
Diss. ETH No. 20676

Novel Toolset for 2D Drawing and
Animation

A dissertation submitted to

ETH Zurich

for the Degree of

Doctor of Sciences

presented by

Gioacchino Noris
MSc in Computer Science, ETH Zurich, Switzerland
born 14 May 1983
citizen of Switzerland

accepted on the recommendation of

Prof. Dr. Markus Gross, examiner
Dr. Robert Sumner, co-examiner
Prof. Dr. Marie-Paule Cani, co-examiner

2012

Abstract
This thesis investigates a set of novel digital tools for 2D Animation address-
ing the shortcomings of current digital support, representations and algo-
rithms. Our goal is to produce animation tools that are intuitive to use, allow
full control over the resulting drawing when desired, and provide the artist
with immediate visual feedback of the animation as it progresses.

In contrast to previous work, where automation has been often been the goal,
we focus on building tools that keep the artist as a central agent. We target
automation of the most tedious tasks where the need for artistic interpreta-
tion is minimal, and otherwise aim for computer-assisted solutions geared to
provide a similar experience as with traditional workflows augmented with
algorithmic computation.

We start by investigating the problem of representing drawings digitally, an-
alyzing existing representations, and highlighting their major shortcomings.
We then present a hybrid representation that combines the advantages of vec-
tor and raster images, and propose the use of a novel vector description for
lines and areas.

We then address the problem of vectorization of line drawings. This problem
is challenging due to ambiguities in regions where lines are drawn close to
each other or intersect. We propose a two-step, topology-driven approach
that first exploits the pixel gradient information in a clustering process to
generate an initial stroke graph from which the topology of the drawing is
learned, and then applies a “reverse drawing” procedure where plausible
junction configurations are considered and a heuristic optimum is selected.

Segmentation is a key step in organizing digital drawings into semantic
groups ready for editing and animation. Done manually, this can be a very la-
bor intensive task. We propose a scribble-based interface that guides a novel

i

energy minimization resulting in the labeling of the drawing strokes. In con-
trast to previous methods, we exploit both geometric and temporal informa-
tion available with modern drawing devices.

In the realm of applications, we address the task of inbetweening, which is
the creation of animation frames between pairs of key frames in order to
create the illusion of a continuous animation. Drawings are represented as
stroke graphs. Given two input key frames, a mapping between the graphs is
derived, and spiral trajectories for graph nodes and additional salient points
are computed. Strokes are then interpolated, leading to an initial set of inbe-
tween frames. We propose a set of tools to modify the mapping, deal with
simple topological mismatches, and redraw animation trajectories.

Finally, we propose a technique to control temporal noise in sketchy anima-
tion. Sequences of sketches typically present notable temporal artifacts in
the form of visual flickering due to the lack of temporal consistency in the
way sketched lines vary from the visually perceived boundaries and interior
lines. We propose a two-step method that applies a temporal filter bi-linearly.
By combining motion extraction, stroke correspondence, and inbetweening,
temporal consistency can be enforced at the stroke level. We first apply this
to selected key frames in the input animation to generate a so-called “noise
free” sequence, and then to pairs of frames from the input sequence and the
noise free sequence to obtain the desired temporal noise level specified by
the user.

ii

Compendio
Questa tesi di dottorato tratta lo studio di un nuovo set di strumenti ideati
per facilitare l’automatizzazione e il supporto digitale per l’animazione bidi-
mensionale (2D). Presentiamo un insieme di algoritmi e di tecniche speci-
ficatamente studiati per risolvere problemi considerati importanti in questa
area di ricerca.

In contrasto con precedenti lavori di ricerca, dove l’automatizazione era lo
scopo principale, il nostro intento é quello di produrre strumenti intuitivi da
usare, che diano all’artista totale controllo sul risultato, e che rispondano in
tempo reale agli input permettendo una esperienza di lavoro scorrevole ed
efficace.

Il concetto centrale é quello di mantenere l’artista al centro delle operazioni:
tutto ciò che richiede interpretazione artistica é lasciato all’utente, mentre il
potere computazionale viene utilizato per svolgere mansioni tediose, ripeti-
tive, o che richiederebbero troppo tempo per essere svolte manualmente. Il
nostro studio diventa quindi quello di ideare strumenti di supporto soggetti
al controllo artistico.

In principio, proponiamo uno studio di come le immagini vengono rapp-
resentate in campo digitale. Questa rappresentazione é determinante per
quanto riguarda l’elaborazione dei contenuti, e quindi la possibilitá di costru-
ire strumenti che supportino l’animazione 2D. Nel nostro lavoro identifichi-
amo una serie di problemi dovuti a come le immagini sono codificate, e pro-
poniamo una rappresentazione alternativa ibrida, che combini i vantaggi di
quelle esistenti (griglia di pixel, e immagini vettoriali). Discutiamo in fine
una rappresentazione matematica unica per linee ed aree.

Ci dedichiamo poi al problema della vettorializzazione, ovvero la
costruzione in digitale di un disegno su carta. Questo problema é ostico

iii

principalmente in regioni dove i tratti del disegno si intersecano, o sono
disegnati talmente vicini da risultare confusi. Proponiamo un sistema a
doppia mandata, incentrato sullo studio della topologia del disegno. In
primis, l’informazione contenuta nel gradiente di ogni pixel della griglia
viene utilizzata in un processo di agglomerazione (clustering), che termina
con la costruzione di un grafico che cattura la topologia del disegno. Grazie
a questo grafico, applichiamo una procedura chiamata “Reverse Drawing”,
dove plausibili configurazioni di tratti vengono analizate, e quelle considrate
migliori scelte, risultando in una soluzione euristica ottimale.

Affrontiamo poi il problema della segmentazione. Segmentare, o separare
in gruppi distinti, é un processo chiave nell’organizzazione di un disegno
in livelli separati. Fatto manualmente, questo processo é spesso molto cos-
toso in termini di tempo ed energie, e spesso impone un procedere che si
allontana dal semplice disegnare, richiedendo tuttavia particolare attenzione
e spesso conducendo ad errori. Proponiamo dunque una interfaccia basata
su scarabocchi (scribbles) atta a guidare una minimizzazione energetica che
termina con l’assegnazione, per ogni tratto del disegno, ad un particolare
gruppo o livello. In contrasto con lavori precedenti, il nostro metodo pro-
pone l’utilizzo sia di informazione geometrica che temporale, disponibile og-
gigiorno grazie a dispotivi di disegno digitali.

Nell’ambito delle applicazioni, ci occupiamo del problema chiamato “Inbe-
tweening”, ovvero la creazioni di immagini che stiano “in mezzo” a immag-
ini chiave. Dato un disegno di partenza, queste immagini presentano mod-
ifiche graduali dei contenuti fino ad ottenere un disegno di arrivo, creando
cosí l’illusione di una continuitá. Procediamo cercando un assegnazione di
corrispondenza dei tratti provenienti da due immagini chiave (di partenza e
di arrivo), e per ogni punto saliente in corrispondenza generiamo una traiet-
toria a spirale. I tratti vengono poi interpolati seguendo tali traiettorie, per-
mettendo di generare le immagini desiderate. Il nostro metodo comprende
strumenti per genstire semplici situazioni dove la topologia delle immagini
chiave non corrisponde, come pure per ridisegnare traiettorie e aggiungere
punti salienti.

Come ultimo lavoro, proponiamo una tecnica per controllare la quantitá di
rumore visivo — chiamato “rumore temporale” — presente nelle animazioni
dallo stile grafico caotico e ricco di tratti, come nel caso di bozze e schizzi.
Sequenze di schizzi presentano artefatti temporali percepiti come sfarfalla-
mento dell’immagine. La ragione é che i bordi degli oggetti sono disegnati
da linee in costante mutamento, con spostamenti considerevoli e spesso non
coerenti nel procedere con la sequenza di immagini. Proponiamo un metodo
che applica un filtro temporale bi-lineare. Combinando l’estrazione del movi-

iv

mento, il calcolo della corrispondeza fra tratti, e la creazione di immagini
“nel mezzo”, possiamo costrignere i tratti a muoversi fluidamente secondo
una coerenza temporale. Tale processo viene prima applicato ad immagini
chiave, generando cosi’ una sequenza detta “senza rumore”, e in un secondo
momento, lo stesso processo é applicato a coppie di immagini: una prove-
niente da questa sequenza “senza rumore” e l’altra dalla sequenza originale.
Il risultato, é una animazione dove la quantitá di rumore temporale tende ad
un valore desiderato.

v

For D.N .

vii

Acknowledgments

Hereby, I place on record my deepest appreciation to all the people who
helped me during this Ph.D. Study, all the coauthors of the publications, and
everyone that contributed, in any form, to the completion of this work.

First and foremost, I want to thank my mentor and advisor Prof. Dr. Markus
Gross. Through his work and passion, he created a wonderful environment
for research and study. His trust and guidance have been substantial to the
successes obtained during these past four years.

I extremely grateful and indebted to the group of close collaborators that
made the projects presented in this thesis possible:

w Dr. Robert Sumner, from Disney Research Zurich, for his guidance, his
positive and passionate approach to research, and for the atmosphere
of sympathy and friendship he casts on people around him.

w Dr. Maryann Simmons and Dr. Brian Whited, from the Walt Dis-
ney Animation Studios, for being my companions from day one and
for supporting and motivating me over the years. Their help has been
invaluable.

w Dr. Alexander Hornung and Dr. Stelian Coros, from Disney Reserch
Zurich, for their day-to-day support, for the many research discussions,
and for sharing the struggles and joys of our paper submissions.

w Dr. Daniel Sýkora, from the Czech Technical University of Prague, for
his passion and dedication to hand drawn animation, his deep math-
ematical knowledge, and for all the tricks he thought me during our
delightful collaborations.

My sincere gratitude to the staff at Disney Research Zurich, Michelle Berch-
told, Linda Breu and Dr. Stephan Veen, at ETH Zurich, Denise Spicher, and
at The Walt Disney Company, Dayna Meltzer and Susan Harden.

I would like to thank all the artists that contributed to this work with their art
pieces. In particular, many thanks to Maurizio Nitti, from Disney Research
Zurich, for his unlimited availability and support.

A thank you to all the people from the Computer Graphics Laboratory at
ETH Zurich and from Disney Research Zurich. Special regards to Dr. Thabo
Beeler who shared the office with me, and has been a friend and an example.

ix

Finally, I am grateful to my to my family and my girlfriend Giulia Ghiel-
metti, for their unconditional support and affection, and for making every
day of my life happier.

x

Contents

1 Introduction 1
1.1 Contributions . 4
1.2 Design Principles . 6
1.3 Organization . 6

1.3.1 Work Packages . 9
1.3.2 Document Structure . 10
1.3.3 Publications . 11

2 Background 13
2.1 Classic 2D Animation Pipeline 13

2.1.1 Pre-Production . 14
2.1.2 Production . 18
2.1.3 Computer Assisted Production 20

2.2 Challenges of Computer Assisted Cartooning 22
2.2.1 Challenges . 22

2.3 Core Problems . 27

3 “Sketching” a Digital Representation 31
3.1 A Middle Ground between Applications and Pre-Processing . 32
3.2 Existing Digital Representations 33

3.2.1 Brush Models . 34

xi

Contents

3.2.2 Representation Models 35
3.3 Requirements . 40
3.4 A “Hybrid” Representation . 41

3.4.1 Vector-Splats Hybrid . 41
3.4.2 Lines-Areas Hybrid . 44

3.5 Conclusions . 49

4 Line-Drawing Vectorization 51
4.1 Introduction . 52
4.2 Related Work . 54
4.3 Overview of Approach . 55
4.4 Algorithm . 58

4.4.1 Clustering for Stroke Disambiguation 58
4.4.2 Topology Extraction . 59
4.4.3 Centerline Extraction and Reverse Drawing 62

4.5 Validation and Results . 69
4.5.1 Evaluation . 69
4.5.2 Input Resolution and Clustering Robustness 72
4.5.3 Result Images . 72
4.5.4 Processing Time . 77
4.5.5 Limitations and Future Work 77

4.6 Conclusion . 79

5 A Scribble-based Segmentation Tool 81
5.1 Introduction . 82
5.2 Related Work . 83
5.3 Method . 85

5.3.1 Energy function . 86
5.3.2 Optimization method 90

5.4 Applications . 91
5.5 Results . 94
5.6 User Study Report . 97

5.6.1 Learning Phase . 97
5.6.2 Comparison Phase . 99
5.6.3 Locality Control Phase 99

5.7 Limitations and Future Work 103
5.8 Conclusions . 108

6 Inbetweening 111
6.1 Introduction . 112
6.2 Background . 114

6.2.1 Related work . 115

xii

Contents

6.3 Core Algorithms . 117
6.3.1 Representation . 118
6.3.2 Stroke matching . 118
6.3.3 Vertex Correspondence 119
6.3.4 Composite Interpolation 119
6.3.5 Comparison with prior art 124

6.4 Workflow . 124
6.5 Results . 127
6.6 Conclusion . 132

7 Temporal Noise Control 137
7.1 Introduction . 138
7.2 Related Work . 139
7.3 Method . 140

7.3.1 Overview . 142
7.3.2 Representative Frame Sampling 143
7.3.3 Creating Smooth Inbetween Frames 143

7.4 Results . 148
7.4.1 Ground Truth Comparison 148
7.4.2 Neighborhood Averaging Comparison 149
7.4.3 Sampling and Timing Control 151
7.4.4 Temporal Noise as an Artistic Tool 151

7.5 Conclusion . 153
7.5.1 Limitations and Extensions 153
7.5.2 Relative Stroke Orientation 154

8 Conclusions 155
8.1 Discussion . 155
8.2 Future Work . 157

A Curriculum Vitae 159

List of Figures 163

List of Tables 167

Bibliography 169

xiii

C H A P T E R 1
Introduction

© Disney

“All you can do sometimes is just press harder on your pencil to try
and make the drawing express what your’re feeling in your heart, and
you hope that the audience can feel it as they’re looking at it.”

– Glen Keane

1

1 Introduction

Traditional Animation is a fascinating form of art with roots dating back to
the early nineteen hundreds. Throughout the twentieth century, the Western
world witnessed its proliferation; feature-length animations were presented
in the movie theaters, and TV cartoons became daily entertainment for the
masses.

In its purest form, traditional 2D animation is a prohibitively labor intensive
process. Each frame of an animated production is drawn, cleaned up, and
inked by hand. This process results in millions of drawing for a feature length
film.

The advent of computers marks an important step in the evolution of ani-
mation. The transition from cel animation [Laybourne, 1998] to computer as-
sisted 2D animation however, has not been as easy as some may have hoped.
In 1978, Edwin Catmull writes [Catmull, 1978]:

In the last few years several systems have been written for aiding in
the conventional twodimensional animation process. [...] While there
has been some success and a great deal of optimism, the promise of higher
output and quality using a computer has not been realized. The transi-
tion from simple drawings optimized for use on the computer to the com-
plicated and detailed drawings of quality conventional animation has
been much harder than expected.

Important progress has been made in the past thirty five years. Digital tools
are used for many aspects of modern 2D Animation pipelines, offering a wide
range of tools, like management of asset creation and tracking, generation of
visual elements and special effects, color management for lighting of scenes,
and digital compositing.

Despite this progress however, the core challenge — drawing animation
frames — is still very labor intensive. To date, the state of the art in dig-
ital tools is still not sufficient to automate the creation of high quality 2D
Animation. Let us consider why this is the case.

One observation is that digital drawing hardware and software solutions do
not match the fluidity, natural feel, and expressiveness achieved with pencil
and paper. This is reflected by the fact that still today artists often prefer to
draw on paper and have the drawings scanned and vectorized afterwards. A
second observation is that, even as drawing tools improve and more draw-
ings are done digitally, in practice this fact improves the ability to use au-
tomation for the rest of the process only minimally.

The reason for this is the implicit nature of 2D drawings and artwork. 2D
drawings are in general just an unorganized collection of drawn strokes. It

2

is the viewer of the drawing that implicitly perceives the structure and im-
plied 3d embodiment of these marks. This is something natural for a human
viewer to achieve, but in general, a daunting if not impossible task to achieve
automatically with a computer algorithm.

Artist 2D Animation Viewers

feedback

Draw Watch

Figure 1.1: 2D Animation can be seen as the dispatch of a coded message. The mes-
sage is the story portrayed in the animation. The story is encoded by the
artist (by drawing) as a sequence of images. The audience receives the
sequence of images and (by watching) deciphers it, each mind applying
its own filter and obtaining a unique interpretation. Both the encryp-
tion and decryption rely on the human visual system and high-level
cognition.
On its own, the sequence of images holds enough information for a hu-
man audience to recognize the elements within the drawings, perceive
the illusion of movement, and possibly build an emotional connection
with the characters. As noted by [Catmull, 1978] however: “The prob-
lem of making a program infer the original object from its projections is
akin to extremely difficult artificial intelligence problems.”

This concept is illustrated with a metaphor in Figure 1.1. The artist on the
left and the viewers on the right are humans, provided with a visual system
and cognitive capabilities. Drawing and watching are processes in which a
message (such as a story or emotions) is first captured into animation frames,
and then interpreted while watching. The actual medium — the animation
frames — carry the message in an “encrypted” form, and to be understood
require, if not the actual animator’s mind, at least human-like capabilities.

Before entering in the details of this work, we would like to make a few re-
marks about 2D Animation, and the difficulties one encounters in trying to
support it with algorithms and digital tools.

While analyzing tools designed for artists, there are two important criteria
to consider: the control over the result and the simplicity and immediacy

3

1 Introduction

of the interaction. In both aspects, traditional animation tools set very high
expectations. Right after the first few lines are drawn, an artist has an au-
thentic feeling of how the drawing is going to be perceived by the viewers.
The same applies to an animation, where by watching the sequence of draw-
ings, the artist immediately perceives the animation as the viewers will. This
feedback loop presents a powerful dynamic, in which the artist can judge his
or her work while creating it, and even be inspired by it, possibly ending up
with stronger art than originally planned.

Moreover, by giving the artist complete control over the drawing content, 2D
Animation encourages artistic freedom and experimentation. As a discipline,
animation developed a number of principles ([Johnston and Thomas, 1995])
and techniques, and nowadays, even when a drawing represents a scene of
the real world, most rules that govern reality are bent or broken. Artists
can (and often do) cheat on perspective, on physical behavior of objects,
on their appearance, and they sometimes even define new law systems
([O’Donnell, 1980], [Gould, 1993]), with gags that become iconic to the genre.

A major risk when creating digital tools within such an environment is the
one of imposing boundaries that could restrict either the control of the artists
over the result, or the variety of results that can be produced. This is however
a difficult mission, as by not introducing boundaries one reduces the prior
knowledge that can be exploited to solve the problems at hand.

Overall, 2D Animation is a arduous domain. As engineer or researcher, one
faces a number of challenges, such as: the inability to infer the 3D structure
from the 2D images, the lack of prior knowledge of the content of the drawing
and of the dynamics of the animation, the need for solutions that provide full
artistic control to the users. This work is an attempt to tackle the core chal-
lenges of this domain, providing both the methodology and a set of solutions
to progress toward the goal of computer assisted 2D animation.

1.1 Contributions

In this thesis we make the following contributions:

w The design of a novel toolset for the automation and assistance of the
production of 2D Animation. We state a set of design principles, design
a structure for the toolset, and develop a number of key components,
with an outlook for further development.

w A study of the problem of defining an appropriate digital representa-
tion for drawings and animation data. We discuss the short comings of

4

1.1 Contributions

existing representations and propose a set of ideas to design a hybrid
vector-raster, line-area description that takes advantage of the (mutu-
ally exclusive, yet complementary) features of raster and vector image
representations, and propose a unified description of shapes (such as
lines or areas) to provide a novel editing platform for drawing elements.

w A vectorization system for line drawings designed to reconstruct high-
quality centerline strokes, with particular care for junction regions and
legacy artwork. Our method include two phases. First, a pixel-walk
simulation exploits the gradient information contained in the raster im-
age to create bands of moving pixels that converge at the stroke center-
lines. Second, a reverse drawing procedure evaluates possible configu-
ration scenarios at junctions and applies an empirically driven criterion
to pick an adequate solution.

w A new scribble-based interface for user-guided segmentation of digital
sketchy drawings. We introduce a novel energy minimization formu-
lation in which both geometric and temporal information from digital
input devices is used to define stroke-to-stroke and scribble-to-stroke
relationships. Despite the problem being NP-Hard, we employ a sim-
ple heuristic that leads to a good approximation and permits an inter-
active system to produce accurate labellings even for cluttered sketchy
drawings.

w An computer assisted solution for inbetweening of clean line drawings,
with a focus on interactivity and artistic control. The system works
by establishing a correspondence between the strokes of two given
keyframes, and automatically computes morphing trajectories that re-
spect arc motion and connectivity of the strokes. A set of interactive
tools are designed to allow the user to modify the trajectory and ac-
count for differences in the drawing topology.

w A system to control the temporal noise in sketchy animation. The input
animation is processed in two phases. First, a set of keyframes is se-
lected, and for each pair of keyframes, an image-based motion extrac-
tion is used to establish a stroke-to-stroke correspondence and drive an
inbetweening which results in the creation of a “noise-free sequence”.
Second, for each frame in the input sequence and its corresponding
frame in the noise-free sequence, the same steps (motion extraction,
correspondence, and inbetweening) are used to create a “variable noise
sequence” which has the desired amount of temporal noise.

5

1 Introduction

1.2 Design Principles

Upfront, we state a few design principles that have guided us throughout
this work:

w Keep the artist in the loop. 2D animation is a tough research domain as it
deals with the lack of computer readable information. As we will see in
Chapter 2, despite almost four decades of research, the core steps of the
production pipeline are still very labor intensive. We believe the main
reason is that most attempts only considered fully automated solutions,
ultimately cutting the artist out of the loop. This methodology has two
consequences. First, it makes the problems much harder, due to the
necessity to mathematically model very complex processes related to
visual perception and object recognition. Second, it collides with the
next design principle.

w Seek artistic control. 2D animation is a form of art. Human expression
is its essence. Any solution assisting 2D animation should not hinder
expressibility by imposing limits on what can be created. Any auto-
mated process should be controllable, allowing control over the extent
to which solutions are carried, accepting guidance in solving the prob-
lems, and allowing for correction of parts of the results.

w Close to industry. The development of tools can benefit by collaborating
with industry professionals. Real production scenarios, in terms of effi-
ciency requirements and complexity of the data, provide a base line to
define the performance of the tools. Feedback from professionals is the
key in identifying the production bottlenecks and learning which tasks
require more artistic control, which in turns suggests where automation
and computer-assisted solutions should be targeted.

1.3 Organization

The goal of this thesis is to study and realize a novel toolset to support 2D
animation. In this section we briefly discuss the general structure, and then
dive into the work packages. The proposed toolset is organized into different
categories, as shown in the overview Figure 1.2.

As “input” to the toolset, i.e. the interface from the real and digital worlds,
we consider two scenarios:

6

1.3 Organization

Artist

Artist

Viewers

Segmentation

Layering

Vectorization

Rendering

Inbetweening

Temporal Noise
Control

Inking/Painting

“E�ects”

CPU

Digital Drawing

Physical Drawing

Scanning

Uses Watch

CAD

2D Animation
Digital Toolset

ApplicationsPre-Processing
Input Output

Digital
Representation

Figure 1.2: 2D Animation toolset Overview. We envision a system that supports
the artist, providing automation and assistance under artistic control.
By keeping the artist in the loop, the problem is no longer the full un-
derstanding of the animation content, but rather the design of proper
tools. We have identified a number of core pieces of technology, and ad-
dressed them throughout the thesis. This figure serves as an overview
to understand the overall design.

7

1 Introduction

Digital Representation
1. Drawing Representation (Chapter 3)
Pre-Processing
2. Vectorization (Chapter 4)
3. Segmentation (Chapter 5)
Applications
4. Inbetweening (Chapter 6)
5. Temporal Noise Control (Chapter 7)

Table 1.1: This thesis is organized in five work packages, tackling different aspects
of the toolset.

w In order to be compatible with legacy artwork, such as drawings made
prior the digital era or any sketch or drawing that is made on real paper
for convenience or comfort, physical drawings can be scanned with the
appropriate equipment, and then the resulting raster image vectorized
to the appropriate digital representation.

w Alternatively, a digital drawing program can be used to directly pro-
duce drawings in the appropriate digital format.

The core of the toolset is then partitioned into “pre-processing”, “digital rep-
resentation” and ”applications”.

The digital representation acts as a core piece of technology that binds the other
components. The challenge is to design a unique representation for drawings
that is easy to create and supports a variety of applications. Raw raster im-
ages, such those produced by common scanners and drawing packages, are
inconvenient when it comes to any form of advanced editing. A number of
abstract elements, such as lines, strokes, and areas, become key elements to
widen the domain of applications of a digital toolset. By pre-processing raw
images with the help of the user, important vector elements that match the
intended application can be extracted and organized into a proper structure.
The industry value of a digital tool or framework is measured by its impact
on efficiency, quality of the results and working conditions. Guided by dis-
cussions with professionals, we propose a few applications, which are special
either because of the impact on production efficiency or because they enable
new styles of art.

8

1.3 Organization

1.3.1 Work Packages

The development of a full toolset is a challenging and ambitious task, even
for the time-frame of a Ph.D. Thesis. Work packages, targeting a specific
tool or category of tools, have been defined early on. They represent work
milestones, distributed over a period of three and a half years, which resulted
in the submission of research papers to different conferences and journals.
This thesis includes 5 work packages, as shown in Table 1.1.

What follows is a description of each work package, including a brief moti-
vation and description of the work that has been done.

1. Drawing Representation. We study the existing digital representations
of drawings in the context of rendering and editing, and define a set of
requirements for an ideal representation targeting 2D Animation. We
then proceed by presenting two conceptual contributions. With the
splat-vector hybrid we propose the combination of splats with vector
centerlines to combine the visual richness of raster data with the editing
capabilities of a vector representation. With the lines-areas hybrid we
propose the combination of centerline with boundary lines to describe
lines, areas, and combinations of the two with a unique representation,
avoiding hard transitions from different vector descriptions.

2. Vectorization. We are interested in the problem of vectorizing line
drawings. This problem is important as it represents the link between
all the existing legacy artwork drawn on paper and digital tools that
manipulate the stroke centerlines, such a computer-assisted inbetween-
ing. As such, this tool can be considered an enabling technology. How-
ever there is also scientific interest. While extensive research has been
done in other areas such as Computer Vision and Medical Imaging on
topics like edge detection and vascular imaging, existing solutions for
the vectorization of line drawings are not reliable enough for practical
use. In particular, problems occur when strokes overlap (generating
junctions) or are drawn close to one another (nearby strokes).

3. Segmentation. We address the problem of segmentation: the group-
ing (or clustering) of strokes composing sketches and line drawings.
Among other applications, segmentation enables the addition of depth
to drawings, both in terms of the visibility and the deformation of indi-
vidual components. Explicit layering is error prone, limited in its use,
and requires one to know the use of the drawing in advance. We in-
stead aim for an interactive tool that allows the extraction of part of the
drawing on the fly, requiring minimal user input and providing an in-

9

1 Introduction

tuitive interface. We opt for a scribbles-based interface that guides an
optimization combining geometric and temporal information.

4. Inbetweening. We develop a computer-assisted solution for tight in-
betweening, tackling one of the most important bottlenecks of 2D pro-
duction. Inbetweening, the problem of creating transitional drawings
between pairs of key drawings, is one of the most laborious and time
consuming tasks of the pipeline. Artistic control, in terms of automatic
only to a desired extent, plays a special role here, as the amount of
artistic interpretation required to properly generate inbetween strokes
varies greatly from area to area within the same shot. We propose a
solution which automatically generates a first solution and allows the
user to progressively refine the result using a set of interactive tools.

5. Temporal Noise Control. We want to design a method to control the
temporal noise present in 2D animation, targeting a sketchy drawing
style. This type of animation is traditionally used only in early stages
of production, and then progressively replaced with cleaner styles later
on. The goal of this project is to tackle the problem of temporal noise —
the perception of line flickering in sketchy animation — with the goal
of enabling this rich style to be used in final productions. Rather than
plain suppression, we aim for gradual control of the amount of noise
in a scene, suggesting the use of line flickering as a controllable visual
effect to enhance story telling.

1.3.2 Document Structure

w Chapter 1, which you are reading right now, gives an introduction to
the goals and organization of this thesis.

w Chapter 2 sets the background for this topic, by diving through the state
of the art in automation and assistance of 2D animation. We also dis-
cuss the production pipelines of classic 2D animation, highlighting their
challenges and needs.

w Chapters 3, 4, 5, 6, and 7 present the work packages listed in Table 1.1.

w Chapter 8 summarizes the thesis and discusses the major contributions,
giving an outlook for future research.

10

1.3 Organization

1.3.3 Publications

This thesis is based on the following accepted peer-reviewed publications:

B. WHITED, G. NORIS, M. SIMMONS, R. W. SUMNER, M. GROSS,
J. ROSSIGNAC. BetweenIT: An Interactive Tool for Tight Inbetween-
ing. In Proceedings of Eurographics, volume 29, number 2, pages 605-614,
Norrköping, Sweden, May 2010.

G. NORIS, D. SÝKORA, S. COROS, B. WHITED, M. SIMMONS, A. HOR-
NUNG, M. GROSS, R. W. SUMNER. Temporal Noise Control for Sketchy
Aniamtion. In Proceedings of the 9th International Symposium on Non-
Photorealistic Animation and Rendering (NPAR’11), pages 93-98, Vancouver,
Canada, August 2011.

G. NORIS, A. HORNUNG, R. W. SUMNER, M. SIMMONS, M. GROSS.
Topology-Driven Vectorization of Clean Line Drawings. To appear in
ACM Transactions on Graphics, and be presented at SIGGRAPH 2013.

G. NORIS, D. SÝKORA, S. COROS, M. SIMMONS, B. WHITED, A. HORNUNG,
A. SHAMIR, M. GROSS, R. W. SUMNER. Smart Scribbles for Sketch Seg-
mentation. To appear in EG Computer Graphics Forum, and be presented
at Eurographics 2013.

11

C H A P T E R 2
Background

This Chapter presents general fundamentals and related work in the area
of 2D animation, with particular focus on challenges faced in professional
production pipelines. This Chapter considers the problem as a whole, and
leaves to the following ones the discussion of specific areas.

In Section 2.1, we give a high level description of the production pipeline for
classic 2D Animation. In Section 2.2, we highlight the challenges of computer
assisted cartooning, and define three core problems we believe hold the key
for important advancement in this field.

2.1 Classic 2D Animation Pipeline

This section describes the characteristics of 2D feature animation pro-
ductions [Fekete et al., 1995, Johnston and Thomas, 1995, Hahn, 2008,
Whitaker et al., 2009]. A common abstraction is to consider this process
as two phases: pre-production, characterized by a relatively low cost effort,
with a small team of highly creative individuals that define the story, the
characters, and the desired visual look, and the production, where a larger
team is involved, and the final 2D animation is produced.

13

2 Background

2.1.1 Pre-Production

Pre-Production is a planning phase where ideas are developed and the work
organized before the actual production starts. It usually involves a small group
of writers and visual artists led by a director and a producer [Whitaker et al., 2009].

Figure 2.1: Storyboard sequence from Disney’s animated feature “Dumbo”. Sto-
ryboards are a visual representation of the story, and help defining the
story. “It is generally accepted that no production should proceed un-
til a satisfactory storyboard is achieved and most of the creative and
technical problems have been considered.” [Hahn, 2008] © Disney

The process begins with the creation of a storyboard (see Figure 2.1), which
provides a visual representation of the story. The first complete storyboard
was created by Walt Disney in 1933 during the production of “Three Little

14

2.1 Classic 2D Animation Pipeline

Pigs” [Miller, 1957]. It is a form of pre-visualization where the story is orga-
nized as a sequence of illustrations or drawings, with the goal of visualizing
the story and finding potential problems before they occur in later stages of
production. Storyboards may be created with the help of Screenplays, tex-
tual descriptions of the story, possibly written as an adaptation of existing
pieces, which include the movement, actions, expression, and dialogues of
the characters.

In parallel with storyboarding, there is the character design. This process in-
volves developing the appearance and features of the characters, considering
the role of the character in the story and how the audience should perceive it.

Figure 2.2: Model Sheet of Disney’s character “Sir Giles”. This type of document
describes the main features of a character, allowing multiple artists to
draw the character consistently. © Disney

One important aspect in productions involving multiple artists is the stan-
dardization of the appearance, poses, and gestures of the characters. This is

15

2 Background

often achieved by the creation of “Model Sheets” (see Figure 2.2) — docu-
ments containing the details of each character — as well as “Characters Line-
ups” (see Figure 2.3), which are depictions of different characters together
in order to compare the scale of the characters against one another. At the
end of the pre-production, a character may be assigned to a supervisor artist,
typically an experienced animator, with the task of ensuring standardization
throughout rest of the production.

Figure 2.3: Characters line-ups are used to assess the relative size of characters.
(Image courtesy of Alison Action)

Nowadays, pre-visualization may also be used to get an early impression of
the look and feel of the scene in terms of motion and timing. For this purpose
mock-ups called “Animatics” may be produced. Animatics generally display
a sequence of still drawings or rough animations to which dialog, sound or
music are added in order to assess the effectiveness of the combination of the
visual and auditory elements of the scenes.

16

2.1 Classic 2D Animation Pipeline

Story Board

Layout

Background
Painting

Special
E�ects

“Ru�” Animation

Clean-up

Inbetweening

Ink & Paint

Compositing

Characters
Design Pre-Visualization

Writing

PRE-PRODUCTION PRODUCTION

Figure 2.4: The Traditional Animation Pipeline is characterized by two phases. In
pre-production, a small team works to define all aspects of the story
and finally produce the storyboard. In the second stage, the team grows
and the actual production of the feature animation starts. Production
includes a number of stages, and although often presented as a pipeline,
dependencies may vary depending on a scene’s complexity and content.

17

2 Background

2.1.2 Production

Production is characterized by a number of stages and roles, as shown in
Figure 2.4. While presented as a pipeline, the dependencies are often defined
by the content of the actual scenes. For example, a scene dominated by water
effects - such a ship in a storm - may follow a very different production path
than a scene where characters dance in front of static scenery [Noris, 2008].

In general, the following stages apply:

In “Layout” [Byrne, 1999], the staging for each scene is designed, including
establishing the setting, choosing and placing character and prop elements,
and specifying camera motion and cuts. This process is vital as it defines the
rest of the production related to each scene.

 Disney

Figure 2.5: A painted background from Disney’s feature animation “Pinocchio”.

The “Background” refers to a scenery typically drawn on a separate layer in
front of which the animation takes place (see Figure 2.5). The role of back-
ground artists is to illustrate the sceneries according to the scene descrip-
tion and the overall style of the production, maintain continuity to replicate
mood, lighting and details from one background to the next. Backgrounds
are typically static, although a number of effects — such as trails of smoke
or flags waving in the wind — may be applied afterwards during the effects
phase. In early animation productions, backgrounds were manually painted
on multiple big glass sheets, while today they are drawn digitally, using both
2D and 3D packages depending on the content of the background.

18

2.1 Classic 2D Animation Pipeline

Character and effects animation is then done in multiple stages.

First, animators produce the subset of drawings that lay down the core of the
action, called the “keys”. These extreme drawings are often “ruff” versions
that capture the spirit, flow, and arcs of the animation. “Clean up” artists
are responsible for taking the ruff drawings and producing clean lines that
remain true to the original intent.

Key Frame Timing Charts

 Disney

Figure 2.6: A clean-up key from Disney’s feature animation “Peter Pan”. Timing
charts are used to specify how inbetweens should be created with respect
to the motion captured by the keys. In the case where different elements
follow different animations, multiple charts may be used.

Each key drawing has one or more timing charts (See Figure 2.6) associated
with it. The animator uses these charts to specify how many drawings should
be produced between keys, and at what intervals. It is the job of the “inbe-
tweening artist” to draw the requested intermediate drawings to produce
seamless motion. These transition drawings must remain true to the motion
specified in the keys and should not detract from the action. The artists flip
through the drawings as they work to ensure continuity and flow.

19

2 Background

The drawings then go to ink and paint where regions are filled in with color,
and lines may be retraced with colored ink. Originally, this would be done
by tracing each frame on thin transparent sheets called “cels”, which would
then be colored.

Finally, compositing would close the process, by combining the different
characters and background into a unique image. Traditionally, this would
be made by stacking the different layers and taking a picture. A notable tech-
nological milestone is represented by the “Disney’s Multiplane Camera”, in-
troduced in 1933, which allowed multiple layers to be independently lit and
moved in three dimensions, creating realistic perspective movement and a
more realistic depth impression [Telotte, 2010].

2.1.3 Computer Assisted Production

While some of the underlying mechanisms have benefited from the advent of
digital technology, a 2D production today follows much the same basic work
flow as traditional animation [Johnston and Thomas, 1995]. Computer-
assisted solutions appeared in the late 1980s ([WDAS and Pixar, 1989],
[Robertson, 2001], [Robertson, 1994]) and introduced a number of new fea-
tures, such as raster based region filling algorithms, and roles, such as
scanner operator and special effects artist.

The later stages of the production pipeline, namely ink and paint, special effects
and compositing, witness the introduction of important features:

After inbetweening, drawings are scanned and sent to digital ink and paint
for coloring. The cleaned-up drawings are painted on a digital tablet that floods
selected areas of the character with color. [Hahn, 2008]. Diligent work is done
in making sure regions are closed to prevent color from leaking. The state
of the art in research proposes more robust coloring algorithms capable of
dealing with gaps or color multiple closed regions with minimal user interac-
tion [Sykora et al., 2009b], and we believe these improved tools could become
valuable assets for the production frameworks.

Computer generated effects can also be produced, by computing gradients
and similar coloring effects onto 2D shapes to create ground shadows or skin
tones (see Figure 2.7), by completely generating rendered 3D scenes or objects
to be used as backgrounds or solid objects, or by handling natural elements
such as water, fire, smoke, or atmospheric effects [Hahn, 2008].

Digital compositing [Steve, 2006] enables sophisticated layer blending

20

2.1 Classic 2D Animation Pipeline

 Disney

Figure 2.7: Effects such as shadows and skin tones can be generated from simple
2D shapes that overlay a character or a background.

[Porter and Duff, 1984], as well post processing effects such as color cor-
rection, or color management using palettes [ToonBoom, 2010].

Despite the introduction of computer assistance, the production costs of fea-
ture animation have increased over the past twenty years ($23 million for
“Beauty and the Beast” in 1991, $45 million for “The Lion King” in 1993,
$105 million for “The Princess and the Frog” in 2009 [Amazon, 2012]). We
believe this has the following reasons. First, the complexity of the scenes
has increased as more effects were possible thanks to computer graphics
and the studios pushed for richer visuals (see Figure 2.8). Second, new
digital tools had a limited impact on drawing, which remains a consider-
able effort (over a million inbetweened drawings per full length production
[Johnston and Thomas, 1995]).

 Disney

Figure 2.8: Two frames from Disney’s animated features “Alladin” (1992) and
“The Princess and the Frog” (2009). Notice the increase of visual com-
plexity and number of animated characters.

21

2 Background

To better understand how digital tools could have a more substantial impact
on the production of feature animation movies, in the next Section, we dis-
cuss the challenges that characterize computer assisted cartooning.

2.2 Challenges of Computer Assisted
Cartooning

In this section we highlight the challenges related to the produc-
tion of 2D Animations. This topic has been studied repeatedly
in the past decades [Catmull, 1978], [Baudelaire and Gangnet, 1986],
[Patterson and Willis, 1994], [Madeira et al., 1996].

2.2.1 Challenges

Computer assisted 2D animation is characterized by a number of challenges
which are due to the encoding of the animation through the medium of draw-
ings.

Drawings as Medium. A drawing presents a medium that is difficult to read
for a machine. There are a number of challenges in relation to the lack
of depth information, misleading depth cues, and the use of simplistic
digital representations.

1. Missing depth. The major challenge in working with 2D animation
is related to the loss of information (see Figure 2.9).

The principal difficulty is that the animators’ drawings are really two-
dimensional projections of the three-dimensional characters as visualized
by the animator, hence information is lost. [Catmull, 1978]

Depth Ambiguity. Line drawings represent objects by their sil-
houettes and visual features. Strokes often overlap with depth
discontinuities. There are however intrinsic ambiguities in the
understanding of depth [Kawabata, 1997], as well as limits in
the representation of 3D shapes using lines [Cole et al., 2009].
As a result, reconstruction of depth from line drawings is often
not feasible.

2. Misleading depth cues. The extraction of depth information from
drawings is hard as misleading depth cues may result from inac-
curacies or deliberate artistic choices.

22

2.2 Challenges of Computer Assisted Cartooning

 Disney

Figure 2.9: Drawings are 2D projections of 3D characters and objects. The result-
ing loss of depth information is one of the principle challenges of com-
puter assisted cartooning. Reconstructing the depth algorithmically is
very hard. Locally (see the close-ups), stroke structures can be quite in-
tricate and sometimes difficult to understand even for a human viewer.
Globally, the interaction of characters and objects results in complex oc-
clusions that make the task of object recognition very hard, even when
strong prior is available (which in cartoon drawings is often not the
case).

The meaning of a line. As shown by [Cole et al., 2012], even in
cases where artists draw well-defined 3D objects, most draw-
ings contain a certain number of lines that do not necessarily
have a clear importance with respect to the 3D context. Cul-
ture, as well as artistic style and historical evolution of the
medium may influence where lines are drawn and how they
are perceived by the audience. Discriminating between reli-
able and unreliable feature lines may be difficult.

3D correctness. The representation of 3D objects in a scene is
not necessarily correct with respect to perspective rules or
relative proportions of different objects. Incorrect perspec-
tive and proportions can be found spatially within one image,
and temporally, considering a sequence of images. As a re-
sult, the connection of 2D drawings with 3D representations
is weakened. For instance, the calibration of a camera using

23

2 Background

proxy geometry or the reconstruction of 3D geometry (such as
[Öztireli et al., 2011]) may not be possible in the general case.

a c e

b d f

Figure 2.10: Raster images (a, b) capture fine visual details, but offer no mathemat-
ical description of the content other than the pixel grid. Vector images
(c, d) describe elements in vector form, allowing to modify individual
elements, but offer less visual customization. Additionally, the vector
elements (e, f) are typically unstructured sets of strokes and areas, and
require extensive manual work to be organized into proper semantic
groups. (Sketch by Catherine Dedova, vector illustration by Laroslav
Lazunov)

3. Lack of appropriate semantic abstractions. Existing image rep-
resentations and vector objects provide limited support by encod-
ing data inconveniently.

Low-level representations. Raster and vector images offer mu-
tually exclusive features, as shown in Figure 2.10. In the con-
text of 2D Animation, where line drawings are animated, nei-
ther representation is sufficient.

In order to be edited, Pixel grids require vectorization to ex-
tract stroke networks, with poor results at junction regions or

24

2.2 Challenges of Computer Assisted Cartooning

where strokes are drawn next to one another (See Chapter 4
and Figure 4.1).

When instead vector graphics tools are used to generate the
drawings, strokes are often collected in unstructured sets and
require extensive manual work to be explicitly organized in
proper layers, depending on the use. In general, the useful
semantic information is not explicitly represented and needs
to be extracted.

Line vs. Area. Lines and Areas are often represented with differ-
ent mathematical descriptions. In a drawing however, such
distinction does not always match the drawing content. A line
of growing thickness can eventually become an area. A group
of line defining a closed boundary are in essence defining an
area. Current vector representations however lack a unique
mathematical construct to represent both areas and lines and
seamlessly transition from one to the other.

Figure 2.11: Even a simple animation where a character grabs something in the
air can be a challenging domain. Occlusions make the task of finding
correspondences between the drawing very difficult. (Image source
[Whitaker et al., 2009]).

Sequence of drawings. A sequence of drawings composing a scene
presents a second layer of complexity due to the introduction of a
discrete temporal dimension, which can have positive or negative
effects with respect to the challenges expressed above. Indeed, a coher-
ent understanding the sequence of drawings is necessary to process a
scene. We consider the following challenges:

1. Topological changes of depth discontinuities. Object transfor-
mations, such as rotations outside the image plane or shape

25

2 Background

deformations, typically create topological changes in the discon-
tinuities of the depth (see the character’s right hand in Figure
2.11). Discontinuities have a major impact on the difficulty of the
correspondence problem, as discussed later.

2. Unpredictable transformations. Despite the existing attempts
to define the rules of cartoon physics and dynamics
([O’Donnell, 1980, Keane, 1987]), there is no set of rules that ap-
plies to the general case. Characters and objects may be subject to
extreme, sudden transformations (see Figure 2.12), which in ex-
treme cases may not be trivial to understand even by the audience.

3. When is an animation correct? Animation is often an iter-
ative process, where a set of guidelines and principles
[Johnston and Thomas, 1995] are applied to try and improve the
result. There is however no notion of correctness for a given se-
quence, as each animator will produce animations based on his or
her unique style, and keep improving small details if time allows
it. It is therefore not clear what makes an animation correct, and
how an algorithmic system could judge that a result converged to
the right solution.

MILT, DO YOU EVER LISTEN TO
CLASSIAL MUSING WHILE YOU’RE WORKING?

Figure 2.12: Capturing mathematically the physical laws of cartoons is not simple,
as characters and object are subject to extreme transformations, which
do not obey real world rules. (Image source [Richard, 2002]).

26

2.3 Core Problems

2.3 Core Problems

In a visionary perspective, the ultimate goal of computer science applied to
2D Animation would be the conception of a computational model able to
reach a semantic understanding of the subject similar to the one of human
beings. It would mean, that computers would be able to fully understand
animation and drawings, and therefore assist (and potentially replace) the
artist in their creation. This however is far from what can be realistically
achieved in the near future, and if we ever reach that, it is likely through a
collective effort across different computer science disciplines.

In this work, we consider the effort of identifying a small number of key sub-
problems which present a convenient balance between their complexity and
the impact of their solution to the advancement of the field. During this work,
we encountered different instances of what we believe constitutes three core
problems in the assistance and automation of 2D animation. Notice that these
problems incorporate the challenges discussed in the previous Section.

Our insight is that solving these problems holds the key to revolutionary
changes in this field. We do not pretend to solve these problems fully within
the scope of this work. Instead, we provide some tools and ideas to approach
them, with the hope to facilitate future research and development efforts.
Figure 2.13 lists a number of techniques or areas of interest which are relevant
to these problems, and points to the appropriate Chapters in this work.

.

Image-Based
Registration

Motion Extraction

Stroke Similarity
Measures

Representation

Spiral Trajectories

Correspondence Animation

Temporal Noise
Control

(Chapter 5, 7)(Chapter 3, 4, 5) (Chapter 6, 7)

Vectorization

Hybrid
Representation

Sketch

Segmentation

Stroke Deformation

Figure 2.13: In this work we identify and address three core problems in the field
of computer assisted 2D animation: the representation, the correspon-
dence, and the animation problems. For each problem we list relevant
techniques and point the reader to the appropriate chapters.

27

2 Background

The representation problem. Given a drawing, or a sequence of drawings,
we consider the problem of extraction and organization of data. In par-
ticular, we consider the extraction and representation of strokes and
areas, of visual appearance, and of temporal evolution (i.e. motion or
visual change).

The complexity of this problem lies in finding the appropriate mathe-
matical abstractions with respect to the desired properties and the re-
quirements of usable implementations.

We consider this problem as fundamental, as the lack of appropriate
representations creates a number of dependencies between separate
entities of a production pipeline, and limits the benefits of computer-
assisted or automated solutions for 2D animation.

The correspondence problem. Given a set of two or more drawings, con-
sider the problem of finding the correspondence of the drawing con-
tent. If drawings are represented as sets of curves, the problem is to
find a stroke-to-stroke mapping between two or more sets. Similarly,
if drawings are represented with areas, a mapping between the areas,
and possibly between their boundaries, has to be found.

The complexity of the problem depends partly on the complexity of the
data. Both the extent of the topological changes in depth discontinu-
ities, as well as the complexity of the transformation happening over
time — the animation — directly influence the difficulty of this prob-
lem. Additionally, the appropriate properties of the mappings have to
be derived.

This is a fundamental step as it enables a variety of applications, such
as inbetweening, automatic color propagation, and local motion extrac-
tion. These applications can have a great impact in the cost of a 2D
animation production, and represent the main source of interest for ap-
plied research in this field.

The interpolation (or animation) problem. Given a set of drawings with
correspondence defined between their elements, consider the problem
of interpolating the drawing content in a way that respects the geomet-
ric and temporal constraints, as well as the principles of animation.

The complexity of the problem lies in capturing the animation princi-
ples (e.g. motion with arcs [Johnston and Thomas, 1995]) and enabling
interactive artistic control, whose need is emphasized by the lack of a
clear definition of correctness in animation. Addressing this problem

28

2.3 Core Problems

requires a good understanding of traditional animation and how ani-
mators work on paper.

This problem is sensitive as it deals with bringing technology very close
to where the magic, or art, of animation happens. The simplicity and
full artistic control of drawing on paper must be respected in order to
provide artist with tools they trust and find satisfying. Automation
should happen only where the amount of artistic interpretation is min-
imal. Interaction metaphor as well as hardware interfaces can have an
important influence on the quality of the result.

29

C H A P T E R 3
“Sketching” a Digital
Representation

In this Chapter, we address the the problem of defining a digital representa-
tion suitable for the needs of 2D Animation. First, we explain the role of a
digital representation in the context of this thesis. Then, we proceed by de-
scribing the existing representations, highlighting their advantages and dis-
advantages. Finally, we propose a sketch for a novel representation, called
“hybrid” that aims at combining the rendering capabilities of raster images
and the editing capabilities of vector images into a unique vector-raster de-
scription.

This Chapter presents a collection of ideas developed during the course of
this Ph.D. study. We present some proof-of-concept solutions, though with a
stronger focus on the conceptual contributions and ideas, considering it as a
sketch for future research.

31

3 “Sketching” a Digital Representation

3.1 A Middle Ground between Applications and
Pre-Processing

A digital representation plays a central role in the support of a production
environment. The organization of data influences what is possible to achieve
with such data, as well as the difficulty to reach a particular goal.

Two important aspects of a production pipeline have to be considered when
designing a digital representation. First, one needs to consider the source
of the data. Especially in cases where data comes from real world, a trans-
lation — or pre-processing — of the data will be necessary. In the case of
2D Animation, this would include digitization and formatting. Second, the
whole purpose of digital support is to provide solutions for specific applica-
tions. Which applications are of most importance may influence how data is
organized.

ApplicationsPre-Processing Digital
Representation

Enables

De�nes

Figure 3.1: Applications, Digital Representation, and Pre-Processing tools are de-
pendent on each other. There is a “Enabling” forward dependency
where Pre-Processing tools extract information from drawings to for-
mat it into a desired Digital Representation, and in turn such represen-
tation enables a set of applications. Specularly, there is a “Defining”
backward dependency where the goal application define a number of re-
quirements that a Digital Representation should meet, which in turn
require particular Pre-Processing of the raw drawing data.

In our work, we reflect these thoughts by defining three categories of tools (as
introduced previously, in Figure 1.2): pre-processing, representation, and ap-
plications. The dependencies between these categories are further discussed
with Figure 3.1. Consider the following perspectives:

w Pre-Procesing raw data makes it possible to format a drawing into spe-
cific Digital Representations. In turn, digital representations enable a
number of applications. We call this the “Enabling” dependency.

w On the other hand, Applications define a set of requirements that a dig-
ital representation should meet. A digital representation requires data

32

3.2 Existing Digital Representations

to be organized in a way that does not necessarily match the raw input
of scanners or digital drawing tools, resulting in the need for tools to
extract and transform data appropriately. We call this the “Defining”
dependency.

Having a clear plan right from the beginning is however not always possible.
We had to proceed by studying the two ends first, with the hope to find a
common ground in the middle.

In specific, we started by studying a few applications scenarios (Inbetween-
ing in Chapter 6, and Temporal Noise Control in Chapter 7), that are con-
sidered important with respect to the production pipeline (See Chapter 2).
During the process we learned a number of requirements that an ideal Dig-
ital representation should meet. Then, we have worked on important Pre-
Processing tools (Vectorization in Chapter 4 and Segmentation in Chapter 5),
learning what we could achieve in terms of processing of raw drawings.

This Chapter summarizes what we have learned. In order to present our
ideas, in Section 3.2 we give an overview of existing digital representations,
highlighting advantages and disadvantages with respect to capturing the vi-
sual richness of drawings and enabling editing. In Section 3.3 we list a num-
ber of requirements that we believe are important for a digital representation.
Finally, in Section 3.4, we collect our ideas into the sketch of a novel digital
representation for drawings.

3.2 Existing Digital Representations

The most common representations for digital drawings - raster and vector
graphics - have complementary but mutually exclusive properties. On the
one hand, raster images capture line art details down to the pixel level, but
all edits are also restricted to the pixel level. On the other hand, vector graph-
ics define a semantic abstraction of the content that allows for sophisticated
editing operations [Coyne et al., 2007], but the abstraction process, which is
generally a compression as it reduces the amount of data being stored, often
loses some of the fine-scale detail.

In digital production environments, the choice of raster or vector graphics
solutions has a great impact on the possible uses of the drawing. Raster so-
lutions typically allow greater control over the look of the drawing, offer-
ing a variety of brushes and effects which mimic various real world tech-
niques. Exemplar uses are concept art, characters and vehicles design, and

33

3 “Sketching” a Digital Representation

other forms of static drawings where the visual impact is predominant. Vec-
tor solutions are preferred for anything that deals with digital typography,
paging, and printing, such as posters, brochures, magazines, as well as tech-
nical illustrations and schematics, or within solutions providing morphing or
animation capabilities, such as flash animation [Adobe, 2012a].

In 2D Feature Animation the separation of these two representations is a fun-
damental issue. Even during the current digital age, 2D animation drawings
are often created using pencil sketches on paper. This traditional way is still
preferred by many artists over fully digital solutions due to the higher draw-
ing quality and richness of detail. These line drawings are then scanned and
vectorized for further processing in the digital movie production pipeline.
Advanced 2D animation tools, such as automatic inbetweening, inking, and
painting are forced to convert between the two representations to perform
different types of operations. This conversion process generally decreases
quality and sacrifices many properties of the original drawings, such as
stroke texture and subtle details.

Additionally, while vector solutions can support animation to a certain ex-
tent, the underlying vector elements are not unified. Lines are typically rep-
resented as centerlines with thickness and a color associated to either the con-
trol points or the whole line. Areas are typically represented by their bound-
aries, again with color, or texture information. Discriminating between lines
and areas is not always trivial, leading to compound objects. Separate de-
scriptions require separate editing tools, adding an extra burden both to the
development efforts and to the user learning and working experience.

3.2.1 Brush Models

Brush models are a key feature of any drawing program, and should be taken
into account when defining a digital representation for drawings. Here we
discuss the two main categories of brush models.

Raster-Based Brushes:

The raster canvas defines a persistent, constant-sized medium that stores the
effect of the user interaction with the brush. Raster based brushes exploit this
by utilizing efficient per-pixel operations that modify the drawing as needed,
accessing data locally in space and time.

A well known raster approach is the ‘stamping’ method. Predefined stamps,
i.e. bitmaps describing texture patterns, are consecutively composed on the
canvas by spatially following the stroke trajectory. To sample the trajectory to

34

3.2 Existing Digital Representations

the raster grid, variations of the classic line algorithm [Bresenham, 1998] may
be used. Different forms of dynamic behaviors, such as change in stamp’s
size, opacity, orientation, and others are typically available in today’s digi-
tal painting frameworks [Adobe, 2012c, Autodesk, 2012], allowing to create
a wide range of effects [Hall, 2010].

Data-driven approaches aim to faithfully represent real world brushes. So-
phisticated models include simulations of physical brushes, where the behav-
ior of bristles and filaments is captured and simulated in order to reproduce
natural behaviors while painting on a canvas [Saito and Nakajima, 1999,
Chu and Tai, 2002, Baxter and Lin, 2004, Baxter and Govindaraju, 2010].

Vector-Based Brushes:

With vector solutions, information is stored as part of a vector model, and
the raster grid is typically considered only at the rendering stage. This brings
major advantages in the ability to edit the drawing, but makes the vector data
grow with the drawing’s complexity, potentially causing performance issues
both while editing and rendering.

Similar to PostScript [Warnock, 1982], Skeletal brushes [Hsu et al., 1993,
Hsu and Lee, 1994] represent a well known approach for vector representa-
tions. Strokes are captured by their centerline, a given thickness, and some
rules on how joints should behave. Given a particular pattern or texture im-
age with prescribed backbone, custom appearance can be obtain by deform-
ing such an image to follow the stroke.

Another approach [Ando and Tsuruno, 2009] proposes a method called Seg-
mental Brush Synthesis, where a set of predefined strokes textures is taken
and applied to segments composing the brush stroke. This method supports
more complex visual appearance at interactive rate.

3.2.2 Representation Models

We now consider actual representations, discussing the two most critical as-
pects: rendering and editing.

Rendering

In this section we discuss how popular digital representations handle render-
ing. The subject of editing capabilities, which is of great importance for this
Chapter, will follow in Section 3.2.2.

35

3 “Sketching” a Digital Representation

With raster images, rendering is a trivial operation where the pixels compos-
ing the image are shown on the screen. When multiple layers of raster images
are overlaid, blend modes can be used to regulate the computation of the fi-
nal color [Valentine, 2012]. In the general case, however, most of the visual
complexity is captured by the image content, rather than by the rendering
process.

Vector representations propose different approaches to rendering:

a b

Figure 3.2: Appearance customization of closed paths in Adobe Illustrator: radial
and linear gradient modes (a), and pattern mode (b). Notice how the ap-
pearance of the interior is not affected by the actual shape of the bound-
ary, but rather just by its bounding box.

As an extention to PostScript, Adobe Illustrator takes advantage of open and
closed paths and proposes a vector-based representation featuring a visually
seamless integration of skeletal-brush lines and closed-regions, defined by
their boundaries and rendered either as flat shaded surfaces, or using simple
gradient and pattern modes (See Figure 3.2). The major visual short coming
of this representation is the limited support for complex pixelated textures or
gradients, which may require a huge number of closed-regions with complex
shapes (See comparisons proposed in [Zhang et al., 2009]).

Gradient Meshes overcome some of these region problems by allowing to
specify gradient functions over simple, well-structured meshes (See Fig-
ure 3.3). Methods like [Sun et al., 2007a] automatically compute optimized
gradient meshes to match an input image. To allow intuitive editing, Dif-
fusion Curves ([Orzan et al., 2008a]) abstract from the need of a mesh, and
instead use curves with associated gradient colors, allowing to represent soft
gradients and blur with intuitive lines and less editing burden.

While these methods allow for greater complexity of appearances, they are
not designed to represent the visual complexity allowed by raster solutions.

36

3.2 Existing Digital Representations

Figure 3.3: Gradient Meshes allow to reach more complex visual appearance by
computing smooth gradients between colors applied to the nodes of ar-
bitrary meshes.

Harmony [ToonBoom, 2010] addresses this problem by combining texture
with vector data as shown in Figure 3.4. In the vectorization process, the
skeletal lines (red) are extracted, as well as the boundary lines (blue) of
strokes and areas. Additionally, the original drawing pixels are used as tex-
ture, which is masked by the boundary lines.

Editing

As discussed in Chapter 2, one of the issues with existing vector represen-
tation is the dichotomy of Strokes and Areas as distinct elements. In this
Section we discuss its impact on editing.

First, let’s consider the following definitions:

w Line Editing. Line editing refers to deformation and manipulation
techniques that apply to open paths. This includes the morphing tech-
nique proposed in Chapter 6, as well as the manipulation tools available
in professional products, such as Adobe Illustrator.

w Area Editing. Area editing refers to both boundary manipulation (close
path editing) and space deformation algorithm, such as the ARAP tech-
niques used in Chaper 7.

Figure 3.5 depicts two types of representations that are used in professional
illustration and animation programs. We call them the “Separate Representa-
tion” (Illustrator [Adobe, 2012b]) and the “Mask Representation” (Harmony
[ToonBoom, 2010]).

37

3 “Sketching” a Digital Representation

 Disney

Boundaries

Close-up

Texture

Skeletal lines Boundary lines Boundary lines
+ Texture

Figure 3.4: In Harmony [ToonBoom, 2010], drawing are scanned and vectorized,
extracting skeletal lines (red) and boundary lines (blue). The boundary
lines are used to define a mask which is applied to the raster data. The
subtle pencil or brush details are therefore captured.

w The Separate Representation defines strokes as open paths, associated
with a thickness profile. This gives a flexible editing representation as
the open path can easily be deformed either with manual interaction or
using morphing or interpolation tools. Limitations in the appearance
customization are discussed in [Ando and Tsuruno, 2009].

Areas are represented as closed paths. This gives a convenient way to
edit the area boundaries. As we discussed in Section 3.2.2 however, the
appearance, both in terms of its customization and how it is affected by
boundary deformations, is quite limited.

Individually, these representations are suitable for editing, as they al-
low to conveniently alter the shape of either lines or areas. The problem
arises when a particular shape is a combination of lines and areas (See
the combination case in Figure 3.5). In this case, separate representations
are difficult to edit, and discontinuities may be visible at the transition
point.

w The Mask Representation treats both lines and areas the same way, by
considering a set of boundary lines that define a mask which is applied
to the raster data. Conceptually, this representation has two important
advantages over the alternatives: it captures the visual complexity of
raster images, and has a uniform vector representation for lines and
areas.

The drawback however, is that the editing is very limited. By editing
the boundaries, only the mask is affected. To really change lines or

38

3.2 Existing Digital Representations

Separate Representation

Mask Representation

lines area combination

lines area combination

Figure 3.5: In the Separate Representation, lines and areas have distinct vec-
tor descriptions. Lines are represented by open paths while areas are
defined by their boundaries using closed paths. Drawings however
present cases (combination) where this distinction is not appropriate.
This has two undesired effects. First, one is forced to chose a hard tran-
sition point and this is not necessarily trivial, and second, the result is
a compound object which is difficult to edit ensuring a smooth contin-
uous edit across the transition.
Instead, with the Mask Representation, lines, areas, and combina-
tions all have the same boundary-based representation. Editing how-
ever is extremely limited, as the actual appearance is given by the raster
image underneath, which cannot be edited by vector means.

39

3 “Sketching” a Digital Representation

areas, one should intervene at the raster level, ultimately neutralizing
the advantage of vector data. Harmony allow the user to drop the raster
data in favor of a color fill of the interior of the mask. Indeed, this
enables the editing of the drawing at the vector level, but also loses the
subtle visual details of the raster data. We also argue that, in the case
of lines, editing using the boundary lines is more complex than editing
using the centerlines.

Existing vector representations present a trade-off between editing and ren-
dering capabilities. While the separate representation offers more support for
editing, the visual complexity of lines and areas does not match the richness
of raster images. On the other hand, the mask representation offers excellent
visual fidelity to the drawings, but editing is almost impossible.

A summary of the requirements for an ideal digital representation is pre-
sented in the next Section.

3.3 Requirements

Now that we discussed existing representations and their limitations with
respect to supporting 2D Animation, we want to proceed and list a number
of requirements. We believe that, by meeting these requirements, a represen-
tation would be suitable for drawing and for 2D Animation, and improve
substantially the productivity in professional environments.

In our opinion, an optimal drawing representation should:

w Interface to both Physical and Digital Drawings. In order to be usable,
a drawing representation should be constructible both from scanned
drawing — to be compatible with legacy artwork — as well as from
digital drawing tools. This involves vectorization for the former, and
input processing for the latter.

w Embed Raster Data. Raster images allow great control over the look of
the drawing. Depending on the drawing style, subtle texture details can
play an important role. Capturing these details purely with synthesis
is not trivial. This issue is emphasized when considering a broad spec-
trum of drawing styles, such as paintings, charcoal or carbon sketches,
etc.

w Support Line Editing. Line editing includes manual editing tools, such
as manipulation of control points, or redrawing of (parts of) the center-

40

3.4 A “Hybrid” Representation

line (Illustrator [Adobe, 2012b]), as well as interpolation of key-framed
strokes graphs (Chapter 6).

w Support Area Editing. Area editing includes editing of the boundary,
by manipulating the control points, or by morphing to different shapes
(Illustrator [Adobe, 2012b]), as well as space warping techniques, using
mesh embedding, and As-Rigid-As-Possible methods (Chapter 7).

w Describe Lines and Areas with a Unique Vector Description. We
discussed this issue in Section 3.2.2. The problem lies in representing
drawing elements, regardless of their shape, with a unique vector de-
scription convenient for editing.

3.4 A “Hybrid” Representation

We now propose a novel hybrid representation that addresses the require-
ments expressed in the previous Section.

3.4.1 Vector-Splats Hybrid

The first idea of the hybrid representation is the combination of splats and
vector elements to gain the advantages of both raster and vector representa-
tions. The concept is similar to the Mask Representation we have discussed
in the previous Section, where the raster data is part of the final output, but
instead of a fixed grid, we use splats mapped to guiding centerlines, allowing
them to move according to deformations applied to the vector elements.

The hybrid vector- and splat-based representation builds on three compo-
nents: the stroke graph, the splats, and the mapping between these two.

Stroke Graph. For the basic representation of stroke centerlines we use a
network of standard parametric curves, similar to existing vectorization ap-
proaches. We distinguish between two scenarios:

w Single-Layer (Figure 3.6). In this scenario, we consider a network of
strokes that live on the same plane. This is often the case for paper
drawings that have been scanned and then vectorized, or for semantic
elements (objects or characters) of digitally produced drawings.

w Multi-Layers (Figure 3.7). In this scenario, multiple planes of stroke
networks are considered. This is often necessary when characters and
background elements need to be animated independently.

41

3 “Sketching” a Digital Representation

Figure 3.6: Single-Layer Vector-Splats Hybrid. This image shows the use of a sin-
gle layer to represent multiple strokes, such as in the case of vectorized
drawings. Each splat is associated with the closest centerline. Splats
that are close to multiple centerlines are cloned, mapping one splat-
clone per centerline.

Each centerline is defined by a spline curve Ci(t), t ∈ [0, 1]. In the ex-
periments of this chapter, we used Catmull-Rom splines, but any other
parametric curve type such as B-Splines or subdivision curves is possible
[Farin, 2001]. The network of stroke centerlines is the stroke graph of the draw-
ing.

Splats. The square pixels of a raster image are transformed into a higher-
order representation using radial basis functions, based on EWA splatting. At
the center of each pixel pj we place a corresponding Gaussian Gj (please re-
fer to [Zwicker et al., 2002] for details) which transforms a single pixel value
into a more flexible continuous graphical entity that supports arbitrary affine
deformations and rendering with higher order interpolation schemes. This is
a desirable property when editing the shape of lines (e.g., bending a straight
line) or rendering zoomed views of a drawing.

Mapping. For each pixel representative Gj, coordinates~cij := (t, ~d) relative to
its stroke centerline Ci are stored, where t is the curve’s arc-length parameter
at the point Ci(t) closest to the center of Gj, and ~d is the corresponding signed
distance in the normal and tangential direction. The tangential component is

42

3.4 A “Hybrid” Representation

Background
St

ro
ke

 L
ay

er
s

Composite

Close-up

Splats Mapping

Figure 3.7: Multi-Layer Vector-Splats Hybrid. This image shows the use of mul-
tiple layers to keep strokes independent. For each stroke, a mapping
between the splats and the centerline is derived.

nonzero only for Gj located around stroke endpoints. Note that for pixels
pj at junctions between several strokes Ci, where a unique mapping is not
possible, we store coordinates~cji for each such stroke.

As a proof of concept, we present the editing of a drawing in a single layer
scenario (see Figure 3.8). The drawing on the right has been scanned and vec-
torized using the method proposed in Chapter 4. Our vectorization method
already identified relevant pixels. Alternatively, background extraction tech-
niques [Mcivor, 2000, Piccardi, 2004] can be used. The resulting splats are
mapped to the nearest centerlines. Finally, the centerlines of the index finger
are modified, and the deformation is propagate to the splats, producing the
final render on the right.

43

3 “Sketching” a Digital Representation

Figure 3.8: Finger Editing. This result was produced while working on the Vector-
ization system proposed in Chapter 4. The drawing has been scanned
and vectorized with the proposed technique. Splats mapped to the cen-
terlines are used to represent pixels. This image shows the original
drawing on the left, and the modified drawing on the right. Closeups of
the same regions are shown in the center. Notice how the texture detail
is preserved.

3.4.2 Lines-Areas Hybrid

Hybrid Representation

lines area combination

Stroke Graph

Splats

Boundary

Figure 3.9: This figure shows the Hybrid representation applied to different shapes.
The representation consists of a stroke graph (red), a set of splats (blue),
and the a boundary (black).

The second idea of the hybrid representation is the use of a unified vector de-
scription for lines and areas by combining open and closed paths (see Figure
3.9). This Section is speculative, as it gathers ideas that have not been fully
tested with working implementations.

Given a shape, the hybrid representation consists of a stroke graph (set of
open paths, shown in red), a set of splats representing the raster data (shown

44

3.4 A “Hybrid” Representation

in blue), and a boundary line (close path, shown in black) that marks the
transition to the background. A mapping similar to the one between splats
and centerlines is derived for the boundary line, where control points are
expressed in tangential and normal coordinates from the closest point on the
centerline.

Let us consider the following aspects:

w Stylus Input Processing. This case reflects the interface to digital draw-
ing tools.

w Scanned Drawing Processing. This case covers the creation of the hy-
brid representation in case of scanned drawings.

w Editing Scenarios. Here we list a few editing scenarios and describe the
processing flow within the components of the representation.

Stylus Input Processing

Digital drawing solutions have the advantage (over scanning paper draw-
ings) that the creation of the drawing can be fully captured as vector data.
The user interacts with the program using either a mouse or a stylus (Fig-
ure 3.10a), and the program provides a set of drawing tools. Most sketch
and painting programs [Adobe, 2012c, Autodesk, 2012] include a variety of
pencil and brushes tools (Figure 3.10b).

 Autodesk®

a b

Figure 3.10: A user interacting with a digital drawing program using a stylus (a).
A number of pencils and brushes offered by Autodesk® SketchBook
Pro. (Image source [Autodesk, 2012])

45

3 “Sketching” a Digital Representation

a b c d

Figure 3.11: Input processing. When using a pencil or a brush, areas are often the
result of long knotty strokes (a). Using the stylus input unchanged
will likely lead to a poor representation of the area (b). Skeleton meth-
ods, such as the Scale Axis Transform [Giesen et al., 2009], allow to
obtain skeletal lines representing a smooth approximation of the area
(c). Conceptually, this allows us to generate the desired describing
centerline needed for the hybrid representation (d).

Two particular aspects are important to generate the hybrid representation:
the stylus trajectory and the brush properties. The former defines the path of
the brush, which in the case of strokes, corresponds to the desired centerline.
The latter defines both the raster data and the boundary lines.

There is however an important problem to solve, which conceptually is an-
other instance of the line-area dichotomy, as discussed in Chapter 2. The
problem arises when drawing areas using a stylus. As shown in Figure 3.11a,
areas are often the result of tangled strokes that zigzag over the region multi-
ple times, until the desired space is colored. The exact stylus trajectory, how-
ever, is not relevant, as the same area could be obtained in many different
ways. The question is how to process the input to obtain more meaningful
data.

The observation is that the generated areas have defined boundaries which
appear more descriptive than the stylus trajectory. However, areas can often
have a guiding direction, and for consistency with the hybrid representation
definition, we are interested in generating a centerline.

The problem of deriving a skeletal lines from boundary lines — the medial
axis problem — has been studied since the seventies [Blum, 1967]. One of
the main challenges is the sensitivity of the result to small perturbations of
the boundary, resulting in undesired skeletal lines. A few experiments are
shown in Figure 3.12.

46

3.4 A “Hybrid” Representation

Figure 3.12: Medial Axis Experiments. This figure shows Medial Axis experi-
ments produced with Mesecina [Miklos, 2011]. The raster data is
shown on the top. Boundary lines (red) and reconstructed skeletal
lines (black) are shown in the middle. Medial axis disks are shown on
the bottom. 47

3 “Sketching” a Digital Representation

[Giesen et al., 2009] proposes the Scale Axis Transform, as a method to re-
move undesired skeletal lines by expanding the medial axis disks, ultimately
smoothing the boundary. This could be a viable solution, but further experi-
mentation is needed.

Scanned Drawing Processing

An in-depth discussion about vectorization is proposed in Chapter 4. Here
we briefly consider the scenario where a drawing is scanned and vectorized
to extract both boundary curves as well as centerlines. This can be achieved
with a number of techniques, as discussed in Section 4.2. We demostrated in
Figure 3.8 a working example where our hybrid representation has been con-
structed from a scanned drawing. Notice however that the boundary lines
have not been extracted. Since the separation between the splats and the
background is given, boundary lines could be extracted using edge detection
techniques [Senthilkumaran and Rajesh, 2009].

Editing Cases

Let us consider the following editing scenarios:

1. Line Editing. In this scenario, we consider the editing of a centerline.
This could be achieved by manual deformation of the control points, by
a space deformation, by a morphing to a target modified centerline. The
processing flow starts with the centerline deformation, followed by the
propagation of the deformation to the splats and the boundary lines.

2. Area Editing. There are two distinct cases to consider:

w Space Deformation. In this scenario, a particular area is subject to
a deformation field. The processing flows starts with the individ-
ual deformation of the components (centerlines, splats, boundary
lines), and follows with the re-computation of the mapping be-
tween splats and centerlines, and boundary lines and centerlines.

w Boundary Deformation. We envision two possible means of edit-
ing the boundary. In once case, editing the boundary will rede-
fine the centerline. This can be achieved with variations of medial
axis, as discussed previously in this Section. Once the centerline is
obtained, the mappings can be recomputed to restore the relation-
ships between the representation components. The second case is
the one where one wants to keep the centerline, but modify the

48

3.5 Conclusions

boundary. An instance of this case is when one wants to change
the thickness profile of a stroke. The question is how to propagate
the deformation of the boundary to the splats.

In this work, we only experimented with Line Editing (See Figure 3.8), and
Space Deformation (See Chapter 7). Additional experiments should be con-
ducted for the Boundary Deformation, both in terms of testing variations of
the Medial Axis to generate centerlines from the boundary as well as find
mappings that allow to alter the splats based on boundary alterations.

3.5 Conclusions

In this Chapter we have discussed the topic of digital representations, with
focus on defining a representation suitable for drawings and 2D Animation.
We have presented a few ideas we explored during this PhD, including the
combination of Splats and vector data as a way to embed raster data and
therefore capture the drawing visual appearance faithfully, as well as the con-
cept of using a unified vector description for any type of shape, avoiding the
problems that occur when lines and areas are distinct.

The main goal of this Chapter was to make the reader aware of the existing
representation problems, and stimulate to think of possible solutions, possi-
bly taking the proposed ideas as a base for further research.

49

C H A P T E R 4
Line-Drawing Vectorization

Vectorization provides a link between raster scans of pencil-and-paper draw-
ings and modern digital processing algorithms that require accurate vector
representations. Even when input drawings are comprised of clean, crisp
lines, inherent ambiguities near junctions make vectorization deceptively dif-
ficult. As a consequence, current vectorization approaches often fail to faith-
fully capture the junctions of drawn strokes.

In this Chapter, we propose a vectorization algorithm specialized for clean
line drawings that analyzes the drawing’s topology in order to overcome
junction ambiguities. A gradient-based pixel clustering technique facilitates
topology computation. This topological information is exploited during cen-
terline extraction by a new “reverse drawing” procedure that reconstructs all
possible drawing states prior to the creation of a junction and then selects the
most likely stroke configuration.

For cases where the automatic result does not match the artist’s interpreta-
tion, our drawing analysis enables an efficient user interface to easily ad-
just the junction location. We demonstrate results on professional examples
and evaluate the vectorization quality with quantitative comparison to hand-
traced centerlines as well as the results of leading commercial algorithms.

51

4 Line-Drawing Vectorization

4.1 Introduction

Raster and vector representations form the foundation upon which nearly
all two-dimensional graphics is built. Raster images can represent extremely
rich detail but do not encode the kind of semantic information that promotes
editing. Vector images, on the other hand, abstract image content as mathe-
matical primitives such as lines and arcs that facilitate editing but can limit
detail. While converting from a vector to a raster representation is a straight-
forward sampling operation, the complementary procedure of vectorization
is significantly more difficult since it involves inferring high-level abstrac-
tions from low-level pixel content.

Hand-drawn 2D animation represents one particularly important application
area of vectorization. The expressiveness, efficiency, and tactile control af-
forded by real pencil and paper are yet to be matched by digital drawing
tools, and therefore 2D animations are often still hand-drawn on paper and
then scanned. The content in the resulting raster images cannot be easily
edited or used with higher level algorithms that require a stroke-based vector
representation, such as computer-assisted inbetweening [Whited et al., 2010].
A similar problem exists even when digital drawing tools are used, since
artists often build up lines with many short strokes, leading to an unorga-
nized collection of tiny unconnected segments that are not amenable to fur-
ther high-level processing. In this domain, an automated vectorization ap-
proach is essential as a feature animation can contain hundreds of thousands
of individual drawings.

Loose and sketchy drawings contain a great deal of ambiguity which makes
automatic vectorization extremely difficult. At the other end of the spec-
trum, “clean” drawings are defined by crisp, distinct lines and thus present
the ideal input for vectorization. However, even in this case, ambiguities
at stroke junctions make vectorization deceptively difficult. Due to its fixed
structure and limited resolution, the regular grid of a raster image is ill-suited
to represent regions where many strokes come together, overlap, cross, or
join. As a consequence, current vectorization algorithms often fail at accu-
rately representing junctions.

The poor quality of junction reconstruction is due in part to the local nature
of existing vectorization algorithms: extracted lines result solely from the in-
formation contained in a fixed-size pixel neighborhood. In practice, a larger
scope is often necessary to understand the inherent structure of the strokes
defining a junction. In this sense, one can consider these stroke relationships
as non-local. Motivated by this observation, we propose a non-local vector-

52

4.1 Introduction

ization algorithm that employs the analysis of a drawing’s topology in order
to extract high-quality centerlines and junctions from clean drawings.

The first step of our approach analyzes the input image to derive the stroke
topology. Here a gradient-based pixel clustering technique is employed that
facilitates the extraction of the correct topology in under-sampled regions
of the drawing. This topological information is exploited during centerline
extraction by a “reverse drawing” procedure that reconstructs all possible
drawing states prior to the creation of a junction and selects the most likely
stroke configuration. If the automatic result does not match the artist’s in-
terpretation, our drawing analysis enables an efficient user interface to easily
adjust the junction location. We demonstrate results on professional exam-
ples and evaluate the vectorization quality with quantitative comparison to
centerlines hand-traced by an expert artist as well as with side-by-side com-
parisons to output from leading commercial methods.

Our system fits naturally into current pipelines to enable vector processing
of scanned drawings. We make the technical contributions of the gradient-
based pixel clustering procedure for accurate topological analysis as well as
the reverse drawing procedure for producing the most plausible junction
configurations. For either hand- or digitally-drawn input, our work pro-
vides a bridging technology that converts drawings into a format designed
for further editing, automatic inbetweening, or other advanced vector-based
processing algorithms.

a b c
Figure 4.1: Vectorization Challenges. Noise (a) and spatially adjacent strokes (b)

require fine tuning of threshold parameters in existing approaches.
Even for clean, high resolution input images, the superposition of
strokes near junctions and sharp corners results in inaccurate center-
line placement (c). (Results of Adobe Live Trace for different threshold
settings shown in purple and green.)

53

4 Line-Drawing Vectorization

4.2 Related Work

Existing vectorization methods can be roughly classified into two groups
based on whether they are designed to process image or line data. Techniques
for the vectorization of general images make the assumption that the im-
age content can be represented by a collection of boundary curves, together
with smooth interpolating functions between the curves. In one family of ap-
proaches, the image is first segmented into regions by, for example, triangu-
lation or using quad-dominant gradient meshes, and then the region interi-
ors are filled with smooth gradients [Lecot and Levy, 2006, Sun et al., 2007b,
Xia et al., 2009]. Alternatively, using diffusion curves, the smooth interior
can be computed by solving a Poisson equation with the curves as boundary
constraints [Orzan et al., 2008b]. Zhang and colleagues[Zhang et al., 2009]
present an approach specifically tailored for temporally coherent cartoon an-
imations, while Sýkora and coworkers[Sykora et al., 2005] vectorize regions
of cartoon frames for the purpose of compression. Both address final cartoon
frames with all colored foreground and background layers.

A related problem is the extraction of curve skeletons from 2D shape
boundaries using variational methods [Cornea et al., 2007]. Additional hy-
brid methods seek to find centerlines in images. In the field of medi-
cal imaging, blood vessel extraction requires identifying and reconstruct-
ing the tubular structures from images and scans. A range of techniques
has been developed [Kirbas and Quek, 2000], from pattern recognition, to
model-based and tracking-based methods. In this domain, Whited and
colleagues[Whited et al., 2009] present a semi-automatic centerline extraction
from networks of strokes that also works in more general images (e.g. river
networks from satellite imagery). While effective for vectorizing general im-
age content, none of the above methods are designed to work with line draw-
ings and do not sufficiently address the accurate extraction of centerlines and
junctions.

The second group of methods is primarily concerned with vectoriza-
tion of line drawings such as technical layouts. Prominent approaches
are based on tracing [Freeman, 1974], thinning [Lam et al., 1992], or
methods utilizing contours or projections such as the Hough transform
[Liu and Dori, 1998]. Due to the focus on technical images, many of
these methods are restricted to fitting straight line segments to input
drawings [Janssen and Vossepoel, 1997]. Exceptions include the method
by Chang and Yan[Chang and Yan, 1998], which fits Bezier curves, and
the method by Zou and Yan[Zou and Yan, 2001], which focuses on is-
sues such as jaggy line boundaries and junction points. Hilaire and

54

4.3 Overview of Approach

Tombre[Hilaire and Tombre, 2006] also address robustness and describe
fitting of higher order primitives such as arcs in addition to line seg-
ments. Their method mainly addresses issues found in binary technical
drawings and cannot be easily generalized to freehand sketches. Bar-
tolo et al.[Bartolo et al., 2007] describe an approach based on Gabor and
Kalman filtering in order to convert rough scribbles into a vectorized
representation. When boundaries are well defined, skeleton methods
[Lakshmi and Punithavalli, 2009] produce good vector centerlines that could
be used to represent line drawings. However distorted skeleton centerlines
appear at junctions.

Finally, commercial tools for vectorization of line art include Toon Boom Har-
mony, Adobe Live Trace, CorelDRAW, VectorEye, VectorMagic, and Auto-
Trace.

In many situations, existing methods and techniques provide high-quality
results. However, strokes drawn very close together and junctions areas are
usually poorly reconstructed. In most cases, this limitation arises from an al-
gorithm that employs local operators without considering the overall struc-
ture of the drawing. Such information is needed to accurately reconstruct
stroke centerlines and junction points, and to perform more sophisticated
editing operations such as morphing and inbetweening. In our work we
specifically address these open challenges.

4.3 Overview of Approach

The goal of vectorization is to extract stroke centerlines and a network of
vector curves and junctions from an input raster image of a line drawing.

Current vectorization techniques face two major challenges. The first prob-
lem, illustrated in Figure 4.1a,b, is insufficient local discrimination of individ-
ual strokes due to noise and spatial proximity of strokes. The second prob-
lem, which is of a global nature, is the difficulty of obtaining accurate esti-
mation of centerlines at junctions. It is a global problem because it requires
information about the drawing topology and stroke configuration (see Figure
4.1b,c and also Figure 4.5). Both problems compromise centerline estimates
and result in bad vectorization quality using existing techniques.

The algorithm we propose for vectorization of line drawings addresses these
problems with a novel bottom-up analysis, which translates into three suc-
cessive processing phases; each step of the algorithm increases the level of

55

4 Line-Drawing Vectorization

Step 1

Step 2

Step 3

a

b

c

d

Figure 4.2: Method Overview. Step 1: First, our algorithm disambiguates the in-
put pixels using a gradient-based clustering process. Step 2: From the
clusters, the topological skeleton of the drawing is extracted. Step 3: By
utilizing the topological information, our reverse drawing procedure
extracts accurate centerline estimates and junction positions.

56

4.3 Overview of Approach

abstraction of the representation, until accurate centerlines can be recon-
structed.

Step 1: Stroke Disambiguation by Clustering: Our first observation is that,
in line drawings, the color gradient at each input pixel often provides a good
local estimate of the center of a nearby stroke centerline (see Figure 4.2a).
We show that a clustering approach, which moves pixels along the gradi-
ent field based on the notion of gradient “confidence”, enables effective local
disambiguation of strokes (Figure 4.2b) and compares favorably to existing
skeletonization techniques.

Step 2: Topology Extraction: After clustering, the pixels are connected to
form a cluster graph (Figure 4.2b). The second phase of our algorithm then
analyzes this cluster graph to compute the underlying topological skeleton of
the drawing (Figure 4.2c). This skeleton represents the individual stroke seg-
ments, stroke endpoints, and junctions between stroke segments. The pro-
posed procedure is based on the computation of minimum spanning trees as
an efficient solution for global topology extraction even on large drawings
with complex cluster graphs.

Step 3: Centerline Reconstruction and Reverse Drawing: Using the topol-
ogy of the cluster graph, the centerlines of the drawing can be extracted (Fig-
ure 4.2d). Particular care is taken in inherently ambiguous regions like junc-
tions. The novelty of this approach is a topology-driven identification of such
ambiguous regions, followed by an exploration of all the possible stroke con-
figurations in a process we refer to as reverse drawing. We first score pairs of
incident stroke segments at a junction and then select the most likely con-
figurations, based on the assumption that smoothly joining stroke segments
are generally more likely to belong to a continuously drawn stroke than seg-
ments joining at sharp angles. Notice that this step can be applied indepen-
dently of the previous steps to improve results obtained for instance with
robust skeletonization or thinning algorithms.

The algorithmic details of these three phases, from local stroke disambigua-
tion to topology-aware reconstruction of centerline configurations, are de-
scribed in Section 4.4. Our results and evaluation in Section 4.5 demonstrate
that our approach resolves the limitations of existing techniques and results
in high-quality vectorization.

57

4 Line-Drawing Vectorization

4.4 Algorithm

4.4.1 Clustering for Stroke Disambiguation

Pixels ~pi of a raster input image can be roughly classified into two categories,
depending on their respective image gradient ∇i: small gradients do not
carry sufficient information about the stroke center, while large gradients
provide a more confident guess about the centerline location. Accordingly,
we classify each pixel ~pi as either stationary: S = {~pi|‖∇i‖ < ε} or moving:
M = {~pi|‖∇i‖ ≥ ε} by thresholding the gradient norm. The norm threshold
value ε should be set to be above the gradient levels of the image noise. All
results presented in this paper have been produced with ε equal to 10% of
the maximal gradient length.

The basic idea of our stroke clustering is that confident pixels ~pi ∈ M move
towards the centerline by following the direction ∇i

1. Although local noise
may influence the trajectory of individual pixels, as long as the gradient noise
level is below ε, the pixels converge and cluster towards the centerline (see
Figure 4.3).

For all pixels ~pi ∈ M, the motion vector is set to mi = δt∇i, where δt is a
constant speed factor, in our implementation equal to 10% of the width of a
pixel. This has two consequences: first, the pixels move in compact bands,
and second, centerlines are located where the two opposing bands meet. The
stopping condition for each moving pixel is then naturally given by the mo-
tion coherence in its local neighborhood; for each pixel ~pi ∈ M the nearest
neighborsNi = {~pj|‖~pj−~pi‖ ≤ 1} are collected. By looking at the sign of the
dot product of the gradients∇i · ∇j, neighboring pixels ~pj ∈ Ni are classified
either as belonging to the same band (positive dot product), or the opposing
band (negative dot product). The stopping condition is then defined as hav-
ing one or more pixels of the opposing band that traveled past the location of
pixel ~pi, which can be expressed as (~pj − ~pi) · ∇i < 0.

The clustering process terminates when the number of moving pixels drops
below 1% of the initial setM. Outliers, such as remaining background and
isolated pixels, can be eliminated by removing those pixels that remained sta-
tionary through the whole clustering process or that have less then 2 neigh-
bors within a 1-pixel radius. This clustering procedure results in a contraction
of the input pixels around the approximate location of the stroke centerline.

Notice that at this stage it is possible to get an estimate of the stroke thickness
by considering the distance that boundary pixels traveled. In our implemen-

1Gradient directions are kept constant throughout the clustering.

58

4.4 Algorithm

Stroke
Pro�le

Gradient

Band 1 Band 2

0

0

+

-
-

Figure 4.3: The gradient threshold ε defines two bands of pixels with opposite gra-
dient directions.

tation we do not explicitly mark pixels as belonging to the boundary, but
rather we store the traveled distance of each pixel as the approximate local
stroke radius ri and take a conservative estimate by setting it to be the max-
imum rj of all ~pj ∈ Ni. This estimate of the local stroke thickness will be
utilized in the subsequent steps of our algorithm.

4.4.2 Topology Extraction

We are interested in extracting the topology of the drawing. After conver-
gence, the cluster is a point set that densely samples the proximity of the
drawing stroke centerlines. Instead of applying techniques from geometry
reconstruction, we treat this point set as a graph, and rely on well-known
efficient graph algorithms to extract a skeleton that explicitly contains the
topology of the drawing.

The procedure is illustrated in Figure 4.4. A graph structure (the cluster
graph) is constructed by connecting each clustered pixel ~pi to each neighbor
~pj within the local stroke thickness (see Figure 4.4b). A weighted edge eij

59

4 Line-Drawing Vectorization

f

a

b c d e

g

h

i

j

k

Figure 4.4: Topology Extraction and Loop fixing (a). Topology Extraction (b-
e). An minimum Spanning Tree (MST) is computed (b). Branches of
length smaller than the stroke thickness are removed (c), resulting in
a skeletonized version of the cluster (d) from which the final topology
of the skeleton is extracted (e). Loop Fixing (f-k). For drawings con-
taining loops (a), the MST computation breaks the loop in at least one
location (f). The leaf pruning (g) widens the gap. To restore the link, for
each of the remaining leaves (h) a local MST is computed (local scope:
the green circle in a). (i) The local and global MSTs are merged, and
remaining leaves pruned (j), ultimately restoring the loop (k).60

4.4 Algorithm

is added for each pair (~pi,~pj). The weight ω(eij) of an edge is simply the
Euclidean distance ω(eij) = D(~pi,~pj).

The topological skeleton (endpoints, junctions, connectivity) of the drawing
is then computed by topology-preserving coarsening of the cluster graph
(Figure 4.4b-e). First, a minimum spanning tree (MST) of the graph is com-
puted [Kleinberg and Tardos, 2005]. Due to the dense pixel clustering, the
MST is characterized by a number of main branches with many very short
branches (“twigs”) which contribute to the stroke width/detail, but not ul-
timately to the topological structure we are seeking. In order to isolate the
main branches, the leaves of the MST are iteratively pruned (Figure 4.4c). To
avoid pruning the entire graph, we keep track of the length of the branches
being removed, and terminate the iteration if deleting an additional node
will make the total length of the removed branch greater than the local stroke
thickness.

By definition, any loop in the drawing will be cut by the global MST. Figure
4.4f-k illustrates a procedure to reliably detect and close these cuts through
the construction of a local MST around each leaf node. Consider the cut
produced by the global MST (4.4f). The leaf pruning will erode both sides,
widening the cut up to approximately 2ri (4.4g). For each leaf node (4.4h), we
compute local MST (4.4i) and then apply leaf pruning (4.4j). Loop connectiv-
ity is restored by taking the union of the global MST and the local ones (4.4k).
Notice that this procedure will not affect actual end points, as the local MSTs
followed by the leaf pruning will produce the same initial leaf nodes as the
pruned global MST.

We now mention a few implementation details. First, an MST cut generates
two leaf nodes, but it is sufficient to apply the above procedure to one of the
two. Checking if a leaf is still a leaf after each iteration can save computation
time. Second, prior the computation of the local MST, we zero the weights
of the edges that are in the global MST. This will force the local MST to pick
the same edges and only expand within the gap, avoiding the introduction
of triangular structures or undesired loops. Third, in order to account for
variation in our stroke thickness estimate, we set a conservative range for the
local MST of 4ri (green circle in Figure 4.4a).

The final topological skeleton of the drawing can then be obtained by collaps-
ing all nodes of valence 2 in the graph. Nodes of valence 1 then correspond
to stroke endpoints, nodes of valence ≥ 3 to stroke junctions, and the graph
edges represent the topological stroke segments in the drawing (see Figure
4.4e).

61

4 Line-Drawing Vectorization

a b c

Figure 4.5: Local Ambiguity. A junction (a) and a stroke with varying thickness
(b) cannot be distinguished by considering the local appearance only
(c).

4.4.3 Centerline Extraction and Reverse Drawing

The main challenge for reconstructing accurate centerline estimates is am-
biguities which cannot be resolved by purely local methods and hence lead
to reconstruction artifacts in existing approaches. Figure 4.5 illustrates such
an ambiguity where two strokes converge and cannot be distinguished from
a stroke with varying thickness by considering only a local window. More-
over, even when it is clear that multiple strokes meet at a junction, one has to
choose among a number of possible configurations (see Figure 4.6).

In order to address these challenges, our algorithm performs two steps. First,
a set of base centerlines is traced, connecting all end points and junctions
according to the drawing topology. We call the processing up to this point
base method, as it produces centerlines which in nature are similar to the re-
sults obtained with prior art (see Figure 4.18). Second, our reverse drawing
procedure (see Figure 4.7) utilizes the drawing topology to identify ambigu-
ous regions (e.g., junctions and sharp corners) and then corrects the center-
line estimates by choosing the most likely centerline configuration among all
possible ones.

Base centerlines

Base centerlines are constructed by computing the source to destination
shortest path on the full cluster graph. As source and destination points we
pick the junctions and endpoints defined by the drawing topology. Hence,
each topology edge generates a base centerline. The stroke thickness is de-
rived locally from the selected path nodes.

Two special cases have to be considered: an edge connecting a junction to it-
self (loop) and two junctions connected by more than one edge. For both spe-
cial cases, in our implementation we split the edges adding dummy valence-2

62

4.4 Algorithm

BC1

BC3BC2

BC1

BC3

CC2

BC2

BC1

CC3

BC3

BC2

BC1

CC1
BC3BC2

BC3
CC1

CC3

BC1

BC2
CC1

BC1

BC3

CC2

BC2

CC3

BC1

BC3

CC2 CC3

BC1

BC3

CC2

BC2
CC1

a b c d

e f g h

Figure 4.6: Junction Configurations. This image shows all possible configurations
combining the base centerlines (BCs) and continuous centerlines (CCs)
inside the ambiguous region (black dotted circles). Case ‘h’ is included
for completeness, but occurs rarely in practice.

junctions (see red node in Figure 4.2c), forcing the shortest path to take the
individual necessary routes.

The extracted shortest paths are then smoothed by applying a data-driven
smoothing operator which moves the path along the local curve normal to-
wards the center of mass of the clustered stroke pixels. For each point ~pi of
a centerline path, a Gaussian weighting function is used to assign weights
to the cluster pixels ~pj in the neighborhood. The refined position ~pi is then
given as

~pi ← ~pi + ((~ci − ~pi) ·~ni)
T~ni, with (4.1)

~ci =
∑j wj~pj

∑j wj
, and wj = e−

D(~pi ,~pj)

2σ2 , (4.2)

where~ni is the normalized approximation of the local curve normal and σ =
ri to adapt the weighting scheme to the local stroke thickness (Figure 4.8).
We compute approximate vertex normals by averaging the normals of the
adjacent line segments, and then interpolate these normals linearly over the
segments.

63

4 Line-Drawing Vectorization

a b

c d

e

h

f

g

Figure 4.7: Reverse Drawing. For correct centerline estimation in the proximity of
overlapping strokes (e.g., at junctions) (a), our algorithm first identifies
the ambiguous region (b,c) and removes the corresponding centerline
estimates (d). From the intersections of the ambiguous region with the
base centerlines (e), continuous candidate centerlines (CCs) are com-
puted (e, f). Then the stroke-curvatures of the CCs are evaluated (g),
and the final centerline configuration is selected (h).

64

4.4 Algorithm

0 1 5

Figure 4.8: Smoothing. This image shows the result of the smoothing of centerline
paths for 0, 1, and 5 iterations. The movement of points is marked in
blue.

Reverse drawing

An overview of the reverse drawing procedure is illustrated in Figure 4.7.
The first step consists of identifying ambiguous regions where strokes over-
lap.

Ambiguous region estimation: For each junction, we iteratively grow a cir-
cle AR at the junction position until the strokes no longer overlap. The pro-
cess is summarized by the steps:

1. Create a circle AR centered at the junction.

2. Intersect AR with each adjacent base centerline BCj.

3. At each intersection, generate a circle Sj of radius equal to the local
stroke thickness (Figure 4.7b, blue circles).

4. If any pair of Sj intersects, increase the radius of AR and repeat from 2.
Otherwise stop. (Figure 4.7c).

Continuous centerline construction: Given the ambiguous region at a junc-
tion, the base centerlines inside this region are removed and replaced by
all possible configurations of continuous centerline candidates (CCs) at that
junction (Figure 4.6b-h). Given the position and curve tangent of the inter-
sections between the ambiguous region and a pair of base centerlines, a CC
is computed as a cubic Hermite spline (Figure 4.7e,f). The normalized curve
tangents are scaled to one third of the distance between the two points.

Stroke-Curvature: When considering the curvature of strokes, we observe
that different stroke thicknesses (Figure 4.9a,b) result in different perceived
curvatures even when the centerline is the same. As shown in Figure 4.9c, we
define the stroke-curvature α by sampling the stroke centerline at three points
with distance r (the local stroke thickness) and fitting a circle, computing
α = 2 arcsin

(r
2c
)
.

65

4 Line-Drawing Vectorization

() 2 cr

r

c

c

α

β

β

2β + α = π

rα = 2 arcsin. .

c
c

c

r

r

αa b c

Figure 4.9: Stroke-Curvature. (a) and (b) illustrate the apparent difference in vi-
sual smoothness of strokes with different thickness but the same center-
lines. (c) shows the geometric reconstruction of the stroke-curvature α

from the local stroke radius r and curvature radius c.

To compute the stroke-curvature αi of a continuous centerline CCi, we sam-
ple CCi uniformly with the sample distance r according to the local stroke
thickness, and then set αi as the maximum stroke-curvature over the whole
curve (see Figure 4.7g).

Centerline selection: Our goal is to connect the base centerlines (BCs)
around an ambiguous region by either picking continuous centerlines (CCs)
only (e.g., Figure 4.6f-h), or a combination of BCs and CCs (e.g., Figure 4.6b-
e).

Figure 4.10: Examples of valence-4 junctions.

In application contexts where fixed alphabets or specific drawing patterns
are defined, junction classes (T, Y, X, etc) can be associated with predefined
centerline configurations. However, in line drawings, the number of such
classes is virtually infinite. Figure 4.10 shows just a few of the many valence-
4 junctions that can be found in line drawings, each one with its own nuances.
This makes it impractical to build a comprehensive classification.

Instead, we opt for a fixed selection scheme that can operate on any kind
of junction (see Algorithm 1). Figure 4.11 illustrates the major steps for a
valence-4 junction.

This selection scheme favors straight centerlines over curved ones. The
stroke-curvature threshold t discriminates acceptable continuous centerlines
from undesirable sharp turning connections, which are usually associated

66

4.4 Algorithm

CC
1-4

CC
1-3

CC
2-4

BC1BC1
BC2BC2

BC3BC3
BC4BC4

BC1BC1
BC2BC2

BC3BC3
BC4BC4

BC1BC1
BC2BC2

BC3BC3
BC4BC4

BC1BC1
BC2BC2

BC3BC3
BC4BC4a c db

Figure 4.11: Centerline Selection. CCs are generated (a), and for each, the stroke-
curvature is computed. Any CC (dashed) with curvature exceeding
the threshold is excluded. Sequentially (b,c,d), the CCs with the small-
est curvature are selected until all BCs are connected (d).

Algorithm 1: Centerline Selection Scheme.
Input:A junction with BCs and CCs OutputA set of accepted BCs and CCs

for all CCi do Compute αi
if αi > t then reject CCi as sharp turn
end if

end forPut the remaining CCs in a list Sort list by ascending αi
while the list is not empty do Extract the straightest CCi from the list and
accept it

if all BCs are connected then Terminate
end if

end while
for all disconnected BCi do Extend BCi linearly until it crosses any ac-
cepted centerline (either BCi or CCi) Accept BCi
end for

with cases where base centerlines stop at the junction (Figure 4.6a-d). In our
implementation t is equal to 50◦, an optimal value according to our empirical
validation (see Section 4.5 and Figure 4.13).

Spikes: A spike is generally formed by two strokes, drawn in approximately
opposite directions, that overlap in the region of the tip. Spikes are a spe-
cial case of valence-3 junctions where one branch is relatively short. In terms
of topology, a junction exists where the overlap starts, and the tip forms an
end point, as illustrated by Figure 4.12a. After such a structure is detected in
the topology extraction, the reverse drawing procedure treats it as any other
junction by selecting the straighter CCs, which results in the appropriate rep-
resentation of the spike.

67

4 Line-Drawing Vectorization

Name Input Type Image Resolution Processing Time
Louis Scan Clean 20482 3m 10s

Dracolion Digital 10242 29s
Dr. Facilier Scan Clean 10242 46s
Mr. Darling Scan Rough 20482 3m 50s

Moose Scan Digital 20482 3m 27s
Mouse Digital 10242 1m 1s
Muten Digital 10242 24s
Sheriff Digital 10242 55s

Name SSA
Valence: 3 > 3 < 3/tot in%

Louis 95.3% 88.8% 1.6%
Dracolion 95.5% 100% 2.2%
Dr Facilier 96.0% 75.0% 4.8%

Mr. Darling 97.4% 97.4% 9.5%
Moose 98.6% 98.6% 8.2%
Mouse 95.8% 90.9% 8.0%
Muten 96.0% N/A 0%
Sheriff 94.5% 94.5% 19.8

Name CE SPE
vs. ALT vs. Base vs. ALT vs. Base

Louis 176 % 125 % 159 % 138 %
Dracolion 279 % 177 % 145 % 144 %
Dr Facilier 168 % 120 % 181 % 157 %

Mr. Darling 186 % 140 % 270 % 156 %
Moose 140 % 106 % 168 % 134 %
Mouse 355 % 158 % 136 % 113 %
Muten 212 % 125 % 379 % 288 %
Sheriff 187 % 123 % 145 % 115 %

Table 4.1: Numerical results and ground truth evaluation for different input draw-
ings. See Section 4.5 for a detailed discussion (ALT: Adobe Live Trace,
Base: base version of our algorithm, where no reverse drawing is applied).

68

4.5 Validation and Results

ba c
Figure 4.12: Spikes can be considered a special case of a junction, where one of the

branches is very short (a). (b-c) show respectively the topology and
the resulting centerlines for several spikes.

4.5 Validation and Results

We evaluate our approach on a variety of clean line drawings, including
production drawings from 2D short and feature animations. (Figure 4.17).
Of the paper examples, we include recently created drawings, as well as an
archival piece which has degraded in quality over time and is therefore dif-
ficult to vectorize using existing techniques due to the age-related artifacts
in the paper texture. We provide numerical and visual comparisons to two
standard commercial tools, Adobe Live Trace [Adobe, 2012b] and Harmony
[ToonBoom, 2010], as well as thinning algorithms, the Stentiford and Zhang-
Suen (implemented in Wintopo [SiSoft, 2010]).

4.5.1 Evaluation

In order to evaluate the accuracy of our centerline reconstruction and to com-
pare it to existing methods, we used a data set consisting of eight drawings
(four scanned, four digitally drawn and then rasterized). In total, the draw-
ings contain more than a thousand topologically relevant points (59.8% junc-
tions, 40.2% endpoints), and about two thousand centerlines. For the digi-
tally created images, accurate ground truth centerlines are available. For the
scanned drawings, we asked an artist to manually trace the centerlines and
highlight the correct topological configuration at junctions. The results of the
evaluation are summarized in Table 4.1. We evaluate the following criteria:

Selection Scheme Accuracy (SSA): Algorithm 1 requires as input a stroke-
curvature threshold parameter t. To pick an appropriate value, we proceeded
as follows. For all images in our data set, an artist manually labeled all candi-
date centerlines as either smooth or sharp turns, obtaining a data set with more

69

4 Line-Drawing Vectorization

Em
pi

ric
al

 M
in

im
um

20 30 40 50 60 70 80
0

5

10

15

20

25

30

Stroke-Curvature Threshold t (degrees)

M
is

cl
as

si
�e

d
CC

s
(%

)

Average (6 drawings) Dracolion Moose

Figure 4.13: Stroke-Curvature Thresholding. To establish an empirically optimal
value of t, we built a data set containing more than 2000 CCs, man-
ually labeled as either smooth or sharp turns. This image displays
the classification obtained with Algorithm 1, plotting percentage of
misclassified CCs versus the input threshold parameter t. For cross-
validation, we show the average misclassification for 6 out of the 8
drawings, which suggests an optimal threshold value t, and finally we
assess the quality of the prediction on the two remaining 2 drawings.

than 2000 classified CCs. Then, as illustrated in Figure 4.13, we evaluated the
percentage of misclassified CCs against different thresholds t and picked the
empirical optimum at t = 50◦. To validate this choice, we then performed a
leave-one-out cross-validation (repeated for all drawings). On average, our
choice produces an optimum prediction error of 1.99◦, which corresponds
to an error of 0.25% in terms of misclassified CCs. Overall, with the cho-
sen threshold value t = 50◦, our algorithm produces results that match the
artist’s classification in 95.5% of the cases. For further inspection, we broke
down the values based on valence. Junctions with valence greater than 3
occurred less frequently (5.7% of total), and were more difficult to classify
(accuracy 93.4%).

Centerline Error (CE): We evaluate centerline quality by computing the av-
erage minimum distance of dense sample points on the extracted centerlines
to the ground truth centerlines (see Figure 4.14). The error with our approach
has an average of only 4.13% of the average stroke thickness. We perform the
same computation for Adobe Live Trace, resulting in an average of 7.97%,
and for the base version of our algorithm (where no reverse drawing is ap-

70

4.5 Validation and Results

Our Method Base Method Live Trace

alligator dracolion facilier father moose mouse muten sheriff
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

Ce
nt

er
lin

e
Er

ro
r

Figure 4.14: Centerline Error. This image shows a comparison of the centerline
error for the results obtained with Adobe Live Trace, our method, and
the base version of our method, where no reverse drawing is applied.
The values are expressed as percentage of the average stroke thickness
in each drawing. Our method consistently produces a better score.

plied) which shows an average error of 5.38%. For the result in the specific
drawings, refer to the second to last column in Table 4.1. Our method shows
consistent improvements of the centerline quality for all examples.

Salient Points Error (SPE): Junctions and endpoints are critical elements in
the vectorization of line drawings. The quality of a reconstruction can be
assessed by considering both the correctness in the placement of these points
as well as the correctness in the overall topology. Given a drawing, consider
two sets of salient points G and M, from the ground truth and the method to
be evaluated respectively. We then compute:

D = ∑
i∈M

min
j∈G

dist(i, j) + ∑
j∈G

min
i∈M

dist(i, j) (4.3)

A good reconstruction should produce a set M that is as similar as possible
to G. In the case of correct topology, the contribution of a pair (i ∈ M, j ∈ G)
will express the quality of the salient point placement. However, if a method
does not capture the correct topology (by either missing a junction or detect-
ing more junctions than there actually are) mismatched pairs will penalize
the score with additional accumulated distance. Figure 4.15 shows the com-
parison of our method with Adobe Live Trace and the base version of our
method. To assess the performance across our data set, we normalized the
values D considering twice the number of salient points 2 · |G| in each draw-
ing.

71

4 Line-Drawing Vectorization

Our Method Base Method Live Trace

0%

50%

100%

150%

200%

250%

alligator dracolion facilier father moose mouse muten sheriff

Figure 4.15: Salient Points Error. This image shows a comparison of the salient
points error for the results obtained with Adobe Live Trace, our
method, and the base version of our method, where no reverse drawing
is applied. The values are expressed as percentage of the average stroke
thickness in each drawing. Our method consistently produces a better
score.

4.5.2 Input Resolution and Clustering Robustness

The clustering step described in Section 4.4.1 samples the input image to gen-
erate bands of moving pixels that stop when they meet. We experimented
with super-sampling as a way to cope with very low input resolutions. Even
1-pixel wide strokes, if super-sampled appropriately with a smooth filter (in
our tests: bi-cubic filter, 4 samples per pixel), can be reconstructed accurately,
leading to robustness comparable to competing approaches.

As shown in Figure 4.16, the centerline error relative to the ground truth (log-
arithmic scale) drops exponentially with increasing resolutions. Differences
between our method and Adobe Live Trace become more evident at higher
resolutions.

4.5.3 Result Images

For a general overview of the capabilities of our method, we present a se-
lection of vectorization results in Figure 4.17, taken from the eight drawings
used in the previous section for error evaluation. Notice how several am-
biguous regions are properly handled, and in most cases the proper junction

72

4.5 Validation and Results

0.125

0.25

0.5

1

2

4

8

16

1024512256128

Ce
nt

er
lin

e
Er

ro
r (

px
)

Image Width (px)

Dracolion Father Facilier Live Trace Our Method

Figure 4.16: Effect of increasing the input resolution. Both our method and Adobe
Live Trace (dashed) exhibit an exponential reduction of the error. Dif-
ferences between the two methods become more evident at higher res-
olutions.

configuration is selected. These results combine the advantages of both the
pixel clustering and the reverse drawing.

Figure 4.18 illustrates the benefits of pixel clustering on its own. Figure
4.18a,b show the vectorization results obtained with Adobe Live Trace and
Sisoft Wintopo. Figure 4.18c shows results from only the Base portion of our
algorithm, where centerlines are traced from the pixel clusters, but no reverse
drawing is applied. Notice how both medial axis and thinning methods (a,b)
rely on the creation of boundaries, usually obtained through color thresh-
olding. However, with low thresholds, nearby strokes are not distinguished
properly, and with high values parts of the drawings are lost. Pre-sharpening
the images can alleviate these problems, but the proper kernel size has to be
used; in our experiments, this approach required manual tuning to achieve
good results. In contrast, our method successfully separates nearby strokes,
while avoiding stroke losses.

Finally, Figure 4.19 provides visual comparisons of our complete method
to leading commercial vectorization implementations, Toon Boom Harmony
[ToonBoom, 2010], Adobe Live Trace [Adobe, 2012b], and SoftSoft Wintopo,
respectively. Notice how the existing techniques have difficulties in dis-
criminating nearby strokes, which results in merged centerlines for sepa-
rate strokes and an incorrect drawing topology. Moreover, junction points
are placed at inaccurate positions. Our method finds a more natural place-

73

4 Line-Drawing Vectorization

Moose Mouse Sheri�

Muten

Dr. Facilier Louis Dracolion

Mr. Darling

© Disney

© Disney © Disney

© Disney

Figure 4.17: Collection of vectorization results generated with our method. The
Mr. Darling image is not fully clean (the paper quality is degraded
and lines not sharp), and thus represents a borderline case.

74

4.5 Validation and Results

High Low

High Low

Base Method

Adobe Live Trace

Sisoft Wintopo

a

b

c

Figure 4.18: Pixel Clustering Comparison. This image shows a comparison be-
tween Adobe Live Trace (a), Sisoft Wintopo (b), and the result of
our base algorithm (c), where only the base centerlines have been ex-
tracted, and no reverse drawing has been applied. In (a) and (b) dif-
ferent color threshold parameters have been used. Notice how in order
to get the nearby strokes separated, the color threshold must be set to
high values, losing other parts of the drawing. Our method success-
fully separates the strokes without such losses.

75

4 Line-Drawing Vectorization

a b c

d e

Figure 4.19: General Comparison. This image shows close-up comparison between
Adobe Live Trace (a), SiftSoft Wintopo (b), Toon Boom Harmony (c),
our method (d), and the ground truth (e).

76

4.5 Validation and Results

ment. For these comparisons, we attempted to tune the parameters of the
software packages to obtain the best possible results. Our method uses the
standard parameter values described in the previous sections and requires
no per-drawing tuning.

4.5.4 Processing Time

The processing time of our method for each of the input images is provided
in Table 4.1, measured on a desktop PC2. The time necessary to process an
image depends both on its resolution as well as the number of strokes and
junctions. Due to the more complex topological analysis of a drawing, our
algorithm requires more processing time than tools such as Live Trace or
Harmony. However, the timings are still in the range of only a few seconds
to minutes, and the necessary time spent in post-production to correct the
centerline estimates and junctions is significantly reduced compared to the
previously available solutions (see Figure 20).

For the Louis example (Figure 4.17), we compared the timing of manual post-
processing of the output to fix erroneous junctions for Live Trace and our
method: it took an artist 12 times longer to produce comparable results for
the Live Trace example.

4.5.5 Limitations and Future Work

An important application for this system is 2D animation. As is, our
system can be used in tandem with inbetweening techniques, such as
[Whited et al., 2010]. However, the vectorization quality could be improved
by considering the information contained in subsequent frames, improving
the decision making (Algorithm 1) and recovering from errors in the topol-
ogy. The difficulty however is that distinct elements moving independently
may drastically change both the topology and the junction configurations,
making these extensions very challenging.

As for any raster based method, image quantization and noise play a crucial
role. In the case of low resolution input, details are hard to extract (Figure
4.21a). In our tests with variable resolution (see Figure 4.16) we observed
a similar response for our method and Adobe Live Trace, but in order to
not break - i.e. have enough moving pixels - the proposed pixel clustering

2Mac Pro, Quad-Core 2.66 GHz, 4GB RAM

77

4 Line-Drawing Vectorization

...

...

d ec

f

g

1st 2nd 3rd 4th 5th

5th1st 2nd 3rd 4th

a

b

Figure 4.20: System output (a). With a user interaction of only a few seconds per
junction, different configurations can be obtained (b). The interaction
steps are shown in (c-g). First, the user selects the junction (c), and
activates the editing mode (d). BCs entry points (yellow dots) are
used by the user to make the desired changes. Once an entry point
is clicked (e), the system shows a set of valid configurations to choose
from (f). The first criterion is that the entry point must be connected:
1 connection is favored over 2, 2 over 3, etc. Straighter CCs are the
first choice, then linearly prolonged BBs, and finally, rejected CCs. If
a choice influences the connectivity of another entry point, that point
is automatically selected, and possible configurations displayed (g).
Previous choices are marked in black. This process requires at most
one choice per entry point.78

4.6 Conclusion

a b c

Figure 4.21: Limitations. With the current method, small details (a) may not be
captured by the topology extraction. The method is also not designed
to work with solid areas (b). (c) The linear extension of the base cen-
terlines does not always produce the perfect junction location (higher
order extrapolation shown in blue).

requires super-sampling. Noise may lead to strokes being torn apart. Addi-
tionally, we observe in Figure 4.16 the decay of the improvement rate as the
resolution increases. This is partly due to the error getting closer to zero, but
also to the difficulty in exploiting the additional information.

While Algorithm 1 in most cases produces good results, there may be cases
of technical drawings, with grid structures or specific texture-like patterns,
where a failure of the algorithm appears in many junctions, making manual
fixing very time consuming. Here, a possible approach would be to apply
machine learning to update the guiding criteria. The current spike detection
relies on the presence of particular topological structures, and might also
be improved by using machine learning in conjunction with the proposed
stroke-curvature measure to be able to explicitly extract sharp corners

Finally there are a number of minor limitations. As shown in Figure 4.21b,
our method is not designed to work with solid areas. Additionally, as ex-
plained in Section 4.4.3, base centerlines that are selected by Algorithm 1 for
the final configuration are extended linearly inside the ambiguous regions.
Figure 4.21c shows a case where this linear method results in a less accurate
junction location than the one obtained with higher order extrapolation.

4.6 Conclusion

We have described a novel vectorization technique for clean line drawings
which produces a high-quality representation suitable for vector processing.
Our approach consists of two techniques: a gradient based pixel cluster-

79

4 Line-Drawing Vectorization

ing that helps disambiguate difficult cases, and a reverse drawing procedure
which exploits the drawing topology to make educated choices when dealing
with junctions. Since these techniques are independent, the reverse drawing
can be applied to improve the result of existing techniques that provide the
drawing topology.

We have demonstrated the application of our method to a variety of profes-
sional examples. Our results show how our approach improves the vector-
ization of junctions and nearby strokes which represent the major shortcom-
ings of state-of-the-art solutions when it comes to clean line drawings. Such
accurate junction and centerline recovery makes stroke-based editing opera-
tions such as automatic inbetweening more feasible in a digital pipeline.

Possible future directions include addressing the limitations of the current
method by exploring the vectorization of more sketchy and noisy drawings,
considering image pre-filtering using LoG [Chen et al., 1987]. Moreover, we
are interested in studying the semantic information present in sketchy draw-
ings, considering strokes not only as sets of pixels, but as objects with mathe-
matical properties (e.g., trajectory, direction) with the goal of exploiting such
semantics in a clustering approach.

80

C H A P T E R 5
A Scribble-based Segmentation
Tool

In this Chapter, we present Smart Scribbles, a scribble-based interface for user-
guided segmentation of digital sketchy drawings.

In contrast to previous approaches based on simple selection strategies,
Smart Scribbles exploits richer geometric and temporal information. This en-
ables better analysis of the similarity between the strokes making up a draw-
ing, as well as the relationship between the strokes and the input Scribbles.

We introduce a novel energy minimization formulation in which both geo-
metric and temporal information from digital input devices is used to de-
fine stroke-to-stroke and scribble-to-stroke relationships. Although the min-
imization of this energy is, in general, a NP-hard problem, we use a simple
heuristic that leads to a good approximation and permits an interactive sys-
tem able to produce accurate labelings even for cluttered sketchy drawings.

We demonstrate the power of our technique in several practical scenarios
such as sketch editing, as-rigid-as-possible deformation and registration, and
on-the-fly labeling based on pre-classified guidelines.

81

5 A Scribble-based Segmentation Tool

Figure 5.1: Sketch segmentation: For each example pair, Smart Scribbles on the top
produce the segmentation on the bottom.

5.1 Introduction

Sketchy drawings are prevalent across a wide range of applications and do-
mains. In early development phases, rough drawings are used, for example,
for concept art in product design, and for storyboards in animation environ-
ments, and are favored both for the speed of generation, and the expressive-
ness of the results. A sketchy style also has a place in finished art – providing
a level of visual richness not found in “clean” line representations, i.e. draw-
ings constructed from crisp, distinct outlines and minimal interior detail.

Modern digital devices and graphics software solutions offer powerful styl-
ization, deformation, morphing, and animation capabilities for 2D drawings.
However, in order to perform this type of high-level task, a certain degree of
understanding of the content of the drawing is required. This is a challenging
problem due to the significant gap between the ability of a human to discern
structure in a drawing and the capability of an algorithm to derive it from
low level stroke information. This is true even for clean line drawings, and
most existing approaches rely on the presence of a human user to provide
sufficient information to guide the task.

82

5.2 Related Work

The problem of extracting structure from drawings becomes substantially
more difficult for sketchy input, and this is one reason it is far less common to
find a consistently sketchy style in full-length animations or automatic sup-
port for sketchy input in high-level editing packages. One important cate-
gory of drawing abstraction is segmenting the drawing into logical parts. To-
date, there is no efficient method available for automatic segmentation in this
domain. In contexts where a breakdown of the drawing is required, segmen-
tation is typically achieved by design: the drawings are created in different
layers, one for each logical component. This approach is too limiting in prac-
tice: it requires a priori knowledge of the use of the drawing, is cumbersome
(especially when different tasks require different segmentations), and is an
error-prone process, even for experienced artists.

We seek a semi-automated solution to segmenting sketchy drawings that is
fast enough for interactive use, but also predictable and easy to use – making
it accessible to even the most novice user.

To this end, we propose the concept of Smart Scribbles as an accurate and
simple way for the user to specify semantically meaningful stroke clus-
ters within a drawing (see Figure 5.1). In contrast to previous meth-
ods that use scribbles as positional constraints for various image edit-
ing tasks [Boykov and Jolly, 2001, Levin et al., 2004, An and Pellacini, 2008,
Sykora et al., 2009b], our formulation considers more detailed geometric (po-
sition, orientation, curvature) and temporal information (time of creation),
analyzing how strokes in the drawing relate to each other, and how well the
Smart Scribbles match them. In addition, we introduce the concept of locality
control as a way of conveniently trading off the scribbles’ areas of influence
for accuracy. This allows our system to produce desired results with minimal
user intervention even for cluttered sketches.

We evaluate our approach on a collection of digitally drawn sketches of vary-
ing complexity, and demonstrate the application to various tasks including
sketch editing, ARAP deformation and registration. As our solution is fast
to compute, our method enables tight integration of these tasks within an
interactive digital drawing session.

5.2 Related Work

Relevant prior art can be divided into three main categories: sketch label-
ing interfaces, scribble-based image segmentation and classification of vector
fields in scientific visualization.

83

5 A Scribble-based Segmentation Tool

User-guided labeling of strokes in hand drawn images plays a central role in
many sketch-based editing systems. In Lank et al. [Lank and Saund, 2005],
the authors present an approach for inferring user intent from the local veloc-
ities, accelerations and curvatures of the selection lasso. More recently, Wolin
et al. [Wolin et al., 2007] presented a technique for labeling groups of strokes
from a vectorized sketch where the system attempts to automatically frag-
ment continuous strokes into logical pieces to assist the user. Both of these
techniques ultimately utilize a region-based selection approach. ScanScribe,
a system developed by Saund and colleagues [Saund et al., 2004], presents
the user with an intuitive selection paradigm that allows for the creation of
objects from collections of pixels and supports further grouping into compos-
ite objects. The system is able to automatically segment the image into basic
primitives, such as linear curve fragments, and then group them into more
complex objects, such as rectangles, based on an alignment metric computed
between nearby fragments (or finding perceptually closed paths as proposed
in [Saund, 2003]). Two limitations of this automatic technique are 1) limited
complexity of objects detected by the system and 2) the inability to handle
sketchy overlapping curve fragments, thus requiring more traditional and
tedious lasso/selection-box methods for more complex drawings.

The approach presented in this paper leverages previous works on inter-
active image segmentation in order to optimize the labeling process based
on user scribbles. Boykov et al. [Boykov and Jolly, 2001] developed such
an approach based on graph cuts for segmenting images and finding opti-
mal boundaries between objects. In [Levin et al., 2004], Levin and colleagues
present a similar framework based on a least-squares optimization for col-
orizing gray-scale images by roughly labeling regions with colored scrib-
bles. More recently, An et al. [An and Pellacini, 2008] developed an inter-
active energy minimization framework for propagating color edits to sim-
ilar regions throughout the image. Our approach is most similar to Lazy-
Brush [Sykora et al., 2009b] a graph cut based system for sketch painting, i.e.,
the selection of regions in sketchy drawings. The main difference is that this
system cannot provide the labeling of the strokes that bound each painted re-
gion. From this point of view, our framework can be seen as a generalization
of LazyBrush, since it extracts meaningful boundaries first and then builds
regions inferred from those boundaries. Because this process removes clut-
ter from the input drawing, it greatly improves the accuracy of selection and
reduces the amount of user interaction needed to obtain clean results.

Our approach also bears some resemblance to sketch-based clustering of vec-
tor fields in scientific visualization [Wei et al., 2010]. Here the aim is to allow
the user to sketch 2D curves and use them as a query to retrieve 3D field lines
whose view-dependent 2D projection is most similar to the input sketch. The

84

5.3 Method

curvature along the input sketch is used to measure the similarity between
two curves using the edit distance [Wagner and Fischer, 1974]. In our ap-
proach, curvature is also used to distinguish between different shapes. How-
ever, the main advantage of our work is that we formulate an energy mini-
mization problem where, in addition to shape similarity, we also take prox-
imity, orientation, temporal information, and smoothness of the final labeling
into account. As a result, our system can produce reasonable clustering even
in cases when the the shape of the input sketch is very rough or incomplete.

5.3 Method

The method we present allows users to intuitively segment digital sketches
into semantically meaningful regions. The input to our framework consists
of a digitally hand-drawn sketch and a small set of rough scribbles. The input
sketch is composed of a set of strokes, which are piecewise linear curves rep-
resented by sets of 2D vertices recorded from a digital input device such as a
tablet. For every vertex of a stroke we additionally store its time of creation.
This lets us readily compute the drawing speed, and, in addition, helps differ-
entiate strokes which are spatially close but are drawn at different moments
in time.

The input scribbles, which we term Smart Scribbles, are special strokes that
indicate the user’s intent to segment a particular portion of the drawing. Two
criteria related to the scribble primitives are critical in order to ensure a useful
and intuitive system. First, Smart Scribbles should not have to closely follow
the target region. However, if desired, the user should be able to precisely
select localized regions. We call this property locality control. The second
criterion specifies that the time of creation of the Smart Scribble should not
influence the segmentation results.

We observe that generally speaking, processing strokes as a whole is very dif-
ficult. A single stroke can be arbitrarily complex: it can cross or overlap with
itself multiple times, and/or it can densely cover an area the artist wished to
fill in. For this reason, we break strokes and scribbles into linear segments by
densely resampling the input. Any property defined locally over the stroke
can easily be transferred to the segments.

We formulate the task of sketch clustering as an optimization problem, where
the goal is to label each stroke in a way that minimizes an energy function.
The remainder of this section describes in detail each of the steps used by our
method. The energy function is defined in Section 5.3.1. It relies on a smooth-
ness and data term which are described in separate Sections 5.3.1 and 5.3.1.

85

5 A Scribble-based Segmentation Tool

Finally in Section 5.3.2 we discuss the minimization method used to compute
the final solution to the stroke labeling.

5.3.1 Energy function

We formulate the task of stroke labeling as an energy minimization problem.
Figure 5.2 depicts the concept of our design. The input consists of a set of
stroke segments S and a set of scribble segments R associated with a set of
labels L. The goal is to find a labeling, i.e., an assignment φ of the labels in L
to every segment in S, that minimizes the following energy function E:

E(φ) = ∑
i,j∈S

Vi,j(φi, φj) + λ ∑
i∈S

Di(φi) (5.1)

where Vi,j is a smoothness term that captures the cost of the labeling with
respect to the similarity between two stroke segments i and j. The data term
Di measures the affinity between scribbles and strokes. The parameter λ con-
trols the relative influence of the smoothness and data terms.

Smoothness Term

The smoothness term is defined as:

Vi,j(φi, φj) = ∏
g∈G

δ(g(i, j), σg) (5.2)

when φi 6= φj, otherwise it is zero. G is a set of similarity terms:

prox(i, j) = ||~pj − ~pi||
dir(i, j) = 1− |~di · ~dj|

curv(i, j) = 1−min(ci, cj)/max(ci, cj)

time(i, j) = |tj − ti|

where i and j are two segments, and p, d, c and t are the position, direction,
radius of curvature, and time of creation associated with each segment. The
fall-off function δ is defined as:

86

5.3 Method

Smoothness Term

Input

Output

Data Term

1

2

Scribble

Stroke

Figure 5.2: Energy definition overview. The input consists of a set of strokes (black)
and scribbles (red and blue dotted lines). The output consists of a la-
beling of all strokes (the labeling is indicated here by the red/blue color
assignment to the strokes in the output). Smoothness Term: For a
segment i and a neighbor segment j, Vi,j expresses the energy of as-
signing the same label to both i and j, based on how similar they are.
Data Term: Given a labeling φi = l∗ (assigning label l∗ to segment i),
Di(φi) expresses the energy of the labeling, which is a function of the
similarity of segment i to all scribbles associated with l∗.

δ(g(i, j), σg) = exp

(
−g(i, j)2

σ2
g

)
(5.3)

These terms have intuitive meanings. Segments that are close together, are
parallel, belong to strokes with similar curvature and have been generated
close in time are likely to belong to the same semantic region. They should
therefore get larger similarity scores. Notice that consecutive segments of a
stroke are likely to have high similarity with respect to all the defined terms.

Data Term

The data term is defined as:

87

5 A Scribble-based Segmentation Tool

= 3px= 30px= 60px

= 90px= 120px= 150px

a b c

d e f

Figure 5.3: The effect of the locality control by varying σprox: A blue scribble is
drawn on the foot (circled in red). On the right, the value of σprox is
progressively increased. Notice how the selection becomes progressively
more local as the influence of the blue label gets overruled by the back-
ground label (shown in black).

Di(φi) = 1− max
r∈R(φi)

A(i, r) (5.4)

where R(φi) denotes a set of scribble segments r with label φi. The affinity
A(i, r) is defined as:

A(i, r) = ∏
g∈Gdata

δ(g(i, r), σg) (5.5)

Here, as with the smoothness term, we measure the similarity between seg-
ments rather than strokes. However, as scribbles have no associated time in-
formation, we reduce the set of similarity terms to Gdata = {prox, dir, curv} ⊂

88

5.3 Method

G. Additionally, we alter the definition of curvature to become oriented:
curv(i, j) = ||~ci − ~cj||. This allows extra control in separating curves with
the same curvature but different orientation (e.g. the tangled lines in Figure
5.7).

One of our main goals is to allow users, if desired, to have precise local con-
trol over the strokes that get affected by each scribble. To illustrate this, we
consider a scenario where the user only draws one scribble, as shown in Fig-
ure 5.3a. In this case, because no concurrent label exists, all strokes are se-
lected. This behavior, though reasonable, is not in line with a user’s expecta-
tions of having local control.

To address this, we introduce an artificial background label b ∈ L, in addition
to the labels prescribed by the user. This new label has a constant influence
on each stroke segment i regardless of the existence of any particular user-
defined scribble, i.e., A(i, b) = B. The background label therefore serves as a
lower bound for computing the max component in the data term (5.4).

Furthermore, we control the locality of each scribble r by modifying its prox-
imity fall-off δ (5.3) as follows:

δ(prox(i, r), σprox) =
1

σprox
exp

(
− prox(i, r)2

σ2
prox

)
. (5.6)

Here σprox follows the desired locality (i.e., is large for global influence and
small for local influence) and the normalization term 1/σprox ensures the inte-
gral over the fall-off function stays equal for different values of σprox (i.e., am-
plitude is high for small values and low for large ones). In other words, the
overall energy remains constant, while its spatial spread is controlled. When
sigma σprox becomes very low, the response of the fall-off function (5.6) for
distant stroke segments also becomes very low and can therefore be easily
overridden when computing the max value in (5.4). This is illustrated in Fig-
ure 5.3b-f, where, in the case of strokes that are distant to the local scribble,
the threshold B becomes active and overrides the influence of the blue label.

There are several possible ways to control the parameter σprox. One nat-
ural way is to use the speed of the scribble based on the experimen-
tally demonstrated linear relationship between speed and perceived local-
ity [Accot and Zhai, 1997]:

W =
β · L

T − α
. (5.7)

Here W is the selection radius, L is length of the scribble, T is time spent
on drawing it, and α and β are empirically measured constants. This rule

89

5 A Scribble-based Segmentation Tool

was used to control the selection locality in systems having limited modal-
ity [Lank and Saund, 2005]. Alternatively, one could consider the use of pen-
pressure, or - in the case of binary modality - a simple key toggle to switch
between two locality values.

5.3.2 Optimization method

As shown in [Boykov et al., 1998], minimizing the energy function defined in
Equation 5.1 is equivalent to solving a multi-way cut on a specific weighted
graph G = {V , E}, where V = {S, L} is a set of vertices and E = {Es, El}
is a set of edges (See Figure 5.4). The graph vertices V consist of stroke
segments S and label terminals L. Each stroke segment i ∈ S is connected
to all other stroke segments j ∈ S− {i} via edges Ei,j having weight wi,j
equal to the smoothness term Vi,j when φi 6= φj. In addition, auxiliary
edges Ei,l connect stroke segments i ∈ S to label terminals l ∈ L. Each Ei,l
has weight wi,l = λ(1−Di(l)), where λ is the parameter defined in Equation
5.1 .

1

2

1

2

Figure 5.4: Graph Construction. Stroke segments are shown as black circles. Ter-
minal labels (in this example l1 and l2) are shown as colored squares.
The graph edges wi,j reflect the smoothness terms Vi,j between the stroke
segments i, j ∈ S, while the data terms Di(l) for stroke segment i ∈ S
and label l ∈ L are captured by the weights wi,l.

The multi-way cut problem with two terminals is equivalent to a max-

90

5.4 Applications

flow/min-cut problem for which efficient polynomial algorithms ex-
ist [Boykov and Kolmogorov, 2004]. However, for three or more terminals
the problem is NP-hard [Dahlhaus et al., 1992]. To obtain a good approx-
imate solution we use a simple divide-and-conquer heuristic previously
proposed in [Sykora et al., 2009b] to gradually simplify the N-terminal prob-
lem into a sequence of N − 1 binary max-flow/min-cut sub-problems. This
approach provides results similar to more advanced techniques (such as α-
expansion or α/β-swap [Boykov et al., 2001]), but is significantly faster and
therefore better suited for interactive applications.

5.4 Applications

The labeling produced by our approach can be utilized to generate in-
put to perform region as well as stroke segmentation (see Figure 5.6a).
Once the labels for the segments of each stroke are computed, we can au-
tomatically obtain an area mask of the enclosed region using the Lazy-
Brush [Sykora et al., 2009b] algorithm (see Figure 5.5). To this end, we first
render all segments assigned to a specific label to a raster image. This image
is used both as an input gray-scale image (Figure 5.5a) and as foreground soft
scribbles (red in Figure 5.5b) for input to LazyBrush. In addition, we use a
default background hard scribble around the image boundary (blue in Figure
5.5b). Given this input, LazyBrush produces the desired area mask (Figure
5.5c). As compared to other naive methods (like convex-hull or flood-fill),
this approach works with concave regions and is robust to small gaps.

For more complex sketches, the user may need to specify additional Smart
Scribbles (Figure 5.5d) to classify interior strokes and use them as additional
background soft scribbles for LazyBrush (Figure 5.5e). These new scrib-
bles enable the area computation method to produce masks that contain
holes (Figure 5.5f).

We note that similar masks (Figure 5.5i) can be produced with the original
LazyBrush algorithm directly. However, knowing the segmentation of the
areas is not sufficient to provide a labeling of the individual strokes, because
strokes at the boundaries between different area masks cannot be consistently
assigned to one mask or another (Figure 5.5g). Moreover, with the original
LazyBrush algorithm, the user must be more careful, since the optimization
only takes into account the position of the scribbles. In contrast, our frame-
work also considers orientation, curvature, and time (compare Figure 5.5d
and h).

91

5 A Scribble-based Segmentation Tool

b c

fed

ihg

a

Figure 5.5: Area mask computation: strokes of an input sketch (a) can be used as
LazyBrush soft scribbles (b) to automatically fill the drawing (c). Ad-
ditional Smart Scribbles (d) can be used to segment the strokes (e) for
better control of the paint fill (f). Using the original LazyBrush algo-
rithm (h) to paint the figure also produces a good result (i), however,
the strokes cannot be classified based on the painting alone (g).

92

5.4 Applications

The ability to easily label both strokes and areas empowers a large va-
riety of applications. One can easily alter the individual drawing style
for all the strokes that have the same label. It is also possible to accu-
rately separate the different parts of a sketch, specify their depth order-
ing [Sykora et al., 2010] and then deform them independently using as-rigid-
as-possible shape deformation techniques [Igarashi and Moscovich, 2005]
(see Figure 5.6b). These operations can help, for instance in the context of
image registration [Sykora et al., 2009a], to produce better alignment.

c

ba

Figure 5.6: Applications. Opaquing of the segmented clusters (a), ARAP deforma-
tion and opaquing with depth inequalities (b), on-the-fly labeling (c).

93

5 A Scribble-based Segmentation Tool

When artists start a drawing, they typically begin with a simple, high-level
sketch that depicts a set of of primitive shapes (see examples and references
in [Gingold et al., 2009]) that are called volume or scaffold lines. If available,
we can use these aiding structures as Smart Scribbles to segment the final
detailed sketch (see Figure 5.6c). This would let the artist focus on drawing
without having to switch between different brushes. As-rigid-as-possible de-
formation, for instance, could then instantly be used to correct the shape of
semantically meaningful sketch regions.

5.5 Results

We demonstrate the effectiveness of our algorithm on a variety of input
sketches. All results were generated using the parameters in Table 5.1.

Figure 5.7 shows a collection of simple input sketches and scribbles, to-
gether with the color-coded stroke labeling output by our system. These
results show that desirable sketch segmentations can be obtained using
very different scribbling strategies. We note that the input scribbles do not
have to closely match the sketch in order for our algorithm to work well—
approximate similarity in terms of position, orientation and curvature is suf-
ficient.

Figs. 5.1 and 5.8 show results from more complex input sketches. To correctly
segment these images, users typically start with rough, fast strokes, and then
refine the output locally using slower, more accurate strokes. Our method
robustly handles scenarios where strokes that are close together and almost
parallel belong semantically to different regions (as shown on the waiter’s
legs and snake and pole example in Figure 5.8). In these cases, the time metric
plays an important role in the labeling process.

Our framework does not require artists to draw the input sketches in any
particular manner. It is possible that strokes representing the same region
can be drawn at very different moments in time. This happens, for instance,
when artists first draw silhouettes for the whole scene, and then proceed to
refine the drawing. This can diminish the advantage of taking timing into
account in the similarity metric. Correct segmentations can still be obtained,
but more scribbles may be required. Alternatively the similarity metric can
be adjusted to apply a smaller weight to the time parameter, or it can be
removed as is done for the scribble metric.

94

5.5 Results

Figure 5.7: Results for simple sketches: several different inputs can produce the
same segmentation.

95

5 A Scribble-based Segmentation Tool

Figure 5.8: Example Results: For each example, the colored Smart Scribbles are
shown on the input drawing and the adjacent image shows the resulting
color-coded labelings.

96

5.6 User Study Report

Parameter Value Unit
λ 4
σprox smooth 100 px
σdir smooth 0.5
σtime smooth 1000 ms
σcurv smooth 0.1
σprox data [10 ; 90] px
σdir data 0.1
σcurv data 0.25
B 0.0001
artboard width 1200 px
artboard heigth 1200 px

Table 5.1: Parameter settings for the user study and all examples in this paper and
the accompanying video.

5.6 User Study Report

In order to test the efficiency and ease of use of our method, we conducted
a user study comparing Smart Scribbles to our implementation of several
commonly-used selection tools, namely point, box, and lasso (these tools are
typically included in professional vector graphics software such as Adobe
Illustrator or Inkscape). As shown in Figure 5.9, 35 participants took part
in our user study (8 women and 27 men with ages ranging from 18 to 62).
There were 5 artists, 9 hobbyists, and 21 people without drawing experience.
None of them used Smart Scribbles before therefore all can be considered as
novel users. Five had no experience with Adobe Illustrator or Inkscape, 14
had little experience, 15 were normal users, and 1 was an expert.

5.6.1 Learning Phase

The study began with a short tutorial introducing the selection tools. Here,
users were allowed to test all four selection tools on a variety of simple draw-
ings. There were examples to illustrate that there is no prescribed set of ges-
tures for Smart Scribbles, the only recommendation was to try to roughly
follow the shape and try to be as close as possible to the desired object. After
this learning phase, the users were asked about their experience. The ques-
tions and answers are shown in Figure 5.10.

97

5 A Scribble-based Segmentation Tool

Figure 5.9: Age histogram for the 35 participants of our user study.

Smart Scribbles Common Tools

Positive
Average
Negative

Figure 5.10: Tools Evaluation. These plots show the questions and answers given
after testing the tools in the first phase of the study. The numbers in
the horizontal axis refers to the following questions:
1. Did you like the interaction metaphor? (No, don’t know, yes)
2. How good was this tool, or set of tools, for coloring complex draw-
ings? (Badly suited, fair but not great, seems good)
3. Given enough time to practice, do you feel this is a tool, or set of
tools, you could become efficient with? (no, maybe with effort, yes)
4. If yes, how long do you think it would take? (long time, some time,
little time)

98

5.6 User Study Report

5.6.2 Comparison Phase

The participants were next shown pairs of identical drawings, one of which
had already been labeled, while the other had not. Their task was to repro-
duce the stroke selection for the unlabeled drawing. In order to complete
this task, the participants first used our Smart Scribbles (with parameters set
according to Table 5.1) and then the common tools (point/box/lasso). This
process was repeated with four different sets of drawings, for a total of eight
labellings per participant. The order in which the eight scenarios were pre-
sented was random.

Participants were randomly divided into two groups. First initial group of 17
people worked on a selection of 4 simple drawings (skull, house, combo, and
snake, see Figure 5.11) while second group (18 people) had 2 simple (skull
and house) and 2 complex drawings (abstract and characters).

During the performance gain test our system measured interaction time and
accuracy of the final labeling. Additionally, for the second group we mea-
sured mouse mileage. Mouse and keyboard were used to perform interac-
tions with the system. There was a possibility to invoke undo/redo, zoom
in/out and center viewpoint to the current position of the mouse cursor. In
addition to that all participants were asked to respond to questions of which
aim was to assess their subjective feeling about how these tools are suitable
for the task.

Overall distributions of times and mouse mileage measured during the ex-
periment are depicted in Figure 5.12. There is a notable performance gain
when comparing Smart Scribbles to common tools ranging from 1.23x to
2.36x (median speed-up). Paired t-tests (see Table 5.2) have indicated that
this gain is significant for 4 out of 6 drawings considering tight confidence
level of 99.5%. Except couple of outliers the accuracy of labelling was typi-
cally close to 100% which indicates most of the participants were careful and
tried to fulfill the task properly. Since the parameters of Smart Scribbles were
fixed during the test we can also claim that a wide variety of users is able to
produce target labeling within notably lower time as compared to common
tools without necessity of tedious personalized parameter tuning.

The qualitative results of this phase are shown in Figure 5.13.

5.6.3 Locality Control Phase

When we asked participants whether they like interaction metaphor of Smart
Scribbles 30 responded yes, 4 did not know, and 1 said no. For common

99

5 A Scribble-based Segmentation Tool

house snake

baseball butler robot

skull combo

characters abstract

Figure 5.11: Drawings and labeling used in the user study.

100

5.6 User Study Report

0
50

10
0

15
0

tim
e

[s
]

interaction time

charactersabstract

0
10

20
30

40
50

60

interaction time

tim
e

[s
]

housecombosnake skull

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

pi
xe

ls

mouse mileage

house abstract skull characters

Smart Scribbles

Common Tools

Figure 5.12: Interaction times (top) and mouse mileage (bottom) of participants for
different drawings using Smart Scribbles (orange) and common tools
(blue).

101

5 A Scribble-based Segmentation Tool

drawing speed-up t(d f) p-value
combo 1.23x −1.8798 0.07847
snake 1.53x −2.4807 0.02461
skull 1.83x −8.3931 0.00000

house 1.85x −5.2488 0.00001
abstract 2.36x −5.5759 0.00003

characters 1.65x −3.8896 0.00118

Table 5.2: Median speed-ups and results of paired t-tests comparing times spent on
labeling different drawings using Smart Scribbles and common tools.

1 2 3 4
0

5

10

15

20

25

30

35

Positive

Mildly Positive

Average

Mildly Negative

Negative

Figure 5.13: Tools Comparison. This plot shows the questions and answers given
after the performance tests in the second phase of the study. The num-
bers in the horizontal axis refers to the following questions:
1. Did the scribbles let you solve the tasks efficiently? (No, sometimes,
mostly, definitely)
2. Did the common tools let you solve the task efficiently? (No, some-
times, mostly, definitely)
3. Which tool did you prefer? (Common tools, no preference, scrib-
bles)
4. Should scribbles be added to programs like illustrator, would it help
people with their work? (No, I don’t know, possibly, likely)

102

5.7 Limitations and Future Work

tools answers were: 19 yes, 5 did not know, and 10 said no. Moreover, 23
participant were convinced that Smart Scribbles are good tool for segment-
ing drawings with complex depth contrary to only 9 who preferred common
tools. Based on these two questions a paired Wilcoxon signed rank test indi-
cated the preference of Smart Scribbles over the common tools is significant
with the confidence level of 99.5% (V = 102, p = 0.00159 and V = 363,
p = 0.00083 respectively).

In addition to the performance improvement tests and tool preferences we
also let the participants to experiment with continuous locality control (speed
driven) and binary switching between local and global influence of Smart
Scribbles. They were asked to reproduce labeling of details in three differ-
ent drawings (baseball, butler, and robot, see Figure 5.11). In the first round
participants controlled locality using mouse speed (linear relationship be-
tween speed and locality was used as proposed in [Accot and Zhai, 1997]). In
the second round shift key was used to switch between two different modes
(global as a default and local with key pressed).

After the test partecipants were asked four questions, as shown in Figure
5.14. First, they were asked whether they noticed the effect of the mouse
speed on continuous locality control. Most participants (28) noticed the ef-
fect and only 7 were not sure. Then we asked whether they prefer continuous
control using mouse speed or binary control with shift key. A majority (31)
was for binary switching, only 2 people preferred speed-based control, and
2 have no preference. One of the reasons for this result might be the fact that
users typically do not like to have some kind of time limitation when interact-
ing with the computer. This observation is in line with another question we
asked, i.e., whether they think speed is a good way to instruct the computer
on what you want they do. Only 6 said yes, 27 participants answered: No,
don’t want to be slow, and 2 No, it’s hard to control.

5.7 Limitations and Future Work

The selection of good parameters for the similarity terms and the energy
function requires some effort. As can be observed in the parameter sensitiv-
ity graphs in Figure 5.15, the system is robust when parameters are perturbed
one at a time. This is due to the correlation that exists between the similarity
terms. However, it is possible that the perturbation of multiple parameters
can lead to significant changes in the result. We also tested the usefulness of
the information provided by the time of creation of strokes. After removing
this information from the similarity terms, and after re-tuning the remaining

103

5 A Scribble-based Segmentation Tool

Positive

Average

Negative

1 2 3 4
0

5

10

15

20

25

30

35

Figure 5.14: Tools Comparison. This plot shows the questions and answers given
after the performance tests in the second phase of the study. The num-
bers in the horizontal axis refers to the following questions:
1. Have you noticed any difference between local and normal scrib-
bles? (No, maybe, yes)
2. Did you prefer using speed-based or SHIFT-based scribbles?
(Speed-based, no preference, Shift-based)
3. Given enough time to practice, do you think you could control speed
well? (No, possible, likely)
4. Do you think using speed is a good way to instruct the computer
on what you want to do? (No, hard to control, No, I don’t want to be
slow, yes)

parameters, we achieved the results shown in Figure 5.16. In our experi-
ence, disregarding this temporal information reduces the effectiveness of our
method, as overlapping strokes require more effort to be separated. In the
future we plan to develop a system that allows automatic parameter tuning
based on a database of ground truth data.

Although we aim to produce accurate labeling with minimal user effort, de-
tailed selection is necessary when ambiguities exist. One such ambiguous
case occurs when an object is occluded by another object and parallel strokes
from each are very close together or even overlaid. In this case, only the time
constraint can provide a distinctive metric to obtain correct labeling. How-
ever, when the time is not available or when the user does not preserve tem-
poral coherency of strokes, our approach requires additional user guidance.

104

5.7 Limitations and Future Work

70.00%

77.50%

85.00%

92.50%

100.00%

107.50%

21% 46% 100% 220% 483% 1060%

70.00%

77.50%

85.00%

92.50%

100.00%

107.50%

 9% 21% 46% 100% 220% 483% 1060% 9% 21% 46% 100% 220% 483% 1060%

70.00%

77.50%

85.00%

92.50%

100.00%

107.50%

 9%

Figure 5.15: Single parameter perturbation. Given a database of 8 drawings, each
with 5 different sets of scribbles drawn to match a desired segmenta-
tion, we measure the the segmentation accuracy obtained with pertur-
bations of the empirically chosen settings of Table 5.1. In each graph,
the horizontal axis shows the multiplication factor for one of the pa-
rameters in exponential scale. The vertical axis shows how the correct-
ness of the segmentation evolves. The graphs suggest slight changes
to the parameters that would lead to a better fit for this database. Ad-
ditionally, they show that the system is mostly sensitive to time and
proximity information, while direction and curvature hold less influ-
ence.

105

5 A Scribble-based Segmentation Tool

Figure 5.16: No-Time-Test: this image shows how the system works when no tem-
poral information is used. Notice how the cluttered regions require
more scribbles to produce a proper segmentation.

106

5.7 Limitations and Future Work

608 702 853 1052 1410 2034 3092 5068
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40
Optimization Time

tim
e(

s)

Segments

Inteactivity limit

Figure 5.17: Performance Limit. The graph on the top shows the computation time
for the optimization in our implementation. The data was generated
by progressively subsampling a complex drawing. Assuming a inter-
activity limit of 0.2 seconds, our implementation can optimize the la-
beling for up to 2000 segments. The corresponding subsampled draw-
ing is shown on the bottom.

107

5 A Scribble-based Segmentation Tool

The proposed graph-cut energy minimization strategy is generally very fast
and produces the labeling at interactive rates. However, in the worst case,
when a large number of stokes are close to each other as defined by our simi-
larity measure, the number of edges in the graph can grow quadratically with
the number of strokes and the computation can become prohibitively slow
(see Figure 5.17). The problem can be alleviated by subsampling the strokes
and processing disconnected components individually. Another problem is
related to the non-polynomial complexity of the core max-flow algorithm we
use [Boykov and Kolmogorov, 2004]. In certain situations where the cost of
the minimal cut is very high and the graph topology is complex, the number
of augmentation paths can grow very quickly along with the computation
time. This issue can be solved by a recently proposed incremental breadth-
first search solution [von Goldberg et al., 2011] that works in polynomial
time and is typically notably faster than [Boykov and Kolmogorov, 2004].

The use of previously labeled drawings as Smart Scribbles offers another av-
enue for future work. They could be used on-the-fly to label new sketches
as they are created, thus simplifying further interactions. This approach
could be used, for instance, as an extension to the recently presented
ShadowDraw system [Lee et al., 2011], where each sketch in the database
would be augmented with Smart Scribbles. In this way the segmentation
would be provided automatically as new drawings are created. A similar
use case arises in the context of sketchy animations where image registra-
tion [Sykora et al., 2009a] can be used to transfer already labeled strokes and
treat them as Smart Scribbles for the next frame. This can help, for instance, to
better control temporal noise [Noris et al., 2011]. Smart Scribbles could also
potentially be used to improve the accuracy of drawing simplification meth-
ods [Grabli et al., 2004, Barla et al., 2005, Shesh and Chen, 2008], as a typical
problem with the current, fully automatic approaches is that they do not take
into account any semantic information such as provided by our approach.

5.8 Conclusions

We have presented Smart Scribbles, a scribble-based interface for sketch-
segmentation. Our method is fast, supports multi-label segmentation, and
acts as an enabling technology for a variety of applications in the context of
drawing, editing, and animation.

In the long term, we envision a next-generation drawing application, where
drawing, editing, and animation are tightly integrated, and where the sim-

108

5.8 Conclusions

plicity of the interaction is the key. This work represents a step in this direc-
tion; a bridge between classic drawing and digital editing.

109

C H A P T E R 6
Inbetweening

The generation of inbetween frames that interpolate a given set of key frames
is a core component in the production of a 2D feature animation. As dis-
cussed in Chapter 2, this task is still very labor intensive. In this Chapter,
we aim at reducing the cost of the inbetweening phase by offering an in-
tuitive and effective interactive environment that automates inbetweening
when possible while allowing the artist to guide, complement, or override
the results. Tight inbetweens, which interpolate similar key frames, are par-
ticularly time-consuming and tedious to draw.

We focus on automating these high-precision and expensive portions of the
process. We have designed a set of user-guided semi-automatic techniques
that fit well with current practice and minimize the number of required artist-
gestures. We present a novel technique for stroke interpolation from only two
keys which combines a stroke motion constructed from logarithmic spiral
vertex trajectories with a stroke deformation based on curvature averaging
and twisting warps. We discuss our system in the context of a feature anima-
tion production environment and evaluate our approach with real produc-
tion data.

This work was a collaboration with a second PhD Candidate, Dr. Brian
Whited. The technical contributions of Section 6.3.4 are not to be considered
as contributions of this PhD dissertation.

111

6 Inbetweening

6.1 Introduction

Inbetweening is a cornerstone of the 2D animation pipeline. An animator
produces drawings at key frames that capture the heart of the animated mo-
tion. The inbetweener then draws the frames between each pair of keys that
fill in the intermediate motion. A typical feature-length animation requires
over one million inbetween drawings, with ratios of 3-4 inbetweens for each
key [Johnston and Thomas, 1995].

The manual production of inbetween frames is both difficult and time-
consuming, requiring many hours of intensive labor by skilled profession-
als. Furthermore, its cost is a significant part of the total production budget.
Consequently, researchers have long sought an automatic solution. Despite
a large body of work in this area spanning over four decades, no definitive
solution exists. This is in part because the problem is ill-posed—there is no
concise set of rules for producing high-quality inbetweens, especially in cases
of complex motion and changing occlusion. The artist relies on his or her per-
spective of the 3D world in which the animated characters are embedded, as
well as on an artistic vision for achieving the desired aesthetics. It would not
be sufficient to derive the three dimensional world from the drawings, even
if it were possible, as most often the characters have their own, undefined,
laws of physics and deformation.

We approach the challenging task of automatic inbetweening with two im-
portant observations derived from studying the traditional animation pro-
cess. First, tight inbetweens are among the most laborious and time consum-
ing to produce. Tight inbetweens are those drawn between two key frames
that are very similar in shape. These inbetweens are tedious to draw because
they require the greatest amount of technical precision and the least amount
of artistic interpretation. By focusing on tight inbetweening, we pinpoint an
expensive portion of the inbetweening process while restricting the problem
to one that is more tractable from an algorithm standpoint. Our second ob-
servation is that an effective system should automate as much as possible
while effortlessly deferring to artist control whenever needed. We never take
the artists out of the loop. Instead we seek to make them more productive
by automating the tedious and time consuming tasks so they can focus their
efforts on areas where their creative talents and expertise are required.

Based on these observations, we have developed BetweenIT, an intuitive and
effective interactive environment that automates tight inbetweening when
possible while allowing the artist to guide, complement, or override the re-
sults. BetweenIT operates on vectorized pairs of consecutive key frames that
were drawn in the program or obtained from scanned drawings. These key

112

6.1 Introduction

© Disney

Figure 6.1: Tinker Bell: Frames (a) and (e) are the given key frames and (b-d) (ex-
cept for the right hand) were generated automatically. The “shadows”
of previous frames are used to visualize their evolution. The topology of
the right hand is not compatible across the two keys and therefore not
suitable for automation: the portion indicated in red was hand-drawn.

frames are segmented automatically into strokes. The strokes of one key
frame are then matched with corresponding strokes of the subsequent key
frame. Finally, interpolated strokes are generated for each requested inbe-
tween frame. Most often the automatic tools provided by BetweenIT are suf-
ficient to achieve the desired results. In the remaining cases, the aesthetic
concerns of the artist as well as semantic ambiguities or topological discrep-
ancies between consecutive frames will call for user intervention. BetweenIT
offers an intuitive and effective workflow that allows such changes to be effi-
ciently expressed. Supported options include: adjusting the shape of an indi-
vidual stroke in a frame; adjusting the trajectory that a given vertex follows
across frames; resolving ambiguities in the correspondence; and controlling

113

6 Inbetweening

the behavior of occluded strokes that appear or disappear. All interactions
can be specified by the artist graphically via a drawing interface.

6.2 Background

© Disney

Figure 6.2: Example archival image: The artist has indicated the occluded lines in
red for reference. The associated timing chart is seen in the lower right.

While some of the underlying mechanisms have benefited from the advent
of digital technology, a 2D production today follows much the same basic
workflow as traditional animation [Johnston and Thomas, 1995]. The process
begins with a storyboard, which provides a visual representation of the story.
In layout, the staging for each scene is designed, including establishing the
setting, choosing and placing character and prop elements, and specifying
camera motion and cuts.

Character and effects animation is then done in multiple stages. First, ani-
mators produce the subset of drawings that lay down the core of the action,
the “keys.” These extreme drawings are often “ruff” versions that capture
the spirit, flow, and arcs of the animation. A “clean up” artist is responsible
for taking the ruff drawings and producing clean lines that remain true to the
original intent.

114

6.2 Background

Each key drawing has one or more timing charts associated with it (e.g. see
Figure 6.1). The animator uses these charts to specify how many drawings
should be produced between keys, and at what intervals. It is the job of the
inbetweening artist to draw the requested intermediate drawings to produce
seamless motion.

When inbetweens are needed for dramatically different key drawings, ad-
vanced artistic skill and interpretation are required to produce satisfactory
intermediate frames. In these cases, a further “breakdown” might be done,
where the artist produces those frames within the range that present special
drawing problems. Tight inbetweens require less artistic interpretation – but
considerable technical skill to lay down the lines accurately.

The inbetweened frames represent a significant portion of the drawings,
budget, and time for a production. A typical feature animation averages
about four drawings per frame (for different characters, props, etc.). An
80 minute feature with 24 frames per second requires 460,800 drawings
per production. If a quarter of these frames are done by the animators,
then that leaves 345,600 inbetweened drawings. Since multiple drawings
are often produced before arriving at the final version, the final tally can
add up to over a million inbetweened drawings per full length production
[Johnston and Thomas, 1995].

One critical consideration during animation and inbetweening is arcs of mo-
tion. Natural motion always follows an arc of some sort and therefore to
achieve fluid and lifelike animation, artists must capture these natural arcs.
This is one of the most challenging aspects of inbetweening since making a
drawing on an arc is much more difficult than one placed linearly between
the keys [Johnston and Thomas, 1995].

Our approach focuses on automating the process of inbetweening animated
frames post clean-up for characters, props, and effects. We introduce a novel
interpolation scheme which automatically derives natural arcs of motion
from pairs of consecutive keys. Our system fits into the current 2D pipeline
with minimal change.

6.2.1 Related work

The problem of automatic 2D inbetweening dates back more than forty
years to the inception of computer graphics as a field of research
[Miura et al., 1967]. To date, it has remained unsolved. The many chal-
lenges in automatic inbetweening have been well defined and include the

115

6 Inbetweening

information loss and ambiguity inherent in a 2D projection of a 3D char-
acter, and the topology variations between key frames that result from
changes in occlusion. An automated approach must address several chal-
lenges comprising: establishing correspondence in the presence of occlu-
sions and topological changes [Catmull, 1978], computing stroke trajectories
through time [Reeves, 1981], and avoiding the unnatural distortion that of-
ten occurs when there is a rotational component in an object’s movement
[Kochanek et al., 1982].

Many of the early methods are stroke-based. They require the user to iden-
tify a correspondence between the strokes of consecutive key frames (e.g.,
[Miura et al., 1967, Burtnyk and Wein, 1971, Levoy, 1977, Durand, 1991]) and
do not handle occlusions or topological changes. Correspondences in
Reeves’s method [Reeves, 1981] are indicated by a collection of curves called
moving points that are sketched by the user and connect the key frames
to specify both trajectory and dynamics. A cubic metric space blending al-
gorithm is used to find the positions of the remaining points, but requires
heuristics to complete the patch network defined by the key frame strokes
and moving point trajectories. Our method employs a semi-automatic cor-
respondence algorithm that infers correspondence for the entire key from a
small number of user gestures. Interpolation is automatic and designed to
follow natural looking motion arcs. However, our method supports an op-
tional trajectory redrawing interface similar to Reeves’s moving points that
allows customized trajectories to be specified by the artist.

Kort [Kort, 2002] presents a user-guided inbetweening system that identifies
correspondences and computes inbetweens automatically but allows the user
to correct undesired correspondences, trajectories, or timing. The method is
restricted to the class of animations in which occlusions are resolved via an
invariant layering. Our method is not restricted to layers and our workflow
allows occlusion ambiguities to be resolved with help from the artist via a
simple and efficient user interface.

Another layer-based approach [de Juan and Bodenheimer, 2005] targets the
reuse of previously created 2D animations. Unlike the previously discussed
methods, their system is image-based, rather than stroke-based. Characters
in completed animation frames are segmented from the background and di-
vided into layers. Inbetweening is accomplished via radial-basis function
(RBF) interpolation of the layer contours [Carr et al., 2001], followed by mor-
phing of the interior texture. The RBF interpolation requires the shapes to be
properly aligned, and artifacts can result from misalignments. The MeshIK
system of Sumner and colleagues [Sumner et al., 2005] includes a boundary-
based interpolation scheme that does not require alignment, but it does not

116

6.3 Core Algorithms

address interior texture morphing. As shown by Baxter, Barla, and An-
jyo [Baxter et al., 2009a], compatible embedding enables a maximally rigid
interpolation [Alexa et al., 2000, Fu et al., 2005, Baxter et al., 2009b] that natu-
rally blends both a shape’s boundary and its interior texture. Similar methods
have also been applied for cartoon capture and reuse [Bregler et al., 2002].
Nevertheless, methods based on texture blending are susceptible to blurring
artifacts unless extreme care is taken to align internal texture features. Be-
cause we use a stroke-based algorithm, our method does not suffer from
blurring problems. Sýkora and colleagues [Sykora et al., 2009a] use a simi-
lar imaged-based approach to register and morph cartoon frames. Their ap-
proach is designed to handle large pose changes and not the detailed inter-
polation of precise key strokes which we are interested in.

A final class of inbetweening systems employs skeleton-based methods
for key frame interpolation. In the early work of Burtnyk and Wein
[Burtnyk and Wein, 1976], key frame components are embedded in skeletal
structures which are animated directly to deform the embedded shape. The
inbetweening work of Melikohv et al.[Melikhov et al., 2004] uses a skeleton
concept to deform the texture surrounding hand-drawn lines. They focus on
simplicity so that non-artists can use the system. The vectorized strokes in
our system encode the skeleton and the varying thickness of the drawn lines,
preserving the original hand-drawn appearance.

Fekete and colleagues [Fekete et al., 1995] evaluate automatic inbetweening
in the context of a paperless 2D animation system and identify several ad-
vantages and disadvantages. The advantage of reduced hand-drawn inbe-
tweens and greater animation reuse is tempered by the need to specify corre-
spondences, struggle with awkward timing specification, and build template
models. Our BetweenIT system addresses all of these concerns: correspon-
dences are mostly automatic and require little user guidance (Section 6.3),
timing changes are specified in a natural fashion (Section 6.4), and templates
are not required. BetweenIT leads to a quantifiably reduced amount of inter-
action compared to the number of strokes drawn when inbetweens are done
by hand (Table 6.1).

6.3 Core Algorithms

This section details the automatic algorithms, which include graph building,
matching, and interpolation. For tight inbetweening, these algorithms often
produce adequate results automatically. The handling of more difficult cases
that involve artist intervention is discussed in section 6.4 where we present

117

6 Inbetweening

the entire workflow, including all user interaction. Our solutions were de-
signed with the goal of an artist-friendly workflow: the focus is on algorithms
that quickly produce a plausible result which can then be guided or edited
by the artist.

6.3.1 Representation

A single drawing in our system is stored as a graph of strokes. The graph
nodes, which we refer to as salient points, are the junctions at which strokes
meet or end, and the graph edges are the strokes themselves. Each salient
point contains pointers to its incident strokes, which are ordered counter-
clockwise around the salient point. A single stroke S is represented as a piece-
wise linear curve with n vertices. Each vertex i has an associated thickness
measure Ti, for i ∈ 1 . . . n.

6.3.2 Stroke matching

The input to the inbetweening process is a pair of consecutive keys which
have been segmented into a stroke graph. The user initiates the automatic
matching algorithm in one of two ways: by selecting a pair of correspond-
ing strokes, one from each key frame, or by selecting a region via a selection
lasso. When the lasso is used, the most similar pair of strokes within the se-
lected region is chosen automatically. This initial pair provides the seed for
our Correspondence Tracing Algorithm (CTA). In each key, starting from the
selected stroke, the CTA traverses the graph in both directions in a depth-
first order, respecting the circular order of the incident strokes around nodes.
The traversal is performed simultaneously on both keys. The recursion stops
when a incompatibility in the connectivity is detected or when two corre-
sponding strokes are too dissimilar.

Our similarity metric computes an error E between two strokes A and B
based on two different factors, EL and EA. EL is the difference in arc-length
between the two strokes. EA is the area of the region bound by the two
strokes when they are brought into endpoint alignment. E is then com-
puted as (EA + E2

L)/(L(A) + L(B))2 where L is arc-length, and compared
against a constant TE to determine if two strokes are similar. We have found
that TE = 1 works well and use it for all examples presented in this pa-
per. Other similarity measures may be used [Baxter and ichi Anjyo, 2006,
Veltkamp, 2001, Sebastian et al., 2003] that take into account proximity, ori-
entation, curvature measures, and other shape descriptors. We have opted

118

6.3 Core Algorithms

for a simple approach which works well in practice and is fast. No metric is
perfect in all cases and for tight inbetween situations, the choice of particular
method is not a major factor.

The inbetweening operates on the subgraph of strokes matched by CTA. In
the tight inbetweening problem, the two keys often have identical topology
and similarly shaped strokes. In such situations, CTA establishes stroke-to-
stroke correspondence for a whole connected component of the key. In more
complex situations, especially where the keys have different topologies, the
artist has the opportunity to provide further correspondence seeds, run CTA
again, and compute inbetweens for missing portions of the keys. When the
lasso selection is used, successive CTA traversals are executed, each time
computing the best seed among the remaining strokes not covered by the
previous traversals. This process continues until no stroke pairs with E < TE
remain.

6.3.3 Vertex Correspondence

By default, smooth (subdivided) versions of the key strokes are re-sampled
using uniform spacing in arc-length in order that matched strokes on each
key have the same number of vertices. This re-sampling defines the de-
fault vertex-to-vertex correspondence. The artist alters this correspondence
by identifying corresponding salient points, one on each stroke of a match-
ing pair. These salient points are inserted as new endpoints, hence split-
ting the strokes. More complex correspondence algorithms could be sub-
stituted [Sebastian et al., 2003], but we have found in practice that having a
simple,fast, and predictable technique is often more desirable.

6.3.4 Composite Interpolation

Our interpolation scheme is motivated by the basic principle of action arcs in
2D animation as described in the classic Illusion of Life: “most movements will
describe an arc of some kind...One of the major problems for the inbetween-
ers is that it is much more difficult to make a drawing on an arc than one
halfway inbetween...No one has ever found a way of insuring that the draw-
ings will all be placed accurately on the arcs, even when experienced people
are inbetweening the action, and it is one of the most basic requirements for
the scene”[Johnston and Thomas, 1995]. In addition to this desire for over-
all natural motion arcs, inter-stroke continuity must be maintained. The ap-
proach also must be efficient enough to fit into an interactive framework.

119

6 Inbetweening

To this end, we have developed a novel stroke interpolation scheme which
combines a stroke motion constructed from logarithmic spirals with stroke de-
formation based on curvature averaging and twisting warps.

Bi
0

Bi
1

A0 A1

Bj
0 Bj

1

A0 A1At

Figure 6.3: Stroke motion: The left figure shows the two spiral paths resulting from
calculating the spiral parameters individually for the strokes incident
on A0. On the right they have been computed as a weighted average of
the parameters calculated for each incident stroke.

Stroke Motion

Input strokes may be undergoing a motion that involves not only transla-
tion, but also rotation and scaling. Hence, we have developed a solution that
provides natural, arched motions when the corresponding key features are
congruent (related by a rigid body motion) or similar (related by an affinity
that is a combination of rotation, translation and uniform scaling). The stroke
motion is a map between time t (which evolves from 0.0 to 1.0), and a set of
similarities. A similarity may be defined by two points and their images.
Therefore, we define a stroke motion by the movement of its endpoints.

In choosing the particular type of trajectory for our endpoint motion, we re-
jected circular arcs since they are too limiting, and rejected cubic Bezier and
bi-arc segments since they sometimes produce unacceptable inflection points
or self-intersections. Instead, we opted for logarithmic spirals. A logarith-
mic spiral is a pleasing curve found in nature (e.g. shells, weather systems,
spiral galaxies) [Thompson, 1992]. For our application, logarithmic spirals
yield better results than Archimedean spirals, especially when used to ap-
proximate screen motions of shapes that approach or move away from the
viewpoint and hence grow or shrink in a non-linear manner due to perspec-
tive (Figure 6.3 left-top).

120

6.3 Core Algorithms

Given an initial position A0 and final position A1 of an endpoint A, we com-
pute its position At at time t using a logarithmic spiral motion l(t) which is
the combination of a rotation r(α) by angle α and a uniform scaling s(ρ) by a
factor ρ, both with respect to a fixed point (spiral center) F. We need to con-
sider all strokes incident on A when computing the appropriate values for α

and ρ. The process involves the following steps:

1. A weight is assigned to each incident stroke Si based on its relative arc-
length: We compute the sum Li of the arc-lengths of the stroke at time
t = 0 and at t = 1. The weight wi is set as follows, where LT is the total
of all Li:

LT = ∑
i
(L(Si

0) + L(Si
1)), wi =

Li

LT
. (6.1)

2. Each incident stroke Si, has one endpoint with initial position A0 and
final position A1. Let Bi

0, Bi
1 be the position of the remaining endpoint.

We compute the angle αi between ~A0Bi
0 and ~A1Bi

1 and the scale factor

ρi =
|| ~A1Bi

1||
|| ~A0Bi

0||
.

3. The final angle and scale factor are a weighted average: α = ∑ wiαi and
ρ = ∑ wiρi.

4. The fixed point F is computed by solving the linear system

~FA1 = r(α)s(ρ) ~FA0 (6.2)

In the case of pure translation, the determinant of the system is zero
(and the fixed point is at infinity). We handle this case accordingly.

The position At at time t of endpoint A from the initial key moved by this
logarithmic spiral motion is

At = l(t)A0 = F + r(αt)s(ρt)(~FA0) (6.3)

This process is carried out for each endpoint (see Figure 6.3 right). For any
given stroke, the stroke motion is then defined by the motions of its end-
points.

Stroke Deformation

The stroke motion described above produces the positions At and Bt of the
two endpoints A, B, of a stroke at time t. We must now compute the evolv-
ing shape of the stroke that connects these endpoints. The morph should

121

6 Inbetweening

smoothly blend between the key stroke shapes while preserving tangent con-
tinuity between adjacent strokes that are smoothly connected in both keys.
We achieve this with a three-step deformation involving intrinsic shape inter-
polation, curve fitting, and a tangent aligning warp.

Bi
t

AtAt

It

a) b) c)
Figure 6.4: Stroke deformation: (a) Intrinsic shape interpolation. (b) Curve Fit-

ting: transforms I to align the position It with Bi
t. Note the discon-

tinuity at the endpoint where the red stroke meets the black one. (c)
Tangent Alignment warp: enforces continuity at endpoints.

Intrinsic Shape Interpolation: Each stroke is represented in terms of its edge
lengths, vertex angles and vertex thicknesses. The shape of a stroke at time
t is constructed from a linear interpolation of this intrinsic description as
proposed in [Sederberg and Greenwood, 1992], which is a discrete version of
curvature interpolation [Surazhsky and Elber, 2002]. Note that if we start the
construction at At, the resulting interpolated curve I ends at some position
It, which does not necessarily coincide with Bt (Fig.6.4 a). We avoid using the
optimization described in Sederberg et al. [Sederberg and Greenwood, 1992]
to fix the discrepancy as it can produce unacceptable results, as outlined by
the authors. We also interpolate the thickness parameter at each vertex lin-
early between keyframes.

Curve Fitting: Each stroke I is then rotated by by angle ∠(~AtBt)(~At It) and
scaled uniformly by by || ~AtBt||/|| ~At It|| about At so that I′t coincides with Bt
(Fig. 6.4 b). These first two steps produce pleasing morphs that preserve the
continuity of the stroke graph but fail to preserve smoothness of connections
between adjacent strokes. This shortcoming is addressed by the next step.

Tangent Aligning Warp

In order to be consistent with the logarithmic spiral, we assume that the angle
of the tangent at an endpoint varies exponentially over time. Therefore, we

122

6.3 Core Algorithms

compute the desired endpoint tangent direction of an interpolated stroke by
linearly interpolating the polar representation of the tangent in the two keys.
Each interpolated stroke is then warped (Fig. 6.4 c) so that it matches the
desired tangents at its endpoints. To do this, we use a variation of the Twister
warp [Llamas, 2003]. First, assume the angles between the endpoint tangents
of I′ and the desired tangents at At and Bt are a and b. Assume that L is the
total arc length of the stroke I′. For every vertex position P of I′, LP is the
arc-length from P to At along I′. The Twister warp moves P to P + (PA −
P) + (PB − P), which simplifies to PA + (PB − P), where PA is the image of
P by a rotation of angle rA around At and PB is the image of P by rotation of
angle rB around Bt, where rA and rB are defined as follows:

rA = a cos2((
π

2
)(

LP

L
)), rB = b cos2((

π

2
)(

L− LP

L
)) (6.4)

The proposed interpolation scheme produces aesthetically pleasing results
that ensure tangent continuity across smooth junctions between strokes and
preservation of features that are present in both keys. In addition, it is an
approach suitable for interactive use, since it does not require numeric itera-
tions or other optimizations.

[F
u

et
 a

l.
20

05
]

Be
tw

ee
nI

T

Figure 6.5: The work of Fu and colleagues [Fu et al., 2005] resolves translation in-
variance via linear interpolation of at least one vertex on each connected
component which can lead to uncoordinated movement. Our method
ensures that all connected components move together in a coordinated
fashion.

123

6 Inbetweening

6.3.5 Comparison with prior art

In developing our interpolation algorithm, we have evaluated several ex-
isting techniques. Leading contemporary methods formulate the interpo-
lation as an optimization problem over the entire drawing that maximizes
the rigidity of the inbetween shapes to avoid scaling and shearing artifacts
[Fu et al., 2005, Surazhsky and Elber, 2002, Alexa et al., 2000]. Since the opti-
mization is formulated in the differential domain, the result is invariant to
global translation. Consequentially, these methods cannot be applied as-is
because the input to our application is made up of multiple connected com-
ponents which must move as a semantic unit when the translation invariance
is resolved—an issue not addressed by existing work. Figure 6.5 demon-
strates this problem using our implementation of [Fu et al., 2005]. Using our
approach, when different objects of one key frame are all moved by the same
rigid body motion or affinity to new poses in another key frame, then their
trajectories are consistent through inbetweening(Fig. 6.5, 6.6. If the compo-
nents are transformed each by a different affinity, there is no fundamental
reason to believe that they need to follow a consistent path. In either sce-
nario, our workflow allows the artist explicitly specify the path, if desired.

The most similar work to BetweenIT is that of Baxter and Ichi
[Baxter and ichi Anjyo, 2006], which describes a system for computing an
N-way interpolation of several input keyframes at the stroke level. Cor-
respondences are computed automatically and editable by the user when
mismatches occur. The major difference is that they treat lines individually,
whereas our technique utilizes a graph structure which preserves connectiv-
ity in the inbetweens.

Our logarithmic spirals ensure that all portions of the drawing (including
separate connected components) move in a coordinated fashion while re-
specting the important principle of motion arcs from traditional hand-drawn
animation. Our three-step deformation method deforms the stroke interiors
while ensuring continuity at endpoints. All steps execute interactively from
start to finish in contrast to the aforementioned algorithms which require a
precomputation step.

6.4 Workflow

We have developed a natural workflow for user-guided inbetweening in
which various interactive operations allow the user to optionally guide
and/or override the algorithmic tools described in the previous section. As

124

6.4 Workflow

with other parts of the system, the interface design was driven by conversa-
tions with artists. The system is moded, with keyboard shortcuts to switch
between modes (correspondence editing, salient editing, trajectory editing,
occlusion editing, breakdown editing).

The most notable aspect of the GUI is the interaction metaphors. The artists
favor stroke-based interaction over clicking, and thus we have designed in-
teractions within BetweenIT around the concept of guide strokes. The seman-
tics of a guide stroke, and hence the resulting action, depends on the cur-
rent mode and are described in more detail below. These guide strokes offer
an artist-friendly alternative to clicking on pairs of strokes or salient points
for the different operations, since clicking is often inconvenient when using
a pen and tablet input device. It should be noted that all interactions pro-
vide instant feedback to the artist with the exception of the occlusion editing,
which can incur a few seconds for complex drawings due to its current naïve
quadratic implementation.

Correspondence Editing: If not satisfied with the output of the automated
CTA stroke matching, the user can trim or extend the set of matched stroke
pairs. To remove strokes from the matched set, the user simply draws a guide
stroke along them on one of the keys. To extend the matched set, the user
draws a guide stroke, providing a new seed for the next round of CTA. This
new CTA traversal will not override previous inbetweens and will stop once
a stroke with an existing correspondence is found.

Salient Point Editing: To fine tune the correspondence, the user can spec-
ify additional salient points indirectly through guide strokes. Assuming the
strokes from the adjacent keys are displayed in the same view, the user draws
a guide stroke that passes through (approximately) the matching stroke pair.
This action splits each stroke by inserting a new salient point. The salient
point on the first stroke is the point closest to the starting point of the guide
stroke and the salient point on the second stroke is computed similarly. The
initial two strokes are thus broken into four. The same guide stroke serves to
define the trajectory of vertex corresponding to the salient point as it moves
between the keys.

The user may also desire to merge adjacent strokes, thereby deleting a salient
point. This operation is useful when a stroke in one frame should correspond
to two adjacent strokes in the other key frame which have been split by a
junction with another stroke. This operation is performed by connecting two
adjacent strokes with a guide stroke.

Timing Specification: In practice, the timing for a set of inbetweens is spec-
ified prior to the inbetweening step and loaded in with the input key draw-

125

6 Inbetweening

ings. For total flexibility, however, the user may adjust the time parameteri-
zation before and after inbetweens have been computed. If they are already
computed, they will update on the fly for immediate feedback.

Figure 6.6: Speaker: Frames (a) and (d) are the given key frames and (b-c) are gen-
erated inbetweens.

Trajectory Drawing: Any of the automatically computed vertex trajectories
may be edited as follows. The user draws a guide stroke to indicate the new,
desired path. The ends of the trajectory are fixed, as they are specified by the
key frames. It would be too restrictive, however, to require that the guide
stroke coincide with the initial and final vertex positions. In cases where
the drawn path does not match, the guide stroke is automatically retrofit
through a similarity transformation (translation, rotation, and uniform scal-
ing) to meet the end constraints. The adjacent inbetweens that are affected
by such a change are recomputed immediately. When in playback mode, the
result is reflected in the animation in real-time, giving instant feedback and
allowing the user to redraw the trajectory repeatedly until the desired result
is obtained.

Occluded Lines Drawing: In situations where a stroke is partially or to-
tally occluded in one key frame, but not in the next or previous key frame,
the graph connectivity may be locally incompatible. The user may extend
a stroke past its occlusion point by drawing a guide stroke to indicate the
occluded portion of the stroke.

The added stroke is then intersected with other strokes in the same frame,
creating substrokes. Each substroke has an independent visibility toggle. By
default, the substrokes toggle visibility at each intersection, which works well
in the common simple case, such as in Fig. 6.9. When more control is neces-
sary, the user may select specific substrokes to manually toggle the visibility.
The visibility status is transferred automatically to subsequent correspond-

126

6.5 Results

ing substrokes through time. For even further flexibility, the produced inbe-
tween substrokes may also be toggled individually with a tap of the pen on
the stroke.

Breakdown Insertion: When two key frames or subsets of key frames are
too dissimilar to be classified as “tight," the user has the option of inserting
an additional “breakdown” key frame for either the entire frame, or just the
subset that is not tight. The user simply draws the strokes of the inbetween
and then treats them as key strokes. In this way our system allows the user
to produce manual stroke-level breakdowns only where needed.

Figure 6.7: Hand – User interaction: A trajectory is specified for the finger tip.
The arc and resulting salient points are shown in green. The original
automatically generated salient points are shown in red.

6.5 Results

The goal of BetweenIT is to automate the production of inbetweens where
possible. As the level of complexity in the drawings increases, we support
intuitive and direct input from the artist to guide the automation. We expect
the level of interaction or “touch time”[Catmull, 1978] to reflect the complex-
ity of the drawing problems presented by the keys. The following examples
are sample results of utilizing BetweenIT on real production data. A time-
line noting the relative position of the frame is shown beneath each example.
Keys are denoted with an asterisk, all other frames were generated by Be-
tweenIT. In each example, the previous frame(s) in the sequence are indicated
as a “shadow” to show the progression of the interpolation.

127

6 Inbetweening

In the following, we present results for the purpose of evaluating the usabil-
ity of BetweenIT and the quality of the inbetweens it produces. First, we
show a collection of inbetweens generated by BetweenIT given archival key
frames. We compare the automatically generated results visually to the hand-
drawn inbetweens from the original artwork. We also present sample results
from a artist evaluation of BetweenIT by the effects department.

Quantitatively we measure performance in terms of stroke count as well as
time, where possible. All of the examples shown produced automated re-
sults in roughly 1 second on average. In cases where the user desires, or
is required, to guide the system, he/she draws a series of “guide strokes”
and/or indicates edits with mouse clicks, as described in Section 6.4. In the
following we use interaction count (the sum of the guide strokes and input
mouse clicks) versus the total strokes in the frame as a rough measure of effi-
ciency gain. For example, if each of a pair of keys has n strokes and there are
k inbetweened frames, then the artist would have to hand draw kn strokes
to create the inbetweens. If the system produces fully automated results that
are acceptable, that is a 100% gain in efficiency. If the user needs to perform i
interactions to guide the system, the gain is kn−i

kn . Also note that even when
this measure reported 0% gains, the use of BetweenIT may still save time,
since the guide strokes need not be precise and may be drawn faster than the
strokes that make up the final frame. Table 6.1 summarizes the results.

Archival examples: Figure 6.6 illustrates an example of pure rigid body mo-
tion. In this case, the results shown were produced fully automatically.

In Figure 6.7 we illustrate a next possible level of interaction. Here the auto-
matic technique has produced a reasonable solution, but the user has chosen
to slightly alter the trajectory of the tip of the finger with a single drawn arc.
The inbetween is automatically updated after the arc is drawn, giving the
user interactive feedback. In addition to specifying the arc, this interaction
transparently produces additional salient points at the tip of the finger.

The Goofy hand example in Figure 6.10 presents a more challenging topolog-
ical problem. For example, the automatic algorithm was unable to correctly
establish correspondence for all strokes on the back of the hand. The desired
result was achieved after the user manually specified 3 correspondences to
guide the matching. The rightmost image in Figure 6.10 is a visualization of
the automatically generated trajectories, illustrating the smooth arcs gener-
ated by the interpolation algorithm.

The duck sequence in Figure 6.8 shows two successive frame ranges. Note
that unlike the previous examples the specified timing is not linear. Figure

128

6.5 Results

Figure 6.8: Duck: Frames (a), (e), and (h) are the given key frames and (b-d) and
(f-g) are generated inbetweens.

6.9 illustrates an occlusion fix for this example, where a single stroke drawn
by the user indicates the desired shape of the occluded region.

Figure 6.1 presents a step higher in the complexity range. Here there are
many topological as well as occlusion challenges. The rotating right hand
is the most notable drawing problem and can not be handled automatically.
In this case a breakdown drawing for only the hand has been inserted for
frames b − d, and the remaining portion of the frames were produced by
the algorithm. Our framework allows the user to select desired areas and
do the drawing themselves seamlessly within the automated context. This
is important because there will always be portions of the drawings that the
artist will want to do themselves.

Finally, in Figure 6.11 we show an example taken from [Kort, 2002]. Kort’s
technique attempts to solve occlusion issues algorithmically, but is only suc-

129

6 Inbetweening

© Disney

Figure 6.9: Duck – User interaction: The first two images show an expanded region
in each of the keys, a and e, where the finger is initially occluded and
then moved from behind the duck. The user input occlusion stroke is
shown on the right. Resulting inbetweens are shown in 6.8.

Example # Inb. Strk Interactions % Eff. Gain
Speaker 48 0 100
Goofy hand 84 13 85
Duck 770 12 98
Tinker Bell 456 24 95
Tone 145 24 83

Table 6.1: Number of interactions required to generate the inbetweens vs. total
number of hand-drawn inbetween strokes.

cessful in the simplest of cases, and therefore the ears present a failure case.
In contrast our system requires user interaction for all three stages: corre-
spondence, feature identification, and occlusion (totaling 29 interactions) but
was able to successfully generate coherent inbetweens, shown in the bottom
row of 6.11.

For the purposes of evaluating our system, in addition to looking at potential
efficiency gain, we can compare the results of the algorithm to hand-drawn
inbetweens. We do not expect in general an exact match, as even between
artists, different drawings are produced, but such a comparison can give
some indication of the success of our approach. Figures 6.12,6.1 show the
result of using our tool against original hand-drawn inbetweens by overlay-
ing the two.

All of the above results were presented to a lead clean up artist to judge qual-

130

6.5 Results

Figure 6.10: Goofy hand: Frames (a) and (e) are the given key frames and (b-d) are
generated inbetweens. The rightmost figure superimposes the frames
and visualizes the trajectories. © Disney

ity – as she would evaluate any of the inbetweens produced in her depart-
ment. For the duck example and the Goofy hand example there was one note
each regarding the shape of a single inbetweened stroke. To produce the de-
sired shape for the duck it was sufficient to add one additional user-defined
salient point. The note for Goofy’s hand requesting a change of the location
of the knuckle bend is shown in the left image in Figure 6.13. To implement
this fix, the drawn fix stroke was added as a breakdown to the middle inbe-
tween frame to produce the final results shown in the bottom row of Figure
6.13.

Trial Evaluation: In addition to comparing the generated inbetweens to ex-
isting hand-drawn examples, BetweenIT was evaluated by the effects depart-
ment who used the tool to inbetween tone shapes. Tones, highlights, and
shadows represent only a portion of the types of inbetweening performed
in effects, but a time-consuming portion, and one well-suited to automation.
Figure 6.14 shows an example tone . The frog character was loaded in as a
reference background on which to draw the tone shown on the right side of
her face. Note that the tone region is masked out against the character in the
final composite (shown in the middle figure) and therefore the shape of the
left side of the tone is not important.

Another example showing only the inner outline of a tone for a character’s
face is shown in figure 6.15. This shot was comprised of 5 key frames and 29
inbetweens. The rightmost figure in 6.15 shows all 34 of the tone frames. A
hand-drawn version of all 29 inbetween frames took approximately an entire
day to complete, while the version produced by BetweenIT was completed

131

6 Inbetweening
[K

or
t 2

00
2]

Be
tw

ee
nI

T

Figure 6.11: Kort example: Comparison of results from [Kort, 2002], in top row, to
results from BetweenIT shown in the bottom row.

end-to-end in roughly 30 minutes. These numbers are just a indication of
efficiency: the artist completed this example after just a single afternoon to
get familiar with BetweenIT. We expect the efficiency gain to increase with
more exposure to the tool. Our stroke efficiency measure for this example is
83% (20 salient points and 4 trajectories drawn – see Table 6.1), which maps
to the task being completed 16 times faster than by hand.

6.6 Conclusion

We have presented the BetweenIT system for the user-guided automation of
tight inbetweening. For cases where the user is not satisfied with the auto-
mated results, BetweenIT provides a context in which the user can guide the
system in a natural way to produce quality results efficiently. The inbetween-
ing is driven by a novel solution for stroke interpolation along natural arcs
from only two keys.

We demonstrate workflow and results using BetweenIT on a collection of real
production examples of varying complexity. The results generated are com-
parable to hand-drawn examples in many of our test frames. Where user
intervention was necessary, the required input was small relative to the re-
sulting reduction in the number of overall drawn strokes. After a single intro-
ductory session with the tool, an effects artist was able to efficiently produce
inbetweened tones on multiple shots that were included in the final feature
production.

132

6.6 Conclusion

© Disney

Figure 6.12: Duck: An example frame comparing the results shown in Figure 6.8
by overlaying a hand-drawn frame in red.

Figure 6.13: Goofy hand: The left figure shows an artist’s desired change (in red)
to the knuckle from Figure 6.10. The remaining figures show the re-
sults after inserting a breakdown stroke at the middle frame. The
expanded area compares the new inbetween to the one before the fix
(blue). © Disney

133

6 Inbetweening

Figure 6.14: Frog Tone: This example contains 9 key frames and 22 generated in-
betweened frames. The leftmost figure shows a background reference
image with the tone shape superimposed, the middle figure is the com-
posited frame, and the rightmost image shows all 31 tone frames su-
perimposed - color-coded by key frame. © Disney

© Disney

Figure 6.15: Face Tone: Frames (a) and (q) are two key frames for the tone shape
and (e,i,m) are a subset of the 15 generated inbetweens (b-p). The
rightmost figure superimposes tone shapes for all 34 frames, with the
(a-q) shown in green.

134

6.6 Conclusion

While our hope is that such a tool will increase the efficiency of the inbe-
tweening phase, and thus reduce the cost of a production, such a tool, if
successful, could also broaden the scope of animation that can be practically
supported. Scenes with very slow motion are expensive to inbetween and
are therefore sometimes avoided. Our solution could make the incorporation
of such scenes more feasible.

There are many avenues for improvement in our current system. We have
primarily focused on the interpolation algorithms: the correspondence, and
feature identification modules could benefit from further exploration. High-
quality vectorization is also an open area.

135

C H A P T E R 7
Temporal Noise Control

In this Chapter, we propose a technique to control the temporal noise present
in sketchy animations. Given an input animation drawn digitally, our ap-
proach works by combining motion extraction and inbetweening techniques
to generate a reduced-noise sketchy animation registered to the input ani-
mation. The amount of noise is then controlled by a continuous parameter
value.

Our method can be applied to effectively reduce the temporal noise present in
sequences of sketches to a desired rate, while preserving the geometric rich-
ness of the sketchy style in each frame. This provides the manipulation of
temporal noise as an additional artistic parameter, e.g. to emphasize charac-
ter emotions and scene atmosphere, and enables the display of sketchy con-
tent to broader audiences by producing animations with comfortable noise
levels.

We demonstrate the effectiveness of our approach on a series of rough hand-
drawn animations.

137

7 Temporal Noise Control

0% 25% 50% 75% 100%

0% 25% 50% 75% 100%

Figure 7.1: Balancing scene. We compare different noise reduction values from 0%
(input animation) to 100% (noise-free).

7.1 Introduction

Compared to traditional cleaned-up drawings, sketches present a kind of vi-
sual richness, where both silhouette and interior lines are composed of many
rough strokes. This style allows another dimension of expressiveness - emo-
tion, action, and other features can be conveyed through the “sketchy” draw-
ings.

The richness provided by the sketchy style can be considered to be a form of
geometric noise. Despite its positive benefits in still images, geometric noise
becomes temporal noise in sequences of sketches and is generally unpleasant
to view. The industry solution to this problem is to remove the geometric

138

7.2 Related Work

noise. In production environments, early versions of animation (both 2D and
3D) are often composed of sequences of rough sketches. Later in the pipeline,
these are systematically replaced either with clean-line drawings or with ren-
derings of 3D scenes, which typically present cleaner visuals. Animations
completely made of sketches are less common and generally confined to short
sequences or small productions1.

Our goal is to preserve the expressiveness inherent in sketchy drawings while
removing unpleasant temporal issues. We propose to reduce temporal noise
while keeping geometric noise by supporting interpolation at a finer level,
down to the individual sketchy strokes. Instead of appearing and disappear-
ing, the strokes transition smoothly from frame to frame. Enforcing these
constraints manually in typical production environments would be imprac-
tical: establishing a fine-scale correspondence of strokes within the sequence
of sketches and generating the proper animation path is too labor-intensive.

A key insight of our approach is that we can first construct a noise-free an-
imation using only a representative subset of the input frames such that ef-
fectively all temporal noise is removed. Then, the desired amount of noise
can be continuously varied on top of this noise-free animation. Another key
idea is the use of motion extraction to allow local stroke searches within the
global motion - enabling an automated solution to the fine-scale stroke corre-
spondence problem.

7.2 Related Work

Research efforts related to sketchy or hand-drawn styles of illustration can be
divided into two main topics: simplification and generation (static images as
well as temporally coherent animations).

In the area of automated simpification/beautification, several techniques
have been developed that reduce the number of lines in a drawing by prun-
ing possibly redundant lines while still conveying the notion of the original
shape [Wilson and Ma, 2004, Grabli et al., 2004]. Instead of solely performing
stroke reduction, Barla et al. [Barla et al., 2005] propose a perceptually moti-
vated technique for synthesizing representative lines. Input strokes are first
grouped using a greedy clustering algorithm that pairs strokes according to

1Notable examples include Frédéric Back’s short “L’homme qui plantait des arbres” and a
brief series of sketches in the “Colors of the Wind” sequence in Disney’s animated feature
Pocahontas.

139

7 Temporal Noise Control

screen-space proximity. A geometric reconstruction step then follows to pro-
duce a single line for each group. The described approach is for static draw-
ings, though they propose incorporating a temporal aspect of perceptual
grouping- “common fate”, expressed by grouping line segments with similar
velocity to produce coherent animation. Shesh et al. [Shesh and Chen, 2008]
later extended this approach to handle time coherence by building a simplifi-
cation hierarchy of strokes and using opacity blending to interpolate between
a pair of strokes and its simplified version to create smooth transitions.

Generation of static sketchy or pen-and-ink style illustrations from
input 2D images/photographs and from 3D models is a popu-
lar topic in the field of non-photorealistic animation and render-
ing (NPAR) (e.g. [Winkenbach and Salesin, 1994, Salisbury et al., 1997,
Coconu et al., 2006]). Far less attention has been focused on develop-
ing temporally coherent results suitable for animation. Existing tech-
niques [Curtis, 1998, Bourdev, 1998, Kalnins et al., 2002, Kalnins et al., 2003]
focus on rendering stylized silhouettes of animated 3D models. After sil-
houettes are extracted from the 3D model the main challenge is to generate
coherent “sketchiness” along the silhouette strokes over time, e.g. through
assigning temporally coherent parameterizations to strokes in the image
plane [Kalnins et al., 2003, Bourdev, 1998] or alternatively achieving co-
herence via a particle system seeded along the silhouette[Curtis, 1998] or
through stroke texture representations [Benard et al., 2010] designed for tem-
poral coherence. The key issue with all of these approaches is that they
require an underlying 3D model or a clean 2D image with known stroke
correspondences. In our case the challenge is that we have a set of unordered
strokes in each frame which are not necessarily moving coherently and we
need to determine how to best match and interpolate them over time.

7.3 Method

The method we introduce offers artistic control over the level of temporal
noise in hand-drawn animations. Mismatches in the individual strokes used
to define the same silhouette in consecutive frames can be a major source of
temporal noise, particularly in rough sketches. Generally speaking, we seek
to maintain the global motion of an input animation, as well as the overall
drawing style, while manipulating the temporal noise level. Smooth output
animations are typically preferred, but we note that high-frequency noise can
be an effective artistic tool. The animation of a character who is scared, for

140

7.3 Method

2

3

31

1

1

2

32

a) Creation of a Noise-Free Sequence

b) Continuous Noise Reduction

Algorithm Components:

Input
sequence

Input and Smooth
Pairs

Variable noise level
Sequences

Noise-Free
sequence

3

1

2

Motion Extraction
(Section 3.3.1)

Frame Deformation and
Stroke Correspondences
(Section 3.3.2)

Strokes Interpolation
(Section 3.3.3)

Figure 7.2: Method Overview. Our method works in two phases. (a) The input
sequence is processed to create a Noise-Free sequence. To do so, three
steps are performed: (1) Motion extraction (2) Frames Deformation and
Stroke-to-Stroke correspondences, and (3) Interpolation. (b) For each
pair of input vs. noise-free frames, an arbitrary number of sequences
with increasing noise reduction can be generated, again using the same
three steps.

141

7 Temporal Noise Control

instance, could benefit from a certain amount of temporal noise to emphasize
emotion.

Before describing our method, we introduce the notation used throughout
the paper. Our algorithm operates on sequences of frames, where each frame
F contains a set of strokes that appear in the animation at the same moment
in time. Each stroke s is a piece-wise linear curve defined by a sequence of
vertices. The i-th stroke in a frame F is given by F (i).

A motion field is a functionM : R2 → R2 that tracks the movement of every
point on the 2D canvas. In particular,MF2

F1
is the motion field that describes

the relative motion between frames F1 and F2. We define D(M,F) to be the
deformed frame that is obtained by taking the vertices of every stroke in F
and displacing them according toM.

7.3.1 Overview

Our approach takes as input a sequence of frames from a hand-drawn anima-
tion. The core algorithm works in two passes (see Figure 7.2). First, the input
sequence is processed to create a noise-free animation (see Figure 7.2a). This
is done by sampling the original input animation to choose representative
frames. These frames are smoothly interpolated to create a new animation,
and, for the time-being, all other frames not in the representative subset are
ignored. The output of this stage is a set of smooth, automatically-created
inbetween frames.

In the limit if we choose only the first and very last frame of the animation as
the representative set, replacing frames from the original sequence with these
newly synthesized inbetweens would effectively produce a noise-free anima-
tion. However, much of the finer scale motion and sketchy details would also
be removed. On the other hand, if the representative set includes all of the
original frames, then no interpolation is performed and we have the original,
noisy content.

Our goal is to allow an artist to precisely control the level of temporal noise.
This is enabled by the second pass of our algorithm, which smoothly interpo-
lates the original noisy animation with the smooth inbetweens created during
the first pass (see Figure 7.2b).

Both passes must solve the same problem of creating smooth inbetween
frames. In other words, given two frames of animation, we must establish
a fine-scale stroke correspondence and interpolate smoothly between each
stroke pair.

142

7.3 Method

7.3.2 Representative Frame Sampling

The first phase of our algorithm generates a noise-free sequence which ide-
ally should resemble the original animation as much as possible. The sam-
pling scheme (i.e. choice of representative frames) is crucial to the quality of
the resulting animation. Our method is comprised of two main components:
the sampling strategy and timing control.

We propose two selection strategies for choosing representative frames. Uni-
form sampling selects representative frames distributed at equal intervals
specified by a window size w. Keyframes uses important or extreme frames
that are manually selected from the original animation input.

Once the representative frames are selected, our system assumes a uniform
division of time units inside each interval, resulting in an approximation of
the input timing. Our experience is that, by respecting the input animation
keyframes, this approximation is acceptable. However, for particular scenes
it might be desirable to have finer control. This can be achieved by altering
the timing values used to generate the inbetweens in [Whited et al., 2010]. It
is assumed that the keyframe specification and timing information, if needed,
can be provided as input, along with the original animation. This is suitable
for a classic animation environment, where both keyframes and timing infor-
mation are captured by timing charts.

7.3.3 Creating Smooth Inbetween Frames

Algorithm 2: CreateInbetweens
1: Input: F1,F2: animation frames
2: Input: t: interpolation parameter, 0 ≤ t ≤ 1
3: Output: Ft: an inbetween
4: F̂1 ← D(MF2

F1
,F1)

5: S ← computeStrokeCorrespondencePairs(F̂1,F2)
6: Ft ← {}
7: for all (i, j) ∈ S do
8: s← interpolateStrokes(F1(i),F2(j), t)
9: Ft ← Ft ∪ {s}

10: end for

Algorithm 2 describes the steps to create smooth inbetween frames. Both
passes of our method use this algorithm. The input consists of a pair of

143

7 Temporal Noise Control

representative animation frames, F1 and F2, and an interpolation parame-
ter t, 0 ≤ t ≤ 1. Our goal is to create a new frame Ft using solely the strokes
from frames F1 and F2. This process ensures continuity in the strokes that
are output as t varies between 0 and 1, and thus results in smooth animations.

The first step towards creating smooth inbetween frames consists of identi-
fying the pairs of strokes from F1 and F2 that represent the same features
in the drawing at different moments in time. Every stroke from one input
frame is matched to the most likely candidate stroke from the other frame,
as expressed by a stroke correspondence measure. We refer to this process as
finding the stroke-to-stroke correspondences (see Section 7.3.3).

Strokes that are used to define the same element in a drawing (e.g. a portion
of the silhouette) can be far apart spatially from frame to frame. Similarly,
strokes that represent different elements of the drawing can become spatially
close. Computing appropriate stroke-to-stroke correspondences in this set-
ting is therefore a very difficult task, since proximity is not a reliable measure
of similarity. To mitigate this problem we compute the stroke correspondence
measure after deforming the strokes of F1 according to the motion fieldMF2

F1
(see Section 7.3.3). More precisely, we compute the stroke-to-stroke corre-
spondences between the frames F̂1 = D(MF2

F1
,F1) and F2. In general, the

spatial distances between the strokes in the deformed version of F1 and F2
are significantly smaller, so computing stroke-to-stroke correspondences in
this setting is less prone to mis-matches. The stroke-to-stroke correspondence
step results in a set of pairs (i, j), where each pair indicates a correspondence
between stroke i of F1 and stroke j of F2. All pairs of corresponding strokes
are then interpolated to create the inbetween frames Ft (see Section 7.3.3).

The remainder of this section outlines the method used to create the motion
fields, the process of deforming the input frame, the criteria used to compute
the stroke-to-stroke correspondences, and the stroke interpolation method.

Motion Extraction

An important part of our processing pipeline consists of computing the rel-
ative motion, or motion field, between two frames F1 and F2. We use
a slightly modified version of the As-Rigid-As-Possible (ARAP) method
[Sykora et al., 2009a]. The original approach assumes the mask of the reg-
istered image is known beforehand. This allows the control lattice, which
represents the motion fieldMF2

F1
, to be adapted to the topology variations of

the underlying shape.

144

7.3 Method

In our problem domain, we are dealing with a more complicated scenario,
as the input consists of an unordered set of strokes without any connectivity
information. However, it is still important to take into account the topology
of the input sketch, as opposed to using a uniform grid. To overcome this dif-
ficulty we compute a rasterized distance field, as illustrated in Fig. 7.3, which
we use as a mask. The computed distance field closes small gaps between the
input strokes. In addition, the distance field provides a better cue for image
registration (similar to chamfer matching [Borgefors, 1988]).

In addition to the distance field, we use a hierarchical coarse-to-fine approach
to compute the motion field. We first build a multi-resolution pyramid of im-
ages by recursively reducing the image size by a factor of two. Each image
level has a corresponding control lattice whose resolution also differs at each
level by a factor of two. We run the registration algorithm on the lowest res-
olution image first, with the coarsest control lattice. We then render a pixel
accurate representation of the motion field which is used to initialize the po-
sitions of the control points of the finer lattice used for the image at the next
resolution level. The process continues until all images in the image pyra-
mid have been processed. We have observed that this hierarchical approach
speeds up the convergence of the motion field extraction algorithm and in-
creases the method’s robustness under large motions.

As noted in [Sykora et al., 2009a] the image registration algorithm can poten-
tially get trapped in a local optimum. These cases are typically rare but when
they occur we let the user drag-and-drop selected control points in order to
guide the algorithm towards a better solution. This operation can be imple-
mented by fixing the positions of the selected control points and changing
their associated weights to large values as in [Wang et al., 2008].

Frame Deformation and Stroke Correspondences

The motion fieldMF2
F1

represents the relative motion between frames F1 and
F2. This provides a way of estimating the location of each stroke from F1,
if it had been drawn at the time represented by frame F2. The computation
of the deformed frame is straightforward. The vertices v (which are simply
2-dimensional points on the digital canvas) defining the strokes in Fi are dis-
placed according to the motion field: v← v +MF2

F1
(v).

The stroke correspondence step is used to compute a measure of how well
two strokes from different frames will interpolate. Intuitively, the bet-
ter aligned and spatially close the two strokes are, the better their corre-
spondence measure should be. For our work, we define the correspon-

145

7 Temporal Noise Control

Figure 7.3: Control lattice for the ARAP image deformation: distance field com-
puted from rasterized strokes (left), ARAP registration using the con-
trol lattice based on the distance field (right).

dence measure between two strokes s1 and s2 as h(s1, s2) ∗ h(s2, s1), where
h(A, B) is a component of the Hausdorff distance. More precisely, h(A, B) =
maxa∈A(minb∈B(d(a, b))) and d(a, b) is the Euclidean distance between points
a and b, i.e. the vertices of strokes A and B. We note that this is one of
many choices of similarity measures [Seah and Tian, 2000, Veltkamp, 2001,
Lie et al., 2010]. However, in our experiments, we found the Hausdorff dis-
tance to work well and be more robust than other measures.

Stroke Interpolation

The stroke correspondence algorithm is used to find all pairs of strokes that
need to be interpolated to create the inbetween frames. We use the three-
step deformation method introduced in Whited et al. [Whited et al., 2010]
to smoothly interpolate pairs of strokes. The strength of this ap-
proach over other techniques [Fu et al., 2005, Baxter and ichi Anjyo, 2006,
Baxter et al., 2009b] is that in addition to interpolating the stroke curvatures,
it also captures the affinity of the global motion (rotation, translation and
uniform scaling).

This interpolation method computes animation trajectories as spirals based
on the relative orientation of the strokes, as measured using information from
F̂1 and F2.

Flipping a stroke will result in different animation spirals. During the stroke
interpolation the two frames being interpolated may be far apart, and in case
of large rotation, the relative orientation of strokes may be unreliable. To

146

7.3 Method

ba

Figure 7.4: Tree scene. We compare the input animation (a) with the noise free
result (b). Close-ups are marked by blue squares.

147

7 Temporal Noise Control

improve the result, we slightly modify the original algorithm by storing the
relative orientation of strokes during the Stroke Correspondence search. This
is when the frames are deformed to overlap, and therefore the relative orien-
tation of strokes is predictable.

7.4 Results

We tested the effectiveness of our algorithm on hand-drawn animation se-
quences containing between 30 and 90 frames. In order to evaluate our mo-
tion extraction algorithm, the animation of the Tree shown in Figure 7.4 was
generated procedurally (see Figure 7.5). All other animations were created
manually with a digital drawing tool. The Square animation, shown in Figure
7.6, presents a simple case with an almost rigid motion. The use of tempo-
ral noise as an artistic tool is investigated using the Face animation, which is
shown in Figure 7.11. Lastly, the Balancing animation, Figure 7.1, illustrates
another challenging example handled by our framework.

For the examples in this Section, to emphasize the temporal progression, con-
secutive animation frames are displayed with decreasing opacity. For the
Square, Balancing, and Face scenes, we used a uniform representative frame
sampling, with a window size of 7 frames. The Tree scene uses a set of 8 se-
lected keyframes and the resulting window sizes are between 4 and 7 frames.
Temporal reduction values are displayed as percentages, where 0% is the in-
put animation and 100% is the Noise-Free animation.

Our algorithm was developed in C++ and runs as a single thread. On a stan-
dard workstation, the execution of Algorithm 2 takes up to 10 seconds per
pair of frames, with the motion extraction and the search for correspondences
being the most time-consuming tasks.

7.4.1 Ground Truth Comparison

To evaluate our motion extraction method we created a “ground truth” an-
imation of the Tree in Maya. Starting with a planar textured mesh of the
undeformed tree (see Figure 7.5), the mesh was deformed by using the bend
deformer tool and keyframing the curvature. The deformed tree texture was
then used as a reference over which an artist sketched each frame of the ani-
mation.

Figure 7.7 compares the extracted motion field with the ground truth gen-
erated in Maya. In general, the extracted motion captures both the global

148

7.4 Results

Figure 7.5: Generation of the motion ground truth. A planar grid is generated and
deformed with Autodesk Maya (left). A reference image is textured on
the mesh (center), generating a reference animation over which the final
tree animation is sketched (right). The global motion is captured by the
mesh deformation.

animation motion and local deformations due to the geometric noise. As a
result, it provides a very precise stroke alignment, which greatly simplifies
the task of finding stroke to stroke correspondences.

Input Sequence Window Size 3 Window Size 5 Window Size 7

Figure 7.6: Square Scene. This image shows the effect of increasing window sizes.
Each close-up shows 5 animation frames overlayed with decreasing
opacity. When the noise is high, the lines look evenly distributed and
unstructured (Input Sequence). With low temporal noise, lines appear
to follow a structure and tend to be clustered (Window Size 5 and Win-
dow Size 7).

7.4.2 Neighborhood Averaging Comparison

We compare our results with those obtained through neighborhood interpo-
lation, which proceeds as follows. For each sample point p1 of a stroke j in a
frame i, we collect the two nearest neighbor points p2 and p3 in frames i− 1

149

7 Temporal Noise Control

c d

a b

Figure 7.7: Motion Extraction Comparison. The extracted motion (a and c) is
compared with the ground truth motion (b and d). The blue and yel-
low frames represent D j

i and Fj, with i = 22, j = 26 (a,b) and
i = 29, j = 33 (c,d). The extracted motion is precise and simplifies
the search of stroke to stroke correspondences.

and i + 1. p1 is then updated to p1 ← (p1 + p2 + p3)/3. An example result
is shown in Figure 7.8. Since each sample point pk is free to move indepen-
dently, divergent attractions result in breaks of the line continuity. This usu-
ally happens when sample points of one stroke are influenced by different
sets of strokes.

This result shows that a simple averaging approach is not desirable. In gen-
eral, we observe that when the motion is large, this approach produces obvi-
ous artifacts, losing important features of the frame. This motivates the use
of motion extraction to alleviate the effects of large animation motions. Even
when the motion is small, kinks and undesirable deformations are present.
This motivates the consideration of strokes as atomic entities, therefore shift-

150

7.4 Results

ing the correspondence from the individual points samples to the stroke
level. Our approach benefits from both considerations.

ba

Figure 7.8: Neighborhood Averaging. A window of three frames (red, green, blue)
is used to compute a per point neighborhood average (purple). When the
motion is large (a), the resulting frame is strongly degenerated. Even
for slow animations (b), this approach leads to undesirable kinks and
deformations.

7.4.3 Sampling and Timing Control

As discussed in Section 7.3.2, we implemented two selection strategies for
choosing representative frames, uniform sampling, and manually designated
keyframes. Figure 7.9 compares results of using the different selection strate-
gies. Notice that using the input animation keyframes, as opposed to uni-
formly sampling the frames, greatly reduces the motion error.

Figure 7.10 shows the effect of different timing charts applied to the same
set of frames where the timing values used to generate the inbetweens in
[Whited et al., 2010] are altered. Notice how the spaces are affected by the
choice of the timing functions - most notably at the tip of the tree.

7.4.4 Temporal Noise as an Artistic Tool

The second phase of our method allows the generation of sequences with
varying temporal noise. By manipulating the noise reduction level in differ-
ent parts of the animation, an artist has the ability to use the noise as an addi-
tional storytelling element. Noisy animations can be used to portray certain
feelings, such as anger or fear. A proof of concept is shown in Figure 7.11.

151

7 Temporal Noise Control

Input Uniform
Sampling

Input
Keyframes

Figure 7.9: Sampling Strategy. This image shows the maximum motion error (vi-
sualized as misalignment) obtained in the Tree animation using two
different sampling strategies: Uniform Sampling, with a window size
of 7 frames, and Keyframes, with 6 keyframes marked at the important
animation times.

25 26 27 28 29 30 31

1

0

0.2

0.4

0.6

0.8

linear sinus tanh timing

Figure 7.10: Timing Control. This image shows the effect of different timing func-
tions applied to the same set of frames.

0

0%

100%

50%

10 20 30 40 50 60

Character Emotion vs. Noise Reduction

Happy Surprised Scared Horri�ed

Frames 41 - 43Frames 1-7

Figure 7.11: Face. This scene presents a character with an emotional evolution
from happy to horrified.

152

7.5 Conclusion

7.5 Conclusion

We have presented a novel technique for noise manipulation in sketchy an-
imations and demonstrated its use on a series of hand-drawn inputs. Our
approach not only makes the production of larger scale sketchy animations
feasible through automated noise reduction, but also widens the scope of
artistic control to include noise as a first-class creative device.

7.5.1 Limitations and Extensions

One limitation of this work is due to the intrinsic difficulty of handling oc-
clusions, topology changes, and disconnected components moving indepen-
dently in a 2D environment. For the motion extraction step, distinct objects
with different motions can create divergent motion fields and occlusions can
force unnatural compressions; both cases are difficult to capture with a ARAP
model. In order to handle these scenarios in complex scenes, the input would
need to be first segmented into coherent layers.

Additionally, complex curved strokes that self intersect may cause problems
in the correspondence and interpolation steps. A simple solution, similar to
what is proposed in Barla et al. [Barla et al., 2005], is to split these strokes
into separate line segments. However, every segment would then behave
independently, which may not be desirable.

Another limitation of our work lies in the selection of keyframes. As shown
in Figure 7.9 the set of selected representative frames has a significant impact
on the output animation. In particular, as the complexity of the animation
increases (i.e. higher frequency motions), a larger number of keyframes is
needed to preserve the motion. This effectively limits the number of smooth
inbetween frames that we can create to reduce temporal noise.

Our frame inbetweening technique needs to be extended to provide smooth
interpolation across multiple keyframes. Although the interpolating mo-
tions computed by the logarithmic spiral technique [Whited et al., 2010]
are smooth between consecutive keyframes, the approach has the limita-
tion that continuity is not necessarily preserved across longer sequences.
However, multiple techniques have been proposed to preserve this conti-
nuity at the keyframes, while still interpolating them. In one approach
[Powell and Rossignac, 2008], subdivision is used to smoothly interpolate
3D poses by blending consecutive screw motions. A more recent approach
[Rossignac and Vinacua, 2011] also produces continuous motions as a blend-

153

7 Temporal Noise Control

ing of consecutive “steady affine motions”. In 2D, both of these algorithms
may be applied to logarithmic spirals with little modification.

7.5.2 Relative Stroke Orientation

As presented in Section 7.3.3, we use [Whited et al., 2010] to create smooth
blends for pairs of matched strokes. This interpolation method computes
animation trajectories as spirals based on the relative orientation of strokes.
Flipping a stroke will result in different animation spirals. During the stroke
interpolation the two frames being interpolated may be far apart, and in case
of large rotation, the relative orientation of strokes may be unreliable. To
improve the result, we slightly modify the original algorithm by storing the
relative orientation of strokes during the Stroke Correspondence search. This
is when the frames are deformed to overlap, and therefore the relative orien-
tation of strokes is predictable.

We mention a rare failure case. Curved object boundaries make the rela-
tive orientation of strokes harder, and mismatches may occur. Figure 7.12
shows an extreme example where two strokes lying on a curved boundary
are matched together. The relative orientation computation would produce
the wrong result (a) in contrast to the the desired solution (b).

a bObject
Boundary

Figure 7.12: Curved boundaries of objects can, in extreme cases, deceive the com-
putation of the relative orientation of strokes, resulting in the wrong
motion trajectories (a) opposed to the desired ones (b).

154

C H A P T E R 8
Conclusions

This chapter concludes the thesis by summarizing and discussing the major
contributions and suggesting future research directions.

8.1 Discussion

In this thesis we have proposed a set of digital tools to support the produc-
tion of 2D Animation. Our focus has been to conceive tools that keep the
artist as a central agent supported by computer-assisted solutions. In order
to favor artistic control, we have applied full automation only for tasks with
little need for artistic interpretation. We have collaborated extensively with
professionals from the Walt Disney Animation Studios, learning about the
industry problems and incorporating in our tools feedback and suggestions
from artists and engineers.

We started our work by studying the production pipeline of traditional 2D
Animation, as well as learning about the existing digital solutions. We iden-
tified a number of challenges related with computer assisted cartooning, and
defined three core problems — representation, correspondence, and inter-
polation — that in our opinion hold the key to revolutionary changes in this

155

8 Conclusions

field. We then proceeded by considering possible tools to address these prob-
lems. Our work proposes three categories of tools: digital representation,
pre-processing, and applications.

We have studied the problem of representation, analyzing the existing digi-
tal representations and proposing a novel “hybrid” representation. We have
highlighted the advantages and shortcomings of existing raster and vector
representations, and defined the requirements for a representation suitable
for 2D Animation drawings. We have proposed a novel, Vector-Splats hy-
brid to combine the visual richness of raster with the editing capabilities of
vector images. Raster data is captured by splats, and rendered using EWA
Splatting. Splats are mapped to centerlines with a simple tangent-normal
frame from the closest point. Deformations of the centerlines are propagated
to the splats. Additionally, we investigate the issue of representing both areas
and lines with a unique vector description. We propose the use of both cen-
terlines and boundary lines, and define of relationship between them based
on different editing scenarios.

We have presented a system for the vectorization of clean line drawings.
This problem is challenging as when lines are drawn close to each other, or
intersect, local information becomes ambiguous. Our observation is that a
non-local scope is necessary to make educated choices in how to deal with
these ambiguities. We developed a two-step method that does a first ini-
tial reconstruction, which is used to learn the drawing topology and iden-
tify the ambiguous regions, and then addresses these regions by reconstruct-
ing plausible configurations and picking a heuristic optimum. As demon-
strated in the results, our method improves the vectorization of junctions
and nearby strokes, features which existing vectorization solutions fail to re-
construct faithfully.

We have then developed an interactive segmentation tool for the labeling of
strokes. This tool makes it possible organize the drawing strokes into seman-
tic groups, preparing the drawing for further processing. Given a drawing,
the user sketches scribbles associated with labels over the region of interest,
and the system solves a energy minimization to generate a labeling of the
strokes. In contrast to previous work, our method exploits both geometric
and temporal information. Similarities between the scribbles and the draw-
ing strokes, as well as among the drawing strokes, are used to define the
energy terms of our formulation. A user study was conducted to learn about
the experience of novice users, as well as compare our method with common
selection tools. The results of the study show that our method is generally
faster than existing tools, and registered positive qualitative feedback with
respect to the ease of use and learning curve of our solution.

156

8.2 Future Work

Inbetweening represents one of the most labor intensive tasks in the pro-
duction of traditional animated features. We propose a computer-assisted
solution for tight inbetweening. In our method, drawings are represented as
graph of strokes. Given a pair of key frames, a mapping between the graphs
is derived. Inspired by the animation principle of moving with arcs, we com-
pute logarithmic spiral trajectories for the junctions and salient points, and
then interpolate strokes ensuring smooth continuity across junctions. We
provide the user with a set of tools to correct for mismatches in the key frames
topology, deal with simple occlusion cases, and manipulate the trajectories.
Our method minimizes the number of required artist-gestures, and a trial
evaluation showed great productivity improvements over manual solutions.

Finally, we have proposed a method for control of temporal noise in sketchy
animations. Sketches present a particular visual style where perceived
boundaries and interior lines are approximated by many rough strokes. In
a sequence of sketches, the lack of temporal coherence of this geometric vari-
ation results into the perception of flickering lines, an effect we call tempo-
ral noise. In order to control the amount of noise of a given sequence, our
method performs two steps. In the first phase, selected key frames from the
input animation are processed to generate a so called “noise-free” sequence.
In the second phase, we process each pair of corresponding frames from the
input sequence and the noise-free sequence, generating sequences of decreas-
ing temporal noise. Finally, the user can select the desired temporal noise
level. Our method enables the production of longer scale sketchy animations
by automatic reduction of noise, and widens the scope of artistic control by
exposing the temporal noise as creative device.

8.2 Future Work

In this thesis we have proposed tools to address different problems in rela-
tion to the support of 2D animation. This final Section outlines some areas of
future work in the context of the solutions presented in the individual thesis
Chapters. We end with a more global vision of future directions for advance-
ment of the field based on the findings of this research effort, in reference to
the core problems introduced in Chapter 2.

For the digital representation of drawings, we have proposed in Chapter 3
the concepts of vector-splats and line-areas hybrids. Further investigation
is necessary to understand the proper relationship between boundaries and
centerlines, as well as how the deformation of boundaries should influence
the interior, both in terms of centerline and splats.

157

8 Conclusions

To address the correspondence problem, we consider the embedding of 2D
drawings into deformation fields driven by a 3D canvas. We touched on
this topic in Chapter 7, by embedding strokes into deformation mesh. Our
meshes however were only 2D. 3D geometry introduces the necessary depth
information that is lost in 2D drawings, making it possible to solve otherwise
complicated occlusion problems. The deformation of a given mesh defines
the necessary correspondence across the animation. Recent efforts such as
[Schmid et al., 2011] propose the embedding of 2D strokes into 3D canvas
based on proxy geometry to explore new the visual style of 3D animation.
The Walt Disney Animation Studio recently produced a short called “Paper-
man”, where 2D strokes are animated from underlaying proxy geometry. We
believe this is a very interesting and promising research path. Not only does
it solve some of the major challenges of computer assisted 2D Animation, but
it also provides a bridge between 2D and 3D artists and tools, allowing both
fields to benefit from each other.

For the interpolation problem, we have proposed in Chapters 6 and 7, tech-
niques for the interpolation of clean line drawings and sketchy drawings.
Our work however only considered the geometric and temporal aspects of
the interpolation, but we have not studied how the visual details, such as
stroke textures, but also more painterly effects, should evolve during the an-
imation.

Conceptually, we believe that the production of 2D Animation should be only
as labor intensive as the artistic interpretation requires it. Everything else
should be automated. We experienced that the principle of keeping the artist
in the loop is the key to support 2D Animation. We consider the use of 2D-3D
hybrid systems as a very viable path for future development. These systems
maintain the freedom of 2D drawings, but introduce the missing information
necessary to process the data algorithmically and truly gain from automation.
The complexity may lie in the need to animate the story twice (with the proxy
geometry first, and in drawings second), as well as balancing the distribution
of the complexity of the animation.

We are confident that these problems, if addressed with the right methodol-
ogy, can be addressed and solved, and by looking at the most recent devel-
opments, we think that we might be standing at the verge of a revolutionary
change of this field.

158

A P P E N D I X A
Curriculum Vitae

Personal Information

First Name: Gioacchino
Last Name: Noris
Address: Disney Research, Zurich

Clausiusstrasse 49
8092 Zurich, Switzerland

Phone: +41 79 375 48 30
Email: chino@disneyreserach.com
Homepage: http://graphics.ethz.ch/∼gnoris/
Nationality: Swiss
Data and place of birth: May 14th 1983 in Lugano, Switzerland

159

A Curriculum Vitae

Education

since November 2008 joint Ph.D. student at the Swiss Federal Institute
of Technology (ETH) and Disney Research Zurich
(DRZ).

Sept. 2006 - Sept. 2008 M.Sc. Visual Computing, Swiss Federal Institute of
Technology (ETH), Zurich, Switzerland.

Sept. 2003 - Sept. 2006 B.Sc. Computer Science, Swiss Federal Institute of
Technology (ETH), Zurich, Switzerland.

Employment

Nov. 2009 - Jun. 2012 Research Assistant, Swiss Federal Institute of Technol-
ogy (ETH), Zurich, Switzerland.

Nov. 2006 - Sept 2008 Assistant, Swiss Federal Institute of Technology
(ETH), Zurich, Switzerland.

160

Publications

ACM Transactions on
Graphics, to appear

G. Noris, A. Hornung, R. W. Sumner, M. Simmons,
M. Gross:
Topology-Driven Vectorization of Clean Line Drawings

Computer Graphics
Forum, to appear

G. Noris, D. Sýkora, S. Coros, M. Simmons, B. Whited,
A. Hornung, A. Shamir, M. Gross, R. W. Sumner:
Smart Scribbles for Sketch Segmentation

SIGGRAPH 2012 T. Beeler, B. Bickel, G. Noris, P. Beardsley, S. Marschner, B.
Sumner, M. Gross:
Coupled 3D Reconstruction of Sparse Facial Hair and Skin

NPAR 2011 G. Noris, D. Sýkora, S. Coros, B. Whited, M. Simmons, A.
Hornung, M. Gross, R. W. Sumner:
Temporal Noise Control for Sketchy Aniamtion

Eurographics 2010 B. Whited, G. Noris, M. Simmons, R. W. Sumner, M. Gross,
J. Rossignac:
BetweenIT: An Interactive Tool for Tight Inbetweening

ETH Zurich, master
thesis 2008

G. Noris:
Computer-Assisted Cartooning: Inbetweening

161

List of Figures

1.1 The message dispatch metaphor. 3
1.2 2D Animation toolset Overview. 7

2.1 A Storyboad from “Dumbo”. 14
2.2 A Model Sheef of “Sir Giles” . 15
2.3 Characters line-up from Alison Action. 16
2.4 Pre-Production and Production phases. 17
2.5 Background painting from “Pinocchio”. 18
2.6 A clean-up key from “Peter Pan”. 19
2.7 Generation of skin tones and shadows effects from 2D shapes. 21
2.8 Comparison of complexity between “Aladdin” (1992) and

“The Princess and the Frog” (2009). 21
2.9 A complex drawing including multiple characters interacting. 23
2.10 A comparison between the Raster and Vector representations. 24
2.11 Occlusion example in a simple animation. 25
2.12 An example of a sudden, unpredictable transformation of a

character. 26
2.13 The core problems of computer-assisted animation, and where

we address them in this thesis. 27

List of Figures

3.1 Dependencies between Pre-Processing, Digital Representa-
tion, and Application tools. 32

3.2 Appearance customization of closed paths in Adobe Illustrator. 36
3.3 Examples of gradient meshes 37
3.4 ToonBoom Harmony’s representation 38
3.5 Two common vector representation: “separate” and “mask”. . 39
3.6 Single-Layer Vector-Splats Hybrid. 42
3.7 Multi-Layer Vector-Splats Hybrid. 43
3.8 Proof of concept for the Vector-Splats Hybrid. 44
3.9 The Lines-Areas Hybrid Representation. 44
3.10 Autodesk® SketchBook Pro interaction and tools. 45
3.11 Stylus input processing in the context of Lines-Areas Hybrid. 46
3.12 Medial Axis Experiments using Mesecina 47

4.1 Vectorization Challenges. 53
4.2 Vectorization System Overview 56
4.3 Brush profile moving bands. 59
4.4 Topology Extraction and Loop Fixing. 60
4.5 Vectorization and Local Ambiguity. 62
4.6 Junction Configurations. 63
4.7 Revese Drawing Procedure. 64
4.8 Centerlines Smoothing. 65
4.9 Stroke-Curvature . 66
4.10 Examples of valence-4 junctions. 66
4.11 Centerline Selection . 67
4.12 Spikes . 69
4.13 Stroke-Curvature Thresholding 70
4.14 Centerlines Error. 71
4.15 Salient Points Error. 72
4.16 Response to input resolution. 73
4.17 Vectorization Results. 74
4.18 Pixel Clustering Comparison. 75
4.19 Comparison between multiple vectorization methods. 76
4.20 System Output . 78
4.21 Limitations. 79

5.1 Sketch Segmentation Examples. 82
5.2 Energy Definition Overview. 87
5.3 Locality Control Example. 88
5.4 Construction of the wnergy minimization graph. 90
5.5 Computation of the Area Mask. 92
5.6 Segmentation Application. 93

164

List of Figures

5.7 Results for simple sketches. 95
5.8 Results for more complex drawings. 96
5.9 User Study: Age Histogram. 98
5.10 User Study: Tools Evaluation. 98
5.11 User Study: Drawings. 100
5.12 User Study: Interaction Time & Mouse Mileage. 101
5.13 User Study: Tools Comparison. 102
5.14 User Study: Detail Extraction Answers. 104
5.15 Parameters Perturbation. 105
5.16 Neglected Time Information Test. 106
5.17 Performance Limit Case. 107

6.1 Tinker Bell result. 113
6.2 Archival Image. 114
6.3 Stroke Motion. 120
6.4 Stroke Deformation. 122
6.5 Coordinate motion of disconnected components. 123
6.6 Speaker result. 126
6.7 User interaction for correction of the trajectories. 127
6.8 Duck result. 129
6.9 User interaction for correction of topological changes. 130
6.10 Goofy hand result. 131
6.11 Comparison with Kort’s method. 132
6.12 Duck result. Comparison with hand drawn inbetweens. 133
6.13 Goofy hand breakdown insertion. 133
6.14 Frog tone example. 134
6.15 Face tone example. 134

7.1 Balancing Scene. 138
7.2 Method Overview. 141
7.3 Control lattice for the ARAP image deformation. 146
7.4 Tree Scene. 147
7.5 Generation of motion ground truth 149
7.6 Square Scene. 149
7.7 Motion Extraction Comparison. 150
7.8 Neighborhood averaging test for comparison with the tempo-

ral nois control method. 151
7.9 Sampling Strategy. 152
7.10 Temporal Noise Timing Control. 152
7.11 Face Scene. 152
7.12 Extremely Curved Boundaries Problem. 154

165

List of Tables

1.1 This thesis is organized in five work packages, tackling differ-
ent aspects of the toolset. 8

4.1 Numerical results and ground truth evaluation for different
input drawings. See Section 4.5 for a detailed discussion (ALT:
Adobe Live Trace, Base: base version of our algorithm, where
no reverse drawing is applied). 68

5.1 Parameter settings for the user study and all examples in this
paper and the accompanying video. 97

5.2 Median speed-ups and results of paired t-tests comparing
times spent on labeling different drawings using Smart Scrib-
bles and common tools. 102

6.1 Number of interactions required to generate the inbetweens
vs. total number of hand-drawn inbetween strokes. 130

Bibliography

[Accot and Zhai, 1997] Accot, J. and Zhai, S. (1997). Beyond fitts’ law: Mod-
els for trajectory-based hci tasks. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 295–302.

[Adobe, 2012a] Adobe (2012a). Flash.

[Adobe, 2012b] Adobe (2012b). Illustrator.

[Adobe, 2012c] Adobe (2012c). Photoshop.

[Alexa et al., 2000] Alexa, M., Cohen-Or, D., and Levin, D. (2000). As-rigid-
as-possible shape interpolation. Proceedings of SIGGRAPH 2000, pages 157–
164 catmull.

[Amazon, 2012] Amazon (2012). Box office mojo.

[An and Pellacini, 2008] An, X. and Pellacini, F. (2008). Appprop: All-
pairs appearance-space edit propagation. ACM Transactions on Graphics,
27(3):40.

[Ando and Tsuruno, 2009] Ando, R. and Tsuruno, R. (2009). Stroke by exam-
ple using segmental brush synthesis. Pacific Graphics 2009 Poster Papers.

[Autodesk, 2012] Autodesk (2012). Sketchbook pro.

Bibliography

[Barla et al., 2005] Barla, P., Thollot, J., and Sillion, F. (2005). Geometric clus-
tering for line drawing simplification. In Proceedings of the Eurographics
Symposium on Rendering, pages 183–192.

[Bartolo et al., 2007] Bartolo, A., Camilleri, K. P., Fabri, S. G., Borg, J. C., and
Farrugia, P. J. (2007). Scribbles to vectors: preparation of scribble drawings
for CAD interpretation. SBIM, pages 123–130.

[Baudelaire and Gangnet, 1986] Baudelaire, P. and Gangnet, M. (1986). Ad-
vances in computer graphics i. chapter Computer-assisted animation: An
overview, pages 469–498. Springer-Verlag New York, Inc., New York, NY,
USA.

[Baxter et al., 2009a] Baxter, W., Barla, P., and ichi Anjyo, K. (2009a). Compat-
ible embedding for 2d shape animation. IEEE Transactions on Visualization
and Computer Graphics, 15(5):867–879.

[Baxter et al., 2009b] Baxter, W., Barla, P., and ichi Anjyo, K. (2009b). N-way
morphing for 2d animation. Comput. Animat. Virtual Worlds, 20(2):79–87.

[Baxter and Govindaraju, 2010] Baxter, W. and Govindaraju, N. (2010). Sim-
ple data-driven modeling of brushes. I3D ’10: Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics and Games, pages 1–8.

[Baxter and ichi Anjyo, 2006] Baxter, W. and ichi Anjyo, K. (2006). Latent
doodle space. Computer Graphics Forum, 25(3):477–486.

[Baxter and Lin, 2004] Baxter, W. V. and Lin, M. C. (2004). A versatile inter-
active 3d brush model. In Proceedings of the Computer Graphics and Applica-
tions, 12th Pacific Conference, PG ’04, pages 319–328, Washington, DC, USA.
IEEE Computer Society.

[Benard et al., 2010] Benard, P., Cole, F., Golovinskiy, A., and Finkelstein, A.
(2010). Self-similar texture for coherent line stylization. NPAR 2010: Pro-
ceedings of the 8th International Symposium on Non-photorealistic Animation
and Rendering, pages 91–97.

[Blum, 1967] Blum, H. (1967). A Transformation for Extracting New Descrip-
tors of Shape. In Wathen-Dunn, W., editor, Models for the Perception of Speech
and Visual Form, pages 362–380. MIT Press, Cambridge.

[Borgefors, 1988] Borgefors, G. (1988). Hierarchical chamfer matching: A
parametric edge matching algorithm. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 10:849–865.

[Bourdev, 1998] Bourdev, L. (1998). Rendering Nonphotorealiztic Strokes with
Temporal and Arc-length Coherence.

170

Bibliography

[Boykov and Jolly, 2001] Boykov, Y. and Jolly, M.-P. (2001). Interactive graph
cuts for optimal boundary and region segmentation of objects in n-d im-
ages. Proceedings of Internation Conference on Computer Vision, pages 105–
112.

[Boykov and Kolmogorov, 2004] Boykov, Y. and Kolmogorov, V. (2004). An
experimental comparison of min-cut/max-flow algorithms for energy
minimization in vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(9):1124–1137.

[Boykov et al., 1998] Boykov, Y., Veksler, O., and Zabih, R. (1998). Markov
random fields with efficient approximations. Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 648–655.

[Boykov et al., 2001] Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast ap-
proximate energy minimization via graph cuts. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 23(11):1222–1239.

[Bregler et al., 2002] Bregler, C., Loeb, L., Chuang, E., and Deshpande, H.
(2002). Turning to the masters: Motion capturing cartoons. ACM Trans-
actions on Graphics, 21(3):399–407.

[Bresenham, 1998] Bresenham, J. E. (1998). Seminal graphics. In Seminal
graphics, chapter Algorithm for computer control of a digital plotter, pages
1–6. ACM, New York, NY, USA.

[Burtnyk and Wein, 1971] Burtnyk, N. and Wein, M. (1971). Computer gen-
erated key frame animation. Journal of the SMPTE, 80:149–153

[Burtnyk and Wein, 1976] Burtnyk, N. and Wein, M. (1976). Interactive skele-
ton techniques for enhancing motion dynamics in key frame animation.
CACM.

[Byrne, 1999] Byrne, M. T. (1999). Animation – The Art of Layour and Story-
boarding.

[Carr et al., 2001] Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J.,
Fright, W. R., McCallum, B. C., and Evans, T. R. (2001). Reconstruction
and representation of 3d objects with radial basis functions. Proceedings of
SIGGRAPH 2001, pages 67–76.

[Catmull, 1978] Catmull, E. (1978). The problems of computer-assisted ani-
mation. Proceedings of SIGGRAPH 1978, pages 348–353.

[Chang and Yan, 1998] Chang, H.-H. and Yan, H. (1998). Vectorization of
hand-drawn image using piecewise cubic bézier curves fitting. Pattern
Recognition, 31(11):1747–1755.

171

Bibliography

[Chen et al., 1987] Chen, J. S., Huertas, A., and Medioni, G. (1987). Fast con-
volution with laplacian-of-gaussian masks. IEEE Trans. Pattern Anal. Mach.
Intell., 9:584–590.

[Chu and Tai, 2002] Chu, N. S.-H. and Tai, C.-L. (2002). An efficient brush
model for physically-based 3d painting. Computer Graphics and Applica-
tions, Pacific Conference on, 0:413.

[Coconu et al., 2006] Coconu, L., Deussen, O., and Hege, H.-C. (2006). Real-
time pen-and-ink illustration of landscapes. NPAR 2005: Proceedings of
the 4th international symposium on Non-photorealistic animation and rendering,
pages 27–35.

[Cole et al., 2012] Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H. S.,
Finkelstein, A., Funkhouser, T., and Rusinkiewicz, S. (2012). Where do
people draw lines? Communications of the ACM, 55(1):107–115.

[Cole et al., 2009] Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A.,
Funkhouser, T., Rusinkiewicz, S., and Singh, M. (2009). How well do
line drawings depict shape? In ACM Transactions on Graphics (Proc. SIG-
GRAPH), volume 28.

[Cornea et al., 2007] Cornea, N. D., Silver, D., and Min, P. (2007). Curve-
skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput.
Graph., 13(3):530–548.

[Coyne et al., 2007] Coyne, M., Duce, D., Hopgood, B., Mallen, G., and Sta-
pleton, M. (2007). The significant properties of vector images. Survey,
System Simulation Ltd. and Oxford Brookes University.

[Curtis, 1998] Curtis, C. J. (1998). Loose and sketchy animation. Technical
Sketch SIGGRAPH 1998.

[Dahlhaus et al., 1992] Dahlhaus, E., Johnson, D. S., Papadimitriou, C. H.,
Seymour, P. D., and Yannakakis, M. (1992). The complexity of multiway
cuts. Proceedings of ACM Symposium on Theory of Computing, pages 241–251.

[de Juan and Bodenheimer, 2005] de Juan, C. N. and Bodenheimer, B. (2005).
Re-using traditional animation: Methods for semi-automatic segmentation
and inbetweening. Proceedings of Symposium on Computer Animation 2006,
pages 100–102.

[Durand, 1991] Durand, C. X. (1991). The toon project: Requirements for a
computerized 2d animation system. Computers and Graphics, 15,2:285–293.

[Farin, 2001] Farin, G. (2001). Curves and Surfaces for CAGD. Morgan-
Kaufmann.

172

Bibliography

[Fekete et al., 1995] Fekete, J.-D., Bizouarn, E., Cournarie, E., Galas, T., and
Taillefer, F. (1995). Tictactoon: a paperless system for professional 2d ani-
mation. Proceedings of SIGGRAPH 1995, pages 79–90.

[Freeman, 1974] Freeman, H. (1974). Computer processing of line-drawing
images. ACM Comput. Surv., 6(1):57–97.

[Fu et al., 2005] Fu, H., Tai, C.-L., and Au, O. K.-C. (2005). Morphing with
laplacian coordinates and spatial-temporal texture. Proceedings of Pacific
Graphics 2005, pages 100–102.

[Giesen et al., 2009] Giesen, J., Miklos, B., Pauly, M., and Wormser, C. (2009).
The scale axis transform. In Proceedings of the 25th annual symposium on
Computational geometry, SCG ’09, pages 106–115, New York, NY, USA.
ACM.

[Gingold et al., 2009] Gingold, Y., Igarashi, T., and Zorin, D. (2009). Struc-
tured annotations for 2D-to-3D modeling. ACM Transactions on Graphics,
28(5):148.

[Gould, 1993] Gould, S. (1993). Looney tuniverse: Ther is a crazy king of
physics at work in the world of cartoons. New Scientist Magazine, 1905.

[Grabli et al., 2004] Grabli, S., Durand, F., and Sillion, F. (2004). Density mea-
sure for line-drawing simplification. Pacific Conference on Computer Graph-
ics and Applications, pages 309–318.

[Hahn, 2008] Hahn, D. (2008). The Alchemy of Animation. Disney Editions.

[Hall, 2010] Hall, S. (2010). Best Digital Brushes for Photoshop: A unique direc-
tory of over 4,000 digital brush effects, and how to achieve them. Peachpit Press,
Berkeley, CA, USA, 1st edition.

[Hilaire and Tombre, 2006] Hilaire, X. and Tombre, K. (2006). Robust and
accurate vectorization of line drawings. IEEE Trans. Pattern Anal. Mach.
Intell., 28(6):890–904.

[Hsu and Lee, 1994] Hsu, S. C. and Lee, I. H. H. (1994). Drawing and ani-
mation using skeletal strokes. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’94, pages 109–118,
New York, NY, USA. ACM.

[Hsu et al., 1993] Hsu, S. C., Lee, I. H. H., and Wiseman, N. E. (1993). Skele-
tal strokes. In Proceedings of the 6th annual ACM symposium on User inter-
face software and technology, UIST ’93, pages 197–206, New York, NY, USA.
ACM.

173

Bibliography

[Igarashi and Moscovich, 2005] Igarashi, T. and Moscovich, T. (2005). As-
rigid-as-possible shape manipulation. ACM Transactions on Graphics (.

[Janssen and Vossepoel, 1997] Janssen, R. D. and Vossepoel, A. M. (1997).
Adaptive vectorization of line drawing images. Computer Vision and Im-
age Understanding, 65(1):38–56.

[Johnston and Thomas, 1995] Johnston, O. and Thomas, F. (1995). The Illusion
of Life.

[Kalnins et al., 2003] Kalnins, R. D., Davidson, P. L., Markosian, L., and
Finkelstein, A. (2003). Coherent stylized silhouettes. Proceedings of SIG-
GRAPH 2003, pages 856–861.

[Kalnins et al., 2002] Kalnins, R. D., Markosian, L., Meier, B. J., Kowalski,
M. A., Lee, J. C., Davidson, P. L., Webb, M., Hughes, J. F., and Finkel-
stein, A. (2002). Wysiwyg npr: drawing strokes directly on 3d models.
Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, pages 755–762.

[Kawabata, 1997] Kawabata, N. (1997). Depth perception in simple line
drawings. Perceptual and motor skills, 85(3 Pt 1):1043–1057.

[Keane, 1987] Keane, G. (1987). Dynamics of animated drawings. Class
Handout.

[Kirbas and Quek, 2000] Kirbas, C. and Quek, F. K. (2000). A review of vessel
extraction techniques and algorithms. ACM Computing Surveys, 36:81–121.

[Kleinberg and Tardos, 2005] Kleinberg, J. and Tardos, E. (2005). Algorithm
Design.

[Kochanek et al., 1982] Kochanek, D. H., Bartels, R., and Booth, K. S. (1982).
A computer system for smooth key frame animation.

[Kort, 2002] Kort, A. (2002). Computer aided inbetweening. NPAR 2002:
Proceedings of the 2nd international symposium on Non-photorealistic animation
and rendering, pages 125–132, http://doi.acm.org/10.1145/508530.508552.

[Lakshmi and Punithavalli, 2009] Lakshmi, J. K. and Punithavalli, M. (2009).
A survey on skeletons in digital image processing. Proceedings of the Inter-
national Conference on Digital Image Processing, pages 260–269.

[Lam et al., 1992] Lam, L., Lee, S.-W., and Suen, C. Y. (1992). Thinning
methodologies - a comprehensive survey. IEEE Trans. Pattern Anal. Mach.
Intell., 14(9):869–885.

174

Bibliography

[Lank and Saund, 2005] Lank, E. and Saund, E. (2005). Sloppy selection: Pro-
viding an accurate interpretation of imprecise selection gestures. Comput-
ers and Graphics, 29(4):490–500.

[Laybourne, 1998] Laybourne, K. (1998). The Animation Book: A Complete
Guide to Animated Filmmaking–From Flip-Books to Sound Cartoons to 3- D An-
imation.

[Lecot and Levy, 2006] Lecot, G. and Levy, B. (2006). Ardeco: Automatic re-
gion detection and conversion. EGSR’06, pages 349–360.

[Lee et al., 2011] Lee, Y. J., Zitnick, C. L., and Cohen, M. F. (2011). Shadow-
draw: real-time user guidance for freehand drawing. ACM Transactions on
Graphics, 30:27.

[Levin et al., 2004] Levin, A., Lischinski, D., and Weiss, Y. (2004). Coloriza-
tion using optimization. ACM Transactions on Graphics, 23(3):689–694.

[Levoy, 1977] Levoy, M. (1977). A color animation system: based on the mul-
tiplane technique. Proceedings of SIGGRAPH 1977, pages 65–71.

[Lie et al., 2010] Lie, D., Chen, Q., Yu, J., Gu, H., Tao, D., and Seah, H. S.
(2010). Stroke correspondence construction for vector-based 2d animation
inbetweening. Proceedings of Computer Graphics International 2010.

[Liu and Dori, 1998] Liu, W. and Dori, D. (1998). A survey of non-thinning
based vectorization methods. SSPR/SPR, pages 230–241.

[Llamas, 2003] Llamas, I. (2003). Twister: a space-warp operator for the two-
handed editing of 3d shapes. Proceedings of SIGGRAPH 2003, pages 663–
668.

[Madeira et al., 1996] Madeira, J. S., Stork, A., and Gross, M. H. (1996). An
approach to computer-supported cartooning. The Visual Computer, 12:1–17.
10.1007/BF01782215.

[Mcivor, 2000] Mcivor, A. M. (2000). Background subtraction techniques.
Proceedings of Image and Vision Computing, Auckland, New Zealand, 2000.

[Melikhov et al., 2004] Melikhov, K., Tian, F., Seah, H. S., Chen, Q., and Qiu,
J. (2004). Frame skeleton based auto-inbetweening in computer assisted cel
animation. CW ’04: Proceedings of the 2004 Intl. Conference on Cyberworlds,
pages 216–223.

[Miklos, 2011] Miklos, B. (2011). Mesecina: A software to visualize the me-
dial axis and related computational geometry structures.

[Miller, 1957] Miller, D. (1957). The Story of Walt Disney.

175

Bibliography

[Miura et al., 1967] Miura, T., Iwata, J., and Tsuda, J. (1967). An application
of hybrid curve generation: cartoon animation by electronic computers.
AFIPS ’67 (Spring): Proceedings of the April 18-20 1967, spring joint computer
conference, pages 141–148.

[Noris, 2008] Noris, G. (2008). Computer Assisted Cartooning. Master’s the-
sis, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland.

[Noris et al., 2011] Noris, G., Sykora, D., Coros, S., Whited, B., Simmons, M.,
Hornung, A., Gross, M. H., and Sumner, R. (2011). Temporal noise con-
trol for sketchy animation. Proceedings of International Symposium on Non-
photorealistic Animation and Rendering, pages 93–98.

[O’Donnell, 1980] O’Donnell, M. (1980). The cartoon laws of physics. IEEE
Institute, 18:12.

[Orzan et al., 2008a] Orzan, A., Bousseau, A., Winnemöller, H., Barla, P.,
Thollot, J., and Salesin, D. (2008a). Diffusion curves: A vector represen-
tation for smooth-shaded images. In ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH 2008), volume 27.

[Orzan et al., 2008b] Orzan, A., Bousseau, A., Winnemöller, H., Barla, P.,
Thollot, J., and Salesin, D. (2008b). Diffusion curves: a vector represen-
tation for smooth-shaded images. ACM Transactions on Graphics, 27(3).

[Öztireli et al., 2011] Öztireli, A. C., Uyumaz, U., Popa, T., Sheffer, A., and
Gross, M. (2011). 3d modeling with a symmetric sketch. EG.

[Patterson and Willis, 1994] Patterson, J. W. and Willis, P. J. (1994). Computer
assisted animation: 2d or not 2d? The Computer Journal, 37(10):829–839.

[Piccardi, 2004] Piccardi, M. (2004). Background subtraction techniques: a
review. Systems, Man and Cybernetics, 4:3099–3104.

[Porter and Duff, 1984] Porter, T. and Duff, T. (1984). Compositing digital
images. SIGGRAPH Comput. Graph., 18(3):253–259.

[Powell and Rossignac, 2008] Powell, A. and Rossignac, J. (2008). Screwben-
der: Smoothing piecewise helical motions. IEEE Comput. Graph. Appl.,
28:56–63.

[Reeves, 1981] Reeves, W. (1981). Inbetweening for computer animation uti-
lizing moving point constraints. Proceedings of SIGGRAPH 1981, pages
263–270.

[Richard, 2002] Richard, W. (2002). The Animator’s Survival Kit. Faber and
Faber, 1st edition.

176

Bibliography

[Robertson, 1994] Robertson, B. (1994). Disney lets caps out of the bag. Com-
puter Graphics World, 17(7):58–64.

[Robertson, 2001] Robertson, B. (2001). Digital toons. Computer Graphics
World, 18(8):58–64.

[Rossignac and Vinacua, 2011] Rossignac, J. and Vinacua, A. (2011). Steady
affine motions and morphs. ACM Transactions on Graphics (to appear).

[Saito and Nakajima, 1999] Saito, S. and Nakajima, M. (1999). 3d physics-
based brush model for painting. In ACM SIGGRAPH 99 Conference abstracts
and applications, SIGGRAPH ’99, pages 226–, New York, NY, USA. ACM.

[Salisbury et al., 1997] Salisbury, M. P., Wong, M. T., Hughes, J. F., and
Salesin, D. (1997). Orientable textures for image-based pen-and-ink il-
lustration. Proceedings of the ACM SIGGRAPH Conference (SIGGRAPH-97),
pages 401–406.

[Saund, 2003] Saund, E. (2003). Finding perceptually closed paths in
sketches and drawings. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(4):475–491.

[Saund et al., 2004] Saund, E., Fleet, D., Larner, D., and Mahoney, J. (2004).
Perceptually-supported image editing of text and graphics. ACM Transac-
tions on Graphics, 23(3):728–728.

[Schmid et al., 2011] Schmid, J., Senn, M. S., Gross, M., and Sumner, R. W.
(2011). Overcoat: an implicit canvas for 3d painting. ACM Trans. Graph.,
30:28:1–28:10.

[Seah and Tian, 2000] Seah, H. S. and Tian, F. (2000). Computer-assisted col-
oring by matching line drawings. The Visual Computer, 16(5):289–304.

[Sebastian et al., 2003] Sebastian, T. B., Klein, P. N., and Kimia, B. B. (2003).
On aligning curves. IEEE Trans. Pattern Anal. Mach. Intell., 25(1):116–125.

[Sederberg and Greenwood, 1992] Sederberg, T. W. and Greenwood, E.
(1992). A physically based approach to 2d shape blending. Proceedings
of SIGGRAPH 1992, pages 25–34.

[Senthilkumaran and Rajesh, 2009] Senthilkumaran, N. and Rajesh, R.
(2009). Edge detection techniques for image segmentation — a survey of
soft computing approaches. International Journal of Recent Trends in Engi-
neering, 1(2).

[Shesh and Chen, 2008] Shesh, A. and Chen, B. (2008). Efficient and dy-
namic simplification of line drawings. Proceedings of Eurographics, Computer
Graphics Forum, 27(2):537–545.

177

Bibliography

[SiSoft, 2010] SiSoft (2010). Wintopo. wintopo.com.

[Steve, 2006] Steve, W. (2006). Digital Compositing for Film and Video. Focal
Press, 2nd edition.

[Sumner et al., 2005] Sumner, R., Zwicker, M., Gotsman, C., and Popovic,
J. (2005). Mesh-based inverse kinematics. ACM Transactions on Graphics,
24(3):488–495.

[Sun et al., 2007a] Sun, J., Liang, L., Wen, F., and Shum, H.-Y. (2007a). Image
vectorization using optimized gradient meshes. In ACM SIGGRAPH 2007
papers, SIGGRAPH ’07, New York, NY, USA. ACM.

[Sun et al., 2007b] Sun, J., Liang, L., Wen, F., and Shum, H.-Y. (2007b). Im-
age vectorization using optimized gradient meshes. ACM Transactions on
Graphics, 26(3):11.

[Surazhsky and Elber, 2002] Surazhsky, T. and Elber, G. (2002). Metamor-
phosis of planar parametric curves via curvature interpolation. Intl. J. of
Shape Modeling, 8(2):201–216.

[Sykora et al., 2005] Sykora, D., Burianek, J., and Zara, J. (2005). Video codec
for classical cartoon animations with hardware accelerated playback. Pro-
ceedings of International Symposium on Visual Computing, pages 43–50.

[Sykora et al., 2009a] Sykora, D., Dingliana, J., and Collins, S. (2009a). As-
rigid-as-possible image registration for hand-drawn cartoon animations.
Proceedings of International Symposium on Non-photorealistic Animation and
Rendering, pages 25–33.

[Sykora et al., 2009b] Sykora, D., Dingliana, J., and Collins, S. (2009b). Lazy-
brush: Flexible painting tool for hand-drawn cartoons. Computer Graphics
Forum, 28(2):599–608.

[Sykora et al., 2010] Sykora, D., Sedlacek, D., Jinchao, S., Dingliana, J.,
and Collins, S. (2010). Adding depth to cartoons using sparse depth
(in)equalities. Computer Graphics Forum, 29(2):615–623.

[Telotte, 2010] Telotte, J. P. (2010). Animating Space: From Mickey to WALL-E.
University Press of Kentucky.

[Thompson, 1992] Thompson, D. W. (1992). On Growth and Form.

[ToonBoom, 2010] ToonBoom (2010). Harmony.

[Valentine, 2012] Valentine, S. (2012). The Hidden Power of Blend Modes in
Adobe Photoshop.

178

Bibliography

[Veltkamp, 2001] Veltkamp, R. C. (2001). Shape matching: similarity mea-
sures and algorithms. Shape Modeling and Applications, SMI 2001 Intl. Con-
ference on., pages 188–197.

[von Goldberg et al., 2011] von Goldberg, A., Hed, S., Kaplan, H., Tarjan,
R. E., and Werneck, R. F. (2011). Maximum flows by incremental breadth-
first search. ESA, pages 457–468.

[Wagner and Fischer, 1974] Wagner, R. and Fischer, M. (1974). The string-to-
string correction problem. Journal of the ACM, 21(1):168–173.

[Wang et al., 2008] Wang, Y., Xu, K., Xiong, Y., and Cheng, Z.-Q. (2008). 2d
shape deformation based on rigid square matching. Computer Animation
and Virtual Worlds, 19(3–4):411–420.

[Warnock, 1982] Warnock, J. (1982). Postscript. Marketed by Adobe Systems.

[WDAS and Pixar, 1989] WDAS and Pixar (1989). Caps: a computer anima-
tion production system.

[Wei et al., 2010] Wei, J., Wang, C., Yu, H., and Ma, K.-L. (2010). A sketch-
based interface for classifying and visualizing vector fields. Proceedings of
IEEE Pacific Visualization Symposium, pages 129–136.

[Whitaker et al., 2009] Whitaker, H., Sito, T., and Halas, H. (2009). Timing for
Animation. Focal Press.

[Whited et al., 2010] Whited, B., Noris, G., Simmons, M., Sumner, R., Gross,
M. H., and Rossignac, J. (2010). Betweenit: An interactive tool for tight
inbetweening. Computer Graphics Forum (Eurographics 2010 Proceedings),
29(2).

[Whited et al., 2009] Whited, B., Rossignac, J., Slabaugh, G., Fang, T., and
Unal, G. (2009). Pearling: Stroke segmentation with crusted pearl strings.
Pattern Recognition and Image Analysis, 19(2):277–283.

[Wilson and Ma, 2004] Wilson, B. and Ma, K.-L. (2004). Rendering complex-
ity in computer-generated pen-and-ink illustrations. NPAR 2004: Proceed-
ings of the 3rd International Symposium on Non-Photorealistic Animation and
Rendering 2004 Annecy, France, June 7-9, 2004, pages 129–137.

[Winkenbach and Salesin, 1994] Winkenbach, G. and Salesin, D. (1994).
Computer-generated pen-and-ink illustration. Proceedings of SIGGRAPH
1994, pages 91–100.

[Wolin et al., 2007] Wolin, A., Smith, D., and Alvarado, C. (2007). A pen-
based tool for efficient labeling of 2D sketches. Proceedings of Eurographics
Workshop on Sketch-Based Interfaces and Modeling, pages 67–74.

179

Bibliography

[Xia et al., 2009] Xia, T., Liao, B., and Yu, Y. (2009). Patch-based image vec-
torization with automatic curvilinear feature alignment. ACM Transactions
on Graphics, 28(5):1–10.

[Zhang et al., 2009] Zhang, S.-H., Chen, T., Zhang, Y.-F., Hu, S.-M., and Mar-
tin, R. R. (2009). Vectorizing cartoon animations. IEEE Trans. Vis. Comput.
Graph., 15(4):618–629.

[Zou and Yan, 2001] Zou, J. J. and Yan, H. (2001). Cartoon image vectoriza-
tion based on shape subdivision. Computer Graphics International, pages
225–231.

[Zwicker et al., 2002] Zwicker, M., Pfister, H., van Baar, J., and Gross, M. H.
(2002). Ewa splatting. IEEE Trans. Vis. Comput. Graph., 8(3):223–238.

180

