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Abstract

Deformable objects are omnipresent in our everyday life. In order to create be-
lievable virtual worlds in computer graphics that capture and creatively extend
our familiar perception of reality, it is indispensable to reflect physical deforma-
tion behavior in a faithful, yet simple and efficient manner. In this thesis we
revisit and extend FEM-based simulation techniques in each of its main compo-
nents in order to achieve more flexible numerical handling, to unify the specialized
geometry-dependent simulation codes, and to provide artists with better directabilty
of simulation outcomes.

The first part focuses on different discretization schemes in order to enable arbi-
trary polyhedral elements as simulation primitives for FEM, achieve convergent
meshless simulations requiring just simple point sets as discretization structures,
and enable feature preservation at sub-element scales. The novel methods result
in considerably simpler handling of topological changes in the case of cutting
or fracturing events, or when refining resolution in adaptive simulations. This
discretization flexibility is achieved by employing recent advances in geometric
interpolation schemes that enable the definition of suitable simulation subspaces.

In the second part we focus on specialized simulation codes for different types of
object geometries. Building up on the meshless approach of the first part, we
follow the method of resultant-based formulation to its logical extreme and derive
a higher-order integration rule, or elaston, measuring stretching, shearing, bending,
and twisting along any axis. The theory and accompanying implementation do
not distinguish between forms of different dimension (solids, shells, rods), nor
between manifold regions and non-manifold junctions. Consequently, a single code
accurately models a diverse range of elastoplastic behaviors, including buckling,
writhing, cutting and merging.

The third part of the thesis then concentrates on constitutive relation — how material
responds to deformation — and proposes an example-based approach for simulat-
ing complex elastic material behavior. Supplied with a few poses that characterize
a given object, the system starts by constructing a space of preferred deformations
by means of interpolation. During simulation, this example manifold then acts as
an additional elastic attractor that guides the object toward its space of preferred
shapes. Added on top of existing solid simulation codes, this example potential
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effectively allows us to implement inhomogeneous and anisotropic materials in a
direct and intuitive way. Due to its example-based interface, the method promotes
an art-directed approach to solid simulation.
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Zusammenfassung

Deformierbare Körper sind in unserem täglichen Leben allgegenwärtig. Um in der
Computer Grafik glaubhaft virtuelle Welten zu generieren, welche unserer gewohn-
ten Wahrnehmung der Realitt auch gerecht werden, ist es daher unumgänglich,
auch ihr physikalisches Verhalten möglichst wahrheitsgetreu, jedoch auch ein-
fach und recheneffizient abzubilden. Diese Doktorarbeit erweitert moderne FEM-
basierte Simulationstechniken in ihren drei Hauptfeldern, um die nummerische
Handhabung der Diskretisierungsgeometrie flexibler zu gestalten, um die ver-
schiedenen Geometrie-abhängige Simulationscodes zu vereinheitlichen, und um
Benutzer den Ausgang von Simulationen besser voraussagen zu lassen.

Im ersten Teil fokussiert sich die Arbeit auf neue Diskretisierungsansätze, um er-
stens allgemeine polyhedrale Elemente als Simulationsprimitive für FEM verfügbar
zu machen, um zweitens konvergente punkt-basierte Simulationen zu ermöglichen,
die nur eine einfache Punktmenge als Diskretisierungsstruktur benötigen, und
um drittens Erhaltung von feinskaligen Details auf Sub-Element Ebene zu erre-
ichen. Bei Applikationen wie dem Schneiden oder Zerreissen von elastischen
Materialien, oder recheneffizienten adaptiven Simulationen, erlauben die neuen
Methoden eine wesentlich einfachere Handhabung der Diskretisierungsstruktur.
Diese verbesserte Flexibilität in der Diskretisierung wird dadurch ermöglicht, dass
neue geometrische Interpolationsverfahren verwendet werden, um die nötigen
Simulations-Unterräume aufzuspannen.

Im zweiten Teil konzentrieren wir uns auf spezialisierte Simulationsmethoden für
die verschiedenen Klassen von Objektgeometrien. Auf dem punkt-basierten Ansatz des
ersten Teils aufbauend, folgen wir den klassischen reduzierten Formulierungen
zu ihrem logischen Schluss and leiten ein Integrationsschema höherer Ordnung
her, dem Elaston, welches die Messung von Streckung, Scherung, Biegung und
Verdrehung in jede Raumrichtung erlaubt. Die Theorie und entsprechende Im-
plementierung macht keinen Unterschied zwischen Formen unterschiedlicher
Dimensionen (Voluminas, Flächen oder Kurven), oder Verbindungen zwischen
mannigfaltigen und nicht-mannigfaltigen Regionen. Konsequenterweise kann ein
einziger Code ein breites Spektrum von elastoplastischem Verhalten modellieren,
wie zum Beispiel dem Knicken, Schneiden oder Verschmelzen.

Der dritte Teil der Arbeit konzentriert sich auf Materialgesetze, welche den Zusam-
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menhang zwischen Deformation und Materialantwort modelliert, und stellt einen
Beispiel-basierten Ansatz zur Modellierung komplexer elastischer Materialverhal-
ten vor. Anhand einer Handvoll Beispielposen, welche charakteristische Objekt-
deformationen beschreiben, erstellt unser System mittels eines Interpolationsver-
fahrens zuerst einen Raum präferierter Deformationen. Während der Simulation
wirkt dieser Beispielraum als zusätzlicher elastischer Attraktor, welcher das Ob-
jekt Richtung Beispielraum lenkt. In Zusammenarbeit mit einem konventionellen
Simulationscode erlaubt uns das Beispielpotential, inhomogene und anisotrope
Materialien zu modellieren. Die Beispiel-basierte Schnittstelle ermöglicht dem An-
wender darum, kontrollierbare Simulationen deformierbarer Körper auf intuitive
Weise zu erstellen.
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C H A P T E R 1
Introduction

Deformable objects show a wide variety of behaviors: they stretch and com-
press; twist, curl and knot; rip under large deformations; form complex
wrinkles and buckle under pressure; flow viscously and deform plastically
into different forms — and we encounter them virtually everywhere. From
human tissue, hair and cloth, to paper, wires and plastic bottles in indoor
environments; from metal plates, steel cables and flags in urban places up to
trunks, branches and leaves in nature — deformable objects are omnipresent.
In order to create believable virtual worlds in computer graphics applications
that capture and creatively extend our familiar perception of reality, it is in-
dispensable to reflect physical deformation behavior in a faithful, yet simple
and efficient manner.

The field of continuum mechanics (CM) [Lai et al., 1978] provides the basic phys-
ical laws to mathematically describe the complex interactions of deforming
geometries and resulting physical forces in a continuous form. Complementary,
the Galerkin approach is nowadays the main numerical principle to formulate
their discrete counterparts to set up corresponding simulations in a computer.
In physically-based animations, the most frequent instance of this principle
is the finite element method (FEM) [Bathe, 1995], which divides an object
into simplicial elements upon which the discrete solution is represented and
computed.
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Introduction

While the FEM in its basic form works well for many cases, it does have its
limitations. The most important one is that the usually tetrahedral or hexahe-
dral elements must be well-shaped to guarantee stable numerics. However,
many graphics applications involve changes in mesh topology: cutting of
virtual flesh in surgical simulators, fracturing of highly-stretched materi-
als, or adaptively focusing computational resources onto specific regions
all require frequent manipulation of the discretization. Maintaining valid
meshes in such applications is a very demanding task [Bargteil et al., 2007;
Alliez et al., 2005]. One reason for this difficulty stems from the fact that usual
simulation codes only work with simple element shapes and interpolation
schemes. As we will show, we do however not need to restrict ourselves
to these basic element types. By extending the range of amenable element
shapes we can naturally work with meshes gained during the various ge-
ometric operations. Further, we will see that it is possible to omit mesh
generation completely and still maintain convergence properties, and how to
preserve visually important features of deforming materials. Conceptually,
these different goals to make conventional FEM more flexible are achieved
in the same manner by simply exploring suitable choices for the solution
subspaces.

Another important aspect of discretization methods is the geometry under
consideration: bodies can take forms from long and slender rods, to flat
and wide shells, to thick and bulky solids, but also any combination of them.
Over the past decades specialized methods have emerged for the efficient
and compelling simulation of each of these forms, overcoming the inherent
numerical limitations of solid-based FEM approaches that are, in general, not
suited for thin geometries. But this specialization has opened a Pandora’s
box: the interfaces between multiple specialized codes need to be developed,
extended and debugged. Furthermore, not only the software interface but
also the mathematical model of such interfaces is inherently difficult and
unintuitive to develop. It is also not clear how to model the physics of
objects that do not neatly fit into one of the categories. Junctions, for example,
are outside the scope of most specialized models, and are usually treated
as an afterthought. Even more, for shapes that make a smooth transition
between one form and another (either along their spatial dimension, or as
they evolve temporally), making such binary decisions to categorize them
seems conceptually questionable. There is a need for methods that efficiently
simulate a spectrum of forms with a unified computational model while still
“getting the physics right”. We will present a conceptually elegant approach
that indeed treats these regimes in a unified manner and furthermore only
requires a simple point-based setup.
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1.1 Overview

While forward simulation of a material’s underlying physical laws allows
generating astonishingly faithful results, computer graphics applications
often have additional demands. In production pipelines, the course of inter-
acting physical bodies is often imagined beforehand and ideally, a simula-
tion would agree with an artist’s devised outcome. However, art-directing
physical simulations is a demanding task and is still an active research
area [McNamara et al., 2004; Wojtan et al., 2006; Barbič and Popović, 2008;
Barbič et al., 2009]. Most solution approaches resort to solving complex opti-
mization problems [Witkin and Kass, 1988], involving both space and time,
which are inefficient to solve and not amenable for large problem sizes. Inves-
tigation into different approaches where these cumbersome formulations can
be circumvented is therefore necessary: Ideally, directing simulations takes
place without referring to complex optimizations and by just performing and
controlling single forward simulations. Indeed, we will present an example-
based simulation approach that makes use of novel artistic materials that
allow to guide forward simulations in an intuitive manner.

1.1 Overview

During the course of this thesis we will address the previously highlighted
problem areas and present suitable solution approaches for each of them.
A conceptual overview on the performed research activities and resulting
publications can be found in Fig. 1.1.

Flexible Galerkin Methods. We will first see how we can improve the basic
FEM in a simple manner by introducing properly designed discretization sub-
spaces for the underlying Galerkin principle. By revisiting newly developed
interpolation schemes from the area of geometric modeling [Joshi et al., 2007;
Adams et al., 2008; Lipman et al., 2008], we will see different possibilities on
how to employ these schemes in the discretization.

These spaces will enable us to simplify the meshing task considerably by
introducing more general arbitrary polyhedral elements that can flexibly
adapt to topological changes of the mesh structure. Further, by omitting
the explicit connectivity information of elements completely, we will arrive
at a meshless Galerkin method that works with point samples as only dis-
cretization structure. Moreover, using the same approach of designing special
purpose solution spaces will also allow us to achieve preservation of geomet-
ric features at sub-element scales, being useful for embedded high-resolution
surfaces.

3
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Figure 1.1: Thesis Overview: In summary, this work focuses on three distinct areas for
simulating deformable objects. We first consider the simulation of solids
and aim at generalizing the basic FEM to handle more flexible discretization
structures by introducing flexible Galerkin methods (blue). Then, we will
enlarge the scope of possible geometries and present an approach to handle
the different geometric forms in a unified simulation framework (orange).
Lastly, we will consider the problem of enhancing basic forward simulations
with an additional control metaphor that allows better art-directability of
their outcome (red).

Unified Simulation. We will further see that handling different geometric
forms, spanning rods, shells, and solids, with a unified solution methodology
is possible. By unified, we mean that the code does not distinguish between
forms. We will draw motivation from previous unification efforts, but will be
set apart by our emphasis on physical correctness, specifically convergence
to the continuum model.

The resulting method builds on the presented point-based discretization
for solids and demonstrates efficient, accurate simulations which converge
to the smooth underlying continuum formulation for any geometric form,
ensuring that simulations are consistent under resampling or refinement of
the geometry. The gained results show excellent agreement with established
benchmarks for rods, shells, and solids, a consequence of the theoretically-
grounded development of the method.

But the approach extends beyond the scope of standard benchmarks: with-
out any modification to the implementation, we demonstrate compelling
examples on non-manifold geometry (where classical rod or shell models
break down) and on hybrid forms that cannot be discretely classified as rods,
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1.2 Principal Contributions

shells, or solids (where classical rod or shell models do not apply, and naı̈ve
implementations of volumetric elastica suffer from poor numerics).

Art-Directability. We will also present an approach to art-direct physically-
based animations in a simple, forward simulated way, without requiring
formulations of laborious space-time optimizations. Forward simulations
usually offer control over material properties as a way of controlling the
final deformation. But in creative applications such as computer animation,
material properties are just middlemen in a process that really focuses on ob-
taining some desired deformation. Indeed, we can flip the causality between
materials and deformation: when we witness the deformation of an object,
we implicitly draw conclusions about its underlying, constitutive material.
Therefore, if we can reverse-engineer the material model favoring prescribed
artist-specific deformations, this allows directing the outcome of simulations
in an intuitive manner.

Inspired by example-based graphical methods for texture synthesis [Wei et al.,
2009], rigging [Li et al., 2010] and mesh posing [Sumner et al., 2005]), we
will present an intuitive and direct method for artistic design and simula-
tion of complex material behavior. Our method accepts a set of poses that
provide examples of characteristic desirable deformations, created either by
hand (digitized from clay sculptures), with a modeling tool, or by taking
3D “snapshots” of previous simulations. With these examples at hand, we
provide a novel forcing term for dynamical integration that causes materials
to obey the “physical laws” implied by the provided examples.

1.2 Principal Contributions

This thesis makes the following contributions:

• Arbitrary Polyhedral Elements We propose harmonic coordinates
(HC) [Joshi et al., 2007] as a generalization of classic linear and multi-
linear shape functions that fit seamlessly into previous FEM codes.
They are evoked when complex elements emerge during topological
changes and therefore can be applied efficiently and in a convenient
manner. Furthermore we also present a simple and efficient approach
to approximate the shape functions numerically by means of the
method of fundamental solutions (Chapter 4).

• Meshless Galerkin We present an extension of the element-free
Galerkin (EFG) method [Belytschko et al., 1994] building up on mov-
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Introduction

ing least squares (MLS) basis functions and which we apply to coro-
tated linear elasticity. The resulting framework is lightweight and
efficient, using just simple point sampling of the simulation domain
(Chapter 4).

• Feature-Preserving Solid Simulation We propose a cage-based sim-
ulation framework for deformable solids building up on Green Coor-
dinates (GC) [Lipman et al., 2008] as shape functions that preserve
small scale features due to their quasi-conformal interpolation prop-
erty. A suitable linearization of the nonlinear discretization manifold
allows to achieve comparable performance as conventional linear
discretization approaches (Chapter 4).

• Unified Simulation We introduce elastons as a novel point-based
model to describe elastic behavior in small volumes of material. Fur-
ther we present the concept of applying resultant-based models as
quadrature schemes for geometries of higher dimensions. When
applied to the elaston model, this results in a unified modeling of
geometries of arbitrary forms. To complete the meshless simulation
framework, we introduce GMLS as a generalization of MLS allowing
arbitrarily arranged point sets for solution representation (Chapter 5).
Furthermore, two extensions of this basic elasticity simulation frame-
work are introduced. A meshless version of the virtual node algo-
rithm [Molino et al., 2004] for the handling of topological changes
is presented which we exemplify for cutting applications. We also
introduce an additive plasticity model for the elaston model along
with a resampling technique to allow for large deformation.

• Example-based Simulation We introduce strain space as a new fea-
ture space that allows simple and natural interpolation of different
deformations of an object. Given desired key poses, this then allows to
define an example manifold of preferred shapes. Further, we present
a projection technique allowing associating an arbitrary deformation
to a point on the example manifold. This constitutes the foundation
for introducing a novel elastic potential, attracting objects toward the
example manifold (Chapter 6).

1.3 Thesis outline

The thesis is organized as follows:

• Chapter 2 discusses related work for the touched fields of deformable
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body simulation. Work directly related to more specific concepts will
be presented in their respective chapters.

• Chapter 3 gives a brief introduction to the relevant principles of con-
tinuum mechanics and their numerical treatment in order to follow
the next three main chapters of the thesis.

• Chapter 4 focuses on the design of suitable solution subspaces in
order to support more flexible discretization structures such as poly-
hedral elements and individual points, as well as spaces that are able
to preserve sub-element geometric features of embedded meshes.

• Chapter 5 builds up on the previously introduced point-based
method and generalizes it in a manner to support arbitrary thin
geometries. Further, also handling of topological changes on the ex-
ample of cutting is discussed as well as plastic deformation and the
therein involved resampling required for large deformations.

• Chapter 6 introduces directable example-based simulations to give
artists an intuitive tool to direct the outcome of solid simulations.

• Chapter 7 finally concludes the thesis by discussing its main contri-
butions and suggesting potential further work.

1.4 Publications

In the context of this thesis, the following peer-reviewed publications have
been accepted.

S. MARTIN, B. THOMASZEWSKI, E. GRINSPUN, and M. GROSS. Example-based
Elastic Materials. In Proceedings of ACM SIGGRAPH (Vancouver, Canada,
August 7-11, 2011), ACM Transaction on Graphics, vol. 30, no. 4, pp. 72:1-72:8.

This paper introduces an additional example-based potential on top of classic
elastic energies in order to allow for directable and goal-oriented animations.

S. MARTIN, P. KAUFMANN, M. BOTSCH, E. GRINSPUN, and M. GROSS. Unified
Simulation of Elastic Rods, Shells, and Solids. In Proceedings of ACM SIG-
GRAPH (Los Angeles, USA, July 25-29, 2010), ACM Transaction on Graphics, vol.
29, no. 3, pp. 39:1-39:10.

This paper introduces elastons, a new quadrature paradigm for simulating
rods, shells and solids in a unified manner.
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S. MARTIN, C. HUBER, P. KAUFMANN, and M. GROSS. Shape-Preserving Anima-
tion of Deformable Objects. In Proceedings of Vision, Modeling, and Visualization
(VMV) (Braunschweig, Germany, November 16-18, 2009).

This paper proposes an approach for simulating deformable solids on the
basis of Green coordinates, enabling shape-preservation of small features by
construction.

S. MARTIN,P. KAUFMANN, M. BOTSCH, and M. GROSS. Polyhedral Finite Ele-
ments Using Harmonic Basis Functions. In Proceedings of Eurographics Sym-
posium on Geometry Processing 2008 (Copenhagen, Denmark, July 2-4, 2008),
Computer Graphics Forum, (got the Best Student Paper Award).

This paper introduces harmonic basis functions into the FEM in order allow
for arbitrary polyhedral element shapes.

During the course of this thesis, the following peer-reviewed technical papers
have been accepted which are not directly related to the presented work.

P. KAUFMANN, S. MARTIN, M. BOTSCH, E. GRINSPUN, and M. GROSS. Enrich-
ment Textures for Detailed Cutting of Shells. In Proceedings of ACM SIG-
GRAPH (New Orleans, USA, August 3-7, 2009), ACM Transactions on Graphics,
vol. 28, no.3, pp. 50:1-50:10.

This paper introduces an approach to accurately model material discontinu-
ities at sub-element level inside thin shells.

P. KAUFMANN, S. MARTIN, M. BOTSCH, and M. GROSS. Flexible Simulation
of Deformable Models Using Discontinuous Galerkin FEM. In Proceedings
of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(Dublin, Ireland, July 7-9, 2008). Extended Version: In Journal of Graphical
Models, 2009.

This paper applies the discontinuous Galerkin methodology to simplify the
handling of complex elements in the FEM and which allows straightforward
application of adaptivity and topological changes.
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C H A P T E R 2
Related Work

Applying physical laws to automatize the process of generating natural ani-
mations has a long tradition in computer graphics. Fluid simulations became
popular by the introduction of the full Navier-Stokes equations [Foster and
Metaxas, 1997; Stam, 1999], while first models for deformable objects have al-
ready been proposed a decade before by the pioneering work of Terzopoulos
et al. [1987; 1988]. A good overview on these two core areas of physically-
based animation can be found in surveys on deformable structures [Gibson
and Mirtich, 1997; Nealen et al., 2006], or the textbook by Bridson [2008] on
fluids.

We will divide the vast amount of literature on simulation of deformable ob-
jects into four areas, on which we will focus throughout this thesis. Materials
reviews the work on covering and extending the wide spectrum of different
visual effects being associated with different material properties. Closely
related to the modeling of specific material effects is the choice of subspace or
solution representation which should be chosen according to the requirements
of the specific task. In thin structures we will focus on the works focusing on
the handling of thin geometric forms such as shells and rods, and on attempts
pursuing the unification of such approaches. Often “orthogonal” to these
works are control approaches which extend the previous discussed methods
to additionally support artistic control.
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2.1 Materials

Material models describe the connection between geometric deformations
and resulting forces — they govern the way in which objects deform and are
thus fundamental to every elasticity simulator.

2.1.1 Elastic Models

Nowadays, the most popular way to simulate deformable objects in graphics
is to use the elastic theory of continuum mechanics hand in hand with a FEM
discretization for its numerical treatment. This combination has already a
long tradition in the mechanics community, its fundament having been consti-
tuted long before its first application in computer graphics [Hrennikoff, 1941].
The textbooks of Bathe et al. [1995], Bonet and Wood [1997] or Hughes [2000]
give good introductions and overviews on the topic. Starting with Terzopou-
los et al. [1987], continuum mechanics based methods started their successful
run in graphics and became the standard approach for modeling natural
effects.

Linear and Corotational Models. Elastic models describe materials that do
not deform permanently but recover their rest state after deformation. One
such class bases on the linear theory of elasticity where both, deformation
and material response, is modeled using linear relationships. Although being
only valid for small deformations, its corotational extension allows overcom-
ing resulting rotational artifacts, enabling efficient runtime performances
and making it attractive to graphics applications. While corotation was first
presented in the mechanics community in the mid-70s [Veubeke, 1976], its
value for graphics applications has only been discovered later by Müller
et al. [2002]. Since then, various extensions and improvements have been
presented: Müller and Gross [2004] as well as Hauth and Strasser [2004] fix
the ghost force problems of the first approach while Mezger et al. [2008] in-
troduce a quadrature-based method to also handle quadratic shape functions.
Kaufmann et al. [2008] present an extension for discontinuous Galerkin FEM,
while Thomaszewski et al. [2006] show its application to thin shell models.

In Chapter 4 we present a further extension of the corotational idea, for its
application to meshless simulations of solids. Only recently, the inherent sta-
bility problem for large deformations of these methods have been addressed
in a couple of works: Georgii and Westermann [2008] improve rotation extrac-
tion, while Chao et al. [2010] and McAdams et al. [2011] basically formulate a
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corotational energy from beginning and performing the proper derivations
to attain correct forces and Jacobians.

Nonlinear Models. While the linear theory already allows generating plau-
sible material behaviors for moderate deformations, the resulting anima-
tions do often lack realism for more extreme deformations due to the lin-
ear relationship in the material force response and deformation measures.
Nonlinear models are still active research items in mechanical engineer-
ing and material sciences [Rubin and Bodner, 2002; Mazza et al., 2005]
which in general allow for much more precise description of material be-
haviors. Already Terzopoulos et al. [1987] used nonlinear deformation
measures in conjunction with simple material models to set up the driv-
ing potential energies. Subsequent work has then focused on different as-
pects of nonlinear material: Picinbono et al. [2000] and Irving et al. [2007]
set focus on accurately modeling volume-preserving materials, Nesme et
al. [2006] on handling inhomogeneities, while again Irving et al. [2004;
2006] also concentrate on fixing element inversion problems as well as mod-
eling anisotropic and plastic deformations for the commonly used Saint
Venant-Kirchhoff and neo-Hookean material models.

Though accurate, these conventional material models offer only limited and
unwieldy control which is often in opposition to the creative thinking of
animators. Bickel et al. [2009] describe an interesting alternative for learn-
ing material properties directly from experiments. Only recently, Wang et
al. [2011] also present a data-driven material model that captures and learns
the non-linear anisotropic elastic behavior of cloth.

Most artistic materials do not have a real-world counterpart that could be sub-
ject to material measurements. Nevertheless, deducing a material description
from given target deformations directly is a powerful concept. We follow this
idea in Chapter 6 (and [Martin et al., 2011]) by employing examples of desired
deformations to directly construct an elastic potential. Our method can be
interpreted as a means of describing strongly anisotropic, heterogeneous and
nonlinear materials. But while it is easy to design a set of example poses,
defining a corresponding material law is a formidable task.

Coarse Models. Independently of the actual complexity of the material
models, recent graphics research also focuses on generating realistic coarse
models that plausibly simulate complex objects on coarse meshes with rel-
atively few degrees of freedom (DOFs). The homogenization approaches
of Kharevych et al. [2009] deduces coarse material properties from given
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high-resolution models, while Nesme et al. [2009] and Faure et al. [2011]
adapt the basis functions to better model the underlying inhomogeneous
material at sub-element scales.

To enhance the simulation results visually, the idea of embedding of high-
resolution surface geometry into coarse element meshes is advanced continu-
ously: Capell et al. [2002] applied the technique in a multiresolution frame-
work, while Teschner et al. [2004] and Müller et al. [2004b] used embedding
in constraint-based and corotational simulation frameworks, respectively.
The works of Wojtan et al. [2008; 2009; 2010] then extended the idea to also
support dynamically changing embedded geometries that deform, split and
merge.

Our feature-preservation approach in Chapter 4 (or [Martin et al., 2009]) and
example-based simulation approach in Chapter 6 (or [Martin et al., 2011])
both follow and extend this idea. The former introduces an approach to
preserve sub-element geometric features of the embedding by employing
Green coordinates [Lipman et al., 2008], while the latter presents a method
to actually invert the dependence between simulation and visualization
mesh. While physics usually drives the simulation mesh’s deformation which
in turn deforms the visualization mesh, our approach however flips this
relationship and give means to intuitively introduce and enforce meaningful
deformation of the embedded surface.

2.1.2 Inelastic Deformations and Topological Changes

However, real world materials do not only deform elastically but show com-
plex inelastic deformations and effects such as the plastic deformations of
compressing cans, the viscous flow of honey, the brittle fracture of shattering
glass or enforced discontinuities when cutting paper. In their seminal papers,
Terzopoulos and colleagues [1988; 1989] already pursuit these effects which
thereon have steadily been improved.

Plastic and Viscous Flow. Desbrun and colleagues [1996] followed particle-
based approaches to achieve first elastic and plastic material effects. A va-
riety of different material properties from fluid to viscous solids have been
modeled by varying the viscosity in a Eulerian Navier-Stokes solver [Carl-
son et al., 2002]. Goktekin et al. [2004] then improved on this by intro-
ducing additional elastic terms, allowing for visco-elastic material behav-
iors — an idea applied to particle-based method by Clavet et al. [2005],
and extended to more general solid-fluid interactions [Müller et al., 2004a;
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Keiser et al., 2005; Solenthaler et al., 2007]. Losasso et al. [2006] further
extend this approach to support an arbitrary number of interacting vis-
cous materials. Alternatively, Müller et al. [2004] followed a FEM-based
approach for plastic deformations where they employ O’Brien’s [2002] ad-
ditive plasticity model within their corotational framework. Making use of
nonlinear FEM, Irving et al. [2007] proposes a multiplicative plasticity model
that stably handle large deformations, and Bargteil et al. [2007] support ex-
treme viscous and plastic deformations by proposing an approach constantly
remeshing the rest state. This ideas were continued by Wojtan et al. [2008;
2009] who simplified the remeshing by using embedded surfaces in regular
grids and introduced flexible approaches to maintain the fine embedded
geometry. An Eulerian solid simulation framework has been presented re-
cently by Levin et al. [2011] to support simpler collision handling for complex
scenarios with large viscous flows and many colliding objects. Also recently,
Gerszewski et al. [2009] presented a purely point-based method for large vis-
cous and plastic flows. In Chapter 5 and [Martin et al., 2010], we also present
a meshless approach for animating plastic flow in our elaston-based frame-
work. It builds up on the additive plasticity model of O’Brien et al. [2002]
and a variant of the resampling strategies presented by Bargteil et al. [2007]
and Wojtan and Turk [2008].

Fracturing and Cutting. Not surprisingly, the first fracture models have
already been introduced by Terzopoulos [1988] which have then been ex-
tended to cloth [Norton et al., 1991], and rigid body [Müller et al., 2001;
Bao et al., 2007] simulations. Fracturing of brittle and ductile materials has
been presented in [O’Brien and Hodgins, 1999; O’Brien et al., 2002], while
Smith et al. [2001] propose an approach to actually control fracture patterns.
A main challenge in fracture and cutting applications lies in the management
of the changing discretization structures induced by the evolving discontinu-
ities.

For FEM-based frameworks, this can be accomplished most simply by
just allowing discontinuities to coincide with element faces [Müller and
Gross, 2004]. However, this can be restrictive such that the element de-
composition approaches have been envisaged in various works of Bielser
et al. [1999; 2000; 2003] and Steinemann et al. [2006a] to handle cuts
more accurately and flexibly. Alternatively, another class of approaches
tackled the problems induced by topologically changing meshes using
continuous remeshing [O’Brien and Hodgins, 1999; O’Brien et al., 2002;
Steinemann et al., 2006b]. In contrast, the virtual node algorithm of Molino
et al. [2004] and its generalizations by Sifakis et al. [2007a; 2007b] dupli-
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cate elements instead of splitting them, and embeds the surface parts into
those copies. This is similar in mind to the XFEM method [Daux et al., 2000;
Areias and Belytschko, 2005] which has recently found its way to graphics
for cutting solids [Jeřábková and Kuhlen, 2009] and detailed cutting and
fracturing of shells using enrichment textures [Kaufmann et al., 2009b].

Alternatively, point-based approaches do not have to maintain a consistent
simulation mesh [Müller et al., 2004a], but on the other hand have to update
special shape functions [Pauly et al., 2005] or distance graphs [Steinemann
et al., 2006b]. In contrast, Wicke et al. [2007] and Kaufmann et al. [2008]
avoid costly remeshing by supporting general convex polyhedra in FEM
simulations. Our mesh-based approach presented in Chapter 4 (and [Martin
et al., 2008]) generalizes possible element shapes to general polyhedra while
still being compatible with the classic element types. The meshless method
discussed in Chapter 5 (and [Martin et al., 2010]) presents a generalization of
the virtual node algorithm to meshless discretizations, being similar in mind
to Rabczuk and Belytschko’s [2004] work on cracking particles.

2.2 Solution Representation

The term discretization describes the procedure of transforming a set of
differential equations into a corresponding discrete problem achieving an
approximate solution. A central role in such discretizations plays the solution
representation, i.e., the function subspace from which the approximated solu-
tion can be chosen. We divide such approaches into three areas: mesh-based
methods require meshes to model explicit connectivity information between
DOFs while meshless methods solely rely on points and generate required
neighborhood information “on-the-fly”. In contrast, global bases do not use
local basis functions to span the solution space but rather work with globally
supported functions as bases, resulting in fully coupled systems.

2.2.1 Mesh-based Methods

FEM. In computer graphics, the FEM is the most popular approach for
representing and computing discrete solutions nowadays [Hughes, 2000],
although other mesh-based alternatives such as boundary element methods
(BEM) [James and Pai, 1999] or finite difference methods (FDM) [Terzopoulos
et al., 1987] are also used at times. Only recently, also Eulerian FDM are
explored [Levin et al., 2011] to simplify complex contact scenarios.
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In graphics, FEMs are implemented almost exclusively using tetrahedral (e.g.
by O’Brien and Hodgins [1999]) or hexahedral meshes (e.g. by Müller et
al. [2004b] or James et al.[2004]). These discretizations allow for simple and
efficient implementations of the FEM, but in turn require rather complex
mesh restructuring in case of topological changes, for instance due to fracture
and cutting discussed in the last section, or mesh refinement for adaptive
simulations.

Adaptivity. The need for accurately simulating highly detailed models
has led to the development of adaptive and hierarchical simulation tech-
niques [Debunne et al., 2001; Wu et al., 2001; Grinspun et al., 2002;
Capell et al., 2002; Otaduy et al., 2007], where the solution space is locally
refined in order to allow for improved accuracy and visual fidelity. Hang-
ing nodes or T-junctions occurring in adaptively refined simulation meshes
often pose problems and hence have to be either avoided or treated sepa-
rately. For instance by refining basis functions instead of elements [Grinspun
et al., 2002; Capell et al., 2002], or by constraining hanging nodes to edge
midpoints [Sifakis et al., 2007b].

In Chapter 4 (and [Martin et al., 2008]), we propose to handle the hang-
ing nodes due to adaptive refinement within a single, consistent simulation
framework based on arbitrary polyhedral elements. The key to such a gen-
eralization is to find basis functions, and hence a suitable solution space,
that allows for a larger class of element shapes being generated on refine-
ment while still fulfilling all necessary requirements for convergent FEM
schemes [Hughes, 2000].

Geometric Modeling and Coordinates. Geometric modeling is another
widely studied topic in computer graphics and offers a rich repertoire of tech-
niques for deforming meshes [Sheffer and Kraevoy, 2004; Sorkine et al., 2004;
Lipman et al., 2005; Botsch et al., 2006]. These methods are often related to
physically-based simulation techniques in that they seek for minimizers of
geometric energies — pretty much in the same way as simulations seek the
minimum of physcial potential energies for (quasi-)static problems. Physically-
based techniques do just make particular choices in how to penalize certain
geometric measures. We refer to the surveys of Milliron et al. [2002] and
Botsch and Sorkine [2008] for surveys on the different classes of methods.
Moreover, also the actual representation of deformation shares many sim-
ilarities with physically-based techniques: Many solution representations
build on suitable finite function subspaces or manifolds featuring specific
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geometric properties, and next to their application in modeling, they also be-
come relevant for us in the design of suitable solution subspaces for physical
applications in Chapter 4.

Classic barycentric coordinates are defined on simplicial domains like tri-
angles (2D) and tetrahedra (3D), have been known for centuries and are
usually used to interpolate nodal values inside elements in the FEM. Dif-
ferent attempts have been made to generalize them to convex domains
[Wachspress, 1975; Meyer et al., 2002; Ju et al., 2005a]. Floater [2003] in-
troduced mean value coordinates (MVC) which have later been general-
ized to 3D and been applied to surface deformation [Floater et al., 2005;
Ju et al., 2005b]. Joshi et al. [2007] introduced a different kind of cage-based
coordinates called harmonic coordinates, which are defined on arbitrary non-
convex polyhedral cages. While all of these coordinates have the property of
being affine-invariant, they are not able to allow for feature preservation of the
enclosed geometry. Lipman et al. [2008] introduced a new set of coordinates
called Green coordinates which, being associated to both vertices and face
normals, are quasi-conformal and have exactly this property. Only recently,
Weber et al. [2009] generalized Green coordinates to complex barycentric
coordinates for the 2D case, and Ben-Chen et al. [2009] extended them to
achieve better control over deformation and conformality.

Next to the applications in modeling, different attempts have been made in
graphics to take advantage of their inherent geometric properties in physical
simulation problems. Wicke et al. [Wicke et al., 2007] defined basis functions
by Mean Value Coordinates for FEM simulations, allowing discretizations
with more general convex elements. In Chapter 4 and [Martin et al., 2008], we
present generalized polyhedral elements by using harmonic coordinates to
construct the solution space, allowing us to circumvent bothersome remesh-
ing operations. Moreover, in the same chapter (or [Martin et al., 2009]), we
will also see how to apply Green Coordinates [Lipman et al., 2008] to achieve
feature preserving simulations of deformable solids.

2.2.2 Meshless Methods

In contrast to mesh-based approaches, meshless methods do not require
explicit connectivity information (we refer to textbook of Gross and Pfis-
ter [2007] for a general overview over meshless methods in graphics). They
are particularly suited for applications where frequent reorganization of the
discretization structure is required (such as large deformations, plastic flow,
discontinuities due to fracture or cutting).
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Collocation methods basing on smoothed-particle hydrodynamics (SPH)
interpolation [Gingold and Monaghan, 1977] allow for flexible simulation of a
large range of materials [Desbrun and paule Gascuel, 1996; Clavet et al., 2005;
Solenthaler et al., 2007], but also the more general moving least squares
(MLS) interpolation scheme [Fries and Matthies, 2004] has been applied
successfully to solid simulation by Müller et al. [2004a]. Their basic approach
has then been extended to support fracturing [Pauly et al., 2005] by material
distance-based shape functions; to solid-fluid coupling [Keiser et al., 2005];
to viscoelastic flow [Gerszewski et al., 2009], or to cutting [Steinemann et al.,
2006b] who make use of distance graphs.

In contrast to the element-free Galerkin (EFG) method [Belytschko et al.,
1994], all these methods represent collocation approaches of the underlying
equations, leading to under-integration and inexact solutions. In Chapter 4,
we therefore present a corotational variant of the EFG for solid geometries
that allows lightweight Galerkin discretizations with scalable accuracy. In
Chapter 5 (or [Martin et al., 2010]) we then present an extension to this basic
method which builds up on generalized MLS (GMLS) [Fries and Matthies,
2004] for representing the solution, enabling the unified simulation of bodies
of any geometric form.

If accuracy is not the focus, there exist also geometry-driven approaches based
shape matching [Müller et al., 2005; Rivers and James, 2007; Steinemann et al.,
2008]) that feature superior stability and performance at the cost of physical
correctness. Very recent works on coarse meshless discretization [Gilles et
al., 2011; Faure et al., 2011; Müller and Chentanez, 2011] carry on the idea
of using derivative information in the DOF [Martin et al., 2010] to allow for
unrestricted arbitrary point samplings.

2.2.3 Global Bases

A third class of solution spaces can be characterized by their use of global
bases for representing solutions. James et al. use globally supported Green’s
functions in an boundary element method (BEM) only requiring a boundary
mesh for representing the solution [1999]. But most prominently under these
approaches are model reduction techniques that only provide DOFs for an ob-
ject’s important deformation modes. Extracting a small representing set from
a full deformation basis leads to high simulation performances while keep-
ing high fidelity for characteristic deformations [James and Fatahalian, 2003;
Choi and Ko, 2005; Treuille et al., 2006]. Barbič et al. [2005] extend this idea to
nonlinear Saint-Venant Kirchhoff models, while An et al. [2008] increase per-
formance further by optimizing the numerical integration scheme. Kim and
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James [2009] use full and reduced simulation steps in an interleaved manner
to also increase performance. In the context of simulation control, Barbič et
al. [2009] also use reduced spaces to significantly improve computation times
for the involved spacetime optimizations. Only recently, they extended the
original model reduction technique to divide objects into individual parts
that are each treated independently [Barbič and Zhao, 2011], similar in mind
to Wicke et al.’s [2009] work on modular bases for fluids. Our approach in
Chapter 6 is related to these techniques in that we also build a reduced space,
the example manifold, being a subspace of preferred deformations. However,
our simulation framework still uses the full number of DOFs and uses the
subspace just to guide the simulation.

2.3 Thin Structures

Terzopoulos et al. [1987] argue that differential geometry provides a natural
language for describing the physics of curves, surfaces, and volumetric bod-
ies, naturally establishing a trichotomy of geometric forms whose strains are
given by torsion, curvature, and the metric tensor. The exposition mirrors
the mechanics literature, where the three forms are each analyzed individu-
ally [Malvern, 1969] and specialized approaches have been developed for each of
them. However, depending on the geometric structure under consideration,
certain applications also require the joint interplay of these methods in single
environments, leading to the demand for unification.

2.3.1 Specialized Approaches

Shells. Reduced models that only use the (mid-)surface to describe thin
shell mechanics have a long history in mechanical engineering [Naghdi,
1972] and also drew great attention in graphics for modeling the many thin-
walled structure we encounter in our environments, such as cloth or paper.
Early techniques rely on mass-spring networks [Provot, 1995; Baraff and
Witkin, 1998; Bridson et al., 2002; Choi and Ko, 2002] to approximate the
internal membrane mechanics. In parallel, more accurate specialized FEM
techniques have been developed [Cirak et al., 2000; Thomaszewski et al., 2006;
English and Bridson, 2008; Volino et al., 2009; Thomaszewski et al., 2009],
allowing to simulate larger ranges of materials by supporting constitutive
material models and which are convergent due to their theoretical basis.

Other research focuses on formulating simple discretization schemes: making
use of discrete differential geometry [Desbrun et al., 2008], discrete models
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of shells have been developed [Grinspun et al., 2003] which have been ex-
tended to support inextensibility [Goldenthal et al., 2007] or to improve its
performance [Bergou et al., 2006; Garg et al., 2007; Wardetzky et al., 2007] by
efficient bending energy computations.

Also meshless discretization methods have been presented that are working
on loose fiber networks [Wicke et al., 2005] or global parameterizations [Guo
et al., 2006]. In Chapter 3 we will present a “volumetric” model for thick
shell mechanics that also captures normal shear. This approach will then
be generalized in Chapter 5 to simulate arbitrary geometries in a unified
manner.

Rods. If an object has vanishing extent in two dimensions, such as hair
or cables, specialized models usually model the object with simple center-
line curves [Hadap et al., 2007]. Basing on Cosserat theories [Rubin, 1985],
Pai [2002] presents an elaborate framework for simulating various types of
strands. Spillmann et al. [2007] present a method basing on the Kirchhoff rod
theory [Langer and Singer, 1996] where they use a quaternion representation
for twist, while Bergou et al. [2008] present a different approach basing on
notions of discrete differential geometry. They later further improve their
original approach to support viscosity and introduce the concept of time-
parallel transport to increase performance [Bergou et al., 2010]. Focusing
on hair simulation, Bertails et al. [2006] introduce a super-helix model for
curled hair, while McAdams et al. [2009] and Sueda et al. [2011] present
large scale simulations using a hybrid collisions and reduced dynamics,
respectively. Recently, rod models have also been used to create realistic
simulation of knitted cloth modeled at the yarn level [Kaldor et al., 2008;
2010]. Our volumetric rod model presented in Chapter 3 also makes use
reduced centerline representation, but models thick rods, which can then be
unified in Chapter 5.

2.3.2 Unification

Different thin geometric forms appear almost instantaneously when consid-
ering complex sceneries for simulation and therefore, also the requirements
for flexible unified methods emerge. On one hand, challenges arising from
specialization spur researchers to explore techniques that tie together existing
models, and on the other hand to investigate unified approaches.
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Tying Models. Finite element (FE) packages such as ABAQUS and SOFEA
encapsulate a plethora of diverse elements and techniques, often using dy-
namic method dispatch to provide a unified application interface to distinct
underlying codes [Krysl, 2005]; additional specialized code is required to cap-
ture the physics of interactions between differing models. Sifakis et al. [2007b]
formulate an “all-purpose glue” to pass forces and constraints between var-
ious physical models using soft and hard bindings; this method models the
physics of interactions between two black-box codebases and also easily
extends existing codes to handle non-manifold geometry, however it can
require the computation of a non-physical mass associated to the binding
particles. Similar in mind is the recent work of Twigg et al. [2010], presenting
the Procrustes transform as mean to stably define point-wise coupling. Glue
techniques are particularly attractive when there is a need to quickly combine
a number of distinct existing codebases.

Unifying Elastic Models. However, a gluing strategy does not lighten the
burden of maintaining multiple codes (rather it introduces additional code).
To keep code manageable and extendable, various researchers advocate
sacrificing some benefits of specialization for the simplicity and ultimately
scalability of a unified treatment of elastica. Many works in graphics use
networks of point masses because they can be connected by any combination
of stretching, bending [Baraff and Witkin, 1998; Bridson et al., 2003], and
altitude springs [Selle et al., 2008]; constraints can replace stiff springs for
more stable integration and can also allow for unilateral action [Provot, 1995;
Müller et al., 2007]. Stam’s Nucleus [2009] efficiently enforces competing
constraints on arbitrary simplicial complexes capturing a diverse range of
materials. Our approach presented in Chapter 5 and [Martin et al., 2010] is
inspired by the goals of generality and simplicity, and departs by additionally
asking for a convergent approximation of a continuum formulation. Similar
in mind, Cosserat points [Rubin, 1985] model a small elastic volume equipped
with its own mass, DOFs, and elastic energy. Cosserat points must be glued
together explicitly by kinematic constraints; since our elastons are quadrature
points embedded in a separately-defined deformation field, no formulation
of glue is necessary.

Some works attempt to approach a continuum result by careful choice of
masses and spring coefficients [Etzmuss et al., 2003; Zerbato et al., 2007] using
prestressed configurations [Wang and Devarajan, 2005; Lloyd et al., 2007] or
biquadratic springs [Delingette, 2008], or by factoring and approximating
FEs [Kikuuwe et al., 2009], with applications to cloth simulation [Volino et
al., 2009]. However, researchers agree with Van Gelder’s claim [1998] that
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it is impossible to expect mass-spring networks to converge to continuum
models for the general setting of arbitrary material parameters and network
topology.

2.4 Control

Directing simulations is of paramount importance for setting bounds to other-
wise uncontrolled physics in practical scenarios. If simulation is left aside,
the general field of shape interpolation plays a central role in animation from
which we draw inspiration for our control approach.

Directing Simulations. Many methods have been proposed for this pur-
pose: explicit control forces enforce keyframes in a direct manner [Thürey
et al., 2006], while space-time constraints minimize the induced forces by
optimizing over time [Witkin and Kass, 1988]. The original approach has been
extended to fluid control by Treuille et al. [2003] but still suffers from poor per-
formance due large-scale optimizations. McNamara et al. [2004] and Wojtan
et al. [2006] both apply the adjoint method to improve speed, while Barbič et
al. [2009] perform the space-time optimization in a reduced space. A different
control paradigm is followed by tracking approaches [Kondo et al., 2005;
Bergou et al., 2007; Barbič and Popović, 2008] where the simulation is con-
strained in order to follow some predefined trajectories while still being
able to provide high-frequent physical features. Yet another methodology
is pursued by methods for editing existing animations [Popović et al., 2000;
Kircher and Garland, 2006] or the sampling of probable animations [Twigg
and James, 2007] from which suitable ones are selected. Our approach pre-
sented in Chapter 6 (or [Martin et al., 2011]) resembles existing approaches in
that it also induces additional forces into the simulation. A striking difference
is, however, that these forces derive from a conservative potential as opposed to
the non-conservative control forces of existing methods. As contrast to methods
based on trajectory control, our approach does not require (or imply) a fixed
plot of keyframes — it rather promotes a style of context-sensitive deforma-
tion control in which objects are guided towards preferred shapes but are
otherwise unrestricted in their motion.

Shape Interpolation. Interpolating between poses is a general problem in
character animation [Lasseter, 1987]. The particular case of interpolating
between surface geometry without skinning, i.e., referring to higher-order
information such as a skeleton, has also attracted the focus of research [Alexa
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et al., 2000; Kilian et al., 2007; Winkler et al., 2010; Chao et al., 2010]. Similarly,
also the transfer of deformations between two different meshes in a seman-
tically meaningful way is of practical interest [Sumner and Popović, 2004;
Baran et al., 2009].

Central to all of these types of applications is the construction of an adequate
space for representing shapes, where the actual interpolation operation is
defined. Most similar to our control approach is the work of Sumner et
al. [2005], whose MeshIK method combines shape interpolation and editing
into an intuitive modeling paradigm. While we draw valuable inspiration
from MeshIK, our method differs in two important aspects. First, whereas
Sumner et al. interpolate between factored deformation gradients of triangles,
we employ a nonlinear strain measure evaluated on tetrahedra. This is
closer to the approach by Winkler et al. [2010], who interpolate between
dihedral angles and edge lengths, corresponding to discrete strain measures
on triangular surfaces [Grinspun et al., 2003]. Second and more importantly,
whereas MeshIK is restricted to static geometric modeling, our approach is
the first to leverage example-based methods for dynamic physical simulation
to achieve example-based simulation control.
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C H A P T E R 3
Prerequisites

This chapter discusses elements from continuum mechanics of elasticity and
its numerical treatment which will serve as a theoretical basis for the later
chapters. We divide the vast topic into three parts: We first discuss the
continuous linear and nonlinear theory (Section 3.1), present some parts of
the specialized theories for shells and rods (Section 3.2), and then discuss the
Galerkin method for discretizing the continuous forms to arrive at the actual
simulation frameworks (Section 3.3).

3.1 Continuum Mechanics of Elastic Objects

Depending on the actual type of material and the scenarios in which these
materials are used, different continuum mechanical models are best suited
to describe their behavior. We will briefly introduce two commonly used
theories for describing the behavior of elastically deformable solids, i.e., objects
that deform completely elastic and whose geometric extends are sufficiently
large to be well-captured by these theories. We will first introduce linear
elasticity and the popular corotational extension, and then describe the more
general nonlinear theory. For a more detailed treatment of the topic we refer
to the textbooks [Chung, 1996; Hughes, 2000] and the excellent survey of
Nealen et al. [2006].
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3.1.1 Linear Elasticity

The theory of linear elasticity is commonly used in computer graphics due to
its relatively simple formulation and resulting efficient simulations. We will
now review the main components of the classical linear theory of solid elastica
and briefly discuss the commonly known corotational extension [Müller et
al., 2002; Hauth and Strasser, 2004] used to fix rotation artifacts.

We can divide the theory of elasticity into three essential parts which we will
study here in the light of the linear theory: The first considers geometry, the
formal study of deformation a body can undergo, without describing the
cause. The second block considers the effect of internal and external forces
acting on a body and how they affect an object’s equilibrium or dynamics. Last,
these two parts are related to each other by a constitutive relation, describing
how deforming material’s geometry reacts to present internal forces.

Notation. Let us use the following notation: The comma denotes partial
differentiation, e.g., x,i ≡ ∂x/∂θi, u,ik ≡ ∂2u

∂θi ∂θk
, while the dot (·), cross (×), and

colon (:) denote the vector dot product, vector cross product, and tensor
double contraction, respectively. If required, we will also make use of index
notation and Einstein’s summing convention (we refer to [Bonet and Wood,
1997] for a good introduction), but will try to stick to standard vector and
matrix notation where possible.

Geometry

Classically, deformation can either be studied from the Lagrangian point of
view, i.e., by describing deformation of single material particles, or from the
Eulerian point of view, i.e., by describing deformation occurring in a small
spatial region. While both approaches are valid and have their advantages,
we will restrict ourselves to a Lagrangian description in the following.

Consider a material whose undeformed positions x̄(θ) are parameterized by
curvilinear coordinates θ = (θ1,θ2,θ3)

T over the material domain Ω. When
the material undergoes a deformation, an undeformed material point x̄(θ) is
displaced to the new position

x(θ) = x̄(θ) + u(θ) . (3.1)

Since the deformation function u(θ) gives us a complete description of the de-
formed state of an object, it can be used to derive other deformation measures
upon which constitutive relations will be formulated. Note that we could
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Figure 3.1: A undeformed solid block described by x̄(θ) which is mapped to its deformed
configuration by the displacement field u(x̄).

also directly describe the undeformed geometry in a Cartesian coordinate
system without giving a parameterization of the two domains, as it is done
commonly (see e.g. [Müller et al., 2002]). However, since we will later deduce
simplified models on top of the solid formulation, it is more convenient to
introduce the theory with more general curvilinear coordinates.

Cauchy Strain. The amount of stretch and shear that a material undergoes
during a deformation are important measures which can be related to result-
ing physical forces. As we will see later, these two measures can be captured
by considering how dot products between infinitesimal direction vectors
change during a deformation. By assuming only small displacements, the
linear 3× 3 Cauchy strain ε can be formulated

εij =
1
2
(
u,i · x̄,j + x̄,i ·u,j

)
, (3.2)

where x̄,i and x,i are the local frames of the undeformed and deformed config-
uration, respectively. The main diagonal of the tensor measures the amount of
stretch in the three spatial directions, while the off-diagonal values measure
the amount of shear in the according planes. The Cauchy strain is the lin-
earization of the more general nonlinear Green strain that we will encounter
in Section 3.1.2.

Forces, Equilibrium and Dynamics

As next, we will give a formal description on how forces act on materials and
how we can state corresponding conditions for equilibrium or the equation
of motions for the dynamics of the system.
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Cauchy Stress. Consider a small neighborhood of particles inside a elastic
body. By deforming the object, their relative positions change which results
in restoring forces induced by the elastic material. By introducing a virtual
cut plane with normal n through this neighborhood, we get the restoring
forces fn acting across the plane area.Since this plane can have an arbitrary
orientation the force distribution at a point can compactly be described by
the product of the 3× 3 Cauchy stress tensor σ with the plane normal, giving

σ · n = fn . (3.3)

Similar to the Cauchy strain, the main diagonal holds the normal stress while
the off-diagonal holds the shear stress components.

Forces. The total force acting on a given point can then be computed by
summing up all traction forces on the side of the corresponding infinitesimal
cube. Using the divergence operator, this leads to the simple expression

∇ · σ + f = 0,

for the total force.

Energy. The internal forces acting in an elastic body are conservative, i.e., the
work performed by such forces is independent of the actual (deformation)
path taken. Such forces can be related to an underlying scalar energy potential
Wint(u), characterizing the amount of work required to achieve to a given
deformation u. This energy functional is formed by taking the tensor products
of strain (“length”) and stress (“force”) integrated over the material domain,
i.e., by

Wint(u) =
∫

Ω
ε(u) : σ(u)dΩ. (3.4)

Then, the conservative forces are simply deduced by taking the variational
derivative [Gelfand and Fomin, 2000] of the elastic potential:

fint = −
∂Wint(u)

∂u
. (3.5)

Knowing the potential of an elastic body therefore gives us a handy way to
deduce the necessary information required for actual simulations.

Equilibrium. In a static equilibrium, all internal and external forces acting
on a object (in its interior or on its boundary) need to cancel each other out.
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Denoting external forces by fext, we can formulate the governing partial
differential equation (PDE) as

∇ · σ = fext. (3.6)

Making use of the elastic potential gives then also the alternative formulation
of the static equilibrium equation

−∂Wint(u)
∂u

= fext. (3.7)

Later, we will mostly rely on this second form since it is better suited for
setting up the corresponding discrete problems.

Equations of Motion. If an object is not in static equilibrium, the difference
between internal and external forces results in net forces which lead to ac-
celeration of the material according to Newton’s second law. The dynamic
behavior is described by the governing equation of motion

ρ ü + fd(u̇) +∇ · σ = fext ,

where ü denotes second order time derivative (acceleration), ρ the density of
the material, fd a damping force, and fext the external forces (e.g. gravity).

Again, making use of the elastic energy potential gives the alternative formu-
lation

ρ ü + fd(u̇)−
∂Wint(u)

∂u
= fext , (3.8)

that will show more convenient for deriving the discrete problems.

Constitutive Relation

The simplest constitutive relation, relating the geometric deformation mea-
sure (3.2) with resulting internal stresses (3.3), is given by a Hookean material
that yields a simple linear relationship

σ = C : ε .

This material, given formally as a 4-tensor C, is characterized by only two
parameters. The Young modulus E describes the material’s stiffness, while
the Poisson’s ratio ν defines how much (linearized) change in volume is
penalized during deformation of the material.
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Strong Form, Weak Form and Energy Formulation

Strong Form. The given derivation results in a pointwise description of the
relationship between material deformation, internal and external forces. The
relations seen in Eq. (3.6) and Eq. (3.8) are usually called the strong form of
the respective problems and are formulated as PDEs. However, the problem
can also be stated in different forms by taking variational viewpoint on the
problem. The concepts of Lagrangian mechanics [Landau and Lifshitz, 2003]
are of great importance for the Galerkin discretization that we will later
perform to transform the continuous problem into a discrete one and whose
different applications will be discussed throughout this thesis.

Energy Formulation. From the point of view of variational calculus
[Gelfand and Fomin, 2000], Equation (3.6) is nothing else than the Euler-
Lagrange equation of a corresponding energy functional, i.e., it describes the
necessary condition for being at the minimum of the potential energy. In
the framework of linear elasticity we discuss here, this energy functional is
simply

Wtot(u) =
1
2

∫
Ω
(ε(u) : σ(u)− fext · u)dΩ,

combining stored internal deformation energy with externally applied work-
ing forces to get the total energy of the system. By using the constitutive
relation, the stored elastic energy Wtot can also be written as

Wtot(u) =
1
2

∫
Ω
(ε(u) : C : ε(u)− fext · u)dΩ . (3.9)

Since both relationships deformation-strain and strain-stress are linear, the
resulting energy potential is a quadratic function in the deformation, leading
to linear problems for statics and dynamics, enabling the use of efficient
numerical solvers. However, this conceptual simplicity comes also at a price:
linear theory is missing rotation invariance, i.e., material undergoing pure
rotation should not generate any internal forces which can however not be
captured with the linear formulation [Müller et al., 2002]. Nevertheless, we
can apply this otherwise very convenient theory by introducing a modifica-
tion of the basic theory. These modification is of discrete nature and will be
discussed after the discretization has been introduced in Section 3.3.

Weak Form. For numerically solving such problems using a Galerkin dis-
cretization, a different viewpoint of the problem is considered, referred to as
the weak form of the problem. This formulation can basically be found “on the
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3.1 Continuum Mechanics of Elastic Objects

way”, when deriving the strong form from the energy formulation by means
of variational calculus and states the problem not in a pointwise manner but
rather in an averaged sense.

One possibility to derive the weak form consists in starting with the elastic
energy (3.9) and to state the condition for its minimum by asking that the
directional derivative should vanish for all variations v of the deformation
(called test functions, being possible direction vectors in a suitable functions
space V). This can be formulated by the requirement that

dWtot(u + sv)
ds

∣∣∣
s=0

= 0 ∀v ∈ V .

Further evaluation of this expression leads then to the weak form∫
Ω

ε(u) : C : ε(v)dΩ =
∫

Ω
fext · vdΩ ∀v ∈ V .

This form of the problem has some nice properties that are also important
when performing the discretization. First, note that the left hand side expres-
sion is a symmetric positive definite (spd) bilinear form in both arguments u
and v, leading to well-behaving system matrices after discretizing. Second,
as opposed to the strong form, the weak form only requires first deriva-
tives of the solution leading to weaker restrictions for the solution space, i.e.,
candidate solutions.

To see the connection to the strong form, we can apply Green’s first identity
and by rearranging terms this leads to∫

Ω
(∇ · (C : ε(u))− fext) · vdΩ = 0 ∀v ∈ V .

Since this equation must hold for any direction v ∈ V, we can conclude that
also the strong form (3.6) must hold.

3.1.2 Nonlinear Elasticity

If we are willing to leave the linear theory whose physical validity is limited to
the domain of small deformation we get into the realm of nonlinear elasticity
which is more complex but also allows for a much more realistic description of
a wide variety of scenarios. As for linear elasticity its formal description can
be divided into geometry, forces and equilibrium, and constitutive relations.
While the description of forces and equilibrium equations remain the same,
the geometric measures and constitutive relations are more versatile and will
be presented briefly. More information can be found in the excellent textbook
[Bonet and Wood, 1997].
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Figure 3.2: The deformation gradient maps infinitesimal direction vectors from the unde-
formed to the deformed configuration.

Geometry

Different than in the linear theory, we describe the deformed geometry now
directly by the mapping x(x̄), deforming domain points x̄ ∈ Ω ⊂ R3 and
do not refer anymore to a displacement field u(θ). However, also for the
nonlinear case we will only discuss the Lagrangian viewpoint and introduce
the necessary concepts used later on.

Deformation Gradient. The probably most important geometric quantity
in nonlinear elasticity is the notion of the deformation gradient tensor

F =
∂x
∂x̄

, (3.10)

describing how neighboring material particles are deformed relative to each
other. For a given particle at position x̄, a neighbor located at x̄ + dx̄ will be
deformed to x(x̄ + dx̄). For the considered small distances dx̄, this can be
approximated by a first order Taylor series as

x(x̄ + dx̄) ≈ x(x̄) + Fdx̄ = x(x̄) + dx,

showing up the relationship

dx = Fd̄x.

Green Strain. The deformation gradient forms the basis for many measures
of deformation. One of these interesting quantities is how length changes
during the deformation, i.e., a measure of material stretch, but also by how
much angles have changed during the deformation. As depicted in Fig. 3.2,
both can be measured by considering the scalar products of two arbitrary
direction vectors dx̄1 and dx̄2 after deformation

dx1 · dx2 = dx̄1 · FTFdx̄2 = dx̄1 ·Cdx̄2, (3.11)
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leading to the so-called right Cauchy-Green deformation tensor C = FTF. Choos-
ing identical direction vectors results in squared lengths of the deformed
vectors, while choosing different direction vectors gives the new dot products
that, together with the new lengths, leads to the new angles.

In order to measure the amount of stretch and shear occurring during the
deformation, the given measures can simply be subtracted from each other,
resulting in the well-known Green strain tensor

E =
1
2
(C− I) . (3.12)

The Cauchy strain ε defined in the linear theory (Eq. (3.2)) is simply the
linearized Green strain E.

While the deformation gradient is still linear in the deformed configuration
x(x̄), the right Cauchy-Green as well as the Green strain tensor are both
quadratic in the deformation, which is also often referred as geometric nonlin-
earity.

Constitutive Relation

Moving from linear material models to nonlinear ones opens a multitude of
different possibilities on how to describe elastic material behavior, ranging
from simpler ones like the Saint Venant-Kirchhoff and the Neo-Hookean
models [Bonet and Wood, 1997] up to newer and more complex ones like e.g.
the Rubin-Bodner material model [Rubin and Bodner, 2002].

While these material models could be stated as relations between kinematic
measures like Green strain or deformation gradient and suitable stress mea-
sures, it is more convenient for us to directly formulate the relation by stating
the resulting energy densities, relating local deformation measures directly to
scalar potentials. Having a formulation of the energy allows us to straightfor-
wardly formulate the discrete problems by turning the continuous energies
into discrete ones, such that the required forces and Hessians can be described
in the discrete domain.

The use of powerful material models can be of great benefit in practice since
they allow to further increase the realism of simulated materials and allow
better capturing of specific deformation characteristics. While this is a very
interesting research direction where computer graphics issued some fasci-
nating work [Bickel et al., 2009], this thesis will just make use the more basic
models, commonly used in graphics. Furthermore, the concepts presented
throughout the thesis are not restricted to particular material models but are
generally applicable.
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Saint-Venant Kirchhoff. The Saint-Venant Kirchhoff material is among the
simplest material models and extends the linear stress-strain relation of linear
elasticity to the nonlinear regime. The strain energy density is simply

ΨStVK =
λ

2
tr(E)2 + µtr(E2), (3.13)

where λ and µ are the Lamé constants that describe the isotropic stiffness and
(linearized) volume preservation properties of the modeled material.

Neo-Hookean. The Neo-Hookean material is another frequently used nonlin-
ear isotropic hyperelastic material model. A particularly simple instance of
this is the compressible Neo-Hookean model which shares characteristics and
material parameters that are known from linear elasticity. The energy density
is defined as

ΨNH =
µ

2
(tr(C)− 3)− µ lnJ +

λ

2
(lnJ)2. (3.14)

Again, λ and µ are the material constants and J = detF measures the change
in volume.

In the scope of this thesis, the nonlinear theory will become particularly
important in the last part when directable simulations for elastic materials
will be discussed. In there, the use of the correct full nonlinear geometric
measures will be of great importance to correctly formulate the novel energy
potentials.

3.1.3 Boundary Conditions and Collisions

While the two theories presented give a general description of the internal
mechanics of elastic bodies, this does not yet allow simulating such objects
interacting with a possible complex surrounding scenery, as it is required in
practical applications. Two main points that require further discussion are
the handling of boundary conditions and collisions. While the focus of this
thesis did not lie on the particular handling of these, we only briefly discuss
how these were realized in the different simulation frameworks.

Boundary Conditions. We used two different approaches to enforce Dirich-
let boundary conditions (BCs) u(θ) = uBC(θ) , θ∈ ΓBC ⊂ Γ = ∂Ω, depending
on the kind of solution subspace that were used in the discretization.
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Figure 3.3: Left: An potential WBC glues the part ΓBC of the boundary to a prescribed
position uBC. Right: As soon as a vertex x penetrates the collision plane, a
potential Wcol is introduced to resolve the collision.

While hard constraints are simple to formulate in the continuous case, they
can be hard to enforce once a discretization has been chosen. For the solid
theory we are discussing here, we can describe the set of candidate solution
functions by the Sobolev space H1, i.e., candidate functions must be C1-
continuously differentiable up to a set of size 0 (requiring first derivatives of
the deformation to compute strain). In order to enforce BCs, the candidate
solution space can be restricted by requiring that it only contains candidates
fulfilling the BCs. Depending on the chosen discretization, an analogous
enforcement on the finite solution space is not straightforward such that a
second approach can be chosen.

BCs can also be enforced weakly such that they are only fulfilled approximately.
In this case, the actual solution space is left untouched and the boundary
condition is modeled as an additional elastic energy, gluing the solution to
the intended goal position (see also left part of Fig. 3.3). This can be realized
by a simple quadratic energy of the form

WBC(u) =
β

2

∫
ΓBC

|u− uBC|2 , (3.15)

where uBC describes the desired displacement of the fixed boundary ΓBC. Fur-
thermore, the magnitude of the penalty parameter β steers the enforcement of
the BC. This is commonly used technique also used in the context of meshless
methods in computational mechanics [Fries and Matthies, 2004].

Collisions. They are of foremost importance when physically modeling
complex sceneries and are still an active field of research. For simplicity,
we only incorporated penalty-based planar and spherical collisions in our
framework which were enough to demonstrate the feasibility of our methods.
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For planar collisions, we first detect a collision by testing the surface points of
the deformed body against a given plane defined by the point b and normal
n (see also right part of Fig. 3.3). For colliding points x, we then define the
simple quadratic penalty potential

Wplane =
γ

2
((x− b) · n)2, (3.16)

which will resolve the collision. Collisions with spheres are handled in an
analogous manner by considering distances to spherical surfaces. Again, this
approach only resolves collisions weakly but leads to stable and straightfor-
ward incorporation into implicit time-stepping schemes.

3.2 Resultant-based Formulations

So far we discussed elements of the linear and nonlinear theory of elasticity
that describes the general mechanics of elastic material. For thin geometries,
however, there exist specialized variants of this theory that take account of
these particular geometric circumstances and which are more efficient and
numerically better suited than the classic models.

If a material has only small extent in certain spatial directions, the mechan-
ics can be simplified by making certain assumption on how the material
can deform in these directions leading to so-called resultant-based models.
If the reduction takes place along one direction, i.e., the material becomes
membrane-like, we talk of thin shell theories. If the reduction takes place
along two directions, we talk about rod theories.

3.2.1 Shells

Let us recall the material description given by curvilinear coordinates, where
¯x(θ) describes the undeformed and x(θ) the deformed configuration. If we

consider a volumetric surface-like solid whose extent along θ1 and θ2 (the
“tangent directions”) is much greater than along θ3 (the “normal direction”),
we arrive at the special case of thin shells. In this case, a naı̈ve discretization
using linear tetrahedral FEs leads to arbitrarily poor numerical conditioning
and slow convergence to the smooth limit (locking) and wastefully allocates
DOFs along the normal direction [Yang et al., 2000].

These difficulties motivate the development of resultant-based formulations,
where thin bodies are treated by a reduced set of equations governing a
lower-dimensional object—the thin shell middle surface—and specifying the
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Figure 3.4: The undeformed thin block of material is described by its midsurface (green)
and normal information.

displacement field both on the surface and in its (normal) vicinity. The
reduced representation offers superior numerical conditioning, convergence,
and more efficient allocation of DOFs [Naghdi, 1972].

Strain About Middle Surface. For notational convenience, let the middle
surface S be parameterized by the material-domain surface θ0 = (θ1,θ2,0),
as depicted in Fig. 3.4. Assuming the shell to be sufficiently thin in normal
direction, we expand to first-order the positions and displacements:

x̄(θ) ≈ x̄(θ0) + θ3 x̄,3(θ0) ,
u(θ) ≈ u(θ0) + θ3 u,3(θ0) .

In the view of the linear elasticity theory, we can substitute this approximation
into the linear Cauchy strain (3.2) yielding the strain about the mid-surface

ε(θ) ≈ α(θ0) + θ3 β3(θ0) , (3.17)

expressed in terms of the membrane strain

αij =
1
2
(
u,i · x̄,j + x̄,i ·u,j

)
(3.18)

and the bending strain related to direction θk

βk
ij =

1
2
(
u,ik · x̄,j + x̄,i ·u,jk + u,i · x̄,jk + x̄,ik ·u,j

)
. (3.19)

Equation (3.17) is an approximation since higher order terms in the thin
direction θ3 have been discarded from (3.19). An assumption being valid for
sufficiently thin diameters. In the master thesis of Jeronimo Bayer [2011], a
similar procedure has been performed for the nonlinear Green strain measure
(3.12) to develop the thin shell equations for the nonlinear theory. For our
purpose, the describing the linear derivation is sufficient.
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Energy Integration. The elastic energy of the volumetric shell model can
be derived straightforwardly from (3.9) by replacing the small strain ε by our
approximation (3.17):

W =
1
2

∫
Ω

(
α(θ0) + θ3 β3(θ0)

)
: C :

(
α(θ0) + θ3 β3(θ0)

)
dΩ.

The integration in normal direction can be performed analytically. In doing
so, we observe that the cross-terms vanish, leading to an integral of the surface
energy density over the mid-surface S :

W =
h3

2

∫
S

α : C : α +
h2

3
12

β3 : C : β3 dS . (3.20)

Here, h3 denotes the shell’s thickness and S the mid-surface.

This resulting model for the energy basically characterizes thin shell behavior
for a solution field u that also holds information in normal direction to
the shell’s midsurface, i.e., whose solution field is still volumetric around
the reduced geometry. This model will become particularly important in
Chapter 5 where it will form the base for the derivation of unified model for
deformable objects.

Kirchhoff-Love Shells. Note that α and βk are volumetric 3× 3 tensors so far.
At this point in the derivation, a typical resultant-based formulation would
assume that a normal vector to the undeformed mid-surface is deformed such
that it retains its orthogonality to the mid-surface [Cirak et al., 2000]. This
Kirchhoff-Love assumption yields vanishing normal components for the strain,
reducing the 3× 3 volumetric to 2× 2 surface strain tensors, i.e., instead of
2 · 6 only 2 · 3 strain measures are taken into account. While the membrane
strain entries of Eq. (3.18) stay the same, the bending strain becomes

βk
ij = −u,ij · x̄,3 +

1
D
(u,1 · (x̄i,j × x̄2) + u,2 · (x̄1 × x̄i,j))

+
x̄3 · x̄i,j

D
(u,1 · (x̄2 × x̄3) + u,2 · (x̄3 × x̄1)), (3.21)

where D = |x̄1 × x̄2| describes the elemental surface area.

Note that a similar derivation can also be performed for nonlinear elastic-
ity, by linearizing the Green strain around the mid-surface. The resulting
membrane and bending strains then correspond to the first and second fun-
damental forms [Terzopoulos et al., 1987] which build the basis for nonlinear
shell models. When performing, in addition, a linearization in the deforma-
tion variable u, the model described above is again recovered.
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Figure 3.5: The rod is described only by its centerline (green) and normal information.

3.2.2 Rods

Consider next a volumetric curve-like solid whose extent along θ1 (the “tan-
gent direction”) is much greater than along θ2 and θ3 (the “normal directions”
spanning the “cross-sectional plane”).

We derive this special case of thin rods analogously, identifying the reduced
geometry (the centerline curve), linearizing strain about the centerline (this
time along the two directions spanning the cross-sectional neighborhood),
and again omitting the collapse of the strain tensor into a lower dimension.

Strain About Centerline. For notational convenience, let the centerline
curve Γ be parameterized by the material-domain curve θ0 = (θ1,0,0)
(Fig. 3.5). For small extents along both normals θ2 and θ3, we linearly approx-
imate positions and displacements by

x̄(θ) ≈ x̄(θ0) + θ2 x̄,2(θ0) + θ3 x̄,3(θ0) ,
u(θ) ≈ u(θ0) + θ2 u,2(θ0) + θ3 u,3(θ0) .

Performing the same steps for the derivation of the small strain yields its
linearized version

ε(θ) ≈ α(θ0) + θ2 β2(θ0) + θ3 β3(θ0) , (3.22)

where the bending strains β2 and β3 are defined as in (3.19).

Remark on Twist. The twist of a rod can be computed as x,12 ·x,3 or x,13 ·x,2,
where the two values are identical (up to their sign) under the Kirchhoff
assumptions. The difference in twist between the deformed and undeformed
configuration can be measured as x,12 · x,3 − x̄,12 · x̄,3. Using (3.1) and lin-
earizing in u this becomes u,12 · x̄,3 + u,3 · x̄,12. From (3.19) we see that these
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quantities are part of the strain entries β2
13, β2

31, β3
12, and β3

21, showing that the
bending strain also incorporates a measurement for twisting deformations.

Energy Integration. Analytic integration in the normal directions θ2 and θ3
yields the remaining one-dimensional integral of axial energy density over the
rod’s centerline Γ:

W =
h2h3

2

∫
Γ

α : C : α +
h2

2
12

β2 : C : β2 +
h2

3
12

β3 : C : β3 dΓ , (3.23)

where h2 and h3 denote the thickness of the rod in the two normal directions
θ2 and θ3, respectively. Again, higher order terms in the thin directions θ2
and θ3 are discarded. As for shells, this model is an important step toward
the unified formulation stated in Chapter 5.

Kirchhoff Rods. The resultant-based formulation for rods found so far
allows still a rich number of deformations that the rod can undergo, e.g.
cross-sectional shearing and stretch can be captured by the resulting strain
measures. If we now again invoke the Kirchhoff assumption of normals stay-
ing normal during deformation and additionally require axial inextensibility,
the effectively occurring strains reduce dramatically: The 3 · 6 strain measures
reduce to just 3 strains. What they basically measure is bending in the two
normal directions and twist along the tangent direction.

This becomes clear by the following observation: Besides the description of
the rod’s reduced geometry (the curve Γ(s)), each point on the curve has now
an associated adapted orthonormal frame {t,m1,m2} resulting from the Kirch-
hoff assumption. Adapted means that the axis t corresponds to the curve’s
tangent Γ′(s). The rotation of this frame along the curve can be compactly
described by the so-called Darboux vector Ω = mt−m2m1 +m1m2 relating the
frame to its rate of change along the curve by t′ = Ω× t, m′1 = Ω×m1 and
m′2 = Ω×m2. Using this (now nonlinear) strain measures for the deformed
and undeformed curves and adapted frames leads to the following simple
elastic energy

Wkrod =
1
2

∫
Γ

α1(m1 − m̄1)
2 + α2(m2 − m̄2)

2 + β(m− m̄)2ds, (3.24)

with material parameters α1, α2 and β that can be associated to the usual
material parameters of linear materials and thicknesses of the rods.
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3.3 Discrete Solution Representation

So far we saw how the behavior of elastic material of different types and
geometries can be modeled by the use of continuum mechanical principles.
An important step that has to be performed next is to transform these con-
tinuous problems into their discrete equivalents. The spatial discretization
will be performed in a Galerkin-type manner, being a standard approach
having important theoretical properties. This type of discretization will be
discussed in some detail since a lot of the presented work in the thesis bases
on this type of discretization. For dynamic problems, the solution needs also
be discretized along the time dimension. For this part we will just shortly
present some of the standard approaches we also applied in our framework.

3.3.1 Space Discretization for Linear Formulations

Solution Space. A first important step when we want to solve a PDE with
a Galerkin-type approach is to understand what properties the PDE obliges
the solution to take, i.e., what properties a function must have in order to be
a candidate solution [Hughes, 2000].

Considering the energy formulation (3.9) or alternatively, the weak form
(3.10) of the linear elasticity problem, reveals an important property: Op-
posed to the strong form (3.6), no differentiation of the stress tensor (or the
strain tensor, when using a linear material model) is necessary in this formu-
lation, i.e., the solution function needs only be continuously differentiable
once. Instead of formulating the problem in a point-wise manner, which puts
higher requirements on possible solution functions, the weak form states
the problem in a averaged sense, allowing to reduce the continuity require-
ment. Furthermore, differentiation itself can also be formulated weakly (weak
derivatives, [Hughes, 2000]) which, besides nice theoretical properties, has the
practical consequence that the solution function needs not to be continuously
differentiable on the whole domain, but is allowed to not be so on a subdo-
main of size zero (i.e., on lower dimensional subdomains). Altogether, this
leads to our solution space which is the (infinite-dimensional) Sobolev space
H1(Ω), defined by all L2-integrable functions with L2-integrable derivatives
over the domain Ω.

A very important result from functional analysis is given by the Lax-Milgram
theorem. Assuming a bilinear form a(u,v), a linear form f (v) and u,v ∈ V
with a Hilbert space V, it states that the problem

a(u,v) = f (v) ∀v ∈ V (3.25)
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has a unique solution u and fulfills a stability estimate restricting the solution
u by the right hand side f (v) [Hughes, 2000]. Important for us, this theorem
only assumes a Hilbert space structure for the solution space V, leading to
a very general statement. If we revisit our weak form Eq. (3.10), we note
that our problem is exactly of this form, with a(u,v) =

∫
Ω ε(u) : C : ε(v) and

f (v) = (fext,v) =
∫

Ω fext · v, such that the theorem applies.

Problem Formulation in Subspace. The mentioned generality of the Lax-
Milgram Theorem is an essential part for formulating the discrete problem:
Since the Hilbert space V is the infinite dimensional H1(Ω) in our formu-
lation, it follows that the theorem is also valid for any finite dimensional
subspace VN ⊂ H1(Ω) which actually can be represented in a computer, i.e.,
with a finite amount of memory. That is, we can restrict the solution space to
an arbitrary subspace and still retain the existence and stability guarantees of
the theorem.

While the Lax-Milgram theorem gives us these guarantees for a solution
in the subspace, it does not yet tell us how good the solution actually will
be. Therefore, a second important result from functional analysis is consid-
ered, Cea’s Lemma, that roughly states that the solution uN of the problem
formulated in the subspace

a(uN,vN) = f (vN) ∀vN ∈ VN (3.26)

is actually the best possible approximation (up to a constant factor depending
on the error norm — being 1 in case of the energy norm) [Hughes, 2000].

In summary, for linear problems, the Lax-Milgram Theorem and Cea’s
Lemma guarantee to find the best approximation in a given solution subspace
and constitute the theoretical basis for Galerkin methods.

Geometric Viewpoints. We can also consider the presented results from
a geometric viewpoint, giving some more intuition over the underlying
principle of the Galerkin method. We will provide three (slightly) different
views to shed more light on the topic.

We start with noting that the relation stated in Eq. (3.25) is also valid if we
only consider test functions v that lie in the subspace VN ⊂ V. By further
subtracting Eq. (3.26), we get the following relation

a(u− uN,vN) = 0,

stating, that in the energy scalar product a(·, ·), the error vector between the
analytical and the approximated solution is orthogonal to the solution space.
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Figure 3.6: The solution uN is chosen such that the discretization error u− uN becomes
orthogonal to the solution subspace VN.

That is, in the energy norm |v|2a = a(v,v) the found approximate solution
is the ’closest’ to the analytical one. This is often referred to as Galerkin
orthogonality (see also Fig. 3.6).

With the same argument of orthogonality, the discrete formulation of the
weak form can be derived from the strong form. This is sometimes also
referred as the method of weighted residuals [Fries and Matthies, 2004]. We
can first state the strong form abstractly as Lu = f with L being a linear
differential operator. For an approximate solution uN ∈ VN, we can consider
the residual rN = LuN − f and require that it should be orthogonal to the
solution subspace VN (in the L2 sense), leading to∫

Ω
rNvN =

∫
Ω
(LuN − f )vN = 0 ∀vN ∈ VN, (3.27)

corresponding exactly to the discrete version of the weak form (after applying
again Green’s identity). Note that if the same subspaces are chosen for the
solution and test space this is called a Bubnov-Galerkin method. If the two
spaces do not coincide this is referred to as a Petrov-Galerkin method [Fries
and Matthies, 2004]. Further note that in this second view, orthogonality
is stated in the classic L2 sense between the residual and test space, while
in the former we stated the orthogonality directly on the solution itself but
employed the energy scalar product. Both views are equivalent and are just
different illustrations of the same concept.

Of course, also our view from an energy minimization perspective is still
valid. The role of the weak form as necessary conditions for an energy
minimum is also true in the subspace: The candidate with the smallest energy
in the subspace is selected. This can be seen easily by formulating the abstract
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energy

W(uN) =
1
2

a(uN,uN)− f (uN) (3.28)

and equaling the directional derivative d
dtW(uN + tvn) to zero for all vN ∈ VN

which gives us again the discrete weak form Eq. (3.26). This last view is partic-
ularly useful in practice since only a system’s energy has to be discretized and
the following force and Jacobian computations can more easily be performed
in the discrete, finite dimensional setting.

Discrete Formulation. To derive the discrete formulation of the problem
that can effectively be solved using numerical methods, we first need a
representation of the finite dimensional space VN ⊂ H1. Using a basis of shape
functions Ni(x̄), every function in the subspace can be represented as a linear
combination of the basis with the actual degrees of freedom ui, giving

uN(x̄) =
N

∑
i

uiNi(x̄) ∈ VN. (3.29)

Note that the basis functions Ni(x̄) (usually associated with a corresponding
position x̄i ∈Ω) must lie in H1, i.e., must form a proper basis of a subspace of
H1. Geometrically, the basis functions work as interpolation devices defining
the spatial influence of each associated DOF on its neighborhood.

Furthermore, basis functions must also fulfill the completeness prop-
erty [Hughes, 2000]. For solid elasticity problems, these correspond to
the two following requirements:

• Constant Reproduction In order to represent arbitrary translations of
the body, the solution space must be able to represent constant vector
fields. This property can be fulfilled in different manners. One pos-
sibility is that the basis contains a constant basis function 1 (with an
associated DOF). However, the global support of such a basis function
is corrupting the sparsity of resulting system matrices and therefore
has a negative influence on the performance of the linear system
solve. The better choice is to “distribute” this property among the
basis functions and requiring that (at least a part of) the basis forms a
partition of unity (PU), i.e., suffices the requirement ∑i Ni(x̄) = 1.

• Linear Reproduction It is also necessary for a basis to represent constant
strain fields as well as arbitrary rigid body motions. Next to the
translation, it means that also rotations of an object should be perfectly
representable. Since a global rotation of an object is a linear function
in positions, the basis is also required to reproduce linear functions.
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Again, this property can either be enforced by specific global basis
functions leading to performance issues or as a property of the entire
basis.

As mentioned earlier, there are different possibilities on how to derive the
discrete problem, but we will just present the energy-based approach here.
Inserting our solution representation of Eq. (3.29) into the energy of Eq. (3.28)
and making use of the (bi-) linearity, leads to the discrete energy

WN(uN) =
1
2

a(∑
i

uiNi,∑
j

ujNj)− f (∑
i

uiNi)

= ∑
ij

uiuja(Ni, Nj)−∑
i

ui f (Ni)

= uTKu− uTfext, (3.30)

where Kij = a(Ni, Nj), fext,i = f (Ni) and u is a 3N-dimensional vector of the
concatenated 3-vectors ui. Please note here that we are using a simplified no-
tation to handle the dimensionality of the solution function. Whenever a(·, ·)
takes two scalar arguments, it still evaluates to a 3× 3 matrix M = a(s, t) with
entries Mkl = a(sek, tel). Likewise, the vector f = f (s) has entries fi = f (s)ei.

In the same manner as internal forces could be computed from the energy by
its variational derivative in the continuous case, the discrete internal forces
can simply be computed as fi = − ∂WN

∂ui
, leading to the linear system

Ku = fext (3.31)

for the static case and to the system of ODEs

Mü + Ku = fext (3.32)

for the dynamic case. The mass matrix M in the momentum term stems from
the discretization of the weak form of the continuous momentum term

∫
Ω ρüv

and consists of 3× 3 blocks

Mij = I ·
∫

Ω
ρNiNj dΩ . (3.33)

Alternatively, the mass matrix can also be “lumped” into diagonal matrix,
represented as mass vector m, i.e., all matrix rows are condensed to a singular
scalar mass value per DOF by computing

mi = ∑
j

Mij.

This is a popular choice made in graphics since it allows to considerably
increase efficiency for explicit time integration schemes, however can also
lead to problems for non-nodal basis functions.
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If required, an additional damping term could also be added to model energy
dissipation. However, since we will e mainly using a stable implicit or semi-
implicit Euler integration schemes [Baraff and Witkin, 1998], there is no need
for an additional damping term.

Choice of Subspace. Of course, the actual choice of the subspace is of
great importance for practical implementations of the Galerkin method and
influences different aspects of the resulting algorithms [Grinspun, 2003]. Let
us briefly discuss some of them:

• Locality and Efficiency The spatial support of a basis function cru-
cially influences the efficiency of the numerical solution procedures.
The larger the support of basis functions are, the denser becomes the
coupling between the individual DOFs since more of them define the
solution at a given point. As a result, the Hessian of the energy (stiff-
ness matrix K) becomes denser. In graphics, such globally supported
bases are sometimes used in model reduction techniques with few
DOFs [James and Fatahalian, 2003], but generally bases are preferred
to have local support.

• Resolution, Order and Convergence The dimensionality of the sub-
space is another important choice considerably affecting how close
the approximated solutions come to the analytical ones. Naturally,
this choice also influences the performance of setting up the linear
systems and their numerical solving. Therefore a tradeoff between
accuracy and performance has to be made. Next to the resolution
also the order of the basis function plays an important role since it
governs the approximation power of the basis. For a polynomial
basis, e.g., higher order polynomials lead to better convergence rates,
i.e., the approximate solution approaches the analytical one faster
when increasing the subspace dimension.

• Shape of Basis Functions The shape of a basis function is a further
important choice which we explore in Chapter 4. Depending on
the problem, prior knowledge can be incorporated into the solution
space such that accurate solutions can already be computed only
with few DOFs. Model reduction techniques [Choi and Ko, 2005;
Barbič and James, 2005] or the enrichment textures of [Kaufmann et
al., 2009b] are two good examples where such prior knowledge is
incorporated into the solution space. Also in absence of such knowl-
edge, proper design of “general-purpose” basis functions allows to
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Figure 3.7: The FEM discretizes the domain Ω into elements upon which the continuous
deformation field is approximated in a piecewise manner.

increase considerably the flexibility of the resulting algorithms and
incorporate other geometric properties.

• Nodal vs. Non-nodal Basis functions Ni(x̄) are associated to DOFs
ui. If they are nodal, it holds that Ni(x̄j) = δij, i.e., the approximation
is actually interpolating the ui at their nodal location x̄i. This property
can be quite useful e.g. for simplifying rendering (where the solution
vectors ui can directly be used to deform the visualization mesh) or
when enforcing boundary conditions (where individual DOFs can
directly be fixed). For a non-nodal basis these tasks become more
involved.

FEM. The de facto standard approach for a Galerkin discretization is the
famous finite element method (FEM). The FEM is a specific instantiation of the
Galerkin methodology we discussed so far and mainly proposes an approach
on how to construct the actual solution space. As the name suggests, the ob-
ject is partitioned into finite elements e, i.e.,

⋃
e = Ω, and u(x̄) is approximated

by interpolating the displacements ui of the nodes x̄i within elements (see
Fig. 3.7). The interpolated displacement ue in an element e of k nodes is

u(x̄)|e ≈ ue(x̄) :=
k

∑
i=1

ui Ne
i (x̄) ,

where the shape functions Ne
i = Ni|e determine the influence of the nodal

displacements ui inside the element. From the gradient∇ue(x̄) one computes
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strain and stress such that the elastic energy stored in the deformed element

We(ue) =
1
2

∫
e
ε(ue) : C : ε(ue) dx ,

can be accumulated into the total energy W(u) = ∑e We(ue).

As we have seen earlier, the basis functions Ni have to be in the Sobolev
space H1. In the special case of linear FEM they have to be C1 smooth within
elements and C0 continuous across element boundaries. The basis functions
also need to exactly reproduce constant and linear functions (e.g., rigid body
motions). These conditions are satisfied by linear shape functions for tetra-
hedra and trilinear shape functions for hexahedra — the element types and
basis functions most frequently used in computer graphics. However, since
those require complex remeshing for topological changes, we will introduce
more flexible shape functions for general polyhedral elements in Chapter 4.

Quadrature. When considering simple basis functions as in the linear FEM,
energy integration can be performed analytically. However for more complex
basis functions it is often not possible to perform the energy integration
analytically such that numerical quadrature schemes of the form

W(u(x̄)) =
∫

Ψ(u(x̄))dV ≈∑
q

Ψ(u(x̄q))Vq (3.34)

with Ψ(·) the energy density, x̄q the quadrature points, and Vq the quadrature
weights have to be considered. Throughout this thesis we usually use Gauss
quadrature on background meshes or Monte Carlo-type integration [Press
et al., 2007] which we will discuss individually in the next chapters. In
terms of implementation, this leads to a quadrature-centric view on the
problem where basis functions, deformations, and local stiffness matrices
are computed pointwise and the later then assembled into the global system
matrices.

3.3.2 Discrete Handling of Boundary Conditions and Collisions

Boundary Conditions. For simulations employing nodal basis functions
(i.e., u(x̄i) = ui) prescribing positional or Dirichlet boundary constraints sim-
ply corresponds to fixing individual vertices. However, if basis functions
are not interpolating, a different approach for imposing boundary condi-
tions is required. In these cases, we employ a penalty method since it is
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simple to implement, gives satisfactory results, and does not introduce addi-
tional DOFs into the system (opposed to approaches employing Lagrange
Multipliers [Fries and Matthies, 2004], for example).

A target displacement uBC can be imposed on a subdomain ΓBC⊂ Γ by adding
the term in Eq. (3.15) to the elastic energy that penalizes the deviation from the
prescribed displacement. Using the solution representation u(x̄) = ∑i uiNi(x̄),
this leads to a discrete penalty energy

WBC =
γ

2

∫
ΓBC

(u− uBC)
2 dΓ

=
γ

2

∫
ΓBC

(uiNi − uBC)
2 dΓ

=
γ

2
ui(
∫

ΓBC

NiNj dΓ)uj − γui(
∫

ΓBC

NiuBC dΓ) +
γ

2

∫
ΓBC

(u2
BC dΓ)

=
1
2

uTKBCu− uTfBC + c,

where KBC,ij = γ I
∫

ΓBC
NiNjdΓ and fBC,i = γ

∫
ΓBC

Ni ucdΓ. Again, for general
basis functions, these integrals have to be approximated by a quadrature rule.
Since we were enforcing boundary conditions on the triangular visualization
mesh, we approximated the integral using the mesh’s vertices and their
associated area from the neighboring triangles as quadrature weights.

Collisions. In a similar manner we can also find the discrete potential for the
collision response forces, as soon as a collision has been detected for a material
point at xc = x̄c + u(x̄c). Similarly as for the boundary conditions, inserting
the solution representation into the plane collision potential (Eq. (3.16)) leads
to

Wcol =
γ

2
((xc − b)Tn)2

=
γ

2
((x̄c + u− b)Tn)2

=
γ

2
(uTn + (x̄− b)Tn)2

=
γ

2
(uTn)2 + 2(uTn)((x̄− b)Tn) + ((x̄− b)Tn)2

=
γ

2
((uiNi)

Tn)2 + 2((uiNi)
Tn)((x̄− b)Tn) + ((x̄− b)Tn)2

=
γ

2
ui(nnT NiNj)uj + γui(nnT(x̄ − b)Ni) + c

=
γ

2
uTKcolu + γuTfcol + c, (3.35)

where Kcol,ij = (nnT NiNj) and fcol,i = (nnT(x̄ − b)Ni). As for boundary
conditions, the collision potential can simply be added to the elastic energy.
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Figure 3.8: Left: Collision handling on the simulation mesh’s nodes. Right: Collision
handling on the embedded surface.

In this manner the static and dynamic solvers are agnostic to the handling
of BCs and collisions. Fig. 3.8 shows an example of plane collisions either
handled on the simulation mesh or on an embedded mesh.

3.3.3 Corotation and Embedding

Corotation

Linear elasticity is convenient tool for analyzing the deformation behavior
of material due to the simple algebraic formulation: energies are simple
quadratic forms and the static and dynamical simulations can efficiently be
computed by solving single linear systems. While the restriction of being
only valid for small deformations is not too limiting for many applications
in mechanics, computer graphics applications are often more demanding
in this respect since visually interesting simulations mostly involve large
deformations. Particularly when accompanied with large rotational compo-
nents, the linear theory fails to give realistic material descriptions and lead
to well-known artifacts [Müller and Gross, 2004]. The main reason for this
is that the linear strain measure Eq. (3.2) is not invariant under rotations.
In order to still make use of the linear theory, various papers present coro-
tational extensions [Veubeke, 1976; Müller et al., 2002; Mezger et al., 2008;
Chao et al., 2010], which introduce a correction to these artifacts at increased
computation costs.

Idea. The idea of corotation is relatively simple: Since the linear Cauchy
strain measure is not invariant under rotations, a deformation consisting
of pure rotation results in a non-zero strain leading to unwanted fictive
forces. Therefore, before measuring the strain at a given point, the rotational
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component R of the local deformation field u is factored out and restored
after the force computations.

Element-based Corotation. As noted by Müller et al. [2004] and Hauth
and Strasser [2004], the original corotational approach [Müller et al., 2002]
introduced ghost forces by performing the factorization and force correction
directly per vertex. The principal cause of these erroneous forces lies in the
fact that their computation does not preserve symmetry. For conventional
linear FEM, the force contributions of a single element are symmetric — they
have the property that

∑
i

fe
i = 1Tfe = 1TKeue = 0,

and do therefore not perform work. If the same rotation is now applied per
element for each vertex force, this symmetry is not broken and no ghost forces
do appear. On the other hand, if elemental forces are first assembled at the
vertices and then rotated, symmetry is lost and ghost forces appear.

Therefore, instead of computing the elemental internal forces linearly as
fe

int = Keue, in corotated FEM they are computed as

fe
int = RTKe(R(x̄e + ue)− x̄e), (3.36)

i.e., the deformed position x̄e + ue is first rotated by R and then the new
displacement vector is used to compute the forces that are finally rotated
back. In all our element-based corotational implementations we use this
approach and compute the rotation by polar decomposing of the deformation
gradient F = QR [Hauth and Strasser, 2004].

Quadrature-based Corotation. In case where no analytical integration is
possible, there is also the possibility to apply the corotational approach when
applying a quadrature scheme. However, again symmetry preservation has to
be taken into account in order to not introduce ghost forces. This is possible if
corotation is applied on the quadrature points themselves [Mezger et al., 2008;
Martin et al., 2010].

For each quadrature point q, the rotational part Rq of the local deformation
gradient I +∇u(x̄q) is again extracted using polar decomposition. Then the
internal force contribution per quadrature point can be computed in the same
manner as in element-based corotation:

fq
int = RqTKq(Rq(x̄q + uq)− x̄q),

Again, we have symmetry of forces since 1TKquq = 0 holds and we are
rotating all the force contributions with the same rotation matrix.
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Embedding

A technique that has a long tradition in graphics is the use of embedded
surface meshes for representing high-resolution geometry without actually
requiring the core algorithms to work at these resolutions [Faloutsos et al.,
1997; Capell et al., 2002; Müller and Gross, 2004; James et al., 2004; Sifakis
et al., 2007b; Kim et al., 2008; Wojtan et al., 2009; Thürey et al., 2010]. The
idea is to deform the embedded geometry by a continuous deformation
field that is spanned by another much coarser discrete structure (e.g. a FEM
mesh or meshless deformation field). See Fig. 3.8 for an example of a sphere
embedded into a coarse FEM mesh.

In our implementations we also make heavy use of this technique: Assume
that the surface geometry is given by undeformed vertices x̄s

j which is em-
bedded in a coarse discrete structure that generates a deformation field
u(x̄) = ∑i uiNi(x̄). For each surface point we can precompute the weights
Ni(x̄s

j) and at runtime compute the current position as

xs
j = x̄s

j + ∑
i

uiNi(x̄s
j).

This computation is very cheap since only a linear combination of a small
number of supporting DOFs needs to be computed.

3.3.4 Space Discretization for Nonlinear and Resultant-Based
Formulations

While we shed light on different important concepts of the discretization pro-
cedures for linear elasticity problem, we will now shortly turn to the discrete
formulations of the nonlinear and resultant-based models. For these, the
central Galerkin discretization procedure is the same as for linear problems —
differences arise in the type of discrete equations (nonlinear algebraic) and
the requirements for representing of the discretization subspace. Obviously,
in each of these fields again a vast number of approaches exist such that we
will again only focus on the relevant concepts for this thesis.

Nonlinear FEM

Applying the FEM for non-linear elasticity problems follows the same lines
as linear elasticity. Let us discuss the simplest approach building up on
piecewise linear elements that form a proper subspace of the H1(Ω), which
is again the solution space for nonlinear solid problems.
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In the case of linear elements, the deformation gradient F becomes piecewise
constant inside the elements and can be computed efficiently as

F = xx̄−1,

where x = [x2 − x1,x3 − x1,x4 − x1] and x̄ = [x̄2 − x̄1, x̄3 − x̄1, x̄4 − x̄1] [Irving
et al., 2004], where the xi and x̄i describe an element’s deformed and unde-
formed vertex positions, respectively. As a consequence, the Green strain
E becomes also piecewise constant (these elements are also called constant
strain elements - CSE) as well as the energy density Ψ. It follows that the total
energy can then be integrated analytically simply as

W = ∑
e

ΨeVe ,

where Ve describes an element’s volume. Since the energy is now fourth-order
in the DOF, the resulting force are cubic, requiring nonlinear solvers for static
and dynamic problems (Section 3.3.5).

Resultant-Based Formulations

Discretizing resultant-based formulations is more involved than solid elastic-
ity problems due to the introduction of bending energies. In order to compute
these, second derivatives of the solution field need to be computed, leading
to the requirement of C1-continuous basis functions spanning a subspace
of the Sobolev space H2(Ω) [Hughes, 2000]. The construction of such basis
function is in general more involved and requires specialized approaches
(see [Cirak et al., 2000; Chapelle and Bathe, 2003] for shells, [Spillmann and
Teschner, 2007] for rods).

A popular alternative are discrete formulations, where energies are formulated
directly using discrete measures on the underlying representation structures,
building up discrete counterparts of the continuous mechanical principles
(see [Grinspun et al., 2003; Garg et al., 2007; Wardetzky et al., 2007] for discrete
shell models, [Bergou et al., 2008; 2010] for discrete rods). In these formula-
tions, a discretization of continuous equations is not necessary anymore.

3.3.5 Time Discretization

So far we discussed on how to discretize the PDE in space and how to describe
the spatial behavior of the material in a discrete manner. For statics, this leads
to a system of linear or nonlinear equations, while for dynamics a system of
ODEs has to be solved. Next, we will briefly discuss the numerical solution
procedures that were followed in this thesis.
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Figure 3.9: Opposing forces are applied to both ends of a straight rod. The new rest
state should be computed with an iterative corotated static solver which
however fails to converge and oscillates due to stability issues of the fixed
point iteration.

Statics

Linear Elasticity. In the case of linear elasticity the resulting linear system
in Eq. (3.31) can be solved efficiently using high-performance linear solvers.
Since the system matrix K is symmetric positive definite (spd), we commonly
use sparse direct solver based on incomplete Cholesky factorization [Toledo
et al., 2003; Chen et al., 2008].

Corotated Linear Elasticity. In case of corotated linear elasticity, we need
to use an iterative solving procedure for the (now nonlinear) equation

fint(u) = fext,

where fint(u) is given by Eq. (3.36). To solve this problem efficiently, a com-
mon approach lies in the following update procedure:

u⇐ K(u)−1(fext −K(u)x̄ + RT(u)Kx̄), (3.37)

where the last known solution u is used in the right hand side and we used
the short notation K(u) = RT(u)KR(u). This update procedure can easily be
recognized as a fix point iteration.

A commonly known result from numerical optimization [Kreyszig, 2005]
states that a fixed point iteration x⇐ F(x) can only converge, if |F′(x)| < 1
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holds. However, if we consider Eq. (3.37) under this light, it is not clear at all
that convergence can be expected. Moreover, convergence should become
even more difficult if the external force fext increases. This expected stability
problems from the fixed point iteration theory point of view is covered by the
observed behavior of such static simulations, where the corotational approach
becomes instable for large deformations (due to large external forces), as
depicted in Fig. 3.91. Increasing the stability of corotational approaches is
still an active research topic where recent publications [McAdams et al., 2011;
Chao et al., 2010] show up interesting principled ways to improve these
methods.

Nonlinear Elasticity. In the case of nonlinear elasticity the discrete systems
are fully nonlinear and therefore standard iterative methods from nonlin-
ear numerical optimization are used [Nocedal and Wright, 2006]. In our
framework we used a Newton-Raphson method with linesearch and Hessian
correction (for indefinite Hessians) — a standard procedure in numerical
optimization.

Assume we are given (in index notation) a general nonlinear potential energy

function W(xk) with gradient gi =
∂W(xi)

∂xi
and Hessian Hij =

∂2W(xk)
∂xi∂xj

which we
sought to minimize. A Newton-Raphson correction step ∆xn for a intermediate
solution xn is computed by solving the linear system

H(xn)∆xn = g(xn) (3.38)

and the solution is updated as

xn+1 = xn + α∆xn.

The stepsize α is determined with a linesearch procedure in order to guarantee
sufficient decrease of the energy for the step [Nocedal and Wright, 2006].
Depending on the local geometry of the energy function, the Hessian H might
not be positive-definite in which case a descent direction is not guaranteed
to be found by Eq. (3.38). This case can efficiently be detected by applying a
Cholesky-based solver that fails to solve in these cases. Then, we perform a
simple Hessian correction step

H⇐H + βI,

where β > 0 is a small value, but sufficiently large to make H positive definite.
This loop is iterated until the iteration converges. In our implementation we
used the simple test

|g(xn)| < ε,
1This figure is part of Jeronimo Bayer’s master thesis [2011].
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for some threshold value ε to determine if the iteration converged.

Dynamics

There exists a large variety of time integrators for numerically solving equa-
tions of motion of the type Eq. (3.8) and since the focus of this thesis did not
lie on this topic we do not give a thorough introduction in this large field.
Therefore, we will just quickly recapitulate the standard explicit, symplectic
and (semi-)implicit Euler integrators that were used in this thesis. These
schemes are basically the same for linear and nonlinear elasticity problems
since only the actual force and Jacobian computation differ from each other.

Explicit Euler. In order to formulate the simplest time integration scheme
we first introduce the velocity vector v as a state variable and transform the
second order Eq. (3.8) into the system of first order equations

u̇ = v
v̇ = M−1(fext − fint(u)),

which we can write alternatively as

ẏ(t) = F(y, t)

with

y(t) =
(

u(t)
v(t)

)
and F(y, t) =

(
v(t)

M−1(fext(t)− fint(u))

)
.

By developing y(t) in a first order Taylor approximation y(t+ h)≈ y(t)+ hẏ(t)
and using the relationship stated above, we get the update rule

yn+1 = yn + h F(yn, t).

Or, by using again position and velocity state variables, we can formulate the
explicit Euler integration scheme as

un+1 ⇐ un + h vn

vn+1 ⇐ vn + h M−1(fext − fint(un)).

While this is the simplest scheme possible, is has serious stability issues for
larger timesteps h. Without incorporating additional damping, this explicit
integration increases the total system energy continuously, making it not
suitable for dynamical simulations.
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Symplectic Euler. By modifying the explicit Euler scheme only marginally,
we arrive at the symplectic Euler scheme: If we first evaluate velocity with the
current acceleration and then use the updated velocity for updating positions
we arrive at a first order method that is able to preserve the total energy and
results in better stability:

vn+1 ⇐ vn + h M−1(fext − fint(un))

un+1 ⇐ un + h vn+1.

(Semi-)Implicit Euler. If one is willing to trade improved stability against
additional computational costs, implicit Euler integration is the favorable
scheme due to its unconditional stability property.

We arrive at the implicit Euler scheme if we perform the first order Taylor
expansion around time t + h an approximate the solution backwards at time t,
i.e., we assume

y(t) ≈ y(t + h)− hẏ(t + h).

By rearranging terms and using the ODE we get

yn+1⇐ yn + hF(yn+1, t + h),

i.e., we get the update rule in an implicit form where the unknown state yn+1
appears on both sides such that a (non-)linear system needs to be solved. To
concretize this, we formulate the implicit scheme for our problem and with
respect to the unknown positions un+1 as

M(
un+1 − un

h2 − vn

h
) + fint(un+1) = fext. (3.39)

Following [Baraff and Witkin, 1998], this nonlinear equation in un+1 is solved
using a conventional Newton-Raphson procedure. If only one step of this
iterative solve is performed per timestep, the resulting semi-implicit method
is still stable. While being less accurate, it is more efficient since assembly
and solve have to be performed only once. After each iteration, the velocity
is updated as vn+1 =

un+1−un
h .

3.4 Discussion and Outlook

In this chapter we recapitulated the essential concepts required for simulating
deformable objects. We divided them into three main blocks: Continuum
mechanics for solids, where we introduced the mathematical foundation for
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simulating elastic solids, resultant-based formulations, where we introduced
alternative models for simulating objects featuring thin geometries, and
discrete solution representation, where we presented the Galerkin method for
the numerical treatment of the continuous problems.

In the following chapter we will now in turn present how to extend these basic
simulation principles. First, we will have a closer look at the discretization
subspaces and present new forms for spanning them in order to achieve more
flexible FEM discretizations (Chapter 4). Then, we will revisit the specialized
continuous models for rods and shells and reconcile them into a single model
for all three types of geometries (Chapter 5). Last, we will get back to the
elastic potentials and present an example-based approach to “upgrade” them
for additional directability (Chapter 6).
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C H A P T E R 4
Tailoring Solution Subspaces

In this chapter, we will study how to make advantage of choosing specific
solution subspaces in order to simplify and enhance the conventional FEM
and to make it more amenable for graphics applications. We will focus on
solid geometries and will pursue two different goals: First, we will present
two methods to soften the strict meshing requirements of previous tetra-
and hexahedral FEM approaches by introducing more flexible discretization
structures. Second, we will present a method to increase preservation of
geometric features at sub-element scales.
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4.1 Overview

Polyhedral Elements. Finite element simulations in computer graphics are
typically based on tetrahedral or hexahedral elements which enable simple
and efficient implementations, but in turn require complicated remeshing in
case of topological changes or adaptive refinement. However, by extending
the FEM to also handle more flexibly arbitrary polyhedral elements and there-
fore adapting the solution subspace accordingly, remeshing can be avoided
completely. By making use of harmonic coordinates, we are able to design
an according solution subspace that allows the use of generalized element
shapes. These satisfy all necessary conditions for FEM simulations and seam-
lessly generalize both linear tetrahedral and trilinear hexahedral elements.

Meshfree Representation. In order to span a suitable solution subspace,
the FEM makes use of an underlying mesh data structure for defining lo-
cal shape functions. For simulations requiring frequently and dynamically
changing discretizations, e.g., adaptive simulations or simulations involving
topological changes (like fracturing or cutting), the generation of high quality
meshes is a demanding task. As an alternative to polyhedral element shapes,
we can also make use of moving least squares (MLS) interpolation to span
solution spaces that require only point information without explicit connec-
tivity, simplifying the discretization task considerably. While the presented
approach is a variant of the Element-Free Galerkin method commonly known
in mechanics literature [Belytschko et al., 1994], we will present a suitable
extension in Chapter 5, capable of also handling different resultant-based
formulations.

Feature Preservation. When embedding high-resolution surface geometry
into coarser finite element meshes, there is a priori no guarantee that the shape
of fine features in the embedded geometry is preserved during deformation
— due to simple interpolation schemes they are usually unnaturally distorted.
By choosing a suitable discretization subspace, we can however achieve
feature preservation also at sub-element scales: By making use of quasi-
conformal Green Coordinates (GC) for the representation of the deformation
field, we are able to get sub-element shape-preservation ‘by construction’ in
a cage-based setting.

Since the designs of the discretization subspaces presented in this chapter
are independent of the (non-)linearity of the underlying continuous model,
we will demonstrate the versatility of the approaches within a simulation
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4.2 Polyhedral Elements

Figure 4.1: Using harmonic basis functions, even non-convex polyhedral elements can be
used directly in FEM simulations.

framework for corotated linear elasticity. Note however, that the same spaces
can equivalently be used for nonlinear elasticity.

4.2 Polyhedral Elements

Traditionally, FEM simulations in computer graphics rely on strictly tetrahe-
dral or hexahedral meshes, which simplify the finite element approximation
and significantly speeds up the involved computations. However, allowing
a single element shape only can be too restrictive, since it requires complex
remeshing in case of topological changes, for instance due to cutting, fracture,
or adaptive refinement.

One class of approaches [Molino et al., 2004; Sifakis et al., 2007a; 2007b]
therefore avoids remeshing after cutting by embedding each resulting
cut part into an individual copy of the original tetrahedron. This is
conceptually similar to the XFEM method [Jeřábková and Kuhlen, 2009;
Kaufmann et al., 2009b] where discontinuities are effectively introduced into
the basis functions such that the resulting subspace is able to represent the
disconnection of the material at these locations. An interesting alternative
is the approach of Wicke et al. [Wicke et al., 2007]: They directly support
more general convex polyhedral elements in finite element simulations by
employing mean-value coordinates as a generalization of linear barycentric
FEM shape functions. That is, discontinuities are still represented using
(disconnected) mesh geometry, but by allowing convex polyhedral elements,
remeshing can be omitted due to more flexible subspace bases.

In this section we extend their approach to arbitrary convex and non-convex
polyhedral elements using harmonic coordinates [Joshi et al., 2007] as FEM
basis functions (see Fig. 4.1). Harmonic basis functions naturally generalize
linear basis functions for tetrahedral elements and trilinear basis functions for
hexahedral elements. Hence, this approach seamlessly integrates into existing
FEM frameworks, such that standard tetrahedral or hexahedral elements can
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be used in regular parts of the model, whereas irregular polyhedral elements
are used in regions of cutting or adaptive refinement.

Harmonic coordinates, as the solution of a Laplace PDE with Dirichlet bound-
ary constraints, have an analytic solution for simple element shapes only.
For general polyhedra they therefore have to be approximated numerically,
using for instance finite differences, finite elements, or the boundary element
method. As a simple and flexible alternative we will present an approxi-
mation using radial basis functions, which guarantees the resulting basis
functions to be harmonic and to furthermore exactly satisfy important physi-
cal conservation properties.

The use of general polyhedral elements significantly increases the flexibility
in generating and manipulating the simulation mesh. We demonstrate this
versatility in examples of cutting and adaptive refinement.

4.2.1 Harmonic Basis Functions

Shape Function. We propose to use harmonic basis functions as a generaliza-
tion of linear barycentric basis functions to general polyhedral elements. A
shape function Ne

i : e→ IR is harmonic if its Laplacian vanishes in e, in which
case it is uniquely determined by Dirichlet boundary constraints b(x̄) on ∂e:

∆Ne
i (x̄) = 0, for x̄ ∈ e , (4.1)

Ne
i (x̄) = bi(x̄) , for x̄ ∈ ∂e . (4.2)

For a straightforward finite element simulation we require nodal basis func-
tions Ne

i to interpolate quantities within each element e. If these functions are
chosen to be harmonic, they are fully determined by the values bi(x̄) on the
element boundary ∂e, which we set up following Joshi et al. [2007]: First, in
order to interpolate nodal quantities, the basis function Ne

i of node i has to
equal 1 at the node x̄i and 0 at all others, i.e.,

Ne
i
(
x̄j
)
= δij ∀ i, j = 1, . . . ,k . (4.3)

Additionally, in order to ensure continuity across element boundaries, the
values of the basis function for node i defined in neighboring elements e1 and
e2 should coincide on the face or edge shared by the two elements:

Ne1
i (x̄) = Ne2

i (x̄) for x̄ ∈ e1 ∩ e2 . (4.4)
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Recursive Definition. Property (4.4) can be guaranteed by choosing the
values on the faces of a d-dimensional element to be (d − 1)-dimensional
harmonic coordinates. For a trivariate harmonic basis function Ne

i on a 3D
element e the boundary conditions are bivariate harmonic coordinates on its
faces, which themselves are determined by univariate harmonic (i.e., linear)
interpolation of the nodal values Ne

i
(
x̄j
)
= δij along the edges.

It follows from these recursively defined boundary constraints and the
uniqueness of harmonic functions for fixed Dirichlet constraints, that har-
monic shape functions reproduce linear triangles and bilinear quads in 2D, as
well as linear tetrahedra and trilinear hexahedra in 3D. The harmonic basis
for a more complex 2D element is shown in Fig. 4.2.

Basis Function Properties. Harmonic basis functions satisfy all require-
ments for admissible FEM basis functions [Joshi et al., 2007]:

• Since 3D harmonic shape functions degenerate to 2D harmonic coor-
dinates on element faces, they are continuous across element bound-
aries: Ni ∈ C0(Ω).

• As solution to Laplace’s equation (4.1) they are smooth within ele-
ments: Ne

i ∈ C∞(e).

• For fixed constraints bi, (4.1) characterizes the minimizer of the Dirich-
let energy

∫
e

∥∥∇Ne
i

∥∥2. Hence, the gradients of harmonic functions are
square integrable: ∇Ne

i ∈ L2(e). Combining the last three points we
get Ni ∈H1(Ω).

• Constant reproduction is given by the partition of unity property
∑i Ni(x̄) = 1, which follows from the (recursively) defined boundary
condition: Since ∑i bi(x̄) = 1 holds, ∑i Ni(x̄) = 1 follows immediately
from the maximum principle.

• Linear reproduction is given by the fact that linear functions are also
harmonic. When a Laplace problem ∆u = 0 takes linear boundary
conditions u(x̄) = l(x̄) , x̄ ∈ ∂Ω (with l(x̄) being a linear function), the
unique solution u to the problem is also linear. Therefore, since the
linear combination ∑i uiNi is harmonic by construction, it is sufficient
to check that the boundary function ∑i uiNi(x̄)|x̄∈∂Ω is also linear. By
the recursive definition of harmonic coordinates we know, that a har-
monic problem has to be solved on each face individually. However,
if we consider the simple case of a one-dimensional boundary (recur-
sion root), we can directly conclude that the linear hat function will
generate the linear function interpolating the nodal values. In this
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Figure 4.2: Harmonic basis functions for the six nodes of a non-convex 2D element.
The constraint collocation points ci are visualized as small spheres along the
element boundary, the kernel centers ki are shifted slightly outside and are
shown in gray.

manner, linearity can then be propagated up from edges to faces up
to volumes.

4.2.2 Numerical Approximation

Closed form expressions for harmonic basis functions exist for simple element
shapes only, such as tetrahedra or hexahedra. For more general elements,
harmonic basis functions Ne

i have to be computed numerically as the solution
of (4.1), (4.2), which is valid for both 2D faces and 3D elements. To this
end, several well-established techniques for solving the 2D and 3D Laplacian
PDEs exist, each having their own respective advantages and drawbacks.
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Approximation Schemes

Finite Differences. Overlaying the element by a regular 3D grid and using
a finite difference discretization leads to the solution of a sparse linear system
for a piecewise trilinear approximation of Ne

i [Joshi et al., 2007]. While this
method is comparatively easy to implement, an accurate solution requires
a sufficiently dense grid in order to resolve the smallest edges/faces of the
element. In particular for cutting, where small edges occur frequently, the
cubic growth of volumetric grids leads to very complex systems, which
require advanced multi-grid methods for their solution [Joshi et al., 2007].

Finite Elements. They could be used to solve (4.1) on an adaptive tessella-
tion of polyhedral elements, thereby overcoming the limitations of regular
grids. However, since the major goal of our approach is to enable adaptive
FEM computations without complex remeshing of elements, the recursive
application of adaptive FEM to each polyhedral element is a chicken-and-egg
problem and contradicts our goals.

Boundary Element Method. The boundary element method (BEM) is also
well suited to solve the PDE (4.1). By formulating the solution as an integral
of fundamental solutions over the element’s boundary, it avoids a volumetric
tessellation and therefore needs a boundary discretization only. Due to our
experiments the major drawback of BEM is performance: In its exact formu-
lation, each function evaluation requires a full integral over the element’s
boundary, which makes the numerical integration of (3.34) very expensive.

Fundamental Solutions. While all the above methods can be employed for
solving (4.1), (4.2) we found the method of fundamental solutions (MFS) [Fair-
weather and Karageorghis, 1998] to be a more flexible, easier-to-implement,
yet sufficiently accurate alternative.

Method of Fundamental Solutions

MFS is closely related to BEM: It is also a boundary method, and thus does
not require a volumetric tessellation, and it also represents the approximate
solution in terms of fundamental solution kernels. However, instead of the
boundary integrals in BEM, MFS employs a simple, meshless collocation.
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Representation. A shape function Ne
i (x̄), simply denoted by N(x̄) in the

following, is represented in the following form:

N(x̄) =
n

∑
j=1

wj · ψ
(∥∥x̄− kj

∥∥) + aT
1 x̄ + a0 , (4.5)

where the first part is a superposition of n weighted radial basis functions ψ

(RBFs), centered at kj, and the second part is a linear polynomial in x̄. The
kernel function ψ is chosen as fundamental solution of the Laplace PDE,
which is ψ(r) = logr in 2D and ψ(r) = 1/r in 3D. As a consequence, the
function (4.5) is harmonic by construction [Duchon, 1977], in the whole
domain except at the kernels’ singularities kj.

Kernel Placement. Hence, the kernel kj have to be placed outside the
element. A standard method is to first sample the boundary by sj ∈ ∂e, and
to move the kernels outward in (interpolated) normal direction by a small
fraction ξ of the element size:

kj = sj + ξ · size(e) · n
(
sj
)

. (4.6)

For non-convex elements one additionally has to take care that this simple
offsetting does not generate centers in the element’s interior. For generating
the n samples sj, we select the element’s nodes, about 3–5 samples on each
edge, and a uniform sampling of its faces of about the same density.

Approximating Dirichlet Conditions. The function (4.5) satisfies (4.1) by
construction, thus we solve for the best approximation of the Dirichlet con-
straints (4.2). To this end, we approximate the boundary integral of the L2

error by a sum of m collocation points ci:∫
∂e
|N(x̄)− b(x̄)|2 ≈ 1

m

m

∑
i=1
|N(ci)− b(ci)|2→min . (4.7)

These collocation points ci ∈ ∂e are generated equivalently to the samples sj,
but at a higher resolution of m≈ 3n. The distribution of kernel centers ki and
collocation constraint points ci, as well as the resulting basis functions are
shown for a non-convex L-shaped 2D element in Fig. 4.2.

Least Squares Problem. Given the kernel centers ki, the minimization of
the L2 error (4.7) amounts to solving an overdetermined linear least squares
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system for the coefficients of (4.5):

 ψ11 . . . ψ1n cT
1 1

...
...

...
...

ψm1 . . . ψmn cT
m 1




w1
...

wn
a1
a0

 =

 b(c1)
...

b(cm)

 , (4.8)

where ψij = ψ
(∥∥ci − kj

∥∥). This least squares system can be solved in a nu-
merically robust manner using the QR factorization or the SVD pseudo-
inverse [Golub and Loan, 1989].

In order to compute a 3D basis function Ne
i for an element e, we first solve

the above linear system on each of its faces. The resulting 2D harmonic
functions constitute the boundary constraints for the final 3D linear system,
which yields the coefficients of Ne

i . Notice that in order to compute all k
basis functions Ne

1, . . . , Ne
k of an element e with k nodes, the same 2D and 3D

systems are solved for k different right-hand sides bi(x̄). After factoring each
matrix once, these systems can be solved efficiently by back-substitution.

Discussion

FEM Requirements. As described in Section 4.2.1, exact solutions of (4.1),
(4.2) satisfy the conditions for admissible FEM shape functions. The numerical
approximation N(x) from (4.5) satisfies all but one exactly, and one up to
small numerical errors.

Since the singularities kj are located outside of e, we have N ∈ C1(e) and
∇N ∈ L2(e). However, the C0 continuity across elements is only satisfied
approximately through the Dirichlet conditions (4.2), resp. (4.7). Our typical
choice of 5 edge samples for generating kernels through (4.6) leads to L2

boundary errors of about 2–3%. More accurate results can be achieved by
using more kernels in (4.5). However, as we show in Section 4.2.4, the
accuracy of the global solution is not limited by the individual basis functions’
errors.

Linear Reproduction. Typically, MFS approximations are based on funda-
mental solution kernels ψ

(∥∥· − kj
∥∥) only, and do not include a linear poly-

nomial as in (4.5). This polynomial, however, is crucial in our case, since it
guarantees exact reproduction of linear functions, independent of the number
n of kernels used. Due to our experiments even small errors in the linear
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reproduction (L2 error around 10−3) would cause ghost forces, thereby de-
stroying the preservation of linear and angular momenta and resulting in
counter-intuitive behavior.

Let us give a short proof of this important property. We use the following
notation: First we can write the i-th basis functions as Ni(x̄) = p(x̄) · wi
with p(x̄) = [ψ1(x̄), . . . ,ψn(x̄), x̄,1]T and wi = [w1, . . . ,wn,aT

1 , a0]
T. If we let bi

denote the vector of boundary condition values for this basis function (right
hand side of Eq. (4.8)), and the matrix A hold all evaluations of the basis
functions at the collocation points (system matrix in Eq. (4.8)), we can write
the least squares solution as wi = (ATA)−1ATbi. Therefore, we can also write
the basis function i in the following form

Ni(x̄) = p(x̄) · (ATA)−1ATbi.

For proofing the PU property for this approximate representation of the true
harmonic basis function we can just plug this definition into the sum of
basis functions. By further making use of linearity and the property that the
boundary values need to sum up to 1, i.e., ∑i bi = 1, we get

∑
i

Ni(x̄) = ∑
i

p(x̄) · (ATA)−1ATbi

= p(x̄) · (ATA)−1AT ∑
i

bi

= p(x̄) · (ATA)−1AT1
= 1.

In summary, this derivation states that it is equivalent to first approximate
individual basis functions and to sum them up, or to reconstruct directly the
constant 1 function with the chosen ansatz (which it is of course perfectly
capable to do).

The proof for linear reproduction works similarly. In this case, we have
to show that the basis can represent any linear function l(x̄), i.e., that
∑i l(x̄i)Ni(x̄) = l(x̄). In the same way as for the PU, we can formulate

∑
i

l(x̄i)Ni(x̄) = ∑
i

l(x̄i)p(x̄) · (ATA)−1ATbi

= p(x̄) · (ATA)−1AT ∑
i

l(x̄i)bi,

= p(x̄) · (ATA)−1AT[l(c1), . . . , l(cm)]
T,

= l(x̄),

i.e., an arbitrary linear function l(x̄) can indeed be computed exactly by the
approximate representation. Note that from line two to three we used the fact
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Figure 4.3: Top: If we enforce the boundary conditions exactly, the solution oscillates
and is very sensitive to the offset distance (ξ = 0.05,0.1,0.15). Bottom:
In contrast, dense least-squares boundary conditions are more robust and
considerably less affected by different parameter choices.

that the boundary values bi are samples of the harmonic boundary conditions
of each basis function. The linear combination ∑i l(x̄i)bi therefore holds the
samples of the linear function l(x̄) at exactly these sample locations. It follows
then that the third line states the reconstruction problem of a linear function
using our chosen ansatz with constant and linear monomials which is of
course exactly solvable.

Kernel Placement. The offset distance ξ in (4.6) has to be chosen heuristi-
cally. In our experiments, we found ξ = 0.1 to be a reliable setting, as similarly
stated in [Li et al., 2007]. Moreover, due to our dense sampling of collocation
points ci (m ≈ 3n) the solution of the least squares system (4.8) is hardly
influenced by ξ. In contrast, an exact interpolation (m = n + 3) cannot pre-
vent oscillations on the boundary between the ci and would be much more
sensitive to the offset distance (Fig. 4.3).
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Degenerate Elements and Edges. Degenerate elements cause numerical
problems for harmonic shape functions, just as they do for standard shape
functions. Two (almost) coincident kernels ki, kj lead to linearly dependent
rows i, j in (4.8), yielding a rank deficient matrix. Simple cases, like the
clustered kernels near the concave corner in Fig. 4.3, can be resolved explicitly
by merging kernels, or implicitly through the SVD pseudo-inverse.

For degenerate edges with coincident nodes x̄i, x̄j, we conceptually merge x̄i
and x̄j by computing one joint basis function φe

ij from the constraints bi + bj in
(4.2) and using a joint nodal displacement uij = ui = uj. Note that this does
not change the simulation mesh, and therefore preserves, e.g., planarity of
faces. Almost planar sliver elements can be merged with their neighbors as
proposed in [Wicke et al., 2007].

4.2.3 Simulation

After introducing harmonic basis functions and their numerical approxima-
tion, we insert them into the Galerkin discretization of Section 3.1.1 and set
up the matrix equations for the FEM simulation. At this point, let us quickly
recapitulate the required steps to arrive at the resulting equations and give a
more specific formulation of the polyhedral element based approach using
the practical Voigt notation.

Discrete Displacement. Once the basis functions Ne
i are computed as de-

scribed in the previous section, the displacement ue within e can be approxi-
mated as in (3.34), which can also be written in matrix notation

ue(x̄) :=
k

∑
i=1

Ne
i (x̄)ui = He(x̄)ue ,

with a 3 × 3k matrix He(x̄) of basis function values Ne
i (x̄) and a vector

ue = [uT
1 , . . . ,uT

k ]
T of e’s nodal displacements.

Discrete Energy. Since the Cauchy strain is linear in the displacements, it
can also be written in Voigt notation as the 6× 1 vector

ε(ue(x̄)) = Be(x̄)ue ,

holding the six distinct values of the corresponding strain tensor. The 6× 3k
matrix Be(x̄) is built from gradients ∇Ne

i (x̄). Using this matrix notation of

68



4.2 Polyhedral Elements

each element’s strain, the global elastic energy (3.34) of the deformed model
is then formulated as

E(u) = ∑
e

uT
e

(
1
2

∫
e
BT

e CBedx̄
)

︸ ︷︷ ︸
=: Ke

ue =
1
2

uTKu , (4.9)

with Ke denoting the 3k× 3k stiffness matrix of element e, which are assem-
bled into the global stiffness matrix K.

Quadrature. For a general polyhedral element e, the computation of its
stiffness matrix Ke requires numerical integration, since the derivative matrix
Be(x̄) is not constant, as in the special case of linear tetrahedra. We employ
either bounding box subdivision and Gaussian quadrature or Monte Carlo
integration instead of the heuristic integration proposed by [Wicke et al.,
2007], since the latter degrades for non-convex elements. For linear elasticity,
the matrices Ke can be precomputed, such that the integration has to be
performed only once for each element. As a consequence, the run-time
complexity of our simulation is not higher than that of a simulation using a
tetrahedral or hexahedral discretization.

Corotation. Since the linear strain is not rotation-invariant, even rigid-body
motions will give rise to strain, which in turn causes ghost forces. This can
be remedied by adapting one of the corotation approaches we have seen in
Section 3.3.3 to general polyhedral elements [Wicke et al., 2007]: The rotation
Re of the element’s displacement Ue is extracted using shape matching, and
is factored out by correcting the stiffness matrix as Ke ← Re Ke RT

e . This
correction has to be performed in each time step, and the global stiffness
matrix K needs to be updated accordingly. Again, the complexity for these
computations is of the same order as for tetrahedral or hexahedral simulations.
Alternatively, in order to prevent rotation artifacts for large elements that
can undergo large deformations (and rotations), corotation could also be
performed at the quadrature point level (Section 3.3.3), making the cost of
assembly depending on the total number of quadrature points instead of
elements.

Equations of Motion. With the discrete energy (4.9), the governing equation
for a dynamically deforming elastic solid becomes

Mü + Du̇ + Ku = fext , (4.10)
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with mass matrix M, damping matrix D, and the vector fext containing exter-
nal forces. In all our tests we used a standard semi-implicit Euler method
(3.39) for the robust time-integration of (4.10). We also employ the simple
nodal collision detection and handling approach discussed in Section 3.1.3
and Section 3.3.2.

4.2.4 Results

In this section we demonstrate the versatility of our polyhedral finite element
framework on adaptive refinement and progressive cutting, and give statistics
and comparisons of our method. Most examples show individual frames of
simulations that are also included in the accompanying video.

Non-Convex Elements. As a proof of concept, Fig. 4.1 shows a simulation
of a simple, non-convex element, whose shape functions are computed using
n = 97 RBF centers in (4.5). While non-convex elements undoubtedly increase
the meshing flexibility, we also note that in practice a restriction to convex
elements might be preferable, for instance for efficient collision detection.

2D Adaptive Refinement. Fig. 4.4 shows a quantitative analysis of our
method based on a 2D Poisson problem −∆u = f with known analytic solu-
tion. We compare convergence behavior and condition numbers of uniform
refinement of standard bilinear FEM, adaptive refinement of bilinear ba-
sis functions with CHARMS [Grinspun et al., 2002], and our quadtree-like
adaptive element refinement (Fig. 4.5).

While condition numbers increase similarly with the number of DOFs for all
methods, adaptive refinement makes better use of the DOFs than uniform
refinement. When comparing CHARMS to our refinement technique, the
former can also be used for higher order basis functions, whereas our method
is a generalization of linear shape functions only. However, it allows for more
flexible splits without the need to balance neighboring elements’ refinement
levels (see below). The plots also show that the number of sources si (resp. of
RBF kernels ki) used for individual basis functions Ne

i has basically no effect
on the global approximation error.

Embedding and Adaptive Mesh Generation. With the method described
so far, we can simulate deformable objects that are discretized by general
polyhedral elements. However, a straightforward volume tessellation works
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Figure 4.4: For a 2D Poisson problem with known solution, we compare bilinear FEM
(top left), adaptive basis function refinement of CHARMS (top middle), and
our adaptive element refinement (top right). The graphs (bottom) compare
approximations for grids of about the same number of DOFs. The plots show
L2 errors and condition numbers of K for increasing numbers of DOFs.

for clean, moderately complex objects only, but becomes problematic for
highly complex or topologically inconsistent models (e.g., scanned data,
point-based models).

To be able to also handle such objects, we adapt a space embedding technique
discussed in Section 3.3.3. In a preprocessing step, we voxelize the object
into hexahedral elements, and then simulate the elastic deformation on the
resulting voxels only. The high resolution surface mesh is deformed by in-
terpolating the displacement within the voxels according to (3.34). However,
since the complexity of regular grids grows cubically under refinement, this
approach can handle moderate grid resolutions only.

Exploiting the flexibility we gain from arbitrary element shapes, a hierarchical,
adaptive refinement is very easy to implement. Similar to Botsch et al. [2007],
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Figure 4.5: A quadtree element with neighbors at a higher refinement level. Shown are
the basis functions for the shared nodes, where the center one is not a hanging
node, but instead is part (and DOF) of all three elements.

we employ an octree-like discretization that refines nodes near the embedded
surface. Note that this does not lead to hanging nodes in our discretization.
Since the elements need not be strictly hexahedral, faces between octree cells
of different depth do not require special handling, as illustrated in Fig. 4.5.

In Fig. 4.6, the Stanford bunny is embedded in an adaptive octree-like simula-
tion mesh, which concentrates the DOFs at the more interesting boundary
surface. Supporting general polyhedral elements makes this kind of adaptive
embedding both easy to implement and to maintain, thereby enabling the
efficient simulation of highly complex or topologically inconsistent meshes.

For embedded simulations we perform collision handling on the vertices of
the embedded surface, instead of on the simulation nodes (Fig. 3.8). Sim-
ilar to [Sifakis et al., 2007b], (penalty) forces applied to an embedded ver-
tex x̄ = ∑i x̄i Ni(x̄) simply have to be distributed to the simulation nodes x̄i,
weighted by the (generalized) barycentric coordinates Ne

i (x̄).

Figure 4.6: The bunny model is embedded into an adaptively refined, octree-like simu-
lation mesh, shown on the left. The degrees of freedom are concentrated on
the surface, wasting little computing power on the less interesting, invisible
interior.
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Figure 4.7: Dynamic, stress-based refinement of a hexahedral bar model, using 1-to-2
splits for the bending deformation and 1-to-8 subdivision for twisting. The
bar is constrained at both ends, the color visualizes the maximum principal
stress.

Stress-Based Dynamic Refinement. Polyhedral elements allow for dy-
namic element refinement: Similar to fracture [O’Brien and Hodgins, 1999;
O’Brien et al., 2002], we sample the stress tensor σ(x̄) at a few points within
each element, compute the principal stress as the largest absolute eigenvalue,
and refine an element once a certain threshold is reached. Fig. 4.7 illustrates
this for two kinds of adaptive refinement: A uniform 1-to-8 subdivision of
voxels, and the more flexible 1-to-2 splitting perpendicular to the maximum
stress direction, which results in fewer elements for the same refinement
threshold.

Progressive Cutting. As proposed in [Wicke et al., 2007], supporting gen-
eral polyhedra in FEM simulations effectively avoids the need for complex
remeshing during cutting and thus considerably simplifies the implementa-
tion. Our harmonic basis functions seamlessly integrate into both tetrahedral

Figure 4.8: Left: Progressive cutting of a hexahedral bar model. Right: Cutting a tetrahe-
dral dinosaur mesh. Tetrahedra are visualized in yellow, general polyhedra in
blue.
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and hexahedral simulations, where then only the cut elements have to be
computed as harmonic polyhedral elements (Fig. 4.8). Arbitrary cuts can
lead to non-convex elements with small opening angles, which complicate
off-setting RBF centers. To avoid this problem, and to simplify the actual
element splitting and collision detection, our cutting algorithm generates
convex elements only, following [Wicke et al., 2007].

Timings. For the examples shown, Table 4.1 summarizes model complexi-
ties and timings, taken on an Intel Core2 Duo, 2.4 GHz. Solving the linear
systems takes about the same time as for standard FEM, with only a slight in-
crease in matrix density in case of complex polyhedra with high vertex count.
Solving for and numerically integrating shape functions Ne

i is considerably
more expensive than for simple linear tetrahedra or trilinear hexahedra. Note,
however, that general polyhedral elements are employed in irregular regions
of adaptivity and cutting only, whereas in regular regions we can use stan-
dard elements. Our approach therefore trades the combinatorial complexity
of remeshing for the computational complexity of polyhedral elements.

Scene Start #N/#E End #N/#E tinit tsolve ttotal

Collision (Fig. 3.8) 274 / 153 274 / 153 105 5.2 20
Bunny (Fig. 4.6) 4.8k / 3k 4.8k / 3k 59 221 247
Bending (Fig. 4.7) 99 / 40 256 / 88 302 1.6 60
Twisting (Fig. 4.7) 99 / 40 1392 / 719 170 37 276
Bar Cut (Fig. 4.8) 99 / 40 391 / 63 688 3 235
Dino Cut (Fig. 4.8) 5.6k / 19k 9.3k / 21k 48 113 752

Table 4.1: Statistics and timinigs for the shown examples. We list initial and final number
of nodes (#N) and elements (#E), avg. time to compute Ne

i and setup Ke per
polyhedral element, and for the linear solve per time-step (both [ms]), and
the total simulation time [s].
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4.3 Meshfree Representations

4.3 Meshfree Representations

So far we saw how moving from simple representations of the subspace using
(tri-) linear basis functions to more advanced representation bases such as har-
monic coordinates enables much simpler handling of adaptivity, cutting and
fracturing. However, this formulation of advanced basis functions requires
always an underlying mesh structure. Requiring a mesh for discretization is
not always the optimal choice: for example when a material undergoes large,
possibly plastic, deformations, the distorted discretization structure needs
to be adapted in order to maintain quality and accuracy leading to frequent
remeshing operations [Wojtan and Turk, 2008].

In these cases it is advantageous to have a discretization structure which
is as simple as possible. For this reason, purely point-based discretization
techniques have been pursued in order to maximally ease discretization: the
simple placement of points in space [Müller et al., 2004a; Pauly et al., 2005;
Adams et al., 2008; Gerszewski et al., 2009]. Common to all these methods is
the use of moving least squares (MLS) as scattered data interpolation procedure
to spatially interpolate the pointwise defined DOF values [Fries and Matthies,
2004].

While most these mentioned methods use MLS directly to interpolate defor-
mation gradients in collocation-based schemes, we will use MLS to represent
the discretization subspace, similar to Adams et al. [Adams et al., 2008],
to perform again a Galerkin discretization — a procedure commonly seen
in meshfree methods in computational mechanics [Belytschko et al., 1994;
Krysl and Belytschko, 1996; Fries and Matthies, 2004].

Advantages of Meshfree Methods. Meshfree methods allow for the sim-
plest possible discretization structure – only point distribution is required.
While this leads to considerably simpler h-refinement than with mesh-based
methods, also changing the interpolation order, i.e., p-refinement is conceptu-
ally simpler in this class of methods since increasing the polynomial order
only affects the number of required neighboring particles but is enclosed in
the general formulation of MLS interpolation.

While using different polynomial orders in classic FEM is well-established
and allows for higher order solution continuity inside the elements, it is still a
difficult task to construct suitable basis functions satisfying global continuity
requirements [Li et al., 2004]. Contrary, meshfree methods allow to easily
have any desired order of continuity which is only determined by the continuity
of the employed weight function.
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4.3.1 MLS Basis Functions

Scattered Data Interpolation. Orginally, MLS was introduced by Lancaster
and Salkauskas [1981] as interpolation scheme for scattered data. Only later
its generality has been discovered and has been applied in many scientific
fields (see Fries and Matthies [2004] for a thorough discussion).

Assume that sample points x̄1, . . . , x̄n are given inside the domain Ω, each
with an associated function value (in our case the displacement DOFs)
ui ∈ IR3. Then, around a given point ˆ̄x, the displacement field u(x̄) can
locally be approximated by a polynomial a( ˆ̄x)Tp(x̄) with a vector of mono-
mials p(x,y,z) = (1, x,y,z)T (for the linear case) and coefficients a( ˆ̄x). These
coefficients are determined by a local weighted least squares fit to the dis-
placement values ui. That is, for the point of interest ˆ̄x, an error function is
constructed measuring the approximation error between every data ui and
its polynomial approximation a( ˆ̄x)Tp(x̄i) weighted by the sample distance to
the evaluation point. Using a weight function of the form w(x̄− x̄i), we can
define this error function as

J(a( ˆ̄x)) =
1
2

n

∑
i=1

w( ˆ̄x− x̄i)
∥∥∥aTp(x̄i)− ui

∥∥∥2
. (4.11)

In our implementations, we usually applied the commonly used weighting
kernel w(d) = (1− ‖d‖2)3 (see Fries and Matthies [2004] for more discussion
on weighting kernels). Fig. 4.9 gives a simple example of a one dimensional
MLS fit.

The next step then consists in finding the best polynomial approximation to
the data, i.e., to minimize the error function J(a( ˆ̄x)). The derivative of the
error function is

∂J
∂a( ˆ̄x)

=
n

∑
i=1

w( ˆ̄x− x̄i)p(x̄i)(a( ˆ̄x)Tp(x̄i)− ui).

Setting it to zero and solving the system for the coefficient vector yields

a( ˆ̄x) = (
n

∑
i=1

w( ˆ̄x− x̄i)p(x̄i)p(x̄i)
T)−1

n

∑
i=1

w( ˆ̄x− x̄i)p(x̄i)ui.

That is, with this coefficient vector we get the optimal polynomial approxima-
tion a( ˆ̄x)Tp(x̄) for the point ˆ̄x. If we now use this local fit only for evaluating
the exact point ˆ̄x and define the same approximation for arbitrary ˆ̄x, we can
simplify notation and use x̄ = ˆ̄x giving us the continuous MLS approximation
to the data as

u(x̄) = p(x̄)T(
n

∑
i=1

w( ˆ̄x− x̄i)p(x̄i)p(x̄i)
T)−1

n

∑
i=1

w( ˆ̄x− x̄i)p(x̄i)ui. (4.12)
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Figure 4.9: A simple example of a linear 1D MLS fit: For position x̂, a linear poly-
nomial âx + b̂ is fitted to the three data points (x1,u1), (x2,u2) and
(x3,u3) by minimizing the weighted sum of vertical errors (dotted lines):
∑3

1((âxi + b̂)− ui)
2w(|x̂− xi|).

Subspace Representation. Having a closer look at the continuous approxi-
mation Eq. (4.12) reveals a very important structure of the approximation. By
rearranging terms, we can divide the data vectors ui from the interpolation
specific terms and arrive to the well-known form of a linear combination of
DOF deformation vectors ui with basis functions Ni(x̄), i.e., MLS also spans
a linear subspace of a infinite dimensional function space (for C∞-continuous
weight functions, a subspace of C∞(Ω) is spanned). That is, we can write

u(x̄) =
n

∑
i=1

ui Ni(x̄) ,

Ni(x̄) = p(x̄)T G−1(x̄)p(x̄i)w(x̄− x̄i) ,

G(x̄) =
n

∑
i=1

w(x̄− x̄i)p(x̄i)p(x̄i)
T ,

(4.13)

where G(x̄) is called moment matrix which should be non-singular in order
to be invertible. This is not the case if either too few data points support the
evaluation point x̄ or the data points are located co-linearly or co-planarly
which makes intuitive sense since in this case no information on how the data
evolves in the missing directions is given. In Chapter 5 we will see a variant
of this approach being less stringent on the actual sample requirements.

In contrast to FEM basis functions, one can see that MLS basis functions
do actually have a more complex algebraic form: Instead of simple poly-
nomials they are of rational nature. This allows them to adapt nicely to
almost arbitrary point samplings and giving them the good continuity and
approximation properties.
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Basis Function Properties. In Section 3.3 we have seen that suitable basis
functions for the Galerkin discretization of the elasticity PDE need to fulfill a
handful of requirements:

• Continuity Basis functions need to lie in Sobolev space H1(Ω). As
just discussed, MLS basis function have very good continuity prop-
erties that depend on the continuity of the weighting function w(·).
Since we choose them to be C∞-continuous, so are the basis functions,
i.e., Ni ∈ C∞(Ω) ⊂ H1(Ω).

• Consistency of order n MLS basis functions using n-th order polyno-
mials are called consistent of order n. That is, a n-th order MLS basis
can reproduce polynomials exactly up to order n. In order to get the
constant and linear reproduction property it is therefore sufficient to
use at least linear polynomials in the construction of the MLS basis
(see also Section 4.2.3 in [Fries and Matthies, 2004] for a proof for
consistency of MLS).

4.3.2 Simulation

For actually performing a solid simulation with MLS basis functions we
can mostly rely on the techniques presented in Chapter 3. Let us discuss
some choices that we made for implementing a straightforward meshless
simulator:

• Sampling In order to perform the discretization we basically require
two point sets: the DOF and the quadrature point locations. In our im-
plementations we choose the following simple procedure to generate
them (see also [Adams et al., 2009]).

First, we cover the domain with a regular grid, whose resolution
is usually chosen large enough to get also a good sampling of thin
geometric features of the domain. This generates us the candidate sam-
ples. Then, we perform furthest distance sampling on these candidates
in order to determine the DOF locations: The first point is chosen
randomly, the following ones by choosing the point among the candi-
dates which is furthest away from the previously chosen ones. Such a
strategy leads to a regular sample distribution and allows increasing
the number of samples progressively.

For the quadrature points we have different possibilities: Either we
perform a Gauss quadrature on a background regular mesh, as per-
formed when integrating the polyhedral elements. Or we can apply
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Figure 4.10: The described approach allows for very simple discretization (second) by just
placing DOF (red) and quadrature (blue) samples inside the computation
domain. The resulting simulation performance is comparable to corotated
FEM while giving visually pleasing results due to the high smoothness
property of MLS shape functions.

the same technique as just described to choose also the quadrature
point locations. By choosing the same number of quadrature points
as DOFs we arrive at a simple collocation scheme (and need also to
determine these samples only once). While such an approach is very
simple it bears accuracy issues (see Section 4.3.3). We can however
also progressively increase the quadrature density in order to cap-
ture the energy coupling between the DOFs better and better – at
increasing costs however.

• Precomputation As soon as the DOF and quadrature point locations
are known, the precomputation procedure is pretty similar to the one
known from corotated FEM simulations. However, since there is no
notion of elements, precomputation and assembly move from being
element-centric to quadrature-centric: For each quadrature point, the
basis functions, their derivatives as well as the local stiffness matrix
are precomputed and stored individually (Eq. (3.34)). Furthermore,
if an embedded surface mesh is used for visualization, the basis
functions are also precomputed at the vertex locations such that only
fast linear combinations have to be computed at runtime to get the
deformed surface mesh (Eq. (3.37)).

• Runtime During runtime, almost the same steps are performed as for
corotated FEM except that again the assembly is quadrature-centric. In
each timestep, rotations need to be first determined per quadrature
point by performing a polar decomposition [Hauth and Strasser, 2004]
of the deformation gradient F = I+∇u. Using these, we can compute
the actual pointwise internal forces and Jacobians in a corotated fash-
ion (see Section 3.3.3). These (quadrature-) pointwise quantities are
then assembled into a global force vector and Jacobian matrix, which
are then in turn used to perform time integration (see Section 3.3.5).
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Figure 4.11: A solid cube fix on its top side and hanging under gravity. Right: The con-
vergence plot compares the maximal displacement for classic FEM and the
MLS-based meshfree approach for different ratios of #DOFs(n) to #quadra-
ture points(m).

4.3.3 Results

Dynamics. Substituting classic FEM basis functions by the more flexible
MLS basis functions leads to a very simple simulation framework. In contrast
to corotated FEM [Müller et al., 2002; Müller and Gross, 2004], the presented
approach allows for simpler discretization without the need of generating
qualitative volumetric meshes, but just requires the distribution of individual
points inside the computation domain. Due to the high smoothness prop-
erty of MLS, the visual results are superior to the piecewise linear solution
obtained by linear FEM. As for FEM, the main computational tasks consist
in preprocessing, assembly and linear solves. While preprocessing is more
demanding due to the computation of MLS basis functions, the assembly is
comparable or even superior depending on the chosen integration accuracy.
Also the density of the linear systems and therefore the solving performance
is comparable to FEM. Fig. 4.10 shows the approach applied to a bunny
model.

Quadrature. The accuracy of the resulting method depends strongly on the
accuracy of the quadrature for the energy integration. While realistic results
can already be achieved with a simple collocation scheme (where DOFs and
quadrature points are collocated), more accurate results are achieved by a
better energy integration. Fig. 4.11 shows a comparison of the accuracy for
different quadrature sampling densities.
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Figure 4.12: When applying the MLS-based approach to a clamped thin plate under grav-
ity (two DOF layers in red, single quadrature layer in blue), the presented
approach is not able give convergent results, as opposed to the DG shell
model that converges to the correct analytic solution.

Close Independent Features. While in the FEM the individual elements
sharply describe the influence domain of the basis functions, the support
is not determined that flexibly in the basic meshless approach described
so far. While it is possible to choose complex influence domains per DOF
sample [Fries and Matthies, 2004; Adams et al., 2009], our basic approach
chosen here just uses spherical support domains with adaptive sphere radii.
This simple choice however can lead to unwanted artifacts when unconnected
regions fall into the same support of a DOF and get unintentionally coupled.
Such artifacts can be prevented in different ways: Increasing the sampling
density (with decreased support radii) resolves the problem to some point,
however depends on the actual feature size in the problematic regions and
can introduce unwanted high number of DOFs. A better choice is the one
taken by [Pauly et al., 2005] or [Adams et al., 2009]) who introduce a material
distance metric that elegantly creates complex DOF influence domains. In the
next chapter, we will see an alternative solution that introduces a meshless
virtual node algorithm [Molino et al., 2004] to resolve the problem.

Thin Structures. As the FEM, the meshless approach presented so far is
not well suited to handle geometries with thin-walled structures, due to
numerical stability problems. Moreover, as shown in Fig. 4.12, the presented
approach is not even convergent: a single quadrature layer on the structure’s
midsurface together with a double layer of DOFs (required by the volumetric
MLS sampling) is not capable to converge to the static (analytic) solution of
the problem, as opposed to the DG shell model of [Kaufmann et al., 2009a].
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As we will see in the next chapter, it is possible to generalize the basic method
presented here to also support shell- and rod-like structures in a simple and
general way.
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4.4 Feature Preservation

Due to its sound theoretical guarantees the FEM is widely applied in engi-
neering applications where stability and accuracy of the solution are crucial.
Typical graphics applications have somewhat different requirements. High
accuracy is less important, while efficiency, visual plausibility and aesthetics
are paramount. Often, these goals can be achieved by a larger variety of
approaches than in engineering. As an example, the purely geometric shape
matching approach of Müller et al. [2005] shows excellent efficiency and
stability properties, while just mimicking physical behavior.

For the task of geometric modeling, a large variety of different techniques
exist, too. Space deformation techniques define the deformation of a 3D
space, causing the embedded geometry to deform accordingly. Coordinate-
based techniques, where the deformed space is restricted to a closed domain,
have been investigated extensively in the past years. In particular, Lipman
et al. [2008] presented Green coordinates (GC) that have the property of
being shape preserving, in the sense that mappings possess minimal angular
distortion. This helps to greatly improve the visual quality of the deformed
geometry as shown in Fig. 4.13.

While these space deformation techniques are directly applicable to static
geometric modeling, the automatic generation of full animation sequences
is more difficult to realize. In this section we therefore present an approach
on how to include the particular (non-linear) subspace spanned by Green
coordinates into a Galerkin discretization in order to animate deformable
objects in a shape-preserving manner — analogous to how the GC approach
preserves shape for modeling. Independently of the discretization resolution,
such an approach allows to preserve small features. In contrast, coarse linear

Figure 4.13: Shape preserving deformation of the dragon model using Green coordinates
as basis functions (left, 156 DOFs) compared to FEM-based deformation
(right, 162 DOFs).
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Figure 4.14: Embedded dragon model in undeformed (left) and deformed cage (right).

FEM approaches result in locally affine deformations that distort features at
sub-element scales.

4.4.1 Green Coordinates

Let us first shortly review the important definitions and properties of GC,
presented originally in [Lipman et al., 2008]. Similar to other commonly used
coordinates, GC are also cage-based and thus defined inside a closed polytope.
Classic barycentric coordinates describe a point inside the cage as a linear
combination of cage vertices. Deforming the cage’s shape then leads to a
deformation of the enclosed space (Fig. 4.14). GC additionally incorporate the
faces’ normals in their formulation to achieve shape-preserving deformations,
i.e., deformations that locally only allow a limited amount of change in
angles. Achieving this property is not possible using mean value coordinates
or harmonic coordinates [Floater, 2003; Joshi et al., 2007], since they are
affine invariant [Lipman et al., 2008]; affine transformations like shearing and
anisotropic scaling violate shape-preservation.

Subspace Representation. More formally, GC define how a point x̄ in the
interior of the undeformed cage is deformed to a new position x by a linear
combination of vertex positions xi and face normals nj of the deformed cage
as

x(x̄) = ∑
i∈IV

xiNi(x̄) + ∑
j∈IT

sjnjMj(x̄), (4.14)
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where IV is the set of all vertices and IT the set of faces. While GC can be
defined on general cage types we will focus on cages represented as triangle
meshes for which they can be described analytically. In order to achieve
shape preserving deformations, the scaling factor sj has to be chosen as

sj =

√
|v̄|2 |w|2 − 2(v̄ · w̄)(v ·w) + |v|2 |w̄|2

√
8 area(tj)

, (4.15)

where v̄ and w̄ are two arbitrary undeformed edges of the triangle tj, with
corresponding deformed edges v and w. It is important to note here that
the normals nonlinearly depend on the cage vertex positions which will be
important for the discretization.

Please note that the subspace represented by GC is spanned by basis functions
Ni(x̄) and Mj(x̄) that are global, i.e., having support on the entire cage. While
the chosen subspace is linear in conventional Galerkin discretizations, the
subspace spanned by this GC representation is not: Since the face normals
depend nonlinearly on the cage vertices (the actual DOFs), the mapping from
DOF to candidate functions is nonlinear, forming a more general manifold as
subspace. This is different from standard Galerkin approaches where this map
is linear and leads to a linear subspace of H1. Instead of a linear combination
we have a non-linear combination of basis functions — a fact also becoming
important when we will set up the discrete problem. Furthermore, we cannot
rely anymore on the existence and convergence guarantees we had for linear
subspaces. Nevertheless, we did not observe any problems due the lack of
these properties.

Basis Functions. Using Green’s function G(x̄, x̄′) = 1
4π|x̄−x̄′| and the piece-

wise linear hat function Γi(x̄′) defined on the triangle mesh and centered at
vertex i, the coordinates/basis functions are defined as

Ni(x̄) =
∫

x̄′∈Ωi

Γi(x̄′)
∂G(x̄, x̄′)

∂n(x̄′)
dSx̄′ (4.16)

and
Mj(x̄) = −

∫
x̄′∈tj

G(x̄, x̄′)dSx̄′ , (4.17)

where the integration domain Ωi consists of all triangles adjacent to vertex
i. Representing the cage by a triangle mesh allows analytic computation
of these coordinates and their derivatives. For pseudocode of the actual
coordinate computation we refer to [Lipman et al., 2008]. The computation of
their derivatives, which we need additionally for strain computations, can be
derived straightforwardly by taking the derivatives in the according lines of
their pseudocode [Huber, 2009].
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Figure 4.15: Animation of the goblin model showing external forces and collisions.

Subspace Properties. Although the spanned space is not linear, it can easily
be checked that all other necessary conditions for a Galerkin discretization
are fulfilled otherwise:

• Inside the cage, the coordinates are C∞, which is sufficient since we
will choose the computation domain to lie inside the cage.

• The hat functions Γi used in the definition of the vertex-based coordi-
nates Ni guarantee the partition of unity property such that constant
deformations can be represented.

• GC also reproduce linear functions as required for the representation
of rotations [Lipman et al., 2008].

4.4.2 Numerical Approximation

Let us next have a look on how we discretize the elastic solid model with
GC. In a first step, we formulate the problem nonlinearly and then show in
a second step how we can introduce a suitable linearization to arrive at a
simple simulation method.

Nonlinear Formulation

Domain Definition. In the last section we have seen that GC fulfill all re-
quirements for a Galerkin discretization as long as the problem domain
Ω resides inside the cage. The problem domain can be represented by a
high-resolution triangle mesh embedded in the volume of the cage. We do
not discuss how to generate cages for given domains since they can easily
be designed by hand using arbitrary modeling tools. In the remainder we
will assume that our domain is equipped with a suitable triangular mesh
representing the cage.
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Displacement Field. In order to formulate the Galerkin discretization for
linear elasticity in the classical displacement-based manner, we first need a
representation of the deformation field u(x̄) in terms of GC. Representing
both deformed and undeformed positions with the representation given in
Eq. (4.14) and considering their difference, we get

uG(x̄) = ∑
i

uiNi(x̄) + ∑
j

mjMj(x̄), (4.18)

where ui = xi − x̄i and mj = njsj − n̄j (since sj = 1 for the undeformed state).

Energy and Forces. Following the same line as classic Galerkin discretiza-
tions that we have seen in Eq. (3.30), we can formulate the elastic energy
using the new deformation field uG as

WG =
1
2

a(uG,uG)− f (uG). (4.19)

In order to derive internal forces, we again take the derivative of WG with
respect to the degrees of freedom ui (note that the mj are nonlinear functions
of the ui’s). Taking advantage of the linearity of a(·, ·) and f (·), the energy
gradient reads as

∂WG

∂ui
= ∑

j
a(Ni, Nj)uj (4.20)

+ ∑
j

a(Ni, Mj)mj

+ ∑
jk

∂mj

∂ui

T

a(Mj, Nk)uk

+ ∑
jk

∂mj

∂ui

T

a(Mj, Mk)mk

− ∑
j

∂mj

∂ui

T

f (Mj)− f (Ni)

which is obviously nonlinear in the DOFs. As mentioned before, we aim at
using implicit Euler as time integration scheme, where also computationally
more involved second order derivatives of the energy are required [Baraff
and Witkin, 1998]. In order to simplify the resulting system and reduce the
computational burden, we will therefore perform a linearization described in
the following section.
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Linearization

The complexity of the Galerkin discretization using GC results mainly from
the nonlinear dependency between triangle normals and vertex positions. In
order to simplify the discrete equations we make the following 0-th order ap-
proximation: We assume that the change in normals between two sufficiently
small timesteps is negligible such that it can be ignored during the force
computation. This means that we will treat the mi as constant and update
them only after each timestep using the updated cage vertices.

Using this linearization of the deformation field, Eq. (4.20) simplifies to

∂WG

∂ui
= ∑

j
a(Ni, Nj)uj (4.21)

+ ∑
j

a(Ni, Mj)mj − f (Ni),

which we can rewrite as

∂WG

∂u
= Ku + Hm− f, (4.22)

where the additional stiffness matrix H relates normal differences to nodal
forces and consists of 3× 3 blocks Hij = a(Ni, Mj).

Comparing Eq. (4.22) to Eq. (3.31) or Eq. (3.32), we note that we now have ad-
ditional normal-based forces Hm next to the classic vertex-based forces f. This
is the only change that needs to be made to the basic simulation framework
we have seen in Section 3.1.1.

4.4.3 Simulation

Algorithm Overview. Algorithm 1 summarizes the actual simulation loop.
The blocks Kq

ij and Hq
ij can be precomputed since they remain constant

throughout the simulation.

4.4.4 Results

Comparisons. In Fig. 4.16 and Fig. 4.13 we compare the presented approach
to linear FEM where we embed the surface geometry into a hexahedral ele-
ment mesh. For the conventional FEM simulations, the boundary conditions
were applied in the same manner as described in Section 3.3.2. For the com-
mon situation where the simulation mesh is much coarser than the mesh
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1 Set K, H and f to zero
2 for all i, j ∈ IV : // Stiffness matrix and BC assembly
3 K⇐ Kc

ij

4 f⇐ fc
i

5 for all quadrature points q:
6 extract rotation Rq

7 K⇐ RqKq
ijR

qT

8 f⇐ (RqKq
ij −RqKq

ijR
qT)x̄j

9 end
10 end

11 for all i ∈ IV , j ∈ IT:
12 H⇐Hc

ij

13 for all quadrature points q:
14 f⇐−RqHq

ij(R
qTnjsj − n̄j)

15 end
16 end

17 compute forces according to Eq. (3.32)
18 implicit integration of M ∂2û

∂t2 + Kû = f
19 update m with new positions of cage vertices

Algorithm 1: Summary of the simulation loop.

of the embedded surface, our method clearly shows better handling of the
fine-scale details. Fig. 4.15 shows an animation sequence demonstrating the
handling of boundary conditions, collisions and external forces.

Modeling. The use of boundary conditions in combination with solving
the static problem gives also raise to a simple and intuitive GC modeling
tool. In contrast to cage-based modeling, where a shape is deformed indi-
rectly over cage manipulations, our approach allows direct modeling of the
shape. Fig. 4.17 shows the armadillo model with boundary constraints at its
extremities and how they can be manipulated for modeling the geometry.
Since boundary conditions are imposed vertex-wise, different effects can be
achieved by fixing one, two, or more vertices. Constraining only a single ver-
tex prescribes only its position but no orientation. Constraining two vertices
results in one remaining rotational degree of freedom, while fixing more than
two vertices constrains position and orientation. We constrained one vertex
in each hand of the armadillo and all feet vertices. Furthermore, solving the
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Figure 4.16: The goblin’s head is pulled back using Dirichlet BCs. Note the preservation
of the head’s overall shape using our approach (left, 168 DOFs) compared to
hexahedral FEM (right, 297 DOFs).

dynamics instead of the static problem allows to model animation sequences
including secondary motions due to inertia.

Timings. For the examples shown, Table 4.2 summarizes timing informa-
tion, taken on an Intel Core2 Duo, 2.4 GHz. Note that the computation time
is approximately linear in the number of quadrature points and quadratic in
the number of DOFs due to the dense stiffness matrices.

4.5 Discussion and Outlook

In this chapter, we have seen that switching from simple basis functions (and
induced solution spaces) to more general shapes can improve the applicabil-
ity and handling of FEM methods considerably. We presented approaches to
simplify the actual remeshing task using polyhedral elements and to abandon
remeshing completely by switching to a meshfree representations. Further,
we also presented a cage-based approach to enable small-scale feature preser-
vation.

Scene # DOFs # Q tinit tstep

Animation (Fig. 4.15) 168 200 3132 529
Goblin (Fig. 4.16) 168 200 3236 503
Dragon (Fig. 4.13) 156 300 4615 653
Armadillo (Fig. 4.17) 159 300 4451 784

Table 4.2: Statistics and timings for the examples shown. We list number of DOFs,
quadrature points, time to set up all Kq

ij and Hq
ij and the time to perform one

timestep, in milliseconds.
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Figure 4.17: By setting boundary conditions on few vertices and using the static solution,
our method can also be used as a modeling tool.

Polyhedral Elements. We introduced arbitrary polyhedral elements based
on harmonic basis functions, and proposed the method of fundamental so-
lutions as a simple and flexible method for computing these basis functions.
Being able to use general polyhedral elements in FEM simulations consider-
ably simplifies topological changes of the simulation domain, as illustrated
for adaptive mesh generation, dynamic refinement, and progressive cutting.
Extending our approach to both adaptive and hierarchical discretizations
and solvers has further potential to improve runtime performance of the
simulation.

Meshfree Representation. Building up on the element-free Galerkin
method [Belytschko et al., 1994], we presented a corotated extension that
is simple to implement and, due to the flexible point sampling, allows to
continuously trade efficiency with a collocation approach against accuracy
with a more accurately integrated Bubnov-Galerkin scheme. As we have
shown, the presented formulation is only suitable for thick geometries and
restricts the discretization points to be arranged volumetrically. In the next
chapter, we will build up on this attractive meshfree approach and tackle the
problems of thin geometries and inherent sampling requirements. Moreover,
we will also focus on taking advantage of the simple discretization scheme by
presenting two approaches to handle large plastic flows as well as the cutting
of material.

Feature Preservation. Simulations resulting from this approach are nec-
essarily different from simulations performed with classical FEM since the
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deformations are tied to a different subspace. Contrary to the approximation
spaces chosen in classical FEM, the subspace implied by GC does not allow
for convergence under refinement since analytic solutions to elasticity are not
shape preserving. Nevertheless, with respect to graphics requirements, the
presented method is able to give novel and visually pleasing results. Due
to the globally supported basis functions, both stiffness matrices are dense,
restricting the total number of DOFs as well as the runtime performance since
the dense matrix assembly needs to be performed in each timestep (see Algo-
rithm 1). While our approach works with single cages, extensions to multiple
cages (i.e. multiple elements) are thinkable, leading to GC-based FEM with
sparse matrices and improved performance. Assuming the normals to be
constant in each timestep introduces damping in the angular momentum,
especially for large timesteps, restricting us from taking large steps in the
simulation. We expect that taking higher order Taylor approximations should
be able to reduce this artifact.

When considering the presented approaches in the light of the chosen dis-
cretization structures, we observe that the line between classic tetra- or hexa-
hedral FEM approaches and their meshless counterparts becomes blurred:
Introducing arbitrary polyhedral element shapes leads to very flexible basis
function shapes that can easily adapt to various geometric circumstances,
reducing the amount of meshing to represent a given discretization domain.
The step from these basis functions to completely meshless discretizations
without any meshing requirement is then a rather small one, even if different
data interpolation schemes are used. Furthermore, while we demonstrated
these different basis function types in the context of corotated linear elasticity,
it is important to note that they can as well be used with nonlinear strain
measures and nonlinear material behavior, which therefore also constitutes
an interesting direction for future work.
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C H A P T E R 5
Unifying Resultant-based Models

While the last chapter focused on generalizing classic approaches for solid
simulations, this chapter we will focus on enlarging the range of possible
object geometries. In order to allow the simulation of fine structures that
cannot be captured by classic solid approaches, we are going to investigate
into resultant-based models — thin shell and rod models — that are specialized
for such characteristic geometries.

In contrast to these specific resultant-based methods being only valid for
single types of geometry (shell or rod), we however aim at developing an
approach being able to handle all three types in an unified manner. The advan-
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Figure 5.1: An elaston measures stretching, shearing, bending, and twisting along any
axis. An assembly of elastons accurately captures the behavior of elastic
materials of any dimension, manifold or not, such as this rod cut out of a shell
cut out of a cube.

tages of such an approach are significant. While the coding task is simplified
considerably (a single code instead of three different simulation codes plus
coupling), also the spatial transition between non-manifold geometries or the
temporal transition occurring during topological changes or elasto-plastic
deformation can all be captured by a single, unified approach. With previ-
ous methods, these would be formidable tasks, but, as we will show, it is
straightforward with the concept of elastons that we will present.

5.1 Overview

We achieve the goal of unifying the three distinct modeling approaches by
deriving a simple quadrature rule for volumetric deformation fields that
stably and accurately resolves the stored deformation energy regardless of
the (local) form. By evaluating this quadrature rule at points we call elastons,
we obtain elastoplastic forces acting on the simulation degrees of freedom.

The concept of elastons is independent of the representation of the volumetric
deformation field, or choice of DOFs. In the light of the meshless nature of the
elastons and the discretization ease we have seen in Section 4.3 by using MLS
basis functions, we however choose a suitable extension: generalized moving
least squares (GMLS) — a meshless generalization of Hermite interpolation
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to three dimensions that also allows unproblematic sampling of, possibly
co-linear, reduced geometries.

In order to further extend the range of different materials and effects, we also
present approaches to include plastic deformations as well as topological
changes into the elaston-based framework. To achieve this we apply the
additive plasticity model of O’Brien et al. [1999] as well as a resampling tech-
nique for the discretization structures to faithfully handle the resulting large
deformations. To handle the topological changes occur for example during
cutting or fracturing, an extension of the virtual node algorithm [Molino et
al., 2004] to meshless discretizations is presented.

5.2 Volumetric Resultant-Based Models

In order to understand and set up the necessary requirements we want to
impose on a unified approach, let us first revisit the main steps that lead to
the classic Kirchhoff theories for shells and rods in Section 3.2.

The derivation of Kirchhoff-Love shells and Kirchhoff rods in Section 3.2.1
and Section 3.2.2, respectively, followed basically the following steps: Using
a suitable curvilinear description of the shell or rod material we were able
to give a linearized description of the strain field by just using first and
second order deformation information on the reduced geometry (midsurface
or centerline) of a given object. Using this linearized description then allowed
us to reduce the volumetric elastic potential to a surface- or curve-based
description of the deformation energy. Typical resultant-based formulations
would then invoke the Kirchhoff assumption and impose orthogonality of
normals during deformation, leading to vanishing normal components of
the strain. Although not our primary concern at this point, we note this
assumption is by nature restrictive, prohibiting the tangential shearing, being
an effect visually important for thicker materials.

While the transition from a volumetric to a purely reduced geometry-based
representation would be advantageous for an exclusive treatment of shells
or rods, it is also the primary source of aches in the effort to consistently
unite specialized models: combining different dimensionalities of the solu-
tion representation is a difficult task in general. By following the classical
resultant-based derivation — but only halfway, i.e., without invoking the
Kirchhoff assumption — we gain the notions of measuring stretching sep-
arately from bending (and twisting), while keeping the displacement field
volumetric. We estimate this as a key requirement for formulating an unified
method. By keeping the solution description volumetric in all regimes, the
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representation becomes trivial and no combining and coupling of different
discrete descriptions is necessary.

However, this also requires that the resultant-based energy formulation not
only measures deformation of the reduced geometry itself but also along the
normal direction(s). If this is not the case, additional (geometric) constraints
need to be introduced to give a well-defined volumetric solution. Otherwise,
problems arise due to vanishing zero-energy modes.

So far, we have seen the stored deformation energy of solids, shells, and
rods deforming under the volumetric displacement field u. Since the energy
expressions (3.4), (3.20), and (3.23) are distinct, they do not “agree” on a single
unified implementation. Hypothetically, we could try to classify each region
of the material domain as solid, shell, or rod. This is both complicated and
unlikely to be effective: manual classification would fail for materials that
drastically deform under cutting or plastic deformation; automatic classifica-
tion is not a well-posed problem, e.g., not all shapes can be divided into pieces
that are unambiguously solids, shells, or rods. Perhaps more fundamental is
the observation that because classifications are discrete decisions, a change in
classification (e.g., due to cutting or extreme deformation) could result in a
jump in elastic forces and consequently popping artifacts. These reasons lead
to the second requirement that also energy measurement should take place in
a unified, regime-independent fashion. We avoid classification altogether by
following the pattern of derivations of solids (zero normal directions), shells
(one normal), and rods (two normals) to its logical conclusion, elastons (three
normals).

5.3 Elastons

Consider a volumetric point-like solid whose extent along all three directions
is small. This time the reduced geometry is a point, or elaston, and our notion
of strain in the vicinity of this point will measure the linear deformations
of stretch and shear at the center, as well as the quadratic deformations of
bending and twist along all three “normal” directions. Figure 5.1, left, depicts
these four essential deformation modes.

Linearizing Strain. Analogous as in Section 3.2, we employ again curvilin-
ear coordinates and describe an elaston centered at θ0 = (0,0,0). We perform
a first-order Taylor approximation of positions and displacements, this time
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in all three normal directions θ1, θ2, θ3:

x̄(θ) ≈ x̄(θ0) +
3

∑
k=1

θk x̄,k(θ0) ,

u(θ) ≈ u(θ0) +
3

∑
k=1

θk u,k(θ0) .

Substituting into (3.2) yields the strain centered about the elaston

ε(θ) ≈ α(θ0) +
3

∑
k=1

θk βk(θ0) . (5.1)

Observe that this expression naturally generalizes its shell (3.17) and rod (3.22)
analogues; in particular, it captures stretching, shearing, bending, and twist-
ing along all three axes.

Energy Integration. Recall the two steps we have taken to compute the
total energy from the strain. First, we analytically integrate over the zero,
one, and two normal directions of a solid, shell, or rod, respectively, to obtain
the tangential energy density. Finally, we integrate the energy density over
the remaining three, two, and one tangent directions of a solid, shell, or rod,
respectively.

Correspondingly, we compute the elaston’s energy by substituting (5.1) into
(3.4) to obtain an integral over the elaston’s volume Ωe,

W =
1
2

∫
Ωe

(
α(θ0) +

3

∑
k=1

θk βk(θ0)
)

: C :
(

α(θ0) +
3

∑
k=1

θk βk(θ0)
)

dΩ ,

which—since all three directions have thin extent—we can analytically inte-
grate, obtaining

W =
V
2

(
α(θ0) : C : α(θ0) +

3

∑
k=1

h2
k

12
βk(θ0) : C : βk(θ0)

)
. (5.2)

Here hk denotes the thickness of the elaston along direction θk and V = h1h2h3
the volume of the elaston.

As we are about to see, elastons serve as basic building blocks for assembling
the elastic energy of any deformable object, independent of its form.

97



Unifying Resultant-based Models

Figure 5.2: For thin materials (transparent orange) resultant-based models (green) de-
liver good descriptions of their mechanics. Alternatively, these models can
also be used to describe materials of “higher dimensionality” (on their left).
Ultimately, the elaston is able to describe rods, shells and solids.

Summing Up: A New Integration Rule. The classical goal of resultant-
based thin shell models is to reduce the dimensionality of the model from
three to two dimensions, thereby simplifying its numerical treatment. The
reduction simplifies the formulation because the energy integration can be
performed analytically in normal direction.

We adopt a rather unorthodox, alternative perspective: consider a volumetric
solid discretized into a family of shells, like the layers of an onion. The de-
formation energy of each sheet can be measured using the thin shell model.
Considering all sheets, such an integration scheme approximates the volu-
metric elastic energy. The accuracy of the approximation is governed by the
resolution of the slicing and converges to the exact energy with increasing
number of slices. Likewise, a rod model serves as an integration rule for shell
energies, and by transitivity for volumetric solids.

Therefore, elastons offer the most general integration rule. By placing the
elastons along a rod’s centerline, or on a shell’s mid-surface, or throughout a
solid’s volume, we can approximate the stored elastic energy of rods, shells,
or solids, respectively.

Formally, a set of elastons e ∈ E form an integration rule approximating the
elastic energy (3.4) as

W = ∑
e∈E

Ve

2

(
αe : C : αe +

3

∑
k=1

(he
k)

2

12
βke : C : βke

)
, (5.3)
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where Ve denotes the volume associated with elaston e and αe and βke are
the membrane and bending strains of elaston e evaluated at its center θe

0.
This equation describes a convenient approximation of the elastic energy,
which allows the treatment of solids, shells, and rods in a unified manner.
However, in order to use this integration rule in simulations, there are two
further requirements:

• The elastons have to sample the material Ω sufficiently densely, such
that all relevant deformations are measured and no undesired modes
can appear because they would not be captured by the integration
rule. A dense sampling avoids these problems and at the same
time guarantees an accurate integration of the elastic energy (see
Section 5.5).

• We also have requirements for an admissible basis of the solution
space, as seen in the last section. Since we are now dealing with
second order quantities, the basis functions must now be twice dif-
ferentiable in order to be able to measure bending strains. As before,
they need to reproduce constant and linear functions for accurate
preservation of linear and angular momenta.

Let us first discuss the second point.

5.4 Generalized MLS

We consider the elaston to be a general-purpose integration rule for solids,
shells, and rods. The remaining theoretical component is a discretization of
the displacement field u(x̄); any discretization that is twice weakly differen-
tiable (i.e., has square-integrable second derivatives) is sufficient. We could
therefore discretize u using standard tetrahedral or hexahedral finite elements
with quadratic shape functions. This volumetric tessellation, however, would
be less suitable for shells and rods. A point-based discretization is not only
philosophically compatible with our thinking of elastons as “elastic points”,
it also allows us to easily take advantage of the agnosticism of elastons to
local form, topology (non-manifold junctions), and so forth.

Motivation for GMLS. If we recall the MLS-based discretization in Sec-
tion 4.3, we note an important limitation of the classical MLS shape func-
tions Ni(x̄): To guarantee an invertible matrix G(x̄), there have to be suffi-
ciently many samples x̄i supporting the point of evaluation x̄ (determined by
w(x̄− x̄i)), and these samples x̄i must not be coplanar.
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Figure 5.3: A simple example of a linear 1D GMLS fit: For position x̂, a linear polynomial
âx + b̂ is fitted to the three data points (x1,u1), (x2,u2) and (x3,u3) by
minimizing the weighted sum of value (black dots) and derivative (blue lines)
errors: ∑3

1([(âxi + b̂)− ui)
2 + (â− ∂ui

∂x )
2]w(|x̂− xi|).

This condition is unacceptable when simulating shells and rods, which are
naturally represented by (locally nearly) coplanar and colinear samplings.
We could perhaps artificially construct a volumetric sampling (away from the
mid-surface or centerline) by adding points along the normal direction(s),
but this too is littered with perils: too many DOFs in normal direction lead to
rank-deficient systems, since they allow more deformation modes than can
actually be measured by the (coplanar or colinear) elastons.

Pursuing a simpler approach, we discretize the displacement field using
generalized moving least squares (GMLS), an extension of classical MLS ap-
proximation to Hermite data [Atluri et al., 1999; Fries and Matthies, 2004].
With GMLS we concentrate all displacement information for the normal di-
rection(s) on point x̄i located on the mid-surface or centerline, sidestepping
volumetric sampling.

Linear GMLS. In addition to displacement DOF ui, as we had for linear MLS
in Section 4.3.1, each sample point x̄i is now also associated with derivative
DOFs ui,j ∈ IR3 (1≤ j ≤ 3). The coefficients a(x̄) are determined by fitting the
polynomial aTp(x̄) not only to the value DOF, but now also to the additional
derivative DOF (as depicted in Fig. 5.3). Formally, this simply amounts to

100



5.4 Generalized MLS

add the error term

n

∑
i=1

3

∑
j=1

w(x̄− x̄i)
∥∥∥aTp,j(x̄i)− ui,j

∥∥∥2

to J(a) in (4.11). Minimizing the resulting Hp-like norm leads to

u(x̄) =
n

∑
i=1

[
uiNi(x̄) +

3

∑
j=1

ui,jN
j
i (x̄)

]
, (5.4)

with additional basis functions for derivative information

N j
i (x̄) = p(x̄)T G−1(x̄)p,j(x̄i)w(x̄− x̄i) (5.5)

and an augmented, generalized matrix G used in the construction of Ni,j(x̄)
in (5.5) and Ni(x̄) in (4.13):

G(x̄) =
n

∑
i=1

w(x̄− x̄i)

[
p(x̄i)p(x̄i)

T +
3

∑
j=1

p,j(x̄i)p,j(x̄i)
T

]
.

Compared to (4.13), the outer products of monomial derivatives p,j guarantee
a regular matrix G in any case—for coplanar and colinear samplings, even
for a single sample point. This independence of the sampling makes GMLS
the ideal choice for discretizing deformation fields of solids, shells, and rods,
where each point x̄i now has the 12 DOFs ui, ui,1, ui,2, ui,3 ∈ IR3.

Quadratic GMLS. If higher accuracy and faster convergence are de-
sired, we can alternatively consider second order derivative DOFs
ui,jk (1 ≤ j,k ≤ 3) and additionally use a quadratic polynomial
p(x̄) = (1, x̄, ȳ, z̄, x̄x̄, x̄ȳ, x̄z̄, ȳȳ, ȳz̄, z̄z̄)T, providing 30 DOFs per sample point
x̄i. Analogously, this adds a third error term

n

∑
i=1

3

∑
j,k=1

w(x̄− x̄i)
∥∥∥aTp,jk(x̄i)− ui,jk

∥∥∥2

to J(a) and leads to

u(x̄) =
n

∑
i=1

[
uiNi(x̄) +

3

∑
j=1

ui,jN
j
i (x̄) +

3

∑
j,k=1

ui,jkN jk
i (x̄)

]
, (5.6)

with additional second-order derivative shape functions

N jk
i (x̄) = p(x̄)T G−1(x̄)p,jk(x̄i)w(x̄− x̄i) (5.7)
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and a matrix G(x̄) (for Ni, Ni,j, and Ni,jk) that is augmented a second time by
∑n

i=1 ∑3
j,k=1 w(x̄− x̄i)p,jk(x̄i)p,jk(x̄i)

T.

For notational convenience, we denote in the following all shape functions
Ni, Ni,j, Ni,jk and DOFs ui, ui,j, ui,jk simply by Ni and ui, respectively. The
discretization of the deformation field hence has the form u(x̄) ≈ ∑i ui Ni(x̄).

In our simulation framework we integrated both first and second order GMLS.
While the first order scheme allows for faster simulations (12 DOFs/sample),
the second order discretization (30 DOFs/sample) provides more accurate
results and converges to the physically correct solution (see Section 5.7). The
first and second order methods have the same structure, so that a single code
can offer an easy trade-off between speed and accuracy.

5.5 Implementation

The combination of a GMLS-based deformation field and elaston-based in-
tegration opens the door to simple and extendable point-based simulation.
Our implementation is outlined below.

Input: Point-based material representationM
1 Precomputation
2 Generate GMLS points xi by samplingM (Sec. 5.5.1)
3 Generate elastons e by samplingM (Sec. 5.5.1)
4 Compute elaston stiffness matrices Ke (Sec. 5.5.2)
5 Compute mass matrix M (Sec. 5.5.2)

6 Simulation loop
7 Assemble global stiffness matrix K (Sec. 5.5.2)
8 Boundary conditions assembly (Sec. 5.5.3)
9 Collision detection and handling (Sec. 5.5.3)

10 Time integration (Sec. 5.5.3)

Algorithm 2: The individual steps of our simulation, divided in pre-
computation and per-frame computations.

We accept as input a high-resolution point cloud M = {m1,m2, . . .}, with
associated radii {r1,r2, . . .}, i.e., we represent the material by a set of spheres
B(mi,ri). Devoid of connectivity, this format is a flexible intermediary be-
tween data that could exist in the form of a surface or volumetric mesh,
implicit surface, triangle soup, range scan, or just points.
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Figure 5.4: Left: Convergence behavior for a clamped shell under gravity, for several
ratios of elaston density to GMLS sample density. Moving from a double
to triple ratio improves convergence, but higher ratios do not lead to further
improvements. Right: Randomly rotating the elastons’ tangent axes around
the normal vector does not change the result; the two curves are coincident.
Both plots show the displacement at the rightmost point vs. DOFs. The
reference solution is computed using a high-resolution Kirchhoff-Love shell.

5.5.1 Sampling

Given an input cloud, we generate the positions {x̄1, . . . x̄n} of GMLS sample
points and elaston centers {e1, . . . ,em} by subsampling the dense material
point setM. For DOF positions x̄i, we use farthest point sampling of the
materialM, similar to Adams et al. [2008]. Starting from x̄1 = m1, subsequent
samples x̄i+1 are picked in a greedy manner to maximize the distance to
the points {x̄1, . . . , x̄i} already selected. This sampling strategy results in a
uniform distribution, but favors samples at the boundary of the material. In
our context, however, samples should ideally be located at the mid-surface
or centerline.

We therefore improve the sampling by Lloyd relaxation [Lloyd, 1957]: The
materialM is partitioned intoM1 ∪ · · · ∪Mn by associating each material
point mj ∈M to its closest sample x̄i, yielding a discrete Voronoi diagram.
In a second step the samples x̄i are repositioned to the centroids of their
Voronoi cellsMi, and these two steps are iterated until convergence. For
regions with few material samples in a certain direction, i.e., that locally
are shell- or rod-like, this approach leads to centered sample positions. For
solid regions the samples are distributed regularly in the volume. Adaptive
discretizations with varying sampling density can be achieved through a
user-defined grading field.
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Figure 5.5: A simple 2D example of our sampling algorithm. Starting from material
point representation (left) our algorithm computes DOF locations (right,red
dots) and elastons (right, blue crosses).

Simulation accuracy depends on the ratio of densities of elastons ei and of
GMLS samples x̄i (see Figure 5.4). To capture all relevant deformation modes,
elastons should be sampled at 2–3 times the axial density of x̄i. We begin
with elaston positions ei = x̄i (1≤ i≤ n) and add more elastons {en+1, . . . ,em}
by farthest point sampling, followed by Lloyd relaxation to improve the
sampling.

For theoretical completeness, our derivation of elastons in Section 5.3 as-
sumed curvilinear coordinates x̄(θ) for strain computations. In implementa-
tion we find it simpler to construct a per-elaston local flat parameterization,
so that each undeformed elaston is a small cuboid. Given the elaston cen-
ter ei and Voronoi region Mi, covariance analysis of the spheres B(mi,ri)
yields an orthogonal local frame and eigenvalues {λj}. These axes serve as
the undeformed first derivatives x̄,j (“tangent vectors”) for the computation
of the strains in (3.18) and (3.19). Note that rotating two tangents of equal
length around their common normal does not change the simulation accuracy
(Fig. 5.4,right).

Fig. 5.5 shows material points mi (left), GMLS samples x̄i (right, red), and elas-
tons ei with their local frames (right, blue). The relative lengths of the cuboid
sides are given by

√
λ1 :
√

λ2 :
√

λ3 and their absolute value is chosen such
that the elaston’s volume matches that of the Voronoi regionMi, i.e., the exact
volume to be approximated by the elaston, ensuring exact representation of
total mass independent of the sampling pattern.

As a consequence of our assumption of a locally flat parameterization the
second derivatives x̄,jk used in the computation of the bending strain (3.19)
vanish. The error introduced by this depends on the curvature of the unde-
formed state, and therefore can be reduced by a curvature-adaptive sampling
of elastons, i.e., by adjusting the grading field of the Lloyd clustering. Our
experiments have shown that the remaining errors of our discrete elaston
integration scheme are insignificant compared to the model discretization
error (see Figs. 5.4, 5.11). Furthermore, in the limit case the energy of a sin-
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gle elaston approaches the exact continuous energy density at that point,
guaranteeing vanishing integration error under refinement.

5.5.2 System Matrices

After setting up the discretization of the deformation field u(x̄) (samples x̄i,
DOFs ui) and of the elastic energy W (elaston centers ei and axes ¯̄x,j), we
proceed to compute the system matrices, i.e., the stiffness and mass matrix.
Note that we can precompute the mass matrix and the local elaston stiffness
matrices, since they remain constant throughout an elastic simulation. Using
corotational strain requires global stiffness reassembly in each time step.

Stiffness Matrix. To integrate membrane and bending strains (see (3.18)
and (3.19)), we need first and second order derivatives x̄,j, x̄,jk and u,j, u,jk. By
construction of our local elaston parameterization, x̄,j are the elaston’s axes
and x̄,jk vanish. Writing the deformation field as u(x̄(θ)), we have the first
derivatives

u,i =
∂u(x̄(θ))

∂θi
= ∇u

∂x̄(θ)
∂θi

= ∇ux̄,i , (5.8)

where ∇u is the deformation’s 3× 3 Jacobian matrix with respect to Carte-
sian coordinates. For the second order derivatives of u we apply the same
projection procedure and exploit the vanishing second order derivatives of x̄,
leading to

u,ij = x̄,i ·Hu x̄,j , (5.9)

where Hu is the Hessian of u with respect to Cartesian coordinates. This
allows us to compute both strains easily without constructing a global pa-
rameterization.

We perform a classic Galerkin discretization and replace the continuous
solution u(x̄) by our GMLS approximation ∑i ui Ni(x̄) of Section 5.4. For each
elaston e ∈ E , this leads to a local stiffness matrix Ke, which we construct
using Voigt notation [Hughes, 2000]. We identify all basis functions Ni that
have support at the elaston’s position; for each of these basis functions we
compute 6× 3 matrices Ai and Bk

i corresponding to the membrane strain α
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and the bending strains βk (k = 1,2,3), given in terms of their rows[
Ai

]
a

= (∇Ni · x̄,a) x̄T
,a ,[

Ai

]
3+a

= (∇Ni · x̄,b) x̄T
,c + (∇Ni · x̄,c) x̄T

,b ,[
Bk

i

]
a

= (x̄,a ·HNi x̄,k) x̄T
,a ,[

Bk
i

]
3+a

= (x̄,c ·HNi x̄,k) x̄T
,b + (x̄,b ·HNi x̄,k) x̄T

,c ,

with 1≤ a ≤ 3, b = ((a + 1) mod 3), and c = ((a + 2) mod 3).

Using the 6× 6 constitutive tensor C for linear material response and consid-
ering (5.2), we compute 3× 3 blocks Ke

ij of the elaston’s stiffness matrix Ke

as

Ke
ij = Ve

[
AT

i CAj +
3

∑
k=1

(
he

k
)2

12
Bk

i
T

CBk
j

]
. (5.10)

We build such a 3× 3 block for all pairs of basis functions Ni and Nj having
support at the elaston’s position, and assemble the elaston stiffness matrix Ke

from these blocks.

Corotation. As mentioned earlier, we employ linear strain measures and
constitutive relations, such that the Hessian of the energy becomes constant,
which enables fast and stable simulations by means of corotation [Müller et
al., 2002; Hauth and Strasser, 2004]. As seen in Sections 3.3.3 and 4.3.2, for
meshless simulations we can apply corotation per quadrature point, i.e., per
elaston in our case.

We start by estimating the local rotation matrix Re at each elaston again by
polar decomposition of the deformation gradient (I +∇u) and replace the
blocks Ke

ij by their rotated versions ReKe
ijR

eT. The global stiffness matrix K
can then be assembled from the rotated elaston stiffness matrices Ke. More-
over, the vector ReKe

ij(I−ReT)x̄0
j has to be added to the i-th vector component

of the external force f. The x̄0
j denote the coefficients of the basis functions Nj

when representing the undeformed configuration. They are equal to DOF lo-
cations for positional DOFs, equal to the unit vectors ek for the first derivative
DOFs in direction ek, and vanish for second order derivative DOFs.

Mass Matrix. The mass matrix can also be precomputed, since it does not
change as long as the undeformed shape of the material remains unchanged.
Unlike the computation procedures described in the last two chapters, a
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slightly different approach has to be taken here. First, because we have non-
nodal basis functions we avoid simplifications such as mass lumping and
instead compute the mass matrix classically by assembling 3× 3 blocks

Mij = I ·
∫

Ω
ρ(x̄)Ni(x̄)Nj(x̄)dΩ . (5.11)

So far, the approach is the same. However, when numerically performing
this integration, we now have to pay attention to correctly measure the
object’s inertia. Consider for instance a straight rod. Using simple Monte-
Carlo integration points placed only on the rod’s centerline leads to wrong
dynamics, since no inertia can be measured with respect to rotations about
the centerline.

Our higher order integration that we applied for deriving the elastons also
allows us to compute moments of inertia more accurately, thereby avoiding
rotation artifacts. Linearizing the basis functions Ni around each elaston’s
center θ0 = (0,0,0) yields

Ni(θ) ≈ Ni(θ0) +
3

∑
k=1

θk Ni,k(θ0) .

Computing the integral in (5.11) as a sum of elaston-like integrals of the lin-
earized shape functions—which can again be evaluated analytically—results
in the following approximation:

Mij = I · ∑
e∈E

Ve ρe

[
NiNj +

3

∑
k=1

(he
k)

2

12
Ni,kNj,k

]
,

where all functions are evaluated at the respective elaston centers. Since
the mass matrix has the same sparsity structure as the stiffness matrix, the
performance of the linear system solve during the dynamic simulation is
not influenced by computing the mass matrix in this manner. Moreover, the
basis function derivatives Ni,k are already known from the stiffness matrix
integration.

5.5.3 Implementation Details

Time Integration. As in the previous chapter, we also employ simple semi-
implicit Euler integration to advance the simulation in time (see Section 3.3.5).
The linear systems resulting from the discussed discretizations are sparse,
symmetric, and positive definite, which makes them ideally suited for effi-
cient linear solvers.
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Boundary Conditions. As we have seen in Section 3.3.2, prescribing Dirich-
let constraints is more demanding for simulations employing non-nodal basis
functions (i.e., u(x̄i) 6= ui) such as GMLS. We therefore employ the penalty-
based approach described in Section 3.3.2 since it is simple to implement,
gives satisfactory results, and does not introduce additional DOFs into the
system.

Collisions. We also perform collision detection and handling in a point-
based manner. Since the object is represented by a dense set of spheres
B(mj,rj), we detect collisions between material spheres B(mj + u(mj),rj)
in the deformed configuration. We also detect collisions with analytically
defined objects such as planes and cylinders. We respond to collisions again
using penalty forces as described in Section 3.3.2.

5.6 Extensions

Objects do not only transition between solid, shell, and rod in space, regime
changes can also develop over time. In plastic and viscous deformations,
for instance, material can be stretched into thin sheets or strands, whose
elastic behavior can be correctly captured by our approach. The topological
changes induced by cutting and fracturing can also generate material with
thin features that should be captured by the simulation system. In this section
we therefore extend the basic elaston model to support plastic flow and
topological changes.

5.6.1 Plasticity

In order to increase the applicability of the elaston approach we first adapt
the additive plasticity model presented by O’Brien et al. [2002] to our method.

Plasticity Model

In a first step, we define plastic membrane and bending strain variables αp, βk
p

for each elaston. By taking the difference between the measured geometric
strains αg, βk

g (corresponding to Eq. (3.18) and Eq. (3.19)) and the stored plastic
strains, we can define the effective elastic strain as

αe = αg − αp, βk
e = βk

g − βk
p, (5.12)
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Then the new elastic energy stored in a single elaston becomes

We =
V
2

(
αe : C : αe +

3

∑
k=1

(he
k)

2

12
βk

e : C : βk
e

)
.

The conservative forces resulting from this energy then become

∂We

∂ui
= AT

i C(αg − αp) + ∑
k
(Bk

i )
TC(βk

g − βk
p),

i.e., additionally to the conventional elastic forces of the original approach,
the gradient of the energy now also contains the elaston’s “plastic force”
contribution

fp
i = AT

i Cαp + ∑
k
(Bk

i )
TCβk

p.

This force can simply be incorporated into the right-hand side of the equation
of motion Eq. (3.8). For updating the plastic strains we rely on the same
criteria as proposed by O’Brien et al. [2002] and adapt it straightforwardly to
our strain representation.

Large Deformations

While this simple model already allows for the simulation of plastic deforma-
tion to some extent, it is not suitable for larger deformations when combined
with a linear strain measure. We therefore perform a periodic resampling
step similar to the approach of Wojtan and Turk [2008] such that the plastic
deformation is represented by the geometry and does not need to be carried
along anymore by the plastic strain variables. Similar to Müller et al. [2004a],
we do however not transfer the entire plastic strain into the rest state geome-
try which would remove any remaining elastic component, but perform the
resampling by the three steps discussed next. Note that we will always use
superscripts n for referring to quantities computed in the new rest configura-
tion. We use x̄ to denote positions in the old rest state and x for the deformed
configuration (being identical to the new rest state).

Step 1: Rest State Update

In order to get a continuous transition of the material position, without
having to worry about popping artifacts, we take the current configuration as
the new rest state, which will guarantee C0-continuity of the solution across
the resampling [Wojtan and Turk, 2008]. Material points, GMLS samples,
and elastons can all three be generated from scratch for the new rest state
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Figure 5.6: Illustration of geometric, elastic and plastic strain, as well as the new plastic
strain after resampling.

as described in Section 5.5.1. Since the new rest state entirely describes the
current positional state of the simulation, the new displacement field u can
be set to zero.

Step 2: Velocity Field Update

In order to also have a smooth transition of the motion across the resampling,
i.e., approximate C1-continuity in time, we find the new velocity field vn(x)
by minimizing the least squares error between the new and the old velocity
field, defined as ∫

Ωn
‖vn(x)− v(x̄(x))‖2 dΩn.

Note that these two fields are defined on separate domains. However, these
domains are mapped one-to-one by x(x̄) = x̄ + u(x̄). Since the two fields
are represented in their corresponding bases as vn(x) = ∑i vn

i Nn
i (x) and

v(x̄) = ∑i viNi(x̄), we can solve the least squares problem by the following
linear system

Gnvn = Gv ,

where Gn
ij =

∫
Ω Nn

i Nn
j is the Gram matrix of the new basis, and

Gij =
∫

Ωn Nn
i Nj is the matrix transferring the old velocity field into the

new configuration. In order to numerically evaluating these integrals in an
accurate manner we do again take advantage of the higher-order integration
scheme used for the elaston derivation and mass matrix computation and per-
form this integration up to second order. That it, we perform a quadratic local
approximation around the integration point which we integrate analytically.
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Step 3: Plasticity Update

The last remaining step is the transfer of the plastic variables from the old to
the new rest state. In order to understand the reasoning for the following pro-
cedure, we quickly recapitulate the three states involved (depicted in Fig. 5.6).
First, we have the undeformed configuration x̄ in which the discretization
variables live. Second, we have a (virtual) physical rest state, which is de-
scribed implicitly by the plastic strain variables αp, βk

p (dashed region), and
third, we have the current configuration x described by the actual displace-
ment field as x = x̄ + u(x̄). During resampling, we update the undeformed
configuration to the current state. The current configuration then coincides
with the new undeformed configuration. However, the physical rest state
(dashed region), which can change due to plastic deformation, should stay
the same during the resampling process. We achieve this by defining the new
plastic strain as the negative old elastic strain [Müller et al., 2004a].

Plasticity Transfer for Mapped Elastons. This idea is realized in two steps.
First, the new plastic strain can be defined in the old rest configuration. This is
done by evaluating the total membrane and bending strains contained in the
deformation field u(x̄). Note that since we are using a corotational approach,
actually the rotated deformation field at the elaston’s position is taken for
the strain evaluation. Then (5.12) can just be used to define the new plastic
strains in the undeformed configuration as −(αe + ∑k θkβk

e). Note that this
strain is still living in the old undeformed configuration. Given a direction d
in the old configuration, the stretch in this direction can be measured as

−dT(αe + ∑
k

θkβk
e)d,

where θ is the evaluation point in coordinates of the elaston’s local frame.

In a second step, in order to use this updated plastic strain in the new rest
state, it has to be transformed to the new configuration (Fig. 5.7). We assume
the local frames of two elastons in the old and new rest state configurations
are given as columns of the 3× 3 matrices T and Tn. Then we can use the
deformation gradient F = I +∇u to define a matrix M that transforms a
material direction dn in the local frame of the deformed configuration to a
direction d in the local frame of the undeformed configuration as

M = TTF−1Tn.

Using this map, we can compute stretch along dn in the new rest state by
mapping it back and evaluating it in the undeformed configuration using the
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Figure 5.7: Illustration of an elaston’s local frame in the rest state, its mapped position
in the new rest state, as well as the frame of a nearby elaston whose plastic
strain is extrapolated during resampling.

old strain. This gives us

(dn)T(αn
p + ∑

k
θk β̃kn

p )dn = −(dn)TMT(αe + ∑
k

θkβk
e)Mdn,

leading to corresponding plastic strains in the new rest state as

αn
p = −MTαeM

and
β̃kn

p = −MTβeM.

While these two strains now allow for measuring stretch in directions defined
in the new rest state, there are still two things missing.

First, the strain in the vicinity of the elaston’s center is measured as
αn

p + ∑k θkβkn′
p where θ describes the evaluation point in the elaston’s lo-

cal frame. However, in the definition given above, θ is still given in the old
rest state’s local frame and needs to be transformed with the mapping M as
well:

θ = Mθn.

Incorporating this transformation into the new bending strains gives then

βkn
p = ∑

j
Mjk β̃

jn
p ,

such that the strain at a location θn in the new rest state can finally be evalu-
ated as

αn
p + ∑

k
θkβkn

p .
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Figure 5.8: Example of dynamic resampling of a swinging bar showing elaston configura-
tions before (left) and after (right) resampling. Thanks to the smooth position
and velocity interpolation, the simulation is free of any visible popping arti-
facts.

Plasticity Transfer for Resampled Elastons. So far, we are able to transform
the plastic strain from a position in the undeformed configuration to the
corresponding position in the deformed configuration. However, we would
like to sample the new rest state independently from the old sampling. We
therefore first sample the new positions together with the new local frames.
For each of these new elastons we then look up the closest transformed
elaston and use its new coordinate frame for transferring the plastic strain to
the transformed elaston.

As last step, we then just need to extrapolate these strains to the new elastons.
We do this by defining a coordinate frame at the closest transformed elaston
where the axes correspond to the local frame of the new elaston. In this frame,
we can express the elaston’s position as θ and since we assume the strain to
be a linear function in the vicinity of the transformed elaston, we can simply
extrapolate the plastic membrane strain to the new position as

αn
p + ∑

k
θkβkn

p .

The bending strain stays the same. While different interpolation schemes
could be chosen for interpolating the plastic strain to the new elaston lo-
cations, we did not observe any problem using this linear extrapolation
approach. Fig. 5.8 shows an example of a fixed elastic bar which is resampled
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during runtime using the proposed approach and which shows no visible
popping artifacts.

5.6.2 Topological Changes

Cutting applications and effects of brittle materials that fracture under stress
are further areas where thin structures can appear dynamically and which
require a proper handling by the simulation method. For such simulations,
we need to introduce a notion of connectivity between elastons.

We do this by first computing a connectivity graph between the densely sam-
pled material spheresM, where two spheres are connected if they overlap.
The Lloyd relaxation performed in the elaston sampling step associates each
candidate point with an elaston, which also implies a connectivity graph
between elastons (see Fig. 5.9 for an example). Cutting can then be imple-
mented by simply removing connections between two previously connected
candidate points.

Figure 5.9: Overlapping material spheres implicitly imply connectivity (left). Elastons
containing disconnected material components are split up and elaston con-
nectivity is computed (right).

Before continuing the simulation, and after each change to the connectivity
graphs, a meshless equivalent of the “virtual node algorithm” [Molino et al.,
2004] is performed. This consists of two steps:

1. After the material point connectivity has been updated (according
to a cut or fracture event), first new elastons are introduced to make
sure the local connectivity graph of each candidate subsetMi is in
itself connected.This can be performed by looking at the material
subsetMi of an elaston and considering the connections between
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Figure 5.10: DOFs containing disconnected elastons in their support are duplicated for
each component.

these points. If this local connectivity graph consists of multiple dis-
connected components, the old elaston is removed and new elastons
are created, one for each component. The local frame of the new
elastons is again found through a covariance analysis.

2. For each GMLS sample point, the local connectivity graph of all
elastons influenced by that sample point is considered. If this con-
nectivity graph consists of multiple disconnected components, the
GMLS sample point is duplicated and each component gets its own
independent copy (see Fig. 5.10).

5.7 Results

In order to evaluate the presented approach, we start with a quantitative con-
vergence analysis and qualitative evaluations of our approach, followed by
experiments that demonstrate the generality of the method. For visualization
we embed a high-resolution triangle mesh into the deformation field, which
could, however, be replaced by any sample-based geometry representation
(triangle soups, point clouds).

Convergence. We performed a series of numerical evaluations to verify the
accuracy of our method. Figure 5.11 shows representative plots for solids,
shells, and rods, which are subjected to a gravitational force (and twist for
the lower-right rod). The cube is constrained at its top, the shell and rod
are clamped at their left-hand side as depicted in the insets of Fig. 5.11. The
thickness of the shell and rod is equal to one percent of the object’s side
length.
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The limit solutions of quadratic GMLS show good correspondence with our
reference solutions. We compare to hexahedral FEM for solids, Kirchhoff-
Love shells, and analytic solutions for rod bending and twisting. Linear
GMLS appears to suffer from locking (artificial stiffness for the rod). Conver-
gence is faster than simple finite elements but slower than highly-specialized
methods. Those, however, are only valid in their specific application domain
and do not cover the same range of different geometries as the presented
method.

Qualitative Verification. We also verified the qualitative behavior of our
model on a couple of well-known test cases for shells and rods. Figure 5.12
shows a thin cylinder that develops the expected buckling patterns as it is
compressed. Figure 5.13 demonstrates that we are able to reproduce the
characteristic dynamic behavior of rods, building plectonemes and helical
perversions as shown previously by Spillmann and Teschner [2007] and
Bergou et al. [2008].

Non-Manifold Connections. Real-world objects often consist of complex
assemblies of different forms of geometry. Our method is able to handle these
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Figure 5.11: Convergence of our method compared to standard approaches or analytic
solutions for a clamped solid, shell, and rod, subject to gravity and twist.
The plots show displacement values of the furthest point for increasing
(computational) complexity, measured as the number of non-zeros of the
stiffness matrix.
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Figure 5.12: A cylinder shows the typical buckling patterns as it is getting more and
more compressed.

mixed cases in a unified manner as demonstrated in Fig. 5.14. These examples
would be difficult to realize by combining several specialized methods.

Plasticity. Objects can not only transition between solid, shell, and rod
in space (Fig. 5.14 and Fig. 5.16), regime changes can also develop over
time [Terzopoulos and Fleischer, 1988]. In plastic and viscous deformations,
for instance, material can be stretched into thin sheets or strands (Fig. 5.15),
whose elastic behavior can correctly be captured by our approach.

Cutting. Thin structures can also show up dynamically due to cutting or
fracturing. We handle cutting by adapting the idea of a connectivity graph
of Steinemann et al. [2006b] and the virtual node approach of Molino et
al. [2004]. Virtual nodes also enable efficient simulation of spatially close
features. By introducing new elastons and splitting GMLS samples, we keep

Figure 5.13: Twisting a thin rod at both ends generates a plectoneme (left). Straighten-
ing a helical rod and moving its two ends back together results in a helical
perversion.
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Figure 5.14: These models show complex interaction between different types of geometry,
handled in a unified way by our approach.

distinct the motion of close features while avoiding high sampling density
(e.g., the fish’s spikes in Fig. 5.16).

Merging. To merge objects we simply resample as per Section 5.5.1. As soon
as elastons of an object fall within influence of another object’s GMLS basis,
resampling merges the objects. When merging is not desired, we use the
virtual node approach described above. Fig. 5.16 depicts four-bunny fusion.

Timings. For a representative selection of examples, Table 5.1 shows av-
erage timings for matrix precomputation, per-frame matrix assembly, and
per-frame solution of the involved linear system. It can be observed that the
time required for solving the linear system depends not only on the number
of DOFs, but also on the density of the stiffness matrix, which decreases from
solids over shells to rods. While the measured timings are comparably high,
we should not expect a very general method to outperform specialized meth-

Figure 5.15: A ball drops on a wire-dog and deforms it plastically (left). An elastoplastic
cuboid is stretched under gravity (right).
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Figure 5.16: The fish model consists of solid-, shell-, and rod-like regions (left). Four
elastoplastic bunnies are compressed and merged into a solid block (right).

ods in the sense of accuracy vs. computational costs. We believe that when
a unified code is desirable, the simplicity and generality of our approach
outweigh this limitation. Moreover, note that the matrix assembly could
easily be sped up by parallelizing the strain corotation over all elastons.

Model #elaston #samp #DOFs tpre tasm tsol
Cube cut 2688 50 1.5k 41.96 2.17 0.32
Buckling 2805 528 16k 74.59 5.06 19.62
Plectoneme 100 30 900 0.56 0.021 0.014
Perversion 1200 400 12k 3.86 0.05 0.063
Flag 5670 1490 45k 68.06 2.92 20.14
Flag low-res 4020 434 13k 20.75 0.42 0.52
Plant 1390 501 15k 30.7 4.21 3.79
Wire-dog 630 88 3k 3.35 0.24 0.027
Plastic cuboid 4000 117 1.4k 1.51 0.59 0.054
Fish 5000 540 6.5k 4.48 2.45 0.67
Squeeze bunnies 800 160 2k 0.65 0.34 0.29

Table 5.1: Timings (in seconds) for stiffness matrix precomputation (tpre), assembly of the
global stiffness matrix (tasm), and linear system solve (tsol), taken on an Intel
Core2 Duo 2.4 GHz. The first three columns denote the number of elastons,
number of GMLS samples and the number of DOFs, respectively.

5.8 Discussion and Outlook

The synthesis of elaston-based integration with GMLS-based displacement
discretization opens exciting avenues for further exploration. While interac-
tive for basic examples, our code will benefit from optimization and concrete
improvements: First, our rudimentary collision handling framework should
incorporate hierarchical detection accelerations and more stable collision
response. Second, our implementation uniformly samples the integration
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domain. Deformation modes vary widely in space and time, suggesting the
profitable use of adaptive placement of integration points guided by geomet-
ric or data-driven criteria [An et al., 2008]. Online adaptive refinement of
the simulation DOFs would help detailed features such as creases to form at
lower cost.

The expressive range of our system could be further explored. We used a
simple embedded triangle mesh to visualize a detailed surface, which com-
plicates topological changes such as cutting. Recent advanced embedding
strategies, surface tracking or point-based strategies could address this chal-
lenge. Given the promising results thus far, further refinement of our error
analysis for the method would certainly be insightful.

Beside these improvements on the actual forward simulation, it would also be
attractive to include artist-friendly control techniques into the framework to
make the generation of desired animation sequences more directable. In the
next chapter we will pursue this goal and present an example-based guiding
technique on the basis of desired poses. While we introduce this method in
the context of nonlinear FEM, the actual principles are general and should be
transferable to an extended version of the presented elaston approach that
builds up on geometrically nonlinear strain. As shown in the master thesis of
Jeronimo Bayer [2011], such an extension is indeed realizable, furthermore
also allowing for effectively eliminating numerical dissipation during time
integration.
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C H A P T E R 6
Art-directable Elastic Potentials

The previous chapters primarily considered a frequently taken approach to
mimic physics of real-world deformable objects: Starting with continuum
mechanical models we developed new discretization procedures to simplify
their practical and numerical handling. The overall goal, however, was still
aiming at generating the dynamic behavior described by the classic governing
PDEs of elasticity.

In this chapter we will go a step further and take a artist-centric view on
simulations. When animating elastic objects, their deformation is mainly
driven by the chosen material model and its parameter values. Often, an artist
starts with a vision on how an object should deform. However developing
the necessarily skills to get an intuitive understanding on how to set up
according (inhomogeneous and possibly anisotropic) material parameters is
a difficult task in general.

We therefore present an approach that flips the causal relation between mate-
rial model and resulting deformation. It allows setting up a specialized elastic
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Figure 6.1: Method Overview: The shape descriptor E(x) for the current configuration x
is projected onto the example manifold spanned by E1 and E2. The projection
E(xw) is then used to construct an elastic potential attracting x toward the
examples.

model in a very simple manner: Provided with a set of preferred example
poses, our approach generates automatically a corresponding elastic potential
that acts additionally to an existing conventional elastic potential and guides
deformations toward these preferred poses. As such, it implicitly defines a
highly complex inhomogeneous and anisotropic material model that guides
the deformations without requiring non-physical forces to be introduced.

6.1 Overview

The presented method builds on the foundations of nonlinear continuum
mechanics — but it will also extend other types of simulators to handle
example-based materials. The essential idea is to define an additional elastic
potential that attracts a solid to its subspace of characteristic deformations, to
which we refer as the example manifold.

We first introduce the example manifold (Section 6.2), then explain how to
project arbitrary configurations onto it (Section 6.3) and finally derive the
elastic example potential along with a dedicated integrator (Section 6.4).

Before we describe each of these components in detail, we will briefly sketch
their interplay during example-based simulation. Although we eventually
use an implicit solver, a clearer picture can be drawn when considering the
case of explicit example-based dynamics, which is summarized in Algorithm
3. Fig. 6.1 gives a visual illustration of the involved notions and concepts.

We start by converting the k example poses into shape space descriptors Ei
spanning the example manifold (line 1). In each simulation step, we first
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Require: initial state x, v
Require: example poses x0, . . . ,xk

1: compute shape vectors Ei = E(xi) // §6.2
2: while simulating do
3: xw = project(x) // §6.3
4: fex = −∇xW(xw,x) // §6.4
5: compute elastic forces fel and external forces fext
6: step dynamics using ftot = fex + fel + fext
7: end while

Algorithm 3: Explicitly integrated example-based simulation

project the current configuration x onto the example manifold by minimizing
(6.5) to obtain xw (line 3). In order to compute forces fex that attract the current
configuration to the example manifold, we temporarily use xw as a rest state
and construct an elastic potential W(xw,x) (line 4). Adding forces from the
conventional simulator (line 5), we step positions and velocities forward in
time (line 6).

6.2 Example Manifold

A deformation is a change in shape. We will develop a definition of the
example manifold, which describes the set of typical, desirable deformations of
a solid. Before we can define this set, we need a way to think about sets of
deformations.

Strain as a basis for the space of all deformations. When we think about
deformations, we want to “factor out” global rotation and translations, as
these do not affect shape. The same request also applies locally: if parts of
a solid (the arms of a character) transform rigidly, they have (locally) not
changed in shape. The same reasoning can be found in the construction
of nonlinear deformation measures — and, indeed, the metric tensor offers
exactly these desired properties [Terzopoulos et al., 1987]: it measures only
local stretching and shearing and is therefore a natural basis for constructing
a “space of all deformations.”

Let us now formalize this construction in the discrete setting: assume that
we are given a discrete representation of a solid in the form of a tetrahedral
mesh with n nodes and m elements. Further, let x̄ ∈ IR3n and x ∈ IR3n denote
position vectors describing undeformed and deformed configurations, respec-
tively. The deformation induced by a given configuration x can be quantified
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Figure 6.2: Example interpolation: reconstructed geometry for different convex combina-
tions of shape descriptors αE1 + (1− α)E2 (as indicated above each pose).

pointwise (equivalently) by the deformation gradient F(x̄,x) = ∂x/∂x̄, the
rotation-invariant right Cauchy-Green (“metric”) tensor C(x̄,x) = FTF, or the
Green strain tensor E(x̄,x) = 1

2(C(x̄,x)− I) (see Section 3.1.2 or [Bonet and
Wood, 1997]).

Restricting x(x̄) to be piecewise linear over elements, the Green strain is
constant per tetrahedron. Excluding degenerate configurations (with inverted
elements), the 6m-vector of elemental strains E = [E1, ..,Em]T ∈ IR6m fully
encodes any specific deformation, i.e., it serves as a unique descriptor of the
deformation, and in particular one that is invariant under elemental rotations.

While every deformation maps to a descriptor, the converse is false: Not every
descriptor is reconstructible in the sense that it corresponds to a deformation.
The space of reconstructible descriptors, the image of the map x→ E(x), is the
realizable manifold F ⊂ IR6m (see Fig. 6.1). This definition fulfills our first goal,
for we can now refer to sets of deformations, in a rotation- and frame-invariant
manner, by refering to subsets of F .

Example manifold by example interpolation Suppose that we are given
two specific example poses x1 and x2. We might interpolate between these
examples by interpolating their descriptors E1 = E(x1) and E2 = E(x2) in
IR6m:

E(w) = (1− w)E1 + wE2, (6.1)

for some interpolation weight w. This approach linearly interpolates the
stretch and shear of each element, and therefore results in smooth inter-
polation of all elements as illustrated in Fig. 6.2. As we show below, the
length of any line segment inside an interpolated element is bounded by its
corresponding length in the two examples.
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Unfortunately, the interpolated descriptor is generally not realizable: Isolated
elements can always satisfy the prescribed strains of the descriptor, however,
assemblies of elements generally cannot. In a second step, we therefore find
the closest realizable strain E(xw) ∈ F and corresponding configuration xw
by solving the least squares minimization

min
xw

WI(xw,w) = min
xw

1
2
|E(xw)− E(w)|2F , (6.2)

where the vector norm | · |F is defined to match the sum of the Frobenius
norms of the elemental strain tensors. We refer to the objective function
WI(xw,w) as the interpolation energy, whose minimization defines the projec-
tion Π : R6m→F as w 7→ xw. The image of the interpolating line segment
E(w), w ∈ [0,1] (dotted line in Fig. 6.1) under the projection Π is an example
curve E(xw) (continuous line in Fig. 6.1) on the realizable manifold F .

The procedure described above is readily generalized to an arbitrary num-
ber of poses n, where we introduce a weight wi for each example pose
Ei = E(xi). The interpolated strain then simply becomes E(w) = ∑n

i wiEi
with w = (w1, . . . ,wn)T. By using these definitions in (6.2) we obtain the
example manifold E ⊂ F of realizable strains.

Bounded Lengths. Interpolating poses in shape space gives us the useful
property of invariance under (local) translation and rotation. Having a closer
look at the right Cauchy-Green tensor C reveals additionally the following
nice property for the interpolants: Consider again two shapes x1 and x2 with
strain space vectors E1 and E2. Using the definition of the Green strain, the
linear strain interpolation E(w) can also be written as

E(w) = wE1 + (1− w)E2

=
1
2
(wC1 + (1− w)C2 − I) =

1
2
(C(w)− I)

where C1 and C2 are the concatenated right Cauchy-Green deformation
tensors of the two shapes. Now assume we are given an arbitrary direction
vector D in the undeformed configuration whose squared length is given by
DTD. Let d = FD denote the corresponding direction vector mapped to the
deformed state. We can determine its squared length by

dTd = DTFTFD = DTCD,

i.e., C measures the new length after deformation [Bonet and Wood, 1997].
If we now use the linear interpolated tensor C(w) for measuring the length
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Figure 6.3: Example projection: the current configuration (in strain space representation)
E(x) is projected onto the example manifold, yielding the closest point E(xw).

l2(w) in between two shapes, we find

l2(w) = DTC(w)D
= DT(wC1 + (1− w)C2)D
= wDTC1D + (1− w)DTC2D
= wl2

1 + (1− w)l2
2 .

This means that the squared length at the two poses gets linearly interpolated
during shape interpolation and therefore are upper and lower bounds for
all lengths achieved in poses in between. It is important to note that while
this property is true for individual elements, the interpolated strains C(w)
can in general not be realized by elements organized in meshes and a least
squares solution is sought. Nevertheless, due to the least squares optimality,
we can still expect the interpolated meshes to nicely interpolate between the
shapes. This is also supported by the various interpolation experiments we
performed.

6.3 Manifold Projection

Our ultimate goal is to formulate a force that attracts the current configuration
of the solid toward the example manifold, equivalently, attracting x toward
its projection xw on E (see Fig. 6.3).

Formulating the projection requires a suitable distance measure. Inspired
by Chao et al. [2010] and Wirth et al. [2010], we approximate the geodesic
distance on F between two shapes [Kilian et al., 2007] using the elastic
potential W(x̄,x). Many reasonable choices for W are compatible with our
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approach (see Section 3.1.2); for concreteness we choose the potential arising
from the energy density

W(x̄,x) = µ|E(x̄,x)|2F +
λ

2

(
V(x)
V(x̄)

− 1
)2

, (6.3)

where λ and µ are material coefficients and V(·) measures the volume of a
given configuration as the sum of elemental volumes. This simple extension
of the St. Venant-Kirchhoff material [Bonet and Wood, 1997] replaces the usual
second term with one that allows the simulation to recover from inversions
[Picinbono et al., 2003].

The projection x 7→ xw corresponds to the minimization

min
xw

W(xw,x) s.t. xw ∈ E

or equivalently, invoking the extremizing conditions of (6.2),

min
xw,w

W(xw,x) s.t. ∇xwWI(xw,w) = 0. (6.4)

The resulting constrained optimization problem is nonlinear both in the
objective function and the constraints. Applying the penalty method for
constraint enforcement, we minimize

Wp(xw,w,x) = W(xw,x) + γ |∇xwWI(xw,w)|2 (6.5)

with respect to xw and w, for a sufficiently large fixed penalty stiffness γ. The
weights w are constrained such that wi ≥ 0 and ∑i wi = 1. These constraints
restrict the example space to interpolations of the provided examples. Since
small extrapolations are in general not harmful, we enforce these constraints
also weakly by adding simple quadratic energies to (6.5).

6.4 Example-based Simulation

With the definition of the example manifold in place and the projection
procedure defined, we are all set for proceeding to the actual example-based
simulation. As mentioned before, our system integrates readily with existing
solid simulators, but is particularly convenient to build on top of a finite
element solver, allowing the reuse of code for deformation measure and
elastic potentials.
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Figure 6.4: Impact of scaling the material stiffness of the example potential relative to the
conventional potential’s stiffness. An elastic bar is subjected to gravity and
simulated statically with different scaling coefficients (as indicated).

6.4.1 Variational Statics

Assume that the conventional potential is given by Wc(x) = W(x̄,x). In order
to solve for static equilibrium we require that the sum of all external forces
fext equal the internal forces induced by the new, augmented material with
potential Wc(x) + Wp(xw,x) (see also Section 3.3.5). This yields the following
system of equations

∇xWc(x) +∇xWp(xw,w,x) = fext. (6.6)

In this expression we implicitly assume that the projection xw and weight
vector w are always the corresponding minimizer of (6.4). In order to handle
these two minimizations in the same framework, we can recall that equation
(6.6) is actually the necessary condition for a minimizer of the joint total
energy

Wtot(xw,w,x) = Wc(x) + Wp(xw,w,x) + Wext(x), (6.7)

where we assumed that the external forces are conservative. By minimizing
Wtot simultaneously in xw, w and x, we solve both problems at the same
time: The static solution is found with the correct projection for the example
potential.

The two elastic potentials in (6.7) can be chosen independently, but in our
implementation we use (6.3) for both of them. In order to further reduce the
number of variables, we set the material constants of the example potential
to scalar multiples of those of the conventional potential, leaving a single
parameter to set. Fig. 6.4 illustrates the impact of this parameter for a range
of practical values.
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6.4.2 Variational Implicit Euler

For dynamic simulation, we opt for the implicit Euler method and pursue a
similar strategy as for statics, i.e., we formulate the time stepping scheme as
an optimization problem. We start from the canonical equations of motion

Mẍ +∇xWc(x) +∇xWp(xw,w,x) = fext (6.8)

where M is the mass matrix. In using our augmented elastic potential, we
again assume that xw and w are minimizers of (6.4). In order to arrive at
a single optimization problem we first apply the implicit Euler integration
scheme (Section 3.3.5) to obtain a nonlinear system of equations

M(
xn − xo

h2 − vo

h
) +∇xWc(xn) +∇xWp(xw,w,xn) = fext,

where h is the step size, xn are new positions and xo and vo the old positions
and velocities, respectively. We can solve this system in an elegant way by
minimizing the objective function

H(xn,xw,w) =
h2

2
(

xn − xo

h2 − vo

h
)TM(

xn − xo

h2 − vo

h
)

+Wc(xn) + Wp(xw,w,xn) + Wext(xn) . (6.9)

By optimizing (6.9) for xn, xw, and w, we simultaneously solve the coupled
problems of projection and time stepping.

6.4.3 Numerical Optimization

The discussed optimization problems for the static and dynamic case are
solved robustly by a classic Newton-Raphson procedure. In order to improve
convergence, we employ a line search scheme and additionally apply diag-
onal Hessian correction in case of indefinite matrices [Nocedal and Wright,
2006]. The dimension of the resulting linear systems is roughly twice that
of conventional simulations. We employ a sparse direct Cholesky solver
for solving the resulting symmetric positive definite systems [Schenk and
Gärtner, 2002].

Observe that the first term of (6.4) involves the optimization of the elastic
energy with respect to the undeformed configuration. This formulation is
reminiscent of problems found in, e.g., variational shape optimization and
mesh adaptation [Thoutireddy and Ortiz, 2004]. Although the derivations
do not pose any particular problems, these so-called configurational forces are
to our knowledge new to graphics, which is why we next list the required
gradients and Hessians.
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Gradients and Hessians. In order to perform Newton optimization of the
energies (6.7) and (6.9) we need first and second derivatives of (6.2) and
(6.3). While derivatives of the second term (volume-change) in (6.3) are
quite simple to derive [Picinbono et al., 2003], the derivatives of the first
term (Green strain) are more involved and given here. We resort to index
notation in order to write the element-wise derivatives in compact form. Let
x̄mn and xmn denote the n-th components of position vectors for node m in
the undeformed and deformed configuration, respectively. Introducing the
matrix

S =


−1 −1 −1
1 0 0
0 1 0
0 0 1


and defining dij = xkiSkj and Dij = x̄kiSkj, the deformation gradient becomes

Fij = dikD−1
kj .

The first derivative of tr(ETE) = EijEij for the deformed configuration can
then be stated compactly as

∂(EijEij)

∂xmn
= 2(SD−1EFT)mn,

and the second derivative is obtained as

∂2(EijEij)

∂xmn∂xst
= (FFT)nt(SD−1D−TST)ms

+ (SD−1FT)mt(SD−1FT)sn

+ 2δnt(SD−1ED−TST)ms.

The derivatives with respect to the undeformed configuration assume a
similar form: the first derivatives are

∂(EijEij)

∂x̄mn
= −2(SD−1EC)mn,

while second derivatives follow as

∂2(EijEij)

∂x̄mn∂x̄st
= (CC)nt(SD−1D−TST)ms

+ (SD−1C)mt(SD−1C)sn

+ 2Cnt(SD−1ED−TST)ms

+ 2(SD−1)sn(SD−1EC)mt

+ 2(SD−1)mt(SD−1EC)sn.
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6.5 Example Design and Implementation

Our method relies on example poses to model the characteristic deformation
behavior of elastic solids. This section describes how to design good examples,
how to efficiently approximate geometrically and mechanically complex
models, and how to extend the range of effects by controlling the influence
region of examples.

6.5.1 Example Design

Our method accepts example poses in the form of deformed element
meshes that have the same topology as the undeformed mesh. There
are no specific requirements on the way in which these examples are
created and, for instance, any geometric modeling tool [Gain and Bech-
mann, 2008] can be used for this purpose. An alternative way of de-
signing natural examples is by using a static solver built on the same
elastic potential Wc that is also used in simulation [Barbič et al., 2009;
Mezger et al., 2008]. While the geometric modeling approach imposes vir-
tually no restrictions on creativity, this physics-based metaphor has the ad-
vantage that deformations propagate naturally (unless enforced otherwise)
and that the resulting meshes are unlikely to exhibit severely distorted or
inverted elements.

Apart from the technique used for generating examples, another important
question is what kind of examples should be used. In order to represent
natural transitions to the rest pose, we use the undeformed configuration
as part of the example set in all our experiments. Any additional example
should, first and foremost, represent characteristic or extreme poses. How-
ever, examples should also be sufficiently different in order to span a diverse
space of expressive deformations with as few poses as possible.

6.5.2 Embedding Triangle Meshes

Embedding denotes a class of techniques for deforming highly-detailed ge-
ometry in accordance to the deformations of a (potentially) much coarser
approximation (Section 3.3.3). On the practical side, embedding is a very effi-
cient way for increasing the level of detail to impressive amounts, as recently
demonstrated by the work of Wojtan et al. [2009].

Embedded meshes can augment coarse volumetric simulations with high-
quality surface details. But since the deformations of the embedded surface
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follow the coarse physics of the embedding mesh, the physical detail can
generally not be increased — or only to limited amounts. Our example-
based approach does, however, not impose as strict restrictions as the usual
fine-to-coarse coupling. Using a static solver, it is quite easy to deform an
embedding mesh such that its enveloped surface assumes a desired shape.
We can thus design examples that account for realistic deformations of sub-
element geometry (see this chapter’s teaser figure), but we can also create
examples that emulate the deformation behavior of more complex mechanics,
such as the buckling patterns of thin-walled cylinders (see Fig. 6.9).

Apart from manually designing example poses, one could also use an ap-
proach similar to Barbič et al. [2009] in order to automatically compute the
embedding mesh that best approximates a given input surface. Using this
technique, one would first run an offline simulation of a high-resolution
volumetric model and then automatically deform the embedding mesh to
match the surfaces of some characteristic frames. This approach could be also
used to generate embedding meshes for thin shell or rod simulations.

6.5.3 Local and Global Examples

Until now, we have assumed that examples are defined on the entire domain
of the solid. For such global examples, the deformation of one part of the
object directly influences all other parts as shown in Fig. 6.8. However, it is
also interesting to limit the influence of an example to individual parts of an
object. Such local examples can be used to define deformation behavior locally
and independent of other regions. Additionally, different local examples can
be combined to yield even more complex global behavior as shown, e.g., in
Fig. 6.7. Vice versa, by dividing a complex pose into local examples, we can
already specify much of an object’s characteristic behavior using only a single
deformed configuration.

On a technical note, we constrain the example space to convex combinations
of the individual poses in the case of global examples, which is necessary
in order to obtain well-behaved strain interpolation. While it may appear
tempting to allow extrapolation, doing so entails the risk of running into
invalid strains: It is a simple matter to determine weights such that the
extrapolation of two valid strain tensors yields a metric tensor with negative
values on its diagonal — but this is not meaningful since Cii = ∑k FkiFki is
always positive.

For local examples, however, the convexity constraint can be relaxed: we
can simply form groups of interacting examples such that any two poses
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Figure 6.5: An elastic cuboid deforms under gravity using no example, a twist example
and an S-shaped example.

from different groups have no deformed element in common – which are
orthogonal to each other. In this way, we can safely enforce the convexity
constraints on each group in isolation. As a practical implication, doing so
allows individual parts of an object to deform independently of other parts
and enlarges the space of preferred shapes in an efficient manner.

6.6 Results

This section presents a set of examples that illustrate different aspects of our
approach and demonstrate typical applications.

Our method allows an animator to design and simulate complex elastic
materials by merely providing a set of example poses that correspond to
characteristic, desirable, or extreme deformations. Fig. 6.5 shows a simple
example that illustrates this idea: by augmenting an elastic bar with an exam-
ple potential constructed from twist or S-shaped poses, we can significantly
change its deformation behavior and thus imprint different styles onto the
animation. Though possible in theory, achieving the same results with a
conventional simulator would require tedious tuning of an inhomogeneous,
anisotropic, and probably nonlinear material. By contrast, our approach
is intuitive and output-oriented, making it well-suited to design processes
commonly used for creative applications.

Global examples are used to directly specify preferred deformations for an
entire object, which can be understood as a what-you-see-is-what-you-get ap-
proach to material design. However, there are also many common objects
for which the characteristic deformations are rather local than global. More-
over, different local deformations can typically occur simultaneously and
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Figure 6.6: Compressed sneaker simulated as a coarse solid. Without examples (left) and
augmented with two local examples (right).

independently of each other. This kind of behavior is illustrated in the anima-
tion shown in Fig. 6.6, for which two characteristic deformations of a shoe,
namely the buckling of its toe and the bulging of its heel, are provided as
local examples to the simulation.

This animation also showcases the application of embedding: the high-
resolution geometry of the shoe deforms in accordance to the coarse em-
bedding mesh — but it does so in a very plausible way. This, in turn, is due
to the fact that the volumetric example meshes were generated such that the
embedded mesh assumes the desired deformations, irrespective of the actual
shape of the embedding mesh.

Local examples do not necessarily have to be defined over connected compo-
nents, but can also couple remote regions while still affecting only a small
part of the entire object. An example of this application can be seen in Fig.
6.7, which shows that, in an artistic setting, compressing the nose of a balloon
dog can lead to an inflation of its ears.

Our method can be used to design deformation styles which are difficult to
generate with conventional elastic materials, but are still within the range of

Figure 6.7: Local examples defined over unconnected regions showcased on a balloon dog.
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Figure 6.8: A gummy bear is equipped with expressive examples to create an impression
of personality.

what we might expect from some exotic material. We can, however, also go
a step beyond and use examples to induce deformations that clearly exceed
the realm of conventional elastic materials. An example that goes along these
lines can be seen in Fig. 6.8, which shows a gummy bear that, despite its
jelly-like appearance, seems to have a personality of its own, driving it to
deform in very peculiar ways in response to user interaction.

Similar in spirit is the example shown in the teaser figure at the beginning of
the chapter, which depicts the unfortunate incident of a toy car hitting the wall
beneath a fake tunnel. Using example-based simulation, we can make the car
react to the impact in very diverse ways, following the exaggerated-physics
style frequently found in cartoons.

Our method primarily aims at volumetric solids, but thanks to the embedding
technique it can also be used to mimic the behavior of more complex mechan-
ical models such as thin shells. The two images on top of Fig. 6.9 show our
approach applied to a cylindrical shell which, when compressed, exhibits
the typical diamond-shaped buckling patterns. Note that the example was
not computed with a thin shell simulation code but designed with a static
version of our solid simulator. The reason why the buckling patterns can still
appear in a plausible way is simply that the example potential renders these
deformations energetically favorable. As shown in the remaining images
of Fig. 6.9, we can again specify various deformation examples to obtain
diverse material effects, ranging from physically plausible deformations to
art-directed physical animation.
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Figure 6.9: A cylindrical surface mesh embedded in a volumetric simulation mesh. Using
a buckled example pose allows us to emulate thin shell behavior. By varying
the input examples we can effectively control the deformation behavior of the
embedded geometry.

Performance. We provide timings for all examples presented in this section
in Tab. 6.1. All simulations were performed with a manifold constraint
penalty of 104, a convex weight penalty of 100 and a timestep size of 0.02s.

It should be noted that the benefits of example-based elastic materials come
at the price of additional computation costs. As can be seen from Tab. 6.1,
the largest fraction of the time is spent on the assembly of the linear system,
including the computation of gradients and Hessians, and its solution. Cur-
rently, the performance of our method does not allow its use in interactive
applications such as video games. In the context of artistic material design,
however, the additional costs of our approach seem acceptable as they are

Model #DOFs tasm tnewton ttot α

Cuboid Twist 975 80 141 / 308 528 / 3064 40
Sneaker 942 107 159 / 173 680 / 1288 20
Teddy 828 59 61 / 65 1333 / 1410 40
Cylinder 227 43 57 / 328 502 / 1214 20
Car 1410 110 192 / 204 2990 / 3292 50
Balloon 1320 106 99 / 195 125 / 2196 1000

Table 6.1: Timings (in ms) for single gradient/Hessian assembly (tasm) and Newton step
with line search (tnewton, min/max time), as well as min/max total time per
timestep (ttot), taken on a single core of a Intel Core i7 960, 3.2 GHz. α denotes
the stiffness ratio between manifold and conventional potential.
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Figure 6.10: The pendulum is fixed on the top, first lifted with a handle and then released
to swing. Three hinges that only allow one-sided bending are modeled using
local example poses.

very likely to pay off in terms of time saved on tuning material parame-
ters of conventional material models. Additionally, we foresee that future
improvements on the algorithmic level can lead to substantial speed-up.

As another performance indicator, we also investigated the scaling of our
method with respect to the number of example poses. Our method can
faithfully handle the case of multiple examples as exemplified, e.g., in the
animations of the car (Fig. 6.11), the balloon-dog (Fig. 6.7), or the pendulum
(Fig. 6.10). For a quantitative analysis, we measured computation times for
an increasing number of example poses on the cuboid animation. The results
shown in Tab. 6.2 indicate that the number of examples is not a limiting factor

1 ex. 2 ex. 3 ex. 4 ex. 8 ex. 12 ex.

tasm 120 124 128 132 148 165
tslv 244 216 213 218 220 232

Table 6.2: Performance scaling for multiple examples (top row) illustrated on the cuboid
animation (Fig. 6.5). Average timings (in ms) for assembling (tasm) and
solving (tslv) the linear system in a single Newton step.
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Figure 6.11: A car with four example poses, each of which is activated during the anima-
tion in response to different impact events.

of our method: Using twelve poses instead of one, the time spent on solving
the nonlinear system increases by only 15%.

6.7 Discussion and Outlook

We have only scratched the surface of what is becoming possible with
example-based simulation. We see many promising directions which we
would like to explore in the future. While we framed our approach in the
context of deformable solids, we believe that the underlying theory can be
generalized to different elastic models, such as shells and rods, being inter-
esting in the contexts of cloth and hair simulation, for example. But also
generalizations to unified approaches as presented in the last chapter are
thinkable, due to the strain-based foundations of all these theories. Further-
more, we have not used the information obtained through the projection
on the example manifold — an exciting application could be to couple the
example weights to secondary effects, e.g., for modulating texture or surface
geometry. There is also much room for further exploring the definition of
the shape space, which currently only considers position information via the
Green strain. It might be interesting to also account for velocities (rate of
strain) or even forces. Another idea would be to directly encode different

138



6.7 Discussion and Outlook

aspects of deformation (such as incompressibility) into the definition of the
shape space and, e.g., define an example manifold that sees only deviatoric
(i.e., volume-preserving) deformations.

Our prototype implementation already indicates that our method has great
potential in designing materials and art-directing simulations. However, we
also see various possibilities for extensions and improvements. In particular
the performance of our optimization scheme should be increased and we
anticipate that Lagrangian methods will lead to better convergence than
our current penalty approach [Nocedal and Wright, 2006]. Furthermore, we
currently rely on the user to create examples that are meaningful in that
they do neither contradict each other nor strongly counteract the underlying
elastic potential. It would be desirable to develop methods that assist the
user in this process by providing appropriate feedback on the quality of
examples. Another promising direction would be to automatically select a
set of example poses from a given input animation.

139



Art-directable Elastic Potentials

140



C H A P T E R 7
Conclusion

In this chapter we summarize and discuss the principal contributions and
suggest directions for future investigations.

7.1 Discussion

In this thesis, we visited three important areas for the simulation of de-
formable objects and adapted each of them to create novel methods that
better match the challenging settings of graphics applications. In particular,
we extended the basic elasticity models for more art-directability by intro-
ducing example-based materials, proposed a unification for the different
specialized models for thin geometries by means of elastons, and presented
new discretization approaches based on flexible polyhedral elements, mesh-
less samplings, or feature-preserving cages. The thesis presented these three
parts in reversed order to clarify the motivation for each of them and better
demonstrate their interrelationship.

The combination of modern coordinates [Joshi et al., 2007; Lipman et al., 2008]
with the Galerkin principle for elasticity followed in Chapter 4 allows us to
come up with exciting and powerful simulation methods for various applica-
tions. The frequent topological changes occurring in FEM simulations during
adaptive refinement, cutting and fracturing can be handled consistently with
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a single code by introducing support for arbitrary polyhedral elements. This
became possible by suitably combining harmonic coordinates [Joshi et al.,
2007] with the method of fundamental solutions for their efficient numerical
computation. Using the manifold spanned by Green coordinates [Lipman
et al., 2008] as discretization space and introducing suitable linearizations
allowed us to generate simulations that preserve features, independently of
their actual scale. Following the idea of choosing solution subspaces with
additional benefits, using MLS as meshless interpolation scheme allowed us
to set up a corotated EFG approach that allows for the simplest discretization
possible, while providing scalable performance and accuracy.

The ease in discretization of the developed meshless approach allows poten-
tially handling complex graphics scenarios (e.g. scenarios requiring frequent
resampling due to plastic flows or large deformations) in a straightforward
manner. As shown in Chapter 4, this approach is well suited for solid ge-
ometries but becomes unstable and erroneous when handling thin geometric
forms. To generalize the method to arbitrary geometries and omitting the
requirement of specialized codes, Chapters 3 and 5 first follow the line of
specialized codes to eventually come up with point-based elastic model, the
elaston, for describing material of small extent. Applied as a quadrature
rule for larger geometries of any form, this allows reproducing the results of
specialized codes for each of these types in an unified manner. Extending
standard MLS to its “Hermite” version, GMLS allows to get rid of colinearity
issues and to generate arbitrary DOF samplings on the reduced geometries
of thin-walled objects. By further enhancing the approach with an additive
plasticity model, with a resampling and simulation variable transfer method
and with a meshless virtual node algorithm for cutting and fracturing, the
resulting code becomes broadly applicable: it can handle any dynamically
changing geometry and allows reproducing a large spectrum of material
effects.

While this elaston-based approach allows to flexibly reproduce classic for-
ward dynamics described by the models of continuum physics, controllability
of the simulation outcome is restricted to parameter tuning and depends
largely on the intuition of the user. Chapter 6 therefore introduces intuitive
example-based materials allowing the user to provide the system with a
number of key poses which are then “translated” into a corresponding elastic
potential that favors similar deformations. To realize this technically, we
introduce “strain space” as a new space of shapes in which we naturally
interpolate different deformations. Defining a projection procedure onto such
interpolations allows us to formulate an additional directing potential besides
an existing underlying material, both driving the final simulation. Compared
to other directing techniques, this control approach is part of the physics and
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does not employ artificial external forcing: it provides conservative forces
that do not interfere with the system by undermining energy conservation,
but is rather channeling the existing energy in intuitive artist-specified ways.

7.2 Future Work

We see many exciting paths for future investigations on the topics dealt in
this thesis.

Designing Subspaces. In order to realize polyhedral elements, we choose
a radial basis approach for numerically approximating the harmonic coor-
dinates within each element which in turn are then used to span the actual
solution subspace. Conceptually, we select just a subset of possible deforma-
tions that could be modeled by the entire radial basis function representation.
In this particular case, we make the choice of approximating harmonic coordi-
nates by a certain linear combination of radial bases to gain their interpolation
properties and to be able to improve the compatibility between different ele-
ment types in a mesh-based simulation framework.

This concept could, however, also be applied in a broader sense by generally
using larger function spaces and, possibly dynamically, constraining them to
get efficient simulations and special interpolation properties. For example,
feature preservation as pursued with Green coordinates in Chapter 4 could be
formulated by introducing a specific relationship between the base functions
to generically create a lower-dimensional solution subspace with additional
properties. Such an approach could improve the presented feature-preserving
simulation approach by allowing for locally supported basis functions leading
to efficiently computable sparse systems. Also since feature-preservation is
not desired at any scale of the geometry (e.g. because it could prevent volume
preservation) it might be interesting to investigate into suitable solution space
designs that enable volume preservation in the large while being feature-
preserving in the small.

Alternatively, using cage-based Green coordinates, one could also think of
a discontinuous Galerkin-type of approach [Kaufmann et al., 2008], where
these coordinates are employed per element (each being a cage) and C0-
continuity between elements is enforced weakly. This is similar in mind to
the recent approaches of Barbić et al. [2011] or Wicke et al. [2009] building
the solution spaces from local reduced bases, or the approach of Nesme et
al. [2009] and Faure et al. [2011] who are designing coarse basis functions
adapted to material inhomogeneities.
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Inspired by the construction of MLS and GMLS interpolation, a different
approach to creating special purpose basis functions lies in defining them as
minimizers of specific functionals that penalize deviation from the desired
properties, in order to “bake” these directly into the set of spanning functions.
The approach of Ben-Chen et al. [2009] is similar to this idea in that they also
enforce different properties such as rigidity and smoothness of mappings
variationally.

Unified Simulation. The main drawback of the presented unified method
consists in its rather poor efficiency. It stems from the fact that GMLS con-
centrates up to 30 DOFs at single locations such that when interacting with
neighboring samples, dense coupling between the DOFs emerge, leading to
poor performance when solving the resulting linear systems. One approach
to tackle this problem lies in parallelization. Basically all stages of the simu-
lation pipeline can be distributed well onto multiple cores; the linear solve
being the only bottleneck. Other investigations could go into replacing the
actual meshless interpolation scheme with a cheaper one, while retaining the
current convergence properties, or optimizing for the number of elastons,
similar to An et al. [2008]. Also from the application point of view there
are open problems: While the presented approach conceptually allows for
adaptive simulations, further investigations for the optimal sampling criteria
need to be performed. The proposed meshless virtual node algorithm would
also support fracturing material; however more research in the handling of
cracking embedded visualization surfaces is necessary.

While our approach offers simple setup and handling due to its meshless
nature and the reduced elaston model which makes it ideally suited for de-
manding graphics task, investigating further into comparing and reconciling
our method with other unification efforts would be insightful. In what key
properties does our method conceptually differ from higher-order FEM meth-
ods or the Cosserat point theory of Rubin [1985]? What are the fundamental
requirements a unified method needs to fulfill?

Currently, we represent the solution using a volumetric solution field while
the energy is measured at elastons on the reduced geometry. Further inves-
tigations could also go in the direction of directly formulating the discrete
models [Grinspun et al., 2003; Bergou et al., 2008] on point sets and eliminat-
ing separate DOF and elaston samplings. Such an approach could be similar
to the one of Müller et al. [2011], however with focus on physical correctness.
First steps into this direction have been pursued with the master thesis on
meshless shells of Liana Manukyan [2011], where a similar discrete model is
constructed for shell simulations.
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Example-based Simulation. Clearly, the primary deficit of the presented
example-based simulation approach is its performance which stems from the
inherent complexity of the nonlinear optimization problem. While fully cou-
pling the projection and time integration step into a single iterative procedure
is conceptually elegant, the resulting system still contains roughly twice the
number of DOFs than the according conventional simulation. Furthermore, it
ties the convergence of the projection and time integration together, therefore
not allowing for the commonly used simplifications for implicit integrators
like the semi-implicit variant [Baraff and Witkin, 1998]. Enforcing constrains
using the penalty method is also not an optimal solution and we expect
Lagrangian methods like sequential quadratic programming [Nocedal and
Wright, 2006] to perform much better. It seems also an attractive direction to
find an alternative problem formulation working solely with example weights
w instead of maintaining and optimizing additionally for the projection xw.

From an application point of view, extension to shells and rods seem also very
attractive in order to further extend this example-based control paradigm to
larger number of deformable objects such as cloth or hair. The strainspace
definition for solid FEM can be generalized straightforwardly and first exper-
iments already showed satisfactory results. In this respect, also its extension
to the presented elaston-based simulation framework is attractive, being not
too difficult based on the nonlinear extension of Jeronimo Bayer’s master
thesis [2011]. But also for other effects such as plastic deformation or frac-
turing it could be interesting to adapt the example-based simulation idea.
For example, forcing the rest state deformation during plastic flow to stay
within an example-manifold would allow restricting possible simulation
outcomes in a simple manner, being valuable e.g. in interactive settings like
car racing games, where the plastic deformation on impacts and crashes
could be controlled. Also when fracturing ductile material, an example-based
approach could be used to steer the deformation, but could also be extended
to determine the point of rupture along each such deformation.
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A P P E N D I X A
Notation and Glossary

A.1 Notation

This section reviews the notation employed throughout the thesis.

A.1.1 Operators

f,i =
∂ f
∂xi

. . . . . . . . . . . . . . . .First derivative with respect to the i-th argument

f,ij =
∂2 f

∂xi∂xj
. . . . . . . . . . . . . Second derivative with respect to the i-th and j-th

argument
∇ f . . . . . . . . . . . . . . . . . . . . gradient of f
∆ f . . . . . . . . . . . . . . . . . . . . .Laplacian of f
H f . . . . . . . . . . . . . . . . . . . . Hessian of f
ḟ . . . . . . . . . . . . . . . . . . . . . . First time derivative
f̈ . . . . . . . . . . . . . . . . . . . . . . Second time derivative
· . . . . . . . . . . . . . . . . . . . . . . .Vector dot product
× . . . . . . . . . . . . . . . . . . . . . Vector cross product
: . . . . . . . . . . . . . . . . . . . . . . Tensor double contraction
det . . . . . . . . . . . . . . . . . . . . Determinant
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A.1.2 Spaces

N . . . . . . . . . . . . . . . . . . . . . The set of natural numbers
R . . . . . . . . . . . . . . . . . . . . . The set of real numbers
Rn . . . . . . . . . . . . . . . . . . . . The n-dimensional real vector space
Rn×m . . . . . . . . . . . . . . . . . . Space of real-valued m× n-matrices
Ω ⊂R3 . . . . . . . . . . . . . . . .Object domain
Γ ⊂Ω . . . . . . . . . . . . . . . . . Object domain boundary
ΓBC ⊂ Γ . . . . . . . . . . . . . . . Boundary condition domain
V . . . . . . . . . . . . . . . . . . . . . . Infinite dimensional function space
VN ⊂ V . . . . . . . . . . . . . . . . Finite dimensional subspace of V
L2(Ω) . . . . . . . . . . . . . . . . . Space of square-integrable functions over Ω

Cn(Ω) . . . . . . . . . . . . . . . . . Space of n-times continuously differentiable func-
tions over Ω

Hn(Ω) . . . . . . . . . . . . . . . . Sobolev space of order n over Ω

A.1.3 General Notation

δij . . . . . . . . . . . . . . . . . . . . . Kronecker delta
t . . . . . . . . . . . . . . . . . . . . . . .Time
x̄ ∈R3 . . . . . . . . . . . . . . . . . Undeformed configuration
x̄(θ) : Ω→R3 . . . . . . . . . Undeformed configuration in curvilinear coordi-

nates
x(x̄) : Ω→R3 . . . . . . . . . Deformed configuration in Cartesian coordinates
x(θ) : Ω→R3 . . . . . . . . . Deformed configuration in curvilinear coordi-

nates
u(x̄) : Ω→R3 . . . . . . . . . Displacement in Cartesian coordinates
u(θ) : Ω→R3 . . . . . . . . . Displacement in curvilinear coordinates
uBC(x̄) : Ω→R3 . . . . . . .Prescribed displacement as boundary condition
v : Ω→R3 . . . . . . . . . . . . Velocity in Cartesian coordinates
ε ∈R3×3 . . . . . . . . . . . . . . Cauchy strain
α ∈R3×3 . . . . . . . . . . . . . . Linearized membrane strain
β ∈R3×3 . . . . . . . . . . . . . . Linearized bending strain
σ ∈R3×3 . . . . . . . . . . . . . . Cauchy stress
n ∈R3 . . . . . . . . . . . . . . . . Normal vector
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f ∈R3 . . . . . . . . . . . . . . . . . Force vector
W : H1(Ω)→R . . . . . . . Energy potential
fint : Ω→R3 . . . . . . . . . . Internal force vector
Wint : H1(Ω)→R . . . . . Internal potential energy
fext : Ω→R3 . . . . . . . . . . External force vector
WBC : L2(Ω)→R . . . . . .Boundary condition penalty potential
Wplane : L2(Ω)→R . . . . Plane collisions penalty potential
Wkrod : H2(Ω)→R . . . . Kirchhoff rod potential
We : H1(Ω)→R . . . . . . .Elemental energy potential
Wtot : H1(Ω)→R . . . . . Total potential energy
ρ : Ω→R . . . . . . . . . . . . . Density
C ∈R3×3×3×3 . . . . . . . . . Fourth-order Hookean material tensor
E ∈R . . . . . . . . . . . . . . . . . Young modulus
ν ∈R . . . . . . . . . . . . . . . . . . Poisson’s ratio
R ∈R3×3 . . . . . . . . . . . . . . Rotation matrix
F ∈R3×3 . . . . . . . . . . . . . . Deformation gradient
C ∈R3×3 . . . . . . . . . . . . . . Right Cauchy-Green deformation tensor
E ∈R3×3 . . . . . . . . . . . . . . Green strain tensor
Ψ : H1(Ω)→R . . . . . . . . Energy density
hi ∈R . . . . . . . . . . . . . . . . . Material thickness in direction i
a : H1 × H1→R . . . . . . . Spd bilinear form
f : H1→R . . . . . . . . . . . . Linear form
Ni : Ω→R . . . . . . . . . . . . Basis function associated to DOF i
M ∈R3N×3N . . . . . . . . . . Mass matrix
K ∈R3N×3N . . . . . . . . . . . Stiffness matrix
e . . . . . . . . . . . . . . . . . . . . . . Element domain
h . . . . . . . . . . . . . . . . . . . . . . Timestep size
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A.1.4 Tayloring Solution Subspaces

ψ(x̄) : R3→R . . . . . . . . . Radial basis function kernel
ki ∈R3 . . . . . . . . . . . . . . . . Kernel centers
bi(x̄) : Ω→R . . . . . . . . . .Boundary value function for DOF i
l(x̄) : R3→R . . . . . . . . . . Arbitrary linear scalar function
ai ∈R . . . . . . . . . . . . . . . . . Polynom coefficients
ci ∈R3 . . . . . . . . . . . . . . . . Collocation points
ξ ∈R . . . . . . . . . . . . . . . . . . Kernel offset distance
He(x̄) ∈R3×3k . . . . . . . . . Per element basis function matrix
Be(x̄) ∈R6×3k . . . . . . . . . Per element gradient matrix
w(x̄) : R3→R . . . . . . . . . Weight function
p(x̄) : R3→Rd . . . . . . . . Monomial vector
J : C∞(Ω)→R . . . . . . . . MLS cost function
G(x̄) : R3→Rd×d . . . . . Moment matrix
Mj : R3→R . . . . . . . . . . . Basis function associated to face j
sj ∈R . . . . . . . . . . . . . . . . . Green coordinates scaling factor
G(x̄, x̄′) : R3 ×R3→R .Green’s function/fundamental solution
Γi(x̄′) : R3→R . . . . . . . . Hat function on triangular mesh
H ∈R3M×3N . . . . . . . . . . .Stiffness matrix relating normals to nodal forces

A.1.5 Unifying Resultant-based Models

We : H2(Ω)→R . . . . . . .Potential energy per elaston
M . . . . . . . . . . . . . . . . . . . . Material point set
mi . . . . . . . . . . . . . . . . . . . . . Material point centers
Mi . . . . . . . . . . . . . . . . . . . . Partitioned material point set
ri . . . . . . . . . . . . . . . . . . . . . . Material point radii
ei . . . . . . . . . . . . . . . . . . . . . .Elaston centers
λi . . . . . . . . . . . . . . . . . . . . . Eigenvalues
Ai ∈R6×3 . . . . . . . . . . . . . Membrane strain matrix
Bi ∈R6×3 . . . . . . . . . . . . . Bending strain matrix
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(·)n . . . . . . . . . . . . . . . . . . . .Measures in the new domain
αe : Ω→R3×3 . . . . . . . . . Effective elastic membrane strain
βk

e : Ω→R3×3 . . . . . . . . . Effective elastic bending strain
αg : Ω→R3×3 . . . . . . . . . Geometric membrane strain
βk

g : Ω→R3×3 . . . . . . . . .Geometric bending strain
αp : Ω→R3×3 . . . . . . . . . Plastic membrane strain
βk

p : Ω→R3×3 . . . . . . . . .Plastic bending strain
G ∈R3n×3n . . . . . . . . . . . . Gram matrix
T ∈R3×3 . . . . . . . . . . . . . . Elaston local frame in undeformed configuration
M ∈R3×3 . . . . . . . . . . . . . Transformation matrix between old and new rest

state

A.1.6 Art-directable Elastic Potentials

E(x) : R3n→R6m . . . . . . Configuration to strain space mapping
xi ∈R3n . . . . . . . . . . . . . . . Example poses configuration vectors
Ei ∈R6m . . . . . . . . . . . . . . .Example poses strain space vectors
w ∈Rd . . . . . . . . . . . . . . . . Example weight vector
xw ∈R3n . . . . . . . . . . . . . . Projected example space rest state configuration
F . . . . . . . . . . . . . . . . . . . . . Realizable manifold
E . . . . . . . . . . . . . . . . . . . . . . Example manifold
H(xn,xw,w) . . . . . . . . . . . Implicit Euler objective function
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A.2 Glossary

BC . . . . . . . . . . . . . . . . . . . . Boundary condition
BEM . . . . . . . . . . . . . . . . . . Boundary element method
CM . . . . . . . . . . . . . . . . . . . .Continuum mechanics
CSE . . . . . . . . . . . . . . . . . . . Constant strain elements
DOF . . . . . . . . . . . . . . . . . . .Degree of freedom
EFG . . . . . . . . . . . . . . . . . . . Element-free Galerkin
FDM . . . . . . . . . . . . . . . . . . Finite difference method
FE . . . . . . . . . . . . . . . . . . . . . Finite element
FEM . . . . . . . . . . . . . . . . . . .Finite element method
GC . . . . . . . . . . . . . . . . . . . . Green coordinates
GMLS . . . . . . . . . . . . . . . . . Generalized moving least squares
HC . . . . . . . . . . . . . . . . . . . . Harmonic Coordinates
MLS . . . . . . . . . . . . . . . . . . .Moving least squares
MVC . . . . . . . . . . . . . . . . . . Mean value coordinates
MFS . . . . . . . . . . . . . . . . . . . Method of fundamental solutions
PDE . . . . . . . . . . . . . . . . . . . Partial differential equation
PU . . . . . . . . . . . . . . . . . . . . Partition of unity
spd . . . . . . . . . . . . . . . . . . . . Symmetric positive definite
SPH . . . . . . . . . . . . . . . . . . . Smoothed-particle hydrodynamics

152



Bibliography

[Adams et al., 2008] Bart Adams, Maks Ovsjanikov, Michael Wand, Hans-Peter
Seidel, and Leonidas J. Guibas. Meshless modeling of deformable shapes and
their motion. In Proc. of Symp. on Computer Animation, pages 77–86, 2008.

[Adams et al., 2009] Bart Adams, Martin Wicke, Maks Ovsjanikov, Michael Wand,
Hans-Peter Seidel, and Leonidas Guibas. Meshless shape and motion design for
multiple deformable objects. Comput. Graphics Forum, 2009.

[Alexa et al., 2000] Marc Alexa, Daniel Cohen-Or, and David Levin. As-Rigid-
As-Possible Shape Interpolation. In Proc. ACM SIGGRAPH, pages 157–164,
2000.

[Alliez et al., 2005] Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Math-
ieu Desbrun. Variational tetrahedral meshing. ACM Trans. on Graphics, 24(3):617–
625, 2005.

[An et al., 2008] Steven S. An, Theodore Kim, and Doug L. James. Optimizing
cubature for efficient integration of subspace deformations. ACM Trans. on
Graphics, 27(5):164:1–164:11, 2008.

[Areias and Belytschko, 2005] Pedro M. A. Areias and Ted Belytschko. Analysis
of three-dimensional crack initiation and propagation using the extended finite
element method. International Journal for Numerical Methods in Engineering,
63(5):760–788, 2005.



Bibliography
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cation of spring parameters for deformable object simulation. IEEE Trans. on
Visualization and Computer Graphics, 13:1081–1094, 2007.

[Lloyd, 1957] S. Lloyd. Least squares quantization in PCM. Technical report, Tech.
rep., Bell Telephone Laboratories, Murray Hill, NJ, 1957.

[Losasso et al., 2006] Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald
Fedkiw. Multiple interacting liquids. ACM Trans. on Graphics, 25:812–819, July
2006.

[Malvern, 1969] Lawrence E. Malvern. Introduction to the Mechanics of a Continuous
Medium. Prentice-Hall, Englewood Cliffs, NJ, 1969.

[Manukyan, 2011] Liana Manukyan. Meshless Simulation of Thin Shells, Master
Thesis. Institute of Visual Computing, ETH Zurich, 2011.

[Martin et al., 2008] S. Martin, P. Kaufmann, M. Botsch, M. Wicke, and M. Gross.
Polyhedral finite elements using harmonic basis functions. Comput. Graphics
Forum, 27(5):1521–1529, 2008.

[Martin et al., 2009] Sebastian Martin, Christoph Huber, Peter Kaufmann, and
Markus Gross. Shape-preserving animation of deformable objects. Proceedings
of Vision, Modeling, and Visualization (VMV) (Braunschweig, Germany, November
16-18, 2009), pages 65–72, 2009.

[Martin et al., 2010] Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grin-
spun, and Markus Gross. Unified simulation of elastic rods, shells, and solids.
ACM Trans. on Graphics, 29(3):39:1–39:10, 2010.

[Martin et al., 2011] Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun,
and Markus Gross. Example-based elastic materials. ACM Trans. on Graphics,
30(4):72:1–72:8, 2011.

[Mazza et al., 2005] E. Mazza, O. Papes, M. B. Rubin, S. R. Bodner, and N. S. Binur.
Nonlinear elastic-viscoplastic constitutive equations for aging facial tissues.
Biomech Model Mechanobiol., 4(2):178 – 189, 2005.

[McAdams et al., 2009] Aleka McAdams, Andrew Selle, Kelly Ward, Eftychios
Sifakis, and Joseph Teran. Detail preserving continuum simulation of straight
hair. ACM Trans. Graph., 28:62:1–62:6, July 2009.

[McAdams et al., 2011] A. McAdams, Y. Zhu, A. Selle, R. Tamstorf, M. Embrey,
J. Teran, and E. Sifakis. Efficient elasticity for character skinning with contact
and collisions. ACM Trans. on Graphics, 2011.

163



Bibliography

[McNamara et al., 2004] Antoine McNamara, Adrien Treuille, Zoran Popović, and
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[Popović et al., 2000] Jovan Popović, Steven M. Seitz, Michael Erdmann, Zoran
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