂ as follows:

N̂ :=

 ϕ0,1
Tν−1

ϕ0,2
Tν−2

ϕ0,1
Tν−2 +ϕ0,2

Tν−1

3×3

=

 0T

ϕ0,2
T

ϕ0,1
T

3×3

. (5.15)

Ĥ±P represents the push-forward tensors and inverse transformation tensors
combined with the constitutive tensor and formulated as a 3× 3 matrix in
Voigt notation:

Ĥ±P := (P̂±)TĤ±mP̂±p̂±, (5.16)

where

P̂± :=

 P±1111 P±1122 P±1112
P±2211 P±2222 P±2212

2P±1211 2P±1222 P±1212 + P±1221

 (5.17)

with
P±αβγδ := (ϕ,γ

0 ·ϕ±0,α)(ϕ
,δ
0 ·ϕ±0,β) (5.18)

and

p̂± :=

 p±1111 p±1122 p±1112
p±2211 p±2222 p±2212

2p±1211 2p±1222 p±1212 + p±1221

 (5.19)

with
p±αβγδ := (ϕ±,γ

0 ·ϕ0,α)(ϕ
±,δ
0 ·ϕ0,β). (5.20)

Assembly Algorithm. The three main equations for the assembly of the
global stiffness matrix are (5.7), (5.8), and (5.12). Algorithm 5.1 shows the
main assembly steps in pseudocode.

84

5.2 Discontinuous Galerkin FEM Thin Shells

1 Initialize global stiffness matrix K with zero
2 for all elements K:
3 for all a ∈ BK:
4 for all b ∈ BK:
5 Add membrane contribution (5.7) to Kab

6 Add bending contribution (5.8) to Kab

7 end
8 end
9 end

10 for all interior edges e:
11 // Note: Elements adjacent to e are K+ and K−

12 for all a ∈ B+ ∪ B−:
13 for all b ∈ B+ ∪ B−:
14 Add edge contribution (5.12) to Kab

15 end
16 end
17 end

Algorithm 5.1: Summary of stiffness matrix assembly.

5.2.3 Dynamic Simulation

Given the stiffness matrix K, a dynamic simulation of time-varying forces
and displacements is governed by the equations

MÜ + DU̇ + KU = F , (5.21)

which are solved by semi-implicit Euler integration. Note that instead of
lumping element masses to nodes, the full mass matrix Mij =

∫
Ω NiN j is

used, such that nodal basis functions and XFEM enrichment functions can
later be handled in a uniform way. Moreover, if an element will be split into
multiple parts, these will not only have the correct mass, but also the correct
center of mass and moment of inertia.

5.2.4 Corotational DG FEM Shells

In its original formulation, the DG FEM treatment of Kirchhoff-Love shells of
Noels and Radovitzky [2008] is not suitable for most graphics applications,
because it uses a geometrically linear strain, which results in artifacts in case
of large rotational deformations. We therefore propose a simple corotational

85

Enrichment Textures for Shells

extension that allows arbitrary rotational deformations while still keeping
the basic model linear in the displacements.

Following Müller and Gross [2004] and Thomaszewski et al. [2006], the strain
is computed in an un-rotated coordinate frame and the resulting force rotated
back to its original orientation. As components of the same element can
deform significantly differently as a shell element is bent, we apply the coro-
tational formulation to each quadrature point i, similar to Mezger et al. [2008].
For the assembly of element contributions into the global stiffness matrix
K (Equations (5.7), (5.8)), numerical quadrature turns the integrals over the
elements into per-quadrature point contributions Kabi

K :

Kab+= Kabi
K . (5.22)

Computing the strain in an un-rotated coordinate frame and rotating the
resulting force back to its original orientation, the new contributions become

Kab += Ri Kabi
K RiT

, (5.23)

Fa += Ri Kabi
K (I−RiT

)Xb
0. (5.24)

Note that a corrective term is added to the right-hand side F. Xb
0 is the value

for basis function b that reproduces the undeformed configuration. For nodal
degrees of freedom, this corresponds to the undeformed position of node b.
When combining this model with enrichment functions, non-nodal degrees
of freedom will be introduced and appropriate values for Xb

0 must be defined
for them. This can be achieved by applying the same idea as described in
Section 4.4.2 for the case of non-nodal basis functions for solid FEM. Ri is a
3× 3 rotation matrix that describes the local rotation at quadrature point i. It
can be computed by polar decomposition of the deformation gradient at the
quadrature point [Thomaszewski et al., 2006].

The same steps are performed for the edge contributions Kabi
e , i.e., for the

penalty term that weakly enforces C1 continuity across edge e. This time,
however, the rotation matrix is computed from the deformation gradient in
the edge coordinate frame.

Qualitative Evaluation. Fig. 5.3 shows an example of a nonlinear deforma-
tion that would not be possible to simulate using a pure linear deformation
model. The cylinder is fixed at both ends and slightly compressed, resulting
in a typical buckling deformation. The mesh consists of 961 quad elements
and 2945 nodes, with a global stiffness matrix of size 8835× 8835.

86

5.3 XFEM Basics

Figure 5.3: Corotational DG FEM shells allow for the simulation of geometrically-
nonlinear phenomena such as buckling (961 quad elements, 2945 nodes).

The DG FEM discretization of Kirchhoff-Love shells described so far allows
for simple C0 basis functions and shows a plausible, geometrically nonlinear
deformation behavior. However, to enable the simulation of highly detailed
cuts or creases, as shown in Fig. 5.1, without excessively refining the underly-
ing simulation mesh, we propose an XFEM approach that is described in the
following sections.

5.3 XFEM Basics

Introduced in Belytschko and Black [1999], the extended finite element
method (XFEM) builds up on the partition of unity concept [Melenk and
Babuska, 1996]. The basic idea of XFEM consists in enriching an element by
splitting its basis functions along a desired discontinuity. This effectively
doubles the element’s degrees of freedom and decouples the solutions on
either side of the discontinuity. In an elasticity simulation, this allows a single
element to be cut or fractured into two independent parts.

Splitting the original basis functions along the discontinuity results in the
canonical basis, as shown for a 1D example in Fig. 5.4. We can define the
enriched basis functions as the product of an original basis function Na(ξ)
and a so-called enrichment function ψa(ξ). Arguably the simplest choice for the
enrichment functions ψa(ξ) is the Heaviside function Hs(ξ), which assumes
the value of 0 on one side of the cut and 1 on the other side.

87

Enrichment Textures for Shells

(1− ψ1(ξ))N1(ξ)

(1− ψ2(ξ))N2(ξ)ψ2(ξ)N2(ξ)

ψ1(ξ)N1(ξ)N1(ξ)

N2(ξ)

ξ1 ξ2

ξ1 ξ2

ξ1 ξ2

ξ1 ξ2

ξ1 ξ2

ξ1 ξ2

Figure 5.4: The canonical basis: basis functions Na are split along the discontinuity to
handle both parts separately.

Note that the function space spanned by ψaNa and (1− ψa)Na is the same as
the one spanned by Na and ψaNa, and it does not depend on which side of
the discontinuity we choose the Heaviside function to vanish. The splitting
of the basis functions can therefore be realized by adding to the original basis
functions Na the enrichment basis functions ψaNa with their corresponding
degrees of freedom aa. This yields the enriched displacement field

u(ξ) =
n

∑
a=1

Na(ξ)ua +
n

∑
a=1

ψa(ξ)Na(ξ)aa. (5.25)

XFEM therefore modifies the functional representation on a sub-element level
instead of changing the topology of the element mesh. While traditional
methods would have to divide existing elements into smaller elements in
order to resolve the geometry of the cut, XFEM achieves the same goal
without complex remeshing.

Instead of the simple Heaviside function Hs(ξ), Zi and Belytschko [2003]
proposed to use shifted enrichment functions

ψa(ξ) = Hg(ξ)− Hg(ξ
a), (5.26)

where Hg(ξ) = 2Hs(ξ) − 1 is the generalized Heaviside function (signum
function), and ξa ∈Ω is the position of node a in parameter space. See Fig. 5.5
for a 1D illustration. The shifted enrichment basis functions together with the
original basis functions span the same space as in the case of the unshifted
enrichment functions. They are thus equivalent to the canonical basis.

Defining the enrichment functions this way has two desirable properties.
First, it keeps the enrichment local, in the sense that the enrichment basis
functions are only supported within the cut element. Compare this to Fig. 5.4,
where the enrichment basis functions extend to all elements incident to the

88

5.4 Enrichment Textures

ψ2(ξ)N2(ξ)

ψ1(ξ)N1(ξ)N1(ξ)

N2(ξ)
ψ2(ξ)

ψ1(ξ)

=×

× =

ξ1 ξ2

ξ1 ξ2

ξ1

ξ1 ξ2

ξ1 ξ2

ξ1 ξ2

ξ2

Figure 5.5: Enrichment basis functions are obtained by multiplying the original basis
functions by shifted Heaviside functions.

enriched node. This locality simplifies implementation and, according to
Jerabkova and Kuhlen [2009], also improves the stability of the simulation.

Second, shifting the enrichment functions recovers the Kronecker-delta prop-
erty. The shifted enrichment function ψa vanishes at its associated node a, and
as the nodal basis function Na vanishes at all nodes other than a, the enrich-
ment basis functions ψaNa vanish at all nodal positions ξa. As a consequence,
the displacement at each node a is fully defined by ua alone. This simplifies
the implementation of Dirichlet boundary conditions, as the displacement
of a node can be fixed to a specific value by constraining a single degree of
freedom.

5.4 Enrichment Textures

Many researchers have considered various ways to generalize the Heaviside
function Hg and the shifted enrichment functions ψa from 1D to 2D or 3D. In
most approaches, discontinuities are represented by simple analytical func-
tions, such as cutting planes for 3D elements and linear or quadratic cutting
paths for 2D elements. This representation, however, is too restrictive for
graphics simulations, as it prevents us from having highly detailed, complex
cuts through rather coarse elements of the simulation mesh.

To overcome this limitation, we represent the cut path as well as the gen-
eralized Heaviside function as piecewise linear functions on a regular 2D
grid, which will be referred to as enrichment texture in the following. Discon-
tinuities will be represented as an edge path between texture pixels (texels).
The texture values are interpreted as (samples of) the generalized Heaviside
function H(ξ), and replaces Hg(ξ) in (5.26).

89

Enrichment Textures for Shells

Figure 5.6: A complete cut through a single element. The enrichment texture (128× 128)
is a generalized Heaviside (left), taking on values of −1 (red) or +1 (blue) on
each side of the cut. A simulation of this enriched element is shown on the
right.

Defining the enrichment function via a texture map has two important advan-
tages. First, compared to analytic descriptions, it is better suited for modeling
complex cutting paths, since the complexity of cuts is only limited by the tex-
ture resolution. Second, when dealing with progressive cuts, partial cuts, or
multiple, intersecting cuts—required for cutting and fracturing simulations—
it allows to handle the generation of the associated enrichment functions in a
straightforward and uniform manner.

In this section we will focus on complete cuts, i.e., cuts that completely split an
element into two pieces, or into several pieces in case of multiple cuts. The
more complex problem of partial and progressive cuts will be discussed in
Section 5.5.

5.4.1 Single Cut

In the simplest case, for a single, complete cut through an element, the
enrichment texture stores a value of −1 or +1 for each texel, indicating which
side of the cut the texel lies on (see Fig. 5.6, left). This defines the Heaviside
H(ξ), which we use to construct the enrichment functions ψa(ξ) as in (5.26).
Multiplication with the original basis functions yields the enriched basis
functions ψa(ξ)Na(ξ). Their partial derivatives can easily be computed by
finite differences on the regular texture grid. The functions and their gradients
are then integrated over the element to construct K and F, as shown in (5.5).
To this end, the numerical integrator can simply sample the texture values
at the quadrature points. These must be chosen densely enough so that all
features of the enrichment texture are captured. In the limit, this corresponds
to one quadrature point per texel.

90

5.4 Enrichment Textures

Figure 5.7: Two complete, intersecting cuts through a single element, resulting in three
separate connected components.

5.4.2 Multiple Cuts

When considering multiple cuts within a single element, a cut is called com-
plete if it starts and ends either at the element’s boundary or at a junction
with another cut. Multiple complete cuts therefore decompose the element
into several connected components Ci.

The straightforward generalization of the canonical basis (see Fig. 5.4) is de-
fined in terms of canonical Heaviside functions Hi

c(ξ), which are 1 within their
corresponding component Ci and 0 everywhere else. From these functions
one can construct the shifted enrichment functions and from there on proceed
like in the case of a single cut. Fig. 5.7 shows an example of two intersecting
complete cuts, resulting in three physically independent surface components.

Note that thanks to our discrete texture representation the identification
of connected components can be done by a trivial flood fill algorithm. In
contrast, when representing cuts analytically, this task is more complex, such
that often a hierarchical representation and classification of cuts has to be
used.

5.4.3 Rendering

During a dynamic simulation, (4.11) is integrated in time, which in each time
step yields the displacement u(ξ) at the spatial resolution of the enrichment
textures. For rendering the deformed and cut shell surface, we tessellate each
element of the simulation mesh into a fine triangulation, in order to more
accurately approximate the quadratic displacement function u(ξ) as well as
the high-resolution cuts. Note, however, that each element uses the same
static triangulation, thereby minimizing storage and overhead.

91

Enrichment Textures for Shells

Figure 5.8: A cut triangle (left) is duplicated and rendered once for each side of the cut
(right)

One option would be to generate a vertex for each texel, and have the tri-
angulation implicitly defined by the regular texture grid, which would be
conceptually similar to geometry images [Gu et al., 2002]. However, in order
to reduce the number of triangles, while still being able to resolve features
at the texel level, we employ a geometry shader. This shader duplicates
triangles that have been cut: triangle vertices that lie on the opposite side
of the cut are linearly extrapolated, and the triangle is then rendered with
a fragment shader that masks out texels on the opposite side of the cut (see
Fig. 5.8). An edge of a triangle is considered to be cut if two criteria are

Figure 5.9: Visualization of the underlying triangle mesh (red wireframe). Note the
duplication of triangles that are intersected by the cut.

met. First, the magnitude of the difference between the enrichment function
values at the edge’s vertices must exceed a certain threshold, and second,
the sign of the enrichment function must be different at these two vertices.
Fig. 5.6 shows an example of a complete cut through a single element, using
an enrichment texture of resolution 128× 128. Note that this approach limits
the resolution of the cut to the texture resolution. Using texture filtering, the

92

5.4 Enrichment Textures

Figure 5.10: Comparison of rendering techniques. Removing triangles intersected by the
cut (left), killing pixels close to the cut curve (middle), and duplicating cut
triangles while employing a geometry shader (right).

resulting aliasing artifacts can be mitigated to some degree. Fig. 5.9 visualizes
the underlying triangle mesh used to render an object consisting of a single
element. To demonstrate the benefits of geometry shader based rendering,
Fig. 5.10 compares simple triangle or pixel removal to the proposed approach,
which is free of artifacts while keeping the width of the cut below the size of
one texture pixel.

Figure 5.11: Rendering each element independently highlights the discretization and C0

continuity (left), while a simple averaging of normals at element nodes can
result in a visually more pleasing representation (right).

Visual Surface Smoothness. As the initial surface as well as the deformed
mesh are only required to be C0 continuous, a direct rendering of the physical
simulation mesh can result in shading artifacts such as the creases in Fig. 5.11,
left. If visual quality is more important than an accurate representation of the

93

Enrichment Textures for Shells

simulation geometry, vertex normals can be averaged between elements and
interpolated inside elements to get the shading of a C1 continuous surface as
shown in Fig. 5.11, right.

5.5 Progressive Cutting

After showing the simplicity and flexibility of enrichment textures for complete
cuts, we now discuss the more interesting case of partial, progressive cuts. In
this case, a cut does not (yet) fully separate the element into two independent
components.

For such configurations, works in the mechanics literature typically require to
classify a discontinuity into either a tip (partial cut), a complete cut, or a junction
(intersecting cuts), and generate special enrichment functions depending on
the type of discontinuity. When furthermore allowing for multiple cuts within
a single element, with cuts being either partial or complete, the combinatorics
of handling these different cases in a hierarchical representation inevitably
leads to rather complex implementations.

In this section we propose our harmonic enrichment approach, which is con-
ceptually simpler, in that it uses only one kind of unified enrichment function
that does not depend on the type of cut, and that generalizes to multiple,
partial, progressive, and complete cuts in a natural and canonical manner. We
again start with a single cut, then discuss multiple cuts within one element,
and describe how to handle cuts that intersect multiple elements.

5.5.1 Single Cut

Since a partial cut does not fully split the element into two components,
separation of material is only allowed along the curve covered by the cut so
far. However, as soon as a progressive cut has traversed the whole element
and hence became a complete cut, we want the parts on either side of the
cut to be independent of each other, as shown in the previous section. This
translates into two conditions for the generalized Heaviside function:

• For a partial cut, the enrichment (and the Heaviside) should be dis-
continuous along the cut but continuous everywhere else, allowing
material to separate at the cut only.

• If the progressive cut becomes a complete cut, the value of the enrich-
ment function must be constant on either side of the cut, replicating
the behavior of the Heaviside functions of the previous section.

94

5.5 Progressive Cutting

n

H = +1

H = −1

∆H = 0

∇H · n = 0

Figure 5.12: A partial cut in a single element: The corresponding Laplace problem
(left), the resulting harmonic enrichment texture (center), and the element
behavior in a simulation (right).

In mechanics, one of the classical crack tip functions is
√

r sin(θ/2) [Be-
lytschko and Black, 1999], where (θ,r) are polar coordinates centered at
the crack tip. This function takes on values of ±√r on either side of the crack.
However, this function does not easily generalize to complex cut shapes and
multiple cuts within a single element. We therefore generalize the classical
enrichment function by observing that it is a harmonic function and defining
harmonic enrichments as the solution to the Laplace equation

∆H(ξ) = 0, (5.27)

subject to suitable boundary conditions along the crack tip and the element
boundary. On the element boundary, we prescribe vanishing Neumann
constraints ∇H(ξ) · n(ξ) = 0 (see Fig. 5.12).

Along the crack, prescribing the Dirichlet conditions H(ξ) = ±√r recovers
the classical harmonic enrichment function

√
r sin(θ/2) in the vicinity of the

crack tip as demonstrated in Fig. 5.13. In particular, since a harmonic recon-
struction reproduces given boundary conditions (tautologically), it follows
that the influence of any other finitely-distant boundary can be ignored in a
sufficiently small neighborhood of the tip. As a simplification, we assume
that the

√
r-decay is concentrated within the crack tip texel; thus, we pre-

scribe the Dirichlet conditions H(ξ) = ±1 on the texels incident to the cut.
The simplified condition works well in our experiments; however, if adaptive
refinement of the enrichment texture is used, the

√
r-decay should be explic-

itly considered, since the Dirichlet conditions ±1 are ill-posed in the smooth
limit.

Thanks to our texture representation, (5.27) can be discretized by a simple
finite difference scheme. As the cut corresponds to a series of connected
edges between texels, the Dirichlet conditions set the texels incident to a cut
edge to −1 or 1, respectively. The resulting sparse linear system has to be

95

Enrichment Textures for Shells

Figure 5.13: Comparison between the function
√

r sin(θ/2) (left) and the finite difference
solution of ∆H(ξ) = 0 with Dirichlet boundary conditions H(ξ) = ±√r
on the cut (right). The two solutions are identical up to discretization errors.

solved for the function values of H(ξ) at each texel, which we do using either
a multigrid solver or a sparse Cholesky factorization [Toledo et al., 2003].

As the solution of a Laplace equation, H(ξ) will be harmonic, i.e., continuous
and smooth, everywhere except at the Dirichlet constraints, where it shows
the desired discontinuity. Hence, the first requirement is fulfilled. In the
case of a complete cut, the vanishing Neumann boundary conditions cause
H(ξ) to replicate a Heaviside with constant ±1 on either side of the cut.
Furthermore, as the cut approaches the element boundary, the enrichment
function converges to this Heaviside in a temporally smooth manner. As a
consequence, the second criterion is satisfied. The enrichment texture of the
partial cut in Fig. 5.12 would eventually converge to the one of the complete
cut shown in Fig. 5.6.

5.5.2 Multiple Cuts

With just a slight modification of the boundary constraints, the harmonic
enrichment approach can be generalized from single cuts to multiple cuts
within an element. Consider n (partial or complete) cuts ci(ξ), 1≤ i ≤ n, in
an element. We have to construct an enrichment function for each cut, i.e.,
we have to find a generalized Heaviside Hi(ξ) for each cut ci(ξ). The two
requirements formulated for single cuts can be extended to multiple cuts as
follows:

• The enrichment function Hi(ξ) should be discontinuous across its
cut ci(ξ), and continuous for unconstrained texels. Hi(ξ) might be
discontinuous across cj(ξ) for j 6= i.

• If all cuts are complete cuts, they partition the element into n + 1 sepa-
rate components C1, . . . ,Cn+1. The original basis functions and their

96

5.5 Progressive Cutting

Figure 5.14: Multiple progressive cuts within an element: The harmonic enrichment
textures Hi(ξ) for each of the cuts (left, center), and the resulting simulation
behavior (right).

n enriched versions should reproduce the behavior of the canonical
basis (see Fig. 5.7), i.e., they should span the same function space.

We extend the definition of harmonic enrichment functions for multiple cuts
as follows: each enrichment function Hi(ξ) is again defined as the solution of

∆Hi(ξ) = 0. (5.28)

As in the single cut case, the discontinuity across its corresponding cut ci(ξ)
is enforced through Dirichlet conditions of ±1. However, now we enforce
vanishing Neumann conditions not only on the element boundary, but also
on all other cuts cj(ξ), j 6= i, i.e.

∇Hi(ξ) · n(ξ) = 0, (5.29)

where n is the normal of either the domain boundary or another cut cj(ξ)
respectively. Note that there might be components with Neumann conditions
only. These components are independent of the cut ci under consideration,
and we therefore explicitly set the function values in these regions to zero. The
resulting Heaviside functions Hi(ξ) again trivially satisfy the first condition
by construction. A simple proof showing that the second condition is also
fulfilled is given in Appendix A.2. See Fig. 5.14 for an example of two partial
cuts, which would eventually converge to the situation depicted in Fig. 5.7.

Harmonic enrichment textures therefore allow us to handle both single and
multiple cuts, as well as partial, progressive, and complete cuts in a simple,
unified, and canonical manner. In contrast to existing work, we do not require
cuts to be classified into crack tips, joints, or complete cuts. Neither do we
need a complex hierarchical representation to keep track of multiple cuts and
the resulting connected components.

97

Enrichment Textures for Shells

5.5.3 Multiple Elements

So far, we described how to handle single or multiple, partial or complete cuts
within a single element. For realistic simulations, however, a simulation mesh
of more than one element is of course required. In this section we extend
our enrichment approach to multiple elements partitioning the simulation
domain Ω. A 2D illustration of a multi-element mesh with two complete cuts
c1, c2 and one partial cut c3 is shown in Fig. 5.15.

Ω

Ω3

Ω2

Ω1

c1

c2
c3

Figure 5.15: Three cuts define nodes to be enriched (dots) and associated domains Ωi
on which the Hi are defined. Nodes in overlapping domains are enriched
multiple times.

In order to model the discontinuities caused by a cut, all elements intersected
by this cut are enriched. This is achieved by enriching the nodal basis func-
tions Na(ξ) of each of the element’s vertices a, resulting in ψa(ξ)Na(ξ). This
expression requires the enrichment function ψa, and therefore the Heaviside
H (see (5.26)), to be defined on the whole support of Na, which in our case is
just the set of elements incident to vertex a. The (overlapping) colored regions
Ωi in Fig. 5.15 highlight the elements that are enriched due to the respective
cuts ci, the dots represent the vertices to be enriched.

The main difference to the single element case is that the enrichment functions
of neighboring elements have to be C0 continuous across their shared edge,
in order to guarantee the enrichment basis functions ψaNa, and thus the
enriched displacement u (see (5.25)), to be C0, as required by our DG FEM
formulation.

For complete cuts, such as c1 and c2 in Fig. 5.15, we can use the simple en-
richment functions shown in Figs. 5.6 and 5.7 for the intersected elements,

98

5.6 Results

and constant enrichments of +1 or −1 for their neighboring elements. The
resulting enrichment functions will be C0 across mesh edges by construction.

The handling of partial cuts, such as c3 in Fig. 5.15, is slightly more involved.
For the element containing the cut tip a harmonic enrichment is computed by
solving (5.27) or (5.28), as discussed in Section 5.5.2. The vanishing Neumann
boundary conditions for this system can, however, not guarantee C0 conti-
nuity to its neighboring elements (as Dirichlet boundary constraints could
do).

In order to ensure continuity, we additionally have to take the incident ele-
ments into account and solve the Laplace equation on this extended one-ring
neighborhood (3× 3 region around the tip of c3 in Fig. 5.15). On the bound-
ary edges of this region we prescribe the values of neighboring enrichment
functions, if they exist, as C0 Dirichlet constraints, or vanishing Neumann
conditions otherwise. As the neighboring enrichment function values were
computed in previous simulation steps, this construction is free of cycles.

In Fig. 5.15 we would therefore compute the enrichment function(s) H3 for
the nine elements around the cut tip by a single Laplace system, prescribing
±1 Dirichlet constraints along c3, vanishing Neumann constraints along c1,
C0 Dirichlet constraints on the boundary to the blue elements, and vanish-
ing Neumann constraints on the other boundaries. In this 3× 3 region the
enrichment function H1 for cut c1 also has to be computed through this sys-
tem, by exchanging the roles of c1 and c3. With this slight modification of
the domain and the constraints of the Laplace systems (5.27), (5.28), we are
able to generalize the harmonic enrichment textures from single elements to
arbitrary simulation meshes, including quad and triangle meshes through
the definition of appropriate texel neighborhoods at the element boundaries.

Note that our DG FEM formulation considerably simplifies this generalization
as it only requires C0 continuity on element edges. On the other hand, con-
forming thin shell discretizations using C1 basis functions [Cirak et al., 2000;
Thomaszewski et al., 2006] would require C1 continuous enrichment func-
tions, which cannot be computed through simple Laplace systems.

5.6 Results

We demonstrate our enrichment method on a variety of examples, including
single elements, more complex element meshes, single progressive cuts, cuts
consisting of multiple enrichments, and multiple cuts per element. The
simulation meshes used consist of either 8-node bi-quadratic quadrilateral

99

Enrichment Textures for Shells

elements or 6-node quadratic triangular elements. All discontinuities were
prescribed as polylines and then rasterized to texel edges.

Complex Cut Lines. Our method allows us to represent discontinuities on a
fine sub-element level without the need to remesh. Fracture lines are a special
instance of such discontinuity lines and are usually computed using local
strain or stress measurements to predict their evolution. We do not directly
simulate a complex fracturing model but generate the highly-detailed cut
boundaries procedurally. Our approach is able to resolve the shells’ reaction
to the fracture discontinuity at the sub-element level, as shown in Fig. 5.16.

Figure 5.16: A single textured quad element being fractured (left), and the underlying
discontinuous enrichment function (right).

Fig. 5.1, right, shows the same model applied to a non-trivial mesh with trian-
gular quadratic elements. Note that the elements are shaded independently
of each other in order to show the coarse resolution of the simulation mesh.
To avoid these shading discontinuities, normals can be averaged at nodes
and interpolated over the elements as described in Section 5.4.3.

Small Features. The presented approach allows us to simulate small scale
details down to the resolution of the texture. In Fig. 5.17, left, a circular cut
is applied to a planar shell mesh consisting of four quads. The method can
robustly handle the situation where the connection between the “hanging
chad” and the rest of the element is only a few texels wide. Without requiring
any special handling, the basis functions resulting from the harmonic enrich-
ments introduce a specific additional mode of deformation, leading to the
expected result. Fig. 5.17, right, shows an example of a highly-detailed cut
line demonstrating the capability to resolve small features.

100

5.6 Results

Figure 5.17: Simulation of a chad failing to completely separate from a punchcard (left).
Highly detailed cut on a tissue (right).

Multiple Cuts. As described in Section 5.5.2, our method is also applicable
to the case of multiple cuts per element. Fig. 5.1, left, shows a single quad
element that has been enriched 18 times, replicating a “paper accordion”. In
this example, the boundary conditions on the cuts are not purely±1 on either
side of the cuts, but instead are blended to zero towards both ends of each
cut to get an enrichment that better captures the desired deformation.

Figure 5.18: A quad element is cut by a helical line, using a single enrichment (left) and
six cut segments (right). The insets show the enrichment functions used.

For long progressive cuts with complex trajectories, a single enrichment will
not provide sufficient additional degrees of freedom to allow for the desired
deformation. Such cases can be handled consistently by tracking the length
or integral angle of the cut and by initiating a new cut once a predefined
threshold is exceeded. While this criterion is mathematically not rigorous, it
works very well in practice, and we employed it for our experiments.

This results in a series of connected cuts that together make up the desired
discontinuity and add the required local degrees of freedom. Fig. 5.18 shows
an example of a spiral cut enriched by a single enrichment texture (left),
lacking the desired deformation, and the same curve divided into 6 cuts

101

Enrichment Textures for Shells

(right), resulting in a more plausible simulation. Applying the same principle
to a less trivial mesh, a slinky is cut out of a cylinder in Fig. 5.19, left. Fig. 5.19,
right, additionally shows an example of intersecting cuts. Note that once a
cut crosses another cut, it becomes a complete cut that ends at the point of
intersection and a new cut is started.

Figure 5.19: A cylinder represented by four quad elements is cut into a slinky, deforms
under gravity and uncoils (left). Simulation of intersecting cuts in a single
element (right).

Material Textures. As an alternative application of textures besides cutting,
we can define material properties at the texel level. In the case of Kirchhoff-
Love shells, properties that can be modulated by such a material texture
include the material’s Young’s modulus, Poisson’s ratio, as well as the local
thickness of the shell. During the integration of an element’s stiffness matrix,
the material texture is evaluated at the quadrature points. Fig. 5.20 shows an
example of a single shell element with locally reduced thickness, causing it to
weaken and exhibit a stronger deformation under gravity. In this example,
122 quadrature points were used to integrate the element’s stiffness matrix.

Figure 5.20: The thickness of a shell element (left) is modulated by a thickness texture
and deforms accordingly (right).

102

5.6 Results

Figure 5.21: A C0 continuous enrichment texture with discontinuous first derivatives
(left) allows adding a crease to an element (right).

Creases. So far, we have only considered enrichment textures with disconti-
nuities, allowing for cutting and separating shells into multiple independent
components. However, we note that the concept of enrichment textures is
more general. In particular, it can also be used to model sharp creases, at
which the shell is free to bend. Creases can be modeled by keeping the en-
richment textures C0 continuous, but introducing discontinuities in the first
derivatives. Fig. 5.21, left, shows an example of an enrichment texture for a
curved crease line. The enrichment function is computed as the geodesic dis-
tance from the crease using a fast marching method [Sethian, 1999]. Applying
this enrichment texture to a shell element allows the element to bend around
the crease, resulting in interesting states of minimal energy when external
forces are applied (see Fig. 5.21, right).

Model #Els. #Nodes #Enr. Tex. tenr tasm tsol
Chad 4 21 1 256 1433 16 3
Spiral 1 1 8 1 256 274 1.8 0.1
Spiral 6 1 8 6 256 1701 38 0.7
Accordion 1 8 18 256 4785 313 8
Bunny 552 1106 1 32 283 452 917
Slinky 4 20 12 128 5207 513 22

Table 5.1: Comparison of timings for the computation of the enrichment functions (tenr),
assembly of the global stiffness matrix (tasm), and solving the resulting linear
system (tsol). Timings are in milliseconds and were taken on an Intel Core2
Duo 2.4 GHz.

Timings. Table 5.1 shows the computation times per simulation step for a
representative selection of examples. The times for computing the enrich-
ments are peak values, while the assembly and solve times were averaged

103

Enrichment Textures for Shells

over the whole simulation. For solving the Laplace problem during the
computation of the enrichment functions, we employ a sparse Cholesky
solver [Toledo et al., 2003].

Comparison to Discrete Shells. For typical meshes the cost of cutting and
enrichment is only a small percentage of the total simulation time, e.g., 7% for
the Bunny example. This percentage vanishes as mesh resolution increases,
since the cost of dynamics increases while the texture area intersected by the
cut decreases.

Focusing on the bulk of computational cost—simulating dynamics after
cutting—Table 5.2 compares our method to Discrete Shells [Grinspun et al.,
2003] in terms of computational effort. We use the number of non-zero entries
in the stiffness matrix (NNZ) as a measure of complexity for solving the linear
system during time integration. For Discrete Shells, the mesh resolutions
were chosen to match the NNZs of our enriched simulations.

For the Discrete Shells simulations, the mesh resolution might be sufficient
to simulate the elastic behavior, but it is not enough to resolve the cuts in
sufficient detail, especially for highly detailed cuts. By contrast, our enrich-
ment uses the same number of additional DOFs, whether the cut is highly
jagged or straight. The comparison shows that our method excels in settings
characterized by a higher ratio of cut to deformation complexity.

Mesh (Method) #Els. #Nodes #DOFs #NNZ
Bunny (our method) 552 1106 3318 243954
Bunny (Discrete Shells) 4200 2102 6306 245934
Spiral (our method) 1 8 168 28224
Spiral (Discrete Shells) 385 274 822 32058
Chad (our method) 1 8 48 2304
Chad (Discrete Shells) 72 62 186 7254

Table 5.2: Comparison of our method to Discrete Shells with a comparable computational
budget (non-zero stiffness matrix entries).

Limitations. The previous examples show that our method is able to rep-
resent complex cut lines and small features in single elements and element
meshes, and that multiple cuts per element can be handled consistently.

However, we note that our current implementation of the method lacks a
proper projection step. When the basis functions change due to enrichment,
we simply apply the previous solution to the new basis. In most situations

104

5.7 Discussion and Outlook

the introduced error is unnoticeable, since the enrichments change gradually
over time. However, in some scenarios it leads to obvious “popping” artifacts,
e.g., in the multiply enriched spiral of Fig. 5.18, right. These artifacts may be
eliminated by projecting the displacements and velocities onto the new basis,
as proposed, e.g., in Réthoré et al. [2005].

5.7 Discussion and Outlook

We presented a novel method for handling highly detailed discontinuity
features such as cutting or fracture lines using a versatile, texture-based
basis enrichment approach. The method spends new degrees of freedom
in an economical manner and supports a uniform and general treatment of
multiple progressive or complete discontinuities. While the proposed method
focuses on introducing material discontinuities, we hope that the presented
way of combining texture concepts with physical simulations opens exciting
new areas for future work.

A promising direction for future work is to generalize the modeling of creases,
building on the preliminary results presented in this work. We would also
like to explore the synergies of textures representing both geometric and
physical material properties. For example, a displacement texture map could
represent both the physical rest state of a shell as well as allow for high
surface detail while still only requiring a coarse simulation mesh.

We further note that most of the steps in the simulation pipeline are very
amenable to parallelization, making them ideal candidates for computation
on the GPU. In particular, the computation of the enrichment functions
can be performed efficiently using a multigrid solver, whose pre- and post-
smoothing steps can be interpreted as simple texture filtering operations [Bolz
et al., 2003]. The corotated stiffness matrix integration could be computed on
the GPU, since it parallelizes trivially, leading to a highly accurate integration
at the texel level. At the rendering stage, the deformed geometry could easily
be constructed on the GPU as well, by computing the displacement field from
the enrichment textures and the solution to the dynamic simulation.

The presented corotational extension of the linear discontinuous Galerkin
shell method of Noels and Radovitzky [2008] allows for the simulation of
nonlinear phenomena while still being efficient to compute. The use of DG
FEM in this context not only provides a practical solution to the C1 continu-
ity problem of thin shells, it also simplifies the computation of enrichment
textures for multi-element cuts.

105

Enrichment Textures for Shells

So far, we have only applied DG FEM to linear problems (with corotation).
The next chapter will present an application where the method is used to
solve non-linear problems in the context of image warping.

106

C H A P T E R 6
Non-Linear Image Warping

a b c d e

Figure 6.1: Our unifying representation of image warping supports efficient adaptive
meshing, high order basis functions, and more. a) Original image, b) auto-
matic saliency map, c) aspect ratio change by uniform scaling, d) retargeting
using uniform grid (6767 vertices), e) similar quality results using an adap-
tive mesh (1325 vertices).

After having applied the DG FEM to the simulation of deformable solids and
shells in the previous two chapters, we now show that the method can also
be used to solve content-aware image warping problems in a single unifying
framework that encompasses a wide range of image and video editing tasks.
In this field, even standard FEM is not widely used yet. Instead, existing
approaches define error terms over mesh edges or vertex finite differences.
As will be shown, these can be expressed as a special case of the proposed
FEM model.

107

Non-Linear Image Warping

We exploit the full generality of FEMs, gaining important advantages, such
as: arbitrary mesh connectivity in the image domain, a well defined, continu-
ous problem formulation, and well behaved convergence properties. These
advantages are then used to demonstrate support for adaptive meshing,
allowing for efficient temporally stable solutions, and robust and simple
constraint substitution, allowing for fine level control over warping results.
An FEM representation also naturally supports higher order basis functions,
allowing for smoother warps even with a small number of elements.

Through the use of DG FEM, per-element basis functions of varying degree
and complex mesh connectivity with hanging nodes can be used, which fur-
ther increases the space of possibilities and simplifies the problem setup. The
continuous problem formulation allows us to clearly analyze existing image
warping error functions, and propose improved ones. The utility of the pro-
posed method is demonstrated by showing examples in adaptive, temporally
consistent content-aware video resizing and camera stabilization applications,
and by comparing our results to previous state of the art methods.

6.1 Overview

In order to formulate image warping problems in a generic 2D FEM frame-
work, we first need to understand their underlying continuum equations. It
turns out that for most of the energy terms and constraints that have pre-
viously been used in the image warping literature, this is a pretty straight
forward task. While the FEM is more general in theory, we limit ourselves
to warp energies that are defined in terms of an energy density that only
depends on position as well as first spatial derivatives of the warp. This
allows us to directly apply the non-linear FEM theory presented in Section 3.2
and Section 3.3.

Formulating all warp energies as energy density functions will allow us to
compare and classify them, and in some cases even to simplify them by
coming up with new energies that have similar properties but a simpler
mathematical formulation. The benefits of DG FEM will become obvious
once we look at the actual discretization of the problem: one of the general
advantages of FEM over finite difference methods is that FEM allows for
adaptivity, so degrees of freedom can be spent where they are most needed,
i.e. in areas where the solution changes rapidly. With DG FEM, one can
even go one step further as the method naturally supports hanging nodes,
which makes adaptive meshing (h-refinement) almost trivial. It additionally
allows for easily combining elements with different polynomial degrees

108

6.2 FEM for Image Warping

(p-refinement) to further adapt the distribution of DOFs to the underlying
problem.

Finally, FEM image warping is demonstrated in the domain of media retar-
geting, where the aspect ratio of images or videos is modified such that the
shape of important content is preserved, as well as video stabilization, where
a smooth reconstruction of hand-held shaky videos is computed. For video
retargeting, adaptive solutions will be shown that allow us to solve a whole
sequence of frames at once; a task that previously would be either compu-
tationally intractable, or have only low resolution control due to excessive
subsampling.

6.2 FEM for Image Warping

In order to derive an FEM for image warping, we begin by formulating
the general image warping problem in the continuous case, and then in
Section 6.3 we will discuss application specific decisions. While previous
approaches first set up the discretization using finite differences, regularly
spaced grids, or triangle meshes, computing ad-hoc energy functions from
the resulting primitives (vertices, edges), a continuous formulation allows us
to study and compare the properties of various image warping energies inde-
pendently of their discretization. We then perform the actual discretization
by means of finite elements as a second, independent step, where we are pre-
sented with a multitude of choices, allowing us for example to trade accuracy
(how well the continuous solution is approximated) for performance.

6.2.1 Continuous Warping

Consider the rectangular domain Ω = [0,1]× [0, h] ⊂ IR2 of an undeformed
image. The warping function ϕ : Ω→ IR2 maps a point X = (X1, X2)

T ∈ Ω

to a warped point x = (x1, x2)
T = (ϕ1(X1, X2), ϕ2(X1, X2))

T = ϕ(X) (see
Figure 6.2). Following the notation introduced in Section 3.3, let the 2-
dimensional deformation gradient be defined as the 2× 2 matrix F(X) with
entries:

Fij(X) =
∂ϕi

∂Xj

∣∣∣∣
X

In order to define the cost of performing a certain warp ϕ, we again make use
of a function Ψ that computes the deformation energy density (per undeformed

109

Non-Linear Image Warping

area in 2D) at any point X ∈Ω. The total deformation energy of a warp ϕ can
then be computed as:

E[ϕ] =
∫

Ω
Ψ(F(X))

The optimal warp is the one that minimizes E, and respects a number of
problem-specific boundary constraints defined in Section 6.3.

Ω

𝑥1 𝑋1

𝑋2 𝑥2

𝐗 𝐱

𝛗

Figure 6.2: Continuous mapping from the undeformed domain to the warped image using
a simple nonuniform scale warp.

6.2.2 FEM Discretization

Now that we have defined the continuous image warping problem, we
discretize the problem using the FEM in order to numerically compute the
optimal warp.

Basis Functions. As a first step, we proceed as described in Section 3.3.2
and discretize the warping function ϕ into a linear combination of n basis
functions Ni : Ω→ IR with associated weights xi = (xi

1, xi
2)

T ∈ IR2:

ϕ(X) ≈
n

∑
i=1

xiNi(X) (6.1)

Once the shapes of the individual basis functions have been defined, the
warping function ϕ is fully determined through the values xi. The continuous
problem of finding a function ϕ reduces to finding the vectors x1, . . . ,xn that
minimize E. The xi are thus the degrees of freedom (DOF) of our optimization
problem.

110

6.2 FEM for Image Warping

Mesh Representation. The domain Ω is represented as a mesh consisting
of m elements K1, . . . ,Km, and q nodes at positions X1, . . . ,Xq. Computing the
derivative of Eq. (6.1) with respect to X gives us F as a linear combination of
xi. The energy E can now be formulated as a sum over element integrals:

E =
m

∑
k=1

∫
Kk

Ψ

(
n

∑
i=1

xi
∂Ni

∂X

∣∣∣∣ T

X

)
dX (6.2)

The per-element integrals can be approximated using a numerical quadrature
rule. For implementation details, we refer to Hughes [2000]. What makes this
computation efficient is the fact that basis functions Ni are local: inside any
element Kk, only a constant number of basis functions can be non-zero, and
the sum over i can be reduced to a sum over those basis functions.

If we treat each pixel of an image as an element with a single constant
basis function, and introduce some additional terms to handle the resulting
discontinuities between elements, we are in fact able to recover the standard
finite difference scheme that is used in existing image warping methods.

Numerical Minimization. For general Ψ(F), Eq. (6.2) is a non-linear equa-
tion in xi, and we can minimize it using a Newton method [Nocedal and
Wright, 2000]. The Newton-Raphson method presented in Section 3.3.2
worked well in our experiments. For this, we need the first and second
derivatives of E with respect to the xi, which we compute using either a code
generation tool or automatic differentiation (AD). The second derivatives of
E result in a sparse, symmetric matrix H, which may not be positive-definite.
Merging all the vector DOFs xi into one big vector d of length 2n and denoting
the first derivative of E by f, a single Newton step computes the increment
∆d of d by solving the linear system

H∆d = −f (6.3)

using a direct solver for sparse positive definite systems [Schenk et al., 2001].

The pseudocode function ComputeE defined in Algorithm 6.1 computes the
energy E for given DOF values d. It calls ComputePsi to evaluate the energy
density Ψ for the given deformation gradient F. ComputeBFunDeriv computes
the derivative of a basis function at a given position. EC computes the energy
of constraint C for the given DOF values.

111

Non-Linear Image Warping

1 ComputeE(d = (x1T, . . . ,xnT)T)
2 E← 0
3 for each element Kk:
4 for each quadrature point qj with weight wj of Kk:
5 F← 0
6 for each basis function Ni of Kk:
7 b← ComputeBFunDeriv(i, qj)
8 F+= xi bT

9 end
10 E+= ComputePsi(F) wj

11 end
12 end

13 for each soft constraint C:
14 E+= EC(d)
15 end

16 return E
17 end

Algorithm 6.1: Computation of the energy E.

6.3 Application Specifics

We have now defined image warping in the continuous sense and presented
the generic framework of non-linear FEM. At this point we still have to make
a choice about the basis functions Ni, the mesh connectivity K1, . . . ,Km, and
the energy density function Ψ. Now we discuss how we may want to pick
these for different image warping applications.

6.3.1 Deformation Energy Densities

One of the main application-specific questions is what kind of energy density
functions Ψ we want. We look at several different possible formulations,
showing how our continuous formulation allows us to not only reproduce
existing warping energies used in earlier work, but also more clearly under-
stand their limitations and design new constraints. We start by defining some
important quantities from continuum mechanics [Bonet and Wood, 1997].

Most of the commonly used deformation energy densities for image warp-
ing can be computed from a combination of quantities derived from the

112

6.3 Application Specifics

deformation gradient F(X). F itself can also be useful here, as it tells us how
an infinitesimal line segment dX at position X gets deformed under ϕ. The
deformed line segment dx can be computed as dx = FdX. Another useful
quantity is the Jacobian determinant J defined as:

J(X) = det(F(X)) (6.4)

The Jacobian determinant tells us how an infinitesimal area changes under
the deformation ϕ. We will make frequent use of the right Cauchy-Green
tensor C defined as

C(X) = F(X)TF(X), (6.5)

which is invariant under rotation and thus any energy density that can be
expressed in terms of C will inherit its rotational invariance. Analyzing the
eigenvalues λ1,λ2 of C(X), one can see that

√
λ1 and

√
λ2 are the principal

stretches of the deformation at X, i.e. the minimum and maximum values for
the stretch that can be achieved for any direction dX at position X [Sander et
al., 2001].

Translational Invariance. As shown in Shamir and Sorkine [2009], one sim-
ple energy density for image warping is the one that penalizes all deforma-
tions except for translations

ΨF = ‖F− I‖2
F, (6.6)

where I denotes the 2× 2 identity matrix and ‖·‖F denotes the Frobenius
norm of a matrix (see Appendix B). ΨF is only quadratic in derivatives of ϕ,
so when using this energy density, the minimum of a discretized deformation
energy E can by found in a single Newton step.

Scaling Invariance. For energies that result in more complex optimiza-
tion problems, existing methods usually employ alternating iterative meth-
ods [Shamir and Sorkine, 2009] that solve a linear least-squares problem
while fixing the values of some quantities, like a uniform scale. On the other
hand, once we have found the corresponding continuous formulation of such
energies, our FEM framework can then solve the resulting non-linear problem
in a consistent way.

For example, Wang et al. [2008] and Laffont et al. [2010] penalize all trans-
formations other than translation and uniform scaling. The corresponding
continuous energy density can be written as:

ΨF̄ = ||F− J
1
2 I||2 (6.7)

113

Non-Linear Image Warping

Rotation Invariance. The right Cauchy-Green tensor C is equal to the iden-
tity matrix for pure rotations, a fact we can use to find an energy density
penalizing only translations and rotations [Wang et al., 2010]:

ΨC = ||C− I||2 (6.8)

Similarity Invariance. The distortion energy used in Zhang et al. [2009] also
allows for scaling invariance, permitting elements to undergo a similarity
transform (quadratic in derivatives of ϕ). Its corresponding energy density is:

ΨS = tr(C)− 2J (6.9)

Figure 6.3: Comparison between the energy densities ΨC̄ − 2 (green) and ΨS (red) for
non-uniform scaling with F =

(
s 0
0 1
)
.

While this allows for an efficient minimization of E in a single Newton step,
this energy density has the drawback of tolerating inversions. As can be
seen in Figure 6.3, ΨS assumes a finite value when the stretch s in direction
X1 becomes negative. Our continuous formulation allows us to design an
alternative energy density ΨC̄ that possesses the same invariance to scaling
and rotation but increases to infinity as s approaches zero, thus preventing
inversions:

ΨC̄ = J−2||C||2 (6.10)

For practical considerations, it helps to leave this energy density undefined
for J ≤ 0. This will prevent the Newton solver from ever taking a step that
would invert an element, and instead results in the line search finding an
increment ∆d such that J remains positive at every quadrature point.

114

6.3 Application Specifics

Input & sal. Linear ΨF (T) ΨF̄ (T, S) ΨC (T, R) ΨS (T, S, R) ΨC̄ (T, S, R)

Figure 6.4: Comparison between different deformation energy density functions in an
image retargeting application, with indicated invariance to translation (T),
scaling (S), and rotation (R). Note the self-intersection in the second right
image, which is eliminated by our proposed energy density ΨC̄.

One can show that ||C||2 = λ2
1 + λ2

2 and J2 = λ1λ2, from which we derive an
alternative representation of ΨC̄,

ΨC̄ =
λ2

1 + λ2
2

λ1λ2
=

(λ1 − λ2)
2

λ1λ2
+ κ, (6.11)

where the constant κ = 2 does not depend on the warp and can thus be
dropped from the energy density function. The last equations show that ΨC̄
essentially measures the difference between the squares of the minimum and
maximum stretches

√
λ1,
√

λ2 of the deformation, divided by J to achieve
invariance to uniform scaling. It thus measures the ‘non-uniformity’ of the
scaling, while being invariant to rotations and uniform scaling.

Line Bending. One common energy term that comes up in image warp-
ing methods prevents bending of mesh edges [Wang et al., 2008]. In the
undeformed state, these edges are exactly horizontal and vertical, meaning
that this constraint is anisotropic and only works to preserve horizontal and
vertical lines in an image. A straightforward application of the deformation
gradient to the line segments (dS, 0)T and (0,dS)T leads to the corresponding
continuous energy density:

Ψ = C11 − F11
√

C11 + C22 − F22
√

C22 (6.12)

However, the same effect can be achieved by using the simpler

ΨL = F2
12 + F2

21, (6.13)

which effectively penalizes shearing deformations along the main axes. This is
identical to the ‘edge preservation’ constraint used in Krähenbühl et al. [2009]
and Wolf et al. [2007].

115

Non-Linear Image Warping

𝑎 𝑎

0

1
1 𝑋

𝑋𝑌

𝑋2

𝑌

𝑌2

Figure 6.5: Values of nodal basis function Ni in a triangle mesh (left) and a quad mesh
(middle), and the six basis functions used for quadratic DG FEM elements
(right).

Visual Saliency. A key component of many content-aware image warping
methods is the inclusion of a visual saliency term. The higher the saliency of
a region, the better should it be ‘preserved’ in the warp. This can be easily
included in our formulation by multiplying the energy density by some
spatially varying saliency function γ(X) > 0. For the results shown here,
γ was computed using a recent state-of-the art method from Goferman et
al. [2010].

We have presented a small selection of possible energy density terms in order
to demonstrate how such terms can be created, and what their effects are on
image warping applications. By representing energy densities in these general
terms, not only can we replicate existing solutions, but it also allows us to
discover new insights and provide improvements, such as ΨC̄, an energy that
allows similarity transforms while explicitly preventing inversions. Figure 6.4
shows a collection of these energy densities used in an image retargeting
application.

6.3.2 Basis Functions

In standard FEM, nodal DOFs are used, meaning that q = n and every DOF
is associated with a node: the DOF xi directly represents the solution of the
warp at node i. This implies that for all i, the basis function Ni(X) assumes a
value of 1 at position Xi, and a value of 0 at all Xj with i 6= j. The natural choice
for basis functions for simple triangle and quad elements are the linear and
bi-linear basis functions, respectively (see Figure 6.5). These basis functions
are used in most prior work, and restrict the methods to averaging content
(such as image saliency) within elements. With the FEM, saliency information
is sampled at multiple quadrature points during the numerical integration
allowing more accurate deformation penalties.

116

6.3 Application Specifics

Figure 6.6: Retargeted image using 81 bilinear quads (left, 100 DOFs) vs. 9 cubic quads
(middle, 90 DOFs) and the corresponding deformed mesh (right). Using
higher order basis functions yields smoother results.

DG FEM. In discontinuous Galerkin FEM, each element is endowed with
its own set of basis functions. Using nodal basis functions is still possible
in this context, but in contrast to standard FEM, each element using the
corresponding node will have its own DOF associated with that node. The
big advantage of the method is that we are no longer restricted to nodal
basis function but we can use simple polynomials of arbitrary order, where
the order of polynomials can be chosen independently for each element.
For example, the basis functions 1, X1, X2, X2

1, X1X2, X2
2 allow an element to

approximate the solution quadratically (see Figure 6.5).

To restore the coupling between elements, some additional terms are nec-
essary. There are several possible ways to achieve this using DG FEM, but
it all comes down to how the bi-valued function ϕ is replaced by the so-
called numerical flux ϕ̂ on the edges between elements. We proceed exactly as
described in Section 3.2, using the numerical flux of Bassi and Rebay [1997].

For rendering elements with higher-order basis functions, we triangulate
each element using a fine triangulation and compute the new positions of the
triangle mesh vertices by evaluating ϕ inside the element. A penalty term is
used to reduce the size of gaps between elements. These gaps are then small
enough (sub-pixel size) to not cause artifacts in the warp and for rendering
we additionally average the values of ϕ on edges between elements.

Figure 6.6 shows where higher order basis functions are beneficial. Linear
elements can result in visible ‘kinks’ between elements because they cannot
represent bending, while higher order basis functions result in smoother
transitions between elements.

117

Non-Linear Image Warping

Figure 6.7: Error-based adaptivity for DG FEM with linear, quadratic and cubic quad
elements (approx. 1024 DOFs each)

6.3.3 Mesh Construction

We take advantage of well behaved convergence properties of the FEM (see
Figure 6.8), and our mesh-independent formulation of the continuous image
warping problem to propose an adaptive mesh. We can refine the mesh in
important areas to achieve a high quality solution while drastically reducing
the number of DOFs, allowing for temporally stable solutions with a tractable
problem size.

While we can use any mesh subdivision technique, we demonstrate a couple
of simple choices. One method that we use is computed from a Delaunay
triangulation [Shewchuk, 1996] of a point set distributed according to variance
in saliency, which allows for increased resolution in areas that are most likely
to contain changes in local deformation.

When using DG elements, we gain some additional freedom for mesh con-
struction. In particular, the edges of neighboring elements are not required
to coincide, creating hanging nodes. This allows for the use of adaptive
quadtree meshes. Additionally, DG FEM gives rise to an error-based refine-
ment scheme. As the amount of discontinuities between elements is a direct
indicator of the local error of the solution, refining the elements with the
highest discontinuities will reduce the global error in a greedy fashion and
also reduce the amount of visible gaps, resulting in a mesh where the function
values on edges can safely be averaged for rendering. See Figure 6.7 for an
example.

6.3.4 Additional Constraints

Boundary Conditions. Depending on the particular application, we
may want to constrain all nodes on the boundary of Ω such that
(xa

1, xa
2)

T = (Xa
1s1, Xa

2s2)
T if the image is stretched by (s1, s2)

T, or allow

118

6.3 Application Specifics

1E‐9

1E‐8

1E‐7

1E‐6

1E‐5

1E‐4

1E‐3

1E‐2

1E‐3 1E‐2 1E‐1 1E+0

er
ro
r

h

Figure 6.8: Error
∫

Ω ||ϕ− ϕ̄||2 with respect to a reference solution ϕ̄ for meshes with
different element size h, showing nice convergence properties. The image on
the right shows the solution for h = 1/8. ΨF̄ was used as the energy density.

nodes to slide on the boundary, by constraining xa
1 = Xa

1s1 for nodes with
Xa

1 = 0 or Xa
1 = 1 and similarly for the X2 direction. These constraints can

be implemented as hard constraints by modifying the first and second
derivatives of E such that the constrained DOFs do not get modified during a
Newton step.

Weak Point Constraints. For certain applications like camera stabiliza-
tion [Liu et al., 2009] and stereoscopic disparity editing [Lang et al., 2010],
we want a weakly enforced point constraint such that PW gets warped to a
specific position pW . Such constraints can be realized by adding an energy
term for each point constraint:

EW = γW

1
2
||ϕ(PW)− pW ||2 (6.14)

Line Constraints. We can also impose line constraints on the warp to weakly
enforce straight lines to remain straight after the warp [Krähenbühl et al.,
2009], or to warp initially curved lines to straight ones [Carroll et al., 2009].
Similar to previous approaches, we parameterize the best-fitting straight line
as sin(α)x1 + cos(α)x2 + b = 0. For each line constraint, an additional energy
term is added to our minimization problem, computed as the integral of the
squared distance between the warped curve and the closest point on the
fitted straight line, weighted by a penalty γL:

EL =
1
2

γL

∫ l

0
(sin(α)p1(s) + cos(α)p2(s) + b)2ds (6.15)

119

Non-Linear Image Warping

Figure 6.9: Frames from retargeted video sequences. Showing the input frame, linear
scaling, FEM warping, and the corresponding mesh.

We use per-element quadrature to evaluate this integral. These kind of
constraints can be incorporated seamlessly into our method: the two new
unknowns α and b parameterizing the fitted straight line simply become two
new scalar DOFs of our non-linear problem, and no further special treatment
is necessary.

Temporal Stability. When dealing with video sequences, consistency of
output over time is important. Working with per-frame warps, we can for-
mulate this as weak constraints that force an object to deform in a similar
way in each frame of the video. Given a position Xt in frame t and a corre-
sponding position Xt+1 in frame t + 1, our constraint tries to minimize the
difference between the deformation gradients at these points, taking into
account object and camera rotation and scaling represented as the matrix Gt.
The corresponding energy is:

ET = γT

1
2
||GtFt(Xt)G−1

t − Ft+1(Xt+1)||2 (6.16)

120

6.4 Results

a b c

Figure 6.10: Comparison of temporal stability in video retargeting on a synthetic
dataset. Cropped results showing: a) original image, b) two frames from
Krähenbühl et al. [2009] (note the difference in shape of the object), and c)
same two frames from our method.

This constraint couples the otherwise independent DOFs of frames t and
t + 1. One possibility of retrieving the correspondence between Xt and Xt+1

and the transformation Gt is by using SIFT feature tracking.

6.4 Results

While the presented framework itself is more general and could be applied
to any warping problem, this section shows results for two image warping
applications.

Video Retargeting. For different video retargeting applications, we can
choose various energy density functions. Simple ones like ΨF, ΨS are attrac-
tive for performance reasons, because the solution can be found in a single
Newton step. For difficult cases and extreme aspect ratio changes, one that
prevents inversions such as ΨC̄ is preferable. To solve over a whole sequence
of frames and still keep the problem at a tractable size, we use an adaptive
triangle mesh and standard FEM. See Figure 6.9 for examples.

We compare the temporal stability of our method to prior work by
Krähenbühl et al. [2009] in Figure 6.10.

Video Stabilization. Warping-based video stabilization methods [Liu et
al., 2009] consist of tracking feature points over time, reconstructing their
positions and the camera in 3D space, then reprojecting feature points into a
new, stabilized camera path. The input to the image warp consists of a set of
weighted feature points with source and (reprojected) target positions, which
guide the warp as weak point constraints. Additionally, we select an energy

121

Non-Linear Image Warping

Figure 6.11: Our image warping method applied to camera stabilization. Input frame
with detected features (left), stabilized frame with FEM mesh (right).

Figure 6.12: Line constraints controlling the appearance of objects in a modified perspec-
tive. Input image with triangle mesh and constrained lines shown in red
(left), warp without line constraints (middle), warp with line constraints
(right).

density function that is invariant to rotation. Good choices are ΨC or ΨC̄, but
ΨS works well, too, because the amount of deformation is typically low for
this particular application. There is no direct influence between the warps
computed for individual frames, so each frame can be warped independently
and a regular mesh of size 64× 36 as used in Liu et al. [2009] provides a good
quality-vs-performance trade-off. See Figure 6.11 for examples.

Other Applications. There are other methods that while we have not fully
reimplemented them, follow from our earlier definitions. For example, Fig-
ure 6.12 shows an example of user line constraints, which are used as a means
of creating artistic perspective corrections [Carroll et al., 2010]. In addition, by
using our weak point constraints on stereo correspondences, we can perform
stereoscopic disparity editing [Lang et al., 2010].

122

6.5 Discussion and Outlook

Timing. We show the timing of our method on several examples in Table 6.1.
These results were generated on an Intel Core i7 3.2 GHz, with a single-
threaded application.

Example Ψ #Els #Frames #Newton tpre tHf tsolve

Fig. 6.1, right ΨC̄ 2612 1 7 60 2 19
Fig. 6.9, wakeboarder ΨF 111124 234 1 27820 600 6311
Fig. 6.9, wind surfer ΨF 54249 117 1 14634 273 2537
Fig. 6.11 ΨC̄ 1152 1 2 31 2 4

Table 6.1: Problem complexity and timings (in ms) for precomputation (including mesh
generation), computation of H, f, and solving the linear system

Limitations. One limitation to our FEM approach is that it can be more
complex to implement than traditional methods, especially when using DG
FEM. However, this is a one-time cost, and when completed, the framework
is very flexible, making application to novel problems and domains a much
simpler task than before.

Our method supports high order basis functions. However, there is a trade-off
with using these. While fewer elements are needed, there are more degrees
of freedom per element. In addition, it also results in denser systems to solve.
However, the decisions to what kind of basis function should be used can be
made by the specific applications, weighting advantages and disadvantages
of either.

In addition, with non-linear image warping problems, it is difficult to prove
convergence guarantees, and it is possible with extreme warps the optimiza-
tion method may result in a local minimum that does not correspond to
our desired solution. However, this is true with existing methods as well,
and we did not observe this behavior in any of our examples. Furthermore,
our representation allows for easy substitution of energy densities, mesh
formulation, and minimization methods, potentially making dealing with
local minima a simpler problem to resolve.

6.5 Discussion and Outlook

In conclusion, we have presented a novel, general representation for image
warping that unifies a wide range of existing solutions. Our approach pro-
vides a well defined continuous mathematical formulation that has multiple

123

Non-Linear Image Warping

real-world advantages. For one, a mathematical basis allows for energy densi-
ties to be clearly defined and analyzed, allowing for improved understanding
and design. Our representation is independent of the mesh formulation,
which allows for simple extensions for adaptive meshing and temporally
stable solutions, and naturally permits higher order basis functions, which
allow smoother warps using a small number of elements. However, probably
most significantly, there is a wide range of literature and ongoing research
about FEM techniques in the mechanics and geometry communities, and
by phrasing the image warping problem in the same context, both areas of
research have the potential to benefit tremendously from their combined
research efforts.

At this point, we have only scratched the surface of what the FEM could be
used for in the context of image editing applications. Further insight into
FEM and related methods could provide additional capabilities, such as using
XFEM for discontinuous warping methods. Our representation is also not
restricted to 2D elements, and one extension could be a mesh subdivision
with 3D elements, such as a video cube oct-tree, that may provide stability
for temporal solutions. In addition, it is possible that energies with higher
order derivatives could be useful, e.g. for the spherical distortion application.

124

C H A P T E R 7
Conclusion

This chapter discusses the main contributions of this thesis and looks at
potential future work.

7.1 Discussion

While focusing on the simulation of deformable solids and shells as well as
image warping, this thesis has shown that DG FEM approaches can com-
pete with, or even outperform, traditional finite element methods in certain
computer graphics applications. Overall, the benefits of DG FEM did not
so much turn out to be of a quantitative nature (resulting in significantly
better performance or faster convergence). Instead, the application of DG
FEM lead to elegant solutions to existing problems, with one method solving
several issues at once, and in some cases it turned out to allow for results
that simply were not possible using existing methods. As a by-product, some
of the contributions made by this thesis go beyond, or are even orthogonal
to DG FEM and may find broader applications in other areas of computer
graphics. This includes for example the exact integration of polynomials
over polyhedra, the concept of enrichment textures, or the analysis of image
warping energy terms using tools from material science.

Chapter 4 presented a simulation technique for deformable solids based
on DG FEM. The discontinuous shape functions of DG FEM allowed the
simulation of arbitrary polyhedral elements using simple polynomial basis
functions that can even be integrated exactly (up to machine precision) within

125

Conclusion

elements. A corotational adaption of DG FEM allowed for large rotational
deformations while still using a fast linear deformation model for elasticity.
Smooth deformation fields computed using MLS allow for the embedding of
high resolution surface geometry, even in the presence of element separation
and overlaps due to the discontinuous nature of DG FEM. As a consequence,
mesh modifications become easier to handle in the proposed DG FEM frame-
work, which was demonstrated through the simulation of progressive cutting,
adaptive element refinement, and a novel mesh generation approach that can
represent complex surface geometries with only a few elements.

In Chapter 5, a corotational extension of a linear DG FEM shell model was
presented, which allows for the simulation of nonlinear phenomena such
as buckling while still being efficient to compute. Making use of the fact
that DG FEM can deal with C0 continuous basis functions for shell models,
a novel basis function enrichment method has been presented that allows
for the simulation of very detailed cut and fracture curves even on coarse
simulation meshes. These discontinuities are represented in what we termed
enrichment textures, discretely sampled functions that modify the existing
set of basis functions. In this framework, incomplete cuts, progressive cuts,
the interplay of multiple cuts, and cuts extending over several elements can
be handled in a uniform way by solving a Laplace problem with suitable
boundary conditions. To visualize the results of such simulations in real time,
a novel rendering method based on a geometry shader was presented.

Applying DG FEM to image warping, Chapter 6 presented a unified frame-
work that encompasses a wide range of existing warping approaches. Thanks
to the underlying continuous mathematical formulation, existing energy
densities can be analyzed and improved, and new energies with desirable
properties designed from scratch. The main benefit of FEM over alternative
approaches is that it supports irregular domains and flexible meshing. This
feature allows for adaptively sampling the warp to concentrate DOFs where
they are most needed, which in turn reduces the total number of DOFs with-
out significantly reducing the accuracy of the computed solution. Thanks
to this, large problems where a solve is computed over several images, such
as temporally stable video retargeting, now become tractable. The use of
DG FEM allowed for even more aggressive adaptivity by choosing higher
polynomial degrees in elements where the solution is expected to show a
more non-linear behavior. Also, DG FEM simplifies the process of generating
an adaptive mesh. While a simple quad-tree would not be a valid mesh for
CG FEM due to hanging nodes, DG FEM can handle such meshes without
problems. This is computationally easier and less error prone than computing
a “nice” adaptive triangulation of the image domain.

126

7.2 Future Work

7.2 Future Work

While the focus of this work was on applying discontinuous Galerkin meth-
ods to elliptic problems, there are certainly other problem types with relevant
applications in graphics, fluid simulations being the prime example. In
fact, these were amongst the first problems to which DG FEM had been ap-
plied [Bassi and Rebay, 1997]. Fluid simulation applications could potentially
benefit from the adaptive meshing, or dynamic meshing to handle changing
boundary conditions in the simulation of fluid-solid interaction.

Another exciting aspect of DG FEM that has not been considered in this thesis
is space-time adaptivity [Altmann et al., 2010]. Just as a spatial element mesh
is allowed to have hanging nodes in DG FEM, a spatio-temporal mesh can
combine elements that have shorter or longer lifespans, and the interaction
between these elements is automatically handled by the numerical fluxes.
In computer graphics, this concept could again be applied to the simulation
of deformable objects or fluids, resulting in dynamic simulations that au-
tomatically, and locally, adapt the size of their time steps to reduce overall
simulation times.

Deformable Solids. One obvious extension to the proposed method for
the simulation of deformable solids is its application to nonlinear material
models. The same benefits as for linear models can be expected here, and
additionally, DG FEM may offer ways to handle degenerate cases more
gracefully. Elements under stress that would otherwise get inverted could to
some degree be compensated by the discontinuities between elements.

Collision handling has been limited to simple point-plane collisions, but
full collision handling including self-collisions would be required for many
practical applications. For linear elements, existing techniques for collision
detection and handling on triangle meshes could be used. Higher order
elements will bend under deformation and thus need special handling for
collision detection on polynomial surfaces, which could be an interesting
topic for future research.

One further advantage of DG FEM that has not been exploited in this work
is that it can quite easily be parallelized [Devine et al., 1993; Noels and
Radovitzky, 2006]. The simulation mesh can be partitioned in advance, and
computations on each part can be performed in parallel. The only way these
parts exchange information is through the numerical fluxes on the element
boundaries. It could be interesting to investigate how well this idea would
extend to the simulation of deformable objects, especially as today’s multi

127

Conclusion

core machines and highly parallel GPUs are indicators for how computing
resources will have to be used in the future.

Enrichment Textures for Shells. The representation of material disconti-
nuities as texture maps can be seen as a first example that may motivate
investigation in other areas where physical simulations can be enhanced by
the use of texture concepts. Some preliminary work in this direction has
already been shown: thickness textures can define shells with locally varying
thicknesses. Borrowing from existing uses of textures, e.g. displacement
maps or bump maps used in rendering, one could also think of displacing
the undeformed surface of a shell according to a texture map. This approach
would allow for coarse shell elements with highly detailed surfaces.

As shown in Section 5.6, enrichment textures can also be used to represent
creases. The problem of how to compute physically motivated enrichment
functions for creases, especially in the presence of other discontinuities, re-
mains an open problem. Solving the Laplace problem is still a bottleneck
when simulating progressive cuts in our implementation. However, this
computation as well as the rest of the simulation pipeline can be expected to
be parallelizable on the GPU without too much effort, which would open up
the door to real-time applications such as games.

Image Warping. By formulating the warping problem in an FEM context,
the doors are wide open to take advantage of the vast body of FEM research
and to apply the latest research results to problems in image warping. Our
work has really only scratched the surface of what is possible. One interesting
approach could be to apply the XFEM and in particular enrichment textures
to image warping, to allow for discontinuous warps with details at the pixel
level, while still simulating only coarse elements. Additionally to what has
been shown in this work, there may be other concepts from the mechanics
and geometry communities that could be applied to image warping. After
all, there is a close relationship between how real physical materials deform
and how one expects a warped image to behave.

In this work, the warp energies and constraints have been limited to only
involve first spatial derivatives. For some applications such as spherical
distortion correction, the involved energies use higher order derivatives and
it would be interesting to extend our method to support those as well. Finally,
starting from the temporally stable video retargeting approach with adaptive
per-frame meshes, one obvious direction for future work is to look at the

128

7.2 Future Work

video cube as a three-dimensional domain and use 3D elements in an oct-
tree fashion to approximate the solution. Elements would thus also have a
temporal dimension, and the mesh would be adaptive in space as well as
time, further reducing the total number of degrees of freedom of the problem.

129

Conclusion

130

A P P E N D I X A
Derivations and Proofs

This appendix shows the details of derivations and proofs mentioned in
earlier chapters.

A.1 Derivation of IP DG Weak Form for Linear Elasticity

This section shows the detailed derivation of the DG weak form for the
interior penalty method (see Equation (4.3)).

Notation. The average operator {·} has the same meaning for scalars and
tensors as in Chapter 4. Additionally to the J·K jump operator mapping
vectors to matrices and vice versa, the jump operator J·Ks maps vectors to
scalars and vice versa as follows:

JuKs :=u− · n− + u+ · n+,
JsKs :=s−n− + s+n+.

Identities. We will be making use of the following identities, where v and
n represent vectors and σ represents a matrix.

Jv · σKs = JvK : {σ}+ {v} · JσK, (A.1)

J{·}K = JJ·KK = 0, (A.2)

131

Derivations and Proofs

J{·}Ks = JJ·KKs = 0, (A.3)

{J·K} = J·K, (A.4)

{{·}} = {·}, (A.5)

v · σ · n = (v⊗ n) : σ. (A.6)

A.1.1 Strong Form

Recall the strong form of the linear elasticity PDE, formulated as two first
order PDEs:

σ = C : ε(u), (A.7)
∇ · σ = −f. (A.8)

A.1.2 Local Weak Form

The domain Ω gets triangulated into elements K. The space of the functions
u and σ is restricted to polynomials on each element (P(K) and Σ(K), respec-
tively). Multiplying Equations (A.7) and (A.8) by a tensor test function τ and
and a vector test function v, respectively, and integrating over element K,
gives ∫

K
τ : σ =

∫
K

τ : C : ε(u), ∀τ ∈ Σ(K), (A.9)∫
K
∇ · σ · v = −

∫
K

f · v, ∀v ∈ P(K). (A.10)

Noting the identity∫
Ω

σ : ε(v) = −
∫

Ω
∇ · σ · v +

∫
∂Ω

v · σ · n (A.11)

and applying this to the right-hand side of (A.9) and the left-hand side of
(A.10) results in the local weak form of element K:∫

K
τ : σ = −

∫
K
∇ · (τ : C) · u +

∫
∂K

u · (τ : C) · n, ∀τ ∈ Σ(K), (A.12)∫
K

σ : ε(v) =
∫

K
f · v +

∫
∂K

v · σ · n, ∀v ∈ P(K). (A.13)

132

A.1 Derivation of IP DG Weak Form for Linear Elasticity

Fluxes. Introducing fluxes û and σ̂ in (A.12) and (A.13) to define the bi-
valued functions u and σ on ∂K gives∫

K
τ : σ = −

∫
K
∇ · (τ : C) · u +

∫
∂K

û · (τ : C) · n, ∀τ ∈ Σ(K), (A.14)∫
K

σ : ε(v) =
∫

K
f · v +

∫
∂K

v · σ̂ · n, ∀v ∈ P(K). (A.15)

A.1.3 Global Weak Form

Generalizing the flux definition from Arnold et al. [2000] to tensors, we get
the following fluxes for the IP method:

û = {u},
σ̂ = {C : ε(u)} − η f JuK.

Sum Over Elements (First Part of Weak Form). The following equations
are to hold ∀τ and ∀v. Summing (A.14) over all elements K and inserting the
previously defined IP flux we get

∑
K

∫
K

τ : σ = −∑
K

∫
K
∇ · (τ : C) · u + ∑

e∈εh

∫
e
J{u} · (τ : C)Ks.

Note that εh denotes the set of all element edges, including ∂Ω and all edges
between elements. Using (A.11) this becomes

∑
K

∫
K

τ : σ = ∑
K

∫
K
(τ : C) : ε(u)−∑

K

∫
∂K

u · (τ : C) · n

+ ∑
e∈εh

∫
e
J{u} · (τ : C)Ks

= ∑
K

∫
K
(τ : C) : ε(u) + ∑

e∈εh

∫
e
J({u} − u) · (τ : C)Ks.

Using (A.1) we get

∑
K

∫
K

τ : σ = ∑
K

∫
K
(τ : C) : ε(u)

+ ∑
e∈εh

∫
e
J{u} − uK : {τ : C}+ {{u} − u} · Jτ : CK.

Because of (A.5) it holds that {{u} − u} = 0 and the above can be simplified
to

∑
K

∫
K

τ : σ = ∑
K

∫
K
(τ : C) : ε(u) + ∑

e∈εh

∫
e
J{u} − uK : {τ : C}.

133

Derivations and Proofs

Using (A.3) we finally get

∑
K

∫
K

τ : σ = ∑
K

∫
K
(τ : C) : ε(u)− ∑

e∈εh

∫
e
JuK : {τ : C}. (A.16)

Sum Over Elements (Second Part of Weak Form). Summing (A.15) over
all elements K and inserting the previously defined flux we get

∑
K

∫
K

σ : ε(v) =
∫

Ω
f · v + ∑

K

∫
∂K

v · ({C : ε(u)} − η f JuK) · n

=
∫

Ω
f · v + ∑

e∈εh

∫
e
Jv · ({C : ε(u)} − η f JuKKs.

Using (A.1) we get

∑
K

∫
K

σ : ε(v) =
∫

Ω
f · v+

∑
e∈εh

∫
e
JvK : {{C : ε(u)} − η f JuK}+ {v} · J{C : ε(u)} − η f JuKK.

Because of (A.2) and (A.3), it holds that J{C : ε(u)} − η f JuKK = 0, so after
some reordering the above simplifies to

∑
K

∫
K

σ : ε(v) (A.17)

− ∑
e∈εh

∫
e
JvK : {C : ε(u)}+ ∑

e∈εh

∫
e
η f JvK : JuK =

∫
Ω

f · v.

Eliminating σ. Using τ = ε(v) in (A.16) gives

∑
K

∫
K

ε(v) : σ = ∑
K

∫
K

ε(v) : C : ε(u)− ∑
e∈εh

∫
e
JuK : {C : ε(v)}. (A.18)

We can now insert (A.18) into (A.17) to get the primal formulation which
does not depend on σ:

∑
K

∫
K

ε(v) : C : ε(u) (A.19)

− ∑
e∈εh

∫
e

[
JvK : {C : ε(u)}+ JuK : {C : ε(v)} − η f JvK : JuK

]
=
∫

Ω
f · v.

Note that the left-hand side of the above equation is symmetric in u and v.

134

A.2 Basis for Multiple Complete Cuts

A.2 Basis for Multiple Complete Cuts

In this section we show for n complete cuts ci, the harmonic enrichment
functions Hi, obtained by solving ∆Hi = 0 for each cut ci as described in
Section 5.5.2, span the same function space as the canonical basis for the
resulting n + 1 components.

The canonical Heaviside functions Hi
c are the enrichment functions that produce

the canonical basis. Hi
c is 1 in component Ci and 0 otherwise. The canonical

enrichment basis of n + 1 components is

Cn+1 = {H1
c , . . . , Hn+1

c } .

For an un-cut element, which is described by its original basis functions Na

only, the canonical enrichment function is H1
c ≡ 1. In order to proof that our

enrichment basis functions span the same space as the canonical basis, it
suffices to show that the space

Hn+1 = {1, H1, . . . , Hn} ,

spanned by our harmonic enrichment functions Hi and the constant 1 func-
tion corresponding to the original basis, is equivalent to the space spanned
by the canonical enrichment functions Cn+1.

This can be shown by induction as follows: For the case with n = 1 com-
ponents, the constant 1 function is the only enrichment function and all
enrichments are trivially equivalent to the canonical basis.

In the inductive step we assume that for n components the set of enrichment
functionsHn spans the same space as the canonical enrichments Cn. Hence,
Hn spans an n-dimensional space and the Hi are linearly independent.

Then a new cut cn splits a component, say Cn, into two parts Cn and Cn+1, thus
leading to n + 1 components. The spaceHn+1 is computed by solving (5.28)
for each H1, . . . , Hn. Note that the i-th functions ofHn andHn+1 (1≤ i≤ n− 1)
are not equal, since the new cut imposes additional Neumann conditions
at cn for (5.28). However, the additional Neumann conditions cannot turn
the new functions H1, . . . , Hn linearly dependent. Consequently,Hn+1 \ Hn

spans an n-dimensional subspace. The additional new function Hn is linearly
independent ofHn+1 \ Hn, since it is the only Heaviside that can control both
sides of the new cut cn (i.e., Cn and Cn+1) independently. This means that
Hn+1 must be a complete basis for an (n + 1)-dimensional space and thus is
equivalent to the canonical basis Cn+1.

135

Derivations and Proofs

136

A P P E N D I X B
Notation and Theorems

This appendix covers commonly used notation and summarizes relevant
theorems.

B.1 Mathematical Notation

Matrix Entries. The ‘bracket operator’ with subscript ij returns the entry at
the i-th row and j-th column of matrix A:

(A)ij := Aij

for

A =

 A11 A12 · · ·
A21 A22 · · ·
· · · · · · . . .

 .

Kronecker Delta. The Kronecker delta is defined as

δij :=

{
1 if i = j,
0 otherwise.

137

Notation and Theorems

Scalar Product. The scalar product “·” between two n-dimensional vectors
a = (a1, . . . , an)T and b = (b1, . . . ,bn)T is defined as

a · b :=
n

∑
i=1

aibi.

Outer Product. The outer product “⊗” between two n-dimensional vectors
a and b is defined as

a⊗ b := abT.

Colon Operator. The colon operator “ :” denotes the tensor product be-
tween two matrices A and B or between a matrix A and a 4-tensor C as

A :B := ∑
ij

AijBij,

A :C := ∑
ij

AijCijkl,

C :A := ∑
kl

CijklAkl.

Matrix Operators. The trace of an n× n matrix A is defined as

tr(A) :=
n

∑
i=1

(A)ii

Norms. The 2-norm of a vector v is defined as

‖v‖ :=
√

v · v.

The Frobenius norm of a matrix A is defined as

‖A‖F :=
√

A :A.

Derivative Operators. A coma denotes partial differentiation. For a scalar
function u : IRn→ IR:

u,i :=
∂u
∂xi

.

The gradient of a scalar function u : IRn→ IR is defined as

∇u := (∂u/∂x1, . . . ,∂u/∂xn)
T.

138

B.2 Theorems

The divergence of a vector function v : IRn → IRn with v = (v1, . . . ,vn)T is
defined as

∇ · v = div v :=
n

∑
i=1

∂vi

∂xi

The Laplacian of a scalar function u : IRn→ IR is defined as

∆u =∇2u :=∇ · ∇u =
n

∑
i=1

∂2u
∂x2

i
.

DG Average and Jump. Unless specified otherwise, the average operator
{·} and the jump operator J·K for scalar-valued functions u and vector-valued
functions v are defined as

{u} :=
1
2
(
u− + u+

)
, JuK := u−n− + u+n+, (B.1)

{v} :=
1
2
(
v− + v+

)
, JvK := v− · n− + v+ · n+

where n− =−n+ is the outward normal vector of the element on the ‘−’-side
of the edge.

B.2 Theorems

Integration by Parts (Higher Dimensions). For an open bounded subset Ω

of IRn with a piecewise smooth boundary ∂Ω and continuously differentiable
functions u and v, it holds that∫

Ω

∂u
∂xi

v =
∫

∂Ω
uvni −

∫
Ω

u
∂v
∂xi

(B.2)

where ni is the i-th component of the outward unit normal vector n of Ω.

Integration by Parts (Vector Variant). Replacing v by vi in Eq. (B.2) and
summing over i results in the identity∫

Ω
∇u · v =

∫
∂Ω

u v · n−
∫

Ω
u∇ · v. (B.3)

Divergence Theorem. Setting u = 1 in Eq. (B.3) gives∫
∂Ω

v · n =
∫

Ω
∇ · v. (B.4)

139

Notation and Theorems

Variant of the Divergence Theorem. Assuming v to be constant in Eq. (B.3),
i.e. ∂vi/∂xj = 0, gives ∫

Ω
∇u · v =

∫
∂Ω

u v · n. (B.5)

Sum Over Edge Integrals. A common step in deriving DG FEM formu-
lations is to rewrite sums over edge integrals using the average and jump
operators. For a mesh consisting of elements K, a bi-valued scalar function u
and a bi-valued vector function v, and n denoting the outward normal of the
element, the following identity holds:

∑
K

∫
∂K

u n · v =
∫

Γ
JuK · {v}+

∫
Γ
{u} JvK

where Γ is the set of all edges (including interior and exterior edges). For
consistency, this assumes the following definitions of the outside (‘+’) values
for u and v on exterior edges:

v+ := v−,
u+ := 0

which causes the average and jump operators to evaluate to the following on
exterior edges of element K−:

JuK = u−n−,
JvK = 0,
{v} = v−.

140

Bibliography

[Abdelaziz and Hamouine, 2008] Yazid Abdelaziz and Abdelmadjid Hamouine.
A survey of the extended finite element. Computers and Structures, 86(11–12):1141–
1151, 2008.

[Altmann et al., 2010] Christoph Altmann, Gregor Gassner, and Claus-Dieter
Munz. An explicit space-time adaptive discontinuous galerkin scheme. In
Proceedings of ECCOMAS, 2010.

[Arnold et al., 2000] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and
Donatella Marini. Discontinuous Galerkin methods for elliptic problems. In
Discontinuous Galerkin methods (Newport, RI, 1999), volume 11 of Lect. Notes
Comput. Sci. Eng., pages 89–101. Springer, Berlin, 2000.

[Arnold et al., 2001] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and
Donatella Marini. Unified analysis of discontinuous Galerkin methods for
elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2001.

[Arnold, 1990] Douglas N. Arnold. Mixed finite element methods for elliptic
problems. Comput. Meth. Appl. Mech. Engrg, pages 281–300, 1990.

[Babuška and Zlámal, 1973] Ivo Babuška and Miloš Zlámal. Nonconforming ele-
ments in the finite element method with penalty. SIAM J. Numer. Anal., 10:863–
875, 1973.

[Bao et al., 2007] Zhaosheng Bao, Jeong mo Hong, J. Teran, and Ron Fedkiw. Frac-
turing rigid materials. IEEE Transactions on Visualization and Computer Graphics,
13(2):370–378, 2007.

Bibliography

[Baraff and Witkin, 1998] David Baraff and Andrew Witkin. Large steps in cloth
simulation. In Proceedings of ACM SIGGRAPH, pages 43–54, 1998.

[Bargteil et al., 2007] Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and
Greg Turk. A finite element method for animating large viscoplastic flow. ACM
Trans. on Graphics, 26(3):16.1–16.8, 2007.

[Bassi and Rebay, 1997] Francesco Bassi and Stefano Rebay. A high-order accurate
discontinuous finite element method for the numerical solution of the compress-
ible navier-stokes equations. J. Comput. Phys., 131:267–279, 1997.

[Bathe, 1995] Klaus-Jürgen Bathe. Finite Element Procedures. Prentice Hall, 1995.

[Beier and Neely, 1992] Thaddeus Beier and Shawn Neely. Feature-based image
metamorphosis. In SIGGRAPH, pages 35–42, 1992.

[Belytschko and Black, 1999] Ted Belytschko and Tom Black. Elastic crack growth
in finite elements with minimal remeshing. Int. J. Numer. Methods Eng., 45(5):601–
620, 1999.

[Bielser and Gross, 2000] Daniel Bielser and Markus Gross. Interactive simulation
of surgical cuts. In Proceedings of Pacific Graphics, pages 116–125, 2000.

[Bielser et al., 1999] Daniel Bielser, Volker A. Maiwald, and Markus Gross. Interac-
tive cuts through 3-dimensional soft tissue. Computer Graphics Forum (Proceedings
of Eurographics), 18(3):31–38, 1999.

[Bielser et al., 2003] Daniel Bielser, Pascal Glardon, Matthias Teschner, and Markus
Gross. A state machine for real-time cutting of tetrahedral meshes. In Proceedings
of Pacific Graphics, pages 377–386, 2003.

[Bolz et al., 2003] Jeffrey Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder.
Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), 22(3):917–924, 2003.

[Bonet and Wood, 1997] Javier Bonet and Richard D. Wood. Nonlinear Continuum
Mechanics for Finite Element Analysis. Cambridge University Press, 1997.

[Botsch et al., 2005] Mario Botsch, David Bommes, and Leif Kobbelt. Efficient
linear system solvers for geometry processing. In 11th IMA conference on the
Mathematics of Surfaces, pages 62–83, 2005.

[Botsch et al., 2006] Mario Botsch, Mark Pauly, Markus Gross, and Leif Kobbelt.
PriMo: Coupled prisms for intuitive surface modeling. In Proc. of Symp. on
Geometry Processing, pages 11–20, 2006.

142

Bibliography

[Botsch et al., 2007] Mario Botsch, Mark Pauly, Martin Wicke, and Markus Gross.
Adaptive space deformations based on rigid cells. Computer Graphics Forum
(Proceedings of Eurographics), 26(3):339–347, 2007.

[Brezzi et al., 2000] Franco Brezzi, Gianmarco Manzini, Donatella Marini, Paola
Pietra, and Alessandro Russo. Discontinuous galerkin approximations for
elliptic problems. Numerical Methods for Partial Differential Equations, 16:365–378,
2000.

[Bridson et al., 2002] Robert Bridson, Ron Fedkiw, and John Anderson. Robust
treatment of collisions, contact, and friction for cloth animation. ACM Trans. on
Graphics, 21(3):594–603, 2002.

[Bridson et al., 2003] Robert Bridson, Sebastian Marino, and Ron Fedkiw. Simula-
tion of clothing with folds and wrinkles. In Proc. of Symp. on Computer Animation,
pages 28–36, 2003.

[Capell et al., 2002] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and
Zoran Popović. A multiresolution framework for dynamic deformations. In
Proc. of Symp. on Computer Animation’02, pages 41–47, 2002.

[Carroll et al., 2009] Robert Carroll, Maneesh Agrawala, and Aseem Agarwala.
Optimizing content-preserving projections for wide-angle images. ACM Trans-
actions on Graphics, 28(3), 2009.

[Carroll et al., 2010] Robert Carroll, Aseem Agarwala, and Maneesh Agrawala.
Image warps for artistic perspective manipulation. ACM Transactions on Graphics,
29(4), 2010.

[Chaurasia et al., 2011] Gaurav Chaurasia, Olga Sorkine, and George Drettakis.
Silhouette-aware warping for image-based rendering. Computer Graphics Forum
(Proceedings of the Eurographics Symposium on Rendering), 30(4):1223–1232, 2011.

[Chen et al., 2008] Yanqing Chen, Timothy A. Davis, William W. Hager, and
Sivasankaran Rajamanickam. Algorithm 887: CHOLMOD, supernodal sparse
cholesky factorization and update/downdate. ACM Trans. Math. Softw., 35(3):1–
14, 2008.

[Choi and Ko, 2002] Kwang-Jin Choi and Hyeong-Seok Ko. Stable but responsive
cloth. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 21(3):604–611,
2002.

[Cirak et al., 2000] Fehmi Cirak, Michael Ortiz, and Peter Schröder. Subdivision
surfaces: A new paradigm for thin-shell finite-element analysis. Int. J. Numer.
Methods Eng., 47(12):2039–2072, 2000.

143

Bibliography

[Cockburn, 2003] Bernardo Cockburn. Discontinuous Galerkin methods. Z. Angew.
Math. Mech., 83(11):731–754, 2003.

[de Casson and Laugier, 2000] François Boux de Casson and Christian Laugier.
Simulating 2D tearing phenomena for interactive medical surgery simulators.
In Computer Animation 2000, pages 9–14, May 2000.

[Debunne et al., 2001] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and
Alan H. Barr. Dynamic real-time deformations using space and time adaptive
sampling. In Proceedings of ACM SIGGRAPH, pages 31–36, 2001.

[Desbenoit et al., 2005] Brett Desbenoit, Eric Galin, and Samir Akkouche. Model-
ing cracks and fractures. The Visual Computer, 21(8-10):717–726, 2005.

[Devine et al., 1993] Karen D. Devine, Joseph E. Flaherty, Stephen R. Wheat, and
Arthur B. Maccabe. A massively parallel adaptive finite element method with
dynamic load balancing. In Supercomputing ’93. Proceedings, pages 2 – 11, Novem-
ber 1993.

[Douglas and Dupont, 1976] Jim Douglas and Todd Dupont. Interior penalty pro-
cedures for elliptic and parabolic Galerkin methods. Computing Methods in
Applied Science, Lecture Notes in Physics, 58, 1976.

[English and Bridson, 2008] Elliot English and Robert Bridson. Animating devel-
opable surfaces using nonconforming elements. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 27(3):1–5, 2008.

[Faloutsos et al., 1997] Petros Faloutsos, Michiel van de Panne, and Demetri Ter-
zopoulos. Dynamic free-form deformations for animation synthesis. IEEE
Transactions on Visualization and Computer Graphics, 3(3):201–214, 1997.

[Floater et al., 2005] Michael S. Floater, Geza Kos, and Martin Reimers. Mean
value coordinates in 3D. Computer Aided Geometric Design, 22(7):623–631, 2005.

[Forest et al., 2002] Clément Forest, Hervé Delingette, and Nicholas Ayache. Re-
moving tetrahedra from a manifold mesh. In Proceedings of IEEE Computer
Animation, pages 225–229, 2002.

[Fries and Matthies, 2004] Thomas-Peter Fries and Hermann-Georg Matthies.
Classification and overview of meshfree methods. Informatikbericht 2003-03,
revised 2004, Institute of Scientific Computing, Technical University Braun-
schweig, 2004.

[Gee, 1994] James C. Gee. Finite element approach to warping of brain images.
Proceedings of SPIE, pages 327–337, 1994.

[Gingold et al., 2004] Yotam Gingold, Adrian Secord, Jefferson Y. Han, Eitan Grin-
spun, and Denis Zorin. A discrete model for inelastic deformation of thin

144

Bibliography

shells. Technical report, Courant Institute of Mathematical Sciences, New York
University, 2004.

[Goferman et al., 2010] Stas Goferman, Lihi Zelnik-Manor, and Ayellet Tal.
Context-aware saliency detection. In CVPR, pages 2376–2383, 2010.

[Goldenthal et al., 2007] Rony Goldenthal, David Harmon, Raanan Fattal, Michel
Bercovier, and Eitan Grinspun. Efficient simulation of inextensible cloth. ACM
Transactions on Graphics (Proceedings of SIGGRAPH), 26(3):49:1–49:7, 2007.

[Gracie et al., 2008] Robert Gracie, Hongwu Wang, and Ted Belytschko. Blending
in the extended finite element method by discontinuous Galerkin and assumed
strain methods. Int. J. Numer. Methods Eng., 74(11):1645–1669, 2008.

[Greisen et al., 2012] Pierre Greisen, Manuel Lang, Simon Heinzle, and Aljoscha
Smolic. Algorithm and vlsi architecture for real-time 1080p60 video retargeting.
Eurographics / ACM SIGGRAPH Symposium on High Performance Graphics, pages
57–66, June 2012.

[Grinspun et al., 2002] Eitan Grinspun, Petr Krysl, and Peter Schröder. CHARMS:
A simple framework for adaptive simulation. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 21(3):281–290, 2002.

[Grinspun et al., 2003] Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and
Peter Schröder. Discrete shells. In Proc. of Symp. on Computer Animation, pages
62–67, 2003.

[Gu et al., 2002] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry
images. ACM Transactions on Graphics (Proceedings SIGGRAPH), 21(3):355–361,
2002.

[Guo et al., 2006] Xiaohu Guo, Xin Li, Yunfan Bao, Xianfeng Gu, and Hong Qin.
Meshless thin-shell simulation based on global conformal parameterization.
IEEE Trans. on Visualization and Computer Graphics, 12(3):375–385, 2006.

[Guttmann et al., 2009] Moshe Guttmann, Lior Wolf, and Daniel Cohen-Or. Semi-
automatic stereo extraction from video footage. In Computer Vision, 2009 IEEE
12th International Conference on, pages 136 –142, Oct 2009.

[Hansbo and Larson, 2002] Peter Hansbo and Mats G. Larson. Discontinuous
Galerkin methods for incompressible and nearly incompressible elasticity by
Nitsche’s method. Comput. Methods Appl. Mech. Eng., 191(17):1895–1908, 2002.

[Hauth and Strasser, 2004] Michael Hauth and Wolfgang Strasser. Corotational
simulation of deformable solids. In Proceedings of WSCG, pages 137–145, 2004.

145

Bibliography

[Huang et al., 2003] Rui Huang, N. Sukumar, and Jean Prévost. Modeling quasi-
static crack growth with the extended finite element method – Part II. Int. J. of
Solids and Structures, 40(26):7539–7552, 2003.

[Hughes, 2000] Thomas J. R. Hughes. The Finite Element Method. Linear Static and
Dynamic Finite Element Analysis. Dover Publications, 2000.

[Irving et al., 2007] Geoffrey Irving, Craig Schroeder, and Ron Fedkiw. Volume
conserving finite element simulations of deformable models. ACM Trans. on
Graphics, 26(3):13.1–13.6, 2007.

[Jacobson et al., 2010] Alec Jacobson, Elif Tosun, Olga Sorkine, and Denis Zorin.
Mixed finite elements for variational surface modeling. Computer Graphics Forum,
29(5):1467–8659, 2010.

[James et al., 2004] Doug James, Jernej Barbič, and Christopher Twigg. Squashing
cubes: Automating deformable model construction for graphics. In Proceedings
of SIGGRAPH ’04 Sketches and Applications, 2004.

[Jerabkova and Kuhlen, 2009] Lenka Jerabkova and Torsten Kuhlen. Stable cutting
of deformable objects in virtual environments using the XFEM. IEEE Computer
Graphics and Applications, 29(2):61–71, 2009.

[Joshi et al., 2007] Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and
Tom Sanocki. Harmonic coordinates for character articulation. ACM Transactions
on Graphics (Proceedings of SIGGRAPH), 26(3), 2007.

[Ju et al., 2005] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates
for closed triangular meshes. ACM Transactions on Graphics (Proceedings of
SIGGRAPH), 24(3):561–566, 2005.

[Krähenbühl et al., 2009] Philipp Krähenbühl, Manuel Lang, Alexander Hornung,
and Markus Gross. A system for retargeting of streaming video. ACM Transac-
tions on Graphics, 28(5), 2009.

[Laffont et al., 2010] Pierre-Yves Laffont, Jon Yun Jun, Christian Wolf, Yu-Wing Tai,
Khalid Idrissi, George Drettakis, and Sung eui Yoon. Interactive content-aware
zooming. In David Mould and Sylvie Noel, editors, Proceedings of the Graphics
Interface 2010 Conference, pages 79–87, 2010.

[Lang et al., 2010] Manuel Lang, Alexander Hornung, Oliver Wang, Steven
Poulakos, Aljoscha Smolic, and Markus Gross. Nonlinear disparity mapping for
stereoscopic 3d. ACM Transactions on Graphics, 29(4), 2010.

[Lew et al., 2004] Adrian Lew, Patrizio Neff, Deborah Sulsky, and Michael Ortiz.
Optimal BV estimates for a discontinuous Galerkin method in linear elasticity.
Applied Mathematics Research Express, 2004(3):73–106, 2004.

146

Bibliography

[Liu et al., 2009] Feng Liu, Michael Gleicher, Hailin Jin, and Aseem Agarwala.
Content-preserving warps for 3d video stabilization. ACM Transactions on
Graphics, 28(3), 2009.

[Martin et al., 2008] Sebastian Martin, Peter Kaufmann, Mario Botsch, Martin
Wicke, and Markus Gross. Polyhedral finite elements using harmonic basis
functions. Computer Graphics Forum (Proceedings of Symposium on Geometry Pro-
cessing), 27(5):1521–1529, 2008.

[Melenk and Babuska, 1996] Jens Markus Melenk and Ivo Babuska. The partition
of unity finite element method: Basic theory and applications. Comput. Meth.
Appl. Mech. Eng., 139:289–314, 1996.

[Mezger et al., 2008] Johannes Mezger, Bernhard Thomaszewski, Simon Pabst,
and Wolfgang Straßer. Interactive physically-based shape editing. In Proceedings
of ACM Symposium on Solid and Physical Modeling, pages 79–89, 2008.

[Mirtich, 1996] Brian Mirtich. Fast and accurate computation of polyhedral mass
properties. Journal of Graphics Tools, 1(2):31–50, 1996.

[Moës et al., 1999] Nicolas Moës, John Dolbow, and Ted Belytschko. A finite ele-
ment method for crack growth without remeshing. Int. J. Numer. Methods Eng.,
46(1):131–150, 1999.

[Moës et al., 2002] Nicolas Moës, Anthony Gravouil, and Ted Belytschko. Non-
planar 3d crack growth by the extended finite element and level sets - Part I. Int.
J. Numer. Methods Eng., 53(11):2549–2568, 2002.

[Molino et al., 2004] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual
node algorithm for changing mesh topology during simulation. ACM Trans. on
Graphics, 23(3):385–392, 2004.

[Müller and Gross, 2004] Matthias Müller and Markus Gross. Interactive virtual
materials. In Proceedings of Graphics Interface, pages 239–246, 2004.

[Müller et al., 2002] Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jag-
now, and Barbara Cutler. Stable real-time deformations. In Proc. of Symp. on
Computer Animation, pages 163–170, 2002.

[Müller et al., 2004a] Matthias Müller, Richard Keiser, Andrew Nealen, Mark
Pauly, Markus Gross, and Marc Alexa. Point-based animation of elastic, plastic
and melting objects. In Proc. of Symp. on Computer Animation, pages 141–151,
2004.

[Müller et al., 2004b] Matthias Müller, Matthias Teschner, and Markus Gross. Phys-
ically based simulation of objects represented by surface meshes. In Proceedings
of Computer Graphics International, pages 26–33, 2004.

147

Bibliography

[Müller, 2008] Matthias Müller. Hierarchical position based dynamics. In Proceed-
ings of Virtual Reality Interactions and Physical Simulations, Grenoble, 2008.

[Nealen et al., 2006] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Box-
erman, and Mark Carlson. Physically based deformable models in computer
graphics. Computer Graphics Forum, 25(4):809–836, 2006.

[Niu et al., 2010] Yuzhen Niu, Feng Liu, Xueqing Li, and Michael Gleicher. Warp
propagation for video resizing. In CVPR, pages 537–544, 2010.

[Nocedal and Wright, 2000] Jorge Nocedal and Stephen J. Wright. Numerical Opti-
mization. Springer, August 2000.

[Noels and Radovitzky, 2006] Ludovic Noels and Raul Radovitzky. A general dis-
continuous galerkin method for finite hyperelasticity. formulation and numerical
applications. Int. J. Numer. Meth. Engng., 68:64–97, 2006.

[Noels and Radovitzky, 2008] Ludovic Noels and Raul Radovitzky. A new discon-
tinuous Galerkin method for Kirchhoff-Love shells. Computer Methods in Applied
Mechanics and Engineering, 197:2901–2929, 2008.

[Noels, 2009] Ludovic Noels. A discontinuous Galerkin formulation of non-linear
Kirchhoff-Love shells. Int. J. Numer. Methods Eng., 78(3):296–323, 2009.

[O’Brien and Hodgins, 1999] James F. O’Brien and Jessica K. Hodgins. Graphical
modeling and animation of brittle fracture. In Proceedings of ACM SIGGRAPH,
pages 137–146, 1999.

[O’Brien et al., 2002] James F. O’Brien, Adam W. Bargteil, and Jessica K. Hodgins.
Graphical modeling and animation of ductile fracture. ACM Trans. on Graphics,
21(3):291–294, 2002.

[Otaduy et al., 2007] Miguel A. Otaduy, Daniel Germann, Stephane Redon, and
Markus Gross. Adaptive deformations with fast tight bounds. In Proc. of Symp.
on Computer Animation’07, pages 181–190, 2007.

[Panozzo et al., 2012] Daniele Panozzo, Ofir Weber, and Olga Sorkine. Robust
image retargeting via axis-aligned deformation. Computer Graphics Forum (Pro-
ceedings of Eurographics), 31(2pt1):229–236, May 2012.

[Pauly et al., 2005] Mark Pauly, Richard Keiser, Bart Adams, Philip Dutre, Markus
Gross, and Leonidas J. Guibas. Meshless animation of fracturing solids. ACM
Trans. on Graphics, 24(3):957–964, 2005.

[Reed and Hill, 1973] Wilmer H. Reed and Timothy R. Hill. Triangular mesh
methods for the neutron transport equation. Technical Report LA-UR-73-479,
Los Alamos Scientific Laboratory, 1973.

148

Bibliography

[Réthoré et al., 2005] Julien Réthoré, Anthony Gravouil, and Alain Combescure.
An energy-conserving scheme for dynamic crack growth using the extended
finite element method. Int. J. Numer. Methods Eng., 63(5):631–659, 2005.

[Saad and van der Vorst, 2000] Yousef Saad and Henk A. van der Vorst. Iterative
solution of linear systems in the 20th century. J. Comput. Appl. Math., 123(1-2):1–
33, 2000.

[Sander et al., 2001] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues
Hoppe. Texture mapping progressive meshes. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’01, pages
409–416. ACM, 2001.

[Schenk et al., 2001] Olaf Schenk, Klaus Gärtner, Wolfgang Fichtner, and Andreas
Stricker. PARDISO: a high-performance serial and parallel sparse linear solver in
semiconductor device simulation. Future Generation Computer Systems, 18(1):69–
78, 2001.

[Sethian, 1999] James Sethian. Level Set Methods and Fast Marching Methods. Cam-
bridge University Press, 1999.

[Shamir and Sorkine, 2009] Ariel Shamir and Olga Sorkine. Visual media retarget-
ing. In SIGGRAPH ASIA Courses, 2009.

[Sharf et al., 2007] Andrei Sharf, Thomas Lewiner, Gil Shklarski, Sivan Toledo,
and Daniel Cohen-Or. Interactive topology-aware surface reconstruction. ACM
Transactions on Graphics, 26(3):43, 2007.

[Shewchuck, 2002] Jonathan Shewchuck. What is a good linear finite element?
interpolation, conditioning, and quality measures. In Proceedings of the 11th
International Meshing Roundtable, pages 115–126, 2002.

[Shewchuk, 1996] Jonathan Shewchuk. Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator. In Applied Computational Geometry: To-
wards Geometric Engineering, volume 1148, pages 203–222. Springer-Verlag, May
1996.

[Sifakis et al., 2007a] Eftychios Sifakis, Kevin G. Der, and Ron Fedkiw. Arbitrary
cutting of deformable tetrahedralized objects. In Proc. of Symp. on Computer
Animation, pages 73–80, 2007.

[Sifakis et al., 2007b] Eftychios Sifakis, Tamar Shinar, Geoffrey Irving, and Ron
Fedkiw. Hybrid simulation of deformable solids. In Proc. of Symp. on Computer
Animation, pages 81–90, 2007.

149

Bibliography

[Simo and Fox, 1989] Juan C. Simo and David D. Fox. On stress resultant geomet-
rically exact shell model – Part I. Comput. Meth. Appl. Mech. Eng., 72(3):267–304,
1989.

[Stam, 1999] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’99, pages 121–128, New
York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[Stazi et al., 2003] Furio L. Stazi, Elisa Budyn, Jack Chessa, and Ted Belytschko. An
extended finite element method with higher-order elements for curved cracks.
Comput. Mech., 31(1):38–48, 2003.

[Steinemann et al., 2006a] Denis Steinemann, Matthias Harders, Markus Gross,
and Gabor Szekely. Hybrid cutting of deformable solids. In Proceedings of IEEE
VR, pages 35–42, 2006.

[Steinemann et al., 2006b] Denis Steinemann, Miguel A. Otaduy, and Markus
Gross. Fast arbitrary splitting of deforming objects. In Proc. of Symp. on Computer
Animation, pages 63–72, 2006.

[Ten Eyck and Lew, 2006] Alex Ten Eyck and Adrian Lew. Discontinuous Galerkin
methods for non-linear elasticity. Int. J. Numer. Methods Eng., 67(9):1204–1243,
2006.

[Terzopoulos and Fleischer, 1988a] Demetri Terzopoulos and Kurt Fleischer. De-
formable models. The Visual Computer, 4:306–331, 1988.

[Terzopoulos and Fleischer, 1988b] Demetri Terzopoulos and Kurt Fleischer. Mod-
eling inelastic deformation: Viscoelasticity, plasticity, fracture. In Proceedings of
ACM SIGGRAPH, pages 269–278, 1988.

[Terzopoulos et al., 1987] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt
Fleischer. Elastically deformable models. In Proceedings of ACM SIGGRAPH,
pages 205–214, 1987.

[Thomaszewski et al., 2006] Bernhard Thomaszewski, Markus Wacker, and Wolf-
gang Straßer. A consistent bending model for cloth simulation with corotational
subdivision finite elements. In Proc. of Symp. on Computer Animation, pages
107–116, 2006.

[Toledo et al., 2003] Sivan Toledo, Doron Chen, and Vladimir Rotkin. Taucs: A
library of sparse linear solvers. http://www.tau.ac.il/∼stoledo/taucs, 2003.

[Wang et al., 2008] Yu-Shuen Wang, Chiew-Lan Tai, Olga Sorkine, and Tong-Yee
Lee. Optimized scale-and-stretch for image resizing. In ACM SIGGRAPH Asia
2008 papers, SIGGRAPH Asia ’08, pages 118:1–118:8. ACM, 2008.

150

Bibliography

[Wang et al., 2009] Yu-Shuen Wang, Hongbo Fu, Olga Sorkine, Tong-Yee Lee, and
Hans-Peter Seidel. Motion-aware temporal coherence for video resizing. ACM
Transactions on Graphics, 28(5), 2009.

[Wang et al., 2010] Yu-Shuen Wang, Hui-Chih Lin, Olga Sorkine, and Tong-Yee
Lee. Motion-based video retargeting with optimized crop-and-warp. ACM
Trans. Graph., 29(4), 2010.

[Wang et al., 2011] Yu-Shuen Wang, Jen-Hung Hsiao, Olga Sorkine, and Tong-Yee
Lee. Scalable and coherent video resizing with per-frame optimization. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH), 30(4):88:1–88:8, 2011.

[Wempner and Talaslidis, 2003] Gerald Wempner and Demosthenes Talaslidis.
Mechanics of solids and shells: theories and approximations. CRC Press, 2003.

[Wicke et al., 2005] Martin Wicke, Denis Steinemann, and Markus Gross. Efficient
animation of point-sampled thin shells. Computer Graphics Forum, 24:667–676,
2005.

[Wicke et al., 2007] Martin Wicke, Mario Botsch, and Markus Gross. A finite el-
ement method on convex polyhedra. Computer Graphics Forum (Proceedings of
Eurographics), 26(3):355–364, 2007.

[Wihler, 2006] Thomas P. Wihler. Locking-free adaptive discontinuous Galerkin
FEM for linear elasticity problems. Mathematics of Computation, 75(255):1087–
1102, 2006.

[Wolf et al., 2007] Lior Wolf, Moshe Guttmann, and Daniel Cohen-Or. Non-
homogeneous content-driven video-retargeting. In ICCV 2007. IEEE 11th Inter-
national Conference on Computer Vision, pages 1–6, Oct. 2007.

[Zhang et al., 2009] Guo-Xin Zhang, Ming-Ming Cheng, Shi-Min Hu, and Ralph R.
Martin. A shape-preserving approach to image resizing. Computer Graphics
Forum, 28(7):1897–1906, 2009.

[Zi and Belytschko, 2003] Goangseup Zi and Ted Belytschko. New crack-tip ele-
ments for XFEM and applications to cohesive cracks. Int. J. Numer. Methods Eng.,
57(15):2221–2240, 2003.

[Zienkiewicz and Taylor, 2000] Olgierd C. Zienkiewicz and Robert L. Taylor. The
Finite Element Method. Butterworth-Heinemann, 2000.

151

Bibliography

152

Curriculum Vitae

Peter Kaufmann

Personal Data

Feb. 13, 1980 Born in Baden, Switzerland
Nationality Swiss

Education

Dec. 21, 2012 Ph.D. defense

May 2007 – April 2011 Research assistant and Ph.D. student at the Computer Graphics
Laboratory of the Swiss Federal Institute of Technology (ETH)
Zurich, Prof. Markus Gross.

Oct. 2005 Diploma degree in Computer Science (mit Auszeichnung).
Oct. 2000 – Oct. 2005 Diploma studies of Computer Science, ETH Zurich, Switzerland.

Specialization: Computational Sciences; Complementary studies:
Signal Processing.

Curriculum Vitae

Awards

October 2005 ETH Medal, Diploma Thesis “Holography-Pipeline: From the
Wave Front Generation to an Image”.

Scientific Publications

P. KAUFMANN, O. WANG, A. HORNUNG, O. SORKINE, A. SMOLIC, and M. GROSS.
Finite Element Image Warping, Proceedings of Eurographics (Girona, Spain, May 6-10, 2013),
Computer Graphics Forum, vol. 32, no. 2, 2013.

B. BICKEL, P. KAUFMANN, M. SKOURAS, B. THOMASZEWSKI, D. BRADLEY, T. BEELER, P.
JACKSON, S. MARSCHNER, W. MATUSIK, and M. GROSS. Physical Face Cloning, Proceed-
ings of ACM SIGGRAPH (Los Angeles, USA, August 5-9, 2012), ACM Transactions on Graphics,
vol. 31, no. 3, pp. 118:1–118:10, 2012.

S. MARTIN, P. KAUFMANN, M. BOTSCH, E. GRINSPUN, and M. GROSS. Unified Simulation
of Elastic Rods, Shells and Solids: Implementation Notes, Technical Report No. 721,
Institute of Visual Computing, ETH Zurich, 2011.

S. MARTIN, P. KAUFMANN, M. BOTSCH, E. GRINSPUN, and M. GROSS. Unified Simulation
of Elastic Rods, Shells, and Solids, Proceedings of ACM SIGGRAPH (Los Angeles, USA, July
25-29, 2010), ACM Transactions on Graphics, vol. 29, no. 3, pp. 39:1–39:10, 2010.

S. MARTIN, C. HUBER, P. KAUFMANN, and M. GROSS. Shape-Preserving Animation of
Deformable Objects, Proceedings of Vision, Modeling, and Visualization (VMV) (Braunschweig,
Germany, November 16-18, 2009), pp. 65–72, 2009.

P. KAUFMANN, S. MARTIN, M. BOTSCH, and M. GROSS. Implementation of Discontinuous
Galerkin Kirchhoff-Lovee Shells, Technical Report No. 622, Institute of Visual Computing,
ETH Zurich, 2009.

P. KAUFMANN, S. MARTIN, M. BOTSCH, E. GRINSPUN, and M. GROSS. Enrichment
Textures for Detailed Cutting of Shells, Proceedings of ACM SIGGRAPH (New Orleans, USA,
August 3-7, 2009), ACM Transactions on Graphics, vol. 28, no. 3, pp. 50:1–50:10, 2009.

P. KAUFMANN, S. MARTIN, M. BOTSCH, and M. GROSS. Flexible Simulation of Deformable
Models Using Discontinuous Galerkin FEM, Journal of Graphical Models, 2009, Special Issue
of ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2008, vol. 71, no. 4,
pp. 153–167, 2009.

S. MARTIN, P. KAUFMANN, M. BOTSCH, and M. GROSS. Polyhedral Finite Elements Using
Harmonic Basis Functions, Proceedings of Eurographics Symposium on Geometry Processing
2008 (Copenhagen, Denmark, July 2-4, 2008), Computer Graphics Forum, vol. 27, no. 5, pp.
1521–1529, 2008. (Best Student Paper Award)

P. KAUFMANN, S. MARTIN, M. BOTSCH, and M. GROSS. Flexible Simulation of De-
formable Models Using Discontinuous Galerkin FEM, Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Dublin, Ireland, July 7-9, 2008), pp.
105–115, 2008.

154

R. ZIEGLER, P. KAUFMANN, and M. GROSS. A Framework for Holographic Scene Repre-
sentation and Image Synthesis, IEEE Transactions on Visualization and Computer Graphics,
vol. 13, no. 2, pp. 403–415, 2007.

R. ZIEGLER, P. KAUFMANN, and M. GROSS. A Framework for Holographic Scene Repre-
sentation and Image Synthesis, In SIGGRAPH ’06: Material presented at the ACM SIGGRAPH
2006 conference (New York, NY, USA, 2006), ACM Press, p. 108, 2006.

S. WÜRMLIN, E. LAMBORAY, M. WASCHBÜSCH, P. KAUFMANN, A. SMOLIC, and M.
GROSS. Image-space Free-viewpoint Video, Proceedings of Vision, Modeling, Visualization
(VMV) (Erlangen, Germany, November 16-18, 2005), pp. 453–460, 2005.

Patents

B. BICKEL, P. KAUFMANN, B. THOMASZEWSKI, D. BRADLEY, P. JACKSON, S. MARSCHNER,
W. MATUSIK, M. GROSS, and T. BEELER. Physical Face Cloning, U.S. Patent 2012/0185218
A1, filed October 18, 2011

.

MPEG Contributions

S. WÜRMLIN, M. WASCHBÜSCH, E. LAMBORAY, P. KAUFMANN, A. SMOLIC, and M.
GROSS. Image-space Free-viewpoint Video, ISO/IEC JTC1/SC29/WG11, MPEG04/M10894,
Redmond, WA, USA, July 2004).

Employment

From May 2011 Research scientist at The Walt Disney Company Schweiz AG,
Disney Research, Zurich.

May 2007 – April 2011 Research assistant at ETH Zurich, Zurich, Switzerland.

Oct. 2005 – April 2007 Software engineer at Green Hippo Ltd, London, UK.

Oct. 2004 – Feb. 2005 Internship at Cyfex AG, Oerlikon, Switzerland.

155

Curriculum Vitae

156

