
Diss. ETH No. 27198

Data-Driven Methods for
Artist-Directed Fluid Simulations

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

Byungsoo Kim
MSc ETH in Computer Science, ETH Zurich, Switzerland

born on 08.06.1987
citizen of Republic of Korea

accepted on the recommendation of

Prof. Dr. Markus Gross, examiner
Dr. Barbara Solenthaler, co-examiner
Prof. Dr. Doug L. James, co-examiner

2020

ii

Abstract

Fluid phenomena are ubiquitous to our world experience: winds swooshing
through trembling leaves, turbulent water streams running down a river, and cel-
lular patterns generated from wrinkled flames are some few examples. These
complex phenomena capture our attention and awe due to the beautifully ma-
terialized complex patterns and become crucial elements to artistically support
storytelling. In virtual environments, however, sophisticated manipulation of an-
imated flow structures is still a burdensome task.

Given the amount of available fluid simulation data, data-driven approaches have
emerged as attractive solutions. Hence, this thesis aims to provide a novel data-
driven framework in which artists can freely interact and manipulate fluid simu-
lations to achieve a desired style or to follow an input sketch, without the burden
of tuning a vast number of physical parameters or long waiting times.

Aiming to improve the usually slow computational time of simulations, we
present the first generative deep learning architecture that successfully synthe-
sizes plausible and divergence-free 2D and 3D fluid simulation velocities from
a set of reduced parameters. Our results show that generative neural networks
can construct a wide variety of fluid behaviors, from turbulent smoke to viscous
liquids, that closely match the input training data.

Neural Style Transfer is a popular technique for artistically manipulating images
and videos. Hence, we introduce the first Transport-based Neural Style Transfer
algorithm for smoke simulations. Our method facilitates automatic instantiation
of a vast set of motifs through semantic transfer, enabling novel artistic manipu-
lations for fluid simulation data. Additionally, the proposed method successfully
synthesizes various styles of input images, ranging from artistic to photorealistic
examples.

We then extend our previous Transport-based neural flow stylization to a La-
grangian framework, which demonstrates benefits with respect to quality, per-
formance, and art-directability. A key property of our approach is that it is not
restricted to any particular fluid solver type. This generality of our method facili-
tates seamless integration of neural style transfer into existing content production
workflows.

iii

Finally, we propose the first method for reconstructing 3D smoke densities from
2D artist sketches, which potentially represents the first step towards bridging the
gap between early-stage prototyping of smoke keyframes and visual realization.
We proposed a CNN for computing density refinements, a differentiable sketch
renderer integrated into the end-to-end training, and a set of loss functions de-
signed explicitly for the sketch-to-density problem.

iv

Zusammenfassung

Naturphänomene wie Flüssigkeiten und Rauch sind allgegenwärtig: Winde, die
durch Blätter wehen, turbulente Wassermassen, die einen Fluss hinunter strömen,
und zellenähnliche Muster, welche von flackernden Flammen erzeugt werden,
sind nur einige Beispiele. Diese komplexen und visuell spektakulären Phänomene
sind nicht nur beeindruckend, sondern werden zu entscheidenden Elementen um
eine Geschichte bildnerisch zu erzählen und künstlerisch zu unterstützen. In sol-
chen virtuellen Umgebungen ist jedoch die Kontrolle dieser Flüssigkeiten und
deren feiner Strukturen immer noch eine zeitintensive und aufwändige Aufgabe.

Angesichts der Menge der verfügbaren Daten von Strömungssimulationen haben
sich Daten-gesteuerte Ansätze als attraktive Lösung herausgestellt. Ziel dieser Ar-
beit ist es daher, neuartige Daten-gesteuerte Methoden und Algorithmen bereit-
zustellen, in dem Künstler mit Flüssigkeitssimulationen interagieren und diese
manipulieren können. Dies ermöglicht es, eine gewünschte Form oder Stil zu er-
zielen, ohne dass eine hohe Anzahl an physikalischen Variablen getestet werden
muss und lange Wartezeiten entstehen.

Um die normalerweise langsame Berechnungszeit von Simulationen zu verbes-
sern, präsentieren wir die erste generative Deep Learning Architektur, die plausi-
ble und divergenzfreie 2D- und 3D-Geschwindigkeitsfelder von Strömungen mit
einer Reihe reduzierter Parameter synthetisiert. Unsere Ergebnisse zeigen, dass
generative neuronale Netze eine Vielzahl von Flüssigkeitsverhalten nachbilden
können, von turbulentem Rauch bis zu viskosen Flüssigkeiten, die stark mit den
eingegebenen Trainingsdaten übereinstimmen.

Neural Style Transfer ist eine beliebte Technik zur künstlerischen Bearbei-
tung von Bildern und Videos. Daher stellen wir den ersten transport-basierten
Neural Style Transfer-Algorithmus für Rauchsimulationen vor. Unsere Methode
ermöglicht die automatische Instanziierung einer Vielzahl von Motiven durch se-
mantischen Transfer und ermöglicht neuartige künstlerische Manipulationen von
Strömungssimulationen. Darüber hinaus synthetisiert das vorgeschlagene Ver-
fahren erfolgreich verschiedene Arten von Eingabebildern, die von künstlerischen
bis zu fotorealistischen Beispielen reichen.

Anschließend erweitern wir unsere bisherige transportbasierte neuronale
Strömungsstilisierung auf ein Lagrange Framework, das Vorteile in Bezug auf

v

Qualität, Laufzeit und künstlerische Kontrolle hat. Eine Schlüsseleigenschaft
unseres Ansatzes ist, dass er nicht auf ein bestimmtes Diskretisierungsmodell
und Drucklösertyp beschränkt ist. Diese Allgemeingültigkeit unserer Methode
ermöglicht eine problemlose Integration der Methode in existierende Arbeitspro-
zesse und Spezialeffekte.

Abschliessend schlagen wir die erste Methode zur Rekonstruktion von 3D-
Rauchdichten aus 2D-Skizzen von Künstlern vor, um die Brücke zwischen dem
frühen Prototyping von Rauch Keyframes und der visuellen Realisierung in 3D
zu ermöglichen. Wir präsentieren ein CNN-basiertes Netzwerk zur Berechnung
der Dichte und Verfeinerung davon, einen differenzierbaren Sketch-Renderer der
in das End-to-End-Training integriert ist, und eine Reihe von Kostenfunktionen,
welche explizit für das Sketch-to-Density-Problem entwickelt wurden.

vi

Acknowledgments

Above all, I would like to thank my advisor, Prof. Markus Gross, who allowed
me to work at the Computer Graphics Lab, an excellent research environment. He
also gave me an ideal opportunity to work at Disney Research Studio to render the
research idea on a commercial scale. He provided me those places to run around
without a leash but with trust, firm support, and constant attention during my
Ph.D. Furthermore, his leadership and flexibility were also a dear lesson in my
life.

I was indeed fortunate enough to work with my co-advisor, Dr. Barbara Solen-
thaler. She had also given me precious chances to grow up even before I started
my Master’s program. She could envision many machine learning ideas for fluid
simulations and gratefully invited me to work with her to build them into this
thesis. As one of the first members of the Simulation and Animation Group, I was
able to closely learn a lot from her invaluable experience and warm guidance that
held me not to falter during my Ph.D. I’m very thankful for having such a great
advisor like her.

I would also like to thank my close collaborators for their advice and productive
discussions. Luckily I was able to meet two distinguished researchers Prof. Nils
Thuerey and Prof. Theodore Kim, during my first year of Ph.D. I sincerely thank
both for steering me throughout our early work. They were always available to
elucidate my issues and pointed me in the right direction from the dark. I would
like to thank Dr. Guillaume Cordonnier and Xingchang Huang. I’m glad that we
made a great work during this mad COVID-19 time. It was definitely anything
but easy. Special thanks go to Fraser Rothnie for his artistic contributions.

I would like to thank Prof. Doug James, who graciously accepted to be a commit-
tee member for my Ph.D. examination.

I truly thank my dear colleagues at CGL and IGL for having our happy lunch +
coffee breaks. I will never miss our CGL cuddling retreats as well. I would also
like to thank my friends for their mental supports.

I am deeply thankful to my family. I would like to take this moment to say I love
you, mom and dad, my wife Hyun Min, my son Jay, and my unborn daughter
Jenny.

vii

Finally, I would like to thank Dr. Vinicius C. Azevedo. He is more than a mentor
to me. It will take up too much space to show how much I appreciate him. The
last four years with you during my Ph.D. was like a gift to me. I have learned
from you how to live a better life as a better person. Thanks, Vman.

The work was supported by the Swiss National Science Foundation under Grant
No.: 200021 168997.

viii

”It’s a common misconception that visual effects are about simulating reality.
They’re not. Reality is boring. Visual effects are about simulating something dramatic.”

- Jonathan Cohen, Rhythm & Hues

ix

x

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

Contents xi

List of Figures xv

List of Algorithms xxv

List of Tables xxvi

Introduction 1
1.1 Data-Driven Fluid Simulations . 3
1.2 Artistic Fluids Authoring . 3
1.3 Contributions . 5
1.4 Publications . 6

Related Works 9
2.1 Fluid Simulation for Computer Graphics 9

2.1.1 Eulerian Fluids . 9
2.1.2 Lagrangian Fluids . 12
2.1.3 Hybrid Lagrangian-Eulerian Fluids 13
2.1.4 Reduced-Order Methods for Fluids 13

2.2 Machine Learning for Fluids . 14
2.3 Artistic Control of Fluids . 15

2.3.1 Patch-Based Appearance Transfer 15
2.3.2 Velocity Synthesis . 16
2.3.3 Fluid Control . 16

2.4 Neural Stylization . 17
2.4.1 Neural Style Transfer . 17
2.4.2 Differentiable Rendering . 18
2.4.3 Deep Sketch-Based 3D Reconstruction 18

xi

Contents

Deep Generative Model for Fluid Simulations 21
3.1 Overview . 22
3.2 A Generative Model For Fluids . 23

3.2.1 Challenges . 23
3.2.2 CNN Models for Fluids . 24
3.2.3 Loss Function for Velocity Reconstruction 24
3.2.4 Implementation . 26

3.3 Extended Parameterizations . 27
3.3.1 Latent Space Integration Network 29

3.4 Results . 31
3.4.1 2D Smoke Plume . 31
3.4.2 3D Smoke Examples . 34
3.4.3 2D Liquid Drop . 37
3.4.4 3D Liquid Examples . 40

3.5 Evaluation and Discussion . 43
3.5.1 Training . 43
3.5.2 Performance Analysis . 43
3.5.3 Quality of Reconstruction and Interpolation 46
3.5.4 Extrapolation and Limitations 49

Neural Artistic Control of Smoke Simulations 55
4.1 Overview . 55
4.2 Transport-Based Neural Style Transfer 57

4.2.1 Single-Frame Multi-View Stylization 59
4.2.2 Semantic Transfer . 61
4.2.3 Style Transfer . 62
4.2.4 Time-Coherent Stylization . 63

4.3 Differentiable Smoke Renderer . 65
4.3.1 Camera Design Specifications 67

4.4 Results . 69
4.4.1 Semantic and Style Transfers 69
4.4.2 Discussion . 74

Lagrangian Neural Artistic Control of Fluid Simulations 83
5.1 Overview . 84
5.2 Lagrangian Neural Style Transfer . 85
5.3 An Efficient Particle-Based Smoke Re-Simulation 89

5.3.1 Multi-Scale Density Representation 90
5.4 Temporal Coherency . 92
5.5 Results . 93

xii

Contents

Deep Reconstruction of 3D Smoke Densities from Artist Sketches 99
6.1 Overview . 100
6.2 2D Sketch to 3D Density Prediction 101

6.2.1 Initial Volume Modeling . 103
6.2.2 CNN-Based Iterative Refinement 104
6.2.3 Loss Functions . 105

6.3 Differentiable Sketcher . 106
6.4 Keyframe Interpolation . 108
6.5 Training Data Generation . 110

6.5.1 Simulation Taining Data . 111
6.5.2 Sketch Training Data and Augmentation 111

6.6 Results . 112
6.6.1 Implementation and Performance 112
6.6.2 Results on Our Dataset . 113
6.6.3 Results on Synthetic Scenes 114
6.6.4 Results on Artist Sketches . 117
6.6.5 Keyframe Interpolation Result 118
6.6.6 Ablation Study . 120

Conclusion 127
7.1 Principal Contributions . 127
7.2 Future Work . 129

References 131

xiii

List of Figures

1.1 Target applications of this thesis. We provide a powerful deep gen-
erative model spanning a vast subspace of fluids (a), physically-
inspired neural flow stylization for both Eulerian (b) and La-
grangian (c) fluid representations, and the first sketch-to-density
authoring tool (d). 2

1.2 Limitation of existing flow stylization approaches. Patch-based tex-
ture synthesis methods (left, [Jamriška et al., 2015]) allow appear-
ance transfer (X1) from a source texture (Z1

rgb) to a target mask
(X1

a) in 2D only, and velocity synthesis methods (right, [Sato et al.,
2018a]) merely focus on enhancing small-scale turbulence details. . 3

1.3 Artist sketches of an explosion superimposed over time [Gilland,
2012]. To the best of our knowledge, no existing method allows
artists to construct 3D smoke keyframes straight from 2D sketches. 4

2.1 Types of different grids. (a) regular structured grid, (b) un-
structured grid, (c) non-regular structured grid. (Image cour-
tesy: [Azevedo and Oliveira, 2013]) 10

2.2 Examples of various 2D fluid field outputs. Velocity is directly
mapped to red-green color space after normalization with a fixed
blue color value (0.5), and stream function is illustrated by magni-
tude. 10

3.1 Our generative neural network synthesizes fluid velocities continu-
ously in space and time, using a set of input simulations for training
and a few parameters for generation. This enables fast reconstruc-
tion of velocities, continuous interpolation and latent space simu-
lations. 21

3.2 Ground truth (left) and the CNN-reconstructed results (right) for
nine sample simulations with varying buoyancy (rows) and inflow
velocity (columns). Despite the varying dynamics of the ground
truth simulations, our trained model closely reconstructs the refer-
ence data. 22

xv

List of Figures

3.3 Different snapshots showing the advected densities for varying
smoke source parameters. The top and bottom rows show the vari-
ation of the initial position source and width, respectively. 23

3.4 Comparison between reconstructing with L1 only (left) and L1 and
derivatives (right) . 25

3.5 Architecture of the proposed generative model, subdivided into
small (SB) and big blocks (BB). Small blocks are composed of flat
convolutions followed by a LReLU activation function. Big blocks
are composed of sets of small blocks, an additive skip-connection
and an upsampling operation. The output of the last layer has D
channels (Gdim for incompressible velocity fields, Vdim otherwise)
corresponding to the simulation dimension. 26

3.6 Autoencoder (top) and latent space integration network (bottom).
The autoencoder compresses a velocity field u into a latent space
representation c, which includes a supervised and unsupervised
part (p and z). The latent space integration network finds map-
pings from subsequent latent code representations ct and ct+1. . . . 28

3.7 Vorticity plot of a 2D smoke simulation with direct correspon-
dences to the training dataset for two different times. The RdBu
colormap is used to show both the magnitude and the rotation di-
rection of the vorticity (red: clockwise). Our CNN is able to closely
approximate ground truth samples (G.t.). 30

3.8 Vorticity plot of a 2D smoke simulation showing CNN reconstruc-
tions at ground truth correlated positions px = 0.46 and px = 0.5,
the interpolated result at p̂x = 0.48, and ground truth (G.t.) at
p̂x = 0.48 which is not part of the training dataset. 32

3.9 Several vorticity plots for the 2D smoke CNN reconstruction. Each
row shows the variation of both position and size of the initial
smoke source. Top row corresponds to the first time frame, while
the middle and bottom rows show frame 100 and 200, respectively. 33

3.10 Different snapshots in time where density is advected by the re-
constructed velocity fields at interpolated position p̂x = 0.47. All
outputs represent realistic fluid flows. 33

3.11 Different snapshots in time for a network trained directly on a
density-only dataset. The smoke motion is less lively and towards
the end of the sequence the main smoke stream breaks apart. 34

3.12 Interpolated result (second column) given two input simulations
(left and right) with different obstacle positions on the x-axis. Our
method results in plausible in-betweens compared to ground truth
(third column) even for large differences in the input. 35

xvi

List of Figures

3.13 Reconstructions of the rising plume scene (left and right), recon-
struction for an interpolated buoyancy value (b̂ = 8× 10−4) (sec-
ond image) and the corresponding ground truth (third image). . . 36

3.14 Trained with five different grid resolutions, our network is able in-
terpolate resolutions of 40 × 60 × 40 (middle column, left image)
and 88× 132× 88 (middle column, right image) 36

3.15 Time extrapolation results using our latent space integration net-
work. The left image shows the last frame of the ground truth sim-
ulation. The subsequent images show results with time extrapola-
tion of +20%, +60% and +100% of the original frames. 37

3.16 Example simulations of the moving smoke scene used for training
the extended parameterization networks. 38

3.17 Different snapshots of a moving smoke source example simulated
in the latent space. 38

3.18 Velocity magnitude plots for our CNN reconstruction on a 2D liq-
uid drop scenario. Each column shows the variation of both posi-
tion and size of the initial liquid drop. The following rows show
time frames 37, 70, 100, 150, 200, respectively. 39

3.19 Comparisons between ground truth and reconstructed liquid data.
Odd columns (first, third and fifth) show ground truth data, while
even columns (second, fourth and sixth) show the reconstruction of
the CNN. 39

3.20 The sampling density of the input simulations that are used for
the training impacts the resulting reconstruction quality. Here, we
increasingly vary the number of initial liquid drops on the x-axes
(top) and show the interpolation result (inside the red box). 40

3.21 Training samples for the liquid spheres scene. In total we used 50
simulation examples with varying distances and angles. 41

3.22 CNN-generated results with parameter interpolation for the liquid
spheres example. While the far left and right simulations employ
parameter settings that were part of the training data, the mid-
dle example represents a new in-between parameter point which
is successfully reconstructed by our method. 41

3.23 Snapshots of a CNN reconstructed dam break with different vis-
cosity strengths for two different frames. Green liquids denote cor-
respondences with ground truth (µ = 2× [10−4, 10−3, 10−2], back
to front) while pink ones are interpolated (µ̂ = 2× [5−3, 5−2], back
to front). 42

xvii

List of Figures

3.24 Reconstruction result using a time varying viscosity strength. In the
first few frames the liquid quickly breaks into the container. As the
simulation advances, the viscosity increases and the liquid sticks to
a deformed configuration. 42

3.25 Convergence plot of the L1 loss for the 2D smoke sequence from
Figure 3.8. 44

3.26 Compression ratio and mean absolute error plot of FPZIP and ours.
The postfix of FPZIP label represents the number of bits of precision. 45

3.27 Comparisons of the quality of autoencoder reconstruction with
varying sizes for the latent space cdim. As the latent space dimen-
sionality increases, the quality of the reconstructed smoke plume
also increases. 47

3.28 L1 loss plot of the autoencoder training (left) and L2 loss plot of
the latent space integration network training (right). Increasing the
dimension of the latent space cdim reduces reconstruction errors,
while it degrades the accuracy of the integration. 47

3.29 We show the effect of the training with varying sizes of windows
(1, 5 and 30) for the cyclic smoke example. On the left, the L2 loss
plot of the latent space integration network is shown. On the right,
we show the visual impact for window sizes of 1 and 30, respec-
tively. Note that there are densities left hanging in mid air in the
red box, which are not advected properly due to wrong velocity
states recovered by the latent space integration network. 48

3.30 Comparisons of the results from networks trained on our com-
pressible loss, incompressible loss and the ground truth, respec-
tively. On the right sequence we show the highlighted images from
the simulations on the left. We notice that the smoke patterns from
the incompressible loss are closer to ground truth simulations. . . . 49

3.31 Divergence max (top) and average (bottom) over number of itera-
tions. Using the gradient velocity in the loss function (λ∇u = 1)
reduces the divergence error, increasing reconstruction quality. . . . 50

3.32 Stream functions (a) and pressure (b) fields plots. Top images show
original fields, while bottom ones show their gradients. We high-
light that artifacts appear on those datasets when not using the gra-
dient loss function (λ∇u = 0). 51

3.33 Density plots advected by velocity fields from reconstructed
streamfunctions of the network trained without gradient loss.
Jagged artifacts are visible, e.g., near the central stem of the smoke
plume. 51

xviii

List of Figures

3.34 Slice views of the last row of Figure 3.12. The color code represents
the velocity (top) and vorticity (bottom) magnitudes. The second
column shows a linear interpolation of the input. Despite the ab-
sence of any constraints on boundary conditions, our method (third
column) preserves the shape of the original sphere obstacle, and
yields significantly better results than the linear interpolation. . . . 53

3.35 Mean absolute error plot of velocity penetration for the smoke ob-
stacle example. Though errors in interpolated samples are a bit
higher than those of reconstructed samples, they do not exceed 1%
of the maximum absolute value of the dataset. 53

3.36 2D smoke plume extrapolation results (from t. to b.: position, in-
flow width, time) where only the generative network is used. Plau-
sible results can be observed for up to 10% extrapolation. 54

4.1 Volcanic smoke simulation. Left: stylized output by our transport-
based neural style transfer; right: close-up views of low-resolution
base input and ours with a cloud motif [gfv, 2015] and a smoke
exemplar ©Richard Roscoe via [Jamriška et al., 2015]. 56

4.2 Frames of a style transfer smoke example: base simulation (top),
stylized output with volcano (middle, ©Richard Roscoe) and spi-
ral [spi, 2015](bottom) images. 57

4.3 Pipeline of our TNST method. On the left, three input fields d, Φ, Ψ

for the stylization algorithm are shown. Φ, Ψ are iteratively up-
dated during the optimization, while the stylized density output
is represented by d∗. All fields are firstly downsampled and styl-
ized on their coarser representations, so features can be enhanced
through larger regions of the smoke. Cubic upsampling is per-
formed on d, Φ, Ψ and the stylization runs again on a finer resolu-
tion; this process repeats until the specified resolution is matched.
The right side of the diagram illustrates how our optimization
works. The black arrows show the direction of a feed-forward pass
from potentials Φ, Ψ to the loss network, and the gray arrows rep-
resent the backpropagation path for computing gradients. 58

4.4 Value-based (left) against transport-based density optimization
(right) with a flower motif [gfv, 2015]. The value-based approach
used in traditional image stylization approaches produces ghosting
artifacts and thinner smoke structures, since density sources can be
created and removed to match targeted features. 60

4.5 Results from semantic transfer of a net structure [gfv, 2015]. Irro-
tational (left), mixed (middle) and incompressible (right) velocity
fields. 60

xix

List of Figures

4.6 Abstraction levels of style features and their impact on the smoke
stylization result. We can control low (left), medium (center) and
high (right) levels of features. The corner images show style repre-
sentations corresponding to different feature levels. 62

4.7 Two subsequent frames of the smoke jet example stylized with a
flower motif [gfv, 2015], no time coherence (top) and window size
9 (bottom). For each frame, a close-up view corresponding to the
highlighted region is shown on the right. Using our algorithm with
a bigger window size ensures that the structures created in one
frame are propagated to subsequent stylizations. 64

4.8 The value of γ controls how the smoke density is stylized. Smoke
images (left) produced by our renderer with γ = 0.01 (top) and
γ = 1 (bottom). The final smoke renderer is configured with vary-
ing thickness, highlighting how the stylization gets transferred for
different smoke appearances. 66

4.9 Stanford Bunny shaped smoke stylized with spiral patterns [spi,
2015] for multiple views ([-30◦,30◦], every 15 degrees). Our method
focuses the instantiation of patterns on smoke regions that share
similarities with the target motif. Additionally, augmented flow
structures change smoothly when the camera moves around the
object. 67

4.11 Multi-View camera configuration. We sample a camera path with
Poisson sampling, which prevents smoothing of density details be-
tween pre-defined viewpoints (left). The volumetric smoke grid is
aligned with the camera viewpoint to facilitate light ray integration
(right). 68

4.12 Semantic transfer applied to a smokejet and bunny simulations
(leftmost column). Images on the same column are stylized with
the feature map depicted on the right corner [gfv, 2015]. The ex-
amples for semantic transfer depict different levels of abstraction,
showing patterns that occur at shallow levels of the network (first
row, first two columns, second row, first four columns) and intri-
cate motifs that are represented at deeper levels (first row, last three
columns, second row, last column). 71

4.13 Style transfer applied to a smokejet and bunny simulations.
We used photorealistic (first two columns), artistic (middle
two columns) and pattern-based (last two columns) input im-
ages [sti, 2018] as input to the stylization algorithm. Fire examplar
©Bunzellisa via pixabay. 73

xx

List of Figures

4.14 Style Transfer comparison. From left to right: input density field of
Sato et al. [2018a], the result of applying the method of Sato et al.,
and our style transfer result using the middle image as stylization
input. 74

4.15 Stylization on smokejet simulation with a sphere shape obstacle.
First row shows base simulation, second row shows stylized den-
sity fields, third row represents the middle slice view of magnitude
of base simulation velocity fields, while fourth row shows those of
stylization velocity fields. Note that no soft mask is used. 76

4.16 Results from semantic transfer of a net structure without soft mask
(rightmost). Irrotational, mixed and incompressible velocity fields,
from left to right. 76

4.17 Density amount plot comparison for incompressible and irrota-
tional velocity fields. Using a streamfunction-based (incompress-
ible) velocity fields reduces the loss of density amount compared
to an irrotational approach. 77

4.18 Influence of iteration number and learning rate. From left to right:
5, 10, and 20 iterations. From top to bottom: learning rate of 0.001,
0.0005, 0.0001. 78

4.19 Influence of using different learning rates for the Starry Night style
transfer example. A higher learning rate (right, 5× higher) results
in more pronounced structures than when using lower learning
rates (left), but also more noisy results. 79

4.20 Our differentiable rendering method (top) versus the one
with Equation (4.12) (bottom). 80

4.21 Value-based density optimization (middle) versus transport-based
density optimization (right). The input smoke simulation is shown
on the left. 81

4.22 Comparison of temporal coherency using different window sizes
of 1 and 9. 81

4.23 From left to right: coarse input simulation, flower, volcano, and fire
stylizations. 81

4.24 Low (left), medium (middle) and high (right) levels of style features. 82
4.25 Stylization applied to a low-resolution (left) and high-resolution

(right) fluid simulation. More detailed structures are synthesized
with higher resolutions. 82

5.1 Our Lagrangian neural style transfer enables novel artistic manipu-
lations, such as time-coherent stylization of smoke, multiple fluids
and liquids. 83

xxi

List of Figures

5.2 Neural color stylization [Christen et al., 2020] using the input Red
Canna applied to a smoke scene with TNST (top) and LNST (bot-
tom). The close-up views (dashed box, frames 60 and 66) reveal
that LNST is more time-coherent than TNST (dashed circle). 84

5.3 Recursive temporal alignment in TNST. For a window size w,
(w2 − 1)/4 recursive temporal alignment steps are performed for
each stylization velocity v̂. Colors indicate the distance to frame t,
and arrows refer to advection steps (with recursive steps shown as
dashed lines). 85

5.4 Overview of our LNST method. We optimize particle positions x◦

and attributes λ◦ to stylize a given density field d∗. We transfer
information from particles to the grid with the splatting operation
Ip2g, and jointly update loss functions and attributes. The black
arrows show the direction of the feed-forward pass to the loss net-
work L, and the gray arrows indicate backpropagation for comput-
ing gradients. For grid-based simulation inputs, we sample and
re-simulate particles in a multi-scale manner (Algorithm (3)). . . . 86

5.5 Different weights for the density regularization show the trade-off
between pronounced structures and conservation of mass. The im-
ages on the left show results with zero, low, and high weights, re-
spectively, and the right image is the ground truth. 88

5.6 Different weights for the position regularization show the trade-off
between pronounced structures and uniform sampling. The im-
ages on the left show results with zero, low, and high weights, re-
spectively, and the right image is the ground truth. 89

5.7 Comparison of different re-simulation strategies. (a): ground truth
density, (b): constant density carried by particles, (c): (b) with redis-
tribution by Equation (5.6), (d): single-scale sampled density, (e):
(d) with redistribution, (f): multi-scale (ns = 3) sampled density
with redistribution (final method). 91

5.8 Particle density (circles) variation for a single particle over time.
Temporal coherency is enforced by smoothing density gradients
used for stylization from adjacent frames. 93

5.9 Stylization of every frame (left three images) versus keyframed
stylization every 10 frames (images on the right). Sparse keyfram-
ing is visually similar and can be useful for quick previews. 93

5.10 Selected frames of a stylized moving smoke sphere. From top
to bottom: TNST with structures changing over time, LNST with
temporally coherent structures, LNST result with applied shearing,
and LNST result with noise-added density inducing style variation
over time. 95

xxii

List of Figures

5.11 Semantic transfer applied to the smokejet simulation of [Kim et al.,
2019a] (leftmost column). Stylized results are shown for our LNST
(top) and TNST (bottom) for semantic feature transfer net (second
column) and input images blue strokes, seated nude, and fire (last
three columns) [gfv, 2015; sti, 2018]. 96

5.12 Two colliding smoke jets, which are stylized individually with the
semantic feature net and input image spirals. The Lagrangian repre-
sentation enables coherent stylization of multiple fluids even if the
flow undergoes complex mixing. 96

5.13 Thin sheet SPH simulation computed with SPlisHSPlasH [Bender,
2016] stylized with the patterns spiral and diagonal. 97

5.14 Lagrangian color stylization applied to a 2D particle-based liquid
simulation using the input images Kanagawa Wave, Red Canna and
Starry Night. 98

5.15 Lagrangian color stylization applied to a mixed 2D particle-based
liquid simulation using the input images Kanagawa Wave and fire. . 98

6.1 Selected frames of the dissolving character example. Our network
takes as input an artist sketch at keyframes t0, t10, and t20, and com-
putes the corresponding 3D smoke fields. We compute in-between
frames t5 and t15 with an interpolation method based on Wasser-
stein barycenters. 99

6.2 Overview of the multi-pass/view training for sketch to density re-
construction. Our pipeline takes a single density field and gener-
ates corresponding sketches for the end-to-end training. At each
pass of the updater network, a pass loss Lp is computed on inter-
mediate results (orange dashed box) to match all target sketches. . 100

6.3 From two input sketches depicting the front and left views, we
compute the initial volume and then alternately refine front (f) and
left (l) view density reconstructions. 102

6.4 Steps of the initial volume modeling shown for the front (top) and
left (bottom) views. From left to right: input sketch, outline, bi-
nary, blended and smoothed volume (d̂0, and input to the updater
network). 103

6.5 The differentiable sketcher computes normals, contours and toon
shading (from left to right), and combines them into the final sketch
(right). 108

6.6 From the keyframes reconstructed from sketches (left and right),
we interpolate 5 intermediate frames with Wassertein barycenters
to generate the inbetween fluid animation, for the artist scene dis-
solving character and the cloudy puppy. 108

xxiii

List of Figures

6.7 Sketches are augmented to consider variations in sketching styles
to increase robustness of the reconstruction. 112

6.8 Validation result with front view of seen (top) and unseen (bottom)
examples of our dataset. From left to right: input sketch, sketch
of reconstructed density, density after front-left refinement, ground
truth density. 113

6.9 Result using two physics-based simulation datasets of [Kim et al.,
2019a] showing front and left views. From left to right: given den-
sity used for sketch generation, input sketch, sketch of the recon-
structed density, reconstructed density. 115

6.10 Front (top) and left (bottom) views of a selected example from the
Scalarflow dataset. From left to right: ScalarFlow density, input
sketch, reconstructed sketch and output density. 116

6.11 Results of three unseen and non-physical animation sequences:
dancing character (front view), clouds (front view), and running
puppy (side view). From left to right: input sketch, sketch of recon-
structed density, reconstructed density. 117

6.12 Our method can seamlessly handle progressive refinement from ar-
bitrary viewpoints despite training with canonical views only. The
top and bottom rows show the refined density fields and input
sketches, respectively. 118

6.13 Sketch inputs from three different artists (left) and reconstructed re-
sults (middle, right). From top to bottom: dissolving character (front
view), lion to rhino transform (side view), and bird (front view). . . . 119

6.14 Evaluation of loss functions. From left to right: density loss, sketch
loss, density+sketch losses, density+sketch+depth variation losses
(ours) . 120

6.15 Evaluation of recursive passes (during training) and inference se-
quence (at test time). We use 3 passes in practice. 123

6.16 Using sketch variations in the training improves robustness of the
reconstruction quality. We increased the brightness and reduced
the size of the contour of the sketch of the character example (top
row), and tested with the bird scene (bottom row). Left is the input,
middle column our results after training with sketch augmentation,
and right results without augmentation. 124

6.17 3D reconstructions computed with a model trained on our dataset
(top) and ScalarFlow (bottom), highlighting the importance of using
a well designed training dataset for generic application. 125

xxiv

List of Algorithms

1 Simulation with the Latent Space Integration Network 30
2 Multi-View Time-Coherent Smoke Stylization 65
3 Multi-Scale Density Reconstruction 92
4 Stabilized Sinkhorn Iterations. 110

xxv

List of Tables

3.1 Statistics for training datasets and our CNN. Note that simulation
excludes advection and is done on the CPU, while network eval-
uation is executed on the GPU with batch sizes noted in brackets.
In case of liquids, the conjugate gradient residual threshold is set
to 1e−3, while for smoke it is 1e−4. For the Rotating and Moving
Smoke scenes, the numbers for training time and network size in-
clude both the autoencoder and latent space integration networks.
* We optimize the network for subspace simulations rather than
the quality of reconstruction, so we do not take this number into
account when evaluating the maximal compression ratio. 52

4.1 Symbols, operators and configurable parameters. 59
4.2 Parameters and performance statistics. We used a constant multi-

scaling factor of 1.8, and the input size is firstly down-sampled to
61× 92× 61 and up-scaled to 111× 166× 111 and 200× 300× 200.
Computation time per frame includes all input scales. 72

5.1 Performance table. 94

6.1 Summary of the notation. 102

xxvi

C H A P T E R 1
Introduction

Fluid phenomena are ubiquitous to our world experience: winds swoosh-
ing through trembling leaves, turbulent water streams running down a
river, and cellular patterns generated from wrinkled flames are some few
examples. These complex phenomena capture our attention and awe due
to the beautifully materialized complex patterns and become crucial ele-
ments to artistically support storytelling. Thus, for the last 30 years, several
works [Stam, 1999; Müller et al., 2003; Zhu and Bridson, 2005] in Computer
Graphics have successfully focused on plausibly simulating flows in virtual
environments.

However, artistically manipulating animated flow structures is still a bur-
densome task. In movies, flow features often have to be precisely guided
to convey a dramatic effect or aesthetically compose a shot. Current work-
flow pipelines for controlling fluids are based on laborious hand-tuning of a
myriad of parameters, which usually require specific knowledge of the un-
derlying physics and algorithms used for numerical approximation. Due to
the complexity of the underlying mathematical model, achieving a specific
outcome can become counter-intuitive, and large-scale richly detailed fluid
simulations are computationally expensive. These factors lead to a tedious
and time-consuming artistic authoring process.

Meanwhile, machine learning techniques have become popular in recent
years due to numerous algorithmic advances and the accessibility of compu-
tational resources. These, in particular, made a considerable revolution in se-
mantic analysis [Simonyan and Zisserman, 2015] and generative tasks [Isola
et al., 2017]. Accordingly, they have been adopted for many applications in

1

Introduction

(a) (d)

(b) (c)

Figure 1.1: Target applications of this thesis. We provide a powerful deep generative
model spanning a vast subspace of fluids (a), physically-inspired neural flow
stylization for both Eulerian (b) and Lagrangian (c) fluid representations,
and the first sketch-to-density authoring tool (d).

Computer Graphics, such as generating terrains [Guérin et al., 2017], high-
resolution faces synthesis [Karras et al., 2018], imitating character’s acrobatic
dynamics [Peng et al., 2018], neural style transfer [Gatys et al., 2016a], video
synthesis from audio for lip sync [Suwajanakorn et al., 2017], and cloud ren-
dering [Kallweit et al., 2017]. In fluid simulation, machine learning tech-
niques have been used to replace [Ladický et al., 2015], speed up [Tompson
et al., 2019], or enhance existing solvers [Xie et al., 2018].

Hence, this thesis goal is to develop novel data-driven methods that sup-
port authoring fluid simulations. Thus, we developed tools to cope with
the challenges of performance and physical plausibility (Chapter 3), image-
based style transfer for volumetric grids (Chapter 4) and particle-based sim-
ulations (Chapter 5), and prototyping of simulations based on sketch inputs
provided by artists (Chapter 6). The ultimate goal of this thesis is to pro-
vide a framework in which artists can freely interact and manipulate fluid
simulations to achieve a desired style or to follow an input sketch, without
the burden of tuning a vast number of physical parameters or long waiting
times. In the following sections, we will further comment on the challenges
of data-driven and artistic authoring of fluid simulations.

2

1.1 Data-Driven Fluid Simulations

Figure 1.2: Limitation of existing flow stylization approaches. Patch-based texture syn-
thesis methods (left, [Jamriška et al., 2015]) allow appearance transfer (X1)
from a source texture (Z1

rgb) to a target mask (X1
a) in 2D only, and velocity

synthesis methods (right, [Sato et al., 2018a]) merely focus on enhancing
small-scale turbulence details.

1.1 Data-Driven Fluid Simulations

The constant interplay between artists and digital content requires tools to
change the scene setup iteratively, and computationally efficient simulations
are desired to avoid long waiting times. Efficiency is even more critical for
physically-based simulations in short animated TV productions, where sim-
ulated effects must be ready in instant time and at a low budget.

Given the amount of available fluid simulation data, data-driven approaches
have emerged as attractive solutions. Subspace solvers [Treuille et al.,
2006], fluid re-simulators [Kim and Delaney, 2013] and basis compressors
[Demby Jones et al., 2016] are examples of recent efforts in this direction.
However, these methods usually represent fluids using linear basis func-
tions, e.g., constructed via Singular Value Decomposition (SVD), which are
less efficient than their non-linear counterparts. Chapter 3 investigates deep
generative models implemented by convolutional neural networks (CNNs)
to show promise for representing data in reduced dimensions thanks to their
capability to tailor non-linear functions to input data.

1.2 Artistic Fluids Authoring

Flow Stylization Post-processing methods for fluids aim at enabling de-
tailed feature control by patch-based texture and velocity synthesis. While
current patch-based techniques focus on controlling structural patterns [Ma
et al., 2009; Jamriška et al., 2015], they are limited to 2D flows. Velocity syn-
thesis approaches allow augmentation of coarse simulations with turbulent

3

Introduction

Figure 1.3: Artist sketches of an explosion superimposed over time [Gilland, 2012]. To
the best of our knowledge, no existing method allows artists to construct 3D
smoke keyframes straight from 2D sketches.

structures [Kim et al., 2008b; Sato et al., 2018a], but cannot capture the full
spectrum of different styles and complex semantics. In Chapter 4 and Chap-
ter 5, we examine the power of the recent neural algorithm to support artistic
manipulations of flow data enabling multi-level control of flow features with
automatic instantiation of patterns.

Sketch-Based Keyframe Construction At the core of creative workflows,
digital artists start with concept sketches and a storyboard indicating the
motion [Gilland, 2012] and manually generate individual keyframes repre-
senting the fluid at specific time instances. They are often represented as
volumetric density fields [Pan and Manocha, 2016], but liquid surface in-
formation [Nielsen et al., 2011] and mesh boundaries [Raveendran et al.,
2012] have also been previously employed. Animations are then gener-
ated by either integrating the keyframes into a physics solver with arti-
ficial forces attracting the smoke to the target shape [Thürey et al., 2006;
Fattal and Lischinski, 2004; Shi and Yu, 2005b] or using gradient-based
optimization techniques such as the adjoint method [Treuille et al., 2003;
McNamara et al., 2004]. Reproducing these sketched keyframes as 3D den-
sity clouds that capture realistic flow details is highly non-trivial and re-
mains a manual and time-consuming process. To our knowledge, no method

4

1.3 Contributions

exists that generates 3D reconstructions of fluids from 2D artist sketches.
Thus, in Chapter 6, we study a data-guided approach to compute a 3D
smoke density field directly from a set of 2D artist sketches, bridging the gap
between early-stage prototyping of smoke keyframes and visual realization.

1.3 Contributions

In the following, we list the main contributions of the work presented in this
thesis:

• We present a novel generative model (Deep Fluids) to synthesize fluid sim-
ulations from a set of reduced parameters. A convolutional neural
network is trained on a collection of discrete, parameterizable fluid
simulation velocity fields. Due to the capability of deep learning
architectures to learn representative features of the data, our gener-
ative model is able to accurately approximate the training dataset,
while providing plausible interpolated in-betweens. The proposed
generative model is optimized for fluids by a novel loss function
that guarantees divergence-free velocity fields at all times. In addi-
tion, we demonstrate that we can handle complex parameterizations
in reduced spaces, and advance simulations in time by integrating
in the latent space with a second network. Our method models
a wide variety of fluid behaviors, thus enabling applications such
as fast construction of simulations, interpolation of fluids with dif-
ferent parameters, time re-sampling, latent space simulations, and
compression of fluid simulation data. Reconstructed velocity fields
are generated up to 700× faster than re-simulating the data with the
underlying CPU solver, while achieving compression rates of up to
1300×.

• We propose the first Transport-based Neural Style Transfer (TNST) algo-
rithm for volumetric smoke data. Our method is able to transfer fea-
tures from natural images to smoke simulations, enabling general
content-aware manipulations ranging from simple patterns to intri-
cate motifs. The proposed algorithm is physically inspired, since
it computes the density transport from a source input smoke to a
desired target configuration. Our transport-based approach allows
direct control over the divergence of the stylization velocity field
by optimizing incompressible and irrotational potentials that trans-
port smoke towards stylization. Temporal consistency is ensured by
transporting and aligning subsequent stylized velocities, and 3D re-

5

Introduction

constructions are computed by seamlessly merging stylizations from
different camera viewpoints.

• We present a Neural Style Transfer approach from images to 3D fluids
formulated in a Lagrangian viewpoint (LNST). Using particles for style
transfer has unique benefits compared to grid-based techniques. At-
tributes are stored on the particles and hence are trivially trans-
ported by the particle motion. This intrinsically ensures tempo-
ral consistency of the optimized stylized structure and notably im-
proves the resulting quality. Simultaneously, the expensive, recur-
sive alignment of stylization velocity fields of grid approaches is un-
necessary, reducing the computation time to less than an hour and
rendering neural flow stylization practical in production settings.
Moreover, the Lagrangian representation improves artistic control
as it allows for multi-fluid stylization and consistent color transfer
from images, and the generality of the method enables stylization of
smoke and liquids likewise.

• We present the first method to compute a 3D smoke density field di-
rectly from 2D artist sketches, bridging the gap between early stage
prototyping of smoke keyframes and visual realization. From the
sketch inputs, we compute an initial volume estimate, and refine
the density iteratively with a convolutional neural network. Our
differentiable sketcher is embedded into the end-to-end training,
which results in robust reconstructions. Our training dataset and
sketch augmentation strategy is designed such that it enables gen-
eral applicability. To compute an animated sequence, we interpolate
between a pair of reconstructed density keyframes using Wasser-
stein barycenters. We evaluate the method on synthetic inputs and
sketches from artist depicting highly non-physical smoke shapes
and motion.

1.4 Publications

This thesis is based on the following peer-reviewed conference publications:

• B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, B. Solenthaler,
Deep Fluids: A Generative Network for Parameterized Fluid Sim-
ulations, Computer Graphics Forum (Proceedings of Eurographics 2019),
38(2), May. 2019.

• B. Kim, V. C. Azevedo, M. Gross, B. Solenthaler, Transport-Based

6

1.4 Publications

Neural Style Transfer for Smoke Simulations, ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia 2019), 38(6), Nov. 2019.

• B. Kim, V. C. Azevedo, M. Gross, B. Solenthaler, Lagrangian Neural
Style Transfer for Fluids, ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2020), 39(4), Jul. 2020.

This thesis is also based on the following submitted publication:

• X. Huang, G. Cordonnier, B. Kim, V. C. Azevedo, M. Gross, B. So-
lenthaler, Deep Reconstruction of 3D Smoke Densities from Artist
Sketches, submitted to SIGGRAPH Asia 2020.

This thesis includes the contents of all above papers as well as additional
implementation and evaluation details not present in the papers.

During the course of this thesis, the following peer-reviewed papers were
published, which are not part of this thesis:

• B. Kim, O. Wang, A. C. Öztireli, M. Gross, Semantic Segmentation
for Line Drawing Vectorization Using Neural Networks, Computer
Graphics Forum (Proc. Eurographics 2018), 37(2), Apr. 2018.

• B. Kim and T. Günther, Robust Reference Frame Extraction from
Unsteady 2D Vector Fields with Convolutional Neural Networks,
Computer Graphics Forum (Proc. EuroVis 2019), 38(3), June. 2019.

• F. Christen, B. Kim, V. C. Azevedo, B. Solenthaler, Neural Smoke
Stylization with Color Transfer, Eurographics 2020 Short Paper, May.
2020.

• S. Biland, V. C. Azevedo, B. Kim, B. Solenthaler, Frequency-Aware
Reconstruction of Fluid Simulations with Generative Networks,
Eurographics 2020 Short Paper, May. 2020.

• S. Wiewel, B. Kim, V. C. Azevedo, B. Solenthaler, N. Thuerey, Latent
Space Subdivision: Stable and Controllable Time Predictions for
Fluid Flow, Computer Graphics Forum (Proc. SCA 2020), 39(8), Nov.
2020.

• S. L. Charreyron, Q. Boehler, B. Kim, C. Weibel, C. Chautems, B. J.
Nelson, Modeling Electromagnetic Navigation Systems, submitted
to IEEE Transaction on Robotics.

7

Introduction

8

C H A P T E R 2
Related Works

We categorize the related works relevant to this thesis in four categories.
Firstly, we briefly introduce and review fluid simulations works in Com-
puter Graphics field over the last 30 years distinguishing between Eulerian,
Lagrangian, and hybrid discretizations. Then, recent works that apply ma-
chine learning for fluids will be discussed, followed by a study of artistically
controlling fluid simulations. Lastly, recent deep-learning based stylization
approaches are analyzed.

2.1 Fluid Simulation for Computer Graphics

2.1.1 Eulerian Fluids

Incompressible fluids are traditionally simulated by solving the Navier-
Stokes (NS) equations [Stokes, 1845], which relate momentum

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + µ∇2u + f (2.1)

and mass conservation
∇ · u = 0 (2.2)

equations, where u and p are the fluid velocity and pressure with uniform
density ρ, and f represents external forces. The viscosity µ∇2u is usually
omitted, since simulations for visual effects commonly rely on numerical
dissipation instead.

9

Related Works

Figure 2.1: Types of different grids. (a) regular structured grid, (b) unstructured grid,
(c) non-regular structured grid. (Image courtesy: [Azevedo and Oliveira,
2013])

Equations 2.1 and 2.2 are numerically evaluated by discretizing both space
and time. One of the approaches for space discretization is to adopt an Eu-
lerian viewpoint: all variables are stored in fixed locations, forming a grid,
which can be organized in a structured or unstructured fashion (Figure 2.1).
This discretization results in several fields such as density ρ, temperature T,
level set φ, velocity u, pressure p, vorticity ω, and stream function Ψ. Some
of these fields are illustrated in Figure 2.2.

density velocity pressure stream function

Figure 2.2: Examples of various 2D fluid field outputs. Velocity is directly mapped to
red-green color space after normalization with a fixed blue color value (0.5),
and stream function is illustrated by magnitude.

A common approach to solve the NS equations in Computer Graphics is to
employ the fractional step method [Chorin, 1969; Témam, 1969]: the mo-
mentum equations are first partially solved for external forces and advec-
tion, which is then followed by the computation of a pressure field that en-
forces incompressibility [Chorin, 1967]. The advection and force integration
steps are calculated by

u∗ = u + ∆t
∂u
∂t

,
∂u
∂t

= −(u · ∇)u + f (2.3)

10

2.1 Fluid Simulation for Computer Graphics

where u∗ is the intermediate velocity field obtained after the integration of
external forces and advection.

The first 3D liquid simulation is introduced by [Foster and Metaxas, 1996]
with staggered grids [Harlow and Welch, 1965]; however, their explicit in-
tegration scheme is inherently unstable with a big time-step and readily
caused a performance issue. Thus, Semi-Lagrangian advection with implicit
Poisson solver was proposed in [Stam, 1999] for unconditionally stable sim-
ulations of fluids. However, it shows severe numerical dissipation due to its
first-order integration scheme. Fedkiw et al. [2001] proposed a new model
to tackle this shortcoming by applying vorticity confinement [Steinhoff and
Underhill, 1994] from the CFD field. Several methods were followed for the
same purpose, such as vortex particle [Selle et al., 2005], Back and Forth Er-
ror Compensation and Correction (BFECC) [Kim et al., 2005], MacCormack
scheme [Selle et al., 2008] and Unsplit Semi-Lagrangian Constrained Inter-
polation Profile (USCIP) [Kim et al., 2008a].

The divergence-free velocity field u′ (i.e.,∇ · u′ = 0) for the next time step is
obtained by firstly solving the following Poisson equation with a time step
∆t

1
ρ

∆t∇2p = ∇ · u∗, (2.4)

to get a pressure field p in order to update the intermediate velocity field u∗

by

u′ = u∗ − 1
ρ

∆t∇p. (2.5)

Additionally, the corresponding stream function and vorticity [Ando et al.,
2015a] are defined as

u = ∇×Ψ,
ω = ∇× u = ∇× (∇×Ψ).

(2.6)

Note that ∇ · (∇ × Ψ) = 0 by construction, and this property will be ex-
plored in Section 3.2.3.

In a smoke simulation [Fedkiw et al., 2001], we assume that both density and
temperature, two scalar fields, are passively advected by the fluid velocity
as

∂ρ

∂t
= −(u · ∇)ρ,

∂T
∂t

= −(u · ∇)T.
(2.7)

11

Related Works

However, both fields reciprocally affect the fluid velocity back in the form of
a buoyancy force defined as

fbuoyancy,z = −αρ + β(T − Tamb), (2.8)

where α and β are positive weights for density and temperature, respec-
tively, and Tamp is ambient temperature.

For liquid simulation, a level set method [Osher and Sethian, 1988] is tra-
ditionally used for representing the surface of the liquid. A level set φ is
an implicit function where the liquid surface is represented as a φ(x) = 0
iso-contour, and it is during simulation advected as other continuums like
density field. Note that the velocity field is usually extrapolated from a level
set into the air region for the smoother motion of the liquid surface [Enright
et al., 2002] by

∂u
∂t

= −n · ∇u, (2.9)

where n is a unit normal vector∇φ/|∇φ| orthogonal to the liquid interface.
For a broad overview of fluid simulation for computer graphics, we refer to
the textbook of Bridson [2015].

2.1.2 Lagrangian Fluids

Complementary to the Eulerian viewpoint, Lagrangian methods discretize
fluids equations by particle systems which move with the underlying ve-
locity field. Smoothed Particle Hydrodynamics (SPH) [Lucy, 1977; Gin-
gold and Monaghan, 1977] offer a framework to evaluate continuous func-
tions in discrete particles systems, and they have been employed to a myr-
iad of problems, ranging from astrophysics [Monaghan, 1992], computa-
tional fluid dynamics [Monaghan, 1994] to solid mechanics [Libersky and
Petschek, 2008]. Since the introduction of SPH to computer graphics [Des-
brun and Gascuel, 1996; Müller et al., 2003], various extensions have been
presented that made it possible to efficiently simulate millions of particles
on a single desktop computer. Accordingly, particle methods reached an
unprecedented level of visual quality, where fine-scale surface effects and
flow details are reliably captured. To enforce incompressibility, the original
state equation based method [Monaghan, 2005; Becker and Teschner, 2007]
has been replaced by pressure Poisson equation (PPE) solvers using either
a single source term for density invariance [Solenthaler and Pajarola, 2009;
Ihmsen et al., 2014] or two PPEs to additionally account for divergence-free
velocities [Bender and Koschier, 2015]. Solvers closely related to PPE have
been presented, such as Local Poisson SPH [He et al., 2012], Constraint Flu-
ids [Bodin et al., 2012] and Position-based Fluids [Macklin and Müller, 2013].

12

2.1 Fluid Simulation for Computer Graphics

Boundary handling is computed with particle-based approaches that sam-
ple boundary geometry (e.g. [Gissler et al., 2019]) or implicit methods that
typically use a signed distance field (e.g. [Koschier and Bender, 2017]). Ex-
tensions include highly viscous fluids (e.g. [Peer et al., 2015]), and multiple
phases and fluid mixing (e.g. [Ren et al., 2014]). An overview of recent de-
velopments in SPH can be found in the course notes of Koschier et al. [2019].

2.1.3 Hybrid Lagrangian-Eulerian Fluids

Hybrid Lagrangian-Eulerian Fluids combine the versatility of the particles
representation to track transported quantities with the capacity of grids to
enforce incompressibility. Among popular approaches, the Fluid Implicit
Particle Method (FLIP) [Brackbill et al., 1988] was first employed in graph-
ics to animate sand and water [Zhu and Bridson, 2005]. Due to its ability
to accurately capture sub-grid details it has been widely adopted for liq-
uid simulations, being extended to animation of turbulent water [Kim et al.,
2006a], coupled with SPH for modelling small scale splashes [Losasso et al.,
2008], improved for efficiency [Ando et al., 2013; Ferstl et al., 2016], used in
fluid control [Pan et al., 2013], and enhanced with better particle distribu-
tion [Ando and Tsuruno, 2011; Um et al., 2014]. The Material Point Method
(MPM) [Stomakhin et al., 2013] was used to simulate a wide class of solid
materials [Jiang et al., 2016]. Recent work on hybrid approaches extended
the information tracked by the particles by affine [Jiang et al., 2015] and poly-
nomial [Fu et al., 2017] transformations. For a thorough discussion of hybrid
continuum models, we refer to Hu et al. [2019c].

2.1.4 Reduced-Order Methods for Fluids

Subspace solvers aim to accelerate simulations by discovering simplified
representations. In engineering, these techniques go back decades [Lum-
ley, 1967], but were introduced to fluid simulation in computer graphics by
[Treuille et al., 2006] and [Gupta and Narasimhan, 2007]. Since then, im-
provements have been made to make them controllable [Barbı̌ and Popovı́,
2008], modular [Wicke et al., 2009], spectral [Long and Reinhard, 2009], con-
sistent with widely-used integrators (e.g., Semi-Lagrangian, MacCormack)
[Kim and Delaney, 2013], more energy-preserving [Liu et al., 2015] and
memory-efficient [Demby Jones et al., 2016]. A related ”Laplacian Eigen-
functions” approach [De Witt et al., 2012] has also been introduced and re-
fined [Gerszewski et al., 2015], removing the need for snapshot training data

13

Related Works

when computing the linear subspace. Recently, the original Laplacian Eigen-
function method is improved for the scalability in [Cui et al., 2018].

2.2 Machine Learning for Fluids

Combining fluid solvers with machine learning techniques was first demon-
strated by [Ladický et al., 2015]. By employing Regression Forests to ap-
proximate the Navier-Stokes equations on a Lagrangian system, particle po-
sitions and velocities were predicted with respect to input parameters for
a next time step. Regression Forests are highly efficient, but require hand-
crafted features that lack the generality and abstraction power of CNNs.

An LSTM-based method for predicting changes of the pressure field for mul-
tiple subsequent time steps has been presented by [Wiewel et al., 2019], re-
sulting in significant speed-ups of the pressure solver. [Morton et al., 2018]
also proposed a CNN-based approach for flow dimension reduction but
time advancement in an approximation of Koopman subspace. For a single
time step, a CNN-based pressure projection was likewise proposed [Tomp-
son et al., 2019; Yang et al., 2016]. These models only replace the pressure
projection stage of the solver, and hence are specifically designed to acceler-
ate the enforcement of divergence-freeness.

To visually enhance low resolution simulations, [Chu and Thuerey, 2017]
synthesized smoke details by looking up pre-computed patches using CNN-
based descriptors, while [Xie et al., 2018] proposed a GAN for super resolu-
tion smoke flows in a temporally coherent way. Other works enhance FLIP
simulations with a learned splash model [Um et al., 2018], while the defor-
mation learning proposed by [Prantl et al., 2019].

Lattice-Boltzmann steady-state flow solutions are recovered by CNN surro-
gates using signed distance functions as input boundary conditions in [Guo
et al., 2016]. [Farimani et al., 2017] use Generative Adversarial Networks
(GANs) [Goodfellow et al., 2014] to train steady state heat conduction and
steady incompressible flow solvers. Their method is only demonstrated in
2D and the interpolation capabilities of their architecture are not explored.
For both methods, the simulation input is a set of parameterized initial con-
ditions defined over a spatial grid, and the output is a single steady state
solution.

Recently, [Umetani and Bickel, 2018] developed a data-driven technique
to predict fluid flows around bodies for interactive shape design, while
Ma et al. [2018] have demonstrated deep learning based fluid interac-
tions with rigid bodies. Differentiable fluid solvers [Schenck and Fox, 2018;

14

2.3 Artistic Control of Fluids

Hu et al., 2019b; Hu et al., 2019a; Holl et al., 2020] have been introduced that
can be automatically coupled with deep learning architectures and provide
a natural interface for image-based applications.

2.3 Artistic Control of Fluids

In visual effects production, physics-based simulations are not only used to
realistically re-create natural phenomena, but also as a tool to convey sto-
ries and trigger emotions. Hence, artistically controlling the shape, motion
and the appearance of simulations is essential for providing directability for
physics. Specifically to fluids, the major challenge is the non-linearity of the
underlying fluid motion equations, which makes optimizations towards a
desired target difficult.

2.3.1 Patch-Based Appearance Transfer

Patch-based appearance transfer methods compute similarities between
source and target datasets in local neighborhoods, modifying the appear-
ance of the source by transferring best-matched features from the target
dataset. Kwatra et al. [2005] employ local similarity measures in an energy-
based optimization, enabling texture patches animated by flow fields. This
approach was further extended to liquid surfaces [Kwatra et al., 2006;
Bargteil et al., 2006], and improved by modifying the texture based on vi-
sually salient features of the liquid mesh [Narain et al., 2007].

Jamriška et al. [2015] improved previous work with better temporal co-
herency and matching precision for obtaining high-quality 2D textured flu-
ids. Texturing liquid simulations was also implemented in a Lagrangian
framework by using individually tracked surface patches [Yu et al., 2011;
Gagnon et al., 2016; Gagnon et al., 2019].

Image and video-based approaches also take inspiration from fluid trans-
port. Bousseau et al. [2007] proposed a bidirectional advection scheme to
reduce patch distortions. Regenerative morphing and image melding tech-
niques were combined with patch-based tracking to produce in-betweens
for artist-stylized keyframes [Browning et al., 2014].

Recent advances in patch-based appearance transfer often rely on evaluat-
ing the underlying 3D geometric information; examples include improving
template matching by a novel similarity measure [Talmi et al., 2017], patch

15

Related Works

matching for illumination effects [Fišer et al., 2016], extensions to texture
mapping [Bi et al., 2017] and intricate texture motifs [Diamanti et al., 2015].

While these approaches were successful in 2D settings and for texturing liq-
uids, they cannot inherently support 3D volumetric data. For a broad discus-
sion of patch-based texture synthesis works we refer to [Barnes and Zhang,
2017].

2.3.2 Velocity Synthesis

Velocity synthesis methods augment flow simulations with velocity fields,
which manipulate or enhance volumetric data. Due to the inability of
pressure-velocity formulations to properly conserve different energy scales
of flow phenomena, sub-grid turbulence [Kim et al., 2008b; Schechter and
Bridson, 2008; Narain et al., 2008] was modelled for better energy conser-
vation. These approaches were extended to model turbulence in the wake
of solid boundaries [Pfaff et al., 2009], liquid surfaces [Kim et al., 2013] and
example-based turbulence synthesis [Sato et al., 2018a].

In order to merge fluids of different simulation instances [Raveendran et al.,
2014; Thuerey, 2016] or separated by void regions [Sato et al., 2018a], velocity
fields were synthesized by solving an unconstrained energy minimization
problem. Ma et al. [2009] synthesized velocity fields with example-based
textures for artistic manipulations, but their method is limited to simple 2D
patterns.

2.3.3 Fluid Control

Fluid control aims to define the overall shape and behavior through user-
specified keyframes or reference images. Optimal [Treuille et al., 2003;
McNamara et al., 2004] and proportional-derivative [Fattal and Lischinski,
2004; Shi and Yu, 2005a; Yang et al., 2013] controllers define a set of forces
that guide fluid simulation states to desired configurations. These meth-
ods were extended to match simulations from different resolutions [Nielsen
et al., 2009], geometric potentials [Hong and Kim, 2004] and radial ba-
sis functions [Pighin et al., 2004], path-based control [Kim et al., 2006b],
guide fluids [Rasmussen et al., 2004; Shi and Yu, 2005b; Thürey et al., 2006;
Nielsen and Christensen, 2010; Nielsen et al., 2011], Lagrangian coherent
structures [Yuan et al., 2011], volume-preserving morphing [Raveendran et
al., 2012], improve performance [Pan and Manocha, 2016], and model more

16

2.4 Neural Stylization

accurate boundary conditions while distinguishing low and high frequen-
cies [Inglis et al., 2017].

However, due to the inherent high dimensionality of the configuration space
of fluid solvers, these methods are still computationally challenging, making
detailed fluid control hard to achieve. Additionally, they require the specifi-
cation of target shapes for control, and automatic stylization of fluid features
is not possible.

Guided simulation control can also be used to reconstruct target smoke
images. Okabe et al. [2015] proposed an appearance transfer method for
image-based 3D reconstruction of smoke volumes, while Eckert et al. [2018]
utilized proximal operators to reconstruct both the fluid density and motion
from single or multiple views.

Optimal controllers were also used to interpolate between distinct simula-
tions [Sato et al., 2018b] and to compute graph-cuts for fluid carving [Flynn
et al., 2019]. Feature-based control was applied by Manteaux et al. [2016] for
interactive editing and sculpting of pre-computed liquid animations. Space-
time features are extracted from surface meshes that enable consistent ma-
nipulations. Smoke editing was achieved by deforming the underlying sim-
ulation grid [Pan and Manocha, 2017]. Mihalef et al. [2004] presented an ap-
proach to control the shape and timing of breaking waves. Vorticity formula-
tions were used to control vortex filaments and rings [Angelidis et al., 2006;
Weißmann and Pinkall, 2010]. Smoke simulations were directly modified in
the spectral domain [Ren et al., 2013] for appearance control.

2.4 Neural Stylization

2.4.1 Neural Style Transfer

Neural style transfer is the process of rendering image content in different
styles by exploring CNNs. The seminal work of Gatys et al. [2016b] was
the first to transfer painting styles to natural images. Their model relies on
extracting the content of an image by measuring filter responses of a pre-
trained CNN, while modelling the style as summary feature statistics. The
network’s filter responses decompose the image complexity into multiple
levels, ranging from low-level features to high-level semantics. Given a tar-
get style, NST approaches optimize CNN feature distributions of a source
image style, while keeping its original content. Ruder et al. [2018] imple-
mented style transfer for video sequences, addressing temporal coherency

17

Related Works

issues due to occluded regions and long term correspondences, while Mord-
vintsev et al. [2018] discuss the impact of different choices of image param-
eterizations for NST. For a detailed review of NST methods we refer to [Jing
et al., 2019].

2.4.2 Differentiable Rendering

Differentiable rendering allows the computation of derivatives of image pix-
els with respect to the variables used for rendering the image, e.g., vertex po-
sitions, normals, colors, camera parameters, etc. These derivatives are cru-
cial to optimization, inverse problems and deep learning backpropagation.
Loper and Black [2014] proposed the first raster-based fully differentiable
rendering engine with automatically computed derivatives. Anisotropic
probing kernels were used to project 3D volumetric data similarly to x-ray
scans [Qi et al., 2016]. Tulsiani et al. [2017] used a differentiable ray consis-
tency approach to leverage different types of multi-view observations which
can vary from depth and color to foreground masks and normals. Differen-
tiable volume sampling was implemented by Yan et al. [2016] to obtain 2D
silhouettes from 3D volumes, adopting a similar sampling strategy as spa-
tial transformer networks [Jaderberg et al., 2015]. Kato et al. [2018] and
Liu et al. [2018b] proposed a raster-based differential rendering for meshes
with approximate and analytic derivatives, respectively. A cubic stylization
algorithm [Liu and Jacobson, 2019] was implemented by minimizing a con-
strained energy formulation and employed to mesh stylization. Recently,
there is a growing interest on differentiable ray marching. Li et al. [2018c]
introduces the first general-purpose differentiable ray tracer by removing
discontinuities that appear when including visibility terms by directly sam-
pling Dirac delta functions, while a differentiable path-tracer for inverse vol-
umetric rendering with joint estimation of geometry was proposed by Veli-
nov et al. [2018]. [Lombardi et al., 2019] implemented a differentiable ray
marcher to take input images to transform into a 3D volume structure with
a novel Autoencoder trained in an end-to-end manner. Recently, [Nimier-
David et al., 2019] proposed a multi-purposed rendering system - Mitsuba 2 -
allowing automatic differentiation for the inverse problem. For an overview
on differentiable rendering, we refer to Yifan et al. [2019].

2.4.3 Deep Sketch-Based 3D Reconstruction

We focus our discussion on deep learning based 3D modeling from sketches.
For a more general overview of sketch-based systems we refer the interested

18

2.4 Neural Stylization

reader to the course notes of Cordier et al. [2016]. For geometric shape mod-
eling, Convolutional Neural Networks (CNN) were used to build a direct
mapping from sketches to parametric 3D shape models [Huang et al., 2017;
Nishida et al., 2016], mostly restricted to pre-defined object classes and fixed
viewpoints. Delanoy et al. [2018] trained a CNN to predict occupancy in
a voxel grid based on a single or multiple contour drawings as input. The
method first generates an initial reconstruction with a single-view network,
and then uses a so called updater network to iteratively refine the predic-
tion as new drawings from additional views are provided. Li et al. [2018a]
uses a CNN to infer the depth and normal maps representing the surface of
an object. To reduce ambuigity, the network additionally considers the flow
field of the surface to generate a confidence map. The input to the network
consist of sketches, silhouette mask, and optional depth sample points and
curvature hints. Depth and normal maps were also used to reconstruct a
dense point cloud from sketches [Lun et al., 2018]. The decoder captures
the object’s surface from several viewpoints, which are then fused into a sin-
gle 3D point cloud through optimization. A deep learning based sketching
system has also been used for 3D face and caricature modeling [Han et al.,
2017]. 2D lines representing the contours of facial features represent the in-
put to a CNN. An initial sketching mode is followed by sketch and gesture
based refinement steps. Deep learning was also used for an interactive mod-
eling tool of 3D hair from 2D sketches [Shen et al., 2020]. Hair contour and a
few strokes indicating the hair growing direction are used by a first network
to generate a 2D hair orientation field, which is then processed by a second
network to output a 3D vector field. For sketch-based garment design, a
joint latent shape space is learnt across different modalities representing the
draped garment, body shape parameters and garment parameters [Wang et
al., 2019]. To our knowledge, no method exists that generates 3D reconstruc-
tions of fluids from 2D artist sketches. Sketches have only been used in form
of strokes on selected keyframes to control the motion of liquids [Pan et al.,
2013]. Local editing is computed with an efficient optimization and then
propagated spatially and temporally. Sketched strokes were also used in
interactive environments to define shapes and connections of fluid circuits
primarily applied in medicine [Zhu et al., 2011] and for 2D flow field design
using a generative adversarial network [Hu et al., 2019c].

19

Related Works

20

C H A P T E R 3
Deep Generative Model for Fluid
Simulations

This chapter is based on the following publication by [Kim et al., 2019b] in
collaboration with Technical University of Munich and Pixar:

B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, B. Solenthaler, Deep
Fluids: A Generative Network for Parameterized Fluid Simulations, Com-
puter Graphics Forum (Proceedings of Eurographics 2019), 38(2), May. 2019.

The supplemental video can be found here: https://www.youtube.com/
watch?v=hSDzOZ9IO8U.

Reconstruction Latent Space Sim.Interpolation

Input Parameters

source position
inflow speed

…
time Generative Fluid CNN

Simulation Data

Figure 3.1: Our generative neural network synthesizes fluid velocities continuously in
space and time, using a set of input simulations for training and a few pa-
rameters for generation. This enables fast reconstruction of velocities, con-
tinuous interpolation and latent space simulations.

21

https://www.youtube.com/watch?v=hSDzOZ9IO8U
https://www.youtube.com/watch?v=hSDzOZ9IO8U

Deep Generative Model for Fluid Simulations

Figure 3.2: Ground truth (left) and the CNN-reconstructed results (right) for nine
sample simulations with varying buoyancy (rows) and inflow velocity
(columns). Despite the varying dynamics of the ground truth simulations,
our trained model closely reconstructs the reference data.

3.1 Overview

In this chapter, we propose the first generative neural network that fully con-
structs dynamic Eulerian fluid simulation velocities from a set of reduced
parameters. Given a set of discrete, parameterizable simulation examples,
our deep learning architecture generates velocity fields that are incompress-
ible by construction. In contrast to previous subspace methods [Kim and De-
laney, 2013], our network achieves a wide variety of fluid behaviors, ranging
from turbulent smoke to gooey liquids (Figure 3.1).

The Deep Fluids CNN enhances the state of the art of reduced-order meth-
ods (ROMs) in four ways: efficient evaluation time, a natural non-linear
representation for interpolation, data compression capability and a novel
approach for latent space simulations. Our CNN can generate a full veloc-
ity field in constant time, contrasting with previous approaches which are
only efficient for sparse reconstructions [Treuille et al., 2006]. Thanks to its
700× speed-ups compared to regular simulations, our approach is partic-
ularly suitable for animating physical phenomena in real-time applications
such as games, VR and surgery simulators.

Our method is not only capable of accurately and efficiently recovering
learned fluid states, but also generates plausible velocity fields for input
parameters that have no direct correspondence in the training data. This
is possible due to the inherent capability of deep learning architectures to
learn representative features of the data. Having a smooth velocity field re-
construction when continuously exploring the parameter space enables var-
ious applications that are particularly useful for the prototyping of expen-
sive fluid simulations: fast construction of simulations, interpolation of flu-

22

3.2 A Generative Model For Fluids

Figure 3.3: Different snapshots showing the advected densities for varying smoke source
parameters. The top and bottom rows show the variation of the initial posi-
tion source and width, respectively.

ids with different parameters, and time re-sampling. To handle applications
with extended parameterizations such as the moving smoke scene shown in
Section 3.4.2, we couple an encoder architecture with a latent space integra-
tion network. This allows us to advance a simulation in time by generating
a sequence of suitable latent codes.

Additionally, the proposed architecture works as a powerful compression
algorithm for velocity fields with compression rates of up to 1300× that out-
perform previous work [Demby Jones et al., 2016] by two orders of magni-
tude.

3.2 A Generative Model For Fluids

3.2.1 Challenges

The basis functions used by traditionally reduced-order methods are all lin-
ear however, and various methods are then used to coerce the state of the
system onto some non-linear manifold. Exploring the use of non-linear
functions, as we do here, is a natural evolution. One well-known limita-
tion of reduced-order methods is their inability to simulate liquids because
the non-linearity of the liquid interface causes the subspace dimensional-
ity to explode. For example, in solid-fluid coupling, usually the fluid is
computed directly while only the solid uses the reduced model [Lu et al.,
2016]. Graph-based methods for pre-computing liquid motions [Stanton,
2014] have had some success, but only under severe constraints, e.g., the

23

Deep Generative Model for Fluid Simulations

user viewpoint must be fixed. A reduced-order model with surface-aware
basis for liquid simulation is sought in [Ando et al., 2015b]; however, it re-
quires the re-computation of the distance function to surface and modified
Poisson problem every step. In contrast, we show that the non-linearity of a
CNN-based approach allows it to be applied to liquids without any special
design as well as smokes.

3.2.2 CNN Models for Fluids

For a given set of simulated fluid examples, our goal is to train a CNN that
approximates the original velocity field dataset. By minimizing loss func-
tions with subsequent convolutions applied to its input, CNNs organize the
data manifold into shift-invariant feature maps.

Numerical fluid solvers work by advancing a set of fully specified initial
conditions. By focusing on scenes that are initially parameterizable by a
handful of variables, such as the position of a smoke source, we are able
to generate samples for a chosen class of simulations. Thus, the inputs for
our method are parameterizable datasets, and we demonstrate that accurate
generative networks can be trained in a supervised way.

3.2.3 Loss Function for Velocity Reconstruction

The network’s input is characterized by a pair [uc, c], where uc ∈
RH×W×D×Vdim is a single velocity vector field frame in Vdim dimensions (i.e.
Vdim = 2 for 2D and Vdim = 3 for 3D) with height H, width W and depth D
(1 for 2D), generated using the solver’s parameters c = [c1, c2, ..., cn] ∈ Rn.
For the 2D example in Figure 3.3, c is the combination of x-position and
width of the smoke source, and the current time of the frame. Due to
the inherent non-linear nature of the Navier-Stokes equations, these three
parameters (i.e. position, width, and time) yield a vastly different set of
velocity outputs.

For fitting fluid samples, our network uses velocity-parameter pairs and up-
dates its internal weights by minimizing a loss function. This process is re-
peated by random batches until the network minimizes a loss function over
all the training data. While previous works have proposed loss functions for
natural images, e.g., Lp norms, MS-SSIM [Zhao et al., 2016], and perceptual
losses [Johnson et al., 2016; Ledig et al., 2017], accurate reconstructions of ve-
locity fields have not been investigated. For fluid dynamics, it is especially

24

3.2 A Generative Model For Fluids

Figure 3.4: Comparison between reconstructing with L1 only (left) and L1 and deriva-
tives (right)

important to ensure conservation of mass, i.e., to ensure divergence-free mo-
tion for incompressible flows. We therefore propose a novel stream function
based loss function defined as

LG(c) = ||uc −∇× G(c)||1. (3.1)

G(c) : Rn 7→ RH×W×D×Gdim is the network output and uc is a simulation
sample from the training data. The curl of the model output is the recon-
struction target, and it is guaranteed to be divergence-free by construction, as
∇ · (∇× G(c)) = 0. Thus, G(c) implicitly learns to approximate a stream
function Ψc (i.e. Gdim = 1 for 2D and Gdim = 3 for 3D) that corresponds to a
velocity sample uc.

While this formulation is highly suitable for incompressible flows, regions
with partially divergent motion, such as extrapolated velocities around the
free surface of a liquid, are better approximated with a direct velocity in-
ference. For such cases, we remove the curl term from Equation (3.1), and
instead use

LG(c) = ||uc − G(c)||1 (3.2)

where the output of G represents a velocity field with G(c) : Rn 7→
RH×W×D×Vdim .

In both cases, simply minimizing the L1 distance of a high-order function ap-
proximation to its original counterpart does not guarantee that their deriva-
tives will match. Consider the example shown in the Figure 3.4: given a
function (black line, gray circles), two approximations (red line, left image;
blue line, right image) of it with the same average L1 distances are shown.
In the left image, derivatives do not match, producing a jaggy reconstructed
behavior; in the right image, both values and derivatives of the L1 distance
are minimized, resulting in matching derivatives. With a sufficiently smooth

25

Deep Generative Model for Fluid Simulations

𝐜

P
ro

je
ct

 &
 R

e
sh

ap
e

BB × 𝑞

C
o

n
v

k3
s1

n
1

2
8

LR
eL

U

SB ×𝑵

C
o

n
v

k3
s1

n
D

ෝ𝒖𝒄

(𝛁 ×)
+ x2

Figure 3.5: Architecture of the proposed generative model, subdivided into small (SB)
and big blocks (BB). Small blocks are composed of flat convolutions followed
by a LReLU activation function. Big blocks are composed of sets of small
blocks, an additive skip-connection and an upsampling operation. The out-
put of the last layer has D channels (Gdim for incompressible velocity fields,
Vdim otherwise) corresponding to the simulation dimension.

dataset, high-frequency features of the CNN are in the null space of the L1
distance minimization and noise may occur as shown in Figure 3.32.

Thus, we augment our loss function to also minimize the difference of
the velocity field jacobians. The velocity jacobian ∇ : RH×W×D×Vdim 7→
RH×W×D×(Vdim)2

is a second-order tensor that encodes vorticity, shearing
and divergence information. Similar techniques, as image gradient differ-
ence loss [Mathieu et al., 2016], have been employed for improving frame
prediction on video sequences. However, to our knowledge, this is the first
architecture to employ jacobian information to improve velocity field data.
Our resulting loss function is defined as

LG(c) = λu||uc − ûc||1 + λ∇u||∇uc −∇ûc||1, (3.3)

where ûc = ∇ × G(c) for incompressible flows and ûc = G(c) for com-
pressible flows, and λu and λ∇u are weights used to emphasize the recon-
struction of either the velocities or their derivatives. In practice, we used
λu = λ∇u = 1 for normalized data (see Section 3.5.1). The curl of the veloc-
ity and its jacobians are computed internally by our architecture and do not
need to be explicitly included in the dataset.

3.2.4 Implementation

For the implementation of our generative model we adopted and modi-
fied the network architecture from [Li et al., 2018d]. As illustrated in Fig-

26

3.3 Extended Parameterizations

ure 3.5, our generator starts by projecting the initial c parameters into an
m-dimensional vector of weights m via fully connected layers. The dimen-
sion of m depends on the network output d = [H, W, D, Vdim] and on a
custom defined parameter q. With dmax = max(H, W, D), q is calculated by
q = log2(dmax)− 3, meaning that the minimum supported number of cells
in one dimension is 8. Additionally, we constrain all our grid dimensions to
be divisible by 2q. Since we use a fixed number of feature maps per layer,
the number of dimensions of m is m = H

2q × W
2q × D

2q × 128 and those will be
expanded to match the original output resolution.

The m-dimensional vector m is then reshaped to a [H
2q , W

2q , D
2q , 128] tensor. As

shown in Figure 3.5, the generator component is subdivided into small (SB)
and big blocks (BB). For small blocks, we perform N (most of our examples
used N = 4 or 5) flat convolutions followed by Leaky Rectified Linear Unit
(LReLU) activation functions [Maas et al., 2013].

We substituted the Exponential Liner Unit (ELU) activation function in the
original method from [Li et al., 2018d] by the LReLU as it yielded sharper
outputs when minimizing the L1 loss function. Additionally, we employ
residual skip connections [He et al., 2016], which are an element-wise sum
of feature maps of input and output from each SB. While the concatenative
skip connections employed by [Li et al., 2018d] are performed between the
first hidden states and the consecutive maps with doubling of the depth size
to 256, ours are applied to all levels of SBs with a fixed size of 128 feature
maps. After the following upsample operation, the dimension of the output
from a BB after i passes is [H

2q−i ,
W

2q−i ,
D

2q−i , 128]. Our experiments showed that
performing these reductions to the feature map sizes with the residual con-
catenation improved the network training time without degradation of the
final result.

3.3 Extended Parameterizations

Scenes with a large number of parameters can be challenging to pa-
rameterize. For instance, the dynamically moving smoke source exam-
ple (Figure 3.17) can be parameterized by the history of control inputs,
i.e., [p0, p1, ..., pt]→ ut, where pt and ut represent the smoke source position
and the reconstructed velocity field at time t, respectively. In this case, how-
ever, the number of parameters grows linearly with the number of frames
tracking user inputs. As a consequence, the parameter space would be in-
feasibly large for data-driven approaches, and would be extremely costly to
cover with samples for generating training data.

27

Deep Generative Model for Fluid Simulations

𝒖

𝐜G†(𝐮) G(𝒄)

𝐩𝒕
𝐩𝒕+𝟏

𝐳𝑡

∆𝐩𝑡

FC
 1

0
2

4

FC
 5

1
2

∆𝒛𝑡 𝒛𝑡+1

ෝ𝒖𝒄

𝐩0 → 𝐩1 → 𝐩2 → ⋯

Control on Fluids

𝐜0 → 𝐜1 → 𝐜2 → ⋯

Integration on latent-space

ෝ𝒖𝒄0 → ෝ𝒖𝒄1 → ෝ𝒖𝒄2 → ⋯

Reconstruction

𝐜 = 𝐳 𝒑

Unsupervised Supervised

𝐩𝑡

𝐱𝑡

Figure 3.6: Autoencoder (top) and latent space integration network (bottom). The au-
toencoder compresses a velocity field u into a latent space representation c,
which includes a supervised and unsupervised part (p and z). The latent
space integration network finds mappings from subsequent latent code rep-
resentations ct and ct+1.

To extend our approach to these challenging scenarios, we add an encoder
architecture G†(u) : RH×W×D×Vdim 7→ Rn to our generator of Section 3.2,
and combine it with a second smaller network for time integration (Sec-
tion 3.3.1), as illustrated in Figure 3.6. In contrast to our generative net-
work, the encoder architecture maps velocity field frames into a parameter-
ization c = [z, p] ∈ Rn, in which z ∈ Rn−k is a reduced latent space that
models arbitrary features of the flow in an unsupervised way and p ∈ Rk

is a supervised parameterization to control specific attributes [Kulkarni et
al., 2015]. Note that this separation makes the latent space sparser while
training, which in turn improves the quality of the reconstruction. For the
moving smoke source example in Section 3.4.2, n = 16 and p encodes x, z
positions used to control the position of the smoke source.

The combined encoder and generative networks are similar to Deep Convo-
lutional autoencoders [Vincent et al., 2010], where the generative network
G(c) acts as a decoder. The encoding architecture is symmetric to our gen-
erative model, except that we do not employ the inverse of the curl operator
and the last convolutional layer. We train both generative and encoding net-

28

3.3 Extended Parameterizations

works with a combined loss similar to Equation (3.3), as

LAE(u) = λu||uc − ûc||1 + λ∇u||∇uc −∇ûc||1 + λp||p− p̂||22, (3.4)

where p̂ is the part of the latent space vector constrained to represent control
parameters p, and λp is a weight to emphasize the learning of supervised pa-
rameters. Note that the L2 distance is applied to control parameters unlike
vector field outputs, as it is a standard cost function in linear regression. As
before, we used λu = λ∇u = λp = 1 for all our normalized examples (Sec-
tion 3.5.1). With this approach we can handle complex parameterizations,
since the velocity field states are represented by the remaining latent space
dimensions in z. This allows us to use latent spaces which do not explicitly
encode the time dimension as a parameter. Instead, we can use a second
latent space integration network that generates a suitable sequence of latent
codes.

3.3.1 Latent Space Integration Network

The latent space only learns a diffuse representation of time by the velocity
field states z. Thus we propose a latent space integration network for ad-
vancing time from reduced representations. The network T(xt) : Rn+k 7→
Rn−k takes an input vector xt = [ct; ∆pt] ∈ Rn+k which is a concatenation
of a latent code ct at current time t and a control vector difference between
user input parameters ∆pt = pt+1 − pt ∈ Rk. The parameter ∆pt has the
same dimensionality k as the supervised part of our latent space, and serves
as a transition guidance from latent code ct to ct+1. The output of T(xt) is
the residual ∆zt between two consecutive states. Thus, a new latent code is
computed with zt+1 = zt + T(xt) as seen in Figure 3.6.

For improved accuracy we let T look ahead in time, by training the network
on a window of w sequential latent codes with an L2 loss function:

LT(xt, ..., xt+w−1) =
1
w

t+w−1

∑
i=t
||∆zi − Ti||22, (3.5)

where Ti is recursively computed from t to i. Our window loss Equation (3.5)
is designed to minimize not only errors on the next single step integration
but also errors accumulated in repeated latent space updates. We found that
w = 30 yields good results, and a discussion of the effects of different values
of w is provided in the Section 3.5.3.

We realize T as a multilayer perceptron (MLP) network. The rationale be-
hind choosing MLP instead of LSTM is that T is designed to be a navigator

29

Deep Generative Model for Fluid Simulations

Algorithm 1: Simulation with the Latent Space Integration Network

c0 ← G†(u0)
while simulating from t to t + 1 do

xt ← [ct; ∆pt] // ct from previous step, pt+1 is given
zt+1 ← zt + T(xt) // latent code inference
ct+1 ← [zt+1; pt+1]
ut+1 ← G(ct+1) // velocity field reconstruction

end while

G.t. px = 0.5 CNN px = 0.5 G.t. px = 0.5 CNN px = 0.5

Figure 3.7: Vorticity plot of a 2D smoke simulation with direct correspondences to the
training dataset for two different times. The RdBu colormap is used to show
both the magnitude and the rotation direction of the vorticity (red: clock-
wise). Our CNN is able to closely approximate ground truth samples (G.t.).

on the manifold of the latent space, and we consider these integrations as
controlled individual steps rather than physically induced ones. The net-
work consists of three fully connected layers coupled with ELU activation
functions. We employ batch normalization and dropout layers with proba-
bility of 0.1 to avoid overfitting.

Once the networks G, G† and T are trained, we use Algorithm (1) to recon-
struct the velocity field for a new simulation. The algorithm starts from an
initial reduced space that can be computed from an initial incompressible
velocity field. The main loop consists of concatenating the reduced space
and the position update into xt; then the latent space integration network
computes ∆zt, which is used to update ct to ct+1. Finally, the generative
network G reconstructs the velocity field ut+1 by evaluating ct+1.

30

3.4 Results

3.4 Results

In the following we demonstrate that our Deep Fluids CNN can reliably
recover and synthesize dynamic flow fields for both smoke and liquids.
We refer the reader to the supplemental video for the corresponding ani-
mations. For each scene, we reconstruct velocity fields computed by the
generative network and advect densities for smoke simulations or surfaces
for liquids. Vorticity confinement or turbulence synthesis were not applied
after the network’s reconstruction, but such methods could be added as
a post-processing step. We trained our networks using the Adam opti-
mizer [Kingma and Ba, 2015] for 300,000 iterations with varying batch sizes
to maximize GPU memory usage (8 for 2D and 1 for 3D). For the time net-
work T, we use 30,000 iterations. The learning rate of all networks is sched-
uled by a cosine annealing decay [Loshchilov and Hutter, 2017], where we
use the learning range from [Smith, 2017]. Scene settings, computation times
and memory consumptions are summarized in Table (3.1). Fluid scenes were
computed with mantaflow [Thuerey and Pfaff, 2018] using an Intel i7-6700K
CPU at 4.00 GHz with 32GB memory, and CNN timings were evaluated on
a 8GB NVIDIA GeForce GTX 1080 GPU. Networks are trained on a 12GB
NVIDIA Titan X GPU.

3.4.1 2D Smoke Plume

A sequence of examples that portray varying, rising smoke plumes in a rect-
angular container is shown in Figure 3.3, where advected densities for dif-
ferent initial source positions (top) and widths (bottom) are shown. Since
visualizing the advected smoke may result in blurred flow structures, we
display vorticities instead, facilitating the understanding of how our CNN
is able to reconstruct and interpolate between samples present in the dataset.
Additionally, we use the hat notation to better differentiate parameters that
do not have a direct correspondence with the ground truth data (e.g., p̂x for
an interpolated position on the x-axis). Our training set for this example con-
sists of the combination of 5 samples with varying source widths w and 21
samples with varying x positions px. Each simulation is computed for 200
frames, using a grid resolution of 96 × 128 and a domain size of (1, 1.33).
The network is trained with a total of 21, 000 unique velocity field samples.

Reconstruction with Direct Correspondences to the Dataset To ana-
lyze the reconstruction power of our approach, we compare generated ve-
locities for parameters which have a direct correspondence to the original

31

Deep Generative Model for Fluid Simulations

CNN px = 0.46 CNN p̂x = 0.48 G.t. px = 0.48 CNN px = 0.5

Figure 3.8: Vorticity plot of a 2D smoke simulation showing CNN reconstructions at
ground truth correlated positions px = 0.46 and px = 0.5, the interpolated
result at p̂x = 0.48, and ground truth (G.t.) at p̂x = 0.48 which is not part
of the training dataset.

dataset, i.e. the ground truth samples. Figure 3.7 shows vorticity plots com-
paring the ground truth (G.t.) and our CNN output for two different frames.
The CNN shows a high reconstruction quality, where coarse structures are
almost identically reproduced, and fine structures are closely approximated.

Sampling at Interpolated Parameters We show the interpolation capa-
bility of our approach in Figure 3.8. Left and right columns show the CNN
reconstructions at ground truth correlated positions px = 0.46 and px = 0.5,
while the second column shows a vorticity plot interpolated at p̂x = 0.48.
The third column shows the simulated ground truth for the same position.
For positions not present in the original data, our CNN synthesizes plau-
sible new motions that are close to ground truth simulations. Figure 3.9

32

3.4 Results

Figure 3.9: Several vorticity plots for the 2D smoke CNN reconstruction. Each row
shows the variation of both position and size of the initial smoke source. Top
row corresponds to the first time frame, while the middle and bottom rows
show frame 100 and 200, respectively.

shows vorticity plots of our CNN reconstructions for varying both smoke
source position and width - smaller left located plumes are shown on the
left, while bigger right located plumes are shown on the right. The top row
shows the first frame of the simulation, while the middle and bottom rows
show frames 100 and 200, respectively.

Figure 3.10: Different snapshots in time where density is advected by the reconstructed
velocity fields at interpolated position p̂x = 0.47. All outputs represent
realistic fluid flows.

Advected Density using Velocity Reconstruction vs. Direct Density Re-
construction In Figure 3.10, we show different snapshots for the time evo-
lution of density values at an interpolated smoke source position p̂x = 0.47,

33

Deep Generative Model for Fluid Simulations

Figure 3.11: Different snapshots in time for a network trained directly on a density-
only dataset. The smoke motion is less lively and towards the end of the
sequence the main smoke stream breaks apart.

with no correspondences on the trained dataset. Finally, Figure 3.11 shows
the result of training a network directly using density values instead of ve-
locity fields. The motion of densities is less lively, and the smoke stream
breaks up for later frames, yielding unrealistic simulation outputs.

3.4.2 3D Smoke Examples

Smoke & Sphere Obstacle Figure 3.12 shows a 3D example of a smoke
plume interacting with a sphere computed on a grid of size 64 × 96 × 64.
The training data consists of ten simulations with varying sphere positions,
with the spaces between spheres centroid samples consisting of 0.06 in the
interval [0.2, 0.8]. The left and right columns of Figure 3.12 show the CNN-
reconstructed simulations at positions px = 0.44 and px = 0.5, while the
second column presents the interpolated results using our generative net-
work at p̂x = 0.47. Even with a sparse and hence challenging training
dataset, flow structures are plausibly reconstructed and compare favorably
with ground truth simulations (third column) that were not present in the
original dataset.

Smoke Inflow and Buoyancy A collection of simulations with varying
inflow speed (columns) and buoyancy (rows) is shown in Figure 3.2 for the
ground truth (left) and our generative network (right). We generated 5 in-
flow velocities (in the range [1.0, 5.0]) along with 3 different buoyancy values
(from 6× 10−4 to 1× 10−3) for 250 frames. Thus, the network was trained
with 3, 750 unique velocity fields. Figure 3.13 demonstrates an interpolation

34

3.4 Results

CNN px = 0.44 CNN p̂x = 0.47 G.t. px = 0.47 CNN px = 0.5

Figure 3.12: Interpolated result (second column) given two input simulations (left and
right) with different obstacle positions on the x-axis. Our method results
in plausible in-betweens compared to ground truth (third column) even for
large differences in the input.

example for the buoyancy parameter. The generated simulations on the left
and right (using a buoyancy of 6× 10−4 and 1× 10−3) closely correspond to
the original dataset samples, while the second simulation is reconstructed by
our CNN using an interpolated buoyancy of 8× 10−4. We show the ground
truth simulation on the third image for a reference comparison. Our method
recovers structures accurately, and the plume shape matches the reference
ground truth.

35

Deep Generative Model for Fluid Simulations

CNN b = 6× 10−4 CNN b̂ = 8× 10−4 G.t. b = 8× 10−4 CNN b = 1× 10−3

Figure 3.13: Reconstructions of the rising plume scene (left and right), reconstruction
for an interpolated buoyancy value (b̂ = 8× 10−4) (second image) and the
corresponding ground truth (third image).

Figure 3.14: Trained with five different grid resolutions, our network is able interpolate
resolutions of 40× 60× 40 (middle column, left image) and 88× 132× 88
(middle column, right image)

Resolution Interpolation Figure 3.14 shows the capability of our ap-
proach to interpolate between unusual input parameters such as the grid
resolution. We simulate a rising smoke plume in 3D with five different
grid sizes: 32 × 48 × 32, 48 × 64 × 48, 64 × 96 × 64, 80 × 120 × 80 and
96× 144× 96. We then upsample the velocities of the coarser grid resolu-
tions with bicubic interpolation to the finest one, and feed these to our net-
work. Grid resolutions are uniformly scaled, and we are able to map these to
a single network input that varies from 0 to 1. We reduced the feature maps
to 64 (half of the other examples) as otherwise the highest grid resolution
was too large to train with our current hardware. Results of interpolations
between different simulation resolutions can be seen in Figure 3.14.

Rotating Smoke We trained our autoencoder and latent space integration
network for a smoke simulation with a periodically rotating source using 500
frames as training data. The source rotates in the XZ-plane with a period of
100 frames. This example is designed as a stress test for extrapolating time
using our latent space integration network. In Figure 3.15, we show that our
approach is able to correctly capture the periodicity present in the original

36

3.4 Results

dataset. Moreover, the method successfully generates another 500 frames,
resulting in a simulation that is 100% longer than the original data.

G.t., last frame +20% +60% +100%

Figure 3.15: Time extrapolation results using our latent space integration network. The
left image shows the last frame of the ground truth simulation. The sub-
sequent images show results with time extrapolation of +20%, +60% and
+100% of the original frames.

Moving Smoke A smoke source is moved in the XZ-plane along a path
randomly generated using Perlin noise [Perlin, 1985]. We sampled 200 sim-
ulations on a grid of size 48× 72× 48 for 400 frames - a subset is shown in
Figure 3.16 - and used them to train our autoencoder and latent space inte-
gration networks. In Figure 3.17, we show a moving smoke source whose
motion is not part of the training data and was computed by integrating in
the latent space. We extrapolate in time to increase the simulation duration
by 100% (i.e., 800 frames). The network generates a plausible flow for this
unseen motion over the full course of the inferred simulation. Although
the results shown here were rendered offline, the high performance of our
trained model would allow for interactive simulations.

3.4.3 2D Liquid Drop

Additional results for a 2D liquid drop are shown as velocity magnitude
plots in Figure 3.18, Figure 3.19 and Figure 3.20. Figure 3.18 shows various
reconstructions of varying both initial drop size and x-position. Note that
we use non-extrapolated velocity fields for training and reconstruction to
see how accurate the reconstruction is around interfaces. We use intervals
of [0.2, 0.8] and [0.04, 0.08] with 10 samples for the position and 4 samples
for size, respectively. In Figure 3.19, we compare our results side-by-side
against ground truth simulations, where the top and bottom columns show
time frame 37 and 60 respectively. The first, third and fifth columns show

37

Deep Generative Model for Fluid Simulations

Figure 3.16: Example simulations of the moving smoke scene used for training the ex-
tended parameterization networks.

t = 380 t = 400 t = 420 t = 440 t = 460

Figure 3.17: Different snapshots of a moving smoke source example simulated in the
latent space.

ground truth simulations while the second, fourth and sixth columns show
the reconstructed counterparts. We notice small differences on splash for-
mation, but the overall bulk of the liquid is respected.

For all data-driven approaches the quality of a trained model, and hence in
our case the quality of the simulation results, depend on the training data
that is used. One important factor is the sampling density that is used for
the training. Especially for generating in-betweens, one has to analyze how
dense input simulations must be sampled, in order to avoid artifacts in the
reconstruction.

We have conducted a test with a liquid drop scene that has different x-
positions in the training simulations. In our test, we varied the number of
initial liquid drops - and hence the number of simulations in the training

38

3.4 Results

Figure 3.18: Velocity magnitude plots for our CNN reconstruction on a 2D liquid drop
scenario. Each column shows the variation of both position and size of the
initial liquid drop. The following rows show time frames 37, 70, 100, 150,
200, respectively.

G.t. CNN G.t. CNN G.t. CNN

Figure 3.19: Comparisons between ground truth and reconstructed liquid data. Odd
columns (first, third and fifth) show ground truth data, while even columns
(second, fourth and sixth) show the reconstruction of the CNN.

phase - to evaluate how this impacts the ability of the network to generate
interpolated results. In particular, we want to understand when the network
fails to reconstruct proper liquid interpolations. Figure 3.20 shows three dif-
ferent sampling densities with gray circles indicating the initial liquid drop
in the training dataset: 14 (left), 12 (middle) and 10 input samples (right).
Different networks were trained with the corresponding number of sam-
ples, and intermediate liquid drop positions are generated with the trained
models between the first pair of discrete samples for each scene, indicated
by the red box.

The second row shows the reconstruction results where the accuracy drops
as the sampling density decreases. Hence, we argue that some overlap be-
tween noticeable scene features is necessary in order to avoid reconstruction
artifacts. Automatically quantifying how good an initial training dataset is
regarding interpolation is left as future work.

39

Deep Generative Model for Fluid Simulations

Figure 3.20: The sampling density of the input simulations that are used for the train-
ing impacts the resulting reconstruction quality. Here, we increasingly
vary the number of initial liquid drops on the x-axes (top) and show the
interpolation result (inside the red box).

3.4.4 3D Liquid Examples

Spheres Dropping on a Basin We demonstrate that our approach can
also handle splashing liquids. We use a setup for two spheres dropping
on a basin, which is parameterized by the initial distance of the spheres, as
well as by the initial drop angles along the XZ−plane relative to the basin.
We sample velocity field sequences by combining 5 different distances and
10 different angles; Figure 3.21 shows 4 of the training samples. With 150
frames in time, the network is trained with 7, 500 unique velocity fields. We
used a single-phase solver and extrapolated velocities from the liquid to the
air phase before training (extrapolation size = 4 cells). Figure 3.22, mid-
dle, shows our result for an interpolated angle of θ̂ = 9◦ and a sphere dis-
tance of d̂ = 0.1625, given two CNN-reconstructed input samples on the left
(θ = 0◦, d = 0.15) and right (θ = 18◦, d = 0.175). Our results demonstrate

40

3.4 Results

d = 0.15, θ = 0◦ d = 0.25, θ = 0◦ d = 0.15, θ = 90◦ d = 0.25, θ = 90◦

Figure 3.21: Training samples for the liquid spheres scene. In total we used 50 simula-
tion examples with varying distances and angles.

that the bulk of the liquid dynamics are preserved well. Small scale details
such as high-frequency structures and splashes, however, are particularly
challenging and deviate from the reference simulations.

d = 0.15, θ = 0◦ d̂ = 0.1625, θ̂ = 9◦ d = 0.175, θ = 18◦

Figure 3.22: CNN-generated results with parameter interpolation for the liquid spheres
example. While the far left and right simulations employ parameter set-
tings that were part of the training data, the middle example represents a
new in-between parameter point which is successfully reconstructed by our
method.

Viscous Dam Break In this example, a dam break with four different vis-
cosity strengths (µ = 2× [10−5, 10−4, 10−3, 10−2]) was used to train the net-
work. Our method can reconstruct simulations with different viscosities ac-
curately, and also interpolate between different viscosities with high fidelity.
In Figure 3.23, the CNN-reconstructed, green-colored liquids have direct
correspondences in the original dataset; the pink-colored simulations are in-
terpolation results between the two nearest green samples. Additionally, it is
also possible to increase the viscosity over time as shown in Figure 3.24. The
results show that this works reliably although the original parameterization
does neither support time-varying viscosities nor do the training samples
represent such behavior.

41

Deep Generative Model for Fluid Simulations

Figure 3.23: Snapshots of a CNN reconstructed dam break with different viscosity
strengths for two different frames. Green liquids denote correspondences
with ground truth (µ = 2× [10−4, 10−3, 10−2], back to front) while pink
ones are interpolated (µ̂ = 2× [5−3, 5−2], back to front).

Frame 23, µ̂ = 1.04× 10−3 Frame 64, µ̂ = 7.14× 10−3

Figure 3.24: Reconstruction result using a time varying viscosity strength. In the first
few frames the liquid quickly breaks into the container. As the simulation
advances, the viscosity increases and the liquid sticks to a deformed config-
uration.

Slow Motion Fluids Our supplemental video additionally shows an inter-
esting use case that is enabled by our CNN-based interpolation: the gener-
ation of temporally upsampled simulations. Based on a trained model we
can create slow-motion effects, which we show for the liquid drop and dam
break examples.

42

3.5 Evaluation and Discussion

3.5 Evaluation and Discussion

3.5.1 Training

Our networks are trained on normalized data in the range [−1, 1]. In case
of velocity fields, we normalize them by the maximum absolute value of
the entire dataset. We found that batch or instance normalization tech-
niques [Ulyanov et al., 2016] do not improve our velocity fields output, as
the highest (lowest) pixel intensity and mean deviation might vary strongly
within a single batch. Frames from image-based datasets have a uniform
standard deviation, while velocity field snapshots can vary substantially.
Other rescaling techniques, such as standardization or histogram equaliza-
tion, could potentially further improve the training process.

Convergence of the Training The presented architecture is very stable
and all our tests have converged reliably. Training time highly depends on
the example and the targeted reconstruction quality. Generally, 3D liquid
examples require more training iterations (up to 100 hours of training) in
order to get high quality surfaces, while our smoke examples finished on
average after 72 hours of training.

Figure 3.25 shows a convergence plot of the 2D smoke example, with train-
ing iterations on the x-axis and error on the y-axis. The superimposed im-
ages show clearly how quality increases along with training iterations. Af-
ter about 180, 000 iterations, the smoke plume is already reconstructed with
good accuracy. This corresponds to roughly 3 hours of training on our hard-
ware. Scaling tests with various 2D grid resolutions (64 × 48, 128 × 96,
256× 192, 512× 384) have shown that the training speed scales proportion-
ally with the resolution, while keeping the mean absolute error at a constant
level.

3.5.2 Performance Analysis

Table (3.1) summarizes the statistics of all presented examples. In terms of
wall-clock time, the proposed CNN approach generates velocity fields up
to 700× faster than re-simulating the data with the underlying CPU solver.
Some care must be taken when interpreting this number because our ten-
sorflow [Abadi et al., 2016] network runs on the GPU, while the original
mantaflow code runs on the CPU. Fluid simulations are known to be memory
bandwidth-limited [Kim, 2008], and the bandwidth discrepancy between a
GTX 1080 (320 GB/s) and our Intel desktop (25.6 GB/s) is a factor of 12.5.

43

Deep Generative Model for Fluid Simulations

Figure 3.25: Convergence plot of the L1 loss for the 2D smoke sequence from Figure 3.8.

However, even if we conservatively normalize by this factor, our method
achieves a speed-up of up to 58×. Thus, the core algorithm is still at least an
order of magnitude faster. To facilitate comparisons with existing subspace
methods, we do not include the training time of our CNN when computing
the maximum speedup, as pre-computation times are customarily reported
separately. Instead, we include them in the discussion of training times be-
low.

Contrary to traditional solvers, our approach is able to generate multiple
frames in time independently. Thus, we can efficiently concatenate CNN
queries into a GPU batch, which then outputs multiple velocity fields at
once. Adding more queries increases the batch size (Table (3.1), 5th column,
number in brackets), and the maximum batch size depends on the network
size and the hardware’s memory capacity. Since we are using the maximum
batch size possible for each scene, the network evaluation time scales in-
versely with the maximum batch size supported by the GPU. Due to the
inherent capability of GPUs to efficiently schedule floating point operations,
the time for evaluating a batch is independent of its size or the size of the
network architecture. Additionally, our method is completely oblivious to
the complexity of the solvers used to generate the data. Thus, more expen-
sive stream function [Ando et al., 2015a] or energy-preserving [Mullen et al.,
2009] solvers could potentially be used with our approach, yielding even
larger speed-ups.

In contrast, computing the linear basis using traditional SVD-based sub-
space approaches can take between 20 [Kim and Delaney, 2013] and 33
[Wicke et al., 2009] hours. The process is non-iterative, so interrupting the
computation can yield a drastically inferior result, i.e. the most important
singular vector may not have been discovered yet. [Stanton et al., 2013] re-
duced the pre-computation time to 12 hours, but only by using a 110-node

44

3.5 Evaluation and Discussion

101 102 103

Compression Ratio

10 2

10 1
M

ea
n

Ab
so

lu
te

 E
rr

or

FPZIP-3b (3D)
39x

FPZIP-8b (3D)
8x

FPZIP-10b (3D)
4x

Ours (3D)
356x

FPZIP-3b (2D)
47x

FPZIP-8b (2D)
8x

FPZIP-10b (2D)
4x

Ours (2D)
172x

Figure 3.26: Compression ratio and mean absolute error plot of FPZIP and ours. The
postfix of FPZIP label represents the number of bits of precision.

cluster. In contrast, our iterative training approach is fully interruptible and
runs on a single machine.

Compression The memory consumption of our method is at most 30 MB,
which effectively compresses the input data by up to 1300×. Previous sub-
space methods [Demby Jones et al., 2016] only achieved ratios of 14×, hence
our results improve on the state-of-the-art by two orders of magnitude. We
have compared the compression ability of our network to FPZIP [Lind-
strom and Isenburg, 2006], a data reduction technique often used in sci-
entific visualization [Li et al., 2018b] as shown in Figure 3.26. FPZIP is a
prediction-based compressor using Lorenzo predictor, which is designed for
large floating-point datasets in arbitrary dimension, and the number of pre-
cision bits is the only parameter of it. In Figure 3.26, each label shows the
number of bits and the dimension of a dataset with its achieved compres-
sion rate. For the two datasets of Section 3.4.1 and Section 3.4.2, we reached a
compression of 172× and 356×, respectively. In comparison, FPZIP achieves
a compression of 4× for both scenes with 16 bits of precision (with a mean
absolute error comparable to our method). When allowing for a 6× larger
mean absolute error, FPZIP achieves a 47× and 39× compression. I.e., the
data is more than 4× larger and has a reduced quality compared to our en-
coding. Thus, our method outperforms commonly used techniques for com-
pressing scientific data.

45

Deep Generative Model for Fluid Simulations

3.5.3 Quality of Reconstruction and Interpolation

Training Data Several factors affect the recon-
struction and interpolation quality. An inherent
problem of machine learning approaches is that
quality strongly depends on the data used for
training. In our case, the performance of our
generative model for interpolated positions is
sensitive to the input sampling density and pa-
rameters. If the sampling density is too coarse, or if the output abruptly
changes with respect to the variation of parameters, errors may appear on
reconstructed velocity fields. These errors include the inability to accurately
reconstruct detailed flow structures, artifacts near obstacles, and especially
ghosting effects in the interpolated results. An example of ghosting is shown
in the inset image where only 11 training samples are used (left), instead of
the 21 (right) from Section 3.4.1.

Target Quantities We have also ex-
perimented with training directly with
density values (inset image, left) in-
stead of the velocity fields (inset image,
right). In case of density-trained net-
works, the dynamics fail to recover the
non-linear nature of momentum con-
servation and artifacts appear. Advecting density with the reconstructed
velocity field yields significantly better results. A more detailed discussion
about the quality of the interpolation regarding the number of input sam-
ples and discrepancies between velocity and density training is presented in
the Section 3.4.1.

Latent Space Size We performed additional tests regarding the recon-
struction quality of our autoencoder network in the Section 3.3 relative to
the number of parameters used for the latent space encoding. As shown in
Figure 3.27, the quality of the reconstruction increases with the number of
dimensions used for the latent space reconstruction. In Figure 3.28, we plot
training losses for the different dimensions of Figure 3.27. Notice that rela-
tively small differences of the L1 loss impact the visual results significantly
for smoke profiles.

Conversely, the latent space integration network performed better with a
smaller latent space size, as shown in Figure 3.28. Increasing the window

46

3.5 Evaluation and Discussion

size w reduces long-term errors of the time advancement. We show the er-
ror plots for three different window sizes (1, 5, 30) in Figure 3.29 (left). In
Figure 3.29 (right) we show advected densities by the latent space integrator
network trained with w = 1 and w = 30. We notice that the errors of the ad-
vection are larger for the window size equal to 1, and some smoke samples
hang mid-air (highlighted by the red square).

cdim = 8 cdim = 16 cdim = 32 cdim = 64 G.t.

Figure 3.27: Comparisons of the quality of autoencoder reconstruction with varying
sizes for the latent space cdim. As the latent space dimensionality increases,
the quality of the reconstructed smoke plume also increases.

Figure 3.28: L1 loss plot of the autoencoder training (left) and L2 loss plot of the latent
space integration network training (right). Increasing the dimension of
the latent space cdim reduces reconstruction errors, while it degrades the
accuracy of the integration.

Velocity Loss A comparison between our compressible loss, incompress-
ible functions and ground truth is shown in Figure 3.30. The smoke plume
trained with the incompressible loss from Equation (3.1) shows a richer den-
sity profile closer to the ground truth, compared to results obtained using
the compressible loss.

Figure 3.31 shows the velocity divergence evolution over the network itera-
tions for the 2D smoke example when the incompressible loss is not applied.
The orange and red lines show errors at ground truth positions without and
with the gradient loss (i.e., λ∇u = 0/1 with label Disc.), respectively. The
blue and green line labeled Cont. correspond to the measured divergence
at interpolated positions. The velocity gradient clearly helps the network to
reduce divergence in the generated flow fields.

47

Deep Generative Model for Fluid Simulations

Figure 3.29: We show the effect of the training with varying sizes of windows (1, 5 and
30) for the cyclic smoke example. On the left, the L2 loss plot of the latent
space integration network is shown. On the right, we show the visual im-
pact for window sizes of 1 and 30, respectively. Note that there are densities
left hanging in mid air in the red box, which are not advected properly due
to wrong velocity states recovered by the latent space integration network.

Additionally, we compared the performance of the gradient loss on smooth
stream function and pressure fields ((a) and (b) of Figure 3.32, respec-
tively). Since both are considerably smoother than velocity fields, more
high-frequency network features are in the null-space of the L1 loss mini-
mization. Although not visually obvious when directly comparing stream
function and pressures field values (Figure 3.32, top), artifacts clearly ap-
pear for their gradients (Figure 3.32, bottom). These gradients significantly
influence simulation results, e.g., visible in the advected densities shown in
(Figure 3.33).

Boundary Conditions The proposed CNN is able to handle immersed
obstacles and boundary conditions without additional modifications. Fig-
ure 3.34 shows sliced outputs for the scene from Figure 3.12 which contains
a sphere obstacle. We compare velocity (top) and vorticity magnitudes (bot-
tom). The first and last images show the reconstruction of the CNN for px
positions that have correspondences in the training dataset. The three im-
ages in the middle show results from linearly blending the closest velocity
fields, our CNN reconstruction and the ground truth simulation, from left
to right respectively. In the case of linearly blended velocity fields, ghosting
arises as features from the closest velocity fields are super-imposed [Thuerey,
2016], and the non-penetration constraints for the obstacle are not respected,
as velocities are presented inside the intended obstacle positions. In Fig-
ure 3.35, we plot the resulting velocity penetration errors. Here we compute
the mean absolute values of the velocities inside the voxelized sphere, nor-

48

3.5 Evaluation and Discussion

ûc = G(c) ûc = ∇× G(c) G.t. Close-up views

Figure 3.30: Comparisons of the results from networks trained on our compressible loss,
incompressible loss and the ground truth, respectively. On the right se-
quence we show the highlighted images from the simulations on the left.
We notice that the smoke patterns from the incompressible loss are closer to
ground truth simulations.

malized by the mean sum of the velocity magnitudes for all cells around
a narrow band of the sphere. Boundary errors are slightly higher for in-
terpolated parameter regions (orange line in Figure 3.35), since no explicit
constraint for the object’s shape is enforced. However, the regularized mean
error still accounts for less than 1% of the maximum absolute value of the
velocity field. Thus, our method successfully preserves the non-penetration
boundary conditions.

Liquid-air Interface Due to the separate advection calculation for parti-
cles in our FLIP simulations, smaller splashes can leave the velocity regions
generated by our CNNs, causing surfaces advected by reconstructed veloci-
ties to hang in mid-air. Even though the reconstructed velocity fields closely
match the ground truth samples, liquid scenes are highly sensitive to such
variations. We removed FLIP particles that have smaller velocities than a
threshold in such regions, which was sufficient to avoid hanging particles
artifacts.

3.5.4 Extrapolation and Limitations

Extrapolation with Generative Model We evaluated the extrapolation
capabilities for the case where only the generative part of our Deep Flu-
ids CNN (Section 3.2) is used. Generally, extrapolation works for sufficiently
small increments beyond the original parameter space. Figure 3.36 shows
an experiment in which we used weights that were up to 30% of the orig-
inal parameter range ([−1, 1]). The leftmost images show the vorticity plot

49

Deep Generative Model for Fluid Simulations

0 50k 100k 150k 200k 250k 300k
1.0e-03

1.0e-02

1.0e-01

1.0e+00

Cont. w/ u = 0 (max)
Disc. w/ u = 0 (max)
Cont. w/ u = 1 (max)
Disc. w/ u = 1 (max)

Cont. w/ u = 0
Disc. w/ u = 0
Cont. w/ u = 1
Disc. w/ u = 1

Figure 3.31: Divergence max (top) and average (bottom) over number of iterations. Us-
ing the gradient velocity in the loss function (λ∇u = 1) reduces the diver-
gence error, increasing reconstruction quality.

for the maximum value of the range for the position (top), inflow size (mid-
dle), and time (bottom) parameters of the 2D smoke plume example. The
rightmost images show the maximum variation of parameters, in which the
simulations deteriorate in quality. In practice, we found that up to 10% of
extrapolation still yielded plausible results.

Limitations Our Deep Fluids CNN is designed to generate velocity fields
for parameterizable scenes. As such, our method is not suitable for recon-
structing arbitrary velocity fields of vastly different profiles by reduction to
a shared latent representation. As discussed in Section 3.5.3, there is also
no enforcement of physical constraints such as boundary conditions for in-
termediate interpolated parameters. Thus, the capability of the network to
reconstruct physically accurate samples on interpolated locations depends
on the proximity of the data samples in the parameter space. Additionally,
the reconstruction quality of the autoencoder and latent space integration
networks are affected by the size of the latent space c, and there is a possi-
ble issue of temporal jittering because of lack of the gradient loss on Equa-
tion (3.5).

50

3.5 Evaluation and Discussion

λ∇u = 0 λ∇u = 1 λ∇u = 0 λ∇u = 1

Stream functions Pressure

Figure 3.32: Stream functions (a) and pressure (b) fields plots. Top images show original
fields, while bottom ones show their gradients. We highlight that artifacts
appear on those datasets when not using the gradient loss function (λ∇u =
0).

Figure 3.33: Density plots advected by velocity fields from reconstructed streamfunc-
tions of the network trained without gradient loss. Jagged artifacts are
visible, e.g., near the central stem of the smoke plume.

51

Deep Generative Model for Fluid Simulations

G
rid

Sim
ulation

Eval.Tim
e

Speed
U

p
D

ataset
N

etw
ork

C
om

pression
Training

Scene
R

esolution
#

Fram
es

Tim
e

(s)
(m

s)[Batch]
(×

)
Size

(M
B)

Size
(M

B)
R

atio
Tim

e
(h)

Sm
oke

Plum
e

96×
128

21,000
0.033

0.052
[100]

635
2064

12
172

5

Sm
oke

O
bstacle

64×
96×

64
6,600

0.491
0.999

[5]
513

31143
30

1038
74

Sm
oke

Inflow
112×

64×
32

3,750
0.128

0.958
[5]

128
10322

29
356

40

Liquid
D

rops
96×

48×
96

7,500
0.172

1.372
[3]

125
39813

30
1327

134

V
iscous

D
am

96×
72×

48
600

0.984
1.374

[3]
716

2389
29

82
100

R
otating

Sm
oke

48×
72×

48
500

0.08
0.52

[10]
308

995
38

26
49

M
oving

Sm
oke

48×
72×

48
80,000

0.08
0.52

[10]
308

159252
38

4191 ∗
49

Table
3.1:Statistics

for
training

datasets
and

our
C

N
N

.N
ote

that
sim

ulation
excludes

advection
and

is
done

on
the

C
PU

,w
hile

netw
ork

evaluation
is

executed
on

the
G

PU
w

ith
batch

sizes
noted

in
brackets.In

case
ofliquids,the

conjugate
gradient

residualthreshold
is

setto
1e −

3,w
hile

for
sm

oke
itis

1e −
4.For

the
R

otating
and

M
oving

Sm
oke

scenes,the
num

bers
for

training
tim

e
and

netw
ork

size
include

both
the

autoencoder
and

latentspace
integration

netw
orks.

*
W

e
optim

ize
the

netw
ork

for
subspace

sim
ulations

rather
than

the
quality

of
reconstruction,so

w
e

do
not

take
this

num
ber

into
accountw

hen
evaluating

the
m

axim
alcom

pression
ratio.

52

3.5 Evaluation and Discussion

CNN px = 0.44 Lin. p̂x = 0.47 CNN p̂x = 0.47 G.t. px = 0.47 CNN px = 0.5

Figure 3.34: Slice views of the last row of Figure 3.12. The color code represents the ve-
locity (top) and vorticity (bottom) magnitudes. The second column shows
a linear interpolation of the input. Despite the absence of any constraints
on boundary conditions, our method (third column) preserves the shape of
the original sphere obstacle, and yields significantly better results than the
linear interpolation.

Figure 3.35: Mean absolute error plot of velocity penetration for the smoke obstacle ex-
ample. Though errors in interpolated samples are a bit higher than those
of reconstructed samples, they do not exceed 1% of the maximum absolute
value of the dataset.

53

Deep Generative Model for Fluid Simulations

Last +5% +10% +20% +30%

Figure 3.36: 2D smoke plume extrapolation results (from t. to b.: position, inflow width,
time) where only the generative network is used. Plausible results can be
observed for up to 10% extrapolation.

54

C H A P T E R 4
Neural Artistic Control of Smoke
Simulations

This chapter is based on the following publication by [Kim et al., 2019a]:

B. Kim, V. C. Azevedo, M. Gross, B. Solenthaler, Transport-Based Neural
Style Transfer for Smoke Simulations, ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH Asia 2019), 38(6), Nov. 2019. (selected for the video
trailer)

The supplemental video can be found here: https://www.youtube.com/
watch?v=67qVRhoOQPE.

4.1 Overview

In the previous Chapter 3, we presented the first generative deep learning
model that profitably constructs a wide variety of fluid behaviors, from tur-
bulent smoke to viscous liquids. Although our method allows many appli-
cations such as fluid motion reconstruction, interpolation, latent space sim-
ulation and provides profound insights into flow data, it does not focus on
the artistic control capabilities on fluids.

In this Chapter 4, we propose a novel method to synthesize semantic struc-
tures onto volumetric flow data by taking advantage of the simple yet
powerful machinery developed for image editing, inspired by Neural Style
Transfer (NST) methods for images [Gatys et al., 2016a] and meshes [Kato

55

https://www.youtube.com/watch?v=67qVRhoOQPE
https://www.youtube.com/watch?v=67qVRhoOQPE

Neural Artistic Control of Smoke Simulations

Figure 4.1: Volcanic smoke simulation. Left: stylized output by our transport-based
neural style transfer; right: close-up views of low-resolution base input and
ours with a cloud motif [gfv, 2015] and a smoke exemplar ©Richard Roscoe
via [Jamriška et al., 2015].

et al., 2018; Liu et al., 2018b]. We modify 3D density fields by combining
individual 2D stylizations from multiple views, which are synthesized by
matching features of a pre-trained Convolutional Neural Network (CNN).
Since the CNN is trained for image classification tasks, a vast library of pat-
terns and class semantics is available, enabling novel content-aware flow
manipulations that range from transferring low (edges and patterns) to high
(complex structures and shapes) level features from images to smoke simu-
lations (Figures 4.1, 4.12 and 4.13). In this way, our method allows for auto-
matic instantiation of structures in flow regions that naturally share features
with a given target pattern or semantic class.

Crucially, and in contrast to existing NST methods, our style transfer al-
gorithm is physically inspired. It computes a velocity field that stylizes
a smoke density with an input target style, yielding results that naturally
model the underlying transport phenomena. To improve temporal consis-
tency, we propose a method which aligns stylization velocities from adjacent
frames, enabling the control of how smoothly stylized structures change in
time. To handle volumetric smoke stylization, multiple stylized 2D views
are seamlessly combined into a 3D representation, resulting in coherent styl-
ized smoke structures from arbitrary camera viewpoints. The proposed
method is end-to-end differentiable and it can be readily optimized by gra-
dient descent approaches. This is enabled by a novel volumetric differen-
tiable smoke renderer, which is tailored for stylization purposes. Our results

56

4.2 Transport-Based Neural Style Transfer

Figure 4.2: Frames of a style transfer smoke example: base simulation (top), stylized out-
put with volcano (middle, ©Richard Roscoe) and spiral [spi, 2015](bottom)
images.

demonstrate that our method captures a wide spectrum of different styles
and high-level semantics, and hence can be used to transfer patterns and
regular structures, turbulence effects, shapes and artistic styles onto existing
simulations.

4.2 Transport-Based Neural Style Transfer

Our method employs pre-trained CNNs for natural image classification as
both feature extractor and synthesizer. As an alternative, we considered
CNNs trained on synthetic 3D representations such as voxels [Wu et al.,
2015], meshes [Masci et al., 2015] and point clouds [Qi et al., 2017]. How-
ever, CNNs trained on 2D natural images have seen richer and denser in-
formation as there is a more expressive incidence of high-frequency features
[Qi et al., 2016], and datasets have been thoroughly analyzed in terms of
interpretability. Thus, as a classification CNN gets deeper, it shows its hier-

57

Neural Artistic Control of Smoke Simulations

𝜕ℒ/𝜕𝐼𝜃𝜕𝐼𝜃/𝜕𝑑
∗

𝒑𝑠 for style transfer

𝜕𝐯/𝜕𝚽, 𝜕𝚿

𝑑∗

𝒯(𝑑, 𝐯)

𝒑𝑐 for semantic transfer

𝑳
𝒐
𝒔
𝒔
𝑵
𝒆
𝒕𝒘
𝒐
𝒓
𝒌

ℒ

𝛁𝚽+ 𝛁 ×𝚿

ℛ𝜃(𝑑
∗)

𝐼𝜃

𝐯

𝚽 ∈ ℝ𝐷×𝐻×𝑊×3𝑑 ∈ ℝ𝐷×𝐻×𝑊 𝚿 ∈ ℝ𝐷×𝐻×𝑊×3

𝜕𝑑∗/𝜕𝐯

Upscale to 𝑛𝐷 × 𝑛𝐻 × 𝑛𝑊

Upscale to 𝐷 × 𝐻 ×𝑊

…

…

Figure 4.3: Pipeline of our TNST method. On the left, three input fields d, Φ, Ψ for
the stylization algorithm are shown. Φ, Ψ are iteratively updated during
the optimization, while the stylized density output is represented by d∗. All
fields are firstly downsampled and stylized on their coarser representations,
so features can be enhanced through larger regions of the smoke. Cubic up-
sampling is performed on d, Φ, Ψ and the stylization runs again on a finer
resolution; this process repeats until the specified resolution is matched. The
right side of the diagram illustrates how our optimization works. The black
arrows show the direction of a feed-forward pass from potentials Φ, Ψ to the
loss network, and the gray arrows represent the backpropagation path for
computing gradients.

archical interpretation of natural images organized from low-level patterns
to high-level semantics [Olah et al., 2017].

The original neural style transfer (NST) [Gatys et al., 2016a] transforms an
initial noise image I to match the content (Ic) and style (Is) of input target
images. The content loss Lc measures selected filter responses from a pre-
trained classification CNN, while the style loss Ls measures the difference
between specific filter’s statistical distributions. The neural style transfer
solves the optimization of

Î = arg min
I

αLc(I, Ic) + βLs(I, Is), (4.1)

where the weights α and β control how the content and style modify the
initial image I along the optimization process.

Applying existing NST methods to stylize smoke data will lead to arbitrary
creation of sources, since the volumetric density field is evaluated as an
intensity image. Thus, we propose a transport-based neural style transfer
(TNST), in which the stylization is driven by velocity fields instead of direct
pixel / voxel corrections as introduced in Figure 4.3. The transport-based

58

4.2 Transport-Based Neural Style Transfer

Table 4.1: Symbols, operators and configurable parameters.

Lc,Ls Content and style losses
α, β Weights controlling content and style losses
d, u Input density and simulation velocity field
d∗, v Stylized density and stylization velocity field

σ Density integrated spatially for a single frame
Φ, Ψ Irrotational and incompressible potentials

λ Weight between irrotational and incompressible vector fields
pc, ps Content and style input parameters
R, T Rendering and advection operators
F l, F̂ l CNN’s spatial and flattened feature maps for layer l
Ml User-defined feature map at layer l for semantic transfer

H, W, C Height, width and channels of feature map or image
ω, w Temporal coherency weight and window size

γ Transmittance absorption factor
θ, Θ Individual viewpoint and set of viewpoints

η Learning rate size

approach yields more degrees of freedom than directly changing the densi-
ties; specifically, it will yield a vector field while a standard value-based ap-
proach will output a scalar field correction. This is particularly useful in 3D,
since the directional information encoded by the vector field will be used
to merge stylizations from distinct camera viewpoints. Additionally, this
approach enables the control over smoke density sources and sinks during
stylization: we implement a divergence control through the decomposition
of the stylization vector field into its incompressible and irrotational parts.
A comparison between value- and velocity-based stylizations is shown in
Figure 4.4.

4.2.1 Single-Frame Multi-View Stylization

We define a single-frame loss for a given input image I ∈ RH×W

L(I, pc, ps) = σ [αLc(I, pc) + βLs(I, ps)] , (4.2)

where σ = ∑H
i ∑W

j Iij is the per-pixel intensity (Iij ∈ [0, 1]) integrated over
the image, and pc and ps are user-specified parameters (Sections 4.2.2 and
4.2.3) that control content and style transfers. We normalize the loss function
by the integrated pixel intensities, since, contrary to natural images, pixels

59

Neural Artistic Control of Smoke Simulations

Figure 4.4: Value-based (left) against transport-based density optimization (right) with
a flower motif [gfv, 2015]. The value-based approach used in traditional
image stylization approaches produces ghosting artifacts and thinner smoke
structures, since density sources can be created and removed to match tar-
geted features.

Figure 4.5: Results from semantic transfer of a net structure [gfv, 2015]. Irrotational
(left), mixed (middle) and incompressible (right) velocity fields.

from our rendered depiction represent smoke intensities that will be used
for stylization.

Given the input density field d : R3 → R and a velocity field v : R3 → R3,
the transport function T (d, v) advects d by v. Unlike image-based styliza-
tion, where pixels already contain color information of the represented im-
age, our approach has to compute a valid rendering of the flow data. The
rendererRθ(d) outputs a grayscale image (Section 4.3) representing the den-
sity field for a specific viewpoint angle θ from a discrete set of viewpoints Θ.
Our method optimizes a velocity field decomposed by a linear combination

60

4.2 Transport-Based Neural Style Transfer

of its irrotational and incompressible parts by

v = λ∇Φ + (1− λ)∇×Ψ (4.3)

to achieve a desired stylized density field by minimizing

Φ̂, Ψ̂ = arg min
Φ,Ψ

∑
θ∈Θ

L(Rθ(d∗), pc, ps), (4.4)

where d∗ = T (d, v) is the density field evolving towards stylization. Since
our formulation optimizes for the scalar and vector potentials that transport
the smoke, we allow the user to have direct control over the divergence of
the stylization velocity field. Incompressible and irrotational velocity fields
generate artistically different results and Figure 4.5 shows a comparison be-
tween both approaches. In order to create 3D structures, contributions from
individual viewpoints Rθ are summed, similarly to [Liu et al., 2018b]. We
will discuss camera view sampling and renderer specifications in Section 4.3.
The next sections describe the loss functions that we use for semantic (Lc)
and style transfers (Ls).

4.2.2 Semantic Transfer

Inspired by DeepDream [Mordvintsev, 2016], our method allows novel se-
mantic transfer for stylizing smoke simulations by manipulating the content
represented by the smoke. For example, smoke densities can be modified
to portray patterns and shapes, such as squares or flowers, as depicted in
Figure 4.12. Let F l(I) ∈ RHl×Wl×Cl denote a feature map of [Hl, Wl] dimen-
sions with C channels at the layer l of the network with respect to an input
image I. The user-specified parameter pc consists of an array of feature maps
M ∈ RHl×Wl×Cl for all layers l ∈ L specified by the array. We then define
the content loss as to match features of a density field rendered image to a
user-defined feature map by

Lc(I, pc) =
L

∑
l

[
1

HlWlCl

Hl

∑
i

Wl

∑
j

Cl

∑
k

(
F l

ijk(I)−Ml
ijk

)2
]

, (4.5)

where F l
ijk(I) denotes an activated neuron of the CNN respective to the in-

put image I at position (i, j) of the feature map’s kth channel. The feature
map M represents semantic features that will be transferred to the smoke
(e.g., flowers), and it controls the abstraction level of structures created in
the stylization process. Choosing a feature map that lies on deeper levels of
the network will create more intricate motifs, as shown in Figure 4.12. The

61

Neural Artistic Control of Smoke Simulations

Figure 4.6: Abstraction levels of style features and their impact on the smoke stylization
result. We can control low (left), medium (center) and high (right) levels
of features. The corner images show style representations corresponding to
different feature levels.

user can choose the abstraction level for the semantic transfer to match the
specific content of an input image by selecting shallow levels of the network
layers; or, conversely, match classification textual tags, enabling a stylization
that maximizes tags (e.g., ”volcano”) on the output smoke.

Differently from previous image stylization approaches, we do not enforce
the matching of content loss to the original unstyled image, and instead, the
content loss is used to drive the flow data towards the creation of patterns.
Since the smoke is modified by advecting its density towards stylization,
we can guarantee that each iteration of the optimization will only slightly
modify the original smoke by normalizing the gradients for updating the
velocities with the fixed learning rate size (η).

4.2.3 Style Transfer

In addition to semantic transfer, which is designed to use ”built-in” fea-
tures of the pre-trained network without any reference image as input, our
method allows the incorporation of a given input image style, as shown in
Figure 4.13. The style is computed by correlations between different filter
responses, where the expectation is taken over the spatial extension of the
input image. Hence, in contrast to semantic transfer, we minimize the dif-
ference between feature distributions. Given F̂ l

k(I), which is the flattened
one-dimensional version of a 2D filter map at the kth channel, the Gram ma-
trix entry for two channels m and n is

Gl
mn(I) =

Hl×Wl

∑
i
F̂ l

mi(I) F̂ l
ni(I), (4.6)

62

4.2 Transport-Based Neural Style Transfer

where i iterates over all pixels of the vectorized filter. Thus, the Gram Gl(I)
matrix of a lth layer has dimensions Cl × Cl. The Gram matrix computes
the dot product between all filter responses from a layer, storing correspon-
dences of channels denoted by the row and column of an entry. The user-
specified parameter ps consists of a target image Is and a set of layers for
which the style will be optimized for. Thus, the normalized loss function Ls
for matching styles between an input image and a target style image is

Ls(I, ps) =
L

∑
l

[
1

4C2
l (Hl ×Wl)2

Cl

∑
m,n

(
Gl

mn(I)− Gl
mn(Is)

)2
]

. (4.7)

Similarly to our semantic transfer, the Gram matrix layer choice in Equa-
tion (4.7) controls different abstraction levels of the stylization, as illustrated
in Figure 4.6. However, the style transfer does not match features that have
spatial correlations relative to the input image, but rather approximates filter
response statistics. We further highlight differences between semantic and
style transfer in Section 4.4.1.

4.2.4 Time-Coherent Stylization

As densities are updated with the simulation advancement, distinct fea-
tures can be emphasized by semantic and style transfer losses over different
frames. Thus, flickering will occur if time-coherency between frames is not
enforced explicitly, as shown in Figure 4.7. Given that the velocities of the
original simulation transport densities over time, we use them to align styl-
ization velocities computed independently for different frames. Once these
velocities are aligned, we update a single frame stylization velocity field by
smoothing subsequent aligned velocities together. Specifically, we define
U = {u0, u1, . . . , un−1, un} as the set of simulation velocities computed for
the whole simulation duration. The advection function T j

i that takes a styl-
ization velocity at the ith frame to the jth frame is

T j
i (vi, U) =

T (. . . T (T (vi, ui), ui+1) . . . , uj−1), if i < j
T (. . . T (T (vi,−ui−1),−ui−2) . . . ,−uj), if i > j
vi, if i = j

, (4.8)

where T is a function that advects a velocity or a density field for a single
time-step. Equation (4.8) is recursive, and aligning a velocity field defined
n frames away from a specific frame requires n evaluations of the advection
function. A temporally coherent velocity for stylization of frame t is given

63

Neural Artistic Control of Smoke Simulations

Figure 4.7: Two subsequent frames of the smoke jet example stylized with a flower mo-
tif [gfv, 2015], no time coherence (top) and window size 9 (bottom). For each
frame, a close-up view corresponding to the highlighted region is shown on
the right. Using our algorithm with a bigger window size ensures that the
structures created in one frame are propagated to subsequent stylizations.

as a linear combination of aligned neighbor velocity fields

v∗t =
t+w

∑
i=t−w

ωiT t
i (vi, U), (4.9)

where w is the number of neighboring frames evaluated in time,
2w + 1 is the window size and ωi is a weighting term. Let Vt =
{vt−w, vt−(w−1), . . . , vt, . . . , vt+(w−1), vt+w} be the window of stylization
velocities at time t obtained by the combination of corresponding potential
windows Φt, Ψt defined in a range from t− w to t + w. The time-coherent
multi-view stylization optimization is

Φ̂t, Ψ̂t = arg min
Φt,Ψt

t+w

∑
i=t−w

∑
θ∈Θ

L(Rθ(T (di, v∗i)), pc, ps). (4.10)

In practice, evaluating directly Equation (4.10) becomes infeasible as the
number of neighbors increases. The memory used by the automatic dif-

64

4.3 Differentiable Smoke Renderer

ferentiation procedure to compute derivatives quickly grows as the window
size increases. Thus, we approximate the solution of Equation (4.10) by first
evaluating Equation (4.4) to find a set of stylization velocities computed for
a single frame. Then, we merge the velocities per-frame individually using
Equation (4.9). This is performed iteratively for all simulation frames of a
sequence, and the multi-view time-coherent process is summarized in Algo-
rithm (2).

Algorithm 2: Multi-View Time-Coherent Smoke Stylization

while i < niter do
while t < n f rames do {// single frame stylization}

Compute density by d∗t = T (dt, v∗t)
for θ ∈ Θ do

Render Iθ
t = Rθ(d∗t) with angle θ

Obtain ∇Φθ
t ,∇Ψθ

t from L(Iθ
t , pc, ps)

end for
Merge gradients from views ∇Φθ

t ,∇Ψθ
t to obtain ∇Φ∗t ,∇Ψ∗t

end while
while t < n f rames do {// temporal alignment}

for tw = t− w, tw < t + w do
Align gradients ∇Φ∗t ,∇Ψ∗t to obtain ∇Φt,∇Ψt using Equation (4.9)

end for
Φt = Φt + η∇Φt, Ψt = Ψt + η∇Ψt

v∗t = λ∇Φt + (1− λ)∇×Ψt

end while
end while

4.3 Differentiable Smoke Renderer

Similar to the flat shading approach proposed by Liu et al. [2018b] for styl-
izing meshes, our smoke renderer is lightweight. The optimization of Equa-
tion (4.4) heavily relies on rendered density representations, and an overly
sophisticated volumetric renderer compromises efficiency. Our renderer
outputs grayscale images, in which pixel intensity values will correspond
to density occupancy data. Thus, modelling smoke self-shadowing would
map shadowed regions to empty voxels on the rendered image. Neverthe-
less, our results show that meaningful correspondences between the styliza-
tion velocities and density fields can be computed on representations that
do not match perfectly the ones produced by the final rendered image.

The smoke stylization optimization usually performs many iterations, com-
puting derivatives of the loss function (Equation (4.4)) with respect to the ve-

65

Neural Artistic Control of Smoke Simulations

Our Renderer Shallow Appearance Medium Appearance Thick Appearance

Figure 4.8: The value of γ controls how the smoke density is stylized. Smoke images
(left) produced by our renderer with γ = 0.01 (top) and γ = 1 (bottom).
The final smoke renderer is configured with varying thickness, highlighting
how the stylization gets transferred for different smoke appearances.

locity field by automatic differentiation. Therefore, the volumetric rendering
requires efficiency. Our lightweight differentiable rendering algorithm only
incorporates a single directional light traced directly from the pixel rendered
from an orthographic camera. We measure how much of this single light ray
gets transmitted through the inhomogeneous participating media, which is
described by [Fong et al., 2017], to compute the transmittance and the image
pixel grayscale value as

τ(x, r) = e−γ
∫ rmax

x d(r) dr

Iij =
∫ rmax

0
d(x) τ(x, r) dx,

(4.11)

where rij is a vector traced from pixel ij into the normal direction of an or-
thographic camera, d(r) is the density value, γ is a transmittance absorption
factor, and rmax is the maximum length of the traced ray. The value com-
puted at each image pixel is the integral of the transmittance multiplied by
the density values, mapping empty and full smoke voxels to 0 and 1, re-
spectively. We additionally multiply the transmittance and densities along
the integration ray since it generates richer features for thicker smoke sce-
narios. Comparisons between this approach against simply integrating the
transmittance along the view-ray are discussed in Section 4.4.2.

66

4.3 Differentiable Smoke Renderer

Figure 4.9: Stanford Bunny shaped smoke stylized with spiral patterns [spi, 2015] for
multiple views ([-30◦,30◦], every 15 degrees). Our method focuses the in-
stantiation of patterns on smoke regions that share similarities with the tar-
get motif. Additionally, augmented flow structures change smoothly when
the camera moves around the object.

The smoke density is linearly mapped to extinction using the scaling factor
γ, which determines how quickly light gets absorbed by the smoke. Fig-
ure 4.8 shows that minimizing the discrepancy between the final rendered
smoke and the representation in which it is optimized is important. Setting
low transmittance constants in the stylization renderer will result in more
aggressive smoke modifications towards the normal view direction, while
high transmittance will over-constrain the stylization velocity field to the
smoke surface that is closer to the camera. Figure 4.8 shows the effect of
varying γ values with the final rendered smoke thickness: low γ values will
produce better results for shallow smoke appearances, while higher γ values
will more efficiently stylize thicker smoke.

4.3.1 Camera Design Specifications

Participating media naturally incorporates transparency, and a single-view
stylization update will be propagated inside the volumetric smoke even
though the rendered image is two dimensional. Therefore it is not necessary
to uniformly cover every viewpoint of the smoke with equal probability as
in [Liu et al., 2018b]. Given a pre-defined camera path, we use Poisson sam-
pling [Bridson, 2007] around a small area of its trajectory (Figure 4.11, left)
to avoid bias that would be introduced by a fixed set of viewpoints.

Since feature maps obtained from 2D views of the camera are used, we spec-
ify that the image rendered by the camera is invariant to zooming, panning
and rolling. This means that if the camera is moving (as in Figure 4.11, left),
our renderer automatically centers the smoke representation in the frame,
only responding to variations of the viewing angle. These invariances en-
sure that filter map activations remain constant as long as no new voxels
are shown in the rendered image; rotations, however, have to be accounted

67

Neural Artistic Control of Smoke Simulations

for. Thus, our renderer camera position is parameterized by the polar coor-
dinates tuple θ = (θ1, θ2), while the camera always points to a fixed point
inside the smoke. Note that this simplification is only possible since we are
adopting an orthogonal camera, and a perspective projection might reveal
new voxels with translational movement.

The inset image shows how enhanced fea-
tures (e.g., patterns at the bunny face) vary
due to translations in the image space, in
which the stylization should remain con-
stant.

In order to evaluate Equation (4.11) for multiple perspectives, we need to in-
tegrate smoke voxels along the camera view direction. Implementing a clas-
sic ray-marching sampling along an arbitrary ray direction is challenging in
Deep Learning frameworks, which are usually optimized for tensor opera-
tions. Thus, we adopted the spatial transformer network (STN) of Jaderberg
et al. [2015]. The STN instances a rotated 3D domain with the same dimen-
sionality as the original one that is aligned with the camera view as illus-
trated in Figure 4.11 (right). This allows us to evaluate samples by evoking
simple built-in features that implement voxel summations along the view
direction of each pixels’ ray. These specifications make our rendering algo-
rithm efficient, accounting for about 30% of time taken for processing a batch
(see Table (4.2)).

Figure 4.11: Multi-View camera configuration. We sample a camera path with Poisson
sampling, which prevents smoothing of density details between pre-defined
viewpoints (left). The volumetric smoke grid is aligned with the camera
viewpoint to facilitate light ray integration (right).

68

4.4 Results

4.4 Results

We demonstrate that our approach can reliably transfer various styles from
images onto volumetric flow data, with automatic semantic instantiation of
features and artistic style transfer. All our stylization examples employed a
mask with soft edges (Figure 4.16) that is extracted from the original smoke
data. The mask is applied to the potential field, and it restricts modifications
to be close to the original smoke border while enhancing temporal accuracy
near smoke boundaries (Section 4.4.2). The advection operator T is imple-
mented by the MacCormack method [Selle et al., 2008]. We refer the reader
to the supplemental video for the corresponding animations.

Equations 4.5 and 4.7 are optimized by stochastic gradient descent, with
the gradients computed by backpropagation on GoogleNet [Szegedy et al.,
2015]. Although we use automatic differentiation, analytic differentiation
would allow us to fit even bigger simulation examples [Liu et al., 2018b]. We
modified the original stride size of GoogleNet’s first layer from two to one
to remove checkerboard patterns that occur when the kernel size is not di-
visible by the CNN’s stride size [Odena et al., 2017]. We use a fixed learning
rate and apply multi-scale stylization and Laplacian pyramid gradient nor-
malization techniques [Mordvintsev, 2016] for boosting lower frequencies.
Parameters and performance values for all examples are summarized in Ta-
ble (4.2). Our implementation uses tensorflow [Abadi et al., 2016] evaluated
on a TITAN Xp GPU (12GB). The input simulations have been computed
with different solvers. We used mantaflow [Thuerey and Pfaff, 2018] for the
smokejet and bunny examples in Figure 4.12 and Figure 4.13, Houdini for
computing the volcano in Figure 4.1, and a dataset from Sato et al. [2018a]
in Figure 4.14.

4.4.1 Semantic and Style Transfers

To demonstrate how our method performs under distinct style and semantic
transfers, we designed two instances of buoyancy-driven smoke: a smokejet
with a sphere-shaped source and an initial horizontal velocity, and a smoke
initialized with the Stanford bunny shape (Figure 4.12, left). For all exam-
ples shown in Figures 4.12 and 4.13 we used 20 iterations for each scale with
a learning rate of 0.002, 3 Laplacian subdivisions and 9 camera views for a
single frame Poisson sampled around the original view with elevation (θ1)
and azimuth (θ2) ranges spanning [−5◦, 5◦] and [−10◦, 10◦] respectively. The
stylized examples show that our method is able to augment the original flow

69

Neural Artistic Control of Smoke Simulations

structures of the smoke, generating a wide set of artistic and natural 3D ef-
fects.

Examples in Figure 4.12 demonstrate results obtained by applying the se-
mantic style transfer loss from Equation (4.5). All the feature maps are
from the GoogleNet [Szegedy et al., 2015] architecture; the captions indicate
which layer of the CNN is used for the optimization. Activating different
layers of the network will yield stylization results which will vary in the
complexity of instantiated structures. In the two first examples we used fil-
ters closer to initial layers, which depict simpler patterns that occur at lower
levels of abstraction. These patterns are used by higher levels to composite
more complex structures. As the layers become deeper, the network is able
to produce more intricate motifs, such as structures similar to flowers, fur,
or ribbons.

Examples shown in Figure 4.13 apply the style loss of Equation (4.7). To
demonstrate the flexibility of our approach, we used three different image
categories for testing the style transfer loss: photorealistic (first and second
columns), artistic (third and fourth columns) and patterns (fifth and sixth
columns). For all these examples, a mix of convolution layers from different
levels of the CNN is used, similarly to [Gatys et al., 2016a]. The represen-
tations of the layers employed on the style transfer are depicted below each
input style image. Figure 4.2 shows distinct frames of the bunny-shaped
rising smoke stylized with the volcano and spiral input images from Fig-
ure 4.13. In Figure 4.14 we compare our results with the example-based
turbulence transfer method of Sato et al. [2018a]. The style of the single
frame rendering (Figure 4.14, middle) of their method output is transferred
by our approach to an input coarse simulation. The results show that our
approach is able to generate similarly detailed flow structures with only a
given reference image.

Besides individually transferring semantics and styles, our method is also
flexible to allow the combination of these techniques. An example in the ac-
companying video demonstrates the semantic instantiation of cloud motifs
merged with the style of a fire texture, while a similar stylization shows rib-
bon patterns combined with Starry Night painting style. Figure 4.1 shows a
low-resolution volcanic setup in which a combination of cloud motifs and a
volcano texture was used to create turbulent details. The thick smoke pro-
duced by volcanic ashes poses challenges to our renderer, since it quickly
saturates transmittance values. Nevertheless, our renderer is able to create
structures that consistently correlate with the input smoke.

Our method is also able to control the amount of smoke dissipation by the
decomposition of the stylization velocity field into its incompressible and ir-

70

4.4 Results

Original Simulation 3b bottleneck, c = 44 3b bottleneck, c = 66 4b pool reduce, c = 16 4b pool reduce, c = 60 4b pool reduce, c = 38

3b bottleneck, c = 8 3b bottleneck, c = 58 3b bottleneck, c = 71 3b bottleneck, c = 109 4b pool reduce, c = 6

Figure 4.12: Semantic transfer applied to a smokejet and bunny simulations (leftmost
column). Images on the same column are stylized with the feature map
depicted on the right corner [gfv, 2015]. The examples for semantic transfer
depict different levels of abstraction, showing patterns that occur at shallow
levels of the network (first row, first two columns, second row, first four
columns) and intricate motifs that are represented at deeper levels (first
row, last three columns, second row, last column).

rotational parts. Figure 4.5 and examples in the supplemental video show
that different artistic patterns are created depending on the constraints im-
posed on the velocity field.

Although our method is based on 2D representations of the smoke data, it
can reliably cover multiple viewing directions without introducing bias to-
wards certain views. This is allowed by the Poisson sampling of positions
along the camera trajectory. Figure 4.9 shows the bunny smoke example styl-
ized with a spiral pattern from different viewpoints. Transferred structures
change smoothly when the camera moves around the object. An example
in the accompanying video compares results of the smoke bunny example
stylized with single view and multiple camera views. The multiple camera

71

Neural Artistic Control of Smoke Simulations

Table
4.2:Param

etersand
perform

ancestatistics.W
eused

a
constantm

ulti-scaling
factorof1.8,and

theinputsizeisfirstly
dow

n-
sam

pled
to

61×
92×

61
and

up-scaled
to

111×
166×

111
and

200×
300×

200.C
om

putation
tim

eperfram
eincludes

allinputscales.
Sim

ulation
Learning

Extinction
M

ulti
#

Target
C

om
putation

Scene
R

esolution
#

Fram
es

R
ate

Factor
α

Scale
Layers

Tim
e

per
Fram

e
(m

)
Sem

antic
Transfer

(Fig.4.12)
200×

300×
200

120
0.002

0.1
3

1
13.47

Style
Transfer

(Fig.4.13)
200×

300×
200

120
0.002

0.1
2

3
12.68

Volcano
(Fig.4.1)

200×
300×

200
140

0.003
10

2
2

12.97
Sato

etal. [2018a]
(Fig.4.14)

192×
256×

192
140

0.005
5

2
3

11.97

72

4.4 Results

Fire Volcano Seated Nude Starry Night Blue Strokes Spiral Patterns

Okeffe Dark Matter Oil Ben Giles Flowers Giger

Figure 4.13: Style transfer applied to a smokejet and bunny simulations. We used pho-
torealistic (first two columns), artistic (middle two columns) and pattern-
based (last two columns) input images [sti, 2018] as input to the stylization
algorithm. Fire examplar ©Bunzellisa via pixabay.

views are Poisson sampled with 180 degrees angle range around the y−axis.
The multi view approach shows more salient 3D structures when compared
with the single view stylization.

Lastly, Figure 4.7 shows the impact of different time coherency window sizes
(Equation (4.9)). We compare a window size of 1 (frame-based stylization)
with a window size of 9 (used in all other examples) for multiple subsequent
frames. Features heavily flicker with a small window size, while augmented
structures change smoothly with larger windows. These results are better
visualized in the accompanying video, in which we also included a compar-
ison with a window size of 5.

73

Neural Artistic Control of Smoke Simulations

Figure 4.14: Style Transfer comparison. From left to right: input density field of Sato et
al. [2018a], the result of applying the method of Sato et al., and our style
transfer result using the middle image as stylization input.

4.4.2 Discussion

Differentiability Note that all operators including advection and ren-
dering require differentiability with respect to the velocities, so efficient
gradient-based optimization methods can be employed. Traditional NST
works by differentiating the loss of a classification network with respect
to the image input, computing gradients of filter responses to image vari-
ations. Since classification networks convolve images to create filter re-
sponses, these filters are assumed to smoothly change with respect to image
variations, and thus NST works without differentiability issues. This is the
same for our work, however we additionally require that both the transport
towards stylization and the smoke rendering to be differentiable. The ren-
dering scheme denoted by Equation (4.11) is clearly differentiable. The Mac-
Cormack advection uses the Semi-Lagrangian method as its building blocks
to correct error estimations. The correction is differentiable and the Semi-
Lagrangian algorithm works by sampling densities in previous positions.
Thus, two components need to be considered for differentiation to work: es-
timation of particle trajectories and density sampling. The estimation of the
particle trajectories is a linear ODE, and thus differentiable. Densities are
estimated by grid sampling, and as shown in [Jaderberg et al., 2015] this is
also differentiable when using linear interpolation kernels.

Performance and memory limitations Table (4.2) shows the average time
for stylizing a single frame of different simulation resolutions, with grids

74

4.4 Results

up to 200× 300× 200. Performance was not the focus of this work, and as
shown by extensive follow-up works to image-based NST [Ulyanov et al.,
2016], we believe that real-time stylizations can be obtained by training net-
works to directly output stylized results. For higher resolutions, the limiting
factor is the single GPU memory used for computing the backpropagation
with tensorflow automatic differentiation. As in [Liu et al., 2018b], the mem-
ory limitation could be greatly reduced by using analytic differentiation.

Temporal Coherency and Boundary conditions Features are instanti-
ated by evaluating smoke representations independently for each frame.
Our temporal coherency algorithm aligns and blends the creation of those
features; however, due to the nature of the underlying physical phenomena,
smoke structures might appear and disappear as the simulation advances.
This might induce abrupt changes in the stylized smoke, specially when
considering smoke edges. We did not post-process our results in order to
have a fair evaluation, but this effect can be controlled by blending the re-
sults with the original smoke simulation or by a more aggressive masking
scheme. Regarding boundary conditions, the final stylized smoke can only
slightly penetrate objects inside the simulation, since it starts from a density
field configuration that is already boundary respecting. We provide an ex-
ample of stylization on smokejet simulation with a sphere shape obstacle to
see how our method works on the presence of boundaries. Note that the
mask is not applied in this case, since the masking would guarantee zero
penetration on boundaries. Figure 4.15 shows density field visualizations
of the base simulation, stylized density field, simulation velocity fields and
stylized velocity fields, from top to bottom. Note that since the original sim-
ulation velocity field is already boundary-respecting, thus our method only
yields slight penetrations on the obstacle boundary.

Soft Masking Examples in this thesis apply a soft mask (Figure 4.16, right)
to the stylization velocity field, in order to conform the stylization output to
the original smoke silhouette. Figure 4.16 compares results obtained without
employing the soft mask for irrotational, mixed and incompressible exam-
ples. Not applying the mask causes the smoke to spread, especially in the
case of incompressible velocity fields.

Control Parameters Figure 4.17 shows the amount of smoke dissipation
over time by the decomposition of the stylization velocity field into its in-
compressible and irrotational parts. As expected, a streamfunction-based

75

Neural Artistic Control of Smoke Simulations

Figure 4.15: Stylization on smokejet simulation with a sphere shape obstacle. First row
shows base simulation, second row shows stylized density fields, third row
represents the middle slice view of magnitude of base simulation velocity
fields, while fourth row shows those of stylization velocity fields. Note that
no soft mask is used.

Figure 4.16: Results from semantic transfer of a net structure without soft mask (right-
most). Irrotational, mixed and incompressible velocity fields, from left to
right.

76

4.4 Results

(incompressible) velocity stylization shows less dissipation than those of po-
tential field based (irrotational) velocity stylization. Conservation errors due
numerical integration on the advection algorithm, although, are still present.
This causes the streamfunction-based velocity field to not exactly conserve
the original amount of smoke.

Figure 4.17: Density amount plot comparison for incompressible and irrotational ve-
locity fields. Using a streamfunction-based (incompressible) velocity fields
reduces the loss of density amount compared to an irrotational approach.

Figure 4.18 shows the effects of varying the number of iterations and the
learning rate size. The learning rate affects structures significantly, higher
learning rates result in more pronounced details. This is also visible in Fig-
ure 4.19 where different learning rates for the Starry Night Style transfer
were used.

Analysis on Differentiable Rendering Methods We compared a simpler
alternative rendering method to the Equation (4.11). The image is calculated
by simply integrating the transmittance along the viewing ray as

Iij = 1− e−α
∫ rmax

0 d(rij) dr. (4.12)

Figure 4.20 shows the difference between the rendering method proposed
on this thesis and the one in Equation (4.12). We vary the transmittance ab-
sorption factor (γ) for the stylization of the bunny example (left to right);
top image sequence shows the differentiable rendering method, while bot-
tom one shows the alternative rendering computed from Equation (4.12).
While low transmittance values (leftmost) produce similar renderings and
stylizations for both approaches, using Equation (4.12) quickly saturates the

77

Neural Artistic Control of Smoke Simulations

Figure 4.18: Influence of iteration number and learning rate. From left to right: 5, 10,
and 20 iterations. From top to bottom: learning rate of 0.001, 0.0005,
0.0001.

image as γ increases. The differentiable rendering method, however, creates
structures that are presented even in examples with higher transmittance
absorption factors (rightmost).

2D Examples We compare the value-based and transport-based density
optimization for a 2D smoke simulation in Figure 4.21. The value-based
method shows sharper details, but introduces ghosting artifacts in temporal
sequences as spurious density sources and sinks are added. Our transport-
based approach leads to temporally smoother stylizations as the total vol-

78

4.4 Results

Figure 4.19: Influence of using different learning rates for the Starry Night style trans-
fer example. A higher learning rate (right, 5× higher) results in more pro-
nounced structures than when using lower learning rates (left), but also
more noisy results.

ume is conserved. We also compare the temporal coherency with different
window sizes for a 2D smoke simulation in Figure 4.22. The images are
cropped from the top right part of the stylized image sequence. The top row
shows the results using a window size of 1, and the bottom row is gener-
ated with a window size of 9. The larger the window size, the more overall
structure is conserved (highlighted by the color-coded circles).

Figure 4.23 shows different 2D semantic and style transfer examples. We
also provide comparisons about different abstraction levels of style features
for 2D simulations (Figure 4.24). We can control low (left), medium (middle)
and high (right) levels of features. Figure 4.25 shows how changing the reso-
lution of the input fluid simulation affects the stylization. Higher resolution
simulations (right) lead to sharper structures than coarse simulations (left).

79

Neural Artistic Control of Smoke Simulations

Figure 4.20: Our differentiable rendering method (top) versus the one with Equa-
tion (4.12) (bottom).

80

4.4 Results

Figure 4.21: Value-based density optimization (middle) versus transport-based density
optimization (right). The input smoke simulation is shown on the left.

Figure 4.22: Comparison of temporal coherency using different window sizes of 1 and 9.

Figure 4.23: From left to right: coarse input simulation, flower, volcano, and fire styl-
izations.

81

Neural Artistic Control of Smoke Simulations

Figure 4.24: Low (left), medium (middle) and high (right) levels of style features.

Figure 4.25: Stylization applied to a low-resolution (left) and high-resolution (right)
fluid simulation. More detailed structures are synthesized with higher res-
olutions.

82

C H A P T E R 5
Lagrangian Neural Artistic Control of
Fluid Simulations

This chapter is based on the following publication by [Kim et al., 2020]:

B. Kim, V. C. Azevedo, M. Gross, B. Solenthaler, Lagrangian Neural Style
Transfer for Fluids, ACM Transactions on Graphics (Proceedings of SIGGRAPH
2020), 39(4), Jul. 2020. (selected for the video trailer and back cover of the
proceedings)

The supplemental video can be found here: https://www.youtube.com/
watch?v=WPmUsIVf3-4.

Figure 5.1: Our Lagrangian neural style transfer enables novel artistic manipulations,
such as time-coherent stylization of smoke, multiple fluids and liquids.

83

https://www.youtube.com/watch?v=WPmUsIVf3-4
https://www.youtube.com/watch?v=WPmUsIVf3-4

Lagrangian Neural Artistic Control of Fluid Simulations

Figure 5.2: Neural color stylization [Christen et al., 2020] using the input Red Canna
applied to a smoke scene with TNST (top) and LNST (bottom). The close-up
views (dashed box, frames 60 and 66) reveal that LNST is more time-coherent
than TNST (dashed circle).

5.1 Overview

In the previous Chapter 4, we show that our Transport-based Neural Style
Transfer (TNST) [Kim et al., 2019a] takes flow appearance and motion con-
trol to a new level: arbitrary styles and semantic structures given by 2D
input images are automatically transferred to 3D smoke simulations. The
achieved effects range from natural turbulent structures to complex artistic
patterns and intricate motifs. The method extends traditional image-based
Neural Style Transfer [Gatys et al., 2016b] by reformulating it as a transport-
based optimization. Thus, TNST is physically inspired, as it computes the
density transport from a source input smoke to a desired target configura-
tion, allowing control over the amount of dissipated smoke during the styl-
ization process. However, TNST faces challenges when dealing with time
coherency due to its grid-based discretization. The velocity field computed
for the stylization is performed independently for each time step, and the in-
dividually computed velocities are recursively aligned for a given window
size. Large window sizes are required, rendering the recursive computation
expensive while still accumulating inaccuracies in the alignment that can

84

5.2 Lagrangian Neural Style Transfer

Figure 5.3: Recursive temporal alignment in TNST. For a window size w, (w2 − 1)/4
recursive temporal alignment steps are performed for each stylization veloc-
ity v̂. Colors indicate the distance to frame t, and arrows refer to advection
steps (with recursive steps shown as dashed lines).

manifest as discontinuities. Moreover, transport-based style transfer is only
able to advect density values that are presented in the original simulation,
and therefore it does not inherently support color information or stylizations
that undergo heavy structural changes.

Thus, in this Chapter 5, we reformulate Neural Style Transfer in a La-
grangian setting (see Figure 5.4), demonstrating its superior properties com-
pared to its Eulerian counterpart. In our Lagrangian formulation, we op-
timize per-particle attributes such as positions, densities and color. This
intrinsically ensures better temporal consistency as shown for example in
Figure 5.2, eliminating the need for the expensive recursive alignment of
stylization velocity fields. The Lagrangian approach reduces the computa-
tional cost to enforce time coherency, increasing the speed of results from one
day to a single hour. The Lagrangian Style transfer framework is completely
oblivious to the underlying fluid solver type. Since the loss function is based
on filter activations from pre-trained classification networks, we transfer the
information back and forth from particles to the grids, where loss functions
and attributes can be jointly updated. We propose regularization strategies
that help to conserve the mass of the underlying simulations, avoiding over-
sampling of stylization particles. Our results demonstrate novel artistic ma-
nipulations, such as stylization of liquids, color stylization, stylization of
multiple fluids, and time-varying stylization.

5.2 Lagrangian Neural Style Transfer

In the previous Chapter 4, we found that extending the single frame styliza-
tion in a time-coherent fashion is expensive and inaccurate when computed
in an Eulerian framework. TNST aligns stylization velocities by recursively
advecting them with the simulation velocities for a given window size as
shown in Figure 5.3. The recursive nature renders this computation ineffi-
cient time- and memory-wise, especially when large window sizes are em-
ployed to enable smooth transitions between consecutive frames. Due to

85

Lagrangian Neural Artistic Control of Fluid Simulations

𝜕ℒ/𝜕𝐼𝜃𝜕𝐼𝜃/𝜕𝑑
∗

𝒑𝑠 for style transfer

𝑑∗

ℐ𝑝2𝑔(𝐱
°, 𝜆°, ℎ, 𝐱⊞)

𝒑𝑐 for semantic transfer

𝑳
𝒐
𝒔
𝒔
𝑵
𝒆
𝒕𝒘
𝒐
𝒓
𝒌

ℒ

ℛ𝜃(𝑑
∗)

𝐼𝜃

𝜕𝑑∗/𝜕𝜆°

(or 𝜕𝐱°)

…

…

𝐱⊞ ∈ ℝ𝐷×𝐻×𝑊

𝐱° ∈ ℝ𝑁×3, 𝜆° ∈ ℝ𝑁×𝑚

+ +

Upscale to
𝑛𝐷 × 𝑛𝐻 × 𝑛𝑊

Multi-scale Density Reconstruction

Figure 5.4: Overview of our LNST method. We optimize particle positions x◦ and at-
tributes λ◦ to stylize a given density field d∗. We transfer information from
particles to the grid with the splatting operation Ip2g, and jointly update
loss functions and attributes. The black arrows show the direction of the
feed-forward pass to the loss network L, and the gray arrows indicate back-
propagation for computing gradients. For grid-based simulation inputs, we
sample and re-simulate particles in a multi-scale manner (Algorithm (3)).

the large memory requirement, this operation often has to be computed on
the CPU, which generates additional overhead by the use of expensive data
transfer operations.

In contrast to its Eulerian counterpart, the Lagrangian representation uses
particles that carry quantities such as the position, density and color value.
Neural style transfer methods compute loss functions based on filter activa-
tions from pre-trained classification networks, which are trained on image
datasets. Thus, we have to transfer the information back and forth from
particles to the grids, where loss functions and attributes can be jointly up-
dated. We take inspiration from hybrid Lagrangian-Eulerian fluid simula-
tion pipelines that use grid-to-particle Ig2p and particle-to-grid Ip2g trans-
fers as

λ◦ = Ig2p(x◦, λ+) and λ+ = Ip2g(x◦, λ◦, h, x+), (5.1)

where λ◦ and λ+ are attributes defined on the particle and grid, respectively,
x◦ refers to all particle positions, x+ are grid nodes to which values are trans-
ferred, and h is the support size of the particle-to-grid transfer.

Our grid-to-particle transfer employs a regular grid cubic interpolant, while
the particle-to-grid transfer uses standard radial basis functions. Regular
Cartesian grids facilitate finding grid vertices around an arbitrary particle

86

5.2 Lagrangian Neural Style Transfer

position. For this, we extended a differentiable point cloud projector [In-
safutdinov and Dosovitskiy, 2018] to arbitrary grid resolution, neighbor-
hood size and custom kernel functions. Given all the neighboring particles
j ∈ ∂Ωx around a grid node x, a grid attribute λ+ is computed by summing
up weighted particle contributions as

λ+(x) =
∑j∈∂Ωx λ◦j W(||x− xj

◦||, h)

∑j∈∂Ωx W(||x− xj
◦||, h)

, (5.2)

where we chose W to be the cubic B-spline kernel, which is also often used
in SPH simulations [Monaghan, 2005]:

W(r, h)cubic =

2
3 − r2 + 1

2r3, 0 ≤ r ≤ 1,
1
6(2− r)3, 1 ≤ r ≤ 2,
0, r > 2.

(5.3)

We now have all the necessary elements to convert the previous Eulerian
style transfer (Equation (4.2)) into a Lagrangian framework. Given a set of
Lagrangian attributes Λ◦, the optimization objective for a single frame is

Λ̂◦ = arg min
Λ◦

∑
θ∈Θ

∑
λ◦∈Λ◦

wλ◦ L(Rθ(Ip2g(x◦, λ◦), p), (5.4)

where wλ◦ are weights for the losses that include Lagrangian attributes. In
case of particle position x◦ given as the target quantity λ◦, we use the SPH
density Ip2g(x◦) = ∑j∈∂Ωx mjW(||x− x◦j ||, h), where mj represents the mass
of the j-th particle [Bender, 2016]. Note that our losses are evaluated sim-
ilarly as in the original Eulerian method, since the gradients computed in
image-space also modify grid values (λ+). However, these gradients are
automatically propagated back to the particles by auto-differentiating the
particle-to-grid Ip2g function. Thus, our method only reformulates the do-
main of the optimization, sharing the same stylization possibilities (semantic
and content transfers) as in the original TNST.

Since the Lagrangian optimization is completely oblivious to the underlying
solver type, the chosen attributes for creating stylizations can be arbitrar-
ily combined, enabling a wide range of artistic manipulations in different
scene setups. We outline two strategies and demonstrate their impact on
the stylization. The first one is particularly suitable for participating volu-
metric data, which are often simulated with grid-based solvers. It involves
optimizing a scalar value carried by the Lagrangian stylization particles by
Equation (5.4). For most of our smoke scenes, this scalar value is the density,
though it can also be the color or emission. The regularization term

L(λ◦)ρ = (∑ ∆λ◦)2 −∑ log ||∆λ◦||1 (5.5)

87

Lagrangian Neural Artistic Control of Fluid Simulations

reinforces the conservation of the original amount of smoke. It minimizes
the total net smoke change, preventing the stylization to undesirably fade
out particles and keeping changes non-zero by minimizing cross-entropy
loss at the same time. Figure 5.5 demonstrates the impact of different regu-
larizer weights.

Figure 5.5: Different weights for the density regularization show the trade-off between
pronounced structures and conservation of mass. The images on the left
show results with zero, low, and high weights, respectively, and the right
image is the ground truth.

The second strategy is suitable if the underlying fluid solver is particle-based
or hybrid, which is often the case for liquids. For these simulations, we
can define particle position displacements as the optimized Lagrangian at-
tributes. However, generating stylizations by modifying particle displace-
ments may cause cluttering or regions with insufficient particles. The regu-
larization penalizes irregular distribution of particle positions and is defined
as

L(x◦)∆x = ||Ip2g(x◦)− ρ+
0 ||22, (5.6)

where ρ+
0 corresponds to the rest density for cells that contain particles, and

is zero otherwise. Note that Equation (5.6) does not account for the particle
deficiency near fluid surfaces. This could be addressed by adding virtual
particles [Schechter and Bridson, 2008] or applying (variants of) the Shepard
correction to the kernel function [Reinhardt et al., 2019]. We show the impact
of this regularizer on the particle sampling in Figure 5.6, highlighting the
trade-off between uniform distribution and stylization strength.

We notice that both regularizations in Equation (5.5) and Equation (5.6) are
different incarnations of the mass conservation property commonly used in

88

5.3 An Efficient Particle-Based Smoke Re-Simulation

Figure 5.6: Different weights for the position regularization show the trade-off between
pronounced structures and uniform sampling. The images on the left show
results with zero, low, and high weights, respectively, and the right image is
the ground truth.

fluid simulations. In TNST, mass conservation is enforced by decompos-
ing the stylization velocities into their irrotational and incompressible parts,
which can be optimized independently. Both techniques enable a high de-
gree of artistic control over the content manipulation.

5.3 An Efficient Particle-Based Smoke Re-Simulation

If the input is a grid-based simulation, we have to sample and re-simulate
particles. We can use a sparse representation with only one particle per
voxel, in constrast to hybrid liquid simulations that usually sample 8 par-
ticles per voxel to properly capture momentum conservation [Zhu and Brid-
son, 2005]. Combining a low number of particles with a position integra-
tion algorithm that accumulates errors over time will yield irregularly dis-
tributed particles [Ando and Tsuruno, 2011]. This manifests in a rendered
image as smoke with overly dense or void regions. We therfore solve the
following optimization problem

x̂◦, ρ̂◦ = arg min
x◦,ρ◦

∑
t
||Ip2g(x◦t , ρ◦t)− ρ+

t ||22. (5.7)

The optimization problem presented above is not only severely under-
constrained but also has a time-varying objective term, and optimizing for

89

Lagrangian Neural Artistic Control of Fluid Simulations

Equation (5.7) is challenging if tackled jointly for both particle positions x◦

and densities ρ◦. Thus, we use a heuristic approach for solving this opti-
mization, subdividing it into two steps, position optimization and multi-
scale density update (Section 5.3.1). Firstly, we minimize the irregular distri-
bution of particle positions by employing a position-based update, optimiz-
ing particle distributions using Equation (5.6) as objective. The distribution
of the particles is optimized per frame and serves as an input for optimizing
subsequent frames, enabling temporally coherent position updates. Equa-
tion (5.6) can be automatically computed by our fully differentiable pipeline.

5.3.1 Multi-Scale Density Representation

In addition to the position update, we also compute smoke densities indi-
vidually carried by the particles to further eliminate small gaps that may
appear due to the sparse discretization, further enhancing the solution of
Equation (5.7). Owing to the low number of sampled particles and the mis-
matches between grid and particle transfers, carrying a constant density will
either produce grainy (Figure 5.7, (b)) or diffuse (Figure 5.7, (c)) volumetric
representations, depending on if particle re-distribution (Equation (5.6)) is
applied or not. A simple approach is to interpolate density values directly
from the grid over time. Larger kernel sizes could be used to remedy sparse
sampling, but would excessively smooth structures and degrade quality.

We take inspiration from Laplacian pyramids, where distinct grid resolution
levels are treated separately. In our case, we compute residuals of differ-
ent support kernel sizes of the particle-to-grid transfer. This efficiently cap-
tures both low- and high-frequency information, covering potentially empty
smoke regions while also providing sharp reconstruction results. The resid-
ual computation of kernels of varying support sizes is synergistically cou-
pled with matching grid resolutions, which creates an efficient multi-scale
representation of the smoke.

The multi-scale reconstruction works as follows: we first sample grid den-
sities to the particles. This represents the smoke low-frequency informa-
tion, which we interpolate to the particle variables ρ◦0 . The variables above
the first level (e.g., ρ◦1 , ρ◦2) will carry residual information computed between
subsequent levels. The Lagrangian representations vary between each level
because they perform grid-to-particle transfers with progressively reduced
kernel support sizes. To compare residuals between Lagrangian representa-
tions, we make use of particle-to-grid transfers, which act as a low-pass filter,
similarly to blurring operations of Laplacian pyramids. This process is per-
formed until the original grid resolution is matched. Our multi-scale density

90

5.3 An Efficient Particle-Based Smoke Re-Simulation

(a) (b) (c)

(d) (e) (f)

Figure 5.7: Comparison of different re-simulation strategies. (a): ground truth density,
(b): constant density carried by particles, (c): (b) with redistribution by
Equation (5.6), (d): single-scale sampled density, (e): (d) with redistribution,
(f): multi-scale (ns = 3) sampled density with redistribution (final method).

representation is summarized in Algorithm (3). Figure 5.7 illustrates the im-
pact of using a single scale without (d) and with (e) particle re-distribition
(Equation (5.6)). The multi-scale result with re-distribution (f), which corre-
sponds to our final method, has a higher PSNR (31.89) than its single-scale
counterpart (31.39) and is very close to the ground truth (a).

91

Lagrangian Neural Artistic Control of Fluid Simulations

Algorithm 3: Multi-Scale Density Reconstruction
Data: Particle positions x◦ optimized by Equation (5.6)
Original grid-based smoke simulation ρ+

Grid node positions x+

Coarsest support kernel radius r
Number of pyramid subdivisions ns
Result: Multi-scale residual density ρ◦ = {ρ◦i }i=1..ns stored on particles

1: ρ+
0 ← 0 // Initialize particle density reconstruction

2: r1 ← r // Initialize kernel radius
3: for i← 1 to ns do
4: ρ+

r ← ρ+ − ρ+
i−1 // Compute residual in grid representation

5: ρ◦i ← Ig2p(x◦, ρ+
r) // Particle residual sampling

6: ρ+
i ← ρ+

i−1 + Ip2g(x◦, ρ◦i , ri, x+) // Update density reconstruction
7: ri+1 ← ri

2 // Divide the kernel radius in half
8: end for

5.4 Temporal Coherency

The major advantage of our Lagrangian discretization is the inexpensive en-
forcing of temporal coherency. Since quantities are carried individually per
particle, it is intrinsically simple to track how attributes change over time.
Neural style gradients are computed on the grid and need to be updated
once the neighborhood of a particle changes. To ensure smooth transitions,
we apply a Gaussian filter over the density changes of a particle, as shown
in Figure 5.8. Besides being sensitive to density neighborhood changes, styl-
ization gradients are also influenced by the density carried by the particle
itself (Section 5.3.1).

To further improve efficiency, and in contrast to TNST, we can keyframe
stylizations, i.e., apply stylization to keyframes and interpolate particle at-
tributes in-between. In practice, we reduced the stylization frames by a
factor of 2 at max, but more drastic approximations could be used. Sparse
keyframes still show temporally smooth transitions, but quality is degraded.
Nevertheless, sparse keyframing would still be useful for generating quick
previews of the simulation. The impact of sparse keyframing (every 10
frames) is shown in Figure 5.9.

92

5.5 Results

Density Value

Stylization Gradients

Smoothed Gradients

𝑡0 𝑡5𝑡4𝑡3𝑡2𝑡1

Figure 5.8: Particle density (circles) variation for a single particle over time. Temporal
coherency is enforced by smoothing density gradients used for stylization
from adjacent frames.

Figure 5.9: Stylization of every frame (left three images) versus keyframed stylization
every 10 frames (images on the right). Sparse keyframing is visually similar
and can be useful for quick previews.

5.5 Results

We implemented the method with the tensorflow [Abadi et al., 2016]
framework and computed results on a TITAN Xp GPU (12GB). We used
mantaflow [Thuerey and Pfaff, 2018] for smoke scene generation, a 3D smoke
dataset from Kim et al. [2019a] for comparisons with TNST, a 2D smoke
dataset from Jamriška et al. [2015] for color stylization, SPlisHSPlasH [Ben-
der, 2016; Koschier et al., 2019] for liquid simulations and Houdini for ren-
dering.

93

Lagrangian Neural Artistic Control of Fluid Simulations

Performance Using particles for stylization eliminates the need for recur-
sively aligning stylization velocities from subsequent frames, which notably
improves the computational performance. In combination with our sparse
particle respesentation for smoke (1 particle per cell), simulations of size
200× 300× 200 can now be stylized within an hour instead of a day (TNST).
The computation time per frame is 0.66 minutes for the Smoke Jet scene
shown in Figure 5.11, which is a speed-up of a factor of 20.41 compared
to TNST. This improvement allows artists to more easily test different ref-
erence structures (input images) and hence renders neural flow stylization
better applicable in production environments. Table (5.1) gives an overview
of the timings and parameters for the individual test scenes. Keyframing
(every other frame) was applied to the Smoke Jet (Figure 5.11) and Double
Jets (Figure 5.12) examples.

Table 5.1: Performance table.
Scene Resolution # Particles Time (m/f)
Moving Sphere (Fig. 5.10) 192× 192× 192 237K 0.8
Smoke Jet (Fig. 5.11) 200× 300× 200 1.2M 0.66
Double Jets (Fig. 5.12) 200× 200× 200 2M/2M 0.45
Chocolate (Fig. 5.13) 200× 200× 200 80K 0.05
Colored Smoke (Fig. 5.2) 800× 800 136K 1.21
Dam Break (Fig. 5.14) 512× 1024 23K 0.58
Double Dam (Fig. 5.15) 512× 1024 31K/8K 0.65

Time-Coherency To illustrate the benefit of the Lagrangian formulation,
we use a simple test scene where we initialize a smoke sphere with a uni-
form density. We then move the smoke artificially to the right, and apply
the neural stylization to every frame of the sequence. We compare the re-
sults of LNST and TNST for different time instances in Figure 5.10. The
top row shows the results of TNST. It can be seen that TNST is not able
to preserve constant stylized textures in regions where the density function
does not change. This is due to the recursive alignment of stylization gra-
dients, which accumulate errors especially for bigger window sizes. The
second row shows the corresponding results with LNST, demonstrating con-
sistent stylization over time since gradients are constant. Also when applied
a shearing deformation to the sphere, as shown in the third row, strucutures
remain coherent. If an artist prefers to have changing structures in such sit-
uations, noise can be added to the densities carried by the particles, which
in turn will induce stylization gradients as shown in the last row.

94

5.5 Results

Figure 5.10: Selected frames of a stylized moving smoke sphere. From top to bottom:
TNST with structures changing over time, LNST with temporally coher-
ent structures, LNST result with applied shearing, and LNST result with
noise-added density inducing style variation over time.

Smoke Stylization Figure 5.11 shows a direct comparison of LNST and
TNST applied to the smoke jet dataset of Kim et al. [2019a]. While the re-
sulting structures inherently depend on the underlying representation, they
naturally differ and cannot be directly compared with each other. It can be
observed, however, that the Lagrangian stylization may lead to more pro-
nounced structures, well visible in the semantic transfer net and the style
transfer blue strokes, and that boundaries are smoother, noticeable in the
Seated Nude example.

Multi-Fluid Stylization Stylization of multiple fluids is naturally enabled
by stylizing different sets of particles with different input images. Fig-
ure 5.12 shows a simulation of two smoke jets colliding, where the left one is

95

Lagrangian Neural Artistic Control of Fluid Simulations

Figure 5.11: Semantic transfer applied to the smokejet simulation of [Kim et al., 2019a]
(leftmost column). Stylized results are shown for our LNST (top) and
TNST (bottom) for semantic feature transfer net (second column) and in-
put images blue strokes, seated nude, and fire (last three columns) [gfv,
2015; sti, 2018].

stylized with the semantic feature net and the right one with the style trans-
fer of the input image spirals. Transferred structures are retained per fluid
type even if the flow undergoes complex mixing effects.

Figure 5.12: Two colliding smoke jets, which are stylized individually with the seman-
tic feature net and input image spirals. The Lagrangian representation
enables coherent stylization of multiple fluids even if the flow undergoes
complex mixing.

Stylization of Liquids We use a simple differentiable renderer for styl-
ization of liquids. Unlike smoke renderer, which integrates media radiance

96

5.5 Results

scattered in the medium, we compute the amount of diffused light, i.e., ab-
sorbed light except transmitted by its liquid volume [Ihmsen et al., 2012],
which is given by

τ(x, r) = e−γ
∫ x

0 d(r) dr

Iij = 1− τ(rmax, r).
(5.8)

Figure 5.13 shows the results of a stylized SPH simulation computed with
SPlisHSPlasH [Bender, 2016]. We applied the patterns spiral and diagonal to a
thin sheet simulation.

Figure 5.13: Thin sheet SPH simulation computed with SPlisHSPlasH [Bender, 2016]
stylized with the patterns spiral and diagonal.

Color Transfer We transfer color information from input images to flow
fields by storing a color value per particle and optimizing it by Equa-
tion (5.4). This can be applied to any grid-based or particle-based smoke
or liquid simulation. In Figure 5.14 we applied the color stylization to a 2D
dam break simulation using different example images, and in Figure 5.15 to
two liquids with distinct types (and hence color). The accompanying videos
show that local color structures change very smoothly over time, which is
attributed to the improved time-coherency of the Lagrangian stylization.
This is especially well visible in Figure 5.2, where two subsequent frames
are shown for TNST and LNST. In this example, we have transferred the
style Red Canna to a smoke scene. The close-up views reveal discontinuities
for TNST, while LNST shows smooth transitions for color structures.

97

Lagrangian Neural Artistic Control of Fluid Simulations

Figure 5.14: Lagrangian color stylization applied to a 2D particle-based liquid simula-
tion using the input images Kanagawa Wave, Red Canna and Starry
Night.

Figure 5.15: Lagrangian color stylization applied to a mixed 2D particle-based liquid
simulation using the input images Kanagawa Wave and fire.

98

C H A P T E R 6
Deep Reconstruction of 3D Smoke
Densities from Artist Sketches

This chapter is based on the following submitted publication:

X. Huang, G. Cordonnier, B. Kim, V. C. Azevedo, M. Gross, B. Solenthaler,
Deep Reconstruction of 3D Smoke Densities from Artist Sketches, sub-
mitted to SIGGRAPH Asia 2020.

The author primarily contributed to Section: 2D Sketch to 3D Den-
sity Prediction and overall experiment design, during his joint PhD at
DisneyResearch|Studios.

Keyframe 𝑡𝑡0 Keyframe 𝑡𝑡10 Keyframe 𝑡𝑡20Interpolated 𝑡𝑡15Interpolated 𝑡𝑡5

Figure 6.1: Selected frames of the dissolving character example. Our network takes
as input an artist sketch at keyframes t0, t10, and t20, and computes the
corresponding 3D smoke fields. We compute in-between frames t5 and t15
with an interpolation method based on Wasserstein barycenters.

99

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

Front Sketch 𝑠𝑠𝑓𝑓
Left Sketch 𝑠𝑠𝑙𝑙

Density Field 𝑑𝑑

�̂�𝑑0

𝑠𝑠1 = ℛ(𝑑𝑑1)

IVM 𝒱𝒱(𝑠𝑠𝑓𝑓,𝑠𝑠𝑙𝑙)

𝑠𝑠2

�̂�𝑑1

�̂�𝑑𝑝𝑝−1

𝑠𝑠𝑝𝑝
�̂�𝑑𝑝𝑝

�̂�𝑠𝑝𝑝

Transform 𝒯𝒯

Update 𝒰𝒰

𝒰𝒰

𝒯𝒯

𝒰𝒰(�̂�𝑑𝑝𝑝
𝑝𝑝−1,𝑠𝑠𝑝𝑝)

�̂�𝑑𝑝𝑝
𝑝𝑝−1

= 𝒯𝒯(�̂�𝑑𝑝𝑝−1,𝜃𝜃𝑝𝑝)

⋯

⋯

�̂�𝑠1

�̂�𝑠𝑝𝑝−1

𝒯𝒯

Density loss ℒ𝑑𝑑 / Sketch loss ℒ𝑠𝑠 / Depth variation loss ℒ𝑡𝑡𝑡𝑡
Aux. loss ℒ𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝑑,𝑑𝑑 = 𝑤𝑤𝑠𝑠ℒ𝑠𝑠 �̂�𝑠, 𝑠𝑠 + 𝑤𝑤𝑡𝑡𝑡𝑡ℒ𝑡𝑡𝑡𝑡(�̂�𝑑)
Pass loss ℒ𝑝𝑝 = 𝑝𝑝ℒ𝑑𝑑 �̂�𝑑𝑝𝑝, 𝑑𝑑𝑝𝑝 + ℒ𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝑑𝑝𝑝, 𝑑𝑑𝑝𝑝 + 𝑤𝑤𝑟𝑟𝑟𝑟 ∑𝑛𝑛=1

𝑝𝑝−1 ℒ𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝑑𝑛𝑛
𝑝𝑝,𝑑𝑑𝑛𝑛

Total loss ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙 = ∑𝑝𝑝ℒ𝑝𝑝 /∑𝑝𝑝 𝑝𝑝

�̂�𝑑𝑝𝑝−1
𝑝𝑝 �̂�𝑑1

𝑝𝑝

�̂�𝑠𝑝𝑝−1
𝑝𝑝 �̂�𝑠1

𝑝𝑝

Figure 6.2: Overview of the multi-pass/view training for sketch to density reconstruc-
tion. Our pipeline takes a single density field and generates corresponding
sketches for the end-to-end training. At each pass of the updater network,
a pass loss Lp is computed on intermediate results (orange dashed box) to
match all target sketches.

6.1 Overview

In the previous chapters, we have presented the first generative model that
constructs a wide variety of fluid behaviors from a set of reduced parame-
ters, and we have also presented novel neural style transfer methods for flu-
ids, which takes flow appearance and motion control to a new level. While
those methods provide artists an efficient tool for artistic fluid control, their
creative processes often start with sketches illustrating an object and its mo-
tion over time. Reproducing these sketched keyframes as 3D density clouds
that capture realistic flow details is highly non-trivial and remains a manual
and time-consuming process.

Therefore, in this Chapter 6, we aim to compute a 3D density field directly
from a set of 2D artist sketches. The proposed method bridges the gap be-
tween early-stage prototyping of smoke keyframes and visual realization by
inferring 3D densities from sketch inputs.

Sketch-based reconstruction has to handle a set of unique challenges, as
the problem is ill-posed due to sparsity of sketch data and the ambiguity
when inferring another dimension [Delanoy et al., 2018; Wang et al., 2019;
Li et al., 2018a]. We propose a convolutional neural network (CNN) ap-
proach that synergistically combines a U-net architecture with a differen-
tiable sketch renderer and a set of loss functions specifically designed for
our application.

Taking two sketch inputs representing the front and left views, we compute
an initial volume estimate and refine the density by turns with a convolu-
tional neural network. During training, our pipeline takes a single density
field and generates corresponding sketches for the end-to-end training. At

100

6.2 2D Sketch to 3D Density Prediction

each pass, we pick a random view for training and calculate view-dependent
losses. The updater network iteratively refines the reconstructed density. A
pass loss is computed on intermediate results to match all target sketches.
These passes are alternatively applied until convergence to ensure multi-
view consistency.

At the core of our method is a differentiable sketch generator for smoke vol-
umes, which allows us to compute a sketched representation of the recon-
structed density and compare it to the input sketch by a sketch loss.

To compute an animated sequence, we interpolate between a pair of recon-
structed density keyframes using Wasserstein barycenters. This approach
is based on the theory of optimal transport and allows us to reconstruct in-
termediate densities at any frame without needing to compute velocities or
previous frames (Figure 6.1).

Our training dataset captures a wide range of different smoke simulations
and sketch style augmentations to ensure robustness and generic application
of the approach. We present results on synthetic datasets, such as physically-
based smoke scenes and other (non-smoke) animations. We further apply
the method to sketches of smoke drawn by different artists, which were in-
structed to sketch keyframes of the evolution of a smoke or an imaginary
smoke-like object. The motion could disobey physical laws, where volume
is not conserved, and inconsistencies may appear with respect to shading,
shape and motion in subsequent keyframes. We demonstrate that our model
can handle even such extreme cases, although they were not part of the train-
ing set. The ablation study evaluates our network components’ choices, and
final animation sequences are shown to highlight the use cases of our novel
deep sketch to density pipeline.

6.2 2D Sketch to 3D Density Prediction

Similarly to recent sketch-based 3D reconstruction methods for static geome-
tries [Delanoy et al., 2018], we aim to construct a network that can infer 3D
smoke densities from a few 2D artist sketches. The sketches are the pri-
mary control tool for the artist, and they should give enough information on
the outline of the smoke and smaller-scale details. Therefore, we impose a
sketch style showing the outline of the smoke as well as the internal contour,
and we add one shade of toon-shading from an infinite light to have a better
representation of the volume as shown, for example, in Figure 6.1.

At the core of our method is a differentiable sketch generator (Section 6.3) for
smoke volumes, which allows us to compute a sketched representation of

101

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

Table 6.1: Summary of the notation.

Notation Description

d Target density field
dp = T (d, ∑

p
i=1 θi) Rotated density field

sp = R(dp) Sketch of the density field
d̂0 = V(s f , sl) Initial density (initial volume modeling)
d̂p = U (d̂p−1

p , sp) Refined density field after pass p
d̂p−1

p = T (d̂p−1, θp) Rotated density field after pass p− 1
d̂p

p−1 = T (d̂p,−θp) Roll-backed density field after pass p
Ld,Ls,Ltv Density, sketch and variation losses (Eqs. 6.1,6.2,6.3)
Laux,Lp,Ltotal Auxiliary, pass and total losses (Eqs. 6.4,6.5,6.6)

Input Initial Volume f fl flf flfl

Figure 6.3: From two input sketches depicting the front and left views, we compute the
initial volume and then alternately refine front (f) and left (l) view density
reconstructions.

the density reconstruction and to compare this to the input sketch by using
a sketch loss. An additional advantage of the synthetic sketcher is that it al-

102

6.2 2D Sketch to 3D Density Prediction

lows us to build a large dataset of smoke simulations coupled with sketches
inexpensively (Section 6.5).

Our approach requires two input sketches s f and sl indicating the front and
left views of the smoke. These are used to compute an initial density d̂0
by simple extrusion and intersection from multi-view sketches. We refer to
this as Initial Volume Modeling (IVM) (Section 6.2.1) in the following. The
density d̂0 is then progressively refined with an updater network, where ar-
bitrary views can be added (Section 6.2.2). A pass loss is computed on in-
termediate results to match all target sketches (Section 6.2.3). These passes
are iteratively applied until convergence to ensure multi-view consistency.
The final reconstructed density field is referred as d̂. An illustration of sub-
sequent refinement steps on front and side views is shown in Figure 6.3 (we
used front-left (fl) refinement in all our examples). Our notation is summa-
rized in Table (6.1).

6.2.1 Initial Volume Modeling

Figure 6.4: Steps of the initial volume modeling shown for the front (top) and left (bot-
tom) views. From left to right: input sketch, outline, binary, blended and
smoothed volume (d̂0, and input to the updater network).

The initial volume modeling (IVM) computes a guess for the density field
d̂0 from the input sketches. We used the front and left view sketches s f and
sl, but an additional view from the top could be added if needed. For each
sketch, we first extract the contours and foreground with thresholding and
filling operations. We then extrude the sketch of that viewpoint to an out-
line 3D volume and a binary 3D volume. We calculate the intersections of

103

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

these volumes from the different views, blend the outline and binary vol-
umes and apply Gaussian blur to smooth the boundaries. The output rep-
resents the initial guess for the subsequent refinement steps, i.e., the input
to the updater CNN U . The individual processing steps are visualized in
Figure 6.4. All steps are differentiable and thus included in the end-to-end
training pipeline.

IVM has inherent advantages compared to computing the initial volume
with a single-view CNN [Delanoy et al., 2018], since the computation is de-
terministic, the resulting topology is closed, no training is necessary, and
it is independent of the quality of the network. These properties favor the
convergence of the subsequent refinement steps.

6.2.2 CNN-Based Iterative Refinement

We adopt an updater CNN that iteratively fuses information from multiple
views by taking an artist sketch and a previously reconstructed density field
as input. In the first iteration, the predicted density field corresponds to the
initial density d̂0 computed with IVM. During the optimization, the refined
density d̂p refers to the output after p passes. These passes are alternatively
applied until convergence to ensure multi-view consistency. An overview
of the training pipeline is shown in Figure 6.2. The concept of using an up-
dater network is similar to Delanoy et al. [2018], but there are significant
differences in the network components, loss functions and training process
that impact reconstruction quality and robustness of predictions. We train
the network to predict the residual [He et al., 2016] for correction instead of
predicting the density field directly. Due to the ambiguity of line drawings,
[Delanoy et al., 2018] focuses on a few informative viewpoints for training.
Although we also use canonical viewpoints, our differentiable sketcher al-
lows not only less ambiguity on depth with its shading but also an easy
extension to arbitrary viewpoints on the fly, without any loss of generality.

We also improve the refinement strategy by including recursive passes al-
ready in the training step. In each pass, we pick a random view for training,
as multi-pass/view training results in a higher robustness for the reconstruc-
tion when the density field is refined from multiple viewpoints. Specifically,
we first apply random rotations T (d, θ), where θ is the angle, to choose 1 of
the 24 canonical views. Similarly, we choose random views for the subse-
quent rotations.

104

6.2 2D Sketch to 3D Density Prediction

6.2.3 Loss Functions

For each view, we calculate the view-dependent losses: density loss, sketch
loss, and depth variation loss, as well as rollbacks in each pass for preserving
reconstructions of previous input views.

Density Loss We define our density loss Ld in terms of L1 loss on the
reconstructed field, similar to [Kim et al., 2019b]:

Ld(d̂, d) = ||d̂− d||1, (6.1)

where d refers to the ground truth density field and d̂ is the reconstructed
field from our refinement network.

Sketch Loss A main difference to previous work is the integration of a
differentiable sketcher R into the network, which allows us to generate a
target sketch sp = R(dp) and a sketch of the refined density ŝp = R(d̂p) at
each refinement step p during training. We use this to minimize the distance
to the input sketch with a sketch loss Ls given as

Ls(ŝ, s) = ||ŝ− s||1, (6.2)

where s is the input sketch and ŝ is the rendered sketch from the recon-
structed density d̂.

Depth Variation Loss As the sketch loss only focuses on the rendering
of the 3D volume, there is no constraint in depth direction during training.
Although the sketch shading encodes some depth information, artifacts in
depth are still noticeable even with the density loss (Figure 6.14). We there-
fore use the total variation loss in depth direction as a regularizer to enforce
smoothness:

Ltv(d̂) = ||∇zd̂||1. (6.3)

Full Objective We define the auxiliary lossLaux combining sketch loss and
total variation loss in depth as the following:

Laux(d̂, d) = wsLs(ŝ, s) + wtvLtv(d̂), (6.4)

where ws and wtv are weights for the sketch loss and total variation loss set
to 0.03 and 0.1, respectively. We define the pass loss Lp as

Lp = pLd(d̂p, dp) + Laux(d̂p, dp) + wrb

p−1

∑
n=1
Laux(d̂

p
n, dn), (6.5)

105

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

where wrb is the rollback weight, and d̂p
n denotes the density d̂n rotated to

the viewpoint of pass n. Using a high wrb is important for preserving the
view-dependent reconstructions of the previous viewpoints. We therefore
progressively increase the weight from 1 to 100 during the first epoch for
optimal results. The total loss is then defined as:

Ltotal =
∑p Lp

∑p p
. (6.6)

6.3 Differentiable Sketcher

The aim of our sketcher is to generate a stylized representation
of a smoke keyframe while conveying the nature of turbulent
flows. Although artists have individual drawing styles, we iden-
tified the common use of black contours and solid blocks of color
for shading and self-shadowing [Gilland, 2012]. These effects pro-
vide important visual cues about the shape, depth and lightning.
Previous techniques typically ex-
tract contours from meshes [De-
Carlo et al., 2003] (inset image, left)
and cannot be directly applied to
amorphous shapes such as smoke
densities. Although isosurfaces can
be extracted from the density grid
and converted into a mesh, the choice of the isovalue is not obvious and
typically low-density details are lost in the process. Therefore, for cartoon
rendering of smoke, particles have been used and traced through the un-
derlying fluid grid, which are then rendered as textured billboards without
[Selle et al., 2004] and with [McGuire and Fein, 2006] shading and shadow
effects.

In contrast to using tracer particles, we work directly with volumetric data
and adapt the mesh contour extraction to amorphous smoke shapes (inset
image, right). Our method is inspired by the absorption in smoke rendering
and estimates a normal map. We average normals for a range of isosurfaces
at the visible ’boundary’ of the smoke. At each position p in the volume, the
normal of the isosurface going through p is the gradient of the density field:
∇d(p). We integrate the normals along the viewing rays, while weighting
them such that the normals closer to the boundary have a higher importance.

106

6.3 Differentiable Sketcher

For a ray r, the normal nr is given as

nr =
∫ inf

0
∇d(r(s))w(r(s))ds, (6.7)

where s is the distance to the camera and w the weighting factor.

A possible choice for the weights is to use the transmittance of the smoke.
Computing the averaged normal is then equivalent to the rendering of the
smoke, where the density gradient is set as the light emission of each of
the voxels. We found, however, that this strategy results in too smooth
variations in normals, leading to blurred sketches. Therefore, we choose
a stricter filtering strategy: Let τ(s) be the accumulated density along the
ray: τ(s) =

∫ s
0 d(t)dt. We choose our weight as

w(s) = ξ2 · τ(s) e−ξ·τ(s), (6.8)

where ξ = 5 is a scale coefficient. This ensures that a small band of smoke
close to the boundary contributes to the final normal, while discarding the
low density voxels that are first encountered by the ray and which produce
noisy normals.

We make two assumptions to discretize Equation 6.7. First, we assume that
the gradient of the density is constant between two voxels, and second, that
τ varies linearly in a small neighborhood. The normal can then be defined
as

nr =
i=n−1

∑
i=0

∇d(i) +∇d(i + 1)
2

∫ i+1

i
w(τ(s))ds + n∞

=
i=n−1

∑
i=0

∇d(i) +∇d(i + 1)
2

[−(ξ · τ + 1) · e−ξ·τ]
τ(i+1)
τ(i)

τ(i + 1)− τ(i)
+ n∞,

(6.9)

where n is the number of cells along the ray (here it is assumed to have a cell
size of 1, without loss of generality). n∞ is the background normal, that we
set opposed to the view direction:

n∞ = −v
∫ ∞

n
w(τ(s))ds = −v (ξ · τ(n) + 1) · e−ξ·τ(n). (6.10)

The integral appearing in Equation 6.10 is also used as a mask that indicates
if the ray intersected the smoke.

We normalize nr, which is then used to extract the contours c as:

c = max(0, min(−nr · v, δ))/δ, (6.11)

107

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

where δ is a threshold set to 0.8. We then add a two colors toon shade t to
provide more information about the volumes, and we combine all to com-
pute the sketch s as

s = (1− c) · c + c · t. (6.12)

The individual steps of the sketcherR are visualized in Figure 6.5.

Figure 6.5: The differentiable sketcher computes normals, contours and toon shading
(from left to right), and combines them into the final sketch (right).

6.4 Keyframe Interpolation

Keyframe 𝑡𝑡0 Keyframe 𝑡𝑡18Interpolated 𝑡𝑡3 Interpolated 𝑡𝑡6 Interpolated 𝑡𝑡9 Interpolated 𝑡𝑡12 Interpolated 𝑡𝑡15

Figure 6.6: From the keyframes reconstructed from sketches (left and right), we inter-
polate 5 intermediate frames with Wassertein barycenters to generate the
inbetween fluid animation, for the artist scene dissolving character and
the cloudy puppy.

Although our main goal is to give control to the artist on the smoke density
at prescribed keyframes, we also want to give an efficient preview on the
look of the final, interpolated motion. One way to compute the interpola-
tion between keyframes would be to compute a velocity field that advects
the first keyframe into the next one, and to apply this iteratively over the
sequence. We found that 1) the large difference of shape and total density
between the generated keyframes makes this problem challenging to solve
for state-of-the-art methods, such as the optical-flow optimization proposed
by [Eckert et al., 2019] or the adjoint method [McNamara et al., 2004], and 2)
it is not straightforward to interpolate a velocity field so that it conserves the
trajectory of Semi-Lagrangian advection. Therefore, we used a velocity-free

108

6.4 Keyframe Interpolation

method, relying instead on optimal transport theory to compute directly any
intermediate density field, while preserving the quality of the fluid motion.

One of the key advantages of such an approach is that we can compute the
interpolated density at any given time of the simulation, without needing
any information on the previous frames. As such, we select a time t between
two keyframes at times t0 and t1, and we seek the interpolated density d
between keyframes d0 and d1.

Wassertein barycenters are commonly used [Solomon et al., 2015] to inter-
polate between a family of probability distributions. Without loss of gener-
ality, we normalize the fluid densities so that their total sum is 1 and thus
we assume that they represent a discrete probability distribution in 3D. In
the following, we will therefore use the terms density and distribution inter-
changeably. In our setting, the keyframe interpolation problem writes as the
Wassertein barycenter between d0 and d1:

arg min
d

(1− x)W2
2 (d, d0) + xW2

2 (d, d1), (6.13)

where W2
2 is the squared 2-Wassertein distance, which denotes the cost of

the optimal transport with a L2 norm, and x = (t− t0)/(t1− t0) is the inter-
polation coefficient. Solving this problem requires using a slow linear pro-
gramming algorithm, which is why we used the entropy-regularized vari-
ant [Cuturi, 2013] that introduces a Kernel Kλ(x, y) = e−(x−y)2/λ and shows
that Equation 6.13 can be regularized as

arg min
d

(1− x)KL(π0|Kλ) + x KL(π1|Kλ)

s.t. π>0 1 = d0 and π>1 1 = d1

π01 = π11,

(6.14)

where KL is the Kullback-Leibler divergence, π ∈ R3N ×R3N is a transport
plan between a pair of discrete 3D densities of side N, and 1 is the unit vector
of R3N. Furthermore, each transport plan can be written as

πi = DviKλDui , (6.15)

where Du and Dv are diagonal matrices which entries are filled with values
of the vectors ui and vi. Previous work [Benamou et al., 2015] proposed to
use Bergman projections to iteratively solve the problem, starting from v = 1
and progressively evaluating:

ui ← di/Kλvi, i ∈ [0, 1]

d̃ = (v0Kλu0)
1−x (v1Kλu1)

x

vi ← d̃/Kλui, i ∈ [0, 1],

(6.16)

109

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

where d̃ is the approximated barycenter.

Unfortunately this scheme does not scale well in practice, because the limit
of the floating point numbers is quickly reached. [Schmitzer, 2019] proposes
several ways to tackle this issue, one of which is to perform all the operations
in log space, which is proved to converge for any value of λ. However,
such an approach loose the separability of the kernel Kλ, which is essential
to keep a tractable running time, especially for 3D data. We propose an
intermediate solution by introducing a log scaling function of the kernel:

Sλ(x) = λ logKλex/λ (6.17)

and log space variables α = λ log u and β = λ log v. We detail the process
in Algorithm (4) and show interpolated frames in Figure 6.6.

Algorithm 4: Stabilized Sinkhorn Iterations.

β← 1;
for n iterations do

for i ∈ [0, 1] do
αi ← λ log d0 − Sλ(βi);
γi ← βi + Sλ(αi);

end for
µ = (1− x) γ0 + x γ1;
for i ∈ [0, 1] do
βi = µ− Sλ(αi);

end for
return eµ/λ;

end for

6.5 Training Data Generation

The generality of our dataset is key for a robust and high-quality reconstruc-
tion of diverse scenes sketched by artists, that can include both physically-
inspired and non-physical shapes and motion of smoke. Therefore, we build
a new dataset consisting of smoke densities, which captures a large variety
of volumetric shapes. We also augment the output of our synthetic sketcher
with several strategies to increase the robustness of our network with respect
to small variations in sketching styles.

110

6.5 Training Data Generation

6.5.1 Simulation Taining Data

Our simulation dataset consists of 39, 380 density fields (from 1641 simula-
tions) used for training and 600 density fields (25 simulations) for validation.
Example snapshots from the training set are shown in Figure 6.8. Each sim-
ulation contains 20 frames without source and 30 frames with source com-
puted at a resolution of 1293. We run the simulation in Houdini with ran-
domly changing temperature diffusion factor, cooling rate, viscosity, buoy-
ancy strength and direction, as well as sharpening and turbulence factors.

For simulations without source, the pre-generated source is set as the ini-
tial density of the simulation. For the ones with source, we selected one of
the regenerated sources and combined it with a max operator on the ongo-
ing simulation. The number of sources for each simulation are [1,2,3,4] with
probability [10,5,2,1]/18. The shapes of the initial sources are generated by
computing a random shape from a set of union or difference of cube, cylin-
der and sphere, and setting the resulting shape as initial density of a fluid
simulation that we run for 10 frames. We added this supplementary oper-
ation to remove sharp edges and corners found in the initial shapes and to
capture a more diverse range of densities than the original binary ones.

Based on the density histogram, we find that both simulation strategies are
complementary to each other. No source data are dominant by small density
values, while with source data higher density values can be observed. In this
way, our neural network model is not biased to learn to output small or large
values only. It also helps to increase variation in the dataset so that we can
handle various unseen data, such as simulation with and without sourcing.

6.5.2 Sketch Training Data and Augmentation

The synthetic sketcher allows us to inexpensively build a large dataset of
smoke simulations coupled with sketches. We used sketch sizes of 2582.
To increase the robustness with respect to variations in artist style, we aug-
mented the sketches used in the training to cover different values for bright-
ness, contrast, contour strength, toon shading color, blurring and slurring
[Simo-Serra et al., 2016] in x and y direction as noise addition, and variations
in light direction in x and y. Figure 6.7 illustrates the different properties.

111

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

Brightness Contrast Contour Width Shade Color

Blur Slur Light Direction Default

Figure 6.7: Sketches are augmented to consider variations in sketching styles to increase
robustness of the reconstruction.

6.6 Results

6.6.1 Implementation and Performance

Sketch-to-Density CNN We implemented our system in PyTorch [Paszke
et al., 2019] and used the Adam optimizer [Kingma and Ba, 2015] with a
learning rate of 0.0001. Our network follows a U-Net architecture. In the
decoder, we use nearest neighbor upsampling with flat 2D convolution in-
stead of transposed convolution to avoid checkerboard artifacts [Odena et
al., 2017]. The network is trained on density fields in the range [−1, 1], us-
ing the full objective. In all our examples we used 3 passes in the training,
and two subsequent refinement steps (front-left (fl)) at test time. Different
settings are evaluated in the ablation study in Section 6.6.6.

Our model converges in 10 epochs, and the training time with our dataset
takes up to 3 days using 4 NVIDIA GTX 1080 GPUs. At test time, the IVM
computation with front and side input sketches takes ∼ 6.5ms per frame
on a single GPU. Similarly, the update step of our trained updater CNN
takes ∼ 3ms per frame. With refinements on front and left views (fl), the
total inference time is ∼ 12.5ms per frame and hence our method is able to
reconstruct 3D densities in real-time.

Keyframe Interpolation We found the proposed scheme to converge well
even for small values of λ as λ = 1 when the average distance between the
keyframes does not exceed about 30 voxels, which was the case in almost all
our test scenes. In these cases, the iteration gave visual pleasing results after
15 iterations. To keep a low runtime, we separated the kernel as a 1D ker-
nel, iteratively applied on each dimension of the volume, which leads to the

112

6.6 Results

overall complexity O(kN3), where k < N is the footprint of the kernel and
N the number of voxels in each dimension of the volume. For N = 128 and
λ = 1, the maximum kernel size where the floating point evaluations are not
null is 50. We also clamped the input of log functions to the smallest positive
floating-point number to avoid numerical errors. Except for the 1D convo-
lutions with a Gaussian kernel, all the operations can be parallelized. We
implemented the algorithm on the GPU with PyTorch, where each iteration
takes 0.3s and hence each frame 4.5s.

Input Sketch Sketch of Output Output Ground Truth

Figure 6.8: Validation result with front view of seen (top) and unseen (bottom) exam-
ples of our dataset. From left to right: input sketch, sketch of reconstructed
density, density after front-left refinement, ground truth density.

6.6.2 Results on Our Dataset

Figure 6.8 shows the front view result of a reconstruction of the training
dataset (’seen’, top row) and validation set (’unseen’, bottom row). From
left to right we show the sketch of the ground truth, the input sketch, the
reconstructed density, and the ground truth density. It can be seen that only
minimal differences are visible between the sketches. The reconstructed
density is smoother than the ground truth. Previous work [Biland et al.,
2020] reported similar observations and claimed that lacking fine-scale de-
tails in smoke density reconstruction is a general problem of CNN-based
flows. They discussed that adversarial losses (GAN) can hallucinate fine
flow structures and improve visual plausibility. We found, however, that
adding a discriminator loss to our network architecture is problematic as it
degrades convergence. Alternatively, post-processing steps, such as turbu-
lence synthesis [Kim et al., 2008b; Sato et al., 2018a] or deep upscaling [Xie
et al., 2018], could be added to the reconstructions to counterbalance this
problem.

113

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

6.6.3 Results on Synthetic Scenes

We show that our method generalizes well to various scenes by applying it
to inputs from physically-based simulations, reconstructed 3D density fields
from real smoke captures, and animation sequences including a character,
cloud and puppy animation. For these examples, we generated synthetic
sketch inputs by applying our sketcher to the given density field. It is im-
portant to note that the given density cannot be directly compared to the
reconstructed density: our method infers a density such that its sketch is
close to the input sketch.

Simulated Smoke

We used the smoke plume and smoke jet datasets of [Kim et al., 2019a] and
applied our sketcher to the existing density field to generate sketch input
keyframes (every 5th frame) for front and left views. Figure 6.9 shows the
given density field, the synthetically generated sketch from this given den-
sity (input to our method), the sketch of the reconstructed density field, and
the reconstructed density. The reconstructed density closely matches the
footprint of the input sketch. We measure the quality of the inner details by
comparing the synthetic sketches of the input with the one of our output,
where we see that the shading and inner contours are well captured.

Captured Smoke Data

We applied our method to the Scalarflow dataset [Eckert et al., 2019] that
contains reconstruction data of real-world captured smoke. We show the
ScalarFlow density and its sketch, and the reconstruction results (sketch and
density) for scene ID 1 in Figure 6.10. The sketches have no notion of smoke
thickness and therefore cannot distinguish between a wispy and a dense
smoke volume with identical sketch shapes. The sketch loss therefore has
a tendency to favor reconstructions that are less wispy than the ones of
ScalarFlow.

Animations

To evaluate the model on unseen smoke shapes, we used non-physical an-
imation sequences as input and show the corresponding reconstructions in

114

6.6 Results

Front

Left

Front

Left
Reference Input Sketch Sketch of Output Output

Figure 6.9: Result using two physics-based simulation datasets of [Kim et al., 2019a]
showing front and left views. From left to right: given density used for sketch
generation, input sketch, sketch of the reconstructed density, reconstructed
density.

Figure 6.11. The top row show the results (front view) using a dancing char-
acter animation dataset from Adobe’s Mixamo Gallery1. This data is not only
difficult because no comparable examples were part of the training dataset,
but also because of thin extremities and occlusions. We applied the method

1www.mixamo.com

115

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

Front

Left
Reference Input Sketch Sketch of Output Output

Figure 6.10: Front (top) and left (bottom) views of a selected example from the
Scalarflow dataset. From left to right: ScalarFlow density, input sketch,
reconstructed sketch and output density.

to a cloud2, and a keyframe of a running puppy animation3 is shown from
side view in the last row. We also show more results in the accompany-
ing video where we additionally amplified the character and puppy models
with procedural clouds. For the character and puppy examples, we first
converted the original meshes into volumes before computing the input
sketches. Only minimal differences are visible when comparing the input
sketch to the reconstruction sketch, demonstrating that our method is not
only able to reliably reconstruct unseen shapes, but especially also handle
non-physical (non-smoke) inputs.

Arbitrary Viewpoints

In most of our examples, we show results where the sketches are prescribed
from canonical viewpoints (front and left views). We believe that this is
one of the most complicated cases for density reconstruction because no in-
formation is shared between the different views. But we also show that our
method can be applied efficiently to sketches from arbitrary viewpoints. The
main - classical - issue is that the corners of the domain are cropped during
rotation. We chose not to increase the size of the volume, but instead we

2www.technology.disneyanimation.com/clouds
3©anonymous for review

116

6.6 Results

Input Sketch Sketch of Output Output

Figure 6.11: Results of three unseen and non-physical animation sequences: dancing
character (front view), clouds (front view), and running puppy (side view).
From left to right: input sketch, sketch of reconstructed density, recon-
structed density.

reduce the domain to a sphere inscribed inside the 1283 cube. A quick com-
putation shows that proportionally less volume is wasted with this strategy.
Figure 6.12 shows an example where the puppy model was reconstructed
from sketches drawn from arbitrary viewpoints.

6.6.4 Results on Artist Sketches

We used sketches drawn by three different artists to evaluate our method
at test time. We instructed the artists to sketch keyframes of the evolution
of a smoke or an imaginary smoke-like object. Artists had to provide 10-20
keyframes for each scene, while the temporal distance inbetween keyframes
not necessarily had to be uniform. The motion could disobey physical laws
(cartoon animation, no volume conservation, inconsistencies with respect
to shading in one as well as subsequent keyframes). We provided specific
instructions with respect to image size (256x256), light direction (front-right,
slightly up), shading (toon, white and grey), colors (grey-black lines, white
background), and line width and style (up to 5px with Gaussian falloff).

117

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

Figure 6.12: Our method can seamlessly handle progressive refinement from arbitrary
viewpoints despite training with canonical views only. The top and bottom
rows show the refined density fields and input sketches, respectively.

Keyframes of the first scene illustrate a character that transforms in a rising
smoke cloud, which then sinks to the ground and dissolves. The second
scene mimics a lion that transforms into a rhino while running. The last
scene starts as a smoke explosion, the smoke then transforms into a bird-like
object. Selected keyframes of the artist sequences are shown in Figure 6.1,
and reconstruction results are depicted in Figure 6.13. Our method works
surprisingly well for such highly non-physical examples. The reconstructed
density and sketches thereof match quite closely the input sketches from the
artists.

We evaluated the artists’ experience with our method and their perception
of its usefulness in production pipelines. The artists were very enthusiastic
about the overall idea, the result they achieved, and the potential impact in
industrial workflows. They especially liked the idea to use it as a tool to
communicate early ideas with the client or art director, to clarify the spec-
ifications before moving to a heavier, more realistic simulation. The main
drawback was the prescribed style, which had a small impact on the creativ-
ity and the learning curve. While this is a limitation of our method, all artists
responded positively on the reliability and robustness of the reconstructions,
which can be accounted to the prescribed style.

6.6.5 Keyframe Interpolation Result

We used the Wasserstein Barycenters method described in Section 6.4 to in-
terpolate the final animation between the density keyframes reconstructed
from the sketches. We evaluate the convergence of this approach by selecting
resulting animations after several iterations, and we found that Sinkhorn’s

118

6.6 Results

Input Sketch Sketch of Output Output

Figure 6.13: Sketch inputs from three different artists (left) and reconstructed results
(middle, right). From top to bottom: dissolving character (front view),
lion to rhino transform (side view), and bird (front view).

algorithm, even when not converged to the solution satisfying the optimal
transport requirements, already results in a convincing motion after a few
steps (we use n = 15 iterations in all examples). Furthermore, temporal con-
sistency is preserved if the number of iterations is the same for subsequent
frames. A sample of interpolated frames is shown in Figure 6.6, between
two keyframes of the artist scene, and between reconstructions of a cloudy
variant of the puppy.

The computation cost of 300ms per iteration might seem at first sight pro-
hibitive for an interactive design tool, but the approach has several advan-
tages that makes it competitive: 1) the first iterations already result in a con-
vincing animation. This enables the implementation of a preview software,
where the frames are refined in the background while the user previews the
results. 2) As opposed to methods based on simulations, where the user
has to wait for the evaluation of the whole sequence before obtaining the

119

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

result, the computation of one frame of our method is independent of the
previous ones. It is also possible to generate all the frames in parallel on a
corresponding architecture. 3) The interpolation is continuous in time and
therefore compatible with any temporal deformation. 4) We found that none
of the previous work that we implemented, among adjoint method [McNa-
mara et al., 2004] or optical-flow optimization [Eckert et al., 2019], were able
to converge when provided with pairs of our density keyframes, because of
the sometimes drastic difference in shape and total density.

Ls :
0.08
Ld :
0.05

Ls :
0.06
Ld :
0.14

Ls :
0.03
Ld :
0.06

Ls :
0.03
Ld :
0.04

Ls :
0.09

Density Only

Ls : 0.1

Sketch Only

Ls :
0.05

- TV Loss

Ls :
0.05

Ours

Figure 6.14: Evaluation of loss functions. From left to right: density loss, sketch loss,
density+sketch losses, density+sketch+depth variation losses (ours)

6.6.6 Ablation Study

Loss Functions

We evaluated the impact of the different loss functions and illustrate the
results in Figure 6.14. Using only the density loss (Equation (6.1)) like in
previous work [Delanoy et al., 2018] we observe large discrepancies be-
tween the input sketch and the sketch of the reconstructed density. When
using only the sketch loss (Equation (6.2)) results are very detailed but at
the cost of depth ambiguity. If both density and sketch losses are used, the
sketch correspondence as well as the depth reconstruction are improved,
but noise is well visible. Adding the total variation loss in depth direction
(Equation (6.3)) eliminates these artifacts and generates the best results (our
model). Figure 6.14 also embeds a quantitative quality measure (value of
density and sketch loss). Lower values stand for higher accuracy.

120

6.6 Results

Recursive Passes

We evaluate our network with various numbers of passes at training and
test time. We show the results on front view only in Figure 6.15, where each
line corresponds to 1, 2 and 3 passes during training, respectively, and each
column to 1, 3 and 6 successive refinements at test time that we denote by ‘f’,
‘fff’ and ‘ffffff’. We observed that the difference between training pass 3 and
4 is marginal; we therefore used 3 passes in all our examples. They result
in a clearly better reconstruction than the single pass version, which justifies
the use of our rollback loss.

On the other hand, with 3 and more passes during training, the number
of successive refinements at test time have less influence. The results in ‘f’
already recovered most of the features of the input sketches, and is slightly
improved by ‘fff’, which is hardly distinguishable from ‘ffffff’. Next, we
alternate front and left view refinement steps (f, fl, flf, flfl) and show the
impact on the reconstruction quality in Figure 6.3. For most exmaples, a
front view optimization followed by a left view refinement (fl) is sufficient;
for some examples (i.e., simulated smoke) quality was further improved by
additional refinement steps (flfl).

Sketch Augmentation

We argued that using augmented sketches in the training favors generality.
We evaluate this property in Figure 6.16 and show comparisons of recon-
structions from different sketches modified to be far from our initial param-
eters. On the top row, we input our synthetic sketch of the character scene,
where we reduced the brightness and the line width. On the bottom row,
we use one of the artist examples that is far from the prescribed style. The
middle column shows our results with data augmentation, while the right
one shows the results without. Several parts of the sketches were not recon-
structed, which shows the need for data augmentation for more generality
on the sketch style.

Different Dataset

We justify the need for a new dataset by training our model with the state-
of-the art Scalarflow dataset [Eckert et al., 2019] captured from real smoke.
We show in Figure 6.17 our results with the character scene (top), and the
ones obtained after training with ScalarFlow (bottom). The results indicate

121

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

that although ScalarFlow exhibits smokes of extremely good quality, it does
not embed enough variability to reconstruct arbitrary scenes.

122

6.6 Results

1 pass
(training)
Ls : 0.04

Ls :
0.07

Ls :
0.09

2
passes
Ls :
0.06

Ls :
0.03

Ls :
0.04

3
passes
Ls :
0.05

Test time: f

Ls :
0.020

fff

Ls :
0.016

ffffff

Figure 6.15: Evaluation of recursive passes (during training) and inference sequence (at
test time). We use 3 passes in practice.

123

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

Ls :
0.014

Ls :
0.020

Input

Ls :
0.030

Ours

Ls :
0.031

No augmentation

Figure 6.16: Using sketch variations in the training improves robustness of the recon-
struction quality. We increased the brightness and reduced the size of the
contour of the sketch of the character example (top row), and tested with
the bird scene (bottom row). Left is the input, middle column our results
after training with sketch augmentation, and right results without aug-
mentation.

124

6.6 Results

Ls :
0.012

Ls :
0.016

Ls :
0.014

Ls :
0.020

Ls :
0.025

Ls :
0.019

Figure 6.17: 3D reconstructions computed with a model trained on our dataset (top) and
ScalarFlow (bottom), highlighting the importance of using a well designed
training dataset for generic application.

125

Deep Reconstruction of 3D Smoke Densities from Artist Sketches

126

C H A P T E R 7
Conclusion

In this thesis, we have proposed novel algorithms that allow better inte-
gration of fluid simulations into artists’ workflow, mainly focusing on com-
putational efficiency and artistic controllability without losing its physical
plausibility and stability. The technical foundation is based on data-driven
concepts: we leveraged machine learning to improve existing simulations
and enabled innovative applications.

7.1 Principal Contributions

In Chapter 3, we have presented the first generative deep learning architec-
ture, Deep Fluids, that successfully synthesizes plausible and divergence-free
2D and 3D fluid simulation velocities from a set of reduced parameters. Our
results show that generative neural networks are able to construct a wide va-
riety of fluid behaviors, from turbulent smoke to viscous liquids, that closely
match the input training data. Moreover, our network can synthesize physi-
cally plausible motion when the input parameters are continuously sampled
from intermediate states not present during training. In addition, we can
handle complex parameterizations by using a novel Latent Space Integra-
tion (LSI) network. Our solver has a constant evaluation time and is consid-
erably faster (up to 700×) than simulations with the underlying CPU solver,
which makes our approach attractive for re-simulation scenarios where in-
put interactions can be parameterized. These performance characteristics
immediately suggest applications in games and virtual environments. As
high-resolution fluid simulations are also known to demand large disk and

127

Conclusion

memory budgets, the compression characteristics of our algorithm (with up
to 1300×) render the method attractive for movie productions as well. Our
CNN architecture was carefully designed to achieve high quality fluid sim-
ulations, which is why the loss function considers both the velocity field and
its gradient.

In Chapter 4, we have presented TNST, the first Transport-based Neural
Style Transfer algorithm for smoke simulations. Our method facilitates auto-
matic instantiation of a vast set of motifs through semantic transfer, enabling
novel artistic manipulations for fluid simulation data. Additionally, the pro-
posed method successfully synthesizes various styles of input images, rang-
ing from artistic to photorealistic examples. Even though 2D CNNs are
employed, our differentiable renderer allows the creation of 3D volumet-
ric structures from a small set of views. Our stylization algorithm is able to
handle high-resolution simulations up to 16 million voxels.

In Chapter 5, we have presented LNST, a Lagrangian approach for neural
flow stylization and have demonstrated benefits with respect to quality (im-
proved temporal coherence), performance (stylization per frame in less than
a minute), and art-directability (multi-fluid stylization, color transfer, liq-
uid stylization). A key property of our approach is that it is not restricted
to any particular fluid solver type (i.e., grids, particles, hybrid solvers). To
enable this, we have introduced a strategy for grid-to-particle transfer (and
vice versa) to efficiently update attributes and gradients, and a re-simulation
that can be effectively applied to grid and particle fluid representations.
This generality of our method facilitates seamless integration of neural style
transfer into existing content production workflows.

In Chapter 6, we have presented a method for reconstructing 3D smoke densi-
ties from 2D artist sketches, which potentially represents the first step towards
bridging the gap between early-stage prototyping of smoke keyframes and
visual realization. We proposed a CNN for computing density refinements,
a differentiable sketch renderer integrated into the end-to-end training, and
a set of loss functions designed explicitly for the sketch-to-density prob-
lem. The training dataset was carefully designed for general applicabil-
ity, demonstrated by applying the method to diverse datasets ranging from
physics simulations, captured real-world flows, procedural clouds, charac-
ter animation, and highly non-physical artist sketches.

128

7.2 Future Work

7.2 Future Work

Overall, we found that the proposed Generative CNNs are able to produce
density and velocity fields accurately. However, for small-scale details or
near discontinuities such as boundary conditions, the network can some-
times smooth out fine flow structures. A possible future research direction
is the exploration of generative adversarial networks (GANs), partial con-
volutions [Liu et al., 2018a], joint training with other fields such as SDF, or
alternative distance measures to enhance the accuracy for delicate structures
in the data. Additionally, it is an interesting direction to improve the La-
tent Space Integration network in various ways, such as using an end-to-end
training with the autoencoder or the gradient loss for temporal smoothness.

We are not aware of any other methods that use a volumetric differentiable
rendering for optimizing 3D smoke data, and we believe that our work may
inspire further research in this direction. For example, our differentiable ren-
derer could be employed for reconstructing 3D smoke volumes from images
as in [Eckert et al., 2018] and be extended to transfer image-based filters as
in [Liu et al., 2018b]. Similar to the smoke renderer, a dedicated differentiable
renderer for liquids would improve the resulting quality and especially also
support a wider range of liquid simulation setups. As further extensions,
super-resolution can be thought of as a specific type of style transfer [John-
son et al., 2016], and we believe that our work can be tailored towards im-
proving current super-resolution methods for fluids [Xie et al., 2018].

We have shown that TNST and LNST enable novel effects and a high degree
of art-directability, rendering flow stylization more practical in production
workflows. However, we have not tested the method on large-scale sim-
ulations that are typically used in such settings. While our LNST method
can handle up to 2 million particles, larger scenes are restricted by the avail-
able memory. Moreover, in practical settings, the scene complexity is higher,
potentially posing challenges concerning artist control of the stylization. Re-
ducing the computation time for stylizing an entire simulation from one day
with TNST to a single hour with LNST renders the method much more prac-
tical for digital artists. However, for testing different input structures, a real-
time method would be desirable. Recent concepts presented on neural im-
age stylization might be mapped to 3D simulations to improve efficiency
further.

The main limitation of our sketch-to-density pipeline is that we cannot han-
dle arbitrary drawing styles of artists. We rely on the fact that artists follow
our design principles for the sketching style, which is, for example, using
clean contours and two-color toon shading. We used sketch augmentation

129

Conclusion

during training, though, to increase robustness with respect to smaller vari-
ations in the sketch style, such as using different contour widths, brightness,
or light direction. Future work requires extensive user studies with artists
to evaluate the design choices of our differentiable sketch generator in real
settings, as well as future research to support a wider variety of sketch styles
while maintaining reliable and robust reconstructions.

Designing entire physically-based animations by a few input sketches could
potentially have a massive impact, as this would not only simplify author-
ing processes but also make physics simulations accessible to novice users
without requiring any knowledge base in fluid modeling and solver param-
eters. However, a major difficulty is to compute physically-plausible transi-
tions (in-between keyframes) between two reconstructed density keyframes.
This is especially challenging as we wanted to give an artist as much free-
dom as possible and support non-realistic shapes and highly non-physical
motion. We found that previous methods for keyframe interpolation could
not handle this, and therefore we developed an interpolation method using
Wasserstein barycenters. During the algorithm design, we had in mind that
the method must be efficient at test time to enable interactive prototyping,
authoring, and pre-visualization of smoke animations. This is a pre-requisite
for future integration into workflows and tools used by artists. Our total in-
ference time per frame is 12.5ms and hence enables real-time previews dur-
ing sketching. The interpolation is with 4.5s per frame more expensive, but
still fast and could run continuously in the background to provide instant
previews of the resulting animation.

To conclude, we believe machine learning for fluid simulations still has a
huge amount of potential with unexplored areas, and we hope this thesis
has contributed to another step forward in this field.

130

References

[Abadi et al., 2016] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geof-
frey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems, 2016.

[Ando and Tsuruno, 2011] Ryoichi Ando and Reiji Tsuruno. A particle-based
method for preserving fluid sheets. In Proceedings - SCA 2011: ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation, pages 7–16, New York, New
York, USA, 2011. ACM Press.

[Ando et al., 2013] Ryoichi Ando, Nils Thürey, and Chris Wojtan. Highly adap-
tive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics,
32(4):1, 7 2013.

[Ando et al., 2015a] Ryoichi Ando, Nils Thuerey, and Chris Wojtan. A stream
function solver for liquid simulations. ACM Transactions on Graphics, 34(4):53:1–
53:9, 2015.

[Ando et al., 2015b] Ryoichi Ando, Nils Thürey, and Chris Wojtan. A Dimension-
reduced Pressure Solver for Liquid Simulations. Computer Graphics Forum,
34(2):473–480, 5 2015.

References

[Angelidis et al., 2006] Alexis Angelidis, Fabrice Neyret, Karan Singh, and Derek
Nowrouzezahrai. A controllable, fast and stable basis for vortex based smoke
simulation. In Computer Animation, Conference Proceedings, volume 02-04-Sept
of SCA ’06, pages 25–32, Aire-la-Ville, Switzerland, Switzerland, 2006. Euro-
graphics Association.

[Azevedo and Oliveira, 2013] Vinicius C. Azevedo and Manuel M. Oliveira. Ef-
ficient smoke simulation on curvilinear grids. Computer Graphics Forum,
32(7):235–244, 10 2013.

[Barbı̌ and Popovı́, 2008] Jernej Barbı̌ and Jovan Popovı́. Real-time control of
physically based simulations using gentle forces. ACM Transactions on Graphics,
27(5):1–10, 12 2008.

[Bargteil et al., 2006] Adam W. Bargteil, Funshing Sin, Jonathan E. Michaels,
Tolga G. Goktekin, and James F. O’Brien. A texture synthesis method for liquid
animations. In Computer Animation, Conference Proceedings, volume 02-04-Sept
of SCA ’06, pages 345–351, Aire-la-Ville, Switzerland, Switzerland, 2006. Euro-
graphics Association.

[Barnes and Zhang, 2017] Connelly Barnes and Fang Lue Zhang. A survey of the
state-of-the-art in patch-based synthesis. Computational Visual Media, 3(1):3–20,
3 2017.

[Becker and Teschner, 2007] Markus Becker and Matthias Teschner. Weakly com-
pressible SPH for free surface flows. Technical report, 2007.

[Benamou et al., 2015] Jean David Benamou, Guillaume Carlier, Marco Cuturi,
Luca Nenna, and Gabriel Peyŕ. Iterative bregman projections for regularized
transportation problems. SIAM Journal on Scientific Computing, 37(2):A1111–
A1138, 2015.

[Bender and Koschier, 2015] Jan Bender and Dan Koschier. Divergence-free
smoothed particle hydrodynamics. In Proceedings - SCA 2015: 14th ACM SIG-
GRAPH / Eurographics Symposium on Computer Animation, pages 147–155, New
York, New York, USA, 2015. ACM Press.

[Bender, 2016] Jan Bender. SPlisHSPlasH, 2016.

[Bi et al., 2017] Sai Bi, Nima Khademi Kalantari, and Ravi Ramamoorthi. Patch-
based optimization for image-based texture mapping. ACM Transactions on
Graphics, 36(4):1–11, 7 2017.

[Biland et al., 2020] Simon Biland, Vinicius C. Azevedo, Byungsoo Kim, and Bar-
bara Solenthaler. Frequency-Aware Reconstruction of Fluid Simulations with
Generative Networks. In Eurographics Short Paper 2020, 2020.

132

References

[Bodin et al., 2012] Kenneth Bodin, Claude Lacoursière, and Martin Servin. Con-
straint fluids. IEEE Transactions on Visualization and Computer Graphics,
18(3):516–526, 2012.

[Bousseau et al., 2007] Adrien Bousseau, Fabrice Neyret, Joëlle Thollot, and
David Salesin. Video watercolorization using bidirectional texture advection.
ACM Transactions on Graphics, 26(3):104, 7 2007.

[Brackbill et al., 1988] J. U. Brackbill, D. B. Kothe, and H. M. Ruppel. Flip: A
low-dissipation, particle-in-cell method for fluid flow. Computer Physics Com-
munications, 48(1):25–38, 1 1988.

[Bridson, 2007] Robert Bridson. Fast poisson disk sampling in arbitrary dimen-
sions. In ACM SIGGRAPH 2007 Sketches, SIGGRAPH’07, SIGGRAPH ’07, New
York, NY, USA, 2007. ACM.

[Bridson, 2015] Robert Bridson. Fluid simulation for computer graphics. A K Pe-
ters/CRC Press, 9 2015.

[Browning et al., 2014] Mark Browning, Connelly Barnes, Samantha Ritter, and
Adam Finkelstein. Stylized keyframe animation of fluid simulations. In NPAR
Symposium on Non-Photorealistic Animation and Rendering, volume 2014-Janua,
pages 63–70. ACM, 2014.

[Chorin, 1967] Alexandre Joel Chorin. A numerical method for solving incom-
pressible viscous flow problems. Journal of Computational Physics, 2(1):12–26, 8
1967.

[Chorin, 1969] Alexandre Joel Chorin. On the convergence of discrete approxima-
tions to the Navier-Stokes equations. Mathematics of Computation, 23(106):341–
341, 5 1969.

[Christen et al., 2020] Fabienne Christen, Byungsoo Kim, Vinicius C. Azevedo,
and Barbara Solenthaler. Neural Smoke Stylization with Color Transfer. In
Eurographics 2020 Short Paper, 2020.

[Chu and Thuerey, 2017] Mengyu Chu and Nils Thuerey. Data-driven synthe-
sis of smoke flows with CNN-based feature descriptors. ACM Transactions on
Graphics, 36(4):1–14, 7 2017.

[Cordier et al., 2016] Frederic Cordier, Karan Singh, Yotam Gingold, and Marie-
Paule Cani. Sketch-Based Modeling. In SIGGRAPH ASIA 2016 Courses, SA ’16.
Association for Computing Machinery, 2016.

[Cui et al., 2018] Qiaodong Cui, Pradeep Sen, and Theodore Kim. Scalable lapla-
cian eigenfluids. ACM Transactions on Graphics, 37(4):1–12, 8 2018.

133

References

[Cuturi, 2013] Marco Cuturi. Sinkhorn distances: Lightspeed computation of op-
timal transport. In Advances in Neural Information Processing Systems, pages
2292–2300, 2013.

[De Witt et al., 2012] Tyler De Witt, Christian Lessig, and Eugene Fiume. Fluid
simulation using Laplacian eigenfunctions. ACM Transactions on Graphics,
31(1):1–11, 2012.

[DeCarlo et al., 2003] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz,
and Anthony Santella. Suggestive contours for conveying shape. ACM SIG-
GRAPH 2003 Papers, SIGGRAPH ’03, 22(3):848–855, 2003.

[Delanoy et al., 2018] Johanna Delanoy, Mathieu Aubry, Phillip Isola, Alexei A.
Efros, and Adrien Bousseau. 3D Sketching using Multi-View Deep Volumetric
Prediction. Proceedings of the ACM on Computer Graphics and Interactive Tech-
niques, 1(1):1–22, 2018.

[Demby Jones et al., 2016] Aaron Demby Jones, Pradeep Sen, and Theodore Kim.
Compressing Fluid Subspaces. In SCA ’16: Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’16, pages 77–84,
Aire-la-Ville, Switzerland, Switzerland, 2016. Eurographics Association.

[Desbrun and Gascuel, 1996] Mathieu Desbrun and Marie-Paule Gascuel.
Smoothed Particles: A new paradigm for animating highly deformable bodies.
In Eurographics Workshop on Computer Animation and Simulation, pages 61–76,
1996.

[Diamanti et al., 2015] Olga Diamanti, Connelly Barnes, Sylvain Paris, Eli Shecht-
man, and Olga Sorkine-Hornung. Synthesis of complex image appearance from
limited exemplars. ACM Transactions on Graphics, 34(2):1–14, 3 2015.

[Eckert et al., 2018] M. L. Eckert, W. Heidrich, and N. Thuerey. Coupled Fluid
Density and Motion from Single Views. Computer Graphics Forum, 37(8):47–58,
6 2018.

[Eckert et al., 2019] Marie Lena Eckert, Kiwon Um, and Nils Thuerey. ScalarFlow:
A large-scale volumetric data set of real-world scalar transport flows for com-
puter animation and machine learning. ACM Transactions on Graphics, 38(6),
2019.

[Enright et al., 2002] Douglas Enright, Stephen Marschner, and Ronald Fedkiw.
Animation and rendering of complex water surfaces. In Proceedings of the 29th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’02, pages 736–744, New York, New York, USA, 2002. ACM Press.

[Farimani et al., 2017] Amir Barati Farimani, Joseph Gomes, and Vijay S. Pande.
Deep Learning the Physics of Transport Phenomena. 2017.

134

References

[Fattal and Lischinski, 2004] Raanan Fattal and Dani Lischinski. Target-driven
smoke animation. In ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004, pages
441–448, New York, New York, USA, 2004. ACM Press.

[Fedkiw et al., 2001] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual
simulation of smoke. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 2001, pages 15–22, New York,
New York, USA, 2001. ACM Press.

[Ferstl et al., 2016] Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Wester-
mann, and Nils Thuerey. Narrow band FLIP for liquid simulations. Computer
Graphics Forum, 35(2):225–232, 5 2016.

[Fišer et al., 2016] Jakub Fišer, Ondřej Jamriška, Michal Lukáč, Eli Shechtman,
Paul Asente, Jingwan Lu, and Daniel Sýkora. StyLit: Illumination-guided
example-based stylization of 3D renderings. ACM Transactions on Graphics,
35(4):1–11, 2016.

[Flynn et al., 2019] Sean Flynn, Parris Egbert, Seth Holladay, and Bryan Morse.
Fluid carving: Intelligent resizing for fluid simulation data. ACM Transactions
on Graphics, 38(6):1–14, 2019.

[Fong et al., 2017] Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf
Habel. Production volume rendering SIGGRAPH 2017 course. In ACM SIG-
GRAPH 2017 Courses, SIGGRAPH 2017, pages 1–79, New York, New York, USA,
2017. ACM Press.

[Foster and Metaxas, 1996] Nick Foster and Dimitri Metaxas. Realistic animation
of liquids. Graphical Models and Image Processing, 58(5):471–483, 9 1996.

[Fu et al., 2017] Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and
Joseph Teran. A polynomial particle-in-cell method. ACM Transactions on
Graphics, 36(6):1–12, 11 2017.

[Gagnon et al., 2016] Jonathan Gagnon, François Dagenais, and Eric Paquette.
Dynamic lapped texture for fluid simulations. Visual Computer, 32(6-8):901–
909, 6 2016.

[Gagnon et al., 2019] Jonathan Gagnon, Julián E. Guzmán, Valentin Vervondel,
François Dagenais, David Mould, and Eric Paquette. Distribution Update of
Deformable Patches for Texture Synthesis on the Free Surface of Fluids. Com-
puter Graphics Forum, 38(7):491–500, 10 2019.

[Gatys et al., 2016a] Leon Gatys, Alexander Ecker, and Matthias Bethge. A Neural
Algorithm of Artistic Style. Journal of Vision, 16(12):326, 2016.

135

References

[Gatys et al., 2016b] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Im-
age Style Transfer Using Convolutional Neural Networks. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol-
ume 2016-Decem, pages 2414–2423. IEEE, 6 2016.

[Gerszewski et al., 2015] Dan Gerszewski, Ladislav Kavan, Peter Pike Sloan, and
Adam W. Bargteil. Basis enrichment and solid-fluid coupling for model-
reduced fluid simulation. Computer Animation and Virtual Worlds, 26(2):109–117,
2015.

[gfv, 2015] GoogleNet Feature Visualizations (http://storage.googleapis.com/deepdream/visualz/tensorflow inception/index.html),
2015.

[Gilland, 2012] Joseph Gilland. Elemental Magic Volume II – The Technique of Special
Effects Animation. CRC Press, 2012.

[Gingold and Monaghan, 1977] R. A. Gingold and J. J. Monaghan. Smoothed par-
ticle hydrodynamics: theory and application to non-spherical stars. Monthly
Notices of the Royal Astronomical Society, 181(3):375–389, 12 1977.

[Gissler et al., 2019] Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender,
and Matthias Teschner. Interlinked SPH pressure solvers for strong fluid-rigid
coupling. ACM Transactions on Graphics, 38(1):1–5, 2019.

[Goodfellow et al., 2014] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Ben-
gio. Generative adversarial nets. In Z Ghahramani, M Welling, C Cortes, N D
Lawrence, and K Q Weinberger, editors, Advances in Neural Information Process-
ing Systems, volume 3, pages 2672–2680. Curran Associates, Inc., 2014.

[Guérin et al., 2017] Éric Guérin, Julie Digne, Éric Galin, Adrien Peytavie, Chris-
tian Wolf, Bedrich Benes, and Benoı̂t Martinez. Interactive example-based ter-
rain authoring with conditional generative adversarial networks. ACM Trans-
actions on Graphics, 36(6), 2017.

[Guo et al., 2016] Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neu-
ral networks for steady flow approximation. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, volume 13-17-
Augu, pages 481–490, New York, New York, USA, 2016. ACM Press.

[Gupta and Narasimhan, 2007] Mohit Gupta and Srinivasa G. Narasimhan. Leg-
endre fluids: A unified framework for analytic reduced space modeling and
rendering of participating media. In Symposium on Computer Animation 2007 -
ACM SIGGRAPH / Eurographics Symposium Proceedings, SCA 2007, pages 17–26,
2007.

136

References

[Han et al., 2017] Xiaoguang Han, Chang Gao, and Yizhou Yu. DeepSketch2Face:
A deep learning based sketching system for 3D face and caricature modeling.
ACM Transactions on Graphics, 36(4), 2017.

[Harlow and Welch, 1965] Francis H. Harlow and J. Eddie Welch. Numerical cal-
culation of time-dependent viscous incompressible flow of fluid with free sur-
face. Physics of Fluids, 8(12):2182–2189, 1965.

[He et al., 2012] Xiaowei He, Ning Liu, Sheng Li, Hongan Wang, and Guoping
Wang. Local poisson SPH for viscous incompressible fluids. Computer Graphics
Forum, 31(6):1948–1958, 2012.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, volume 2016-Decem,
pages 770–778, 2016.

[Holl et al., 2020] Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to
Control PDEs with Differentiable Physics. In International Conference on Learning
Representations, 2020.

[Hong and Kim, 2004] Jeong Mo Hong and Chang Hun Kim. Controlling fluid
animation with geometric potential. Computer Animation and Virtual Worlds,
15(3-4):147–157, 2004.

[Hu et al., 2019a] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan
Carr, Jonathan Ragan-Kelley, and Frédo Durand. DiffTaichi: Differentiable Pro-
gramming for Physical Simulation. In ICLR, 2019.

[Hu et al., 2019b] Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B.
Tenenbaum, William T. Freeman, Jiajun Wu, Daniela Rus, and Wojciech Ma-
tusik. ChainQueen: A real-time differentiable physical simulator for soft
robotics. In Proceedings - IEEE International Conference on Robotics and Automa-
tion, volume 2019-May, pages 6265–6271, 2019.

[Hu et al., 2019c] Yuanming Hu, Xinxin Zhang, Ming Gao, and Chenfanfu Jiang.
On hybrid lagrangian-eulerian simulation methods: Practical notes and high-
performance aspects. In ACM SIGGRAPH 2019 Courses, SIGGRAPH 2019,
page 16. ACM, 2019.

[Huang et al., 2017] Haibin Huang, Evangelos Kalogerakis, Ersin Yumer, and
Radomir Mech. Shape Synthesis from Sketches via Procedural Models and
Convolutional Networks. IEEE Transactions on Visualization and Computer
Graphics, 23(8):2003–2013, 2017.

137

References

[Ihmsen et al., 2012] Markus Ihmsen, Nadir Akinci, Gizem Akinci, and Matthias
Teschner. Unified spray, foam and air bubbles for particle-based fluids. Visual
Computer, 28(6-8):669–677, 2012.

[Ihmsen et al., 2014] Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christo-
pher Horvath, and Matthias Teschner. Implicit incompressible SPH. IEEE
Transactions on Visualization and Computer Graphics, 20(3):426–435, 2014.

[Inglis et al., 2017] T. Inglis, M. L. Eckert, J. Gregson, and N. Thuerey. Primal-Dual
Optimization for Fluids. Computer Graphics Forum, 36(8):354–368, 2017.

[Insafutdinov and Dosovitskiy, 2018] Eldar Insafutdinov and Alexey Dosovit-
skiy. Unsupervised learning of shape and pose with differentiable point clouds.
In Advances in Neural Information Processing Systems, volume 2018-Decem, pages
2802–2812, 2018.

[Isola et al., 2017] Phillip Isola, Jun Yan Zhu, Tinghui Zhou, and Alexei A. Efros.
Image-to-image translation with conditional adversarial networks. Proceedings
- 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
2017-Janua:5967–5976, 2017.

[Jaderberg et al., 2015] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. Advances in Neural Infor-
mation Processing Systems, 2015-Janua:2017–2025, 6 2015.

[Jamriška et al., 2015] Ondřej Jamriška, Jakub Fišer, Paul Asente, Jingwan Lu, Eli
Shechtman, and Daniel Sýkora. LazyFluids: Appearance transfer for fluid ani-
mations. ACM Transactions on Graphics, 34(4):92, 2015.

[Jiang et al., 2015] Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran,
and Alexey Stomakhin. The affine Particle-In-Cell method. ACM Transactions
on Graphics, 34(4):1–51, 7 2015.

[Jiang et al., 2016] Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stom-
akhin, and Andrew Selle. The material point method for simulating continuum
materials. In ACM SIGGRAPH 2016 Courses, SIGGRAPH 2016, pages 1–52. 2016.

[Jing et al., 2019] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou
Yu, and Mingli Song. Neural Style Transfer: A Review. IEEE Transactions on
Visualization and Computer Graphics, pages 1–1, 2019.

[Johnson et al., 2016] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
Losses for Real-Time Style Transfer and Super-Resolution. In European Confer-
ence on Computer Vision 2016, volume 9906 LNCS, pages 694–711. Springer, 3
2016.

138

References

[Kallweit et al., 2017] Simon Kallweit, Thomas Müller, Brian McWilliams,
Markus Gross, and Jan Novák. Deep scattering: Rendering atmospheric clouds
with radiance-predicting neural networks. ACM Transactions on Graphics, 36(6),
2017.

[Karras et al., 2018] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of GANs for improved quality, stability, and variation. 6th
International Conference on Learning Representations, ICLR 2018 - Conference Track
Proceedings, 2018.

[Kato et al., 2018] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural
3D Mesh Renderer. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 3907–3916, 2018.

[Kim and Delaney, 2013] Theodore Kim and John Delaney. Subspace fluid re-
simulation. ACM Transactions on Graphics, 32(4):1, 7 2013.

[Kim et al., 2005] Byung Moon Kim, Yingjie Liu, Ignacio Llamas, and Jarek
Rossignac. FlowFixer: Using BFECC for fluid simulation. In Natural Phenomena,
NPH’05, pages 51–56, Goslar, DEU, 2005. Eurographics Association.

[Kim et al., 2006a] Janghee Kim, Deukhyun Cha, Byungjoon Chang, Bonki Koo,
and Insung Ihm. Practical animation of turbulent splashing water. In Computer
Animation, Conference Proceedings, volume 02-04-Sept of SCA ’06, pages 335–344,
Goslar, DEU, 2006. Eurographics Association.

[Kim et al., 2006b] Yootai Kim, Raghu MacHiraju, and David Thompson. Path-
based control of smoke simulations. In Computer Animation, Conference Pro-
ceedings, volume 02-04-Sept of SCA ’06, pages 33–42. Eurographics Association,
2006.

[Kim et al., 2008a] Doyub Kim, Oh Young Song, and Hyeong Seok Ko. A semi-
lagrangian CIP fluid solver without dimensional splitting. Computer Graphics
Forum, 27(2):467–475, 4 2008.

[Kim et al., 2008b] Theodore Kim, Nils Thürey, Doug James, and Markus Gross.
Wavelet turbulence for fluid simulation. In ACM SIGGRAPH 2008 papers on -
SIGGRAPH ’08, volume 27, page 1, New York, New York, USA, 2008. ACM,
ACM Press.

[Kim et al., 2013] Theodore Kim, Jerry Tessendorf, and Nils Thürey. Closest Point
Turbulence for liquid surfaces. ACM Transactions on Graphics, 32(2):15, 2013.

[Kim et al., 2019a] Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Bar-
bara Solenthaler. Transport-Based Neural Style Transfer for Smoke Simulations.
ACM Transactions on Graphics (Proc. SIGGRAPH Asia 2019), 38(6):1–11, 11 2019.

139

References

[Kim et al., 2019b] Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore
Kim, Markus Gross, and Barbara Solenthaler. Deep Fluids: A Generative Net-
work for Parameterized Fluid Simulations. Computer Graphics Forum (Proc. Eu-
rographics 2019), 38(2):59–70, 5 2019.

[Kim et al., 2020] Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Bar-
bara Solenthaler. Lagrangian Neural Style Transfer for Fluids. ACM Transac-
tions on Graphics (Proc. SIGGRAPH 2020), 39(4), 7 2020.

[Kim, 2008] Theodore Kim. Hardware-aware analysis and optimization of stable
fluids. In Proceedings of the Symposium on Interactive 3D Graphics and Games, I3D
2008, pages 99–106, 2008.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method
for stochastic optimization. In 3rd International Conference on Learning Represen-
tations, ICLR 2015 - Conference Track Proceedings, volume 5, 2015.

[Koschier and Bender, 2017] Dan Koschier and Jan Bender. Density maps for im-
proved SPH boundary handling. In Proceedings - SCA 2017: ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, pages 1–10, 2017.

[Koschier et al., 2019] Dan Koschier, Jan Bender, Barbara Solenthaler, and
Matthias Teschner. Eurographics Tutorial 2019 — Smoothed Particle Hydro-
dynamics Techniques for the Physics Based Simulation of Fluids and Solids. In
Eurographics 2019 - Tutorials, 2019.

[Kulkarni et al., 2015] Tejas D. Kulkarni, William F. Whitney, Pushmeet Kohli,
and Joshua B. Tenenbaum. Deep convolutional inverse graphics network. Ad-
vances in Neural Information Processing Systems, 2015-Janua:2539–2547, 3 2015.

[Kwatra et al., 2005] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra.
Texture optimization for example-based synthesis. In ACM SIGGRAPH 2005
Papers on - SIGGRAPH ’05, page 795, New York, New York, USA, 2005. ACM
Press.

[Kwatra et al., 2006] Vivek Kwatra, David Adalsteinsson, Nipun Kwatra, Mark
Carlson, and Ming C. Lin. Texturing fluids. In ACM SIGGRAPH 2006: Sketches,
SIGGRAPH ’06, page 63, New York, New York, USA, 2006. ACM Press.

[Ladický et al., 2015] L’ubor Ladický, Sohyeon Jeong, Barbara Solenthaler, Marc
Pollefeys, and Markus Gross. Data-driven Fluid Simulations using Regression
Forests. ACM Transactions on Graphics, 34(6):1–9, 10 2015.

[Ledig et al., 2017] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Jo-
hannes Totz, Zehan Wang, and Wenzhe Shi. Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings - 30th IEEE

140

References

Conference on Computer Vision and Pattern Recognition, CVPR 2017, volume 2017-
Janua, pages 105–114. IEEE, 7 2017.

[Li et al., 2018a] Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and
Wenping Wang. Robust flow-guided neural prediction for sketch-based
freeform surface modeling. SIGGRAPH Asia 2018 Technical Papers, SIGGRAPH
Asia 2018, 37(6):238:1–238:12, 2018.

[Li et al., 2018b] S. Li, N. Marsaglia, C. Garth, J. Woodring, J. Clyne, and
H. Childs. Data Reduction Techniques for Simulation, Visualization and Data
Analysis. Computer Graphics Forum, 37(6):422–447, 2018.

[Li et al., 2018c] Tzu Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen.
Differentiable Monte Carlo ray tracing through edge sampling. In SIGGRAPH
Asia 2018 Technical Papers, SIGGRAPH Asia 2018, pages 1–11, New York, New
York, USA, 2018. ACM Press.

[Li et al., 2018d] Yanchun Li, Nanfeng Xiao, and Wanli Ouyang. Improved
boundary equilibrium generative adversarial networks. IEEE Access, 6:11342–
11348, 2018.

[Libersky and Petschek, 2008] Larry D. Libersky and A. G. Petschek. Smooth par-
ticle hydrodynamics with strength of materials. In Advances in the Free-Lagrange
Method Including Contributions on Adaptive Gridding and the Smooth Particle Hy-
drodynamics Method, pages 248–257. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2008.

[Lindstrom and Isenburg, 2006] Peter Lindstrom and Martin Isenburg. Fast and
efficient compression of floating-point data. IEEE Transactions on Visualization
and Computer Graphics, 12(5):1245–1250, 2006.

[Liu and Jacobson, 2019] Hsueh Ti Derek Liu and Alec Jacobson. Cubic styliza-
tion. ACM Transactions on Graphics, 38(6), 10 2019.

[Liu et al., 2015] Beibei Liu, Gemma Mason, Julian Hodgson, Yiying Tong, and
Mathieu Desbrun. Model-reduced variational fluid simulation. ACM Transac-
tions on Graphics, 34(6):244, 2015.

[Liu et al., 2018a] Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang,
Andrew Tao, and Bryan Catanzaro. Image Inpainting for Irregular Holes Us-
ing Partial Convolutions. In Eurographics Workshop on Computer Animation and
Simulation 2018, volume 11215 LNCS, pages 89–105. 2018.

[Liu et al., 2018b] Hsueh Ti Derek Liu, Michael Tao, and Alec Jacobson. Pa-
parazzi: Surface editing by way of multi-view image processing. SIGGRAPH
Asia 2018 Technical Papers, SIGGRAPH Asia 2018, 2018.

141

References

[Lombardi et al., 2019] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural volumes: Learn-
ing dynamic renderable volumes from images. ACM Transactions on Graphics,
38(4):1–14, 7 2019.

[Long and Reinhard, 2009] Benjamin Long and Erik Reinhard. Real-time fluid
simulation using discrete sine/cosine transforms. In Proceedings of I3D 2009:
The 2009 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
pages 99–106, New York, New York, USA, 2009. ACM Press.

[Loper and Black, 2014] Matthew M. Loper and Michael J. Black. OpenDR: An
approximate differentiable renderer. In European Conference on Computer Vision
2014, volume 8695 LNCS, pages 154–169. 2014.

[Losasso et al., 2008] Frank Losasso, Jerry O. Talton, Nipun Kwatra, and Ron Fed-
kiw. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans-
actions on Visualization and Computer Graphics, 14(4):797–804, 7 2008.

[Loshchilov and Hutter, 2017] Ilya Loshchilov and Frank Hutter. SGDR: Stochas-
tic gradient descent with warm restarts. 5th International Conference on Learning
Representations, ICLR 2017 - Conference Track Proceedings, 8 2017.

[Lu et al., 2016] Wenlong Lu, Ning Jin, and Ronald Fedkiw. Two-way Coupling
of Fluids to Reduced Deformable Bodies. In SCA ’16: Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages 67–76, 2016.

[Lucy, 1977] L. B. Lucy. A numerical approach to the testing of the fission hypoth-
esis. The Astronomical Journal, 82:1013, 12 1977.

[Lumley, 1967] John L. Lumley. The Strucure of Inhomogeneous Turbulent Flows.
In A M Yaglom and V I Tatarski, editors, Atmospheric Turbulence and Radio Wave
Propagation, pages 166–178. Nauka, 1967.

[Lun et al., 2018] Zhaoliang Lun, Matheus Gadelha, Evangelos Kalogerakis,
Subhransu Maji, and Rui Wang. 3D Shape Reconstruction from Sketches via
Multi-view Convolutional Networks. In Proceedings - 2017 International Confer-
ence on 3D Vision, 3DV 2017, pages 67–77. IEEE, 2018.

[Ma et al., 2009] Chongyang Ma, Baining Guo, Li Yi Wei, and Kun Zhou. Motion
Field Texture Synthesis. In ACM Transactions on Graphics, volume 28, pages 1–8.
ACM, 2009.

[Ma et al., 2018] Pingchuan Ma, Yunsheng Tian, Zherong Pan, Bo Ren, and Di-
nesh Manocha. Fluid directed rigid body control using deep reinforcement
learning. ACM Transactions on Graphics, 37(4), 2018.

142

References

[Maas et al., 2013] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier
nonlinearities improve neural network acoustic models. In in ICML Workshop
on Deep Learning for Audio, Speech and Language Processing, volume 30, page 3,
2013.

[Macklin and Müller, 2013] Miles Macklin and Matthias Müller. Position based
fluids. ACM Transactions on Graphics, 32(4):1–104, 2013.

[Manteaux et al., 2016] Pierre Luc Manteaux, Ulysse Vimont, Chris Wojtan,
Damien Rohmer, and Marie Paule Cani. Space-time sculpting of liquid ani-
mation. In Proceedings - Motion in Games 2016: 9th International Conference on
Motion in Games, MIG 2016, pages 61–71. ACM Press, 2016.

[Masci et al., 2015] Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and
Pierre Vandergheynst. Geodesic Convolutional Neural Networks on Rieman-
nian Manifolds. In Proceedings of the IEEE International Conference on Computer
Vision, volume 2015-Febru, pages 832–840, 2015.

[Mathieu et al., 2016] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep
multi-scale video prediction beyond mean square error. 4th International Confer-
ence on Learning Representations, ICLR 2016 - Conference Track Proceedings, 2016.

[McGuire and Fein, 2006] Morgan McGuire and Andi Fein. Real-time rendering
of cartoon smoke and clouds. In NPAR Symposium on Non-Photorealistic Ani-
mation and Rendering, volume 2006 of NPAR ’06, pages 21–26. Association for
Computing Machinery, 2006.

[McNamara et al., 2004] Antoine McNamara, Adrien Treuille, Zoran Popović,
and Jos Stam. Fluid control using the adjoint method. In ACM SIGGRAPH
2004 Papers, SIGGRAPH 2004, pages 449–456, New York, New York, USA, 2004.
ACM Press.

[Mihalef et al., 2004] Viorel Mihalef, Dimitris Metaxas, and Mark Sussman. An-
imation and control of breaking waves. In Computer Animation 2004 - ACM
SIGGRAPH / Eurographics Symposium on Computer Animation, pages 315–324.
ACM Press, 2004.

[Monaghan, 1992] J. J. Monaghan. Smoothed particle hydrodynamics. Annual
Review of Astronomy and Astrophysics, 30(1):543–574, 9 1992.

[Monaghan, 1994] J. J. Monaghan. Simulating free surface flows with SPH. Jour-
nal of Computational Physics, 110(2):399–406, 2 1994.

[Monaghan, 2005] J. J. Monaghan. Smoothed particle hydrodynamics. Reports on
Progress in Physics, 68(8):1703–1759, 8 2005.

143

References

[Mordvintsev et al., 2018] Alexander Mordvintsev, Nicola Pezzotti, Ludwig
Schubert, and Chris Olah. Differentiable Image Parameterizations. Distill, 3(7),
2018.

[Mordvintsev, 2016] Alexander Mordvintsev. DeepDreaming with TensorFlow,
2016.

[Morton et al., 2018] Jeremy Morton, Freddie D. Witherden, Mykel J. Kochender-
fer, and Antony Jameson. Deep dynamical modeling and control of unsteady
fluid flows. In S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi,
and R Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 2018-Decem, pages 9258–9268. Curran Associates, Inc., 2018.

[Mullen et al., 2009] Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong,
and Mathieu Desbrun. Energy-preserving integrators for fluid animation. ACM
Transactions on Graphics, 28(3):1, 2009.

[Müller et al., 2003] Matthias Müller, David Charypar, and Markus Gross.
Particle-based fluid simulation for interactive applications. In Proceedings of
the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA
2003, 2003.

[Narain et al., 2007] Rahul Narain, Vivek Kwatra, Huai-Ping Lee, Theodore Kim,
Mark Carlson, and Ming C. Lin. Feature-Guided Dynamic Texture Synthesis
on Continuous Flows. In Proc. Eurographics Symposium on Rendering (EGSR),
EGSR’07, pages 361–370, Aire-la-Ville, Switzerland, Switzerland, 2007. Euro-
graphics Association.

[Narain et al., 2008] Rahul Narain, Jason Sewall, Mark Carlson, and Ming C. Lin.
Fast animation of turbulence using energy transport and procedural synthesis.
ACM Transactions on Graphics, 27(5):1, 12 2008.

[Nielsen and Christensen, 2010] Michael B. Nielsen and Brian B. Christensen. Im-
proved variational guiding of smoke animations. Computer Graphics Forum,
29(2):705–712, 2010.

[Nielsen et al., 2009] Michael B. Nielsen, Brian B. Christensen, Nafees Bin Zafar,
Doug Roble, and Ken Museth. Guiding of smoke animations through varia-
tional coupling of simulations at different resolutions. In Computer Animation,
Conference Proceedings, pages 217–226, New York, New York, USA, 2009. ACM
Press.

[Nielsen et al., 2011] Michael B. Nielsen, Weta Digital, and Robert Bridson. Guide
shapes for high resolution naturalistic liquid simulation. In ACM Transactions
on Graphics, volume 30, page 1, New York, New York, USA, 2011. ACM Press.

144

References

[Nimier-David et al., 2019] Merlin Nimier-David, Delio Vicini, Tizian Zeltner,
and Wenzel Jakob. Mitsuba 2: A retargetable forward and inverse renderer.
ACM Transactions on Graphics, 38(6):1–17, 11 2019.

[Nishida et al., 2016] Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga,
Bedrich Benes, and Adrien Bousseau. Interactive sketching of urban proce-
dural models. ACM Transactions on Graphics, 35(4), 2016.

[Odena et al., 2017] Augustus Odena, Vincent Dumoulin, and Chris Olah. De-
convolution and Checkerboard Artifacts. Distill, 1(10):e3, 2017.

[Okabe et al., 2015] Makoto Okabe, Yoshinori Dobashi, Ken Anjyo, and Rikio
Onai. Fluid volume modeling from sparse multi-view images by appearance
transfer. ACM Transactions on Graphics, 34(4):93, 2015.

[Olah et al., 2017] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert.
Feature Visualization. Distill, 2(11), 2017.

[Osher and Sethian, 1988] Stanley Osher and James A. Sethian. Fronts propagat-
ing with curvature-dependent speed: Algorithms based on Hamilton-Jacobi
formulations. Journal of Computational Physics, 79(1):12–49, 11 1988.

[Pan and Manocha, 2016] Zherong Pan and Dinesh Manocha. Efficient Optimal
Control of Smoke using Spacetime Multigrid. 8 2016.

[Pan and Manocha, 2017] Zherong Pan and Dinesh Manocha. Editing smoke an-
imation using a deforming grid. Computational Visual Media, 3(4):369–378, 2017.

[Pan et al., 2013] Zherong Pan, Jin Huang, Yiying Tong, Changxi Zheng, and Hu-
jun Bao. Interactive localized liquid motion editing. ACM Transactions on Graph-
ics, 32(6):1–10, 11 2013.

[Paszke et al., 2019] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang,
Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In Advances in neural informa-
tion processing systems, pages 8026–8037, 2019.

[Peer et al., 2015] Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias
Teschner. An implicit viscosity formulation for SPH fluids. ACM Transactions
on Graphics, 34(4):1–10, 2015.

[Peng et al., 2018] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van
De Panne. DeepMimic: Example-guided deep reinforcement learning of
physics-based character skills. ACM Transactions on Graphics, 37(4):1–14, 8 2018.

145

References

[Perlin, 1985] Ken Perlin. Image Synthesizer. Computer Graphics (ACM),
19(3):287–296, 7 1985.

[Pfaff et al., 2009] Tobias Pfaff, Nils Thuerey, Markus Gross, Andrew Selle, and
Markus Gross. Synthetic Turbulence using Artificial Boundary Layers. ACM
Transactions on Graphics, 28(5):1–10, 12 2009.

[Pighin et al., 2004] Frédéric Pighin, Jonathan M. Cohen, and Maurya Shah. Mod-
eling and editing flows using advected radial basis functions. In Computer An-
imation 2004 - ACM SIGGRAPH / Eurographics Symposium on Computer Anima-
tion, pages 223–232. ACM Press, 2004.

[Prantl et al., 2019] Lukas Prantl, Boris Bonev, and Nils Thuerey. Generating liq-
uid simulations with deformation-aware neural networks. 7th International
Conference on Learning Representations, ICLR 2019, 2019.

[Qi et al., 2016] Charles R. Qi, Hao Su, Matthias Niebner, Angela Dai, Mengyuan
Yan, and Leonidas J. Guibas. Volumetric and multi-view CNNs for object clas-
sification on 3D data. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2016-Decem:5648–5656, 4 2016.

[Qi et al., 2017] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
PointNet: Deep learning on point sets for 3D classification and segmentation.
In Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, volume 2017-Janua, pages 77–85, 2017.

[Rasmussen et al., 2004] N. Rasmussen, D. Enright, D. Nguyen, S. Marino,
N. Sumner, W. Geiger, S. Hoon, and R. Fedkiw. Directable photorealistic liq-
uids. In Computer Animation 2004 - ACM SIGGRAPH / Eurographics Symposium
on Computer Animation, pages 193–202, New York, New York, USA, 2004. ACM
Press.

[Raveendran et al., 2012] Karthik Raveendran, Nils Thuerey, Chris Wojtan, and
Greg Turk. Controlling liquids using meshes. In Computer Animation 2012
- ACM SIGGRAPH / Eurographics Symposium Proceedings, SCA 2012, SCA ’12,
pages 255–264, Goslar Germany, Germany, 2012. Eurographics Association.

[Raveendran et al., 2014] Karthik Raveendran, Chris Wojtan, Nils Thuerey, and
Greg Turk. Blending liquids. ACM Transactions on Graphics, 33(4):137, 2014.

[Reinhardt et al., 2019] Stefan Reinhardt, Tim Krake, Bernhard Eberhardt, and
Daniel Weiskopf. Consistent shepard interpolation for SPH-based fluid ani-
mation. ACM Transactions on Graphics, 38(6), 2019.

[Ren et al., 2013] Bo Ren, Chen Feng Li, Ming C. Lin, Theodore Kim, and Shi Min
Hu. Flow field modulation. IEEE Transactions on Visualization and Computer
Graphics, 19(10):1708–1719, 2013.

146

References

[Ren et al., 2014] Bo Ren, Chenfeng Li, Xiao Yan, Ming C. Lin, Javier Bonet, and
Shin Min Hu. Multiple-fluid SPH simulation using a mixture model. ACM
Transactions on Graphics, 33(5):1–11, 9 2014.

[Ruder et al., 2018] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. Artis-
tic Style Transfer for Videos and Spherical Images. International Journal of Com-
puter Vision, 126(11):1199–1219, 11 2018.

[Sato et al., 2018a] Syuhei Sato, Yoshinori Dobashi, Theodore Kim, and Tomoyuki
Nishita. Example-based turbulence style transfer. ACM Transactions on Graph-
ics, 37(4):84, 2018.

[Sato et al., 2018b] Syuhei Sato, Yoshinori Dobashi, and Tomoyuki Nishita. Edit-
ing fluid animation using flow interpolation. ACM Transactions on Graphics,
37(5):1–12, 2018.

[Schechter and Bridson, 2008] H. Schechter and R. Bridson. Evolving sub-grid
turbulence for smoke animation. In Computer Animation 2008 - ACM SIG-
GRAPH / Eurographics Symposium, SCA 2008 - Proceedings, pages 1–7, 2008.

[Schenck and Fox, 2018] Connor Schenck and Dieter Fox. SPNets: Differentiable
Fluid Dynamics for Deep Neural Networks. 6 2018.

[Schmitzer, 2019] Bernhard Schmitzer. Stabilized sparse scaling algorithms for
entropy regularized transport problems. SIAM Journal on Scientific Computing,
41(3):A1443–A1481, 2019.

[Selle et al., 2004] Andrew Selle, Alex Mohr, and Stephen Chenney. Cartoon ren-
dering of smoke animations. In NPAR Symposium on Non-Photorealistic Anima-
tion and Rendering, NPAR ’04, pages 57–60. Association for Computing Machin-
ery, 2004.

[Selle et al., 2005] Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex
particle method for smoke, water and explosions. ACM Transactions on Graph-
ics, 24(3):910–914, 7 2005.

[Selle et al., 2008] Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu,
and Jarek Rossignac. An unconditionally stable MacCormack method. Journal
of Scientific Computing, 35(2-3):350–371, 6 2008.

[Shen et al., 2020] Yuefan Shen, Changgeng Zhang, Hongbo Fu, Kun Zhou, and
Youyi Zheng. DeepSketchHair: Deep Sketch-based 3D Hair Modeling. IEEE
Transactions on Visualization and Computer Graphics, pages 1–1, 2020.

[Shi and Yu, 2005a] Lin Shi and Yizhou Yu. Controllable smoke animation with
guiding objects. ACM Transactions on Graphics, 24(1):140–164, 2005.

147

References

[Shi and Yu, 2005b] Lin Shi and Yizhou Yu. Taming liquids for rapidly chang-
ing targets. In Computer Animation, Conference Proceedings, pages 229–236, New
York, New York, USA, 2005. ACM Press.

[Simo-Serra et al., 2016] Edgar Simo-Serra, Satoshi Iizuka, Kazuma Sasaki, and
Hiroshi Ishikawa. Learning to simplify: Fully convolutional networks for
rough sketch cleanup. ACM Transactions on Graphics, 35(4):1–11, 2016.

[Simonyan and Zisserman, 2015] Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale image recognition. 3rd Interna-
tional Conference on Learning Representations, ICLR 2015 - Conference Track Pro-
ceedings, 9 2015.

[Smith, 2017] Leslie N. Smith. Cyclical learning rates for training neural net-
works. In Proceedings - 2017 IEEE Winter Conference on Applications of Computer
Vision, WACV 2017, pages 464–472, 2017.

[Solenthaler and Pajarola, 2009] B. Solenthaler and R. Pajarola. Predictive-
corrective incompressible SPH. In ACM Transactions on Graphics, volume 28,
pages 1–40, 2009.

[Solomon et al., 2015] Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco
Cuturi, Adrian Butscher, Andy Nguyen, Tao Du, and Leonidas Guibas. Con-
volutional Wasserstein distances: Efficient optimal transportation on geometric
domains. ACM Transactions on Graphics, 34(4), 2015.

[spi, 2015] Spiral Image Source (http://ardezart.com/?attachment id=252), 2015.

[Stam, 1999] Jos Stam. Stable fluids. In Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 1999, pages 121–128,
New York, New York, USA, 1999. ACM Press.

[Stanton et al., 2013] Matt Stanton, Yu Sheng, Martin Wicke, Federico Perazzi,
Amos Yuen, Srinivasa Narasimhan, and Adrien Treuille. Non-polynomial
galerkin projection on deforming meshes. ACM Transactions on Graphics,
32(4):86:1, 2013.

[Stanton, 2014] Matthew Luchak Stanton. Data-Driven Methods for Interactive Sim-
ulation of Complex Phenomena. PhD thesis, Carnegie Mellon University, 2014.

[Steinhoff and Underhill, 1994] John Steinhoff and David Underhill. Modifica-
tion of the Euler equations for ”vorticity confinement”: Application to the com-
putation of interacting vortex rings. Physics of Fluids, 6(8):2738–2744, 8 1994.

[sti, 2018] Style Image Source (https://github.com/titu1994/Neural-Style-
Transfer), 2018.

148

References

[Stokes, 1845] George Gabriel Stokes. On the Theories of the Internal Friction of
Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids. In Math-
ematical and Physical Papers vol.1, pages 75–129. Cambridge University Press,
Cambridge, 1845.

[Stomakhin et al., 2013] Alexey Stomakhin, Craig Schroeder, Lawrence Chai,
Joseph Teran, and Andrew Selle. A material point method for snow simula-
tion. ACM Transactions on Graphics, 32(4), 2013.

[Suwajanakorn et al., 2017] Supasorn Suwajanakorn, Steven M. Seitz, and Ira
Kemelmacher-Shlizerman. Synthesizing obama: Learning lip sync from audio.
ACM Transactions on Graphics, 36(4):1–13, 7 2017.

[Szegedy et al., 2015] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and An-
drew Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, volume
07-12-June, pages 1–9, 2015.

[Talmi et al., 2017] Itamar Talmi, Roey Mechrez, and Lihi Zelnik-Manor. Tem-
plate matching with deformable diversity similarity. In Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, volume 2017-
Janua, pages 1311–1319, 2017.

[Témam, 1969] R. Témam. Sur l’approximation de la solution des équations de
Navier-Stokes par la méthode des pas fractionnaires (I). Archive for Rational
Mechanics and Analysis, 32(2):135–153, 1 1969.

[Thuerey and Pfaff, 2018] Nils Thuerey and Tobias Pfaff. MantaFlow, 2018.

[Thuerey, 2016] Nils Thuerey. Interpolations of smoke and liquid simulations.
ACM Transactions on Graphics, 36(1):3, 2016.

[Thürey et al., 2006] N Thürey, R Keiser, M Pauly, and U Rüde. Detail-Preserving
Fluid Control. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, SCA ’06, page 7–12. Eurographics Association,
2006.

[Tompson et al., 2019] Jonathan Tompson, Kristofer Schlachter, Pablo Sprech-
mann, and Ken Perlin. Accelerating eulerian fluid simulation with convolu-
tional networks. In 5th International Conference on Learning Representations, ICLR
2017 - Workshop Track Proceedings, volume 70, pages 3424–3433, 2019.

[Treuille et al., 2003] Adrien Treuille, Antoine McNamara, Zoran Popović, and
Jos Stam. Keyframe control of smoke simulations. ACM Transactions on Graph-
ics, 22(3):716–723, 7 2003.

149

References

[Treuille et al., 2006] Adrien Treuille, Andrew Lewis, and Zoran Popović. Model
reduction for real-time fluids. ACM Transactions on Graphics, 25(3):826–834,
2006.

[Tulsiani et al., 2017] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Jiten-
dra Malik. Multi-view supervision for single-view reconstruction via differen-
tiable ray consistency. Proceedings - 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, 2017-Janua:209–217, 4 2017.

[Ulyanov et al., 2016] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Instance Normalization: The Missing Ingredient for Fast Stylization. 7 2016.

[Um et al., 2014] Kiwon Um, Seungho Baek, and Junghyun Han. Advanced Hy-
brid Particle-Grid Method with Sub-Grid Particle Correction. Computer Graph-
ics Forum, 33(7):209–218, 10 2014.

[Um et al., 2018] Kiwon Um, Xiangyu Hu, and Nils Thuerey. Liquid Splash Mod-
eling with Neural Networks. In Computer Graphics Forum, volume 37, pages
171–182. Wiley Online Library, 2018.

[Umetani and Bickel, 2018] Nobuyuki Umetani and Bernd Bickel. Learning
three-dimensional flow for interactive aerodynamic design. ACM Transactions
on Graphics, 37(4):1–10, 7 2018.

[Velinov et al., 2018] Zdravko Velinov, Marios Papas, Derek Bradley, Paulo Go-
tardo, Parsa Mirdehghan, Steve Marschner, Jan Novák, and Thabo Beeler. Ap-
pearance capture and modeling of human teeth. In SIGGRAPH Asia 2018 Tech-
nical Papers, SIGGRAPH Asia 2018, pages 1–13, New York, New York, USA,
2018. ACM Press.

[Vincent et al., 2010] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua
Bengio, and Pierre Antoine Manzagol. Stacked denoising autoencoders: Learn-
ing Useful Representations in a Deep Network with a Local Denoising Crite-
rion. Journal of Machine Learning Research, 11:3371–3408, 2010.

[Wang et al., 2019] Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J.
Mitra. Learning a shared shape space for multimodal garment design. ACM
Transactions on Graphics, 37(6):1–13, 2019.

[Weißmann and Pinkall, 2010] Steffen Weißmann and Ulrich Pinkall. Filament-
based smoke with vortex shedding and variational reconnection. ACM SIG-
GRAPH 2010 Papers, SIGGRAPH 2010, 29(4):1, 2010.

[Wicke et al., 2009] Martin Wicke, Matt Stanton, and Adrien Treuille. Modular
bases for fluid dynamics. In ACM SIGGRAPH 2009 papers on - SIGGRAPH ’09,
page 1, New York, New York, USA, 2009. ACM Press.

150

References

[Wiewel et al., 2019] S. Wiewel, M. Becher, and N. Thuerey. Latent Space Physics:
Towards Learning the Temporal Evolution of Fluid Flow. Computer Graphics
Forum, 38(2):71–82, 2 2019.

[Wu et al., 2015] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D ShapeNets: A deep representation
for volumetric shapes. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 07-12-June:1912–1920, 2015.

[Xie et al., 2018] You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. Tem-
poGAN: A temporally coherent, volumetric GAN for super-resolution fluid
flow. ACM Transactions on Graphics, 37(4), 2018.

[Yan et al., 2016] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak
Lee. Perspective transformer nets: Learning single-view 3d object reconstruc-
tion without 3D supervision. Advances in Neural Information Processing Systems,
pages 1704–1712, 12 2016.

[Yang et al., 2013] Ben Yang, Youquan Liu, Lihua You, and Xiaogang Jin. A uni-
fied smoke control method based on signed distance field. Computers and
Graphics (Pergamon), 37(7):775–786, 2013.

[Yang et al., 2016] Cheng Yang, Xubo Yang, and Xiangyun Xiao. Data-driven pro-
jection method in fluid simulation. Computer Animation and Virtual Worlds, 27(3-
4):415–424, 2016.

[Yifan et al., 2019] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and
Olga Sorkine-Hornung. Differentiable surface splatting for point-based geom-
etry processing. ACM Transactions on Graphics, 38(6), 6 2019.

[Yu et al., 2011] Qizhi Yu, Fabrice Neyret, Eric Bruneton, and Nicolas Holzschuch.
Lagrangian texture advection: Preserving both spectrum and velocity field.
IEEE Transactions on Visualization and Computer Graphics, 17(11):1612–1623, 11
2011.

[Yuan et al., 2011] Zhi Yuan, Fan Chen, and Ye Zhao. Pattern-Guided Smoke An-
imation with Lagrangian Coherent Structure. ACM Transactions on Graphics,
30(6):1–8, 2011.

[Zhao et al., 2016] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss
Functions for Image Restoration With Neural Networks. IEEE Transactions on
Computational Imaging, 3(1):47–57, 2016.

[Zhu and Bridson, 2005] Yongning Zhu and Robert Bridson. Animating sand as
a fluid. ACM Transactions on Graphics, 24(3):965–972, 7 2005.

151

References

[Zhu et al., 2011] Bo Zhu, Michiaki Iwata, Ryo Haraguchi, Takeo Igarashi, and
Nobuyuki Umetani. Sketch-based Dynamic Illustration of Fluid Systems. ACM
Transactions on Graphics, 30(6):1–8, 2011.

152

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	1.1 Data-Driven Fluid Simulations
	1.2 Artistic Fluids Authoring
	1.3 Contributions
	1.4 Publications

	Related Works
	2.1 Fluid Simulation for Computer Graphics
	2.1.1 Eulerian Fluids
	2.1.2 Lagrangian Fluids
	2.1.3 Hybrid Lagrangian-Eulerian Fluids
	2.1.4 Reduced-Order Methods for Fluids

	2.2 Machine Learning for Fluids
	2.3 Artistic Control of Fluids
	2.3.1 Patch-Based Appearance Transfer
	2.3.2 Velocity Synthesis
	2.3.3 Fluid Control

	2.4 Neural Stylization
	2.4.1 Neural Style Transfer
	2.4.2 Differentiable Rendering
	2.4.3 Deep Sketch-Based 3D Reconstruction

	Deep Generative Model for Fluid Simulations
	3.1 Overview
	3.2 A Generative Model For Fluids
	3.2.1 Challenges
	3.2.2 CNN Models for Fluids
	3.2.3 Loss Function for Velocity Reconstruction
	3.2.4 Implementation

	3.3 Extended Parameterizations
	3.3.1 Latent Space Integration Network

	3.4 Results
	3.4.1 2D Smoke Plume
	3.4.2 3D Smoke Examples
	3.4.3 2D Liquid Drop
	3.4.4 3D Liquid Examples

	3.5 Evaluation and Discussion
	3.5.1 Training
	3.5.2 Performance Analysis
	3.5.3 Quality of Reconstruction and Interpolation
	3.5.4 Extrapolation and Limitations

	Neural Artistic Control of Smoke Simulations
	4.1 Overview
	4.2 Transport-Based Neural Style Transfer
	4.2.1 Single-Frame Multi-View Stylization
	4.2.2 Semantic Transfer
	4.2.3 Style Transfer
	4.2.4 Time-Coherent Stylization

	4.3 Differentiable Smoke Renderer
	4.3.1 Camera Design Specifications

	4.4 Results
	4.4.1 Semantic and Style Transfers
	4.4.2 Discussion

	Lagrangian Neural Artistic Control of Fluid Simulations
	5.1 Overview
	5.2 Lagrangian Neural Style Transfer
	5.3 An Efficient Particle-Based Smoke Re-Simulation
	5.3.1 Multi-Scale Density Representation

	5.4 Temporal Coherency
	5.5 Results

	Deep Reconstruction of 3D Smoke Densities from Artist Sketches
	6.1 Overview
	6.2 2D Sketch to 3D Density Prediction
	6.2.1 Initial Volume Modeling
	6.2.2 CNN-Based Iterative Refinement
	6.2.3 Loss Functions

	6.3 Differentiable Sketcher
	6.4 Keyframe Interpolation
	6.5 Training Data Generation
	6.5.1 Simulation Taining Data
	6.5.2 Sketch Training Data and Augmentation

	6.6 Results
	6.6.1 Implementation and Performance
	6.6.2 Results on Our Dataset
	6.6.3 Results on Synthetic Scenes
	6.6.4 Results on Artist Sketches
	6.6.5 Keyframe Interpolation Result
	6.6.6 Ablation Study

	Conclusion
	7.1 Principal Contributions
	7.2 Future Work

	References

