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Abstract

Mechanical creatures are becoming more and more ubiquitous in our society.
While traditionally confined to industrial settings, robotic creatures and anima-
tronics have arrived at the consumer-level in the form of electro-mechanical toys
or robotic companions. Moreover, recently advanced technology such as 3D-
printers, off-the-shelf servo motors or easy to program microcontrollers opened
the door to a new generation of animated physical characters which can be de-
signed according to preferences and needs of human individuals. However, even
given the machinery required for the manufacturing, the design itself remains a
major challenge. Unlike for digital animation, not all motions are feasible in phys-
ical reality. Therefore, this work aims at developing methods and algorithms to
simplify the design of personalized robots and animatronics for both expert engi-
neers and casual users. A guiding principle is to automate the tedious parts of the
design process while providing the users with sufficient freedom to achieve their
creative and functional goals. In this thesis, the problem of creating design tools
that enable average users to create compelling 3D-Printed mechanical characters
is divided into three sub-projects: a tool for authoring the structure and motion
of rigidly articulated robots, a tool for creating 3D-printed compliant mechanisms
and a tool for designing cable-driven kinematic chains and trees.

We start by introducing the fundamental models, simulation techniques and op-
timization methods on which the core contributions of this thesis are built. We
describe how rigid bodies can be combined to produce deformable articulated
characters and how to treat the different degrees of freedom in a unified manner
during simulation. Moreover, we explain how to couple the unknown degrees of
freedom of a simulation with the unknown design parameters, while optimizing
for some user-specified goals.

The following part of the thesis introduces an interactive design system that al-
lows casual users to quickly create 3D-printable robotic creatures. We show how
our approach can automate the tedious parts of the design process while provid-
ing ample room for customization of morphology, proportions, gait and motion
style.

We then extend our framework by developing a computational tool for design-
ing compliant mechanisms. The proposed method takes as input a conventional,
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rigidly-articulated mechanism defining the topology of the compliant design. Af-
terwards we automatically replace the different traditional joint types with pa-
rameterized flexures, to obtain a compliant replica of the input mechanism.

In the last part of the thesis, we present an optimization-based approach for the
design of cable-driven kinematic chains and trees. Our system takes as input a
hierarchical assembly consisting of rigid links connected together with hinges.
The user also defines a set of target poses or keyframes using inverse kinematics.
Our approach places torsional springs at the joints and computes a cable network
that allows us to reproduce the specified target poses.
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Sommario

Le creature meccaniche stanno diventando sempre più presenti nella nostra so-
cietà. Tradizionalmente limitate all’ industria, le creature robotiche e animatroni-
che sono arrivate al livello dei consumatori sotto forma di giocattoli elettromecca-
nici o compagni robotici. Inoltre, alcune tecnologie avanzate recentemente, come
stampanti 3D, servomotori pronti all’uso o microcontrollori di facile programma-
zione hanno aperto le porte ad una nuova generazione di personaggi fisici e ani-
mati che possono essere progettati secondo le preferenze e le esigenze degli indi-
vidui. Tuttavia, anche considerando la disponibilità dei dispositivi necessari per
la produzione, la progettazione stessa rimane una grande sfida. A differenza del-
l’animazione digitale, non tutti i moti sono realizzabili nella realtà fisica. Pertanto,
questo lavoro mira a sviluppare metodi e algoritmi per semplificare la progetta-
zione di robot personalizzati e animatronici, sia per esperti che per principianti.
Un principio guida è quello di automatizzare le parti ardue del processo di pro-
gettazione, fornendo agli utenti la libertà sufficiente per raggiungere i loro obiet-
tivi creativi e funzionali. In questa tesi, il problema della creazione di strumenti
di progettazione è suddiviso in tre sottoprogetti: uno strumento per la creazio-
ne delle strutture e dei movimenti di robot rigidamente articolati, uno strumento
per la creazione di meccanismi flessibili e uno strumento per la progettazione di
catene e alberi cinematici guidati da cavi.

La prima parte della tesi introduce i modelli fondamentali, le tecniche di simu-
lazione e i metodi di ottimizzazione su cui vengono basati i contributi di questa
tesi. Descriviamo come i corpi rigidi possono essere combinati per produrre per-
sonaggi articolati deformabili e come trattare i diversi gradi di libertà in modo
unificato durante la simulazione. Inoltre, spieghiamo come combinare i gradi di
libertà di una simulazione con i parametri di progettazione, per raggiungere gli
obiettivi specificati dall’utente.

La parte successiva della tesi introduce un sistema di progettazione interattiva
che consente agli utenti di creare rapidamente creature robotizzate stampabili in
3D. Mostriamo come il nostro approccio possa automatizzare le parti ardue del
processo di progettazione, offrendo ampie possibilità di personalizzazione della
morfologia, delle proporzioni, dell’andamento e dello stile di movimento.
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Successivamente estendiamo il nostro programma informatico sviluppando uno
strumento computazionale per la progettazione di meccanismi flessibili. Il meto-
do proposto prende come input un meccanismo convenzionale e rigidamente ar-
ticolato che definisce la topologia del meccanismo. Successivamente sostituiamo
automaticamente i diversi tipi di giunti tradizionali con flessioni parametrizzate,
per ottenere una replica flessibile del meccanismo dato come input.

Nell’ultima parte della tesi, presentiamo un approccio per la progettazione di ca-
tene e alberi cinematici guidati da cavi. Il nostro sistema assume come input un
gruppo gerarchico costituito da collegamenti rigidi collegati con cardini. L’uten-
te definisce anche un insieme di pose o di fotogrammi utilizzando la cinematica
inversa. Il nostro approccio introduce delle molle torsionali locate nelle giunture
e calcola una rete di cavi che ci permette di riprodurre le posizioni specificate in
precedenza.
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C H A P T E R 1
Introduction

Crafting and animating compelling digital characters is the vision of the
modern computer graphics field. Fueled by the demand of ever more visu-
ally appealing and realistic characters in movies and games, a large number
of tools to design, edit, animate, and render virtual characters were devel-
oped in the past decades. Undoubtedly, the presence of convincing digital
characters in the movie and game industry is important. However, many
applications also require the physical realization of such characters. Be it as
attractions in amusement parks, complex electro-mechanical toys, or robotic
companions; mechanical characters have a broad variety of applications in
entertainment and beyond.

The transition from the digital to the real world is a tedious process. The
characters that once were digitally animated, suddenly start to have mass,
and material properties, and their behavior is governed by complex physi-
cal laws. The same character, which was visually plausible, is not functional
in the real world. An similar fate is also reserved for the established design
tools, which have been developed for creating animations. These tools are
not useful when dealing with tangible characters, where the artistic freedom
is restricted by physical reality. Moreover, the complexity of the design pro-
cess largely increases due to the high number of parameters, all of which
can potentially affect the shape and behavior of the final result. The effect of
a change in parameters is often unintuitive due to nonlinearities embedded
in the underlying physics laws which govern the real world. The obstacles
introduced by physical limitations strengthen the need for a dedicated set of
tools, tailored for the the design of manufacturable characters.

1



Introduction

There are many successful examples of functional robots and animatronics
in industry and research, but their design, structure, and control policies are
tightly coupled. A change in any of these designs, either in hard- or software,
will inevitably propagate in a modification of the remaining components.
A single robotic or animatronic design may require a joint effort of experts
for many years, resulting in a costly product realization process in terms of
both material and personnel. The reason behind the expensive process is
a high number of time-consuming iterations required to converge towards
a functional and efficient design. The iterations in the design process are
based on a trial and error process, which most of the time requires a long
implementation time when physical creatures are involved.

Some tools were developed with the intent of predicting the result of editing
the design parameters, thus alleviating the tedious task of realizing a mul-
titude of physical prototypes. Specifically, physics simulations can provide
reliable results in a fraction of the time needed by manufacturing processes.
Simulation is, therefore, well suited to be the back-bone for such tools. How-
ever, the design parameters of physical characters lie in a high dimensional
space and simulation alone is not enough to guide novice and expert users
towards their goals. Conversely, a more intuitive system would be one with
the capability of letting the user directly express some high-level goals, leav-
ing the task of finding the parameters that best satisfy them to the system.
With this purpose in mind, this thesis proposes different tools which au-
tomatically search the design space to find a set of parameters leading to
mechanical structures which meet a user’s requirements.

The demand for such systems is not limited to a handful of experts. Our
society is turning towards a direction of customization of different types
of goods. From an individual’s car or furniture to one’s clothing or jew-
elry, personalization prooved to be an important need for a consumer, also
demonstrated by the fast growth of craft stores and the 3D printing indus-
try. The need of being able to realize the concepts a user has in mind, asks
for intuitive tools with the ability to bring an individual’s ideas to life. The
inspiration for this thesis is based on the potential of personalization of me-
chanical creatures. We, therefore, aim at developing systems that provide
different interfaces and intuitive tools for easy customization, while the sys-
tem takes care of the functionality.

One of the goals for roboticists is to be able to realize robots and animatron-
ics which have the same complexity and characteristics of living creatures.
Complex tasks such as walking, galloping, swimming, flying besides grasp-
ing, jumping, and throwing, are achieved with grace and elegance in the
animal kingdom. Bones, muscles, and tendons cooperate to perform a par-
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ticular action, being the result of a harmonious combination of stiffness and
elasticity. However, mechanical character realized by humans struggle in
performing complex tasks as efficiently and smoothly as living creatures.
One of the reasons being that when roboticists and engineers design robots
or moving machines, they commonly use very stiff or rigid parts connected
through hinges. Elastic deformation provides advantages such as adapta-
tion to unpredicted environmental changes, shock absorption, and energy
storage. However, in the history of robotics, piecewise rigid creatures are
omnipresent while compliant designs are far rarer. The reason behind it is
that, even if compliant structures can integrate different functions into fewer
parts, they can be much harder to design. The coupling between kinematics
and actuation torque has an unintuitive behaviour, and material failure can
occur when stress is concentrated in a single point.

Thanks to the development of new materials and the drastic increase of com-
putational capabilities, developers and researchers have increased our abil-
ity to design and analyze mechanisms that can combine rigidity and compli-
ance. This thesis addresses the long-term goal of empowering experts and
casual users to design, manufacture, and maintain robots and animatron-
ics capable of performing complex tasks by mimicking nature. The obstacle
in the way of this goal must be divided into subproblems that need to be
treated individually, due to their complexity. This thesis is thus split into
three different research directions: the personalization of stable walking mo-
tions for rigidly articulated robots, the creation of compliant mechanisms,
and the design of cable-driven articulated structures. By solving these three
problems, the gap between technology and makers can partly be filled.

We start by addressing the problem of generating stable locomotion for
legged robotic creatures. Different techniques can be used to design a system
that allows the user to specify high-level motion goals for walking creatures.
The property shared among them is that they try to predict which sequence
of actions would lead to a specific target goal. One of the distinctions be-
tween the different strategies is how far in time they try to foresee a certain
event to happen. One can choose between a global and local overview of the
motion plan. By using a global overview (long-horizon), the system can opti-
mize the entire action plan simultaneously. By opting for a local plan (short-
horizon), the system optimizes for the immediate actions to take. Both come
with advantages and disadvantages. A long-horizon optimization enables
early decisions making since the full plan is available. However, this comes
with the drawback that every optimization step takes a long time to com-
pute, due to a large number of space-time variables that need to be taken
into account. A short-horizon control system needs to predict fewer time-
steps, leading to an improvement in computational performance. However,
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Introduction

such a system has the incapability of finding solutions which are globally
optimal. By analyzing the problem and the requirements of an easy-to-use
interface that gives control to the user, we propose to use a long-horizon
method. Such a decision allows us to automatically compensate for design
choices which can bring a creature to fall. Since inexperienced users regu-
larly make design choices which might be poor in terms of locomotion sta-
bility, we need to safeguard against them. In Chapter 4 we describe how to
use a long-horizon motion planner, hence avoiding imbalance, while keep-
ing computational performances high and accomplishing interactivity.

Afterwards, we focus on the challenges posed by the design of compliant
mechanisms. Methods to develop compliant mechanisms have been stud-
ied for a long time in the field of mechanical engineering. However, such
methods assume small deformations and focus on specific functionalities,
making them unsuited for our task. When the goal is to create compliant
components for a walking robot, propulsion and stability need to be consid-
ered. Therefore, the mechanisms we design need to reach complex motions
while taking into account the structure’s relevant properties. Such proper-
ties can be the work required to actuate a mechanism, the stiffness along and
orthogonal to the direction of movement, or the material failure. We seek
the development of an interface that allows casual users to design compli-
ant mechanisms that exhibit a vast spectrum of motions and have properties
that make them well-suited to be used as robotic or animatronic compo-
nents. Our tool leverages previous research conducted in rigidly articulated
characters, by taking as input a traditional assembly and convert it into a
function-preserving compliant design. By proposing a conversion tool, we
allow the use of previously-realized content available on-line.

Finally, we transition to motion propagation using cables. Taking inspira-
tion from the tendons found in animals, we investigate remote controlling
using a network of cables. The system we propose takes as input a virtual
character together with a corresponding animation. It, then, automatically
computes the set of cables routings, together with the relative forces needed
to reproduce the input animation on a physical character. The computed
cable-network is optimized for reduced complexity and minimal torque re-
quired to animate the final physical character. The more cable introduced to
the structure the more freedom and control the character has; a trade-off be-
tween motion fidelity and design complexity is left to the user. The resulting
structure is built from rigid components representing the skeleton provided
as input, where the virtual joints are replaced with torsional springs. Differ-
ently from traditional articulations, the added springs favor a rest configu-
ration, which allow us to actuate the character using cables. We then route
a cable-network through the character’s structure with the use of pulleys
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1.1 Contributions

and remotely actuate the cables with either servos or levers. Compared to
techniques which comprehend the use of one actuator per joint, our method
enables the creation of physical animated characters which are compliant,
lighter, and more energy efficient.

1.1 Contributions

This thesis makes the following main contributions:

• A fast optimization-based solution that generates stable motions for
legged robots of arbitrary designs. To warrant feedback at interactive
rates, we depart from conventional space-time approaches, leverag-
ing a geometric view of trajectory optimization. Tightly integrated
with the optimization, an intuitive set of interactive tools allows the
user to design and edit the morphology, proportions, gait and mo-
tion style of a robotic creature. In order to translate the digital de-
signs to the physical world, we automatically generate geometry for
the mechanical structure of the robot such that it can be fabricated
using 3D-printing and off-the-shelf servo motors.

• An assistive tool that enables non-expert users to leverage the ad-
vantages of compliant mechanisms while avoiding common pit-
falls. Our method takes as input a conventional, rigidly-articulated
mechanism defining the topology of the compliant design. This
input can be both planar or spatial, and we support a number of
common joint types which, whenever possible, are automatically
replaced with flexures drawn from existing catalogs [Smith, 2000;
Howell et al., 2013]. As the technical core of our approach, we
describe a number of objectives that shape the design space in a
meaningful way. The list of objectives includes trajectory matching,
collision avoidance, lateral stability, resilience to failure, and min-
imizing motor torque. To represent our flexures, we use discrete
elastic rods [Bergou et al., 2008; Bergou et al., 2010], extending the
model to predict volumetric stresses. Optimal designs in this space
are obtained as solutions to an equilibrium-constrained minimiza-
tion problem that we solve using a variant of sensitivity analysis.

• The first algorithm to design artist-controlled, fabricable cable-
driven kinematic chains and trees. The method uses a reduced coor-
dinate formulation that couples actuation forces to joint angles and
routing points, enabling quasi-static simulation and co-optimization
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of routing points and control forces. A two-step optimization ap-
proach is put in place to size and place a complex cable network
to match a set of user-specified target poses or keyframes in a least
squares sense.

1.2 Publications

This thesis is based on the following peer-reviewed publications:

V. MEGARO, B. THOMASZEWSKI, M. NITTI, O. HILLIGES, M. GROSS, and S.
COROS. Interactive Design of 3D-printable Robotic Creatures, Proceedings of
ACM SIGGRAPH Asia (Kobe, November 2 - November 5, 2015), ACM Transac-
tions on Graphics, vol. 34, no. 6, pp. 216:1–216:9.

V. MEGARO, E. KNOOP, A. SPIELBERG, D. LEVIN, W. MATUSIK, M. GROSS, B.
THOMASZEWSKI and M. BÄCHER. Designing Cable-Driven Actuation Net-
works for Kinematic Chains and Trees, Proceedings of the 2017 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Los Angeles, United
States, July 28-30, 2017), pp. 15:1–15:10.

V. MEGARO, J. ZEHNDER, M. BÄCHER, S. COROS, M. GROSS, and B.
THOMASZEWSKI. A Computational Design Tool for Compliant Mecha-
nisms, Proceedings of ACM SIGGRAPH (Los Angeles, United States, July 30 -
August 3, 2017), ACM Transactions on Graphics, vol. 36, no. 4, pp. 82:1–82:12.

6



C H A P T E R 2
Related Work

Lately, the field of Digital Fabrication and Computational Design has ac-
quired a lot of attention by the Computer Graphics community. While being
of recent interest, this area of research finds a place at the intersection of
various, long studied, disciplines. Among others, we find for example com-
puter graphics, mathematics, engineering, robotics, and mechanics. Tools
oriented in the direction of computational design frameworks may borrow
and extend discoveries and technologies from the above-listed disciplines.
The employment of existing techniques can span from the representation of
hierarchical articulated characters to physics simulation or the preservation
of certain mechanical properties. This chapter provides an overview of the
current work related to the research fields connected to this thesis.

2.1 Robotics

While the study of the various genres of robots started decades ago, the
field of robotics remains a hot topic among both the academic community
and industry. The creation of the first intelligent robot and the introduc-
tion of industrial robotic arms in the assembly lines dates back to the early
seventies [Waseda University, 1972; KUKA, 1974]. From that point on, en-
gineers and robotiscists tried to make robots more efficient [Makino, 1982;
Massachusetts Institute of Technology, Dept. of Electrical Engineering and
Computer Science, 1989], capable of different functions [Massachusetts Insti-
tute of Technology, 1995], and able to mimic [Honda Motor Co., Ltd., 1993;
Honda Motor Co., Ltd., 1996; Honda Motor Co., Ltd., 1997; Honda Motor
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Co., Ltd., 2000; Honda Motor Co., Ltd., 2005] and interact [Sony Corpora-
tion, 1999; Sony Corporation, 2003] with humans.

2.1.1 Design-Specific Robotics

The ability to move is a desirable skill for robots. The capability of robots
to transport themselves from place to place makes them more versatile, al-
lowing a single robot to fulfill different tasks in different locations. While
humans can locomote at ease in various environments and different con-
texts, design a control policy for legged robots is an arduous task. In
recent years a lot of effort was put into the study of locomotion strate-
gies for different types of robot structures and terrain features. The Mas-
sachusetts Institute of Technology has proposed a quadruped, the MIT
Cheetah 1 [Seok et al., 2013], which was built with the goal of having a
highly efficient legged robot with low cost of transport per unit of mass.
To reach such a goal, Seok et al. introduced and implemented four de-
sign principles that minimize the energy loss with the environment: the
use of high torque density motors, low impedance transmission, energy-
regenerative electronics and design architecture that reduces leg inertia.
The Cheetah 1 can perform fast running motions while keeping its energy
consumption low. However, the robot comes with the limitation of being
held in a plane, constraining it to the inability of full three-dimensional
movements. The next-generation MIT robot, the Cheetah 2 [Park et al.,
2014], is a full 3D robot, which employs actuator torques on the leg and
shows major differences in the control algorithm. While the Cheetah 1 con-
trol policy is based on impedance and position tracking, its more recent
model uses impulses to achieve the desired stance and total stride dura-
tion. The skills of the Cheetah 2 were enhanced by Park et al. [2015;
2015], where the control system components were designed to enable the
quadruped to run at a wide range of speeds and autonomously jump over
obstacles up to 40 cm in height. The Massachusetts Institute of Technol-
ogy also introduced the MIT Super Mini Cheetah (SMC) [Bosworth et al.,
2015], a quadruped below 10 kg in mass and below 10k dollars in cost.
The small robot can control the force and impedance between each foot and
the ground, allowing for performances such as walking, turning, pronking
and jumping. The type of terrain on which the robot operates affects the
ground impedance and surface friction, making the task of modeling the
foot-ground interaction a priori challenging. Bosworth et al. [2016] present
experimental data of the SMC hopping on hard and soft grounds. They
show that controllers tuned for each surface perform better for each partic-
ular surface type.
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Other quadrupedal robots were presented in the robotics community. Hut-
ter et al.[2012] introduced StarlETH, a robot actuated with torque-controlled,
highly compliant series of elastic actuators, designed to study fast, efficient
and versatile locomotion. Gehring et al. [2013] presented a control frame-
work for quadrupedal robots able to locomote using several gaits and tested
the result on the StarlETH. Semini and colleagues [2011] developed a ver-
satile hydraulically powered quadruped robot (HyQ). The robot was used
to study motions such as running and jumping, but also careful navigation
over rough terrains [Winkler et al., 2015]. At EPFL another Cheetah robot
was developed [Rutishauser et al., 2008], featuring three-segment panto-
graphic legs with passive compliant knee joints. The Cheetah legs [Sproe-
witz et al., 2009] are light-weight, retractable and actuated using RC servo
motor mounted proximal where the force transmission is achieved using a
Bowden cable system. Tuleu et al. [2011] present two model-free locomotion
control approaches for the EPFL Cheetah: an open loop central pattern gen-
erators, and an open and closed-loop dynamical moment primitives. They
show that thanks to the passive-compliance of the legs, the robot requires
less control effort in the knee joints. The Cheetah-cub [Spröwitz et al., 2013]
was also built upon passive compliant legs with a dedicated open-loop loco-
motion controller. The experiments show that both in simulation and reality
the robot shows self-stabilizing properties.

2.1.2 Morphology Exploration

The problems addressed by this thesis are closely related to the field of
robotics, where a long-standing goal is to automate the design of robotic
and mechanical systems based on high-level functional specifications. While
in the aforementioned sequence of work focuses on develop, study, and
improve robots with specific designs and skills, our aim is to help ca-
sual and expert users creating creatures and characters with a variety of
shapes and functionalities. Thanks to the capability of exploring the vast
continuous and discrete space of robot morphologies, Sims’ work [1994]
on evolving virtual creatures, inspired the investigation of a variety of
evolutionary methods that aim to co-design a robot’s structure and con-
trol inputs [Leger, 1999; Lipson and Pollack, 2000; Auerbach et al., 2014;
Methenitis et al., 2015], and this effort continues today [Ito et al., 2016;
Konsella et al., 2017]. In Chapter 4, although having overlapping goals,
rather than relying on stochastic algorithms, we focus on putting the user
in the loop with a set of easy-to-use editing tools that provide control over
the creative process.
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2.1.3 Digitally Fabricated Robots

Digital fabrication and its new prototyping methods open the door for a new
generation of robots which feature fast fabrication, assembly, and reconfigu-
ration. Cutkosky et al. [2009] examine different materials and structures that
contribute to the performance of running and climbing. Combining stiff-
ness and compliance, they make the robots more robust and less demand-
ing to control than traditionally designed robots. Researchers have inves-
tigated the venue to self-assembling and self-reconfiguring robots, driven
by the advantages such as easier transportation and inexpensive deploy-
ment. Spröwitz et al. [2014] propose a modular robotic system that, employ-
ing physical latches, allows the robot to self-reconfigure and locomote. In-
stead, Sun et al. [2015] rely on the pressure change to actively alter the shape
of planar self-assembling robots. Other methods that allow users to create
origami-inspired, foldable robots have been proposed [Mehta and Rus, 2014;
Mehta et al., 2014]. The design system introduced in Chapter 4 leverages
similar digital fabrication techniques and easy-to-obtain hardware. How-
ever, we enable users to freely explore a vast space of legged robot designs:
two or more legs, point or area feet and articulated spines are all handled in
a unified manner by our framework.

2.2 Motion Planning

To generate motions for the physical creatures presented in Chapter 4 we
draw inspiration from the rich literature on this topic from both com-
puter animation and robotics. In particular, the motions we generate are
similar to those used by sophisticated robots like Boston Dynamic’s Little
Dog [Neuhaus et al., 2011]. A property of the control solutions reported
in the robotics literature are usually linked intimately to the robots that
they are designed for. We depart from coupling and rely on a fully auto-
mated approach to generate optimal walking motions for creatures of ar-
bitrary morphologies. The trajectory optimization method we use for this
purpose is inspired by a well-known class of animation methods based on
space-time constraints [Witkin and Kass, 1988] which continue to be actively
investigated to date [Wampler and Popović, 2009a; Mordatch et al., 2012;
Zimmermann et al., 2015; Park et al., 2016]. However, motivated by the
need to develop a computationally efficient system that supports interac-
tive design, as well as by our goal of creating robotic creatures capable of
walking stably using only commodity hardware, in Chapter 4 we develop
a model that presents important differences. Briefly, rather than modeling
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2.2 Motion Planning

full system dynamics and assuming idealized joint torque actuators, we di-
rectly use joint angles as control variables and explicitly enforce a dynamic
stability objective. In order to achieve locomotion stability, we analyze the
center of mass trajectory, and we constrain the position of the Zero Moment
Point (ZMP) to be inside of the convex hull of the feet in contact with the
ground. This technique to perform stable walking motion is not new to the
robotics community, and it is identified as the Zero Moment Point stability
criterion. Even though the concept of ZMP has been known for a long time
[Vukobratović and Borovac, 2004], it is still widely-used, and other criteria
based on it remain of crucial importance [Pratt et al., 2006; Pardo et al., 2016;
Winkler et al., 2017].

Machine learning algorithms were conceived during the last years of the
fifties [Samuel, 1959], but thanks to the recent advance of general purpose
GPU and the resulting increase in parallel computational power, machine
learning was applied to all sort of applications. During the past years, an in-
creasing number of papers tackled motion planning and locomotion stability
problems using machine learning techniques. Due to the high dimensional-
ity of the parameter space in humanoid motion, Stulp et al. [2010] propose
to use path integrals [van den Broek et al., 2008] to derive a probabilistic
reinforcement learning approach which is more numerically robust and re-
quires less state sampling during the high dimensional space exploration.
Geijtenbeek et al. [2013] presented a muscle-based control method for sim-
ulated bipeds. In their work both the muscle routing and control parame-
ters are optimized, which yields a generic method that supports a variety of
creatures. Agrawal et al. [2013] propose an optimization framework to gen-
erate diverse variations of physics-based character motions. They describe
actions to be underconstrained and optimize for diversity using the Covari-
ance Matrix Adaptation (CMA) method. The transfer of human movements
to humanoid robots was also investigated. To obtain stable motion trans-
fer, Vuga et al. [2013] base their controller on an approximate model of the
robot dynamics combined with a model-free reinforcement learning to im-
prove accuracy and balance. Different methods to employ Neural Networks
to learn control policies have been proposed to teach two-dimensional and
three-dimensional quadrupeds to run and jump over flat and rough ter-
rains [Gay et al., 2013; Peng et al., 2015; Peng et al., 2016; Peng et al., 2017a;
Peng et al., 2017b]. The use of deep networks allows for model-free feedback
controllers which once trained can respond with less delay between sensing
and acting. In Chapter 4 we focus on interactivity, which is achieved without
any prior knowledge of the character shape and morphology. Integrating a
learning-based approach into our system would be non-trivial, due to the
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computationally heavy training step that would be required every time the
user changes the robot structure.

2.3 Compliant Mechanism Synthesis

Compliant mechanisms achieve motion through elastic deformation and
have been the subject matter of a large body of prior art. An exhaustive re-
view is beyond the scope of this thesis and we focus our discussion on mech-
anism synthesis, referring the interested reader to excellent books [Smith,
2000; Howell, 2001; Howell et al., 2013] and a recent survey [Albanesi et al.,
2010] on the subject matter.

Early synthesis techniques use structural optimization [Kota and Anantha-
suresh, 1995] that bear the advantage of supporting topological changes.
While initially targeting planar mechanisms, follow-up work [Frecker et
al., 1997] addresses the design of compliant spatial mechanisms. Wang et
al. [2009] propose a stiffness matrix representation and target synthesis of
planar mechanisms through topology optimization. Like these works, in
Chapter 5, we account for kinematic and structural requirements in the de-
sign process. However, we base our formulation on elastic rods [Bergou
et al., 2008; Bergou et al., 2010] instead of beam deflection theory [Kota
and Ananthasuresh, 1995; Frecker et al., 1997] or small-displacement anal-
ysis [Wang and Chen, 2009], significantly increasing the prediction quality
for large deformations and non-linear behaviors.

Related to our effort is pseudo-rigid-body replacement [Howell and Midha,
1994]. Like in Chapter 5, a designer starts with a conventional mechanism
designed to accomplish a particular task. Conventional joints are then re-
placed with torsional springs to provide an expert designer with approxi-
mate performance estimates. Conventional joints are then replaced one-by-
one, adjusting torsional spring constants of the pseudo-rigid-body model.
In Chapter 5 we automate this process and avoid the tedious manual tuning
of spring constants.

To provide the compliant mechanism designer with guidelines on the place-
ment and orientation of flexures, Hopkins et al. [2010a; 2010b] developed the
concept of Freedom and Constraint Topology (FACT) with theoretical un-
derpinnings in screw theory [Huang et al., 2013]. We follow these guidelines
when replacing conventional joints, favoring compliance in desired and stiff-
ness in undesired directions.

Limaye et al. [2012] propose a kit with flexible beams and connectors
together with an analysis and synthesis approach to design and hand-
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assemble compliant mechanisms. While restricted to the plane, their syn-
thesis enables rapid design iterations of monolithic compliant mechanisms.
The design space, however, is restricted, supporting only beams of discrete
length and a single connector type.

2.4 Cable-Driven Mechanisms

Given the desire to produce natural looking motions, computer graphics
has actively explored the efficient simulation of cable-driven (also referred
to as tendon-driven) systems [Sueda et al., 2008; Sueda et al., 2011]. Fur-
thermore, biomechanics literature has done extensive work in the efficient
simulation of tendon-driven biomechanics (for instance OpenSIM [Delp et
al., 2007]). There has recently been work on generating key-framed anima-
tions by applying both black-box and white-box control schemes to these
systems [Sachdeva et al., 2015]. The design system described in Chap-
ter 6 features a simulator for cable-driven mechanisms, but rather than
previous fully dynamic simulations [Sueda et al., 2008; Sueda et al., 2011;
Sachdeva et al., 2015], we rely on a quasistatic assumption, allowing us to
avoid costly time integration. While there has been work on fabricating
cable-actuated folding surfaces [Kilian et al., 2017], this prior work focuses
on folding origami shapes between open and closed positions, not the co-
optimization of control and design for the motion of cable-driven linkages
that we attack in Chapter 6.

Finally, cable-driven mechanisms and biomechanical modeling have re-
ceived much attention in robotics. However, many of the works in this field
are targeted towards manually designing or learning controllers for specific
mechanical designs such as spines [Mizuuchi et al., 2002], tentacles [Camar-
illo et al., 2008; Rucker and III, 2011], arms, hands and fingers [Rooks, 2006;
Ozawa et al., 2009; Borghesan et al., 2010; Sawada and Ozawa, 2012;
Ma et al., 2013; Mitsui et al., 2013; Roy et al., 2013; Grebenstein, 2014;
Whitney et al., 2014] or parallel manipulators [Fang et al., 2004; Behzadipour,
2005]. Surgical robots can also benefit from cable-driven actuation due to
the fact that their end-effectors consist of small, surgical apparatuses [Han-
naford et al., 2013]. The idea of a fixed design and optimizing for control
parameters also extends to more esoteric designs such as continuum manip-
ulators [Camarillo et al., 2008]. Control strategies have even been developed
for full-body, cable-driven robots such as the ECCEROBOT [Potkonjak et al.,
2011], RoBoy [Rob, 2016] and Sparky [Spa, 2016]. More recent work uses
genetic algorithms to optimize cable tensions and cable angle to generate
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single, periodic trajectories for fixed, small DOF (2-3) designs [Bryson et al.,
2016].

Unlike previous work, in Chapter 6 we focus on designing cable-driven
linkages that artists can control. To this end, we provide an algorithm that
co-optimizes both control parameters (cable forces) and design parameters
(number of cables, cable routing points) to match a number of artist-supplied
key frames or target poses for kinematic chains. Crucial for animation, our
system allows an artist to control the pose of the entire linkage, not just end
effector position. This differentiates it from the control only, end effector-
driven approaches prevalent in robotics.

2.5 Fabrication-Oriented Design

Driven by technological advances in digital fabrication, the graphics com-
munity has devoted a significant effort on the computational design of phys-
ical artifacts, characters and structures. Proposed techniques have targeted
plush toys [Mori and Igarashi, 2007] besides structurally-sound [Stava et
al., 2012; Umetani and Schmidt, 2013; Zhou et al., 2013; Lu et al., 2014],
stably standing [Prévost et al., 2013], spinning [Bächer et al., 2014], or
floating [Musialski et al., 2015] 3D printable models. Other examples in-
clude design systems for physically-valid furniture pieces [Lau et al., 2011;
Umetani et al., 2012], free-form gliders with optimized aerodynamic proper-
ties [Umetani et al., 2014] and prototypes that test and validate the function-
ality of finished products [Koo et al., 2014]. Others have tackled the problem
of creating composition of wire meshes [Garg et al., 2014], thermoforming
of shapes [Schüller et al., 2016], and wind instruments [Umetani et al., 2016]
have been tackled. Similar to the flexures described in Chapter 5, fexible
rod [Pérez et al., 2015], filigree [Chen et al., 2016], ornamental curve [Zehn-
der et al., 2016] and stable rod [Miguel et al., 2016] structures are designed to
last when bent. This thesis shares the same high-level goal as these works:
empowering casual users in creating complex physical artifacts without re-
quiring domain-specific knowledge.

2.5.1 Conventional Mechanism and Physical Character Design

Several techniques that aid the non-expert with the understanding [Mitra
et al., 2010], design [Zhu et al., 2012; Coros et al., 2013; Ceylan et al., 2013;
Thomaszewski et al., 2014; Megaro et al., 2014; Hergel and Lefebvre, 2015;
Lin et al., 2016], editing [Bächer et al., 2015], and recovery [Koo et al., 2014] of
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complex mechanical assemblies have recently been proposed. These meth-
ods focus on the design of passive mechanical structures, such as linkages
and gears, that propagate the motion of one input motor to the entire system.
In Chapter 5 we leverage these existing approaches, where the mechanical
assemblies output by these work serve as input to our framework. Other
methods were proposed to create physical characters, for instance, the de-
sign systems proposed by Bächer et al. [2012] and Calı̀ et al. [2012] can be
used to design 3D printable characters with functional joints. Skouras et al.
[2013] proposed a method to automatically optimize the internal distribu-
tion of material parameters in order to control the ways in which 3D printed
characters deform when subjected to external forces.
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C H A P T E R 3
Mathematical Framework

In this chapter, we describe the fundamentals concepts to model, simulate
and optimize the components constituting the assemblies and characters
presented in the rest of the thesis. We first describe how to model degrees
of freedom of rigid bodies, joint-connectors, servos, springs, and elastic rods
(Section 3.1). We then discuss generic formulations to simulate physical sys-
tems and several techniques to numerically minimize energy functions (Sec-
tion 3.2). Finally, we conclude the chapter with some procedures to solve
what is known as the inverse design problem (Section 3.3). The latter is the
problem that requires finding the design parameters for which, after a for-
ward simulation, the state of the system will minimize some problem-specific
objectives. Even though most of the ground concepts are shared between
forward and inverse problems, the latter is typically harder to solve. A ded-
icated discussion about the topic can help the reader in the understanding
of the design methods proposed in this thesis.

3.1 Physics Models

3.1.1 Rigid Body Model

Rigid bodies, as the name suggests, are assumed to not deform under exter-
nal forces. Thanks to this property, we can represent their state using a trans-
lation vector t ∈ R3x1 and a rotation matrix R ∈ R3x3. Typically t denotes
the displacement of the center of mass from the origin O but, in general, can
indicate the shift of any arbitrary point of the rigid body. Instead, R encap-
sulates the information of the orientation of the rigid body with respect to
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Figure 3.1: Transformations for global and local coordinate systems.

the global coordinate frame. To describe a rigid body with respect to the global
coordinate frame, we can transform any local coordinate frame point pl using
the following operation

pg = Rpl + t. (3.1)

To compute the position of a global point pg, with respect to the rigid body
coordinate frame, we just need to invert the previous operation

pl = R−1(pg − t) = RT(pg − t). (3.2)

Figure 3.1 displays the situation of passing from local coordinates to global
coordinates and vice versa.

Being a three-dimensional matrix, R has nine elements, but rotations can
theoretically be expressed using only three parameters. By defining a uni-
tary rotation axis (two parameters) and an angle of rotation (one parameter),
we can represent all possible rotations in three dimensions. A more compact
representation for rotations are quaternions, a number system that extends
complex numbers. A quaternion q is defined as

q = s + xi + yj + zk, (3.3)

where s, x, y, z are scalars and i, j, k are the fundamental imaginary quater-
nion units. Both three-dimensional points and rotations can be represented
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using quaternions. When having a point p = (px, py, pz)T and a rotation r
of θ radians around a unit vector u = (ux, uy, uz)T, we can express them as
quaternions as follows

qp = 0 + pxi + py j + pzk, (3.4)

qr = cos(
θ

2
) + sin(

θ

2
)(uxi + uy j + uzk). (3.5)

Before we can define a rotation operation using quaternions, we first need
to introduce the notion of conjugate and the inverse of a quaternion q

q̄ = s− xi + yj + zk, (3.6) q−1 =
q̄
||q|| , (3.7)

where ||q|| =
√

s2 + x2 + y2 + z2 is the norm of the quaternion. A point
p′ = (p′x, p′y, p′z)T is then obtained by rotating p by r with the following
quaternion multiplication

qp′ = 0 + p′xi + p′y j + p′zk = qrqpq−1
r . (3.8)

By substituting the rotation matrix R and the translation vector t with
quaternions, equation 3.1 becomes

qp,g = qrqp,lq−1
r + qt, (3.9)

where qp,g and qp,l are, respectively, the quaternion representation of p in
global and local coordinate frames.

The quaternion representation reduces significantly the number of parame-
ters required to store a rotation compared to a 3D matrix. However, as men-
tioned, a rotation could be represented using three parameters while quater-
nions need four. To tackle this issue, we express one of the four parameters
as a function of the other three. In this thesis, our choice is to assume that
the quaternion representing the rigid body orientation is a unit quaternion.
Mathematically, we write

||qr||2 = cos2(
θ

2
) + sin2(

θ

2
)(u2

x + u2
y + u2

z) = 1, (3.10)

thus defining our scalar function for the quaternion scalar component to be
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↵

(a) Motor which fully constrains the states
of the connected rigid bodies.

(b) Hinge joint with its degree of freedom.

(c) Universal joint with its two degrees of
freedom.

(d) Spherical joint with its three degrees of
freedom.

Figure 3.2: Four types of connectors.

sr(ux, uy, uz) =

√
1− sin2(

θ

2
)(u2

x + u2
y + u2

z). (3.11)

The state of a rigid body is therefore representable by storing a three-
dimensional vector for both the position and the orientation, for a total of
six parameters.

3.1.2 Rigidly Articulated Rigid Bodies

When dealing with rigidly articulated characters, in addition to the rigid
bodies states we need to account for the constraints caused by the joints
found in the articulations. Whenever two or more rigid bodies are connected
through a joint, we need to formulate a constraint vector as a function of
the connected rigid bodies states. The constraint vector takes the value of
0 whenever the constraint is satisfied. There exist many different types of
joints and connectors, but we will discuss only the four mainly relevant for
this thesis: motors, hinge joints, universal joints, and spherical joints. Figure
3.2 shows the four types of connectors with the relative degrees of freedom.
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Connectors connect pairs of components and constrain their relative mo-
tion. To formulate a constraint, we define the locations and the frames which
move rigidly together with the two attached components. We label one con-
nected rigid body input and the other output and then we define their relative
local right-handed frames as

xin
l ,

[
ain

x,l , ain
y,l , ain

z,l

]
(3.12) xout

l ,
[
aout

x,l , aout
y,l , aout

z,l

]
(3.13)

where xin
l , xout

l are the frames origins and
[
ain

x,l , ain
y,l , ain

z,l

]
,
[
aout

x,l , aout
y,l , aout

z,l

]
the

three orthonormal vectors bases. Given the states sin and sout of the con-
nected rigid bodies, we can transform frames 3.14 and 3.15 to global coordi-
nates using equation 3.9, obtaining

xin
g ,

[
ain

x,g, ain
y,g, ain

z,g

]
(3.14) xout

g ,
[
aout

x,g , aout
y,g , aout

z,g

]
, (3.15)

With the help of the transformed global frames, we are able to formulate the
constraint vectors for each connector type.

Spherical Joint

A spherical joint has three degrees of freedom (d.o.f.) which allow for any
relative orientation between the constrained rigid bodies. However, it re-
stricts the position of the global connector frames to be the same. Therefore
we formulate such a constraint as follows

c = xin
g − xout

g (3.16)

Universal Joint

A universal joint removes an additional rotational degree of freedom with
respect to a spherical joint. For the extra constraint, we need two axes to stay
orthogonal to one another. To enforce orthogonality, we use the dot product
between two vectors, thus leading to the formulation
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c =

[
xin

g − xout
g

ain
x,g · aout

z,g

]
(3.17)

Hinge Joint

To include an additional constraint introduced by the hinge connection, we
can use the same technique used for the universal joint. We use the remain-
ing axis from the input frame (since ain

z,g and aout
z,g must stay parallel), and we

enforce orthogonality analogously to 3.17

c =

 xin
g − xout

g
ain

x,g · aout
z,g

ain
y,g · aout

z,g

 (3.18)

which results in having the rotation axis aligned with ain
z,g = aout

z,g .

Motor

Like for the hinge, we assume that the rotation axis points in the direction of
the z axis of both global connection frames. To emulate the behavior of a mo-
tor moving of α radians, we first rotate the global input frame by α radians
around the rotation axis, resulting in a rotated frame

[
(ain

x,g)
′, (ain

y,g)
′, ain

z,g

]
.

We then match the positions and frames orientations of the input and out-
put frames, resulting in

c =


xin

g − xout
g

(ain
x,g)
′ · aout

z,g
(ain

y,g)
′ · aout

x,g
ain

z,g · aout
y,g

 (3.19)

The vectors defined in equations 3.16, 3.17, 3.18, and 3.19 provide an analyt-
ical way to quantify how much the constraints are violated. In section 3.2
we describe different methods to enforce the constraint vectors to be close to
zero, therefore satisfying the restriction introduced by the connectors.
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3.1.3 Compliant Connectors

Sections 3.1.1 and 3.1.2 describe how to model a rigidly articulated charac-
ter or mechanism. The use of traditional connectors, fully limit the motion of
the attached rigid bodies along certain directions and leave them completely
free to move along the others. In this thesis, we also emphasize compliance,
the property of transferring an input force or displacement from one point
to another through elastic deformation. Compliance, differently from tradi-
tional joints, exerts some resistance to motion in all different directions.

In our work, we experiment with two type of compliant connectors: tor-
sional springs and flexures. Torsional springs behave like hinge joints but
exert a certain torque whenever displaced along the hinge degree of free-
dom. Flexures approximate the behavior of torsional springs and come with
the advantage of, for example, the manufacturing of monolithic structures.
However they are more expensive to simulate since, to accurately predict
deformation, we need to use a more complex physics model. In this subsec-
tion, we describe the representation of the two types of compliant joints and
the energy models behind the resistance generated by compliance.

Torsional Spring

Torsional springs operate along a single degree of freedom, the same one al-
lowed by hinge joints. It comes naturally then to represent part of a torsional
spring using the formulation described in 3.18. Also, we need to introduce
a parameter that relates the amount of generated energy given the change
in angle. This parameter is the spring constant k which is intrinsic for each
spring. Those are the only information we need to store to represent a tor-
sional spring.

The simplest physics model for torsional springs is to use a quadratic rela-
tionship between the change in angle and the energy created. The expression
for the spring energy E is the following

E =
1
2

k(θ)2 (3.20)

While simple, this linear model provides us with the basis for the extended
formulation we present in chapter 6.
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(a) Centerline of a rod with six vertices and five edges.
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(b) Close up of an inner vertex xi and its relative frame. In trans-
parency, the same frame rotated by θ j radians around ti.

Figure 3.3: Rod centerline and its degrees of freedom.

Flexure

Flexures are flexible elements with the function to be compliant along spe-
cific directions and stiffer in others. In contrast to torsional springs, where
we had the single degree of freedom θ, flexures allow the connected com-
ponents to have any relative orientation; the shape of the flexure element
determines which configuration generates more resistance. In this thesis,
we decide to model flexures using the Discrete Elastic Rod model [Bergou et
al., 2008]. This paragraph gives a short overview of the model, but for more
details, we refer the reader to the original work by Bergou et al.

We describe a flexure element as a thin rod with elliptical cross section of
radii a and b. The model stores the centerline of the rod as a sequence of n+ 2
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vertices connected by n + 1 edges. Together with the vertices 0 ≤ i ≤ n + 1
(lower indices) and the edges 0 ≤ j ≤ n (upper indices) we also store the
positions and orientations of the adapter orthonormal frames

xi ∈ R3
[
dj

1, dj
2, dj

3

]
∈ SO(3)

The definition of the adapted frames is made, so that dj
3 lies along the edge

ej = xj+1 − xj, which leads to dj
3 ≡ tj = ej/|ej|. The discrete material

curvature is defined in an interior vertex i as follows

κi =
1
2

i

∑
j=i−1

((κb)i · dj
2,−(κb)i · dj

2)
T (3.21)

where (κb)i =
2ti−1×ti

1+ti−1·t is the vertex-based curvature binormal. To fully de-
scribe flexures we also need to represent the twist m it can occur along the
rod centerline. The vertex-related quantity mi is computed based on how
much rotation θi we observe between the frames associated with ei−1 and ei

around their tangents. An exhaustive explanation on how to exactly com-
pute m is beyond the scope of this thesis, and we refer the reader to the work
by Bergou et al. [2010].

The vertex-related quantities acting as degrees of freedom in the rod model
are xi and θi. Similarly for the torsional spring setting, whenever the de-
grees of freedom of the rod are displaced from the rest configuration, the
flexure element stores energy. The energy, in this case, is split in three parts:
stretch, bend and twist. The total energy E is the sum of the three different
components potentials

Es =
1
2

n

∑
j=0

kj
s(ε

j)2|ēj| (3.22)

Eb =
1
2

n

∑
i=0

1
l̄i
(κi − κ̄i)

TBi(κi − κ̄i) (3.23)

Et =
1
2

n

∑
i=0

βi
(mi − m̄i)

2

l̄i
(3.24)
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where l̄i = 1
2(|ēi−1|+ |ēi|) is the rest length associated with each vertex as-

sumed to be the average between adjacent edges. Having defined the de-
grees of freedom and the energy models behind flexures, we are now able to
simulate them.

3.2 Physics Simulation

Physics simulation allows predicting the evolution of the states of objects
over time. Depending on the goal beyond the prediction, two different types
of simulations can be used: dynamic or static. Dynamic simulations explicitly
update time and track objects states and their time derivatives for each time
update ti+1 = ti + ∆t. This type of simulation is used when it is important
to know the evolution of the system at any point in time. In other scenarios,
it might be enough just to know the point of static equilibrium of the system.
In this case, we are not required to compute the intermediate time steps, and
static simulation is used. The contributions proposed in this thesis heavily
rely on static simulation, while we only use dynamic simulation to validate
our results in chapter 4. For this reason, this section focuses only on how to
find such static equilibrium states.

Stable static equilibrium points, lie on local minima of the constrained en-
ergy function Etot, where the net sum of forces and torques acting on the
system goes to zero. We can, therefore, reformulate the problem as

minimize
s

Etot(s) = Eint(s) + Eext(s)

subject to C(s) = 0

where s contains the simulation parameters corresponding to the degrees of
freedom introduced in the previous sections. The internal energy Eint is the
combination of the elastic energies generated by the compliant connectors,
whereas the external energy Eext describes the potential energy tangled with
external forces such gravity or external loads.

Simulation Example

To better understand how to construct such a minimization problem we
have a look at a simple example. Figure 3.4 shows an example of a tradi-
tional mechanism featuring six rigid bodies connected through four linear
springs and two hinge joints. Moreover, gravitational forces are acting on
the system, causing to change state. We are interested in finding the set of
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(a) Six rigid bodies connected via four torsional springs and two hinge joints.
Four rigid bodies are free to move (blue), and one is fixed (red).
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(b) The six rigid bodies, showing their respective local coordinate frames. In
orange the external gravitational forces acting on the system.

Figure 3.4: Simple example showing six rigid bodies, connected through two hinge joints
and four torsional springs. Gravitational forces are acting on the rigid bodies which are
free to move.

parameters s for which the total energy Etot(s) is minimal. For this example,
the vector of degrees of freedom is the is the stacked sequence of parameters
for the five, non-fixed, rigid bodies
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s =


s0
s1
s2
s3
s4

 , (3.25)

where si = (tT
i , uT

i )
T, and the vectors ti and ui are, respectively, the location

and orientation d.o.f. of rigid body i, for 0 ≤ i ≤ 4.

The internal energy Eint is composed by combining the torsional spring en-
ergies, and it is defined as

Eint(s) =
1
2

3

∑
j=0

ki(θj(s))2, (3.26)

where θj(s), 0 ≤ j ≤ 3, are the springs deformation angles, expressed as
functions of the rigid bodies states. The external energy Eext is given by
the gravitational potential energy acting on the rigid bodies. We, therefore,
write

Eext(s) =
5

∑
i=i

migti,y, (3.27)

where mi and ti,y are, respectively, the mass and the y-component of the
position of rigid body i. Additionally, the gravitational field constant is g =
9.81N/Kg. Consequently, the total energy Etot = Eint + Eext is obtained by
simply adding the internal and external energy components.

In this scenario, the constraints are brought by two hinge joints, and four tor-
sional springs. While coming from different connectors, the constraints com-
ing from traditional joints and springs have the same formulation. Therefore
we follow equation 3.18 and we pairwise connect consecutive rigid bodies
rbi and rb(i+1) mod 6, for 1 ≤ i ≤ 5. The final vector of constraints C(s) is
composed by 5 · 6 = 30 scalar nonlinear equations.

Having defined degrees of freedom, energy, and constraints of the system,
we are left with finding the set of states s which solve 3.2. The solution to
this problem is typically found with the use of numerical methods, two of
which are described in the following sections.
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3.2.1 Newton-Raphson Method

The Newton-Raphson Method (also known as simply Newton Method) is a
technique to find roots of nonlinear systems of equations numerically. We,
therefore, can employ such method to find solution of problem 3.2 by finding
a set of parameters s for which the net sum of forces and torques goes to zero.

Let us define a nonlinear multivariate vector function f(x) and a set of initial
parameters x0. Our goal is to find a set of parameters x∗ for which f(x∗) = 0.
To reach our goal, we need to find a sequence of updates xi+1 = xi + ∆xi
which converges to x∗. To find ∆xi, we first approximate our function f(x)
using the first order Taylor expansion around xi

f(xi + ∆xi) ≈ f(xi) +
∂f(xi)

∂x
∆xi

and by setting the value of the updated function to zero and rearranging, we
obtain

0 ≈ f(xi) +
∂f(xi)

∂x
∆xi

−∂f(xi)

∂x
∆xi ≈ f(xi)

∂f(xi)

∂x
∆xi ≈ −f(xi) (3.28)

Being ∆xi our unknown, each update requires solving the linear system 3.28
to find the step in parameter space which get us closer to the root.

To apply the same method to minimize our multivariate scalar energy func-
tion Etot, we first need to differentiate with respect to the parameters s to
obtain a vector function in the same form of f(x) and proceed analogously
to get the adapted linear system

∂2Etot(s)
∂s2 ∆s = −∂Etot(s)

∂s
(3.29)

where ∂Etot(s)/∂s the gradient and ∂2Etot(s)/∂s2 is the Hessian (often de-
noted simply with H) of the energy function Etot(s). We then iterate and
keep building and solving the same system of equations for each new vector
candidate si+1 = si + ∆si until convergence or, i.e., until the norm of the
gradient is close enough to zero.
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Line Search

The Newton method treats the energy function Etot(s) as if it was quadratic
but, most of the times, this is not the case. The result is that a full step of ∆si
in parameter space might bring our set of parameters in a point which where
Etot(si+1) > Etot(si), even if ∆si is a descending direction. This happens be-
cause the energy gradient is nonlinear and our predicted minimum lies in a
place where the energy has a higher value. To solve this problem, we modify
the update equation to be si+1 = si + α∆si, with 0 < α ≤ 1. To decide on
which value we need to use for alpha, for each iteration i, we keep decreas-
ing the value of alpha according to αj+1 = αj ∗ 0.5, where α0 = 1. We stop
searching for α whenever Etot(si + αj∆si) < Etot(si). More advanced line
search methods exist to find a value of α which decreases the energy value
more but at the cost of being more expensive. In general, it is preferable to
spend more computational resources in computing a new search direction
∆s rather than in the line search parameter α.

The Newton method is a powerful tool for energy minimization problems
but, taken as is, does not allow any constraints handling. Different tech-
niques were proposed to minimize constrained multivariate functions, and
in the next sections we present two: the quadratic penalty method and the se-
quential quadratic programming (SQP).

3.2.2 Quadratic Penalty Method

The simplicity of the quadratic penalty method made it popular among
many domains focused on problem-solving. This method treat the con-
straints vectors as they part of the energy in the system, adding a weighted
square norm term that modifies the energy function to

Ec(s) = Etot(s) +
µ

2
||C(s)||22, µ > 0. (3.30)

We note that function Ec can now be minimized using the Newton method
described above. While simple to implement and integrate into the original
energy function Etot, this method suffers from some drawbacks. First, the
amount of constraint-violation depends on the penalty parameter µ, which
must tend to infinity to bring the constraints vector value to zero. It is there-
fore tempting to use a very large value of µ to approach the constraints sat-
isfaction, which in turn increases the ill-conditioning of the Hessian matrix
of Ec (see section 3.2.1) leading to numerical problems. Moreover, the fulfill-
ment of the constraints can conflict with a decrease in physical energy Etot,
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and the solution of problem 3.2 might not coincide with the one of prob-
lem 3.30. Due to the issues described above, other numerical methods were
designed to solve energy minimization problems, handling constraints dif-
ferently; among those we find SQP, explained in the next section.

3.2.3 Sequential Quadratic Programming

Whenever the constraints functions are highly nonlinear, the sequential
quadratic programming methods is especially effective to solve constrained
minimization problems. As the name suggests, the idea behind SQP con-
sists in iteratively solve a sequence approximations of the original problem
using the quadratic programming technique. First, we need to introduce the
Lagrangian of our energy function Etot

L(s,λ) = Etot(s) + λTC(s) (3.31)

where λ is a vector of auxiliary variables called the Lagrange multipliers.
Then, according to optimization theory [Nocedal and Wright, 2006], prob-
lem 3.2 translates to finding a set of parameters s∗ and the corresponding
Lagrange multipliers λ∗ which satisfy the Karush-Kuhn-Tucker (KKT) con-
ditions

∂L(s∗,λ∗)
∂s

= 0,

C(s∗) = 0
(3.32)

To find a solution for problem 3.32, we can employ the Newton method (see
section 3.2.1) to solve the following KKT system for each iteration i

[
Hi(si,λi) −JT(si)

J(si) 0

] (
∆si
∆λi

)
= −

(
g(si)− JT(si)λi

C(si)

)
(3.33)

where Hi(s,λ) = ∂2L(s,λ)/∂s2 is the Hessian of the Lagrangian, J(s) =
∂C(s)/∂s is the constraints Jacobian and g(s) = ∂Etot(s)/∂s is the energy
gradient. Similarly to section 3.2.1, due to nonlinearities, the solution of
system 3.33 gives a search direction rather than the conclusive change in
parameter space. The final computation of the iterates has the form
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(
si+1
λi+1

)
=

(
si
λi

)
+ α

(
∆si
∆λi

)
, 0 < α ≤ 1. (3.34)

Differently from the unconstrained case, our choice of α needs to take into
account constraints violation. The construction of a proper merit function
able to handle constraints is described in the next section.

The Merit Function

Solving system 3.33 ensures that no constraint violation happens along the
found search direction, as long as the constraints are linear. When that is
not the case, a reduction of the energy function Etot can cause an increase in
constraint violation and vice versa. Therefore, we need to construct and min-
imize a merit function which combines both the energy and the constraints.
The `1 merit function we use in this thesis has the form

φ1(s) = Etot(s) + µ||C(s)||1, µ > 0. (3.35)

Having our merit function φ1 defined, a line search step αj(∆s, ∆λ) is ac-
cepted if the following decrease condition holds

φ1(si + αj∆si) ≤ φ1(si) + ηαj(g(si)
T∆s− µ||C(si)||1), η ∈ (0, 1). (3.36)

The choice of µ plays a significant role in the convergence of the method
since inequality 3.36 holds only if µ is chosen sufficiently large. At each SQP
iteration, we check if µ satisfies

µ ≥ g(si)
T∆si + (σ/2)∆sT

i H(si,λi)∆s
(1− ρ)||C(si)||1

, ρ ∈ (0, 1), (3.37)

otherwise, it is increased so that it satisfies inequality 3.37. The constant σ

is a boolean parameter used to handle the case of a non-positive definite
Hessian matrix H(si,λi). We define σ to be

σ =

{
1 if ∆sT

i H(si,λi)∆s > 0
0 otherwise.

(3.38)
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By enforcing inequality 3.37 and choosing σ as defined, we can ensure that
the search direction (∆si, ∆λi) is a descending path for φ1. The details of the
derivation of such property are described in [Nocedal, 1980] and are omitted
from this thesis.

3.3 The Inverse Design Problem

Physics simulation is very useful in the manufacturing processes since,
given a particular design, it can predict whether or not a desired property,
say a desired shape under load, will be observed in the final fabricated ob-
ject. Thanks to the fact that simulation requires a lot less time than the actual
fabrication process, iterations to find the version that best satisfies the user
requirements are significantly faster. However, even with the help of simula-
tion, a multitude of properties are difficult to obtain just by using a trial and
error approach. First, since the number of parameters that a user can change
is very high and, second, a small variation in the design can lead to a very
different final structure behavior. The lack of intuitiveness brings the need
for tools that, given a set of goals, can to compute the design parameters
producing such goals. The process of finding these parameters is called in-
verse designing. In general, the goals the user can infer are described math-
ematically through a multivariate scalar function W(s, p), with p being the
design parameters, which can be minimized using standard numerical tools.
However, whenever the system states s are the result of a static simulation
dependent on p, a specific way of handling objective derivatives is required.

Inverse Design Example

For concreteness, let us have a look again at the example shown in picture
3.4. A typical inverse design problem could be to find the four spring con-
stants for which, after simulation, the rigid body rb3 is at a height of ỹ while
staying horizontal. The target configuration is shown in picture 3.5. In this
example, the degrees of freedom s and energy Etot are the ones defined in
section 3.2. Additionally, we define our design parameters to be

p =


k0
k1
k2
k3

 . (3.39)
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ỹ

Figure 3.5: Target configuration, with rb3 being horizontal and at a hight of ỹ. In trans-
parency, the rest configuration before applying gravity.

Given the specification of the desired configuration under gravity, the objec-
tive function W(s, p) has to include the formulation of two goals: match a
target height and being horizontal. The first objective penalizes any devia-
tion of t3,y (the y component of the translation vector t related to tb3) from ỹ,
and can be defined as

Wheight(s, p) =
1
2
(t3,y − ỹ)2. (3.40)

The second objective encourages the orientation of rb3 to stay horizontal,
and can be formalized as

Whorizontal(s, p) =
1
2
||u3||22. (3.41)

Equation 3.41 emerges from the fact that the horizontal orientation of rb3 can
only be represented through an identity quaternion q3 = s3 + (i, j, k)u3 =
1 + 0i + 0j + 0k. Therefore, by restricting u3 to be 0, we can achieve an hori-
zontal orientation for rb3. The final objective function is the sum of functions
3.40 and 3.41, and has the form

W(s, p) = Wheight(s, p) + Whorizontal(s, p). (3.42)

Once the design parameters p and the objective function W(s, p) are de-
fined, we can apply numerical methods to find the design parameters which
minimize W. In the next section, we describe a method to perform inverse
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design optimization when a static simulation is involved in the evaluation
of the objective function.

3.3.1 Sensitivity Analysis

Let us define an objective function W(s, p) dependant on both the set of
systems degrees of freedom s and the design parameters p. In addition, let
the degrees of freedom be the result of an energy minimization stage for
Etot(s, p). We describe our inverse design problem as

minimize
p

W(s, p)

subject to
∂Etot(s, p)

∂s
= f(s, p) = 0.

(3.43)

To minimize the objective function W, we follow the same procedure de-
scribed in section 3.2.1. Thus we are looking for a change ∆p in the set of
design parameter for which

d2W(s, p)
dp2 ∆p = −dW(s, p)

dp
, (3.44)

where, as opposed as for the Newton method, we are interested in the total
derivatives rather than in the partial ones. First, we focus on the computa-
tion of the first order total derivative of W with respect to the design param-
eters p and postpone the discussion of the second order derivative in section
3.3.2.

With the help of the implicit function theorem [Krantz and Parks, 2002], we
can formulate the gradient of the objective function W as

dW(s(p), p)
dp

=
∂W(s(p), p)

∂p
+

∂s(p)
∂p

T ∂W(s(p), p)
∂s

, (3.45)

where the degrees of freedom s(p) are now described as a function of the
design parameters p. After the expansion of the gradient, our task is to en-
force the constraints we find in 3.43 and define the state function s(p). This
goal is achieved simultaneously with the use of another Taylor expansion,
this time of the constraints function f(s, p).

We assume that f(s, p) = 0 (assumption 3.3.1) holds. We are looking for a
change (∆s, ∆p) in both degrees of freedom and parameters space for which
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f(s + ∆s, p + ∆p) = 0 is still valid. Employing the first order Taylor approx-
imation, we write

f(s + ∆s, p + ∆p) = 0

f(s, p) +
∂f(s, p)

∂s
∆s +

∂f(s, p)
∂p

∆p ≈ 0

∂f(s, p)
∂s

∆s +
∂f(s, p)

∂p
∆p ≈ 0, assumption 3.3.1

∂f(s, p)
∂s

∆s ≈ −∂f(s, p)
∂p

∆p,

∂f(s, p)
∂s

∆s
∆p
≈ −∂f(s, p)

∂p
,

∂f(s, p)
∂s

∂s
∂p
≈ −∂f(s, p)

∂p
, (3.46)

for an infinitesimally small change (∆s, ∆p). We note that ∂f(s, p)/∂s is the
Hessian matrix H(s) of the energy Etot, and ∂f(s, p)/∂p is the Jacobian ma-
trix of the energy gradient g(s) with respect to the design variables p. By
solving the set of equation systems 3.46, we compute the missing piece to
evaluate the first order total derivative of W 3.45. To complete the computa-
tion of the full iteration 3.44, we also need the total second order derivative
d2W(s, p)/dp2. This matrix, however, happens to be difficult and expensive
to compute, because ∂2s/∂p2 extends to the third dimension. For this rea-
son, using an approximation of the second order derivative, rather than its
analytical version, can lead to a minimum faster. In this thesis, more in par-
ticular in chapter 5 and 6, we approximate the Hessians of the corresponding
objective functions using the BFGS method, described in section 3.3.2.

Line Search

It is important to note that, by following 3.46 to compute ∂s/∂p, the search
direction ∆p automatically ensures the satisfaction of the (linearized) con-
straints. However, as for the case of SQP, when performing the line search
stage, we need to make sure that even nonlinear constraints fully satisfied.
To this extent, during line search, the evaluation of the objective function
W (required to evaluate the termination condition for α) is done involving
a static simulation step. More in particular, given a line search update with
the form pj

i+1 = pi + αj∆pi, at each iteration j we first update pj
i+1 and,

with the new design parameters, we compute the states sj
i+1 which satisfy
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f(sj
i+1, pj

i+1) = 0, using the methods described in section 3.2. Finally, having

the iterate-candidate (sj
i+1, pj

i+1), we can compare the values of the objective

function W and accept the new iterate if W(sj
i+1, pj

i+1) < W(si, pi).

3.3.2 The Broyden–Fletcher–Goldfarb–Shanno Method

The BFGS method is a quasi-Newton algorithm for root finding, named af-
ter its discoverers Broyden, Fletcher, Goldfarb, and Shanno. The primary
difference between BFGS and the Newtown method is that the former uses
an approximate Hessian B, rather than its analytical version H, to solve the
iteration step described in equation 3.28.

Let us define an objective function f (p) and its quadratic model around pi
to be

mi(∆pi) = f (pi) +
∂ f (pi)

∂p
∆pi +

1
2

∆pT
i Bi∆pi. (3.47)

The minimizer ∆pi of the convex model 3.47 can then be written as

Bi∆pi = −
∂ f (pi)

∂p
, (3.48)

and, after the line search stage, the new iterate is pi+1 = pi + αi∆pi.

The approximate Hessian matrix Bi is updated at every iteration i, taking
into account the curvature of the function measured at current and previous
iterations. More in detail, let us assume that we want to estimate the new
quadratic model of f (p) around pi+1, which has the form

mi+1(∆pi+1) = f (pi+1) +
∂ f (pi+1)

∂p
∆pi+1 +

1
2

∆pT
i+1Bi+1∆pi+1. (3.49)

To be consistent, matrix Bi+1 should map the gradient of model mi+1 at pi to
the same as the gradient of function f at same location pi. This relation can
be written as

∂mi+1(−α∆pi)

∂p
=

∂ f (pi+1)

∂p
− αBi+1∆pi =

∂ f (pi)

∂p
, (3.50)

and after rearranging we obtain
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Bi+1si = yi, (3.51)

where

si ≡ αi∆pi and yi ≡
∂ f (pi+1)

∂p
− ∂ f (pi)

∂p
, (3.52)

are two new defined vectors to simplify further notations. To describe a
convex quadratic model, B must be positive definite. This requirement in-
troduces n inequalities in addition to the n equality constraints imposed
by 3.51. Even combining these constraints is not enough to absorb the
n(n + 1)/2 degrees of freedom found in the symmetric matrix B. To
uniquely define the update for our approximate Hessian matrix B, we re-
quire that Bi+1 is as close as possible to Bi in some metric. Mathematically, we
describe the problem as

minimize
Bi+1

||Bi+1 − Bi||

subject to Bi+1 = BT
i+1,

Bi+1si = yi,

(3.53)

where sT
i yi > 0, and Bi, Bi+1 are symmetric positive definite matrices. The

optimization problem 3.54 uniquely defines the update step for the Hessian
approximation at every quasi-Newton iteration i.

The same approach described above can also be applied to compute an ap-
proximation of the inverse of the Hessian, rather than the Hessian itself. The
advantage of directly operating on the inverse matrix is the ability to com-
pute the quasi-Newton iteration step 3.48 by performing a matrix-vector
multiplication rather than solving a linear system of equations. Following
the same argumentation line we traced for Bi+1, what we are interested in is
a matrix Ci+1 for which

minimize
Ci+1

||Ci+1 − Ci||

subject to Ci+1 = CT
i+1,

Ci+1yi = si.

(3.54)

When the weighted Frobenius norm is used as closeness condition, Ci+1 has a
unique solution which is given by
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Ci+1 = (I− siyT
i

yT
i si

)Ci(I−
yisT

i
yT

i si
) +

sisT
i

yT
i si

, (3.55)

where I is the identity matrix. The weighted Frobenius norm is chosen so
that the problem becomes scale-invariant, i.e., the solution does not depend
on the variables units. Since the implementation of the BFGS update formula
does not require the knowledge of the of the norm formulation, we omit the
details in this thesis and refer the interested readers to [Nocedal and Wright,
2006].

The last matter we need to address to be able to fully implement the BFGS
method is the initialization of C0. Generally, the initialization of the approxi-
mate inverse Hessian matrix is done by assigning C0 = βI, where the choice
of the scalar β should match the scaling of the variables. Other starting val-
ues can be used for C0, but they are usually problem-specific and not equally
suited for different cases. Another example of initialization is to use the gra-
dient information to compute the initialization of the Hessian using finite
difference and then invert it to obtain C0.

3.4 Conclusion

In this chapter, we discussed a way of representing rigid bodies and how to
combine them into a single system to form an articulated character or mech-
anism. We introduced different kinds of connectors and the relative formu-
lations for their constraints and energies. After, we showed multiple tech-
niques to be employed to perform constrained and unconstrained energy
minimization, allowing us to physically simulate our compliant-articulated
assemblies and compute the states that bring the system in static equilib-
rium. Finally, we described an additional method that can be used for func-
tion minimization when a static simulation is required to evaluate an objec-
tive function. Such a technique is particularly suited whenever the goal is to
find a solution for an inverse design problem, even more so, if the number
of statically stable states that influence the objective function is high. The
modeling, simulation and inverse problem solving of compliant assemblies
are the foundations below the contributions proposed by this thesis, and this
chapter is the attempt to provide a suitable introduction to the three topics.

In the following chapters, we will adapt the general optimization methods
introduced above to fit better the specific problems that we tackle in this
thesis. We will start by considering rigidly articulated and full-actuated
robots, where our research goal will be to design an interactive interface,
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able to guide casual users and experts through the process of designing 3D-
printable walking creatures (Chapter 4). Our problem formulation allows
us to avoid any static simulation during the objective function evaluation,
which makes SQP (3.2.3) our choice to minimize our objective function. We
then will transfer the focus on compliance, more in particular on how to
convert traditional mechanical assemblies to compliant mechanisms which
move and transfer the motion by storing and releasing elastic energy (Chap-
ter 5). Lastly, this thesis proposes a method to solve the inverse design prob-
lem of creating characters connected with torsional springs, where the actua-
tion is propagated exclusively by cables (Chapter 6). The latter two chapters
presents formulations which relies on static simulation for objectives evalu-
ation, therefore our choice of employing sensitivity analysis as our optimiza-
tion tool.

40



C H A P T E R 4
Interactive Design of 3D-Printable
Robotic Creatures

In this chapter, we present an interactive design system that allows casual
users to quickly create 3D-printable robotic creatures. Our approach auto-
mates the tedious parts of the design process while providing ample room
for customization of morphology, proportions, gait and motion style. The
technical core of our framework is an efficient optimization-based solution
that generates stable motions for legged robots of arbitrary designs. An in-
tuitive set of editing tools allows the user to interactively explore the space
of feasible designs and to study the relationship between morphological fea-
tures and the resulting motions. Fabrication blueprints are generated auto-
matically such that the robot designs can be manufactured using 3D-printing
and off-the-shelf servo motors. We demonstrate the effectiveness of our so-
lution by designing six robotic creatures with a variety of morphological fea-
tures: two, four or five legs, point or area feet, actuated spines and different
proportions. We validate the feasibility of the designs generated with our
system through physics simulations and physically-fabricated prototypes.

4.1 Introduction

The desire to create mechanical creatures that are capable of lifelike motions
and behaviors dates back to ancient times. However, it was only during
the last century that this vision started to become reality. Today, mobile
robots are ubiquitous in industry and they start to enter our daily life in
the form of electro-mechanical toys, robotic pets, and household assistants.
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Figure 4.1: Digital designs (left) and physical prototypes (right) for our Ranger (top),
Bobby (middle) and Predator (bottom) designs, fabricated using 3D-printing and off-
the-shelf servo motors.

The recent progress in 3D-printing technology and the advent of powerful,
simple-to-program hardware platforms like Arduino now open the door to
a new generation of personal robots—unique companions that we custom-
design according to our needs and preferences. Already now, the rapidly
growing community of makers and technology enthusiasts indicates that
there is significant interest in this topic. Nevertheless, creating compelling
robotic creatures is currently a formidable task that only experienced engi-
neers can successfully undertake.

Driven by the progress in rapid manufacturing technology, the graphics
community has recently started to embrace the challenge of translating dig-
ital characters into physical artifacts [Zhu et al., 2012; Coros et al., 2013;
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Ceylan et al., 2013; Thomaszewski et al., 2014]. While current methods can
create physical characters whose motion closely resemble their digital coun-
terparts, this motion is merely for display; stable locomotion, however, poses
complex requirements on the physics and geometry of motion—criteria that
digital animations fail to fulfill in general.

We present an interactive design system that allows casual users to quickly
design 3D-printable robotic creatures. We are inspired by the simplicity,
power and flexibility of the character design system by Hecker et al. [2008],
empowering novice users to quickly create digital characters with custom
shape and motion. Our ambition is to make the design of compelling robotic
creatures as accessible and intuitive. A number of challenges have to be
overcome in order to achieve this goal. First, as opposed to virtual charac-
ters, the motions designed for robotic creatures have to be physically correct;
otherwise, the robot will not move as expected, fail to move, or simply fall
over. This physical feasibility requires a high degree of coordination between
the motions of different body parts, which is difficult to achieve with tra-
ditional animation approaches. Second, digital characters often exhibit a
large number of degrees of freedom in order to allow for highly expressive
animations. When creating robotic creatures, however, a much more care-
ful balance between complexity of design, and therefore cost, and range of
achievable motions is required.

Figure 4.2: The footfall pattern indicates which leg is in stance (white) or in swing (red)
mode. In this example, the user interactively adjusts the footfall pattern such that three
legs are always in stance mode.

4.2 Overview

We propose an end-to-end solution for creating robotic creatures, imple-
mented as an interactive tool that allows the user to design the structure
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Figure 4.3: Snapshot of the design interface. Left: the design viewport with the footfall
pattern graph. Right: the preview window showing the center of pressure of the robot
(green) and the support polygon (red).

and motion of a robot while receiving immediate feedback on its expected
real-world behavior.

Design Interface Our design interface is structured into two viewports
(see Fig. 4.3): one for editing the structure and motion of the robot, one for
displaying the resulting real-world behavior as predicted by our optimiza-
tion or through physics simulation. The heart of the interface is formed by a
set of easy-to-use editing tools.

Structure Editing The user starts by loading a description file that spec-
ifies an initial skeletal structure of the robot, as defined through a typical
hierarchy of bones connected by joints. Initial geometry is created from this
information and a virtual, uni-axial motor is placed at each joint position.
The user can freely edit the robot’s structure at all times by adding or re-
moving motors, thus altering the morphology of the design, or by adjusting
the position or orientation of the motors.

Motion Editing The motion of a robotic creature is completely described
by the trajectories of its joints. However, authoring motions directly in this
high-dimensional space is unintuitive, tedious, and very unlikely to lead to
stable movements. We therefore propose a set of higher-level motion au-
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thoring and editing tools, designed to be mutually orthogonal and intuitive
for the user.

Motions are largely characterized by their footfall pattern, indicating for
each instant during a gait cycle which of the legs are in contact with the
ground (stance mode) and which ones are in flight (swing mode). Our in-
terface displays these information as a time-dependent graph, allowing for
quick inspection and direct editing by the user (see Fig. 4.2). In particular,
the user can change the duration of the stance and swing phases for any leg
and change the relative ordering of the footfalls. While not all patterns lead
to desirable motions, this is immediately clear upon inspecting the evolution
of the support polygon through time or by observing the motions generated
by our framework. The immediate feedback provided by our framework
allows the user to interactively adjust the footfall pattern in order to find
satisfying solutions.

Higher-level goals such as the walking direction, speed or turning rate can
be provided by the user so as to specify the behavior of the robotic creatures
that are being designed. Further, the user can control the overall motion
style by editing the movement of the robot’s center of mass and of the feet
trajectories. The motions generated by our optimization-based framework
are guided by this user input, while a set of feasibility constraints ensures
that they are always stable.

Optimization Given the structure and motion goals for a robotic creature,
our system computes time-varying motor values for dynamically-stable mo-
tions using a trajectory optimization approach. The user can preview the
optimized motions using physics-based simulation and iteratively adapt the
design to explore the solution space and converge on a desired result. In or-
der to enable this seamless forward design experience, to robustly support
a wide variety of morphological features in a unified manner, and to ensure
that the resulting robotic creatures function well using off-the-shelf compo-
nents, the model that we propose requires a departure from conventional
approaches.

Space-time optimization methods that consider the full dynamics of the
systems they compute motions for are most general. However, the com-
plexity of the underlying models brings about a significant computational
overhead—even for simple creatures, generating motions is a matter of sev-
eral minutes [Wampler and Popović, 2009b; Mordatch et al., 2012; Wampler
et al., 2014], thus clearly prohibiting the type of interactive design process
we seek to enable. Furthermore, space-time methods are notoriously char-
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acterized by challenging optimization landscapes that often lead to unde-
sirable local minima. Our model avoids the complexity of considering full
system dynamics for three main reasons. First, we achieve important gains
in efficiency, with the process of optimizing motions taking at most a few
seconds. Second, in conjunction with the optimization scheme we employ,
our system consistently converges to high-quality solutions. Last, because
the internal torques and ground reaction forces computed through space-
time optimization cannot be directly reproduced by off-the-shelf servomo-
tors, and as physical actuators present considerable limitations in terms of
speed, bandwidth and strength, we focus on generating motions that are
more conservative (e.g. no flight phases). In this setting, the dynamic in-
terplay between the instantaneous center of pressure and the motion of the
center of mass is captured sufficiently well through an inverted pendulum
approximation.

The simplified dynamics model we use is adopted from robotics, where
it is commonly used for model predictive control (MPC). MPC formulations
typically decouple the generation of center of mass trajectories, motion of
the feet and full-body joint angles [Kajita et al., 2003; Dimitrov et al., 2008;
Mastalli et al., 2015]. When the morphology and proportions of a robot are
fixed, this strategy is typically sufficient. However, various heuristics are
required to ensure that constraints between different modules are satisfied,
e.g., stepping locations can be reached given the center of mass trajectory
and robot kinematics. Given that our design system allows users to generate
robot designs with a vast range of morphological features, such a decoupling
is not feasible. Rather, as detailed in section 4.3, our trajectory optimization
method provides an efficient, unified formulation for concurrently comput-
ing trajectories for the center of mass and feet that are consistent with the
structure and range of motion of the robotic creatures.

Finishing Once the design iterations have converged, we automatically
generate 3D geometry for all body parts, including connectors for the mo-
tors, which are then sent to a 3D printer for manufacturing (see section 4.4).

4.3 Motion Plan Generation

Given a robot morphology which includes an arbitrary number of legs with
point or area feet, and possibly an actuated spine, our goal is to compute
time-varying motor values that lead to user-controllable, stable motions. We
formulate this task as a trajectory optimization problem whereby a set of
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objectives is used to define an optimal motion. We represent a motion plan
p = (p1, . . . , pT) as a time-indexed sequence of vectors

pi = (qi, xi, c1
i , . . . , cn

i , e1
i , . . . , en

i w1
i , . . . , wn

i ) , (4.1)

where qi represents the pose of the creature, i.e., the position and orientation
of the root as well as the angle values for all motors, and xi denotes the
desired position of the creature’s center of mass. The feet of each limb are
defined by one or multiple end effectors. For each end effector j, 1 ≤ j ≤ n,
we use a contact flag cj

i to indicate whether it should be grounded (cj
i = 1) or

not (cj
i = 0) at a given time ti. Furthermore, we denote the desired position

of the end effectors as ej
i and store a scalar weight wj

i for each of them. Fig.
4.4 (left) visualizes our motion plan representation.

Figure 4.4: The motion plans generated by our framework consist of trajectories for
the center of mass (green), feet (blue), and corresponding full-body poses for the robotic
creature (left). An inverted pendulum model is employed to obtain a relationship between
the center of pressure and the center of mass (right).

4.3.1 Constraints

We refer to a motion plan as consistent if, for every time sample i, the follow-
ing set of conditions is satisfied:

ϕCoM(qi)− xi = 0 , (4.2)

ϕEE(qi)
j − ej

i = 0 , ∀j . (4.3)

Here, ϕCoM(q) is a forward kinematics function outputting the position of
the creature’s center of mass (COM) given pose q. Similarly, the function
ϕEE(q) computes the end effector positions for the robot’s limbs given pose
q.
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In order to generate motions that do not require sophisticated sensors and
complex feedback mechanisms, our framework computes motion plans that
are naturally stable. Formally, this criterion is expressed as a constraint that
ensures that at every discrete moment in time i, the center of pressure (COP)
pi falls within the support polygon defined by the end effectors that are in
contact with the ground:

n

∑
j=1

cj
iw

j
ie

j
i − pi = 0 , (4.4)

with the additional constraint that only convex combinations of grounded
end effector positions are allowed to define the location of the COP:

n

∑
j=1

wj
ic

j
i = 1 , wlb ≤ wj

i ≤ 1 , ∀j , (4.5)

where the lower bound limit wlb, which is set to 0.1 for all our experiments,
prevents the COP from moving too close to the boundary of the support
region.

The COP position pi at each time step i is not an explicit parameter of the
motion plan. However, using an inverted pendulum model, a simple rela-
tionship between it and the optimized COM trajectory can be readily ob-
tained [Kajita et al., 2003]. As illustrated in Figure 4.4 (right), the vertical
component of the force f applied along the vector between the COM and the
COP is fv = mg + mẍv, where g = 9.8m\s2. Consequently, by computing
the horizontal component of f, and by observing the trigonometric relation-
ship between the height of the COM, xv, and the horizontal projection of the
vector from p to x, the following relationship emerges:

pi = xi −
xv

i ẍi

ẍv
i + g

(4.6)

The acceleration of the COM trajectory, ẍi, including its vertical component,
is expressed using finite differences as a function of xi−1, xi and xi+1: ẍi =
(xi−1 − 2xi + xi+1)/h2, where h is the time step. We note that Equation 4.4
represents a dynamic stability criterion: while the COP is guaranteed to lie
within the support polygon at all times, the projection of the COM on the
ground plane does not have to. Consequently, the motions generated by
our optimization framework are less conservative than if a static stability
criterion acting solely on the COM was employed.
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As the positions of the end effectors are independently defined at discrete
moments in time, an additional constraint is needed in order to ensure tem-
poral consistency of the motion plan and to avoid foot-slipping:

(ej
i−1 − ej

i)c
j
i = 0 , (ej

i − ej
i+1)c

j
i = 0 , (4.7)

for all 2 ≤ i ≤ T − 1. This expression implies that the target positions of the
end effectors are only allowed to change freely when they are not in contact
with the ground.

If a periodic motion is desirable, an additional constraint that relates the
robot’s joint angles, J(q), at the start and end of the motion is added:

J(q1)− J(qT) = 0 . (4.8)

The robotic creatures generated with our system reproduce the planned mo-
tions by directly tracking the optimized joint angle trajectories. It is therefore
crucial to ensure that the resulting motion plans fall within the range of ca-
pabilities of the physical motors that are used. As a simplified actuation
model, we place bounds on the maximum angular velocity at each joint j:

−ωmax ≤
J(qi+1)

j − J(qi)
j

h
≤ ωmax, ∀i, (4.9)

where ωmax is the maximum achievable speed of the motor.

4.3.2 Motion Style Objectives

If Equations 4.2 and 4.8 are satisfied, the motion plan is termed admissible,
as it corresponds to a stable motion. In general, many such motion plans
exist for a given robot morphology and footfall pattern. We therefore pro-
vide several objectives and high-level controls that allow users to intuitively
explore the space of admissible motions.

The smoothness of the motion is the first attribute that users can control via
an objective defined through a finite difference approximation of the second
derivatives of the robot pose trajectory:

ESmooth =
1
2

T

∑
i
||qi−1 − 2qi + qi+1||2 . (4.10)

With the motion editing interface provided by our system, users can also
directly influence the motion style of the robotic creatures they design. To
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this end, two regularizing terms provide target trajectories for the motion of
the COM and the end effectors:

EStyleCOM =
1
2

T

∑
i=1
||xi − xD

i ||2 (4.11)

EStyleEE =
1
2

T

∑
i=1

n

∑
j=1
||ej

i − eD j
i ||2 (4.12)

We note that although the target trajectories may lead to unstable motions if
employed directly, they are used just as a guide. Consequently, the user can
edit them freely, without needing to worry about feasibility constraints, in
order to uncover the range of motion styles achievable by the robot they are
designing.

The walking and turning speed of the robotic creatures are controlled
through two separate terms which measure the difference between the pose
of the robot at the start and end of the motion trajectory:

xT − x1 = dD (4.13)
τ(qT)− τ(q1) = τD (4.14)

where dD and τD are the desired values for the net distance traveled and
turning angle, respectively, and the function τ(q) returns the turning angle
from pose q.

4.3.3 Optimization

We cast the problem of generating feasible motion plans as a multi-objective,
constrained optimization problem where the degrees of freedom are the
robot poses at each time instance, the trajectories of the end effectors and
the center of mass, and the end effector weights which define the trajectory
of the center of pressure. The contact flags are directly specified by the foot-
fall pattern and are thus not treated as free parameters during the optimiza-
tion. As described above, we have structured the conditions on the robot’s
motion into constraints that model vital requirements for successful loco-
motion, and objectives that influence the style of the motion. When translat-
ing these terms into an optimization problem however, we have to carefully
balance the importance of exact constraint satisfaction against the numeri-
cal difficulties associated with non-linear, non-convex systems of equations.
We therefore treat the nonlinear Equations 4.2 and 4.4 as soft constraints by
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minimizing their squared residuals weighted by a large constant (104 for
all experiments). The linear equality and inequality relations described by
Equations 4.5, 4.7, 4.8 and 4.9 are treated as hard constraints. The weights
associated with the motion style objectives 4.10 and 4.14 can be interactively
set by the users of our system to emphasize different priorities they might
have. However, they are kept constant for all our experiments. To minimize
the resulting constrained optimization problem we use OOQP [Gertz and
Wright, 2003], as the inner loop of our Sequential Quadratic Programming
solver (see Section 3.2.3.

As can be seen in Table 4.1, generating motion plans requires our framework
to solve non-linear systems of equations with hundreds of unknowns—the
exact number depends on the complexity of the robot’s design and it is linear
in the number of time samples that define the motion trajectories. Given that
analytic derivatives for the constraints and objectives we formulate can be
readily computed, and because the resulting Hessians are sparse, computing
optimal motions can be done efficiently, typically requiring less than 3− 5s
of computation time when starting from scratch. During the iterative design
process, as the user adjusts the proportions or motion style of their robot,
previously computed motion plans are used to warm-start the optimization
process, thus further reducing the computational burden and leading to a
seamless interactive experience.

To increase convergence rates when optimizing a motion plan from scratch
we employ a two-step optimization process. As illustrated in Figure 4.5,
which shows the value of the objective while generating in-place walking
motions for our Ranger robot, 10 iterations are first executed while the end
effector trajectories are kept constant (546 parameters in total), followed by
additional iterations where the full set of parameters (714) is optimized for.
In contrast to a typical scheme where all parameters are optimized from the
beginning, we observe improvements in convergence rates of up to 50%.
This performance improvement is due to Equation 4.4 becoming convex,
which gives rise to a smoother optimization landscape where intermediate
solutions can be efficiently arrived at. These intermediate solutions then
furnish a good starting point for the global optimization which quickly con-
vergences to a nearby local minimum. Each step of the global optimization
takes on average 0.08s.

4.4 Generation of 3D Printable Mechanical Structures

The designs thus far produced by our system provide only an abstract de-
scription of the robotic creatures our users intend to create. In particular, the
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Figure 4.5: Convergence plot showing the value of the objective function while optimiz-
ing all parameters at once (blue) versus a two-step optimization scheme (red).

placement and orientation of virtual motors, the relative location of the end
effectors and the skeletal structure that specifies their connectivity define
the morphology and body proportions of the designs. Before proceeding
to fabrication, our system auto-
matically generates 3D printable
geometry for the robot’s mechan-
ical structure. To this end, our
system starts with a CAD model
of available servomotors, as vi-
sualized in the inset figure. In
a pre-processing step we gener-
ate two tight-fitting 3D models
that directly attach to the servo-
motors with screws or rivets, en-
close them, and become part of the geometry generated by our system. The
geometry of the enclosing models allows for a ±90 degrees range of motion
for each servomotor.

We collectively refer to the attachment parts of each servomotor and the
models that define the geometry of the end effectors as structural features.
The problem of creating the mechanical design a robot’s body parts thereby
reduces to generating geometric models that connect consecutive pairs of
structural features s fi and s f j. We note that mounting brackets are typically
used for this purpose. However, as the shape and functionality of mounting
brackets are pre-defined such that they can be mass-produced, they signifi-

52



4.4 Generation of 3D Printable Mechanical Structures

cantly restrict the set of possible relative positions and orientations between
pairs of structural features. We therefore opt to create custom, 3D printable
connections instead.

As illustrated in Figure 4.6 a), each structural feature outputs a set of
possible attachment points (green). As a step towards generating a geo-
metric model that connects a pair of structural features, our system com-
putes a mapping between the attachment points output by s fi and s f j.
More specifically, we first compute the convex polygons of the attachment
points projected on a plane perpendicular to the vector between s fi and s f j.

Figure 4.6: Generating 3D-printable
geometry.

We then compute the convex hull of
the attachment points whose projec-
tions define the two convex polygons,
as seen in Figure 4.6 b). If fabri-
cated using a Fused Filament Fabrica-
tion device, where the infill rate can be
used to control the trade-off between
weight and structural integrity, then
the geometry of the body part can be
obtained by performing a union op-
eration between the computed convex
hull and the models that enclose the
servomotors. However, for other 3D
printing techniques, such as Selective
Laser Sintering, our system can auto-
matically create a lightweight struc-
ture inspired by engineering prin-
ciples. More specifically, our sys-
tem generates truss structures directly
from the convex hull computed at the
previous step. The edges of the con-
vex hull that connect one attachment point on s fi to another on s f j define the
main elements of the structure, and additional connective struts are added
procedurally, as shown in Figure 4.6 c). The density of the connective struts
and their thicknesses are user-specified, as they depend on the material used
for fabrication.

The geometric structures automatically generated by our framework are
functional and they allow the robotic creatures designed with our system
to be fabricated through 3D printing. However, in order to enhance the
aesthetics of the designs, we allow users to augment the generated geom-
etry with existing 3D models, if desired. To accomplish this, users position
the existing 3D models relative to the desired robot body part, and a union
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operation is performed to generate the fused mesh. As a simplification, the
added 3D models are assumed to not significantly alter the mass distribution
of the robotic creature (i.e., they are lightweight shells). If this assumption is
not valid, it is trivial to recompute the mass and moment of inertia of each
body part based on the user-provided geometry and re-optimize the motion
plans.

4.5 Results and Discussion

We have used our interface to design a diverse set of robotic creatures,
three of which were physically fabricated for validation. The results that
we present in this section demonstrate that our method is indeed a power-
ful tool, allowing users to author a broad range of designs with explicit and
intuitive control over morphology and motion style. Our design methodol-
ogy offers a number of key benefits over the alternative of manual design. In
particular, while keyframing and other conventional methods are very suc-
cessful for digital animation, the motions of our robotic creatures are subject
to real-world physics. Anticipating and incorporating these effects during
the design process is very difficult, even for experts. The gaits generated
using our motion optimization, in contrast, precisely coordinate the move-
ments of the feet and the body such as to ensure smoothness and stability for
robots of various designs. Consequently, our system allows for an intuitive
exploration of the relationship between a robot’s morphological features and
its ability to produce compelling, purposeful motions.

Below we highlight several aspects that are key to our approach and discuss
observations from experimental validation.

4.5.1 Design Interface & Workflow

Structure Editing Thanks to the fast turnaround rates of the underlying
optimization, our interface allows for quick, easy, and intuitive editing of a
creature’s structure and motion. The user can freely edit the morphology
of the robot by dragging on motor handles until the predicted motion—
always visible and up-to-date in the preview viewport—is satisfying. For
these edits in particular, convergence is very good since we can warm-start
the optimization with a previously optimized motion plan. However, when
changing axes of rotation, the joint-angle trajectories used for warm-starting
can lead to drastically different trajectories of the end effectors. We there-
fore simply re-initialize the optimization process, which then takes about 3
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Figure 4.7: Six robotic creatures designed with our interactive system: one biped, four
quadrupeds and one five-legged robot.

seconds on average to arrive at a solution. We also restart the optimization
process from scratch when the morphology of a design is altered by adding
or removing motors.

Morphology Editing A particularly compelling feature of our method is
that it supports arbitrary morphologies. As demonstrated by our results,
we support creatures with arbitrary numbers of legs, including bipeds,
quadrupeds, and more exotic cases such as the five-legged creature shown
in Figure 4.3. Furthermore, the configuration of the legs is very flexible: the
robotic creatures we show are designed with three or four motors per leg,
while our biped robot (Figure 4.7) also features actuated ankles for a total of
five motors for each leg. Area or point feet are specified by designating one
or more end effectors for each limb. Actuated bodies are also supported: our
Ranger (Figure 4.1) and Predator (Figure 4.3) robots each have one motor that
allows their shoulders to rotate relative to their pelvis, while the Salaman-
der design (Figure 4.8) uses two actuators for the tail and five for its flexible
spine. It is worth noting that this generality is a direct consequence of our
formulation—no special treatment is required.

Motion Editing Our system offers three sets of tools that allow the user
to author and edit the motion of a given robot in largely orthogonal dimen-
sions: the footfall pattern, the velocity of the center of mass, and trajectories
for the feet and the center of mass. We first tested these tools designing a
range of motion edits on the Bobby model (Figure 4.2), a quadruped robot
with 12 motors and thus similar in complexity to commercially-available
mid-range robots. The footfall pattern graph allows the user to quickly ex-
plore different gaits, simply by dragging on the stance/swing phase widgets
of the individual legs. The different gaits are also well-reflected by the phys-
ical prototype. High-level motion goals are formulated simply by prescrib-
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ing constant linear or angular velocity for the body of the robot to achieve
forward or sideway motion, or to turn in place. Once a rough motion has
been laid out, the trajectory editing tool can be used to further flesh out the
characteristics of the gait such as to give it personality and style.

Creature Finishing Our method automatically generates geometry for the
various body parts based on the shape and location of the motors and end-
effectors. However, in order to increase the aesthetic appeal of the final de-
signs, the user can replace these meshes or augment them with manually
designed shells. In that case, we assume that the mass and inertia properties
for the new parts do not significantly deviate from the old geometry such
that the robot can walk as expected with the original animation. We note
that it is always possible to recompute angle trajectories in order to account
for changed mass properties, but if these changes are significant, the opti-
mization might have to substantial alter the style of the resulting motion.

On-Board Control After the robotic creatures are fabricated and assem-
bled, off-the-shelf servos are used to drive their motions. We use a com-
bination of position and velocity control to ensure that the servo motors
produce smooth motions and remain in sync with each other. Control sig-
nals are computed at fixed time intervals. Briefly, for motor i at time t
we estimate the target joint position qi(t + δt) by interpolating the corre-
sponding optimized motion trajectory, and read the servo’s current posi-
tion, αi(t). The control board then sets the motor’s maximum angular speed

Figure 4.8: Salamander: our framework automatically generates swaying tail and spine
motion, leading to a natural-looking gait.
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to (qi(t + δt)− αi(t))/δt, while its goal position is set to qi(t + δt). We use
δt = 0.15s for all our experiments.

4.5.2 Validation

We performed a set of experiments in order to assess the feasibility of the
motion plans generated by our method. First, we employ black-box physics
simulations as a way of providing a preview of the expected real-world be-
havior of each robot design. We use the Open Dynamics Engine [ODE, 2007]
for this purpose and model the robots as articulated rigid body systems. The
joint trajectories computed during the motion optimization stage are used to
define time-varying targets for Proportional-Derivative controllers, used to
model the actuators at each joint.

In order to achieve motion planning at interactive rates, our optimization
scheme uses an approximate dynamics model. More concretely, asking the
center of pressure to fall within the support polygon is a necessary but not
sufficient condition, as it ignores the friction-induced limitation on the tan-
gential contact forces and dynamic effects that may become significant for
fast limb movements. In order to assess the impact of this simplification, we
measured the error in tracking the planned center of mass trajectories over a
full motion cycle for our Ranger model. We ran this experiment on three dif-
ferent motions with stride durations of 0.5, 1 and 2 seconds, and observed a
net final error in center of mass position of 1.57, 0.62 and 0.18cm respectively,
when comparing the planned motion against the result of the simulation.
As a point of reference, each limb of this robotic creature is about 50cm in
length and it was tasked with walking forward using step lengths of 20cm.
Although a growing discrepancy from the motion plan becomes apparent
as the speed of the motion increases, the simulated robot was able to walk
successfully each time. However, for biped designs like Hunter, such errors
can lead to failures due to the high COM and comparatively small area of
the support polygon. Physics simulations will immediately reveal such un-
wanted behaviors, allowing the designer to take appropriate measures by
adjusting their design.

To further validate the results of our system, we created physical proto-
types for the Bobby, the Ranger, and the Predator characters. We used 3D-
printed body parts and off-the-shelf hardware—12 Dynamixel MX-28 actua-
tors daisy-chained to a CM-700 Robotis Servo Controller board and powered
by a LiPo battery. Even before comparing the motion predicted in simu-
lation to the results observed on the real-world protoypes, we can identify
several sources of inaccuracy resulting from idealizing assumptions made
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by the simulation model. In particular, we assume ideal actuators and per-
fectly rigid body parts. In reality, the amount of torque that motor can exert
is limited, but the maximum torque also decreases with increasing angular
velocity—a complex behavior that is more difficult to model. Furthermore,
while 3D-printing allows for quick and easy customization of the robot’s
geometry, the limited accuracy of current consumer-end printers together
with the finite compliance of the printed body parts leads to deformations
that are not accounted for in the simulation. As a concrete manifestation,
we observed that the feet of the Ranger model do not rise as high as seen
in simulation (approximately 8cm measured at the apex vs. 10cm in simula-
tion). Despite these sources of error, we observed good agreement between
the overall motions of our physical prototypes and the behavior predicted
in simulation.

Finally, it should be noted that it takes on the order of minutes to the design
these creatures, but hours to assemble and even days to print. This fact
implies that building prototypes is very time-consuming and expensive—
and it is the ambition of our method to produce final digital designs without
the need for physical iterations.

4.6 Limitations and Future Work

This chapter presented an interactive, end-to-end solution for designing 3D-
printable robotic creatures whose morphology, proportions, gaits and mo-
tion styles can be easily personalized. Using our system, we were able to
design a diverse set of legged robots, each created in a matter of minutes.
Our method efficiently generates stable, user-controllable walking motions
for robots with a vast array of morphological features. The most immediate
benefit of our system is therefore that it enables an interactive exploration

# Legs Spine # motors # motion plan
DOFs parameters

Bobby 4 0 12 429
Dino 4 0 14 735

Salamander 4 8 20 861
Ranger 4 1 13 714
Hunter 2 0 10 387

Predator 5 1 16 840

Table 4.1: An overview of the complexity of robot designs we created with our system.
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of the space of feasible robot designs without requiring any domain specific
knowledge from its users.

Although the space of robots and motions that our solution can currently
generate is substantial, our system does have limitations that present excit-
ing avenues for future work. For example, motions that exhibit flight phases
cannot currently be produced, as our model requires the existence of at least
one point of contact between the robot and the ground at any moment in
time. Furthermore, the model simplifications that we exploit for efficiency
result in differences between the predicted and real-world behavior of the
robots. These differences are most pronounced for fast motions and increase
as the size of the support polygon decreases relative to the height of the cen-
ter of mass. For instance, the bipedal robot that we designed is capable of
walking, but unsurprisingly, it can fall quite easily when perturbed. This
limitation highlights the need to integrate feedback mechanisms that adapt
the motion plan in real-time based on sensor data.

We are also excited about the challenge of making the process of authoring
complex behaviors easily accessible to casual users. We are encouraged by
the ease with which gaits and motion styles can be specified using our easy-
to-use editing tools. We plan to extend these tools such that users can spec-
ify a motion repertoire that includes switching between gaits, portraying
rich personalities and interacting appropriately with objects and humans.
Finding appropriate abstractions for intuitively authoring such high-level
behaviors is an interesting subject for future work.
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C H A P T E R 5
A Computational Design Tool for
Compliant Mechanisms

In this chapter we present a computational tool for designing compliant
mechanisms. In contrast to the rigid limbs characteristic of the creatures de-
signed in the previous chapter, these devices perform their motions through
flexible articulations. The design approach we propose, takes as input a con-
ventional, rigidly-articulated mechanism defining the topology of the com-
pliant design. This input can be both planar or spatial, and we support a
number of common joint types which, whenever possible, are automatically
replaced with parameterized flexures. As the technical core of our approach,
we describe a number of objectives that shape the design space in a mean-
ingful way, including trajectory matching, collision avoidance, lateral sta-
bility, resilience to failure, and minimizing motor torque. Optimal designs
in this space are obtained as solutions to an equilibrium-constrained mini-
mization problem that we solve using a variant of sensitivity analysis. We
demonstrate our method on a set of examples that range from simple four-
bar linkages to full-fledged animatronics, and verify the feasibility of our
designs by manufacturing physical prototypes.

5.1 Introduction

Engineers routinely design for strength and stiffness. Steel and concrete pre-
vent deflections in buildings, and machines resort to rigid articulation in or-
der to avoid deformations. But although most human designs are inspired
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by Nature, rigidity is a concept foreign to the living world: from a kanga-
roo’s legs to the wings of a bat—bones, tendons, and cartilage are the nuts
and bolts of organic machines, and deformation is an integral part of the
design, crucial for both efficiency and robustness. Unfortunately, designing
for flexibility requires deep understanding and precise predictions of finite
deformations, which proves to be substantially more difficult than relying
on rigidity.

Fueled by progress in technology and computation, however, many fields
of engineering have started to embrace deformation and to leverage flexibility
for better, more elegant, and ultimately more satisfying designs. Applied to
machines, this turn to the flexible leads to compliant mechanisms, i.e., mechan-
ical devices that perform motion not through rigid articulation but by virtue
of elastically deforming flexures. Compliant mechanisms enjoy widespread
use in industry, where they are valued for their accuracy, ease of manufac-
turing, scalability, and cost efficiency. The spectrum ranges from specialized
microelectromechanical systems (MEMS) for miniature sensors and actua-
tors [Kota et al., 2001], to more mundane devices including monolithic pli-
ers and wiper blades, and to commonplace products such as binder clips,
backpack latches, and shampoo lids.

In this chapter, we are primarily interested in exploring the potential of com-
pliant mechanisms for personalized automata and animatronics. With the
ability to create complex geometry and its repertoire of flexible, plastic-like
materials, 3D printing is an ideal way of manufacturing compliant mecha-
nisms. And thanks to the increasing availability of consumer-level printers,
hobbyist mechanics and other non-expert users now have the machinery to
create compliant mechanisms for use in their conceptions and contraptions.
But perhaps even more than for conventional mechanisms, the path to a suc-
cessful compliant design is littered with traps for the novice:

• Compliant mechanisms typically involve large deflections that give
rise to nonlinearities in both geometry and material behavior, not
rarely betraying intuition.

• For conventional mechanisms, the resistance to motion is either zero
or infinite. In the compliant setting, any motion requires a finite
amount of work and, depending on direction, the stiffness can vary
by orders of magnitude. Shaping the corresponding energy land-
scape, i.e., finding a balance between stiffness and flexibility is one
central aspect of this design problem.

• Compliant mechanisms provide friction- and wear-less motion, but
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xi

Figure 5.1: Conventional vs. compliant hinge. We replace conventional joints (left)
with a single or several flexures (right).

incautious design can induce material fatigue and failure. In order
to minimize this risk, high stress concentrations must be avoided.

• While the forward problem of predicting the motion of a compliant
mechanism is a non-trivial task already, the inverse problem of deter-
mining parameter values that lead to a desired motion or function is
extremely difficult.

Considering these challenges, designing compliant mechanisms is all but a
hopeless endeavor for casual users.

5.2 Computational Model

The core of our method is formed by a computational model that allows
us to simulate the behavior of a given compliant mechanism design (Sec-
tion 5.2.1). The design itself is described in terms of a dedicated flexure-
centric parameterization (Section 5.2.2), defining the interface to subsequent
optimization (Section 5.3).

5.2.1 Simulating Compliant Mechanisms

We model compliant mechanisms as sets of rigid links interconnected by
flexible joints. The state of each rigid link is represented as a vector si ∈ R6

holding translational and rotational degrees of freedom. Each compliant
joint is composed of a set of flexures—thin lamella which we model using
discrete elastic rods 3.1.3. A flexure is represented by a piece-wise linear
centerline, given as a set of vertices xi, as well as a set of radii, aj and bj,
defining the width and height of the elliptical cross section for each edge of
the centerline.

In addition to compliant flexures, our approach also supports conventional
joints, which are used, e.g., when full revolutions are required. Following
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Coros and colleagues [2013] we model conventional joints using simple ge-
ometric constraints C(s).

Our compliant mechanisms are actuated by connecting one or several of the
rigid links to an input driver such as a motor or a crank. In order to ob-
tain proper two-way coupling, we ask that the first and last two centerline
vertices (compare with Figure 5.1 right) move rigidly with the incident links
si and sj, which we implement by eliminating the corresponding degrees
of freedom. The motion of the input link then propagates throughout the
mechanism, causing flexures to stretch, bend, and twist. These deformations
give rise to internal energy Eint(x) that is computed according to [Bergou et
al., 2008].

Given the states of all input links, we can compute the equilibrium configu-
ration of the mechanism by solving the constrained optimization problem

min
x,s

Eint(p, x, s) s.t. C(p, s) = 0 , (5.1)

where x and s collect the degrees of freedom of all flexures and links, respec-
tively, and p is a vector of design parameters, defining the rest state of the
mechanism as described next.

5.2.2 Parameterizing Compliant Joints

Given a conventional mechanism as input, our goal is to replace rigidly-
articulated joints with compliant counterparts wherever possible and de-
sired. To this end, we can in principle choose from existing catalogs [How-
ell et al., 2013] that provide designs for many types of conventional joints,
typically with several alternatives for each type. When choosing a partic-
ular compliant joint, we ask that the range of motion of the original joint
be preserved as much as possible, including degrees of freedom as well as
constraints. Moreover, we would like the compliant joints to be readily pa-
rameterized and easy to manufacture.

Revolute Joints As the most frequently found joint in planar and spatial
linkages, hinges can, in principle, be modeled using only a single flexure. By
choosing an elliptical cross section that is wide along the rotation axis ai of
the original joint, but thin in the orthogonal direction, high lateral stability
can be achieved with small in-plane stiffness. However, the ratio between
in-plane compliance and out-of-plane stiffness of a design with multiple an-
tagonistic (i.e., ‘crossing’) flexures can be significantly higher for the same
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Figure 5.2: Parameterizing a compliant hinge with two offset flexures.

total width. We therefore adopt a layered flexure design that, as illustrated
in Figure 5.2, consists of two flexures stacked along ai. In order to allow
for smooth geometry with a minimum number of parameters, we model
each flexure as a cubic Hermite spline, defined by two end points qj and
corresponding tangent vectors tj. The flexure is required to remain within
its layer, which we achieve by using polar coordinates to parameterize the
attachment points with respect to the location ri of the original joint as

qj = ri + rj(cos φje1 + sin φje2) . (5.2)

In the above expression, rj and φj are radial and angular coordinates as illus-
trated in Figure 5.2 (top, middle) and (top, right), and [e1, e2] span the plane
orthogonal to ai. Tangent vectors are described analogously (bottom, left)
and (bottom, middle), and two additional parameters control the distance

between the attachment points of the two flexures
on the same link, such as to create, e.g., cross con-
figurations with high lateral stability (Figure 5.2,
bottom right). The layered design also generalizes
readily to hinge joints connecting more than two
components as illustrated in the inset on the left
with a three-way coupling, where an additional
layer is required to accommodate all three flex-

ures.

Other Joint Types For spherical joints, we use a single flexure with circu-
lar cross section (compare with Figure 5.3 left), offering comparatively low
resistance to bending and twisting deformation, but orders of magnitude
higher stiffness for stretching. Similar to hinge joints, flexures for spherical
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joints are modeled as spline curves whose attachment points are required to
remain within a certain spherical volume relative to the original joint loca-
tion.

In addition to revolute and spherical joints, compliant universal joints can
be modeled as well using, e.g., two flexures with mutually orthogonal axes
connected serially as illustrated in Figure 5.3 (right). These three joint types
allow us to create a large and diverse set of meaningful linkages and other
mechanical assemblies. Note that connections involving translational mo-
tion are inherently difficult to achieve using compliant joints. However,
our formulation supports rigidly-articulated versions of these joints, both
in terms of simulation and optimization.

5.2.3 Generating Link Geometry

With a view to design optimization, we collect the parameters of all flex-
ures in a vector p. Taken together, these parameters completely define
the undeformed configuration of the compliant mechanism. In particular,
they define the rest state geometries for all flexures which, in turn, deter-
mine the behavior of the mechanism. In order to obtain a functional, print-
able mechanism, we have to generate geometry for all rigid links, and
this geometry should automatically adapt to
changes in the flexure parameters during op-
timization. To this end, we represent the
geometry for each link as a union of cap-
sules, a representation that is readily parame-
terized and simplifies collision tests (see Sec-
tion 5.3.4). More concretely, we model each
link as a union of three cylinders and two
spheres, as illustrated in the inset figure. Two
of the cylinders have fixed lengths and at-
tach to the flexures on either side of the link.
These two cylinders are, in turn, connected
by a third cylinder of variable length, and we
place spheres at the corresponding intersection points in order to obtain
smooth transitions. Though simple, this procedural link geometry has the
advantage that derivatives with respect to flexure parameters, which are re-
quired for design optimization, are readily computed.
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Figure 5.3: Compliant ball-and-socket (left) and universal joint (right).

5.3 Design Optimization

Given an initial design for a compliant mechanism, we seek to find parame-
ter values for all flexures such as to optimize the function of the mechanism
with respect to various objectives, including motion tracking, ease of actu-
ation, and resilience to failure. We first introduce the individual objectives,
then describe how to compute optimal parameter values.

5.3.1 Motion Tracking

Generating motion is a central function of both conventional and compliant
mechanisms. For example, it is crucial for the end effector in a compliant
leg mechanism to closely follow the corresponding trajectory of the conven-
tional counterpart in order to ensure proper walking. Similarly, the finger
of a compliant robot hand needs to offer the same range of motion to suc-
cessfully perform grasping tasks. In order to encourage accurate motion
approximation, we introduce a trajectory matching objective of the form

ftrack =
1
2 ∑

t
‖zt(xt, st)− ẑt‖2 , (5.3)

where zt describes the discrete trajectory of a point on the compliant mecha-
nism, and ẑt is the corresponding target trajectory on the input mechanism.
We step through a full motion cycle or along a user-specified animation and
compute the corresponding equilibrium states (xt, st) by minimizing (5.1).

5.3.2 Lateral Stability

A conventional mechanism exhibits zero resistance to motion corresponding
to its degrees of freedom, and infinite stiffness in all orthogonal directions.
However, this crisp picture becomes somewhat blurred for compliant mech-
anisms, which exhibit finite resistance to motion in all directions. In particu-
lar, instead of deriving from a degree of freedom, the motion of a compliant
mechanism is a path through an energy landscape, lined with preferably
steep walls to the sides, but sloping rather gently along its direction. Low
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resistance to motion along this path is desirable as this leads to less stringent
torque requirements. While some amount of compliance perpendicular to
the trajectory can be desirable as well (e.g., for grasping or walking), a cer-
tain minimum stiffness to lateral motion is always required. One particular
way of encouraging lateral stability is to apply a given force fl to the mecha-
nism and ask that the resulting displacement be minimal or bounded. Using
the motion tracking objective (5.3) as a basis, the deviation from the original
trajectory can be expressed as

fstab =
1
2 ∑

t
‖zt(xt, st)− z̃t(xt, st)‖2 , (5.4)

where z̃t is the trajectory obtained under the action of fl. We generally apply
fl at the end effector in a direction approximately normal to the trajectory,
but the user is free to change this direction if desired.

5.3.3 Actuation Requirements

Actuating a compliant mechanism to a given target configuration requires
work, holding the position requires torque. Ideally, we would like to min-
imize the maximum required torque along the trajectory, as this will allow
for more precise actuation and for using smaller, less expensive motors. The
torque required to hold a compliant mechanism in a given position is equal
to the derivative of its elastic energy with respect to the motor angle. Using
central differences, we approximate the torque required to sustain a given
configuration (xt, st) as

τt =
1

∆αt
(E(xt+1, st+1)− E(xt−1, st−1)) , (5.5)

where ∆αt is the corresponding change in motor angle. In order to minimize
torque requirements, we define an objective function as

fact =
∑t τ2

t eβactτ
2
t

∑t eβactτ2
t

, (5.6)

where we set βact to a large positive value.

5.3.4 Avoiding Collisions

In order to ensure proper functioning of the mechanism, we have to avoid
collisions between its individual links and flexures. There are three cases

68



5.3 Design Optimization

Figure 5.4: A collision between a flexure and a link (left) is resolved by reshaping the
corresponding geometry (right).

that need to be handled: flexure-flexure, link-link, and flexure-link colli-
sions. In order to prevent flexure-flexure intersections, we measure the dis-
tance between all pairs of edges of the two centerlines. Whenever the dis-
tance d(ei, ej) between two edges ei and ej is less than a minimum distance
dmin, we construct a penalty function of the form

fcoll =

(
d2

min − d(ei, ej)
2

d2
min

)3

, (5.7)

that, by construction, has continuous second derivatives at d = dmin. While
we could have used an exponential barrier for the penalty function, we
found the polynomial version to be sufficient in practice, preventing inter-
sections reliably. For the link-link case, we test all pair-wise combinations of
spheres and cylinders and, whenever too close proximity is detected, acti-
vate a corresponding penalty term. Finally, in order to prevent intersections
between links and flexures, we test each edge of the centerline against the
five shapes of the link and issue a penalty term if distances are too small. It
should be pointed out that we do not check for flexure-link collisions if the
flexure is attached to the link. We found that doing so gives the mechanisms
more freedom to adapt at the cost of sometimes introducing collisions; see
Figure 5.4. These can, however, always be resolved by adapting the geom-
etry of the link in a post-processing step (right). Finally, each of the three
cases is implemented using the same closed-form function for measuring
the distance between two capsules [Zehnder et al., 2016].
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5.3.5 Preventing Material Failure

The flexures in a compliant mechanism are only elastic within a certain range
of deformation, beyond which material fatigue and, ultimately, failure will
occur. One central goal of our approach is to minimize the risk of such fail-
ures. The field of fracture mechanics has many ways of modeling various
failure modes for different types of materials. One widely used model is
the so called von Mises criterion [Hill, 1998], which states that the onset of
failure—or yielding—is a function of the internal stress acting inside the ma-
terial. Indeed, many manufacturers provide data for their printable materi-
als that can readily be used in this criterion. But unfortunately, the volumet-
ric stresses required to evaluate the yield criterion are not directly available
from the discrete rod model. Our goal is therefore to transform the discrete
centerline stretch, bending, and twist into a single volumetric strain tensor,
from which the stress is then obtained by virtue of a continuum-mechanics
material law.

We base below derivations on the elasticity theory on rods as described in
Landau et al. [1986]. For bending, we extend their formulation to curved
rest configurations and account for the coupling between stretch and bend-
ing away from the centerline. For twist, we largely follow their description,
outlining their derivation for the reader’s convenience and discussing the
interface with the discrete elastic rod model [Bergou et al., 2008].

Volumetric Strain from Bending In the Kirchhoff-Love model of thin
elastic rods, the different deformation modes are decoupled. In particular,
bending does not induce centerline stretch and vice versa. When consider-
ing the volumetric picture, however, it is evident that bending will induce
compression on one side of the centerline and stretching on the opposite
side, even though the centerline itself remains unstretched (see Figure 5.5).
In order to quantify this deformation, we start with a simple example of an
initially straight rod bent into a state of constant curvature κ = 1/R. Let dz
denote a length element along the centerline and let dz′ be the length of a
corresponding segment at a given location x in the rod, where −a ≤ x ≤ a.
Furthermore, let dz̄ = dz̄′ denote the corresponding lengths in the (straight)
undeformed configuration. Since the centerline does not stretch under bend-
ing, we have dz = dz̄. Due to the constant curvature, we have dz′

(R−x) = dz
R

and the deformation follows as

εz =
dz′ − dz̄′

dz̄′
= − x

R
= −κx . (5.8)
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Figure 5.5: Bending induces stretching and compression away from the centerline.

For curved rest shapes, dz = dz̄′ still holds, but additionally we have
dz̄′

(R̄−x) = dz̄
R̄ , where R̄ is the radius of curvature for the undeformed state.

This leads to

εz = −
(κ − κ̄)x
1− κ̄x

with κ̄ =
1
R̄

. (5.9)

When accounting for simultaneous bending and stretching deformation of
the centerline εcl =

dz
dz̄ − 1, we arrive at

εz =
εcl(1− κx)− (κ − κ̄)x

1− κ̄x
. (5.10)

Finally, in order to extend the above formulation to the full three-
dimensional picture, we let c denote an arbitrary point within the elliptical
cross section of the rod and write

εz(c) =
εcl(1− κ · c)− (κ− κ̄) · c

1− κ̄ · c (5.11)

where κ and κ̄ are 2D vectors holding curvature values relative to the two
material directions of the rod. Under the assumption of no shearing [Landau
et al., 1986], the bending strain tensor at a given point on the boundary of
the cross section is obtained as

εb(c) = εz(c)diag (−ν,−ν, 1) , (5.12)

where ν is Poisson’s ratio of the material. It is worth noting that εb is a
3× 3 tensor expressed relative to the material frame T = [t1, n2, b3] of the
rod, where n1 and b2 span the cross-sectional plane and t3 coincides with its
tangent.

To evaluate the strain at vertex i of the discrete elastic rod model (compare
with [Bergou et al., 2008]), we first compute the curvature binormal, then ex-
press it w.r.t. the material frame at i by averaging

ki =
2ti−1 × ti

1 + ti−1 · ti , κi =
1

2l̄i

[
ki · bi−1 + ki · bi

−(ki · ni−1 + ki · ni)

]
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with
[
ti−1, bi−1, bi−1] and

[
ti, bi, bi] denoting the material frames of the two

adjacent edges. Note that κi as defined in Bergou et al. [2008] is an integrated
quantity. Hence, we divide by the integration domain l̄i which equals the
sum of the half lengths of the two adjacent, undeformed edges.

Volumetric Strain from Twisting Analogously to bending, we introduce
relevant quantities for twist with an initially straight rod, rotated about the
z-axis as depicted in Figure 5.6. Focusing our discussion on a cross section
parallel to the x-y plane at a small distance z away from the origin, we seek to
quantify the displacement a point on the cross section undergoes. To gauge
the amount of rotation at z relative to the origin, we multiply z with the
the torsion angle τ which measures the angle of rotation per unit length of
the rod. We then rotate the cross-sectional point [x, y, z]T about the z-axis,
leading to the in-plane displacement u −τzy

τzx
0

 = τz

 0
0
1

×
 x

y
z

 . (5.13)

Cross sections, however, do not stay planar under torsion. To account for
out of plane displacement, we follow Landau et al. [1986] and introduce a
torsion function ψ(x, y) which is cross section dependent −τzy

τzx
τψ(x, y)

 (5.14)

with the displacement in the z-direction proportional to the torsion angle.
This is a sensible choice because for τ = 0 the displacement field is zero.

While significant at global scales, the relative displacement of neighboring
points is small under torsion and the linearized Cauchy strain

εt(c) =
1
2


0 0 τ

(
∂ψ
∂x − y

)
0 0 τ

(
∂ψ
∂y + x

)
τ
(

∂ψ
∂x − y

)
τ
(

∂ψ
∂y + x

)
0


is sufficiently precise. Note that torsion does not lead to any volume changes
(diagonal entries are all zero) and is a pure shear deformation, orthogonal to
bending and stretching (only diagonal entries non-zero).

72



5.3 Design Optimization

x

y

z
z

u

Figure 5.6: Twist induces pure shear deformation about the rotation axis.

For a particular cross section, the torsion function ψ(x, y) is the solution to a
Poisson’s equation with Neumann boundary conditions that emerges when
assuming a linear elastic material

σ(c) = λtr (ε(c)) I + 2µε(c) (5.15)

and asking for static equilibrium ∇ · σ = 0 (see Landau et al. [1986] for a
detailed derivation). For an elliptical cross section, the analytical solution is

ψ(x, y) =
b2 − a2

a2 + b2 xy .

The torsion angle τi at vertex i of the discrete rod model is αi
l̄i

where αi is the
integrated twist angle at i (see Bergou et al. [2008]).

Failure Criterion The contributions from centerline stretching, and vol-
umetric bending and twisting are combined into the Cauchy strain ε(c) =
εb(c)+ εt(c), which we plug into the linear elastic material (Equation 5.15) to
compute the corresponding Cauchy stress σ(c). With the volumetric stress
available, we are ready to define a penalty function to prevent material fail-
ure. To this end, we ask that the maximum von Mises stress remains below
a given threshold value, dictated by the printing material.

Axial strains due to bending and twisting assume their maximum values
on the surface of the rod, and so does the corresponding stress. In lack of
an analytical expression, we evaluate the stress at a set of n sample points
ci =

{[
ai cos(φj) bi sin(φj)

]T
}

distributed along the boundary of the cross
section, then compute the von Mises stress for sample cj as

σv(cj) =

√
3
2 ∑

k,l
s2

kl and s(cj) = σ(cj)−
1
3

tr(σ(cj))I .
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Finally, the penalty term is defined using the soft maximum over all samples
ct

s on all rods along the trajectory t,

ffail =
∑t,s σv(ct

s)eβfailσv(ct
s)

∑t,s eβfailσv(ct
s)

, (5.16)

with large positive βfail.

5.3.6 Optimization

With the design objectives defined, we seek to compute optimal values for
all parameters. Since most of these objectives have quite complex deriva-
tives, we first experimented with CMA-ES [Hansen et al., 2003], a widely-
used stochastic optimization scheme that does not required derivative in-
formation. However, we found the convergence and performance of this
algorithm unsatisfying and therefore switched to a more powerful approach
based on the implicit function theorem (see Section 3.3.1).

To simplify notation, we summarize the system state as y = (x, s) and con-
dense all objectives in a single function f (y). In order to compute optimal
parameter values, we ask that the gradient of the objective function f van-
ishes,

∂ f (p, y(p))
∂p

= 0 , (5.17)

which requires the derivative of state with respect to parameters. To this
end, we observe that all admissible states have to be equilibrium configura-
tions, i.e.,

g(p, y) =
∂E(p, y)

∂y
= 0 , (5.18)

establishing a map between state and parameters, y = y(p). For any admis-
sible changes in parameters, we therefore require that

dg
dp

=
∂g
∂p

+
∂g
∂y

∂y
∂p

= 0 , (5.19)

from which we can compute the derivative of state with respect to parame-
ters and, consequently, the gradient of the objective function. We compute
the remaining derivatives using a mix of auto-differentiation and manually-
derived expressions. For minimization, we use a standard quasi-Newton
scheme with L-BFGS (see Section 3.3.2.
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5.4 Results

We have used our technique to estimate and fabricate compliant versions
for a total of five planar and spatial mechanisms (see Figures 5.7-5.10). We
minimize a weighted sum of the afore introduced objectives with default
values wtrack = 105, wstab = 5 · 105, wact = 10, wcoll = 107, wfail = 10−6 for all
our results.

Fabrication and Hardware For fabrication, we rely on a Stratasys Connex
350 and use their strong and flexible Rigur material. Both rigid links and
flexures are printed with the same material and as single assembled pieces.
We use Dynamixel’s XL-320 and their OpenCM9.04 C-Type board to drive
our mechanisms, adding a Robotis BT-210 Bluetooth communication con-
troller for remote control of our RC Car.

f = ftrack f = ftrack + fcoll f = ftrack + fcoll + fact f = ftrack + fcoll + fact + ffail

Figure 5.7: Chebyshev Linkage. Simulated (top row) and fabricated (bottom row) com-
pliant Chebyshev linkages that were optimized with different objective terms as indicated.
Starting from the red trajectory after initialization, the trajectory (in blue) of a marker on
the original assembly is recovered for all combinations of objectives. However, only with
ffail active (right most assembly), the compliant mechanism lasts.

Chebyshev Linkage To analyze the impact of the individual design ob-
jectives, we replaced two out of three hinge joints of Chebyshev’s Lambda
Mechanism with our two-stacked-flexure design while leaving the third one
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unchanged. Chebyshev’s Lambda Mechanism is well-known for its charac-
teristic trajectory with a long, approximately straight segment. As we illus-
trate in Figure 5.7 (top row), we can recover this characteristic trajectory (in
blue) from the initially off one (in red) where the average error measured
in simulation is lower than a tenth of a millimeter: if only motion tracking
of the respective point is active (1st from left), the mechanisms is not fully
functional due to a link-link collision. We can prevent this collision while
still recovering the trajectory to the same degree (2nd from left) by setting
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f to ftrack + fcoll. By further activat-
ing fact (3rd from left), we can sig-
nificantly reduce the required motor
torque as we illustrate with before
(left column) and after (right column)
energy (in blue) and torque profiles
(in red) of the cycling motion in the
inset on the left. However, while

collision-free, the bending and twisting stresses are too high for the targeted
printer material. With ffail active (4th from left), we can reduce these stresses
by a factor greater than an order of magnitude, resulting in a structurally-
sound and functional mechanism. For validation, we fabricated physical
prototypes corresponding to designs that were optimized with and without
ffail. Using only tracking and collision objectives, i.e., f = ftrack + fcoll, the
printed mechanism failed after one cycle through fracture in one of the flex-
ures. The prototype for which ffail was included in the optimization was
able to run for more than an hour (this accounts for more than 2000 motion
cycles) without noticing any sign of material failure nor onset of yielding.

Including additional objectives rather than simply using ftrack leads to a de-
crease in tracking accuracy, but as can be seen from Table 5.2 and Figure 5.7,
the functionality of the mechanism is still maintained. Evaluating the vari-
ous objectives and their derivatives with respect to the design parameters is
not expensive in comparison to the time spent on simulation: given param-
eter values for the flexures, we compute the equilibrium configuration of
the mechanism for all 60 steps along the motion cycle, each of which means
solving a nonlinear system of equations. Simulation is required at least once
per quasi-Newton iteration for solving (5.17), and potentially more often
during line search. Table 5.1 shows a comparison between the time spent
on simulation against the time spent on objective evaluation, once using
f = ftrack + fcoll and once with the addition of our most expensive objec-
tive ffail.

Jansen’s Linkage The fundamental building block of Theo Jansen’s
Strandbeests is a leg mechanism with a total of 9 hinges and 9 rigid links,
driven by a single motor. We replaced 8 hinges with layered, compliant
designs, two among which are three-way couplings. As can be see in Fig-
ure 5.8, the motion trajectory of the unoptimized mechanism (in red) is far
off the original trajectory (in black). With our performance objectives, how-
ever, we can recover the function of the mechanism (fraction of the trajec-
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Figure 5.8: Jansen’s Linkage. After replacing conventional hinges with compliant flex-
ures, the end effector trajectory (red) deviates significantly from the original trajectory (in
black). After optimally placing, orienting, and sizing the flexures, we can recover the
lower portion of the trajectory (in contact with the ground) to a large degree (in blue).

tory in contact with the ground, in blue) while keeping the stresses of the leg
mechanism within reasonable bounds.

As previously mentioned, we first experimented with CMA-ES due to the
complex derivatives of our objectives. With Jansen’s leg being one of the
most complex examples when it comes to flexure count, it is well-suited for
a comparison of a derivative-free optimization (CMA-ES) to our method of
choice – a quasi-Newton with L-BFGS: after 50 iterations of quasi-Newton
with only ftrack active, the objective value is two orders of magnitude smaller
than after the same amount of CMA-ES iterations. We further observe that
quasi-Newton moves a subset of parameters such as, e.g., the flexures’ cross

ftrack + fcoll ftrack + fcoll + ffail

Full iteration 4.82s 5.35s

Simulation 3.63s 3.81s

Objective evaluation 0.037s 0.068s

Table 5.1: Computation times for optimizing the Chebyshev linkage using different ob-
jective terms as indicated in the top row. Simulation is the dominant part in both cases,
whereas the evaluation of the objective terms is negligible in comparison.
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Figure 5.9: Eye Mechanism. Compliant eye mechanism at human-scale (top left), at
Dime-scale (bottom left and top right), and a side-by-side comparison (bottom right).

section parameters significantly more than CMA-ES, suggesting that CMA-
ES is ill-suited for the task at hand even if we ignore time complexity.

One quasi-Newton step for the Jansen leg (highest number of flexures) takes
on average 39s on a machine with an Intel Core i7-6700 3.5GHz processor
with a total of 32 GB of RAM. For improved efficiency, we parallelized eval-
uations along the trajectory and also along the line search direction. In com-
parison, one CMA-ES iteration takes on average 31s with objective evalua-
tions parallelized.

Eye Mechanism The design of well-functioning animatronic eye mecha-
nisms at small scales is a formidable task. For our Eye Mechanism (Fig-
ure 5.9), we estimated a fully compliant version from a spatial input with 2
hinges and 4 ball-and-sockets, jointing together a total of 8 rigid links, and
driven by two rotational motors. The user starts by specifying motor profiles
that lead to eye motion that sufficiently spans the desired range of motion.
After fabricating our animatronic eye, we noticed that the compliant version
preserves this range closely, hence, is function-preserving. The eye ball of
the input roughly matches the size of a human eye. However, many animals
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have eyes of far smaller scales: if, e.g., a lizard is replicated as an anima-
tronic, one needs mechanisms that run reliably at very small scales. As we
illustrate with a miniaturized eye mechanism (compare with Figure 5.9), the
use of compliance enables fabrication at scales far beyond what is possible
when relying on conventional mechanical assemblies. This is due to the scale
invariant minimal tolerance between movable parts (approximately 0.25mm
for Stratasys’ Connex series): we had to significantly reduce the range of
motion of the ball-and-sockets to prevent balls from popping out of their
socket. Hence, the mechanical eye mechanism at Dime-scale is not function-
preserving while our compliant version is.

RC Car For a steering mechanism, function-preservation is pivotal. For
our RC CAR (see also Figure 5.10), we estimated a compliant version of
a conventional steering mechanism consisting of 5 rigid bodies jointed to-
gether with 2 hinges and 2 ball-and-sockets, and driven by a single motor.
By testing our car, i.e. driving it on a flat surface, we notice that the func-
tionality of the original mechanism is preserved, even under self-weight of
the car and frictional contact at the three wheel shafts. It is worth noting that
the compliant ball-and-socket flexures are pulling or pushing dependent on
the steering direction and do not buckle under compression. Due to symme-
try, we optimized only half of the mechanism, then mirrored the resulting
monolithic structure prior to fabrication.

Figure 5.10: RC Car. Remote controlled car featuring a fully compliant steering mech-
anism. In addition to preserving the steering functionality of the input mechanism, this
design was optimized to sustain its own weight.
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Compliant Hand For our compliant hand design, we replaced all 9 hinges
of a conventional finger mechanism (9 hinges, 1 linear actuator, 9 rigid links)
with flexures, then optimized the resulting monolithic mechanism for fabri-
cation with Rigur. We then attached 5 identical fingers to a laser-cut piece of
Plexiglas and actuated them with strings from a distance (see Figure 5.11):
by pulling on the strings we store potential energy in the fingers. This en-
ergy is released when reducing the actuation forces on the strings, causing
the fingers to move back to the rest configuration where the elastic energy is
zero.

Figure 5.11: Compliant Hand. A compliant finger mechanism is replicated and assem-
bled to create a fully operational hand. Side and bottom views are shown on the left and in
the middle. On the right we show the hand performing a teleoperated grasping task using
cables for actuation. Thanks to restoring forces from the compliant flexures, the hand can
be actuated using a single cable per finger.

Dragon For our dragon, we estimated a compliant version of a spatial
wing mechanism (1 motor, 3 hinges, 1 ball-and-socket, 7 rigid links). We
replaced all joints but the motor with compliant flexures. While seemingly
simple, we observe that the hinge flexures undergo twist deformations, un-
derlining the importance of minimizing stresses due to torsion. These twist
deformations are due to proximity of two compliant hinges with flexures
aligned orthogonally to one another. If only failure prevention for stretch-
ing and bending is active, twist stresses are too high for the targeted printer
material, and the risk of material failure high. We observe that the degrees
of freedom of the conventional hinges are not well preserved. Nonetheless,

the trajectory of the user-specified
marker point is preserved to a high de-
gree, resulting in a function-preserving
and failure-resistant compliant wing
mechanism with intricate 3D motion.
Interestingly, this mechanism is bi-
stable as we can see when looking at the
energy profile. Besides the rest configu-
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ration, there is a stable equilibrium at an intermediate step t along the cyclic
motion.

Figure 5.12: Dragon. Full dragon (left) and close-up onto the wing mechanism (right).
The wings of the dragon are two identical but mirrored versions of a spatial compliant
mechanism. This example exhibits large deformations induced by twist, emphasizing the
need for a twist-aware objective for preventing material failure.

Summary We used our method to design and fabricate a set of planar
and spatial compliant mechanisms showing different types of joints, vary-
ing complexity, and diverse functions. Though different, all these examples
share the need for explicitly preventing material failure during optimization:
all of our tests indicate that when only motion tracking is taken into account,
the fabricated mechanism will invariably fail during operation. In contrast,
by incorporating a failure-preventing objective in the optimization, we ob-
tain compliant designs with largely improved robustness at the expense of
somewhat reduced tracking accuracy. Table 5.2 reports comprehensive per-
formance data for all examples that were fabricated.

5.5 Conclusions

We presented a computational tool for designing compliant mechanisms
and demonstrated its use on several physical prototypes. While the types
of joints supported by our method cover a large range of useful planar and
spatial mechanisms, conventional joints performing full revolutions cannot
be converted to compliant flexures. However, rather than the result of a
specific design tool, this limitation is inherent to compliant mechanisms in
general. Fortunately, the number of full-revolution joints is typically small.

In the future, we plan to extend our method to support topology changes.
For conventional assemblies, a pivotal requirement is that the degrees of
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Model # DoF # It. Avg. It. Mean Max

Cost (s) Error (mm) Error (mm)

Chebyshev 35 152 5 0.59 1.04

Jansen 112 880 39 1.67 8.16

Eye 110 283 34 1.65 5.04

Car 63 76 28 0.86 2.35

Hand 141 183 31 0.63 5.28

Dragon 70 164 11 1.15 3.42

Table 5.2: Statistics. The columns (from left to right) list the number of degrees of
freedom, the number of iterations required for convergence, the average iteration cost, as
well as the mean and maximum error for the motion tracking objective.

freedom of the joints are equal to the number of unknown state variables
at all times, rendering the automated exploration of topological changes an
utterly complex task. The use of compliance, however, paves the way for a
more graceful exploration of this space thanks to the more even distribution
of the infinite stiffness and compliance concentrations of conventional joints.
The removal of individual links could make room for overall performance
improvements because link-link or link-flexure collisions that prevented fur-
ther stepping in respective descent directions may no longer be present.

As another limitation, we have so far focused on structurally-sound and
function-preserving kinematic behavior. Dynamic effects, however, can play
a role as can be observed when teleoperating with our compliant hand.
These effects are, however, highly dependent on the choice of material: we
sintered an individual finger of our compliant hand and observed a more
high-frequent but far less pronounced dynamic behavior. An interesting di-
rection for future work would be to extend our method to model and opti-
mize for these dynamic effects.

If a legged mechanism undergoes a periodic motion, there are at least two
stationary points at which the structure is in equilibrium—though one of
them (the maximum) is unstable. While we have observed bi-stable be-
havior in some of our mechanisms (see, e.g., Dragon), designing for multi-
stability [Pucheta and Cardona, 2010] could be an interesting avenue for fur-
ther exploration.
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C H A P T E R 6
Designing Cable-Driven Actuation
Networks for Kinematic Chains and
Trees

In this chapter we focus on artist-controlled linkages that are actuated us-
ing cables routed through point-to-point connections spanning one or more
joints in a linkage. The defining characteristic of this actuation paradigm
is that only unidirectional actuation is possible – i.e. cables cannot push a
link. Cable-driven designs have important design advantages over purely
linkage- or gear-based approaches such as allowing significant control over
the location of motor mass. For instance, a heavy motor can be located in the
torso of a mechanical character while cables are used to actuate the limbs.
This enables lightweight limbs that can therefore undergo more expressive
motions. Furthermore, cables are easier to route than linkages meaning that
they can more easily actuate several joints at once. Finally, because cables
can span and couple multiple joints, cable-driven animatronic mechanisms
may be able to better replicate the coupled motions inherent in many crea-
tures.

Our system takes as input a hierarchical assembly consisting of rigid links
jointed together with hinges. The user also specifies a set of target poses or
keyframes using inverse kinematics. We depart from the approach followed
in the previous chapter, and instead of employing fexures as our compliant
joints, we experiment with different flexible articulations: torsional springs.
We place a torsional spring at each joint location and we compute a cable
network that allows us to reproduce the specified target poses. We start
with a large set of cables that have randomly chosen routing points and
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we gradually remove the redundancy. Then we refine the routing points
taking into account the path between poses or keyframes in order to fur-
ther reduce the number of cables and minimize required control forces. We
propose a reduced coordinate formulation that links control forces to joint
angles and routing points, enabling the co-optimization of a cable network
together with the required actuation forces. We demonstrate the efficacy of
our technique by designing and fabricating a cable-driven, animated char-
acter, an animatronic hand, and a specialized gripper.

6.1 Introduction

Graphics research has 30 years of expertise in developing tools which allow
digital artists to create expressive animations by posing a hierarchical set of
rigid links. They breathe life into these articulated assemblies by making
them move or locomote like a human, a familiar character, an animal or a
fantasy creature. Tools like these enable artists to bring animated characters
in feature film to life, giving them a unique personality.

With the advent of consumer-level digital fabrication technologies and pow-
erful yet affordable off-the-shelf electronic components, artists now have the
machinery at their disposal to make these articulated, animated assemblies
physical. Creating such devices involves the design of a kinematic structure,
determining the possible range of motion along with an actuation mecha-
nism in order to animate the structure. Applications include animatronics,
personalized robotics, and marionette design.

As the digital animations do not have to obey the laws of physics, such
kinematic assemblies can often be slender and their motion fast. This
makes it infeasible to place a motor at each joint due to both their size and
weight. An alternative to distributed actuation is to use cables, placing actu-
ators in a centralized location away from the mechanical assembly, enabling
lightweight designs.

This chapter describes a method that designs a cable network, aiding the
artist and hobbyist with the design of cable-driven kinematic chains and
trees (see Figure 6.1) that closely match a set of specified poses or keyframes
when actuated. A theoretical upper bound on the number of required cables
is two per rotational degree of freedom because we can only pull on cables.
To reduce the cost and complexity of the kinematic assemblies, we wish to
minimize the number of cables far beyond this upper bound. This presents
a challenging design problem as it is of discrete nature and cables intro-
duce non-trivial couplings and non-linearities. We place torsional springs at
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Figure 6.1: Our computational tool for designing cable-driven kinematic chains and trees
(left) enables artists and hobbyists to size and place a cable network (middle) in order to
closely match a set of target poses or keyframes using co-optimized control forces (right).

the joints to permit unidirectional actuation as cables can only exert pulling
forces. We then co-optimize the number and placement of cables together
with the control forces needed to drive the mechanical hierarchies.

We tackle the automated design with a two-step approach where we first
identify the topology of a network by removing unactuated cables from a
large set with routing points chosen at random. In a second step, we refine
this network by parameterizing the routing points, taking the path between
poses or keyframes into account, and further reducing the network and con-
trol forces if possible. To enable co-optimization of cable routing points and
actuation forces, we introduce torque equilibrium equations that directly re-
late joint angles and routing points to the control forces.

The robotics community has proposed a myriad of cable-driven
hands [Catalano et al., 2012; Ma et al., 2013; Grebenstein, 2014] or full-
bodied robots [Rooks, 2006; Hannaford et al., 2013; Spröwitz et al., 2014].
However, designing these kinematic assemblies manually, roboticists focus
on the optimal exchange of forces during physical interactions with humans
or the environment. Our work is complementary to these techniques and
targets an automated and optimal routing of a complex cable network under
a no-contact assumption.

Our implementation is quasi-static and our physical assemblies are designed
to meet this assumption. We validate our results by fabricating three of our
optimized designs. With our examples, we illustrate applications in func-
tional as well as artistic design.

6.2 Observations

Before we formalize our cable-driven simulation and optimization approach
on general hierarchical input, we discuss a series of observations on a three-
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Figure 6.2: The input to our system is a kinematic assembly consisting of rigid links,
jointed together at their ends (left). The red link is fixed. A user first specifies target
poses (dotted link contours) and adds torsional springs to the hinges (green circles). A
set of cables is then optimized (middle) to hit the user-specified target poses as closely as
possible when actuated (right). The cables are attached at one end (red circle) and are
routed with pulleys (black circles) to the fixed link. Elastic springs are added to the hinges
(black spirals) to define the rest configuration as the zero energy state.

link kinematic chain (see Figure 6.2) that guide and motivate our represen-
tation and formulation.

As input we assume a kinematic assembly consisting of a single kinematic chain
without loops, or a hierarchy of such chains to which we refer as kinematic
trees. These assemblies consist of rigid links, connected to one another with
mechanical hinges as illustrated in Figure 6.2 left.

Given a kinematic assembly and one or several target poses (see dotted con-
tour lines in Figure 6.2 left), our goal is to determine a cable network (middle),
i.e., a number of cables and corresponding routing points on the individual
links of the assembly such that, when applying specific forces to the cables,
the assembly approximates the target poses as closely as possible (right).

Valid alternatives to a cable network are motors at the hinges or the addition
of mechanical couplings between links [Thomaszewski et al., 2014]. A kine-
matic tree such as, e.g., a mechanical hand design, however, becomes bulky
and heavy if a motor is added to each individual joint and inertial forces
become prohibitively high. While leading to more lightweight designs, me-
chanical couplings between links are of fixed length and many of them are
needed to achieve simple motions such as the contraction of a chain (com-
pare Figure 6.2 middle and right).

For a fully actuated kinematic tree, we would need twice the number of ac-
tuators (one to pull on either side of each hinge). However, although target
poses generally involve non-zero deformations for all joints, we can exploit
the inherent low-dimensionality of the problem. To this end, we first add
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Figure 6.3: The assembly is in equilibrium if the torque τs(θ) of the torsional spring with
joint angle θ equals the applied torque h f with signed moment arm h = det[u−x,v−x]

‖u−v‖ .

elastic springs to the joints (see Figure 6.2 middle). We then strategically
place routing points of a cable network that leads to a complex coupling
between individual joints and thus significantly reduces the number of ca-
bles (actuators) without compromising shape approximation. Note that the
torsional springs uniquely define the rest configuration as the state of zero
elastic energy.

Following the standard formulation described by Coros and col-
leagues [2013], we first experimented with representing the state of each
rigid link with a position and orientation, and hinges and cables intercon-
necting them with non-linear constraints. However, the non-negativity of
actuation forces (we can only pull on cables) require additional inequality
constraints on the cable lengths that are non-trivial (refer to Figure 6.6 for a
small example): if we pull on one cable with a non-zero force other cables
may extend in length while they remain unactuated.

Departing from this full coordinate formulation, we introduce torque equi-
librium equations that directly relate joint angles and routing points to the
control forces, avoiding any non-trivial inequality constraints.

6.3 Simulating Cable-Driven Trees

We base our formulation on the following observation: if we pull on the
cable in Figure 6.3 right with a force f > 0, we apply a torque h f about x
where h is the moment arm of the oriented triangle (x, u, v). The system is
in equilibrium if this torque equals the one from the torsional spring τs(θ)
that evaluates to a positive value if the oriented joint angle θ is smaller than
the angle at rest. This observation holds if the cable is attached to respective
links with friction- and dimensionless pulleys (black circles). We defer a
discussion of finite-dimensional pulleys to Sec. 6.5.
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fi

hi

Figure 6.4: Torques hi fi from several cables can affect the position of a single joint (left)
and a single cable can affect the positions of several joints (right).

To relate the moment arm to the joint location x and the two routing
points u and v, we express the signed triangle area with Cramer’s rule
1
2 det [u− x, v− x] and set it equal to half the triangle’s altitude h times its
base ‖u− v‖.
This equilibrium condition still holds if the triangle orientation is flipped as
illustrated in Figure 6.3 middle: if we pull on the cable, the oriented angle
θ becomes larger than the one at rest. Hence, the torsional spring torque
becomes negative. Due to the change of orientation of the triangle (x, u, v),
det [u− x, v− x] is negative and compensates this sign change. A special
case is depicted in Figure 6.3 right: if the triangle area becomes zero (h =
0), the applied torque is zero independent of the magnitude of the applied
force. Hence, the elastic spring remains in its zero energy state for all f > 0.
However, such configurations are unstable equilibria and will therefore not
be present in real systems.

The above observation is pivotal when we optimize routing points: if we
move the routing points from one side to the other (flip of triangle orien-
tation), the moment arm h changes smoothly and the behavior of the cable
network is well defined.

For a hierarchical input assembly, we formulate an equilibrium condition for
each individual mechanical hinge j. If several cables i exert torques at j (refer
to Figure 6.4 left), we sum up their contributions

τj(θj) = τs(θj)−∑
i

hij fi = 0 (6.1)

where the elastic spring behavior τs(θj) may vary from joint to joint and its
stiffness could be non-linear.

To determine the torque a cable i exerts on j (if any), we seek the first routing
points uij and vij on the paths from j to the root and the leaves, respectively
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(compare with Figure 6.4 right). If only one routing point is found, no torque
is exerted. Otherwise, the moment arm

hij =
det

[
uij − xj, vij − xj

]
‖uij − vij‖

(6.2)

is computed and the torque hij fi added to equation j.

Collecting all actuation forces fi in a vector f and the per-joint angles θj in
a vector θ, we can then find the equilibrium state θ for a given f by solving
the non-linear torque equations

τ (θ) = 0 (6.3)

using the Levenberg-Marquardt algorithm [Levenberg, 1944; Marquardt,
1963], a variation of the Newtown method (see Section 3.2.1).

It remains to discuss how we express the global joint and node locations (in
brown in Figure 6.5 left) with joint angles and the routing points w.r.t. these
node locations (right).

As aforementioned, we assume our input to be hierarchical and therefore
loop-free. Hence, we rely on a recursive definition as commonly used for
rigs in character animation: the topology of the hierarchy is uniquely de-
fined with a function r that maps a node k to its respective parent r(k) (see
Figure 6.5 left). The root node is mapped to the origin o. To transform the
position xk in frame k to the frame of its parent r(k), we first apply a rigid
transformation with constant rotation Rk→r(k) and translation tk→r(k), then
rotate counterclockwise by angle θj if the parent is a mechanical hinge j

xr(k) = Rr(k)
(

Rk→r(k)xk + tk→r(k)
)

where the rotation Rr(k) is either[
cos(θj) − sin(θj)
sin(θj) cos(θj)

]
if r(k) equals a joint j and the identity otherwise. Using this rule recursively,
we transform positions from local to the world frame xo(θ), omitting the
superfix o for positions in global coordinates. Note how nodes that move
rigidly with a link depend on all joint angles θj on the path from this link’s
frame to the root. Hence, leaves depend on more angles than nodes closer to
the root, leading to sparsity differences in derivatives of x(θ) w.r.t. the joint
angles.
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Figure 6.5: To describe the kinematics of our hierarchical input, we use a recursive defi-
nition similar to the one used for rigs in character animation (left): this example consists
of two hinges (at nodes 1 and 3) and three components (fixed link in red, link consisting of
two segments in light grey, “leaf” link in dark grey). The topology is uniquely defined by
the function r = {(0, o), (1, 0), (3, 1), (4, 3), (2, 1)}. We express routing points in local,
per-segment frames

[
d⊥, d

]
with coordinates (p⊥, p) (right).

To rigidly move the routing points with their respective links, we define lo-
cal, per-link-segment frames (compare with Figure 6.5 right) where the dif-
ference vector d, pointing from parent to child node, and its perpendicular
vector d⊥ define the local link frame uniquely. Routing points u and v are
then computed according to

x + p⊥d⊥ + pd with d =

[
dx
dy

]
and d⊥ =

[
dy
−dx

]
where x is the node position of the parent. Note that d⊥ stays on the right of
d, independent of the link’s orientation.

While we keep the coordinates of these routing points constant during sim-
ulations, we optimize their number and placement to closely match user-
specified target poses. To this end, we collect all coordinates p⊥ and p in a
parameter vector p.

6.4 Placing and Sizing Cable Networks

Before optimizing a cable network, a user defines target poses or a sequence
of keyframes t by specifying desired locations x̃s for a subset of the tree
nodes. We then use standard inverse kinematics (IK)

min
θ

∑
s
‖xs(θ)− x̃s‖2 + γ‖θ− θprev‖2

to solve for the target angles θt where we add a regularization term that
keeps the current solution close to the previous one, controlled by a weight
γ.
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6.4.1 Identifying the Network Topology

Given a target pose θt, we can compute the torsional spring torques bt
j =

τs(θt
j) that require compensation, directly. And if we temporarily assume

for a moment that the cables with their routing points p are known, we can
compute the moment arms hij from the nodal positions x(θt). Hence, the
equilibrium equations 6.1 become linear in the unknown actuation forces

Htft = bt.

This observation paves the way for a simple heuristic to identify the topol-
ogy of a cable network that is able to hit the target poses exactly: we gener-
ate many cables (more than a thousand) of varying “lengths” by randomly
choosing the number and coordinates p⊥ and p of their routing points in
user-provided ranges smaller or equal to [−1, 1] for p⊥ and [0, 1] for p. In
other words, we randomly fill in rows of the Ht matrices, rendering these
equation systems highly underdetermined. And because the probability of
choosing two linear dependent rows at random is practically zero, the un-
derdetermined, per-target systems can be solved exactly even if we constrain
the forces ft to be positive.

Such a cable network is highly impractical though. As previously men-
tioned, for a fully actuated assembly two cables per mechanical hinge – one
on either side – are sufficient. Given a set of target poses, we aim at finding
a network with far fewer cables than this upper bound.

To this end, we formulate a sparsity regularizer Rsparse that favors a cable
to remain unactuated across all targets and solve the resulting constrained
optimization problem

min
ft

Rsparse
(
ft) s.t. Htft − bt = 0 and ft > 0 (6.4)

where we bound the forces to only be pulled on.

For our sparsity regularizer, we approximate the L1-norm similar to Skouras
et al. [2013]

Rsparse(ft) = ∑
i

(
∑

t
f t
i

)α

where index i runs over all cables and t over all targets. α is set to a fraction
smaller than 1. We use α = 0.3 for all our results.

If a cable remains unactuated for all targets, we remove it from the initial
set, resulting in a small cable network with routing points p and actuation
forces ft.
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f f

f ff

f

Figure 6.6: Dependent on the sequence of actuation, the symmetric single-joint assembly
with two cables (left) ends up in two completely different configurations: the force f is first
applied to the right, then to the left cable (top row). If this sequence is reversed (bottom
row), the assembly tilts to the left instead.

6.4.2 Refining the Cable Network

When solving for sparse actuation forces by minimizing Problem 6.4, we
ignore the path from the unactuated configuration to a particular target or,
alternatively, from one keyframe to another. However, in general, the end
configuration depends on the sequencing of actuations as we illustrate in
Figure 6.6 with a two-cable example. Only if none of the moment arms hij
flips its sign under active cables i is the end configuration independent of the
sequence of actuation. We experimented with complementarity constraints
to enforce path independence. Disallowing sign changes, however, is too
restrictive and leads to networks with more cables than necessary.

To take path dependence into account, we simulate from unactuated to tar-
get configurations or from keyframe to keyframe each time we evaluate our
refinement objective, constraints, and their derivatives. We thereby ensure
that the static equilibrium 6.3 can be reached from the respective starting
point.

To keep the actuated assembly close to the target poses during co-
optimization of p and ft, we formulate a target matching objective

gtarget(p, ft) = ∑
t

∑
k
‖xk(p, ft)− x̃t

k‖2

where index k runs over the nodes of the assembly and xt
k = xk(θ

t).

A second goal of our refinement optimization is the sizing of motors where
we strive for the weakest actuation necessary, and the removal of additional
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cables if possible. To this end, we add an actuation regularizer

Ractuation(ft) = γn ∑
t
‖ft‖2 + γsRsparse(ft)

with two relative weights γn and γs to regulate their influence.

Minimizing actuation forces alone, however, renders the optimization prob-
lem unbound because we can compensate a smaller force f by increasing
the moment arm h. Hence, we constrain the routing points to stay within
reasonable bounds away from their rigid links p ∈ [plower, pupper].

To avoid inconsistencies in the angles due to the periodicity of the sines and
cosines defining our joint rotations, we add an additional regularizer that
keeps the rotation angles close to the user-specified ones, normalized to the
range [0, 2π]

Rperiod(p, ft) = γp ∑
t
‖θ(p, ft)− θt‖2

with a weight γp.

Eyeballing the expression for our signed moment arm (see Equation 6.2), we
divide by zero if the routing points uij and vij adjacent to joint j collapse
to a single point. To prevent close proximity between neighboring routing
points, we add inequality constraints on their distance. Deferring a detailed
discussion of finite-dimensional pulleys to the next section, these constraints
safeguard against pulley-pulley collisions and we add similar constraints to
keep joints and pulleys a safe distance away from one another.

In summary, we solve the constrained co-optimization problem

min
p,ft

gtarget(p, ft) + Ractuation(ft) + Rperiod(p, ft)

s.t. ∀i, j : ‖uij(p, ft)− vij(p, ft)‖ > 2rp

‖uij(p, ft)− xj(p, ft)‖ > rp + rh

‖vij(p, ft)− xj(p, ft)‖ > rp + rh

and plower < p < pupper

with rp and rh referring to pulley and mechanical hinge radii, respectively.

To avoid coupling between neighboring moment arms hij (see Figure 6.7),
we use two instead of a single routing point per rigid link (top row). While
these almost double the number of pulleys per cable, it has an important
advantage when generating the geometry for our output assemblies (bot-
tom row, see Sec. 6.5): when rotating the oriented triangle (x, u, v) about the
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Figure 6.7: We use two instead of a single routing point per cable and link (top row).
While this adds to the complexity of the manual assembly task (the pulleys almost double
per cable), it has a an important advantage when generating geometry for the final assem-
blies: we can rotate oriented triangles (x, u, v) about the hinge axis without changing the
torque equilibrium in any given pose.

hinge axis, the moment arm and resulting torque remains the same, indepen-
dent of the pose we are in. To favor a particular solution in these joint-cable
subspaces, one can add a weak regularizer on the routing points. Note that
the coupling due to the constant force magnitude along the cable remains.

To compute gradients, we first simulate to equilibrium τ (θ) = 0. Collecting
the routing points and per-target actuations q =

(
p, ft), we then use the

implicit function theorem (see Section 3.3.1)

dτ (q, θ(q))
dq

=
∂τ (q, θ)

∂q
+

∂τ (q, θ)
∂θ

∂θ(q)
∂q

= 0

to compute the analytical gradients ∂θ(q)
∂q . Remaining derivatives are com-

puted at runtime using symbolic differentiation [Guenter, 2007].

6.5 Fabrication Considerations

To fabricate our cable-driven kinematic chains and
trees, we use a combination of 3D printing and stan-
dard off-the-shelf parts as illustrated in the inset on the
left with a computer-aided design (CAD) drawing: our
mechanical hinges consist of a standard helical torsion
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Figure 6.8: A characterization experiment reveals a linear but asymmetric behavior with
kpos in blue and kneg in red.

spring (in red), a shaft (in green), and a bearing (in yel-
low) at either end of the shaft. For the routing points

we use a similar design with a pulley (in blue) and for our cables (in black)
fishing line.

Friction It is of paramount importance to reduce friction at the hinges and
pulleys to a minimum and bearings serve this purpose. However, in physi-
cal kinematic assemblies friction is unavoidable and as a rule of thumb, fric-
tion in pulleys leads to a decrease in tension along the cable from the root
to the leaves of the hierarchy. At mechanical joints, we may observe several
equilibrium states in a local neighborhood.

Torsional Springs Our standard torsional springs are labeled as linear
and symmetric. However, a characterization experiment reveals a linear but
asymmetric behavior (see Figure 6.8) even after oiling the springs to avoid
friction between spring windings. To avoid a C0 spring torque, we use a
sigmoid function

τs(θ) = s(θ)kpos + (1− s(θ))kneg s(θ) =
1

1 + e−βθ

in our simulation and co-optimization where we set β to 100.

Spring Stiffness Range When choosing a stiffness range for our torsional
springs, we strive for balancing the trade-off between meeting our quasi-
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static assumption (lower stiffness bound) and the maximum actuation forces
(upper bound). If springs are too soft, a quasistatic simulation is insufficient
due to the non-negligible effect of inertia. If the control forces are too high,
actuation by hand or with inexpensive, low-end servos is infeasible.

A dynamic simulation of our cable-driven kinematic assemblies is straight-
forward

I
d2θj

dt2 + C
dθj

dt
+ τs(θj) = ∑

i
hij fi

with moment of inertia I and damping C. However, the corresponding
cable network optimization is difficult as it requires a space-time formula-
tion [Witkin and Kass, 1988] where error may accumulate over time.

Because of the use of bearings at joints and pulleys, the damping C in our
system is small. Hence, the frequency of vibration at a joint is expected to be
close to the natural resonance frequency

fn =
1

2π

√
k
I

where k is the linearized spring stiffness. Given a lower bound on the fre-
quency and an estimate of the moment of inertia, we can use above relation
to compute a first order approximation of the lower bound of the stiffness
range that renders a quasi-static assumption valid. An upper bound can be
computed from a desired maximum force magnitude.

Gravity Compensation Due to this upper bound on stiffness, our assem-
blies sag under gravity and require compensation as illustrated in the inset

on the left: the initially straight, unactuated
three-link assembly “bends” under gravity (top)
and only if accounted for, we can hit the target of
a straight, actuated assembly (bottom). To com-
pensate for gravity at a joint xj (see Figure 6.9),
we keep all other torsional springs fixed, trans-

form centers of mass c of child links, joints, and pulleys from local to global
coordinates, then add their gravitational torques

(
c− xj

)
×
[

0
−mg

]
to the equilibrium equation 6.1 for joint j. W.l.o.g. we assume gravity to
point in the negative y direction. m is the mass of the respective link, joint,
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xj

Figure 6.9: We compensate for gravity at a particular joint xj by holding all other tor-
sional springs fixed (left), adding up gravitational torques of rigid links (right, top), tor-
sional springs (right, middle), and pulleys (right, bottom) on the path from j to the leaves.

or pulley and g is the standard gravity. During network topology identi-
fication (see Equation 6.4), we ignore gravitational effects of pulleys as the
randomly chosen cables with their many routing points would lead to a mas-
sive weight, rendering the optimization unrealistic. During our refinement,
gravity compensation is fully switched on.

Finite-Dimensional Pulleys Pulleys are not dimensionless and we cannot
route cables through their centers. As shown in Figure 6.10 we account for
their finite dimension by adding an offset rp to all moment arms hij during
simulations and optimization where rp is the radius of the pulley. Note that
this offset is – independent of the pose – of constant value rp as the cable
is perpendicular to the hijs and the pulleys are circular. As illustrated in
Figure 6.10 in blue, we wrap cables once around the pulleys to ensure that
they do not detach during actuations. We do that in a consistent manner for
all our pulleys.

Generating Geometry For the database of supported springs, we manu-
ally generate negative and positive hinge geometry that supports mounting
of respective springs by snapping them in place. The joint geometry is in-
stantiated and remaining geometry automatically generated by our system.
If a routing point collides with a rigid link other than the one it corresponds
to, the user rotates the oriented triangle to avoid these collisions as illus-
trated in Figure 6.7 bottom.
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hj

hj+1

rp

Figure 6.10: We account for the finite dimension of pulleys by offsetting all moment
arms hj and hj+1 by the constant pulley radius rp. To ensure that cables do not detach
during actuation, we wrap them once around the pulleys (see cable in blue).

Model links joints targets cables pulleys

Fighter 12 11 2 7 (4000, 12) 31

Hand 13 12 4 4 (3500, 12) 26

Gripper 13 12 2 4 (6000, 18) 48

Table 6.1: We summarize the complexity (number of links, joints, specified targets, ca-
bles, and pulleys) of our three example assemblies. Our two-step optimization reduces the
initial number of cables x to y after the first, then to z after the second step, formated in
column “cables” using z (x, y).

6.6 Results

We have used our computational tool to size and place cable networks for
a total of three examples: a gripper (Figure 6.12), an animatronic hand (Fig-
ure 6.13), and an animated fighter character (Figure 6.1). We summarize key
features and complexity of the physical assembly in Table 6.1.

Fabrication The rigid links for all our examples were printed on an Object
Connex 350 with Vero White and Vero Black. After printing and cleaning,
manual assembly of a model takes a few hours. We use double torsional
springs (parts 8548 and 8555, Lesjofors AB), with tabulated spring stiffnesses
of 0.0484 and 0.0950 Nm rad−1, respectively. Pins and bearings are press
fitted, speeding up the assembly process.

Validation We validated our cable network optimization on the lower
body part of our Fighter character seen in Teaser 6.1. It is a kinematic tree
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Figure 6.11: We validate our cable network optimization on the lower body of our Fighter
character on two target poses (bottom, top) by controlling the cable forces with standard
Newton meters. The simulated poses (left) match the physical poses (right) well.

with multiple cables acting on the same link and an example that requires
gravity compensation. We built a setup to replicate the optimized actuation
forces experimentally. To this end, we use standard Newton meters pulling
on the three ends of the cables. Excursions are adjusted manually in order
to match the prescribed forces. As we show in Figure 6.11, we validate the
performance of our target-matching objective on two target poses specified
by the user. While we observe a slight mismatch for the lower knee joint of
the right leg (bottom, right in Figure 6.11), it can be seen that simulated and
physical poses match well. This validates our modeling assumptions.

Performance For the lower body of the Fighter, we chose 1600 cables at
random, then used our topology identification (Equation 6.4) to reduce it the
number of cables to 8 in 25 seconds. We then use our refinement to further
reduce the number of cables to a total of 3. Our refinement takes 181 seconds
on this example. Note that for hierarchies with several branches attached to
the fixed link (compare with skeleton in our teaser), we optimize each branch
independently. The lower body of the Fighter is the most complex branch
with regards to time complexity, hence, representative.
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Figure 6.12: Our gripper is optimized to pick up two T-shapes when one cable is actu-
ated, and a heart-shape if only the other is actuated.

Gripper As a functional example, we designed a gripper to be able to pick
up two kinds of differently shaped objects: in one configuration we can pick
up two T-shaped objects, in the other a heart-shape. No gravity compensa-
tion is needed as the gripper operates in the horizontal plane. The gripper
is symmetric and uses two cables on either side. As the gripper is operated
manually, we wish to reduce the control complexity and optimize one cable
per target pose and side.

Hand Increasing the complexity, we optimize an animatronic hand with
three fingers and a thumb as well as an actuated wrist. Note that the thumb
is operated on a plane that differs from the horizontal one, hence, requiring
gravity compensation where we work with projected gravity. The closing
motion of each finger is optimized to follow four keyframes. Actuation of
the middle fingers is coupled to movement of the wrist (fixed link) to yield
a more realistic closing of the hand. The cables of the thumb and pinky end
on the palm and we use Bowden cables between the palm and the wrist to
avoid exertion of torques on the joint connecting wrist with palm. The hand
assembly can perform a wide range of gestures as can be see in Figure 6.13.
This example illustrates that our approach extends to the third dimension
by allowing joints to lie in different planes.

Fighter Our technique can be used to create ani-
mated, mechanical characters by actuating the ca-
bles with servos. Our Fighter is driven by a to-
tal of seven servos as shown in the inset on the
left. We use Dynamixel XL-320 servos, with a stall
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Figure 6.13: Our animatronic hand can perform a wide range of gestures. Its thumb is
operating in a different plane than the remaining fingers and the wrist.

torque of 0.39 Nm. The servos are located out-
side the character allowing for a lightweight de-
sign and we again use Bowden cable to connect
cables to servos. Note that the Bowden cables lead

to non-negligible friction. As the servos are not force controlled, we adjust
the excursions of the servos to match the user-specified keyframes.

6.7 Conclusion

We have devised a method to design complex cable networks for animat-
ing mechanical characters or controlling the motion of functional assemblies.
We have introduced a reduced coordinate formulation that links joint angles
and routing points to control forces, enabling co-optimization of routing and
actuation. To identify the topology of a cable network, we route a large set of
cables from root to leaves, attaching them to rigid links with routing points
chosen at random, then removing redundancy. We further refine these net-
works, taking path dependence into account.

Limitations For our gripper design, we assume contact forces to be neg-
ligible, an assumption not holding true when picking up objects of consid-
erable weight. When in contact with the lightweight T-shapes or the heart,
we do observe deviations from the intended gripping poses if we pull the
cables beyond the optimized actuations. External forces lead to additional,
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pose-dependent torques that we could compensate for by adding them to
the equilibrium equations as we did for the gravitational torques.

Future Work There are several challenges remaining. Our technique as-
sumes hierarchical input and an extension to mechanisms with loops is left
as future work. We further plan to extend our technique to spatial input,
adding support for joints with more than a single degree of freedom. As
another interesting direction, we would like to explore optimization of a
cable-network for assemblies where the source of compliance is not added
by springs but by flexures, a foam, or silicone skin instead. Note that our
spring torques allow for non-linear behavior as would be expected when
using foam or silicone. Relaxing our assumption on quasi-statics opens an-
other interesting avenue, requiring space-time optimization to size and place
cable networks to control the dynamic behavior of assemblies.
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C H A P T E R 7
Conclusion

This thesis addresses the problem of making the design of robots and anima-
tronics easier, more efficient and, more accessible. The work we described
in the previous chapters focuses on empowering novices and experts with
intuitive tools to create manufacturable characters. These tools allow to di-
rectly specify high-level goals, while the algorithms underneath take care
of providing a design that satisfies these goals. In Chapter 3, we discussed
the models and methods employable for the implementation of the systems
presented later in Chapters 4, 5, and 6. While these models and methods are
general and serve as a basis for the design tools, the problems addressed by
this thesis require specific tailoring of the algorithms to be properly treated.
The chosen degrees of freedom, design space parameterization, and objec-
tive functions to measure optimality, play a crucial role in a successful im-
plementation. These aspects closely relate to the specific instances of the
problems and affect the capabilities of the tools and the final design systems.
For this reason, we analyzed and developed solutions for three distinct prob-
lems. In combination they allow us to reach the goal of creating personalized
robotic and animatronic creatures.

First, we looked at the problem of designing legged robots and their open-
loop controllers. We aimed at developing a versatile system which allows
the user to create robots of different sizes and morphologies without any
prior knowledge of robotics. We provided easy-to-use tools for the design
stage, which work together with an optimization algorithm capable to in-
teractively preview the emerging locomotion trajectory. We demonstrated
how to provide interactivity by introducing a two-step approach. The first
step uses a simplified physics model, which makes the optimization fast.
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The second employs a full physics simulation that can better predict dy-
namic behaviours. This allows the user to detect stability problems before
the costly and time-consuming manufacturing process. We note that, when
a complete physics model is applied to a simulation tool, rather than to the
optimization, interactivity is not broken. When the user is satisfied with a
design, our system automatically generates the code for an off-the-shelf mi-
crocontroller and the geometry ready for 3D-printing. Although functional,
the geometry generated by our system does not contain any aesthetic com-
ponents. However, the resulting structure can be augmented and beautified
by the user, according to his or her preferences. To test our tool, we designed
six robotic creatures featuring a different number of legs and motors. Three
of these designs were fabricated and examined in the real world. While be-
ing successful in its task, the system presented in Chapter 4 cannot produce
robots which are as agile as the creatures found in Nature. The origin of this
limitation resides partially in the simplified model which the optimization
relies on, and partially in the commodity hardware we use to operate the
robots. We can find more agile creatures in the field of robotics, but they
integrate customized hardware in the robot design. The adoption of com-
modity hardware is desirable to make our tool more accessible and, hence,
reach a broader audience.

By looking at Nature, one can notice how rigid and deformable bodyparts
work synchronously to fulfill locomotion tasks elegantly and efficiently.
However, the design tool described above does not allow for flexibility and
we, therefore, also researched compliant structures to be integrated into our
robotic designs. The recent development of fabrication technologies and
new materials, pave the way to possibilities that could not be explored be-
fore. Examples include custom-made, flexible body parts to be incorporated
into our robots. The creation of compliant structures, designed to provide
certain functions, was broadly studied in the field of mechanical engineer-
ing. However, the approaches proposed to design compliant mechanism
assume small motions, and close to linear behaviour. To be considered valu-
able for our purpose, the compliant mechanisms under analysis should be
capable to perform large displacements emerging from a nonlinear behavior.
Therefore, we looked at the problem of designing compliant mechanisms
with a broader range of motion.

In Chapter 5, we presented a comprehensive process to create compliant
mechanisms. The system takes as input a rigidly articulated assembly, com-
posed of rigid bodies and traditional joints, and converts it into compliant
design. Although our system takes a traditional input mechanism as-is, the
user has the option to edit the input assembly using existing tools recently
developed in the field of digital fabrication. A complete design pipeline
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could be, for example, to first create the linkage topology [Thomaszewski
et al., 2014], then editing its shape while ensuring the functionality [Bächer
et al., 2015], and ultimately converting the assembly to a compliant mech-
anism using our method. From the input linkage, we read the topology
and the initialization parameters used to replace traditional joints with flex-
ures. While supplying a meaningful initial structure, a naive replacement
does not ensure motion preservation and cannot possibly account for the
different problems a compliant mechanism can exhibit. Therefore, a spe-
cific optimization is required to handle the distinct pitfalls a user can en-
counter when designing compliant mechanisms. The optimization needs to
account for objectives which are critical for the correct functioning of the
final device. First, we ask the optimization to preserve the mechanism end-
effector motion, hence, preserving the assembly’s functionality. Second, we
demand from the optimization to imperatively avoid the damage of the flex-
ible parts during actuation. In the field of mechanical engineering, different
techniques were proposed to prevent material failure. Such techniques as-
sume the possibility of computing the volumetric stress of the material un-
der deformation. Using a volumetric model during simulation would allow
us to obtain directly the stress information we require, but it would also
make the simulation step prohibitively expensive. The work we present in
this thesis leverages the efficiency of a centerline model [Bergou et al., 2008;
Bergou et al., 2010] and, at the same time, provides an approximation for
a full volumetric strain, which can be used to avoid material failure. Hav-
ing in place a motion preservation and material failure objective, we also
formulate objectives for other important properties such as a low-torque re-
quirements, and a high stiffness in the direction orthogonal to the motion.
These four objectives, together with an additional one ensuring a collision-
free movement, constitute a minimal set of conditions that must be met to
manufacture a functional compliant mechanism.

To be put in motion, traditional mechanisms need to have an equal number
of degrees of freedom and actuators. Installing fewer actuators into mechan-
ical assemblies is desirable since it results in lighter and more energy effi-
cient machines. For example, linkages featuring a single degree of freedom
are very attractive since they require a single motor or crank to be driven.
However, the fewer degrees of freedom we desire, the more difficult the
design task. Compliance helps reducing the of degrees of freedom, thanks
to its innate property of introducing soft constraints. Therefore, characters
composed of simple structures such as chains and trees would require fewer
actuators when designed with compliant articulations. While being a neces-
sity, compliance alone might not be sufficient to allow the actuation of a char-
acter with multiple degrees of freedom. To gain more control while avoiding
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the usage of many motors, we can route a network of cables through a char-
acter to passively propagate the motion along the structure.

Inspired by the graceful looking movements found in Nature, tendon-driven
systems have been investigated in the field of computer graphics, robotics,
and biomechanical engineering. We find work in the direction of designing
folding surfaces [Kilian et al., 2017], actuate manipulators [Fang et al., 2004;
Behzadipour, 2005] or create controllers for specific string-based structure
designs [Rucker and III, 2011; Whitney et al., 2014]. In contrast, as described
in Chapter 6, we target cable-driven linkages which can be animated and
controlled depending on the user preferences. We tackle the problem of find-
ing the right amount of cables to be employed, where to place the pulleys,
together with how much force we need to apply to animate a physical char-
acter. The co-optimization of control and design for the motion allows our
system to put the user in control of the trade-off between the cable-network
complexity, motion fidelity, and actuation cost. Our system allows the user
to animate a virtual character using inverse kinematics, where for each one
of the joints we place a virtual actuator to fully determine the pose of the
figure. Subsequently, we split the task of reproducing the motion provided
by the virtual motors into two stages. First, we identify a viable topology
for the cable network, which ensures to keep the character in place for each
user-defined keyframe. Among the different possible solutions we prefer the
one requiring fewer cables. Then we refine the pulleys location maintaining
the topology fixed, with the intention of further improving the motion and
ensuring the existence of a sequence of forces which can reproduce the input
animation. Whenever the user is satisfied with the design produced by the
optimization, we semi-automatically generate the geometry for printing.

7.1 Future Directions

This thesis describes a set of novel tools and algorithms to help expert and
casual users to design and manufacture animated physical characters. We
approached and looked at this design problem from several angles. How-
ever many aspects were not covered in this work, including potential appli-
cations and their related challenges, leaving many exciting future research
directions to be explored.
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7.1.1 Project-Related Research Directions

Designing 3D-printable figures is a challenging task, even more so if the re-
sulting characters should be animated while ensuring stability, preventing
material failure, or keeping them light. The long-term objective of this the-
sis is to capacitate users of any level of expertise to design legged robots
which can exhibit agile and natural looking motions. While the work pre-
sented in the previous chapters brings us closer to this goal, many obstacles
need to be overcome before we can reach it. First, in Chapter 4 we base our
optimization on a physics model which does not incorporate full dynam-
ics. This simplified model, while sufficient for the medium pace walking
gait we designed for our robots, might need to take into account more infor-
mation regarding dynamics, when dealing with faster motions. Moreover,
fast-moving strides often include a flying phase where no leg is in contact
with the ground. Our optimization imposes to have at least one foot on
the ground at any point in time. Therefore, we would need to make some
changes to the formulation at the core of our algorithm, to allow for fast-
paced gaits. While the necessary adjustments to account for dynamics and
flight phase can be directly integrated into our system, different tests need
to be performed to understand the right level of complexity for such a tool.
For example, instead of limiting the system to only allow for motion trajec-
tories explained by linear momentum, one could expand the trajectory space
to also account for angular momentum. Some investigation should then go
into finding how much more powerful the new model is compared to the
old, and how much efficiency is traded off. Depending on the result, one
might decide to pursue a more complex model, which operates directly on
the torque generated by the motors and which computes the ground reac-
tion forces explicitly. However, such a choice would bring us towards the
methods used in the field of robotics, most definitely break interactivity, and
require specialized hardware to operate the designed creatures.

In this thesis, we demonstrated how to implement novel tools to design
legged robots and their relative motion style, convert traditional assemblies
in compliant mechanisms, and animate physical characters by pulling ca-
bles. Although the described systems are individually successful in their
tasks, the next step for future research is to combine these three tools and
their relative technologies into a single framework. In order to achieve a
single system pipeline, the formulations described in the previous chapters
need to undergo some edits, and multiple experiments must be carried out.

First, in Chapters 5 and 6, we make use of quasi-static assumptions to simu-
late our mechanisms. This assumption might not be valid when such mecha-
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nisms are mounted on a walking creature. To be able to predict the behavior
of compliant and cable-driven limbs accurately, we need to take into account
the effects of dynamics. For example, the moment carried by the structures
might cause oscillations that could play a prominent role when a locomo-
tion gait is executed. On the one hand, when not accounted for, oscillations
could bring the manufactured robots to behave differently than anticipated
by the optimization, leading to instability and the creature’s fall. On the
other hand, when properly considered and included in the optimization, os-
cillations could come into favor by allowing for faster and more efficient leg
motion. Accounting for the dynamic behavior would improve the predict-
ing power of our framework, but it would also require the introduction of a
time dimension, over which we would need to integrate. In the context of
highly dynamic gaits, our simulation must have a high level of accuracy to
ensure the stability of the physical character. Such a degree of accuracy asks
for implicit integration schemes, which are expensive to compute due to the
nonlinear relationship between the variables.

Second, in Chapter 5 we account for external forces when preserving the
motion of a converted compliant mechanism, and demonstrate the valid-
ity of our objective, building a remotely controllable car with a compliant
steering mechanism. However, when a compliant mechanism is used as an
integral part of a more complex robot, it might undergo heavier loads com-
pared to our car example. Such a load could be inferred by the weight of the
robot or the friction caused by the ground, and it might be too high in mag-
nitude to be endured by the flexible parts. Thankfully, in such a case, our
system would be able to detect a possible failure and would try to stay away
from the fracture point. However, depending on the load and the material,
it might not always be possible to avoid failure while preserving the mech-
anism’s functionality. To solve this problem, one could analyze where the
high-stress peaks appear during actuation and decide to convert it back to a
traditional joint. While such a choice is already being viable option, a dedi-
cated implementation could point to the weak spots and suggest topological
changes to create a hybrid traditional-compliant mechanism to improve the
results.

Lastly, in Chapter 6 we focus on the production of animations for 2D physi-
cal characters, whereas the previous two chapters looked into the design of
fully 3D structures. Extending our framework to support the optimization
of three-dimensional, cable-driven structures, would give more artistic free-
dom to the users while enlarging the design space of stable locomotion pa-
rameters. We note that a 3D mechanism can be built combining planar sub-
modules, as demonstrated by our animatronic hand example (Figure 6.13).
However, to be able to design an entirely spatial cable-driven structure, we
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would need to adjust our gravity compensation term to be orientation de-
pendent. Furthermore, when extending to the third dimension, the pulleys
we used when designing planar structures, might not be the best choice to
route the cables. Other options to route the cables could be explored, such
as low-friction metal rings, but a dedicated attention must be paid to colli-
sions. As an additional extension to our system, 3D compliant connectors
could also be included, to grow the space of possible solutions currently dic-
tated by the operating planes of the torsional springs.

7.1.2 General Research Directions

When developing design tools to create physical characters, it is common to
face the problem of topology optimization. While for the case of designing
robotic creatures (Chapter 4), we leave the opportunity to choose the robot’s
morphology to the user, the automation of such a decision is beneficial when
designing compliant mechanisms or cable-driven linkages. In Chapter 6 we
solve for a sparse set of cables capable to actuate a 2D character, given a set
of target keyframes. The discrete problem of finding a topology which best
suits an optimization objective is combinatorial; hence we opted for relax-
ing its discrete nature to be able to solve it efficiently. However, the type
of formulations used to relax the topology problem can make the Hessian
matrices ill-conditioned and present high nonlinearities. For this particular
reasons, we decoupled the topology optimization from the remaining design
tasks, leading to a two-step algorithm. In general, because of their intrinsic
difficulties, many combinatorial problems remain open and would deserve
proper investigation. Both the systems presented in Chapters 5 and 6 would
benefit from a general purpose topology optimization technique. First, we
might be able to efficiently explore the space of compliant mechanisms with
fewer parts and that require less torque to be actuated. Second, for the case
of the cable-driven characters, we could take into consideration the full de-
sign problem instead of splitting it into two. Looking simultaneously at the
discrete and continuous problem may, for example, increase motion fidelity
while keeping the complexity of the character low.

Modern computer numerical controlled (CNC) machines are powerful allies
for nowadays makers and hobbyists. Milling machines, 3D-printers, and
laser-cutters made prototyping a faster, more precise, and less error-prone
process. Every physical result presented in the past chapters was built using
one (or a combination) of the digital manufacturing techniques mentioned
above. While having been of incredible help, this machinery still has room
for improvement to increase the productivity during fast prototyping. For
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example, when analyzing the entire creation process of a mechanical crea-
ture (from a model’s conception, through its design, to the assembling proce-
dure), the most time-consuming part of the pipeline is often the 3D-printing.
On the one hand, this limitation highlights the need for more powerful de-
sign tools to reduce the number of costly 3D-printing iterations. On the other
hand, an increase in 3D-printers performances would largely improve the
user’s experience while utilizing our tools.

Additionally, the limited availability of 3D-printing material types consti-
tutes another restriction to the manufacturing process. At consumer-level,
3D-printer producers mostly support the use of plastic- and rubber-like ma-
terials. Although other materials with different properties can be used, 3D-
printers often fail to complete the printing process accurately and reliably.
In Chapter 5, where strength and flexibility were essential for our flexures,
we had a hard time finding a reliable material. Also, most of the materials
we experimented with, are highly affectable by the surrounding environ-
mental conditions, and their properties change over time. For example, even
when left untouched, the fabricated prototypes can exhibit unwanted plastic
deformation induced by gravity, which damages the performances of both
rigid and compliant mechanical machines. Moreover, the curing process of
certain materials can take a variable number of days to complete. During
this time, properties such as the yield strength can significantly deviate from
the ones provided by the 3D-printer manufacturers. These limitations call
for further research in existing materials to make them more reliable, both
during and after the printing process.

This thesis emphasizes how difficult it is for robots to mimic an organic
movement. Such an accomplishment is even harder to achieve when the
mechanics of the used hardware is inherently different than flash, bones,
and tendons. We try to emulate the behavior of the last two structural com-
ponents with 3D-printed parts and fishlines, but standard actuation for me-
chanical characters (i.e., motors) operates differently than muscles. Devices
capable of performing similarly to muscles exist, and among them, we find
electroactive polymers (EAP). These polymers can exhibit different proper-
ties and functional abilities [Bar-Cohen, 2001], for example, they can change
in form by applying an electric field; such behavior resembles the activation
of biological muscles. Inversely, electroactive polymers can also produce a
change in electric charge or voltage when mechanical forces are applied. By
reading the rates of voltage change, we could measure the strain induced by
a deformation, thus making EAP well-suited to be used as sensors. Sensing
the environment is a necessity when generating highly dynamic movements,
to accordingly adjust the control actions of a robot. Therefore, thanks to their
actuation and sensing properties, we can conclude that an advance in EAP-
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related technologies could improve the efficiency of robots and animatron-
ics. By making them lighter and stronger, ensuring low power consumption,
and providing embedded sensing capabilities, electroactive polymers could
push forward the abilities of the current generation of robots.

Automatically creating control policies that can produce stable locomotion
is a crucial feature for an easy-to-use tool to design legged robotic creatures.
The system we proposed in Chapter 4 focuses on medium-speed walking
pace and the resulting manufactured robots can stably locomote using an
open loop control strategy. However, faster motions would require feed-
back to be integrated to change the action strategy online, thus adapting
to unpredicted changes in the environment. A multitude of techniques
to produce robust control policies was proposed in the field of robotics
(see Section 2.1). These strategies often rely on actively sensing the en-
vironment, providing feedback to the computing unity, and accordingly
adjust the torques to apply to the actuators. In contrast, other proposed
methods are based on passive dynamic walking [Iribe and Osuka, 2006;
Vargas and González-Hernández, 2013; Zang et al., 2017], allowing the robot
to walk by virtue of dynamics only. Because no computing power is re-
quired, and stability comes exclusively from the mechanical properties of
the design, these devices necessitate less electrical energy to operate and are
cheaper to produce. However, designing creatures capable of passively lo-
comote and react to the environment proves to be a difficult task, above all
if specific artistic requirements need to be met. An interesting and exciting
venue for future work would be to investigate the possibilities of integrat-
ing passive dynamics in a tool that helps users designing walking creatures,
while still providing artistic freedom.

Producing convincing, organic, and natural motions is essential for anima-
tronic figures. Aside from the movements, other aesthetic components are
also of crucial importance to deliver visually appealing characters. Stuff-
ing and upholstering mechanical creatures is, therefore, an interesting topic
for makers, hobbyists, and the industry of animatronics. Ways of covering
and stuffing a moving creature were already investigated [Bickel et al., 2012;
Bern et al., 2017]. While being successful, they tackle specific problems,
leaving room for further explorations. For example, an interesting future
research direction could be the investigation of methods capable of covering
and stuffing animatronics, while not interfering with the functional parts
(i.e., actuators and sensors) and providing a plausible and/or pleasing tac-
tile feedback for the interacting person.

The design tools we propose heavily rely on solving nonlinear objectives un-
der nonlinear constraints, most of them being nonconvex. The exploration of
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novel optimization techniques, together with alternative problem formula-
tions, can improve the quality and efficiency of our tools and their produced
results. Moreover, the effectiveness of our frameworks is based on physics
simulation, since our goal is to fabricate the resulting creatures or mecha-
nisms. Differently from animators, the reality gap is a major obstacle that
roboticists, mechanical engineers, and digital fabricators have to face. The
reality gap refers to the difference between simulated and physical environ-
ments, often making the prediction of simulation useless if not tweaked ac-
cordingly to specific scenarios. A decrease in the discrepancy between the
digital world and physical reality would benefit not only our tools but all
robots- and animatronics-related products. Faster and more precise simula-
tion techniques would allow designers and engineers to converge to a final
product quicker while decreasing the number of required physical proto-
types. These advantages would lower the cost of production for robots and
animatronics, with regard to time, personnel, and material.

7.1.3 Final Considerations

In conclusion, this thesis attempts to bring to the robotics, digital fabrica-
tion, and mechanical engineering communities a novel set of tools to help
the manufacturing of robots and animatronics. We highlighted pros and
cons of previously proposed methods, and introduced innovative solutions
to overcome their limitations. The techniques we presented aim at bridg-
ing the gap between robots and makers, democratizing the personalization
of functional and expressive mechanical characters. By pushing the bound-
aries of current robotic and animatronic designs, we hope to help and inspire
future research directions, to boost towards a new and improved generation
of robots.
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[Bächer et al., 2012] Moritz Bächer, Bernd Bickel, Doug L. James, and Hanspeter
Pfister. Fabricating articulated characters from skinned meshes. In Proc. of ACM
SIGGRAPH ’12, 2012.
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[Vargas and González-Hernández, 2013] A. M. Vargas and H. G. González-
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