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Abstract

Videos have become an important part in our daily lives. Thankfully, the recent
shift to an entire digital video pipeline allowed the introduction of improved tools
and algorithms for professional video processing. Therefore, despite its complexity,
video processing has never been easier to use and more available to the general
public than it is today.

However, due to the rapid technological advances new challenges in video pro-
cessing have emerged. The ability to capture high definition content has often
outpaced the progress of computing hardware. Furthermore, with the renaissance
of stereoscopic 3D a new dimension is added to video processing algorithms. This
additionally increases computational demands as well as it introduces its own sets
of problems. Moreover, the ubiquitous of currently available displays results in
a wide range of possible video output formats. Viewers consume video content
on small handhelds as well as on high definition glasses-free 3D displays. This
requires sophisticated video processing methods to ensure best viewing conditions
on all output devices.

This thesis aims at improving the way 2D and 3D video content can be adapted and
artistically enhanced. The first two challenges emerge from the content-display gap.
Often the resolution and aspect ratio of the output display may significantly vary
from the original content. This thesis introduces a novel image domain warping
(IDW) framework and shows that it can be utilized to fit content to different display
dimensions without introducing too much noticeable artifacts. We present a novel
efficient system that gives complete artistic control over this retargeting process.

A similar content-display gap also exists for stereoscopic productions. Different
display dimensions result in different depth perception. To counteract those unde-
sired depth changes we will extend the technique of IDW to be able to change the
depth perception of 3D content. Our novel method does not only allow to close
the 3D-content display gap, but also gives artists a new innovative post processing
tool to locally modify the depth composition. We introduce disparity mapping
operators. These operators formalize insights from perception and production
rules and are the basis for a general framework for stereoscopic disparity editing.
Moreover, we use the same novel IDW approach to generate multi-view video
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from stereoscopic input. This is an essential tool to be able to consume stereoscopic
content on advanced glasses-free auto-stereoscopic displays.

One other energy optimization algorithm presented in this thesis tackles the pro-
blem of information propagation spatially and temporally in a video sequence. To
ensure consistent and content-aware propagation such algorithms usually require
complex dependencies and therefore result in a heavy and difficult optimization
problems. The general processing framework, which this thesis introduces howe-
ver, is optimized to still work on high definition content. Due to the reduction of
per-pixel complexity and the increase of the amount of information that can be con-
sidered simultaneously it solves efficiently and accurately many data propagation
problems. We show that our novel video processing framework can significantly
improve and accelerate various video-processing tasks including such import-
ant tasks as optical flow computation, disparity estimation, depth up sampling,
colorization, and saliency computation.
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Zusammenfassung

Der Konsum von Videoinhalten wurde in den letzten Jahren zu einem wichtigen
Teil unseres täglichen Lebens. Die jüngsten Entwicklungen hin zu einer vollkom-
men digitalen Video-Pipeline erlaubten es bessere Werkzeuge und Algorithmen
für die professionelle Videoverarbeitung einzuführen. Dadurch ist die Videoverar-
beitung, trotz ihrer Komplexität, einfacher und weiter verbreitet als jemals zuvor.

Aufgrund des rasanten technologischen Fortschritts sind neue Herausforderungen
in der Videoverarbeitung entstanden. Die Fähigkeit immer bessere, hochaufgelöste
Inhalte aufzuzeichnen überholt oft die Weiterentwicklung der zur Verarbeitung
verwendeten Computer-Hardware. Zusätzlich, mit der Renaissance des 3D-Films,
wurde noch eine weitere Verarbeitungsdimension zu den meisten Videoalgorith-
men hinzugefügt. Dies erhöht zusätzlich den Rechenaufwand und erzeugt weiters
eine ganze Reihe an speziellen neuen Problemen. Des Weiteren ergeben sich auch
durch die weite Verbreitung von Displays mit verschiedensten Auflösungen und
Ausgabeformaten neue Herausforderungen für die Videoverarbeitung. Zuschauer
konsumieren Videoinhalte sowohl auf kleinen Handhelds als wie auch auf gros-
sen High-Definition 3D-Displays. Um trotzdem auf allen Ausgabegeräten eine
optimale Qualität zu erhalten, werden hochentwickelte Anpassungsalgorithmen
benötigt.

Diese Arbeit befasst sich mit der Verbesserung der Art und Weise wie 2D- und
3D-Videoinhalte technisch sowie auch künstlerisch angepasst werden können.
Als Erstes widmen wir uns dem Problem der Anspassung von vorgegebenen 2D
Videos an bestimmte Ausgabegeräte (Content-Display-Gap). Oft unterscheidet
sich die Auflösung und das Seitenverhältnis des Ausgabegerätes stark von den
Eigenschaften der Aufnahme. Um dieses Problem zu lösen stellt diese Arbeit
zuerst ein neuartiges Werkzeug zur Video-Verformung im Bildbereich (image
domain warping, IDW) vor. Wir zeigen dann, dass mit diesem IDW-Werkzeug
Videos an beliebige Seitenverhältnisse angepasst werden können, ohne dass dabei
starke Verzerrungen in wichtigen Bereichen der Videos entstehen. Unser neuartiges
und effizientes System gewährt die volle Kontrolle über diese Bildverformung
und erlaubt dadurch auch die gewollte künstlerische Originalbildkomposition zu
erhalten.

Ein ähnliches Video-Anpassungsproblem gibt es auch im Bereich der stereosko-
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pischen 3D Videoproduktion. Verschiedene Anzeigegeräte führen hier oft dazu,
dass ein und derselbe Inhalt eine andere Tiefenwahrnehmung erzeugt. Um die-
ser unerwünschten Tiefenänderungen entgegenzuwirken erweitern wir unser
Bildverformungswerkzeug so, dass wir die Tiefenwahrnehmung von beliebigen
3D-Inhalten anpassen können. Dieses neue innovative 3D Bearbeitungswerkzeug
ermöglicht nicht nur Inhalte an 3D Ausgabegeräte anzupassen, sondern erlaubt
es Videobearbeitern und Videokünstlern auch in der Videonachbearbeitung die
Tiefenzusammensetzung einer aufgezeichnete Szene zu ändern. Dazu stellen wir
das Konzept von Deviationsanpassungsfunktionen vor. Diese Funktionen forma-
lisieren Erkenntnisse aus der Wahrnehmungslehre sowie allgemeine bekannte
Produktionsregeln für 3D Inhalte, und sind damit die Grundlage für einen allge-
meinen Ansatz zur nachträglichen Bearbeitung der Deviationen und der damit
verbundenen Tiefenzusammensetzung von 3D Videos. Wir zeigen auch dass unser
auf reiner zweidimensionaler Videoverformung basierendes 3D Bearbeitungs-
werkzeug zudem dafür verwendet werden kann zusätzliche neue Ansichten aus
anderen Blickwinkeln zu erzeugen. Damit ist es ein wichtiges Instrument um
stereoskopische Aufnahmen bestehend aus nur zwei Ansichten an Ausgabegeräte
mit vielen Ansichten (autostereoskopische Bildschirme) anzupassen.

Ein weiterer Energieoptimierungs-Algorithmus, der in dieser Arbeit beschrieben
wird, befasst sich mit dem Problem der räumlichen und zeitlichen Diffusion von
Information in einer Videosequenz. Um sicherzustellen dass Information konsi-
stent und unter Berücksichtigung der Videoinhalte propagiert werden können
werden oft Algorithmen mit komplexen Abhängigkeiten zwischen allen Bildern
und allen Bildpunkten benutzt. Dies führt zu schwierigen und rechenaufwendi-
gen Optimierungsproblemen. In dieser Arbeit führen wir deshalb eine neuartige
Videoverarbeitungsmethode ein die auch noch für hochaufgelöste Videos effizient
arbeitet. Indem wir den Aufwand pro Bildpunkt reduzieren und damit erreichen
dass wir gleichzeitig mehr Bildinformation berücksichtigen können, gelingt es
uns viele Informationsdiffusionsproblem effizient und in hoher Qualität zu lösen.
Wir zeigen dass unsere neue Methode für viele wichtige Anwendungen wie zum
Beispiel die optische Flussberechnung, die Deviationsschätzung, die Tiefenkarten-
rekonstruktion sowie die Filmkolorierung effizient verwendet werden kann.
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C H A P T E R 1
Introduction

Videos, movies and other visual media have become an important part in our
daily lives. With advances in fields like movie capture, data transmission and
display technology, handling of video content seems as easy as delivering
printed text or emitting a radio program. However, creating convincing and
enjoyable videos requires much more than plain content capture. It is often
essential to extensively modify and adapt recorded content.

Such modifications include simple operations like editing, color correction or
reframing, but often much more sophisticated methods to completely alter
video content are used or entirely new artificial sceneries are created without
any capturing. Simple modifications are used on a daily basis in broadcast,
whereas professional movie productions extensively use any available tool.
As a consequence, nearly none of the visual content shown and consumed
today is unaltered. Accordingly, content creation for video is still much more
labor and time consuming than for any other media. Thankfully, the recent
shift to an entire digital video pipeline allowed the introduction of improved
tools and algorithms for video processing. Therefore, despite its complexity,
video processing has never been easier to use and more available to the
general public than it is today.

Due to the rapid technological advances new challenges in video processing
have emerged. The ability to capture high definition content (temporally
and spatially) has often outpaced the progress of computing and memory
hardware. Furthermore, with the renaissance of stereoscopic 3D content a
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Introduction

new dimension is added to video processing algorithms. This additionally
increases computational demands as well as it introduces its own sets of new
problems and additional requirements for existing algorithms (e.g., depth
awareness, interview consistency). Moreover, when it comes to displaying
video content, recent years have brought us a zoo of different displays with
diverse aspect ratios, resolutions and other capabilities. Viewers consume
media on small unconventionally shaped handheld displays as well as on
high definition 4k TVs or glasses-free multi-view 3D screens. This requires
sophisticated content creation, transmission and adaptation to ensure best
viewing conditions on all output devices.

This thesis aims at improving the way high-definition 2D and 3D video con-
tent can be adapted and artistically enhanced. This thesis will introduce and
propose a solution to three related digital video post-processing tasks. The
first two challenges emerge from the content-display gap. Often, produced
content is not consumed on a single type of display. The resolution and aspect
ratio of the output display may significantly vary from the original content.
This can result in substantial distortions or the necessity for large content
excision. This thesis introduces a novel image domain warping (IDW) frame-
work and shows that it can be utilized to fit captured content to different
display dimensions without introducing too much noticeable artifacts or the
need to cut off content. The adaption of content to different output devices
is called video retargeting and aims at hiding indispensable distortions in
visually unimportant areas. In its core the proposed IDW framework is a
specifically tailored large non-linear energy optimization task. In our work
we show how to efficiently construct the energy optimization problem from
the video content and the desired retargeting constraints and then present an
efficient iterative solver to compute the IDW result in near real time even for
high resolution content.

A similar content-display gap also exists for stereoscopic 3D productions.
Different display dimensions result in different depth perception for the same
content. To counteract those undesired depth changes we will extend the
technique of IDW to be able to change the depth perception of captured
stereoscopic content. Our novel method does not only allow to close the 3D-
content display gap, but also gives artist a new innovative post processing
tool to locally modify the stereoscopic 3D depth composition after content
capturing.

In the foreseeable future, when autostereoscopic displays are widely avail-
able, the content-display gap for 3D content will be even more severe. These
glasses-free displays require significantly more than two input views. How-
ever, nowadays content is mainly produced at most with two cameras. In
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1.1 Video Retargeting

this thesis we will show how to generate additional approximated views
from just two input views using our IDW framework. Thereby, we present
a practical method that allows consuming stereoscopic 2-view content on
autostereoscopic glasses-free displays.

The third main energy optimization technique presented in this thesis tackles
the problem of information propagation spatially and temporally in a video
sequence. To ensure consistent and content-aware propagation such algo-
rithms usually require complex pixel and frame inter-dependencies and there-
fore result in a complex optimization problems. This is often prohibitively
computationally expensive, especially for high definition content. The gen-
eral processing framework, which this thesis introduces, is optimized to work
on high definition content. Due to the reduction of per-pixel complexity
and the increase of the amount of information that can be considered simul-
taneously (number of frames, pixel neighborhood) it solves efficiently and
accurately many data regularization, filtering and data-upsampling problems.
We show that our novel video processing framework can significantly im-
prove and accelerate various video-processing task including such important
task as optical flow computation, disparity estimation, depth up sampling,
colorization, and saliency computation.

Next, we individually introduce in more detail the topics of this thesis. We
then continue by summarizing the principal contributions of this work. We
finish this introduction with a short outline of the thesis, as well as listing the
authors relevant peer-reviewed publications.

1.1 Video Retargeting

Motion picture and video are traditionally produced for a specific target
platform such as cinema or TV. In recent years, however, we witness an
increasing demand for displaying video content on devices with considerably
differing display formats. User studies [Set+05; Kno+07] have shown that for
novel formats like smart phones or MP3 players, naive linear downscaling is
inappropriate because of the introduced distortions; these platforms require
content-aware modification of the video for a comfortable viewing experience.
Lately, sophisticated solutions have been proposed which compute feature
preserving, non-linear rescaling to the desired target resolution [WGC07;
RSA08; WS08]. But despite their very promising results, these techniques
focus on particular technical elements and lack the systemic view required
for practical video content production and viewing.

This thesis presents a novel, comprehensive framework for video retarget-
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ing. The framework combines automatic content-analysis with interactive
tools. Within an interactive workflow, the content producer defines global
constraints to guide the retargeting process based on the concept of key frame
editing. This enables her to annotate video with additional information about
the desired scene composition or object saliency which would otherwise
be impossible to capture by currently available fully automatic techniques.
This process augments the original video format with sparse annotations
that are time-stamped and stored with the key frames. During playback our
system computes an optimized image domain warp considering both auto-
matically computed constraints as well as the ones defined by annotations.
This approach enables us to guarantee a consistent, art directed viewing
experience, which preserves important cinematographic or artistic intentions
to a maximum extent possible when streaming video to arbitrary output
devices.

The most distinctive technical feature of our method compared to previous
work is a per-pixel image domain warp to the target resolution. We compute
and render it in near real-time using a GPU-based multi-scale solver com-
bined with a novel 2D variant of EWA splatting [Zwi+02]. The pixel-level
operations have major benefits over previous methods. For the first time,
spatio-temporal constraints can be defined at pixel-accuracy without sacri-
ficing performance. This allows for novel automatic warp constraints, for
example, a per-pixel constraint that ensures bilateral temporal coherence and
is sensitive to scene cuts. Others constraints retain the sharpness of prevalent
object edges without introducing blurring or aliasing into the output video.
With our IDW framework we do not require strong global smoothness priors
in order to keep the warp field consistent at the pixel level. It thus utilizes the
available degrees of freedom more effectively and improves the automatic
part of feature preservation.

A further important novelty of the presented method is its elegant conceptual
approach for antialiasing. If not properly handled, aliasing arises from the
resampling step involved in the retargeting as well as from the alterations of
the video signals spectral energy distribution during image domain warping.
In this thesis we introduce EWA splatting for image resampling.

Finally, we evaluate and compare our retargeting results to previous work
and linear scaling in a user study with 121 subjects.

The video-retargeting framework presented in this thesis allows for high
quality video reformatting of streaming content. It computes in near real-
time a pixel-accurate warp considering many non-linear content aware and
user controlled retargeting constraints. It also achieves high output quality
by introducing a novel EWA based rendering technique.
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1.2 Disparity Mapping for Stereoscopic 3D

1.2 Disparity Mapping for Stereoscopic 3D

Stereoscopic 3D is on the cusp of becoming a mass consumer product. Cin-
emas show an increasing number of movies produced in 3D, TV channels
are beginning to launch 3D broadcasts of sports events, and companies are
offering 3DTV sets and Blu-ray 3D players. But despite these technological
advances, the production of natural and comfortable stereoscopic content is
still a great challenge.

The fundamental problem lies in the complex interplay of human visual
perception and the restrictions of display devices [HR02; Hof+08]. As a
consequence, visual content must be adapted to the peculiarities of particu-
lar application scenarios. Diverse studies and psychophysical experiments
have revealed fundamental limitations of current stereoscopic display de-
vices [Hof+08]. While today’s 3D display technology can recreate the effect of
vergence (rotation of both eyes in opposite directions to maintain binocular vi-
sion), other important depth cues, such as accommodation (change of focus),
cannot be faithfully reproduced as the resulting image is being displayed
on a flat surface. This conflict has severe consequences; when displaying a
close object on a distant screen, the strong negative disparity may result in
an uncomfortable viewing experience and can cause temporary diplopia, the
inability to fuse stereoscopic images. These effects are a major problem in
practical 3D movie production. Content optimized for a standard 30 foot
cinema screen will look completely different on a TV screen or a handheld
display, and individual viewers can have vastly different viewing preferences.
Auto-stereoscopic displays, i.e. displays that do not require viewers to wear
3D glasses conceptually require significantly more views than the two pro-
vided by a stereoscopic content pipeline. Current auto-stereoscopic display
requires often up to as much as 30 views from a given scene. Hence, control-
ling and adapting disparity to the viewing situation as well as the ability of
generating additional views for glasses-free displays is of central importance
to the widespread adoption of stereoscopic 3D [SH09]. In addition, movie
directors often employ (local) depth manipulation as an artistic and narrative
device. All these issues have led to a complex set of best practice rules in the
industry for how to film and display stereoscopic movies [Men09; Neu09].
Implementing these rules requires considerable expertise on how to control
disparity during filming and post-production.

A further significant problem is the realization of these guidelines in practice.
Once stereo footage is recorded, it is no longer possible to alter relevant
parameters such as camera baseline or disparity range. In principle, tech-
niques for depth-image-based view interpolation (DIBR) [Zit+04] could be
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employed, but these methods tend to involve tasks such as estimating camera
parameters, dense stereo reconstruction, and inpainting of occluded scene
content. These are under-constrained and computationally complex prob-
lems, which cannot yet be solved with the necessary accuracy and robustness
for general scenes and classical 2-view stereo footage. Therefore, movie and
video producers have to resort to labor intensive and extremely costly man-
ual editing of disparities (e.g., by compositing content from multiple stereo
rigs of varying baseline). While this approach is expensive (but possible) in
post-production for some scenarios, it is prohibitive for live broadcast where
modifications of the disparity range have to be performed on the fly.

In this thesis we introduce and discuss disparity mapping operators. These
operators are based on central aspects of disparity in stereoscopy. We review
these aspects from a perceptual point of view and discuss the resulting im-
plications and requirements for stereoscopic content production and display.
Our operators then formalize these insights, and are the basis for a general
framework for stereoscopic retargeting and disparity editing.

We then describe how image domain warping can be utilized to apply dispar-
ity mapping operators to stereoscopic footage. This is a conceptually much
simpler than DIBR based methods, but a all the more practical and powerful
new way for changing the depth impression of 3D content. With careful
analysis we found that we only have to introduce a small set of additional
constraints to or IDW framework to ensure consistent and content-adaptive
remapping of the disparity range according to the chosen mapping operators.
In contrast to previous works like traditional view interpolation, our method
requires only a sparse set of stereo correspondences, which can be computed
with sufficient robustness. We additionally improve the saliency measure-
ment from 2D retargeting to be stereoscopic-aware. We will show how we
naturally support manual disparity editing, which results in large artistic
freedom and therefore integrates well into existing production workflows.
With disparity aware image domain warping (3D-IDW) central problems
of existing view interpolation methods such as camera calibration, accurate
dense depth, and inpainting are avoided.

We demonstrate the versatility and practical relevance of our operators and
warping technique on various types of stills and video. In particular, we
present several applications of our method to central problems in stereo pro-
duction: automatic disparity correction of live broadcast, nonlinear disparity
editing and temporal disparity correction for movie post-production, retar-
geting of stereo footage to different display sizes, and 2D to 3D conversion of
video.

As extension to 3D-IDW we show how additionally approximated views
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from just two given input views can be generated. This has big practical
relevance for autostereoscopic displays. It is not practical to shoot complex
movies with much more than two cameras. Also a large body of two-view
content is already available. For current and future auto-stereoscopic displays
it is therefore mandatory to provide a possibility to allow the consumption of
stereoscopic content. We show that 3D-IDW could be used to convert two-
view stereo footage to multi-view content. Autostereoscopic displays often
have an even smaller depth-budget than stereoscopic displays. Therefore,
the depth compression properties of nonlinear disparity mapping operators
used in 3D-IDW are even more essential. Transmitting a large number of
views would require a very high bandwidth. We show that transmitting
only a small number of views and some 3D-IDW based meta-information,
and re-synthesizing missing views on the client side is a practical solution in
many real life situations.

1.3 Data Regularization for High Definition Video

An important question for many image-processing applications is how well
do these methods scale to video sequences. A general class of image-based
graphics problems is based on solving an energy minimization combining
data constraints with a regularization term enforcing smoothness. Some
important problems of this type are optical flow, disparity estimation, and
colorization.

A main challenge for video applications is the temporal continuity of results.
It is a very important requirement for preventing visible artifacts. However,
many new and promising methods in this class focus only on single-frame
examples, and even the benchmark Middlebury optical flow dataset (an ap-
plication specifically dealing with video) provides only eight frames of video
for temporal examples, and ground truth only for a single frame [Bak+11]. In
contrast, the average shot length of many modern movies and TV is in the
range of four to six seconds. As such, for image-based methods to be useful
in video applications, they must be able to generate temporally consistent
results over sequences on the order of hundreds of frames.

The main difficulty to achieve temporal consistency is that the regularization
term enforcing spatial smoothness creates dependencies between pixels, often
resulting in a large non-convex optimization problem. While single-frame
solutions are often tractable, applying these to multiple frames often increases
the size of the problem rapidly due to the inclusion of the temporal dimen-
sion and thus making direct extensions of these methods to video volumes
computationally infeasible.
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The main objective of the method presented in this thesis is to create a mem-
ory and computationally efficient solution that enables practical temporal
consistency for long sequences. To achieve this, we trade off accuracy for
efficiency, and solve a simpler approximation of the global optimization. We
use well known similarities between these optimization problems and nonlin-
ear partial differential equations (PDEs), where anisotropic diffusion is often
used to find solutions.

While our approach solves an approximation of the global optimization, by
introducing a temporal smoothness assumption we can constrain ambiguities
that would exist in a single frame and achieve high quality, temporally con-
sistent results despite the simpler formulation. In addition, when user input
must be provided (such as in the form of scribbles), our temporal continuity
assumption can reduce the required manual effort by propagating this infor-
mation both spatially and temporally. We apply our method to a number
of problems such as optical flow, disparity estimation, depth up-sampling,
colorization, and saliency computation. Unlike many recent accelerated pro-
cessing methods, our approach is conceptually simple and fast even without
exploiting GP-GPU parallelism.

1.4 Principal Contributions

This thesis makes the following main contributions

• An image domain warping framework with anti-aliased rendering.
We introduce a novel general image domain warping framework. We
show how an image warping function can be effectively discretized
at pixel resolution. We discuss how such a discretization can be used
to formulate various constraints and so allowing controlling an image
deformation. Given warp constraints and warp discretization, we
present a novel specialized iterative multi-scale solver to compute
constrained image deformations. Given an input image and an image
warp we then present an computationally efficient and high quality
anti-aliased warp rending method.

• An efficient art-directable approach for video retargeting suitable
for streaming content. We present a video retargeting pipeline that
achieves very high performance and can directly be applied to stream-
ing content. The pipeline performs the required steps including
automatic feature deduction, artistic control image domain warp
computation and alias free rendering. We additionally propose a
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set of meta-data which is embeddable into a video stream and al-
lows content-provider a controlled retargeting result on remote user
devices.

• A discussion of stereoscopic perception and an introduction to dis-
parity mapping. By examining the desired stereoscopic properties
for good 3D content we derive and discuss a set of disparity map-
ping functions that can map given disparity ranges to more preferred
ranges.

• An image domain warping method for changing the depth percep-
tion of stereoscopic content. We show that image domain warping
can successfully and efficiently be used to modify the depth impres-
sion of stereoscopic video content in a novel way. The proposed
image domain algorithm does not require dense depth map or cam-
era calibration parameters. It is therefore better suited for standard
3D production systems than previous depth image based rendering
(DIBR) methods.

• Applying image domain warping for auto-stereoscopic content
production. Auto-stereoscopic display devices require a large num-
ber of views of a scene to create a seamless glasses-free 3D experience.
We show that image domain warping can be used to generate the
required number of views from a single stereoscopic input sequence.
We demonstrate that believable in-between views, as well as extrapo-
late views can be generated by image domain warping.

• An efficient algorithm for video regularization and sparse data up
sampling. We introduce a new and efficient algorithm to filter, in-
terpolate and extrapolate information in a video. We show that our
unified method can be used to compute optical flow as well as filter
or up-sample many kinds of data. Our novel method is content-ware
in particular edge sensitive as well as motion-aware. We introduce
efficient solutions to a large number of applications based on our
proposed method.

1.5 Thesis Outline

This thesis is organized as follows: Chapter 2 discusses related work in
the fields of image and video retargeting, post processing of stereoscopic
3D video sequences, multi-view generation, temporal filter, optical flow
and sparse data up-sampling. Chapter 3 will discuss the fundamentals of
image warp computation and rendering. In particular it will focus on the
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mathematical description of an image domain warp and will discuss possible
methods to compute a warp given some warping constraints. It will also
describe different ways for rendering a warped image and it will introduce
the modified EWA framework for video splatting.

In Chapter 4 we will then discus the entire pipeline for streaming based artist
driven video retargeting. It will describe the warp constraints used for video
retargeting and describe all secondary algorithms required for video analysis.
It will continue by presenting different applications and results for video
retargeting.

Chapter 5 applies image domain warping to the problem of changing depth
perception of stereoscopic video content. It will first introduce disparity
mapping operators and define the basic new warping constraints for depth
manipulation.

In Section 5.3 we will along other use cases discuss how image domain
warping can be applied for 2D to 3D conversion and auto-stereoscopic content
creation.

The Chapter 6 will discuss how we can improve the computation of various
image maps like saliency maps or depth maps. This is an important subtask
for video retargeting and disparity mapping. We will also discuss how the
same algorithm can be used to retrieve optical flow of a video and how it can
be used for many other kinds of sparse data up sampling or content aware
video filtering.

Chapter 7 concludes the thesis and summarizes its main contributions and
potential future work.
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C H A P T E R 2
Related Work

2.1 Video Retargeting

The important problem of adapting images or video to different formats
[Set+05; Kno+07] has been addressed in various ways in the literature. A
variety of methods have been investigated to remove unimportant content
by cropping or panning [Che+03; LG06]. The required visual importance of
image regions can, for example, be estimated by general saliency measures
[IKN98; GMZ08] or dedicated detectors [VJ04]. Limitations of these automatic
techniques can to some extend be alleviated by manual training [DDN08].
Such adaptation, however, does not provide high level control with respect to
the scene composition, which is a central feature of the algorithm presented
in this thesis.

A different class of approaches removes unimportant content from the in-
terior of the images or video [AS07; RSA08]. These techniques compute a
manifold seam through the image data in order to remove insignificant pixels.
While these approaches have shown very promising results for automatic
retargeting they are still subject to significant conceptual limitations. Since the
seam removes exactly one pixel per scanline along the resized axis large scale
changes inevitably result in seams cutting through feature regions. In addi-
tion, the removal of pixels without proper reconstruction and bandlimitation
results in visible discontinuities or aliasing artifacts.
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The techniques that come closest to our own approach compute a non-
uniform image warp to the target resolution without explicit content removal.
The key idea of these methods is to scale visually important feature regions
uniformly while permitting arbitrary deformations in unimportant regions
of the image. This idea, for instance, has been utilized for feature-aware
texturing [GSC06]. Here, a coarse deformation grid ensures that features
rotate and scale only while non-feature regions follow a global, pre-defined
warp. More sophisticated constraints on the warp, specifically designed for
resizing images, have been proposed in the optimized scale-and-stretch ap-
proach [Wan+08]. The resulting warp preserves feature regions well for even
significant changes of the aspect ratio. Similar concepts have been employed
for image editing [SMW06] or 3D mesh resizing [Kra+08]. However, the
coarse resolution of the deformation grid restricts the available degrees of
freedom considerably, making it difficult to preserve small scale features. In
contrast, our entire computational framework operates on the pixel level and
thus utilizes the degrees of freedom to the maximum extend possible.

Content-driven video retargeting [WGC07] raises a number of additional
issues such as temporal coherence of the warp function. Wolf et al. rescale
an input video stream subject to constraints at the pixel resolution. Their
technique is not capable of scaling important image content like, e.g., the
optimized scale-and-stretch approach [Wan+08], since it tries to retain the
original size of features. This strategy produces very plausible results for
video containing human characters. At the same time, however, the approach
produces excessive crops of the input so that the overall scene appearance is
compromised. The performance of this method can be further improved by
using shrinkability maps [ZHM08] which provide more directability, but are
still limited with respect to the supported constraints.

To the best of our knowledge, none of the prior art considers high level, art
directable control over the process, nor do they handle signal processing
issues emerging from the resampling stage. Our work provides novel solu-
tions to those important problems and represents the first approach to video
retargeting that addresses the full problem domain.

2.2 Disparity Mapping

Stereoscopic 3D production and display for movies or 3DTV is a challenging
multi-disciplinary field ([Red+02; Smo+11b; EU13]), combining basic research
on binocular vision and perception, camera and display technologies, as well
as cinematography and art.
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The capabilities of our visual system and depth perception have been the
topic of numerous works and experiments in research on human vision [BJ80;
HR02]. One fundamental limitation is the range of disparities. As an example,
we are unable to perceive extremely close and distant objects at the same time
in 3D due to the large disparity range on our retina. Interestingly, however,
our visual system still has quite strong abilities to compensate for inconsistent
stereo cues, e.g., [Ste+00].

The rising popularity and recent developments of 3D display technology (e.g.,
[MP04]) requires a reinvestigation of perceptual limitations in the context
of the technological capabilities. Most of the current 3D display technology
is based on displaying a stereo image pair on a flat screen. This approach
reproduces stereo cues such as vergence, but neglects other important depth-
cues like accommodation. It has been shown that this discrepancy between
accommodation and vergence yields problems such as distorted perception
or visual fatigue [Hof+08; Lam+09], and considerable research efforts are
invested to minimize these issues [SN00; Ake+04].

In stereoscopic content production, the most important tool to address such
discrepancies between stereo cues is to adapt the range of disparities, i.e., the
depth of a scene [Men09; SH09]. Besides pure adaption, however, control
over scene depth is also an important artistic tool. Correspondingly there
exists a complex set of cinematographic guidelines and rules on best practice
in 3D movie making [Men09], as well as some prior work that allows for
manually-driven disparity editing in specific application scenarios [PBP00;
FSK03; WS08]. However, a rigorous formalization of these principles for
disparity editing under consideration of perceptual as well as production-
related issues has not been achieved yet. Inspired by our and others work on
content retargeting and tone mapping [Rei+05; Wey+07; Wan+08] we present
a solution for general nonlinear disparity mapping operators for stereoscopic 3D
in Section 5.1.

Also on the technical level, disparity control of filmed stereoscopic video is
a highly non-trivial problem, since novel views have to be generated that
reflect the desired depth structure of the scene. The classical approach to
this problem has been to perform image-based view interpolation (DIBR),
which either requires a very large number of densely sampled input images
or additional accurate depth maps to achieve high quality results [Gor+96;
LH96; Sha+98; Zit+04; Cri+07; Kim+08; Smo+08; Ble+09]. One example of
commercial software that uses image-based view interpolation for stereo
editing is Ocula [Fou10]. These types of view interpolation involve a large
number of computationally complex problems such as camera calibration
[PKG99], accurate depth, inpainting and rendering. Due to this complexity,
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fully automatic, sufficiently robust and accurate methods for cinematographic
production and display adaptation are not available yet. There are also some
techniques that provide a simplified manual interface for creating 3D scenes
from video [Hen+07], or generating stereographic sequences from single view
input [GWC09], but these methods require either calibration, static scenes,
and manual tuning or dense depth estimation respectively. For small scale
interpolation, image-based view morphing is an alternative [SD96; Mah+09].
The great advantage of these methods is that they directly work in image
space without the complex reconstruction and rendering. However, they are
not suitable for general adaption of the scene’s global depth, since they do
not support the required nonlocal consistency constraints.

Recently, methods based on warping have shown to be powerful tools for
complex operations on images and video which preserve the realism of the
original input, including camera stabilization [Liu+09], optimizing image
content [CAA09], and video retargeting. Inspired by our own work in the
field IDW we present a novel technique for stereoscopic image warping in
Section 5.2 which enables complex disparity editing of existing stereoscopic
3D footage.

2.3 Efficient Temporal Video Regularization

In Chapter 6 we addresses a generalized method used to solve a wide array
of problems, and a full review of all applications is outside the scope of this
section. Instead, we present an overview explaining how our work relates to
selected relevant approaches.

2.3.1 Global Optimization

Traditionally, image-based data + regularization problems are solved by
defining a combined error term and computing a global minimum. Opti-
cal flow is commonly found by iteratively solving a linear system of equa-
tions [HS81a]. Disparity estimation (stereo) methods often use a similar error
formulation, which is solved with graph cuts, simulated annealing, or other
such approaches [SS02], and a closed form solution was presented for col-
orization [LLW04]. These methods all require optimizing a large number of
free variables, which leads to large memory requirements and computation-
ally expensive convergence. Both of these problems are made worse when
dealing with large (HD) images and video sequences. We present a much
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simpler approximation that allows us to process long, high resolution video
shots.

2.3.2 Optical Flow

Implicit computation of optical flow is an integral part of applications that
produce temporally consistent results, as it is used to model the motion of
objects between frames. Many high-performing modern methods still use
some variation of the original Horn Schunck formulation [HS81a], incorpo-
rating modified data terms and iterative, pyramid-based solutions [ZBW11].
Bilateral filtering has been integrated into an iterative variational framework,
replacing the traditional anisotropic diffusion step [Xia+06]. These methods
operate only on neighboring pairs of video frames, are computationally ex-
pensive, and cannot easily enforce temporal continuity, a main focus of our
work.

Other recent efficient methods filter a matching-cost-volume and select a
minimum-error underlying surface to compute discretized optical flow and
disparity estimates [Rhe+11]. Like our approach, these methods also use
edge-aware filtering, although for different purposes. One of their main
advantages is that the optical flow is computed locally, allowing for GPGPU
parallelization. However, constructing cost volumes for full video sequences
is impractical given the size of the discrete label space. Our approach allows
us to work in-place on the video with lower memory requirements and does
not require discretization of the solution space, which can lead to artifacts.

2.3.3 Temporal Consistency

Temporal stability has been recognized as a significant open problem. Pro-
posed solutions include sliding windows [Hos+11; Vol+11] and Kalman
filtering [HOK11]. With these methods, each output frame is still computed
locally, and greedy decisions can lead to temporal inconsistencies. In ad-
dition, selection of the window size is an important parameter balancing
computational requirements with temporal smoothness. Our approximation
avoids this trade-off as we can process entire video shots.

For colorization, methods have directly solved global optimization problems
on video volumes using pre-computed optical flow to model frame-to-frame
relationships [LLW04; Bha+10]. These approaches can generate very high
quality output, but are computationally expensive and do not scale well to
high resolution images or long video sequences.
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2.3.4 Filtering

Common approaches for edge aware filtering use bilateral filter
weights [TM98], or a local linearity assumption [HST10]. Efficient methods
for computing these use advanced space representations and GPU paral-
lelism [CPD07; ABD10]. However, these optimizations are not as well suited
for filtering with large kernel sizes, which is a necessity of our method.

Another class of edge-aware filtering uses weights based on the geodesic-
distance [Cri+10; GO11], which performs pixel mixing inversely proportional
to the distance over the IR5 (RGBXY) image manifold, as opposed to the
`2 norm (used for bilateral filtering). We use geodesic-distance filtering,
as it more closely approximates the diffusion-model in an anisotropic heat
equation, and as shown later in Fig. 6.7 yields better results for our application.
Specifically, we develop an extension to the domain transform which reduces
2D image filtering to a series of 1D operations.

One important application for bilateral filtering is sparse data up sam-
pling. This is often investigated for sensor fusion applications ([G+08; DT05;
Dol+10]). We will show results of our uniform method also for such applica-
tions.
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C H A P T E R 3
Image Domain Warping

In this chapter, we will introduce the concept of image domain warping
(IDW). This will give us the basic concepts and theory required for the dif-
ferent applications in the remainder of this thesis. In particular, we first
introduce grid and pixel based image warping. We will show how image
domain warping can be formulated as an energy minimization with a given
set of target constraints. By introducing some common constraints for many
applications we layout the general technique for introducing additional con-
strains in later chapters.

In the second section, we will discuss rendering of a warped grid. We in-
troduce the modified elliptic weighted average (EWA) framework for 2D
rendering. It is used to map a given input image according to a given per-
pixel warp to an output domain. One important property of EWA rendering
is that it reduces the amount of aliasing introduced by resampling operations.
In addition, we will compare EWA rendering to other rendering methods
such as bilinear texture mapping.

3.1 Mathematical Foundation of Constraint Image Warping

We define an image warp as a function deforming space

w : R2→R2

(u) 7→ w(u) for u := (x,y)T ∈ R2 (3.1)
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Image Domain Warping

(a) unity grid (b) warped grid (c) re-sampling

Figure 3.1: Discretization of a warp. Initially the pixel distance and thus the distances
between all uk is one. In the undeformed grid (a) the grid vertices wn have
also distance one to their neighbors. In the warped grid (b) the grid cell edge
lengths are an approximation to the partial derivative in x and y dimension
(dx(uk), dy(uk)). The warped pixel position is at the center of the deformed
grid cell. For rendering the warped input image is re-sampled at uniform
positions pi (c)

We call locations in the original space u. Warp w maps every such location
to a new location p = w(u) in the deformed space. We write wx(u) for the
x-coordinate of the target location p. Moreover, for video manipulation
it is often essential to have dependent consecutive warping functions for
sequential frames. Therefore, to express such an requirements we will in
some parts add the time dimension t and therefore get a warp definition for
a frame at time t as (x,y)t �→ w(x,y, t).

The objective for the various applications is to find such a warp function
w that fulfills specific constraints to achieve a desired effect (i.e. change
aspect ratio, or modify stereoscopic disparity). Additionally, we practically
always require the warp function to be smooth or in some applications at
least piecewise smooth.

The warp function is computed by an energy minimization that enforces the
application specific constraints. We will discuss this in Section 3.3

3.2 Warp Discretization

The continuous warp definition Eq. (3.1) over R2 is of limited practical use.
Firstly, the input domain (i.e. an digital image) is already discretized and
secondly there is no simple closed form continuous solution for the required
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minimization of the warp. Therefore, it makes sense to discretize the warp
formulation early on. This enables us to also specify the warp constraints in
this discrete setting.

We first reduce the degrees of freedom of the continues warp by assuming
local smoothness and approximating it with its first order tailor expansion at
discrete positions uk = (xk,yk)

T

p = w(u) ≈ w(uk) + Jk(u− uk) (3.2)

Jk is the Jacobi matrix i.e the first partial derivatives at position uk. Therefore
for a discrete position uk in the input domain the warp can be represented
by 2x2 matrix and a 2D vector. It is a natural choice to use the initial pixel
positions of the input image for the positions uk. This results in 6 degrees of
freedom per pixel position uk. Another interpretation for Eq. (3.2) is an affine
deformation of a unity square around each pixel position uk. Thereby, the
Jacobian encodes the scaling, shearing and rotation of the unity quad. The
full deformation is then described by the quad corner vertices.

Another important and reasonable assumption is that neighboring pixel stay
neighbors after deformation and that the distortion is similar. Therefore, we
can share the edges of neighbor quads. Given an image with W × H pixels
we can fully describe any possible image warp by (W + 1)× (H + 1) quad
corner positions. We call those grid corner positions vertices of the grid wn

where n is in [0 . . . (W + 1)(H + 1)]. Please note that we use n to name grid
vertices and k to enumerate pixels. Every pixel uk is surrounded by four grid
vertices. Neighbor pixels always share two grid vertices. Fig. 3.1 shows how
such a warp grid is constructed.

Given the discrete warp in a grid structure, its derivatives can be approxi-
mated with finite differences. The distance between two pixels in the unde-
formed image is one. Therefore, initial edge length of the grid cell is also one.
The finite differences are directly represented by the grid edge length around
a pixel. This is shown in Fig. 3.1. The approximation of the derivatives at a
pixel location k are:

∂wx(uk)

∂x
≈ dx

x(uk) ≈ w(uk + (1,0)T)− w(uk) ≈

≈wn+1
x −wn

x (3.3)

dx
y(uk) ≈wn+1

y −wn
y (3.4)

dy
x(uk) ≈wn+W+1

x −wn
x (3.5)

dx
y(uk) ≈wn+W+1

y −wn
y (3.6)
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dx
y(uk) is thereby the y-coordinate of the finite difference approximation

of the derivative towards x at the location uk. The warping grid width is
(W + 1) and the grid vertex neighbor to the right is therefore n + 1 and the
neighbor below is n + W + 1. See Fig. 3.1(a,b) for an illustration. We call
dx(uk) = (dx

x(uk),dx
y(uk))

T the gradient towards x at location uk.

3.3 Constraints and Energy Minimization

The previous section we introduced the warp function and its discretization.
In the following, we show how such a warp can be constrained to enforce the
desired attributes of a given application.

Knowing the discretization of the warp, we can formalize the warp defor-
mation constraints. These constraints are expressed as energy terms. The
weighted squared sum of all energy terms for all constraints is then mini-
mized over the degrees of freedom of the warp, i.e. the quad corner positions.
For image processing applications, the energy terms are often separated int a
set of data terms and a set of smoothing terms. Following that approach we
can write the minimization as

min
w

E(w) = Edata(w) + Esmooth(w) (3.7)

Edata(w) enforces application specific constraints, which usually are sparse
across the whole image. Terms in Esmooth(w) smooth the data over the entire
optimization domain, which in our case is the deformation grid. Esmooth(w)
is thereby not only important to get a smooth result, but is essential to get
a defined system where each degree of freedom is represented in the mini-
mization. In the following, we will first describe how the warp constraints
can be constructed. Then, we will show how the energy term can be effi-
ciently minimized using a general multi-scale solver that optimizes both
terms simultaneously.

3.3.1 Warp Constraints

The terms Edata(w) and Esmooth(w) are the sum of individual quadratic energy
functionals. The data terms are used to necessitate specific properties at given
positions in the warp. The smoothness constrains define the neighborhood be-
havior and try to propagate sparse effects to the rest of the image. Data terms
are more application specific whereas the smoothing terms are comparable
for many applications
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Common Smoothness Constraints

In general, it is important that the warp deformations are not arbitrary. Most
image processing applications try to avoid visible distortions. Therefore, the
Jacobian should be close to a scaling matrix, often even close to the identity
matrix. We enforce the Jacobean to be a scaling matrix at all input pixels uk.

Jk =

[
dx

x(uk) dy
x(uk)

dx
y(uk) dy

y(uk)

]
∼
[

sk
x 0

0 sk
y

]
(3.8)

For every position uk we can therefore derive four smoothness energy terms,
by using grid edge length as forward finite differences to discretize the
Jacobian.

∀k :

ck
s1 := αs1 ·

(
dx

x(uk)− sk
x

)2
(3.9)

ck
s2 := αs2 ·

(
dy

x(uk)− 0
)2

(3.10)

ck
s3 := αs3 ·

(
dx

y(uk)− 0
)2

(3.11)

ck
s4 := αs4 ·

(
dy

y(uk)− sk
y

)2
(3.12)

Those constraints enforce the desired Jacobian in a least square fashion.
αs1 . . . αs4 are the weights indicating the importance of the constraints during
optimization. Depending on the application, these weights can be user-
defined values or derived from the image itself. We discuss these weights
in the context of the respective applications in the following chapters. The
function to optimize for the entire image is the sum of all constraints at all
locations.

Esmooth(w) = ∑
k

ck
s1 + ck

s2 + ck
s3 + ck

s4 (3.13)

Data Constraints

Data constraints are much more application specific than smoothness terms.
The most simple constraints enforce precomputed final positions of specific
image regions. Therefore, they directly impose a (small) number of warp
values at positions pn:

cn
d := αd |wn − pn|2 Edata(w) = ∑

n
cn

d (3.14)
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The weight αd again defines the strength or importance of a data constraint.
Please also not, that because this constraint enforces properties in the target
spaces we used the corresponding notation (output location p and enumera-
tion n). Most application have more complex data constraints. Some will be
in similar form but with a more complexly derived αd or p. Typical example
is the disparity constraints of the disparity mapping application described in
Chapter 5 Section 5.2.3.

Other applications constraints may be more similar to the a smoothness
constraints but more sparsely enforced. The constraint enforcing uniform
scaling in salient regions Section 4.2.1 is such an example. However, in some
of the applications the constraints are even non-linear in w. Section 4.2.2)

3.3.2 Energy Minimization

Given all constraints and corresponding energy terms we can now setup
the energy minimization. The best strategy for the energy minimization
greatly depends on constraints required by the applications. With only linear
constraints one can use any standard linear least square optimization such
as direct solvers. However, for many applications the constraints only allow
for an non-linear based solver. In such cases we use a simple gradient decent
iterative solver.

In the following, we will briefly discuss both classes of solvers.

Linear Least Square

If all constraints are linear, we can rearrange all energy terms to the following
matrix form by putting all free variables of the function w into the vector w:

El(w) = ∑
k
(ck

l )
2 = ‖Alw− bl‖2 (3.15)

The warp w that minimizes the energy terms is found at d
dw El(w) = 0. There-

fore, with

d
dw

El(w) = 2AT
l (Alw− bl) = 0, (3.16)

we derive the well known normal equations

AT
l AT

l w = AT
l bl. (3.17)

Often the normal equation are constructed directly instead of using Al and
bl to compute the products and transpositions. One can show that by using
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AT
l AT

l w = d2/dw2El(w) and AT
l bl = −d/dwEl(w) one can directly fill in the

elements of the normal equation [LH74]. The resulting system is highly
sparse. Considering only the smoothness and data terms of Section 3.3.1 the
system is diagonally dominant with only five non-zero elements per row
(the current position and it is four direct grid neighbors). Note that some of
the applications we are going to discuss in this thesis will introduce more
non-zero elements, however in all applications the system remains sparse
and diagonally dominant. This is particularly true for the very sparse data
constraints in Edata.

Non-Linear Energy Terms

So far we have only discussed constraints that lead to linear energy terms.
However, in most applications we will also require non-linear energy terms.
To support those constraints we have to rely on sparse iterative non-linear
optimization schemes. Here, we discuss quickly how to derive the parameters
for such an optimization.

We differentiate two kinds of non-linear constraints. Hard constraints and
non-linear terms in w.

Hard constraints Firstly, most applications have hard constraints. Hard
constraints for example specify an absolute position for some grid corners.
For video retargeting where the goal is to resize an image to a new size,
the grid corners along the image edge are fixed to the target position. Such
hard constraints can be introduced by substitution. Thereby, the constraints
unknowns are removed from the optimization problem and replaced by
constant itself.

Secondly, most applications require a simple inequality constraint that avoids
fold-overs of the grid. To prevent fold overs one can require that wn

x < wn+1
x

and wn
y < wn+(W+1)

y i.e. the x and y coordinates in the grid have to be strictly
monotonically increasing. To enforce those constraints we rely on our iterative
solver Section 3.4.2.

Non-linear constraints Some applicatons, most notable the image retarget-
ing application described in Chapter 4, introduce real non-linear constraints.
This means that the resulting energy term of the constraint is non-linear
within the grid position unknowns. Typical example is the line constraint in
Section 4.2.2. It allows to enforce that multiple grid vertices are only warped
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in such a way that they together on a virtual line. Having such energy terms
requires us to use a non-linear iterative solver.

3.4 Solver Algorithms

Depending on the application and its constraints different solver algorithms
can be utilized. In the following we will introduce the different algorithms
used throughout this thesis. The individual application sections will then
specify, and refine important details of the used solver.

3.4.1 Direct Solvers

For applications that employ linear constraints with simple hard constraints
only, a direct linear least squares solver can be used. Direct solvers use
algorithms like Gaussian elimination, or techniques like Cholesky-, QR- or
simply LU-decomposition to directly obtain an exact solution for the normal
equations. Such direct solvers have a complexity in the order of O(n3) for
general dense matrices, but even sparse systems do not significantly reduce
complexity. For diagonally dominant sparse band matrices like in our setup
the complexity is in the order of O(nW2) [Gre13]. Thereby, n is the number
of unknowns in the system, in our case its in the order of twice the number
of pixels of the involved images. W is the image width. For most of our
image warping applications this is prohibitively expensive both in regards
of computation time and memory consumption. Therefore, even with linear
constraints we often need to use iterative solvers.

However, in some applications or during experimentation and verification
it is useful to use a direct solver. In such cases we may reduce the warp
grid resolution to be much coarser than the pixel accuracy. Computing the
warp deformation only for every tenth or twentieth pixels makes the problem
much more feasible. The per- pixel positions can then be found with bilinear
interpolation within a warping grid cell. See the rendering by texturing in
Section 3.5.2 for more details.

Implementation for Direct Solvers

We relied on well optimized third-party solver libraries for direct solvers.
In most application we directly used the Matlab backslash operator. Often
however other parts of the application had already an optimized C++ imple-
mentation. In such cases we used Matlab native code interface to invoke the
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backslash operator directly from within our C++ implementations. We found
that Matlab has the most advanced algorithms for deciding which specific
direct solver implementation to use.

3.4.2 Iterative Solver

Iterative solvers work by approximating the result of a given problem by
stepwise reducing the approximation error over multiple iterations. In our
energy-minimizing problem, we update the current approximated minimum
during each iteration by going downhill along the energy manifold. More
specifically, we update the current minimum by a vector proportional to the
negative of the gradient of the energy function at the respective approximated
minimum. This scheme is known as gradient descent minimization. Besides
its much lower complexity this scheme can be easily parallelized for our 2D
grid based problem. Additionally, non-linear constraints can be introduces
easily as long as we can compute their gradients. However, gradient descent
methods are not generally converging to a global minimum and may con-
verge slowly especially when the application requires high accuracy results.
Nevertheless, we found that for image domain warping and its typical con-
straints we could achieve good approximations in a reasonable number of
iterations (fast enough for interactive results).

Given our the structure of the problem as 2D grid and given that all postulated
constraints use the finite difference approximation we find that all update
steps can be given in the following form:

wnew = ∑
w∈N (wold)

qw(wnew) ·w (3.18)

wnew is the new value for one grid vertex. It is computed by a weighted
average of the (old) values of all its neighbors including its own old value. The
set of old neighbor grid vertices is calledN (wold). For the individual warping
application one has to derive the neighbor weighting factors qw(wnew) at all
grid locations. The general approach for all non-linear energy terms is to
analytical compute the first derivative at each grid vertex. From the finite
difference approximations and bz setting the derivative to zero, we can then
derive the necessary weights and neighbor sets. In Section 4.3.1 we show
how the weights and the set of neighbors can be derived for two examples.
Please note that the weights qw(wnew) normally depend on the image content
and are therefore different for each grid vertex.

During these iterative updates we can also enforce hard inequality constraints
introduced in Section 3.3.2. Generally, inequalities would yield to much more
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complicated optimizations (e.g. linear programming), however we found
that we can achieve good results by simply modifying our iterative solver.
After every iteration we fix potential grid fold overs in the warp by forcing
back vertices to position where the inequality is fulfilled.

Multi-Scale and Parallel Implementation

Inspired by the Gauss-Seidel iteration scheme [YJ88] and multi-grid [Hac86]
methods we implemented a parallel, multi-scale gradient descent method on
the GPU.

Multi-Scale We tried to reduce the problem of getting stuck in local minima
as well as improving the general performance of gradient descent by intro-
ducing a multi-scale iteration scheme. This is inspired by the well known
multi-grid solvers [Hac86] but slightly simplified. Our 2D grid and our con-
straints allows to directly solve in the problem domain at all scales instead of
solving on the residuals as standard multi-grid would. To distinguish we call
this variation multi-scale.

With the muli-scale approach we take advantage of the 2D grid setup of our
problem. Instead of evaluating each iteration for all unknowns in the system,
we solve the problem at different scales. First we compute a hierarchy of
multiple coarser grids based on the input per-pixel grid. At each coarser
scale we only have a fourth of the unknowns compared to the next finer scale.
We start by computing the lowest approximation of the gradient descent
minimum at the coarsest grid. Then we scale this coarse result bilinearly up
to the next finer grid resolution and use it as initial guess to start the another
gradient descent iteration. When we reach the finest per-pixel level we stop
the iteration after we have achieved sufficient accuracy. A downside of this
approach is the difficulty of deriving the update steps for the lower resolution
grids. One has to adapt qw(wnew) and the neighbors of the set N (wold) of
equation Eq. (3.18). This can be done similarly to the step multi-grid methods
call restriction [Hac86].

Parallel It is essential to parallelize an algorithm to take full advantage of
current computing hardware. We found that our gradient descent update
steps can be easily parallelized by utilizing the 2D grid structure of the
problem. We simply compute the update step Eq. (3.18) for each grid vertex
independently and in parallel to every other grid vertex. We found that in
practice we do not need to serialize the neighbor access i.e., making sure that
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the update rules only access the old value of its neighbors. In our experiments,
we achieved good convergence even if the neighbor pixel values were already
updated. Additionally, most of the memory accesses needed are very local
(i.e the grid neighbors and update step weights) which allows using efficient
cache and local memory architectures efficiently.

We therefore can easily spawn as many threads as we have unknowns i.e., grid
vertices in the system. Each thread can independently update its assigned
vertex iteratively until the system converges.

3.5 Rendering of a Warped Image

After the image warp that follows the application constraints most faithfully
has been obtained, the corresponding output image has to be rendered. To
achieve this, a given input image has to be transformed as specified by the
warp function to obtain the output image. For most application the image
warp given for rendering is a non-linear and spatially varying function over
the image domain. As both input and output images are represented as
discretely sampled 2D signals, our rendering has to be analyzed as a non-
linear spatially varying resampling process. Fig. 3.2 (c) shows a comparison of
trivial rendering and our optimized version which we are going to introduce
in section Section 3.5.3.

The non-linear warp function alters the spectral energy distribution of the
image and therefore the following necessary re-sampling step potentially
maps too high-frequency energy to an output with much lower frequency
spectrum. Such spurious frequencies have to be eliminated from the output
signal by proper bandlimitation for aliasing-free images. Therefore, in this
section we first mathematically describe the rendering process. We then
present two rendering techniques. First, we discuss the most commonly use
texturing inspired grid rendering approach and then we propose a novel
forward mapping approach based on EWA theory.

3.5.1 Rendering as Resampling Process

Given an 2D input image II with discrete intensities specified at uniformly
distributed distinct positions uk ∈ N2 and given an image warp function
pk = w(uk) that maps every pixel position to a new arbitrary location pk,
during rendering we have to find the output intensities at new uniformly
distributed discrete positions pi as defined by the regular pixel grid of the
output image IO.
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First, we reconstruct the continuous input function from discrete pixel sam-
pling

fs(u) = ∑
k=0...Wi Hi

Ik
I gI(u− uk). (3.19)

This results follows from using the discrete input samples Ik
I and convolving it

with the a 2D interpolation function gI . Given the continuous input intensity
function fs one can derive the continuous output function in the output
domain by utilizing the inverse backwards warp function w−1

fc(p) = ∑
∀k

Ik
I gI(w−1(p)− uk). (3.20)

The final discretized output image Io can now be derive by sampling fc at
all necessary discrete locations pi. To avoid aliasing one has to bandlimit
the function fc with an anti-aliasing filter h(p) before discretizing. Therefore,
with convolution we get the following solution for the output intensities at
all pixels i:

Ii
O = fc,aa(p)|p=pi

= ( fc ⊗ h)(p)|p=pi

=
∫
R2

∑
∀k

Ik
I gI(w−1(ø)− uk)h(p− ø)dø

∣∣∣∣∣
p=pi

(3.21)

Eq. (3.21) is a closed form solution for rendering an output image given an
input image, an arbitrary warp function w, an interpolation-filter gI , and
an anti-aliasing filter h. In practice this equation is only of limited practical
use. The inverse mapping w−1 is complicated or even impossible to derive
analytically, and because of the non-linear coordinates transformation and
the infinite support of the optimal anti-aliasing and interpolation filter the
convolution can not be computed efficiently. Therefore, we now discuss two
approximations to the optimal rendering equation Eq. (3.21).

3.5.2 Backwards Mapping by Utilizing Graphics Hardware

In the backwards mapping approach one iterates over all output pixels lo-
cations pi and tries to estimate the output color by looking ”backward” to
the input image. Theoretically, this requires the inverse image warp function
w−1. This function however is not at all trivial to derive for general, non-
linear image transformation. Nonetheless, one can approximate it by using a
forward warped grid and interpolate the actually required backward lookup
coordinates with linear interpolation. This approach is the standard method
used in 3D rendering for mesh texturing and therefore easily implemented
on a GPU.
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Grid-based Texturing

As explained in Section 3.2 we computed the application dependent image
warp function with a discretized grid approximation. This discretized grid
can now directly be used to implement the rendering on the GPU. We use the
grid vertex positions as standard vertex input to a typical real-time rendering
pipeline (i.e OpenGL) and split every quad of the grid in two triangles.
Additionally, for each grid vertex we set a texture coordinate. It is simply the
coordinate of vertex in the undeformed grid.

The original input image is used as the rendering texture. The graphics
pipeline automatically interpolates a lookup texture coordinate during ras-
terisation for each output pixel. This bilinear interpolated coordinate is used
to ”texture fetch” the color in the original image. Thereby, standard texture
filtering is applied to suppress aliasing.

GPU’s typically use mip-mapping and in the best case anisotropic filtering to
avoid aliasing. However, with the highly non-linear and spatially varying
warp those approximations to the optimal filer h are not sufficient. The dis-
crete mip-mapping levels can introduce visible artifacts neighboring regions
that are deformed very differently. Although better suited, anisotropic filter-
ing can also not be controlled sufficiently enough on a GPU, i.e. skewed and
rotated grid deformations cannot be considered.

However, texture based grid rendering is a simple to implement approach
that often yields sufficiently good quality. Also,if the warp grid is not pixel
accurate backwards mapping is better suited than forward mapping.

3.5.3 Forward Mapping with EWA Splatting.

We present a novel forward mapping based rendering approach for 2D image
warping. The work of [GH86] and [Zwi+02] introduces splatting of elliptical
weighted average filter kernels (EWA) for 3D rendering. Splatting is a forward
mapping method and it works by computing for every discrete input sample
the potential contribution to every output sample. The influence region in
the output domain effected by one input samples is called a splat. [GH86]
introduces splats with an elliptically, arbitrarily oriented influence falloff
function for 3D rendering. [Zwi+02] further shows that if interpolation filter
and anti-aliasing filter are assumed to be Gaussian low pass filters one a can
derive an approximated single Gaussian splat for transformations typical
in 3D rendering (affine and perspective projection) While originally being
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devised for 3D rendering, we tailor this method to the case of 2D image
synthesis for high quality, aliasing-free output.

Rendering Function of a Grid Based Warp

The general rendering function equation Eq. (3.21) only requires the Image
warp function w to be invertible. We discussed in Section 3.2 that the warps
are computed with a discretized and linearized grid approximation. We can
utilize this fact and rearrange equation Eq. (3.2) to

u = w−1(p) ≈ J−1
k · (p− w(uk)) + uk (3.22)

By substitution this into the warp rendering equation Eq. (3.21) and by apply-
ing the integral sum rule to replace the order of summation and integration
we get (in the neighborhood w(uk)):

f̃c,aa(p) = ∑
∀k

∫
R2

Ik
I · gI(J−1

k ø) · h(p− w(uk)− ø)dø (3.23)

It is important to see that we can now easily derive the influence of every
input location k for every output location p by just considering all the sum-
mands individually. Therefore we have found the forward mapping splatting
function for every input pixel.

EWA Filter Design

The mathematically optimal filter for both the interpolation (gI) and anti-
aliasing filter h is a perfectly sharp ”brick-wall” low-pass filter. However,
such a filter is impractical because it exhibits infinite support in the space
domain (and therefore infinitely large splats). Simply limiting the support
domain introduces however serious artifacts and is therefore not a good ap-
proximation to the optimal filter. The EWA framework uses two-dimensional
Gaussian filters as better approximation to the ideal low-pass filter, especially
because Gaussians exhibit some additional desirable properties. Applying
an affine transformation to a Gaussian filter or convolving two Gaussians
yields again a Gaussian filter. Given these two properties we can similarly to
[Zwi+02] derive a simple closed form splatting function.

We build on [Zwi+02], who showed that both the interpolation filter as well
as the anti-aliasing filter can be combined into a single Gaussian splat for 3D
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point rendering. We derive the same result for 2D rendering by replacing the
two filters in Eq. (3.23) with Gaussians of the form

GV(d) :=
1

2π|V|1/2 · e
−0.5dTV−1d (3.24)

we get the following Gaussian filters:

h(d) := GVa(d), (3.25)

gI(J−1
k d) := GVi(J

−1
k · d) =

1
J−1

k

GJkViJT
k

(3.26)

Vi = diag(σ2
i,x,σ2

i,y) and Va = diag(σ2
a,x,σ2

a,y) are the covariance matrices for
the reconstruction filter and the anti-aliasing filter as described in the EWA
framework. It defines the size of the splats. We choose the variance of
the interpolation filter in such a way that effects on neighbor pixels are
minimal. The variance of the anti-aliasing filter is defined by the output
sampling frequency. Building upon our work, [Gre13] further investigates
the properties of the EWA filter design and optimizes those parameters
to optimally follow a the optimal sinc function. Additionally, his work
introduces location depended anti-aliasing filter, whereas we used a constant
filter.

By combining both filters we can derive a single Gaussian splatting function
fsplat,k for one input sample k

Vk = JkViJT
k + Va (3.27)

fsplat,k(p) := Ik
I ∗

1
J−1

k

· GVk(p− w(uk)) (3.28)

Implementation of EWA Splatting

We have implemented the complete EWA rendering algorithm on the GPU
for fast real-time output. The first step is to compute the transformed inter-
polation kernels co-variance matrix Vk from the warp grid. Fig. 3.2 shows
the undeformed and deformed grid and corresponding splat. As described
in Section 3.2 we can derive Jk by simple finite difference for each grid cell.
This can be done in parallel on the GPU with a CUDA kernel. Additionally,
we compute the pixel center w(uk) as the a average of the four surrounding
grid vertices (Fig. 3.1). The result, namely the covariance matrix Vk and the
warped pixel center position pk = w(uk) as well as the pixels un-warpped
position uk are then directly stored to a OpenGL vertex buffer.
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Figure 3.2: Illustration of the warp discretization and rendering. (a) The undeformed
pixel grid and basis functions. (b) After computation of the warp. (c) Render-
ing of a warped image without anti-aliasing. (d) Result of our algorithm for
EWA video rendering.

The second step is performs the actual splatting. The information in the
vertex buffer (uk, pk, Vk) together with input image Ii as texture is piped
into a programmable OpenGL graphics pipeline. In the vertex buffer a splat
bounding box is computed. It is that axis-aligned box in which the GPU ras-
terizer and fragment shader compute the splat influence for each output pixel.
Due to the rapid decay of the influence of the Gaussian, and for performance
reasons we use a bounding box with a boxsize = (d ∗ max(σ2

k,x,σ2
k,y))

1/2 with
d = 10px. Additionally, the undeformed location uk is used to sample the
color from input texture and the result is passed to the fragment shader. The
fragment shader actually computes the contribution by evaluating Eq. (3.28).
The graphics blending stage is used to add the influences of all splats together.
Because, the approximations in Eq. (3.23) and the cutoff of the Gaussian intro-
duce some errors and additional normalization step is required. In a second
rendering pass the summed up color for every output pixel i is divided by
sum of all influence weights of all splats that overlap that pixel.

3.6 Summary

In this chapter we introduced image domain warping. We laid out the
foundation to compute image warps given some constraints that describe a
desired deformation. We formalized the image warp as a discrete grid with
the grid vertices as unknowns of a large energy minimization. The energy
minimization can be solved efficiently on a GPU with an iterative multi-
scale solver. We introduced a fast and novel anti-aliased forward-rendering
technique by adapting EWA 3D point splatting to 2D image warping.
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3.6 Summary

In the following sections of this thesis we will now apply this warping
framework to various applications.
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C H A P T E R 4
Video Retargeting

Figure 4.1: Two examples displaying results from our interactive framework for video
retargeting. The still images from the animated short ”Big Buck Bunny”
compare the original with the retargeted one. The pictures on the right show
two different rescales. Thanks to our interactive constraint editing, we can
preserve the shape and position of important scene objects even under extreme
rescalings

In this chapter we show how to apply image and video domain warping for
the application of video retargeting. Video retargeting is the process in which
a given video is reformatted and adapted to a new output display aspect
ratio. We present an integrated and interactive framework which combines
key frame based constraint editing with numerous automatic algorithms for
video analysis. This combination gives content producers high level control
of the retargeting process. The central component of our framework is a
non-uniform, pixel-accurate warp to the target resolution which considers
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automatic as well as interactively defined features. Automatic features com-
prise video saliency, edge preservation at the pixel resolution, and scene
cut detection to enforce bilateral temporal coherence. Additional high level
constraints can be added by the producer to guarantee a consistent scene
composition across arbitrary output formats. For high quality video and
interactive frame rates we utilize the novel 2D EWA rendering framwork
introduced in Section 3.5.3. Our method seamlessly integrates into postpro-
duction and computes the reformatting in realtime. This allows us to retarget
annotated video streams at a high quality to arbitary aspect ratios while
retaining the intended cinematographic scene composition. For evaluation
we conducted a user study which revealed a strong viewer preference for our
method.

4.1 Overview

The aim of our method is to resize a video stream, i.e., a sequence of images
I0, I1, . . . , It : IR2→ IR3 in a context-sensitive and temporally coherent manner
to a new target resolution. This means that we have to find a spatio-temporal
warp wt : IR2→ IR2, i.e., a mapping from coordinates in It to new coordinates
in Ot. Fully automatic warps most often fail to retain the actual visual im-
portance or output style intended by a producer or director. Therefore, our
approach combines automatic detection of features and constraints with a
selection of simple but effective tools for interactive key frame annotation to
compute the warp function.

The conceptual components of the resulting retargeting pipeline are illus-
trated in Fig. 4.2. Given a current frame It of the video stream the system
automatically estimates visually important features based on image gradients,
saliency, motion, or scene changes. Next, a feature preserving warp wt to
the target resolution is computed by minimizing an objective function E(w)
which comprises different energy terms derived from a set of feature con-
straints (see also Chapter 3). The first set of specialized application defined
energy terms for video retargeting measure local quality criteria such as the
uniformity of scaling of feature regions, the bending or blurring of relevant
edges, or the spatio-temporal smoothness of the warp (Section 4.2.1). In addi-
tion we include the producer’s interactively annotated high level features and
constraints with respect to the global scene composition. This input refers to
the position, shape or saliency of an image region. These constraints integrate
seamlessly into the overall optimization procedure (Section 4.2.2).

The warp wt is computed in a combined iterative optimization including all
target terms of the energy function (see Section 4.2.3). All computational
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Figure 4.2: Postproduction pipeline for key frame editing. Output is a sparsely annotated
video stream suitable for real-time retargeting.

steps are performed at pixel resolution in order to faithfully preserve even
small scale image features. The rescaled output frame Ot is then rendered
using hardware accelerated per-pixel EWA splatting. This technique ensures
real-time performance and minimizes aliasing artifacts (Section 3.5.3).

Since our method works in real-time and thus provides instant visual feed-
back, video editing and resizing can be accomplished in a fully interactive
content production workflow (see Fig. 4.2). After editing, the high level
constraints can be stored as sparse, time-stamped key frame annotations and
streamed to the end-user along with the original input video. This compound
video stream supports a viewing experience that matches the one intended
by the video producer as closely as possible. In the following sections we
will first describe all the application dependent constraints of the retarget-
ing method and then discuss relevant specialized implementation details in
Section 4.3.

4.2 Image Warp for Video Retargeting

An ideal warp wt for the retargeting application must resize input video
frames It according to user-defined scale factors sw and sh for the target
width and the height of the output video, respectively. In addition, it must
minimize visually disturbing spatial or temporal distortions in the resulting
output frames Ot and retain the interactively defined constraints from the
content producer. We therefore extend our image domain warping pipeline
to be temporally aware as well as introduce specific automatic and interac-
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tive constraints. This section introduces those additional constraints and
quickly summarizes the warp computation. For detail discussion of our
image warping pipeline please refer to Chapter 3.

4.2.1 Automatic Features and Constraints

Previous work offers different approaches to distinguish important regions
from visually less significant ones. Most of this work focuses on low-level
features from single images. We draw upon some of these results and employ
a combination of techniques for automatic feature detection. In addition,
we propose a number of novel warp constraints at different spatio-temporal
scales that improve the automatic preservation of these features considerably.

Saliency Map and Scale Constraints

A common approach to estimate the visual significance of image regions is
the computation of saliency maps. Literature provides two main strategies
for generating such maps. The first class of methods estimates regions of
general interest bottom-up and is often inspired by visual attentional pro-
cesses [IKN98]. These methods are generally based on low level features
known to be important in human perception like contrast, orientation, color,
intensity, and motion. A second class of top-down methods uses higher
level information to detect interesting regions for particular tasks. Examples
include detectors for faces or people [VJ04].

Since our method focuses on real-time retargeting of general video, we de-
signed a GPU implementation of a bottom-up strategy [GMZ08]. This method
utilizes a fast, 2D Fourier transformation of quaternions [ES07] to analyze
low-level features on different scales. The resulting real-time algorithm to
compute the saliency map Fs : IR2→ [0,1] captures the spatial visual signifi-
cance of scene elements.

Another important visual cue is motion. Therefore, processing video requires
additional estimates of the significance based on temporal features. For
example, a moving object with an appearance similar to the background is
classified as unimportant by spatial saliency estimators for single images.
When considering the temporal context, however, such objects are stimulating
motion cues and thus are salient. We take temporal saliency into account
by computing a simple estimate of the optical flow [HS81b] between two
consecutive video frames. The resulting motion estimates are added to the
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Figure 4.3: Spatio-temporal saliency map Fs.

global saliency map Fs and provide additional cues for the visual importance
of scene elements. Fig. 4.3 displays an example.

In order to preserve salient image regions represented by Fs during the
resizing process we define the constraints below for the warp function: To
simplify the notation we will remove index t from now on for non-temporal
constraints. On a global level w must satisfy a target scale constraint in order
to meet the intended scaling factors sw and sh. Let wx denote the x-component
of the warp w. The global scale constraint yields

∂wx

∂x
= sw and

∂wy

∂y
= sh. (4.1)

In feature regions of Fs, however, a uniform scaling factor s f must be enforced
to preserve the original aspect ratio:

∂w
∂x

=

(
s f
0

)
and

∂w
∂y

=

(
0
s f

)
. (4.2)

In previous methods the scale factor for feature regions across an image may
change arbitrarily. We enforce a single scale factor s f , which ensures that all
features are subject to the same change of scale. This retains global spatial
relations and the overall scene composition much more faithfully.

As described in Section 3.2 we discretized the warp at the pixel level and
rewrite the above constraints as a least squares energy minimization with
finite differences. The constraints are of the form of a typical smoothnesses
constrains Esmooth as introduced in Section 3.3.1. However, they are slightly
modified depending on the location uk. For salient regions we enforce that the
Jacobian matrix is a uniform scaling matrix with just one global scaling factor
s f for all locations. For all other regions we only enforce that the diagonal of
the Jacobian should represent a scaling that brings the image close to the new
aspect ratio; we do not restrict the off-diagonal elements.
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With dx(u) and dx
x(u) as the finite difference approximations of ∂w

∂x and ∂wx
∂x at

a pixel u, the global scale energy term according to Eq. (4.1) is

Eg = ∑
∀k

(dx
x(uk)− sw)

2 +
(
dy

y(uk)− sh
)2

, (4.3)

and the uniform scale constraint Eq. (4.2) for salient regions becomes

Eu = ∑
∀k

Fs(uk)

((
dx(uk)−

(
s f 0

)T
)2

+

(
dy(uk)−

(
0 s f

)T
)2
)

. (4.4)

Additionally, we made s f a free parameter as well. This means, one does
not specify beforehand how much the important regions are scaled. We only
enforce that all salient regions are uniformly scaled with one single value.
This, however makes the constraint in Eq. (4.3) non-linear. Fortunately, it is
just one single additional degree of freedom and a closed form of the partial
derivative ∂E(w)/∂s f can be found. Therefore, the update step necessary to
optimize s f after each iteration can be computed.] See Section 4.3 for details.

Edge Preservation One of the most simple indicators for small scale image
features are edge detectors based, e.g., on image gradients. An edge detector
itself does not constitute a sophisticated indicator for general visual impor-
tance. Its combination with our pixel level warp, however, allows us to design
local constraints for feature edge preservation. In our current implementation
an edge map Fe is computed using a standard Sobel operator [GW02] (see
Fig. 4.4). More sophisticated edge detectors could of course be integrated
easily.

Bending of prevalent feature edges Fe can be avoided by a spatial smoothness
constraint following [WGC07]:

∂wx

∂y
=

∂wy

∂x
= 0. (4.5)

We provide an additional constraint to avoid edge blurring or vanishing of
detail, e.g., when enlarging an image (see Fig. 4.5). This can be achieved by
enforcing similar image gradients for feature edges∇It =∇(Ot ◦wt) in order
to preserve the original pixel resolution before and after the warp:

∂wx

∂x
=

∂wy

∂y
= 1. (4.6)
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(a) (b) (c)

Figure 4.4: Edge bending. The top row shows the original frame (left) and the edge map Fe
(right) with additional, manually added line constraints (white). We compare
the rescaling result of Wang et al. [Wan+08] (a) displaying considerable
deformation of straight edges with a result (b) using our automatic constraints
only. A further improvement can be achieved by manual annotation of line
constraints (c).

The corresponding bending energy and our novel edge sharpness energy for
the warp optimization are similar to Eq. (4.3):

Eb =∑
∀k

Fe(uk)
(

dx
y(uk)

2 + dy
x(uk)

2
)

and (4.7)

Es =∑
∀k

Fe(uk)
(
(dx

x(uk)− 1)2 +
(
dy

y(uk)− 1
)2
)

. (4.8)

Eq. (4.5) prevents bending of horizontal and vertical edges. However, in
combination with Eq. (4.6) bending of diagonals is prevented as well. Note
also that an image warp at pixel resolution is necessary in order to realize the
sharpness constraint Eq. (4.6) effectively.

Bilateral Temporal Coherence Temporal coherence is an important albeit
non-trivial issue in video retargeting. On the one hand, temporal stabilization
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Figure 4.5: Enlarged SIGGRAPH logo without (left) and with (right) our constraint for
edge sharpness Eq. (4.6). Note the improved edge preservation and reduction
of aliasing in the closeup on the right.

is imperative in order to avoid jittering artifacts. On the other hand, the local
and unilateral constraint

∂w
∂t

= 0 (4.9)

employed in previous work [WGC07] disregards the global nature of this
problem: simply enforcing per-pixel smoothness along the temporal dimen-
sion does not take object or camera motion, nor discontinuities like scene
cuts into account. An in-depth treatment of temporal coherence requires a
pre-analysis of the full video cube and an identification of opposing motion
cues. Since we are aiming at real-time processing with finite buffer sizes, we
opted for the following approach which balances computational simplicity
and suitability for streaming video.

First, an automatic scene cut detector based on the change ratio of consecutive
edge maps Fe [ZMM95] detects discontinuities in the video. The resulting
binary cut indicator Ftc yields a value of 0 for the first frame of a new sequence
and 1 otherwise. Using this indicator and Eq. (4.9) a bilateral temporal
coherence energy for the warp computation (similar to the concept of bilateral
signal filters) can be defined as

Ec = tc ∑
p

dt(uk)
2. (4.10)

To account for future events (like characters or objects entering a scene)
we perform a temporal filtering of the per-frame saliency maps Fs over a
short time window of [t, t + k] of the video stream. The filter thus includes
information about future salient regions into the current warp and achieves
a more coherent overall appearance. In practice, a small lookahead of k = 5
frames turned out to be sufficient in all our experiments. The introduced
latency can be neglected. By utilizing our indicator tc for scene cuts the
saliency integration becomes aware of discontinuities in the video as well. In
combination these two bilateral constraints effectively address local as well
as global temporal coherence. This bilateral saliency integration is different
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(a)

(b)

(c)

(d)

Figure 4.6: (a) Automatic saliency estimators often cannot distinguish characters from
detailed background. (b) As a result, the characters in the warped frame
exhibit unnatural deformations. (c) With a simple interface the user can create
polygonal importance masks in a few key frames and reduce the saliency of
the background. (d) Utilizing this annotation and interpolation of the masks
between key frames, the warp is able to retain the proportions of the characters
much more faithfully during rescaling.

from the previously introduced motion estimates, and it improves temporal
processing significantly.

Besides the presented automatic constraints it is easily possible to add exist-
ing higher level feature estimators such as face detectors or others. However,
the above combination of automatic detectors works very well on a broad
spectrum of different video content without introducing too many parame-
ters.

4.2.2 Interactive Features and Constraints

Although automatic features and constraints are required for a practical retar-
geting system, they share a number of limitations: first, automatic methods
fail for insufficiently discriminating texture. This limitation can be addressed
by simple editing of the corresponding feature maps. Second, automatic
constraints are inherently limited in the representation of global shape con-
straints or, even more importantly, higher level concepts of scene composition.
A simple example is illustrated in Fig. 4.4 where the warp bends building
edges due to the locality of the edge bending constraint.

Manual editing and annotation of such user defined constraints is pro-
hibitively cumbersome if done on a per-frame basis. Therefore, we borrow the
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time
key frame key frame interpolated constraints

Figure 4.7: Illustration of key frame based editing and interpolation of a polygonal impor-
tance mask. Our high level constraint editing and propagation is based on
the same concept.

well-established concept of key frame video editing and design a workflow
that allows users to annotate constraints on a sparse set of key frames. As we
will explain subsequently, these constraints will be propagated throughout
the video. Fig. 4.7 illustrates the process. The depicted character has been
marked as important by the user in two consecutive key frames. The shape
of this annotated polygonal region is being interpolated linearly between
the two key frames. Based on this concept we introduce the following set of
simple and intuitive tools for manual warp editing.

Feature Maps and Key Frame Definition A simple, but powerful approach
to guide the warp is the direct editing of the feature maps introduced in
Section 4.2.1. Our system provides a simple drawing interface where the
user can interactively select an arbitrary frame from the video, label it as a
key frame and modify, e.g., the saliency map Fs by manually specifying the
importance of individual image regions. Fig. 4.6 shows an example of this
operation.

Object Position In particular for more complex scenes the realization of
an intended visual composition often requires the specification of positional
constraints for certain scene elements. Hard constraints [Wan+08], however,
can introduce undesirable discontinuities when computing the image warp
at pixel level as we do in our setting. Moreover, such hard constraints would
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(a) (b) (d)

(c)

Figure 4.8: Rescaled frames without (a),(c) and with (b),(d) a positional constraint for the
rock. This interactively defined constraint allows us to preserve the relative
position of scene elements within a frame, independent from the target aspect
ratio.

only be valid for a particular target size and aspect ratio and not allow for
dynamic resizing of the video stream.

Instead we first let the user mark a region of interest R and then create a
relative location constraint loc ∈ [0,1]2 for its center of gravity cog and with
respect to the input image. During the optimization we recompute the center
of gravity in each iteration i

cogi = n∑
∀k

wi(uk) (4.11)

where n is a normalization factor and wi corresponds to the warp computed
in the i-th iteration. Next we optimize the following energy for each region R

EP = (loc− cogi
r)

2 (4.12)

by adding the update vector (loc− cogi
r) to all pixels in R. Here, cogi

r simply
corresponds to cogi converted to relative coordinates from [0,1]2. Fig. 4.8
shows an example in which the user sets a positional constraint for a scene
element.

Line Preservation Our visual perception is particularly sensitive to straight
lines, such as edges of man-made structures. Automatic edge bending con-
straints as in Eq. (4.5) prevent bending locally, but cannot account for these
structures on a global scope (see also comparison in Fig. 4.4). Hence, as a
second high level constraint we provide means to preserve straight lines
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globally. A line constraint is created by simply drawing a line represented
as l : sin(α)x + cos(α)y + b = 0 in a frame of the input video. The system
estimates the intersection of this line with the underlying pixel grid of the
image, it assigns a corresponding coverage value c(uk) ∈ [0,

√
2] and enforces

sin(α)wx(uk) + cos(α)wy(uk) + b = 0 (4.13)

for each pixel uk with c(uk) > 0. The objective function for the least squares
optimization is

EL = ∑
∀k

c(uk)
(
sin(α)wx(uk) + cos(α)wy(uk) + b

)2 . (4.14)

Updates of line orientation and position can again be computed from the
derivatives of Eq. (4.14) with respect to α and b, similar to the estimation of
s f mentioned in Section 4.2.1. The effect of this constraint is displayed in
Fig. 4.4.

It is important to note that the above constraints are defined in such a fashion
that they remain valid for different aspect ratios of a retargeted video. Our
real-time implementation enables users to instantly verify the results of the
warp editing process for different target scales. Hence, the video producer
can analyze whether the intended scene composition is preserved for the
desired viewing formats.

4.2.3 Energy Optimization

The combined warp energy generated from all available target terms finally
yields

E(w) = Eg + λuEu + λbEb + λsEs + λcEc︸ ︷︷ ︸
Automatic constraints

+ λPEP + λLEL︸ ︷︷ ︸
Interactive constraints

(4.15)

The minimization of this energy constitutes a non-linear least squares prob-
lem which is solved using an iterative multi-grid solver on the GPU (see
Section 4.3 and Section 3.4.2). Note that our actual implementation allows
for multiple interactive constraints. For boundary pixels of a video frame the
respective coordinates are set as hard constraints.

Of the four weighting parameters λ controlling the automatic constraints,
λu for uniform scaling of features was constantly set to λu = 100 for all our
experiments. For the remaining three parameters we used default values
λb = 100, λs = 10, and λc = 10 for most experiments. We will discuss the
benefit of changing these parameters for different input like real-world scenes,
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cartoons, or text in Section 4.4. For increased flexibility the influence of
interactive constraints can be weighted on a continuous scale. However, we
simply used a value of 100 for both parameters λP and λL in all corresponding
examples.

4.3 Implementation

In order to achieve real-time performance we implemented our retargeting
pipeline fully on the GPU, using CUDA [Buc07] for the feature estimation
and energy minimization and OpenGL [SA06] for the EWA image synthesis.
The different types of feature estimation techniques described in Section 4.2.1
can be transferred to the GPU in a straightforward manner. From a technical
point of view the key components of our method are a multi-scale solver for
computing the warp wt and the EWA based rendering. The following two
sections will discuss implementation details which we consider relevant for a
reimplementation of the system.

4.3.1 Retargeting Multi-Scale Solver

The non-linear least squares minimization of Ew is solved with a multi-scale
solver as introduced in Section 3.4.2. We will here shortly summarize the
method and then describe with two examples the general way to find the
necessary iterative update steps.

The retargeting warp optimization is implemented on the GPU. Only that
way we can achieve the required performance. Additionally, all the necessary
image analysis is already carried out using CUDA. Therefore, we can reduce
slow GPU-CPU transfers by also implementing the warp optimization (and
later rendering) on the GPU directly.

Gradient Descent Update Steps

Our iterative solver is a gradient descent solver Section 3.4.2. Therefore,
during each iteration we update every unknown of the optimization with a
value derived from the variables partial derivative.

We first look at one of the video retargeting smoothness terms e.g., Eg and the
update steps for the warp grid corner x coordinates wx. To find the update
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step we compute the first partial derivative in wx of Eg

∂

∂wx
Eg =

∂

∂wx(uk)
∑
∀u′k

(
dx

x(u
′
k)− sw

)2
+
(
dy

y(u′k)− sh
)2

= 4 · wx(uk)− 2 · wx(uk+1)− 2 · wx(uk−1), (4.16)

and set it to zero to find the minimum

wnew
x (uk) =

wold
x (uk+1)− wold

x (uk−1)

2
. (4.17)

For the derivative we use the discretization of dx as introduced in Section 3.2.
We found that during each iteration we can compute the x position of every
grid vertex by looking at the direct horizontal grid neighbors. Eq. (4.17) is
already in the required form for our iterative solver Eq. (3.18).

It is important to note that we do have boundary constraints. In the video
retargeting application the x coordinates of the most left pixels is set to 0
and the very right image edge pixel coordinates are set to new target width.
This information propagates throughout the entire image. The above update
equation only accounts for the Eg energy term. A similar derivation has to be
done for all other energy terms for all free variables.

Other iteration updates for free variables can be found similarly. To have
one more example, the update step of the optimal scaling factor for salient
regions s f can be derived as

∂

∂s f
∑
∀k

Fs(uk)

((
dx(uk)−

(
s f 0

)T
)2

+
(

dy(uk)−
(
0 s f

)T
)2
)

= −2∑
∀k

Fs(uk)
(
dx

x(uk)− s f + dy
y(uk)− s f

)
s f =

∑∀k Fs(uk)
(
dx

x(uk) + dy
y(uk)

)
2∑uk

Fs(uk)
(4.18)

The optimal least squares solution to all constraints might include fold-overs
of the warped pixel grid so that the output image is undefined in these regions.
One approach [Wan+08] to address this problem is to increase the penalty for
edge bending Eq. (4.5). However, this method cannot fully prevent fold-overs
since the optimization might violate the edge bend constraint in favor of
other energy terms. Moreover, this penalty introduces a global smoothing
of the warp so that the available degrees of freedom cannot be utilized to
retarget the image. We found that a more robust solution is to incorporate
hard constraints (Section 3.3.2) with respect to the minimal allowed size ε
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of a warped grid cell (i.e., pixel). In our current implementation we simply
chose ε = 0.1. This approach prevents fold-overs and has the considerable
advantage that it does not introduce undesirable global smoothness into the
warp (see Fig. 4.9). As a second advantage this size constraint prevents a
complete collapse of homogeneous regions and other singularities in the
warp which would result in visible artifacts.

Grid Scales and Iterations

Given the update steps for each free variable the multiscale optimization
starts at the coarsest level where the corresponding update equations are
derived from A and b using the so called full weighting approach [BHM00].
Due to the good convergence properties of our method the warp can be
reinitialized in every frame based on the target scaling factors sw and sh. This
considerably simplifies the construction of the multiscale hierarchy. In our
current implementation the solver performs 40 iterations on coarse grid levels
which are reduced to only 5 iterations at the pixel level resolution. For the
free variables such as the uniform scale factor for feature regions s f Eq. (4.2)
or the line constraint parameters Eq. (4.13) optimized values are estimated
after each iteration [Wan+08]. In Table 4.3 we provide timings and framerates
for different input formats.

4.3.2 Rendering

EWA splatting of 3D surfaces can be performed efficiently on standard GPUs.
See Section 3.5.3. Given that our solver is implemented in CUDA we can
directly compute all necessary information on the GPU and save it in an
OpenGL vertex buffer.

The undeformed pixel grid of an input frame It and corresponding splats
representing the radial Gaussian basis functions Eq. (3.28) are illustrated in
Fig. 3.2 (a). After computing the warp using our CUDA multigrid solver
the warped splat positions wt(p) and the deformed splat shapes Fig. 3.2
(b), which are estimated from the corresponding Jacobian J as described in
Section 3.5.3, are stored in an OpenGL vertex buffer.

4.4 Results and Comparison

In the this section we compare our method with previous work on image
and video retargeting. In addition, we present an experimental evaluation in

51



Video Retargeting

(a) (c) (d) (e)(b) (f)

Figure 4.9: Comparison to previous work. (a) Input frame. (b) Simple linear scaling. (c)
Seam carving [RSA08]. (d) Optimized scale-and-stretch [Wan+08]. (e) Our
method. (f) Illustration of the deformation energy.

the form of a user study about the viewing preferences of 121 subjects. Key
frame editing, additional comparisons, and examples are further illustrated
in the accompanying video.

The instructional example of Fig. 4.9 demonstrates the benefit of our per-pixel
warp compared to the seam carving method [RSA08] and to the optimized
scale-and-stretch approach [Wan+08]. The ’E’ shapes depicted in Fig. 4.9
(a) are marked as feature regions while the white background is marked
as unimportant. The rescaled images have only 40% of the original width.
Although seam carving generally preserves feature regions very well, it is
limited by its iterative removal of seams with exactly one pixel per scanline.
Hence it inevitably cuts diagonally through feature regions (Fig. 4.9 (c)).
The optimized scale-and-stretch approach distributes the deformation more
evenly, but it cannot scale feature regions uniformly due to the coarse grid
and the missing per-pixel edge constraints (Fig. 4.9 (d)). Our per-pixel warp
can fully utilize the available degrees of freedom to push the two shapes
closer to each other while preserving their overall shape (Fig. 4.9 (e)). The
corresponding deformation energy on the pixel grid is illustrated in Fig. 4.9
(f).

Similar effects can be observed in real-world images (Fig. 4.10). When rescal-
ing the height down to 50%, seam carving is at first able to preserve most
of the features. Yet, it eventually has to cut through feature regions to find
a proper seam since it does not include any scaling (Fig. 4.10 (a)). The opti-
mized scale-and-stretch approach emphasizes the center of the image and
cannot bring the two persons closer together due to the coarse deformation
grid, so that off-center features, such as the upper face, get distorted (Fig. 4.10
(b)). Our automatic retargeting preserves all feature regions equally well,
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Figure 4.10: (a) Seam carving [RSA08]. (b) Optimized scale-and-stretch [Wan+08]. (c)
Our result.

(a) (b) (c)

Figure 4.11: (a) Seam carving [RSA08]. (b) [WGC07]. (c) Our result.

and it retains relative proportions by distributing the deformation over the
homogeneous regions in the background (Fig. 4.10 (c)). This example also
illustrates the benefit of computing one single scale factor s f for all feature
regions Eq. (4.2).

A comparison of our method to the two current state-of-the-art methods for
video retargeting, seam carving [RSA08] and the approach of [WGC07], is
provided in Fig. 4.11. The example shows one of the main limitations of
both methods, namely their inability to scale feature regions uniformly. Seam
carving can only remove content and hence creates visible cuts. Similarly,
the method of Wolf et al. produces visible discontinuities due to strong
compression of image regions. The appearance of the main character is
distorted in both cases.

Fig. 4.12 presents an additional comparison for the 3D animation movie
’Big Buck Bunny’ and a soccer scene. Fig. 4.12 (a) shows the result of the
seam carving approach, which again can only remove content, but does not
allow for changes of scale. Our result is shown in Fig. 4.12 (b). Fig. 4.12
(c) and (d) compare linear scaling with a fully automatic video retargeting
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Figure 4.12: (a) Seam carving result for a frame from the movie Big Buck Bunny. (b) Our
result. (c) Linear scaling of a soccer scene. (d) Our result.

Figure 4.13: (a), (d) Linear scaling. (b) Saliency. (c), (e) Our result.

computed on close-up footage of a TV sports broadcast. As can be seen, the
physical proportions of the players in Fig. 4.12 (d) appear much more realistic
compared to the linear scaling. The same result is obtained for shots taken
from the overview camera.

Interactive Constraint Annotation. For the Jungle Book example we rescaled
the original video linearly down to 50% separately along the x-axis (Fig. 4.13
(a)) and the y-axis (Fig. 4.13 (d)). In general, automatic saliency estimation is
difficult for 2D cartoons because characters, such as Mowgli and Baloo, are
drawn by large homogenous regions while the background artwork exhibits
much more complex structure. For this scene we applied a simple manual
annotation to the saliency map (Fig. 4.13 (b)). It emphasizes the characters
and reduces the importance of the background. As shown in Fig. 4.13 (c)
and (e) this single modification retargets the video faithfully to considerably
different aspect ratios such as those occurring when reformatting from wide
screen to DVD.
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Figure 4.14: (a) Input image of a house. (b) Automatic result. (c) Added position
constraint. (d) Line constraint for the fence.

Figure 4.15: (a) Automatic rescaling of a seesaw image. (b) With two added line con-
straints.

Fig. 4.14 (a) shows a house scene which has been rescaled to 50% of the
original width in Fig. 4.14 (b). The automatic saliency detection classifies the
sky as unimportant so that this region is overly enlarged by our warp. In order
to achieve a more balanced visual appearance the user adds an additional
positional constraint for the house in Fig. 4.14 (c). The unnatural deformation
of the fence can be eliminated by adding a single line constraint (Fig. 4.14
(d)). Automatic retargeting of an image of a seesaw to 50% of the original
height does not preserve the straight bars (see Fig. 4.15 (a)). Such problems
may arise in cases where the automatic saliency estimation is difficult due to
prevalent global images structures. However, by adding two line constraints
as in Fig. 4.15 (b) the bending problem is resolved. An additional example is
shown in Fig. 4.4.

As mentioned in Section 4.2.3 most results are based on a default parameter
set. For some examples like fast-paced sport scenes it is beneficial to reduce,
e.g., the weight of the temporal coherence to let the warp better adapt to fast
player and camera movements. For animation movies and cartoons, which
often have dominant silhouettes, we increased the weights for edge bending
and edge sharpness. Due to our real-time pipeline the effect of changing these
parameters can be intuitively explored by the user. The weight presets used
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Images (c)-(f) c©Disney

Figure 4.16: Limitations. (a) Linear scaling of an image with strong structure. (b) Our
result. (c), (e) Linear scaling of video with very dynamic motion and rapid
camera movement. (d), (f) Our result.

Table 4.1: Weight presets for different scene types.

Scene type λb λs λc
Default 100 10 10
Animation movie 110 20 10
Sport 110 10 1
Text 100 70 10

for our results are provided in Table 4.1. A demonstration of the parameter
sensitivity is shown in the accompanying video.

4.5 User Study

Despite the discussed technical advantages of our method, the most impor-
tant criterion for the utility of a video retargeting method is whether it is
actually preferred by the viewer. Hence we conducted an experimental evalu-
ation in the form of a user study with 121 participants of different age, gender,
and education to evaluate viewing preferences regarding the current state-of-
the-art techniques for video retargeting. One of the most suitable standard
methods for statistical evaluation of subjective preferences is the method of
paired comparisons [Dav63]. In this method, items are presented side-by-side
in pairs to an observer, who then records a preference for one of the members
of the pair. Following this aproach, we prepared an online survey showing
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Figure 4.17: This shows a screen shot of the web-based user study we have implemented.
We asked 121 people to rate the retargeting quality for 6 different videos.
We compared three retargeting techniques and uniform scaling. We used
pairwise comparison.

pairs of retargeted video sequences. For each pair the viewer simply had to
pick the preferred video. We compared automatically generated results of our
method (using the default parameters and no user editing) to the methods of
[RSA08] and [WGC07] for six input videos. Hence the survey consisted of 18
video pairs and we received 18× 121 = 2178 answers overall. Each individ-
ual method was compared 2× 6× 121 = 1452 times. We tried to minimize
bias, e.g., by randomizing the order of pairs and by providing only the most
necessary information, without technical details, to the participants, since
drawing attention to particular artifacts might influence the actual viewing
preferences.

Table 4.2: Preferences of 121 persons for 3 retargeting techniques. For example, an entry
n in row 1 and column 2 means that the result of method 1 was preferred
n-times to the result of method 2.

1 2 3 Total (2178)
1. Our method - 553 559 1112
2. [WGC07] 173 - 449 622
3. [RSA08] 167 277 - 444

Table 4.2 shows how many times the result of a particular method was pre-
ferred by the participants. The resulting ranking shows a clear preference
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for our method. Our results were favored in 76.2% (553 of 726) of the com-
parisons with Wolf et al. and in 77% (559 of 726) of the comparisons with
Rubinstein et al. Overall, the participants favored our method in 76.6% (1112
of 1452) of the cases. Methods 2 and 3 were preferred in 42.8% (622 of 1452)
and 30.6% (444 of 1452) of the comparisons with the respective other two
methods. The intraobserver variability, Kendall’s coefficient of consistence
ζ ∈ [0,1], had a very high average of ζ̄ = 0.96 and a small standard deviation
σ = 0.078. This indicates that each single participant had clear preferences
without substantial inconsistencies (i.e., circular triads like 1→ 2→ 3→ 1).
80.9% of the participants had perfectly consistent preferences with ζ = 1.
Only two subjects had a value of ζ = 0.66. This, however, means that they
still had consistent preferences for 4 of the 6 videos. The interobserver vari-
ability, Kendall’s coefficient of agreement, is u = 0.206 for Table 4.2, with a
p-value < 0.01. Hence, there is a statistically significant agreement among the
participants regarding the three methods. We refer to [Dav63] for a detailed
explanation of these indicators.

A pairwise comparison including linear scaling would have required each
participant to select 36 video preferences instead of 18. Since this would
have been a tedious procedure, we instead asked the participants to rank the
three methods and a linearly scaled version for each of the six input videos
(i.e., 726 rankings of the four methods) from 1 (most preferred) to 4 (least
preferred). The average ranks were: our method 1.66, [WGC07] 2.49, linear
scaling 2.73,[c ]iteRubinstein2008 3.12. This result confirms the preferences in
Table 4.2 and also indicates that our retargeted video is generally preferred
over linear scaling. This is an important observation regarding the general
utility of video retargeting.

Real-time Performance. Performance figures of our method for different
input formats are provided in Table 4.3. The reference system was a 2GHz
AMD Dual Core CPU with 2GB of memory and a single NVIDIA GTX280
graphics adapter. We break down timings for the main computational steps
such as feature estimation, multigrid optimization, and EWA splatting. The
total figures include additional processing steps like the streaming of video
frames to the GPU. Our method achieves frame rates of over 20 FPS at NTSC
resolution and still works at interactive rates with approximately 10 FPS for
HDTV resolutions. Furthermore, the performance is largely independent of
the output resolution.

Limitations. Prominent spatial and temporal elements like buildings or
complex motions without sufficient homogenous regions to absorb the de-
formation pose a fundamental limitation to any type of non-linear image
resizing. In these cases the warp does not have sufficient degrees of free-
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Table 4.3: Per-frame times (ms) and FPS for different input formats.

Input Features Opt. EWA Total FPS
320× 180 5.6 9.2 3.2 21.1 47.4
480× 270 7.5 13.5 4.0 29.8 33.5
640× 480 12.3 22.5 6.6 45.9 21.8
720× 384 11.2 21.3 5.9 43.2 23.1
1280× 720 27.6 48.3 11.1 102.4 9.7

dom to compress regions without violating feature constraints. Our warp
automatically falls back to linear scaling in these situations (Fig. 4.16). We
believe that this is a positive property, since it does not introduce too many
undesirable non-linear deformations for this type of input. In some cases,
where the automatic saliency computation detects large salient regions, our
method (similar to previous work) tends to compress content at the image
boundary. In our system, this can be resolved by our manual warp con-
straints. However, we think that a combination with retargeting operators
like cropping or zooming might also provide improved, automatically gen-
erated results [RSA09]. Our current sliding window approach to handle
temporal coherence was motivated by our aim to process video in real-time.
Preprocessing the full video allows to keep the distortion constant across
the optical flow which results in improved temporal coherence for complex
motion [Wan+09b]. Fortunately, such a pre-analysis could be easily integrated
into our post-production pipeline by storing and streaming the correspond-
ing high level temporal constraints in form of additional annotations with
the video.

4.6 Conclusion and Future Work

In this chapter we have proposed a system for video retargeting that builds
up on our novel image wapring and rendering framework. We introduced
some application specific additional conceptual as well as technical novel-
ties. The simple but powerful interactive framework surrounding the image
warping combines a variety of automatic constraints with interactive an-
notations of streaming video. This enables content producers to add high
level constraints with respect to scene composition or artistic intent. These
constraints remain valid across different target formats and hence allow for
an art directable retargeting process. Our major technical contributions in-
clude various improvements and extensions of automatic constraints, such as
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bilateral temporal coherence. In contrast to previous retargeting approaches
our framework allows to compute the warp at the pixel resolution and we
achieve aliasing reduced high quality results with our 2D EWA rendering
technology. A user study revealed a clear viewer preference for the results of
our method over previous approaches and linear scaling.

Our key frame based constraint annotation has been designed according
to common practice in standard video editing tools, and we received en-
couraging feedback from various companies focusing on video production.
However, there is certainly room for improvement on our interaction meth-
ods. Nevertheless, our approach demonstrates that future practical solutions
will have to be semi-automatic. It is the combination of high level, interactive
control over scene composition with low level automatic feature detection
that stands as a key requirement for production environments.

Besides addressing the limitations mentioned above, we would like to extend
our system in several respects. For example, in some application domains
certain high level constraints could be provided automatically, like line mark-
ings on the pitch for soccer or rescaling constraints for 3D animation movies.
Finally, higher level perceptual metrics and more detailed studies should be
used to assess the quality of the warp and to compare different methods.

After we presented this video retargeting project at Siggraph Asia 2009 confer-
ence we could happily see many follow-up projects based on our technologies.
We saw third party user studies which compared to even more video retarget-
ing technologies and still reported our method as one of the top performing
ones([Rub+10]). Also there is large body of work the refine some aspects of
our method. In particularly, [Gre13] implemented our retargeting application
on silicon hardware, such that it could potentially much easier integrated in
consumer electronics products.

In the next chapter we will extend the insights we gained from the video retar-
geting to the field of stereoscopic video. Instead of one video stream we will
handle two or more streams simultaneously and introduce constraints that
span over all videos and allow not only to retarget video two-dimensionally
to a new aspect ratio but also allowing us to retarget the entire perceived 3D
space to better target a given stereoscopic output device.
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Figure 5.1: Our method retargets stereoscopic 3D video automatically to a novel dis-
parity range, based on visual importance of scene elements and a nonlinear
disparity mapping operator φ. This retargeting is accomplished using a novel
stereoscopic image warping technique.

In this chapter we extend our general video warping and rendering frame-
work to the field of stereoscopic video manipulation. We draw upon insights
gained from the video retargeting application to implement a pipeline that is
capable of warping multiple video streams simultaneously. This allows us
to formulate warp constraints that span over many input video streams. We
will show that besides allowing us to simply extend the aspect ratio change
application to be consistent in a multi-view setup, we can introduce a much
more important novel way of changing the disparity between input views.
In this chapter we will show that such disparity change is highly important
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because it can addresses the problem of remapping the disparity range of
stereoscopic images and video. Such operations are highly important for a va-
riety of issues arising from the production, live broadcast, and consumption
of 3D content.

Our work is motivated by the observation that the displayed depth and
the resulting 3D viewing experience are dictated by a complex combination
of perceptual, technological, and artistic constraints. We first discuss the
most important perceptual aspects of stereo vision and their implications for
stereoscopic content creation. We then formalize these insights into a set of
basic disparity mapping operators. These operators enable us to control and
retarget the depth of a stereoscopic scene in a nonlinear and locally adaptive
fashion. For fields other than stereoscopic 3D video, this content retargeting or
remapping problem has been investigated extensively in computer graphics.
For example, tone mapping techniques [Rei+05] exploit properties of our
color perception to adapt HDR images to display devices of lower dynamic
range and vice versa by nonlinear remapping of colors. We introduce similar
mapping concepts to field of stereoscopic content production and display.

From a sparse set of stereo correspondences, our algorithm computes dis-
parity and image-based saliency estimates, and uses them to compute a
deformation of the input views so as to meet the target disparities. Our
approach represents a practical solution for actual stereo production and
display that does not require camera calibration, accurate dense depth maps,
occlusion handling, or inpainting. We demonstrate the performance and
versatility of our method using examples from live action postproduction,
3D display size adaptation, and live broadcast. An additional user study
and ground truth comparison further provide evidence for the quality and
practical relevance of the presented work.

5.1 Stereoscopic Disparity

As motivated in the introduction Section 1.2, stereoscopic 3D production
and display is a complex field, involving a broad range of research and
experience on human visual perception [HR02], display technology [Hof+08],
and industrial best practice [Men09]. Addressing all involved issues requires
multi-disciplinary research efforts where progress in one field might lead to
the need for new research in related fields. However, similar to the now well
established fields of media retargeting or tone mapping, there exist a number
of fundamental insights about stereoscopic perception and display, which are
of highest relevance in application domains such as 3DTV and 3D cinema.
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Figure 5.2: Illustration of the stereoscopic comfort zone.

One of the central parameters in stereoscopy is disparity. This section is con-
cerned with the discussion of four of the most important problems related to
disparity [HR02; Men09]. We will provide an overview of these issues from
a perceptual point of view, and describe how they are addressed in today’s
stereoscopic production pipeline in Section 5.1.1. Based on these basic rules
and guidelines, we then propose a set of disparity mapping operators in Sec-
tion 5.1.2 which formalize these ideas and provide a first basic and extendable
framework for general disparity editing of stereoscopic 3D footage.

5.1.1 Background from Stereography

Disparity Range

Our visual system has several constraints regarding the admissible distance
of corresponding points on the retina that still allows for proper depth percep-
tion. The central parameters influencing retinal disparity are the interocular
distance, the vergence of the eyes, and the distance to the point of interest. For
example, if we focus on a nearby object, the images of other objects in the
distant background cannot be fused by our visual system anymore due to
too large retinal disparities and will appear as double images (please refer to
[HR02] for more detail). Depending on the above parameters, there is only a
restricted disparity range around the Horopter, called Panum’s area, which
permits proper stereo vision and depth perception.

A central challenge in stereoscopic movie production is that current display
technologies only have indirect control over these parameters, which they
achieve by presenting a pair of slightly different images to the left and right
eyes. The only parameter, which can be directly controlled, is the distance
between corresponding features in the two displayed images, the image
disparity. The actual retinal disparity then results from the convergence
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of the eyes, distance to and size of the screen, etc. In the following, when
we discuss changing the “disparity” of a scene, we refer to the modification
of the image disparity. A further problem is that important depth cues
such as accommodation cannot be controlled at all; we have to focus our
eyes on the screen surface, even if objects are positioned in front or behind
the screen surface, resulting in conflicting depth cues. These technological
limitations can lead to considerable problems, ranging from distortions of
the 3D structure of a scene to visual fatigue [Hof+08]. With existing capture
and display technologies these fundamental problems cannot be resolved.
Hence, the disparity range for a displayed scene has to be adapted in order
to minimize these issues.

In production, the admissible disparity range is the so called comfort zone (see
Fig. 5.2). Modifying stereoscopic content and disparity ranges to a generic
comfort zone suitable for large population groups has been investigated, for
example, in the context of Microstereopsis [SN00]. A prominent solution
today is linear disparity remapping [SH09; Men09]. Such a linear mapping
changes the disparity interval from a given range to the desired range. The
introduced linear distortion of the disparity space amounts to uniform flat-
tening of objects in the scene. Some concrete applications for linear disparity
range mapping are the adaptation of stereoscopic content to display devices
of different size, the uniform compression of scene depth for a more comfort-
able viewing experience, or moving scene content forward or backward by
adding a constant offset to the disparity range. Practical values for disparity
on a 30 foot cinema screen, are between +30 (appears behind screen) and
-100 (appears in front of screen) pixels, assuming video with a width of 2048
pixels. In practice such a mapping can be achieved by modifying the camera
baseline (the interaxial distance) during filming, and by shifting the relative
position of the left and right view after filming to control the absolute dis-
parity offset. For instance, objects that are floating in front of the screen and
intersect with the image borders will cause retinal rivalry (see Fig. 5.2). In
post-production this can be corrected using the floating window technique,
which is a virtual shift of the screen plane towards the viewer [Men09]. In
general, however, such adaptations have to be performed by expensive and
cumbersome manual per-frame editing, since the camera baseline of recorded
footage cannot be easily modified.

These disparity range limitations are the most obvious issue in stereoscopic
perception and production. However, related to this limitation are a number
of further issues, which we shall describe.
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Disparity Sensitivity

Our ability to discriminate different depths decreases with increased viewing
distance. One result from perceptual research is that the stereoacuity is
inversely proportional to the square of the viewing distance [HR02]. This
means that our depth perception is generally more sensitive and accurate
with respect to nearby objects, while for distant objects other depth cues such
as occlusion or motion parallax are more important [BGL04].

This effect can be exploited in stereoscopic movie production by compressing
the disparity values of distant objects. For example, a disadvantage of the
previously mentioned linear range adaptation is that strong disparity range
reduction leads to apparent flattening of objects in the foreground. Using
the insights about stereoacuity, the decreased sensitivity to larger depths can
be used to apply nonlinear remapping instead, resulting in less flattening of
foreground objects. Effectively, this corresponds to a compression of the depth
space at larger distances. This idea can be extended to composite nonlinear
mapping, where the disparity range of single objects is stretched, while
the space in between the objects is compressed. Such nonlinear operations
which exploit the limitations in sensitivity of our visual system have been
successfully employed in related areas such as media retargeting. But so far,
they are difficult to apply to stereoscopic footage of live action, since this
would require an adaptive modification of the camera baseline. In production,
the only way to achieve such effects is complex multi-rigging by capturing
a scene with camera rigs of varying baseline and manual composition in
post-production [Men09].

Disparity Gradient

Besides limitations with respect to absolute disparity values, experiments
have shown that our perception is subject to limits regarding the disparity
gradients in an observed scene as well [BJ80]. In particular, the perception
of different depth gradients strongly depends on local scene content, spa-
tial relationships between objects, etc. Consequences range from distorted
perception of the 3D structure of a scene to the inability to see proper stereo.

Exploiting the different types of gradient sensitivities of our visual perception
(e.g., regarding color) has proven to be a valuable tool in research on tone
mapping, where locally adaptive gradient domain processing is used for
content-aware color remapping. In stereography, locally adaptive disparity
modifications are important in two respects. On the one hand, it has to be
ensured that the displayed gradients do not violate our perceptual limits. On
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Figure 5.3: A disparity storyboard for a 3D movie. In this plot, the range of estimated
disparity values is plotted on the vertical axis on a frame-by-frame basis.
The color indicates the frequency of the occurrence of disparity values. The
velocity is visible in the changes in disparity histograms over time.

the other, disparity gradient editing provides the possibility to redesign the
depth structure of a scene on an object basis. This type of artistic freedom is a
highly desired feature in post-production, but extremely difficult to achieve
at the moment (e.g., using the previously mentioned multi-rigging).

Disparity Velocity

The last important area is the temporal aspect of disparity. For real world
scenes without conflicting stereo cues, it has been shown that our visual sys-
tem can rapidly perceive and process stereoscopic information. The reaction
time, however, can increase considerably for conflicting or ambiguous cues,
such as inconsistent vergence and accommodation. Moreover, there is an
upper limit to the temporal modulation frequency of disparity [HR02].

These temporal properties have considerable importance in the production
of stereoscopic content. In the real world we are used to disparities varying
smoothly over time. In stereoscopic movies, however, transitions and scene
cuts are required. Due to the above mentioned limitations such strong dis-
continuities are perceptually uncomfortable and might again result in the
inability to perceive depth [Men09]. Therefore, stereoscopic film makers often
employ a continuous modification and adaption of the depth range at scene
cuts in order to provide smooth disparity velocities, so that the salient scene
elements are at similar depths over the transition. Additionally, such depth
discontinuities can be exploited explicitly as a storytelling element or visual
effect and are an important tool used to evoke emotional response. Fig. 5.3
illustrates disparity histograms of a 3D movie over time, where such smooth
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transitions are visible. These disparity storyboards are an important part of
the planning required for 3D productions.

We summarize the four central aspects of disparity which we utilize to design
the disparity mapping operators in the following section:

Disparity Range: Mapping of the global range of disparities, e.g., for display
adaptation.
Disparity Sensitivity: Disparity mapping for global or locally adaptive depth
compression and expansion.
Disparity Gradient: Content-adaptive disparity remapping by modifying
disparity gradients.
Disparity Velocity: Temporal interpolation or “smoothing” between differ-
ent disparity ranges at scene transitions.

These operations are of essential importance for the generation and display
of 3D footage, be it during post-production of movies or real-time correction
of live broadcasts. In the following section we will formalize these insights
into corresponding disparity mapping operators and then present a novel
framework that allows us to perform complex disparity editing on existing
stereo footage.

5.1.2 Disparity Mapping Operators

We will first consider disparity mapping operators on a conceptual level.
Section 5.3 will then provide examples for relevant application scenarios.
Without loss of generality we assume that the input footage is recorded with
a stereo camera rig or is approximately rectified. For a digital stereo image
pair (Il, Ir) let u ∈ IR2 be a pixel position in the left image Il. We define the
disparity σ(u) ∈ IR as the distance (measured in pixels) to the corresponding
pixel in Ir (and vice versa). The range of disparities between the two images
is an interval Ω = [σmin,σmax] ⊂ IR. Our disparity mapping operators will be
defined as functions φ : Ω→Ω′ which implement the rules and guidelines
described in the previous section by mapping an original range Ω to a new
range Ω′. For illustration we refer to the examples in Section 5.3.

Linear Operator

Globally linear adaptation of a disparity σ ∈ Ω to a target range
Ω′ = [σ′min,σ′max] can be obtained by a mapping function

φl(σ) =
σ′max − σ′min
σmax − σmin

(σ− σmin) + σ′min. (5.1)
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By changing the interval width of Ω′, the depth range can be scaled and
offset such that it matches the overall available depth budget of the comfort
zone (e.g., Section 5.3 and Fig. 5.13).

Nonlinear Operator

Global nonlinear disparity compression can be achieved by any nonlinear
function, e.g.,

φn(σ) = log(1 + sσ), (5.2)

with a suitable scale factor s. For more complex, locally adaptive nonlinear
editing, the overall mapping function can be composed from basic operators.
For example, given a set of different target ranges Ω1, . . . ,Ωn and correspond-
ing functions φ0, . . . ,φn, the target operator would be:

φa(σ) =


φ0(σ), σ ∈Ω0

. . . . . .
φn(σ), σ ∈Ωn

. (5.3)

An elegant approach to generate such complex nonlinear functions in a depth
authoring system is to either use the histogram of disparity values (as shown
in Figures 5.3 and 5.4) for identifying dominant depth regions, or to analyze
the visual saliency of scene content in image space. These so called saliency
maps Fs(u) ∈ [0,1] (see Fig. 5.5) represent the level of visual importance of
each pixel and can be generated either automatically by the system (see also
Section 5.2.2) or manually by the user. From the saliency map, the algorithm
can infer which disparity ranges Ωi are occupied by important objects, and
which regions are less important. From these importance values, which
essentially correspond to the first derivative φ′a, the actual disparity operator
can be generated as the integral φa(σ) =

∫ σ
0 φ′a(u)du (please see Figures 5.1

and 5.7 for examples).

Gradient Domain Operator

In addition to local adaptivity in disparity space as in φa, the remapping of
disparity gradients allows for additional spatial adaptivity in image space.
Retargeting operators for disparity gradients with spatial adaptivity can be de-
fined based on visual importance maps Fs(u) as functions φ∇(∇σ(u), Fs(u)).
An example for adaptive compression using interpolation between a linear
and a nonlinear map φl and φn is

φ∇(∇σ(u), Fs(u)) =Fs(u)φl(∇σ(u))+
(1− S(u))φn(∇σ(u)). (5.4)
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Figure 5.4: Left: stereo correspondences with color coded disparities (red positive, blue
negative) and the disparity histogram for the cow example after pruning.
Right: close-ups of the warped stereo pair showing the deformed isolines with
respect to the input views.

The actual disparity mapping operator can then be reconstructed from φ∇
using methods from gradient domain processing [AR07].

Temporal Operator

Temporal adaptation and smoothing, as it is required for smooth scene tran-
sitions or visual effects, can be defined by weighted interpolation of two or
more of the previously introduced operators, e.g.,

φt(σ, t) = ∑
i

wi(t)φi(σ), (5.5)

where wi(t) is a suitable weighting function. An example for temporal in-
terpolation and the resulting disparity histograms is given in Section 5.3,
Fig. 5.9.

These different operators in Eq. (5.1)-(5.5) provide the basic functionality
required to implement the set of central disparity operations presented in
Section 5.1.1. In the following section, we will present our novel image-based
stereoscopic warping scheme for applying these operators to stereo footage.
Section 5.3 will then provide concrete applications for these operators in
production.
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Figure 5.5: Individual saliency components and final automatically generated saliency
map for a scene. From left to right: left image of a stereo pair, local edge
saliency, global texture saliency, disparity-based saliency, combined saliency
map Fs.

5.2 Stereoscopic Warping

5.2.1 Sparse Stereo Correspondences

Sparse feature correspondences between the two images (Il, Ir) can be esti-
mated robustly using well established standard techniques [BM04; Low04;
Sin+06], hence we refer to these works for detail on the basic correspondence
matching. Optionally we exploit downsampled dense correspondence infor-
mation [Wer+09] between Il and Ir for large textureless image regions which
are too ambiguous for sparse feature matching. Outliers can be removed
automatically [SLK09]. In Chapter 6 we introduce a general framework that
can create high-quality disparity maps. In can directly be used to obtain
correspondences for the disparity mapping operator.

Depending on scene content the resulting feature set F generally has an
irregularly clustered distribution of correspondences. Moreover, many fea-
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tures are not temporally stable over a longer video sequence, but disappear
after a few frames. Since our warping algorithm requires only a sparse set
of features, we apply a spatially anisotropic pruning algorithm to F which
favors temporally stable correspondences and is adaptive to depth disconti-
nuities. Correspondences are first sorted by their lifetime, so that long living
pairs receive a high priority and correspondences which appeared only for a
couple of frames receive a low priority. We then apply a greedy procedure to
remove low priority correspondences around those with a high priority. Let
(ul,ur) ∈ F be a high priority correspondence pair with disparity σ(ul). Our
pruning algorithm removes all pairs (u′l,u

′
r) ∈ F with∥∥∥∥( ul

σ(ul)

)
−
(

u′l
σ(u′l)

)∥∥∥∥ < r. (5.6)

This isotropic distance measure in image and disparity space results in a
locally adaptive anisotropic filter in image space only (similar to the idea
of the Fast Bilateral Filter [PD06]). Pruning is performed symmetrically for
the positions ur as well. In principle, the radius r depends on the image
resolution and the disparity range. However, the results of our warping
algorithm are quite insensitive to different feature densities so that we could
simply use a value of r = 10 in our experiments.

Fig. 5.4 shows an example of the resulting features and the corresponding
disparity histogram. This algorithm combines the respective strengths of
different methods for feature estimation and provides a robust way to auto-
matically compute a sparse but sufficiently accurate set F of correspondences
between stereo pairs.

5.2.2 Depth and Image Saliency

In order to determine which parts of the input images can be distorted by our
warp without creating visible artifacts, we need a visual importance map Fs
for the stereo image pair. Our approach to compute fs is twofold. First, we
use image-based importance measures which are able to capture the coarse
and fine scale details of image content, such as prevalent edges or textured
regions. This is identical to the salience computation for video retargeting in
Section 4.2.1. In addition, we have the sparse disparity information from the
previously computed stereo correspondences. This allows us to exploit the
depth dimension as an additional source of information to estimate visual
saliency. Accordingly, we compute a composite saliency map as a weighted
combination

Fs(u) = λFs,i(u) + (1− λ)Fs,σ(u), (5.7)
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for all pixels u ∈ Il where Fs,i represents the image-based saliency and Fs,σ our
disparity-based saliency. Similar to Section 4.2.1, Fs,i is generated from the
sum of a local edge map and the global scale method of Guo et al. [GMZ08]
(see Fig. 5.5) for each stereo channel individually.

The disparity saliency map Fs,σ can be computed by any operator on the
range of disparities of correspondences in F . A simple but effective solution
is to assume that foreground objects generally catch our visual attention
more than the background of a scene, which is a reasonable assumption for
many application scenarios (see Section 5.1.1). So for a correspondence set
F comprising a disparity range Ω = [σmin,σmax], we assign high saliency
values to disparities close to σmin and a low saliency to disparities close to
σmax. Saliency values are then interpolated over the non-feature pixels (see
Fig. 5.5). Please see Chapter 6 where we introduce a novel method for sparse
to dense interpolation over an image. Note that in principle more complex
disparity-based saliency estimators are possible (see also Section 5.3).

Fig. 5.5 shows all components of the saliency computation. Dark areas in the
final map are parts of the scene that are more likely to be distorted by the
warp to accommodate movement within the images. For weighting Si and Sd
our current implementation uses a value λ = 0.5.

5.2.3 Warping

Our aim is now to warp the stereo image pair (Il, Ir) such that the range of
disparities Ω of the stereo correspondences F is mapped to a new range
defined by a disparity mapping operator φ : Ω→Ω′. This means we have to
compute a pair of warping functions (wl,wr) which map coordinates from
(Il , Ir) to a pair of output images (Ol ,Or). Note that in principle warping only
a single image would be sufficient. However, by distributing the required
deformation to both images, we are more flexible regarding the admissible
disparity mapping operations without introducing noticeable visual arti-
facts. To compute these warps we employ again our novel image warping
framework introduced in Chapter 3. We define a set of constraints on the
functions (wl,wr) which can then be solved as a nonlinear least-squares en-
ergy minimization problem. The main difference now is that we construct
one optimization problem involving all degree of freedom of both video
streams. We have two warp grids, one for each frame, but all the grid vertex
positions are then put in one optimization. This allows as to specify warp
constraint the link grid vertices of the left and right image together.
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5.2.4 Stereoscopic Constraints

The most central set of constraints applies the disparity mapping operator φ

to the stereo correspondences (ul,ur) ∈ F . For each correspondence pair we
require

wl(ul)− wr(ur)− φ(σ(ul)) = 0, (5.8)

meaning that the disparity of a warped correspondence pair (wl(ul),wr(ul))
should be identical to applying the disparity mapping operator φ to the
original disparity σ(ul).

Since the above constraints only prescribe relative positions, we require
a small set of absolute position constraints which fix the global location
of the warped images. In the video retargeting application such absolute
constraints where used only at the image edges (edge vertices were set to the
new target aspect ratio Section 4.3.1). However, for the disparity mapping
algorithm it is better not to restrict the edge pixels and therefore allow images
to shift horizontally. But this requires another set of border constraints. For
that we compute absolute position constraints for the 20% temporally most
stable feature correspondences, i.e., those features which have been detected
throughout a sequence of frames in the video. The warped positions are
defined by the average previous position and the novel disparity:

wl(ul) =
ul + ur

2
+

φ(σ(ul))

2

wr(ur) =
ul + ur

2
− φ(σ(ul))

2
(5.9)

Eq. (5.8) and (5.9) define the basic stereoscopic warping constraints so that
the warped images match the target disparity range Ω′.

5.2.5 Temporal Constraints.

For video with moving scene elements one has to ensure that local image
distortion is properly transferred along the local motion flow [Wer+09] be-
tween successive video frames. The local image distortion can be measured
based on the derivatives of the warp. Let ∂wt

x/∂x denote the partial deriva-
tive of the x-component of the warp wt at time t, and let xt−1 and xt be two
corresponding pixels in It−1 and It, respectively. The transfer of the warp
distortion is then expressed by

∂wt
x

∂x
(ut) =

∂wt−1
x

∂x
(ut−1). (5.10)

This constraint is enforced for the y-component ∂wt
y/∂y as well.
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Figure 5.6: Warping example showing stability over different numbers of stereo corre-
spondences. Upper row, left to right: original stereo input, disparity mapping
results (depth range increased) computed with about 2000 features, the same
result using only about 200 features. Bottom row: close-ups showing the
respective feature density and a difference image of the warped images.

5.2.6 Saliency Constraints

Besides these novel stereoscopic and temporal warp constraints, we addi-
tionally employ the same set of standard constraints of the video retargeting
application which minimize the perceivable visual distortion Section 4.2.1.
The idea is to enforce a certain rigidity of the warp in salient regions, and to al-
low for larger image distortions in non-salient regions. Hence, the constraints
consist of terms for

• Distortions: ∂wx
∂x =

∂wy
∂y = 1,

• Bending of edges: ∂wx
∂y =

∂wy
∂x = 0,

• Overlaps: ∂wx
∂x ∧ ∂wy

∂y > 0.

During the actual warp computation these constraints are then weighted
by the saliency map Fs in Eq. (5.7) to achieve an adaption of the warp to
the image-content. Since these basic constraints are identical to the work on
video retargeting in the previous chapter, please refer for example to 4 for
details.
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5.2.7 Implementation

Our implementation of these warping constraints follows the standard proce-
dure in image-based warping 3: The constraints are converted into energy
terms so that the computation of the warps (wl,wr) can be solved as an it-
erative nonlinear least-squares problem. In our current implementation we
simply sum all of the above energy terms and weight the saliency constraints
by multiplication with the saliency map Fs. The warp-induced deformation
is illustrated in Fig. 5.4 by overlaying isolines of the original input images.
Fig. 5.6 is an example with differing number of stereo correspondences and
shows that the results of our stereoscopic warping are quite insensitive to the
number of features.

In addition to automatic constraints it would be interesting to include the
possibility to manually add high level constraints regarding region positions
or global lines (Section 4.2.2). Since at its core our warp is similar to previ-
ous warping methods, the inclusion of these techniques is straightforward.
However, as we show in our results, the current automatic solution already
provides very acceptable results for a variety of stereoscopic 3D footage.

5.3 Results and Applications

As motivated in Section 5.1, the question of how the disparity range should
be adapted for different types of stereoscopic footage depends strongly on
the particular target application. Our goal was to achieve practical disparity
retargeting that can be employed in actual application scenarios. Hence, we
present nonlinearly and linearly mapped results for three important applica-
tion scenarios. We also evaluate the quality of our method quantitatively by a
ground truth comparison, and present the results of a user study to validate
the perceptual quality of the warping.

The production scenarios we present in this section include nonlinear and
linear editing for post-production, automatic disparity correction, and display
adaptation. Furthermore we illustrate the versatility of our method with an
example for 2D to 3D conversion. We also quickly summarize how our
disparity mapping can be used for multi-view (i.e., more than two views)
broadcast and auto-stereoscopic displays.
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Figure 5.7: Post-Production. For an input frame (a) and a given importance map (c) the
average importance for individual disparities s(σ) can be computed. This is
automatically converted into a nonlinear depth mapping operator φ(σ) as
described in Section 5.1.2. The resulting image in which the key characters
are emphasized by stronger depth is shown in (b).

5.3.1 Post-Production

The first major application area of our disparity mapping operators and
warping is post-production of stereoscopic content. We may assume a stu-
dio environment where skilled operators apply software tools within an
interactive workflow to edit previously captured material. Using the pro-
posed methodology and algorithms, depth composition can be modified and
authored by combining different nonlinear and linear disparity operators.

Examples and results for nonlinear and linear disparity editing are shown in
Figures 5.1, 5.7, 5.8, and 5.9. In Fig. 5.1 we modify the global scene depth struc-
ture with a nonlinear function which emphasizes foreground content and
compresses empty space in-between while retaining the maximum disparity
of the background. In Fig. 5.7 we exploit a visual saliency map to automat-
ically design an adaptive disparity mapping operator. It enhances salient
regions and simultaneously compresses the depth of unimportant regions
(see also Eq. (5.3)). In Fig. 5.8 the images were captured with a consumer 3D
camera (Fuji Finepix 3D). The resulting disparity range in combination with
negative parallax is too large for a comfortable viewing experience on large
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Figure 5.8: Nonlinear disparity remapping. The disparity range of the original (left) is
quite large leading to diplopia on large screens. Our nonlinearly remapped
image (right) displays the cow behind the screen and compresses the depth
range without apparent flattening of the cow’s head.

Figure 5.9: Temporal adaptation for a scene cut. Before adaptation both sequences have
considerably different disparity histograms with a clearly visible discontinuity
in-between (upper left). Our temporal disparity mapping operator adapts the
disparity range of the first sequence (first frame of the sequence in the upper
right) to the disparity range of the second sequence (bottom row) and thus
achieves a smoother transition.
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screens. We compressed the depth nonlinearly by moving the cow behind
the screen surface (positive parallax) and in addition applied a discontinu-
ous nonlinear map retaining the dimensionality of the cow’s head without
altering the maximum disparity. A further example is shown in Fig. 5.6.

Another important scenario in stereoscopic content production relates to the
temporal adaptation of the depth structure in scene transitions and the focus
on salient objects therein (Section 5.1.1). Currently, cinematographers are
designing depth storyboards in advance and modification of convergence
by global image shift is the only tool to smooth over shot transitions. Our
methods enable us to compensate for the sharp disparity jumps by slowly
adapting the disparity ranges of the previous and/or current scenes. Fig. 5.9
depicts the disparity histograms before and after correction.

5.3.2 Automatic Disparity Correction

Stereography in live action content production is a difficult art. Camera
parameters such as baseline and vergence have to be adjusted carefully to
ensure a high-quality view experience while keeping the overall action within
the stereoscopic comfort zone. Settings are adjusted to match a certain depth
range in which the action is expected to take place. In movie productions
such decisions are taken by the directors, can be adjusted as appropriate,
tested, and shots are repeated if necessary.

This is not possible in live broadcast scenarios or for the amateur home user.
Any error will immediately lead to degradation in viewing quality or even
result in diplopia. 3D sports broadcast is a popular and timely example.
Movements of camera and objects are fast, spontaneous, often unpredictable,
and interleaved with rapid scene cuts. This frequently leads to violations of
the stereoscopic window or transgressions of admissible disparity ranges.
Similar considerations apply to stereoscopic footage captured by amateurs.
Simple shift convergence for correction will not help if the overall depth range
of the scene is sufficiently large. Instead, careful limitation and compression of
the disparity is required. Fig. 5.10 displays examples for automatic disparity
correction of such content.

5.3.3 Display Adaptation

A third application area is 3D display adaptation and retargeting. It is moti-
vated by the observation that 3D content optimized for certain target display
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Figure 5.10: Automatic correction of disparity. The original stereo pairs are shown on
the left, our result is on the right. The cropped racing car captured with
strong negative disparities and a large overall scene depth results in the
so-called framing problem. With a simple linear disparity scaling the car
is pushed behind the screen without increasing the background disparity.
In the bottom example, taken with a consumer 3D camera, the subject was
moving towards the camera and finally exceeded the maximum disparity
range. In our result, the global disparity range has been adapted so that the
background remains at constant depth while the foreground is pushed closer
to the screen.

size and viewing distance (e.g., theatrical) will appear differently on a dif-
ferent medium (e.g., 3DTV). In order to retain a high viewing quality and
the artistic intention, disparity adaptation is necessary when reformatting 3D
content, e.g., from theatrical to TV or even to a handheld device. Examples of
depth editing are illustrated in Fig. 5.13.

5.3.4 2D to 3D Conversion

In order to demonstrate the versatility of our method we illustrate an example
for 2D to 3D conversion. Recreating 3D stereo pairs from existing 2D images
or video involves an expensive and cumbersome interactive workflow. Re-
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Figure 5.11: This shows 8 views that were synthesized from a stereo image pair. The
3rd and the 6th images are the original input, while the first two and the
last two views are obtained by extrapolation and the 4th and 5th view are
obtained by interpolation.

cently, Guttmann et al. [GWC09] presented a novel approach that simplifies
this task by solving for dense depth maps from sparse user scribbles to gener-
ate stereographic sequences. Using our method the requirement for dense
depth can relaxed, so that the sparse scribbles alone are already sufficient.
The warp interpolates the pixel disparities and generates a stereographic
image pair from a single input image (see Fig. 5.14).

5.3.5 View Synthesis for Multi-View & Auto-Stereoscopic Displays

Stereoscopic 3D is already mainstream, and almost all new display devices
for the home support stereoscopic content. However, the necessity to wear
glasses is often considered as an obstacle, which hinders broader acceptance
of this technology in the home. Multiview autostereoscopic displays enable a
glasses free perception of 3D content for several observers simultaneously,
and support head motion parallax in a limited range. In order to support
multiview autostereoscopic dispays in an already established stereoscopic
distribution infrastructure, a synthesis of new views from only two view
video is needed. This application briefly describes how disparity aware video
warping can be used as a view synthesis method which synthesizes new
views directly from stereoscopic two view video and functions completely
automatically. We discuss this application as it is an important application for
our novel introduced image domain warping method. However, most of the
details an evaluation can be found in dedicated papers [SLS12] and [Ste+13].
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Multiview Displays

Multi-view auto stereoscopic displays (MAD) enable multiple viewers to
enjoy 3D content without the necessity of wearing active or passive glasses.
They enable glasses free stereo viewing by emitting several images at the
same time. This usually works with parallax-barrier or lenticular lenses.
The MAD technology ensures that each viewer in front of the display sees
only that stereo pair which is appropriate for his particular viewing position.
MADs support also motion parallax viewing in a limited range, i.e. occluded
scene parts become visible while other parts are again occluded when a
viewer moves his or her head. To achieve these advanced functionalities,
MADs require not two but many different views as input. Typical MADs
which are on the market today require 8 up to 28 views as input. Because
of the different number of input views required by different MADs, no
unique display format exists for such displays. Additionally, most 3D content
nowadays is produced with two views. Therefore it is essential to have a
technology to produce a given number of new views between (interpolation)
and around (extrapolation) of two given views.

View Synthesis

For the view synthesis application we compute N-view video from 2-view
video where N > 2. The first step is to compute two warps wl and wr that
warp the respective images to a camera position located in the center be-
tween the two input cameras. Therefore, we enforce the following disparity
constraints:

wl(ul)− ul =
ur − ul

2

ur − wr(ur) =
ur − ul

2
(5.11)

For every detected correspondence pair we enforce that the two warps de-
forms the input images in such a way that they meet halfway towards each
other. In other words we computed two warps that capture the deformation
information that is required to warp the left and right image towards each
other such in the ideal case they would overlap.

Given this general output-view independent warps, we can then for the
N-view synthesis interpolate or extrapolate any new warp by linear interpo-
lation wnew = aw + (1− a)w0. w0 is the uniform (undeformed) warp and w
is either the left or the right warp. a is the interpolation value which depends
on the number of required output views. We select wl or wr depending on
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Figure 5.12: This shows the proposed pipeline of transmission based on warp coding. To
reconstruct N-viewes on a remote sides from smaller number M-views we
suggest to pre-compute warps on the encoder side and transmit them along
with image data. On the remote side only efficient warp interpolation and
warp rendering is required. We proposed this in [Ste+13]

the approximate of the output view to the input views, i.e., we use that input
image and that warp that is closer to the desired output view. However, if
only one image is used for the synthesis, empty regions can occur on the left
or right border of the output image. Hence, for output images located at a
position between the input images, texture from a synthesis with the second
input image is used to fill the empty border region.

Warp Coding

In practice we found that it is too much of computational challenge and un-
necessary for each output display to compute the two warps wl ansd wr from
scratch to compute its requires output views. Instead we can compute the
general warps once and then transmit them along with the video stream to the
displays. The displays then are only required to perform the interpolation/
extrapolation step and the warp rendering. Please find a detailed description
of this in the following publications [Ste+13] and MPEG standardization
proposals [Ste+11].

MPEG Evaluation of Warp Based View Synthesis

N-view synthesis is a highly relevant application for the industry and there-
fore heavily studied in the MPEG standardization committee. Hence, we used
established tests and content for evaluating our view synthesis algorithm. We
answered a MPEG call for proposal ([MPE11]) with results generated form

82



5.3 Results and Applications

our algorithm. A large subjective study coordinated by MPEG ([MPE12])
showed that multi-view video coding of 2-view or 3-view video in combi-
nation with a decoder-side view synthesis based on image domain warping
leads to high quality synthesis results without requiring depth map estima-
tion and transmission. Our joint MPEG proposal [Ste+11] was considered as
one of the four winning methods for N-view synthesis in this independent
study.

5.3.6 Ground Truth Comparison

The purpose of the ground truth experiment was to assess the visual quality of
the our warping approach. We utilized a publicly available data-set generated
with a multi-camera rig. We picked two views (numbers 8 and 10) from 3
different data-sets and then applied the warp to generate intermediate and
extrapolated views (numbers 7, 9, and 11). The extrapolated views represent
a doubling of the camera baseline while the interpolated view corresponds
to a baseline of 0. We then compared the quality of our result to the known
ground truth images using both a perceptually motivated structural similarity
metric SSIM [Wan+04] and by computing the RMSE of the difference images.
Single pixel shifts can cause a high RMSE error while contributing little to
perceived image quality. Hence, perceptual measures like SSIM are generally
better suited for such types of comparisons. The values for extrapolated
views in Table 5.1 are averaged over the two views 7 and 11. As Table 5.1 and
the images in Fig. 5.15 reveal, our method is able to compute interpolated
and extrapolated views of a scene that are perceptually indistinguishable
from the original, provided the disparity range is not too large. Please note,
however, that geometrically consistent view interpolation has not been an
explicit goal of this work.

5.3.7 User Study

To further assess the suitability of warping for disparity mapping we con-
ducted a user study with 22 subjects and 15 test cases. The goals of the
user study were to show specifically that (1) warping indeed results in a
perceivable change of a scene’s depth structure, and that (2) the quality is not
degenerated by visual artifacts.

We performed the study with a line-wise polarized 46 inch full HD display
manufactured by Miracube. All 22 participants were tested for their ability
to perceive depth on a stereo screen using a random dot stereogram. One
subject had to be excluded due to a negative test. The remaining 21 subjects
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Figure 5.13: Display adaptation into both directions. The middle images are the original
stereo pairs, while the left images feature a linear reduction of the disparity
range to 50% and the right images an increase to 200%. These results show
that our method allows to preserve the initial depth structure relative to the
screen geometry to adapt content to actual viewing conditions.

Figure 5.14: 2D to 3D conversion. From a single 2D input image and providing only a
sparse set of disparity cues shown as rough scribbles, our method produces a
convincing 3D result.

Figure 5.15: Ground truth comparison showing a known ground truth image (left) versus
our warped image (middle left), and absolute difference images of warped
and known ground truth for both baseline reduction (middle right) and
extension (right).

took part in a pairwise evaluation [Dav63] of video material composed from
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short clips from 3D Hollywood movies, 3D sports and other professional
stereo video. Every side-by-side comparison featured the original scene as
well as a disparity mapped version of it using our method. For nine test cases
we doubled the initial disparities and for six test cases we reduced them by a
factor of 0.5. We randomized the order of videos as well as the locations of
the original and manipulated videos. For every comparison the participants
had to answer the following two questions:

1: Q: Which video features more depth? A: Left or Right

2: Q: Which video is the original? A: Left, Right, or Don’t know

Depth perception

In total we received 311 valid votes regarding the depth impression. Overall,
253 votes (81%) correctly recognized the example with larger disparity range.
Kendall’s coefficient of agreement [Dav63], which measures the interobserver
variability for pairwise comparison tests, is u = 0.391 with a p-value < 0.01.
Two sequences (street view, train) only reached a correspondence of 66%.
Both videos feature a very strong perspective depth cue. One sequence had a
recognition rate of only 55%. This sequence contains fast and complex mo-
tion cues for scene elements confirming well-known observations in stereo
perception, such as the domination of motion parallax cues and the resulting
difficulty to focus on binocular depth effects. 17 participants correctly recog-
nized the depth mapping for 11 or more sequences. One subject drastically
diverges with only 5 recognitions (9 is the next better result). Removing
these outliers (three sequences and one subject) from the evaluation leads a
recognition rate of 88%.

Quality

Question 2 was answered in 56% cases as Don’t know. 25% of the votes
correctly identified the original, but 19% were wrong and assumed that the
manipulated video was actually the original video. Some originals were
correctly recognized by over 80%, but some of the manipulated sequences
were also considered originals by over 80%.

The major conclusion we draw from the study is that disparity mapping
based on image warping can change the depth structure of a scene in a
perceptually believable way without introducing distracting visual artifacts.
As we have demonstrated earlier, the suitability of a particular operator (local,
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Table 5.1: SSIM and RMSE values of ground truth comparison with 3 different datasets
for view interpolation and extrapolation. SSIM=1 means no difference to the
original,

Dataset 1 interp. 1 extrap. 2 interp. 2 extrap. 3 interp. 3 extrap.
SSIM .9999 .9998 .9999 .9999 .9999 .9999
RMSE .0313 .0334 .0235 .0242 .0228 . 0236

global, linear, nonlinear) highly depends on the application, artistic intention,
scene content and motion, and other criteria.

5.4 Limitations

A limitation of our method is depicted in Fig. 5.16. For image regions in
which the disparity changes rapidly, such as around the pigeons’ heads, the
sparse features and warp can lead to visible distortions. These artifacts could
be addressed by using a higher feature count, denser depth information, or
by adding manual constraints to enforce feature preservation. Such methods
have been successfully proposed in work on image warping [Krä+09].

However, it is very interesting to observe that, when viewed in 3D, such
artifacts are often visually less apparent due to the complex compensation
mechanisms of our visual system. These phenomena clearly deserve ad-
ditional research in the context of stereoscopic warping. From research
on media retargeting it is also well known that there are certain limits for
warping-based methods on how strongly image content may be deformed
before artifacts become visible [Wan+09a]. But since most often the required
deformation for disparity adaptation lies in the range of only 1-2% of the
overall pixel resolution, these limits are typically not reached. In none of the
examples presented in this chapter did we observe visible artifacts, which is
further proved by the user study. Finally, our method is limited in the extent
to which we can modify the camera baseline for nearby objects, since such
operations imply explicit handling of occluded areas to avoid conflicting
cues.

5.5 Conclusions

In this chapter we presented a set of disparity mapping operators providing a
basic formalization of perceptually motivated and production-oriented rules
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Figure 5.16: Limitations. For image regions with frequent and strong changes in dispar-
ity, the sparse features and the warp can lead to distortions visible around
the pigeons’ heads. Interestingly, however, such distortions seem to be com-
pensated to some extent by our visual system during stereoscopic viewing.

and guidelines for nonlinear disparity editing of stereoscopic 3D content. In
order to implement these operators we proposed a novel technique based on
stereoscopic warping, which allows us to deform input video streams in order
to meet a desired disparity range. We applied our techniques to three differ-
ent scenarios, all of which are of very high practical relevance in stereoscopic
production and display, and demonstrated that automatic image-based warp-
ing could be used as a general alternative for rendering even complex depth
manipulations. The quality of stereoscopic warping was evaluated with a
ground truth experiment and a user study.

Automatic disparity correction could be implemented in future generation
stereo camera systems to support the cinematographer or cameraman in
realtime. In addition to professional live broadcast systems, consumer elec-
tronic systems could also benefit from such methods, since amateur users
generally do not have the experience and background required for proper
stereo capture. Moreover, algorithms for disparity adaptation could be im-
plemented as part of future 3D display devices or TVs enabling viewers to
control disparity on-the-fly in order to match the display size and the user
preferences, much like we control aspect ratio, contrast, or color today. In
future research we would like to refine our nonlinear mapping operators to
accommodate additional features of stereoscopic perception.

The current user study was limited to assess the suitability of warping for
disparity mapping. Future studies will investigate the influence of various
nonlinear and local operators on the perceived quality of the results. Fur-
thermore, we want to investigate to what extent conflicting cues, such as
inaccurate occlusions, can be compensated for by additional cues like motion
parallax.

We also applied the disparity aware image warping to the problem of view
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synthesis for autostereoscopic displays. We could show that by warping
two input views to a desired number of output views one can achieve very
convincing glass free 3D impressions when viewed on a multi-view display.
We also proposed to precompute the required warps on the production site
and stream it along with the video information to the multi-view enabled
receivers to avoid expensive client side computation. This technique is among
the favorite for future MPEG standard of multi-view coding.

In this chapter we argued that computation of dense depth maps is often not
required. We showed that sparse correspondence detectors together with our
warping framework achieve good results compared to DIBR (depth image
based rendering) methods. However, sometime dense depth or disparity
maps are still valuable. For example the disparity gradient based mapping
φ∇ is much more meaningful for a dense map. However, such dense disparity
maps are highly difficult to compute especially for video. Therefore, the next
chapter will introduce a novel method to compute temporally stable dense
maps from sparse input samples.
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C H A P T E R 6
Efficient Temporal Video Regularization

Figure 6.1: One application of the method described in this chapter is the temporally
consistent propagation of scribbles through video volumes. Sparse feature
correspondences from an input video (a) are used to compute optical flow (c).
Then, color scribbles (b) are spread in space and time to compute the final
coherent output (d).

In this chapter we present an efficient and simple method for introducing
temporal consistency to a large class of optimization driven image-based
computer graphics problems. We show how the method of domain trans-
form [GO11] can be extended to enable edge preserving filtering to be effi-
ciently computed for video sequences while correctly following (and simulta-
neously computing) motion vectors in an iterative framework. Our extension
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in edge-aware filtering approximates costly global regularization with a fast
iterative joint filtering operation. Using this representation, we can achieve
tremendous efficiency gains both in terms of memory requirements and run-
ning time. This enables us to process entire shots at once, taking advantage
of supporting information that exists across far away frames, something
that is difficult with existing approaches due to the computational burden
of video data. Our method is able to filter along motion paths using an
iterative approach that simultaneously uses and estimates per-pixel optical
flow vectors. We demonstrate its utility by creating temporally consistent
results for a number of applications including optical flow, disparity estima-
tion, colorization, scribble propagation, sparse data up-sampling, and visual
saliency computation.

The main difficulty for all these applications is that the spatial-temporal
regularization term enforcing smoothness creates dependencies between
pixels, often resulting in a large non-convex optimization problem over the
entire video sequence. To achieve the required computationally efficient
solution that enables practical temporal consistency, we trade off accuracy for
efficiency, and solve a simpler approximation of the global optimization. In
return we can consider more information simultaneously and thereby get a
very accurate approximation.

This method extends on the automatic algorithms presented in previous
chapters to compute saliency maps, optical flow, edge maps, disparity maps,
etc. In the previous chapters we introduced simple frame-wise or trivial
window based (couple frames before an after current frame) algorithms. In
this chapter we go further into the topic of computing temporally stable
dense meta information maps of various kinds which in turn can be used for
any previously presented image warping application.

6.1 Method

We address a class of problems that can be solved by minimizing error func-
tionals of the following form,

min
F

E(F) = Edata(F) + λEsmooth(F) (6.1)

for unknown solution F, where Edata is the application specific error term,
and Esmooth enforces neighborhood smoothness. The unknown F thereby is
a dense map of information over a video sequence. In our discrete video
setup F is build up from multiple frames Ft where each of them stores some
information Fp,t for each pixel p = (x,y)T ∈ R2 at frame t.
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Original image Initial F Final flow

ρ Initial confidence G Final confidence

Figure 6.2: Steps of our method used for solving for optical flow. We start with sparse
initial estimates in F provided by feature matching (eroded for clarity). We
then use our filtering approach to achieve the final result. The second row
shows the occlusion weights ρ, confidence image G and the filtered confidence
image.

The main idea of our method is in order to avoid costly global optimization,
we split up the data and smoothness terms and solve them each in series. We
do this by first initializing F with application specific initial conditions that
minimize Edata locally. This initialization should be accurate but does not
need to be dense.The regularization term in the energy minimization (Esmooth)
is then replaced by an efficient edge aware filtering operation on F. In this
sense, smoothness is created as postulated, rather than solved for with an
optimization. Proper formulations of this idea can be tailored to suit a variety
of application scenarios which we describe in Section 6.2.

We will begin by explaining how our method works for a single frame, using
optical flow as an example application. In this case, our unknowns Fp are set
of motion vectors f∈ F, expressed as fp,t = (u,v) corresponding to the motion
between two images It and It+1 at pixel p. Eq. (6.1) commonly becomes with
p = (x,y) for the optical flow application:

Edata(u,v) = ∑
(x,y)
||It(x + u,y + v)− It+1(x,y)||2 (6.2)

Esmooth(u,v) = ∑
(x,y)

(||∇uxy||2 + ||∇vxy||2) (6.3)
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where ∇ is the gradient magnitude operator, Edata encodes the matching cost
incurred by F, and Esmooth minimizes the total quadratic variation of the flow
gradient.

Common algorithms compute the solution to this problem by energy min-
imization, which can be computationally expensive. Processing video se-
quences at high resolution while ensuring temporal consistency quickly
becomes impractical and hampers application of powerful ideas from image-
based graphics. We solve it by replacing global optimization with a local
smoothing operation. While this has been studied before [Cri+10; Rhe+11],
we find it helpful to quickly go over the mathematical justification to more
clearly define the class of applications that our method can be applied to.

By viewing optical flow as a reaction-diffusion problem, we can see that
Eq. (6.3) is the Dirichlet’s energy, and minimizing it is equivalent to solving
the Laplace equation −∆f = 0 given Edata as a boundary condition. This leads
to the following related heat equation

∂f
∂t

= α∆f (6.4)

with the Dirac function initial conditions:

fp =

{
Fp if ∃p ∈ F
0 otherwise

(6.5)

In the isotropic case, the Green’s function solution to Eq. (6.4) on an infinite
interval is simply a Gaussian convolution. As images form an inhomoge-
neous medium, the arising nonlinear-PDEs can be solved by using anisotropic
diffusion [PM90], which in the discrete setting has been shown to be asymp-
totically equivalent to edge aware filtering [PKT09]. As such, we can see that
regularization equations of the form of Eq. (6.3) can be solved with edge-
aware filtering, given the right initial conditions (which are determined in
the optical flow case, by Eq. (6.2)).

We therefore start by initializing F with sparse feature correspondences com-
puted between frames It and It+1 (Eq. (6.5)). In our implementation, we
use an out-of-the-box feature matcher from OpenCV that employs SIFT and
Lucas-Kanade features. This provides accurate f vectors in F, but only at loca-
tions where reliable estimates can be found. We then compute an edge-aware
filtering of F to create the final result (see Fig. 6.2).

In order to realize a temporal edge-aware filtering operation, we extend recent
work, called the domain transform [GO11], which we will briefly describe
here, but refer the reader to the original work for a complete description.
Rather than varying the filter weights based on image content, the signal is
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(a) (b) (c) (d)

Figure 6.3: 1D domain transform example. (a) Input signal, (b) Transformed x-
coordinates, (c) Transformed signal Ĉ, (d) Output after filtering (c) with
a Gaussian and re-mapping it to the original domain.

transformed so that it can be filtered by a fixed width Gaussian (a much more
efficient, and importantly separable operation). It is then transformed back
into the original domain, where strong gradients are maintained. Intuitively,
transformed coordinates are computed for each pixel such that two pixels
belonging to the same object have nearby coordinates, while pixels that lie on
different sides of a strong image gradient are far apart.

Given a regularly sampled 1D signal F̃ and some uniform sampling
S = x0, x1...xn that defines a curve C = (x, F̃(x)), the domain transform com-
putes a new irregularly sampled curve Ĉ = (ct(x), F̃(x)), where ct(x) is the
transformed coordinate of x, and ct(xi)− ct(xi+1) is the absolute value of
the arc-length between points xi and xi+1 on the curve C (or in image space,
the geodesic distance on the RGBXY manifold). The coordinates ct can be
computed as:

ct(u) =
∫ u

0
(1 + γ|∇F̃(x)|)dx (6.6)

where γ influences the balance of the spatial versus color distances in the
transformed domain. For edge aware smoothing, γ = σs

σr
, corresponding to

the variance of the filter over the spatial and range domains respectively.
Practically speaking, this stretches the abscissa of C, based on its arc-length.
Ĉ can then be filtered with a Gaussian kernel and remapped back to the
original domain by inverting Eq. (6.6).

Fig. 6.3 illustrates this applied to a 1D signal.

In the 2D image case, a series of N 1D iterations is performed, alternating
between X and Y until convergence. We call the dense filtered solution
F′. We perform a joint domain-transform filtering, where the transformed
coordinates are determined from image I, and are then used to filter the
solution F.

As the Gaussian kernel is not an interpolation kernel and F may be sparse,
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Figure 6.4: A path (black line connecting pixels) is defined by the motion vectors at each
current frame (blue arrows). Filtering in the temporal direction happens
along these paths; the resulting 1D vector on the right is iteratively convolved
with a box filter in the transformed domain.

the sum of the kernel weights at each pixel will not necessarily sum to one. A
normalization image G is therefore created such that for each pixel i, Gi = 1
if there is data at i, and Gi = 0 otherwise. This image is filtered with the
same filtering operation as F, producing G′, which is the sum of the kernel
weights per pixel (and inversely proportional to the geodesic distance). The
normalized final result is then computed as F

′′
= F′

G′ .

We now describe our novel extensions to this method.

6.1.1 Temporal Filtering

We extend the single frame method to video volumes by adding an additional
pass of the separable box filter that filters the temporal (T) dimension. Unlike
with spatial passes, temporal filtering should follow the motion of points be-
tween frames. This prevents incorrectly averaging information across object
boundaries and improves results (Fig. 6.6). To enforce temporal continuity,
and introduce a temporal smoothness assumption, we desire edge-aware fil-
tering also in the temporal direction. To correctly model motion, our method
creates dense estimates of optical flow, regardless of the final application.
We call the vector of pixels that correspond to the motion of one scene point
over time a path. One such path is shown in Fig. 6.4. Paths are computed by
following optical flow vectors at each frame (rounding to the nearest pixel),
and are then filtered after undergoing a 1D domain transform, similar to a
row or column in the spatial filtering passes.

Of course, when computing optical flow, this creates a chicken-and-egg
problem; per-pixel motion vectors are required in order to correctly compute
the motion vectors! We resolve this using an iterative approach that begins
with a rough estimate of the flow as computed by our sparse feature matching
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and one spatial X and Y filter pass. This rough estimate provides initial
motion vectors for the first temporal pass, which are then updated in each of
the N iterations (consisting of one X,Y, T pass each).

We use a sliding box filter for efficiency, as only one addition and subtraction
operation is needed for each pixel along the path, regardless of kernel size.
However, we must be careful when filtering the temporal direction, as paths
do not create a bijective mapping from frame to frame (which is different
from rows and columns). This is due to three cases: 1) A path can leave the
image boundary, 2) Multiple paths can converge on the same pixel, and 3)
A pixel can have no paths in the previous frame that map to it. To compute
unbiased results when filtering temporally, it is important that at any given
frame, every output pixel belongs to exactly one path. To accomplish this,
we begin at the first frame with one path per pixel and maintain a double-
ended queue per-pixel that keeps track of the box-filter contents as it moves
along that path. At each frame as we move in time and the paths begin to
diverge, we find all pixels that no longer belong to a path (due to 1) or 3)).
For these pixels, we spawn a new path centered at that pixel, and initialize
the box filter by stepping backwards in time by the box-filter radius (in the
transformed domain). In case 1), the path is ended and the sliding box filter
stopped. In case 2) when multiple paths collide, we randomly keep one
while cutting the other off at the previous frame. As the scale of the temporal
domain is different, we use different parameters to control γ and the filter
radius, which we call σrt and σst (all parameters are given in a table at the
end of Section 6.2). Not only does enforcing temporal consistency provide
more useful results for most applications, it also allows us to fully use all the
information available in a video sequence, and provides us denser estimates
of Edata for filtering. For example, in the optical flow case we can propagate
initial feature matching samples from previous or later frames to the current
one if the are no (temporal) edges in between.

6.1.2 Confidence

By extending the role of the normalization image G, we introduce a simple
way to add confidence values to our data term. As we mentioned before,
setting G(x,y) to 1 in the presence of sparse data yields a normalization
image that conveys how much known data has reached each pixel. To instead
assign a confidence weight βi to the sparse feature at pixel i, we set the value
of Gi = βi, and multiply the data image by the same Fi = GiFi for all pixels
i. We write this per-element multiplication as G · F. Again, we filter both G
and G · F and compute the final result as (G·F)′

G′ . In addition to being used for
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F G (G · F)′ G′ (G·F)′
G′

Figure 6.5: A demonstration of how our confidence term is applied to two 1D examples
(one each row). The original sparse signal F is modulated with the confidence
G and filtered to produce (G · F)′ (blue = signal, pink = contribution of
individual points). G′ is the filtered confidence image. The final normalized
result (G·F)′

G′ is shown with the original signal overlaid. In the bottom row, the
decreased contribution of the middle point is visible due to its lower confidence
value.

normalization, the confidence term correctly encourages higher confidence
points to contribute a greater influence on the final result. This effect is
illustrated in Fig. 6.5.

For optical flow and disparity estimation, we use the feature matching vector
difference as a confidence weight, increasing the contribution of the sparse
features that had better matches. This greatly improves the quality of the
results, as shown in Fig. 6.6.

6.1.3 Iterative Occlusion Estimates

We also incorporate additional information into the role of the normalization
image G, which helps greatly with occlusion regions. To compute an occlu-
sion likelihood, we estimate both forward and backwards flows (f f and fb) at
each frame, and apply a confidence penalty (ρ) for each pixel i based on how
well the vectors match. We use a robust penalty function:

ρ = (1− |f f + fb|)θ (6.7)

where θ is a parameter that controls the shape of the penalty curve. While
computing optical flow, these occlusion estimates ρ change each iteration (ρ0

to ρN−1), so we update our occlusion weights based on the flow estimates
from the previous iteration. Beginning with sparse data confidence G0 = β,
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for each iteration n before filtering, we compute Gn = Gn−1 · ρn−1, and up-
date Fn = Fn−1 · ρn−1 equivalently. This term has the effect of lowering the
confidence in regions where our flow estimates prove unreliable. This in
turn causes higher confidence spatial temporal neighbors to exert a greater
influence on these occlusion regions. The occlusion information is used to
weigh the confidence of not only the flow, but also the additional data terms
in the corresponding applications we introduce later.

None +Temporal +Confidence +Occlusions

Figure 6.6: Table showing the effect of each processing step introduced. We incrementally
add temporal filtering, confidence values, and flow occlusion estimates to
optical flow, and scribble propagation.

6.1.4 Evaluation

We show the improvements gained by each of the three steps in Fig. 6.6 on
several datasets, for the applications of optical flow (top two) and scribble
propagation (bottom). In the first column, we show the results using the naive
solution of a temporal edge aware filter (filtering the temporal dimension
straight through the video volume). We then incrementally add our motion
path adhering temporal filtering, confidence values, and occlusion estimates.
The edge regions in particular are greatly improved, as are incorrect values
that arose due to noise in our initial matching (such as on the flat background
surface in the central row). In the scribble propagation example, we can see
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improvements in the outline of a frog. We also compare our results to other
approaches for joint-data upsampling in Fig. 6.7, showing that our method
outperforms a bilateral filter [CPD07], and a global solution computed using
a locally-linear assumption [LLW06]. The bilateral filter allows flow to spread
incorrectly through similarly colored regions, and the global solution exhibits
noise due to the `2 penalization of incorrect feature matches.

Bilateral Filter Global Solve Our Method Ground Truth
RMSE 0.42 RMSE 0.21 RMSE 0.12

Figure 6.7: A comparison of different methods for propagating sparse correspondences
to compute optical flow. The results shown here were generated using each
authors’ publicly available code, and choosing parameters that yielded the
lowest RMSE between ground truth and estimated flow vectors (in pixels).

Quantitatively validating temporal optical flow is difficult, as public ground-
truth datasets for long, real world sequences are not readily available. The
widely used Middlebury ranking provides short eight-frame sequences with
one frame of ground truth for testing. However, as noted by previous tempo-
rally aware methods [ZBW11] due to capture methodology, these sequences
exhibit large, temporally discontinuous motions that violate a smoothness
assumption. Such prior works therefore avoided making comparisons to this
data with temporal methods. Similarly, we found that our method visually
performed significantly worse under these conditions than with real-world
footage. However, for comparison, we include the latest Middlebury rank-
ings; at the time of submission, our method had an average rank of 56.1 in
terms of average endpoint error.

Additionally, we compare our results on real world video datasets to a
number of existing state of the art methods; one that works on single
frames [ZBW11], and two temporal approaches that use sliding windows,
one variational [Vol+11] and one cost-volume filtering method [Hos+11] (cur-
rently ranked 10th, 5th, and 15th in Middlebury evaluation respectively at
the time of submission). We visualize the comparison both with color coded
motion vectors, and then most significantly, by directly viewing the result of
using optical flow in a typical application, in this case frame-rate upsampling.

An additional advantage of our method is that by using a descriptor-based
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feature matcher, we are able to correctly detect small objects that exhibit
large motion, as long as they contain suitable features for matching. This is
something that is traditionally very difficult to model, as most variational
methods linearize the image, meaning that the result is only valid locally.
Long range motion is detected by computing over a scale-space pyramid,
which can cause small objects to disappear.

However, we note that our motion-path adhering temporal filtering method
is separate from the feature-matching component, and any method for filling
Edata could be used, even existing optical flow approaches. Therefore, our
method can be used as a post-filter for any optical flow method. And thereby
also allowing those methods to take advantage of information (flow vectors)
in many frames.

Additionally, please note that for applications other than optical flow we
are not required to use our flow computation. Instead, we can use any
optical flow method to construct motion paths and use those to filter other
applications informations with our method.

6.2 Applications

We now apply our method, enforcing temporal smoothness on a number of
different applications.

6.2.1 Optical Flow

As explained before, we compute the optical flow with our method regardless
of the application such that we can filter along the motion paths. Besides
that, often the optical flow is then not further used. However, the optical
flow itself of course is already an important application. We did multiple
experiments to evaluate the quality of our optical flow.

In each of the following cases, we first compute optical flow and then compute
the application-specific result, using the above described filtering approach.

6.2.2 Disparity Estimation

Disparity estimation involves computing dense correspondences between a
rectified pair of stereoscopic images. For this application, solution Fxy = σxy
contains scalar values that describe the disparity between a stereo image pair
I l and Ir at pixel (x,y). Similar to optical flow, this can be expressed as:
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(a)

(b)

(c)

Figure 6.8: Given an high resolution (1280x544) input video (a), optical flow is compared
to a high ranking (10th in the Middlebury evaluation at time of submission)
per-frame method (b) [ZBW11]. Row (c) shows individual frames of our
result.

Edata(σ) = ∑
(x,y)
||Ir(x + σxy,y)− I l(x,y)||2

Esmooth(σ) = ∑
(x,y)

(||∇σxy||2).

We again sparsely compute an initial F using feature matching between I l

and Ir, and perform our filtering. We evaluate the quality of our results by
comparison to high quality disparity maps provided with publicly available
MPEG test sets [Wil+10]. One advantage of our approach is that by design our
disparities are well aligned to image edges. This is an important feature in a
number of applications, such as virtual view synthesis and object insertion.

This dense and temporally smoothed disparity maps can now also be used as
input to our stereoscopic image warping and disparity mapping. For example
the disparity gradient based operator can be more easily implemented for
dense disparity maps. Also, the temporal smoothed disparity maps makes the
warp computation temporally more stable and allows to reduce the temporal
constraint in the warp computation.

6.2.3 Depth Upsampling

Depth sensors often provide information that has lower spatial resolution,
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(a)

(b)

(c)

Figure 6.9: The high resolution stereoscopic input video provided by the MPEG group (a)
is used compute a dense disparity map. (b) shows the result of the state of the
art algorithms [Wil+10]. Our result is shown in row (c).

missing data due to parallax between sensors, and is temporally noisy. We
address all of these issues by enforcing edge-aware spatial and temporal
smoothness on the depth data. We tested our method by initializing F with
the depth data from a Microsoft Kinect sensor, and filtering this using the
video data to compute our transformed coordinates. The initial data we used
were captured from multiple kinect sensor within the project of [Kus+11].

The depth maps are shown before and after upsampling in Fig. 6.11. We can
see that our method fills in unknown areas adhering to image edges, and
produces temporally consistent results for the entire sequences.

6.2.4 Colorization and Scribble Propagation

Another application of our method is the temporal and spatial propagation of
sparse user input. These pen strokes can be used to colorize videos, represent
high-level labeling, or to provide scene composition cues that are intuitive
to humans, such as depth ordering [Wan+11a]. In prior work, Edata enforces
the given scribble map, and Esmooth assumes a locally-linear model [LLW04],
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[Wil+10]

ours

Figure 6.10: Here we shows an example of using the depth map only to insert a new
object (z-test). Our depth map is better aligned to image edges.

written for pixels i and scribbles s as:

Esmooth(s) = ∑
i
||si − ∑

p∈IN(si)

wpisp||

where wpi are the locally linear weights. We initialize Fi = si, and apply
our temporal smoothness assumption to propagate scribbles at key-frames
throughout the video. For colorization, we convert the RGB/grayscale image
I into YCbCr space and replace the CbCr color channels with those specified
by the propagated user scribbles. After replacing the we convert back to the
then finally colored RGB image.

The required number of scribbles depends on the amount of motion in the
scene, as scribbles are only valid while the scene has a similar composition.
We found that in practice, we were able to get convincing results by creating
on average one scribble key-frame for every 20 output frames, which is on
par with sample results from other global optimization approaches.

6.2.5 Saliency

Determining visual saliency is a very important component of many image-
based graphics operations, especially also for the applications presented in
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(a)

(b)

Figure 6.11: Row (a) shows the input sequence and the used scribbles. Row (b) shows
the result of the scribble propagation with our method. These are frames of a
long sequence. Scribble input was only given at frame 0 and frame 15. The
middle column show the temporal result at frame 11.

(a)

(b)

frame 0 frame 11 frame 15

Figure 6.12: Row (a) shows the input sequence and the used scribbles. Row (b) shows
the result of the scribble propagation with our method. These are frames of a
long sequence. Scribble input was only given at frame 0 and frame 15. The
middle column show the temporal result at frame 11.

Chapter 4 and Chapter 5. We used efficient frame by frame exist that estimate
importance by analyzing the frequency spectrum [GMZ08].However those
methods are highly nonlinear response. In particular small changes from
one frame to the next can introduce big changes in the computed salience
map. Previously, to avoid such highly temporal varying input for the retar-
geting and disparity mapping project we did use window based averaging.
However, now with mehtod described within this chapter we can signifi-
cantly improve the results by considering image edges and motion path wehn
filtering salience maps.

First, we use our default method to compute per-frame saliency l, initializing
with F(x,y) = l(x,y), and then introduce our temporal smoothness, produc-
ing a cleaned, stable output. We validate our saliency by using it for the
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frame 5 scribble 5 frame 13 frame 20 scribble 20

Figure 6.13: Colorization: We used the data and scribbles of the previous work [Lew+04].
Please note that there is no other scribble input between frames 5 and 20.

application of video retargeting, where the aspect ratio of a video is modified
while preserving the appearance of visually significant objects, see Chapter 4
In this case, the temporal stability of the saliency map is very important, as
noise in the map can cause visually distracting wobbling in the final result.
With our improved temporally stable and image edge aligned salience we
could even completely remove the temporal warp constraint (Eq. (4.9)) and
still create temporally stable retargeting results. This especially interesting
because it allows to compute per-frame warps without inter-dependencies of
each other and therefore allow for better parallelization.

6.2.6 Parameters

We use the following parameter values for all datasets:

Application σs σr σst σrt N θ

Flow 2000 .4 5 .1 4 5
Disparity Estimation 2000 .3 5 .1 4 5
Scribble Propagation 1000 .3 5 .1 4 5
Depth upsampling 1000 .1 5 .1 4 5

Saliency 20 1.5 15 .2 4 5

6.3 Performance

An important benefit of our method is that it is computationally simple. In ad-
dition, the processing steps are mainly independent and the memory accesses
mainly local, so it scales well to multi-core or hardware implementations. We
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(a)

(b)

Figure 6.14: Row (a) shows the input per frame not object aligned saliency of a wakeboard
sequency. Row (b) shows the improvement we get by applying our filtering.
Per-frame outliers are reduced and the saliency map is better object aligned.
Using such a importance map for video warping (Chapter 4 and Chapter 5)
can greatly reduce manual interaction and tuning.

provide all timing information for a HD 720p sequence on a desktop com-
puter (Core i7 920 2.67GHz (4 cores) CPU and 12GB of memory), ignoring file
IO time. In the following we will step through our algorithm and describe
quit detailed the complexity of each step where ”flops” values are estimated
by looking at our C implementation. The actual compiler generated number
may differ.

First, we load the video sequence and compute spatial transformed coordi-
nates, which stay fixed for the sequence. This takes 3.6ms per frame requiring
about 12 flops per pixel,

Spatial filtering is implemented as a sliding box filter requiring approximately
(depending on the transformed coordinates) three floating point operations
per pixel per data channel. For optical flow, six data channels per pixel (for-
ward and backwards flow (u,v) and normalization channels G) are processed,
this takes 35ms per frame. Temporal filtering also is performed with a sliding
box filter, but in this case motion paths must be followed. These paths change
every iteration, requiring the coordinate transform along a path to be recom-
puted on-the-fly which requires 16 flops. To filter a path, the sliding box
filter stores a double-ended queue of entries, which avoids us from having
to re-follow flow vectors as the box translates. We implemented this as a
ring buffer that allows for quick push front and pop back operations, this
occurs once for every pixel in video cube. Additional special cases have to be
handled when paths begin and end, due to the cases mentioned in Section 6.1.
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When a new paths is created, a sliding box filter is initialized around the
current pixel, reconstructing the path backwards in time. This adds a small
number of operations, but happens only for a few pixels in the video video
(around 2.3%). In that case we need additional half the box filter size number
of operations of the general case. While rows and columns can be trivially
parallelized, filtering paths requires additional synchronization. We used
an atomic check-and-set to ensure that when multiple paths converge, only
one thread continues and the other ends. Temporal filtering requires a larger
memory footprint to store path queues, and more random access patterns in
memory. As such it is slower than the spatial passes, taking 96ms per frame.

Finally, after every XYT iteration, we update the confidence maps. This
requires Eq. (6.7) to be evaluated per pixel, which takes 20.7ms per frame.

In total, our proposed spatio-temporal filtering requires approximately
151.6ms per frame per iteration for HD video. For N = 4 iterations, and
a shot consisting of 100 frames of 720p material, we can perform all filtering
operations on six data channels (computing forward and backward flow) in
65.2 seconds; 0.652 seconds per frame.

Our method additionally requires computing sparse (forward and backward)
feature correspondences. We do this for all frames in parallel, using an out-
of-the-box OpenCV solution that required 145.43ms on average per frame.

We compare our method to publicly available timing information from the
existing state-of-the-art optical flow methods that we validate against. Times
reported are for the task of computing eight frames of optical flow on a
Middlebury sequence (640x480 resolution).

Method Time per output frame Total for 8 frames

[Rhe+11] 55 seconds 7.3 minutes
[ZBW11] 620 seconds 1.4 hours
[Vol+11] 40 minutes 5.4 hours

Our method 625 ms 5 seconds

Our method does not use sliding windows, and takes only 5 seconds on a
standard CPU for the 8 frames, 3.2 seconds for initial feature matching and
1.8 second for our proposed spatial-temporal filtering. Please see the video
for a comparison of result quality.

Our method is also efficient in terms of memory usage, requiring order O(N)
memory, where N is the number of pixels in the video volume. This allows
long sequences to be computed simultaneously. Processing 400 frames of
640x480 video, or 140 frames of 1280x720 video requires 8.83 GB memory with
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our naive implementation. Our current implementation is mainly memory
limited, although with current hardware we had no problems running our
method on high resolution long sequences that ended up using 100GB of
memory. And given the easy parallelization of our method we could easily
handle such large examples by utilizing 16 cores simultaneously.

However, as most computational steps are trivially parallelizable, longer
videos could easily be supported by swapping images in and out of memory.

6.4 Limitations

Of course, our approach is not without limitations. Primarily, we have
decided to trade accuracy for computational efficiency, in the process greatly
simplifying the problem that we are solving. One consequence of this is
our dependence on having sufficient initial conditions; it is possible that
objects can remain undetected when there are not enough image features
to match between frames. To alleviate this, we tuned the parameters of our
feature matcher to find as many features as possible, even when this creates
a number of bad matches, as our filtering approach suffers more from the
lack of data than from the presence of outliers (incorrect matches), which are
largely filtered out by spatial and temporal neighbors. This works well if the
confidence measurement of the feature detector returns reasonable values.

Our method also shares similar limitations to most image-based computer
graphics approaches in that it can fail when important object boundaries are
not well represented by image edges. However, in applications with very
sparse input such as scribble propagation, greedy mistakes can cause data
to incorrectly bleed across boundaries, something that would be avoided
in a true global solution. As a result, when compared to prior scribble
propagation work, our method requires scribbles to be more localized at
object boundaries; this is a trade-off for our efficiency gains. This effect can
be seen in Fig. 6.13, where we perform colorization using scribbles from a
prior global approach [LLW04]), and show a comparison between our result
and theirs. One possible solution could be to user interaction where the
more important object edges are highlighted and the confusing texture edges
are suppressed. As our method can provide interactive rates for single key-
frames and fast results for video sequences, this kind of interaction could
greatly improve the results with minimal overhead.

Despite these limitations, it is our hope that this approach will open the
door for the practical application of many existing and future image-based
computer graphics techniques to video data.
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6.5 Conclusion

In summary, we have presented a simple and efficient approach for approxi-
mating global smoothness over video sequences using temporal edge-aware
filtering. Our method is robust and achieves stable results over a variety of
datasets using a fixed set of parameters per application.

By introducing a temporal smoothness assumption, we have shown that it is
possible to obtain good results for difficult image-based computer graphics
problems such as optical flow and disparity estimation by just using a feature
matcher and filter in place of costly global minimization.

Our method has not been fully optimized for speed, and further performance
gains could be made by exploiting GPU parallelism. Recent work describes
significant performance gains computing summed area tables on the GPU,
which is a large component of our computation [Neh+11].

We also showed how this spatial-temporal filtering allows to improve the
quality of before mentioned video warping algorithms. By filtering saliency
maps Fs we can reduce warp computation complexity by removing the tempo-
ral warp constraint and therefore decoupling frame computations. Replacing
the sparse feature detector for stereoscopic video warping with temporally
stable dense disparity maps allows us to design even better disparity map-
ping operators as well as reducing artifacts resulting from temporally unstable
input.
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C H A P T E R 7
Conclusion

In this thesis, we introduced a novel framework for efficient video processing,
and demonstrated its relevance and practicality by implementing and ana-
lyzing various applications for video adaption, modification, and synthesis.
We first observed that many practical applications can be expressed as an
image deformation process, which we called an image warp. Recognizing
this similarity we started first by introducing a solid, extensible and novel
IDW framework. We showed that by carefully crafting the discretization
of the warp function we could lay the foundation for a simple but versatile
application-specific constraint development. We then discussed how given
the discretization and the constraints we can construct an energy optimization
problem and efficiently find the desired image deformation using a custom
iterative solver targeted specifically for the properties of image warping.

Knowing how to deform an image is only the first step and followed by
actually performing the deformation on an image, which we called warp
rendering. We carefully analyzed the mathematical process of warp ren-
dering. We showed that the traditional way of backward mapping (often
implemented using bilinear sampling on the GPU) is non-optimal from a
signal processing point of view. It can easily create aliasing artifacts. Based on
this analysis, we consequently introduced a novel warp rendering algorithm
based on the EWA framework, which was originally formulated only for 3D
rendering. We reviewed its mathematical derivation and approximations and
showed how to adapt the framework to 2D warp rendering. We could then
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show that EWA based rendering is not only simple and efficient to implement
on a GPU, but considerably reduces aliasing artifacts for IDW applications.

After establishing our generalized IDW framework, we discussed various
video processing applications and showed how these applications can be
efficiently solved using our framework. We first analyzed the problem of
video retargeting as the problem of changing the aspect ratio of a given video
and thereby hiding necessary deformations imperceptibly in less important
image regions, while keeping the aspect ratio of more important regions uni-
form. We extended previous work in important ways. We introduced a global
scaling factor such that multiple salient objects in an image could be scaled
the same way. We also showed how to formulate warping constraints that
faithfully handle image edges and scene cuts. Besides those automatically
computed constraints we introduced user controllable tools to artistically
direct the desired outcome of a retargeting process. For example, we intro-
duced tools to enforce straight lines as well as to control the position of objects
in the image. We verified the quality of the video retargeting application
by an online user study and could show that our approach is superior to
linear scaling. More importantly, users rated our video retargeting algorithm
superior to other computationally more expensive methods.

In a next step, we extended the retargeting process to stereoscopic imagery
and 3D displays. In addition to aspect ratio changes, retargeting for 3D
entails also modifying the depth composition of stereoscopic content. We
started the discussion with a basic formalization of perceptually motivated
and production-oriented rules for nonlinear disparity editing of stereoscopic
3D content. Based on these rules and guidelines, we introduced the concept
of non-linear, local disparity mapping operators. We continued by proposing
that such disparity-modifying operators can be applied using image domain
warping only. We presented how to design 3D-IDW constraints for stereo-
scopic content such that the deformed image pair will fulfill the postulated
disparity mapping operators. Using 3D-IDW, we were able to change the
disparity of 3D content much more reliably than previous methods, without
the need for computationally expensive and error-prone steps such as dense
depth map reconstruction or occlusion in-painting. We carried out a user
study which showed that our method can indeed alter the depth impression
of content without introducing disturbing artifacts.

Being able to change a depth impression does not only allow for display
adaptation, but we showed that this is a much-desired editing tool in prac-
tice. Beside other applications, we presented how to optimize scene cuts for
stereoscopic content, or how to compress disparity to avoid card-boarding.
Therefore, our 3D-IDW framework provided a highly useful, semi-automatic
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tool that allows to non-linearly edit the perceived depth impression of con-
tent after it was captured. We also introduced how to compute additional
interpolated and extrapolated synthetic views for 2-view video, which is vital
for auto-stereoscopic displays. Moreover, we also showed a first conceptual
pipeline for 2D to 3D conversion based on IDW.

While the IDW framework allowed to solve a wide variety of video-
processing problems in a temporally-stable manner, it only was applicable to
video applications that required image warping. We therefore introduced a
more general energy optimization framework that achieves practical temporal
consistency for a broader range of video analysis and processing applications.
We analyzed recent advances in fast edge-aware image filtering and extended
and combined those methods for video. By considering that many global data
regularization tasks can be approximated with filtering, we could achieve
significant speed-ups for many relevant video applications. In particular, we
showed that our temporally consistent filter framework could be applied to
a wide range of different applications such as optical flow, dense disparity
map estimation, depth upsampling, scribble-based video colorization as well
as saliency analysis. Our framework was not only able to achieve plausible
temporal consistency, it also improved the quality of the results much more
efficiently than other approaches for video.

7.1 Future Work

The methods and results presented in this thesis were just the start of many
interesting follow-up projects. Some of these follow-up projects were carried
out in parallel to this thesis, after our initial papers were published, some of
which were carried out in collaboration with us. In the following, we will
discuss some of these projects and possible future work of our research.

General Image Domain Warping and Warp Rendering We introduced a
novel image warping framework and EWA based rendering technique that
works well in practice. Nevertheless, it would be interesting to further im-
prove the optimization scheme used for finding the final warp function. It
would be interesting to introduce the mathematical tools that allow estimat-
ing convergence behavior of the different application constraints. Although
we already achieved interactive frame rates with our iterative solver it is
likely that a more advanced solver (e.g., by utilizing preconditioners) could
improve result quality or performance even further. Also, the proposed
EWA based rendering method could be analyzed and optimized in more
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detail. Particularly, using Gaussian filters, although convenient, is not a
very good approximation of an ideal low-pass filter. Replacing the Gaus-
sians with a sharper filter could help to reduce some over-blurring when
rendering. It could be interesting to analyze how such a more complicated
pixel splatting function would be deformed by an non-linear warp and if
such an advanced splatting operation could be implemented on recent GPUs.
The thesis of Greisen [Gre13] carefully analyzed our EWA rendering and
proposed some modifications to the anti-aliasing filter to avoid excessive
blurring. Furthermore, [Gre13] adapted some of our IDW work for dedicated
hardware implementations and showed that our framework can efficiently
be implemented in FPGA and ASIC prototypes.

Video Retargeting Video retargeting is still a very actively researched area.
With our initial publication [Krä+09] we achieved interactive results for
streaming video for the first time. Although such interactive results are
important, it would be interesting to see if more complex algorithms could
achieve better temporally stable results. In fact, some follow-up work on
improving temporal consistency [Wan+10; Gru+10]. Our implementation
achieved high performance by utilizing the GPU. While mobile GPU also
become more powerful it would be interesting to find algorithms that are
better tailored to mobile handhelds. This may not only include simplifying
the computation ([Gre+12b], [PWS12]) but also consider the perceptual cir-
cumstances of very small displays. In addition to an aspect ratio change,
video retargeting often entails a significant resolution change. Although
we did optimize the warp rendering to reduce aliasing in such cases, one
could further investigate how extreme resolution changes (e.g., 4k to SD)
affect other parts of the retargeting pipeline. Furthermore, the quality of our
retargeting framework depends heavily on the quality of the video analysis
tools such as saliency, edge detection etc. Better algorithms for video and
scene understanding could further improve the quality of our retargeting
pipeline.

IDW based Disparity Mapping In our discussion of stereoscopic percep-
tion we established the general framework of disparity mapping operators.
We see some future research opportunity in analyzing and proposing new
specialized incarnations of such mapping operators. Similar to research of
tone mapping one can imagine to have a large set of well studied, maybe
application or artistically defined disparity mapping operators introduced
in the future. Furthermore, we found that IDW is very often a good ap-
proximation of complex DIBR methods and, moreover, even introduces less
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noticeable artifacts than re-projection and in-painting algorithms used in
DIBR. However, this is only valid for small changes in disparity (such as
stereoscopic content produced for broadcasting or cinema), but is not neces-
sarily true for significant changes in disparity. In such situations it would be
interesting to see if a combination of traditional DIBR approaches and our
IDW-based methods could improve results. Similarly a discontinuous warp
(combined with in-painting) like in [Wan+11b] could be used to increase the
range for disparity mapping. Another interesting research topic is to extend
our stereoscopic editing to the field of stereoscopic compositing, i.e., com-
bining multiple stereoscopic video sources into one video. One particularly
interesting subtopic would be to also match vanishing points in such a case
(similar to what was proposed for 2D images by [CAA10]). We have already
but together some initial comparisons of different 3D-IDW based compositing
methods in [Sch+12], but a more in-depth analysis would still be interesting
future work. Similar to video retargeting a dedicated hardware implementa-
tion on ASICs or FPGAs would be an interesting step forwards, as it would
allow to integrate disparity mapping into consumer electronics products (TV).
While our user study showed that local, non-linear disparity changes did
not introduce any disturbing artifacts, it would be interesting to perform
further user studies to investigate the impact of different disparity mapping
operators on the depth perception and to devise a set of optimal mapping
operators for different scenarios. Additionally, it would be interesting to have
a user study that independently investigates disparity mapping operators
from the way they are applied (in our case 3D-IDW). Moreover, a stereoscopic
rendering engine or ray-tracer that allows to directly embed different non-
linear disparity mapping operators would be a very interesting avenue for
future research. Such a rendering engine would avoid any artifacts that can
occur with image-based warping and could be used for the aforementioned
user studies which only focuses on the disparity mapping operators. But
certainly such a rendering extension would also be an invaluable tool for
animation-movie production or 3D gaming.

Practical Temporal Consistency for Video Given that our algorithm is
suitable to solve a large number of image processing problems, one can
focus future research on any of those applications. For optical flow, we got
very promising results, and especially our object edge accuracy was very
high. For initial feature tracking, however, we used a standard out of the
box method. It would be interesting to test if better initialization would
result in better motion vector end-point or angular error. Additionally, our
method does not support sub-pixel accuracy, and it would therefore be a
nice future contribution to see if our temporal filtering could be extended to
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fully utilize and compute sub-pixel accuracy for flow vectors . In contrast to
entertainment content, computer vision applications often have more than
two views of video available. In such a situation one could investigate how
to improve disparity and depth computation, but also scribble and color
propagation by utilizing all the data in all available views. One can speculate
that this adds an extra dimension, which could be handled efficiently similar
to our temporal path based filtering.

Furthermore, high-definition content with high spatial and high temporal
resolution requires novel approaches and algorithms to cope with the ex-
plosion in complexity, and previous state-of-the-art methods often become
infeasible or even fail for such high-resolution content. As we showed in our
work, improving the computational efficiency per pixel while at the same
time using more information makes such large problems more tractable. We
think that reconsidering traditional algorithms such as Sobel Filters for high-
definition content using similar approaches to our work, provides a wide and
auspicious field for future research.
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A P P E N D I X A
Notation

This appendix covers the used notation.

A.1 General Mathematical Notation

N . . . . . . . . . . . . . . . . . . . . . Set natural numbers.
R . . . . . . . . . . . . . . . . . . . . . .Set of real numbers.
Rn . . . . . . . . . . . . . . . . . . . . Set of real n-vectors.
Rm×n . . . . . . . . . . . . . . . . . . Set of real m × n matrices with m rows and n

columns.
a ∈ Rn . . . . . . . . . . . . . . . . . Bold lowercase letters are denoting column of any

dimension.
ax . . . . . . . . . . . . . . . . . . . . . The x component of a
A ∈ Rm×n . . . . . . . . . . . . . Bold uppercase letters are denoting matrices of

any dimension.
AT,aT . . . . . . . . . . . . . . . . . Denoting a transposed matrix or vector
f (. . .) . . . . . . . . . . . . . . . . . . A function
f−1(. . .) . . . . . . . . . . . . . . . The inverse function
g⊗ f . . . . . . . . . . . . . . . . . . Convolution of function g with f
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A.2 Image Warping

II , IO . . . . . . . . . . . . . . . . . . Input and Output Image
W, H . . . . . . . . . . . . . . . . . . Width and height of the input image
u . . . . . . . . . . . . . . . . . . . . . . Position in the input image domain
uk . . . . . . . . . . . . . . . . . . . . . Position of the k’th input pixel
p . . . . . . . . . . . . . . . . . . . . . . Position in the output image domain
pi . . . . . . . . . . . . . . . . . . . . . Position of the i’th output pixel
w(u) . . . . . . . . . . . . . . . . . . Warp function from input to output position

(R2→R2)
pk = w(uk) . . . . . . . . . . . . Output(warped) position of the k’th input pixel
wn . . . . . . . . . . . . . . . . . . . . Grid vertex position of n’th grid corner of the

discretized warp function
wn

x . . . . . . . . . . . . . . . . . . . . x-component of grid vertex n
Jk . . . . . . . . . . . . . . . . . . . . . . Jacobian of warp function at position uk

dx(u) ≈ ∂w(u)
∂x . . . . . . . . . . Finite differences approximation of the warp in

x-direction at position u
dx

y(u) . . . . . . . . . . . . . . . . . . y-component of the aprox. partial derivative in x.
E(w) . . . . . . . . . . . . . . . . . . Energy function which enforces constraints on the

image warp
cs1 . . . . . . . . . . . . . . . . . . . . . Constraint (energy term) enforcing a specific prop-

erty s1
ck

s1 . . . . . . . . . . . . . . . . . . . . . Constraint at specific location uk

wnew . . . . . . . . . . . . . . . . . . During iterative solving a new updated grid ver-
tex positions

wold . . . . . . . . . . . . . . . . . . . Grid vertex position in previous iteration
N (wold) . . . . . . . . . . . . . . . Previous positions of all neighbor vertices
qw(wnew) . . . . . . . . . . . . . . Weight for updating wnew with neighbor w
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A.3 Warp Rendering

Ik
I . . . . . . . . . . . . . . . . . . . . . Input intensity at input pixel k

gI() . . . . . . . . . . . . . . . . . . . The interpolation function for input pixels
fs(u) = Ii ⊗ gI . . . . . . . . . The continuous pixel intensity function of the in-

put image
Ii
O . . . . . . . . . . . . . . . . . . . . . Output intensity at output pixel i

h() . . . . . . . . . . . . . . . . . . . . Low-pass anti-aliasing filter for the output do-
main

GV(d) . . . . . . . . . . . . . . . . . 2D-Gaussian function with covariance matrix V

A.4 Video Retargeting

wt . . . . . . . . . . . . . . . . . . . . . Warp function at time t
sw, sh . . . . . . . . . . . . . . . . . . Desired vertical and horizontal scaling
s f . . . . . . . . . . . . . . . . . . . . . the uniform scaling factor for important image

regions
Fs . . . . . . . . . . . . . . . . . . . . . The saliency map of the input Image
tc . . . . . . . . . . . . . . . . . . . . . . Binary value to indicate if frame t is a scene cut
cog . . . . . . . . . . . . . . . . . . . . The center of gravity of a 2D polygon.
loc . . . . . . . . . . . . . . . . . . . . The desired center location of a polygon
α,b . . . . . . . . . . . . . . . . . . . . Unknowns that define a line (angle, offset)

A.5 Disparity Mapping

(Il, Ir) . . . . . . . . . . . . . . . . . Pair of left and right input image
σ(u) . . . . . . . . . . . . . . . . . . .Disparity at location u
Ω(. . .) . . . . . . . . . . . . . . . . . Disparity mapping function
F . . . . . . . . . . . . . . . . . . . . . Set of matched features
wl,wr . . . . . . . . . . . . . . . . . . Warp of the left and right image
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A.6 Temporal Video Regularization

F . . . . . . . . . . . . . . . . . . . . . . Feature map sequence (motion vectors, saliency,
etc.)

Ft . . . . . . . . . . . . . . . . . . . . . Feature map at time t
fp,t . . . . . . . . . . . . . . . . . . . . Individual feature (motion vector, saliency value)

at location p
u,v . . . . . . . . . . . . . . . . . . . . Horizontal and vertical component of optical flow
G . . . . . . . . . . . . . . . . . . . . . .Confidence map
F′, G′ . . . . . . . . . . . . . . . . . . Filtered feature map and confidence map
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[HOK11] Matthias Höffken, Daniel Oberhoff, and Marina Kolesnik. “Temporal
Prediction and Spatial Regularization in Differential Optical Flow”.
In: ACIVS. 2011, pp. 576–585.

[Hos+11] Asmaa Hosni, Christoph Rhemann, Michael Bleyer, and Margrit
Gelautz. “Temporally Consistent Disparity and Optical Flow via Effi-
cient Spatio-temporal Filtering”. In: PSIVT (1). Ed. by Yo-Sung Ho.
Vol. 7087. Lecture Notes in Computer Science. Springer, 2011, pp. 165–
177. ISBN: 978-3-642-25366-9.

122

http://dx.doi.org/10.1109/ICCV.2009.5459158
http://dx.doi.org/10.1109/ICCV.2009.5459158


[HR02] Ian P. Howard and Brian J. Rogers. Seeing in Depth. Oxford University
Press, New York, USA, 2002.

[HS81a] Berthold K. P. Horn and Brian G. Schunck. “Determining Optical
Flow”. In: Artificial Intelligence 17.1-3 (1981), pp. 185–203.

[HS81b] Berthold K. P. Horn and Brian G. Schunck. “Determining Optical
Flow”. In: Artif. Intell. 17.1-3 (1981), pp. 185–203.

[HST10] Kaiming He, Jian Sun, and Xiaoou Tang. “Guided Image Filtering”.
In: ECCV (1). 2010, pp. 1–14.

[IKN98] Laurent Itti, Christof Koch, and Ernst Niebur. “A Model of Saliency-
Based Visual Attention for Rapid Scene Analysis”. In: IEEE PAMI
20.11 (1998), pp. 1254–1259. ISSN: 0162-8828. DOI: http : / / doi .
ieeecomputersociety.org/10.1109/34.730558.

[Kim+08] Man-Bae Kim, Seno Lee, Changyeol Choi, Gi-Mun Um, Nam-Ho
Hur, and Jin-Woong Kim. “Depth Scaling of Multiview Images for
Automultiscopic 3D Monitors”. In: 3DTV08. 2008.

[Kno+07] H. Knoche, M. Papaleo, M. A. Sasse, and A. Vanelli-Coralli. “The
Kindest Cut: Enhancing the User Experience of Mobile TV through
Adequate Zooming”. In: ACM Multimedia. 2007, pp. 87–96.

[Kra+08] Vladislav Kraevoy, Alla Sheffer, Ariel Shamir, and Daniel Cohen-
Or. “Non-homogeneous resizing of complex models”. In: ACM Trans.
Graph. 27.5 (2008), p. 111.
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