
Diss. ETH No. 20661

Real-Time Camera Control for
Interactive 3D Applications

A dissertation submitted to

ETH Zurich

for the Degree of

Doctor of Sciences

presented by

Thomas Oskam
MSc in Computer Science, ETH Zurich, Switzerland
born 19. February 1982
citizen of the Netherlands and Switzerland

accepted on the recommendation of

Prof. Dr. Markus Gross, examiner
Prof. Dr. Matthias Zwicker, co-examiner
Dr. Alexander Hornung, co-examiner

2012

Abstract

Real-time 3D applications have evolved to the point where they become increas-
ingly realistic. Several aspects have been subject to extensive research in order to
deliver the maximum amount of realism possible within a limited computation
budged. Examples are rendering or physics. One aspect, however, has not gotten
the attention needed despite its omnipresence in any application, namely camera
control and parametrization. In most interactive applications such as games, the
camera placement and parametrization is either user controlled or pre-scripted by
an artist. Only few attempts have been made to automate and simulate realistic
camera behavior, as it is generally a difficult task. In this dissertation, we attempt
to attack these shortcomings on different levels.
In the first part of this thesis we present a real-time camera control system that uses
a global planning algorithm to compute large, occlusion free camera paths through
complex environments. The algorithm incorporates the visibility of a focus point
into the search strategy, so that a path is chosen along which the focus target will
be in view.
In the second part, this thesis deals with camera parametrization for controlled
stereoscopic rendering. We present an automatic controller for camera convergence
and interaxial separation that specifically addresses challenges in interactive 3D ap-
plications like games. In such applications, unpredictable viewer or object motion
often compromises stereopsis due to excessive binocular disparities. We derive
constraints on the camera separation and convergence that enable our controller to
automatically adapt to any given viewing situation and 3D scene, providing an
exact mapping of the virtual content into a comfortable depth range around the
display.
Finally, the third part of the thesis approaches advanced camera parametrization
and the reproduction of realistic color balancing effects. The input to our algorithm
is a sparse set of desired color correspondences between a source and a target
image. The global color space transformation problem is then solved by computing
a smooth vector field in CIE La∗b∗ color space that maps the gamut of the source
to that of the target. Furthermore, we show how the basic per-image matching can
be robustly extended to the temporal domain. This extension renders our method
extremely useful for automatic, consistent embedding of synthetic graphics in
video, as required by applications such as augmented reality.

iii

Zusammenfassung

Dreidimensionale Echtzeitanwendungen haben sich mehr und mehr zum Foto-
realismus hin entwickelt. Verschiedene Teilbereiche wurden dabei ausführlich
erforscht, wie zum Beispiel die physikalische Simulation oder die Bildwiedergabe.
Ein Aspekt hat allerdings bisher nicht ausreichende Beachtung gefunden, obwohl
seiner Allgegenwart: Kamerakontrolle und -parametrisierung. In den meisten
Anwendungen wird die Kamera durch den Benutzer kontrolliert oder deren Bewe-
gung durch Künstler vordefiniert. Es wurden nur wenige Versuche unternommen
das Verhalten einer Kamera zu automatisieren. Diese Dissertation versucht diese
Mängel auf verschiedenen Stufen anzugreifen.
Im ersten Teil dieser Doktorarbeit präsentireren wir ein Kontrollsystem das weite
und verdeckungsfreie Kamerapfade durch globales planen in Echtzeit erreichen
kann. Der Algorithmus integriert die Sichtbarkeit zu einem Fokuspunkt in die
Suche damit ein Pfad gewählt wird bei dem der Fokus im Sichtfeld bleibt.
Der zweite Teil dieser Doktorarbeit behandelt die Parametrisierung der Kamera
um kontrollierte stereoskopische Bilderzeugung zu erreichen. Wir präsentieren
einen automatischen Regler um die Konvergenz und Separation der verwen-
deten Kameras zu kontrollieren, so, dass den speziellen Bedürfnissen von
interaktiven 3D Applikationen Sorge getragen wird. In solchen Anwendungen,
unvorhersehbare Bewegungen des Betrachters oder von Objekten können die drei-
dimensionale Wahrnehmung kompromittieren wenn übermässige Bilddisparitäten
entstehen. Wir leiten deshalb Formeln für die Separation und Konvergenz der
Kameras her, die unserem Regler erlauben, automatisch auf neue Situationen
zu reagieren. Dies erlaubt uns, jede dreidimensionale Szene in einen genau
definierten wahrgenommenen Tiefenbereich abzubilden.
Schliesslich, im dritten Teil dieser Arbeit, behandeln wir fortgeschrittene
Parametrisierung der Kamera durch realistische Farbkorrektur von Bildern.
Die Eingabe unseres Algorithmus ist eine spärlich verteilte Menge von Farbref-
erenzen zwischen zwei Bildern. Die globale Farbraumtransformation wird durch
das berechnen eines glatten Vektorfeldes im CIE La∗b∗ Farbraum erreicht welches
die Farbskala des Quellbildes in die des Zielbildes überführt. Desweiteren zeigen
wir, wie dieser Ansatz robust auf die Zeitachse erweitert werden kann. Diese
Erweiterung erlaubt das automatische und konsistente Einbetten von künstichem
Bildmaterial in ein Video, welches von Anwendungen wie Augrentierte Realität
vorausgesetzt wird.

v

Acknowledgments

My cardinal thanks go to my advisor Prof. Markus Gross. His ideas and insights
inspired me to follow my passion and empowered me to finish this thesis. I sincirely
thank Dr. Alexander Hornung, who has proven to be an excellent Supervisor and
was able to push my work to new levels. I also want to thank Dr. Robert W. Sumner
for his many ideas and his help. Special thanks go to Prof. Matthias Zwicker for
agreeing to co-examine this thesis.

Many thanks go to all my additional collaborators that contributed in various
ways to this thesis: Nils Thuerey, Huw Bowles, Kenny Mitchell, Serkan Bozyigit,
Michael Spreng, Theodor Mader, Martin Banks, Peter Kaufmann, Aljoscha Smolic,
Alex Stuard, and Wojciech Jarosz.

I also would like to thank my colleagues and friends from CGL, CVG, DRZ, IGL,
and Blackrock. Special thanks go to Tobias Pfaff, my long time office mate, without
whom the work would have felt twice as hard.

Finally, I want to thank Jan, Susy, Didier, Jeannette, Lia, and especially Linda, for
their support and for believing in me.

I dedicate my dissertation to Max and Cornelia.

vii

Contents

Introduction 1

Virtual Camera Pipeline 5
1 Position and Orientation . 6
2 Camera Parametrization and Projection 8
3 Rendering and Advanced Effects . 9

Dynamic Camera Motion and View Control 11
1 Camera Navigation Background . 15
2 Camera Motion Planning . 18

2.1 Visibility-Aware Roadmap 18
2.2 Camera Transition Planning 20
2.3 Path Post-processing . 24

3 Extended Planning Strategies . 27
3.1 Dynamic Planning . 27
3.2 Avoiding Occluders . 29
3.3 Hierarchical Search Criteria 33
3.4 Risk Prediction . 35

4 Applications and Results . 38
4.1 Content-aware Camera Transitions 38
4.2 Improved Local Camera Behavior 41
4.3 Increasing Awareness of Environment 42

5 Performance and Limitations . 44
5.1 Performance . 44
5.2 Limitations and Future Work 45

Interactive Stereoscopy 47
1 Stereoscopy Background . 51
2 Basic Geometric Models of Stereoscopy 54

2.1 Viewer-Centric Model . 55
2.2 Scene-Centric Model . 61

3 Stereoscopic Parameter Constraints 63
3.1 Standard Case: Mapping a Single Depth Range 63
3.2 General Case: System of Depth Constraints 67

ix

Contents

4 Temporal Constraint Interpolation 71
5 GPU Implementation . 75
6 Results and Evaluation . 77

6.1 Adaptive stereoscopy and automatic fail-safe 77
6.2 Artist Control and Production 80
6.3 User Study . 82

7 Summary and Limitations . 86
7.1 Limitations and Future Work 86

Fast and Flexible Color Balancing Using Example Images 89
1 Background of Color Balancing and Transfer 92
2 Vector Space Color Balancing . 96

2.1 Vector Field Computation . 98
2.2 Selecting and Optimizing Interpolation Functions 102
2.3 Choice of Basis Function . 107

3 GPU Implementation . 110
4 Applications and Results . 112

4.1 Interactive Color Balancing and Style Transfer 112
4.2 Reproduction of Unknown Camera Color Transfer Functions 116
4.3 Color Balancing Limitations 119

5 Extension to Augmented Reality . 121
5.1 Separation of Internal and External Color Changes 122
5.2 Robust and Stable Color Tracking 127
5.3 Results . 130
5.4 Limitations . 131

Conclusion 133

Derivations 137

Bibliography 141

x

C H A P T E R 1
Introduction

Camera control in interactive virtual environments is a fundamental concept
and its proper execution an important factor in delivering a realistic expe-
rience to the user. Where the geometry in the virtual environment mirrors
the complexity of the real world, and lighting computations the appearance,
the camera provides the interface to the user. It is the final puzzle piece in
the rendering pipeline that decides how the user is looking into the virtual
world.

Similar to cameras in the real world, there are many factors of a virtual
camera that influence the final appearance of the scene. Complex interaction
with the environment on one side, and the user on the other side, pose
difficult problems on different control levels. For example, there is a lengthy
planning phase before shooting a feature film in which each scene is carefully
composed. A director decides before hand where each camera is placed, how
it is supposed to move, and on what it is focussed. This kind of planning
is usually infeasible in virtual environments, where a user is controlling the
camera. Even more difficult is the case, where the camera has to be controlled
automatically, in order to free the user’s interaction for other tasks. Another
problem is the proper simulation of realistic camera behavior. Digital cameras
have become sophisticated devices with a series of on-board image processing
and color balancing during capture to enhance image quality. This kind of
processing has shifted the viewer’s judgement of realistic video footage. A

1

Introduction

Motion and View Control Stereoscopy Color Balancing

Extrinsic Parameters Intrinsic Parameters

Figure 1: Camera behavior in virtual environments can be broken down into a hierarchy
of different levels, ranging from purely extrinsic, over mixed, to purely intrinsic
parameter control.

hand-held camera that is not adjusting its brightness, exposure, or contrast
when filming a scene is regarded as unrealistic. While the movement of a
camera is mirrored by the positioning of the camera in the virtual scene, color
balancing effects such as adjusting contrast are more difficult to achieve.

In general, the problem of virtual camera control can be broken down into
different levels. With applications ranging from purely extrinsic, over mixed,
to purely intrinsic control, the complex nature of real cameras can be mapped
to concepts in virtual environments. This is demonstrated in Figure 1. At
the highest level, the camera is seen as an abstract object. At this level, only
extrinsic camera parameters are considered, and it is only important where
the camera is placed, what it is looking at, and how it is moved to different
places. Once the camera has been positioned and oriented, mixed extrinsic
and intrinsic applications appear. At this level, the cameras principal position
and view direction have been defined, but the parametrization of the scene’s
projection still needs to be determined. Adjusting parameters such as the
focal length or the opening angle of the camera control the projection of the
environment. Several concepts at this level require the additional adjustment
of some of the camera’s extrinsic parameters as well. Examples of such con-
cepts are the simulation of camera wiggling or the rendering of stereoscopic
image pairs. Therefore, at this level, extrinsic and intrinsic parameters are
controlled together to finalize the projection of the environment’s geometry
onto the image plane of the camera. Finally, at the finest level, the purely
intrinsic camera behavior is covered. At this level, only the parameters are
considered that influence the appearance of the rendered image. Concepts
such as lens distortions, color shifts, or image noise are investigated here.

In this dissertation we are exemplary investigating a specific problem from

2

each of the three levels of camera control specifically tailored to real-time
scenarios in interactive 3D applications: environment-aware camera planning,
optimized stereoscopic rendering, and adaptive color balancing. These three
research areas are discussed in individual chapters, where emphasis is given
to fast algorithmic solutions and parallelizability in order to meet the strict
budges of high-performance interactive applications such as computer games.

Structure of the Thesis and Contributions

First, the basic camera pipeline in interactive computer graphics is reviewed
in Chapter 2. In Chapter 3 we investigate the problem of camera view
and motion planning in virtual environments. We show, how the virtual
environment can be modeled using a specialized data structure. Using this
data structure we are able to perform high-level camera planning tasks,
such as visibility aware object avoidance or occlusion risk prediction at run-
time. We propose a variety of search strategies that provide solutions to
advanced camera motion planning problems in interactive environments.
The results and contributions of these studies are published in Proceedings
of the Symposium on Computer Animation 2009 [Oskam et al., 2009].

Mixed extrinsic and intrinsic camera behavior is then investigated in Chap-
ter 4 on the example of automatic stereoscopic rendering. We discuss an
in-depth geometric pipeline from the virtual scene to the viewer’s eyes in
the real world, and present a temporally smooth and automatic solution for
controlling the perceived depth for arbitrary combinations of camera move-
ments and 3D environments. Our solution is able to robustly automate the
control of perceived stereoscopic depth to improve the comfort of the viewer
as well as provide novel tools for improving and facilitating the production
of stereoscopic content. Our optimized stereoscopic camera controller is
published in Proceedings of SIGGRAPH Asia 2011 [Oskam et al., 2011].

Finally, Chapter 5 focusses on intrinsic camera behavior. In this chapter we
investigate the efficient reproduction of unknown color transfer functions of
digital cameras. We propose a framework that learns from example images
recorded with a real camera and is able to apply these functions to new
images at real-time. Furthermore, we extend the approach to the temporal
domain to allow image augmentation and show how this can be employed
to improve the visual realism of augmented reality type applications. The
findings of these studies are published in Proceedings of 3DIMPVT 2012
[Oskam et al., 2012].

3

C H A P T E R 2
Virtual Camera Pipeline

Generally, an interactive 3D application is executed through a main program
loop. This loop first executes the computations necessary to simulate and
update the current state of the virtual environment. Second, the loop performs
the rendering steps that show the current state of the environment on the
display. While the simulation step is usually only performed on the CPU, the
rendering is also done on the GPU.

The importance of camera control has lead to the seamless embedding of the
camera pipeline into this application loop. Some parts of the camera pipeline
are executed on the CPU, while others are performed on the GPU. As the
GPU hardware has become very flexible and programmable, it is hard to
exactly draw a line at which point the camera pipeline is executed on the GPU.
However, in general, extrinsic parameters tend to be easier to implement on
the CPU, while the GPU usually is more suited for intrinsic parameters.

A schematic overview of the program loop for a virtual environment is
shown in Figure 1. It consists of three main parts. First, the simulation of the
virtual world is performed. At this stage, tasks are completed that change the
state of the environment, such as animating characters, simulating physics,
processing user input, or updating the internal logic of the program. Second,
the camera pipeline is traversed. This stage encompasses the determination
of camera position and orientation, the projection of the environment onto
the camera image plane, and the final rendering of the environment. Finally,

5

Virtual Camera Pipeline

Simulation Position and
Orientation

Projection Rendering Display

Program Loop

Virtual Camera Pipeline

Figure 1: Schematic overview of the program loop of a virtual environment. First, the
virtual world is simulated, driving animations and the program logic one time
step forward. Second, the virtual camera is controlled. Its configuration is
determined, placing it into the environment. Then, the projection is determined
that maps the thee dimensional environment onto the two dimensional image
plane before the rendering simulates the capture of light rays by the camera
from the environment. The resulting image is shown to the viewer on a display,
while the program loop starts over.

while the program loop is restarted, the rendered image is shown to the user
on a display, effectively interfacing the real world with the virtual world.

In the scope of this thesis, we assume both the simulation and display stages
of the program loop as given black-box processes, and focus on the camera
pipeline part. In the following we will briefly revisit the individual parts of
this pipeline. A complete in-depth discussion on this topic is provided by
Christie et al. [2009].

1 Position and Orientation

The configuration of the camera in three dimensional space is uniquely de-
fined by its position and orientation. While the position is always given
as a three dimensional vector C = (cx, cy, cz), there are several formats used
for the orientation. The most common way is to define the the viewing
direction by the point P = (px, py, pz) the camera is looking at and the up
vector U = (ux,uy,uz) of the virtual environment. Other common ways to
formulate the orientation of a camera are Quaternions [Shoemake, 1985] or
Givens rotations (also known as yaw-pitch-roll) [Bindel et al., 2002].

The camera position and orientation can be computed as the multiplication a
translation and a rotation matrix. However, it is more common to transform
the environment into the camera coordinate frame so that the camera is
moved to the origin and looking along the Z-axis with the Y-axis being up.
This approach facilitates the camera projection computations later on. The

6

1 Position and Orientation

view matrix is therefore the inverse transformation of placing the camera into
the scene and applied to the geometry of the environment. The translation
matrix T is thus computed as

T =

1 0 0 −cx
0 1 0 −cy
0 0 1 −cz
0 0 0 1

 . (1)

The rotation matrix R should now rotate the environment around the origin
in such a way, that the camera view (Z-axis) is pointing at P. This rotation
can be regarded as the change of the global coordinate system to the local
camera coordinate system. Therefore, the local axes Xc, Yc, and Zc of the
camera coordinate system are computed as

Zc =
P− C
||P− C|| (2)

Xc =
U × Zc

||U × Zc|| (3)

Yc = Zc × Xc, (4)

and the rotation matrix R is computed as

T =

xc

x xc
y xc

z 0
yc

x yc
y yc

z 0
zc

x zc
y zc

z 0
0 0 0 1

 . (5)

The view transformation matrix V can now be computed as

V = T R. (6)

This matrix, for any given camera position and orientation, transforms the
environment such that the origin can be regarded as the center of projection
of the camera. The view matrix V thus implements the extrinsic properties of
the camera. However, also fine-scale changes to the camera’s configuration
can be incorporated at this stage. As long as these changes manipulate the
camera position or viewing direction they can be integrated into T and R.

7

Virtual Camera Pipeline

a)

f

α

d

Center of
Projection

Image
Plane

b)

(-1,-1,0)

(1,1,1)

x

y

z

x

y

z

Figure 2: Basic parametrization of a virtual camera. a) The virtual camera is defined
by an opening angle α and a focal lenght f . The distance d defines the far
clipping plane of the camera view frustum. b) The camera parametrization
opens up a view frustum in three dimensional space. Perspective projection
of the geometry is performed by transforming the view frustum into a cuboid
between (−1,−1,0) and (1,1,1).

There are intrinsic camera parameters, such as opening angle or image shift,
that require integration into the projection part of the camera pipeline. We
will discuss an appropriate camera parametrization model in the next section.

2 Camera Parametrization and Projection

To this end, parameters that correspond to the physical placement of the
camera into the virtual scene have been discussed. We have shown that
the camera orientation and position are inverted and applied to the scene
geometry to make sure that the camera center of projection is at the origin.
Now, we introduce the camera parametrization that allows to compute a
projection matrix that maps the three dimensional geometry of the virtual
environment onto a two dimensional image plane.

The standard parametrization of a virtual camera for interactive environments
consists of the opening angle α, the focal length f , and the image aspect ratio
a. Furthermore, the parameter d defines the far clipping plane. Only the
geometry between f and d will be rendered. This limitation of the near and
far distance is in place to allow the render depth buffer to cover a clearly
defined range. A schematic overview of the camera parametrization is shown
in Figure 2 a).

The camera parameters outline a view frustum in three dimensional space.
The goal of the projection is to provide a transformation matrix P that, when
multiplied to all the points in the scene, transforms the view frustum into
a cuboid that lies within [−1;1] in the X- and Y-axes and [0;1] in the Z-axis.
This brings the entire geometry in the scene into a form where parts outside

8

3 Rendering and Advanced Effects

the view frustum can be easily clipped by removing all projected geometry
outside the cuboid. Figure 2 b) shows this transformation.

Given the horizontally defined opening angle α and the aspect ratio a (defined
as image width divided by image height), the width w and height h of the
view frustum’s near plane can be computed as

w = 2 f tan
(α

2

)
(7)

h =
w
a

. (8)

Now, the projection matrix P can be computed as

P =

1/w 0 0 0

0 1/h 0 0
0 0 d/(d− f) 1
0 0 f − f d/(d− f) 0

 . (9)

The parameters w and h are inverted in order to make sure that the values
from the X- and Y-axes are scaled according to the aspect ratio and opening
angle. The value d/(d− f) scales the values in the Z-axis according to the
view frustums depth. Finally, f d/(d− f) in the bottom row of the projection
matrix translates the transformed cuboid back so that the image plane is
placed on the origin.

Changes of intrinsic camera parameters such as the opening angle α, focal
length f , or aspect ratio a directly influence the projection matrix P. In order
to finalize the complete transformation for the virtual geometry, P can be
combined with the previously derived view matrix V to form the camera
transformation matrix C that transforms the entire scene into the image plane.
Scene distances inside the view frustum are transformed into the scale of
[0;1].

C = VP (10)

3 Rendering and Advanced Effects

The rendering stage is the final part of the camera pipeline, and an entire
research field on its own. Here, the geometry that has been projected into
the camera system is triangulated, clipped, ordered, rasterized, and colored.

9

Virtual Camera Pipeline

Especially the colorization step is summarizing a vast field of algorithms, as
lighting is applied to the geometry and the final color of each image pixel is
determined. In interactive computer graphics applications, this final stage
is performed exclusively on the GPU. Through massive parallelization of
the computations, sophisticated algorithms for coloring individual pixel are
possible.

At this stage, the final polish to the finished rendering of the virtual scene
is performed. It can be compared to the on-chip image processing of digital
cameras during capture. After the user has pressed the trigger, the incoming
light is captured and an image is formed in the camera. Then, this image
information is post-processed to counter problems that arose during the
capture. These are effects such as brightness adjustment, noise suppression,
contrast improvement, and many more [Adams et al., ; Agarwal et al., 2006;
Klein and Murray, 2010].

Therefore, to also finalize our hierarchical categorization of camera control,
the creation of advanced color transfer functions is performed during render-
ing time. Thanks to the previous transformations of the scene geometry, and
the following clamping and rasterization on the GPU, these type of effects
can be regarded independently. Additionally, to not mess with the classi-
cal lighting, texturing, and colorization algorithms, advanced image effects
can simply be implemented as another GPU shader pass at the end of the
rendering.

10

C H A P T E R 3
Dynamic Camera Motion and View

Control

Moving a camera in a dynamic and unpredictable environment is a complex problem
that restricts camera artists in creating an immersive experience. With our dynamic
camera control, we achieve a solution that provides an entire arsenal of tools to
perform automated camera control.

11

Dynamic Camera Motion and View Control

In any virtual environment, computer game, or other interactive application,
natural camera motion is crucial for a positive user experience. Success-
ful navigation through content strongly depends on appropriate camera
movement. When considering automatic camera control, four critical criteria
include:
Real-time. Static or precomputed viewpoints are unsuitable since the user’s
actions are not known a priori. Instead, the camera must adapt in real-time.

Collision-free. As the camera moves through a scene, it must not collide
with objects in the environment as this lends an unrealistic feel and lessens
the sense of immersion.

Smooth. Teleporting the viewpoint from one place to another may disorient
the user since the continuity of the view is broken.

Visible. Ultimately, the camera’s goal is to look at something. Thus, visibility
is of utmost importance: the player or other focus target must be kept in view
and unobstructed.

Classical third-person camera models that follow a player deal with these
criteria using algorithms that are inherently local in nature. Small adjust-
ments in position and orientation are made based on objects in the camera’s
immediate vicinity. Such local camera control is effective in some situations,
but if the character dashes quickly behind corners, the locality assumptions
are broken and the camera may be forced to pass through an object or teleport
to an unobstructed view. Furthermore, local camera models are not designed
to perform large-scale transitions between viewpoints.

We attempt to alleviate the aforementioned problems by computing smooth,
collision-free transitions between arbitrary start and end points, while em-
phasizing the visibility of a third focus point. A typical application might be
the switch from a third-person view of an avatar in a virtual city environment
to an overhead view while ensuring a clear view of the avatar throughout
the camera motion. Maintaining unbroken visibility to a focus point helps
the user to better understand position and context. Although large-scale
transitions and local camera control may seem like disparate problems, we
propose that the two are closely connected. A local camera controller that
deals with visibility in a sophisticated way must move the camera from one
point in space to another in order to maintain or regain visibility (Figure 1).
For certain configurations, this movement can only be resolved with global
knowledge of the scene.

Visibility computations in arbitrary three-dimensional environments are gen-
erally complicated and time-consuming. The difficulty of this problem is
exacerbated by several factors. The global nature of the transition planning

12

Camera teleports
through geometry

 Geometry is made
transparent

Movement from
point-based

visibility

Movement with
visibility transition

planning

Focus

a) b) c) d)

Focus Focus Focus

Figure 1: This simple example illustrates the different behaviors of commonly used meth-
ods for camera control. a) The ray-cast can result in sudden jumps. b) The
obstructing geometry can be made transparent. c) With point-based visibility
[Halper, 2001], the camera may pass through geometry. d) Our method will
avoid obstacles correctly.

problem means that a potentially huge number of visibility evaluations must
be considered. Neither the start point, nor the end point, nor the focus point
are known in advance, making pre-computation a non-trivial task. Finally, the
algorithm has strict, real-time requirements, with only milliseconds available
for all computations.

Our approach to control the camera interactively is to apply global knowledge
of the scene. In a first part, we define a basic camera planning based on pre-
computing a graph with spheres and portals covering the ambient space
of the scene. Additional visibility information is stored in the graph. At
run-time we perform an extended A∗ search [Dechter and Pearl, 1985] that
incorporates this visibility information to create smooth, visibility-aware
camera transitions. Then, in a second part, we show the extensions we made
to our previous work and demonstrate new applications of the dynamic
camera control useful in multiple real-time scenarios.

In terms of impact, our contributions include the first camera control system
that can generate large, collision-free and dynamic occlusion-aware camera
transitions customized for the visibility of a focus point in real-time. This
functionality opens up new opportunities for game designers, such as dy-
namic target switching between multiple characters and fly-throughs that
demonstrate a suggested path through an environment from arbitrary start
and end points. Additionally, we present a third-person camera routine
that optimizes for visibility yet never passes through scene geometry. Ex-
isting local camera models cannot make such claims, since some geometric
configurations can only be resolved using global knowledge.

Technically, we build on the visibility-aware data structure and modified A∗

13

Dynamic Camera Motion and View Control

search strategy developed in our master thesis [Oskam, 2008]. Our contri-
butions contain a refined path post-processing that yields smoother results
and a more in-depth performance analysis of the control algorithm. Further-
more, we contribute advanced search strategies to support moving occluders,
and show how the roadmap can be utilized to achieve proactive camera
movement that actively seeks a position to prevent the player from escap-
ing visibility. These extensions allow a variety of novel applications for
automated camera control.

The remainder of this chapter is organized as follows. First, we discuss
related works in camera navigation before we briefly revisit path planning
in graphs. Then, we revisiting the visibility transition planning approach by
Oskam [2008]. Next, we propose several extensions and applications to the
basic algorithm to achieve more advanced and robust camera control. Finally,
we show a variety of novel applications before closing with a summary and
discussion of the limitations.

14

1 Camera Navigation Background

1 Camera Navigation Background

In this section we discuss previous work of camera navigation for real-time
control, cinematography, visibility-awareness, and motion planning.

Real-time camera control: A thorough overview of the state-of-the-art in
camera control for computer graphics is presented by Christie et al. [2009],
and we review only the most relevant of these works here. Many classical
third-person camera models examine the local vicinity in order to resolve oc-
clusions. A common camera model used in computer games casts a ray from
the player to the camera and teleports the camera to closest intersection in
order to maintain visibility, leading to a noticeable jump in view. An alternate
scheme makes occluding geometry transparent, which avoids camera jumps
but detracts from the environment’s realism. Halper et al. [2001] present a
more sophisticated local camera model that resolves occlusions using point-
based visibility. Li and Cheng [2008] focus on finding an unoccluded camera
position, but sometimes teleport when the camera cannot be readily moved
to this vantage. Marchand and Courty [2002] develop an image-based camera
controller that uses visual servoing to resolve visibility tasks and occlusion
constraints. These algorithms handle some situations well, but their local
nature leads to inherent limitations. The camera may not adequately follow a
fast moving character or resolve a complicated visibility situation, resulting
in discontinuous jumps or passing through scene geometry (see Figure 1).
In contrast, our algorithm is global in nature which permits both large-scale
camera transitions as well as a third-person camera that follows an avatar in
a natural fashion without discontinuous jumps or collisions with objects in
the scene.

Cinematography: More high-level approaches to camera control focus on
virtual cinematography, in which cinematographic knowledge is incorpo-
rated into the choice of camera position and scene composition. For example,
Bares and Lester [1998] present a constraint-based camera planner for shot
composition that models different cinematic styles, and He et al. [1996]
encode film making heuristics into a hierarchical finite state machine that
controls camera selection and placement. Hornung et al. [2003] develop a
camera agent for interactive narrative applications. Tomlinson et al. [2000]
develop a behavior-based cinematography system that controls both cam-
era and lighting in order to convey a sense of emotion, while Kennedy and
Mercer [2001] focus on conveying theme and mood. Our work complements
these approaches by offering a sophisticated system for camera transitions.
Cinematographic rules may provide a sequence of shot placements and focus
targets, while our system controls the actual camera motion between such

15

Dynamic Camera Motion and View Control

shots. Drucker and Zeltzer [1994] present an alternative for advanced camera
control with visibility based path optimization. However, their approach
focuses on the creation of off-line animations and is not suitable for real-time
applications.

Visibility: A key aspect of our camera system is the focus on visibility during
large camera transitions. Visibility problems are fundamental to computer
graphics. As shown by surveys on the topic [Cohen-Or et al., 2003; Bittner,
2002], many visibility algorithms strive to identify which objects, lights, or
other portions of a scene are visible from a given vantage. Run-time visibility
calculations can be accelerated via pre-computation, in which a visibility
relationship between viewcells in space and scene objects is established (cf.
[Laine, 2005]). Compression techniques for precomputed visibility tables
provides efficient storage [van de Panne and Stewart, 1999]. Our algorithm
relies heavily on pre-computation for real-time performance. In our setting,
however, the focus target is not an object within the scene but rather a point
that can be placed anywhere within the ambient space. Our visibility-aware
roadmap (Section 2.1) extends the idea of precomputed visibility with a data
structure that estimates the visibility of every region of space with respect to
every other region of space.

Motion planning: The problem of visibility transition planning is related to
the topic of motion planning in the robotics literature where optimal paths
are found for robot navigation [LaValle, 2006; Masehian and Sedighizadeh,
2007]. Many motion planning algorithms employ a roadmap construction
in which the free configuration space of the robot is mapped to a graph
data structure, reducing the planning problem to a graph search [LaValle,
2006]. Some algorithms incorporate a notion of visibility with a sparse
set of guard nodes whose visibility region can be defined by unobstructed
straight lines in configuration space [Varadhan and Manocha, 2005] or the
ability of a local planner to navigate without intersection [Siméon et al.,
2000]. The related problem of target tracking strives to compute the motion
of a robot observer in order to maintain visibility of a moving target. So-
phisticated algorithms address this problem in planar environments with
polygonal obstacles (e.g. [Murrieta-Cid et al., 2004; Bandyopadhyay et al., ;
2006]). However, direct extension of this work to full 3D motion is non-
trivial, partly because visibility relationships are significantly more com-
plex [Bandyopadhyay et al., 2007]. Other work on 3D tracking does not
deal with occlusions [Vidal et al., 2002], utilizes only a robot’s visual sen-
sors rather than global scene information [Bandyopadhyay et al., 2007], or
presents interesting theoretical results without demonstrating a system that
matches the strict efficiency demands of games [Murrieta-Cid et al., 2007;
Lazebnik, 2001]. More generally, camera control for real-time graphics has a

16

1 Camera Navigation Background

different set of requirements than robot navigation. A camera control system
must operate in complex, 3D environments. Visibility is critically important,
and computed paths should always take visibility into consideration. The
start, end, and focus point may move continuously. The system must be
extremely efficient, with only milliseconds to compute a camera transition
and react to scene updates. While the robotics literature has explored nav-
igation in great detail, exiting work does not meet the requirements of a
high-performance game camera.

The work of Bandyopadhyay et al. [2007] on 3D target tracking presents an
online algorithm designed for an unknown environment where input comes
from a robot’s visual sensors. In virtual environments, the entire scene is
usually known a priori and the camera should make use of this information
to find more natural transitions.

Our work is motivated by the navigation system of Salomon et al. [2003]. In
their approach, a roadmap is created in which nodes represent an avatar’s
position, and edges connect nodes between which a local planner can suc-
cessfully navigate. Niederberger et al. [2004] present a navigation system
using a shortest-path search on a triangulated height-field terrain. We build
upon these ideas in several ways in order to develop an algorithm that is
appropriate for camera control. First, we focus on the full ambient space,
rather than just walkable surfaces, and incorporate the notion of dense visibil-
ity into the roadmap computation. Rather than a minimal number of guard
node visibility points, we favor a dense visibility roadmap in which each
node corresponds to a local volume of space that overlaps with the volume
of adjacent nodes. Movement within and between these volume bounds is
guaranteed to be collision free, and an estimate of the percentage of visibility
of all other nodes within a falloff distance is always known. Our runtime
planning algorithm uses the precomputed visibility values to find a coarse,
global path, and a refinement method makes fine-scale adjustments to im-
prove the path shape and incorporate sub-sphere visibility information. Then,
with additional extensions to handle dynamic occluders or incorporating risk
prediction for the occlusion of a player, we enable a variety of applications.

17

Dynamic Camera Motion and View Control

2 Camera Motion Planning

Given a start point and end point in the scene. We want the camera to move
between those two points while keeping a focus point visible as long as
possible. This problem can be solved by employing path planning on a global
data structure. In order to move a camera intelligently around a complex
environment we build on to of our previous work on visibility transition
planning [Oskam, 2008]. First, a graph with spheres and portals covering the
ambient space of the scene is pre-computed. In addition, visibility informa-
tion is stored in the graph structure in order to move the camera such that a
focus point is visible as long as possible. Second, at run-time, an extended A∗
[Dechter and Pearl, 1985] search is performed that incorporates this visibility
information. This initial search provides a coarse path that is then refined to
get smooth camera transitions.

2.1 Visibility-Aware Roadmap

The ultimate goal of navigating the camera through a virtual scene is to
generate collision-free camera transitions, guided by the visibility of a focus
point. Since the start, end, and focus points are specified only at runtime, they
can be located anywhere in the scene, and may even change continuously.
The planning algorithm may explore arbitrary parts of the environment’s free
space while continually querying the visibility of the focus point in order to
compute the best camera transition. To meet the strict real-time constraints of
high-performance applications such as games, a data structure is required
that makes these run-time queries as fast as possible.

Motivated by these requirements, visibility transition planning employs
a data-structure based on spheres and portals, which is referred to as a
visibility-aware roadmap (Figure 2). The entire free space of an environment
is tessellated with overlapping spheres. A visibility probability value is
computed between every pair of spheres and stored within the data structure.
Portals are defined by the circle of overlap between any two spheres. The
roadmap is a graph structure derived from the spheres and portals by placing
a node at the center of each portal and connecting this node to all other portal
nodes associated with either of the two overlapping spheres. By traveling
entirely within the network of spheres (transitioning from sphere to sphere
via the portals), the camera is guaranteed never to collide with scene geometry.
As soon as a focus point is fixed, an estimate of the visibility of the focus point
from any query point within the scene is known immediately by looking up

18

2 Camera Motion Planning

1) Sample free space
with spheres

2) Compute portal regions
for overlapping spheres

3) Construct roadmap
from portals

4) Compute visibility for
each pair of spheres

Figure 2: Overview of the creation algorithm for the visibility-aware roadmap. Based on
an initial geometry of the environment, we first compute a spatial discretization.
A graph is then built from the overlap regions. Finally, for each pair of spheres,
a visibility probability is computed with a Monte-Carlo raytracing algorithm.

the precomputed visibility probability between the query point’s sphere and
the focus point’s sphere.

Road Map Construction

Unlike existing sphere tree representations [Bradshaw and O’Sullivan, 2004],
the visibility-aware roadmap approximates the ambient space with a flat
hierarchy of overlapping spheres using an iterative sphere placement algo-
rithm. Although most motion planning algorithms use randomized sampling
[Yang and LaValle, 2002], we found that deterministic sphere placement leads
to more predictable results, making it easier for game designers to select
appropriate parameter values.

First, the scene geometry is embedded within a three-dimensional grid with
spacing ∆x. Any grid cells that intersect scene geometry are marked as occu-
pied. A candidate sphere of maximal size is constructed at each unoccupied
grid cell. To favor uniformity in sphere and portal size, radii are restricted to
reflect the levels of detail in the scene, with a minimum radius small enough
to resolve fine details in the scene, and a maximum radius that is not larger
than the average size of dominant features (e.g. houses or vehicles). A seed
sphere is selected at random. Then, in each step of the iteration, the algorithm
selects from the candidates the sphere that maximally overlaps the previously
selected spheres, creating the largest portals. Grid cells whose center lie
within the new sphere are marked as occupied and the corresponding can-
didates are deleted. The process repeats until no candidate spheres remain.
The size of ∆x depends on the size of features (e.g. doorways, tunnels, etc.)
within the environment and should be chosen to be small enough so that all
desired features are resolved by the grid. Although not strictly hierarchical,
a finer grid (smaller ∆x) can first be used in areas with smaller features (e.g.

19

Dynamic Camera Motion and View Control

1) Compute visibility
aware path based

on roadmap

2) Construct initial path
along portals

3) Re�ne path to tightly
pass through portals

4) Perform �nal
smoothing

Figure 3: The different steps to compute a visibility aware path based on the roadmap.

the inside of a house) followed by a coarser grid on the surrounding scene
(e.g. the streets of a village).

Adding Visibility Information

A final pre-computation step estimates a visibility probability between all
pairs of spheres using a Monte Carlo approach that selects a random point on
the hemisphere of a source sphere i facing a destination sphere j. A ray is shot
toward a second random point on the opposing hemisphere of sphere j. The
visibility probability pi,j between spheres i and j is given by the fraction of
rays that reach the destination sphere before hitting an obstacle. To limit the
amount of computations for very large environments, we take into account a
maximal visibility distance that specifies how much of a level are typically
in view. We only pre-compute the visibilities for spheres that are not further
away from each other than the maximal visibility distance.

2.2 Camera Transition Planning

Visibility transition planning refers to the problem of finding the shortest
collision-free camera transition from a start position sp to an end position
ep such that a focus point fp is visible as long as possible. Although the
complex nature of visibility in arbitrary 3D environments [Lazebnik, 2001]
makes a provably optimal solution to this problem intractable in real-time,
we present an algorithm to compute an approximate solution within the strict
time constraints of real-time applications. First, our runtime system executes
a visibility-based path-planning algorithm on the precomputed roadmap
data structure to find a coarse collision-free path through the scene. Next, a
fine-scale refinement is performed by computing a sequence of GPU-assisted
occlusion maps in spheres of partial visibility. A final smoothing step shortens
the path length by allowing it to hug the sphere portals tightly. An overview
of these steps is shown in Figure 3.

20

2 Camera Motion Planning

Path Planning on the Roadmap

The first stage of the runtime system computes a coarse path from the sphere
containing sp to the sphere containing ep along the visibility-aware roadmap.
Due to its efficiency, the A∗ search is used to find shortest paths efficiently
[Dechter and Pearl, 1985]. The typical shortest-path A∗ search uses edge
length as the cost function and Euclidean distance to the end node as the
heuristic. We augment the edge length cost with the precomputed visibility
probability in order to find paths that maximize the visibility of a focus point.
The cost for edge eij between nodes ni and nj is given by:

C(ei,j) = c(ei,j) + αc
(
1− u(ei,j)

)
, (1)

where c is the length of the edge ei,j (the Euclidean distance between nodes i
and j) and u(ei,j) is the visibility probability with respect to the focus point.
Due to the construction of the roadmap, each edge lies entirely within a given
sphere. Thus, we use u = pSe,S f , where pSe,S f is the precomputed visibility
probability between the edge’s sphere Se and the sphere S f containing the
focus point fp. This value represents the probability of seeing fp while trav-
eling along ei,j. The parameter α determines the relative cost of traveling in
regions where fp is visible versus regions where it is occluded. If α is chosen
to be larger than the maximal distance of any path through the roadmap,
the algorithm will find the path that travels as quickly as possible into the
visibility region. For the heuristic function h of the A∗ search, we use the
Euclidean distance between the last point on the path and the target:

h(n) = ||ep − x||. (2)

Path Refinement

The path planning algorithm yields a path P along the edges of the roadmap,
through the roadmap’s spheres. Spheres with a visibility probability of either
0 or 1 are entirely outside or entirely inside of the visibility region with respect
to the focus point, while those with a probability between 0 and 1 are in partial
visibility. The focus point may be visible from some positions within a sphere
of partial visibility and hidden from other positions. Therefore, a detailed
refinement step in such spheres is performed so that the computed path
navigates along positions where the focus point is actually visible. Since the
path planning edge weight favors visibility, there will be, whenever possible,

21

Dynamic Camera Motion and View Control

2D View: Circle on a plane 3D View: Portal in space

x i

Projection through focus point Re�ned path (3D)Optimal path on portal (2D)

b3D

s2D

b2D

e2D
xi+1

s2D

b2D

e2D

Figure 4: The distance traveled in the occluded region (shown in blue) is minimized on
occlusion maps. The right side shows the 2D plane of the occlusion map with the
projections of the path node positions xi and xi+1 (projected from the focus point
resulting in s2D and e2D, while the left hand side shows how the 3D positions of
the points are computed for the actual path. The path is refined by the point b3D

that is a back projection of the point b2D on the occlusion map that minimizes
the distance of the path in the occluded part.

few spheres of partial visibility. Thus, the path refinement need only be
performed for a small number of spheres.

The path refinement for spheres with partial visibility can be simplified from
a three- to a two-dimensional problem, since one dimension is determined by
the line of sight to the focus point. The system builds a detailed representation
of the focus point’s visibility within the sphere in the form of a 2D occlusion
map, which contains per-pixel information indicating whether fp is visible
from a given position within the sphere. The occlusion map is rendered
at runtime using a view frustum that is tightly fit around the sphere and
originates at the focus point [Halper et al., 2001]. The system performs
another A∗ search on this occlusion map. 2D path positions on this map that
change visibility are detected and reconstructed in 3D.

Although the occlusion maps provide detailed visibility information, ren-
dering them at runtime for every sphere during path planning would be
prohibitively expensive because the A∗ algorithm may explore hundreds of
nodes as it searches for the optimal path. Thus, our system uses the pre-
computed visibility probability estimates which require only a table lookup
during the coarse path planning. Once the coarse path is fixed, only a few
spheres will lie in partial visibility due to the nature of the search. The algo-
rithm can afford to compute the more accurate occlusion maps on these few
spheres without exceeding the camera’s allotted computation budget. Thus,
the computation is spent where it is needed most to build the best path.

22

2 Camera Motion Planning

The start and end points of the 2D path search on the occlusion map are
given by projecting the points on P that enter and exit the sphere onto the
map-plane. The entry position xi and exit position xi+1 lie on the two overlap
circles of the sphere and its predecessor and successor sphere, respectively.
The projected positions are denoted by s2D for the start point on the occlusion
map and e2D for the end point in Figure 4. A path planning, similar to the
one described in the previous section is performed on the occlusion map
pixels, where each pixel is considered connected to its eight neighbors. The
distance c and visibility values for u are replaced by functions computed on
the occlusion map: c is the 2D Euclidean distance, and u is the average of the
two per-pixel visibilities.

Once the occlusion map path has been calculated, the 2D path positions can
be reconstructed in 3D. For each pixel, the 3D position can lie anywhere on its
projection ray toward the focus point within the sphere. The reconstruction
of the start and end points, s2D and e2D, are known from the projections of
their 3D positions xi and xi+1 onto the map.

Next, border points b2D
i are identified on the 2D path. Border points are points

on the path where the visibility changes from occluded to visible, or vice
versa. Depending on the landscape of occluded regions on the projection map,
there can occur one or two such border points. One border point appears
when the 2D start point s2D is occluded and the 2D end point e2D is visible,
or vice versa. Two border points appear when both s2D and e2D are occluded,
but a region on the occlusion map is visible (or both points are visible and
there is an occluded region separating them on the map). In any case, each
occluded region on the map, such a border point is minimizing the path
length in the occluded area. This implies that the occluded part is a straight
line. That means that for the construction of the 3D position of the border
point and the path segment in the occlusion region it is enough to project
only the border poins to 3D. The 3D positions b3D

i are given by the closest
point on their view-line segment (connecting b2D

i with the focus position fp)
to either xi, or xi+1, as shown in Figure 4.

On the other hand, the portions of the 2D path that are fully visible do not
necessarily form a straight line. To avoid errors introduced by approximating
visible portions of the path also by a line between b2D and its neighbor,
additional points can be iteratively inserted in 2D and reconstructed in 3D as
the closest point to the line formed by its 3D predecessor and successor.

23

Dynamic Camera Motion and View Control

a) b) c)

Special Case:
Remove redundant position ()

Standard Case:
Smooth position

Special Case:
Swap positions and smooth

xi-1

x i

x i+1

x’i

x i

x j+1

x i-1 x’i

x j

x’j
x i-1 x j+1

x i x j

x’i x’j

xk

xk

Figure 5: The path post-processing computes smoothed point positions x′i as the closest
point on the portal to the direct connection of the previous position xi−1 and
next position xi+1 in the path. a) The standard case of smoothing on a single
portal. b) The procedure for two overlapping portal circles, where the order of
xi and xj is swapped during smoothing. c) The procedure for a circle that lies
within the tube of the two adjacent circles. This portal does not contribute to
the path and, therefore, is removed. The remaining points are then smoothed
according to the cases a) or b).

2.3 Path Post-processing

Although the coarse planning and refinement determines the gross nature
of the camera path, the actual path traversed by the camera can be freely
moved anywhere within the selected portals without colliding with geometry
or changing the visibility score. These additional degrees of freedom can
be used to smooth the path, creating both shorter and more natural camera
movement.

Path Shrinking

The path positions xi are computed using a constrained iterative smoothing
algorithm. The corrected position x′i of each point xi is first found as the
intersection of the line from xi−1 to xi+1 with the corresponding portal’s
plane. If the intersection point lies outside of the portal circle, it is moved
to the nearest point on the circle boundary, as shown in Figure 5 a. Note
that due to the previous refinement of the path in partially visible spheres,
either of xi’s neighbors can be a reconstructed border point. These steps
are performed iteratively for all points of the path. This update can change
the projected start and end positions on the occlusion maps, so the path
refinement as described in Section 2.2 is re-computed in an additional pass
after each iteration.

Two special cases of the post-processing are distinguished. The first one is

24

2 Camera Motion Planning

that of two overlapping portal circles. In such a situation, two neighboring
points on P , xi and xj, can converge to a single point on the intersection line
of the two circles, which prevents the points from moving further toward
their smoothed positions. To resolve this problem, a combined update of
both points can be performed if they are closer than a small distance ε (Figure
5 b). The second special case occurs when a portal is completely contained in
the cylindrical volume of its two neighboring portal circles. As the contained
portal does not contribute to the overall volume of the path, we simply
discard it (Figure 5 c).

Final Smoothing

The final camera trajectory is determined by Hermite interpolation [Farin,
1990] of the path between each pair of points. Two consecutive portals cannot
lie on the same plane, which guarantees that a C1 continuous interpolation
can be found. The maximum curvature is bounded by the space between the
two portals. In partially visible spheres, where the projection map forces the
border point onto the margin of the sphere, there might not be enough room
to add additional control points for the Hermite interpolation. In this case, in
order to guarantee the C1 continuity of the final path, the border point can
be slightly moved toward the sphere center to create enough room for the
interpolation. Figure 6 shows a visualization of this final smoothing.

In order to interpolate between the two points xi and xj in P , the tangents mi
and mj of the path at these positions need to be estimated. We perform finite
differences between the points neighbors in P :

mi = ||xi+1 − xi−1||. (3)

In the case of the start point sp or the end point of the path, where only one
of the two neighbors exists, the tangent can be computed as finite difference
between the start or end position and the only neighbor point. Now, given
all the tangents mi, the path can be refined piecewise between two points by
inserting new points. In our implementation we insert equidistant points.
Given the distance d(xi, xj) between the two nodes, we can compute a factor k
between [0;1] for each point to be inserted, where k = 0 corresponds to xi and
k = 1 to xj. The new positions xk

i,j between xi and xj can now be computed as

xk
i,j = (1− k)3b0 + 3k(1− k)2b1 + 3k2(1− k)b2 + k3b3, (4)

25

Dynamic Camera Motion and View Control

Smooth path after Hermite
interpolation

Path after re�nement
and shrinking

Estimated tangents at
the path positions

a) b) c)

Figure 6: Visualization of the final smoothing step on an example path. a) The path
positions resulting from the path refinement and shrinking are sparse and can
cause kinks in the path. b) First, the tangents at the path positions are estimated
using finite differences. c) Second, Hermite interpolation is applied to yield a
C1 continuous path that still passes through the original path positions.

where the points b0, b1, b2, and b3 are the bezier points. They can be computed
as follows

b0 = xi

b1 = xi +
d(xi, xj)mi

2

b2 = xj +
d(xi, xj)mj

2
b3 = xj.

This yields a smooth, C1 continuous path that still passes through the original
path positions xi. To also propagate the visibility values vi and vj from the
position pairs (xi, xj) to the new inserted positions xk

i,j, we employ linear
interpolation using the Euclidean distance between the nodes.

vk
i,j =

||xi − xk
i,j||vi + ||xj − xk

i,j||vj

||xi − xk
i,j||+ ||xj − xk

i,j||
(5)

26

3 Extended Planning Strategies

3 Extended Planning Strategies

In the previous section, we have discussed the basic framework for visibility
transition planning, which includes the precomputed visibility roadmap as
well as a runtime planning, refinement, and smoothing strategy for visibility-
aware camera transitions. This functionality is useful in many situations as-is.
However, interactive environments, simulations, and computer games often
have unique, specialized requirements, and one single camera model cannot
satisfy all situations.

Our data structure and basic planning system provide the foundation and
algorithmic tools to enable a variety of customized camera behavior that
can be specialized to the needs of a particular application. In this section,
we explore several extensions to our basic planning framework that allow a
variety of applications in dynamic environments.

3.1 Dynamic Planning

The visibility-aware roadmap and the transition planning provides a tool to
compute paths for a given start, end, and focus point in the scene. This is
useful, for example, for navigating in urban environments such as google
earth as demonstrated in [Oskam, 2008]. The visibility planning can create
camera paths from a persons location to his or her favorite restaurant in a
global context, allowing the user to see the restaurant’s location as early as
possible. The inverse case, where the user wants to see his location in greater
context, can be computed using visibility transition planning as well. In this
case the user’s position is kept in shot as long as possible. Such transitions
could assist in way finding tasks in virtual environments by providing a
natural facility to connect egocentric and allocentric viewpoints without
losing context [Byrne and Becker, 2008].

In these examples, the camera path is traversed from beginning to end once
it is computed. However, if either of the start, end, or focus points moves
during the traversal, the path is not valid anymore. To be able to react to
such changes instantly, the path needs to be updated while traveling. This is
achieved by having the planning constantly active in a thread running parallel
to the program’s main loop. This separation decouples the complexity of the
visibility planning from the application’s frame rate constraints. A straight
forward threading of the search, however, is not possible because of the
rendering of the occlusion maps. Their rendering requires synchronization of
the GPU usage with the main rendering step, as also the main thread utilizes
the graphics card for rendering the scene.

27

Dynamic Camera Motion and View Control

Traverse path until
update is available

Compute visibility aware
transition and perform

post-processing

Estimate future point on
new transition

Initialize: set
start, end and
focus position

Synchronized
GPU usage

Camera Thread
Main Thread

Occlusion Map
Rendering

Scene
Rendering

Figure 7: Implementation of the dynamic visibility transition planning. By predicting a
future start point on the current path based on the time it took to compute the
path, a start position for the next search can be estimated. The new transition
path is computed in parallel while the camera travels along the current path.
The computation of the occlusion maps, which is performed using the GPU,
needs synchronization with the rendering of the main thread.

Figure 7 shows the state machine that implements proper synchronization be-
tween main thread and planning thread. First, the state machine is initialized
with the initial start, end, and focus positions. These are used to compute
an initial path. Based on the time t it takes to compute this first path and a
given maximum velocity v of the camera, a future point d on the initial path
is estimated.

d = t v α (6)

We compute the distance d on the path using a security buffer α. This buffer
assures that fluctuations in the time the new path is computed do not affect
the global smoothness of the camera movement. These fluctuations may be
caused by waiting times by the state machine for synchronization of the GPU
usage or environmental factors such as the focus point vanishing behind an
occluder. In our implementation, a value of α = 1.5 sufficed to allow a smooth
camera motion while maintaining dynamic adaptation.

This new point d on the path currently travelled by the camera can now be
used as start point for the new search, while the end and focus point are
updated according to their movement in the scene. As soon as the new path

28

3 Extended Planning Strategies

is ready, it is given to the main thread so that the camera can switch the
transition as soon as d is reached on the old path. At this point, the new point
d is estimated and the state machine restarts. For the estimation of the new d,
the distance the camera was not able to travel towards the old d can be taken
into account as well, to not cumulate buffer distances over the course of a
long path.

Since both the camera and the main threads require GPU time, they have
to be synchronized at key points. The main thread, since it is crucial that it
runs with a smooth frame rate, is used as pacemaker for the camera thread.
Each time the camera thread needs occlusion maps, it is put on hold, until the
game engine thread cycles through the next draw call. Then, all the pending
occlusion map renderings are called from the main thread before the scene is
drawn.

The dynamic planning enables a new level of usability of the camera planning.
We have designed the dynamic state machine to be independent of f the
planning algorithm. The interface consists of the standard search input, the
start, end, and focus points. Also the required synchronization of the GPU
usage can be extended with other tasks by simply adding the requests to the
list of occlusion map rendering. This design allows arbitrary extensions of
the search strategy to work with this dynamic state machine. The changes
only need to be formulated within the original framework. The extensions
discussed in the following are all compatible with the dynamic planning,
and, in Section 4, we show a series of applications and results that are made
possible through their combination.

3.2 Avoiding Occluders

Often, real-time environments contain dynamic elements, such as closing
doors or moving obstacles, and it is crucial that the camera takes these objects
into account when moving through the scene. Fully dynamic environments
where every environmental feature can move are uncommon since they inval-
idate acceleration structures necessary for collision detection, lighting, and
other computations. Thus, we target the most common and advantageous
case where the environment contains a small number of dynamic occluders.

To enable the computation of visibility transitions in the presence of dynamic
occluders, two problems in the visibility-aware roadmap need to be solved:
invalid connections, and invalid visibility. On the one hand, a dynamic object
in the scene moving through the ambient space. This space is occupied
by spheres in our data structure that cover a volume where our camera

29

Dynamic Camera Motion and View Control

a) b) c)

Figure 8: Three different cases for the removal of roadmap edges are shown. a) Edges that
are colliding with occluder are directly removed from the graph. b) Additionally,
edges, whose corresponding cylinder (enclosed by the node’s portals) collides
with an occluder are also removed. c) The special case is shown where the portals
are crossing. Since the post-processing may cause the path to converge into the
lower portion, this collision also removes the edge from the roadmap.

can move freely. This property is invalidated by the occluder that collides
with connections in the roadmap. On the other hand, the object changes
the visibility of the scene. Our visibility-aware roadmap contains visibility
probability information between each pair of spheres. The occluder changes
this value as it moves through the scene. These two problems can be solved
separately.

Invalid Connections

In order to remove connections in the graph, the bounding sphere of the
colliding object can be considered. In a first step, all connections in the graph
can be invalidated that intersect with the collider (as demonstrated in Figure
8 a). This way, the planning will automatically circumvent the occluder.
Additionally, if it can be assumed that the occluder is moving with finite
velocity, the collision tests can be performed incrementally from one frame to
the next, since the roadmap allows fast querying of the neighborhood.

While this straight forward canceling of roadmap edges leads to a correct
result after the initial path planning search, the smoothing of the path after-
wards can cause problems. An occluder, that is not intersecting an edge, may
still intersect the volume formed by the two portal circles of the edge’s two
nodes (two cases are shown in Figure 8 b) and c). Such a configuration allows
the possibility that the smoothing causes the path to drift into the occluder.
Therefore, roadmap connections also need to be removed from the search
if the occluder collides with the volume between the two portals. Such an
intersection can be found by performing the following test (we assume a
spherical occluder):

30

3 Extended Planning Strategies

Original path search Collision-aware path search

Figure 9: Comparison of the result from the original path search (left) and the collision-
aware search (right).

1. Test for an intersection of the occluder against the sphere enclosing both
portals. If an intersection is detected, continue with 2.
2. Test for an intersection of the occluder against either of the two portal
circles by finding the closest points of the occluder to the circles plane and
projecting it onto the circles border. If an intersection is detected, invalidate
the roadmap edge. Else, continue with 3.
3. Connect the two points on either circle found in 2 and test for an intersec-
tion of the line against the occluder. If an intersection is detected, invalidate
the roadmap edge. Else, continue with 4.
4. Compute the intersection circles of the occluders with both planes of the
portals. If either of the circles center is closer to the node than the correspond-
ing portal’s radius, invalidate the roadmap edge. Else, continue with 5.
5. Test if the occluder is completely inside the volume by testing if the dis-
tance of the occluders center is closer to the roadmap edge than the line used
in 3.

This intersection test, similar to the canceling of roadmap edges directly, can
be performed incrementally on the data structure for each frame to further
decrease computational complexity. With the edges in danger of causing
collisions with an occluder removed from the graph, the path planning can
be executed as is. Figure 9 shows a comparison of a search with and without
canceling of colliding edges.

Adapted Visibility

At this point the roadmap can be made aware of occluders in the scene that
cause both the search and the smoothing to produce a camera transition
that collides with occluders approximated by spheres. The camera paths
produced at this point, however, can have suboptimal visibility to the focus

31

Dynamic Camera Motion and View Control

a) b)

Focus

Figure 10: An occluder creates a conical region in the scene where visibility to the focus
point is broken. a) In order to update the visibility probability of the graph’s
spheres, the overlapping volume of the sphere and cone could be calculated. b)
In our framework, we approximate this by calculating the fraction of the edge
that lies inside the visibility shadow.

Original visibility-aware path search Occluder-aware path search

Figure 11: Comparison of the result from the original visibility path search (left) and
the occlusion-aware visibility path search (right). The rays originating in the
focus point visualize the cone created by the occluder.

point. The occluder throws a shadow of invisibility into the scene. This
shadow needs to be considered during the search, lowering the visibility
of the affected edges. The edge visibility u already contains the probability
information from the environment. It can only be lowered when affected by
the occluder. Therefore, we model the visibility of an edge by multiplying a
penalty term p to compute the new edge visibility ũ

ũ = u p. (7)

The occluder in the scene creates a cone segment in the scene originating
in the focus point where the visibility is zero. This is shown in Figure 10
a). The sphere Se that contains an edge affected by this visibility shadow
intersects the cone. The proper value of the penalty p could be computed
as the fraction of Se that intersects the cone segment. However, since the
cone has an irregular shape, the exact solution is computationally expensive.

32

3 Extended Planning Strategies

Figure 12: In this example, the occluder is a U shaped block. From left to right, snap shots
of the path shrinking and smoothing are shown. This example shows, that
considering the exact geometry of an occluder during smoothing allows the
path to adapt to the visibility on a higher resolution than the graph connections
alone offer.

Therefore, we approximate this by computing the fraction of the edge affected
by the cone (see Figure 10 b). This solution is easy to compute and leads to
plausible results. Figure 11 shows how the path changes when both dynamic
collisions and occlusions are taken into account.

Extended Path Smoothing

To this end, only spherical occluders have been considered. However, objects
may have more complicated shapes. In these cases, they are usually approxi-
mated by several spheres. Nonetheless, the exact shape of an occluder can be
taken into account. During smoothing, one crucial aspect is the utilization
of occlusion maps seen from the focus point to refine the path. Here, the
occluder’s exact shape can be taken into account by adding them to the envi-
ronment geometry for the occlusion rendering. This way, the path refinement
can be executed as is, as shown in Figure 12.

Using the extensions to invalidate roadmap edges and include the changes to
visibility, we are able to execute the camera planning in the same way as in the
basic framework. With the awareness of dynamic occluder, motion planning
can be used in more complicated cases, where a goal can be achieved even
with certain dynamics in the scene occurring randomly.

3.3 Hierarchical Search Criteria

As we have discussed in the previous sections, the visibility transition plan-
ning framework is able to dynamically create camera transitions that optimize
for visibility to an object. The concentration on visibility is very useful if
seeing the focus point is the prime interest. There are scenarios, however,

33

Dynamic Camera Motion and View Control

Vi
si

bi
lit

y
H

ei
gh

t +
 V

is
ib

ili
ty

Figure 13: An example of hierarchical search criteria is shown. The image on the left
shows the situation with the focus point near the end point hidden behind
a building. While the standard framework provides the quickest path into
visibility (top), a hierarchical height constraint allows to find a solution that
still seeks visibility, but stays near the ground.

where prioritizing visibility at all costs can be counter productive. An exam-
ple is when the camera is moved in a flat but structured environment, like a
town. There are buildings and alleys that create a network of passages and
provide a clear structure to a visitor traveling on the ground. If the camera is
moved to a location of interest, it will always move straight in the air until
it sees the focus object before it transitions to the appointed position. This
behavior leads to repetition in the camera motion that can become boring and
predictive over time. In such situations an application might need additional
constraints for the motion planning. A path through the town to an interest-
ing location could require the camera to move along the ground, in a similar
way that a player would do, instead of taking the short cut over the roofs.

The search framework can be modified to include such additional constraints.
The cost function of the A∗ search encodes the way an optimal path is found.
By modifying the edge cost appropriately, an optimal path can be controlled
using additional criteria. For the example above, where the camera path
should lead through alleys, a height constraint could be added that weights
the cost of an edge according to its distance from the ground. To achieve such
a behavior, we add an additional penalty term to the edge cost in Equation 1.
This leads to a modified cost function

C′(eij) = C(eij) + α2cijh(eij) , (8)

where h(e) evaluates to zero if the edge e is within a given height range, and
increases to one if the edge is above or below this region. The weight of α2

34

3 Extended Planning Strategies

ensures that this constraint is prioritized over the visibility. The additional
search criteria compared to the original visibility only planning is shown
in Figure 13. It can be observed that the visibility to the focus point is still
optimized, but within the height constraint.

This hierarchical search of different constraints can easily be extended by a
variety of penalty terms, such as a weight term specified by a level designer
to make the camera prefer landmarks in the environment seen from a certain
angle or region. The exponent of the weight α used in the hierarchical cost
function allows to specify the priority of a constraint.

3.4 Risk Prediction

So far, we have concentrated on large camera transitions, as this is still an
open problem for dynamic environments. One large branch of interactive
applications, namely computer games, however, mostly contain local camera
behavior. Usually, the camera is following a user controlled avatar with
a predetermined distance. In some cases, the user is allowed to change
the camera orientation, and in other cases, the camera’s orientation angle
with respect to the user is changed automatically. In either case, the camera
behavior is constrained to the local vicinity of the player. At first glance, a
local solution seems to suffice, where simple heuristics adjust the camera
when occlusions occur [Halper et al., 2001]. Figure 1 a) through c) shows
some examples of local camera behavior. However, global planning can
improve local camera control by guiding the camera in situations where local
models can fail (1 d).

Generally, local heuristics use the fact that the player only moves a limited
distance in one frame. Should the player be occluded, then the camera only
has to adjust slightly to resume a clear view. This assumption is true in most
cases. However, the camera is a certain distance away from the avatar, and
if the player quickly dashes behind a close object, the camera might need to
be forced to move a large distance. This is where local methods can fail, and
global information is required to improve the camera behavior.

The dynamic planning discussed in Section 3.1 alone can already be used
to improve local camera control. The current camera position at frame t, as
determined by the local controller, is defining the start position. The supposed
camera position at frame t + 1, also determined by the local controller, marks
the end position. The focus point is the avatar itself to which the camera is
attached. Now, in cases where the start and end points do not lie in the same
sphere, visibility planning can be activated.

35

Dynamic Camera Motion and View Control

Focus Original
camera position

Risk aware
camera position

Sphere
with highest

predicted
occlusion risk

Figure 14: Proactive camera movement: our algorithm finds the closest sphere (indicated
in orange) that has reduced visibility from the original camera position. After
detecting such a high escape risk, the camera’s viewing direction is aligned
towards this sphere. Spheres with reduced visibility from the original camera
position are shown in darker shades of gray.

However, a purely reactive camera controller cannot keep a fast moving
player in view. Usually, local camera models purely react to changes of the
player’s position, but cannot proactively prevent the player from moving
into an occluded region. Thus, also the visibility planning, which is activated
in such a case, will be purely reactive.

The data structure we compute for visibility aware motion planning allows to
detect situations where the avatar is in risk of occlusion. We can approximate
the shortest path to an occluded region, similar to approaches in the robotics
field [Bandyopadhyay et al., 2006]. This means that we can predict which
direction has the highest risk to occlude the player, and move the camera
before the player enters the occluded region. This concept is visualized in
Figure 14.

Similar to visibility transition planning, we perform a search on the roadmap
to compute the path to the closest point in the occluded region. Here, any
graph search strategy can be used. Since there is no indication about the end
point of the search, we cannot speed up the search with a heuristic. There
are, however, several early abort tests to limit the search. One constraint
for the camera is that it should be placed behind the player, to show the
region where the player is moving towards. Thus, the search can be restricted
to the hemisphere given by the current velocity of the player. In addition,
only occluding regions close to the player are relevant. So we can limit the

36

3 Extended Planning Strategies

path search to compute paths shorter than a given distance. An appropriate
distance can easily be estimated by the players maximum velocity.

In our implementation, we have used a maximum distance of
dmax = c pv + rmax, where pv is the current velocity of the player’s avatar, and
rmax is the largest radius of a sphere in the visibility-aware roadmap. For c
we have found that a value of 65 units (approx. 10% of the environments
width) yields good results for our player model with a maximal speed of
approximately 1 unit per frame (the player’s bounding sphere being 2 units).
The first sphere s, with a visibility probability less than pp to the sphere
containing the camera, that is encountered during the search is selected. This
search yields the path with the highest risk to occlude the player. Adjusting
pp allows to adjust the sensitivity of the risk predictions. A value close to 1
will cause the camera to adjust often to corners in the players vicinity, while
a value close to 0 will only cause a reaction when the player is close to a
corner and traveling with high speed. In our experiments we achieved a
good balance with a visibility threshold of pp = 0.5.

As soon as a high-risk sphere is determined, we adjust the camera by ma-
nipulating the local camera controller. The direction r towards the occluding
region is given by the vector from the player towards the center of the sphere
s. This vector could be used directly to compute a desired position for the
camera, but typically, the camera is preferred at a fixed angle above the
ground (according to the local model that defines the camera behavior in the
first place). We thus project the risk vector r onto the ground plane and set
the camera position according to the local model, looking along r with the
given angle above the ground plane.

In environments where the player is not only moving along the ground
dimensions, but is able to navigate in all three dimensions, we propose to
adjust the plane used to determine the camera behavior in risk situations.
We have implemented a virtual plane that is defined by the players velocity
vector and the scene up vector. The risk vector r is then projected onto the
virtual plane instead of the ground to determine the direction of the camera.

The risk prediction is applied using a simple adjustment of the camera posi-
tion. This can help in environments with a few distinct corners. However, it
might fail in cases where the player quickly dashes along a corner without
moving behind it. Here, the camera adjusts to a false alarm. However, our
risk prediction delivers one or more spheres where the player might get
occluded. This information could be utilized in a more sophisticated way,
like adding an extra risk value to corners that have been travelled a lot by the
player, or using a different approach in adjusting the camera once a high-risk
sphere is detected.

37

Dynamic Camera Motion and View Control
Vi

si
bi

lit
y

H
ei

gh
t +

 V
is

ib
ili

ty

1 2 3 4 5

1 2 3 4 5

6 7 8 9 10

Figure 15: Comparison between original visibility only planning and visibility planning
with a constraint for height. The camera flight on the top takes the shortcut
over the roofs while the camera transition on the bottom follows the alley to
the focus point.

4 Applications and Results

The camera planning framework presented in Section 2 and the extended
planning strategies in Section 3 allow a wide range of applications. As we
have formulated our camera motion control as operations on a specialized
global data structure, we are able to automate certain camera behavior that
was previously not possible. In this section, we demonstrate applications of
our framework to improve local camera behavior, allow constrained global
camera transitions in dynamic environments, and increase awareness of the
context when spectating interactive content at run-time.

4.1 Content-aware Camera Transitions

Our camera planning framework, per design, is aware of the global context of
the scene. The visibility-aware roadmap allows to plan the camera movement
through the scene without colliding with geometry. Through the use of this
global visibility-aware planning combined with our dynamic update of the
path at run-time it becomes possible to automatically generate camera work.
Based on the application one or more of the extensions presented in Section 3
can be added to achieve certain results.

An example of a camera path that should show the location of a point of
interest in a small town is shown in Figure 15. Here, the player is standing
at a corner and would like to know how to get to the town well. Using only

38

4 Applications and Results

Tr
an

si
tio

n
1

Tr
an

si
tio

n
2

Tr
an

si
tio

n
3

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 16: Dynamic camera motion avoiding randomly moving blocks. The goal is to
move the camera towards the focus object and directly transition through the
moving blocks. Our dynamic camera motion framework is able to guide the
camera through the blocks at different instances in time without occlusions or
collisions.

visibility-aware transition planning, the camera moves over the roofs directly
to the focus point. Although the transition is smooth, the player does not get
enough information to find out how to get to the well. The same example, but
using a constraint for height causes the camera to fly through the alleys until
it reaches the well. This transition is still aware of visibility, but prioritizes
the height, resulting in a much more informative camera transition for the
player.

In many real-time applications the designer or programmer intents for certain
events to take place. A common example is a boss fight in a computer game.
The event has to take place in order to progress, and, therefore, it is usually
important and should be put in frame nicely. The problem that limits the
artist from defining camera positions and transitions is, that the environment
may not be completely controllable. Doors may be closed or open, objects
may be at different places, or even the environment itself may have dynamics
that prevent certain shots.

Our dynamic occluder avoidance extension allows the camera to adapt to
the unknown situation, and create dynamic moves to enhance the cinemato-
graphic quality. An example is shown in Figure 16. The goal is to have the
camera move through the randomly flying stone blocks and zoom in on the
focus of attention. Started at three different instances in time, our controller
is able to guide the camera to both avoid occlusions of the focus point and
collisions with the blocks.

39

Dynamic Camera Motion and View Control
Vi

si
bi

lit
y-

aw
ar

e
tr

an
si

tio
n

w
ith

 th
e

te
ap

ot
 a

s
fo

cu
s

po
in

t
D

yn
am

ic
 re

ac
tio

n
to

 th
e

do
or

 c
lo

si
ng

(a
lte

rn
at

iv
e

pa
th

 th
ro

ug
h

w
in

do
w

)
1 2 3

4 5 6

1 2 3

4 5 6

Figure 17: In interactive environments it is sometimes crucial to provide hints on hidden
objects. In this example, we demonstrate our camera planning by showing the
teapot hidden in the house. If the door closes while the camera transition is
executed, our dynamic planning is able to find an alternative route.

Another example is shown in Figure 17. The goal of this scene is to show
the location of the hidden teapot to the user. The designer of the virtual
environment only wants the user to become aware of the teapot, but does not
want to worry about the exact state of the environment. Using our framework,
the designer only needs to define what to focus the camera on and a trigger
(e.g. a hit box in the environment) in order to generate the appropriate
camera transition. The top example in Figure 17 shows the camera transition
that spots the teapot in the house and moves towards the focus point. The
images on the bottom show that our framework is able to instantly react to
unforeseen events, quickly finding an alternative route to the desired focus
point.

40

4 Applications and Results

1 2 3 4 5

1 2 3 4 5

Figure 18: Two examples of improved local camera control using our dynamic planning
framework. The camera is mounted to the avatar using a standard ray-cast
camera. In any situation, the camera moves smoothly.

4.2 Improved Local Camera Behavior

As discussed in Section 3.4, our global planning in combination with the
dynamic update can be used to improve local camera models. The local
control may be any method that provides a position and direction for the
camera. Both parameter do not necessarily need to be continuous. Our
planning framework will make sure that the camera always moves smoothly
and optimal with respect to visibility in order to connect discontinuities in
the local controller. This is demonstrated in Figure 18, where the camera
is constrained to the avatar by the local ray-cast camera model. In the ray-
cast model, the camera is always at the same distance and angle behind the
avatar. If an objects gets in between the camera and the avatar, the camera is
automatically teleported in front of the nearest occluder. This is a popular
camera model as it is simple to implement and cheap to compute. In the top
example of Figure 18, the avatar jumps down close to a ledge. While the local
controller causes the camera to be teleported, our global planning smoothly
guides the camera behind the avatar. The second example in Figure 18 is
similar, as the player dashes up an arch. Our dynamic planning guides the
camera smoothly underneath the ledge to catch up with the player behind it.

A purely reactive camera controller cannot keep a fast moving player in view
at all times. In order to anticipate situations in which the player might escape
the camera’s region of visibility, our system uses risk prediction. A series of
snapshots from a scene that demonstrate this extension are shown in Figure
19. The camera is fixed behind the player at a certain angle. The player moves
quickly forward between two horizontal platforms, and, suddenly, dashes up.
Usually, the camera would hit the upper platform, and leave the player oc-
cluded for a moment. With the risk prediction, however, the camera is moved
beforehand, and an occlusion is avoided. We have found environments that
are complex in all three dimensions (contrary to town environments, that

41

Dynamic Camera Motion and View Control

1 2 3 4

Figure 19: Example of active risk prediction. The image on the left shows the situation
where the player is moving quickly from underneath a platform and turns
upwards. The image series on the right shows, that the risk prediction is able
to move the camera to avoid getting occluded by the platform.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 20: Three examples of target switching are shown. Our framework allows for
completely dynamic start, end, and focus points as input for the planning and
is able to switch to another target at any time and get it into view as soon as
possible.

are only complex in two dimensions) to be the best application of our risk
prediction. The fast movement of the player’s avatar also decreases problems
of false alarms, as they are only active during a few frames, and the camera
has to move much more to catch up with the player than to react to the false
alarm.

4.3 Increasing Awareness of Environment

In the gaming community, it is popular to spectate during game matches.
Often, in tournaments where professional players compete against each other,
there is a separate camera that shows the action to the crowd. In these events,
there is generally a person controlling this spectator camera like a virtual

42

4 Applications and Results

camera man. Automatic camera control, that goes beyond applying standard
cinematography rules, are rare. The work of Halper et al. [2003] provides a
way to summarize the action in a game and estimate areas of interest. This
information can be used to place the camera so that the viewer is shown
interesting bits of the match. If the camera is moved to another location,
because something interesting has emerged, it needs to be done using a hard
cut. These cuts omit all of the space between the two locations, and often, it
is of strategic importance to know how players are located with respect to
each other.

Our dynamic planning enables target switching, where the camera’s focus
point switches between multiple focus targets playing at the same time. As the
focus dynamically changes between multiple areas or players, our visibility
transition planning algorithm results in camera transitions that bring the
new player into focus as quickly as possible. The smooth transitions give
the viewer a sense of the environment’s layout and the distance between the
two players, which would not be conveyed if immediate camera cuts were
used instead (see Figure 20). This system could complement automatic action
summary to show more of the environment, as well as give live spectators
another tool for observing the progress of a multi-player game.

43

Dynamic Camera Motion and View Control

5 Performance and Limitations

We have presented an algorithm that enables sophisticated camera transitions
by phrasing the problem as a global search on a precomputed visibility-aware
roadmap together with local run-time refinement. The balance between
pre-computation and run-time calculation allows our system to generate
collision-free paths that emphasize visibility while maintaining real-time per-
formance. Because it is global in nature, our method can generate large-scale
camera transitions between distant points in a scene, even in complicated
geometric situations. In addition, we have demonstrated a variety of exten-
sions to this basic functionality. Our approach can handle dynamic occluders,
enhance third-person camera models, perform risk prediction, and respect
additional constraints. The computation time is output sensitive. Large cam-
era transitions require tens of milliseconds, while shorter ones used in our
third-person camera are computed in one to four milliseconds.

5.1 Performance

Run-time and pre-computation statistics of the environments are given in
Table 1. The roadmaps we compute for the different environments have be-
tween 819 and 3102 spheres. The largest roadmap, for the Town level, requires
only 6.36MB. The pre-computation times, the major part of which is comput-
ing the sphere visibilities, vary from 8.1 to 61.4 seconds and directly depend
on the number of spheres and visibility distance. While pre-computation time
is unimportant in many disciplines, it is crucial in the design of interactive
environments. Level designers must continually iterate during the design
process, testing gameplay with each modification to the level’s layout. A
long pre-computation time would hinder this iteration, making the camera
control system unusable. Thus, our short pre-computation time is critical
for a practical system. The average path search and post-processing times
depend on the length of the transitions. For the local models used in the
Arena, this takes 1.8ms on average, while the long transition with dynamic
objects demonstrated in the Tea House example requires up to 30ms for the
initial path. The local model must be extremely fast so that the camera will
react adroitly to player movement. However, the longer transitions require
several seconds for the camera to travel along the long path (five seconds in
the tea house example) and the transition planning is comparatively short.
Furthermore, these path computations are performed in a thread parallel to
the game engine, which avoids any changes in the frame rate.

44

5 Performance and Limitations

Environment Woodland Arena Tea house Valley Town

Polygons 1778 15536 8918 8388 34721
Grid resolution 75x25x67 75x14x68 40x6x40 75x21x76 65x21x83
Spheres 2152 2008 819 1106 3102
Roadmap nodes 8730 3991 3999 7953 24989
Visibility distance 100% 30% 100% 100% 25%
Precomputation [sec.] 61.4 27 35 51 28
Memory roadmap [MB] 4.29 2.92 2.07 5.10 6.36
Method Switching Local Dynamic Dynamic Transitions
Avg. Path Length [# nodes] 4.8 3.5 12.0 9.6 14.7
Avg. Search [ms] 7.44 1.80 27.67 25.1 14.48
Avg. Post-processing [ms] 2.41 0.41 2.34 6.61 0.63

Table 1: Roadmap sizes, pre-computation times and run-time performance measurements
for the different parts of our algorithm. The environments are depicted in Figure
21 for reference.

Woodland Arena Tea House Valley Town

Figure 21: The different environments used for our experiments.

5.2 Limitations and Future Work

Limitations of our current system direct us to areas of future work. Currently,
we support only single-point focus targets. However, one goal is to extend
the algorithm to keep an entire object in view by aggregating the visibility
estimations for multiple focus targets during the path search, and superim-
pose the occlusion maps during the refinement phase. Currently, our system
computes a fairly dense sampling of the ambient space using the roadmap
spheres. Accurately sampling small regions of the environment may require
tiny spheres. Such a sampling leads to more accurate visibility estimations,
better risk predictions, and superior camera paths. However, extremely dense
roadmaps may impede performance. We plan to explore level-of-detail for
the visibility-aware roadmap, where highways are traveled for large distances,
and local roads are used for more fine-scale movement.

In this work, we have focused on visibility, since achieving an unoccluded
view of an object is the most fundamental goal of camera control. In future
research, we wish to include higher-level goals such as cinematographic

45

Dynamic Camera Motion and View Control

rules that influence perceptual aspects of the computed transitions to convey
different styles or moods. One particularly exciting avenue of research is
to generalize from artist-created camera paths during transition planning
so that greater control over the character of the transitions is given to the
designer.

46

C H A P T E R 4
Interactive Stereoscopy

How to control stereoscopy in scenarios where you cannot control the camera position
is a delicate task. Restricting the disparities to much will reduce the depth experience,
restricting them not enough will create uncomfortable stereoscopy for the viewer.
Our optimized stereoscopic camera control is able to handle any situation applying
constraints to the perceived depth to get the maximum out of the stereoscopic 3D
experience.

47

Interactive Stereoscopy

Calibrated View: Uncontrolled Stereoscopy: Constrained Stereoscopy:
disparities are within a de�ned

min-max range
disparities become too large when

moving towards a wall
disparities stay in the same range

regardless of scene depth

a) b) c)

Figure 1: This example demonstrates the problem of stereoscopy in interactive applica-
tions. a) The image’s stereoscopy is calibrated, when the player stands in the
scene. b) The image shows what happens with the stereoscopic rendering when
the user gets close to a wall. The amount of image disparity becomes very large,
causing an uncomfortable viewing situation for the user. c) Controlled stere-
oscopy, however, is able to keep the disparities within the calibrated min-max
range.

Stereoscopic content creation, processing, and display has become a pivotal
element in movies and entertainment, yet the industry is still confronted with
various difficult challenges. Recent research has made substantial progress in
some of these areas [Lang et al., 2010; Koppal et al., 2011; Didyk et al., 2011;
Heinzle et al., 2011]. Most of these works focus on the classical production
pipeline, where the consumer views ready-made content that has been opti-
mized in (post-)production to ensure a comfortable stereoscopic experience.
See Tekalp et al. [2011] for an overview.

In general, stereoscopy simulates a depth impression by providing a separate
image for each the viewer’s eyes. Both images show the scene from slightly
offset positions, causing the eyes to converge to a certain depth. This con-
vergence is the same as in real life, where each eye perceives objects from
slightly different locations. Therefore, stereoscopic images can be created by
simply rendering the virtual environment from two viewpoints. The distance
of these viewpoints combined with the relative rotation of the two cameras
creates images, where each point in the scene is mapped with a horizontal
distance within these two images. This difference is called the image disparity,
and causes the convergence of the viewers’s eyes. In Figure 1, disparities are
visualized using red-cyan overlay rendering. The left view is tinted in red
while the right view is tinted in cyan.

In reality, eyes have a second mechanism to adjust to different depths, namely
the focus depth. Each eye focusses automatically to the depth of the object
that the viewer looks at. The change in focus and the convergence of the
eyes is naturally coupled. A fundamental problem with stereoscopic 3D

48

shown on current display technology is, that only the convergence can be
simulated (through image disparity). The focus of the eyes, however, is
always fixed at the screen plane. This creates a de-coupling of the focus and
convergence, called the vergence-accommodation conflict [Hoffman et al., 2008].
This conflict causes a decrease in visual performance and increases visual
fatigue when the convergence point moves away from the focus plane (i.e.
the screen plane). Therefore, it is important to keep the perceived depth
values within a comfortable range around the screen [Shibata et al., 2011b]. In
movie productions, artists often adjust disparities in post-production to strike
a balance between perceived depth range and vergence-accommodation
conflict.

In interactive applications such as computer games that create stereoscopic
output in real-time, one faces a number of fundamentally different challenges
[Gateau and Neuman, 2010]. For example, in a first-person game where the
player is in control of the view, a simple collision with a wall or another
object will result in excessive disparities that cause visual fatigue or destroy
stereopsis (see Figure 1).

In order to guarantee proper stereoscopy, one needs a controller that adjusts
the range of disparities to the viewer’s preferences. An example for such a
controller is the work of Lang et al. [2010] which, however, has been designed
for post-capture disparity range adaptation using complex image-domain
warping techniques. In a game environment where the stereoscopic output is
created and displayed in real-time, it is advisable to optimize the stereoscopic
rendering parameters, i.e., camera convergence and interaxial separation,
and to avoid computationally expensive solutions.

The problem can be formulated as one of controlling perceived depth. We
use the term perceived depth in the geometrical sense, where the distances
reconstructed by the viewer are dominated by the observed screen disparities.
Even though there are other important cues such as vertical size or focus
that influence perceived depth [Backus et al., 1999; Watt et al., 2005], the
work of Held and Banks [2008] showed that the geometrical approach is
a valid approximation. The range of perceived depth around the screen
that can be viewed comfortably is generally referred to as the comfort zone,
and is defined as the range of positive and negative disparities that can be
comfortably watched by each individual viewer [Smolic et al., 2011; Shibata
et al., 2011a]. Therefore, we are looking for an exact mapping of a specific
range of distances in the scene into this depth volume around the screen. In
the course of this thesis, we will refer to this volume as the target depth range.
While we concentrate on the control of the mapping between the virtual and

49

Interactive Stereoscopy

real space there exists prior work on how to derive a comfortable target depth
range [Woods et al., 1993; Shibata et al., 2011a]

In this chapter, we first discuss the current state of the art in stereoscopy in
Section 1. Then, in Section 2, we develop the basics of the stereo geometry to
introduce the different terms and their context which we will use throughout
this chapter. In Section 3 we show our approach to constraining the camera
parameter in order to achieve bounded disparity ranges for any viewing
situation and show how to handle changing depth over time in Section 4.
Thereafter, in Section 6, we show different applications made possible through
our stereo control system before we close with a discussion on the limitations
in Section 7.

50

1 Stereoscopy Background

1 Stereoscopy Background

There has been a lot of research on production and consumption of stereo-
scopic 3D for many years, with applications ranging from cinema [Lipton,
1982], scientific visualization [Fröhlich et al., 1999], television broadcasting
[Meesters et al., 2004; Broberg, 2011] to medical applications [Chan et al.,
2005]. A recent survey over the field is provided in Tekalp et al. [2011].
Interestingly, solutions for interactive applications such as games are rare.
In the following we discuss related works on stereo geometry, analysis and
correction, camera control in real-time environments, and perception.

Stereo geometry: A detailed derivation of the geometry of binocular vision
and stereoscopic imaging is given in Woods et al. [1993]. Their main focus is
on the description of various image distortions such as keystoning or depth
plane curvature, and they show how perceived depth changes under different
viewing conditions. Grinberg et al. [1994] also describe the mapping between
scene and perceived depth using different frames-of-reference, and propose
a framework based on a minimum set of fundamental parameters to describe
a 3D-stereoscopic camera and display system. Held and Banks [2008] derive
a very complete geometrical model that maps from the scene over the screen
to the perceived depth, including the projection to the retina. They not only
parameterize the distance from the screen, but also the yaw, pitch, and roll of
the viewer’s head as well as a relative position to the screen. They use this
model to predict distortions perceived by the viewer. Another summary of
the stereo geometry is provided by Zilly et al. [2011]. They discuss constraints
on the camera separation but do not take the camera convergence into account.
Similar to the previous works they are mainly focused on quantifying depth
distortions.

In contrast to these works, we provide explicit constraints on both camera
convergence and interaxial separation in order to control the mapping of
virtual scene content into perceived space. Moreover, none of the previous
works has proposed a solution to handle nonlinear visual distortion during
temporal interpolation of these parameters.

Stereoscopic content analysis and post-processing: Based on the above
works, several methods have been developed for stereoscopic video analy-
sis which estimate image disparities in order to predict and correct visual
distortions such as card boarding, the puppet theater effect, and other types of
distortions [Masaoka et al., 2006; Kim et al., 2008; Pan et al., 2011]. Koppal et
al. [2011] describe a framework for viewer-centric stereoscopic editing. They
present a sophisticated interface for previewing and post-processing of live
action stereoscopic shots, and support measurements in terms of perceived

51

Interactive Stereoscopy

depth. Nonlinear remapping of disparities based on dense depth maps has
been discussed by Wang et al. [2008]. Lang et al. [2010] generalize these
concepts to more general nonlinear disparity remapping operators and de-
scribe an implementation for stereoscopic editing based on image-domain
warping. A detailed state-of-the-art report on tools for stereoscopic content
production is provided in [Smolic et al., 2011]. This report details challenges
in the context of 3D video capturing and briefly discusses the most common
problems in practical stereoscopic production such as the comfort zone, lens
distortions, etc.

The focus of all these methods is on post-production analysis and correction
of stereoscopic live-action video. Our work targets real-time stereoscopic
rendering, with control over perceived depth for dynamic 3D environments,
minimization of nonlinear depth distortions, and high efficiency for demand-
ing real-time applications. Hence, our goals are complementary to these
previous works.

Perceptual research on stereoscopy: An excellent overview of various stereo-
scopic artifacts such as Keystone Distortion, Puppet Theater Effect, Crosstalk,
Cardboarding, and the Shear Effect and their effects on visual comfort is given
in the work of Meesters et al. [2004]. The works from Backus et al. [1999]
and Watt et al. [2005] show that perceived depth not only depends on the
amount of disparities seen by the viewer, but also on monocular cues such
as vertical size, focus, or perspective. The previously mentioned work by
Woods et al. [1993] provides a user study to what extent different subjects can
still fuse various disparity ranges. The results clearly showed that different
persons have significantly varying stereoscopic comfort zones, indicating that
individual control over stereoscopic depth is desirable. Stelmach et al. [2003]
showed in a user study that shift-image convergence changes are generally
preferred over toed-in camera setups, and that static, parallel camera setups
are often problematic due to excessive disparities for nearby objects. A per-
ceptual model which emphasizes the importance and utility of individual
control over disparity and perceived depth, is described by Didyk et al. [2011].
Shibata et al. [2011a] thoroughly examine the vergence-accommodation con-
flict and conduct user studies on the comfort of perceived depth for different
viewing distances. Their work also provides a way to define a range of
disparities that are comfortable to watch by an average viewer.

Results from perceptual experiments and research on stereoscopy clearly
indicate a large variation in the physiological capabilities and preferences of
different people. These indications motivate the need for tools that allow for
a content-, display-, and user-adaptive control of stereoscopic disparity.

52

1 Stereoscopy Background

Camera control in interactive environments: Finally, there is a large body
of work on real-time camera control in virtual 3D environments and games,
ranging from intuitive through-the-lens editing interfaces [Gleicher and
Witkin, 1992] and cinematographic shot composition [wei He et al., 1996;
Bares et al., 1998] to sophisticated camera path planning and minimization
of occlusions of points of interest [Oskam et al., 2009]. There exist excel-
lent overviews of this field [Christie et al., 2008; Haigh-Hutchinson, 2009],
which address theory of camera control as well as practical solutions for
high-performance interactive applications. The work of Jones et al. [2001]
also addresses real-time control of camera parameters to adjust the target
depth range. However, they assume a parallel camera setup and solve the
problem for still images only.

53

Interactive Stereoscopy

2 Basic Geometric Models of Stereoscopy

Viewer Screen

ed

vd

sw

Virtual Image Plane

h

f

αwi

Convergence Point

b

cvgc

p

z
d/2

c

Viewer-Screen Setup Virtual Camera Dual Camera-Scene Setup

real units

virtual units

SCENE CENTRIC MODEL

VIEWER CENTRIC MODEL
a) b) c)

Figure 2: The geometry pipeline of stereoscopic vision. a) The viewer with eye separation
de at distance dv to a screen of width ws reconstructs a point at depth z in
the target space due to the on-screen parallax p. b) The on-screen parallax
in a) is caused by a disparity d on the two camera image planes. The camera
renders the scene with focal length f and an image shift h. c) Two cameras, with
opposite but equidistant image shifts converge at distance ccvg in the scene, and
are separated by the interaxial distance b. The image disparity d between both
cameras corresponds to a point with distance c from the cameras.

Depending on the values of several real-world and virtual parameters, the
depth perceived by a viewer can dramatically change. Influencing factors are
the geometrical configuration of the viewer and the screen plane, the virtual
camera model, and the parallel camera configuration used for rendering as
well as the scene layout.

In this section we briefly revisit the basic geometry of stereoscopic vision
relevant to our work. Our description is, in general, based on previous mod-
els [Woods et al., 1993; Held and Banks, 2008; Zilly et al., 2011]. For the
stereoscopic camera parameter, i.e. the convergence and interaxial separa-
tion, we follow the same definition as the existing models. The interaxial
separation b is defined as the distance between the positions of the two cam-
eras. The convergence distance ccvg is defined as the distance between the
intersection of the two camera viewing directions and the middle point be-
tween the two cameras. Both parameters are schematically shown in Figure 2
c). Note that we converge our cameras using image-shift instead of toeing
them in. Image-shift convergence produces less artifacts [Woods et al., 1993;
Stelmach et al., 2003].

First, we treat the camera convergence and interaxial separation as unknowns.
This will enable us later to derive constraints for these parameters to achieve
an optimal mapping of depths between scene- and real-world spaces. Second,

54

2 Basic Geometric Models of Stereoscopy

we define real-world distances in a 3D volume relative to the screen instead
of the viewer. This allows for a more intuitive definition and control of the
target depth range (see Figure 2 a). Based on these prerequisites we derive
the corresponding viewer-centric model and, as the inverse case, the scene-
centric model, both of which are later needed to formulate constraints for the
stereoscopic camera controller and the temporal transformation functions.
Figure 2 gives an overview of the geometry pipeline of those two models.

2.1 Viewer-Centric Model

The viewer-centric model describes the reconstructed depth z of a point as a
function of the scene distance c, the camera interaxial separation b, and the
convergence distance ccvg. This corresponds to a left-to-right traversal of the
pipeline in Figure 2.

In order to derive the viewer-centric model, we start with the configuration
of viewer and screen. We then describe the conversion from perceived real-
world depth to on-screen parallaxes, and convert them to disparities, which
are measured in scene units. Finally, we derive the relation of disparities and
scene depth values.

Computation of Screen Parallax

Given the configuration in Figure 2 a), where a viewer is looking from a
defined distance dv at the screen of a defined width ws. We assume the
general setting where the viewer is sitting in front of the screen looking at an
orthogonal angle to the center of the screen [Woods et al., 1993]. The viewer
is presented with two images, one for each of his eyes. These images contain
the same content, but shifted relative to each other. This on-screen difference
is called screen parallax, which we denote with p. Note, that the distance z
assumes positive values when lying behind the screen, and negative values
when lying in front of the screen.

The average distance between the eyes of a grown person is about de = 65mm.
The positions of both eyes together with the point perceived at distance z
from the screen forms a triangle. This allows to derive the following equality
using the intercept theorem:

p
z
=

de

dv + z
. (1)

Solving the equation for z gives

55

Interactive Stereoscopy

z(b, ccvg, c) =
dv p(b, ccvg, c)

de − p(b, ccvg, c)
. (2)

We describe the depth z as a function of the camera separation b, camera
convergence ccvg, and the in-scene depth c. This way we incorporate into
the formula that b, ccvg, and c are unknown parameters, which we seek to
constrain later.

The depth value z is positive when lying behind the screen and negative when
in front. Similarly, as can be verified by Equation 2, the on-screen parallax
p has the same sign as the reconstructed depth z. This explains that points
reconstructed by the viewer in front of the screen require the corresponding
features in the two images to be shifted with negative distance to each other
as opposed to points that are reconstructed behind the screen.

Example: Office Monitor. To show the influence of the different parameters
de, dv, and p, we consider the scenario of a monitor on an office desk. We
will use this scenario throughout this chapter to test the effects of changing
parameter on the depth mapping. In all cases, the different parameter assume
the values listed in Table 1, if not stated otherwise.

de 6.5 [cm]
dv 70 [cm]
ws 50 [cm]
α 1.0472 [Radians]
f 0.5 [virtual units]
b 2.0 [virtual units]
ccvg 120.0 [virtual units]

Table 1: Parameter values used in the office monitor examples.

Figure 3 a) shows the plot of the reconstructed depth z in relation to the
parallax p. If the perceived point in space moves towards the position of the
viewer (z = −dv), p converges to −∞. On the positive side of the z-axis, p
converges towards de. The parallax crosses the 0-point exactly when z is zero,
since there is no parallax introduced for points that lie on the image screen.

As can be seen in Equation 2, the distance between the eyes de affects the
reconstructed depth inversely. This means, that children do perceive greater
depth than adults for the same on-screen parallax values. This is an indicator
that stereoscopy with large disparities is even more problematic for children.

The perceived depth z, for any given parallax value p, linearly scales with the
distance dv, as can be verified in Equation 2. However, the inclination with

56

2 Basic Geometric Models of Stereoscopy

-60 -40 -20 0 20 40 60

-50

-40

-30

-20

-10

0

z

p

-80
-60

-40
-20

0
20

20

40

60

80

-60

-40

-20

0

z
dv

p

a) b)

Figure 3: The relation between the screen parallax p and viewer distance dv to the recon-
structed depth z is shown. a) The reconstructed depth z is shown for changing
on-screen parallax values p. It is apparent that the relation is non-linear. b) The
parallax p is shown as a function of both the depth z and the viewer distance dv
from the screen.

which a perceived depth value scales with the distance to the screen depends
on the parallax. This means, that each slice of z values is scaled differently
when changing the viewer distance, and, therefore, the depth range is dis-
torted non-linearly. This effect is shown in Figure 4 a). So, counterintuitively,
the perceived depth range increases with the distance to the screen.

Conversion to Image Disparity

Next, we convert the screen parallax p to the image disparity d. The image
disparity is the distance between the points of the two images. However, in
contrast to the parallax, the image disparity is measured in camera or virtual
units, instead of real world measures. Therefore, this conversion is the step
where distances are translated from real to virtual. In order to perform the
conversion, the ratio between parallax and screen width is multiplied by the
width of the virtual image plane.

Given the camera focal length f and the opening angle α, the image width wi
is computed as

wi = 2 f tan
(α

2

)
. (3)

Note, that Equation 3 assumes the opening angle α to be measured without
image shift (h = 0) in horizontal direction. The measurement of α can be
confusing, since the DirectX Framework from Microsoft, for example, defines
the opening angle vertically. In this case, Equation 3 computes the image
height. To compute the image width, wi needs to be multiplied by the aspect
ratio of the image.

57

Interactive Stereoscopy

dv

z

p -5.0:
-2.5
0.0
2.5
5.0

−50 0 50 100 150 200 250

25

35

45

55

65

sc
al

e
fa

ct
or

 o
f w

s

z

p -5.0:
-2.5
0.0
2.5

−40 −20 0 20 40 60 80 100

1.0

1.5

0.5

a) b)

Figure 4: For different parallax values p, it is shown how the reconstructed depth z
changes when changing different parameter. a) The perceived depth z linearly
depends on the viewer distance dv. Although each perceived depth value (for a
defined parallax) linearly scales with the distance to the screen, the inclination
is different for each value. b) The scaling of the screen width ws non-linearly
influences the reconstructed depth z. Comparing a) and b) it is clear that
a scaled screen size cannot be compensated entirely by changing the viewer
distance.

Having computed the image width wi in camera units, the conversion from
parallax p to image disparity d can now be achieved as

p(b, ccvg, c) =
ws

wi
d(b, ccvg, c). (4)

Inserting Equation 4 into Equation 2, we can derive the relation between
image disparities d and the reconstructed depth.

z(b, ccvg, c) =
dv

ws
wi

d(b, ccvg, c)

de − ws
wi

d(b, ccvg, c)

=
dv d(b, ccvg, c)

de
wi
ws
− d(b, ccvg, c)

(5)

Consider a still stereoscopic 3D image shown on a screen. This implies that
the depicted disparity is constant, and, therefore, the parallax is constant as
well. Changing the size of the screen will linearly scale the parallax. However,
since the on-screen parallax and the perceived depth are non-linearly related,
scaling the screen size will ultimately scale the perceived depth range non-
linearly. In Section 4, we will further investigate this non-linearity between
perceived depth and disparities, and show how this can be taken into account
to optimize transformations of the perceived depth over time.

58

2 Basic Geometric Models of Stereoscopy

Example: Changing screen size. As stated before, scaling the size of the
screen is equivalent to scaling p by the same amount. Let us revisit our office
monitor setup. We fix the viewer’s position dv as well as the eye distance
de. Figure 4 b) shows the effect of depth perception when scaling the screen.
The parallax values p are chosen at the screen scaling of 1.0, and they scale
with the screen scaling factor. The figure demonstrates, that the reconstructed
depth non-linearly changes with the scaling, with a different curve for each
original pair of image features. Comparing this behavior to Figure 4 a), it is
apparent that a scaling of the image screen cannot be entirely compensated
by changing the view distance. This means, when stereoscopic footage, that
was intended for a small TV, is shown on a movie screen, there is no seat in
the cinema from which the footage is seen correctly.

The example also shows, that positive parallaxes scale stronger than negative
ones. This is because the depth perception, from a geometrical point of view,
has higher resolution the larger the parallaxes are. Revisiting Figure 2 a)
reveals, that the perceived depth z moves further away for the same increase
in p, the closer the parallax comes to de.

Final In-Scene Distances

Finally, to complete the viewer-centric model, we can compute the distance c
in the virtual scene that produces the disparity d, investigating Figure 5. The
image disparity d is equally shared between the virtual image planes of the
two cameras in the scene. Let us define ĥ = h− d/2. This equation contracts
the image shift and disparity into a single parameter. The geometrical situa-
tion with the two virtual cameras looking at a point in the scene at distance c
is shown on the right in Figure 5. Two right triangles with the same relative
edge length can be spotted: (A, B,C) and (A, B′,C′). By dividing the side of
each triangle orthogonal to b with the one parallel to b, we get the following
equality

B′C′

AB′
=

BC
AB

. (6)

Since the length of each of these edges can be derived from the geometrical
configuration in Figure 5, we can rewrite Equation 6 as

f
ĥ
=

c + f
b
2 + ĥ

. (7)

59

Interactive Stereoscopy

b

c

b

f

2

B C

B‘
C‘

A
h
^h d/2

Convergence
Pointd/2h

cf

Virtual Scene
Point

Figure 5: The geometry of disparity in a virtual camera setup. The disparity d is equally
split up between both camera image views. This creates two triangles (A, B,C)
and (A, B′,C′), shown on the right, with the same relative edge lengths.

In order to get the image disparity d as a function of the camera separation
b and image shift h(ccvg) as well as the scene depth c, we first need to solve
Equation 7 for ĥ and then back substitute ĥ = h− d/2. This gives

d(b, ccvg, c) = 2 h(ccvg)−
f b
c

. (8)

The image shift h is expressed as a function of the camera convergence
distance ccvg. Since the proportions between the image shift h and the camera
focal length f are the same as between halve the camera separation b/2 and
the convergence distance ccvg, as can be verified in Figure 2, we can express
the image shift as

h(ccvg) =
f b

2 ccvg
, (9)

and finally express the disparity d as

d(b, ccvg, c) = f b ·
(

1
ccvg
− 1

c

)
. (10)

Equation 10 describes the image disparity d as a function of camera and scene
parameters. By inserting Equation 10 into Equation 5 we can derive

60

2 Basic Geometric Models of Stereoscopy

z(b, ccvg, c) =
f b dv ·

(
1

ccvg
− 1

c

)
de

wi
ws
− f b ·

(
1

ccvg
− 1

c

)
=

dv ·
(

1
ccvg
− 1

c

)
de wi
ws f b −

(
1

ccvg
− 1

c

)
=

dv · (c− ccvg)
de wi c ccvg

ws f b − (c− ccvg)
(11)

Equation 11 concludes the viewer-centric mapping from the virtual scene to
real distances. For any given point in the scene with a distance c fom the line
connecting the two virtual cameras, we can now compute the resulting image
disparity d (Equation 10), the corresponding on-screen parallax p (Equation
4), and the final distance z from the screen (Equation 11) reconstructed by a
viewer.

2.2 Scene-Centric Model

The viewer-centric model allows to predict the reconstructed depth for any
point in the virtual scene, given the camera parameters. However, we are also
interested in the inverse case, the scene-centric model. Here, the perceived
depth z is unknown, and the scene depth c is computed as a function of z and
the two stereoscopic parameters b and ccvg.

The scene-centric approach traverses the pipeline in Figure 2 from right to
left, effectively inverting each of the steps of the viewer centric model. This
also facilitates the derivation of the necessary equations, as we can simply
start at the end of the viewer-centric model, and invert the equations.

Similarly to the viewer-centric model before, for the scene-centric model we
start with a point in the virtual scene at depth c and want to express it as a
function of the camera separation b and convergence ccvg. Equation 10 is the
inverse of the equation we want to derive, describing the image disparity d
as a function of c and the camera parameter. Solving this equation for c gives

c(b, ccvg,z) =
f b

f b
ccvg
− d(z)

. (12)

61

Interactive Stereoscopy

The image disparity d, which depends on the reconstructed distance z, can be
scaled back to the on-screen parallax p. Solving Equation 4 for d and plugging
it into Equation 12 gives

c(b, ccvg,z) =
f b

f b
ccvg
− wi

ws
p(z)

. (13)

The last step to completing the scene-centric model is to express the screen
parallax p through the reconstructed depth z and the viewer and eye distance
dv and de. Equation 1 can be rearranged to

p(z) =
de z

dv + z
. (14)

This function can now be plugged into Equation 13 to finalize the mapping
from real space to virtual space as

c(b, ccvg,z) =
f b

f b
ccvg
− wi

ws
de z

dv+z

. (15)

With Equation 11 and Equation 15 we have related perceived depth and scene
distances using the camera convergence and interaxial separation. These
equations build the basis for the geometric interpretation of stereoscopy. In
the next section, we use both the viewer-centric and scene-centric stereoscopy
models to derive constraints on the camera separation b and convergence
distance ccvg.

62

3 Stereoscopic Parameter Constraints

3 Stereoscopic Parameter Constraints

To this end we have discussed the geometric pipeline of stereoscopy and we
have derived mappings between real and virtual space that depend on the
two basic stereo parameters, namely the camera separation b and convergence
distance ccvg. In this section, we examine the influence of b and ccvg on these
mappings. First, in Section 3.1, we analyze the standard case where the entire
virtual scene depth is mapped into one depth range around the screen. We
examine how the perceived depth adjusts when the camera separation b and
convergence distance ccvg are changed together and separately. The goal is
to derive constraints for the two stereo parameters. Second, in Section 3.2,
we examine the general case of constraining multiple scene depth values
to defined positions around the screen and verify the constraints found in
Section 3.1.

3.1 Standard Case: Mapping a Single Depth Range

The goal is to analyze how the perceived depth changes when the scene
is mapped onto a single depth range around the screen. First, we analyze
how a given perceived depth z > 0 is translated into the virtual scene when
changing the camera separation b and convergence distance ccvg. We choose
to change the convergence distance ccvg instead of the horizontal image shift
h, since it is more intuitive to move the convergence plane directly, than
indirectly through h. The image shift h can be computed from ccvg as

h =
f b

2 ccvg
. (16)

Figure 6 a) shows a 2D color-coded plot of the mapping from real to virtual
space (Equation 11), where the real depth is fixed to z = 100 [cm]. The color
in the plot encodes the distance between the mapped value c in the scene
and the convergence distance ccvg of the cameras. The relative scenedepth
c∆ = c− ccvg is visualized as it corresponds to the real distance (behind the
screen = behind the convergence plane ccvg). It is apparent, that c∆ can
geometrically reach beyond infinity, which is, in fact, a mapping to negative
infinity or above (mapping towards 0 again from −∞). Additionally, it can be
observed that c∆ converges to +−∞, when the configuration (b, ccvg) moves
towards a convergence line. We call this line S∞.

When the point (b, ccvg) lies exactly on S∞, the position z is mapped to infinity
in the virtual scene. If then either b is decreased, or ccvg is increased, z will be

63

Interactive Stereoscopy

a) b)

ccvg

b

100 200 300 400 500 600 700 800 900

20

40

60

80

100

120

140

160

180

200

2000 3000 4000 500000

80

60

40

20

100

1000

S∞

Sc

z = 10
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

cΔ

z = 0

z = 5

z = 2

z = 100

Figure 6: The behavior of c∆ = c− ccvg in a virtual scene when having the real depth z
fixed on a value greater than zero, and changing the camera separation b and
the convergence distance ccvg. When increasing z, the space of configurations
of (b, ccvg), where z is falsely mapped to a large negative value (blue regions),
increases as well.

mapped back into the scene from minus infinity. Observe, that if the point
(b, ccvg) lies within the green-red area, there is a one-to-one mapping of the
perceived depth z to a scene depth c. If, however, the configuration (b, ccvg)
crosses S∞ (and enters the blue area), z is mapped behind the camera. In this
case, there is no point in the scene that appears at distance z to the screen.
Figure 6 b) shows, that increased z values cause the space of valid (b, ccvg)
configurations to shrink. This means that it becomes harder to find valid
stereoscopic parameters for the camera to map further distances into the
scene. Therefore, it is desirable to find constraints that automatically bound
(b, ccvg).

Let us investigate the mapping from virtual to real space (viewer-centric
model) to find a closed form for S∞. As has been shown before, the line S∞ is
the space where c∆ converges to infinity. Therefore, the first step is to find a
closed expression for c∆ that depends on the stereoscopic parameter and the
real depth z. Starting with Equation 7, we can insert c = c∆ + ccvg, and solve
for c∆, to get the closed form

c∆ = f b ·
(

1
2 h− d

− 1
2 h

)
. (17)

The image shift h depends on the camera separation b and convergence
distance ccvg, as seen in Equation 16. To represent the value of the real depth
z, the image disparity d is used in the equation, as the steps to convert z into
d are independent of the other variables in this equation.

Now, in order for |c∆| to become ∞, either of the two denominators on the
right side of Equation 17 need to be zero. First, consider h = 0. This scenario

64

3 Stereoscopic Parameter Constraints

is equivalent to ccvg being at infinity (parallel cameras). Since we are dealing
with values of ccvg less than infinity, we can rule out this case. Second,
consider h = d/2. This case is only possible with disparities greater than zero
as h is always greater than zero. Therefore, the effect of c∆ approaching ∞ is
only possible behind the convergence plane.

Following the second case, S∞ is thus computed by setting 2 h = d2, where d2
is the disparity that produces a fixed perceived depth z2. Using Equation 16,
we obtain

S∞ : b =
d2

f
ccvg. (18)

In fact, Equation 18 constrains the camera separation b and convergence
distance ccvg together, so that everything in the scene appears no further away
than z2 from the screen. Thus, no matter how the cameras are positioned in
the virtual environment, as long as Equation 18 is satisfied, it is impossible to
exceed a perceived depth of z2.

In an interactive application, the content of the scene is known and the maxi-
mum depth can be found. It is therefor desirable to constrain the stereoscopic
parameters such, that the maximum scene distance c2, instead of ∞, appears
at the real distance z2. Reformulating Equation 8, the maximum scene depth
c2 can be expressed as

c2 =
f b

2 h− d2
. (19)

By replacing h using Equation 16, and solve for b, the general constraint is
derived as

b =
d2 c2 ccvg

f · (c2 − ccvg)
. (20)

Figure 6 a) shows the curves S∞ and Equation 20 (denoted Sc) on the land-
scape of c∆ for different values of b and ccvg. Note that the curve Sc also has a
negative gradient in the c∆ axis when increasing b or ccvg. This is because we
constrain b to c = c∆ + ccvg. Since we increase ccvg and keep c constant, c∆ is
decreasing.

We call Equation 20 the maximum disparity constraint. The exact value of the
convergence distance ccvg is not known at this point. However the constraint
ties b to ccvg such, that the maximum disparity always is d2, no matter how

65

Interactive Stereoscopy

-10 -5 0 5 10 15 20
-200

0

200

400

600

800

1000

cΔ

zΔ

ccvg
500: 200
100

50

Figure 7: Mapping of the virtual scene depths c∆ = c2 − ccvg to the perceived depth
values z depending on the convergence distance ccvg. The camera separation
b is constrained by the maximum disparity constraint (Equation 20) with
c2 = 1000. It can be observed, that by changing the convergence distance ccvg,
any negative c∆ can be mapped to any negative z.

ccvg is chosen. Now, if the maximum disparity constraint is fulfilled, there is
not only the guarantee to not exceed perceived depths of z2, but also a full
utilization of the depth space behind the screen. Equation 20 makes sure
that the furthest point c2 in the scene is mapped to z2, and everything in the
virtual scene closer to the cameras than c2 is mapped in front of z2 in the real
space.

So far, only depths of z> 0 (with disparities d> 0) have been considered. Now,
we analyze the second case, where disparities d < 0 are investigated, and
how they are affected by changing interaxial and convergence distances. The
goal is to find a second constraint similar to Equation 20 so that the camera
separation b and convergence distance ccvg can be determined uniquely.

The maximum disparity constraint ties b to ccvg in such a way that a maximum
perceived depth z2 is never exceeded. However, we have no guarantees
yet for an opposing minimum perceived depth z1. Let us examine how c∆

behaves for negative disparities, when we constrain b to ccvg (using Equation
20). The behavior of c∆ for this scenario is shown in Figure 7.

Note that the c∆-axis in Figure 7 is relative to ccvg, as c∆ = c− ccvg. This means,
that the rightmost point of each individual curve in the Figure is mapped to
c2 − ccvg. Analogue, the leftmost point of each curve is also relative to ccvg.

Interestingly, the mapping from z to c∆ using the maximum disparity constraint
allows to reach any minimum scene depth c1 for any given z1 by constraining
ccvg. Thus, the convergence distance ccvg is determined such that the disparity
d1 (corresponding to z1) maps to the minimum scene distance c1.

66

3 Stereoscopic Parameter Constraints

In order to derive this second constraint, we again start at Equation 19. The
minimum scene depth c1 can be expressed as follows

c1 =
f b ccvg

f b− d1 ccvg
. (21)

Now, the maximum disparity constraint (Equation 20) can be used to replace b
in Equation 21. Then, solving for the convergence distance ccvg, the second
constraint is derived as

ccvg =
c2 c1 · (d1 − d2)

d1 c1 − d2 c2
(22)

The form shown in Equation 22 now poses a second constraint on the config-
uration of (b, ccvg) so that both parameters are uniquely defined. We call this
second constraint the minimum disparity constraint.

The minimum and maximum disparity constraints can now be combined to
find an exact mapping of any scene content to a predefined perceived depth
range. First, the convergence distance ccvg can be computed according to the
minimum disparity constraint in Equation 22. Then, the camera separation b can
be computed using the maximum disparity constraint in Equation 20. Useful
application scenarios are, for example, mapping of the complete visible
scene or of a particular salient object into a prescribed depth range. Another
application of these constraints is to adapt to variable zi boundaries. As the
viewer adjusts the desired perceived depth volume, the renderer adjusts the
camera convergence and interaxial separation to produce the desired output
depth.

3.2 General Case: System of Depth Constraints

In the previous section, we have derived constraints for the camera parameter
to achieve an exact mapping of the scene content into a defined range around
the screen. In general applications, however, there might be the need for
more mapping points. For example, a scene containing an important object,
that should also be emphasized in perceived space, while the rest of the scene
is still bounded to a certain range. An example is shown in Figure 8. A
solution in the general case can be achieved by formulating the mapping
problem using multiple constraints, and solving for the best solution in the
least-squares sense.

67

Interactive Stereoscopy

Virtual Space Real Space

c1 c2 c3 c5 c4 z 1 z 2 z 3 z 4 z 5

Figure 8: An example of a general mapping from virtual space to real space is shown.
Both the car and the building have a dedicated depth space while the frontmost
point of the road should be mapped as close as possible to a specific distance in
front of the screen.

Given a defined series of depth values [z1,z2, . . . ,zn], zi < zj for i < j, where
the screen surface is the reference frame. We want to compute values for the
camera separation b and convergence distance ccvg such that a corresponding
series of scene points [c1, c2, . . . cn], with ci < cj for i < j, is perceived as close
as possible in the least squares sense to the zi. This will allow us to map
salient objects into defined target depth ranges.

First, we use again the relation between perceived depth z and image dis-
parity d in Equation 5, to simplify the problem. The transformation between
these two parameters is independent of ccvg and b and, therefore, we can
interchange the depth values zi with the corresponding disparities di. The
mapping problem can now be formulated by inserting the disparity values
into equation Equation 12, and setting them equal to the scene points. This
results in the following non-linear system of equations

f b ci − f b ccvg − ci di ccvg = 0 for i = 1 . . . n. (23)

To find the optimal values for the camera separation b and convergence
distance ccvg, the system of equations in (23) can, for example, be solved in a
least-squares sense with a Gauss-Newton solver.

Verification of minimum and maximum disparity constraints The special
case using two real-world depth values [z1,z2] and two scene points [c1, c2]
can be computed analytically, as there remain two equations for two un-
knowns. In this case the above system has one non-trivial solution, and we

68

3 Stereoscopic Parameter Constraints

can analytically determine the constraints for ccvg and b. We start out with
two equations and two unknowns (b and ccvg) in the system. The equations
are written as

f b c1 − f b ccvg − c1 d1 ccvg = 0 (24)
f b c2 − f b ccvg − c2 d2 ccvg = 0. (25)

First, Equation 25 can be solved for b

f b c1 − f b ccvg = c1 d1 ccvg

f b (c1 − ccvg) = c1 d1 ccvg

b =
c1 d1 ccvg

f (c1 − ccvg)
. (26)

Now, the expression in Equation 26 can be used to remove b from Equation
25

c1 d1 ccvg

(c1 − ccvg)
c2 −

c1 d1 ccvg

(c1 − ccvg)
ccvg − c2 d2 ccvg = 0. (27)

At this point, the focal length f is already cancelled out. Now, Equation 27
can be solved for the analytic solution of ccvg

c1 d1 c2 ccvg − c1 d1 ccvg ccvg − c2 d2 ccvg (c1 − ccvg) = 0

c1 d1 c2 ccvg − c1 d1 c2
cvg − c1 c2 d2 ccvg + c2 d2 c2

cvg = 0

c2
cvg (c2 d2 − c1 d1) + ccvg c1 c2 (d1 − d2) = 0

ccvg (c2 d2 − c1 d1) = c1 c2 (d2 − d1)

ccvg =
c1 c2 (d1 − d2)

c1 d1 − c2 d2
. (28)

Equation 28 is the formula that computes analytic solution for the camera
convergence ccvg depending on the scene depths c1 and c1 and the disparity
values d1 and d2. It can be veryfied that Equation 28 is, in fact, the minimum
disparity constraint (Equation 22).

Now, Equation 28 can be back substituted into Equation 26, to get the analytic
solution for the camera separation b independent of ccvg.

69

Interactive Stereoscopy

b =
c1 d1

c1 c2 (d1−d2)
ccvg (c1 d1−c2 d2)

f (c1 − c1 c2 (d1−d2)
ccvg (c1 d1−c2 d2)

)

=
c1 d1 c1 c2 (d1 − d2)

f (c1 (c1 d1 − c2 d2)− c1 c2 (d1 − d2)

=
c1 d1 c1 c2 (d1 − d2)

f (c1 c1 d1 − c1 c2 d2 − c1 c2 d1 + c1 c2 d2

=
c1 d1 c1 c2 (d1 − d2)

f c1 d1 (c1 − c2)

=
c1 c2 (d1 − d2)

f (c1 − c2)
. (29)

Equation 29 is the independent constraint for b when mapping one virtual
depth range exactly onto one depth range in real space. It can be veryfied
that Equation 29 can be derived by inserting the minimum disparity constraint
in Equation 22 into the maximum disparity constraint in Equation 20.

For both the standard case where one range in virtual space is mapped onto
one range in the real space, and the general mapping of arbitrary points,
an optimal solution in the least squares sense can be found for the two
stereoscopic parameters b and ccvg. To this end, the constraints consider a
static scene depth, where no movement of the camera or the objects in the
scene occur. However, such movement introduces new problems, as the per-
frame constraining of the stereoscopic parameters can cause discontinuous
perceived depth over time. In the following section we discuss this problem in
more detail and propose a temporal parameter interpolation that minimizes
distortions in the perceived space.

70

4 Temporal Constraint Interpolation

Pe
r-

Fr
am

e
So

lu
tio

n
N

ai
ve

In
te

rp
ol

at
io

n
Li

ne
ar

iz
ed

In
te

rp
ol

at
io

n

a)

b)

c)

Figure 9: The problem of discontinuous depth change when an object enters the scene. The
top row schematically demonstrates an example where a barrel enters the view
frustum from the left at close proximity. Below, different ways to handle this
situation are shown in real space. a) The per-frame solution causes an instant
rescaling of the scene, which is noticeable and undesired. b) Interpolating the
camera separation b and convergence distance ccvg provides a smooth solution,
but the transformation of the perceived space is non-linear. c) We propose to
perform a linearized transformation in perceived space to provide a smooth and
controlled depth adaptation over time.

4 Temporal Constraint Interpolation

In the previous section, we have discussed how the basic stereoscopic param-
eters can be constrained in order to keep the perceived depth range within a
defined limit. The constraints, however, only consider a snap-shot in time.
In an interactive environment, unpredictable object- or viewer-motion can
change the scene depth instantly. This causes two problems. Let (bt, ct

cvg)
denote the set of stereoscopic parameters at time t. On the one hand, if the
scene depth changes from time t − 1 to t and the interaxial separation and
convergence distance are kept constant at (bt−1, ct−1

cvg), the scene is mapped
to a different target range, which can result in excessive disparities and com-
promise the stereoscopic perception. On the other hand, if the camera con-
vergence and interaxial separation are immediately re-computed as (ct

cvg,bt)

according to the constraints introduced in the previous section, the new ct
i are

again mapped to the original depth volume. However, the perceived depth
of scene elements visible at both time-steps will change instantly, as shown

71

Interactive Stereoscopy

Virtual Space

c1
t cn

t...

get new
scene depths

z 1
t zn

t...

new
real depths

b1
t c cvg

t

z 1
t+1 zn

t+1...

interpolated
real depths

constrained
parameters

b1
t+1 c cvg

t+1

Ii (,)zi v ∆t,

map using
current

Real Space

Figure 10: Overview of our proposed temporal parameter interpolation. Instead of in-
terpolating the camera separation b and convergence distance ccvg directly
in virtual space, we propose to compute depth transformations into the real
space. This allows the application of desired transformation functions Ii to
the real depth values zi. Then, using the interpolated depths, the new stereo
parameters, that achieve this desired depth change, can be computed using our
constraining.

in Figure 9 a). These sudden jumps in depth can be irritating to the viewer
as well. So in general, we would like to control the stereoscopic parameters
over time in order to reduce both types of artifacts.

The straight forward solution would be to interpolate linearly between the
two parameter sets (bt−1, ct−1

cvg) and (bt, ct
cvg). However, a simple linear change

of camera convergence and interaxial separation causes the target depth range
to transform in a nonlinear fashion, as shown in Figure 9 b). This scaling
of the target depth results in nonlinear changes of object shapes and of the
scene volume over time. The non-linearity depends on the entire range of
parameter that are used in the transformation from virtual to real space. It is
therefore difficult to predict the transformation, even if it is smooth.

In order to minimize these types of visual artifacts, we derive an interpolation
function for our stereoscopic constraints that linearizes changes in perceived
depth while keeping the perceived depth volume approximately constant.
An overview of this approach is shown in Figure 10. Let zt

i denote a depth
value at time t in target space with respect to the screen. In order to keep the
perceived depth volume constant over time, we can define an arbitrary (not
necessarily linear) interpolation function Ii(zt

i ,zt−1
i ,κ) for each of the depth

values zt
i . Each function gradually changes the point zt

i back to its position
zt−1

i at a previous time t− 1. In order to control all interpolation functions
for all individual points simultaneously, we define the interpolation variable
κ as a function that depends on the current time step ∆t of the interpolation
and a predefined velocity v that is used to control how fast the target depth
range transforms

72

4 Temporal Constraint Interpolation

t

40

20

0

-20

z
110

90

70

50

14

12

10

8

6

t

z
40

20

0

-20
t

c bcvga) b) c)

Figure 11: The temporal interpolation of camera convergence and interaxial separation is
demonstrated. a) An exxample how the target depth range transforms over
time when the stereoscopic parameters are linearly interpolated is shown. b)
The same range is interpolated as in a), using our linearized transformation.
c) The two graphs show the functions of ccvg and b that achieve the linearized
range transformation in b).

α(∆t,v) = min

(
v∆t

1
n ∑n

i=1 len(Ii)
,1

)
. (30)

The value of κ is computed as the ratio between the distance for the time step
∆t and the average length of all the control curves Ii. We use the min function
in Equation 30 to prevent overshooting of the interpolation in case of a large
time-step ∆t or velocity v.

Now, in order to keep the target depths approximately constant over time, as
soon as the scene depth values change from ct−1

i to ct
i , we first compute the

resulting new target depths zt
i , and then use the individual depth interpola-

tion functions Ii to gradually update the camera convergence and interaxial
separation to restore the target depths back to zt−1

i .

Linearized range interpolation. Similar to Section 3, the special case of
interpolating between two depth ranges defined just by their respective
minimum and maximum depth is of particular interest. Using our above
formulations, we can define the interpolation in terms of the zt

i , which allows
us to linearize the change in target depth. Let [zt−1

1 ,zt−1
2] and [zt

1,zt
2] define

the two depth ranges. Then the standard linear interpolation functions Ilin
on the range boundaries achieve the desired linear change in depth

Ilin(zt
i ,z

t−1
i ,κ) = (1 − κ) zt

i + α zt−1
i . (31)

The graphs in Figure 11 show the effect of Equation 31 on the target depth
range over time. Figure 11 a) shows how the depth range from [40,−30] cm

73

Interactive Stereoscopy

is transformed to [20,−10] when the camera separation b and convergence
distance ccvg are linearly interpolated. Figure 11 b) shows our linearized
approach. The transformation is linear along the boundaries of the target
depth range. Compared to a simple linear interpolation of b and ccvg , our
linearized transformation introduces significantly less distortions over time.

The resulting functions for b and ccvg over time for the linearized transfor-
mation are shown in Figure 11 c). In both graphs, the dashed line shows
the linear interpolation of the parameter. It is apparent that our optimized
functions differ considerably from linear interpolation of the parameters.

74

5 GPU Implementation

Algorithm 1: Stereoscopic Parameter Update

1: procedure UPDATESTEREOPARAMETER(ct−1
cvg ,bt−1)

2: [ct
1, ct

2]← getSceneDepthRange()
3: [zt

1,zt
2]←mapDepth(ct

1, ct
2, ct−1

cvg ,bt−1)
4: κ← computeAlpha(∆t,v)
5: [d1,d2]← transform(Ilin,zt

1,zt
2,κ)

6: [bt, ct
cvg]← constrainParameter(ct

1, ct
2,d1,d2)

7: return [ct
cvg,bt]

8: end procedure

5 GPU Implementation

Our stereoscopic controller algorithm produces a sequence of parameter pairs
(ct

cvg, bt) at each frame t. Pseudo code of the parameter update is provided in
Algorithm 1.

After the scene depth distribution has changed, possibly in a discontinuous
fashion, the first step is to acquire the new scene depth range [ct

1, ct
2] (line

2). Efficient computation of this range is described below. Using this range,
the new real depth range [zt

1,zt
2] caused by the new scene depth values in

this frame can be computed (line 3) using Equation 11. Given the target
depth range [z1,z2], and the velocity v, the interpolation variable α can be
determined (line 4) with Equation 30. Then, the target depth range can be
interpolated over time (line 5) using the interpolation function in Equation
31 converted to the corresponding disparity values [d1,d2] (using Equation
5). Finally, using the stereoscopic parameter constraints, Equation 20 and
Equation 22, the new values for ct

cvg and bt can be computed (line 6).

Efficient depth range acquisition. In real-time applications, budgets are
tight and efficiency is a critical factor. To be usable in a production scenario,
any real-time algorithm needs to fit into a budget of a few milliseconds (at
60fps, the total frame budget is only 16.7ms). The only stage of our algorithm
that cannot be computed in constant cost is the determination of the minimum
and maximum depths in the scene. To efficiently obtain these depths, we
perform a number of min-max reduction passes of the depth buffer on the
GPU [Greß et al., 2006].

The idea of min-max reduction is to divide the search for the scene minimum
and maximum depth values to utilize the parallel nature of the CPU. Figure
12 shows how this is performed. In the first pass, the depth buffer is reduced

75

Interactive Stereoscopy

Depth Bu�er 2-Vector Texture

Min Values
Max Values

. . .

Scene min-max

Figure 12: The min-max reduction to efficiently determine the scene minimum and max-
imum depths. In the first pass, the depth buffer is reduced by finding the
minimum and maximum depth values for each 2-by-2 patch and storing the
extrema in a 2-vector texture. All subsequent passes reduce the texture each 2-
by-2 patch at a time until only a 1-by-1 texture remains. This texture contains
the scene maximum and minimum depth.

by finding the extrema within each 2-by-2 patch. The resulting min-max
values are stored in a 2-vector texture, where each texel contains the values
computed from the previous 2-by-2 patch. In all subsequent steps, the texture
is reduced each 2-by-2 patch at a time until only a 1-by-1 texture remains.
This texture contains the minimum and maximum depth values that occur in
the scene in the current frame. Although the number of passes is logarithmic
in the screen size, modern GPUs are highly optimized for this workload and
these passes are computed very cheaply. We timed the passes on a recent
Nvidia GPU (the GTX580) and the cost was only 0.09ms at 1280x720 and
0.18ms at 1920x1080.

Once these depths are obtained they can either be transferred back to the
CPU for processing or processed directly on the GPU. We choose the latter
option as GPU to CPU communication can result in GPU stalls on current
architectures. To this end, the interaxial and convergence distance are stored
in a 2 texel floating point texture. Algorithm 1 is performed in a shader that
reads the min-max depth and previous frame stereoscopic parameters from a
2 texel texture and writes a new set of stereoscopic parameters to a second 2
texel texture. At each iteration the role of the textures are switched. In this
way, the stereoscopic parameters will always be available in a GPU buffer as
input to the stereoscopic render engine.

76

6 Results and Evaluation

Co
ns

tr
ai

ne
d

U
nc

on
tr

ol
le

d

Figure 13: Automatic stereoscopic control demonstrated on a simple example. The image
on the left shows the scene with properly calibrated stereoscopic parameters.
The torus is reconstructed in front of the screen while the cylinder is perceived
behind the screen. While the camera moves towards the objects, our constraints
adjusts the stereoscopic parameters such that the torus remains in front of
the screen and the cylinder behind the screen. Uncontrolled stereoscopy, in
contrast, causes the scene to shift towards the viewer and cause exceeding
disparities on the torus, while the cylinder is moved to the zero disparity plane
(perceived at the screen).

6 Results and Evaluation

To this end we have presented a system to constrain the two basic stereo-
scopic render parameters, the camera separation and convergence distance.
Additionally, we have discussed how to resolve temporal depth discontinu-
ities. In the following we present stereoscopic images generated using our
controller and discuss several areas of application.

6.1 Adaptive stereoscopy and automatic fail-safe

When moving the camera through a scene, the render-depth is constantly
changing. Improper camera convergence and interaxial separation can cause
large disparity values when an obstacle suddenly comes close to the camera.
The concept is shown in Figure 13. On the left, the scene is shown with
properly calibrated stereoscopic parameters. On the right, a comparison
between stereoscopy using our constraints and uncontrolled stereoscopy is
shown for the camera moving towards the objects in the scene. While our
controller assures that the disparities stay in the same range, image disparities
grow extremely large in the uncontrolled case. Also, positive disparities (on
the cylinder in the back of the scene) that correspond to a reconstructed
depth behind the screen are decreased to practically zero for uncontrolled
stereoscopy. This shift of the perceived depth range is unintentional and

77

Interactive Stereoscopy
Co

ns
tr

ai
ne

d
U

nc
on

tr
ol

le
d

Co
ns

tr
ai

ne
d

U
nc

on
tr

ol
le

d

Figure 14: Two comparisons between constrained and uncontrolled stereoscopy of medium
to fast camera motion through complex environments. At the beginning of
the shot, the uncontrolled camera has the exact same parameter calibration
as our controller, so that initially comfortable stereopsis is ensured. The
uncontrolled camera fails to preserve a comfortable disparity range, causing
excessive disparities and hence inducing eye-strain to the viewer.

reduces the positive perceived depth (depth behind the screen). In contrast,
our parameter constraints also maintain the depth contrast behind the screen,
effectively utilizing the depth budged available.

The automatic nature of our stereo controller is especially useful in computer
games. Here, the user has usually full control over the camera, and can
freely move through the environment. Restricting this movement will also
restrict the players freedom to explore the environment. This creates the
problem that a player might move the camera, that might render properly
calibrated stereo in one moment, towards obstacles or walls. This causes an
unpredictable variability in the depth ranges displayed within a short period
of time. Two examples are shown in Figure 14, where a player is moving
through the environment. While our method is able to adapt to vast depth
changes, uncontrolled stereoscopy causes excessive disparities and hence
induces eye-strain to the viewer.

In real-time engines for simulations and games, objects are usually easily
trackable. They can be assigned labels by artists or given some importance
based on the configuration in the scene. These labels can be utilized to enforce
constraints on the placement of important scene objects in the reconstructed
space around the screen. Figure 15 shows an example of our parameter opti-
mization, mapping multiple points in the scene onto multiple target ranges.

78

6 Results and Evaluation

z
-8 -7.5 0 (screen) 14

Environment
Car

Figure 15: Example of a scene with multiple points mapped onto multiple target depth
values. The top row shows the desired mapping. The car should appear in the
target range [-7.5, 0.0] cm while the environment should be mapped into [-8.0,
14.0] cm. The bottom row shows how different views are rendered as close as
possible to the desired mapping in the least squares sense using our nonlinear
optimization.

The top graph shows the desired mapping of the car and the environment
in real space. The bottom images show stereoscopic renderings of the least-
squares solution for the stereoscopic parameters and the mappings of the car
and environment. The goal is to have the entire scene fit in a certain depth
range and place the car just in front of the screen. While the scene depths
change between long range views (first and third image in Figure 15) and a
close up shot (second image in Figure 15), the least squares solution keeps
the car in front of the screen and the scene from causing exceedingly large
disparities.

Another typical situation encountered in interactive, dynamic environments
is the sudden change of scene depth. An example is shown in Figure 16,
where the camera is horizontally translated across the street. It passes very
closely in front of a couple, creating a sudden discontinuous decrease in the
minimum scene depth. If this is not handled properly, the depth perception
is immediately destroyed. The graphs in Figure 16 show how our method
adapts the stereoscopic parameters over time to prevent exceeding disparities
to appear for too long.

Wile our stereoscopic controller is light-weight and robust enough to be
active at all times, it also can be regarded as a safeguard that adjusts the
stereoscopic parameters only when disparity thresholds are surpassed. Most

79

Interactive Stereoscopy

0

3

-24

-8

0

2 Min. Scene Depth

Perceived Depth
(Constrained)

Perceived Depth
(Uncontrolled)

Convergence
(Constrained)

Separation
(Constrained)

t

00

222a)

-24-24-24

-8-8-8-8

0

b)

33c)

Figure 16: Comparison between constrained and unconstrained stereo cameras while
horizontally moving the camera past a close obstacle. a) The minimum scene
depth over time is shown. b) The depths reconstructed by the viewer are shown.
Unconstrained stereoscopy (red) causes a far too low perceived depth. The
constrained camera adapts smoothly to the discontinuous depth (green). c)
The changes to the stereoscopic parameter computed using our controller are
shown.

interactive 3D applications have a defined view that is more or less the same
most of the time. An example is a racing game, where the camera generally
follows the car and mostly hast a similar view onto the track ahead. In such
a setting it might be desirable to use a set of tuned stereoscopic parameters
that display the setup properly in an artist defined depth range. Using the
viewer-centric model (Section 2.1) the depth values that the scene causes the
player to perceive can be monitored with little overhead. Should something
in the scene, like an object flying towards the camera, cause exceeding depth
values, our controller can simply be switched on and use the constraints to
keep disparities within defined thresholds until the situation is resolved.

6.2 Artist Control and Production

Our method provides intuitive and exact stereoscopic control by allowing the
viewer to adapt the perceived borders of the depth range to the respective
personal comfort zone. The user can also define high-level goals for the
depth, as shown in Figure 17. The viewer may specify to move or scale the
target depth image, without worrying about the exact depth values or the
stereoscopic camera parameters.

Our disparity constraining also enables novel tools for content creators and
artists in production. Our controller can be used to intuitively script per-
ceived depth for different scene parts and hence create artistic effects such as
emphasized depth for certain objects, stereoscopic flatlands, etc. This gives
the camera artists a tool to adjust the stereoscopic depth perception without
actually knowing the depth of the scene. By placing hit-boxes and defining a

80

6 Results and Evaluation

-z z-z z -z z

a) b) c)

Figure 17: Examples of exact stereoscopic control using our method. a) The torus is
rendered such that it appears directly in front of the screen plane. b) Exactly
half of the torus appears in front and the other half behind the screen. c) The
torus appears one seventh of its original target length behind the screen and its
perceived length is halved. With our controller such settings can be guaranteed
while the viewpoint changes dynamically.

constrained depth range, the artist knows what depth will be rendered regard-
less of the scene configuration. The artist can also key-frame the behavior of
the depth range to react to events. An example would be to simulate pressure
waves of an explosion by adding a wiggling to the perceived depth zone.
Another example, shown in Figure 18, is the control of the perceived depth
in advanced camera effects. The figure shows a comparison of controlled
versus uncontrolled depth for the vertigo shot, where the camera focal length
is changed over time to create a dramatic effect. Since the perceived depth
also depends on the camera’s focal length, the depth range changes with the
parameter. For an artist, it is very hard to control this. However, using our
stereoscopic controller, the depth range can remain constant, or, if the artist
desires, be key-framed.

TV PC 3DS
TV [-51.4, 86.5] [-6.1, 8.2] [-0.5, 0.6]
PC [-65.8, 164.7] [-8.0, 14.0] [-0.7, 1.0]
3DS [-837.1, 3532.2] [-105.4, 240.9] [-1.0, 1.5]

Table 2: Content scaling matrix. The entry in the row i and column j shows the target
depth range (in cm) of the image that is produced for i and viewed on j. The
viewing conditions for each device (in cm): TV: ws = 100,dv = 300. PC:
ws = 50,dv = 65. Nintendo 3DS: ws = 7.6,dv = 35.

81

Interactive Stereoscopy
Co

ns
tr

ai
ne

d
U

nc
on

tr
ol

le
d

Figure 18: An example of aided artist control for advanced effects. For this vertigo shot,
the artist is able to just define the depth range and perform the effect without
worrying about the change in perceived depth. The uncontrolled case shows
that changing the camera focal length results in the depth range shifting our
of control.

Since our stereoscopic controller takes the entire viewing situation into ac-
count (i.e. viewer distance, screen size, etc.) all the above benefits apply not
only to the screen that the content is produced for, but also allows to apply
the content to any screen size. Stereoscopic images that are produced for a
certain target screen and viewing distance are optimized to create a particular
depth impression. If, however, the content is shown under different viewing
conditions, the viewer may experience a completely different depth sensation.
Figure 19 shows a comparison of two different views that are optimized for
a Television Screen, a PC Monitor, and Nintendo 3DS. The viewing conditions
and target depth ranges for each device can be found in Table 2. The stereo-
scopic image created for a Nintendo 3DS shown on a large television screen
can cause extremely large disparities. Our method is able to adapt content
automatically to different output screens, given a pre-defined comfortable
target depth range for an average viewer.

6.3 User Study

In order to further evaluate the utility of our method we conducted a user
study with 31 subjects. The study was aimed at comparing our stereoscopic
controller to standard stereoscopic rendering with fixed camera convergence
and interaxial separation. All subjects were tested for proper stereoscopic
vision using a random dot stereogram test. The goals of this study were

82

6 Results and Evaluation

TV
PC

3D
S

Figure 19: Content produced for different screen sizes. The viewing conditions and target
depth ranges for each device can be found in Table 2. In the middle of each row,
magnifications of certain parts of the vistas are shown. The differing viewing
conditions demand different disparities for the depth image to be perceived in
the desired range.

twofold. First, we tested whether the subjects prefer the static, uncontrolled
stereoscopy or our constrained approach as more comfortable. Second, we
examined if our controller compromises perceived realism due to the involved
adaptation of camera convergence and interaxial separation.

To this end we rendered 10 side-by-side comparisons of different scenes using
uncontrolled stereoscopic parameters and using our controller for pairwise
evaluation [David, 1963]. Figure 14 shows two of the examples we used for
this study. The rendered scenes contained typical scenarios encountered in
interactive 3D environments, including

· continuous view changes between close-ups and wider scenes
· objects suddenly entering the field of view
· three long sequences where a player explores a complex game environment

83

Interactive Stereoscopy

We randomized the order of scenes as well as the respective positions on the
screen. Each pair was shown three times so that the viewers had sufficient
time for comparison. The study was performed on a line-wise polarized
46inch Miracube display. The viewing distance was 3 m, and our controller
was configured for a target depth range of [-51.4, 86.5] cm with respect to the
display. The static stereoscopic parameters were set such that at the beginning
of each scene the resulting disparities were identical to our controller. Ac-
cording to our above mentioned goals, for every comparison the participants
had to answer either left or right for the following two questions:

Q1: Which one is more comfortable to watch?
Q2: Which one looks more realistic to you?

When considering all 10 scenes in the evaluation, we received 310 votes for
each of the two questions. Regarding question 1 about comfortable stereo
viewing, our controller was preferred in 61.7% (191 of 310) of the examples,
while the fixed stereo was preferred in 38.3% of the cases. In terms of realism,
the results of our controller were preferred in 60.7% (188 of 310) of the scenes
compared to 39.3% for the static stereo settings.

One stereoscopic issue that has not been considered by the stereo controller
proposed in this thesis is the problem of so-called frame violations: if an
object with negative disparity, i.e., in front of the screen, is cropped at the
screen borders, the human visual system can get confused. This can be
uncomfortable to the viewer. For the results used in this study, our stereo
controller mapped the complete scene into a target volume [-51.4, 86.5] cm
around the display. This introduced frame violations in some situations. We
deliberately did not correct for such frame violations in order to evaluate
the effects of depth remapping only. However, such a correction is trivial to
add by adding corresponding floating windows [Gateau and Neuman, 2010;
Smolic et al., 2011]. Therefore, if we remove the two sequences from the
evaluation where the most obvious frame violations occurred (resulting in
248 answer per question), the preference for our method in terms of comfort
raises to 70.9% (176 of 248), and in terms of realism to 69.3% (172 of 248). All
these results are statistically significant with a p-value < 0.01.

From these results we can conclude that the stereoscopic imagery optimized
by our controller was generally preferred by the subjects and created a more
comfortable viewing experience without compromising perceived realism
of scene depth. In addition, the results indicate an interesting correlation
between comfort and perceived realism that we did not anticipate. In 86.1%
of the answers the more comfortable rendering was also selected as the more
realistic one. This is interesting since the dynamic adaptation of baseline and

84

6 Results and Evaluation

convergence and the resulting scaling of perceived depth over time seems to
be less compromising in terms of perceived realism than excessive disparities.

85

Interactive Stereoscopy

7 Summary and Limitations

The stereoscopic camera controller that we have presented in this chapter
has been developed to provide a practical, fast, and fail-safe solution for
stereoscopy in high-performance interactive applications such as computer
games. In order to avoid excessive disparities, we are constraining the camera
separation and convergence distance to exactly map defined points in the
virtual environment around defined distances in real space. Furthermore,
we have identified the problem of parameter interpolation over time for
changing scene contend and proposed a solution that allows the perceived
space to transform according to interpolation functions.

7.1 Limitations and Future Work

The disparity optimization framework only manipulates the two most basic
stereoscopic parameters, the camera convergence and interaxial separation.
This allows for an analytical solution that is very fast to compute, but it
is only a solution in a two-dimensional configuration space. While this is
the most practical solution for real-time environments, we would like to
investigate techniques for more complex nonlinear disparity remapping. Our
experimental study provides encouraging evidence that this might be even
more beneficial for the viewer. However, our study is only a first indicator
that adaptive stereoscopy can increase viewer comfort. Additional studies
need to be conducted to better understand the effects of such a stereoscopic
control.

Furthermore, our method is designed for interactive environments without
control over the camera movement. However, as we only manipulate the
camera separation and convergence, nothing would prevent our method from
working with real cameras, too. We would like to investigate the possibility
to implement our method on a stereoscopic camera rig such as the one by
Heinzle et al. [2011].

The linearized temporal interpolation of the stereoscopic parameters intu-
itively seems to work well for adjusting stereoscopy on-the-fly. However, it
is not clear yet if the linearized interpolation is optimal w.r.t. the viewers
comfort and impression of realism. We would like to further investigate the
effect of our linearized interpolation on the viewer’s perception.

Finally, he geometrical setup we have used for the derivation of our con-
straints is based on one viewer sitting centered in front of the screen. While

86

7 Summary and Limitations

this model holds up very well for a standard user-screen setting, the exten-
sion of our approach to multiple viewers is non-trivial. A horizontal shift of
the viewer relative to the screen causes the reconstructed depth of the stereo
footage to shear [Held and Banks, 2008]. This can be countered by adding a
specific value to the image-shift of the cameras rendering the scene. Given
a group of viewers, distributed over space in front of the screen. One could
formulate Kalman- or Markov filters to estimate an optimal setting for the
camera parameters.

87

C H A P T E R 5
Fast and Flexible Color Balancing

Using Example Images

Modern cameras are able to process photographs while they are captured. Many
adjustments are made to enhance the image content in order to make life easier for the
photographer. Unfortunately, this processing changes the image appearance in ways
that is hard to reproduce. Using our color balancing approach, such color transfers
can be easily extracted and applied to any other input image in order to enhance the
realism of virtual footage.

89

Fast and Flexible Color Balancing Using Example Images

Pablo Picasso highlighted the importance of color in painting with the famous
quote, “They’ll sell you thousands of greens. Veronese green and emerald green
and cadmium green and any sort of green you like; but that particular green, never.”
Today, the same struggle to capture the perfect nuance of color lives on
in digital photograph and video recording. The colors that are ultimately
recorded by both consumer-grade and high-end digital cameras depend on
a plethora of factors and are influenced by complex hardware and software
processing algorithms, making the precise color quality of captured images
difficult to predict and control. As a result, photographers and videographers
must rely on post-processing algorithms to fix color problems. In turn, virtual
cameras, that are not implementing such characteristic behavior, can seem
dull and artificial.

This problem is generally known as color balancing or color grading, and
plays a central role in all areas involving capturing, processing and display-
ing image data. In digital photography and filmmaking, specifically trained
artists work hard to achieve consistent colors for images captured with differ-
ent cameras, often under varying conditions and even for different scenes.
With today’s tools this process requires considerable, cost-intensive man-
ual efforts. Similar issues arise in augmented reality applications, where
computer generated graphics must be embedded seamlessly and in real-
time into a video stream. Here, achieving consistent colors is critical but
highly challenging, since white balance, shutter time, gamma correction,
and other factors may continually change during acquisition and cannot
be perfectly controlled or addressed through calibration alone. Therefore,
an efficient correction and adaptation of colors that is agnostic to the un-
derlying capture hardware is highly desirable in such AR-related applica-
tions. However, aside for a few preliminary efforts [Klein and Murray, 2010;
Knecht et al., 2011] practically applicable solutions to this problem are yet to
be developed.

Several research areas focus on ways to change the colors of digital images
for different purposes. Automatic color balancing algorithms estimate the
scene illuminant. More sophisticated approaches transfer color distribution
statistics, such as color histograms, between images. These methods can
produce appealing results, but require dense correspondences between image
pairs. This limitation makes it difficult to apply existing color balancing or
color transfer algorithms in real-time applications where the input images
are continually changing.

Our work targets this limitation by focusing on real-time color balancing
using sparse correspondences. This allows us to change colors in images
based on example photographs taken with a digital camera. This extends the

90

range of effects that are possible to perform in virtual cameras and allows the
reproduction of characteristic camera color transfer effects such as adjustment
of gain, contrast, etc. Furthermore, we show how to extend our approach
robustly to the temporal domain, which allows color grading of rendered
footage to real video. This extension allows more realistic rendering in
applications such as augmented reality.

The remainder of this chapter is organized as follows. First, in Section 1, we
discuss the current state of the art in color transfer and balancing. Then, in
Section 2, we introduce our vector space color transfer using normalized ra-
dial basis functions. In Section 3, we show how basis functions can be trained
on example images to achieve globally optimal balancing of unreferenced
colors. In Section 3, we show a fast GPU implementation of our approach
before we demonstrate its wide range of applicability in Section 4. Finally,
we extend the color balancing approach to the temporal domain in Section 5
to enable more realistic augmentation of images and video.

91

Fast and Flexible Color Balancing Using Example Images

1 Background of Color Balancing and Transfer

In this section, we discuss related work on histogram matching, user con-
trolled color transfer, color calibration, colorization of greyscale imagery, and
color balancing for image augmentation.

Histogram matching: This is the process of transferring the color distri-
bution statistics from one image to another image, pioneered by Reinhard
et al. [2001]. They proposed computing the mean and standard deviation
of the color distribution in the color space. Then, by scaling and trans-
lating the parameters onto the ones of the target image, they achieve au-
tomatic color transfer. Xiao et al. [2006] extend this method to transfer
per-channel color statistics in any color space and Pitié et al. [2007] intro-
duce a minimum cost linear mapping using the Mongue-Kantorovitch the-
ory of mass transportation. Prikli et al. [2003] perform image color his-
togram matching using dynamic programming. This way, they can auto-
matically find a non-linear transfer from one histogram function to another
one. Further extensions have been proposed that optimize the images af-
ter matching to avoid bad color gradients [Neumann and Neumann, 2005;
Xiao and Ma, 2009]. Kagarlitsky et al. [2009] utilize histogram matching
between different regions of a pair of images to achieve piecewise consistent
color mapping.

The work of Chang et al. [2007] on example-based color transfer employs
matching between color categories. All colors in an image are assigned to
one of 11 basic color terms used in modern languages (e.g. red, green, blue,
yellow, brown, etc.). Using this labeling, they realize an automatic mapping
of the color between images of different content.

While histogram matching methods for automatic color transfer can produce
very appealing results, they provide only limited control. Exact color matches
are often required in image editing and are difficult to achieve with these
methods. Furthermore, these methods are not suited for augmented-reality
applications where the color distribution in the video can change consider-
ably.

Interactive Color Transfer: Abadpour et al. [2004] first proposed an image
color transfer algorithm with user interaction. In their work, the user is
allowed to denote corresponding regions between images. Colors are then
matched using fuzzy principal component analysis. Other methods have
been proposed that aid the user in local color matching [Tai et al., 2005;
Lischinski et al., 2006; Maslennikova and Vezhnevets, 2007]. The user is
allowed to select a local region, and the actions are propagated throughout

92

1 Background of Color Balancing and Transfer

the rest of the image. However, due to the nature of manipulation, it can be
difficult to match an exact color, even if the color is available in a target image.
Also, histogram matching has been extended to allow user interaction [Wen
et al., 2008; Pouli and Reinhard, 2011]. However, these methods are tailored
to work between two images, and cannot be extended easily to video data,
and therefore lack robust tracking of colors in video images.

The work of Levin et al. [2004] on colorization of greyscale video sequences
propagates user scribbled colors. Their approach is based on the premise
that similar intensity in neighboring pixels in space-time has similar color.
An et al. [2010] also propose a scribble-based framework for color transfer
between images. For each pair of strokes, a non-linear color transfer function
is estimated. In a second step, the estimates are refined using a global opti-
mization. Our work, in contrast, targets color balancing where only a sparse
and possibly incomplete set of correspondences are available.

Fast and interactive methods for editing images and video have also been
proposed. An et al. [2008] propagate local edits by assisting a user with
iteratively refining rough edits to areas of spatial and appearance similarity.
Farbman et al. [2010] propose the use of diffusion maps to propagate image
editing information. Both approaches are robust to highly textured image
data and work at interactive speeds. However, they lack the performance
needed for demanding real-time applications.

Li et al. [2010] provide an approach for image and video editing with instant
results. They employ radial basis function interpolation in a feature space to
propagate sparse edits locally. In contrast to this work, we are formulating the
problem as a global image space transformation. Furthermore, we propose
an approach to learn the shape of the basis functions using example images
and show that the Gaussian function used in their method is sub-optimal for
global color balancing.

Color Calibration and Balancing: Color calibration is the process of com-
puting the color distribution function of a camera to allow recorded images
to be consistently colored. Adams et al. [] gives an overview of standard
camera calibration techniques using linear transformations. Usually, a 3x3
matrix is computed using regression performed on a set of colors with known
values. Image grading, on the other hand, is concerned with equalizing the
color distribution of video footage. Pitie et al. [2007] propose an automated
iterative process to morph the color palette of one image into that of the
other image. The work of Senanayake et al. [2007] solves a similar problem
using histogram matching with the concept of feature registration. Their
approach targets equalizing images of the same scene where color histograms
show very similar peaks and features. The main difference between grading

93

Fast and Flexible Color Balancing Using Example Images

algorithms and our approach is that we are not relying on a dense set of color
correspondences.

A related area is color consistency. Humans perceive colors to be consistent
even under different lighting conditions. This property is not available for
digital images. Colors will have different numerical values under different
illuminations. In order to counter this issue, different algorithms have been
proposed that try to estimate the scene illuminant in order to color balance
the images. An overview over different algorithms is provided by Argawal
et al. [2006] and Cohen [2011].

In contrast to our approach, many of these methods do not apply additional
information such as correspondences or known colors in a scene to balance
the images. Therefore, these methods are less interactive and less robust
when applied to videos. The work of Farbman et al. [2011] on color balancing
approaches the problem of tonal inconsistency in videos. They propose using
anchor frames. By propagating per-frame adjustment maps in color space,
they achieve a smooth stabilization of the video colors. However, the work
relies on dense tracking of the image content.

There is also significant work that enhances the quality of images using a
database of example images [Siddiqui and Bouman, 2008; Dale et al., 2009;
Wang et al., 2010; Kang et al., 2010]. The work of Yang et al. [2011] achieve
color compensation by replicating the non-linear relationship between the
camera color and luminance. Wang et al. [2011] transfer color and tone style of
expert photographed images onto the images from cheap cameras by learning
the complex transformation encoded in local descriptors. Our parameter
optimization of the radial basis functions is also based on extracting image
properties form data sets. However, we design our functions to be sparsely
sampled so that they provide good results when interpolated in order to
considerably increase performance.

Another field where images are color balanced is panorama stitching. Here,
however, there is only partial overlap of the images and therefore differ-
ent approaches have been proposed, like non-linear regression [Pham and
Pringle, 1995], histogram map based color correction [Tian et al., 2002], and
light-weight color and luminance compensation [Xiong and Pulli, 2010].

Colorization of Greyscale Images: A related field of research is the coloriza-
tion of grayscale images. Welsh et al. [2002] colorize grayscale images by
transferring chroma values from a target image using user selected rectangu-
lar correspondence areas. Ye et al. [2004] transfer color to greyscale images
by analyzing the texture around each pixel. Recent work by Sang et al. [2011]
employs segmentation and the use of reference images from the internet

94

1 Background of Color Balancing and Transfer

to create robust colorization. Hertzmann et al. [2001] employs an image-
analogy framework that supports colorization. These methods solve a similar
problem to ours. However, they involve per-pixel neighborhood analysis,
segmentation, or a best-match search. These operations are time consuming
and preclude interactive use.

Color Balancing for Image Augmentation: Only recently there has been
research in improving the compositing of images for augmentation and
augmented reality. Klein and Murray [2010] examine and reproduce several
image degradation effects of low-cost digital cameras to increase the realism
of augmentation. While their work includes a vast number of effects such as
lens distortion, blur, bayer artifacts, and more, they are not considering color
shifts due to camera parameter changes. The work of Knecht et al. [2011]
proposes to balance rendered images using colors in the scene. They are
then applying a linear regression model to adapt rendered footage. While
their approach is able to adjust the color balance to video footage, their color
balancing is limited due to its linearity.

95

Fast and Flexible Color Balancing Using Example Images

O
ur

 C
ol

or
 B

al
an

ci
ng

Li
ne

ar
 R

eg
re

ss
io

n

Source Colors Target Colors

Figure 1: Color balancing when only a limited number of color references are available.
On the left, the set of source colors (dominantly from the red area) are shown
together with the original color circle. On the right, a comparison between
standard linear regression color balancing and our method is shown. It can
be observed that our method balances colors that are not referenced (blue and
green) better than the standard approach.

2 Vector Space Color Balancing

Given a sparse set of color correspondences, the goal is to transform the
color gamut of an image into a different shape such, that (i) colors that have
references are transformed as close as possible to that point in the color space,
and (ii) colors, for which no references are available, are transformed in a
plausible way.

A standard way to perform such a color space transformation is to use an
affine transformation found by linear regression on the correspondences
[Adams et al., ; Knecht et al., 2011]. This transformation can be computed
analytically and produces plausible results for colors inside the convex hull
of the sample colors. This approach works best if there is a wide range of
colors available whose convex hull covers as much as possible of the color
space. Usually, color checker are used in such a scenario, as they provide a
good range of colors, often times optimized for certain tasks, like capturing
human skin tones in video recording.

However, there are several drawbacks to the standard calibration with linear

96

2 Vector Space Color Balancing

Image Gamut +
Color Correspondences

Interpolated
Vector Field

Transformed
Image Gamut

Propagate
Correspondences

Advect
Gamut

Figure 2: The idea of vector field color transfer. On the left, the source colors are shown
in black and the corresponding target colors in white. The idea is to interpret
each correspondence as a vector in color space and to extend them to a vector
field with which the gamut of the image is transformed. This procedure creates
a continuous and flexible color transfer function.

regression that can cause artifacts in image processing. First, the affine trans-
formation is not always able to transfer all colors correctly. The regression
approach to find the transformation linearizes the transformation over all
points. If a subset of the color correspondences needs significantly different
transformations as the rest, their constrained colors will not be reached com-
pletely. More complex regression methods that employ higher order terms
exist [Adams et al.,]. In extreme cases, however, also a higher order regres-
sion might not be enough. Second, affine transformation can fail outside
the convex hull. This is because of the linear nature of the approach. Noise
present in the given color correspondences can be amplified outside of the
convex hull, and can create unnatural color changes. This is especially appar-
ent when only a small sub-space of the color space is covered by the convex
hull. Figure 1 shows some examples of linear regression transformation on
a color circle. Source colors, mostly in different red tones, are transferred to
three different sets of target colors. It can be observed, that linear regression
balancing causes artifacts in the colors not present in the color references.

Knecht et al. [2011] propose a solution to the second problem. Their approach
assumes a dominant color, for which correspondences are available. A domi-
nant color is identified as covering a large range in one of the three main color
axes (red, green, or blue). The transfer profile shown by this dominant color
is then applied to the other color space dimensions. This approach basically
mirrors the color transfer function to the other axes in the color space. In
contrast to this approach, we want the color transfer function to automatically
extrapolate the behavior of the reference colors outside its convex hull.

We solve the problem of color balancing by interpreting the given color corre-
spondences as vectors in the color space. In order to produce a transformation

97

Fast and Flexible Color Balancing Using Example Images

of the gamut, we compute a smooth vector field around the reference vectors
that achieves the aforementioned goals. The concept is demonstrated in
Figure 2. The correspondence vectors themselves represent constraints in
the color space. In a first step, we propagate the constraint vectors through
the CIE La∗b∗ space using scattered data interpolation to create a smooth
vector field. Then, in a second step, the image gamut is transformed using
this vector field to produce a color balanced image.

In order to be able to use the length of the vectors and other distance mea-
sures in a linear fashion, we perform all color related operations in the CIE
La∗b∗ space with D65 standard illuminant. This space is designed such that
distances are measurements for perceived color difference. There exist several
distance measures, namely CIE DE76, DE94, and DE2000. Generally, we use
Euclidean distance (DE76) as it is the easiest to implement and the most
efficient to compute. However, the other distance measures can be applied
without loss of generality.

2.1 Vector Field Computation

Given a list of source points (c1, c2, . . . , cn) in the three-dimensional color
space, and a list of target points (d1,d2, . . . ,dn) in the color space to which the
source colors should be mapped. The goal is to find a color transfer function
R that transforms all colors in the three-dimensional color space such, that
the ci are mapped as close as possible to the di. This leads to the constraints

di = ci + v, (1)

where the vi are the constraining vectors at the color points ci. For all unrefer-
enced colors, these constraint vectors vi should be propagated smoothly into
the rest of the color space so that the remaining colors are transformed along
with the constrained colors, as demonstrated in Figure 2. Since we assume a
sparse set of colors ci that are provided with corresponding target colors di,
the vector field can be computed through scattered data interpolation.

Normalized Radial Basis Function Interpolation

The problem at hand, namely to create a smooth vector field given individual
vectors in three dimensional space without explicit connectivity, is known
in the literature as scattered data interpolation. Generally, scattered data
interpolation is employed to create a smooth surface given a (possibly sparse)
number of points in space. This concept can be easily extended to volumes.

98

2 Vector Space Color Balancing

v i

vj

φ i

φ j

Error

. v i

. v j i

vj

w iφ i .
w jφ j .v

c i c j c i c j

Error

Figure 3: Visualization of the problem of overlapping support between interpolation
functions. When summing up the support of each function at the data points
ci, even a small overlapping support from the other data points causes an error.
RBF interpolation optimizes a vector wi for each interpolation function such,
that the sum of all overlapping support gets as close to the supposed data value
as possible.

Scattered data interpolation in our setting attempts to compute, for each new
color point e in the source space a vector vnew based on the surrounding vi.

Radial basis function (RBF) interpolation is a way to define the spread of data
through a function depending on increasing distance. For a data vector vi of
each source color ci a function φi is defined that describes the spread of the
data vector in space. By normalizing and summing up these functions at a
new color e, the vi can be smoothly interpolated to

v(e) =
1

∑n
j=1 φj(ci)

n

∑
j=1

φj(e)vj. (2)

The problem with this kind of interpolation is, that, while vi gets perfectly
interpolated at ci when only considering φi, the other functions falsify the
result due to the overlapping support. Figure 3 visualizes this problem.
When the reach of two functions overlaps, the interpolation at the data point
itself receives an error. For functions like gauss, this cross-talk may be small,
however, it can add up when the cj get close enough. Normalized RBF
interpolation tackles this overlapping support problem by defining weight
vectors wj for each φj such, that the data vectors vi are constrained at ci.

vi =
1

∑n
j=1 φj(ci)

n

∑
j=1

φj(ci)wj (3)

99

Fast and Flexible Color Balancing Using Example Images

This means, that for each function φi a weight vector wi should be found
such, that when all functions are summed up and normalized, they provide a
value as close as possible to vi in the least squares sense.

argmax
w

(||vi − v(ci)||2) (4)

The normalization makes sure that the v(e) interpolated at a color value e
in between the source color points ci gives a correctly scaled vector. The
minimization in Equation 4 an be achieved by creating a system of equations.
Per dimension, each component of the individual vi and wi are assembled
into a large vector vD and wD (D = {L, a,b}). The problem can now be
written as a system of linear equations for each of the three dimensions in the
La∗b∗-color space

vL = Φ wL

va = Φ wa

vb = Φ wb. (5)

The matrix Φ contains, at each position (i, j), the overlapping support value
of cj seen at the interpolation point ci, normalized to the sum of the entire
support.

Φ(i, j) =
1

∑n
k=1 φk(ci)

φj(ci) (6)

Since all three dimensions of the color space use the same matrix Φ, it only
needs to be inverted once to solve all three equation systems

wL = Φ−1 vL

wa = Φ−1 va

wb = Φ−1 vb. (7)

Finally, this gives the weight vectors wi = (wL
i ,wa

i ,wb
i)

T that can be used for
interpolating the color transfer of the entire color space. The transfer vector
v(e) for an arbitrary color e can now be computed as

100

2 Vector Space Color Balancing

v(e) =
1

∑n
i=1 φi(e)

n

∑
i=1

φi(e)wi. (8)

The advantage of normalized RBF interpolation is that the interpolation
functions can be freely chosen, and still are able to achieve color references as
close as possible. Additionally, the evaluation of the functions at each point
in the color space supports a parallel implementation and thus a fast solution.
The solving of the equation is a drawback of the method as it involves a
matrix inversion. This inversion is run-time dependent on the number of
references, however, the inversion can be performed in real time for more
than 100 elements, and only needs to be calculated once for a fixed set of
referees.

Discussion For the purpose of creating a smooth vector field based on a
sparse set of correspondences, RBF interpolation provides a good balance
between complexity of computation and flexibility of the distribution of
data that suits our problem. The main advantages leading to this choice
are the least squares approximation of the constraints while still allowing
the basis functions to be arbitrary shaped. In Section 2.2 we use this to our
advantage by optimizing the shape of different basis function types to get the
best reconstruction of colors in a set of example images.

A problem with RBF interpolation are conflicting constraints of two source
colors. If two colors ci and cj with a small distance in the color space have
opposing data vectors vi and vj, the matrix Φ can become near-singular. This
causes components of the resulting wi to become negative. Negative values
create an inverted distribution of the constraint vectors vi in the color space
and produce undesired artifacts.

This problem, in our specific setting, can be easily circumvented. Since we
are dealing with color values in La∗b∗-space, we have a notion of distance.
Thi La∗b∗-space is specifically designed to be linear in the perception of color
distances, and scaled such, that a distance of one is defined as the smallest
noticeable color difference. Even a distance of two is still considered barely
noticeable under perfect viewing conditions [Wyszecki and Stiles, 1967]. This
property allows us to perform a neighborhood clustering of source colors
ci before the computation of the weights. By combining all the references
that lie within a radius of one in the color space, we make sure that the color
references still remain perceptually the same. In our implementation we
performed a greedy clustering approach, where we select a source color at
random, and then cluster all colors that lie within one unit around this color

101

Fast and Flexible Color Balancing Using Example Images

in the La∗b∗-space. The reference color representing this cluster is computed
as average of all the source colors, and the transfer vector is computed as the
average of the according vectors as well.

The clustering approach additionally provides another beneficial property to
our color balancing approach. For data sets where there is a lot of redundancy
in the references, the clustering can be used to perform a natural reduction
of the number of references, as well as a smoothing of the noise contained
within these references. The clustering radius can be regarded as a valuable
parameter for performance crucial tasks, where an increase of the radius
reduces the number of correspondences. Since the clustering is performed in
the La∗b∗-space, the reduction of references is perceptually motivated.

In addition to clustering conflicting constraints, the choice of the basis func-
tion also influences the stability of the matrix Φ. Functions with a wide
spread in the color space can cause Φ to degenerate quicker. In Section 2.2 we
are comparing the performance of different functions in their performance
of reconstructing unknown colors. We show that an adapted version of the
Shepard function is able to achieve good reconstruction results with a very
small spread, and thus provides an excellent choice of basis function.

2.2 Selecting and Optimizing Interpolation Functions

With the approach of radial basis functions, we can make sure that over-
lapping support between basis functions is minimized. However, it is still
unclear what functions to consider for interpolation and what parameters to
use. We therefore compare the performance of different functions on recon-
structing colors for which no references are available. The goal is to find an
optimized function that is able to recreate the non-linear transfer function
of a real camera. For this purpose we create several data sets by filming a
color-checker and changing camera parameters like e.g. exposure time or
gain. This way, we can capture the color transfer functions of the individual
effects. In each of these sets we randomly select color patches that are used
as references. The performance of the functions is then tested by comparing
how close they can reconstruct the missing colors.

In our experiments we consider the following three functions that show
different fall-off behavior. Each function is parametrized with an ε-value that
allows to change its shape. This parameter will be subject to optimization.

Adapted Shepard: This function is an adapted version of the original Shepard
interpolation function [Shepard, 1968]. We have changed the function such
that it peaks at 1 instead of infinity (by adding +1 to the basis of the function).

102

2 Vector Space Color Balancing

Norm. Shepard
Gaussian
Inv. quadric

Average function
Standard deviation

1

0
0 100Color space distance

a) b)

Figure 4: The radial basis functions used to compute the color transfer vector field are
shown. a) The three functions are shown that we have tested in our experiments.
The functions are plotted with different ε values to show their fall-off behavior
in the same scale. (b) The three radial basis functions are shown after optimizing
the ε parameter with the dashed lines indicating the standard deviation found in
the experiments. It can be verified that the Shepard function shows the quickest
fall-off while the inverse quadric function has the widest spread. The Gaussian
function showed the largest deviation during our tests.

This makes the function more predictable and also numerically simpler to
handle, as the special case of ||ci − e|| = 0 does not need special treatment.

si(e) = (1 + ||ci − e||)−ε (9)

Gaussian Function. In contrast to the Shepard function, the Gaussian function
starts with a smooth falloff before declining exponentially. The Gaussian func-
tion also reaches smaller values much faster after a while than the Shepard
function. This function with ε = 2 can be considered a standard function for
use in RBF interpolation [Li et al., 2010]. However, our goal is to investigate
different ε values as well.

gi(e) = eε||ci−e|| (10)

Inverse Quadric Function. Finally, we also test the performance of a slightly
adapted version of the inverse quadric function. We add a constant weight
α to the function in order to guarantee a minimum value that the function
assumes, even for distances at infinity. This addition allows, in contrast to the
adapted Shepard and Gaussian functions, a more predictable interpolation of
colors far away from the source points. In all our experiments we use a value
of α = 0.01.

qi(e) =
1− α

1 + (ε||ci − e||)2 + α (11)

While testing the performance of each of the three candidate functions dis-
cussed above, we also want to find out the optimal ε value at the same time.

103

Fast and Flexible Color Balancing Using Example Images

Thus, we perform the tests with changing ε values for each function and
compare their capability of reconstructing color changes with the standard
regression.

Evaluation

The evaluation procedure for one function is performed as follows. First, test
data sets are created. For this purpose video footage is recorded of a color
checker pattern (Digital ColorChecker SG in our experiments) in neutral
illumination. During video capture, internal camera parameters (such as
exposure, gain, or contrast) are changed individually so that the color changes
are part of the data set. Then, in each data set, a frame, which is recorded
with default camera settings, is used as base frame. In this frame, 50% of
the color fields are selected at random, and used as interpolation points.
Then, for one of the other frames in the data set (that contains a certain
degree of distortion), the corresponding color fields are used to define color
references. Now, in order to measure the performance of an interpolation
function, the defined color references for the distorted frame of the data set
are used to transform the remaining 50% of the color fields. The distance
of these transformed colors to their ground truth value is then averaged to
calculate the frame score. Then, for all frames in the data set, the frame score
is computed, selecting the 50% interpolation colors randomly for each frame.
The final score is obtained by averaging all frame scores.

This test is repeated for a range of ε-values for each function against data sets
that are recorded under different camera distortion effects. The camera effects
we have tested are shown in Figure 5; changing brightness (a), contrast (b),
exposure (c), gain (d), color intensity (e), and white balance (f). Each test set
contained between 150 and 350 frames, beginning with all the parameters set
to default. In each set, the respective parameter was gradually changed to
its maximum value, then its minimum value, and finally back to its original
setting.

Test Results

The results in Figure 5 are plotted as average distances in the La∗b∗-space
with the ε-values in the horizontal dimension. The score is shown as a
curve for increasing ε-values for the adapted Shepard (red), the Gaussian
(green), and the adapted inverse quadric (blue) functions in comparison to
linear regression (black). For each function, the optimal ε with minimal error
distance is marked with a triangle. There are a couple of interesting properties

104

2 Vector Space Color Balancing

10

3
ε

Brightness

10

3
ε

Contrast

10

3
ε

Exposure

15

5
ε

Gain

15

5
ε

White Balance

a) b)

c) d)

10

3
ε

Color Intensitye) f)

Figure 5: Average reconstruction error of the considered basis functions while interpolat-
ing 50% of the color checker fields under changing camera parameter. The score
is shown for increasing ε-values for the adapted Shepard (red), the Gaussian
(green), and the inverse quadric (blue) functions in comparison to linear regres-
sion (black). The optimum of each function is marked with the colored triangle.
Note that the functions are shown with differently scaled ε-values so that their
optima are shown in a similar range. The scaling for each of the three function
types, however, is consistent across all six plots. In most of the test scenarios,
the RBF interpolation achieves smaller errors in reconstructing colors without
reference values compared to linear regression.

105

Fast and Flexible Color Balancing Using Example Images

Sub-optimal ε OptimumSource Image Target Image

Figure 6: Difference in color balancing when using different ε-values. The source pattern
is balanced towards the target pattern using three color references. The examples
show the target pattern (red border) interleaved with the balanced source pattern
using the inverse quadric function with three different ε. As predicted by our
tests, a poorly choosen ε-value (here, optimal value divided by 20) shows
significantly more difference, while the balancing using the optimal ε is visibly
closer.

that can be observed in these plots, and provide a background for deciding
which function is most appropriate to use for creating a vector field for color
balancing.

The first property that can be observed in all the plots in Figure 5 is, that
all the curves are smooth, even though we are selecting the reference colors
at random for each frame of the data set. We have observed this behavior
during all our test runs. This result lets us believe that the tests are robust
enough to formulate statements about the performance of the functions.

Second, it can be verified that the RBF interpolation performs very similar
to, and often better than linear regression in terms of reconstructing colors
that have no reference. Note, that these graphs do not take the interpolation
of referenced colors into account. Here, the RBF interpolation performs
by definition optimal while the affine transformation shows errors in the
same magnitude than with the interpolation of unknown colors (since it is a
regression method). Therefore, the overall reconstruction performance of our
approach exceeds the performance of the classical regression method.

The third interesting property of the plots is the fact that there is always a

Shepard Gaussian inverse quadric
parameter value ε 3.7975 0.0846 0.0690

standard deviation σ 0.5912 0.0187 0.0289

Table 1: This table shows the average ε-value and the standard deviation found deter-
mined by parameter tests.

106

2 Vector Space Color Balancing

local optimum for a certain parameter ε. All three function that we have
tested seem to have exactly one optimum that is non-zero. Only the adapted
Shepard function converges to a second (local) minimum when ε converges
towards zero. However, we ignore this case to avoid singularities during the
RBF interpolation. Interestingly, for all the different color transfer effects we
have tested, the local optima are around similar ε-values for each function.
Note, that in the plots in Figure 5, the individual ε-values of each function
are scaled so that they appear at a similar location in the horizontal axis. For
each of the three types of basis functions, however, we have used the same
scaling across all six plots.

The ε-values and their standard deviation for each function we have found
are presented in Table 1. The functions using the optimal ε-values are plotted
4 b). The figure shows, that the inverse quadric function has the widest
spread, while our adapted Shepard function has the smallest spread. The
Gaussian function is in the middle, however, showing a significantly larger
deviation than the other two functions. The fact that the Gaussian function
shows the largest variation is interesting, as it is usually the standard function
to be used in similar problems [Li et al., 2010].

Figure 6 shows a comparison between an optimized ε-value for color balanc-
ing and a poorly chosen one. On the left of the figure, the source and target
images are shown. On the right, an overlay of the target and the balanced
source is shown, where the red border indicates the ground truth (target). It
can be observed, that a poorly chosen ε-value introduces a more noticeable
difference in colors after balancing than when using the optimized value.

2.3 Choice of Basis Function

To this end, we have discussed an approach to optimize and compare different
radial basis functions. We have tested three differently shaped functions
and found that their performance in interpolating unreferenced colors is
comparable. However, their shape and variance differs significantly, as
shown in Figure 4 b). In the following we will discuss these differences and
ague that our adapted version of the Shepard function is the best choice.

Ideally, the optimal function-shape should be fairly invariant to the image
distortion effect in order to provide a wide variety of uses. Such invariance is
indicated by a mall variation in a function’s shape between different tests. As
can be observed in Figure 4, the Gaussian function shows significantly more
variation than our adapted Shepard and the inverse quadric functions. This
indicates that the Gaussian function is a sub-optimal choice for global color
balancing using normalized RBF interpolation.

107

Fast and Flexible Color Balancing Using Example Images

Source Image Target Image Inverse Quadric Our adapted Shepard

Figure 7: The impact of the basis function’s spread with close data points is shown. The
source image is balanced using two different color references that lie very close
to each other (indicated by the colored circles in the source image). On the
right it can be observed that the inverse quadric function causes artifacts visible
as false colors (e.g. the yellow lining along the roof). Our adapted Shepard
function, in contrast, does not show these types of artifacts.

Another important property of a function is its spread (i.e. the width of its
fall-off curve). Radial basis function interpolation minimizes the overlapping
support between two data points by solving a system of equations (see Section
2). The higher this overlapping support becomes, the closer the equation
system comes to being singular. Even though we assure that the system is not
singular by clustering color values that lie within the visible difference, the
system can still become unstable when the overlapping support becomes to
large. This results in an over-fitting of the constraints and can cause artifacts.
Therefore, a function with a small spread is preferable to a function with a
large spread. As seen in Figure 4 b), the adapted Shepard function has a
very small spread compared to the inverse quadric function. Therefore, we
propose to use our adapted Shepard function for the RBF propagation of
the color transfer vector field. Figure 7 shows a comparison of interpolating
close constraints using the adapted Shepard function and the inverse quadric
function. The artifacts caused by the larger spread of the inverse quadric
function are visible as false colors like the yellow lining around the roof or
the red tint on the leftmost facade. The block artifacts, that are due to image
compression errors, are also reduced significantly using the adapted Shepard
function.

It is important to note that the way we are evaluating the performance tests
is to find a generally applicable basis function. The data sets we used in our
tests are probably biased towards the specific camera color transfer functions
of the model we used. Nonetheless, we found that the functions performed
very well in many applications. We show a series of examples using our
adapted Shepard function with the optimal ε value (cf. Table 1) in Section 4.
Figure 8 also shows the impact of the function in balancing an image with an
increasing number of correspondences.

108

2 Vector Space Color Balancing

Target Image
Cool White

Balance
1 Color

Reference
2 Color

References
4 Color

References
6 Color

References

Figure 8: Example of the global impact of our color balancing using only a few corre-
spondences. The target image on the left is reconstructed using a photograph
of the same scene with a different white balance as source. The top row shows
the successive addition of references (red dots). The images in the bottom row
visualize the difference in CIE La∗b∗ space between the balanced image and the
original.

Our approach for selection and optimization of the functions naturally ex-
tends to different scenarios (different color checker, camera, and parameter)
and other basis functions. In fact, our approach provides a tool to learn both
specific camera characteristics as well as general camera behavior.

109

Fast and Flexible Color Balancing Using Example Images

3 GPU Implementation

Our color balancing algorithm can be implemented by simply extending any
given fragment shader. The reference colors ci and weight vectors wi can be
transferred to the GPU as texture data. The matrix inversion is calculated
beforehand on the CPU as it only needs to be performed once. The GPU
fragment shader algorithm is described in Algorithm 2.

Algorithm 2: Fragment Shader Color Balancing

1: e← pixelColor()
2: eLab← rbg2lab(e)
3: ve← (0,0,0)
4: se← 0
5: for i = 1→ n do
6: [ci,wi]← dataTexture(n/i)
7: r← phi(ci, eLab)
8: ve← ve + r wi
9: se← se + r

10: end for
11: eLab← eLab + ve/se
12: return lab2rgb(eLab)

First, the original color e of the pixel is determined (line 1). The pixel color is
the result of the given shading algorithm. This color is then transformed to
CIE La∗b∗ space (line 2). Then, the variables ve and se are initialized (line 3
& 4). They are used to compute intermediate results of the transformation
vector computation. Now, a loop is performed n-times, which is the number
of color correspondences. In each loop, first, the color ci and weight vector wi
are acquired through texture lookup (line 6). Then, the function φ is applied
using the current color eLab and the support color ci (line 7). This gives the
function value r, which is used to add the current weight wi to ve (line 8).
Additionally, the sum of all the function values r is stored in se (line 9), so
that after the loop the transformation vector ve can be normalized and used
to translate eLab (line 11). The final color of the pixel is then transformed back
into RGB space and returned to the frame buffer.

We have implemented the color balancing algorithm on an Intel Core i7
3.2 GHz with Nvidia GeForce GTX 460. The run-time in ms is shown in
Figure 9 for an increasing number of references. The solver for the equation
system (blue graph) is the bottleneck, as it involves a matrix inversion in
the size of the number of references. The RBF interpolation (green graph)

110

3 GPU Implementation

0.05

1.30

5 10 20 40

references

tim
e

[m
s]

Figure 9: The performance of our implementation. The green function shows the run-time
for the color balancing on the GPU, the blue function the time to solve the
equation system on the CPU.

however performs with around 0.05 ms almost independently of the number
of references.

111

Fast and Flexible Color Balancing Using Example Images

Source Image Target Image1 Reference 2 References 3 References 4 References

Figure 10: An example of our color balancing an image using an image of similar content.
With four correspondences the source image is balanced towards the target
image. Using only two references for the sky (orange and green circles) and
two references for the water (yellow and red circles), the source image’s quality
is improved significantly. Additionally, the sky and water in the balanced
source image adopt the exact colors from the target image.

4 Applications and Results

In the previous sections we have discussed an approach to color balancing
of images given only a sparse set of correspondences. Through our opti-
mization of basis functions we provide a tool to learn color changes and
optimally adjust images accordingly. Additionally, we have shown a fast
implementation that is able to perform color balancing with 40 references in
less than 2 ms. In the following we discuss applications of our method for
color balancing, image style transfer, and the reproduction of unknown color
transfer functions from digital cameras using example photographs.

4.1 Interactive Color Balancing and Style Transfer

The fast implementation of our color balancing algorithm directly provides
an easy-to-use tool for color balancing. The user is presented with two
images, the one he wants to change, and the one from which he wants
to reference colors. Color correspondences can now be defined by simply
clicking on the images. The result is instantly visible, and the user can drag
the correspondence points around to see the effect. Due to the global nature of
the vector field color transformation, it is very easy to color balance an image
to exactly match a photograph with similar content. Only a few references are
needed to generate a close similarity between two images. Figure 10 shows
the balancing of an underexposed image of the Hong Kong skyline using a
photograph of the Golden Gate Bridge. The images in the figure show the
step-by-step balancing, where the first two correspondences are placed on
the sky (orange and green circles), and the second two on the water (yellow
and red circles). Although only four points were used, the Hong Kong photo

112

4 Applications and Results

Source Image Target ImageReferences References References

Figure 11: An example of color balancing a photograph using another image from the
same scene. The first three references match the colors of the facade. The next
two color references are used to match the color of the faded red stones and the
grass. Finally, the color of the sky is balanced using the last two references.

Texture Image Target Photograph 4 CorrespondencesPhotoshop Color Match

a) b) c)

Figure 12: This figure shows our color balancing method applied to texture correction.
Often, in the process of face capturing, the colors of the reconstructed texture
are not matching the original face. a) The texture from the face capture is shown
together with a professional shot of the person that was scanned. b) Photoshop
Color Match, that automatically corrects the colors in a source image given a
target image, fails to correctly recreate the look of the photograph. Using our
approach, the texture is balanced by using four color references (eye, lip, nose,
forehead).

quality improves significantly. Note, how both the water and the sky colors in
the Hong Kong image adopt the exact colors of the Golden Gate photograph.

Due to the nature of our approach, it is very easy to match two images where
multiple portions are supposed to have the exact same color. Only a few
intuitive clicks are needed to generate close correspondences between the two
images. An example is shown in Figure 11, where two different photographs
of the Taj Mahal are balanced. The two images were taken with different
cameras at different times. Note, that the source image (leftmost image in
Figure 11) has different colors and the red stones bordering the water are
faded. Using seven references, the source image is balanced to the target
image. Even the faded stones look fresh again.

Another field of application of our color balancing approach is balancing
texture colors from 3D scanners. Often, these multi-camera rigs are designed

113

Fast and Flexible Color Balancing Using Example Images

Source Image

Target Image

1 Reference 2 References 3 References

4 References 5 References 6 References 7 References

Figure 13: An example of color-style transfer between two images with completely dif-
ferent content. The original color image of the Golden Gate Bridge on the top
right is changed to match the old image of a gentleman on the right. With
increasing number of correspondences, the image of the bridge changes its
color style. With only 7 correspondences, the image matches the color palette
of the target image.

to best capture the geometry of the target object. It is usually a secondary
task to create a texture for the geometry, and often the colors are incorrect.
Figure 12 a) shows an example of a texture from a face scan compared to a
professional photograph of the person. The colors of the texture have clearly
undergone a change and it is desirable to adapt the colors in the texture image
to match a professional photography. There are automatic methods that are
able to match the colors of an image given a target. Figure 12 b) shows the
result of the Photoshop Color Match function applied to our example. It is
clearly visible that the colors of the jacket, for example, are also integrated
into the texture (mostly re-coloring the beard). Also the specular highlights
on the skin in the target image falsify the result. Our approach, however, is
more suitable for such a case, allowing a simple selection of the desired colors
in the target image to be matched to the source image. Figure 12 c) shows the
result, where only four references are used, namely on the eye, lip, nose, and
forehead.

Since our vector space color transfer is designed to handle non-linear color
mappings, it is not only useful for balancing images, but, in fact, it is able to
create extreme color changes as well. With only a few correspondences, color-
styles of an image can be changed dramatically. Figure 13 shows an example
where a color image is changed to the color style of an old photograph. The
iterative nature of our application is beneficial in this case, where the style
transfer mainly is user driven, as there is no single valid mapping.

114

4 Applications and Results

Ta
rg

et
 Im

ag
es

So
ur

ce
 Im

ag
es

O
ur

 R
es

ul
ts

Figure 14: Our sparse correspondence balancing allows a wide range of applicability. The
top row shows the source images. The middle row contains the target images.
In both images, colored circles denote color correspondences. The row on the
bottom shows the balanced versions of the source images.

The ability to completely change the color style of an image combined with
the real-time implementation of our method allows to create a wide variety
of example images without much effort. In Figure 14, a couple of examples
are shown to demonstrate the wide range of applicability.

Figure 15 shows a series comparisons of our color balancing method with
other color balancing approaches. Since our method is designed and opti-
mized for global color balancing, it is able to transfer the colors from the
target image to the source image with only a sparse set of references. User
edits in Photoshop changing indirect parameters (hue, saturation, etc.) can
be unintuitive and time consuming, and it is difficult to achieve exact re-
sults. Achieving the correct balance between the yellow and red colors in
the bottom example are difficult with only indirect manipulation. Both the
Photoshop Color Match function and the approach of Reinhard et al. [2001]
perform very similarly. Both methods automatically achieve a global balanc-
ing of the image but cannot recreate the exact shade of the Taj Mahal. Using
the sparse input used for our color balancing, the approach of Li et al [2010]
struggles, as their method is specifically designed for local edits. In areas with
strong gradients (e.g. the dome of the Taj Mahal) their approach produces
artifacts. Linear regression is, due to its limited flexibility, not able to satisfy
the constraints.

115

Fast and Flexible Color Balancing Using Example Images

Target Image

Our ApproachLi et al. 2010Lin. Regression

Photoshop
Color Match

Photoshop
User EditsSource Image

Reinhard et al. 2001

Figure 15: Comparison of our approach with other methods for image balancing using
sparse correspondences.

4.2 Reproduction of Unknown Camera Color Transfer Functions

Our RBF color balancing framework allows to capture the behavior of a color
change in an image by extracting color references. These color references
are defined in the color space, and not the image space. Thus, they are
independent of the image content. This property allows to apply the color
transfer to different images without loosing the characteristic of the color
change. Our color balancing thus allows the efficient and simple reproduction
of camera color transfer functions only using two example images.

In order to achieve realistic color effects, a color checker pattern (in our case
Digital ColorChecker SG) can be photographed using different settings of

116

4 Applications and Results

Default Image Distorted Image Extracted Color
References

New Rendering Reproduced Color
Transfer Function

a) b) c)

Figure 16: The pipeline for extracting an image capturing effect from example images and
applying it to a new input image is shown. a) First, one neutrally recorded
frame of a color checker and one frame with the desired color changes are
selected. b) Then, colors from both image are extracted creating a list of color
references. c). Finally, the color references can be used to balance a new input
image in order to reproduce the capture effect.

brightness, contrast, gain, etc. An example is shown in Figure 16. First,
one frame is selected that shows the color checker under default parameter
settings. Then, for each effect, a frame that shows the desired color changes
is selected to create color references. In our experiments we have selected
the colors indicated with the blue and pink circles in Figure 16 a). These
references (shown in Figure 16 b) can now be used to balance a new input
image to reproduce the color transfer function from the example images
(Figure 16 c).

In addition to the simple but powerful color transfer function reproduction,
our RBF color balancing approach has two distinctive advantages. First, a
color transfer can be applied to new images very efficiently. Because the
color references are only extracted once, and stay constant throughout the
application, the most expensive part of the RBF computations can be omitted,
namely the solving of the equation system to minimize overlapping support.
The system only needs to be solved once during the extraction of the refer-
ences. This allows the application of an image effect below one millisecond
per frame. Second, our color balancing is designed as a vector field approach,
effectively advecting the color gamut of an image. These vectors define the
movement of each color in the color space. Therefore, a color transfer can
actually be smoothly blended in by interpolating along the vector field with-
out creating any overhead. Such a computationally cheap blending is not
possible with classical approaches such as regression or histogram matching.
Figure 17 shows some examples of effects applied with different amounts of
blending to an input image in comparison with the ground truth recordings
from the color checker. It can be seen that the blending is able to plausibly
reproduce the color transfer function, even in between the examples. Note,
that all the color checker images are photographs.

117

Fast and Flexible Color Balancing Using Example Images

Br
ig

ht
ne

ss
Ex

po
su

re
Co

nt
ra

st

0% 33% 66% 100%Amount

Figure 17: A series of images showing the continuous reproduction of some camera color
transfer functions. In each row, the image on the left is the original shot. Each
image further to the right shows the successively increased application of a
camera effect using our RBF color balancing, where the intermediate images
are linear interpolations along the color transfer vector field. The color checker
photographs are the ground truth images.

118

4 Applications and Results

Source Image Overbrightening Stepping Artifacts Enhancing Compression
Errors

Figure 18: Several examples of errors caused by bad color references. Over-brightening
is caused by constraining a source color with a bright target color. Stepping
artifacts appear when over- or under-exposed areas are referenced with multiple
different colors. In areas with a smooth color gradient, like skies, using several
color references can cause image compression artifacts to appear more visibly.

4.3 Color Balancing Limitations

In the previous sections we have proposed a fast and flexible method for
color balancing based on vector field transformation. Using normalized
RBF interpolation with optimized basis functions we are able to create color
space transformations with only a few references. We have demonstrated
the applicability of our method as an intuitive color balancing tool, for style
transfer between images, and as an approach for reproducing color transfer
functions of a digital camera.

Our approach, however, has a couple of limitations. While our color balancing
is flexible and robust, bad correspondences can still cause artifacts. Figure
18 shows some of the problems. Over-brightening is caused by referencing a
source color with a bright target color. In this case our algorithm transforms
the image gamut partly outside the displayable color range. These colors
are then clamped to the display gamut, causing over-brightening. The same
effect appears with dark colors as well. Furthermore, our color correction is
not able to reconstruct missing information. Over- or underexposed images
can flatten color gradients to the point where only a few colors remain.
Our color transfer method does not smooth these gradients spatially, and
stepping artifacts appear. Similarly, when referencing multiple colors in
areas of gradients, compression artifacts may become visible. The former
two problems could be attacked by adding a spatial component to the RBF
interpolation that takes the image location of the pixel into account.

To reproduce color transfer functions using example photographs from a
color checker pattern, we currently select the set of color references by hand.
Using base colors such as red, green, blue, etc., we are able to create convinc-

119

Fast and Flexible Color Balancing Using Example Images

ing results. However, it would be desirable to select a suitable set of color
references automatically. To achieve this, the images used as examples could
be analyzed and compared to the reproduced results in order to find the
references with the highest impact.

120

5 Extension to Augmented Reality

Image with a colored
marker surface

Digital version of
marker surface

Augmented Image

Rendered Image

Color Transfer Function

Figure 19: The general idea of our approach to automated color correction in augmented
reality applications. A known surface (like the cover of a book) is filmed,
and the colors of positions on that surface are tracked and compared with the
colors of a digital representation. These color references, dynamically acquired
each frame, allow the balancing of rendered images to the video stream using
our RBF color transformation method. This creates a balanced and adaptive
composition of virtual and real images.

5 Extension to Augmented Reality

A typical scenario where the permanent update of the color balance improves
the visual quality is augmented reality, where a synthetic rendering should be
embedded in a seamless manner into a video stream. In order to tackle this
problem, we propose to use known color patches in the scene (see Figure 19).
If these colors can be robustly tracked over time, they can be used as color
references for their supposed values. These references then automatically
balance rendered images to the video footage, adapting the renderings as the
color of the video frames change due to camera adjustments.

There is previous work that looks at different aspects of improving augmented
images, like noise emulation or lens- and motion blur estimation [Park et al.,
2009; Klein and Murray, 2010]. In contrast, we are focussing on the problem of
estimating the camera color transfer function at run-time. In order to capture
the color distortions caused by changing camera settings such as exposure or
gain, we need to establish color correspondences between video frame and
rendered image. These correspondences can then be used to transform the
entire color-space of the rendered footage such that it appears to be filmed by
the camera. Note that we are not trying to estimate global lighting, as this is
a different research topic all together. Moreover, we propose to add another
layer of realism on top of properly rendered lighting.

In order to robustly acquire color references on a per-frame basis it is crucial
to remove corrupt colors caused by occlusions or other external effects such

121

Fast and Flexible Color Balancing Using Example Images

as specular reflections. The difficulty lies in the fact that color changes may be
also desired, as in the case of the camera automatically adjusting its internal
parameters. In this section we will discuss an approach to separate external
and internal color changes, and take further measures to obtain a stable set of
color references over time before we show some results.

5.1 Separation of Internal and External Color Changes

The first task is to track a set of known colors within the video stream. Track-
ing the surface position itself, and thus individual color sampling positions
on the calibration image, can be performed out of the box using existing
tools. There is a large variety of methods, some of which use markers [Liere
and Mulder, 2003; Lee et al., 2010], some use geometry [Drummond and
Cipolla, 2002; Lepetit and Fua, 2006; Klein and Murray, 2006], and some
use surface or textures features [Lowe, 2004; Benhimane and Malis, 2006;
Klein and Murray, 2008]. We therefore assume the position tracking to be
a black-box process that is provided to us. In our implementation we use
ARToolKit marker tracking [ARToolKit, 2012].

We can assume that we know the locations of the pixels in each frame that
correspond to positions on our digital marker version (see Figure 19). We
assume no knowledge on the internal camera parameter settings (like expo-
sure or gain). The goal is to find out which positions in the video stream
contain desired colors (i.e. only affected by internal color changes), and which
positions contain corrupted colors (i.e. affected by external color changes).
The following points have to be considered:

Changing Camera Parameter: Depending on the scene, the camera usually
adjusts its internal parameter (exposure, gain, contrast) over time. In general,
manufacturers of these cameras do not specify the algorithms used to change
these parameters. Even worse, the parameters themselves are usually not
available, making it more difficult to reproduce the color transfer. Previous
approaches have generally disabled these parameter [Klein and Murray, 2010].
However, we want to provide a solution usable in uncontrolled settings,
where parts of the camera cannot be disabled.

Occlusions: Tracked colors can be occluded by an object in the scene (like
waving ones hand in front of the camera). This needs to be detected and
the color removed from the list of correspondences. Otherwise, the transfer
function becomes erroneous and can produce false results.

Specular Reflections: Specular highlights caused by light sources in the scene
can occur on the calibration surface. They are usually smooth and change the

122

5 Extension to Augmented Reality

color of the tracked position gradually over time to a bright white. Similar to
occlusions, such changes need to be detected in order avoid artifacts.

Inaccurate Positional Tracking: Because position tracking is treated as a
black box, there is no knowledge on the accuracy of the method. The tracking
may be noisy or can even fail entirely at times. Our method needs to be
robust against this noise, and must be able to cope with temporal failures of
the tracking. Moreover, these failures need to be accounted for by providing
transition correspondences in order to prevent the color transfer from starving
on too view correspondences.

Per-frame processing: In order to be usable in augmented reality applica-
tions, no assumptions can be made about the future behavior of the camera.
In a real-time application, a method must function on-line with as minimal
of temporal delay as possible. Therefore, the approach has to be limited to
a per-frame solution, that at most uses information from the past to solve
problems in the present.

Observations and Transformation Model

Having specified the requirements, we can now look at ways to implement
such a color tracking. Only the video stream and the position of a known
marker in the scene are available. Using only this information we want to
provide a series of color correspondences that captures the color transfer
function of the camera. The goal is to provide these pairs of colors for each
frame in order to instantly react to changes of the camera internal parameters
(e.g. exposure, gain). A solution to the problem is to fit an appropriate model
to the tracked color values that predicts what colors have undergone an
undesired change versus a desired change. Let us consider the following
observations to find such a model.

Let us first look at an example of how the La∗b∗ color space profile changes
when the internal camera parameters are changed. Figure 20 shows a series
of stills from this experiment. Even though the exact functions are not known,
it can be observed that the color space profile seems to undergo a global
transformation.

Another scenario is the color change of points when they are occluded. Figure
21 shows the color profile for several degrees of occlusions of the tracked sur-
face. While colors that are not occluded (or not affected by shadow changes)
naturally remain constant, colors of occluded points group together in the
area of the occluder’s color. In Figure 21, this is indicated by the orange mask.
These changes in the color profile are non-linear and local. This is in contrast

123

Fast and Flexible Color Balancing Using Example Images

Default Low Exposure High Exposure High Contrast High Saturation

Vi
de

o
Fr

am
e

La
*b

*
Co

lo
r

Pr
o�

le

Figure 20: Changes in the La∗b∗ color space profile of a tracked surface (book cover) when
internal camera parameters are adjusted. The top row shows frames from
a static scene that is filmed under different camera parameter settings. The
bottom row shows the La∗b∗ color space profile of 196 uniformly distributed
points on the surface. Even though the exact transfer function is not known,
it can be observed that the color space profile changes globally.

Vi
de

o
Fr

am
e

La
*b

*
Co

lo
r

Pr
o�

le

Figure 21: Changes in the La∗b∗ color space profile when parts of the surface are occluded.
It can be seen that occluded points cause a higher density in the La∗b∗-profile
in the masked region. This is a local non-linear change of the color profile.

Vi
de

o
Fr

am
e

La
*b

*
Co

lo
r

Pr
o�

le

Figure 22: Changes in the La∗b∗ color space profile with specular highlights on the
surface. The thin specular highlights cause the tracked color points to become
significantly brighter. The orange arrows show instances of such colors. In
this example only individual colors are changing as the specular highlight is
very small compared to the surface.

124

5 Extension to Augmented Reality

to the camera parameter changes, that caused a global transformation of the
entire color profile.

Similar to occlusions, specular reflections may occur and completely cover a
portion of the tracked surface. These need to be detected as well. Figure 22
shows an example of small specular highlights on a partly reflective surface.
The specular reflection causes a tracked color point to become gradually
brighter. The Figure shows that these changes affect the color of individual
points nonlinearly. This is similar to the observation of the color changes
caused by an occlusion.

The experiments shown in Figures 20, 21, and 22 indicate, that undesired
changes may differ, but each show a significantly different behavior of the
color profile than the desired changes. Similarly, tracking noise that lets a
point travel across a color boundary shows a similar non-linear and local
behavior.

Therefore, in order to separate internal and external color changes, we can
fit a global model that ties the general behavior together. Desirable in our
case is a model that (i) is very fast to compute, as it might need to be re-fitted
multiple times, and (ii) is not over-fitting the data. It is, in our case, more
desirable to reject some good colors than to accept corrupt ones. Rejection of
good color points can be countered by adding redundancy.

A good model choice to estimate the global change of a set of colors from one
frame to the next is the affine transformation [Adams et al.,]. It is flexible
in a global sense but is robust enough to prevent over fitting. Additionally,
global affine transformation can be computed analytically, and is therefore
very cheap in terms of computational overhead. Given a list of color pairs
(ci,di), the affine transformation matrix A and translation t that transform the
ci as close as possible in the least squares sense onto the di can be computed
as

A = ∑
i

d̃i c̃T
i

(
∑

i
c̃i c̃T

i

)−1

(12)

t = d̂− A ĉ, (13)

where ĉ is the average of all ci, and c̃i = ci − ĉ. d̂ and d̃ are computed analo-
gously. A detailed derivation of the affine transformation model can be found
in Appendix A.

We have performed several tests on the performance of the affine transfor-
mation model on a color checker pattern. Figures 23 and 24 show how the

125

Fast and Flexible Color Balancing Using Example Images

0

50
perceived color distance distance after transformation

Figure 23: Color distances under changing brightness setting of the camera. The red
graph shows the average distance in La*b* space between the start image and
the image recorded under a different brightness setting. The green curve shows
the distance after the optimal affine transformation has been fitted. The dashed
curves show the standard deviation. It can be observed that fitting an affine
model reduces the amount of measured color distances considerably, reducing
the color change between consecutive frames.

0

50
perceived color distance distance after transformation

Figure 24: Color distances under changing the image intensity setting of the camera.

perceived distances are reduced after fitting and subtracting the affine model
to images with changing brightness and intensity. Other image parameters
such as gain and exposure showed similar results. The tests confirm that
the affine model is able to reduce the global color change measured from
one frame to the next. However, the results also show, that the model is not
able to reconstruct the colors exactly. Nonetheless, the affine model is able to
reduce most distance below 10 units in the La∗b∗-space. This value gives an
indication on the threshold value that should be used to detect local outliers
when fitting an affine model.

126

5 Extension to Augmented Reality

Frame
tracked colors

reference color array

Remove Outliers Reconstruct Colors

last valid colors

Build References

target colors

source colors

Digital Image

RANSAC (a�ne model)

Figure 25: Overview of our approach to color tracking. From left to right: First, the colors
from the tracked positions are extracted and compared to reference colors.
Using the RANSAC algorithm an affine transformation model is fitted to
remove outliers. Then, using the inliers and last valid colors, missing colors
are reconstructed.

5.2 Robust and Stable Color Tracking

In the following, we explain our approach that automatically separates un-
desired occlusions, pattern misalignments, and specular highlights on the
pattern from desired color changes caused by camera parameter adjustments.
First, an initialization needs to be performed. Then, the run-time algorithm is
applied each frame in order to remove outliers and reconstruct a stable set
of colors. An overview is given in Figure 25. For each frame, the following
steps are performed:

1 Extract Colors. The first step is to extract the colors di from the video frame.
The position tracking provides the positions in the image where the target
colors are found. To reduce per-pixel noise we perform a neighborhood
averaging over a small window (usually 7 by 7).

2 Detect Outlier. To detect corrupted colors we can fit a global model be-
tween the extracted di and a set of reference colors. These reference colors ri
can be taken from the digital image of the marker or extracted from the first
frames of the video in a pre-processing step. In order to keep the number
of false positives low a conservative model should be fitted between the ci
and ri. We chose the affine transformation model ci = A ri + t [Adams et al.,
], which can be computed analytically and avoids over fitting to corrupted
colors.

Outlier in the scene colors di can now be detected by fitting the affine model
using the random sample consensus algorithm (RANSAC) [Fischler and
Bolles, 1981]. RANSAC functions by randomly selecting the minimum
amount of points needed to fit a given model and then measure how close
all other points are approximated by the fitted model. The points that fall
outside a certain treshold are considered outliers, and the model is accepted

127

Fast and Flexible Color Balancing Using Example Images

if the number of outliers is smaller than for every other model fit before. This
process is repeated enough times to statistically provide a 99% chance that
no outliers are in the group of points initially selected.

In our implementation we are using RANSAC by picking randomly four
pairs from the set of colors (cR

i , ci). We then compute the matrix A according
to Equation 12 and the translation vector t according to Equation 13. After fit-
ting the affine transformation model to the subset of color pairs all remaining
reference colors cR

i are transformed by A and translated by t. Now, the dis-
tance ri between each transformed reference color cR and the corresponding
color c from the video frame is computed the distance ri is computed.

This first step allows removing most of the corrupted colors. However, false
positives may slip though this outlier detection. In order to further increase
the robustness of the tracking, we separate the remaining inliers into two
groups. Trusted inliers are colors that have not been detected as outliers for
more than κt frames. These colors are used as valid target colors. Inlier colors
that have been detected as outlier in one of the past κt frames may be false
positives. These colors are also treated as outlier. In our experiments we
found that false positives rarely appear for more than two frames. Therefore,
in our experiments, we mostly used κt = 3.

3 Reconstruct Colors. At this point, corrupted colors have been removed
from the list of di. Additionally, the risk of false positives has been decreased
by taking temporal consistency into account. Now, in order to maximize the
amount of colors available for color balancing, we can use the last valid colors
of each tracked point from the previous frames. These colors are stored when
a tracked value is regarded as trusted inlier (being not an outlier for more
than κt frames). Colors values, that are suddenly corrupt due to occlusions or
specular reflections can then be replaced by an updated version of their last
valid value. The update of these last valid colors is performed by applying
the global affine transformation performed by all trusted inlier colors since
the last frame. In our implementation, we perform this color reconstruction
only for outlier that have been inliers for more than κc frames. This removes
colors that were only detected as inliers for a short period and increases the
robustness. We call these colors comeback points. In our implementation we
have set κc = 10.

4 Create References. The final color references (ci, di) for the balancing of
rendered objects can now be created. For all di, that are either trusted inlier
or a comeback points, the corresponding color ci can be extracted from the
digital image of the marker. The constraints (ci, di) now describe the color
transfer function from rendered footage to the current video frame color
space.

128

5 Extension to Augmented Reality

With our fast global color balancing for sparse color correspondences we
are able to adapt the colors to fit to a target image. With our robust color
tracking, we can extend this into the temporal domain. Using a known
marker in the scene (e.g. the cover of a book) we can balance newly rendered
footage at to augment the video and increase the realism of augmented reality
applications.

5 Update Reference Colors. The outlier detection in the first step relies on a
set of reference colors to which we compare the extracted colors in the current
frame. A good reference is, for example, a clean photograph of the scene.
Also a digital version of the colors (i.e., a scan of the image) that should be
observed can be used for extracting reference colors.

In each frame, we use trusted inliers as new reference colors in the next
frame, effectively replacing the old ones. The rest of the reference colors are
transformed according to the best fitting affine model (A, t) found during
outlier detection.

Video Input Tracked Points

Linear RegressionOur Color BalancingO
ut

lie
r

U
nt

ru
st

ed
 In

lie
r

Tr
us

te
d

In
lie

r
Co

m
eb

ac
k

Figure 26: An example of our color balancing compared to linear regression balancing
in augmented reality applications. Outliers (red x) arising due to specular
reflection are detected and supported with comeback colors (yellow triangle).
Our approach is both more accurate in recreating the exact image colors as
well as produce more plausible color balancing for unknown colors (i.e. green
frog) than linear regression.

129

Fast and Flexible Color Balancing Using Example Images

O
ur

 B
al

an
ci

ng
U

nb
al

an
ce

d

Sparse References

Figure 27: A comparison where only sparse color samples are tracked is shown. Our color
balancing clearly adjusts the colors to the fames. This can also be verified by
comparing the change of the color histograms between the frames.

5.3 Results

While our color transfer approach only utilizes the flexible vector space color
transfer, applications in augmented reality become possible when combining
it with our robust color tracking. A known marker in the scene, like the cover
of a book, can be tracked and the colors referenced with a digital copy of the
image.

Figure 26 shows a comparison between our color correction and linear regres-
sion. It can be observed that our approach is more accurate for colors that are
available in the video stream and more robust for colors that are not tracked.

The example shown in Figure 27 depicts frames in comparison where only
sparse color samples are tracked. Even with only 5 color references available,
our approach is able to emulate color changes due to camera parameter
adjustments for rendered objects. By comparing the change of the color
histograms (they only count colors from the rendered portions of the image)
between the two frames it is apparent that our example reacts to the video
stream, whereas the histogram peaks from the unbalanced rendering stay at
the same positions.

The example in Figure 28 shows an application of our method where an
animated image is placed in a book. Due to the color tracking of the real
image on the same page we are able to embed the animated figure into
the video more realistically. Note that the adjustment of the colors in the
flat shaded examples by hand would only work for one frame as the white
balance and global light change over time.

130

5 Extension to Augmented Reality

Fl
at

 S
ha

de
d

O
ur

 B
al

an
ci

ng
Tr

ac
ke

d
Po

in
ts

Figure 28: An example application of our method is the augmentation of an animated
image in a book. Our method is able to increase the realism by properly
balancing the images to the changing colors of the video stream.

5.4 Limitations

The proposed tracking and correction algorithms have some limitations that
direct us to areas of future work. The color tracking algorithm relies on flat
color areas in the image to work well. This requirement is orthogonal to
many tracking algorithms that use features like corners or edges. However,
our algorithm will reject such colors instead of producing false results. In our
current implementation we employ equidistant sampling of points on the
marker surface where the colors near features get removed by our tracking.
Improving this sampling using information such as edges or gradients in the
marker image would be an interesting topic to explore.

The current implementation only provides a tool for tracking and balancing
of colors. The choice of the marker surface, however, also influences the
quality. Not any surface is suitable for color tracking due to high-frequency
content or lack of variety in color. A particularly exciting future venue would

131

Fast and Flexible Color Balancing Using Example Images

be to investigate the creation of good marker by changing existing surfaces
(e.g. the cover of a book) slightly for better performance. Also the seamless
integration of such marker into the environment would be an interesting
topic.

To this end, the extension to augmented reality is an interesting application
of our fast color balancing approach. However, the current implementation
has only been tested in a controlled lab environment. Although the examples
seem to work well, one venue for future would be to perform a proper
analysis and collect statistics of our tracking and balancing in realistic settings.
Insights from such tests could improve the understanding of the robustness
and flexibility of our tracking could ultimately lead to the ability to apply or
adapt our method to commercial settings.

132

C H A P T E R 6
Conclusion

We conclude this dissertation with a summary of our contributions and a
discussion on future research.

Contributions

In this thesis, we visited three important areas of virtual camera control. We
have discussed problems of three different levels, namely motion and view
planning for large scale camera control, automatically optimized stereoscopy,
and the simulation of internal camera behavior through vector space color
balancing using example images. Throughout the works presented in this
dissertation we have specifically targeted fast and efficient solutions for high-
performance interactive applications such as computer games.

In Chapter 3, we presented an algorithm for visibility transition planning that
can compute large, collision-free camera transitions in real-time in dynamic
environments. This achievement rests on several key insights. We develop
a visibility-aware roadmap data structure that allows the pre-computation
of a coarse representation of all collision-free paths through an environment,
together with an estimate of the pair-wise visibility between all portions of the
environment. Once the start, end, and focus point have been specified, our
runtime system executes a path planning algorithm using the precomputed

133

Conclusion

roadmap values to find a coarse path that is optimal in terms of visibility
up to the resolution of the roadmap. Next, the path is refined by computing
a sequence of GPU-assisted occlusion maps along the coarse path. The
same path-planning code is executed with these occlusion maps to enhance
visibility on a fine scale. An iterative smoothing algorithm together with a
physically-based camera model ensure that the path followed by the camera is
smooth in both space and time. All run-time computation is output sensitive,
so that the required time depends on the final path length. The visibility-
aware roadmap data structure adapts dynamically to occluders that move
in an environment, supporting opening and closing doors, falling boulders,
and other occlusion situations in real-time.

In Chapter 4, we described an effective and efficient solution for optimizing
stereoscopic camera parameters in interactive, dynamic 3D environments. On
the basis of a viewer-centric and a scene-centric model, we have defined the
mapping between the scene depth and perceived depth as an optimization
problem. We have derived constraints for a stereoscopic camera controller
that is capable of rendering any visible scene content optimally into any target
depth range for arbitrary devices and viewing configurations. Moreover, we
have addressed the problem of blending stereoscopic parameters and the
resulting nonlinear distortions in perceived depth. Our method allows for a
linearization of such effects, but also for more complex temporal transforma-
tions to render desired depth effects in the target space. With running times
less than 0.2 ms per frame at full HD resolution, our controller is fast enough
even for demanding real-time applications. Our experimental evaluation
showed that our controller is preferred over naive stereoscopic rendering.

In Chapter 5, we have presented an approach for interactive image-based
color balancing using only a sparse set of correspondences, as well as an
extension for temporally consistent color correction for augmented reality ap-
plications. Through our proposed global optimization of basis functions, we
provide a tool to optimize function parameters to mimic color changes from
example images and optimally adjust colors accordingly. We have shown,
that using this approach, camera color transfer effects such as adjusting gain,
contrast, exposure, etc., can be easily reproduced with very little overhead to
the rendering.

Future Research

Some limitations of our interactive camera control algorithms direct us to
exciting future work.

134

Dynamic Visibility Roadmap. The current form of our visibility-aware
roadmap is created for mostly static environments. With the extension to
handle dynamic occluders we add the ability to handle the most common
virtual environments, where most of the geometry is static. However, with
the development of new interactive environments that allow for increasing
degrees of destruction and geo-morphing, our data structure will become
inefficient. An interesting future venue for our framework would be to in-
vestigate possibilities of dynamically updating the sphere-based roadmap to
changing environments. While the update of the spheres regarding ambient
space might be possible to achieve in interactive frame rates through iterative
updates, updating the visibility information might be a greater challenge. A
possible solution could be to generalize the occlusion map rendering, updat-
ing sphere visibilities by approximating the surrounding visibility through
occlusion cube maps.

Combined Motion and Stereoscopy planning. Our optimized stereoscopic
camera control for interactive 3D allows the ad-hoc optimization of the two
basic stereoscopic parameters, the camera separation and convergence, in
order to achieve an exact constraining of the perceived depth. We have
shown that this control is able to lessen problems of exceeding disparities in
environments where the camera cannot be controlled. The combination of this
framework with motion control provided by our camera planning framework
could open up interesting future work. Currently, camera motion control and
stereoscopic parametrization are completely separated tasks. However, the
positioning of the camera has also a significant impact on the perceived scene
depth. Using this together with the optimization of stereoscopic parameters
could lead to interesting new camera work enabling more cinematography
oriented control.

Content- and Context-aware Image Balancing. Using our vector space
color balancing, we are able to reproduce color changing behavior of real
cameras that occur when the scene content changes. While our method is
able to learn the shape of basis functions to optimally reproduce the non-
linear nature of color transfer functions with only few references, it does
not utilize image content nor the context in which the image was produced.
This missing link, although allowing fast processing, limits the approach to
color space transformations. In future research, a possible link to the content
of the image and the circumstances of the image rendering could be made,
directly linking the color balancing to the camera motion and view control.
By incorporating environmental factors, camera color transfer effects could
be simulated rather than reproduced. Furthermore, a back coupling of the
image balancing to both the intrinsic and extrinsic parameter control could

135

Conclusion

induce interesting new behavior, and converge the pipeline more towards a
unified camera framework.

136

A P P E N D I X A
Derivations

Affine Color Transformation Given a list of color pairs (ci,di) in a three
dimensional color space, an affine transformation matrix A and translation
vector t can be found such that the source colors ci are transformed as close
as possible in the least squares sense to the target colors d, minimizing the
energy

E =
1
2

n

∑
i=1
||A ci + t− di||2. (1)

The affine transformation minimizing E can be computed analytically. In the
following we derive the closed form for A and t.

First, let us define the per-color error as

ei = A ci + t− di. (2)

Now, the derivative of Equation 1 with respect to t can be written as

δE
δt

=
δ

δt
1
2

n

∑
i=1

eT
i I ei. (3)

137

Derivations

Equation 3 can be reformulated [Petersen and Pedersen, 2008], and set equal
to zero.

δ

δt
1
2

n

∑
i=1

eT
i I ei =

δ

δt
1
2

n

∑
i=1

(I + IT)ai

=
n

∑
i=1

(A ci + t− di) (4)

= 0

Equation 4 can now be rearranged to

0 = A
n

∑
i=1

ci +
n

∑
i=1

t−∑
i

di

= A
n

∑
i=1

ci + n t−
n

∑
i=1

di. (5)

Finally, we can solve for t

t =
1
n

n

∑
i=1

di − A
1
n

n

∑
i=1

ci. (6)

Using the mean values of the source and target colors

ĉ =
1
n

n

∑
i=1

ci

d̂ =
1
n

n

∑
i=1

di,

we can rewrite Equation 6 to

t = d̂− A ĉ. (7)

Equation 7 is the closed form to compute the translation between the two
sets of colors. Little surprising, it is equal to the difference between the trans-
formed centroid of the source colors ci and the centroid of the target colors di.
However, Equation 7 still depends on A, which is currently unknown.

138

Now, let us go back to the energy function in Equation 1 and compute the
derivative with respect to the affine transformation matrix A.

δE
δA

=
δ

δA
1
2

n

∑
i=1
||ei||2 (8)

In order to find the closed solution to Equation 8, we can extend it to

δE
δA

=
δ

δA ∑
i

aT
i ai, (9)

and compute the derivative [Petersen and Pedersen, 2008] and set the term
equal to zero.

δE
δA

=
n

∑
i=1

ei cT
i

=
n

∑
i=1

(A ci + t− ĉi) cT
i (10)

= 0

Equation 10 can now be rearranged to the following form

A
n

∑
i=1

ci cT
i + t

n

∑
i=1

cT
i −

n

∑
i=1

di cT
i = 0. (11)

In order to find the closed form for A that is independent of the translational
part, we can employ a little trick to remove t from Equation 11. In Equation
7, t only depends on the mean color values ĉ and d̂. So if we move all color
values in such a way that these mean values become zero, we can eliminate t.

c̃i = ci − ĉi (12)
d̃i = di − d̂i (13)

The replacing the ci with c̃i and the di with d̃i causes the translation t to
become zero, and Equation 11 is reduced to

A∑
i

c̃i c̃T
i −∑

i
d̃i c̃T

i = 0. (14)

139

Derivations

Now, we can solve for the closed form of the affine transformation matrix

A = ∑
i

d̃i c̃T
i

(
∑

i
c̃i c̃T

i

)−1

. (15)

Equations 7 and 15 enable to analytically compute an affine transformation
matrix A and translation vector t that transforms a set of colors ci as close as
possible in the least squares sense to a second set of corresponding colors di.

140

Bibliography

[Abadpour and Kasaei, 2004] A. Abadpour and S. Kasaei. A Fast and Efficient
Fuzzy Color Transfer Method. In Signal Processing and Information Technology,
pages 491 – 494, 2004.

[Adams et al.,] Jim Adams, Ken Parulski, and Kevin Spaulding. Color Processing
in Digital Cameras. IEEE Micro, 18(6).

[Agarwal et al., 2006] Vivek Agarwal, Besma R. Abidi, Andreas Koschan, and
Mongi A. Abidi. An Overview of Color Constancy Algorithms. Journal of Pattern
Recognition Research, pages 42–54, 2006.

[An and Pellacini, 2008] Xiaobo An and Fabio Pellacini. AppProp: All-Pairs
Appearance-Space Edit Propagation. ACM Transactions on Graphics, 27(3), 2008.

[An and Pellacini, 2010] Xiaobo An and Fabio Pellacini. User-Controllable Color
Transfer. Computer Graphics Forum, 29(2):263–271, 2010.

[ARToolKit, 2012] ARToolKit. Software Library for Building Augmented Reality
Applications., 2012. [Online; accessed 29-June-2012].

[Backus et al., 1999] B. Backus, M. S. Banks, R. van Ee, and J. A. Crowell. Hori-
zontal and Vertical Disparity, Eye Position, and Stereoscopic Slant Perception.
Vision Research, 39(6):1143–1170, 1999.

Bibliography

[Bandyopadhyay et al.,] Tirthankar Bandyopadhyay, Yuanping Li, Marcelo
H. Ang Jr., and David Hsu. Stealth Tracking of an Unpredictable Target Among
Obstacles. In Algorithmic Foundations of Robotics VI, pages 43–58.

[Bandyopadhyay et al., 2006] Tirthankar Bandyopadhyay, Yuanping Li, Marcelo
H. Ang Jr., and David Hsu. A Greedy Strategy for Tracking a Locally Predictable
Target among Obstacles. In ICRA, pages 2342–2347, 2006.

[Bandyopadhyay et al., 2007] Tirthankar Bandyopadhyay, Marcelo H. Ang, and
David Hsu. Motion Planning for 3D Target Tracking among Obstacles. In ISRR,
pages 267–279, 2007.

[Bares et al., 1998] William H. Bares, Joël P. Grégoire, and James C. Lester. Realtime
Constraint-Based Cinematography for Complex Interactive 3D Worlds. In
AAAI/IAAI, pages 1101–1106, 1998.

[Benhimane and Malis, 2006] Selim Benhimane and Ezio Malis. Homography-
Based 2D Visual Servoing. In ICRA, pages 2397–2402, 2006.

[Bindel et al., 2002] David Bindel, James Demmel, William Kahan, and Osni Mar-
ques. On Computing Givens Rotations Reliably and Efficiently. ACM Transactions
on Mathematical Software, 28(2):206–238, 2002.

[Bittner, 2002] Jiri Bittner. Hierarchical Techniques for Visibility Computations. PhD
thesis, Czech Technical University, October 2002.

[Bradshaw and O’Sullivan, 2004] Gareth Bradshaw and Carol O’Sullivan. Adap-
tive Medial-Axis Approximation for Sphere-Tree Construction. ACM Transac-
tions on Graphics, 23(1):1–26, 2004.

[Broberg, 2011] D.K. Broberg. Infrastructures for Home Delivery, Interfacing, Cap-
tioning, and Viewing of 3D Content. Proceedings of the IEEE, 99(4):684 –693,
2011.

[Byrne and Becker, 2008] Patrick Byrne and Suzanna Becker. A Principle for Learn-
ing Egocentric-Allocentric Transformation. Neural Computation, 20(3):709–737,
2008.

[Chan et al., 2005] H. P. Chan, M. M. Goodsitt, M. A. Helvie, L. M. Hadjiiski, J. T.
Lydick, M. A. Roubidoux, J. E. Bailey, A. Nees, C. E. Blane, and B. Sahiner. ROC
Study of the Effect of Stereoscopic Imaging on Assessment of Breast Lesions.
Medical Physics, 32, 4:1001–1009, 2005.

[Chang et al., 2007] Youngha Chang, Suguru Saito, and Masayuki Nakajima.
Example-Based Color Transformation of Image and Video Using Basic Color
Categories. IEEE Transactions on Image Processing, 16(2):329–336, 2007.

142

Bibliography

[Chia et al., 2011] Alex Yong Sang Chia, Shaojie Zhuo, Raj Kumar Gupta, Yu-Wing
Tai, Siu-Yeung Cho, Ping Tan, and Stephen Lin. Semantic Colorization with
Internet Images. ACM Transactions on Graphics, 30(6):156, 2011.

[Christie and Olivier, 2009] Marc Christie and Patrick Olivier. Camera Control in
Computer Graphics: Models, Techniques and Applications. In SIGGRAPH ASIA
Courses, 2009.

[Christie et al., 2008] Marc Christie, Patrick Olivier, and Jean-Marie Normand.
Camera Control in Computer Graphics. Comput. Graph. Forum, 27(8):2197–2218,
2008.

[Cohen-Or et al., 2003] Daniel Cohen-Or, Yiorgos Chrysanthou, Cláudio T. Silva,
and Frédo Durand. A Survey of Visibility for Walkthrough Applications. IEEE
Transactions on Visualization and Computer Graphics, 9(3):412–431, 2003.

[Cohen, 2011] Noy Cohen. A Color Balancing Algorithm for Cameras. EE368
Digital Image Processing, 2011.

[Dale et al., 2009] Kevin Dale, Micah K. Johnson, Kalyan Sunkavalli, Wojciech Ma-
tusik, and Hanspeter Pfister. Image Restoration using Online Photo Collections.
In ICCV, pages 2217–2224, 2009.

[David, 1963] H. A. David. The Method of Paired Comparisons. Charles Griffin &
Company, 1963.

[Dechter and Pearl, 1985] Rina Dechter and Judea Pearl. Generalized Best-First
Search Strategies and the Optimality of A*. J. ACM, 32(3):505–536, 1985.

[Didyk et al., 2011] Piotr Didyk, Tobias Ritschel, Elmar Eisemann, Karol
Myszkowski, and Hans-Peter Seidel. A Perceptual Model for Disparity. ACM
Transactions on Graphics, 30(4):96, 2011.

[Drucker and Zeltzer, 1994] Steven M. Drucker and David Zeltzer. Intelligent
Camera Control in a Virtual Environment. In Proceedings of Graphics Interface,
pages 190–199, 1994.

[Drummond and Cipolla, 2002] Tom Drummond and Roberto Cipolla. Real-Time
Tracking of Complex Structures with On-Line Camera Calibration. Image Vision
Computation, 20(5-6):427–433, 2002.

[Farbman and Lischinski, 2011] Zeev Farbman and Dani Lischinski. Tonal Stabi-
lization of Video. ACM Transactions on Graphics, 30(4):89, 2011.

[Farbman et al., 2010] Zeev Farbman, Raanan Fattal, and Dani Lischinski. Dif-
fusion Maps for Edge-Aware Image Editing. ACM Transactions on Graphics,
29(6):145, 2010.

143

Bibliography

[Farin, 1990] Gerald E. Farin. Curves and Surfaces for Computer Aided Geometric
Design - a Practical Guide. Computer science and scientific computing. Academic
Press, 1990.

[Fischler and Bolles, 1981] Martin A. Fischler and Robert C. Bolles. Random Sam-
ple Consensus: A Paradigm for Model Fitting. Commun. ACM, 24(6):381–395,
1981.

[Fröhlich et al., 1999] Bernd Fröhlich, Stephen Barrass, Björn Zehner, John Plate,
and Martin Göbel. Exploring Geo-Scientific Data in Virtual Environments. In
IEEE Visualization, pages 169–173, 1999.

[Gateau and Neuman, 2010] Samuel Gateau and Robert Neuman. Stereoscopy
From XY to Z. In SIGGRAPH ASIA Courses, 2010.

[Gleicher and Witkin, 1992] Michael Gleicher and Andrew P. Witkin. Through-
the-Lens Camera Control. In SIGGRAPH, pages 331–340, 1992.

[Greß et al., 2006] Alexander Greß, Michael Guthe, and Reinhard Klein. GPU-
Based Collision Detection for Deformable Parameterized Surfaces. Computer
Graphics Forum, 25(3):497–506, 2006.

[Grinberg et al., 1994] V. S. Grinberg, Gregg Podnar, and Mel Siegel. Geometry of
Binocular Imaging. In Stereoscopic Displays and Virtual Reality Systems, pages
56–65, 1994.

[Haigh-Hutchinson, 2009] Mark Haigh-Hutchinson. Real-Time Cameras. A Guide
for Game Designers and Developers. Morgan Kaufmann, 2009.

[Halper and Masuch, 2003] Nick Halper and Maic Masuch. Action Summary for
Computer Games. In Proc. of 2nd International Conference on Application and
Development of Computer Games, pages 124–132, 2003.

[Halper et al., 2001] Nicolas Halper, Ralf Helbing, and Thomas Strothotte. A Cam-
era Engine for Computer Games: Managing the Trade-Off Between Constraint
Satisfaction and Frame Coherence. Comput. Graph. Forum, 20(3):174–183, 2001.

[Heinzle et al., 2011] Simon Heinzle, Pierre Greisen, David Gallup, Christine Chen,
Daniel Saner, Aljoscha Smolic, Andreas Burg, Wojciech Matusik, and Markus H.
Gross. Computational Stereo Camera System with Programmable Control Loop.
ACM Transactions on Graphics, 30(4):94, 2011.

[Held and Banks, 2008] Robert T. Held and Martin S. Banks. Misperceptions in
Stereoscopic Displays: a Vision Science Perspective. In APGV, pages 23–32,
2008.

144

Bibliography

[Hertzmann et al., 2001] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian
Curless, and David H. Salesin. Image Analogies. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages 327–340, 2001.

[Hoffman et al., 2008] David M. Hoffman, Ahna R. Girshick, Kurt Akeley, and
Martin S. Banks. Vergence-Accommodation Conflicts Hinder Visual Perfor-
mance and Cause Visual Fatigue. Journal of Vision, 8(3):1–30, 2008.

[Hornung et al., 2003] Alexander Hornung, Gerhard Lakemeyer, and Georg Tro-
gemann. An Autonomous Real-Time Camera Agent for Interactive Narratives
and Games. In IVA, pages 236–243, 2003.

[IEE, 2011] Special Issue on 3D Media and Displays, volume 99, 4. Proceedings of the
IEEE, 2011.

[Ji et al., 2004] Ye Ji, Hong-Bo Liu, Xiu-Kun Wang, and Yi-Yuan Tang. Color Transfer
to Greyscale Images using Texture Spectrum, volume 7, pages 4057–4061. 2004.

[Jones et al., 2001] Graham Jones, Delman Lee, Nicolas Holliman, and David Ezra.
Controlling Perceived Depth in Stereoscopic Images. In Stereoscopic Displays And
Virtual Reality Systems VIII, pages 200–1, 2001.

[Kagarlitsky et al., 2009] Sefy Kagarlitsky, Yael Moses, and Yacov Hel-Or.
Piecewise-Consistent Color Mappings of Images Acquired Under Various Con-
ditions. In ICCV, pages 2311–2318, 2009.

[Kang et al., 2010] Sing Bing Kang, Ashish Kapoor, and Dani Lischinski. Personal-
ization of Image Enhancement. In CVPR, pages 1799–1806, 2010.

[Kennedy and Mercer, 2001] Kevin Kennedy and Robert E. Mercer. Planning Ani-
mations Using Cinematography Knowledge. In Canadian Conference on AI, pages
357–360, 2001.

[Kim et al., 2008] Hye Jin Kim, Jae Wan Choi, An-Jin Chaing, and Ki Yun Yu.
Reconstruction of Stereoscopic Imagery for Visual Comfort. In Stereoscopic
Displays and Virtual Reality Systems XIV, SPIE Vol. 6803, 2008.

[Klein and Murray, 2006] Georg Klein and David W. Murray. Full-3D Edge Track-
ing with a Particle Filter. In BMVC, pages 1119–1128, 2006.

[Klein and Murray, 2008] Georg Klein and David W. Murray. Improving the
Agility of Keyframe-Based SLAM. In ECCV (2), pages 802–815, 2008.

[Klein and Murray, 2010] Georg Klein and David W. Murray. Simulating Low-
Cost Cameras for Augmented Reality Compositing. IEEE Transactions on Vision
and Computer Graphics, 16(3):369–380, 2010.

145

Bibliography

[Knecht et al., 2011] Martin Knecht, Christoph Traxler, Werner Purgathofer, and
Michael Wimmer. Adaptive Camera-Based Color Mapping for Mixed-Reality
Applications. In ISMAR, pages 165–168, 2011.

[Koppal et al., 2011] Sanjeev J. Koppal, C. Lawrence Zitnick, Michael F. Cohen,
Sing Bing Kang, Bryan Ressler, and Alex Colburn. A Viewer-Centric Editor for
3D Movies. IEEE Computer Graphics and Applications, 31(1):20–35, 2011.

[Laine, 2005] Samuli Laine. A General Algorithm for Output-Sensitive Visibility
Preprocessing. In SI3D, pages 31–40, 2005.

[Lang et al., 2010] Manuel Lang, Alexander Hornung, Oliver Wang, Steven
Poulakos, Aljoscha Smolic, and Markus H. Gross. Nonlinear Disparity Mapping
for Stereoscopic 3D. ACM Transactions on Graphics, 29(4), 2010.

[LaValle, 2006] Steven M. LaValle. Planning Algorithms. Cambridge University
Press, 2006.

[Lazebnik, 2001] S. Lazebnik. Visibility-Based Pursuit Evasion in Three-
Dimensional Environments. Technical Report CVR TR 2001-01, Beckman Insti-
tute, University of Illinois, 2001.

[Lee et al., 2010] Wonwoo Lee, Youngmin Park, Vincent Lepetit, and Woontack
Woo. Point-and-Shoot for Ubiquitous Tagging on Mobile Phones. In ISMAR,
pages 57–64, 2010.

[Lepetit and Fua, 2006] Vincent Lepetit and Pascal Fua. Keypoint Recognition
Using Randomized Trees. IEEE Transactions on Pattern Analanalysis, 28(9):1465–
1479, 2006.

[Levin et al., 2004] Anat Levin, Dani Lischinski, and Yair Weiss. Colorization using
Optimization. ACM Transactions on Graphics, 23(3):689–694, 2004.

[Li and Cheng, 2008] Tsai-Yen Li and Chung-Chiang Cheng. Real-Time Camera
Planning for Navigation in Virtual Environments. In Smart Graphics, pages
118–129, 2008.

[Li et al., 2010] Yong Li, Tao Ju, and Shi-Min Hu. Instant Propagation of Sparse
Edits on Images and Videos. Computer Graphics Forum, 29(7):2049–2054, 2010.

[Liere and Mulder, 2003] Robert van Liere and Jurriaan D. Mulder. Optical Track-
ing Using Projective Invariant Marker Pattern Properties. In Proceedings of the
IEEE Virtual Reality 2003, VR ’03, pages 191–, Washington, DC, USA, 2003. IEEE
Computer Society.

[Lipton, 1982] Lenny Lipton. Foundations of the Stereoscopic Cinema: A Study in
Depth. Van Nostrand Reinhold Inc.,U.S., 1982.

146

Bibliography

[Lischinski et al., 2006] Dani Lischinski, Zeev Farbman, Matthew Uyttendaele,
and Richard Szeliski. Interactive Local Adjustment of Tonal Values. ACM
Transactions on Graphics, 25(3):646–653, 2006.

[Lowe, 2004] David G. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. International Journal of Computer Vision, 60(2):91–110, 2004.

[Marchand and Courty, 2002] Éric Marchand and Nicolas Courty. Controlling a
Camera in a Virtual Environment. The Visual Computer, 18(1):1–19, 2002.

[Masaoka et al., 2006] Kenichiro Masaoka, Atsuo Hanazato, Masaki Emoto, Hi-
rokazu Yamanoue, Yuji Nojiri, and Fumio Okano. Spatial Distortion Prediction
System for Stereoscopic Images. Electronic Imaging, 15(1), 2006.

[Masehian and Sedighizadeh, 2007] Ellips Masehian and Davoud Sedighizadeh.
Classic and Heuristic Approaches in Robot Motion Planning–A Chronological
Review. In Proceedings of World Academy of Science, Engineering and Technology,
volume 23, 2007.

[Maslennikova and Vezhnevets, 2007] Alla Maslennikova and Vladimir Vezhn-
evets. Interactive Local Color Transfer Between Images. GraphiCon 2007, 2007.

[Meesters et al., 2004] Lydia M. J. Meesters, Wijnand A. IJsselsteijn, and Piter J. H.
Seuntiens. A Survey of Perceptual Evaluations and Requirements of Three-
Dimensional TV. IEEE Transactions on Circuits and Systems, 14(3):381–391, 2004.

[Murrieta-Cid et al., 2004] Rafael Murrieta-Cid, Alejandro Sarmiento, Sourabh
Bhattacharya, and Seth Hutchinson. Maintaining Visibility of a Moving Target
at a Fixed Distance: the Case of Observer Bounded Speed. In ICRA, pages
479–484, 2004.

[Murrieta-Cid et al., 2007] Rafael Murrieta-Cid, Teja Muppirala, Alejandro
Sarmiento, Sourabh Bhattacharya, and Seth Hutchinson. Surveillance Strategies
for a Pursuer with Finite Sensor Range. I. J. Robotic Res., 26(3):233–253, 2007.

[Neumann and Neumann, 2005] Attila Neumann and László Neumann. Color
Style Transfer Techniques using Hue, Lightness and Saturation Histogram
Matching. In Computational Aesthetics, pages 111–122, 2005.

[Niederberger et al., 2004] Christoph Niederberger, Dejan Radovic, and Markus H.
Gross. Generic Path Planning for Real-Time Applications. In Computer Graphics
International, pages 299–306, 2004.

[Oskam et al., 2009] Thomas Oskam, Robert W. Sumner, Nils Thürey, and
Markus H. Gross. Visibility Transition Planning for Dynamic Camera Con-
trol. In Symposium on Computer Animation, pages 55–65, 2009.

147

Bibliography

[Oskam et al., 2011] Thomas Oskam, Alexander Hornung, Huw Bowles, Kenny
Mitchell, and Markus Gross. OSCAM - Optimized Stereoscopic Camera Control
for Interactive 3D. ACM Transactions on Graphics, pages 189:1–189:8, 2011.

[Oskam et al., 2012] Thomas Oskam, Alexander Hornung, Robert. W Sumner, and
Markus Gross. Fast and Stable Color Balancing for Images and Augmented
Reality. Proceedings of 3DIMPVT, 2012.

[Oskam, 2008] Thomas Oskam. Visibility Transition Planning For Real-Time Cam-
era Control. Master’s thesis, Eidgenössische Technische Hochschule (ETH)
Zürich, Switzerland, 2008.

[Pan et al., 2011] Hao Pan, Chang Yuan, and Scott Daly. 3D Video Disparity Scal-
ing for Preference and Prevention of Discomfort. In Stereoscopic Displays and
Applications XXII, SPIE Vol. 7863, 2011.

[Park et al., 2009] Youngmin Park, Vincent Lepetit, and Woontack Woo. ESM-Blur:
Handling & Rendering Blur in 3D Tracking and Augmentation. In ISMAR,
pages 163–166, 2009.

[Petersen and Pedersen, 2008] Kaare Brandt Petersen and Michael Syskind Peder-
sen. The Matrix Cookbook. 2008.

[Pham and Pringle, 1995] Binh Pham and Glen Pringle. Color Correction for an
Image Sequence. IEEE Computer Graphics Applications, 15(3):38–42, May 1995.

[Pitié and Kokaram, 2007] François Pitié and Anil C. Kokaram. The Linear Monge-
Kantorovitch Linear Colour Mapping for Example-Based Colour Transfer. Visual
Media Production, 2007.

[Pitié et al., 2007] François Pitié, Anil C. Kokaram, and Rozenn Dahyot. Auto-
mated Colour Grading using Colour Distribution Transfer. Computer Vision and
Image Understanding, 107(1-2):123–137, 2007.

[Porikli, 2003] Fatih Murat Porikli. Inter-Camera Color Calibration by Correlation
Model Function. In ICIP (2), pages 133–136, 2003.

[Pouli and Reinhard, 2011] Tania Pouli and Erik Reinhard. Progressive Color
Transfer for Images of Arbitrary Dynamic Range. Computers & Graphics, 35(1):67–
80, 2011.

[Reinhard et al., 2001] Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter
Shirley. Color Transfer Between Images. IEEE Computer Graphics and Applications,
21(5):34–41, 2001.

[Salomon et al., 2003] Brian Salomon, Maxim Garber, Ming C. Lin, and Dinesh
Manocha. Interactive Navigation in Complex Environments using Path Plan-
ning. In SI3D, pages 41–50, 2003.

148

Bibliography

[Senanayake and Alexander, 2007] C. R. Senanayake and Daniel C. Alexander.
Colour Transfer by Feature Based Histogram Registration. In BMVC, 2007.

[Shepard, 1968] Donald Shepard. A Two-Dimensional Interpolation Function for
Irregularly-Spaced Data. In Proceedings of the 1968 23rd ACM national conference,
ACM ’68, pages 517–524, New York, NY, USA, 1968. ACM.

[Shibata et al., 2011a] Takashi Shibata, Joohwan Kim, David M. Hoffman, and
Martin S. Banks. The Zone of Comfort: Predicting Visual Discomfort with Stereo
Displays. Journal of Vision, 11(8), 2011.

[Shibata et al., 2011b] Takashi Shibata, Joohwan Kim, David M. Hoffman, and
Martin S. Banks. Visual Discomfort with Stereo Displays: Effects of Viewing
Distance and Direction of Vergence-Accommodation Conflict. In Stereoscopic
Displays and Applications XXII, SPIE Vol. 7863, 2011.

[Shoemake, 1985] Ken Shoemake. Animating Rotation with Quaternion Curves.
In SIGGRAPH, pages 245–254, 1985.

[Siddiqui and Bouman, 2008] Hasib Siddiqui and Charles A. Bouman. Hierarchi-
cal Color Correction for Camera Cell Phone Images. IEEE Transactions on Image
Processing, 17(11):2138–2155, 2008.

[Siméon et al., 2000] Thierry Siméon, Jean-Paul Laumond, and Carole Nissoux.
Visibility-Based Probabilistic Roadmaps for Motion Planning. Advanced Robotics,
14(6):477–493, 2000.

[Smolic et al., 2011] A. Smolic, P. Kauff, S. Knorr, A. Hornung, M. Kunter,
M. Müller, and M. Lang. Three-Dimensional Video Postproduction and Process-
ing. Proceedings of the IEEE, 99(4):607–625, 2011.

[Stelmach et al., 2003] Lew B. Stelmach, Wa James Tam, Filippo Speranza, Ronald
Renaud, and Taali Martin. Improving the Visual Comfort of Stereoscopic Images.
In Proc. SPIE 5006, 269, 2003.

[Tai et al., 2005] Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Local Color Transfer
via Probabilistic Segmentation by Expectation-Maximization. In CVPR (1), pages
747–754, 2005.

[Tian et al., 2002] Gui Yun Tian, Duke Gledhill, David Taylor, and David Clarke.
Colour Correction for Panoramic Imaging. In IV, pages 483–488, 2002.

[Tomlinson et al., 2000] Bill Tomlinson, Bruce Blumberg, and Delphine Nain. Ex-
pressive Autonomous Cinematography for Interactive Virtual Environments. In
Agents, pages 317–324, 2000.

149

Bibliography

[van de Panne and Stewart, 1999] Michiel van de Panne and A. James Stewart.
Effective Compression Techniques for Precomputed Visibility. In Rendering
Techniques, pages 305–316, 1999.

[Varadhan and Manocha, 2005] Gokul Varadhan and Dinesh Manocha. Star-
shaped Roadmaps - A Deterministic Sampling Approach for Complete Motion
Planning. In Robotics: Science and Systems, pages 25–32, 2005.

[Vidal et al., 2002] René Vidal, Omid Shakernia, H. Jin Kim, David Hyunchul Shim,
and Shankar Sastry. Probabilistic Pursuit-Evasion Games: Theory, Implementa-
tion, and Experimental Evaluation. IEEE Transactions on Robotics, 18(5):662–669,
2002.

[Wang and Sawchuk, 2008] Chiao Wang and Alexander A. Sawchuk. Disparity
Manipulation for Stereo Images and Video. In Stereoscopic Displays and Applica-
tions XIX, SPIE Vol. 6803, 2008.

[Wang et al., 2010] Baoyuan Wang, Yizhou Yu, Tien-Tsin Wong, Chun Chen, and
Ying-Qing Xu. Data-Driven Image Color Theme Enhancement. ACM Transactions
on Graphics, 29(6):146, 2010.

[Wang et al., 2011] Baoyuan Wang, Yizhou Yu, and Ying-Qing Xu. Example-Based
Image Color and Tone Style Enhancement. ACM Transactions on Graphics,
30(4):64, 2011.

[Watt et al., 2005] Simon J. Watt, Kurt Akeley, Marc O. Ernst, and Martin S. Banks.
Focus Cues Affect Perceived Depth. Journal of Vision, 5(10), 2005.

[wei He et al., 1996] Li wei He, Michael F. Cohen, and David Salesin. The Virtual
Cinematographer: A Paradigm for Automatic Real-Time Camera Control and
Directing. In SIGGRAPH, pages 217–224, 1996.

[Welsh et al., 2002] Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller. Trans-
ferring Color to Greyscale Images. In SIGGRAPH, pages 277–280, 2002.

[Wen et al., 2008] Chung-Lin Wen, Chang-Hsi Hsieh, Bing-Yu Chen, and Ming
Ouhyoung. Example-Based Multiple Local Color Transfer by Strokes. Computer
Graphics Forum, 27(7):1765–1772, 2008.

[Woods et al., 1993] Andrew Woods, Tom Docherty, and Rolf Koch. Image Distor-
tions in Stereoscopic Video Systems. In Stereoscopic Displays and Applications IV,
Proceedings of the SPIE, volume 1915, 1993.

[Wyszecki and Stiles, 1967] Günther Wyszecki and Walter Stanley Stiles. Color
Science: Concepts and Methods, Quantitative Data and Formulas. Wiley and Sons,
Inc. New York, 1967.

150

Bibliography

[Xiao and Ma, 2006] Xuezhong Xiao and Lizhuang Ma. Color Transfer in Corre-
lated Color Space. In VRCIA, pages 305–309, 2006.

[Xiao and Ma, 2009] XueZhong Xiao and Lizhuang Ma. Gradient-Preserving Color
Transfer. Computer Graphics Forum, 28(7):1879–1886, 2009.

[Xiong and Pulli, 2010] Yingen Xiong and Kari Pulli. Color and Luminance Com-
pensation for Mobile Panorama Construction. In ACM Multimedia, pages 261–
270, 2010.

[Yang and LaValle, 2002] Libo Yang and Steven M. LaValle. An Improved Random
Neighborhood Graph Approach. In ICRA, pages 254–259, 2002.

[Yang et al., 2011] Sejung Yang, Yoon-Ah Kim, Chaerin Kang, and Byung-Uk Lee.
Color Compensation Using Nonlinear Luminance-RGB Component Curve of a
Camera. In ISVC (2), pages 617–626, 2011.

[Zilly et al., 2011] F. Zilly, J. Kluger, and P. Kauff. Production Rules for Stereo
Acquisition. Proceedings of the IEEE, 99(4):590–606, 2011.

151

