
Diss. ETH No. 17614

A Design Framework for
3D Spatial Gesture Interfaces

A dissertation submitted to

ETH Zurich

for the degree of

Doctor of Sciences

presented by

Doo Young Kwon
B.A. Ajou University, Republic of Korea
M.S. University of Washington, Seattle, USA
born September 4, 1973
citizen of Kang Neung, Kang Won, South Korea

accepted on the recommendation of

Prof. Markus Gross, ETH Zürich, Switzerland, examiner
Prof. Jürg Gutknecht, ETH Zürich, Switzerland, co-examiner

2008

“Men judge generally more by the eye than by the hand,
for everyone can see and few can feel.
Every one sees what you appear to be,

few really know what you are.”

Niccolo Machiavelli (1469 - 1527), The Prince

Abstract
Gestures have been employed for human computer interaction to build more nat-
ural interface in new computational environments. As humans, we have the op-
portunity to create and learn gestures, and improve our interactions. Among the
various types of gestures, 3D spatial gestures possess the most distinctive fea-
tures of an individual’s gestural identity and the unique qualities that result from
a combination of innate physical factors and expressive characteristics.

There has been a great deal of research on robust gesture recognition, and many
gesture-input systems have been proposed with new input devices and application
scenarios. However, while they provide sophisticated methods for processing hu-
man gestures, their functionality has mostly been ad-hoc and not presented within
a generative design framework. Therefore, it remains challenging to design a new
gesture interface that leverages the growth of 3D gesture vocabulary and fully
utilizes the advantages of the gestures.

This dissertation proposes a design framework for a 3D spatial gesture inter-
face. The framework supports both gesture acquisition and the modeling of the
physical and expressive characteristics that are unique to an individual gesture.
Acquisition is accomplished using a multiple sensory approach that combines vi-
sual and body sensors. Novel gesture input devices are designed to facilitate the
use of both sensor types and support various gesture-based inputs. The gesture
modeling supports the registration and evaluation of 3D spatial gestures as well
as their recognition. The framework is evaluated in terms of gesture recognition
and learning task, and its use is demonstrated with the development of unique 3D
spatial gesture interfaces.

iii

Abstract

iv

Kurzfassung
Gebärden erlauben eine natürlichere Form der Interaktion zwischen Mensch und
Maschine. Als Mensch haben wir die Fähigkeit Gebärden zu kreieren, zu ler-
nen und dadurch die Interaktion zu verbessern. Unter den verschiedenen Typen
von Gebärden besitzen dreidimensionale rümliche Gebärden die markantesten
Charakterzüge und einizigartige Eigenschaften der individuellen gestischen Iden-
tität, die auf einer Kombination von immanenten physikalischen Faktoren und
Ausdrucksfähigkeit beruhen.

Es existiert bereits eine grosse Anzahl von Forschungsarbeiten über die ro-
buste Erkennung von Gebärden, und viele Gebärdeneingabesysteme mit neuen
Eingabegeräten und Anwendungszenarios wurden vorgestellt. Obwohl diese
technisch ausgefeilte Methoden zur Verarbeitung von Gebärden anbieten, sind
deren Funktionalität meistens ad hoc und nicht innerhalb einer generativen En-
twicklungsumgebung. Deshalb besteht die Herausforderung, eine Schnittstelle zu
entwickeln, die das Wachstum des dreidimensionalen Gebärdenvokabulars und
deren Vorteile vollständig nutzt.

Diese Dissertation präsentiert ein Designframework für Schnittstellen von drei-
dimensionalen räumlichen Gebärden. Das Framework unterstützt sowohl die
Gebärdenakquisition als auch die Modelierung von einzigartigen physikalischen
und charakteristischen Eigenschaften individueller Gesten. Die Akquisition er-
folgt durch einen Mehrsensorenansatz, der visuelle Sensoren und Körpersensoren
kombiniert. Neue Gebärdeneingabegeräte, die beide Sensorentypen verwenden
und dadurch unterschiedlichste Gebärdeneingaben verarbeiten können, werden
präsentiert. Die Gebärdenmodelierung unterstützt sowohl die Registrierung und
Auswertung von dreidimensionalen räumlichen Gebärden, als auch deren Erken-
nung. Eine abschliessende Evaluierung des Frameworks zeigt dessen Fähigkeiten
zur Gebärdenerkennung und Erlernung, und dessen Einsatz zur Entwicklung von
einzigartigen dreidimensionalen räumlichen Gebärdenschnittstellen.

v

Kurzfassung

vi

Contents

Abstract iii

Kurzfassung v

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Gesture Processing Pipeline . 5

1.3.1 Gesture Production . 5
1.3.2 Gesture Perception . 6

1.4 Overview and Organization of Thesis . 9

2 Background 13
2.1 Gestural Taxonomy . 13

2.1.1 Definitions of Gesture . 13
2.1.2 Classifications of Gesture . 14
2.1.3 3D Spatial Gesture and Characteristics 15

2.2 Sensors . 16
2.2.1 Body Sensors . 16
2.2.2 Visual Sensors . 17

2.3 Gesture Input Devices . 18
2.3.1 Desktop Devices . 18
2.3.2 Hand-held Devices . 19

2.4 Gesture Recognition Techniques . 21
2.4.1 Template Matching Techniques 21
2.4.2 Statistical Analysis Techniques . 22

2.5 Gesture-based Inputs . 24
2.5.1 Spatial Gesture-based Inputs . 24
2.5.2 Symbolic Gesture-based Inputs 25
2.5.3 Manipulative Gesture-based Inputs 25
2.5.4 Affective Gesture-based Inputs . 26

2.6 Application Areas . 27
2.6.1 Computer Graphics Applications 27
2.6.2 Game Control Applications . 27
2.6.3 Motion Training Applications . 28
2.6.4 Digital Art Performance Applications 29

vii

Contents

3 Gesture Acquisition 31
3.1 Overview . 31
3.2 Body Sensors . 32

3.2.1 Accelerometers as a Body Sensor 33
3.2.2 Computing 3D Rotation . 35

3.3 Visual Sensors . 37
3.3.1 Computing 3D Position . 37
3.3.2 Invariant Visual Features . 40

3.4 mWire: 3D Spatial Gesture Input Device 41
3.4.1 Device Configuration . 41
3.4.2 Major Hardware Components . 42

4 The Gesture Model 45
4.1 Overview . 45
4.2 Gesture Representation . 46

4.2.1 Motivation . 47
4.2.2 Definition and Structure . 47

4.3 Gesture Segmentation . 49
4.4 DTW-based Gesture Modeling . 51

4.4.1 Fundamentals of Dynamic Time Warping 51
4.4.2 Variations of DTW . 54

4.5 HMM-based Gesture Modeling . 56
4.5.1 Fundamentals of Hidden Markov Model 57
4.5.2 Motion Chunk based HMM . 60
4.5.3 Three Basic Problems of HMM 62
4.5.4 Comparison between HMM and DTW 65

4.6 Gesture Registration . 66
4.7 Gesture Recognition . 66

4.7.1 The DTW recognizer . 67
4.7.2 The HMM recognizer . 69

4.8 Gesture Evaluation . 69

5 Experimental Evaluations 71
5.1 The Gesture Recognition Task . 71

5.1.1 Process . 71
5.1.2 Results . 72

5.2 The Gesture Instruction Task . 76
5.2.1 Overview . 76
5.2.2 Motion Training Video . 77
5.2.3 Process . 79
5.2.4 Results . 80

6 A Spatial Context Aware Gesture Interface 85
6.1 Overview . 85

viii

Contents

6.2 Spatial Context Objects: Gesture Targets and Volumes 86
6.2.1 Registration . 87
6.2.2 Selection . 89

6.3 System Action Interpretation using BN . 90
6.4 Prototype Applications . 92

6.4.1 A Smart Museum Environment 92
6.4.2 A Smart Home Environment . 93

7 A Versatile Gesture Interface 97
7.1 Overview . 97
7.2 mCube: An Input Device for a Versatile 3D Spatial Gesture Interface 99

7.2.1 Design Principles and Solutions 99
7.2.2 mCube Hardware Design and Sensor Configuration 102

7.3 Interaction Techniques . 103
7.3.1 Switching Between Desktop and Hand-held Interaction 103
7.3.2 Top Handle-based Mode/Tool Selection 104
7.3.3 Examples of mCube Gestures for Command Inputs 105
7.3.4 Multi-dimensional Manipulation and Navigation 106

7.4 Experimental Evaluation . 108
7.4.1 Process . 109
7.4.2 Results . 110

8 Conclusion 115
8.1 Summary . 115
8.2 Future Directions . 118

8.2.1 A Design Method for Gesture Interface 118
8.2.2 Gesture Input Devices . 120
8.2.3 Gesture Recognition . 121
8.2.4 User Evaluations . 123

Bibliography 125

Curriculum Vitae 137

ix

Contents

x

List of Figures

1.1 Three design components for 3D spatial gesture interfaces. 4
1.2 The conceptual model of gesture production. 6
1.3 The analysis stage for feature detection and parameter estimation. 7
1.4 The three recognition phases: gesture, context, and concept. 8
1.5 An overview of the design framework for 3D spatial gesture interfaces. . . . 10

3.1 An overview of the hardware and software framework. 32
3.2 A conceptual diagram of an accelerometer sensing mechanism 33
3.3 Different pitch and roll values for postures. 34
3.4 Examples of two-axes accelerometer signals when 3D spatial gestures are

performed. 35
3.5 The representation of 3D rotation using the Euler coordinate system (roll,

pitch, and yaw). 36
3.6 A prototype system setup using a pair of stereo cameras. 38
3.7 The prototype camera installation and views from the cameras. 39
3.8 Checker board pattern used in camera calibration 40
3.9 A gesture input, mWire for the use of different body sensors and LEDs. . . 42
3.10 The hardware configuration of the mWire. 43
3.11 The hardware components of the mWire processor unit. 44

4.1 The overview of a 3D spatial gesture model. 46
4.2 The structure of a motion chunk. 48
4.3 A state machine for gesture segmentation based on a sequence of a motion

chunk structure. 50
4.4 An example of gesture segmentation performed on the accelerometer signals. 51
4.5 An Illustration of a Warping Path between Two Time-series Patterns 53
4.6 Signal alignment with DTW and DDTW. 55
4.7 An example of a Markov process . 57
4.8 An example of Hidden Markov Modeling. 58
4.9 An example of two Gaussian mixtures. 59
4.10 An example of a left-right HMM that consists of four states. 60
4.11 A five state left-to-right HMM with state transitions for 3D spatial gestures. 61
4.12 An overview of our gesture registration process. 67

5.1 An example of the performance of a single 3D spatial gesture. 72
5.2 18 gesture diagrams, with a box style 3D gesture volume. 73

xi

List of Figures

5.3 The three different user positions to acquire test data 74
5.4 Conceptual overview of the gesture instruction scenario. 77
5.5 A pipeline for generating gesture training videos using visual and body

sensors. 78
5.6 Four different situations for body sensor tracking with visual sensors. . . . 79
5.7 A visual feedback of accelerometer sensor data on video images 79
5.8 Gesture instruction system in action. 80
5.9 Experimental results of the trainer subject during gesture learning. 81
5.10 Experimental results of the trainee subjects in posture learning 82
5.11 Experimental results of the trainee subjects for gesture learning. 83

6.1 An overview of a context-aware 3D spatial gesture interface. 86
6.2 Representation of spatial objects using 3D Gaussian distributions. 88
6.3 Registering an spatial context object using touching 88
6.4 Registering a spatial object using pointing 89
6.5 Topology of the DBN for Command Recognition 91
6.6 Gesture-based interactions in a smart museum environment 92
6.7 The setup of the smart museum environment. 93
6.8 An experimental setup for a smart home environment. 94

7.1 An overview of a versatile gesture interface. 98
7.2 A prototype setup with a pair of video cameras. 99
7.3 The mCube for combined desktop and hand-held interaction. 100
7.4 Hardware configuration of the mCube. 101
7.5 Hardware components of the mCube. 103
7.6 Three modes of the device controlled with the top handle. 104
7.7 Examples of desktop and hand-held gestures, and 3D spatial gestures. . . . 105
7.8 Examples of virtual object manipulation 107
7.9 Examples of virtual space navigation . 108
7.10 A digital representation of a physical space with four main objects used for

testing the pointing interaction. 108
7.11 Demonstration of pointing interaction. 109
7.12 Visual stimuli for the usability testing and the experiment setup. 110
7.13 Mean task completion time for the selection task. 111
7.14 Mean task completion time for the positioning task. 111

8.1 An overview of the major contributions according to the 3D Spatial gesture
interface design. 117

8.2 An overview of the design method for 3D spatial gesture inputs. 119
8.3 An example of an alternative input device design called cubeRing. 120

xii

List of Tables

5.1 A comparison of the user-dependent gesture recognition rate at three dif-
ferent user positions. 75

5.2 A comparison of the gesture recognition rates at three different styles of
3D gestures. 76

6.1 A list of command sequences with the used time and the used gesture volume. 95

xiii

List of Tables

xiv

Chapter 1

Introduction
This chapter provides the motivation for this dissertation. In Section 1.1 the mo-
tivation of using 3D spatial gestures for human computer interaction is briefly
discussed. The major contributions are listed in Section 1.2. In Section 1.3 an
overview of the gesture processing pipeline is discussed. Section 1.4 gives the
overview, and organization of this thesis.

1.1 Motivation

With advances in sensor and network technologies, physical environments are
getting embedded with computer systems [CFBS97]. In recent years many re-
searchers have recognized the value of such new computing environments and
have suggested computing paradigms such as mobile computing, ubiquitous com-
puting, and wearable computing. They focus on understanding human capability
and maximizing the opportunity to access digital information regardless of time
and location.

On the other hand, computer graphics and display technologies have advanced
and transformed parts of our living and working environments by connecting the
physical and virtual world. Virtual Reality (VR) systems [RWC+98, GWN+03b]
enable users to immerse completely in virtual environments by integrating mul-
tiple projection devices and screens into our physical environments. Augmented
Reality (AR) and Mixed Reality (MR) systems go one step further by merging
computer generated objects and our physical environment.

With these technical improvements, several new computational environments
have been proposed. These environments are typically embedded with sensors
and equipped with various displays such as traditional monitor displays, large-
screen displays [KFA+04], 3D immersive displays [GWN+03a, CNSD93], table-
top displays [RS99], and hand-held displays [BHI93, RS99]. The names of these
environments also vary depending on the main purpose of a target application (e.g.
responsive environments, collaborative environments, and smart environments).

1

Chapter 1 Introduction

In such ubiquitous computing environments, the standard human-computer in-
teraction models such as command-line, menu-driven, or Graphical User Interface
(GUI)-based, are not always optimal. Therefore, more natural and intuitive inputs
have been pursued. In this context, the use of 3D spatial gestures has emerged as
an attractive solution for more natural and intuitive human computer interaction
under less constrained environments.

Various applications have driven the research of a large scientific community
including computer vision, human-computer interaction, and computer graphics.
For instance, gesture is used as a means of pointer and manipulator in different dis-
plays namely desktop monitors, tabletop displays, large wall displays, and immer-
sive VR displays. Gesture is also applied to command execution aiming for com-
plete eyes-free interaction in mobile and wearable computing domains [BLB+03].

Although a lot of solid research has been done, it has been mainly designed
to test the system performance for gesture recognition. Little is applied to the
actual use. Therefore, the success of current gesture interfaces has been restricted
to relatively controlled environments requiring a special hardware setup and well-
defined gestures. Their practical utility has mostly been ad-hoc and not presented
within a generative design framework.

Moreover, as a main limitation, gestures exhibit a great deal of human vari-
ability due to differences in user performance and physical condition [PKE+06].
For instance, one person may prefer performing gestures in a fluent manner (i.e.
smoothly without any hesitation) while another may take more time in one gesture
and pause between gestures. This inter- and intra- personal variation sets limits to
the recognition of gestures. 3D spatial gestures preserve the large gestural varia-
tions since they are usually performed in 3D space without any restriction on the
movement.

Most of the available gesture input systems use a limited set of simple gestures
to accommodate different users. Only pre-defined and fixed sets of 3D gestures are
available in the target application and the addition of new gestures is typically not
possible. Thus, users have to spend time and effort to rehearse the programmed
gestures to match the system’s parameters. All these limitations inhibit the growth
of gesture vocabulary and make it difficult to fully utilize all the advantages of
gesture in HCI. To utilize individual body characteristics and physiologies, end-
users are required to create and register new 3D spatial gestures to the gesture
vocabulary and to learn how to perform gestures.

This dissertation proposes a design framework for 3D spatial gesture interface
that can be used as a prototyping tool to facilitate and encourage the design of a
new gesture interface. The framework provides all the necessary hardware and
software components within a single framework upon which a gesture interface
can be developed. In addition, it promotes a systematic approach to design 3D
spatial gesture interface. This dissertation can be considered as the first to com-
prehensively present and define 3D spatial gesture interface as a theoretical and
technical study within a single unified framework including hardware and soft-
ware in general.

2

1.2 Contributions

There are two main research issues: the gesture acquisition for the optimal set
of gesture features combining visual and body sensors, and the gesture model to
register, recognize, and evaluate gestures by putting emphasis onto the extensibil-
ity of the model. During the acquisition, gestures are acquired by different sensor
technologies and processed to find necessary information (e.g. gesture types and
dimensional information). The gesture model facilitates the use of 3D spatial ges-
tures by enabling users to create and learn gestures with their style and to find
optimal gestures suitable to their preference and physical condition.

1.2 Contributions
In the framework, the lower level details of the gesture processing techniques are
abstracted and provided as a suite of configurable hardware and software tools. As
shown in Figure 1.1, we defined three major design components of 3D spatial ges-
ture interfaces: input devices, gestures, and contexts. During the design process,
a proper gesture input device which considers target applications and gestures
should be selected or developed. Gestures can be designed for end-users in terms
of naturalness, adaptability and coordination. Finally, contexts should be designed
to provide a set of context information where and when the gestures are used along
the application scenarios. Throughout this dissertation, each component and their
relationships within a unified framework are analyzed.

The major contributions of this dissertation are:

• Gesture acquisition using a combination of visual sensors and body sen-
sors. For the acquisition of 3D spatial gestures, the current available sensor
technologies are invested namely wireless sensor networks, visual sensors,
and Micro Electro Mechanical Systems (MEMS). To this end, visual and
body sensors are combined and used to support 3D spatial gesture based in-
puts. The combined sensor data also provides robust and invariant features
for gesture recognition and evaluation.

• Versatile 3D spatial gesture input devices: mWire and mCube. Gesture
input devices are developed using visual sensors and body sensors. The
mWire integrates visual sensors and body sensors as a semi-wearable input
device. It can be worn on the wrist or held in the hand. The mCube supports
the combined hand-held and desktop interaction so that it can be used in a
variety of display platforms such as monitor display, large screen display,
and table-top display.

• 3D spatial gesture representation scheme: Motion Chunk. Motion Chunk
was developed as a standard unit to represent 3D spatial gestures. Motion
Chunk represents continuous human gesture with a sequential combination
of chunks. As the core representation of the gesture model, Motion Chunk
serves gesture design and the automatic segmentation, registration, recogni-
tion, and evaluation.

3

Chapter 1 Introduction

Figure 1.1: Three design components for 3D spatial gesture interfaces: input devices, ges-
tures, and contexts. Each design component can be used by respective design
experts: device designers, gesture designers, and context designers. Ultimately,
end-users need to optimize the 3D spatial gesture interface by choosing or modi-
fying the three design components.

• Gesture model using DTW and HMMs for gesture registration, evalua-
tion, and recognition. The gesture model is developed based on Dynamic
Time Warping (DTW) and Hidden Markov Models (HMMs). The model
deals with the noisy nature of the measurements while preserving the im-
portant nature of gestures without loosing the discriminant power between
different gestures. HMMs provide efficient gesture registration and recog-
nition accounting for dynamically time-varying gesture sequences. The ex-
plicit distinction of postures and dynamic gestures within the HMM model
facilitates the addition of new gestures in a flexible and convenient way. On
the other hand, DTW allows us to test one of the fundamental usability goal
of spatial gesture interfaces that do not require excessive gesture training
data. DTW also provides gesture evaluation that compares an input gesture
with a template gesture.

• Experimental evaluations to validate the framework. Two experimental
evaluations are conducted to validate the proposed approaches. The first
evaluation explores the selection of gesture features and recognition meth-
ods under various conditions (e.g. different locations and different users).
The second evaluation analyzes user performances in learning 3D spatial
gestures.

4

1.3 Gesture Processing Pipeline

• A spatial context aware gesture interface. A spatial context aware gesture
interface is developed to exemplify the use of the framework in designing
a practical gesture interface. This interface recognizes a system action (e.g.
commands) by integrating gesture information with additional context infor-
mation within a probabilistic framework. Two ontologies of spatial contexts
are introduced based on the spatial information of gestures: gesture volume
and gesture target. Prototype applications are developed using a smart envi-
ronment scenario that a user can interact with digital information embedded
to physical objects using gestures.

• A versatile gesture interface. A versatile gesture interface is developed as
another case study. A unique gesture input device called mCube is invented
to support both desktop and hand-held interaction at the same time. This
interface using mCube supports gesture-based inputs namely a command
input, a manipulative input, and tool and menu selections in different dis-
play platforms. Users do not have to switch other input devices during the
interaction so that we can improve the work flow of interactions in ubiqui-
tous computing environments.

1.3 Gesture Processing Pipeline
This section provides a high-level overview of 3D spatial gesture processing for
overall understanding of the required components in a gesture interface. First,
we present the gesture production model showing how a gesture is created and
produced from a user and observed by a system. Second, in the gesture production
model, we describe the inverse process of the gesture production model which
estimates the used mental concept from the observed gestures.

1.3.1 Gesture Production

We use a broad range of gestures from the simple to the complex. We commu-
nicate with people with gestures and manipulate physical objects located in our
environment. Some gestures are so natural that we can perform them with little
thought or learning. On the other hand, some gestures are designed by a person
or a group for a special purpose such as a visual communication in military oper-
ations and sports. Theses artificial gestures might need a relatively longer period
of learning to acquire those gestures.

Generally speaking, gestures are created and planned from the user’s mental
concept. Once a mental concept is set, the user considers the given various con-
texts (e.g. locations and situated application tasks). Gestures are performed and
expressed through the motion of different body parts such as the arms and hands.
Using sensors, gestures can be observed as two types of signals: continuous and

5

Chapter 1 Introduction

discrete. Appropriate sensors should be selected to meet the required continuous
quantities and the degree of freedom in the gesture movement.

Figure 1.2: The conceptual model of gesture production. Gestures originate from the men-
tal concept M, are situated (Tcm) with context C and expressed (Tgc) through ges-
tures G, and are observed (Tgp) as observation of signals O. There are two error
sources: performance error of the user and measurement error of the system.

The conceptual model of gesture production is illustrated in Figure 1.2 and
summarized in the following form:

C = TcmM, (1.1)

G = TgmM, (1.2)

O = {TogG,TocC}. (1.3)

Transformations T can be viewed as different models: Tcm is a model of context
given the mental concept M and Tgm is a model of gestures given the mental con-
cept M. Tog and Toc describe how signals are formed as an observation O given
gesture G and context C respectively. The sensors define the parameter space of
each model.

During the gesture production, there are two error sources: performance and
measurement as depicted in Figure 1.2. The performance error is driven from
the user’s movements when performing a gesture. When users perform a certain
gesture, the actual response often differs from their expectation due to imprecision
of control their body and even inability to exactly generate the desired postures and
gestures. The measurement error is generated from the sensor system because of
noises and distortions.

1.3.2 Gesture Perception
In the previous section, we discussed the outputs of gesture performance which
result in a stream of signals. Gesture perception is the inverse process, the conver-
sion of gestural observations to the mental concept. There are two major processes
in gesture perception: analysis and recognition.

6

1.3 Gesture Processing Pipeline

Analysis

The goal of analysis is to estimate the parameters of a gesture H and a context S
using measurements from the observation O of the performed gesture. However,
the direct mapping (T i

oh and T i
os) of observations to parameters would be extremely

complex. In practice it is more convenient to introduce an intermediate step to
this process. For instance, one would have to select features to describe gesture
and context, given a sequence of observation of gesture. More specifically, we
can infer how a hand gesture parameter H is represented in observation and what
spatial context information S (e.g. physical locations and objects) is related to the
hand gesture.

This is depicted in Figure 1.3,

Figure 1.3: The analysis stage for feature detection and parameter estimation in terms of
gesture and context. Gesture features F̂ and context features D̂ are extracted from
observations O, then gesture parameters Ĥ and context parameters Ŝ are estimated
from the extracted features individually.

F̂ = T i
o f O (1.4)

Ĥ = T i
f hO (1.5)

D̂ = T i
odO (1.6)

Ŝ = T i
dsO. (1.7)

There are two sequential tasks involved in this analysis. The first involves the
detection of relevant features estimating parameters for the chosen gestural and
contextual model. Since features are highly related to the sensor resources, it is
necessary to select appropriate sensors for the target gesture and context. More-
over, both gesture and context models can be estimated from the same observa-
tions so that we can minimize the number of sensors.

There are two major features for gesture: position and rotation. These gesture
features should be invariant to the different positions and orientations so that the
gesture model can be used varying a user location. While there could be various

7

Chapter 1 Introduction

context features for more accurate gesture perception, two typical ones (location
and reference) can be closely related to 3D spatial gesture.

During the feature detection, it is often necessary to use stochastic estimation
from noisy sensor measurements. One of the most well-known tools is the Kalman
filter that minimizes the estimated error covariance using a predictor-corrector
type estimator.

The second task is parameter estimation using the detected features that can be
decided based on the characteristics of gesture model. For instance, if only gesture
recognition is pursued, the exact knowledge of gesture might be unnecessary. On
the other hand, the detailed gesture knowledge is required when the model is used
to evaluate the quality of gesture.

Recognition

There are three recognition phases: gesture, context, and concept as depicted in
Figure 1.4.

Figure 1.4: Three recognition phases: gesture, context, and concept. The estimated con-
text parameters Ĉ and the estimated gesture parameters Ĝ are combined and used
to recognize the underlying concept of the gesture M̂.

Gesture recognition identifies the type of an input gesture by interpreting the
gesture parameters. In accordance to the previous notation, this can be formally
written as

Ĝ = T i
hgĤ (1.8)

In general, the task of gesture recognition is to find one of the gesture tem-
plates that most closely matches the input gesture. To recognize simple gestures,
a heuristic approach that observes simple trends or peaks in one or more of the
sensor values is used. However, 3D spatial gestures are spatio-temporal actions
that are performed in 3D space with various time durations. Therefore, we need
to handle temporal nature of gesture using techniques from the field of time series
analysis such as HMMs [Rab89] and DTW [Cor01].

Context recognition also the phase to find out the situated context when a ges-
ture is performed based on the context parameters.

Ĉ = T i
scŜ (1.9)

8

1.4 Overview and Organization of Thesis

Concept recognition also finds out the mental concept of a user which initiates
the performance of a gesture. The outputs of the mental concept recognition can
be mapped to a certain system action (e.g. command) used in applications. The
mental concept M can be inferred from their observations O using a suitable model
Tom , or

M̂ = T i
omO (1.10)

where T i
om denotes some (inverse) mapping from observations O to mental con-

cepts M. Concept recognition requires the combination of multiple observations
and facts. In our case, we combine the outputs of gesture recognition and context
recognition using Bayesian networks (BNs) [HGC94].

1.4 Overview and Organization of Thesis

Figure 1.5 shows an overall structure of the framework. There are four major com-
ponents: two technical components (gesture acquisition and gesture model) and
two functional components (spatial context aware gesture interface and versatile
gesture interface).

The framework begins with gesture acquisition which captures 3D spatial ges-
tures through visual sensors and body sensors. We extensively studied the use
of accelerometers as a body sensor, and cameras as a visual sensor. A unique
gesture input device called mWire is provided with the framework. The mWire
supports users easily test different body sensors and the combination of visual and
body sensors. A wide range of gesture information from detailed to approximate
can be acquired from the combined sensor data. For the required tasks of target
applications, gesture features are driven from the acquired sensor data.

The second technical component is the gesture model that consists of several
sub modules. First, the model represents the acquired signals using a gesture unit,
called Motion Chunk into which gestures are segmented and stored. The three
subsequent modules namely gesture registration, recognition, and evaluation are
processed using two signal analysis techniques (DTW and HMM).

Our framework contains two unique 3D spatial gesture interfaces as a functional
component. These interfaces use the gesture acquisition and model and they are
also equipped with additional hardware and software components for the required
inputs by target applications.

The context-aware interface contains modules to represent spatial contexts, and
supports users registering their own contexts into the system. This interface uses
the Dynamic Bayesian Network (DBN) to recognize programmed system actions
combining the the results of gesture recognition and the selection of spatial con-
texts. A versatile interface provides both MDOF manipulations and gestures com-
mands. A unique versatile input device mCube supports various interaction tech-
niques in both desktop and hand-held positions.

9

Chapter 1 Introduction

Figure 1.5: An overview of the design framework for 3D spatial gesture interfaces. There
are two technical components (gesture acquisition and gesture model) and two
functional components (spatial context aware gesture interface and versatile ges-
ture interface). During acquisition, gestures are acquired by body and visual sen-
sors. Then, the acquired data is represented and segmented based on the structure
of motion chunk. The model supports the registration, recognition, and evaluation
of 3D spatial gestures using DTW and HMMs. Two gesture interfaces use the
acquisition and gesture model to provide the required gesture-based inputs.

We describe these four components in the following chapters. The dissertation
is outlined as follows:

10

1.4 Overview and Organization of Thesis

• Chapter 2 presents several definitions of 3D spatial gesture with related
terms in Section 2.1. Section 2.1.2 provides a brief background on gesture
classification. Then, we discuss the previous work that constitute the context
of this dissertation through three subsequent sections. First, we introduce a
variety of sensors (Section 2.2) and devices (Section 2.3) that can be used to
acquire 3D spatial gestures. Section 2.4 describes two different approaches
for gesture recognition. Section 2.5 presents the previous work for gesture-
based inputs categorized into four groups: spatial, symbolic, manipulative,
and expressive. Section 2.6 reviews four practical applications of 3D spatial
gestures: computer aided design, game control, motion training, and digital
art.

• Chapter 3 describes our acquisition system combining two different types
of sensors (visual and body). Section 3.2 explains the characteristics of
accelerometers as a body sensor. Section 3.3 shows the use of cameras as
a visual sensor and presents visual features that are invariant to the location
and orientation of a user. Section 3.4 presents a gesture input device called
mWire that facilitates the use of visual sensors and body sensors.

• Chapter 4 explains the gesture model which is a main technical compo-
nent of the dissertation. After a short overview of the framework (Sec-
tion 4.1), we describe sub-modules subsequently including gesture segmen-
tation (Section 4.3) and representation (Section 4.2). Section 4.4 describes
algorithmic details of Dynamic Time Warping (DTW) that measures the
similarity of two different time series data. In Section 4.5, Hidden Markov
Modeling (HMM) is described with a set of core algorithms. We also de-
scribe how they are tailored for three major functionalities: gesture registra-
tion (Section 4.6), evaluation (Section 4.8), and recognition (Section 4.7).

• Chapter 5 describes two experimental evaluations to validate our frame-
work. These experiments show how the developed methods can be per-
formed in gesture recognition and instruction tasks. In the recognition task
(Section 5.1), we analyze the performance of our gesture recognition meth-
ods. In the gesture instruction task (Section 5.2), we present the experi-
mental process, based on a martial art training scenario, and the costs and
benefits of learning complex 3D spatial gestures.

• Chapter 6 presents a context-aware 3D spatial gesture interface. Sec-
tion 6.1 gives a short overview of the system. In Section 6.2, spatial
contexts (gesture volume and target) are presented as a specific context for
3D spatial gesture. This section presents the methods to register and select
the spatial contexts, to recognize a final system action. Section 6.4 shows
two prototype applications: the smart home environment and smart museum
environment. Each application shows how users can interact with various
objects using 3D spatial gestures in digitally augmented environments.

• Chapter 7 presents a versatile 3D spatial gesture interface that supports

11

Chapter 1 Introduction

various gesture-based inputs in both desktop and hand-held positions. After
a short system overview (Section 7.1), we introduce a novel gesture input
device called mCube designed to provide the required versatility of the inter-
face (Section 7.2). Section 7.3 demonstrates some of interaction techniques
such as command inputs and Multi-Degree-Of-Freedom (MDOF) manipu-
lative inputs. Finally, we show the results of our experimental evaluation for
the mCube device in Section 7.4.

• Chapter 8 concludes the dissertation. Section 8.1 provides a summary of
the important contributions and potential effects on design of 3D spatial
gesture interfaces. Section 8.2 mentions potential future directions in terms
of gesture input devices, gesture recognition, and user evaluations.

12

Chapter 2

Background
This chapter presents the literature review regarding gesture taxonomy, gesture
acquisition and recognition technologies, and gesture-based inputs and application
areas. It begins with a brief summary of the different definitions and classifications
of gesture in Section 2.1. Section 2.2 introduces available sensor technologies, and
Section 2.3 presents a set of input devices for gesture acquisition. In Section 2.4,
we describe two pattern matching techniques for gesture recognition: statistical
analysis technique and template matching technique. Section 2.5 presents gesture-
based inputs categorized into four groups: spatial, symbolic, manipulative, and
expressive and Section 2.6 describes application areas for 3D spatial gestures.

2.1 Gestural Taxonomy
There have been extensive research on the analysis of human gestures focusing on
the conceptual understanding of gesture. The research domain includes linguis-
tics, anthropology, cognitive science, psychology, neurology, choreography, and
physical therapy. Even though their approaches do not aim to justify their the-
ory by developing a computational model, they provide qualitative and theoretical
deep analysis on human gesture. This section summarizes various definitions of
gesture and some approaches for gesture classification, and defines 3D spatial
gesture and its important characteristics.

2.1.1 Definitions of Gesture
There have been various definitions of gestures. For instance, McNeill [McN95]
defined gesture as “movements of the arms and hands which are closely synchro-
nized with the flow of speech.” He focuses the relationship between speech and
gesture. More broader definition of a gesture can be found in a American Heritage
Electronic Dictionary: “a motion of the limbs or body made to express thought or
to emphasize speech.” While these definitions can be useful for a general purpose,

13

Chapter 2 Background

we need a more clear definition of gesture to apply that term to computational
implementation for human computer interaction.

There are also some more concrete definitions of gesture. Cadoz [Cad94] de-
fined three functional roles of human gesture: semiotic, ergodic, and epistemic.
He defined the gestural channel as a means of action on the physical world as well
as communication means. The semiotic gestures are used to communicate mean-
ingful information. The purpose of ergotic gestures is to create and manipulate
artifacts. The epistemic gestures are used to learn the environment through tactile
or haptic exploration.

Bobick [BI98] described a gesture with three relevant terms: movement, activity
and action. He defined movements as the most primitive form of motion that can
be interpreted semantically. Activity is a sequence of either movements or static
configurations. Actions are the high-level entities that people typically use to
describe what is happening.

Luciani et al. [LEC+06] compared three relevant terms: gesture, motion and
action. While motion and gesture are similar terms, and actually two words are
almost interchangeable, they distinguished motion from gesture. In their theory,
motion is considered as a movement of a physical object (e.g. human body it-
self, input device attached on the human body or held by the human) and as a
result of the performance. On the other hand, gesture is an input that causes a
performance so that gesture is more related to the mental concept of a performer.
Action is a high level result (e.g. “to drink a glass of water”) caused from a set of
input gestures [SW84]. Each action can be executed by many different resource
movements and described at a symbolic level.

Laban Movement Analysis (LMA) was introduced as a method for observing,
notating, and interpreting human movements [Zha01]. Its notation system is used
to describe the body-centered movement showing how each motion is toward,
away, around, or in another way from the center of the body. The final motion can
be defined in relation to the body along a coordinate axis with a certain dimen-
sional scale. Using LMA, various applications have been implemented to improve
awareness, efficiency, and ease of movement.

2.1.2 Classifications of Gesture
Several classifications of gestures have been suggested in the literature dealing
with psychological aspects of gestures. Kendon [Ken80] analyzed the relationship
between the gesture and the speech. He defined a gesture as a label for actions that
have the features of manifest expressiveness. In his theory, gesture is integrated
with speech in different levels with the amount of obligatory presence of speech
in gesture, and categorized into five types: gesticulation, language-like gestures,
pantomimes, emblems, and sign languages. From left to right, the obligatory pres-
ence of speech declines and the presence of language properties increases. The
linguistic component of the expression present in speech is replaced by gestural

14

2.1 Gestural Taxonomy

signs going from gesticulation to sign languages.
McNeil [McN95] provided a unified conceptual framework that includes both

gesture and language. Three rules are addressed to synchronize gesture with
speech: phonological, semantic, and pragmatic. In the phonological rules, the
gestural stroke proceeds or ends at, but doesn’t have to follow the phonological
peak syllable of speech. Using the semantic rules, gesture and speech must cover
the same idea if they co-occur. This rule can be applied when multiple gestures
and speeches co-occur. For the pragmatic rules, gestures and speech serve the
same pragmatic functions if they co-occur.

Rime and Schiaratura [RS91] proposed the gestural taxonomy consisting of
symbolic, dietic, iconic, and pantomimic. Symbolic gestures have a single mean-
ing within each culture such as an emblem like the “OK” gesture. Dietic gestures
are used for pointing or directing the listener’s attention to a specific event or a
certain target object. Iconic gestures convey information about the size, shape or
orientation of the object of discourse. For instance, iconic gestures visualize a fly-
ing path of a plane as moving their hand through the air. Pantomimic gestures are
typically used in showing the movements of an invisible tool or object in a hand.

Quek [Que94] provided a rather complete gesture taxonomy focusing on hand
movements. In his classification scheme, all hand movements are categorized into
two classes: gestures and unintentional movements. If hand movements do not
convey any meaningful information, they are considered as unintentional move-
ments. On the other hand, gestures are classified into sub-classes: manipula-
tive and communicative. Manipulative gestures are used to move and rotate ob-
jects. Communicative gestures are used for an inherent communicational purpose.
These gesture types can be used either acts for the interpretation of movement it-
self or symbols for a linguistic role.

2.1.3 3D Spatial Gesture and Characteristics
Gestures can be categorized by the dimensions of the gestural space. For exam-
ple, pressing a pressure-sensitive key can be considered a 1D gesture and moving
hands on the flat surface can be considered a 2D gesture. A 3D gesture is typically
performed in 3D space. In addition to this dimensional definition, we can further
define 3D spatial gesture that preserves a certain spatial relationship between ges-
ture and the environment where the gesture is performed.

3D spatial gestures are closely linked to sensory-motor control skill which is
the basis for skilled human movements. 3D spatial gestures are routinely used
in our everyday movements in the 3D world (e.g. manipulating physical objects
such as driving cars, and throwing and catching a ball). In our movements, we use
different body parts or other objects as a kind of external and internal stimuli that
affect our perceptions and motor skills.

Among different human senses, proprioception plays an important role in per-
forming 3D spatial gestures. Proprioception is the awareness of the position of

15

Chapter 2 Background

one’s body parts, relative to other neighboring parts of the body [IvDC+00].
It provides a feedback solely on the status of the body internally, and indicates
whether or not your body is moving with required effort, as well as where the var-
ious parts of the body are located in relation to each other. For instance, the ability
to catch a baseball requires a finely tuned sense of the position of the joints, so
that the eyes can concentrate on the ball and let the proprioception handle moving
the body as needed to catch the ball.

2.2 Sensors
From the engineering point of view, every physical quantity can be measured
through different types of sensors. To use gestures as an input, the performed
gestures should be quantified through sensors in a certain range of precision. The
type of a sensor is usually selected with the purpose of application, the types of
gestures, and available infrastructure and cost. This section describes some of typ-
ical sensors that can be applied to capture 3D spatial gestures. We categorize the
sensors into two groups: body sensors and visual sensors.

2.2.1 Body Sensors
Body sensors are usually attached on the body or held by the hand, and provide
straightforward information from the body when the movements occur.

Data gloves [5DT] have been widely used to capture hand gestures including
finger movements. Many projects use data gloves for hand gesture interfaces mea-
suring directly hand and finger movements [FH95, BBL93]. These systems offer
precision, a relatively large range of motion, and very fast update rates. However,
glove-based approaches require the user to wear a cumbersome device and gener-
ally carry a load of cables that connect the device to a computer. This hinders the
free movement of users.

To track the whole body, special body suits have been developed using optical or
electromechanical tracker technologies [Mot,Pup]. Users wear special suits which
are equipped with electromechanical body sensors, dots or small balls which serve
used as markers. However, the main purpose of the body suits is to capture body
motions for character animation. The body suit approach is too expensive and
cumbersome as a gesture interface, to support more natural interfaces.

There have been several approaches to building an acquisition system that cus-
tomizes different sensor types. One of the most popular sensors is the accelerom-
eter which measures either acceleration or rotational angles along a certain axis.
Benbasat and Paradico [BP02] proposed an inertial measurement framework for
gesture recognition. While most approaches using inertial systems are devel-
oped in an ad hoc fashion for a specific application, their goal is to generalize
a framework for gesture recognition using a compact inertial measurement unit

16

2.2 Sensors

(IMU). The framework also provides a light-weight gesture recognition algorithm
and scripting functionality to specify gestures and their combinations with system
commands.

Amento et al. [AHT02] developed a small wristband style wearable device to
acquire gentle fingertip gestures such as tapping, rubbing, and flicking. They use
sound that travels throughout the hand and bone conduction when a fingertip is
touched. Based on this sensor mechanism, they developed a unique bio-acoustic
interface that recognizes some finger-tip based gestures. Rekimoto [Rek01] devel-
oped the Gesturewrist, a wristwatch-type hand gesture recognition device using
acceleration sensors to detect forearm and hand gesture. Randell el al. [RAM+05]
used the multi-layer fabric sensors, ElekTex [Ele] and designed Sensor Sleeve
mounted in a garment sleeve. They used pressure activated elasto-resistive sen-
sors to detect embracing, pressing and stroking gestures.

2.2.2 Visual Sensors
Visual sensors like cameras capture the shapes and properties such as texture and
color. Facial gesture interfaces use visual sensors to capture facial and lip move-
ments [NLP+02]. Bhatt et al [BLSB03] used visual sensors to implement a vision
surveillance system. The system tracks a baby’s mouth, hands and head using
skin detection algorithms and recognizes whether the baby puts objects to his or
her mouth.

Cameras are also used to capture hand gesture performed on desktop surfaces.
Installed behind transparent or semi-transparent screens, cameras track the posi-
tion of the hand and a hand-held input device [BKKK04b]. Cameras are installed
above the desktop pointing downward and capture the 3D positions of the user’s
fingertips. Malik and Laszlo [ML04] introduced a Visual Touchpad, a low-cost
vision-based input device that allows for two-handed interactions with desktop
PCs. Even though the system requires a specific color on the planar surface, a
variety of hand gesture interaction techniques can be designed.

Various hand and arm gesture interfaces have been developed based on cam-
eras technologies [SP, SAA00, CB96, WF98, BOP97]. In general, the systems
compute the positions and hand shapes, and track movement trajectory in 3D
space. Furthermore, some systems have been developed to recognize human ac-
tivity [AP04] or analyze body postures [BLK01, BLK03] by tracking full body
gestures with cameras. However, to acquire 3D spatial gestures using cameras,
a set of algorithms is needed to derive visual features from the acquired camera
images [SAA00, CB96]. The computing time of these algorithms is often major
bottleneck to developing a real-time application.

Starner et al. [SAA00] developed a camera-based wearable device called a
gesture pendent for capturing hand gestures. While most of approaches install
cameras on the surrounding infrastructure (ceiling, wall, or table), they placed a
camera in the pendent to capture hand movements on the pendent. The system

17

Chapter 2 Background

efficiently reduced the gesture candidates by combining other context sources.
Several applications demonstrates the use of the device such as medical diagnosis,
therapy, and emergency services.

2.3 Gesture Input Devices
The previous section described different sensors to quantify human gestures. This
section introduces input devices for human gestures. Input devices should be care-
fully selected or designed considering types of gestures and available hardware
setups such as display and interaction zones. We categorize gesture input devices
into two groups based on the type of major operating positions: desktop devices for
operation on a desktop surface and hand-held devices for operation in 3D space.

2.3.1 Desktop Devices
A computer mouse is a typical example of a desktop device that provides 2D
coordinates on the monitor screen for graphical user interface. Stroke-based ges-
tures often use a computer mouse for shortcut command inputs. The traditional
mouse functionalities also have been extended by embedding additional sensors
[BP98, Kur93, Ven93, BBKF97, HSH+99]. The main purpose is to provide more
efficient menu selection in complex tasks and to overcome the limitations of a
computer mouse. For instance, Balakrishnan and Patel [BP98] designed the Pad-
Mouse that combines a touch pad with a conventional computer mouse. The
Rockin’ Mouse was introduced to enhance the manipulation of 3D virtual ob-
jects [BBKF97].

Another typical desktop device is isometric devices such as Spaceball [Spaa]
and the Spacemouse [Spab]. These devices measure the force or torque of the
sensor as manipulated by fingertips [FHSH06]. Such devices are applied to get
the additional degree of freedoms (DOFs) and use these to overcome the inherent
limitations of a computer mouse for graphics applications in 3D environments.
Even though these devices do not capture the movements of the hand, they have
potential to obtain detailed finger movements and provide a force feedback to the
fingers.

Digital pen technologies [Wac] are used for acquiring pen movements on a
tablet surface. The acquired 2D coordinates are processed for stroke-based ges-
tures invoking command inputs [Jr01]. The recognition algorithms are the same as
the computer mouse. However, digital pens enable users to use handwriting skills
and make the stroke more natural and accurate than a computer mouse. Digi-
tal pens also provide additional information of handwriting such as the number
of strokes, the stroke order, and the direction and velocity profile of each stroke
which can be used for designing new stroke-based gestures.

Rekimoto [RS00] designed a multi-functional input device called Toolstone.

18

2.3 Gesture Input Devices

Using this device, users explore their manipulative skills to control computer me-
diated tasks such as scene navigation and object manipulation. They used the
digital pen and tablet technology [Wac] to measure MDOFs such as the position,
orientation, and tilt angle of the device. Since the pen sensor is embedded in the
device, users should operate the device on the tablet surface.

There were also some approaches to use bare hands instead of using addi-
tional devices on the desktop. For this purpose, several touch and pressure sen-
sitive devices were developed supporting direct finger pressure on the screen sur-
face [Rek02, DL01]. They usually transform the display surfaces into multipoint
touch sensitive surfaces combining input and output in a co-located manner. This
enables users to directly use freehand gestural interaction, involving fluid touches,
on a wall or tabletop surface.

2.3.2 Hand-held Devices

The hand-held devices have been used usually when the desktop surface is not
available. We categorize hand-held devices into three groups based on the type of
used sensors: electromagnetic, accelerometer, and camera.

Electromagnetic Devices

The notion of the Flying Mouse [WJ88] was introduced to categorize 3D input
devices such as the WandaTM [Wan] and the 6D MouseTM [6DM]. Input devices
based on electromagnetic sensing technology [Flo] are able to provide six degrees
of freedom (6-DOF), three for X , Y , and Z translation and three for 3D rotation
(yaw, pitch, and roll).

Such 6-DOF interaction devices are integrated in immersive virtual environ-
ments, like the CAVETM [CNSD93]. which supports virtual scene navigation and
object manipulation [Zha98, Gro02]. For instance, the Cubic Mouse [FP00] was
designed by embedding an electromagnetic sensor into a cube-shaped box. Three
perpendicular rods pass through the center and buttons are located on the top for
additional control. Users can navigate a virtual world by rotating the device and
pushing and pulling the rods to determine constrained motion along the corre-
sponding axes.

The EGG (Elastic General purpose Grip) [Zha98] was developed to support an
elastic translational input. A set of elastic springs are combined with the electro-
magnetic sensor. The Fingerball [Zha98] enables users to roll a 3D virtual object
by controlling a ball style handle with fingers during translation in space.

Electromagnetic sensors provide rather fast and accurate data, but the range
of sensing is limited depending on the strength of magnetic resource. In ad-
dition, magnetic trackers are rather expensive and need a rather big infrastruc-
ture. Thus, such 6-DOF interaction devices have been mainly used for specific

19

Chapter 2 Background

applications (3D modeling and navigation) [FP00] in 3D immersive display plat-
forms [CNSD93].

Accelerometer-based Devices

The unique characteristics of accelerometer have been explored in building new
input devices specially for gesture-based inputs. Even though accelerometers do
not provide complete 6-DOF, these sensors have several advantages over other
sensing technologies. For instance, small size enables sensor embedding into
other objects. Several approaches have embedded the accelerometer to every-
day objects namely clothes, watches, badges, pendents and shoes [Rek01,PHH99,
SAA00, SGB99, FMea99]. The main goal is not to minimize the problem of re-
stricting the user’s movements. Many of them are used because accelerometers
are relatively low in cost and their cost continues to decrease.

Using accelerometers, Laerhoven et al. [LVS+03] presented a low-cost and
practical approach to build a gesture input device using a cube shape object. They
combined sensors, processors, batteries and wireless communication modules.
Their system captures a set of simple gestures associated with the manipulative
states of the cube such as shaking, twisting, and knocking. Keir et al. [KPE+06]
developed a 3D spatial gesture input device called 3motion with a general-purpose
software development kit. The device contains a 3-axis accelerometer and trans-
mits continuous gesture streams to a host device via wireless Bluetooth technol-
ogy.

Tuulari and Ylisaukko-oja [TYo02] introduced a light, matchbox-sized device
called SoapBox for 3D gesture input. The device contains a set of basic hardware
components namely processors, pre-defined sensors, and wireless and wired data
communications. The pre-defined sensors include a three-axis acceleration sen-
sor, an illumination sensor, a magnetic sensor, an optical proximity sensor and an
optional temperature sensor. The device is particularly designed to support users
integrating other types of sensors.

Tsukada and Yasumura [TY02] proposed Ubi-Finger for a gesture interface in
a smart environment. Perng et al. [PFea99] developed a glove equipped with six
2-axis accelerometers on the fingertips and on the back of the hand to capture hand
movements. Using this glove, they developed a text-editor application to type a
letter of the alphabet using hand gestures.

Accelerometers are often embedded to various mobile devices like cellular
phones, MP3 players, and wristwatches. They take the feasibility and advantages
of gestural inputs over other input technologies (keypads and voice commands).
As an example, Wigdor and Balakrishnan [WB03] presented the TiltText interface.
Users can scroll texts on the small screen display of a mobile phone by tilting a
device in one direction.

20

2.4 Gesture Recognition Techniques

Camera-based Devices

Several input devices use cameras particularly for tracking the position of the de-
vice. For instance, the VisionWand [CB03] was introduced as a hand-held input
device to control 2D objects in large-screen displays. Two cameras are used for
tracking the 3D positions of the two color ends of the wand. Even though the
device is simple and cost-effective, tracking errors often occur because of the dif-
ferent lighting conditions. Bae et al. [BKKK04a] developed a gesture-based mod-
eling system where designers can manipulate virtual curves on a large display
screen using two hands. They created a graspable input device using a transparent
groove embedded with a light-emitting diode (LED) in the middle. Cameras are
installed behind the wall and used to track the position of the device.

Some devices use other sensors with cameras. For instance, the XWand [WS03]
uses both visual and embedded sensors to support pointing gesture and simple
command gestures. Users can select an object in a living environment by pointing
and control its functions with a set of command gestures. For robust positional
tracking, the device is equipped with one infrared LED (IR LED) at the end of the
wand and the angular tracking is done by the combination of accelerometers and
magnetometers. Agarawala and Carpendale [Tse04] developed a MDOF input
device called SuperSkewer for 3D interaction on a large wall display. Similar to
the XWand, they placed two sets of infrared LEDs on the ends of a seven inch rod
to minimize the noise in tracking 3D positions.

2.4 Gesture Recognition Techniques
Recognizing human gestures is a rapidly growing sub-field and has become more
prominent in the HCI community. Different pattern classification techniques have
been developed which can be applied to recognize human gestures [RHS01].

Gesture recognition is usually accomplished with an algorithm that matches an
input gesture signal to a set of stored template signals. Gesture features are first
acquired from available sensors and used for estimating the states of a chosen ges-
tural model. However, various aspects such as uncertainties in the measurements,
systematic error, and feature generations must be considered.

This section presents two of the most important approaches for gesture analysis
and recognition: template matching and statistical analysis.

2.4.1 Template Matching Techniques
Template matching techniques are the simplest and most straightforward method
for recognizing gestures. This technique computes the difference (or distance) be-
tween input and template gesture patterns. One popular template matching tech-
nique is a Dynamic Time Warping (DTW). DTW has been extensively used to

21

Chapter 2 Background

recognize spoken words [RJ93]. DTW supports non-linear time alignment dif-
ferences between two patterns using the Viterbi algorithm. Thus, DTW has been
used for recognizing gestures performed with variable speed [Cor01].

Using DTW, gestures are recognized by comparing an input gesture to a set of
template gestures and measuring any similarity between them. With this method,
there must be a representation stage where the raw sensor data is stored as a tem-
plate. DTW is a non-parametric technique employing the original gesture frames
directly for gesture recognition. After DTW measures the similarity between the
input and the templates of values, the input can be either admitted as a member of
the same class as the template to which it is most similar (or nearest), or rejected
as belonging to none of the possible classes if the measurement is higher than the
similarity threshold (too far from the nearest template).

DTW cannot accommodate the probabilistic nature of the signal and it is still
challenging to make the templates adaptive. Adaptability could play a critical
role in the system’s performance, since most gestures aren’t reproduced consis-
tently even by the same user. With different users, the variation becomes even
greater. Also, template matching does not have the formal and iterative approach
to training that statistical classifiers and neural networks have. However, DTW
has several potential benefits. DTW works even when only one training dataset
is available. DTW is also easy to develop, computationally efficient, and is very
accurate.

Several applications use DTW for gesture recognition, and some of them pro-
vide useful extensions of the DTW to fulfill their specific tasks [AAS05, Lip91].
For instance, the Dynamic Space-Time Warping (DSTW) algorithm [AAS05] was
proposed to combine spatial domain alignment with the time domain alignment of
the original DTW. A multi-resolution template matching technique [Lip91] was
introduced to achieve more efficient computation comparing the templates with
multi-resolutions in different levels. During the recognition process, the templates
are examined first at the lowest resolution and only if successful at that level would
the template proceed to matching at a higher resolution level.

2.4.2 Statistical Analysis Techniques
Functionally, statistical analysis techniques operate in the same way as the tem-
plate matching techniques. However, the mapping function uses statistical meth-
ods, such as Bayesian likelihood theory, to decide which class the input gesture
most likely belongs to. While there are several different approaches to the sta-
tistical analysis techniques, in this section, we focus on Hidden Markov Models
(HMMs) [Rab89] that have been extensively studied in continuous speech recog-
nition research.

In gesture recognition, HMMs are used to represent the temporal variations of
the gesture sequences in the probabilistic framework. Using HMMs, each gesture
can be modeled separately so that new gesture models can be added independently

22

2.4 Gesture Recognition Techniques

to existing ones. One of the drawbacks of the HMMs technique is that we need
a significant amount of training data to parameterize and condition the HMMs-
based gesture model.

One of the early applications using HMMs is sign language recognition. Several
techniques for speech recognition are adapted because sign language and contin-
uous speech share many common characteristics. For instance, the signals are
generated from the observations of hand movements (position, shape, orientation
of the hands etc) over time, just like speech. Silences in both speech and sign-
language are relatively easy to detect. Language modeling based on the words as
a unit can be applied to the recognition of both problems.

Starner and Pentland [Sta] developed a system to recognize forty American
Sign Language gestures using HMMs. They defined features of sign language
gestures and designed HMMs that consisted of a probability distribution of the
hand features over a set of states. The system computes the probability of input
gesture data in each HMMs and picks the model which has the highest probability
of producing the input gesture data.

Standard HMMs have been applied to various gesture recognition systems.
Pentland and Liu [PL99] used HMMs to model the state transitions among a
set of dynamic gesture models. Bregler [Bre97] used HMMs for not only mod-
eling the low-level dynamics, but also the semantics in some gestures. Nam
and Wohn [NW96] present a HMMs-based method to recognize gestures using
not only hand movement, but also hand postures and palm orientations. Cham-
bers [CVWB02] developed a hierarchical HMMs to represent gesture by compos-
ing a set of its sub-gestures. Campbell and Becker [CB96] developed a gesture
model by changing the topology structure of the HMMs depending on the gesture
complexity.

There are also many variations of HMMs. For instance, Yang et al. [YXC94]
modeled the gesture by employing a multi-dimensional HMMs, which contains
more than one observation symbol at each state. Multi-path gestures are modeled
to increase the recognition rate by integrating multiple modality. Ghahramani and
Jordan [GJ95] introduced the factorial HMM (FHMM) to generalize the HMMs
which integrates two or more streams of input data. Wilson and Bobick [WF98]
introduced special HMMs to model the parameterized gestures. They extended
the standard HMMs to quantify the gesture as an output as well as to classify a
gesture. They explored the use of a parametric variation in the output probabilities
of the HMM to handle parameterized movements such as a size gesture or a point
gesture.

Even though HMMs are used in gesture recognition, it is well known that
HMMs are limited to interpret multiple observations. Therefore, Bayesian net-
works [HGC94] have been used in time series modeling as a name of dynamic
Bayesian networks (DBNs). Hereafter, it is tempting to fully explore the roles
and benefits of Bayesian networks in interpreting gestures. The main reason to
use DBNs is that it is statistically advantageous to combine multiple observa-
tions from the same source. Brand et al. [BOP97] developed the coupled HMMs

23

Chapter 2 Background

(CHMMs) as a special type of DBNs. CHMMs allow the backbone nodes to in-
teract each other keeping their own observations. In CHMMs, each process can
have different state structures and degrees of influence on each other. In particular,
CHMMs were used for applications requiring sensor fusion across modalities.

2.5 Gesture-based Inputs
This section summarizes gesture-based inputs previously introduced in various
applications. Since there is no standard scheme to categorize the gesture-based
inputs, we define four input types based on the four aspects of gesture proposed
by Hummels and Stappers [HS98a]: spatial inputs using the locations where a
gesture occurs, manipulative inputs using the positional and rotational path which
a gesture takes, symbolic inputs using the meaning that a gesture represents, and
affective using the feeling or the emotional quality that a gesture contains.

In addition, we divide gesture-based inputs into two groups: direct and per-
ceptual. For direct inputs, the sensor data is usually mapped to the parameters of
relevant functions. The manipulative inputs can be a typical example of the direct
inputs. On the other hand, perceptual inputs require additional processing to find
out the meaning of the sensor data so that these inputs could be less reliable and
require more computational time than the direct inputs. Symbolic inputs can be
regarded as a perceptual inputs.

2.5.1 Spatial Gesture-based Inputs
Among the different gesture styles described in Section 2.1.2, deictic gestures are
particularly important for spatial inputs requiring information about the position
and spatial location of the user when the gesture is performed.

Spatial inputs have been used in different applications. Bolt presented the Put
that there [Bol80] where users can interact with an object on a large screen display
through pointing. Similarly, virtual reality systems often enable users to point and
select the virtual objects using gestures.

Recently, spatial inputs have been widely applied to applications for smart en-
vironments. With the advance of sensor and network technologies, our environ-
ments are designed and programmed to understand gestures automatically to a
certain degree. These smart environments understand the user’s intention, and
provide a set of programmed functions such as turning on/off lights and control-
ling temperature.

In this smart home scenario, spatial information plays an important role in un-
derstanding the gesture correctly. Wilson [WS03] presented a gesture interface
where users can interact with the smart environment using gestures (selecting and
controlling appliances through pointing, turning it on/off and moving the volume
up/down).

24

2.5 Gesture-based Inputs

Spatial inputs are also employed to facilitate the use of context in HCI. “Con-
text is the set of environmental states and settings that either determines an appli-
cation’s behavior or in which an application event occurs and is interesting to the
user” [CK00]. Dey et al. [DHB+04] presented CAPpella (context-aware prototyp-
ing environment) designed with the concept of programming by demonstration.
In this system, end-users can program desired context-aware behaviors (situation
and associated action) by demonstrating them to the system and by annotating the
relevant portions of the demonstration.

Jih el al. [JHT06] developed a context-aware elderly care system for smart en-
vironments. The system interacts with the elder through a wide variety of appli-
ances for data gathering and information presentation. The system tracks the loca-
tion and specific activities of the elder through sensors, such as pressure-sensitive
floors, cameras, bio-sensors, and smart furniture. The status of the elder is moni-
tored and used to provide appropriate system actions. For example, when sensing
that the elder has fallen asleep, the system switches the telephone into voice mail
mode, and informs and plays back any incoming messages when the elder awak-
ens.

2.5.2 Symbolic Gesture-based Inputs

The main purpose of symbolic gesture-based inputs is to convey, to a computer, the
user’s intentions as a set of executable commands. Usually, semaphoric gestures
are widely adapted for this type of input. Applications are equipped with methods
to interpret a symbolic information imposed in individual gestures. The typical
example might be sign language interpretation which does not rely on other input
modalities like speech for interpretation of the user intention [SP95, SP].

Eye-free interaction uses symbolic gesture-based inputs which aim to keep our
visual attention on other different tasks during gestural interaction. For instance,
users can focus on navigating the physical environment without paying attention
to the GUI of the application. These days, eye-free interaction has been applied to
the mobile computing area [BLB+03]. The advancements in mobile technologies
enable personal mobile devices to be smaller in size and allow their CPU memory
to be more powerful. The main idea is to allow users to perform symbolic gesture-
based inputs to control small personal devices such as PDAs, smart phones, iPods,
and Palms.

2.5.3 Manipulative Gesture-based Inputs

Manipulative inputs are closely connected to the selection and manipulation of
virtual objects. Manipulations can include two-dimensional (2D) movement in-
puts along the XY axis and can also be extended to the 3D, including another axis
(Z). The input dimension is usually defined with the types of display platforms.

25

Chapter 2 Background

2D manipulative inputs are used for table top displays. In particular, table top
displays enable collaboration between multiple users [VB05]. The DiamondTouch
table [DL01] was designed to uniquely identify each user by electrically coupling
users to the table so that multiple users (up to four) can control the system at the
same time. Forsberg et al. [FLZ98] presented Ergodesk, a back projected drafting
table that supports users making an input with a single pen.

Ullmer and Ishii’s [UI97] metaDesk prototype demonstrated tangible user inter-
face techniques. A variety of physical objects are integrated with multiple displays
and projected onto tabletops. SmartSkin [Rek02] is another technology that can
enable tabletop sensing. Unlike the DiamondTouch, it does not distinguish in-
put by user. However, it offers a more complete 2D image of surface contacts,
resulting in the unambiguous detection of multiple hand input points and shapes.

3D manipulative inputs are closely related to 3D spatial gestures because of the
3D nature observed in 3D space. 3D manipulation has been extensively studied
in 3D graphics applications. For instance, Bowman et al. [BKLP01] presented a
set of tasks for 3D manipulative inputs such as navigation, modeling, and menu
selections. Mine et al. [MBS97] used 3D inputs to manipulate 3D objects in im-
mersive Virtual Environment (VE) [MBS97] with a set of novel interaction tech-
niques. They analyzed the importance of using proprioception to move objects in
3D space in order to compensate for the lack of real haptic contact with objects.
Berry [Ber98] explored the use of hand gestures not only for navigating virtual
space but also for moving virtual objects as an interactive device.

2.5.4 Affective Gesture-based Inputs

Compared to other gestural input types, affective inputs are rather new in the HCI
domain and it is very challenging to understand the affective information from hu-
man gestures. However, there are several promising approaches that use affective
gestures such as bio-mechanics, psychology, and digital art performance.

Picard [Pic97] presented an affective interface and demonstrated its potential
in various applications. Ravindra et al. [SOMM06] recognized different types of
emotion based on gestural intensity that drives movements of the human body,
and used the recognized type of the emotion to control the difficulty level of a
computer game. Berthouze et al. [BFH+03] also interpreted the affective state of
a user based on the captured visual signals from a certain body posture. Sundstrom
et al. [SSH05] built a mobile service system called eMoto that sends and receives
affective messages addressing a type of emotion.

There are also several approaches for sensing emotion using deductive tech-
niques such as measuring the heart rate, the skin resistance, the blood pressure
and the muscle activity [PH97]. Facial expression was also used to capture affec-
tion for human computer interaction [CBF05].

26

2.6 Application Areas

2.6 Application Areas
The use of gesture is growing interest in many application areas. For example,
virtual and augmented reality, tele-robotics, and wearable and ubiquitous comput-
ing all explore the use of human gesture in new computational environments. This
section provides a higher-level understanding of using gesture in applications, and
provides an overview of the practical usage of gesture. Considering the charac-
teristics of 3D spatial gestures, we categorized application areas into four groups:
computer graphics, game control, motion training, and digital art performance.

2.6.1 Computer Graphics Applications

The input technologies for computer graphics applications have been evolved
along with the development of display technologies. A large display wall encour-
ages hand use instead of a computer mouse on the desktop. Bae et al. [BKKK04a]
presented a unique input device which supports automotive design on a large dis-
play screen with a set of unique interaction techniques. Using the graspable input
device with a transparent groove, designers use rich gestures for the manipulation
of virtual curves on the large screen surface. Grossman et al. [GBK+01] presented
a modeling interface where users can manipulate virtual objects in 3D space using
a electromagnetic input device that provides 6-DOF information.

While computer graphics applications mainly use manipulative gestures, there
are also approaches that use symbolic gestures. Nishino et al. [NFU99] used the
pre-defined set of symbolic hand gestures to create complex shapes for 3D model-
ing. Hummels and Stappers [HS98b] introduced a gesture-based modeling inter-
face that employs designer’s perceptual-motor skill in the expressive and creative
design process. Several gestures were designed to provide dynamic interactive
sketching in the early stages of product design.

2.6.2 Game Control Applications

These days, the use of gesture in game control is extensively studied and discussed
as an active application area [PKE+06]. The major tasks involve control of vehicle
movement, navigation of a game environment, and control of avatars in a virtual
world.

Various researchers have explored the use of the human body for the purpose
of game control. ALIVE [MDBP96] is a full-body recognition interface. A user
can interact with autonomous agents in a virtual environment by varying gesture
and body position. The user stands in front of a large screen projection panel on
which a virtual environment is displayed. Computer vision techniques are used
to recognize the users body position and their gestures such as pointing. Cameras
are also used by Magic Mirror to enable users to see themselves within the virtual

27

Chapter 2 Background

world. The system captures a scene of the user via video cameras, and projects
the re-created user image onto the screen.

Hämäläinen et al. [HIH+05] proposed Kick Ass Kung-Fu, a martial arts game
installation where the player fights virtual enemies with kicks and punches as well
as acrobatic moves such as cartwheels. The video image of the user is embedded
inside 3D graphics using cameras and computer vision techniques.

Rusdorf et al. [RB05] developed a VR table tennis application which processed
fast motions used in table tennis. For high speed interaction, they minimized the
latencies by developing a prediction method and analyzing the issue of synchro-
nization between the player’s movements and the visual output on the projection.
Mueller et al. [MA05] developed a computational environment where users can
play soccer with others located in remote places. Using cameras, the system cap-
tures the ball movements and shows them to people who are miles apart so that
people can play a physically exhausting soccer game together.

There are also several commercial gesture input devices for game control.
Playstation2 has introduced EyesToy, a camera that tracks hand movements for
interactive game control. Wii was developed to enable gestural input in commer-
cial game consoles. Nintendo’s game console, Revolution, takes gesture as a main
form of input and enables various gesture-based inputs (aiming and throwing to
steer the virtual game characters).

2.6.3 Motion Training Applications
Computers have been recently used to analyze human motions and to help athletes
improve their movements. While simpler gestures are preferred for command
inputs, motion training applications should be able to process more complex 3D
spatial gestures.

Several motion training systems were proposed using different sensors and fo-
cusing on different motions. Davis [DB98] developed a vision-based motion train-
ing system, called Virtual PAT (Personal Aerobics Trainer). They used IR light
sources to capture a silhouette of the user and then recognized six stretching and
aerobic movements. Moreover, the system provides manually pre-recorded in-
structive videos and audio feedback so that users can create and personalize an
aerobics session.

Becker [Bec97] developed a Tai Chi training system. He tracked the user’s head
and hand movements with a pair of stereo cameras and then recognized the differ-
ent types of Tai Chi gestures using HMMs. Chua et al. [CDSC03] also developed
a Tai Chi training system. They used a light-weight HMD display and optical mo-
tion capture device to build a wireless VR based system. The trainees’ motions are
evaluated based on skeleton matching to measure how they mimic avatar motions.

Yang [Yan99] developed a dancing system called Just Follow Me (JMF) where
users can learn a set of dancing motions following the avatars. The task of the stu-
dent is to follow the ghost version of the teacher as closely as possible in CAVE.

28

2.6 Application Areas

An optical motion capture system was used for tracking motions. Evaluation is ac-
complished by re-targeting students’ motion to the pre-generated avatar templates
based on the methods proposed in Baek et al. [BLK03].

Takahata [TSST04] designed a karate training environment. A multimodal
room was equipped with cameras, microphones, video displays and loud speakers,
wearable devices using a sensor and sound generator. Even though they did not
explore a profound method for gesture recognition, they demonstrated how ges-
ture performance can be improved using sound feedback. For this purpose, they
provide audio feedback generated by converting the captured gesture signals from
accelerometers to sounds.

2.6.4 Digital Art Performance Applications
There are also various applications using gesture in digital art performance [BLSM04].
The main purpose is to use gesture for artistic control of the computer , and en-
courage users to express their artistic concepts using perceptual-motor skills.
The role of applications is to quantify the quality of the performed gestures and
respond to the user by providing various audio and visual outputs. This can be ac-
complished by capturing gestures using various sensors and mapping the acquired
gesture data to a certain variable that controls the outputs.

To better understand, we can make an example of a digital art performance
application in a dancing scenario [BGK+05]. A dancer creates a digital sound or
visual image using their dance movement. The dancer constantly reacts to various
resources (dancing movements, tensions on the body, and audio and visual outputs
from the system). Since a dancer usually performs enormous gestural expressions,
she potentially controls the characteristics of the sound (like pitch and duration)
and the visual images (like color and shapes).

Similar to the dancing example, various applications have been proposed to
create artistic forms of interaction using gestures. One pioneering work is Video-
place [Kru91]. The system was developed around 1970 as a gesture interface us-
ing cameras. Live video frames of the user are processed to find the 2D silhouette
of the user by subtracting the background. Many gestures used in the everyday
world have been implemented as an input. For instance, users can select a menu
by touching their index finger to the menu item and manipulating the object by
using the finger and thumb from both hands.

Theramin could be a very early example of using gesture to generate electronic
sound [Gli00]. Theramin is an electrical musical instrument developed around
1920. Two proximity sensor bars (one for vertical and the other for horizontal)
respond to the hand position and its movement. When the hand is moving around
the bars, a sound is generated based on the distance between the hands and the
sensors.

There are also several other gesture-based musical performance applications.
While the gesture recognition techniques were quite specific to the application at

29

Chapter 2 Background

hand, they present a great potential for future research areas that connect gestures
to digital art performance.

Sawada and Hashimoto [SH97] presented a system that controls a Musical In-
strument Digital Interface (MIDI) instrument using gesture. The system uses
accelerometers for gesture acquisition and recognizes ten gestures based on a
simple feature set. The Brain Opera [Par99] was developed in the MIT Media
Laboratory as a large-scale interactive musical exhibit. The Expressive Footwear
project [PHBT00] was developed with dynamic sensors (gyroscopes, accelerom-
eters, magnetic compass). Sensors are mounted on the side of a dance shoe and
capture multi-modal information describing dancer’s movements.

30

Chapter 3

Gesture Acquisition
This chapter presents 3D spatial gesture acquisition system which consists of hard-
ware and software components. The key idea is to use both visual and body sen-
sors to get optimal gesture features for robust gesture recognition and support
various requests of target applications such as 3D object manipulation and scene
navigation.

Section 3.1 shows a brief overview of our acquisition framework. Then, two
sensor technologies are presented: body sensor (Section 3.2) and visual sensor
(Section 3.3). Each section describes the characteristics of the sensors for the
acquisition of 3D spatial gestures. Section 3.4 introduces our gesture input device
which is designed to support easy integration of visual and body sensors.

3.1 Overview
Figure 3.1 shows an overview of the gesture acquisition system. When a user per-
forms gestures, the system acquires the gestures through body sensors and visual
sensors. Different body sensors are integrated into a gesture input device that the
user attaches to the body or holds in the hand. The device is equipped with a
micro-controller for collecting sensor data and Bluetooth wireless technology for
transmitting the measurements to a computer.

The current setup uses two machines: one for the acquisition system and one
for the application. Necessary data is transmitted via the network between two
computers. The acquisition receives data from the input device via Bluetooth and
from video cameras via Firewire ports. We use the Java Communications API
package to develop a module to receive the transmitted body sensor data. The
acquisition module for visual sensors tracks the positions of LEDs on the captured
image frames and computes 3D positions.

The acquisition machine runs small functional units called filters that process
corresponding sensor data in a specific way (converting it to another data type).
Different filters are implemented separately with a modular design concept. Java

31

Chapter 3 Gesture Acquisition

Figure 3.1: Overview of the hardware and software framework for gesture acquisition. The
performance of gestures are acquired by both visual and body sensors in acquisi-
tion machine. Processed gesture features are transferred to the application via a
socket.

multi-threading techniques are used to implement filters as an independent thread
and divide the resources optimally between the different threads.

Finally, the processed sensor data is transferred to the machine for application
and is used to fit the needs of the target applications. The application machine
is programmed to provide visual feedbacks to the user so that he/she can check
whether the gesture is processed correctly. The acquisition and applications can
be run on a single machine for a simpler setup.

3.2 Body Sensors

The body sensors’ main role is to measure the subtle movements of the human
body that can be difficult to capture using visual sensors. Body sensors need to
be attached to the body or held in the hand and the form factor of sensors should
be designed to minimize the restriction of the user’s movements. The advanced
Micro-Electro-Mechanical Systems (MEMS) make the size of sensors smaller and
provides the potential to build an input device for acquiring 3D spatial gestures.

32

3.2 Body Sensors

3.2.1 Accelerometers as a Body Sensor
In the framework, we explore the use of accelerometers for capturing 3D spatial
gestures. Accelerometers are widely used for detecting tilt, movement, and vibra-
tion and they provide two advantages for gesture interfaces. First, the small size
of accelerometers allows for embedment in small objects such as a wrist watch.
Second, accelerometers provide rich information about 3D spatial gestures (tilt
angles and inertia). Other sensors, gyroscopes and electromagnetic sensors could
also be used to measure tilt angles. However, while electromagnetic sensors pro-
vide rather accurate measurements, they are not completely wireless and require
additional infrastructure to generate a magnetic field. Gyroscopes can also sense
rotation around the three axes. However, it is common for them to include a tem-
perature sensor and a voltage reference to condition the signal. The manufacturing
process is also more complicated causing the package size and price to increase.

Sensing Mechanism

The sensing mechanism of accelerometers can be explained using a basic physical
principle of mass-spring systems where the mass is fixed with a torsion bar that
has a specific spring constant in the accelerometer. Figure 3.2 illustrates this basic
concept of the accelerometer along a specific axis. The ball represents the mass
and the surrounding spring acts as a capacitor. A ball that is attached to two springs
on opposite sides and placed in a tube. When the sensor is accelerated, the ball
moves in the opposite direction of the acceleration. This results in a change of the
distance between the ball and the spring. This displacement of the mass yields a
change in the capacity of the sensor.

Figure 3.2: A conceptual diagram of an accelerometer sensing mechanism. A ball is lo-
cated in the middle of a tube and attached to two springs. The length of each
spring is affected by the movements of the ball and measured as a acceleration
value.

There are two types of movement information that can be measured by ac-
celerometers: shaking and tilting. When the accelerometer is shaken, the value
of acceleration is proportional to the scale and the speed of shaking. When the

33

Chapter 3 Gesture Acquisition

accelerometer is tilted, the mass is moved to a certain direction because of the
gravity and this causes the increase or decrease of the value of acceleration. The
acceleration for shaking and for tilting are often called dynamic acceleration and
static acceleration respectively.

Measuring Postures and Gestures using Accelerometers

We use two types of acceleration for measuring postures and gestures as explained
in the previous section. In our framework, postures are static body configurations
that are characterized with certain positional and rotational information. For the
rotational information of a posture, we use static acceleration. Figure 3.3 shows
two hand postures with certain pitch and roll angles that can be measured by at-
taching an accelerometer on the wrist.

Figure 3.3: Different pitch and roll values for postures. When the accelerometer body
sensor is attached on the wrist, postures are characterized with certain pitch and
roll values.

On the other hand, gestures are dynamic movements that are typically per-
formed by connecting two postures - a user starts with one posture and ends with
another posture. Even though the start and end postures are same, the in-between
gestures can vary depending on velocity and inertia. Our framework uses dy-
namic acceleration to observe the velocity and inertia of the gestures. Figure 3.4
shows how four examples of acceleration signals are generated when gestures are
performed with two postures (from the left posture to the right posture shown in
Figure 3.3). While static accelerations for the start and end postures are approx-
imately the same between the four gesture performances, the in-between gesture
data (dynamic accelerations) are all different with different changes of power and
velocity over time.

34

3.2 Body Sensors

Figure 3.4: Examples of two-axes accelerometer signals when 3D spatial gestures are per-
formed. 3D spatial gestures are performed by connecting one posture to another
posture with different speeds and powers. Each gesture starts and ends with ap-
proximately the same average roll and pitch values and the in-between parts vary.

3.2.2 Computing 3D Rotation

We use body sensors to compute 3D rotation which is usually represented in the
Euler coordinate system with three different angular values: yaw, pitch, and roll.
Our framework uses the computed 3D rotation to describe postures and also to
rotate a virtual object in 3D space.

Figure 3.5 shows the representation of 3D rotation using Euler coordinate sys-
tem when a body sensor is attached to the wrist like a wristwatch. The roll axis
of the sensor is parallel to the forearm, and the pitch axis is horizontal and per-
pendicular to the roll axis. Yaw values point out the upright position of the hand.
This section describes how 3D rotation can be robustly measured combining ac-
celerometers and magnetometers.

Again, pitch and roll can be measured using accelerometers. When the sensor
is rotated, the change of the gravity force is applied to the accelerometer and the
static acceleration is observed. For more accurate measurement, we consider that
the sensing axis becomes less sensitive and the noise increases as the accelerome-
ter is tilted beyond a 45 degree angle in either axis. This noise can be critical when
we use pitch and roll to rotate a virtual object in 3D space. Our framework uses
a technique that improves the tilt sensing using tri-axis accelerometers. The main
idea is to compensate the noise of one axis value with another axis. In theory, the
basic three tilt angles can be computed from the tri-axis accelerometer outputs as
follows:

35

Chapter 3 Gesture Acquisition

Figure 3.5: The representation of 3D rotation using the Euler coordinate system (roll, pitch,
and yaw). Pitch and roll are measured by an accelerometer, and roll is measured
by combining an accelerometer and a magnetometer.

φ = arcsin(ax)
ρ = arcsin(ay)
θ = arccos(az)

(3.1)

To improve sensing precision and accuracy, another axis (Z) is combined with
both of the tilting axes. Then, both the pitch (φ) and roll (ρ) is computed using the
outputs of all three axes following:

φ = arctan

 ax√
a2

y +a2
z


ρ = arctan

(
ay√

a2
x +a2

z

) (3.2)

To sense yaw, we use a magnetometer that can sense the earth’s magnetic field.
Typically two or three anisotropic magnetic sensors are used as a compass in or-
thogonal angles (perpendicular to each other) to measure the earth’s magnetic field
into Cartesian coordinates X , Y , and Z. The direction is computed using X and Y
sensor outputs according to:

α = arctan
(

Y
X

)
(3.3)

Since the arc-tangent function repeats itself every 180 degrees, we need to de-
termine where the device is pointed in the 0 to 360 degree heading circle.

To get the optimum compass accuracy, the magnetometer should be operated
in a flat position without any tilt. However, a gesture input device should be able
to support users performing gestures in various positions and orientations. To
minimize this error, we integrated the accelerometer data with the magnetometer
data for retainining a more accurate yaw value in the presence of pitch or roll

36

3.3 Visual Sensors

angles. The X and Y compass values are computed with the pitch and roll angles
following:

X f = X cos(φ)+Y sin(ρ)sin(φ)−Z cos(ρ)sin(φ)
Yf = Y cos(ρ)+Z sin(φ)

(3.4)

The final tilt is computed from the arc-tangent heading equation using the newly
computed (or flattened) X f and Yf compass values.

3.3 Visual Sensors
Our framework uses color cameras as a visual sensor to capture color scene images
in a certain range at a certain frame rate (e.g. 30 Hz). The acquired images are
processed to produce visual features that are eventually used to interpret human
gestures. One of the important advantages of visual sensors over body sensors is
that users do not have to wear body sensing devices.

However, the performance of visual sensors relies heavily on the accurate track-
ing of objects in the camera images. Even with the advanced vision technologies,
this task is still challenging under varying illumination and background condi-
tions. For more robust tracking, several approaches are proposed using passive or
active markers.

Occlusion also prevents continuous tracking of the desired body part from a
single view. Multiple cameras are used to partly solve this occlusion problem by
taking images from different view angles. In this context, multiple cameras are
utilized to reconstruct a full 3D user body which are useful in analyzing human
motions [GWN+03a]. Moreover, multiple cameras enlarge the interaction area,
so that if the tracked object disappears from the field of view in one camera, it can
be viewed in another camera.

3.3.1 Computing 3D Position
Our framework uses a pair of cameras to track the 3D positions of the object-of-
interests (input devices or hands). The tracked 3D positions are used to manipulate
objects in 3D space and to generate visual features for gesture recognition. Fig-
ure 3.6 shows a prototype setup that uses a pair of stereo cameras. Two cameras
capture the user’s movements and the acquisition system processes the data and
tracks the 2D and 3D positions of the hands or input devices.

In our setup, one projector is connected to the machine for the application sys-
tem. The user interacts with the display feedbacks in the interaction space between
the cameras and the projection screen. Again, different camera configurations
could be experimented to enlarge the interaction area and reduce the occlusion
problems depending on the target application.

37

Chapter 3 Gesture Acquisition

Figure 3.6: A prototype system setup using a pair of stereo cameras. The gestural inter-
action area can be refined with a pair of cameras, a projector, and a large wall
projection screen. The acquisition system processes the acquired image frames to
track 2D and 3D positions of the device with a Kalman filter. The positional data
is then transferred to an application system that provides a display to the user via
a projector.

As shown in Figure 3.7, the cameras are aligned in parallel and installed from
the top facing down toward the user. Figure 3.7 shows the actual image views
from the cameras and gives an impression of the captured image quality.

As mentioned earlier, tracking multiple objects using cameras is a challenging
task because lighting and background conditions can change over time. In our
earlier tests, the color tracking highly depends on lighting and color, and the ap-
proximately tracked position is not precise enough to handle small scale gestures.
We tested IR light sources, but they do not convey color information which is
required for tracking multiple points.

Since real-time gesture processing is our goal, several compromises were made.
We used bright color LEDs for fast, precise and robust tracking. Their bright-
ness provides relatively robust tracking results in indoor environments. Moreover,
using different color LEDs allows us to track multiple points (multiple users or
multiple body parts of the same user) at the same time.

We developed a simple vision tracking algorithm to find the pixel positions
within a certain color and brightness range. To find each color LED, the algorithm
scans the image until it finds a pixel of the appropriate color. In our method, the

38

3.3 Visual Sensors

Figure 3.7: The prototype camera installation and views from the cameras.(Top) A user is
performing a 3D spatial gesture in the prototype system setup that consists of a
pair of cameras and a projection wall in front of the user. The camera is pointing
down to the user. (Bottom) The images from the cameras.

resolution of 3D position varies from 0.3cm to 0.5cm depending on the location
of the LED on the captured image and the color of the LEDs. In our experiments
during development, the focus area of the cameras gives the better results than
the surrounding areas. A white color LED also provides more accurate tracking
results than other colors such as red, blue, and green.

The Kalman filter [MS83] is used to improve the object tracking from frame to
frame against different movement conditions and occlusions. The Kalman filter
models the dynamic properties of the tracked object as well as the uncertainties
of both the dynamic model and the low level measurements. Consequently, the
output of the filter is a probability distribution representing both the knowledge
and uncertainty about the state of the object. The solution is recursive in that each
updated estimate of the state is computed from the previous estimate and the new
input data, so only the previous estimate requires storage.

The framework uses conventional triangulation from a pair of calibrated cam-
eras. The camera pair is calibrated using standard algorithms from the Intel Open
Computer Vision Library [Ope]. The purpose of camera calibration is to deter-

39

Chapter 3 Gesture Acquisition

mine the intrinsic and the extrinsic parameters of cameras.
The intrinsic parameters (focal length, image coordinate origin) of cameras are

pre-calculated by taking a set of pictures of a printed checkerboard shown in Fig-
ure 3.8. The extrinsic parameters are the position and orientation of the cameras
and they are calibrated using the checker board images. The calibration of extrin-
sic parameters needs to be done only once as long as the cameras’ position and
orientation are not changed. Once these parameters are known, three-dimensional
information can be inferred from two-dimensional images and vice versa. Cali-
bration algorithms can be found in Zhang [Zha99].

Figure 3.8: Checker board pattern used in camera calibration. This pattern is printed on a
paper and attached to a flat board.

3.3.2 Invariant Visual Features
In our context, the selection of gesture features should be such that the resulting
gesture model is invariant with regard to translations and rotations. While the
acceleration fulfills these properties, raw positional information of visual features
should be further processed to be invariant.

There are several possible ways to compute invariant features from position data
including angular velocity, curvature, and velocity. The different features trade off
against each other. For instance, consider a person at a fixed location and orien-
tation with respect to the camera setup, performing a hand gesture in a perfect
circle. Curvature and speed (ρ, ds) will be completely invariant to rotations and
translations but will be constant and thus exhibit no meaningful gesture informa-
tion. Now consider the velocity of the hands (dx, dy, dz) as a training and testing
feature. This feature is shift invariant but not rotation invariant. Particularly when
the hand is almost stationary it tends to generate high noise.

The main problem of these features is the differential nature of these features
including computations of the first and second derivatives. This problem is present
in the curvature features because curvature is a function of the second derivative
and thus inherently more noisy than velocity features. At the other extreme, ab-
solute coordinates (x, y, z) can easily distinguish the top, bottom, and sides of the

40

3.4 mWire: 3D Spatial Gesture Input Device

circle, but they require it to be performed each time at the same location. Overall,
all of these features have limited reliability and do only work for larger and longer
gestures.

This leaves us with the relative Cartesian positions (rx, ry, rz) according to
a certain fixed position. The relative position can be reliably derived from the
visual sensor and characterize a 3D spatial gesture. In addition, while a gesture
with absolute coordinates is confined to a particular location in an environment,
relative coordinates enable us to use a gesture at any location in an environment.

In vision research, the relative position of the hand with respect to the head has
been widely used for measuring dynamics of hand gesture because visual tracking
of hand and head can be done using the unique appearance of the human skin
in color space. Our approach to use multiple color LEDs allows us to use other
potential body parts such as the chest or the shoulders as a suitable stationary
origin.

3.4 mWire: 3D Spatial Gesture Input Device
Extensibility is an important feature of our framework in both hardware and soft-
ware. Since our main goal is to enable users to easily design new gesture inter-
faces, it is necessary to support them testing different sensors including visual
sensors and body sensors. Therefore, users can find the optimal sensors that pro-
vide the necessary information for the desired gesture interface.

Our framework supports a novel input device called mWire (Figure 3.9), which
facilitates easy sensor integration. Users connect various types of body sensors
and also multiple color LEDs for vision-based position tracking. The device was
designed considering the particular muscle groups used in performing 3D spatial
gestures, including the wrist, arm, and hand. Aiming to be a more versatile de-
vice, mWire is a wearable input device which users can either wear on the wrist
(Figure 3.9-b) like a wrist watch or hold in their hand (Figure 3.9-c). This idea
is inspired by commercial hand-held devices like MP3 players or cellular phones.
The current version is a prototype that can easily be miniaturized for professional
production. For instance, a wristwatch can be built using the same hardware con-
cept.

3.4.1 Device Configuration
Figure 3.10 shows the device configuration of mWire. The physical interface of
mWire consists of two separate units: a sensor unit for sensing signals from the
wrist and a processor unit for processing and transmitting sensor data to the host
computer. The processor unit is equipped with a Bluetooth transmitter, a micro
controller, a 9V battery, and a standard RS232 serial connector. This unit can
be attached to any convenient body part using appropriate holders (on the waist

41

Chapter 3 Gesture Acquisition

Figure 3.9: A gesture input, mWire which facilitates the use of different body sensors and
LEDs. (a) A connected red LED on the index finger with a transparent ring and a
wire. (b) The mWire on the wrist (c) The mWire in the user’s hand while operating
a pressure sensor with another finger.

belt or in pockets). To assure minimum movements of the device, a detachable
armband is used to firmly attach into the wrist.

The sensor unit contains one 2D-axis accelerometer as the main body sensor and
two pressure sensors attached on the top surface of the case. The accelerometer
on the wrist measures subtle acceleration of the hand that are used for the body
features invariant to rotations. From these measurements, we can also infer the
orientation of the hand and whether the palm is facing back or front, or up and
down.

When the device is in the hand, a user can use their thumb to press one of the
pressure sensors as shown in Figure 3.9-c. When the device is mounted on the
wrist, the user can use the non-dominant hand to use the pressure sensors.

The sensor unit supports two LED connectors. With additional extension wires,
different color LEDs can be connected to the device and attached to various body
parts such as fingers (Figure 3.9-a), elbows, and shoulders. The sensor unit pro-
vides two sensor connectors so that users can easily connect other relevant sensors
like bend sensors or digital compasses.

3.4.2 Major Hardware Components
During the design of a gesture input device, the choice of hardware components
should be done by analyzing their technical and design characteristics. For in-
stance, the device has to remain small enough for users to handle it with one hand
or attach it to their body. The device also needs to be accurate and autonomous
so it can work properly for long periods without requiring cabling for power and
communication.

Figure 3.11 shows the inside of the mWire’s processor unit which contains a
micro-controller, a Bluetooth transmitter, a battery, and a sensor unit connec-
tion. The micro-controller collects different sensor values. For this, the micro-
controller is equipped with different types of ports for measuring sensor data and

42

3.4 mWire: 3D Spatial Gesture Input Device

Figure 3.10: Hardware configuration of the mWire. On the left, we see the sensor unit
with two pressure sensors, one 2D-axis accelerometer, two LED connectors, and
two sensor connectors. On the right is the processor unit with a micro-controller
for acquisition, a Bluetooth transmitter, and a 9V battery.

input and output ports for transmitting the measured data. The acquired sensor
data is transmitted using a specific protocol to the acquisition machine via the
Bluetooth transmitter. In the following sections, we present the three major hard-
ware components of the mWire in detail: micro-controller, bluetooth, and sensors.

Micro-controller

The micro controller we have chosen is the C-Control [C-c]. This controller con-
tains necessary electronic components for connecting sensors and programming
them, and supports binary switches, frequency, and voltage measurements for sen-
sor inputs. The C-Control requires a 5V power source.

Sensors

mWire is equipped with two types of sensors (accelerometer and pressure) in de-
fault. For the accelerometer, we use a dual-axis accelerometer (ADXL311) for
measuring shaking and tilting movements. Two pressure sensors are attached on
the flat surface of the device. The pressure sensor changes resistance according to
the force applied to its active surface so that we can capture the continuous grip
gestures applied to the device. Pressure sensors are often called Force Sensing
Resistors (FSR), and various sizes and shapes are available.

Bluetooth

Bluetooth wirelessly transmits the acquired sensor data from microcontroller to
the acquisition machine. As an industrial standard for personal area networks,

43

Chapter 3 Gesture Acquisition

Figure 3.11: The hardware components of the mWire processor unit. The processor unit
contains a micro-controller for acquisition and processing, a Bluetooth transmitter
for forwarding sensor data, a battery power supply, and a sensor unit connection.

Bluetooth supports short range communication by connecting different devices
such as computers, PDAs, and printers.

In our prototype, we selected a Bluefrog adapter that transmits and receives
data via FM over an approximate range up to fifty meters indoors with relatively
low power consumption for an RF module (8 mA) and data rate (64 kbps). The
Bluefrog module supports the Serial Port Profile (SPP). The SPP is used to connect
the Bluetooth to the serial port communication of the microcontroler, and it acts
as a transparent bridge for serial communication without using external RS-232
serial converter. Therefore, we can easily pre-configure the Bluetooth for a virtual
serial port in the computer.

44

Chapter 4

The Gesture Model
The previous chapter described how 3D spatial gestures are acquired through dif-
ferent sensors and input devices. Now, we explain how the acquired gesture data
are modeled to support various tasks of gesture interfaces. Our goal in gesture
modeling is not only to recognize the type of gesture, but also to evaluate the
motion qualities associated with the underlying 3D spatial gestures. Another im-
portant aim of our gesture modeling is robust gesture registration so that users can
easily manage the gesture model.

The chapter is organized as follows. First, in Section 4.1 we provide a short
overview of the gesture model that consists of a set of software components. Sec-
tion 4.2 describes the representation scheme of 3D spatial gestures which intro-
duces the concept of motion chunk to store continuous gesture data. We explain
a way of segmenting gestures in Section 4.3. Dynamic Time Warping and Hid-
den Makov Models, two modeling techniques, are described in Section 4.4 and
Section 4.5 respectively. Lastly, three major tasks of the proposed gesture model
are described: gesture registration (Section 4.6), recognition (Section 4.7), and
evaluation (Section 4.8).

4.1 Overview
Figure 4.1 shows an overview of the gesture model. As described in the previous
chapter, at the gesture acquisition step, visual and body sensors acquire the ges-
tures, and the acquired sensor data are processed to generate features that describe
the salient characteristics of the gesture. The features are forwarded to the gesture
model and used for modeling gesture.

Our gesture model contains various subsystems that support the development of
a gesture interface. First, the system processes the acquired sensor data following
two steps: representation and segmentation. A central element of our gesture
representation is a gesture unit called motion chunk into which continuous gesture
data is segmented. The output of representation is a set of parameters and features
extracted from the raw sensor data in a convenient form for the registration and

45

Chapter 4 The Gesture Model

Figure 4.1: The overview of a 3D spatial gesture model. During acquisition, 3D spatial
gestures are captured from both body sensors and from visual sensors. The cap-
tured data is represented, segmented, and processed using DTW and HMMs for
the registration, recognition, and evaluation of 3D spatial gestures. Outputs of
gesture acquisition and model are used in different gesture interfaces (a spatial
context-aware gesture interface and a versatile gesture interface).

evaluation, as well as the recognition.
The gesture model uses two pattern matching techniques: Dynamic Time Warp-

ing (DTW) and Hidden Markov Models (HMMs). Using these two techniques, the
gesture model operates three major software components: registration, recogni-
tion, and evaluation. Using the registration, users can design their own gestures
and add them to the system. The recognition identifies the type of the unknown
input gesture. The evaluation measures the quality of the input gesture, and the
evaluation results are presented through the gesture interface. The following sec-
tions describe each component in detail.

4.2 Gesture Representation
Speech recognition systems usually utilize atomic sets of speech units, called
phonemes [RJ93]. Based on the structure of phonemes, the input speech signal
is represented and modeled. Similar to the human voice, human motion is se-
quential in time and we can assume that human motion can be represented with
a sequential combination of chunks similar to speech analysis. However, there is
no commonly agreed-upon concept to represent gestures in HCI domain. There-
fore, most of the existing gesture models have been developed with ad-hoc gesture

46

4.2 Gesture Representation

units for a particular recognition task. In this section, we introduce motion chunk
to process and decompose unstructured human motion.

4.2.1 Motivation

In our framework, we developed motion chunk to represent 3D spatial gestures.
Motion chunk was developed based on a series of systematic observations and
experiments in modern psychological and linguistic research on gesture. Efron
suggested three phases of gesture identification: preparation, stroke, and retrac-
tion [Efr41]. The gesture starts with the preparation phase by placing a hand in
the initial position, the actual gesture is performed through the stroke phase, and
the retraction phase results with the hand in a relaxed position.

Following the results of Efron’s study, several approaches were proposed in
the psychological and linguistic domain. For instance, Kendon [Ken80] devel-
oped his gesticulation theory which investigates the relationship between a ges-
ture and speech. He introduced a concept of gesture phrase based on the three
gesture phases of Efron. Kendon introduced a gesture phrase which is “the nu-
cleus of movements with definite form and enhanced dynamic qualities preceded
by a preparatory movement and succeeded by a rest movement”. Gesture phrase
consists of three steps: preparation, nucleus, and refraction. The preparation is
a resting position or previous gesture. The nucleus is a definite form and poses
enhanced dynamic qualities. The refraction is again a resting position for the next
gesture.

We extended the gesture phrase idea to generally structure human gestures. To
this end, we developed the motion chunk which stores gestural information by
segmenting the input signals into subunits. It decomposes the input gestures into
a form that reveals relevant gesture information based on the gesticulation the-
ory proposed by Efron [Efr41] and Kendon [Ken80]. Motion chunks enable the
physical tension and relaxation of making a gesture to correlate pleasantly with
the mental tension and relaxation involved in performing a primitive task in the
application. The motion chunk is used as the core representation of our gesture
model and serves as a basis for automatic segmentation, registration, recognition,
and evaluation.

4.2.2 Definition and Structure

For the motion chunk-based gesture representation, we assume that all input ges-
tures are performed as a set of gesture units: start posture, gesture, and end pos-
ture. While static position (also referred to as posture, configuration, or pose) is
not technically considered as a gesture, we include it as a motionless part of ges-
tures for the purpose of gesture representation. The start and end postures contain
important gesture information in terms of kinematic and bio-mechanical features

47

Chapter 4 The Gesture Model

which can be useful for the analysis of the transitions from one gesture to the next.
The gestures represent the dynamics of the gesture.

Based on this assumption, any continuous gesture stream can be decomposed
into two different types of chunks, a static chunk and a dynamic chunk being
equivalent to postures and gestures respectively. For instance, a typical gesture
could consist of three types of sub-chunks, a start-static chunk, a dynamic chunk,
and an end-static chunk. Figure 4.2 illustrates a sequence of two motion chunks,
each of which consists of two static chunks.

Figure 4.2: The structure of a motion chunk. A 3D gesture is represented as a sequence
of motion chunks which consist of two static chunks S and E and one dynamic
chunk D.

To recognize an input single motion, each of the n single motions known to the
system are assigned a motion type Ωn. The recognition rule rn maps the obser-
vation sequence on the basis of the start-static chunk Ci−1, the end-static chunk
Ci+1, and the dynamic chunk Di to a motion index κ of motion type ΩK , i.e.

rn : [Ci−1,Di,Ci+1] 7→ κ (4.1)

Furthermore, we can induce several types of motion structure using the motion
chunk templates based on the analogy between gesture recognition and speech
recognition. There are three types of recognition problems: single motion recog-
nition, recognition of a sequence of motions, and overall motion understanding. A
single motion such as punching, blocking, kicking, and striking can be considered
as a phoneme level and word level in speech recognition. They do not involve
sequences of other gestures.

48

4.3 Gesture Segmentation

Using word level gesture recognition, we can detect sentence level gestures by
evaluating transition probabilities between the word level gestures. We use the
motion chunk templates to formalize higher-level gesture recognition called ac-
tivity level gestures which are equivalent to a sentence level in speech recognition.
For example, sparring could be a sentence level motion involving sequences of
punching and blocking.

Gesture designers decide what gesture sequences and which level of sequences
will correspond to a motion chunk. In the very simplest case, a single discrete
gesture can be assigned a motion chunk. However, this approach might be inflex-
ible for some gestures which can be separated into sub-gestures. For example,
continuous long gestures require new models to be created and trained every time
their sub gesture is changed. Our ultimate goal is to use motion chunk to define
sub-gesture units in each model and construct a single gesture from these. Then
we can construct a network of motion chunks and have paths through the network
indicating the recognized gestures. It reduces the computational complexity and
makes it possible to reuse the constructed gesture model in various applications.

4.3 Gesture Segmentation
As described in the previous section, we assume that gestures in our framework
are performed based on the motion chunk. The gesture segmentation is relatively
straightforward. Three temporal phases of a motion chunk are distinguishable
through the general motion sequence: start posture, gesture and end posture which
are characterized by rapid change in the body and visual sensor signals. For in-
stance, a single motion chunk starts and ends with a posture so that the start and
end points of a motion chunk are easily detected.

The framework uses a simple sliding window technique similar to algorithms
in speech recognition. First, we compute a standard deviation of the samples in
the window (typically of size 20) which slides along the signal with a sampling
rate of 30Hz. The standard deviation σ of a window of the accelerometer signal is
given by

σ
2 =

1
n

n

∑
i=1

(xi−µ)2 (4.2)

where x1, ...,xn are the samples in the window and µ is its mean.
A simple moving average filter is applied to the raw sensor data for more ac-

curate segmentation. This filter takes as input a certain number of input frames
and provides the average value for each sensor value over the input frames. The
number of input frames is the size of the data window for the filter. The calcu-
lated average values are then forwarded to the output buffers. When the output is
sent, the window is always shifted by one data frame and the next average value
is calculated.

49

Chapter 4 The Gesture Model

Figure 4.3 shows a a simple state machine used for gesture segmentation based
on the structure of motion chunk. We assume that a gesture starts with a preceding
start posture if the standard deviation is above the starting threshold, and subse-
quently a gesture ends with a following end posture if the standard deviation is
below the ending threshold. To obtain more robust segmentations, we also check
the length of the static chunk and the dynamic chunk. As shown in Figure 4.3,
the length of the start-static chunk (ts), the dynamic chunk (td), and the end-static
chunk (te) are checked with a corresponding threshold. For instance, the motion-
less periods ts and te before and after the gesture must be longer than the respective
thresholds ls and le. This eliminates possible spurious static parts in the dynamic
chunk. Similarly, the length of dynamic chunk td should satisfy td > ld .

Figure 4.3: (Top) A state machine for gesture segmentation based on a sequence of a mo-
tion chunk structure: start-static posture (S), dynamic chunk (D), and end-static
chunk (E). (Bottom) The length of each chunk should be within a certain range.

The sensitivity of the segmentation depends on the window size and on the
thresholds. These parameters are defined with a simple test and stored to a prop-
erty file. Alternatively, we compute a second standard deviation over the previ-
ously computed standard deviations to segment regularly-vibrated gestures. Fig-
ure 4.4 shows the results of segmentation performed on the actual acceleration
signal.

50

4.4 DTW-based Gesture Modeling

Figure 4.4: An example of gesture segmentation performed on the accelerometer signals.
The dynamic chunk is marked with a gray color that shows when the gesture starts
and ends. We consider the motionless parts before and after the marked area as
start and end static chunks (postures).

4.4 DTW-based Gesture Modeling
Our framework uses DTW for two important functionalities of our gesture model:
gesture evaluation to discover qualitative difference between two time series and
gesture recognition to identify the type of input gesture for gesture recognition.
DTW has been widely used to measure similarities between time series data. In
this section, we present basic fundamentals of DTW (Section 4.4.1) and describe
some variations of DTW for our gesture model (Section 4.4.2).

4.4.1 Fundamentals of Dynamic Time Warping
In general, gesture sensor signals are time series and a task in gesture recognition
is comparing one sequence with another. Dynamic Time Warping (DTW) is one
of the most popular template matching techniques considered as a straightforward
method to recognize gestures. It computes the difference between two patterns
(input and template). The major goal of the DTW is to match a given sequence of
input values to a stored template. For instance, as one of the earliest approaches,
DTW was used to isolated word speech recognition. A prototypical version of
each word is stored as a template in the vocabulary, and incoming input speech is
compared with each word. The closest match is taken as a result of recognition.
Two problems are involved in this recognition process: what form do the templates

51

Chapter 4 The Gesture Model

take and how are they compared to incoming signals.
DTW has been used to recognize gestures performed with variable speed

[Cor01, DP]. The template is a single performance of the gesture and stored as a
standard. The simplest form for a template is a sequence of feature vectors. Since
gestures can be performed with different speeds, the matching process between
template and input sequences needs to compensate for the non-linear nature of
the length differences. DTW achieves this goal; it finds an optimal match be-
tween two sequences of feature vectors stretching and compressing sections of
the sequence. We will describe fundamentals of DTW in this section.

The DTW Grid

Again, the main idea of DTW is to temporally align two sequences X and Y before
computing a matching score such as distance. The alignment between an input
sequence and a template sequence is done by finding a correct warping path and
computing a local distance between these two sequences.

X = x1,x2, . . . ,xi, . . . ,xTn

Y = y1,y2, . . . ,y j, . . . ,yTm

(4.3)

The time indexes (Tn and Tm) need not be identical. To find best alignment, a set
of warping paths (φ) is computed and the one which has minimum warping cost is
selected. A Tn-by-Tm distance matrix is created, and each element (i, j) contains
the distance d(xi,y j) (e.g. Euclidean distance) between the two points xi and y j
given by

d(qi,c j) = (qi− c j)2 (4.4)

A warping path (φ) has to start and finish at the diagonally opposite corner cells
(1,1) and (m,n) of the distance matrix. Also, it may only move in direction of
increasing i or increasing j, or both (diagonal). A visualization of the warping
path and the step pattern is shown in Figure 4.5. Note that the indexes of the
distance matrix in this representation rise from the lower left to the upper right
corner. A warping path is formally defined as

φ =

{
φx(k),φy(k)

∣∣∣∣∣k = 1, ...,K,

max(Tx,Ty) 6 K 6 Tx +Ty−1

}
(4.5)

where φ(k) is defined as the kth step of the warping path, containing the position
(i, j)k in the distance matrix.

Given a warping path φ, dφ is defined as the normalized and accumulated dis-
tance along the warping path:

52

4.4 DTW-based Gesture Modeling

(a) (b)

Figure 4.5: (a) An illustration of a warping path for a input (on the top-side of the grid),
and a template (on the left-side of the grid). (b) The step pattern showing three
possible steps of the warping path .

dφ(X ,Y) =
1
K

K

∑
k=1

d(φx(k),φy(k)) (4.6)

where K is a normalization factor to compensate for the fact that warping paths
may have different length. There are exponentially many warping paths that sat-
isfy the above equation. We are only interested in the path which minimizes the
warping cost:

d(X ,Y) = min
φ

dφ(X ,Y) (4.7)

The minimum warping path is efficiently found using dynamic programming
[Bel57]. Dynamic programming is an overall solution combing a set of sub solu-
tions, which is combined by a set of another sub-solutions, and so on. Minimiza-
tion of the cost in the warping path is simply determined by taking the minimum
cost of all previous points within a valid step path. The costs of the previous points
are again determined by selecting the minimum of their own predecessors.

This minimization problem is implemented by creating a (n+1)-by-(m+1) cu-
mulative distance matrix that contains all cumulative costs to reach element (i, j).
Costs at the two borders (1, j) and (i,1) are initially set to infinity for keeping
the warping path within the bounds of the matrix. The cumulative distance at the

53

Chapter 4 The Gesture Model

starting point (1,1) is set to zero. The matrix is iteratively filled with accumulated
distances along the directions of the step pattern, always choosing the minimum
cumulative distance of its predecessors.

Optimizations

The DTW algorithm works by keeping track of the cost of the best path to each
point in the grid. There are several optimizations to find a warping path through
the DTW grid. A warping path φ is typically subject to several constraints:

• Start-End point Constraint: This constraint forces the first element of X
to map to the first element of Y (i.e. φ(1) = 1) and the last element of X to
the last element of Y (i.e. φ(Tm) = Tn). The path starts at the bottom left and
ends at the top right.

• Monotonic Constraint: This constraint ensures that the warping maintains
the temporal ordering of points in X , i.e. φ(ti) ≥ φ(t j) for ti ≥ t j. The
warping path will not turn back on itself, both the i and j indexes either stay
the same or increase, They never decrease.

• Slope Constraint: The path should not be too steep or too shallow and a
very short sequence should not be matched to a very long sequence. This
constraint is expressed as a ratio n/m where m is the number of steps in the
X direction and m is the number in the Y direction. In other words, after m
steps in X you must make a step in Y and vice versa.

By applying these constraints, we restrict the moves that is made from any point
in the path. For instance, with the slope constraint of P = 1, if a path has already
moved one square up, it must next move either diagonally or to the right. Using
these constraints, the umber of possible paths is then efficiently defined instead of
using all.

4.4.2 Variations of DTW
We applied several variations to the standard DTW to fullfill the needs of our
framework.

Multi-sensor Temporal Sequences

The standard DTW uses one-dimensional sequences. However, since we use dif-
ferent sensors in our framework, the output signal consists of multiple sensor
data. The extension to multisensor temporal sequences is straightforward and
needs only minor changes in the standard DTW algorithm. For instance, the input
sequences X(I×N) and the template sequences Y (J×N) represent multisensor
temporal sequences where N is the number of variables.

54

4.4 DTW-based Gesture Modeling

In the standard DTW algorithm, N = 1 and the local distance is measured by
calculating only the difference between two values: Xi and Yj. To extend to mul-
tiple sensors, only the local distance measure needs to be extended to calculate
the difference between the two vectors: Ni

X and N j
Y . There are several ways to

calculate distance: the Euclidean distance, Manhattan distance, Cosine correlation
coefficient etc [Web02]. For instance, local measures with Euclidean distance for
multisensor temporal sequences is defined as:

d(XN
i ,Y N

j) =

√
N

∑
n=1

WV (n)
(
Xi(n)−Y j(n)

)2 (4.8)

Derivative Dynamic Time Warping (DDTW)

The standard DTW often fails to find natural alignments in two sequences because
a feature in one sequence is slightly higher or lower than its corresponding feature
in the other sequence. This situation occurs in the sequence from the accelerom-
eter body sensor when the gesture is performed with different speed and power.
The reason is related to the characteristics of gesture sensor signals. Our body
sensor signals from the accelerometer produce a signal in which a feature (peak,
valley, inflection point, plateau, etc.) exists.

To solve this problem, we applied another variation called Derivative Dynamic
Time Warping (DDTW) [KP01]. DDTW finds more correct alignments in two
sequences in this situation. With DDTW the distance measure is not Euclidean
but rather the square of the difference of the estimated deprivates of xi and y j
. While there are sophisticated methods for estimating derivatives, we use the
following estimates for simplicity and generality:

D(xi) = ((xi− xi−1)+(xi+1− xi−1)/2)/2 (4.9)

where D(xi) is the estimated derivative of x iis the average of the slope of the line
through the point question and its left neighbor, and the slope of the line through
the left neighbor and the right neighbor. We pre-process data with smoothing filter
to reduce noise in data. Figure 4.6 shows the two different results of standard
DTW alignment and DDTW alignment in our analysis.

Figure 4.6: Signal alignment with DTW (Left) and DDTW (Right). Note that DDTW
provides more natural alignment in regions of high curvature.

55

Chapter 4 The Gesture Model

Relaxed Start-End Constraints

As described in the previous section, due to the start-end constraint, the warp-
ing path should start and finish in diagonally opposite corner cells in the matrix.
However, it is difficult to find the precise start and end points in continuous ges-
ture signals. Thus, the original DTW algorithm should be modified to consider
this problem. Our framework uses a variant that allows the start and end point to
fall in a defined region. Therefore, the warping path can start at the first point of
the prototype gesture sequence and within the start region of the test sequence,
and ends at the end region of the test template and last of point of the prototype
template.

Mahalanobis Distance

The final variation is to use a Mahalanobis distance [BB01]. The Mahalanobis
distance is a weighted Euclidean distance by the inverse of the covariance matrix.
This provides a statical measurement how well the unknown sequence matches
with the trained sequence set based on the distribution of the values.

DMahalanobis
i =

√
(X−µi)T ∑

−1
i (X−µi) (4.10)

where st is a point at a time step t and µt is the mean at the same time step
and represents the inverse of the covariance matrix of prototype. Please note that
the Mahalanobis distance is the same as the Euclidean distance if the covariance
matrix is the identity matrix.

4.5 HMM-based Gesture Modeling

There are many uncertainties when identifying gesture using sensors because there
are various errors in performing and measuring gestures. Stochastic modeling is a
flexible general method for modeling such problems. Hidden Markov Modelings
(HMMs) have been used to handle such a stochastic data problems associated with
time series. The most successful example is an automatic speech recognition. In
speech recognition, the states are determined indirectly from the speech signal
observations and commonly represent word or phonemes. Word and phoneme
models are then defined as a consecutive series of states. Our framework uses
HMMs to model 3D spatial gesture.

This section explains the fundamentals of HMMs and the basic tools in hidden
Markov modeling of gesture signals, (the forward-backward algorithm, the Baum-
Welch algorithm, and the Viterbi algorithm). Then we describe our 3D spatial
gesture modeling which is based on the structure of our gesture unit motion chunk.

56

4.5 HMM-based Gesture Modeling

4.5.1 Fundamentals of Hidden Markov Model

Markov Processes

There is often significant structure embodied in a 3D spatial gesture. The start
posture often greatly influences subsequent gestures. That is, a certain gesture
is followed by a certain posture and the probability of performing the gesture
depends very much on the posture that occurs before it. Our framework uses the
Markov process to describe some of the high probability structures preserved in
3D spatial gestures.

The Markov process is summarized by the Markov property - for any sequence
of time domain events the conditional probability density of a current event given
all the past and present events depends only on the most recent j events. This is
represented as follows:

P(Xt+1 = s jt+1|Xt = s jt ,Xt−1 = s jt−1, ...,X0 = s j0) =
P(Xt+1 = s jt+1 |Xt = s jt , ...,Xt− j+1 = s jt− j+1) (4.11)

Figure 4.7 shows an example of a Markov process where each state is indi-
cated by its circle. The graph visualizes a finite state machine that consists of
states, transitions and actions. Each directed line is a transition from one state
(i) to another state (j), whose probability is indicated by ai j alongside the line.
The transitions are normally represented by a simple probabilistic model while
the states generally involve more complex stochastic models. In an observable
Markov model, the states correspond to random processes whose outcomes are
directly observable.

Figure 4.7: An example of a Markov process. At each time step the state is changed with
a given transition probability ai j.

57

Chapter 4 The Gesture Model

Definition of the Hidden Markov Model

In the previous section, we presented that Markov models that are used for a study
of observed state outputs. However, such a model is applicable to many prob-
lems of interest. In a hidden Markov model (HMM), the output for each state will
be hidden (not observable) and can only be observed through another set of ob-
servable stochastic processes. Our framework uses HMM to model the changing
statistical characteristics that exist in the actual observations of gesture signals.

The state transition is a stochastic process and a sequence of hidden states is
inferred from the observed data. Each hidden state of the model is associated with
a set of output probability distributions, which is characterized by either discrete
probability distributions or continuous probability distribution functions.

As shown in Figure 4.8, HMMs is described in terms of two random processes.
The first process is a discrete-time Markov chain, meaning that the system is in
one of a finite number of states (s1, ...sN) at each time t = 1,2, The process
starts in one of these states and moves successively from one state to another.
The state change is determined by a set of transition probabilities (ai j) associated
with the current state. The second random process generates an output symbol
o ∈ {o1, ...,ok} at every time step, subject to a probability distribution bi, which
depends on the current state.

Figure 4.8: An example of Hidden Markov Modeling. A Hidden Markov Model consists of
two random processes: the first process is a Markov chain with a state transition
and the second process provides observable output symbols depending on these
hidden states.

We can describe the HMM formally with a set of notations. An HMM (λ) is
defined by the number of states N and three sets of probability distributions. The
states (Q) are simply labeled {1,2, ...,N} and the state at time t is denoted as qt .
There are three different probability distributions. First, an HMM includes the

58

4.5 HMM-based Gesture Modeling

initial state distribution, π = {πi}, where πi = P{qi = i}, 1 ≤ i ≤ N. The second
probability distribution is a set of state transition probabilities, A = {ai j}, where
ai j = p{qt+1 = j|qt = i}, 1 ≤ i ≤ N. qt denotes the current state. The third set
of distribution is an output probability in each of the states, B = {b j(k)}, b j(k) =
p{ot = vk|qt = j} ,1 ≤ j ≤ N, 1 ≤ k ≤ M, where vk denotes the kth observation
symbol in the alphabet, and ot the current parameter vector.

If the observations are continuous then we use a continuous probability density
function, instead of a set of discrete probabilities. In this case we specify the
parameters of the probability density function. Usually the probability density is
approximated by a weighted sum of M Gaussian distributions N ,

b j(ot) =
M

∑
m=1

c jmN (µ jm,U jm,ot) (4.12)

where c jm is the weighting coefficients, µ jm are mean vectors, and U jm are
covariance matrices. Figure 4.9 shows a one dimensional Gaussian mixture prob-
ability distribution function consisting of two single Gaussians (red and blue).

Figure 4.9: An example of two Gaussian mixtures. A Gaussian mixture probability dis-
tribution function is constructed from two Gaussian probability distributions (red
and blue).

Based on the notations described above, we can define a complete notation of a
HMM as follows: a HMM with discrete probability distributions,

λ = (π,A,B), (4.13)

and a HMM with continuous densities,

λ = (π,A,c jm,µ jm,U jm). (4.14)

Specification of an HMM involves the choice of the number of sates, N, the
number of discrete symbols L, and specification of three probability densities with
matrix form A, B, and π. A set of initial states QI and final states QF can also be
defined. Thus, transitions must start from one of QI and and end at one of QF .

Each HMM is made up of a number of states; the number of states per model is
another design decision, which needs to be made by the system designer. There are

59

Chapter 4 The Gesture Model

several types of HMMs with different constraints on the transition probabilities.
For instance, a left-right HMM has the property that limits state transitions only
to consecutive states. Figure 4.10 shows an example of the left-right HMM that
consists of four states without no backward transition. These left-right HMM
models have been widely used for speech recognition because of the relatively
short duration of phonemes and an underlying structure of language based on
phonetic ordering. Another example is a topology in which the states are fully-
connected, i.e. transitions may occur from any state. This type of model is known
as an ergodic HMM. In this case, any state is reached from any other state in a
finite number of steps.

Figure 4.10: An example of a left-right HMM that consists of four states. State transi-
tion is limited to the current state and the next state without having the backward
transition.

4.5.2 Motion Chunk based HMM
In our framework, HMM models general parameter changes over time through
the changes in gestural states. The meaning of the states themselves is not easily
defined from a perceptual standpoint, but they are common parameter combina-
tions derived from the gesture signal relating to aspects of the physical state of the
gesture at a given time. The state-to-state motion captures some of the enormous
variety of physical configurations involved in gesture.

In HMM-based gesture modeling, a gesture signal is viewed as a piece-wise
stationary signal or a short-time stationary signal. That is, one could assume ges-
ture is approximated as a stationary process in a short-time. Here, the power of
the HMM lies in the fact that the parameters that are used to model the gesture
signal is well optimized resulting in lower computational complexity in the de-
coding procedure as well as improved recognition accuracy. Furthermore, other
knowledge sources are incorporated by extending the structure of the HMM.

In an ideal case, the trained states need to be concentrated clusters of data in
the parameter space. Then, the state path is a good approximation to the actual
parameter trajectory, in which the estimated trajectory passes through the mean of
each state.

We apply the structure of the motion chunk to design the structure of the HMM
for 3D spatial gesture. To this end, five states left-right HMM so called motion
chunk based HMM is designed as illustrated in Figure 4.11. Intuitively our HMM

60

4.5 HMM-based Gesture Modeling

corresponds to one state for the transition into the gesture, one for the middle
part and one for the transition out of the gesture. The first sate and end state
are equivalent to the start-static chunk and the end-static chunk respectively. The
three in-between states are used for dynamic chunk features only. Each state in the
model corresponds to some part of the input gesture signal. Given a set of input
gesture sequences, we can train a gesture model on the data and then estimate the
conditional probability of an unknown sequence given the model.

S D1 D2 D3 E

Posture Model

Gesture Model

Figure 4.11: A five state left-to-right HMM with state transitions for 3D spatial gestures.
The gesture model is designed based on the motion chunk structure chaining to-
gether postures and gestures. Optionally, the three internal states of the dynamic
chunk are omitted for the posture model.

Static chunks are skipped by directly connecting a start state to an end state.
We use the two state HMM as posture model and the complete five state HMM
as gesture model. The five states might be linked in a chain where transitions are
only allowed to higher numbered states or to themselves. Alternatively, each state
might be all linked to all others, the so-called ergodic model. These two structures
are common but many other combinations are also possible.

Following the previous notation of HMMs, the posture model is represented by
the transition matrix A = {aS,S,aS,E ,aE,E}, the initial probability π = {πS}, and
B = {bS(O),bE(O)} for the observation probability distributions for each state
given the observation O = {OS,OE}. The main idea behind this design is that
the posture model, with two states, can be trained with two posture sequences
separately from the gesture model with five states. We apply this posture model
to the gesture registration process to detect input training gestures automatically.

The observation vectors for the motion chunk are the gesture features from
sensors. Since the observations are taken every window frame, each state will
correspond to one signal window, and state transition will occur at this rate. The
number of states was determined empirically by evaluating models with different
number of states (e.g. 3, 7, and 11) in terms of sampling speed and resolution.
5-state models were chosen qualitatively as a compromise between the divergent
goals of encompassing the wide variability of each motion chunk’s observed fea-
tures and limiting the computational complexity of the model.

We do not use the codebook approach used in speech recognition. The code-

61

Chapter 4 The Gesture Model

book approach is generated by the quantization process are constructed using
training data from all motion chunk templates. However, when a new motion
chunk is added, we need to reconstruct the codebook and retrain all system mod-
ules. With continuous observation densities provided by motion chunk states, we
do not need to train the system from the beginning, Since there is no codebook to
be constructed, we only need to train the newly added motion chunk.

4.5.3 Three Basic Problems of HMM
There are three fundamental problems associated with the use of HMMs [Rab89]:

• The evaluation problem for estimating conditional probability: Given the
observation sequence O = O1,O2, ...,OT , and the model λ = (A,B,π), the
problem is how to compute P(O|λ), the probability that this observed se-
quence is produced by the model. In other words, given a set of models
and a sequence of observations, how do we choose the model which best
matches the observations for the purpose of recognition.

• The decoding problem for finding the most likely state sequence: Calcu-
late the most likely sequence of HMM states for new observations given
a trained model, given the observation sequence O = O1O2 . . .OT , and the
model λ, how do we choose a corresponding state sequence Q = q1q2 . . .qT ,
which is optimal in some meaningful sense (best explains the observations).
This problem relates to recovery of the hidden part of the model.

• The learning problem for adjusting the model parameters: Given the obser-
vation sequence O = O1O2 . . .OT , how do we adjust the model parameters
λ = (A,B,π) to maximize P(O|λ). The problem concerns how to optimize
the model parameters so as to describe how the observations came about.

There are well established solutions to each of these problems. The following
sections will describe how we used an algorithm to solve each problem in our
framework.

The Evaluation Problem using the Forward Algorithm

The evaluation problem is to find P(O|λ) given a model λ = (π,A,B) and a se-
quence of observations O = O1,O2, ...,OT . We calculate the probability using
simple probabilistic arguments. But this calculation involves a number of opera-
tions in the order of NT for N states and T observations. This will be very large,
even if the length is of considerably low complexity, T is moderate. An efficient
algorithm for this problem is the Forward-Algorithm that has a considerably low
complexity and makes use of an auxiliary variable, αt(i) called the forward vari-
able.

62

4.5 HMM-based Gesture Modeling

The forward variable is defined as the probability of the partial observation
sequence O = O1,O2, ...,OT , when it terminates at the state i. Mathematically,

αt(i) = p{o1,o2, ...,ot ,qt = i|λ} (4.15)

Then it is easy to see that the following recursive relationship holds.

αt+1(j) = b j(ot+1)
N

∑
i=1

αt(i)ai j,1≤ j ≤ N,1≤ t ≤ T −1 (4.16)

where, αT (i),1≤ j≤N. Using the recursion we can calculate α1(j)= π jb j(o1),1≤
j ≤ N and then the required probability is given by,

p{O|λ}=
N

∑
i=1

αT (i) (4.17)

The complexity of this method, known as the forward algorithm, is proportional
to N2T , which is linear to T whereas the direct calculation mentioned earlier, had
an exponential complexity.

In a similar way we can define the backward variable βt(i) as the probability
of the partial observation sequence O = Ot+1,Ot+2, ...,OT , given that the current
state is i. Mathematically,

βt(i) = p{ot+1,ot+2, ...,oT |qt = i,λ} (4.18)

As in the case of αt(i) there is also a recursive relationship which can be used
to calculate βt(i) efficiently.

βt+1(j) = b j(ot+1)
N

∑
i=1

βt+1(j)ai jb j(ot+1),1≤ j ≤ N,1≤ t ≤ T −1 (4.19)

where, βT (i),1≤ j ≤ N. Further, we see that,

αt(i)βt(i) = p{O,qt = i|λ},1≤ j ≤ N,1≤ t ≤ T −1 (4.20)

This gives another way to calculate, by using both forward and backward vari-
ables.

p{O|λ}=
N

∑
i=1

p{O,qt = i|λ}=
N

∑
i=1

αT (i)βT (i) (4.21)

63

Chapter 4 The Gesture Model

The Decoding Problem and the Viterbi Algorithm

The state-path representation is central to this framework, as it compactly rep-
resents the essential dynamics of the gesture observations. The variation of pa-
rameters over time is reflective of the expressive characteristics of the gesture
performer. The hypothesis is that this representation will be rich enough to fully
encode the time-varying aspects of the gesture.

The decoding problem is to find the most likely succession of states, given a
sequence of observations O = O1,O2, ...,OT and the model probabilities A, B, and
π. There are multiple meaningful optimality criteria. The most popular is to find
the state sequence which maximizes P(Q|O,λ). This problem is solved with a
dynamic programming algorithm called Viterbi Algorithm. In order to facilitate
the computation, an auxiliary variable is defined as follows:

δt(i) = max
q1q2...qt−1

p{q1,q2, ...,qt−1,qt = i,o1,o2, ...,ot−1|λ}, (4.22)

which gives the highest probability that the partial observation sequence and state
sequence up to t=t can have, when the current state is i. It is easy to observe that
the following recursive relationship holds:

δt + 1(j) = b j(ot+1)
[

max
1≤i≤N

δt(i)ai j

]
,1≤ i≤ N,1≤ t ≤ T −1 (4.23)

where δ1(j) = π jb j(o1),1≤ j ≤ N. So the procedure to find the most likely state
sequence starts from calculation of δT(j), 1≤ j ≤ N using recursion in the previ-
ous equation, while always keeping a pointer to the winning state in the maximum
finding operation. Finally the state j∗, is found where

j∗ = arg max
1≤ j≤N

δT (j), (4.24)

and starting from this state, the sequence of states is back-tracked as the pointer in
each state indicates.This gives the required set of states.

This whole algorithm is interpreted as a search on a graph whose nodes are
formed by the states of the HMM in each of the time instant t, 1≤ j ≤ T .

The Learning Problem

Generally, the learning problem is to adjust the HMM parameters to determine
a HMM model for each gesture. We use the multiple observation sequences K
(training data), where P(O|λ) = ∏

K
k=1 P(O(k)|λ) is maximized and determine the

model parameters A, B, and π.
The quantity we wish to optimize during the learning process is different from

application to application. There may be several optimization criteria for learn-
ing, out of which a suitable one is selected, depending on the application. Two

64

4.5 HMM-based Gesture Modeling

main optimization criteria have been widely used in pattern recognition litera-
ture; Maximum Likelihood (ML) and Maximum Mutual Information (MMI). In
our framework, we use ML which maximizes the probability of a given sequence
of observations Og, belonging to a given gesture class g, given the HMM λg of
the class g. This probability is the total likelihood of the observations and can be
expressed mathematically as

Ltot = p{Og|λg}. (4.25)

There is no known way to solve this problem analytically. The most common
HMM training technique is an iterative method that finds a local maximum of
Ltot such as the Baum-Welch or Expectation-Maximization (EM) algorithm. For
these iterative algorithms, the choice of the initial parameters is important in order
to find the global instead of a local maximum. In our framework, we use EM
training algorithm to determine the model states according to the density of the
observations in parameter space.

4.5.4 Comparison between HMM and DTW

In this section, we summarize the concept of the Hidden Markov Model (HMM)
and the Dynamic Time Warping (DTW) used in our framework. As described
earlier, HMM is a statistical model of a sequence of feature vector observations.

The concept of HMM can be viewed as the integration of statistical methods
with the DTW technique which absorbs time variations of gesture signal patterns.
The HMM is a parametric modeling technique in contrast to the non-parametric
DTW algorithm. If the Viterbi Algorithm is used for decoding in HMM-based
gesture modeling, it is actually similar to the DTW algorithm. The difference is
that HMM uses the probability between the input and template model and DTW
computes the distance measure between two gesture signals.

This can be viewed as the information theoretic expansion of the distance to
a probability. For instance, DTW uses the frame distance d(xi,yi) as described
in the previous section. In HMM, instead of using the frame distance, it uses
probability Pr(xi|s j) which is a likelihood that the input frame xi is produced from
the template state s j. In addition, the use of the weight function w(k) to find a
warping path in DTW is considered as the transition probability from one state to
another possible state in the template.

In general, the HMM is used to build a probabilistic model of a sequence of
observations. The gesture template results in a sequence of states which have a
probability of emitting the input frame instead of a sequence of real data frames
used in DTW. In practice, the number of states should be reduced efficiently but
this is a trade off between obtaining the probabilistic model and losing the time
information in the template. For example, if the number of the states is reduced to
one, the final model considered is a single Gaussian model. Therefore, the HMM

65

Chapter 4 The Gesture Model

can be seen as an extension of the simple Gaussian model which combines the
probabilities of a sequence of observations into an overall probability score.

4.6 Gesture Registration
While there are a number of approaches to recognize gestures, the available ges-
tures are mainly designed to show the performance of the proposed techniques
for gesture acquisition and recognition. In our framework, the gesture model is
designed to support users registering spatial gestures. Therefore, users can design
gestures in a systematic way, and test many of them for target applications in a
short period improving the usability.

In general, gestures available in the system are categorized into groups (pre-
designed and user-designed). Pre-designed gestures are provided by a system
developer. During the system development, gestures are designed with a set of
gesture principles and standards that are proved by gesture experts. In this case,
end-users are required to learn the pre-designed gestures. They have to spend time
to practice and memorize the gestures before the gesture interface is really usable
to them. This learning process is an explicit upfront burden when the required
gestures are complex. On the other hand, end-users can design their own gestures.
This user-centered approach minimizes the gesture learning time by asking them
to register their own gestures before using the interface.

In our framework, there are two separate steps with which end-users can follow
to register individual 3D spatial gestures: a posture registration step and a gesture
registration step as illustrated in Figure 4.12. Following these two steps, the HMM
for the registered gestures is trained using the recorded samples.

During posture registration, users are asked to provide the start posture and the
end posture for a certain time period (2 or 3 seconds). The posture data is used
to adjust the parameters of the posture HMM model as explained in the previous
section.

Once the posture model is trained, the system employs it to automatically dis-
criminate training gestures from arbitrary input gestures such as recovery gestures
or rest gestures. The detection is accomplished if P(OS,OE |λ) is above a certain
threshold (typically 90%). This approach significantly simplifies the user’s effort
to manually segment and detect training gestures. The posture model is stored and
activated whenever the user adds new training data as long as the posture model
remains unchanged.

4.7 Gesture Recognition
Gesture recognition identifies a type of gesture performed by a user. Depending
on the signal, the system chooses the gesture template that most closely matches

66

4.7 Gesture Recognition

P
o

s
tu

re
R

e
g

is
tra

tio
n

5
-H

M
M

T
ra

in
in

g

G
e

s
tu

re
R

e
g

is
tra

tio
n

S

2
-H

M
M

T
ra

in
in

g
•

D
e

te
c

tio
n

•

E

Posture Registration

Gesture Registration

Figure 4.12: An overview of our gesture registration process which consists of posture
registration (top) and gesture registration (bottom). In the posture registration, the
two-state posture HMM model is trained using a start posture and an end pos-
ture. The gesture registration uses the trained posture model to detect meaningful
gestures from arbitrary gestures and trains the full 5 state gesture HMM model.

the input gesture. Simple gestures are easily distinguished by the values of the
sensors. However, complex 3D spatial gestures are harder to identify.

In this framework, we developed two different algorithms for gesture recogni-
tion: the DTW recognizer and the HMM recognizer. The main idea is to develop
a gesture interface which is more accessible to end-users. For instance, the DTW
recognizer allow us to use the system with only a single training data.

When more gestures are provided during usage, the HMM recognizer is trained
according to the provided gestures. This way, the HMM recognizer is continually
trained in an on-line manner, resulting in a user-specific recognizer without an
explicit intensive pre-training phase. Using the HMM recognizer, gesture recog-
nition is viewed as a problem of probabilistic inference. The system is more robust
in different gesture performances and noisy sensor measurements.

4.7.1 The DTW recognizer
Once the gesture templates are prepared for the DTW recognizer, recognition is
achieved by the DTW. DTW computes similarity between the multisensor tem-
poral sequences in the database of gesture templates and the other multisensor
temporal sequences segmented from the collected multisensor data. The type of
input gesture is selected by the template that minimizes the overall distance to the
input gesture.

67

Chapter 4 The Gesture Model

The accuracy of the DTW recognizer greatly relies on the quality of gesture
templates. In the presence of noise, DTW might fail to measure the correct simi-
larity between two sequences, since DTW tries to match all elements between the
two sequences. To eliminate this problem, the system should provide a suitable fil-
ter to reduce noise and outliers. In addition, we also have to normalize sensor data.
Normalization is typically performed by integrating vector components of varying
dynamic range. If some vector components have a variance that is significantly
higher than the variance of other components, those components will dominate
the results of the local distance measure. Some common normalization methods
have been investigated to normalize the dynamic ranges of the vector components
in the interval (0, 1) such as Variance normalization, Min-Max normalization and
Softmax normalization.

The templates are set either by an end-user or a gesture designer. The created
gesture templates by the end-user are more reliable than the pre-defined templates
because the templates preserve some unique characteristics of the user. On the
other hand, gestures can be designed for specific application domains (e.g. reha-
bilitation).

Assume we have N gestures, Gn, 1≤n≤N. Given our motion chunk representa-
tion we obtain the following three DTW distances from the three chunks for each
template: Dn,S for the start chunk, Dn,D for the dynamic chunk, and Dn,E for the
end chunk. Our decision rule is simply:

ˆnDTW = argmin
n

[Dn,SDn,DDn,E] (4.26)

We use a set of three full chunks for distance computation because gestures usually
exhibit a higher variability than postures. Our framework actually supports two
different types of DTW recognizers depending on the number of templates: a
single template DTW (SDTW) and a multiple-template DTW (MDTW). The main
idea behind the MDTW is to improve the recognition rate by accommodating
the variations between multiple templates. Since the multiple-template approach
is computationally more expensive, it is necessary to find an optimal number of
templates. In practice, three templates are sufficient in our tests.

When multiple template datasets are available, there are three different ways
to prepare templates. First, we can compute the intra-class DTW distance that is
the sum of DTW distances between a template dataset to all other datasets within
the same gesture type. The one with the minimum intra-class DTW distance is se-
lected as the gesture template. Second, a gesture template is prepared by averaging
the available multiple datasets. However, it is non-trivial to average a collection of
time series that are not perfectly time-aligned. Finally, multiple datasets are used
for each gesture. Then we need to compute the distance for each dataset and com-
bine the results. This method usually achieves better recognition rates than when
using only a single dataset. However, this method is computationally inefficient
because it increases the number of distance computations.

68

4.8 Gesture Evaluation

4.7.2 The HMM recognizer
The HMM recognizer was designed as an alternative to find the best matching
gesture among the gesture templates. During the training phase, an HMM λn is
built for each gesture Gn. Then, for each unknown gesture, the model computes
the likelihoods for all possible models P(O|λn), 1≤n≤N and selects the gesture
Gn̂ with the highest model likelihood i.e.,

n̂H = argmax
n

[Pr(O|λn)] (4.27)

While we generally recommend to utilize the five state HMM for recognition
given the observation sequence O = {OS, OD, OE}, the posture model with two
states can in principle be applied as well. This is useful in cases where the dynamic
chunk observations OD are highly variant.

4.8 Gesture Evaluation
The gesture evaluation measures the similarity between two gestures using the
similar techniques used in gesture recognition. The main task is to compare an
input gesture to a template gesture that is performed by the same or different user,
and determine how both performances are different. The result is used to improve
user performance or to correct wrong gestures.

The evaluation process in our framework consists of both posture evaluation
and gesture evaluation. We make the gesture instruction process similar to the
practical motion training where users learn postures then perform gestures by
connecting individual postures. Since posture and gesture co-occur, the coordi-
nation between postures is important for improving the efficiency of the gesture.
The separation of postures and gestures helps users learn a complicated 3D spatial
gesture in a systematic way.

We compute three distinct scores for the start static chunk, the dynamic chunk,
and the end static chunk each. The evaluation of two static chunks measures how
the start and end postures have been performed respectively. The evaluation of the
dynamic chunk expresses how the gesture is performed, with respect to power and
speed. Currently, the result of evaluation is a simple numerical score. We compare
the input gesture with multiple reference templates stored in our database and take
the minimum distance as the final score. In practice, the minimum distance is
better suited to measure quality than mean or median. The scores are normalized
to a maximum value of 100 and displayed on the screen in real-time.

69

Chapter 4 The Gesture Model

70

Chapter 5

Experimental Evaluations
We conducted experimental evaluations to validate our framework in terms of ges-
ture recognition (Section 5.1) and gesture instruction (Section 5.2). In these ex-
periments, we analyze several issues to robust 3D spatial gesture interfaces and
minimize operational errors against mis-recognition and mis-instruction. Mis-
recognition occurs various reasons such as poor performance of gestures, insuf-
ficient training data for the gesture model, and poor design of gestures. Because
of mis-instruction, it is difficult for users to know which gesture is for a certain
operation and how the gesture should be performed. The system should inform
users a set of available gestures in the gesture interface and the operations that can
be controlled by the gestures.

5.1 The Gesture Recognition Task
In this task, we analyze the performance of our recognition methods (DTW rec-
ognizer and HMM recognizer). We focus on the single hand gestures as shown
in Figure 5.1. We designed 18 different spatial gestures for the experiment. We
compare recognition rates of our DTW and HMM recognizers under various con-
ditions such as different user positions and orientations. We analyze robustness
and invariance of gesture features and issues of human variability in performing
3D spatial gestures. We compare recognition rates for the user-dependent (D) and
the user-independent (I) model.

5.1.1 Process
Our gesture vocabulary consists of 18 different 3D spatial gestures categorized
into three style groups: planar-style, curved-style, and twisted-style. Figure 5.2
illustrates the example gestures with different sequences from simple to complex
and different lengths from short to long.

Two subjects (male and female) were hired for our experiments. Each subject
wore the mWire on the right wrist in the wristwatch fashion and wore the LED ring

71

Chapter 5 Experimental Evaluations

Figure 5.1: An example of the performance of a 3D spatial gesture. A user wears the 3D
input device mWire on the wrist. Four images show the sequence of performing a
3D spatial gesture from start posture to end posture.

on the index finger as illustrated in Figure 5.1. 2-dimensional accelerometer data
was used to compute invariant body sensor features, and the relative 3D positions
(rx, ry, rz) of the index finger tip were used as visual feature. The overall ges-
ture vocabulary is demanding and poses a significant challenge to any recognition
method.

Each gesture in our gesture vocabulary is repeated twenty times by the two
subjects. Each subject was shown the gesture diagrams and was instructed in terms
of gesture direction and gesture volume relative to their body size. After some
practice, each subject was asked to perform the gestures in the same position. In
addition, two other independent test datasets for translated (shifted) position and
rotated position were acquired and utilized to test the invariance of the recognition,
as illustrated in Figure 5.3. Our camera setup provides the active volume and
distance (about two meters) regarding shift, and to the maximum rotation angle
(60◦). We used leave-one-out (LOO) cross validation to compute the recognition
rates.

5.1.2 Results
The results of our experiments are given in Table 5.1. Overall, the five-state HMM
with combined visual and body features performs best and achieves the highest
recognition rates in all three user positions. We also compared the recognition per-
formance for visual-only (V) and body-only (B) with those for combined visual-
body (VB) features. As expected, the body-only features outperformed signifi-
cantly the visual-only features in the rotated-position, reaching in a 15.9% error
rate reduction. Conversely, and as expected, the visual sensor features perform
better than the body sensor featuresfor shifted positions. This confirms our design
decision to achieve both rotational and translational invariance by combining both
features.

It is interesting that the visual-only features also gave relatively good recogni-

72

5.1 The Gesture Recognition Task

Figure 5.2: 18 gesture diagrams, with a box style 3D gesture volume, were used in our
experiment. The 18 gestures are categorized into three style groups: (a) planar-
style, (b) curved-style, and (c) twisted-style. The line indicates the trajectory of
the gesture and the end of the gesture is illustrated by the arrow. The hand symbol
uses black to indicate palm-down and white for palm-up. Note that some of the
curved and twisted gestures are rather complex.

73

Chapter 5 Experimental Evaluations

Figure 5.3: The three different user positions to acquire test data: (a) same (initial) posi-
tion, (b) shifted position, and (c) rotated position. The gesture volume indicates
the scale of the gestures relative to the body size.

tion results (60.0%) despite a 60◦ rotation. This can be attributed to the rz coor-
dinate which is not very much affected by the rotations. By combining body and
visual features, we achieved very good results in all three positions, given the size
and complexity of our vocabulary. We can also see that the body features are not
fully invariant with respect to shifted and rotated positions. During acquisition,
subjects were requested to randomly change their positions in short time intervals
to create more realistic situations. This added some additional variation to their
gesture performances.

We carried out additional experiments to test the effects of gesture scale on
recognition performance. A change of scale usually occurs when users become
familiar with the the gestures. Users typically start with bigger gestures trying to
conceive and learn hand-eye coordination. Later, gestures become more economi-
cal and smaller in size. Here the combined body and visual features are particulary
useful because the visual features become somewhat less informative for smaller
gesture volumes.

Even though the HMM recognizer is best, the result of the DTW recognizer is
good considering the required number of training data. It is important to consider
that we used twenty training datasets for the HMM recognizer, and only a sin-
gle dataset for the single template DTW, and three training data for the multiple
template DTW. The multiple template DTW, with three templates, outperformed
the single template DTW. Thus, it is better to switch to a multiple template DTW
when multiple training data is available. We tested different numbers of templates
and found that three templates provide very good results and is a well-balanced
trade-off between the computational costs and the recognition accuracy.

To analyze the performance variability between two subjects, we compared a
user-dependent model (D) and a user-independent model (I) in terms of three dif-
ferent gesture styles. Table 5.2 illustrates the result of recognition accuracy in the
“same position” data set. While the recognition rates of the user-dependent model

74

5.1 The Gesture Recognition Task

User Position same shifted rotated overall

V-5SHMM 96.0% 88.2% 60.0% 81.4%

B-5SHMM 94.5% 85.2% 75.9% 85.2%

VB-5SHMM 95.4% 93.1% 86.3% 91.6%

VB-SDTW 89.2% 86.7% 78.2% 84.7%

VB-MDTW 91.4% 89.3% 85.6% 88.7%

Table 5.1: A comparison of the user-dependent gesture recognition rate at three differ-
ent user positions (same, shifted, and rotated) using an HMM with five states
for visual-only features (V-5SHMM), and an HMM for body-only features (B-
5SHMM), and an HMM for visual-body features (VB-5SHMM), the DTW with a
single template for visual-body features (VB-SDTW), and the DTW with multiple
templates (three) for visual-body features (VB-MDTW).

in both the HMM recognizer and the DTW recognizer are over 90%, the recog-
nition rates of the user-independent model is below 50%. This is mainly due to
the difference in the gesture performance between users which is caused by vari-
ous factors such as different physical conditions and different intepretations of the
gesture diagrams. Therefore, it is highly recommended to enable users to register
3D gestures in their own styles when developing 3D spatial gesture interfaces.

In addition, we found out that the illustration of 3D spatial gestures plays an
important role in minimizing the human variability and improving the recogni-
tion rates. As shown in Table 5.2, the recognition rate of the planar-style ges-
tures and twisted-style gestures are far superior to the curved-style gestures. The
main reason is that our gesture diagrams for the curved-style (Figure 5.2-b) do
not indicate the hand face (palm-down and palm-up) and the rotational direction
of the hand in contrast to the twisted-style diagrams (Figure 5.2-c). Therefore,
two subjects spontaneously turned their hand in different positions when perform-
ing the curved-style gestures. However, even though the planar-style diagrams
(Figure 5.2-a) do not illustrate the hand face and its rotation either, both users
performed the gestures with the palm of the hand in the correct position.

A trade-off exists between the generalization of the system to different users
and the specialization to a certain user. Due to the different habits of the users,
the differences in performance of the same gesture by different users (in-class
difference) may overrun the differences between different gestures by the same
user (between-class difference). In practice, this is often the main reason for mis-
recognition. Users either find two gestures indistinguishable to them, or they com-
plain they cannot correctly recognize gestures. Thus, the system’s performance is
heavily dependent on the user’s learning skills.

75

Chapter 5 Experimental Evaluations

Gesture Type planar curved twisted overall

V-5SHMM(D) 92.6% 97.2% 98.2% 96.0%

B-5SHMM(D) 88.0% 97.2% 98.2% 94.5%

VB-5SHMM(D) 90.8% 97.2% 98.2% 95.4%

VB-MDTW(D) 88.5% 92.2% 93.7% 91.4%

V-5SHMM(I) 62.1% 18.3% 55.6% 45.3%

B-5SHMM(I) 55.0% 20.5% 53.1% 42.9%

VB-5SHMM(I) 69.8% 20.5% 60.7% 50.3%

VB-MDTW(I) 61.7% 25.7% 63.7% 50.3%

Table 5.2: A comparison of the gesture recognition rates at three different styles of 3D
gestures (planar, curved and twisted) with a user-dependent model (D) and a user-
independent model (I) with both DTW and HMM recognizers.

5.2 The Gesture Instruction Task
This section reports the experimental evaluation on the task of gesture instruction.
We quantify the costs and benefits when using our gesture acquisition methods for
learning new 3D spatial gestures.

5.2.1 Overview
Figure 5.4 shows the conceptual overview of the system that includes two types of
users: trainee and trainer. Trainees create new gestures and register them to the
system. Trainers learn the gestures by using the system. They observe the sensor
data of the performed gestures and correct their gestures by comparing them with
the trainer’s data. The trainers’ gestures can also be registered to the system. To
this end, a 3D spatial gesture database can be constructed both from the trainers
and the trainees.

Figure 5.4 shows how visual sensors and body sensors are used for gesture in-
struction. Our framework captures gestures wirelessly so that users can freely
move and perform gestures within the interaction area. The body sensor precisely
measures the tilt detection, movement, and vibration of the body parts. The ac-
celerometer on a trainer’s wrist provides precise tilt angles of the hand.

Visual sensors provide the images of the users, in real-time, like a mirror in con-
ventional training places. The acquired images are recorded and combined with
additional gesture information (visualization of body sensor data) to create a mo-
tion training video. Trainers and trainees can analyze their motions by watching

76

5.2 The Gesture Instruction Task

Figure 5.4: Conceptual overview of gesture instruction scenario. During the gesture in-
struction, two types of users (trainers and trainees) construct a 3D spatial gesture
database. Visual and body sensors are used for gesture instruction (gesture analy-
sis and generation of motion training video).

a hybrid representation of visual and body sensor data. In addition, the system
automatically generates a motion training video using the captured image frames
by cameras.

5.2.2 Motion Training Video
A motion training video is necessary for trainees and trainers as a reference to
observe and analyze motions. However, producing such a video takes a lot of
time. It requires simultaneous video recording during the trainer’s performance.
In addition, the captured videos need editing for motion training (selecting video
frames and adding explanatory information).

Using the framework, we developed a method for the automatic generation of
motion training videos. Figure 5.5 shows the pipeline for generating a motion
training video using the visual and body sensor data. The training video is gener-
ated along with the gesture processing pipeline in the framework.

In a real time gesture instruction system, one challenge is to continuously cap-
ture and process human gestures. The generation of a training video uses the ges-
ture representation and recognition techniques of our gesture processing frame-
work. The gesture is segmented and represented using a flexible segment unit,
motion chunk. Motion chunk allows us to store structured gesture information
and manage it in a systematic way for gesture instruction.

The position of the body sensor is tracked on the acquired video frames in real
time. We use colored LED markers whose brightness provides easy tracking in
indoor environments and a simple vision tracking algorithm to find the pixel posi-
tions within a certain color and brightness range. While in the previous experiment

77

Chapter 5 Experimental Evaluations

Figure 5.5: A pipeline for generating gesture training video using visual and body sensors.
The training video is generated along the gesture processing pipeline, and addi-
tional information such as body sensor data is visualized on the images along the
gestural path.

one LED is attached on the finger tip, in this experiment four LEDs are used at the
four sides of the wrist bend. We can detect at least one point reliably even when
the users perform gestures with their fist and when the hand is rotated in different
directions. Figure 5.6 illustrates four cases where one, two, and three points are
detected respectively. We use the center of the detected point as the position of
the body sensor.

As soon as the input gesture is recognized, we save both the relevant video
frames and the body sensor data. Then we generate a gesture training video that
includes the visualization of body sensor data along the tracked sensor positions
as illustrated in Figure 5.7. We used the tracked sensor positions and designed a
simple template to display a moving circle along the gestural path. The circle size
is changing as a function of the magnitude of the acceleration.

There are various design alternatives by using various shapes and the rules for
shape transformation. Visual feedback helps users explain and improve their ges-
ture performance. Users see how the body sensor data is changing with the ap-
pearance of their posture. Especially for the trainees, the body sensor data helps
significantly in understanding a dynamic gesture between two static postures.

78

5.2 The Gesture Instruction Task

Figure 5.6: Four different situations occurred during body sensor tracking with visual sen-
sors. Note that even when the hand is rotated, at lest one of the LEDs is visible on
the camera images.

Figure 5.7: A visual feedback of accelerometer sensor data in video images. A circle is
drawn on the position of the body sensor - its scale varies depending on the mag-
nitude of the acceleration.

5.2.3 Process
We used a martial arts training scenario. Martial arts training is well suited to our
experiment because it includes highly complex, precise motions which contain
both postures and gestures. For this experiment, we hired a trainer who is a master
of Taekwondo and six additional subjects as trainees, three male and three female,
all of them having no experience in martial arts training.

We designed separate tasks for the trainers and for the trainees. The task of the
trainer was to design and produce the referenced gesture data model for 10 sets
of five gestures each (punch, outside block, upper block, inside block, and down
block). This model was later used by the trainee. Subsequently, each trainer was
asked to perform 5 sets of 10 outside-blocks for testing gesture evaluation meth-
ods. The rest time between each set was two hours, and each set was repeatedly
performed 10 times without resting.

For the trainees, we designed two basic learning conditions: posture learn-
ing and gesture learning. The task of posture learning was to learn the start and
end postures of the five motions. The middle-gesture learning allowed for the
practicing of individual gestures between the start posture and the end posture.
In posture learning, the trainees were told to perform four postures three times
each while watching a reference image without resting. We measured how long it

79

Chapter 5 Experimental Evaluations

Figure 5.8: Gesture instruction system in action. The trainee wears body sensors on the
wrist and performs a gesture watching the visual feedback on the wall display.

took to learn to match their postures to the trainer’s average roll and pitch values.
Among the five motions, we selected the punch which is relatively easy for teach-
ing novices to use the system. The end posture of the punch is also employed
as the initial posture for the trainee. We designed a simple progress bar which
provides Boolean feedback to indicate whether the current posture is correct.

In gesture learning, we evaluate how trainees perform a single gesture in rapid
succession of the start posture, the middle-gesture, and the end posture. Each
trainee was told to do an outside block gesture. Before this, they had to learn the
start and end postures of the block gesture. In our training scenario, we utilized
the trainer’s reference data to train the HMM. Thus, trainees first had to learn the
required start and end postures so that their gesture could be detected. This usually
took several minutes. This process is similar to the practical training and thus, it is
not considered as an additional, unnecessary step to prepare the system. We eval-
uated each gesture based on the trainers’ data from the previous experiment. From
the first posture training experiment, we found that the outside block is the most
difficult movement and is appropriate for using in the gesture training. Again,
trainees were asked to perform 3 sets of 10 outside-blocks with approximately
two hours between each set. All subjects were give time to become familiar with
the new training devices, the wireless accelerometer worn on the right wrist, and
the video projection.

5.2.4 Results

We collected the trainees’ performance data for each of the tasks. For the trainer’s
task, we found that the trainer completed nearly all the tasks correctly. Thus, we
could use the time to complete the task as an overall performance measure for

80

5.2 The Gesture Instruction Task

30

40

50

60

70

80

90

100

first set second set third set fourth set fifth set

Number of Sets

A
v

e
ra

g
e

S
c

o
re

(1
-1

0
0

ra
n

g
e

)

overall scores

start posture

dynamic posture

end posture

gesture score

end-posture score

start-posture score

overall score

Figure 5.9: Experimental results of a trainer subject during gesture learning: average
scores of two postures and one gesture and their overall score after five sets of
10 outside blocks.

potential trainers. It only took the trainer 10 minutes to create the 10 reference
sets of the five motion data. From this, we obtained 50 motion training videos (10
for the five motions) containing both body and visual sensor data as well as visual
feedback. The motion training video generation was performed very well with the
help of automatic motion detection.

Figure 5.9 shows the average scores after the trainer’s gesture learning. Each
gesture performed was scored against three parts: start posture, gesture, and end
posture. The overall scores were calculated by averaging the three scores. We
can see how the trainer improved after 5 sets of 10 outside blocks each. While
the scores of the end postures are constant, the scores of the start postures and
the gestures change slightly over time, indicating the adaptation to the reference.
After interviewing the trainer, we realized that the end posture scores slightly
decrease, because the trainer focused more on the gesture and spent less effort on
the postures. We also inferred that gesture learning bears more potential for further
improvement than static posture. Even though the trainer masters the postures, it
is very difficult to keep the right postures during the dynamic performance - a skill
that distinguishes masters on the highest level. This shows that the resolution of
our gesture evaluation is sufficiently high for evaluations on the highest level and
that it can be used to practice gestures with self-created reference data.

The results of the posture and gesture learning clearly demonstrates that the
system helps trainees learn complex martial art postures in a short time period.
As illustrated in Figure 5.10, watching the body sensor signals helps trainees
or trainers to find the correct postures. After this experiment, we compared the

81

Chapter 5 Experimental Evaluations

individual postures and realized that some postures are relatively difficult to learn.
We found that if the further away the sensors are from the trainee’s body, the more
difficult it is to repeat a constant posture.

The gesture learning experiment of the six subjects yielded interesting results as
shown in Figure 5.11. Similar to the trainer’s experiment, the static posture scores
are higher on average than the gesture scores. Interestingly, we found that there
were three different styles. Trainee 1 and trainee 2 focused on improving gestures.
As a result their start postures got worse over time. On the other hand, trainee 4,
trainee5 and trainee6 focused their attention on improving their static postures
rather than on their dynamic gestures. Finally, trainee 3 improved both postures at
the same time - which is clearly the desirable case. Even though the trainees knew
the start and end postures, it was difficult for them to correctly perform motions in
the dynamic setting. We also felt that the male subjects used more power in their
movements, whereas the female subjects focused more on technique. However,
this finding did not influence the results significantly.

During the experiments, we collected user reactions and received many com-
ments. Some users felt that our evaluation methods could be useful for computer
games related to sports and martial art sparring. They suggested that using real
motions would make the interactions in playing computer games more appealing.
Some participants got very involved in the training and took their performance
seriously. As one participant commented: “The system helps me to focus my at-
tention on precise my body movement.” Most of people asked to use the system
on a regular basis. Since we used low cost technologies, the system can easily
be tailored to a personal training system. We also let some participants play with

0

5

10

15

20

25

30

first test second test third test

Number of Tests

A
v

e
ra

g
e

T
im

e
(S

e
c

o
n

d
)

25.5

18.7 18.5

Figure 5.10: Experimental results of the trainee subjects in posture learning: average time
in seconds to complete the posture learning task for four different motions. Note
that the first and the last experiment use only a Boolean feedback to indicate
whether the current posture is correct or not.

82

5.2 The Gesture Instruction Task

30

40

50

60

70

80

90

100

first set second set third set

30

40

50

60

70

80

90

100

first set second set third set

30

40

50

60

70

80

90

100

first set second set third set

30

40

50

60

70

80

90

100

first set second set third set

30

40

50

60

70

80

90

100

first set second set third set

30

40

50

60

70

80

90

100

first set second set third set

trainee 1 trainee 2

trainee 3 trainee 4

trainee 5 trainee 6

Figure 5.11: Experimental results of the trainee subjects for gesture learning: average
scores of two postures and one gesture and their overall score after doing three
sets of 10 outside blocks. The legend is the same as in Figure 5.9

the system due to their interests. In order to test long term training progress, we
continued some experiments for a while. Although some users had lower initial
scores compared to last time, they quickly caught up and made progress.

83

Chapter 5 Experimental Evaluations

84

Chapter 6

A Spatial Context Aware
Gesture Interface

In the previous chapters, we described the gesture acquisition and modeling used
in our framework and presented the results of experimental evaluations. We show
how the proposed framework can be used to develop gesture interfaces. This chap-
ter presents a spatial context-aware gesture interface that improves the usability of
gesture-based inputs by combining gesture information with additional context
information.

There is a large amount of research dedicated to studing the use of context infor-
mation in human computer interaction. Obviously, it is a far-reaching and difficult
goal to define the general application of the context information to the design of
gesture interfaces. Here, we focus on specific context information which is related
to spatial objects of gestures (locations and objects of a gesture) easily featured
together with 3D spatial gestures. We call this particular context information spa-
tial context. Using spatial contexts, we aim to reduce the recognition error and
improve the usability of gestures.

This chapter is structured as follows: after a short overview of the architec-
ture of context model (Section 6.1), we present the spatial context model which
supports registration and selection of spatial contexts (Section 6.2). Then Sec-
tion 6.4.2 explains how a gestural command is recognized using the selected spa-
tial contexts. Dynamic Bayesian Network (DBN) is developed to integrate the re-
sult of the gesture recognizer with other context information for command recog-
nition. We developed two prototype applications which use 3D spatial gestures to
control functions embedded with physical objects (Section 6.4).

6.1 Overview
Figure 6.1 shows the overall architecture of our spatial context-aware gesture in-
terface for two major tasks: spatial context modeling and command interpretation.
Acquired sensor data is forwarded from the gesture acquisition module.

85

Chapter 6 A Spatial Context Aware Gesture Interface

Figure 6.1: An overview of a context-aware 3D spatial gesture interface. Using the ac-
quired sensors data, we represent the spatial context model with spatial objects
such as gesture target and volume. Next, the spatial context is registered and se-
lected based on this representation. To interpret gestural commands, the output of
gesture recognition and the context selection are combined within the pre-defined
BN or DBN.

The spatial context model handles the abstraction and registration of the context
data using two types of spatial objects: gesture volume and target. The current
status of spatial objects is traced with the performed gestures. The spatial context
model provides an efficient way of extracting and retrieving the gesture volume
and target. Therefore, system developers can register their own spatial objects and
test different configurations in their applications. The command interpretation is
accomplished by combining a list of the current context values and the recognized
gestures using the gesture model.

6.2 Spatial Context Objects: Gesture Targets
and Volumes
In general, the collection of implicit contextual information through available re-
sources is a major challenge in the development of context-aware applications.
For the application designer, it is important to decide what context information is
relevant to the applications and then test it. The ultimate goal is to improve the
usability of the application by optimizing the context information. We focus on
the problem of defining the contextual information as it relats to specific gesture

86

6.2 Spatial Context Objects: Gesture Targets and Volumes

information called the spatial information.
As mentioned in Section 2.1.2, spatial information is one of the four aspects

of gesture as proposed by Hummels and Stappers [HS98a]. 3D spatial gestures
usually relate to objects and locations. The relevance of objects and locations is
a key idea in using context information for 3D spatial gesture interfaces. Based
on this observation, we defined two types of spatial objects for 3D spatial gesture:
gesture targets and gesture volumes.

Gesture targets are physical objects which users can select by moving a gesture
input device close to an object or pointing it at an object. They can be physical
or virtual objects. Gesture volumes are interaction zones where a set of gestures
are planned for the application. Using gesture volumes and targets, we can de-
fine gesture candidates during gesture recognition. Therefore, we can minimize
the computational complexity by only processing associated gestures within the
current contexts.

For instance, kitchen space can be defined as gesture volume and the individual
components in the kitchen, like a microwave and a refrigerator, can be defined as
the gesture target. During the system design, application developers define gesture
targets and volumes while considering their design policy about using gestures
with the related locations and objects.

6.2.1 Registration
In our framework, spatial context objects are represented as a three-dimensional
Gaussian blob with mean µ and covariance Σ as the center and shape of the object
as shown in Figure 6.2. These Gaussian blobs are modeled and registered based
on a series of 3D positions that users provide during the system setup.

In Figure 6.3, a user is registering the 3D position of an object. A user simply
locates the device at the position of the object, and registers it by pressing one
of the pressure buttons while holding the device on the object’s position. The
bright color LED of the device allows accurate tracking in various background
conditions. We call this direct registration touching. Touching enables users to
register the position of the object from the actual position of the object. However,
this technique is only available when the object can be reached by the hand inside
of the camera volume (i.e. the object should be visible on both camera images).

We use another technique called pointing as proposed in Wilson [WS03]. This
pointing technique allows registration when the target objects are outside of the
camera volume or when the users cannot reach the position of the target object.
For instance, as shown in Figure 6.4, when a user wants to register objects on the
wall that can’t be captured with the current camera setup, then the user can use
this pointing technique.

The main purpose is to find the object location by computing the intersection
of the multiple pointing rays wi from different locations pi. We can find the co-
variance of the object µ by solving the linear system of equations via least squares

87

Chapter 6 A Spatial Context Aware Gesture Interface

Figure 6.2: Representation of spatial objects. Each object is modeled as a 3D Gaussian
distribution with mean µ and covariance matrix Σ with a center point c j, a distance
d j and a variance σ2

j .

Figure 6.3: Registering an object using touching. A user is locating a gesture input device
(mWire) at the location of the object and registering the positional data to the
system by pressing the button of the device.

which can be represented as:

pi + siwi = µ (6.1)

where pi is the device position and wi is the pointing ray for the ith pointing
observation, and the distances si to the object are unknown.

The covariance matrix Σ can be computed by summing up the spread of the
differences between calculated target location µ and its estimates pi + sidi and
adding some minimal covariance Σ0 i.e.,

Σ = Σ0 +(pi + sidi−µ)(pi + sidi−µ)T (6.2)

88

6.2 Spatial Context Objects: Gesture Targets and Volumes

Figure 6.4: Registering a spatial object using pointing. A user is performing multiple
pointing gestures to the same object from different locations.

The pointing direction should be accurate for increased pointing accuracy. Cur-
rently, we use the prototype input device mWire by connecting two LEDs to the
mWire (one n the index finger and another on the wrist). Given these two 3D posi-
tions, we compute a pointing direction. The accuracy in pointing highly depends
on the accuracy of the tracking of the two LED positions.

This method is improved using different input mechanisms. For instance, we
can use a 6-DOF input device like a 3D mouse that can provide more accurate
orientation information even though it is not a wireless device. In addition, as
described in Section 3.2.2, we can derive the orientation of the device by combin-
ing the digital compass and accelerometers. This approach was used to develop
mCube, a versatile gesture input device that will be explained in Section 7.2.

6.2.2 Selection
When the spatial context objects are registered to the system, we then consider
the task of object selection. The basic idea is to find objects which are close to
the place where users perform 3D spatial gestures. Since each gesture object is
modeled as a 3D Gaussian blob as explained earlier, the result of selection is the
probability computed from the geometrical relationship between an object and a
3D spatial gesture.

Similar to the registration, there are two different selection techniques: touching
and pointing depending on whether the object is reached by the input device. As
the name suggests, touching selects an object by bringing the input device near
the object that the user wishes to interact with.

The system determines which object is closest to the position where the 3D spa-
tial gesture is performed. Each object needs to be modeled as a 3D Gaussian blob
with mean µi and covariance Σi. A simple technique is to compute the likelihood
li of selecting object i and evaluating the Gaussian distribution at the point. The

89

Chapter 6 A Spatial Context Aware Gesture Interface

likelihood of pointing at target i is

li = g(p,µi,Σi) (6.3)

where g(x,µ,Σ) is the probability density function of the multivariate normal
distribution, p is the 3D position of the device.

For pointing selection, we evaluate the Gaussian distribution at the point that is
the same distance away as the hand is from the target and along the ray cast by the
hand. The likelihood of pointing at an object i is given by:

li = g(p+ |µi−p|d,µi,Σi) (6.4)

where p is the position of the hand and w is the ray along the hand.

6.3 System Action Interpretation using BN
In the previous section, we defined spatial context objects (gesture volumes and
targets) and described how they can be registered and selected based on the geo-
metrical relationships between the gesture and various objects over various dis-
tances. Using this spatial information, we make a better interpretation of the
gesture meaning in case it is ambiguous. Now, we explain our system action
interpretation technique by combining the selected spatial objects with the gesture
recognition results.

To integrate different information statistically, we can create Bayesian network
(BNs) that provides a powerful tool for dealing with uncertainty. They enable
efficient representation and manipulation of conditional probability distributions
for a large number of variables [HGC94].

A Bayesian network is a directed acyclic graph that describes the dependencies
among random variables. Each node of the graph represents a random variable.
The directed edges define the conditional dependency relations among these vari-
ables. This graph structure allows modular representation of knowledge, as well
as local, distributed algorithms for inference and learning and facilitates modeling
using the intuitive and possibly causal interpretation.

Figure 6.5 illustrates the Bayesian network used to interpret system actions.
The dependencies are modeled with discrete nodes between a system action, a
gesture, spatial contexts, and additional contexts. Arrows between the nodes in-
dicate the causal relationship between the action and attributes. The two main
attributes are a type of the recognized gesture, and selected targets. Additional
context information, time and system functions, can be integrated for minimizing
misinterpretations.

In particular, our network uses temporal integration based on the concept of dy-
namic Bayes network (DBN), a special type of Bayesian networks for time-series
events. Depending on the application scenario and user, there are a certain se-
quence of commands that the user must follow to complete tasks. Therefore, the

90

6.3 System Action Interpretation using BN

Figure 6.5: Topology of the DBN for command recognition. A topology is the predefined
connecting of different nodes namely gesture classes, gesture targets and gesture
volumes.

next command is partly predictable by the previous command history. For exam-
ple, in a file-operation scenario, the probability of doing the past action becomes
much higher when copy or cut is executed recently. Our recognition engine incor-
porates this prediction information to recognize the final command. The reliability
of the gesture recognition engine is improved with this additional information.

For better understanding the use of network in gesture interface, we created
make a simple example in a smart environment application. In the application
scenario, the interpreted system action is equivalent to a certain command that runs
on the system. For example the action "show weather forecast" can be executed
as a command when a user is pointing at a window target and performing the
show gesture. The result is used to execute the command that shows the weather
information on the system’s display screen.

When the user is pointing at the the light, the PointingTarget variable in the
Bayes net is set to Light, for example. This causes the Command node to as-
sign equal probability to the “TurnOnLight” and “TurnOffLight” variable settings,
since these are the only admissible commands on lights. When the user performs
“turn on”, the gesture node is set to “TurnOn” and the distribution over the A node
collapses to “TurnOnLight”. The system then uses the appropriate command to
turn on the light.

91

Chapter 6 A Spatial Context Aware Gesture Interface

Figure 6.6: Gesture-based interactions in a smart museum environment. (Left) Exhibition
items and visual information projected on the wall. (Right) Location registration
of an exhibition item using mWire.

6.4 Prototype Applications
We developed two prototype applications based on the concept of smart envi-
ronments [CD04]. We demonstrate the effectiveness of using spatial context in-
formation in reducing recognition error and disambiguating 3D spatial gesture
performances.

6.4.1 A Smart Museum Environment
In this application, we developed a smart museum environment where users can
interact with physical exhibition items to get related additional audio and visual
digital information (Figure 6.6). For example, users can point at a certain item and
listen to an audio description by performing a “turning on” gesture.

For gesture acquisition, we used two cameras installed in positions that effi-
ciently cover the location and orientation of users. During the system setup, the
location of each exhibit item is modeled as a 3D Gaussian blob. To train the Gaus-
sian distribution of an item, a series of 3D positions of the mWire was collected
when the pressure button was pressed at the items’s location.

The system selects an exhibit item randomly when the hand is close to the
item or is pointing at it. After successful gesture recognition, the system provides
audio-visual feedbacks such as music or photos associated with the selected target
item.

Figure 6.7 shows the prototype setup of the smart museum. There are four
gesture targets: three (number 1, 2, 3) for exhibit items and and one for wall
objects (number 4). There are two gesture volumes: one around the entrance area
and one around the exhibition area.

The typical user audience is the public. It means that this application is used
for a relatively short period. Therefore, we designed the gestures so that users
can easily learn and perform them without errors. We used a total of 10 system

92

6.4 Prototype Applications

Figure 6.7: The setup of the smart museum environment. Number 1 -3 are th e targets for
exhibit items and the target number 4 is on the wall. Two gesture volumes exist,
one for the entrance area and one for the exhibit items respectively.

commands (turning on/off audio and video information), 4 gestures (on/off and
up/down), and 4 gesture targets for the exhibit items, and 2 gesture volumes for
the entrance and exhibition areas.

6.4.2 A Smart Home Environment
We designed a smart home environment where users can execute system com-
mands with 3D spatial gestures. We show how the proposed context-aware ges-
ture interface is applied to control home electronics (such as TV, audio system,
and lights) in a living room environment.

Figure 6.8 shows the living room layout used in our application scenario. There
are three gesture volumes, entrance, sofa, and bed, designed with the main func-
tional areas of the living room environment. When the user enters the room then
the entrance volume is activated, the sofa volume is used when the user is listening
to music on the sofa. The bed volume is mainly used for sleeping at night. These
examples clearly show how gesture volume is related to time and action.

We used five gesture targets: (1) ceiling light, (2) alarm clock by the bed, (3)
coffee maker, (4) audio system, and (5) a bookshelf. They are located in the
appropriate position for their use in the designed architectural plan. Since we do
not have the actual devices, tagged paper boxes represented the devices and their
operations were simulated on the computer.

Currently, there are 10 gesture based commands mainly for controlling the ges-
ture targets such as switching on the lights and alarm clocks, and operating the
audio system. These are registered as a gesture command which is a combina-
tion of a gesture and a target. These commands can be activated by pointing at or
touching the gesture targets.

Different from the previous museum application, the typical user of this ap-
plication is a private user and the system can be customized to a particular user.
Therefore, we use gesture registration of our framework to prepare user-designed
gesture sets. Typically when the system starts, users are asked to perform a single

93

Chapter 6 A Spatial Context Aware Gesture Interface

Figure 6.8: An experimental setup for a smart home environment. There are four gesture
volumes (entrance volume, sofa volume, and bed volume) and five gesture targets
(ceiling light, alarm clock, coffee maker, audio system, and a bookshelf).

gesture for each command to setup their own gesture templates.
Once this short initialization process is finished, the application recognizes the

new input gestures by comparing them to the same-user gesture sets, and evaluate
the performance in relation to reference gesture sets trained by another user for
instruction. When the gesture is recognized, its associated command is executed.
Obviously, if the user knows how to perform the required 3D spatial gestures, the
gesture registration and evaluation process can be skipped. The DTW recognizer
can be switched to the HMM recognizer if enough training data is available.

In addition to these spatial contexts, we used two other context information:
typical using time and previous commands. For instance, the user is more likely
to turn on the ceiling light at night, and the command to turn on the TV will
logically be followed by turning off the TV.

Table 6.1 shows the suggested sequence of gesture commands using the time
and gesture volume information. An example is when a person enters the room,
first the user switches on the light followed the audio system. While various dif-
ferent cases could be be acquired, we applied a specific architectural knowledge
to the various target users. Based on this information, conditional probability for
the context information is estimated with the context usages and commands.

During the development of this application, we asked two subjects to use 3D
spatial gestures to control the devices in the living room environment described
above. They were asked to perform all tasks using the 3D spatial gestures with
gesture targets and volumes. During these tests, every 3D spatial gesture per-
formed was transcribed together with the recognition hypotheses, context infor-
mation at the time of gesture performance and the user’s intended command.

We evaluated the accuracy of the baseline system and compared with the one
that does not use context information at all. Initially, there were eight gesture
recognition errors, two target selection errors and four commands errors. By as-
sociating the gestures with spatial objects (gesture targets and volumes) and addi-

94

6.4 Prototype Applications

ID Command Sequence Used Time Used Gesture Volume

1 4,1,6,8,10 morning (1) bed (2)

2 7,2,5 morning (1) door(1)

3 1,6,10 evening(2) door(1)

4 9 evening(2) bed (2)

5 7,3,2 evening(2) sofa(3)

Table 6.1: A list of command sequences with the used time and the used gesture volume.

tional contexts (daytime and previous commands), we resolved gesture recogni-
tion errors.

The most prominent phenomenon was that the type of 3D spatial gestures could
be misclassified in the gesture recognizer. However, we could eliminate these
errors using the spatial context information that defines the relationship between
the gestures and the gesture volumes and targets. For example, once the gesture
target is selected, we could filter out some of gestures that are not related to the
selected gesture target. First the evidences of all other nodes but the gesture node
are computed and entered into the network. By inferring the gesture node, we
eliminated the gestures with zero or very small probabilities and only compute
the likelihood for the other gestures. We also checked the effects of each of the
context used. In particular, we analyzed how command recognition errors are
reduced using a particular set of contexts. Even though our experiments were for
specific tasks, it shows how command interpretation improves by incorporating
additional contexts.

95

Chapter 6 A Spatial Context Aware Gesture Interface

96

Chapter 7

A Versatile Gesture Interface
While most gesture interfaces are created for specific tasks and displays, it is still
an important issue to make a gesture interface more versatile. In this chapter,
we present a versatile 3D spatial gesture interface system where users can use
gestural interactions switching different applications and displays in a ubiquitous
manner. We developed a unique gesture input device called the mCube. Users
can use the device for desktop interactions by moving it on a planar surface, like
a computer mouse. By lifting the device from the surface, users can seamlessly
continue handheld interactions in the same application.

This chapter is organized as follows. Section 7.1 gives an overview of the pro-
posed system. In Section 7.2, we propose the mCube device with a set of design
principles for a versatile gesture input device. We also explain the system imple-
mentation and its core algorithms for computing orientation and the device’s posi-
tion. Section 7.3 demonstrates the device’s interaction techniques which support a
wide range of tasks, namely gesture commands, multi-dimensional manipulation
and navigation, and tool selections on a pie-menu. Section 7.4 describes the ex-
perimental evaluation to test mCube’s performance and its interaction techniques.

7.1 Overview
Figure 7.1 shows the architecture of a versatile gesture interface. There are two
main components: a versatile input device and gesture inputs.

We developed a versatile input device called mCube using the concept of com-
bining visual and body sensors. In particular, this device is designed for both
desktop and hand-held interactions. The current prototype uses a cube shape,
and includes accelerometers, digital compasses, buttons, an IR sensor, and a po-
tentiometer. Sensor data is collected and processed with a microcontroller and
transferred via Bluetooth wireless communication.

3D positional information of the mCube is obtained by means of an attached
LED, which is captured by multiple cameras and processed using computer vision
algorithms. The acquired gesture data from visual and body sensors are used for

97

Chapter 7 A Versatile Gesture Interface

robust recognition of a wide range of gestures as well as for multi-dimensional
manipulation and navigation. The type of a gesture is identified by the gesture
model and forwarded to the a versatile gesture interface for supporting various
gesture based inputs.

Figure 7.1: An overview of a versatile gesture interface. A versatile input device called
mCube is used for gesture acquisition by providing gesture data and MDOF data.
Taking the outputs of gesture model, the system provides various gesture inputs:
navigation, manipulation, and commands.

Figure 7.2 shows the current prototype setup. During the acquisition, two
firewire cameras are used to acquire the range of operation at 30 frames per
second. The acquired images are processed to determine the 3D position of the
mCube LED. Synchronously, the mCube acquires the data of the embedded sen-
sors at a sample rate of 60 Hz and transfers the data to the host computer over the
Bluetooth network. On the host, the sensor data is directly read from a communi-
cation port using the java.comm library. In the preprocessing stage, the acquired
data amplitude is scaled using linear min-max scaling. The visual features are
derived from the sensor data with appropriate up-sampling in order to match the
frequency of the embedded sensor data and low-pass filtering to remove noise.

The 3D test application is developed based on the java3D API and provides
dynamic 3D object creation, manipulation, and navigation using the mCube sensor
data. We extract 2D position data by projecting the 3D data in a predefined plane
and use it to control the low-level 2D cursor of the Windows operating system.

98

7.2 mCube: An Input Device for a Versatile 3D Spatial Gesture Interface

Figure 7.2: A prototype setup with a pair of video cameras, the mCube device, a computer
with active Bluetooth wireless network, a desktop monitor, and a large display
wall for wall projections.

7.2 mCube: An Input Device for a Versatile 3D
Spatial Gesture Interface
This section describes a versatile gesture input device called mCube. The device
is designed to acquire gestures combining visual and body sensor data. First, a
set of design principles and solutions is presented used for the development of the
device. Then we introduce our prototype device, called mCube with its hardware
design and sensor configuration, and explain the computation of the rotational and
positional information of the device.

7.2.1 Design Principles and Solutions

Support for Combined Desktop and Hand-held Interactions.

Ubiquitous computing environments can consist of computer controlled systems
and multiple displays namely desktop monitors, table top displays, and wall dis-
plays. Considering potential spatial configurations of the user and displays, we
categorize interactions into two groups (desktop interaction and hand-held inter-
action) based on whether the interaction takes place on a flat surface or in free
space.

As one of the main principles, a versatile gesture input device should support
both desktop and hand-held interactions. Moreover, the transition between them
should be possible without additional operation requirements. Thus, users can
instantly choose the best interaction for the current applications and displays. For
this purpose, we use a cube form which has been widely used for the development
of input devices in both interaction groups [PKE+06, RS00, FP00]. A cube form
affords users to intuitively grab, move, and rotate both on a flat surface and in free
space [SSL+03] as shown in Figure 7.3. For an automatic transition, the device

99

Chapter 7 A Versatile Gesture Interface

exhibits a IR reflective light sensor on the bottom so that it can automatically
reconfigure with respect to contact with a surface.

Figure 7.3: (a) The mCube prototype device for combined desktop and hand-held interac-
tion. (b) Desktop interaction on a planar surface. (c) Hand-held interaction in the
free-space.

Support for Wireless Operation.

A versatile gesture input device needs to be completely wireless so that the user
can carry the device to another location and operate it freely in space. To achieve
this goal, we track the 3D position of the device using cameras and computer
vision technology.

The visual sensor approach relies on the accurate detection of relevant features
which is a challenging task under varying illumination and environmental condi-
tions. Moreover, it is not a-priori clear if the required tasks for a versatile gesture
input device can be accomplished given their inherent level of inaccuracy. Due to
these reasons, we use a bright color LED which provides focal brightness on the
captured images, thereby achieving easier and more robust tracking.

Support for Multifunctionality.

A generic and versatile input device should support multi-functional operations so
that the user does not have to change the input device between different tasks. We
identify a set of required operations for a versatile gesture input device: gesture
commands, navigation, manipulation of virtual objects, and tool selection.

The use of gesture commands has been motivated for various purposes such
as appliance control in smart environments [WS03] and game control [PKE+06,
Wii]. A gesture input device is required to provide enough features to discriminate
between different gesture commands. For this, we combine visual sensors and
embedded sensors with a proper feature extraction methods.

We compute 6-DOF information combining the visual and embedded sensor
data so that the device can be used to manipulate and navigate virtual objects.

100

7.2 mCube: An Input Device for a Versatile 3D Spatial Gesture Interface

Manipulating virtual objects requires a certain degree of precision, which can be
challenging to achieve with a vision-based approach. We facilitate this problem
by using a bright color LED. Finally, for efficient tool selection, we allow the user
to control a pie-menu by rotating a top handle attached to the cube.

Support for Design Variations and User Definable Ergonomics.

These days, many commercial electronics such as MP3 players and mobile phones
are designed considering the user’s desire to change the appearance and er-
gonomics of the device. We also consider these issues as a principle of a versatile
gesture input device.

Figure 7.4: (Top) Hardware configuration of the mCube. The device includes multiple sen-
sors such as accelerometers, digital compasses, four buttons, a rotary potentiome-
ter, an infrared (IR) distance sensor, and one color LED. In addition, it contains a
micro-controller for acquisition, a Bluetooth transmitter, and a 9V battery power
supply. (Bottom) The top handle can be easily replaced with other designs accord-
ing to the user’s preference. (a) A flat style top handle using the hand metaphor.
(b) A vertical style top handle using hand metaphor. (c) The operation of the
vertical style top handle with both hands. (d) Alternatives top handle designs.

101

Chapter 7 A Versatile Gesture Interface

7.2.2 mCube Hardware Design and Sensor Configuration
Based on the proposed design principles and solutions, we developed the proto-
type device mCube. The current version is a prototype that can easily be miniatur-
ized for production. The mCube consists of two units: a body and a top-handle.
The body is a cube with an edge length of 6 centimeters as shown in Figure 7.4.
For the top handle, various designs are provided so that users can choose accord-
ing to their preference for design, application, and ergonomics. For instance, by
attaching another top handle in an upright position (Figure 7.4b and c), the mCube
can be easily re-configured for two-handed interaction.

The mCube is designed to sense various input events (button clicks, handle rota-
tion, and surface contact) and the physical manipulation of the device (translation,
rotation and tilt). We labeled the six sides of the body with top, bottom, front,
back, left, and right. In summary, the mCube body is equipped with the following
sensors and features. The images of some components are shown in Figure 7.5.

• Buttons. We attach a button to each side face of the body so that the user
can intuitively use them, mapping the button/handle direction to the user
direction.

• Potentiometer. A potentiometer is located under the top side, and senses
the rotation angle of the top handle which is connected to the mCube body
through a rotary shaft.

• IR Distance Sensor. On the bottom side, an IR reflective light sensor is
located to sense the distance to the planar surface from 0 to about 3 cen-
timeters. It emits a small beam of invisible infrared light and measures the
amount of light that is reflected back to the sensor. Since the sensor is sen-
sitive to ambient light, the sensor is shielded.

• Light Emitting Diode. One color LED is attached to a corner of the mCube
body to provide a bright color spot in the acquired camera images at a wide
range. As illustrated in Figure 7.4, a LED can be installed to top-handles. In
this case, the LED on the cube can be disabled using a LED switch located
on the bottom side.

• 3-Axis Accelerometer. Acceleration is measured with two Memsic 2125
2-axis accelerometers attached in orthogonal configuration measuring dy-
namic acceleration (vibration) and static acceleration (gravity) with a range
of ±2g at a resolution higher than 0.001g.

• 3-Axis Digital Compass. Two Hitachi HM55B 2-axis digital compasses are
integrated perpendicularly to provide information on the Earth’s magnetic
field in three dimensions at 6-bit (64-direction) resolution.

• Micro-controller. A Parallax Javelin Stamp micro-controller with 32k of
RAM/program memory is used to read sensor data using delta-sigma A/D
conversion. A Javelin Stamp is programmed in the Java programming lan-
guage and it is based in the Ubicom micro-controllers.

102

7.3 Interaction Techniques

Figure 7.5: Hardware components of the mCube. (a) potentiometer, (b) battery, (c) blue-
tooth (d) micro-controller (e) accelerometers, and (f) digital compasses.

• Bluetooh. The raw sensor values are then transmitted wirelessly from the
device to the host computer using a F2M01C1 Bluetooth module offering a
nominal range of approximately 100m.

• Battery. The system operates on 9V.

7.3 Interaction Techniques
In this section, we describe an exploratory set of techniques intended to investigate
the design space of mCube interactions. Some of these techniques can be selected
and optimized for any application that seeks to use the mCube.

A versatile gesture interface is not intended as a universally best interface for
any application but a more efficient interface that supports other necessary func-
tionalities as well as efficient gesture interactions. It is intended to improve the
work flow of interactions minimizing the use and learning of other input devices.
mCube users can use 3D spatial gestures for various interaction techniques (e.g.
gesture commands, virtual object manipulation and navigation, and tool selec-
tions). Particularly, users can quickly switch between desktop positioning and
hand-held positioning, yielding a high degree of freedom for appropriate interac-
tions in different display platforms.

7.3.1 Switching Between Desktop and Hand-held
Interaction
As described earlier, the mCube uses the affordances of cube shape which can be
operated on a flat surface and in free space. To facilitate this operation, we pro-
gram the mCube to automatically recognize the current interaction mode based on

103

Chapter 7 A Versatile Gesture Interface

the contact between the device and the surface of the table using the embedded IR
sensor. If the value is lower than a desktop threshold (1 cm) for a certain amount
time (two seconds), the interaction mode is changed to desktop interaction.

Using this feature, users can optimize the interaction for the required task in the
current application and display setup. For instance, for manipulation tasks requir-
ing more precise control, users can use desktop interactions minimizing the hand
tremor which can be caused by the lack of fixed support in hand-held interaction.
Alternatively, users can choose hand-held interactions to perform direct 3D inputs
and operations in free space.

7.3.2 Top Handle-based Mode/Tool Selection
The mCube allows users to switch between different modes or select a tool on
a pie-menu by simply rotating the top handle. This movement is similar to the
highly intuitive operation of using a pepper grinder. During this operation, we
hold the side and rotate the top part without any substantial previous learning.
The main benefit is that users can use this handle during other operations. For
instance, during navigation or manipulation of virtual objects, users can choose
different tools such as rendering modes (wireframe or shaded rendering) or texture
and color styles of the model without interfering with the positional control of the
device.

We use the top-handle to define the device mode. We defined three necessary
modes: an idle mode for power saving, a recognition mode for gesture recogni-
tion and a pie-menu mode for selecting different tools. Figure 7.6-b illustrates an
example of a pie-menu with twelve icons. During rotation of the top handle, the
widget is displayed and the designated sub menu is highlighted depending on the
direction of the handle as shown in Figure 7.6. Different numbers of icons can be
used by dividing the circular region of the top handle into a corresponding number

Figure 7.6: (a) Three modes of the device controlled with the top handle: recognition
mode, pie-menu mode, and idle mode. (b, c) In the pie-menu mode, users can
select a tool with a modified pie menu by rotating the top-handle. The circular
region of the pie-menu is divided into 12 regions for 12 icons of the pie-menu.
The number 3 in the center of the pie menu indicates that hand-held interaction is
currently activated.

104

7.3 Interaction Techniques

of sections.

7.3.3 Examples of mCube Gestures for Command Inputs

We designed a multipurpose set of gestures with the mCube exploring the intu-
itiveness and interoperability of the mCube in desktop and hand-held applications.

Gestures for Desktop Interactions.

For desktop interactions, we designed a set of gestures which are suitable using a
glass metaphor: pouring water in three directions (front, left, and right), twirling
and rotating in Counter-Clockwise (CCW) and Clockwise (CW) as illustrated in
Figure 7.7-a. These gestures can be easily learned because of their familiarity and
intuitiveness from the operation of a real glass. To perform the glass gestures,
users place the mCube on a surface and then perform the gestures by lifting the
device from the surface. This simple initialization motion greatly disambiguates
the recognition based on the IR-distance value for each gesture.

Figure 7.7: (a) Examples of desktop gestures. A user is performing gestures on the desk-
top surface: pouring-left, -right, -front, and rotating-CW, -CCW. (b) Examples
of hand-held gestures. A user is holding the device in the air and performing
gestures: pointing-up, -down, -right, -left, and rotating-CW, -CCW. (c) The 3D
spatial gesture examples with a box style 3D gesture volume. The line indicates
the trajectory of the gesture and the end of the gesture is presented as an arrow.
The hand symbol indicates the direction and rotation of the mCube using black
for a palm-down position and white for a palm-up position. The 3D gestures are
increasing in complexity from left to right.

105

Chapter 7 A Versatile Gesture Interface

Gestures for Hand-held Interactions.

One of the common tasks of hand-held interactions is selecting a physical or
virtual object using a pointing gesture and controlling it with subsequent ges-
tures [WS03]. For this purpose, we designed a set of hand-held gestures targeting
the commonly used actions on appliances (rotating the handle to turn an item
on/off and changing the volume up/down.

In addition to the previous simple gestures, more complex 3D spatial gestures
can be performed using the mCube. While simple gestures can be recognized with
a heuristic approach, which looks for simple trends or peaks in one or more of the
sensor values [WS03], for complex gestures we need advanced pattern matching
techniques. Various recognition algorithms are proposed using statistical pattern
matching techniques [CB96], and multiple sensors are combined to provide better
discriminating gesture features. Even though their explanation is considered out-
side the scope of this paper, it is assumed that the combined gesture features of
mCube will improve the recognition and enable a larger gesture space. It is also
important to consider human variability exhibited in 3D spatial gestures due to the
difference in user performance [PKE+06]. During our developments, we found
that the illustration of 3D spatial gestures plays an important role in minimizing
the human variability and improving the recognition rates. Figure 7.7c illustrates
examples of our 3D gesture diagrams for the mCube device.

7.3.4 Multi-dimensional Manipulation and Navigation

Virtual Object Manipulation.

In desktop interaction, the object is controlled in the same way as a computer
mouse. We implemented a similar implicit clutching using the IR distance sensor.
For instance, when the user lifts up the device, the movements of the device do not
affect manipulation. Users can also rotate the virtual object by physically rotating
the device which is not possible using a conventional computer mouse as shown
in Figure 7.8.

During hand-held interaction, the device is operated in space mapping the hor-
izontal and vertical movement of the device to the corresponding object position.
Therefore, users can directly move, rotate and tilt the object in any direction for
3D manipulation (Figure 7.8d). An explicit clutching technique is used with the
right button of the mCube similar to other commercial 3D input devices.

Virtual Space Navigation.

Navigation is an important aspect of interaction with a Virtual Environment (VE).
Users of VEs need to understand the space that surrounds them and find their
way around. Unfortunately, the interaction methods to use a computer mouse
is not optimal because users have to understand the mapping between the 2D

106

7.3 Interaction Techniques

Figure 7.8: Examples of virtual object manipulation: (a) The mCube is operated on the
desktop surface and in space. (b, c) In desktop interaction, the object is translated
and rotated on a working plane e.g., x− y plane and x− z plane. (d) In hand-held
interaction, the object is operated with additional dimensions in space.

control of a computer and navigation techniques (e.g. changing view orientation
and directional movements). Navigation problems become even more serious in
large scale VEs like a CAVE that does not support the use of a computer mouse.

To facilitate more efficient navigation, we use the four buttons as well as the
rotational control of the device. The front, back, left and right buttons are used to
control the movement of cameras. This idea is inspired by the Cubic Mouse which
successfully utilizes a cube shape as an intuitive physical proxy of virtual objects
in navigation purposes [FP00].

As illustrated in Figure 7.9, we implemented two navigation schemes: examine
viewer to control a 3D virtual object like a 3D trackball and walk viewer to nav-
igate through 3D virtual space with a walking metaphor. In the examine viewer,
the rotational control of the mCube is used to rotate a virtual trackball. The virtual
camera is located outside of the model pointing to the center of the model. The
rotational movement of the device is mapped to a virtual camera angle. The front
and back buttons are used for zooming in and out, respectively. In the walk viewer,
users can look in a certain direction while moving in another direction similar to
the walking navigation in real world.

3D Pointing Interaction

With the position and orientation of the mCube, we now consider the pointing
interaction. Pointing interaction is an important technique used in various gesture-
based applications. For instance, VR applications use the pointing interaction to
navigate virtual space and manipulate objects. Smart environment applications
use the 3D pointing to select a reference object to be controlled by a gesture. The
mCube supports 3D pointing based on the 6-DOF information computed from the
combination of visual and body sensor data.

During our development, we tested the performance of mCube for selecting
objects located in a physical environment. To observe the performance of pointing
in real time, we developed a test-bed application. When the user is pointing a

107

Chapter 7 A Versatile Gesture Interface

Figure 7.9: Examples of virtual space navigation: examine viewer and walk viewer. (a)
In the examine viewer, the virtual camera is rotated around the scene pointing to
the center while manipulating the mCube. To zoom in and out, the front and back
buttons are used respectively. (b) In the walk viewer, the virtual camera is moved
and oriented based on button clicks and the orientation of the mCube.

certain direction in the physical space, the system shows the virtual scene of the
physical environment as viewed from the pointing direction. Figure 7.10 shows
the four main objects labeled with window, monitor, book-shelf, and entrance on
the virtual model used in the test. It also shows the virtual and real images of the
environment from approximately the same view point.

Figure 7.10: A digital representation of a physical space. (a) a 3-d graphic image of a
virtual office and (b) a photo image of a real office. (c) Four main objects used for
testing the pointing interaction: window, monitor, bookshelf, and entrance.

The coordinate system of the virtual model and physical model should be
matched so that we can see the right rendering scene when pointing in a certain
direction in the physical environment. Figure 7.11 shows the user performing 3D
pointing standing in the middle of the physical environment. As the user changes
the 3D pointing direction, the system shows the relevant virtual scene on the
monitor.

7.4 Experimental Evaluation
The goal of this evaluation was to assess the performance of the gesture input
device mCube and its interaction techniques. We analyzed design factors that

108

7.4 Experimental Evaluation

Figure 7.11: Demonstration of spatial pointing interaction. A user is performing pointing
gestures and each image shows the four main objects of the office : (a) bookshelf
(b) monitor (c) window (d) entrance. Each image includes the relevant virtual
office rendered image.

influence human performance including perceived exertion and movement char-
acteristics of the input device.

To explicitly test the user capabilities of desktop and hand-held interactions and
switching between them, we performed a simple 3D docking task. We observed
completion times and examined how the performance of the subjects improved
with repeated experiments and experience. We expected lower performance over
time due to user fatigue.

7.4.1 Process

We had six participants with strong backgrounds in computer science and com-
puter graphics taking part in our experiment. All subjects were experienced in
controlling virtual objects in 3D space with a computer mouse. Half of them al-
ready had experience with virtual reality systems and 3D interaction devices. Each
participant received a demo of the system and interaction techniques. They then
practice all the system functions. All users understood the system after a short
practice (about 10 minutes).

As illustrated in Figure 7.12, the subjects were seated in front of a 21 inch
monitor holding the mCube. The testing application consisted of two virtual cubes
and two grid planes. The solid-rendered cube is an object to be manipulated.
The wire-frame cube is the target object placed at the diagonally opposite corner.
There are two tasks: selection and positioning. In the selection task, users have to
select the object by manipulating the screen cursor. In the positioning task, users
transform the selected (rendered) object to the wire-frame object using the 3D
interaction mode of the mCube. When the object is transformed, shadows of both

109

Chapter 7 A Versatile Gesture Interface

Figure 7.12: Visual stimuli for the usability testing and the experiment setup. (a) Visual
stimuli consisting of two virtual cubes and two grid planes, (b) a subject is per-
forming a task with the mCube sitting in front of a 21 inch monitor.

objects are projected onto the two grid planes to provide additional depth cues.
Grid snapping is applied to the movement.

Before starting the test run, the users are introduced to the functionality of the
mCube and the 3D application. Each subject was asked to repeatedly perform
several recurrences of the same task to locate one cube with another cube located
at different positions in 3D space. Users were asked to alternate between desktop
and hand-held interaction modes by either putting the mCube on the table (desktop
mode) or holding it in the users hand (hand-held mode).

7.4.2 Results
As illustrated in Figure 7.13, the subjects significantly improved over the exper-
imental recurrences for selecting the object. Since the mCube supports desktop
and hand-held interaction, the users were able to choose the one at will in their
tasks. This means that users can easily return to desktop interaction by putting the
mCube onto the table and lifting it up for further hand-held interaction.

In the positioning task, in the hand-held interaction, we clearly noticed that fine
positioning was hard to accomplish even with the intuitive 3D operation in the air.
Almost 50% of the task completion time was taken for the final placement. These
problems are mainly due to trembling of the user’s hand and further caused by the
well-known fatigue problem in hand-held input devices [Zha98]. As compared
to the experments with the desktop interaction, all participants were tired because
they had to keep their arm extended in front of them.

Some users pointed out that moving the 2D screen cursor in hand-held inter-
action is even more intuitive than desktop interaction because the horizontal and
vertical cursor movements are mapped to the same directional movements as the
physical device. We think that hand-held interaction has some potential for novice
users to perform screen cursor control easily. This might also be an interesting is-
sue in the extended user testing.

After the 3D positioning experiment, we asked the subjects to try other mCube

110

7.4 Experimental Evaluation

Figure 7.13: Mean task completion time for the selection task over the course of four ex-
perimental repetitions (with 95% confidence error bars).

Figure 7.14: Mean task completion time for the positioning task over the course of four
experimental repetitions (with 95% confidence error bars).

interaction techniques for informal evaluation. In the previous experiment, we
mainly assessed the device in terms of speed and accuracy for screen cursor con-
trolling and 3D object positioning. In this evaluation, the main purpose is to

111

Chapter 7 A Versatile Gesture Interface

evaluate the performance of gesture commands, the handle-based tool selection
and MDOF control including virtual object and camera controlling. Through the
whole evaluation processes, we received valuable feedback which we will con-
sider for the next prototype.

For the gesture commands, all users had no difficulty in learning the pre-defined
simple gestures (glass gestures and pointing gestures) within after few tries. For
the user-definable 3D gestures, we used the DTW-based gesture recognizer which
does not require much training data due to the time limitation. First, users were
asked to perform a single gesture for each command to setup their own gesture
templates. Once this short initialization process is finished, new input gestures are
recognized by comparing the same-user gesture sets.

All pre-defined gestures were well recognized. When performing 3D spatial
gestures, careful attention is required to perform the same gestures as the regis-
tered gesture templates. After a few attempts, the users began to remember the
movement characteristics of the gesture and consequently perform it more consis-
tently. We also found out that each user has different approaches and preferences
to creating and performing 3D spatial gestures. For instance, others prefer short
and simple gestures and some users prefer longer and more complex gestures with
their own style.

The MDOF control used in the manipulation of virtual objects and cameras was
well received due to the adaptation of similar physical manipulation skills. Users
stated that the 3D rotational operation of the mCube is more intuitive and consid-
ered to be more efficient than the corresponding computer mouse functionality.
We believe one of the reasons for this is that the current rotation technique with
the mouse always requires an unintuitive transformation of 2D interaction to 3D
information. If a user rotates along arbitrary axes, it is even more difficult to un-
derstand the rotation axis and angle. Using the mCube they were able to rotate the
objects by physically rotating the device along arbitrary axes.

The top handle was easily understood and performed well. All participants felt
comfortable rotating the top handle in both desktop and hand-held interactions.
They could select a tool on the pie-menu during other operations such as navi-
gation and manipulation. Specially in a large screen display, using the pie-menu
with the top handle, users can minimize the use of cursors which might be dif-
ficult to precisely control therein. Some users stated that they could remember
the item locations on the pie-menu and rotate the top handle even without looking
at the device. We expect that this can be a powerful mechanism to minimize the
cognitive loads during interaction and may be a topic for future user experiments.

Users stated that they felt uncomfortable with the cube shape when only one
hand is used for continuous 3D input. This feedback shows that careful ergonomic
studies are required for designing the shape of the next prototype. In addition to
the form factor, the weight of the device was considered heavy especially when
users performed long 3D interactions only. The current weight of the device is
140 gram. We believe that a reduction in the devices’s weight can occur by using
a plastic case, and a lighter battery pack. Two users stated that the speed of the

112

7.4 Experimental Evaluation

device is too slow and that it is hard to select objects due to the shaking of the
hand.

113

Chapter 7 A Versatile Gesture Interface

114

Chapter 8

Conclusion
This chapter concludes the dissertation with a brief summary and a review of
the main contributions. We categorizes the contributions in terms of the three pro-
posed design components of 3D spatial gesture interfaces: input devices, gestures,
and contexts. We also discuss possible directions for future research.

8.1 Summary
In this dissertation, we presented a novel framework to support the development
of 3D spatial gesture interfaces in terms of gesture acquisition and modeling.

For the acquisition, the framework captures 3D spatial gestures via heteroge-
neous sensors. The main idea is to combine visual and body sensor technologies,
thereby acquiring more robust gesture features and improve the recognition rate
of gesture recognition. Several novel gesture input devices were developed to
support users facilitating different types of sensors.

For the gesture modeling, we introduced the motion chunk, a gesture unit
that stores continuous complex human gestures with a sequential combination of
chunks. Based on the structure of motion chunks, the framework supports three
major functionalities: gesture registration, recognition, and evaluation. The prin-
ciples behind the framework have been demonstrated and validated by a series
of experiments. In the gesture recognition task, we tested the use of visual and
body features and compared the performance of two gesture recognizers. We also
conducted usability evaluations to learn the 3D spatial gestures.

The results of our experimental evaluations contribute knowledge toward ad-
vancing gesture research in HCI. 3D spatial gesture should be captured with
enough information so that various types of gestures can be designed from simple
to complex. Our approach to combine visual and body sensors could improve
the recognition rates under various conditions. Two pattern matching techniques
(DTW and HMM) are used alternatively based on the number of training data.
DTW enables the use of gestures right after creation without requiring a large
training data. HMM can support more robust recognition when large training data

115

Chapter 8 Conclusion

is available. In addition to gesture recognition, DTW supports gesture evaluation
and HMM enables gesture registration that are useful for extending the gesture
model.

Through the development of prototype applications, the framework has proven
to be a versatile toolkit to develop 3D gesture interfaces. We identified and imple-
mented the right abstractions and services for designing 3D spatial gesture inter-
faces. Several reusable hardware and software components have been developed
for a variety of applications maximizing the amount of reuse across applications.
These issues have not previously arisen because the efforts required to build a uni-
fied framework was too high to allow for any further exploration beyond research
prototypes.

In this dissertation, we proposed two unique gesture interfaces developed us-
ing our framework: a spatial context aware interface and a versatile gesture in-
terface. We demonstrated the usefulness of each gesture interface showing how
hardware and software components are linked together and applied to support re-
quired functionalities. Our goal was not to make 3D spatial gestures inputs for all
applications, but to achieve maximal effectiveness for the potential gesture-based
applications.

Figure 8.1 shows how major contributions are related to the design of a 3D spa-
tial gesture interface in terms of three design components: input device, gestures,
and contexts. We categorized two types of users: interface designers and end-
users. Interface designers will be able to easily facilitate input device, gestures,
and contexts for the design of their gesture interfaces. Focusing on the main com-
ponent, the interface designers are further categorized device designers, gesture
designers, and context designers. Their main task is to analyze the requirements
of applications for which each component of a gesture interface is intended. Our
framework does not only support system developers, but also enables end-users to
customize the interface that can be optimized to the conditions of the end-users.

Now, we review the contributions categorized into three design components of
gesture interface as follows:

• Input Devices: Gesture Acquisition and Versatile Input Device

– Visual and body sensors for input device designers. Input device de-
signers can use visual and body sensors for building an input device
to acquire 3D spatial gestures. The combined sensor data enables ro-
bust feature detection for 3D gesture analysis and recognition. The
proposed acquisition technique is low in cost, easy-to-use and enables
users to quickly customize a cost-effective solution for a specific ap-
plication. Finally, the intended gesture characteristics can be acquired
efficiently.

– Versatile gesture interface for end-users End-users can use a wide
range of gesture-based inputs without changing to another device or
interfaces. In this dissertation, a versatile gesture interface was devel-
oped to explore a way of using 3D spatial gestures as a general input in

116

8.1 Summary

Figure 8.1: An overview of the major contributions according to the 3D Spatial gesture
interface design. The possible organization and interaction of the design of a 3D
spatial gesture interface based on the elements presented in this dissertation.

a wide variety of application domains including smart environments,
computer graphics, VR and AR systems. The ultimate goal is to make
the 3D spatial gesture interfaces adaptable to different scenarios.

• Gestures: Representation, Registration, Recognition, and Evaluation
– Motion chunk based gesture design for gesture designers. Motion

chunk was developed as the core representation scheme for gesture
modeling. Based on the motion chunk, a gesture designer can design
3D spatial gestures. Start and end postures can be designed separately
and the in-between gesture can be defined by connecting the previ-

117

Chapter 8 Conclusion

ously fixed start and end postures. The designed gestures are regis-
tered to a gesture model and used for recognition and evaluation by
using two pattern matching techniques (DTW and HMMs).

– Gesture registration and evaluation for end-users. Gestures can be
created and registered by end-users. End-users can consider their
physical limitation related to their body and location to accomplish
the required tasks by performing gestures. Therefore, end-users can
operate gesture interface with the minimum efforts. On the other hand,
if they have to learn pre-defined gestures, the learning period can be
reduced because the system can evaluate their gestures by comparing
them to the standards.

• Spatial Contexts: Representation, Registration, Selection

– Gesture targets and volumes for context designers. Our framework
supports context designers exploring the common issues shared be-
tween 3D spatial gestures and contexts. In particular, they focus on the
concept of using the spatial information of gestures. In this disserta-
tion, we provided a notion of spatial context with two ontologies: ges-
ture target and volume. Using these spatial contexts, context designers
can plan the locations and objects that are relevant to the gesture-based
inputs, and minimize the system errors in misinterpreting the user’s in-
tention.

– Spatial context-aware gesture interface for end-users. End-users can
use gestures to control the functions incorporated with the physical
and virtual objects in a smart environment. The spatial context aware
gesture interface interprets gesture-based commands by incorporating
spatial context information. In particular, this interface is novel in that
it integrates spatial contexts acquired from the same sensors used for
the acquisition of 3D spatial gestures. Therefore, end-users do not
need additional sensors for the spatial contexts.

8.2 Future Directions
This dissertation described a new field of using 3D spatial gestures as an input.
This section suggests several studies that would increase the understanding and
usage of 3D spatial gestures as an input. We also discuss the advantages and
drawbacks of the presented approaches and possible directions for future research.

8.2.1 A Design Method for Gesture Interface
When developing gesture interfaces in practice, there are several processes that
designers must consider. For instance, they have to identify the type of gesture-

118

8.2 Future Directions

based inputs appropriate to the required target application tasks. They also need to
consider the target users and determine the feasibility of using 3D spatial gesture
inputs for a particular application. Designers then can think about how gesture-
based inputs can be realized in the system while considering other factors namely
acquisition techniques and recognition methods.

This dissertation presented a set of hardware and software components that can
be used to design 3D spatial gesture interface. If there is a well defined design
method, designers can improve the quality of their gesture interface. Based on
our framework, it is possible to build such a design method for 3D spatial gesture
interface which users can follow during the development of their own systems.

Figure 8.2 shows a possible design method that includes iterative processes. It
consists of three major phases: analysis, design, and evaluation. In the analysis
phase, interaction designers analyze the required tasks for target applications, and
also analyze possible interaction goals that can be achieved using 3D spatial ges-
tures. After the analysis phase, interaction designers can begin the actual design of
3D spatial gesture inputs following three sub-design tasks: device design, gesture
design, and context design. These three tasks are equivalent to the three design
components for 3D spatial gesture interfaces as described in Section 8.1.

Figure 8.2: An overview of the design method for 3D spatial gesture inputs. There are
three major phases: analysis, design, and evaluation. Each phase consists of sub-
design tasks with possible interactions between tasks. Designer iteration can occur
between design phase and evaluation phase.

119

Chapter 8 Conclusion

8.2.2 Gesture Input Devices

We proposed two gesture input devices based on the concept of combining visual
sensors and body sensors. The mWire was designed for easy connection to other
sensors such as digital compasses and gyro sensors. The mCube was designed as
a versatile gesture interface that supports various gesture-based inputs. In partic-
ular, this device supports both desktop and hand-held positions so that the device
can be useful for ubiquitous computing environments equipped with various types
of display platforms. The proposed devices are promising and potential. However,
more work is required to gain a better understanding of the capabilities and limi-
tations of the device. This section describes two future directions for the further
development of gesture input devices.

Alternative Input Device Design

The next development of alternative input device is to examine the creation of
smaller versions of the gesture input device while retaining important character-
istics of the gesture input devices. These days, the advance of Micro-Electro-
Mechanical Systems (MEMS) technology allows improvements in terms of size,
accuracy, and communication. For instance, one available sensor package is
designed around a stacked configurable circuit board architecture, with a high-
bandwidth transceiver on the bottom, a general microprocessor and Analog-to-
Digital Converter (ADC) in the middle, and a sensor board on top. With smaller
devices, new application domains can emerge. In addition, we could minimize
fatigue problems.

Figure 8.3 shows one of our alternatives called cubeRing. We study not only the
smaller size but also ergonomic issues. The cubeRing is designed with a highly
unobtrusive form retaining the benefits of the mCube. The flat bottom surface of
the cubeRing provides a stable operation on the desktop surface, and the unique
combination of a ring and a cube provides a comfortable grip when used in the
desktop and the hand-held positions. The re-adjustable band is used to adapt to
the different hand sizes.

Figure 8.3: An example of an alternative input device design called cubeRing. (a) The
cubeRing with an adjustable finger ring on the top, and a small cube on the bottom.
The cubeRing can be worn on the index finger, and operated on a desktop surface
(b) and the cubeRing in the hand-held position (c).

120

8.2 Future Directions

A coin size MICA dot module [Cro] is used with a high-bandwidth transceiver,
a general microprocessor and Analog-Digital-Converter (ADC), and a sensor
board. The MICA dot modules is provided as a stacked configurable circuit board
architecture. The cubeRing is currently equipped with a 2D-axis accelerome-
ter, and colored LEDs following the concept of combining visual and embedded
senors. Two color LEDs are attached, one on the top side and one on the bottom
side to make robust tracking even with a hand rotation.

We investigate the design variations and gain deeper insights into the perceptual
issues involved in interacting with this class of input devices. We also intend to
perform usability studies to assess the capabilities and user acceptance of this
versatile input system with various target applications.

Technical Analysis of Input Devices

Another future work for gesture input device is to analyze the technical proper-
ties of the gesture input devices. In general, there are three major features for the
analysis: resolution, sampling rate, and lag. The resolution of the device is the
smallest change it can detect in the quantity that is measuring. Usually, resolu-
tion varies with the proximity of the sensor to the source and other factors. The
sampling rate is the number of measurements per unit time (e.g., samples per sec-
ond). The lag is the phenomenon of not having immediate updates of the display
in response to input actions.

The resolution and sampling rate should be as high as possible, and lag should
be as low as possible. Obviously, these parameters are constrained or fixed at some
reasonable level during the system design. Each feature affects the performance
of gesture interface. The resolution is a major consideration when selecting a
gesture input device for manipulations. The sampling rate can restrict the speed
of gestural performance. For instance, when the input gesture is too fast then only
few gesture samples can be acquired. Therefore, a high sampling rate is essential
in 3D spatial gestures to support a wide range of gesture types and applications.

The lag restricts the system responsiveness taking hold. This can be critical
when operating applications within a real-time environment. In gesture interface,
there are three major stages to influence the lag: acquisition, recognition, and
output. The recognition stage is optimized by reducing the computation time for
gesture processing. If we can restrict a certain number of gesture candidates,
then we can reduce the lag. The spatial context described in this dissertation can
support the optimization of the gesture candidates.

8.2.3 Gesture Recognition
In this dissertation, we focused on analyzing single gestures. Future work will be
devoted to the analysis of other gestures and development of methods to handle
them. This section categorizes them into three groups: activity level gestures,

121

Chapter 8 Conclusion

seamlessly continuous gestures, and whole-body gestures.

Recognition of Activity Level Gestures

The current gesture model can be extended to efficiently handle an activity level
gesture. The activity level gestures can be composed with multiple sub-gestures.
Motion chunk can be useful for designing activity level gestures which reduce the
computational complexity. Rather than having many separate gesture models, we
can construct a network of motion chunks and have paths through the network
indicating a gesture or a sequence of gestures.

In addition, we can use the descriptive ability of a hidden Markov model
(HMM) for the temporal structure of the motion chunks. For instance, a certain
activity level gesture can be described as a collection of multiple Markov models,
each associated with individual gestures. Similar to speech recognition, gesture
grammar can be defined based on domain knowledge. We use previously classified
gestures to constrain gesture candidates for the current recognition. Grammars
also allow users to define a set of possible gestures in a certain situation with a
location and time.

Recognition of Seamlessly Continuous Gestures

This dissertation discussed the gestures performed with clear boundaries between
gestures. A user has to show the boundaries explicitly. For instance, the user needs
to press a button while performing the gestures or pauses for a certain period of
time before and after the gesture. Special purposes such as game control and sport
analysis require handling seamlessly continuous gestures.

In general, the recognition of such gestures is non-trivial because the silent
boundaries are no longer evident. Moreover, co-articulation can occur because
gestures can be performed immediately after the previous gesture using different
speeds and powers. The caused co-articulation effects change the shape of gesture
signal. The major problem we face in this situation is segmentation - the prob-
lem of deciding where one gesture ends and the next begins. Similar to speech
recognition, it is hard to segment gestures when different gestures are combined
without having a pause in-between.

There could be heuristic techniques simultaneously optimizing the segmenta-
tion and recognition of the gestures. However, this approach is computationally
expensive to handle several 3D gestures at the same time. The major reason is that
every possible segmentation is hypothesized for all possible gesture sequences.
One possible solution is to define gesture candidates depending on the user and
contexts.

122

8.2 Future Directions

Recognition of Whole Body Gestures

For handling the whole body gestures, we can extend the sensor positions to other
body parts such as ankles or shoulders. This would require not only large in-
frastructure and additional acquisition modules, but also fast and efficient gesture
recognition methods. As the number of sensors increase, the amount of sensor
data increases so that the computation needs to be faster in order to respond to the
gesture inputs in real time.

These days, given the growth of portable computers (wearables, PDAs, etc.
and advancing wireless sensor networks), one emerging application domain is
human body sensor networks that can be used for the acquisition and use of whole
body gestures. These systems generally use a set of small wireless sensor nodes
equipped with various sensors. The sensor nodes are designed for different body
location. Using these sensor data from all sensor nodes, whole body gestures can
be tracked and analyzed for the application tasks.

8.2.4 User Evaluations
The dissertation presented results of the experimental evaluations that can be used
as a guideline when developing 3D spatial gesture interface. However, most of
experiments were performed in a short period of time and with a limited number of
subjects. For more formal usability studies, it is necessary to design experiments
with longer time period and larger user groups.

A possible user evaluation for future work can be designed to analyze the char-
acteristics of 3D spatial gestures in terms of the user’s body condition. From
our preliminary tests, we found out that it is important to ensure that physically
stressing gestures are avoided. It is highly required to study the ergonomics and
bio-mechanics of gesturing given a performance task.

It is also required to evaluate the general capabilities of performing 3D spatial
gestures. Since gesture interfaces can be applied to various applications, the mor-
phology of 3D spatial gestures need to be separated from a specific task function.
For more effective gesture interface in various application domains, the study of
3D spatial gesture capabilities is required.

This dissertation presented design principles for 3D gesture input devices and
realized a versatility of the device. We also need to define a standard technique
for evaluating 3D gesture input devices. Then both device engineers and interac-
tion designers can be provided with valuable information for selecting the spec-
ifications of the device. Further study can be carried out to specify the optimal
resolution and sampling rate for both manipulative gestures and communicative
gestures.

123

Chapter 8 Conclusion

124

Bibliography
[5DT] 5DT Data Gloves. Fifth Dimension Technologies, http://www.5dt.com/.

[6DM] 6DMouseTM. Ascension Technology Corporation., http://www.ascension-
tech.com.

[AAS05] J. Alon, V. Athitsos, and S. Sclaroff. Simultaneous localization and recogni-
tion of dynamic hand gestures. In Proceedings of IEEE Motion Workshop,
2005.

[AHT02] Brian Amento, Will Hill, and Loren Terveen. The sound of one hand: A
wrist-mounted bio-acoustic fingertip gesture interface. In Proceedings of
ACM CHI Conference on Human Factors in Computing Systems, 2002.

[AP04] J. K. Aggarwal and Sangho Park. Human motion: Modeling and recogni-
tion of actions and interactions. In 3D Data Processing, Visualization, and
Transmission, 2nd International Symposium on (3DPVT’04), pages 640–
647, Thessaloniki, Greece, September 2004.

[BB01] Claus Bahlmann and Hans Burkhardt. Measuring HMM similarity with the
Bayes probability of error and its application to online handwriting recogni-
tion. In Proc. of the 6th ICDAR, pages 406–411, 2001.

[BBKF97] R. Balakrishnan, T. Baudel, G. Kurtenbach, and G. Fitzmaurice. The
rockin’mouse: Integral 3d manipulation on a plane. In Proceedings of ACM
CHI Conference on Human Factors in Computing Systems, pages 311–318,
1997.

[BBL93] T. Baudel and M. Beaudouin-Lafon. Charade: remote control of objects
using free-hand gestures. In Communications of the ACM, volume 36, pages
28–35, July 1993.

[Bec97] D. Becker. Sensei: A real-time recognition, feedback, and training system
for t’ai chi gestures. Master’s thesis, Massachusetts Institute of Technology,
1997.

[Bel57] R. E. Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, New Jersey, USA, 1957.

125

Bibliography

[Ber98] G. Berry. Small-wall: A multimodal human computer intelligent interaction
test bed with applications. Master’s thesis, University of Illinois at Urbana-
Champaign„ 1998.

[BFH+03] N. Berthouze, T. Fushimi, M. Hasegawa, A. Kleinsmith, H. Takenaka, and
L. Berthouze. Learning to recognize affective body postures. In Computa-
tional Intelligence for Measurement Systems and Applications, 2003. CIMSA
’03., pages 193–198, Washington, DC, USA, 2003. IEEE Computer Society.

[BGK+05] M. Barry, J. Gutknecht, I. Kulka, P. Lukowicz, and T. Stricker. From motion
to emotion: A wearable system for the multimedial enrichment of a butoh
dance performance. Journal of Mobile Multimedia, 1(2):112–132, 2005.

[BHI93] S. Bly, S. Harrison, and S. Irwin. Media spaces: bringing people together in
a video, audio and computing environment. Communications of the ACM,
36(1):28–47, 1993.

[BI98] A. F. Bobick and Y. A. Ivanov. Action recognition using probabilistic pars-
ing. In CVPR ’98: Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, page 196, Washington, DC,
USA, 1998. IEEE Computer Society.

[BKKK04a] Seok-Hyung Bae, Takahiro Kobayash, Ryugo Kijima, and Won-Sup Kim.
Tangible nurbs-curve manipulation techniques using graspable handles on a
large display. In UIST ’04: Proceedings of the 17th annual ACM symposium
on User interface software and technology, pages 81–90, New York, NY,
USA, 2004. ACM Press.

[BKKK04b] S.H. Bae, T. Kobayash, R. Kijima, and W.S. Kim. Tangible nurbs-curve ma-
nipulation techniques using graspable handles on a large display. In S. Feiner
and J.A. Landay, editors, UIST, pages 81–90. ACM, 2004.

[BKLP01] Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola, and Ivan Poupyrev. An
introduction to 3-d user interface design. Presence: Teleoper. Virtual Envi-
ron., 10(1):96–108, 2001.

[BLB+03] Stephen Brewster, Joanna Lumsden, Marek Bell, Malcolm Hall, and Stuart
Tasker. Multimodal ’eyes-free’ interaction techniques for wearable devices.
In CHI ’03: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 473–480, New York, NY, USA, 2003. ACM Press.

[BLK01] S. Baek, S. Lee, and G. J. Kim. Motion evaluation for vr-based motion
training. In Proceedings of Eurographics 2001, 2001.

[BLK03] S. Baek, S. Lee, and G.J. Kim. Motion retargeting and evaluation for vr-
based training of free motions. The Visual Computer, 19(4):222–242, July
2003.

126

Bibliography

[BLSB03] Jigna Bhatt, Niels Da Vitoria Lobo, Mubarak Shah, and George Bebis. Au-
tomatic recognition of a baby gesture. In ICTAI ’03: Proceedings of the 15th
IEEE International Conference on Tools with Artificial Intelligence, page
610, Washington, DC, USA, 2003. IEEE Computer Society.

[BLSM04] Jan Borchers, Eric Lee, Wolfgang Samminger, and Max Mühlhäuser. Per-
sonal orchestra: A real-time audio/video system for interactive conducting.
ACM Multimedia Systems Journal Special Issue on Multimedia Software En-
gineering, 9(5):458–465, March 2004.

[Bol80] Richard A. Bolt. Put-that-there: Voice and gesture at the graphics interface.
In SIGGRAPH ’80: Proceedings of the 7th annual conference on Computer
graphics and interactive techniques, pages 262–270, New York, NY, USA,
1980. ACM Press.

[BOP97] M. Brand, N. M. Oliver, and A. Pentland. Coupled hidden markov models
for complex action recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, june 1997.

[BP98] Ravin Balakrishnan and Pranay Patel. The padmouse: facilitating selection
and spatial positioning for the non-dominant hand. In CHI ’98: Proceedings
of the SIGCHI conference on Human factors in computing systems, pages
9–16. ACM Press/Addison-Wesley Publishing Co., 1998.

[BP02] Ari Y. Benbasat and Joseph A. Paradiso. An inertial measurement framework
for gesture recognition and applications. In GW ’01: Revised Papers from the
International Gesture Workshop on Gesture and Sign Languages in Human-
Computer Interaction, pages 9–20, London, UK, 2002. Springer-Verlag.

[Bre97] Christoph Bregler. Learning and recognizing human dynamics in video se-
quences. In CVPR ’97: Proceedings of the 1997 Conference on Computer
Vision and Pattern Recognition (CVPR ’97), page 568, Washington, DC,
USA, 1997. IEEE Computer Society.

[C-c] C-control M2. Conrad Electronic, Inc., http://www.conrad.com.

[Cad94] Claude Cadoz. Les realites virtuelles. 1994.

[CB96] Lee W. Campbell and David A. Becker. Invariant features for 3-d gesture
recognition. Second International Workshop on Face and Gesture Recogni-
tion, 1996.

[CB03] Xiang Cao and Ravin Balakrishnan. Visionwand: interaction techniques for
large displays using a passive wand tracked in 3d. In UIST ’03: Proceedings
of the 16th annual ACM symposium on User interface software and technol-
ogy, pages 173–182. ACM Press, 2003.

127

Bibliography

[CBF05] Kyong I. Chang, Kevin W. Bowyer, and Patrick J. Flynn. Effects on fa-
cial expression in 3D face recognition. In SPIE Conference on Biometric
Technology for Human Identification, volume 5779 of SPIE Proceedings,
Orlando, FL, 2005.

[CD04] Diane Cook and Sajal Das. Smart environments: Technology, protocols and
applications. 2004.

[CDSC03] C. Chua, N. H. Daly, V. Schaaf, and H. P. Camill. Training for physical tasks
in virtual environments: Tai chi. In Proceedings of IEEE Virtual Reality
2003 Conference, pages 87–94, Los Angeles, Califonia, March 2003. IEEE
Computer Society.

[CFBS97] Jeremy R. Cooperstock, Sidney S. Fels, William Buxton, and Kenneth C.
Smith. Reactive environments. Commun. ACM, 40(9):65–73, 1997.

[CK00] Guanling Chen and David Kotz. A survey of context-aware mobile comput-
ing research. Technical report, Hanover, NH, USA, 2000.

[CNSD93] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti. Surround-
screen projection-based virtual reality: the design and implementation of the
cave. In SIGGRAPH ’93: Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, pages 135–142. ACM Press,
1993.

[Cor01] Andrea Corradini. Dynamic time warping for off-line recognition of a small
gesture vocabulary. In RATFG-RTS ’01: Proceedings of the IEEE ICCV
Workshop on Recognition, Analysis, and Tracking of Faces and Gestures
in Real-Time Systems (RATFG-RTS’01), page 82, Washington, DC, USA,
2001. IEEE Computer Society.

[Cro] Crossbow Technology., http://www.xbow.com/.

[CVWB02] G. S. Chambers, S. Venkatesh, G.A.W. West, and H.H. Bui. Hierarchical
recognition of intentional human gestures for sports video annotation. In
Proceedings of ICPR02, pages 1082–1085, Thessaloniki, Greece, September
2002.

[DB98] J. W. Davis and A. F. Bobick. Virtual pat: A virtual personal aerobics trainer.
In Proceedings of Workshop on Perceptual User Interfaces, pages 13–18,
November 1998.

[DHB+04] Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu.
a cappella: programming by demonstration of context-aware applications.
In CHI ’04: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 33–40, New York, NY, USA, 2004. ACM Press.

128

Bibliography

[DL01] Paul Dietz and Darren Leigh. Diamondtouch: a multi-user touch technology.
In UIST ’01: Proceedings of the 14th annual ACM symposium on User inter-
face software and technology, pages 219–226, New York, NY, USA, 2001.
ACM Press.

[DP] T.J. Darrell and A.P. Pentland. Space-time gestures. In Proc. Comp. Vis. and
Pattern Rec.

[Efr41] David Efron. Gesture and environments. 1941.

[Ele] Eleksen Limited. Elektex product literature, www.elektex.com.

[FH95] S. Fels and G. Hinton. Glove-talkii: An adaptive gesture-to-formant inter-
face. In Proceedings of ACM CHI Conference on Human Factors in Com-
puting Systems, 1995.

[FHSH06] B. Froehlich, J. Hochstrate, V. Skuk, and Anke Huckauf. The globefish and
the globemouse: Two new six degree of freedom input devices for graphics
applications. In Proceedings of ACM CHI Conference on Human Factors in
Computing Systems, pages 191–199, 2006.

[Flo] Flock of BirdsTM. Ascension Technology Corporation,
http://www.ascension-tech.com.

[FLZ98] A. Forsberg, J. LaViola, and R. Zeleznik. Ergodesk: A framework for two
and three dimensional interaction at the activedesk, 1998.

[FMea99] J. Farringdon, A.J. Moore, and N. Tilbury et al. Wearable sensor badge and
sensor jacket for context awareness. In Proceedings of The Third Interna-
tional Symposium on Wearable Computers, pages 107–113, 1999.

[FP00] Bernd Fröhlich and John Plate. The cubic mouse: a new device for
three-dimensional input. In CHI ’00: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 526–531. ACM Press, 2000.

[GBK+01] Tovi Grossman, Ravin Balakrishnan, Gordon Kurtenbach, George Fitzmau-
rice, Azam Khan, and Bill Buxton. Interaction techniques for 3d modeling
on large displays. In I3D ’01: Proceedings of the 2001 symposium on Inter-
active 3D graphics, pages 17–23, New York, NY, USA, 2001. ACM Press.

[GJ95] Zoubin Ghahramani and Michael I. Jordan. Factorial hidden Markov mod-
els. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo,
editors, Proc. Conf. Advances in Neural Information Processing Systems,
NIPS, volume 8, pages 472–478. MIT Press, 1995.

[Gli00] Albert Glinsky. Theremin: Ether music and espionage. 2000.

129

Bibliography

[Gro02] T. Grossman. Creating principal 3d curves with digital tape drawing. In Pro-
ceedings of ACM CHI Conference on Human Factors in Computing Systems,
pages 526–531, 2002.

[GWN+03a] M. Gross, S. Wuermlin, Martin Naef, E. Lamboraz, C. Spagno, A. Kunz,
E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, K. Strehlke, A. Vande
Moere, and O. Staadt. blue-c: A spatially immersive display and 3d video
portal for telepresence. In Proceedings of ACM SIGGRAPH 2003, pages
819–827, 2003.

[GWN+03b] M. Gross, S. Würmlin, M. Näf, E. Lamboray, C. Spagno, A. Kunz, A. V.
Moere, K. S, S. Lang, T. Svoboda, E. Koller-Meier, L. V. Gool, and O. Staadt.
blue-c: A spatially immersive display and 3d video portal for telepresence.
volume 22, pages 819–827. ACM Press, 2003.

[HGC94] David Heckerman, Dan Geiger, and David Maxwell Chickering. Learning
bayesian networks: The combination of knowledge and statistical data. In
KDD Workshop, pages 85–96, 1994.

[HIH+05] Perttu Hämäläinen, Tommi Ilmonen, Johanna Höysniemi, Mikko Lindholm,
and Ari Nykänen. Martial arts in artificial reality. In CHI ’05: Proceedings
of the SIGCHI conference on Human factors in computing systems, pages
781–790, New York, NY, USA, 2005. ACM Press.

[HS98a] C. Hummels and P. J. Stappers. Meaningful gestures for human computer
interaction: Beyond hand postures. In FG ’98: Proceedings of the 3rd. Inter-
national Conference on Face & Gesture Recognition, page 591, Washington,
DC, USA, 1998. IEEE Computer Society.

[HS98b] C. Hummels and P. J. Stappers. Meaningful gestures for human computer
interaction: Beyond hand postures. In FG ’98: Proceedings of the 3rd. Inter-
national Conference on Face & Gesture Recognition, page 591, Washington,
DC, USA, 1998. IEEE Computer Society.

[HSH+99] Ken Hinckley, Mike Sinclair, Erik Hanson, Richard Szeliski, and Matt Con-
way. The videomouse: a camera-based multi-degree-of-freedom input de-
vice. In UIST ’99: Proceedings of the 12th annual ACM symposium on User
interface software and technology, pages 103–112. ACM Press, 1999.

[IvDC+00] H.A. Ingram, P. van Donkelaar, J. Cole, J.L. Vercher, G.M. Gauthier, and
R.C. Miall. The role of proprioception and attention in visuomotor adapta-
tion task. Exp. Brain Res, 132:114–126, 2000.

[JHT06] Wan-rong Jih, Jane Yung-jen Hsu Hsu, and Tse-Ming Tsai. Context-aware
service integration for elderly care in a smart environment. In Modeling and
Retrieval of Context Retrieval of Context: Papers from the AAAI Workshop,

130

Bibliography

number WS-06-12, pages 44– 48, Boston, Massachusetts, USA, July 16 –
20 2006.

[Jr01] L. Jr. Quill: a gesture design tool for pen-based user interfaces, 2001.

[Ken80] Adam Kendon. Gesticulation and speech: Two aspects of the process of
utterance. pages 207–227, 1980.

[KFA+04] Azam Khan, George Fitzmaurice, Don Almeida, Nicolas Burtnyk, and Gor-
don Kurtenbach. A remote control interface for large displays. In UIST ’04:
Proceedings of the 17th annual ACM symposium on User interface software
and technology, pages 127–136, New York, NY, USA, 2004. ACM Press.

[KP01] E. Keogh and M. Pazzani. Derivative dynamic time warping, 2001.

[KPE+06] Paul Keir, John Payne, Jocelyn Elgoyhen, Martyn Horner, Martin Naef, and
Paul Anderson. Gesture-recognition with non-referenced tracking. In 3DUI
’06: Proceedings of the 3D User Interfaces (3DUI’06), pages 151–158,
Washington, DC, USA, 2006. IEEE Computer Society.

[Kru91] W. Krueger. Artificial reality ii. 1991.

[Kur93] G. Kurtenbach. The Design and Evaluation of Marking Menus. PhD thesis,
Department of Computer Science, University of Toronto, Toronto, Canada,
1993.

[LEC+06] A. Luciani, M. Evarard, D. Courousse, N. Castagne, C. Cadoz, and J. Flo-
rens. A basic gesture and motion format for virtual realty multisensory ap-
plications. In Proceedings of the 1st international GRAPP Conferences on
Computer Graphics Theory and Applications, 2006.

[Lip91] James S. Lipscomb. A trainable gesture recognizer. Pattern Recogn.,
24(9):895–907, 1991.

[LVS+03] Kristof Van Laerhoven, Nicolas Villar, Albrecht Schmidt, Gerd Kortuem,
and Hans Gellersen. Using an autonomous cube for basic navigation and
input. In ICMI ’03: Proceedings of the 5th international conference on
Multimodal interfaces, pages 203–210. ACM Press, 2003.

[MA05] Florian ’Floyd’ Mueller and Stefan Agamanolis. Sports over a distance.
Comput. Entertain., 3(3):4–4, 2005.

[MBS97] Mark R. Mine, Frederick P. Brooks, Jr., and Carlo H. Sequin. Moving ob-
jects in space: Exploiting proprioception in virtual-environment interaction.
Computer Graphics, 31(Annual Conference Series):19–26, 1997.

[McN95] David McNeill. Hand and mind: What gestures reveal about thought. 1995.

131

Bibliography

[MDBP96] P. Maes, T. Darrell, B. Blumberg, and A. Pentland. The alive system: Wire-
less, full-body interaction with autonomous agents, 1996.

[ML04] S. Malik and J. Laszlo. Visual touchpad: a two-handed gestural input device.
In R. Sharma, T. Darrell, M.P. Harper, G. Lazzari, and M. Turk, editors,
ICMI, pages 289–296. ACM, 2004.

[Mot] Motion Analysis Corporation, http://www.motionanalysis.com .

[MS83] Richard J. Meinhold and Nozer D. Singpurwalla. Understanding the kalman
filter. The American Statistician, 37(2):123–127, 1983.

[NFU99] H. Nishino, M. Fushimi, and K. Utssumiya. A virtual environment for mod-
eling 3d obejcts through spatial interaction. In 1999 IEEE International Con-
ference on Systems, Man, and Cybernetics, Washington, DC, USA, 1999.
IEEE Computer Society.

[NLP+02] Ara V. Nefian, Luhong Liang, Xiaobo Pi, Xiaoxing Liu, and Kevin Murphy.
Dynamic bayesian networks for audio-visual speech recognition. EURASIP
Journal on Applied Signal Processing, 2002(11):1274–1288, 2002.

[NW96] Y. Nam and K. Wohn. Recognition of space-time handgestures using hidden
markov model, 1996.

[Ope] OpenSource Computer Vision Library. Intel Corp., http://www.intel.com.

[Par99] J. Paradiso. The brain opera technology: New instruments and gestural sen-
sors for musical interaction and performance, 1999.

[PFea99] J.K. Perng, B. Fisher, and S. Hollar et al. Acceleration sensing glove. In
Proceedings of The Third International Symposium on Wearable Computers,
pages 178–179, 1999.

[PH97] Rosalind W. Picard and Jennifer Healey. Affective wearables. In ISWC,
pages 90–97, 1997.

[PHBT00] J. A. Paradiso, K. Hsiao, A. Y. Benbasat, and Z. Teegarden. Design and im-
plementation of expressive footwear. IBM Syst. J., 39(3-4):511–529, 2000.

[PHH99] J. Paradiso, E. Hu, and K. Hsiao. The cybershoe: A wireless multisensor
interface for a dancer’s feet. In Proc.International Dance and Technology
99, pages 26–28, Feb, 1999. Tempe AZ.

[Pic97] R.W. Picard. Affective Computing. The MIT Press, Cambridge,MA, 1997.

[PKE+06] John Payne, Paul Keir, Jocelyn Elgoyhen, Mairghread McLundie, Martin
Naef, Martyn Horner, and Paul Anderson. Gameplay issues in the design

132

Bibliography

of spatial 3d gestures for video games. In CHI ’06: CHI ’06 extended ab-
stracts on Human factors in computing systems, pages 1217–1222. ACM
Press, 2006.

[PL99] Alex Pentland and Andrew Liu. Modeling and prediction of human behavior.
Neural Comput., 11(1):229–242, 1999.

[Pup] Puppet Works, http://www.puppetworks.com .

[Que94] Francis K. H. Quek. Toward a vision-based hand gesture interface. In VRST
’94: Proceedings of the conference on Virtual reality software and technol-
ogy, pages 17–31, River Edge, NJ, USA, 1994. World Scientific Publishing
Co., Inc.

[Rab89] L.R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. In Proceedings of the IEEE, volume 77, pages 257–
286, Feburuary 1989.

[RAM+05] Cliff Randell, Ian Anderson, Henk Muller, Andrew Moore, Philippa Brock,
and Sharon Baurley. The sensor sleeve: Sensing affective gestures. In Ninth
International Symposium on Wearable Computers - Workshop on On-Body
Sensing, October 2005.

[RB05] Stephan Rusdorf and Guido Brunnett. Real time tracking of high speed
movements in the context of a table tennis application. In VRST ’05: Pro-
ceedings of the ACM symposium on Virtual reality software and technology,
pages 192–200, New York, NY, USA, 2005. ACM Press.

[Rek01] Jun Rekimoto. Gesturewrist and gesturepad: Unobtrusive wearable inter-
action devices. In ISWC ’01: Proceedings of the 5th IEEE International
Symposium on Wearable Computers, page 21, Washington, DC, USA, 2001.
IEEE Computer Society.

[Rek02] Jun Rekimoto. Smartskin: an infrastructure for freehand manipulation on
interactive surfaces. In CHI ’02: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 113–120, New York, NY, USA,
2002. ACM Press.

[RHS01] R. Duda R, P. Hart, and D. Stork. Pattern Classification. 2nd Edition. John
Wiley and Sons Press., 2001.

[RJ93] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recog-
nition. Prentice Hall PTR, April 1993.

[RS91] B. Rime and L. Schiaratura. Gesture and speech: Fundamentals of nonverbal
behavior. 1991.

133

Bibliography

[RS99] J. Rekimoto and M. Saitoh. Augmented surfaces: a spatially continuous
work space for hybrid computing environments. In Proceedings of ACM
CHI Conference on Human Factors in Computing Systems, pages 378–385,
1999.

[RS00] Jun Rekimoto and Eduardo Sciammarella. Toolstone: Effective use of the
physical manipulation vocabularies of input devices. In Proceedings of the
13th annual ACM symposium on User interface software and technology,
pages 109–117. ACM Press, 2000.

[RWC+98] Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin, and Henry
Fuchs. The office of the future: a unified approach to image-based modeling
and spatially immersive displays. In SIGGRAPH ’98: Proceedings of the
25th annual conference on Computer graphics and interactive techniques,
pages 179–188. ACM Press, 1998.

[SAA00] Thad Starner, Jake Auxier, and Daniel Ashbrook. The gesture pendant: A
self-illuminating, wearable, infrared computer vision system for home au-
tomation control and medical monitoring. In Proceedings of ISWC 2000,
2000.

[SGB99] A. Schmidt, H.W. Gellersen, and M. Beigl. A wearable context-awareness
component. In Proceedings of The Third International Symposium on Wear-
able Computers, pages 176–177, 1999.

[SH97] H. Sawada and S. Hashimoto. Gesture recognition using an accelerometer
sensor and its application to musical performance control. In Electronics and
Communications in Japan, number WS-06-12, 1997.

[SOMM06] P. Ravindra De Silva, Minetada Osano, Ashu Marasinghe, and Ajith P.
Madurapperuma. Towards recognizing emotion with affective dimensions
through body gestures. In FGR ’06: Proceedings of the 7th International
Conference on Automatic Face and Gesture Recognition (FGR06), pages
269–274, Washington, DC, USA, 2006. IEEE Computer Society.

[SP] T. Starner and A. Pentland. Visual Recognition of American Sign Language
Using Hidden Markov Models. M.I.T. Media Laboratory, Cambridge MA.

[SP95] T. Starner and A. Pentland. Real-time american sign language recognition
from video using hidden markov models. In SCV95, page 5B Systems and
Applications, 1995.

[Spaa] SpaceBallTM. 3Dconnexion, http://www.3Dconnexion.com.

[Spab] SpaceMouseTM. 3Dconnexion, http://www.3dconnexion.com.

[SSH05] Petra Sundstrom, Anna Stahl, and Kristina Hook. A user-centred approach
to affective interaction. Computer Science, 2005.

134

Bibliography

[SSL+03] J. G. Sheridan, B. W. Short., K. Van Laerhoven, N. Villar, and G. Kortuem.
Exploring cube affordance: Towards a classification of non-verbal dynamics
of physical interfaces for wearable computing. In Proceedings of Eurowear-
ables 2003, 2003.

[Sta] Thad Starner. Visual recognition of american sign language using hidden
markov models. Technical report.

[SW84] M. Smyth and A. Wing. The Psychology of Human Movement. Academic
Press, 1984.

[Tse04] Edward Hiatt Tse. The Single Display Groupware Toolkit. PhD thesis, De-
partment of Computer Science, The University of Calgary, Alberta, 2004.

[TSST04] M. Takahata, K. Shiraki, Y. Sakane, and Y. Takebayashi. Sound feedback
for powerful karate training. In Proceedings of International Conference on
New Interfaces for Musical Expression (NIME04), 2004.

[TY02] K. Tsukada and M. Yasamura. Ubi-finger: Gesture input device for mobile
use. In Proceedings of APCHI ’02, pages 388–400, 2002.

[TYo02] Esa Tuulari and Arto Ylisaukko-oja. Soapbox: A platform for ubiquitous
computing research and applications. In Pervasive ’02: Proceedings of
the First International Conference on Pervasive Computing, pages 125–138,
London, UK, 2002. Springer-Verlag.

[UI97] Brygg Ullmer and Hiroshi Ishii. The metadesk: Models and prototypes for
tangible user interfaces. In ACM Symposium on User Interface Software and
Technology, pages 223–232, 1997.

[VB05] Daniel Vogel and Ravin Balakrishnan. Distant freehand pointing and click-
ing on very large, high resolution displays. In UIST ’05: Proceedings of the
18th annual ACM symposium on User interface software and technology,
pages 33–42. ACM Press, 2005.

[Ven93] D. Venolia. Facile 3d direct manipulation. In Proceedings of INTER-
CHI 1993, pages 31–36, 1993.

[Wac] Wacom Tablet Technology., http://www.wacom.com/.

[Wan] WandaTM. Ascension Technology Corporation., http://www.ascension-
tech.com.

[WB03] Daniel Wigdor and Ravin Balakrishnan. Tilttext: using tilt for text input to
mobile phones. In UIST ’03: Proceedings of the 16th annual ACM sympo-
sium on User interface software and technology, pages 81–90. ACM Press,
2003.

135

Bibliography

[Web02] Andrew R. Webb. Statistical Pattern Recognition. 2nd Edition. John Wiley
and Sons Press., 2002.

[WF98] Andrew D. Wilson and Aaron F.Bobick. Recognition and interpretation of
parametric gesture. In Proceedings of International Conference on Computer
Vision, 1998.

[Wii] Wii. http://wii.nintendo.com/.

[WJ88] C. Ware and D. R. Jessome. Using the bat: a six dimensional mouse for
object placement. In Proceedings on Graphics interface ’88, pages 119–
124, Toronto, Ont., Canada, Canada, 1988. Canadian Information Processing
Society.

[WS03] A. Wilson and S. Shafer. Xwand: Ui for intelligent spaces. In Proceedings
of ACM CHI Conference on Human Factors in Computing Systems, pages
545–522, 2003.

[Yan99] U. Yang. Just follow me: An immersive vr-based motion training system. In
Proceedings of International Conference on Virtual Systems and Multimedia,
1999.

[YXC94] Jie Yang, Yangsheng Xu, and C.S. Chen. Gesture interface: Modeling and
learning. In IEEE International Conference on Robotics and Automation,
volume 2, pages 1747–1752, 1994.

[Zha98] S. Zhai. User performance in relation to 3d input device design. ACM Com-
puter Graphics, 32(4):50–54, 1998.

[Zha99] Z. Zhang. Flexible camera calibration by viewing a plane from unknown ori-
entations. In Proceedings of the 7th International Conference on Computer
Vision 1999, pages 662–673, 1999.

[Zha01] Liwei Zhao. Synthesis and acquisition of laban movement analysis qualita-
tive parameters for communicative gestures. PhD thesis, 2001. Supervisor-
Norman I. Badler.

136

Curriculum Vitae

Personal Data

Name Doo Young Kwon

E-Mail dkwon@inf.ethz.ch

Address Computer Graphics Laboratory

ETH Zentrum

Haldeneggsteig 4

8092 Zurich

Switzerland

http://graphics.ethz.ch/~dkwon/

Date of Birth September 29, 1973

Nationality Republic of Korea

Education

Jan. 2004 – Now Ph.D. Candidate at Computer Graphics Laboratory

Department of Computer Science, ETH Zurich, Switzerland

Apr. 2002 – Nov. 2003 M.S Degree in Design Computing

Department of Architecture, University of Washington, USA

Oct. 1992 – Mar. 2002 Undergraduate Studies in Architecture

Department of Architecture, Ajou University, KOREA

137

Curriculum Vitae

Professional Experiences

Jun. 2004 – Nov. 2007 Research Assistant at the Computer Graphics Laboratory

Department of Computer Science, ETH Zurich, Switzerland

Aug. 2002 – Dec. 2003 Research Assistant at the Design Machine Group

Department of Architecture, University of Washington, USA

Aug. 2001 – Aug. 2002 Researcher at Center for Computer Graphics and Virtual Reality

Department of Computer Science, Ewha Womans University, Korea

Jun. 1999 – Jul. 2001 Full time Researcher at the Space Digital Laboratory

Yonsei University, Seoul, Korea

Mai 1993 – Oct.1996 Rescue and Safety Specialist at the Fire and Rescue Department

Military Service, Republic of Korea Air Force, Wonju, Korea

Scientific Publications

Jin Won Choi, Doo Young Kwon, Jie Eun Hwang, Jumphon Lertlakkhanakul
Real-time Management of Spatial Information of Design: A Space-based
Floor Plan Representation of Buildings, Automation in Construction, Else-
vier, vol. 16, nr. 4, pp. 449-459, 2007.

Doo Young Kwon, Stephan Würmlin, Markus Gross
mCube: Towards a Versatile Gesture Input Device for Ubiquitous Com-
puting Environments, Lecture Notes in Computer Science (UCS 2007),
Springler, vol. 4836, pp. 228-239, 2007.

Doo Young Kwon, Markus Gross
A Framework for 3D Spatial Gesture Design and Modeling Using a Wear-
able Input Device, Proceedings of the 11th IEEE International Symposium
on Wearable Computers, pp. 95-101, 2007.

Doo Young Kwon, Markus Gross
Combining Body Sensors and Visual Sensors for Motion Training, APro-
ceedings of ACM SIGCHI ACE 2005, pp. 94-101 (Valencia, Spain, June
15 - June 17), 2005.

Seon Min Rhee, Soo Mi Choi, Doo Young Kwon, Myoung Hee Kim
Architectural Design using Visual and Tactile Guide in the Virtual Table,
Journal of KISS: Computing Practicee, Volume 10, Number 2, April, 2004.

Myoung Hee Kim, Soo Mi Choi, Seon Min Rhee, Doo Young Kwon, Hyo Sun
Kim

138

A Guided Interaction Approach for Architectural Design in a Table-Type VR
Environment, Lecture Notes in Computer Science, Springer-Verlag, 2002.

Jin Won Choi, Doo Young Kwon, Hyun Soo Lee
DesignBUF: Exploring and Extending 2D Boolean Set Operations with
Multiple Modes in the Early Design Phase, CAAD FUTURE 2001, pp.
589-602, 2001.

Yeonjoo Oh, Doo Young Kwon, Babak Ziraknejad, Ken Camarata, Ellen Yi-Luen
Do

WINDOW SEAT: Visual Experience with an Interactive Chair, GCAD 2004,
Pittsburgh, USA, 2004.

Doo Young Kwon
Cover Story : Design By Points, IEEE Computer Graphics and Applications
Vol.24 July/August, 2004.

Doo-Young Kwon, Ellen Yi-Luen Do
Inspired by Eisenman: ArchiDNA, A Creative Shape Generating System,
CAAD FUTURE, 2003.

Doo Young Kwon
ArchiDNA: A Generative System for Shape Configuration, Master Thesis,
University of Washington, 2003.

Seon Min Rhee, Doo Young Kwon, Soo Mi Choi, Myoung Hee Kim
Interactive Object Modeling Within a Table-type Virtual Environment, Ko-
rean Information Processing Society (KIPS), Vol. 29-1, pp.592-594, 2002.

Myoung-Hee Kim, Soo-Mi Choi, Seon-Min Rhee, Doo-Young Kwon, Hyo-Sun
Kim

A Guided Interaction Approach for Architectural Design in a Table-Type VR
Environment, IEEE Pacific-Rim Conference on Multimedia (PCM2002),
2002.

Doo Young Kwon, Jin Won Choi
Fundamental Study on the Development of an Intelligent Architectural CAD
System Supporting Web-based Collaborative Design, CAD/CAM, pp.200-
210, 2000.

Jin Won Choi, Myong Sik Lee, Doo Young Kwon
An Analysis A Fundamental Study on the Development of a Web-based Intel-
ligent Architectural CAD System, he Architectural Institute of Korea,19(2),
pp.349-354, 1999.

139

