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Abstract

It is one of the main goals of Computer Graphics in particular, and science in
general, to understand and mimic the complexity in the real world. Over the past
decades, it has been proven that the mathematical structures of manifolds, and
stochastic point patterns result in accurate and efficient computational representa-
tions for the geometric complexity of the world, and modeling these structures
with meshless methods offers a versatile and unified treatment. In this thesis,
we develop techniques and algorithms to tackle the fundamental problems of
meshless sampling and reconstruction of manifolds and point patterns.

The acquired data sampled from manifold surfaces of objects is often noisy, corrup-
ted with outliers, and sparse in some parts of the surface. It is thus very challenging
to generate accurate reconstructions of the underlying surface. The first problem
we address is the generation of robust, and sharp feature and high frequency de-
tail preserving reconstructions of point sampled manifolds. Due to the common
smoothness assumption, most approximation methods, when directly applied to
the manifold surface reconstruction problem, can only generate smooth surfaces
without such features, and are significantly affected by outliers. We propose to
reformulate the moving least squares based point set surface reconstruction methods
in the framework of local kernel regression, which enables us to incorporate methods
from robust statistics to arrive at a feature preserving and robust point set surface
definition. The new implicit surface definition can preserve fine details and all
types of sharp features with controllable sharpness, has a simple analytic form,
is robust to outliers and sparse sampling, and efficient and simple to compute.
Since the definition is continuous, it is amenable to further processing without any
special treatment.

The accuracy of the reconstruction of a surface is necessarily determined by the
density and distribution of the points sampled from it. It is thus essential to ensure
a dense enough sampling for faithful reconstructions. On the other hand, typical
datasets can be massive and redundant in some parts with billions of points, which
significantly degrades the performance of the reconstruction algorithms. Hence,
finding optimal sampling conditions for a given reconstruction method is essential for
efficient and accurate reconstructions. We propose new simplification and resampling
algorithms that result in accurate reconstructions while minimizing redundancy.
The algorithms are out-of-core, efficient, simple to implement, feature sensitive,
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and generate high quality blue noise distributions. They utilize a new measure
that quantifies the effect a point has on the definition of a manifold, if it is added
to the set defining the manifold, by considering the change in the Laplace-Beltrami
spectrum. We derive an approximation of this measure by a novel technique that
combines spectral analysis of manifolds and kernel methods. Although the measure is
conceptually global, it requires only local computations, making the algorithms
time and memory efficient.

Not all structures of the real world admit a deterministic manifold form. Indeed,
many structures, from the distribution of trees in a forest or pores in a piece of Swiss
cheese to those of molecular particles or movements of humans in a crowd are best
modeled in a distributional sense by stochastic point patterns. Reconstruction of such
patterns from given example distributions is thus of utmost importance. To achieve
this, we first propose a new unified analysis of point distributions based on a kernel
based approximation of the pair correlation function (PCF). This analysis shows that
the PCF is sufficient for unique determination and discrimination of most point
patterns, and that there is a quantifiable relation between patterns depending on
a new measure of their irregularity. Following this analysis, we propose the first
algorithms that can synthesize point distributions with characteristics matching
those of provided examples, by minimizing a certain distance between the PCFs.
Our first algorithm is a generalized dart throwing method that accepts or rejects
added points depending on the PCF. The second gradient descent based algorithm
takes the output of the first algorithm, and moves the points so as to minimize the
distance between the target PCF and the PCF of the final output point set. The
resulting point distributions have the characteristics of the target patterns to be
reconstructed.

iv



Zusammenfassung

Eines der Hauptziele spezifisch in der Computergrafik aber auch allgemein in der
Wissenschaft, besteht darin, die Komplexität der realen Welt zu verstehen, zu mo-
dellieren und nachzuahmen. In den letzten Jahrzehnten wurde bewiesen, dass die
mathematischen Strukturen von Mannigfaltigkeiten und stochastischen Punktver-
teilungen genaue und effizient berechenbare Repräsentationen dieser Komplexität
ermoeglichen, und dass die Modellierung dieser Strukturen mit punkt-basierten
Ansätzen eine vereinheitlichte und allgemeine Behandlung erlaubt. In dieser Dis-
sertation entwickeln wir Techniken und Algorithmen um fundamentale Probleme
von punkt-basiertem Sampling und Rekonstruktion von Mannigfaltigkeiten und
Punktverteilungen zu lösen.

Die Daten welche wir durch die Abtastung von mannigfaltigen Oberflächen erhal-
ten sind oft verrauscht, durch Ausreisser verfälscht, sowie auch teilweise spärlich
diskretisiert. Dies macht die Rekonstruktion der Oberfläche sehr schwierig. Als
erstes fokussieren wir uns auf die Berechnung von punkt-basierten Oberflächen
welche die Robustheit, scharfe Kanten sowie hochfrequente Oberflächendetails
erhalten. Angewendet auf mannigfaltige Oberflächen erzeugen die meisten exi-
stierenden Rekonstruktionsmethoden glatte Oberflächen jedoch ohne Erhaltung
von Merkmalen, und erweisen sich des Weiteren als anfällig auf Rauschen und
Ausreisser. Wir stellen daher eine Methode vor, welche das Moving Least Squares-
Verfahren basierend auf Punktdaten mit linearen Kernel-Regressionen ausführt.
Dies erlaubt uns die Anwendung von robusten Schätzverfahren um eine punktba-
sierte Oberflächendefinition herzuleiten, welche einerseits Details erhalten kann
und andererseits robust ist. Die neue implizite Oberflächendefinition erzeugt
hochaufgelöste Merkmale und erhält scharfe sowie auch kontrollierbare Ober-
flächendetails, hat eine einfache analytische Form, ist robust gegenüber Ausreis-
sern und spärlicher Diskretisierung, und ist effizient und einfach zu berechnen.
Durch die kontinuierliche Definition ist es ausserdem möglich weitere Verarbei-
tungsschritte ohne spezielle Zusatzbehandlung anzuwenden.

Die Genauigkeit der Oberflächenrekonstruktion wird hauptsächlich durch die
Dichte und Verteilung der Punkte bestimmt welche die Oberfläche repräsentieren.
Um eine gute Qualität zu erhalten ist es daher wichtig eine genügend dichte
Abtastung zu verwenden. Typische Datensätze sind jedoch sehr gross und bestehen
aus Milliarden von Punkten, und weisen in einigen Teilen eine grosse Redundanz
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auf. Dies beeinflusst die Effizienz der Algorithmen merklich. Aufgrund von diesen
Merkmalen ist es entscheidend dass man eine optimale Punkte-Diskretisierung
findet. Wir stellen neue Algorithmen vor um die Datenmenge zu vereinfachen und
neue Abtastungspunkte zu definieren, welche die Redundanz verkleinern sowie
auch eine akkurate Rekonstruktion erlauben. Die Algorithmen sind Out-of-Core,
effizient, einfach zu implementieren, berücksichtigen Merkmale, und erzeugen
eine hohe Qualität bezüglich der Verteilung von Blauem Rauschen. Sie verwenden
dabei ein neues Mass, welches den Effekt quantisiert welcher ein Punkt auf die
resultierende mannigfaltige Oberfläche hat. Dabei wird der Einfluss des Punktes
durch die änderung des Laplace-Beltrami Spektrums analysiert. Von diesem Mass
ausgehend leiten wir eine neue Annäherung her, welche die spektrale Analyse
von mannigfaltigen Oberflächen mit Kernel-Methoden kombiniert. Obwohl dieses
Mass konzeptionell global ist werden nur lokale Berechnungen benötigt, was den
Algorithmus zeit- und speichereffizient macht.

Nicht alle Strukturen der realen Welt entsprechen der mannigfaltigen Form. Viele
Strukturen wie zum Beispiel die Verteilung von Bäumen in einem Wald, Löcher
in einem Schweizer Käse, molekulare Partikel, oder auch die Bewegungen einer
Personenmenge können am Besten durch stochastische Punktemuster beschrieben
werden. Die Rekonstruktion von solchen Verteilungen ist daher von höchster
Wichtigkeit. Um dies zu erreichen, führen wir eine neue allgemeine Analyse
von Punktmengen ein, basierend auf der kernelbasierten approximierten Paar-
Korrelationsfunktion (PCF). Unsere Analyse hat ergeben, dass PCF ausreichend
ist um die meisten Punktemuster eindeutig zu bestimmen und zu unterscheiden,
und dass eine quantifizierbare Relation zwischen diesen Mustern existiert welche
abhängig ist von der Irregularität der Punkte. Dieser Analyse folgend stellen wir
einen neuen Algorithmus vor welcher beliebige Punktverteilungen synthetisieren
kann, basierend auf der Charakteristik einer gegebenen Beispielsmenge. Dabei
werden die PCF Distanzen der erzeugten Punkteverteilung und der Beispiels-
menge minimiert. Unser erster Algorithmus den wir vorstellen entspricht einer
verallgemeinerten Pfeilwurf-Methode welche die hinzugefügten Punkte entwe-
der akzeptiert oder ablehnt, abhängig vom PCF. Die zweite Methode basiert auf
dem Gradientenverfahren das die Ausgabe des vorhergehen Algorithmus verwen-
det und die Punkte so bewegt dass die Distanz zwischen dem angestrebten PCF
und dem PCF der resultierenden Punktemenge minimiert wird. Die resultierende
Punktemenge weist dabei die selbe Charakteristik auf wie die des vorgegebenen
Musters.
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C H A P T E R 1
Introduction

Understanding, analyzing, modeling, and recreating complex geometric
structures of the world are some of the prominent goals of Computer Graph-
ics. Researchers have been working on how to represent and process the
seemingly continuous data gathered from the real world in the discrete world
of the computers in the most effective way. The data can represent complex
geometric structures and patterns. To further complicate the matters, it is
often noisy, inaccurate, incomplete in some parts, and redundant in others.

Sampling and reconstruction are two fundamental problems underlying ef-
fective processing of data. Reconstruction refers to defining a mathematical
structure and computational method that accurately capture the geometry
or pattern the data represents. This is only possible with sufficient inform-
ation in the form of samples gathered. Sampling deals with how to use the
optimum amount and distribution of samples such that information loss and
redundancy are avoided.

Many geometric structures can be represented by manifold surfaces (Figure 1.1,
top row), which constitute one of the focuses of this thesis. Such surfaces
bounding objects can be captured by gathering point samples using various
techniques. These samples are then used in approximation algorithms to
reconstruct a mathematical definition of the surface, evaluated algorithmic-
ally. The algorithms should tolerate noise and outliers, and output accurate
reconstructions. It has been proven repeatedly that globally or locally fitting

1



Introduction

Hansueli Krapf 
Tilsit cheese 

A conifer forest in the Swiss Alps  

Jon Sullivan 

Berthold Werner and Barcex 
Allen McCloud 

André Karwath 
Figure 1.1: Some examples of the structures that can be well represented by manifolds

(top row, the boundary of a statue, an animal, and a house), or patterns
(bottom row, patterns formed by distributions of trees, flowers, and pores in a
piece of cheese).1

a function with smoothness constraints imposed explicitly or implied by the
functional space used is a flexible and accurate method. In particular, the
method of moving least squares (MLS) has been in use extensively for recon-
structing surfaces from point clouds. This method solves a local least squares
system in which more weights are given to the sample points close to a given
query point so as to achieve a local fit. This locally fitted proxy surface is then
used to approximate the underlying surface at the query point.

Although the methods that depend on the solution of either global or local
least squares systems can reconstruct smooth surfaces out of noisy point cloud
data, the resulting surfaces lack some of the perceptually very important
features such as sharp edges, corners, or small-scale details. Furthermore,
the presence of outliers in the data greatly biases the surface due to their
significant effect on the least squares systems. To address these limitations,
we describe a new method that relies on using an error function that is robust
in a statistical sense so that positional and normal outliers are downweighted.
We show how this formulation leads to a feature and detail preserving smooth
surface definition that is robust to noise and outliers, stable under sparse
sampling, efficient to compute, and simple to implement (Chapter 3).

As with any surface definition, generating accurate surfaces with the pro-
posed definition requires having sufficiently many samples. For reconstruc-

1From left to right, top to bottom: Courtesy of Berthold Werner and Barcex, Allen McCloud,
Wikimedia Commons, Hansueli Krapf, André Karwath, Jon Sullivan.
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tions to have feasible time and memory complexity, it is also important to
have the least possible amount of data to process. This is especially im-
portant for typical massive point sets acquired, which can have billions of
points. Although techniques from signal processing can be used to derive
optimum sampling rates for a given function, this is much harder for the
case of sampling a manifold. There has been efforts to extend the results
in classical signal processing to discrete representations of manifolds in the
spectral graph theory and computational harmonic analysis literature, which
has led to new concepts and algorithms for manifolds in geometry processing.
However, generalization of the concepts paralleling the sampling theory is
non-trivial, and also computationally challenging due to the global nature of
spectral methods.

We address this problem and propose effective sampling algorithms
(Chapter 4). By relying on results from spectral analysis of manifolds, kernel
methods, and matrix perturbation theory, we derive a new measure that
quantifies the change a manifold undergoes due to addition or removal of a
single sample point, and design algorithms that utilize this measure to gener-
ate near-optimal samplings. Although the measure is conceptually global, all
computations are local, making the resulting algorithms very efficient and
out-of-core. The measure determines the change in the eigenspectrum of the
Laplace-Beltrami operator of a manifold due to a single point. The algorithms
try to get a sampling pattern where each point contributes maximally to
the manifold definition and any unnecessary samples are eliminated. The
samplings are coupled to MLS based reconstruction algorithms and thus pro-
duce very accurate reconstructions that preserve features. The distribution of
samples also possesses high quality blue-noise characteristics, which allows
direct high quality remeshing.

Manifold surfaces do not constitute the only way the geometric complexity is
manifested in the real world. For some structures, the pattern/distribution of
gathered point samples becomes the entity to be reconstructed. Such a recon-
struction involves an analysis step for understanding certain characteristics of
a known distribution, and a synthesis step to generate new distributions with
the extracted characteristics. In contrast to the diversity of natural patterns
(Figure 1.1, bottom row), existing works prior to ours on point distributions
in computer graphics entirely focused on distributions with blue-noise char-
acteristics, where points are distributed randomly with a minimum distance
between each pair. Analysis of such distributions is typically performed
by using periodograms and derived spectral measures that are confined to
Euclidean domains and by qualitative assessment. Similarly, the synthesis
algorithms have been designed to only generate blue-noise distributions
with slightly varying characteristics, optimized for particular applications. In
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summary, there has been a need for a general analysis method that can work
in any domain, provide compact representations for patterns, and explain
the characteristics and relations of patterns; and a synthesis algorithm that
can generate point patterns with arbitrary complexity and characteristics.

We present novel and unified analysis tools and the first general synthesis
algorithms for point distributions (Chapter 5). Our methods depend on ex-
tracting a global statistical measure, the pair correlation function, that describes
the joint probability of having pairs of point samples at particular locations in
space. An embedding space implied by this measure is then used to provide
a unified analysis of distributions, and to show that the pair correlation func-
tion is an accurate representation for characteristics of patterns. Based on this
analysis, synthesis algorithms for general distributions are proposed. The
algorithms match pair correlation functions of output and given example dis-
tributions. They work for multi-class and adaptive distributions with target
and output point sets of different sizes and dimensions. These properties
allow us to reconstruct a large range of patterns from distributions of different
types of trees in a forest to vortex particles for turbulent fluid simulations.
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1.1 Contributions

Our main contributions can be classified as theoretical and practical. On
the theoretical side, we established and utilized relations between: moving
least squares surfaces and local kernel regression, and spectral analysis of manifolds
and kernel methods. We also explored the pair correlation function in a new
light that led to the development of a unified analysis of point patterns. On the
practical side, we proposed a sharp feature preserving point set surface recon-
struction method that has a simple analytic form with local computations
and without explicit marking of the features, a manifold sampling algorithm
based on spectral measures that generates accurate reconstructions and high
quality isotropic samplings of manifold surfaces, and a general point pattern
reconstruction algorithm that can synthesize possibly multi-class distributions
with any given characteristics on general metric spaces. In addition to these
main results, we also proposed a method for 3D reconstruction of sketched
objects and an adaptive rendering algorithm for faces. Below we detail the main
contributions:

• A unified derivation of some meshless surface reconstruction methods that
interprets them as instances of a local regression analysis. In addition to con-
tributing to the understanding of the reconstruction methods, this unification
also opens doors to the statistics literature on extensions of local regression.

• A surface reconstruction algorithm that can reconstruct sharp features and
fine details, is robust to noise and outliers, stable under sparse sampling, and
efficient to compute. This definition is based on integrating a robust statistics
approach into the framework of local kernel regression.

• A discrete spectral analysis of manifolds that utilize results from harmonic
analysis and kernel methods. This analysis relies on defining a feature space for
the heat kernel and operating in this space to define new spectral measures.

• Subsampling and resampling algorithms that are time and memory effi-
cient, easy to control with intuitive parameters tailored to the reconstruction
method used, result in accurate feature sensitive reconstructions and high
quality samplings. These algorithms utilize a spectral measure that quantifies
the change a point makes on the Laplace-Beltrami spectrum of a manifold. The
measure is computed via approximations derived from our discrete spectral
analysis of manifolds.

• An analysis technique for point patterns that can explain variability of general
point distributions in a unified way by describing them in an embedding
space implied by the pair correlation function. We showed that the degrees
of freedom for distributions generated by various natural or computational
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processes are actually low and directly related to regularity, and the pair
correlation function is a compact and unique representation for most practical
patterns. The analysis also led to a new irregularity measure.

• A point distribution synthesis algorithm for synthesizing general multi-class
distributions. We generalize the well-known dart throwing and relaxation
methods to synthesize distributions with arbitrary characteristics. The charac-
teristics can be given by the user or extracted from an example distribution.
The example and output point sets can be of different sizes and dimensions,
reside on different domains, and contain multiple classes of points. The
algorithms are efficient with O(n) complexity for n points, and simple to
implement.
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1.2 Publications

The following works were produced in the course of this thesis.

Peer-reviewed publications in journals and conferences:

A. C. ÖZTIRELI, G. GUENNEBAUD, and M. GROSS. Feature Preserving Point Set
Surfaces based on Non-Linear Kernel Regression. In Proceedings of Eurograph-
ics (Munich, Germany, March 30 - April 3, 2009), Computer Graphics Forum, vol.
28, no. 2, pp. 493-501 (Best Student Paper Award).

A. C. ÖZTIRELI, M. ALEXA, and M. GROSS. Spectral Sampling of Manifolds. In
Proceedings of ACM SIGGRAPH Asia (Seoul, Korea, December 15-18, 2010), ACM
Transactions on Graphics, vol. 29, no. 5, pp. 168:1-168:8.

A. C. ÖZTIRELI, U. UYUMAZ, T. POPA, A. SHEFFER, and M. GROSS. 3D Modeling
with a Symmetric Sketch. In Proceedings of SBIM (Vancouver, Canada, August
5-7, 2011).

H. KIM, A. C. ÖZTIRELI, M. GROSS, and S. CHOI. Adaptive surface splatting
for facial rendering. In Proceedings of CASA 2012 (Singapore, May 9-11, 2012),
Computer Animation and Virtual Worlds, vol. 23, no. 3-4, pp. 363-373.

A. C. ÖZTIRELI, and M. GROSS. Analysis and Synthesis of Point Distributions
based on Pair Correlation. In Proceedings of ACM SIGGRAPH Asia (Singapore,
November 28-December 1, 2012), ACM Transactions on Graphics, vol. 31, no. 6,
pp. 170:1-170:10.

Technical reports:

A. C. ÖZTIRELI, M. ALEXA, and M. GROSS. Spectral Sampling of Manifolds:
Extended Version. Technical Report No. 683, Institute of Visual Computing, ETH
Zürich, 2010.
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C H A P T E R 2
Background and Related Work

In this chapter, we provide the fundamental techniques used for processing
manifold geometry and patterns acquired in the form of point samples, in
the scope of this thesis. In addition to the ideas and works in the computer
graphics literature, we also review related works in other fields in order to
provide a coherent picture of the state-of-the-art.

We start with a review of the current approaches to solve the problem of
manifold geometry reconstruction under sparse sampling, noise, and outliers
(Section 2.1). We explain that the scattered data approximation based methods,
in particular moving least squares based point set surfaces, perform the best for
typical corrupted real world data, and that some of the fundamental problems
of the current scattered data approximation based manifold reconstruction
methods can be solved by introducing ideas from the statistics literature.

Next, we develop an understanding of the existing sampling algorithms for
accurate reconstructions with minimum data redundancy, point out their
weaknesses, and state how they can be alleviated (Section 2.2). Our main
focus is on sampling algorithms for kernel based reconstruction methods. We
point out how the concept of a kernel unify different methods and can be
utilized to develop new sampling algorithms with superior properties.

Finally, we study the methods for analysis and synthesis of point patterns (or
distributions) (Section 2.3). Since most techniques in computer graphics are
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focused on blue noise distributions, we also review the relevant works from
statistics and physics literature for handling general points distributions. We
state how these works are related to our novel unified analysis method and
general synthesis/reconstruction algorithms.
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2.1 Manifold Geometry Reconstruction

Figure 2.1: Points sampled on surfaces and the corresponding reconstructions (left is
courtesy of Avron et al. [2010], right is courtesy of Salman et al. [2010])

2.1 Manifold Geometry Reconstruction

Reconstructing manifold geometry underlying a set of given sample points is
a well-studied problem due to the abundance of such data coming from vari-
ous sources. However, growing complexity of data with delicate structures,
and high levels of noise and outliers due to the spread of low cost capturing
devices constantly challenge the proposed reconstruction methods. Examples
of acquired datasets and possible reconstructions of them are shown in Fig-
ure 2.1. We mainly focus on general purpose reconstruction methods, which
assume that the only information available about the underlying geometry is
the sample point locations and additional attributes such as surface normals.
Hence, these algorithms do not rely on a template shape, databases of shapes,
or other prior information on the specific geometry to be reconstructed. These
general algorithms are applicable to a wide range of problems and thus have
a large impact. However, the generality also makes the reconstruction prob-
lem ill-posed for many cases. This has led to the development of a multitude
of methods with different characteristics.

2.1.1 Combinatorial Methods

These methods generate a mesh interpolating a possibly filtered subset
of sample points. They are based on Voronoi diagram based constructs,
Delaunay triangulations, or alpha shapes [Edelsbrunner and Mücke, 1994;
Amenta and Bern, 1998; Amenta et al., 2000; 2001; Dey and Goswami, 2003;
Dey, 2006]. A simple form of the algorithms works by constructing a Delaunay
triangulation of the points in 3D, segmenting the tetrahedra as inside or out-
side, and taking the union of each triangle where an inside and outside
tetrahedron meet as the reconstructed mesh.

These methods work well for noiseless data and some of them come with
geometry or topology guarantees under certain sampling conditions. They
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have also been extended to preserve sharp features [Kuo and Yau, 2006], in-
tersections, and boundaries [Dey et al., 2012]. However, typical data acquired
from the real world is often contaminated with noise and outliers, which
degrades the accuracy and robustness of these methods significantly. To solve
this problem, there has been efforts to robustify the reconstructions by filter-
ing the initial points [Dey and Goswami, 2004], identifying inside/outside
regions robustly by a global graph [Kolluri et al., 2004], or simplifying an
initial simplicial complex via optimal transport [Digne et al., 2012]. Neverthe-
less, most reconstructions (with the exception of Digne et al.’s [Digne et al.,
2012]) produced are still sensitive to the sampling rate and noise in the data.
Moreover, constructing the diagrams needed is computation and memory
intensive, making the application of these methods to large datasets very
difficult.

2.1.2 Scattered Data Approximation Methods

To increase robustness to noise and outliers, reconstruction methods based on
scattered data approximation are used. The general problem can be formu-
lated as defining an implicit surface as the zero set of a function, f : R3→R,
f (x) = 0, that fits the data well while satisfying some assumptions such as the
smoothness level. Some of these methods are global, where a large minimiza-
tion problem is solved, and others are local, where a simple surface is fitted
to the neighborhood of a given query point. In general, global methods are
more resilient to large portions of missing data and non-uniform samplings,
while local methods are more efficient, parallelizable, and thus applicable to
large datasets.

Radial Basis Functions. One common approach that can lead to global
or local fitting defines the fitted function as a linear combination of radial
basis functions (RBF) and minimizes a fitting energy by solving a global linear
system [Carr et al., 2001; Turk and O’brien, 2002; Ohtake et al., 2005] to find
the coefficients for the basis functions. The implicit function is thus written
as:

f (x) = ∑αik(‖x− xi‖), (2.1)

where k is the radial basis function used, ‖x‖ denotes the Euclidean norm of
x, and αi’s are the coefficients to be solved for. Hence, the function f stays in
the span of the basis functions k(‖x− xi‖), which are chosen to satisfy certain
properties such as a certain degree of smoothness. Once this form is assumed,
data constraints in the form of A f (xi) = ai can be imposed for some operator
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A and the corresponding attributes ai extracted from the data. As an example,
the operator can be the identity operator, and ai can be set to the expected
distance of the sample points to the surface. These constraints result in a
linear system to solve for the coefficients: Aα = a. This system can be sparse
or dense, depending on the support of the basis functions used. Locally
supported basis functions lead to much more efficiently solvable systems and
local evaluations, while basis functions with global support result in more
stable surfaces under non-uniform sampling.

Partition of Unity Implicits. Instead of solving a large linear system,
partition of unity implicits [Ohtake et al., 2003; Nagai et al., 2009] blend locally
defined functions. In this case, the implicit function is defined as:

f (x) = ∑ wi(x)gi(x)
∑ wi(x)

(2.2)

for some local approximations gi and weights wi. Unfortunately, the re-
constructions are very sensitive to the design choices used to construct the
local approximations and blending weights, necessitating to post-process the
resulting reconstructions [Nagai et al., 2009].

Moving Least Squares. Another approach to reconstruct an impli-
cit function for a surface utilizes the moving least squares method. Mov-
ing least squares (MLS) [Shepard, 1968] is a popular method for func-
tional approximation of irregular data. It has been more recently extended
for the manifold reconstruction problem [Alexa et al., 2001; Levin, 2003;
Alexa et al., 2003]. The fundamental idea of MLS based surface reconstruction
is fitting a proxy surface to the local neighborhood of a given evaluation point
x, and using this proxy surface to project x onto the surface iteratively, or to
compute the value of the implicit function f (x).

Alexa et al. [Alexa et al., 2003] defined the MLS based surface as the set of
stationary points of an iterative projection operator: at each step, a projection
onto a polynomial approximation of the local neighborhood from a local
planar parametrization is performed. By omitting the polynomial fitting step,
Amenta and Kil [Amenta and Kil, 2004a] showed that the same surface can
be defined and computed by weighted centroids and a smooth gradient field.
This definition avoids the planar parametrization issues in the case of sparse
sampling, and simplifies the representation, especially in the presence of
normals [Alexa and Adamson, 2004; 2007].

However, plane fit cannot perform tight approximations and becomes un-
stable when the sampling rate drops [Amenta and Kil, 2004b; Guennebaud
and Gross, 2007]. To overcome these limitations, Guennebaud and Gross
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proposed a generalization to directly fit higher order algebraic surfaces such
as spheres [Guennebaud and Gross, 2007]. This approach yields an efficient
closed form solution for the underlying surface [Guennebaud et al., 2008].
The resulting surface is given by the function f (x) = b(x)Tu(x), where b(x)
is the vector of basis functions for the algebraic distance to the locally fit
surface, and the vector u(x) contains the corresponding coefficients. For
example, if a plane is used as the locally fit surface, then b(x) = [ 1 x y z ]T.
The coefficients u(x) depend on the point x, and computed by solving the
following minimization problem:

u(x) = argmin
u ∑

(
b(xi)

Tu− yi

)2
φi(x), (2.3)

where yi’s are the estimated values for f at the sample points xi, and φ is
a function giving less weights to points away from x. Note that since the
sample points are assumed to be close to the surface (i.e. yi = 0 ∀i), the
minimization can result in the trivial solution of zero for all the coefficients.
To avoid this, constraints should be imposed on u(x). Typical constraints
involve setting the magnitude of the gradient of the locally fitted surface to a
constant, or using estimated or provided sample surface normals (Please see
Sections 3.2.1 and 3.2.3 for a detailed discussion on these constraints.)

Finally, a quite different approach of utilizing MLS was proposed by Shen et
al. [Shen et al., 2004]: instead of trying to fit trivariate polynomials to the data,
they proposed to use standard MLS to reconstruct tangential implicit planes
prescribed at each input sample position. When constant polynomials are
used as the MLS basis, this method yields a simple weighted average [Kolluri,
2005]:

f (x) =
∑nT

i (x− xi)φi(x)
∑ φi(x)

(2.4)

with ni denoting the surface normal at the sample point xi. The simplicity of
this expression allows efficient and simple evaluation and differentials for
the surface. Note that this definition can also be regarded as a partition of
unity approach where the local approximating functions are distances to the
planes at the sample points. There are theoretical results on the accuracy of
the reconstructed surfaces under certain sampling conditions [Kolluri, 2005].
However, in practice, the reconstructions exhibit expansion and shrinking
effects leading to inaccuracies and instabilities [Guennebaud and Gross, 2007].
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2.1.3 Global and Variational Methods

Apart from the mentioned RBF-based global methods, there exist further
algorithms that take a global view. Most of these algorithms discretize the
problem such that a large and sparse linear system needs to be solved, or
the space around the surface is represented and processed. One successful
method is recovering the indicator function of a surface [Kazhdan, 2005;
Kazhdan et al., 2006; Manson et al., 2008]. Extensions that use basis functions
at multiple scales [Kazhdan et al., 2006; Manson et al., 2008] have been
proposed and proved to be quite effective at handling sparse data. Another
global reconstruction technique is defining the surface as the solution of
a variational optimization problem [Alliez et al., 2007; Mullen et al., 2010;
Calakli and Taubin, 2011]. This problem is discretized to obtain a global
solution, usually by solving a sparse linear system.

2.1.4 Methods with Structural Assumptions

So far, we have focused on general purpose reconstruction methods that does
not assume any specific property of the surfaces other than smoothness. In
this section, we explain some recent methods that rely on the more restrictive
assumption that the surfaces contain certain local primitives or repetitive
structures.

These methods rely on fitting primitives such as planes, spheres, cylinders,
or other extracted shapes to patches of points [Schnabel et al., 2007; Gal et al.,
2007] and learning their relations [Li et al., 2011], or using the assumption
of repetitive structures to non-locally filter the geometry for a complete
reconstruction under missing data and noise [Zheng et al., 2010; Friedman
and Stamos, 2012; Digne, 2012; Guillemot et al., 2012]. However, primitive
dependent methods cannot perform well on geometries without the assumed
primitives, and the success of non-local filtering methods heavily depend
on the amount and reliable detection of the repetitive structures in the data.
Moreover, most of these methods do not generate a single mathematical
definition for the overall surface, and are more suited for completing and
filtering the geometry prior to reconstruction of the final surface definition.

2.1.5 Issues with the Reconstruction Methods

In spite of the significant progress in surface reconstruction, there remain
several challenges to be addressed. Here, we explain the problems and briefly
mention our solutions, please see Chapter 3 for a detailed discussion.
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Sharp Feature Preservation. Reconstruction methods based on scattered
data approximation are robust to noise and sparse sampling. This is possible
because of the underlying smoothness assumption. However, this assumption
also means that important features such as sharp features and other high
frequency details are lost.

To overcome this limitation, various approaches have been proposed. Some
of them rely on an explicit representation of the sharp creases using either
cell complexes [Adamson and Alexa, 2006b] or tagged point clouds [Reuter
et al., 2005; Guennebaud and Gross, 2007] to separate the input samples into
different components. A more challenging task, however, is to automatically
detect or enhance features present in the input point cloud.

As initially observed in the context of anisotropic smoothing [Jones et al., 2003;
Boris Mederos and de Figueiredo, 2003], samples belonging to different
smooth patches across a sharp feature can be seen as outliers. This sug-
gest the use of robust statistics both to deal with real outliers and recon-
struct sharp features. Following this idea, Fleishman et al. [Fleishman et
al., 2005] designed an iterative refitting algorithm which locally classifies
the samples across discontinuities. While constituting an important pro-
gress, the method requires very dense sampling, as well as special and
complex handling to locally combine the different patches making the ap-
proach relatively expensive. Furthermore, it offers only limited flexibil-
ity to the user, and the lack of global consistency of the classifications
yields C−1 discontinuities and jagged edges. While the latter limitation
can be overcome using more advanced techniques [Daniels et al., 2007;
Lipman et al., 2007], their inherent complexity makes them only suitable
for surface reconstruction and not to produce an effective surface representa-
tion.

A quite different global approach is using techniques from sparse coding
to construct sample normals and positions by solving an l − 1 sparse prob-
lem [Avron et al., 2010]. Although this can resolve some of the ambiguities
associated with local computations, the computational complexity of the
solver limits the utility of the reconstructions. It is also possible to detect and
preserve sharp features when triangulating an implicit surface via specialized
Delaunay triangulations [Salman et al., 2010]. However, constructing such a
triangulation can be expensive, and does not provide a continuous definition
of the underlying surface.

We have proposed a novel approach that can naturally preserve any kind of
high frequency features, from sharp edges to fine details, without any special
handling or segmentation [Öztireli et al., 2009]. It reconstructs a continuous
implicit function with a simple closed-form, which can be efficiently eval-

16



2.1 Manifold Geometry Reconstruction

uated by local computations. The method is based on the observation that
surface normals, not points, should be considered as outliers near a sharp
feature. We explain this approach in Chapter 3 in detail.

Surface Normal Estimation. For some datasets, only point locations are
available. Since many reconstruction methods require surface normals, it is
essential to estimate the direction and orientation of the normals. The direction
of the normals can be estimated by fitting local surfaces [Hoppe et al., 1992;
Pauly et al., 2002; Alexa et al., 2003; Mitra and Nguyen, 2003; Guennebaud
and Gross, 2007], using Voronoi diagrams [Amenta and Bern, 1998; Dey and
Sun., 2005], or combining the two approaches [Alliez et al., 2007].

The basic idea of local surface fitting is locally approximating a manifold
by a plane or a sphere around a sample point and using the normal of the
fitted primitive as the estimate of the normal at the sample point. A plane
fitting corresponds to performing a principle component analysis (PCA) on the
local neighborhood [Hoppe et al., 1992; Pauly et al., 2002; Alexa et al., 2003;
Mitra and Nguyen, 2003]. Hence, as long as the neighborhood size captures
the local shape well, this fitting gives a robust estimate of the normal due
to the inherent low-pass filtering. Although robust to noise, this method
can give wrong estimates under the influence of outliers, high curvatures,
and sparse sampling. To tackle these problems, we have proposed a feature
preserving and robust filtering method [Öztireli et al., 2009] based on robust
statistics, followed by other estimation methods utilizing similar concepts [Li
et al., 2010a; Boulch and Marlet, 2012] (see Chapter 3). The main idea of
these methods is that normals of a smooth patch near a sharp feature can be
thought of as outliers for the normals of the other smooth patches. Hence,
methods from robust statistics can be applied to recover accurate normals.

The Voronoi diagram based normal estimation uses the furthest away vertices
of the Voronoi cell of a sample point to get an estimate of the normal [Amenta
and Bern, 1998; Dey and Sun., 2005]. Since the Voronoi cells get slimmer as
the sampling rate increases, this estimation gives more accurate results for
densely sampled point sets. Unlike the fitting based method, this method
cannot handle noise well. In addition, outliers and sparse sampling also
degrades the accuracy of the estimates significantly. An interesting approach
for normal estimation is combining the two approaches of using PCA and
Voronoi diagrams [Alliez et al., 2007]. For this method, the normal is es-
timated by performing a PCA on the shape of the Voronoi cell of a sample
point. For robustness, the region is grown to include the Voronoi cells of the
neighboring points. However, constructing the Voronoi diagram remains a
burden and sharp features and details cannot be accurately reconstructed.

Although the mentioned methods can be used to robustly estimate the
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direction of the sample normals ni, there remains the ambiguity of the
orientation, i.e. whether to use ni or −ni for each sample normal. This
sign ambiguity cannot be solved by considering local information since the
solution requires the knowledge of inside/outside regions of the surface.
A common approach encodes consistencies of neighboring normals in a
weighted graph and tries to maximize the total weight [Hoppe et al., 1992;
Huang et al., 2009]. This approach can fail if the measure of consistency and
the distribution of normals in the neighborhoods violate the assumed condi-
tions. Other methods try to estimate a consistent orientation by determining
outside/inside Delaunay tetrahedra via spectral partitioning [Kolluri et al.,
2004], or by using global harmonic functions [Seversky et al., 2011].

18



2.2 Manifold Geometry Sampling

2.2 Manifold Geometry Sampling

Ensuring accurate reconstructions requires to have sufficiently dense
samplings of the surface. On the other hand, redundant sampling makes
the methods suffer from infeasible time and memory complexity. Hence,
an important problem is finding optimal sampling conditions for a given
reconstruction technique. Although this is a classical problem in signal pro-
cessing, extensions of the results to manifolds have been challenging. Two
main approaches for deriving optimal sampling conditions reflect the two
different ways of reconstructing surfaces. The first approach assumes that a
combinatorial algorithm such as the ones explained in Section 2.1.1 is used,
and derives sampling conditions based on the underlying structures. In the
second category, we describe algorithms that do not depend on the properties
of such combinatorial structures. These algorithms utilize a scattered data
approximation technique to assess the quality of the samplings. We also put
methods that do not assume a particular reconstruction method and propose
generation of a sampling pattern instead, and some remeshing algorithms
under this category.

2.2.1 Sampling for Combinatorial Reconstruction

For some of the reconstruction methods that depend on a combinatorial
structure such as the Voronoi diagram, there exists sampling conditions that
ensure a given geometric and topological accuracy [Amenta and Bern, 1998].
The sampling conditions are shown to be related to the distance of points
on the surface to their closest points on the medial axis. However, since
the medial axis of a surface is hard to obtain, the conditions are difficult to
check or be used in algorithms for sampling. Although looser conditions
have been developed [Boissonnat and Oudot, 2005] for efficient checking
and construction of optimal samplings, the resulting algorithms inherit the
disadvantages of combinatorial reconstructions, being time and memory
intensive, and not robust to noise and outliers.

2.2.2 Sampling for Surface Approximation

Real datasets can be massive, with billions of points, and contain noise and
outliers. Hence, efficient and accurate simplification of data is essential to
process large datasets. The fastest methods for simplification are based on
clustering of points [Pauly et al., 2002]. They are simple to implement and
out-of-core, thus suitable for very large datasets. However, sampling quality
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is not sufficient for accurate reconstructions. An efficient and still accurate
set of sampling algorithms simplify the point set by iteratively removing or
adding a sample at a time based on a measure derived from the geometry
and sampling rate. This measure can be defined as the distance of a point
to the surface [Alexa et al., 2001; Carr et al., 2001], density and curvature
based heuristics [Ohtake et al., 2004; Kitago and Gopi, 2006], or quadratic
error metrics [Garland and Heckbert, 1997; Pauly et al., 2002]. The algorithms
provide better accuracy for the final surfaces, but computing the initial scores
and updating can become prohibitively expensive [Kitago and Gopi, 2006].

After simplifying the data, further resampling can be applied to improve
quality. A common approach to generate high quality isotropic samplings of
a surface is distributing points using relaxation techniques. These methods
first compute an initial distribution of points on the surface, and then refine
this distribution by techniques such as variants of the Lloyd’s method [Alliez
et al., 2003; Valette et al., 2008; Yan et al., 2009], particle systems [Turk, 1992;
Witkin and Heckbert, 1994; Pauly et al., 2002], or advancing front al-
gorithms [Schreiner et al., 2006]. In spite of their good sampling properties,
computational cost or critical dependence on parameters or initial distribu-
tions hinder their use. Instead of operating on the surface, some relaxation
algorithms first parametrize the surface and then use well established meth-
ods to generate distributions with blue noise characteristics on the parameter
domain [Alliez et al., 2002]. However, parametrization is a hard problem that
may introduce distortions. This has led to algorithms that directly compute
distributions with blue noise properties on a meshed surface using geodesic
distances [Fu and Zhou, 2008], albeit at a high computational cost. For sharp
feature preservation, these methods can be augmented with specialized pro-
jection operators [Huang et al., 2012].

Another class of resampling algorithms greedily places new samples so as
to satisfy some constraints. Farthest point sampling [Boissonnat and Oudot,
2003] places a new sample at a time such that it is maximally away from
all other inserted samples. For meshes, the algorithm has been extended
using geodesic distances to improve both sampling quality and running
time [Peyré and Cohen, 2006]. However, these greedy algorithms generally
perform worse than relaxation based methods while computational cost
remains high.

We have developed efficient and out-of-core simplification and resampling
algorithms [Öztireli et al., 2010]. In Chapter 4, we will present in detail that
the new algorithms significantly outperform the others in terms of reconstruc-
tion accuracy and sampling characteristics, benefiting from their theoretical
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foundation and relation to our reconstruction method [Öztireli et al., 2009]
(Chapter 3).

2.2.3 Sampling in Manifold Learning

Apart from the focus on 2-manifolds in computer graphics, sampling problem
has also been tackled for general higher dimensional manifolds and ambient
spaces. The term manifold learning refers to discovering the intrinsic mani-
fold structure of a given point set [Coifman and Lafon, 2006]. Many learning
techniques first construct a weighted graph from the points and form the
graph Laplacian or a related matrix. Eigendecomposition of this matrix can
then be used to estimate embeddings of the data points into a new space
such that various learning tasks can be done easily [Ham et al., 2004]. Since
these operations are computationally very demanding, several methods for
sampling datasets have been proposed, but so far they mostly depend on ran-
dom sampling [Karoui and d’Aspremont, 2009; Drineas and Mahoney, 2005;
Achlioptas et al., 2001]. Notable exceptions try to exploit the low-rank struc-
ture of the diffusion matrix [Coifman and Lafon, 2006] or find subsets of the
samples and use the Nyström method to approximate the eigenvectors [Liu
et al., 2006]. However, the algorithms are computationally expensive and not
suitable for high quality samplings of manifolds.

Our sampling techniques [Öztireli et al., 2010] are inspired by the recent
developments in this field. We have introduced a new space implied by heat
diffusion on manifolds, and showed how it can be used to define a measure
that quantifies the change in the manifold definition due to a single point (see
Chapter 4).
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Figure 2.2: Patterns are abundant in nature. Left: galaxies, middle: a sunflower, right:
crystallines in a 2D colloid, (Left figure is courtesy of NASA, middle is
courtesy of L. Shyamal, right is courtesy of Richard Wheeler.)

2.3 Stochastic Point Patterns

Point patterns are abundant in the real world, and constitute probably the
most common form of geometric complexity along with manifolds. Indeed,
many different point distributions are found in nature ranging from locations
of stars and galaxies to movements of people in a crowd (Figure 2.2). The
ability to analyze and synthesize these structures is central for many applic-
ations. Statisticians and physicists have been dealing with general point
distributions for decades. The developed methods have been collected under
the name point processes. However, only a few of these developments have
been utilized in computer graphics, where the methods focus on qualitative
evaluations and reconstruction of point distributions with blue noise charac-
teristics. In contrast to all other approaches, we have proposed a method that
can reconstruct distributions with general characteristics by utilizing novel
analysis and synthesis techniques [Öztireli and Gross, 2012]. We mention its
characteristics in comparison to other methods below (see Chapter 5 for the
detailed discussion).

2.3.1 Blue Noise Patterns

One recurrent pattern in nature, that is also extensively studied in computer
graphics, is a blue noise point pattern. Blue noise is a loosely used term in
computer graphics to name a family of distributions, which have a minimum
distance between pairs of points, and do not exhibit regular structures. A
typical blue noise distribution is shown in Figure 2.3 (a). Point patterns
with blue noise characteristics have been introduced into computer graphics
as a means for anti-aliasing [Dippé and Wold, 1985; Cook, 1986; Mitchell,
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2.3 Stochastic Point Patterns

Figure 2.3: Left: A typical blue noise distribution, middle: its mean periodogram, and
right: the corresponding power and anisotropy plots.

1987]. The anti-aliasing properties of such distributions result from their
unique ability to preserve low-frequency details and map high-frequency
aliasing patterns (such as jagged edges) to noise, which is much less disturb-
ing to the human eye. They are also used in many contexts such as image
sampling [Cook, 1986], geometry processing and synthesis [Alliez et al., 2002;
Ma et al., 2011], object placement [Deussen et al., 1998; Lagae and Dutré, 2006;
Wei, 2010], or procedural noise generation [Lewis, 1989]. Blue noise distribu-
tions are abundant in nature and even in the human visual system [Yellott,
1983].

The name blue noise stems from the shape of the mean periodogram [Ulich-
ney, 1987] with a low energy region in the middle and an almost constant
magnitude energy away from this region (Figure 2.3 (b)). The periodogram
is simply computed by considering each point as an impulse and taking the
Fourier transform of the resulting sum of impulses at the point locations.
The radial average (power diagram) and anisotropy plots can be obtained
by building a histogram with bins of concentric shells around the origin
(Figure 2.3 (c)). It is desirable that the periodogram is radially symmetric
with low anisotropy for high quality blue noise distributions.

2.3.2 Point Distributions in Computer Graphics

Works on point distributions in computer graphics mostly focused on sev-
eral implementations of blue noise distribution generation algorithms, and
qualitative analysis of blue noise patterns.

Spectral measures based on periodograms, along with simple scalar measures
such as the packing density, have been the prevalent tools for analysis of point
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distributions in graphics [Ulichney, 1987; Lagae and Dutré, 2008]. Recently,
diagrams with similar analysis power have been proposed for distributions in
general non-Euclidean domains by considering the distribution of difference
vectors between points [Wei and Wang, 2011]. We have proposed a new
analysis that can quantitatively explain and relate distributions by mapping
them into a space constructed by using distances between points, where the
distance metric can belong to an arbitrary metric space [Öztireli and Gross,
2012].

Synthesis algorithms in graphics are mostly focused on distributions with
blue-noise characteristics. The earliest thread of methods to generate blue-
noise distributions is based on randomly generating points in space and
accepting or rejecting based on a criterion. This algorithm is known as simple
sequential inhibition in statistics, random sequential adsorption in physics [Il-
lian et al., 2008], and dart throwing in graphics. The initial dart throwing
algorithm [Cook, 1986] has been accelerated using a hierarchy of allowable
radiuses [McCool and Eugene, 1992], specialized data structures [Dunbar and
Humphreys, 2006], parallelization [Wei, 2008], adaptive trees [Jones, 2006;
White et al., 2007; Gamito and Maddock, 2009], or explicit void region repres-
entations [Ebeida et al., 2011]. It has also been extended to multiple classes
of objects [Wei, 2010] such that distributions of points in different classes as
well as that of all points have blue-noise characteristics. We have extended
the standard and multi-class dart throwing algorithms such that general dis-
tributions with arbitrary characteristics can be handled [Öztireli and Gross,
2012].

In order to increase density and regularity, relaxation methods where
points are iteratively moved so as to optimize an energy function and sat-
isfy certain constraints are used. Lloyd’s algorithm [Lloyd, 1982] minim-
izes the quantization error and thus can be utilized to obtain optimum
placement of points that capture the whole space well [McCool and Eu-
gene, 1992]. To avoid the optimum involving regular structures, an
equal area constraint for the Voronoi regions [Balzer et al., 2009], or injec-
tion of randomness into the relaxation algorithms [Schmaltz et al., 2010;
Fattal, 2011] can be used. Each of these methods generate distributions
with certain blue-noise characteristics dictated by the construction of the
algorithms. In contrast, our gradient descent based relaxation algorithm
can be used to generate distributions with general characteristics directly
controllable via specifying example distributions or statistics [Öztireli and
Gross, 2012].

As a fast alternative to the mentioned approaches, tiling based methods
have been introduced [Ostromoukhov et al., 2004; Kopf et al., 2006]. These
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2.3 Stochastic Point Patterns

methods can generate distributions in real time. The characteristics of the
distributions depend on the initial distributions used on the tiles, which
should be generated by the previously mentioned algorithms.

2.3.3 General Point Patterns with Point Processes

Blue noise distributions constitute only a small part of the set of point patterns.
In fact, the diversity of distributions in nature is staggering, with complex
structures at various levels. Exploring patterns in point distributions is
thus very important in a diverse selection of disciplines such as physics,
chemistry, sociology, geology, and astronomy. The analysis of point patterns
has been attracting attention of statisticians and physicists for a long time.
The underlying model of point patterns are called point processes [Illian et
al., 2008]. A point process can be considered as the generating process of an
observed pattern. Conversely, a point distribution can be seen as a particular
instance generated by a point process.

The point process statistics are mainly concerned about correlations of point
locations and marks of points in space. The correlations of point locations
result from interactions among the points that can happen in many ways
including repulsion, attraction, inhibition of nearby points, or generation
of child points. Depending on these interactions, the point processes can
generate hard-core or clustering point patterns, or a combination of the two
at different levels. In hard-core distributions, there is a minimum distance
between each pair of points. Hence, blue noise distributions constitute a
subset of these patterns. In contrast, clustering distributions are characterized
by lumps of points in random parts of the space with varying sizes and
number of points.

2.3.4 Point Process Statistics

The statistical measures for point processes range from intensity of the points
to pairwise or higher order correlations and topological characteristics such
as statistics related to the Voronoi regions. These measures can be used to
describe and discover patterns, as well as to infer the underlying process
that generates the observed patterns. At long distances, the correlations
diminish and hence short range correlations are more important to describe
distributions. Among the measures, the pair correlation function (PCF), which
measures the probability of having a pair of points at certain locations in
space, has been widely accepted as the most informative [Illian et al., 2008].
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Indeed, we have showed that the PCF is sufficient to describe the character-
istics of distributions with diverse properties [Öztireli and Gross, 2012]. This
statistical measure was introduced in the physics literature in the beginning of
the 20th century and is also known as the radial distribution function [Torquato,
2002]. It reduces to a function of the distances between point pairs for station-
ary and isotropic point processes. Hence, for these processes, it is a global
measure that quantifies the distribution of distances in a point distribution.
In spite of its simple interpretation, it surprisingly contains almost all in-
formation about the underlying process, and hence can be used to develop a
unified analysis of patterns, as will be detailed in Chapter 5.

2.3.5 Synthesis of Point Patterns

The results of an analysis can also be used to synthesize new patterns fol-
lowing the underlying point process. A typical approach for synthesis is
to assume a particular model for the underlying process, infer the paramet-
ers of the model using the data, and generate distributions from the fitted
model. The models used can be generally categorized as hard-core or clustering
processes depending on the repulsion or attraction between the points. Ex-
amples of some models are Gibbs, Cox, Matérn hard-core and clustering, and
Neyman-Scott processes, random sequential adsorption (dart throwing), and
force based algorithms [Jodrey and Tory, 1985]. Once the model parameters
are estimated, variants of Markov Chain Monte Carlo methods can be used
to generate points from the models.

As with all model based approaches, synthesis via models can only generate
a limited subset of the diversity of patterns in nature. Instead of relying
on estimating parameters of a model, it is possible to randomly explore the
configuration space of all point locations and marks by adding or removing
a point at a time so as to satisfy a given condition [Torquato, 2002]. How-
ever, this direct approach is not feasible and scalable for many cases. Our
algorithms [Öztireli and Gross, 2012] do not rely on a model and still pro-
duce precise reconstruction of characteristics for general metric spaces and
multiple classes of objects efficiently.
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C H A P T E R 3
Meshless Reconstruction of Manifolds

Given a point cloud sampled from the surface of an object, the goal of recon-
struction is recovering a representation for the underlying surface. Since data
is often contaminated with noise and outliers, or insufficiently sampled, it is
challenging to obtain a reconstruction that captures the details and important
features of the underlying surface well. Reconstruction is an inherently ill-
posed problem unless certain assumptions on the surface to be reconstructed
are made, and the associated sampling and noise conditions are met. To
make the problem well-posed, often regularizations based on the smoothness
assumption are employed. This allows the algorithms to infer a smooth man-
ifold surface from the data with a convenient mathematical representation.
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However, the smoothness assumption also leads to losing sharp features and
other high frequency details.

In this chapter, we present a sharp feature and detail preserving surface
reconstruction method. The method extends moving least squares (MLS) based
surface reconstruction techniques. It can be used to reconstruct smooth
surfaces, while preserving sharp features including edges, corners, and peaks,
and small scale details. The sharpness of the reconstructed features can be
controlled with a single intuitive parameter. We show that stable and efficient
reconstructions under the influence of noise/outliers and sparse sampling is
possible with the new definition. The fundamental observation leading to the
new surface definition is that surface normals near a sharp feature deviate
significantly from each other, if they are on different smooth surface patches
meeting at the sharp feature. Hence, methods from statistics that deal with
outliers can be employed to recover the features. We take special care to keep
the resulting surface representation continuous, and its computation simple.
This requires treating all features in a unified framework, and integrating the
extension directly into existing MLS based mathematical definitions.

After summarizing relevant concepts from differential geometry of manifolds
(Section 3.1), we will review MLS based local surface approximation methods
and show their equivalence to local kernel regression (LKR) used in statistics
for scattered data approximation (Section 3.2). This link opens up the way
to borrow various concepts from the statistics literature for improving MLS
surfaces. We describe how to integrate the fruitful concept of robust statistics
into the LKR procedure (Section 3.3), and how the link between MLS sur-
faces and LKR can be used to derive a feature preserving surface definition
(Section 3.4). This is followed by an analysis of the reconstructions produced
and performance of the algorithms under various conditions (Section 3.5). In
addition, we illustrate the use of local approximations in a different setting
for an application that imposes quite different constraints (Section 3.6).
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3.1 Differential Geometry of Manifolds

Our main object of analysis will be the concept of a manifold since we assume
that the sample points represent a manifold surface. Here, we state the
relevant definitions and theorems of the differential geometry of manifolds,
and in particular manifolds represented by implicit functions.1

3.1.1 Submanifolds

The concept of a (sub)manifold is intuitively defined as a space that is locally
equivalent to an Euclidean space of dimension d, Rd. Many types of real
world data that are represented by high dimensional vectors are actually
generated by processes with much less degrees of freedom. The concept of a
manifold naturally captures the intrinsic degrees of freedom. Hence, mani-
folds are very important constructs to investigate complex data. Perhaps the
most familiar examples of manifolds are surfaces bounding objects. Although
scanning these surfaces results in points living in R3, the actual degrees of
freedom is 2. This can be seen by considering a local patch on the surface. As
we zoom in more, the local patch will increasingly approach R2. This local
space at a given point x is called the tangent space of the manifold at x.

Implicit Definition. We will mostly work with implicit definitions of
manifolds. This means a manifold M embedded in Rn is given by the zero
(or level) set of a function f defined in some subspace of Rn. Formally, for an
open set W ⊂ Rn and a map f : W→ Rk that is a C∞ diffeomorphism with
n ≥ k, a point x ∈Rn of this map is called a regular point if D fx is surjective,
and a value v∈Rk is called a regular value if all points x∈ f−1{v} are regular
points. For any regular value v ∈Rk of the map f , the set of points f−1{v}
defines a submanifold embedded in Rn with intrinsic dimension n− k.

For surfaces of objects in the real world, n = 3, k = 1, and thus the dimension
of the manifold surface is 2. This can also be understood by observing that
the tangent spaces are 2 dimensional planes. A curve embedded in the same
3 dimensional space, on the other hand, is a 1 dimensional manifold.

3.1.2 Implicit Surfaces

Definition. We will mostly work on surfaces bounding objects, that is, two
dimensional manifolds embedded in R3 with n = 3 and k = 1. For this case,

1For an extensive treatment of the differential geometry of manifolds, we refer the reader to Do
Carmo’s excellent book [Carmo, 1976].
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the differential is simply given by the gradient ∇ f . Since this differential is
surjective, it is true that ∇ f (x) 6= 0 ∀x ∈ f−1{v} for a regular value v. Each
regular value of f defines a different isocontour and a different manifold. We
will assume that the manifold we would like to reconstruct corresponds to
the regular value of 0. Hence, the implicit surface is given by the following
formula:

S = {x ∈R3| f (x) = 0}, (3.1)

where ∇ f (x) 6= 0 for x ∈ S.

Differentials for Implicit Surfaces. The most commonly used differentials
are first order and are called the gradient and normal. These define tangent
planes, and are very important for almost all reconstruction algorithms. The
normal of an implicit surface is given by the simple formula:

n(x) =
∇ f (x)
||∇ f (x)|| , ||∇ f (x)|| 6= 0. (3.2)

The implicit equation of the tangent plane at the point x is then given by
fTx(y) = n(x)T(y− x).

Second order derivatives of the implicit function can be gathered into the
Hessian matrix:

H =


∂2 f
∂x2

∂2 f
∂x∂y

∂2 f
∂x∂z

∂2 f
∂y∂x

∂2 f
∂y2

∂2 f
∂y∂z

∂2 f
∂z∂x

∂2 f
∂z∂y

∂2 f
∂z2

 (3.3)

that can be used to compute how curved the manifold is at a point.

Signed Distance Functions. A signed distance function gives the signed
Euclidean distance to the surface from each point in space. Since we assume
closed manifold surfaces, the space R3 is divided into two regions: inside
and outside of the surface. We use the convention that the distance is positive
outside, and negative inside. Then, the signed distance function for a surface
S is defined as:

f (x) = sign(x) inf
s∈S
||x− s|| (3.4)
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with sign(x) = 1 when x is outside, and -1 otherwise. A fundamental property
of the gradient of this function is that it satisfies the Eikonal equation:

||∇ f (x)|| = 1 (3.5)

except when x is on the medial axis of the surface. Since such points have
more than one closest point on the surface, this gradient is not well defined.

Note that an implicit function defining a surface is not in general a signed
distance function. Due to the stable gradient magnitude, it is desirable to
keep the reconstructed implicit function close to the signed distance function.
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3.2 Reconstruction by Local Approximations

Our goal is reconstructing an implicit function defining a closed manifold
from the given points sampled on the surface. A versatile, robust, and
efficient method of achieving this is using local approximations. In this
section, we review a widely used local approximation method for implicit
surface reconstruction, and show that it is equivalent to a similar local method
used in statistics. This allows us to interpret existing surface definitions in a
new statistical framework.

3.2.1 Moving Least Squares

Moving Least Squares (MLS) [Shepard, 1968] is a widely used method to
approximate a function f , from its scattered point samples {xi,yi}, where
yi is the known value of the function at xi. The main idea of this method is
fitting a proxy function to the local neighborhood of an evaluation point x, to
approximate f (x). Specifically, it solves the following minimization problem
for a given point x:

fMLS(x) = min
f

∑
i
( f (xi)− yi)

2 φ(||x− xi||). (3.6)

Locality of this system is established by a decaying weight function φ, which
gives more weight to the points near the evaluation point x. Since the weights
depend on x, for each different x, a different least squares system needs to be
solved, hence the name moving least squares.

Moving least squares surfaces. The MLS method was later adapted for
the surface reconstruction problem [Alexa et al., 2001]. Since a manifold is
locally well represented by a plane, a natural choice is fitting a local plane by
solving a weighted least squares problem similar to equation 3.6 (Figure 3.1
(a)), with f replaced by the implicit equation of a plane. This plane can
then be used as a parameter domain to further fit a bivariate function to
the local patch by again using MLS (Figure 3.1 (b)). Finally, the point x is
projected onto this fitted local patch [Alexa et al., 2001] (Figure 3.1 (c)). This
idea was later extended such that distance to the fitted plane is defined as
the distance to the surface [Amenta and Kil, 2004a]. One advantage of this
extension is that an implicit function of the surface is obtained, which can
also be used for projecting a point if needed. Since the plane fitting can get
unstable in high curvature areas, fitting higher order proxy surfaces was also
proposed [Guennebaud and Gross, 2007].
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One fundamental problem when fitting a local proxy surface using MLS
is that the known values of the function, yi, are assumed to be all zero,
since we assume that the sample points are close to the surface. This results
in the following minimization: min f ∑i ( f (xi))

2 φ(||x− xi||). To avoid the
trivial solution of f (x) = 0, some constraints on the function f are needed.
A commonly used constraint is requiring ||∇ f || = 1. This is motivated by
the fact that an implicit function with normalized gradient is also a signed
distance function for the represented surface. It has been shown that this
constraint works well for fitting local planes and spheres [Amenta and Kil,
2004a; Guennebaud and Gross, 2007]. However, a linear system needs to
be solved for each evaluation, slowing down the methods and complicating
the expressions. Another way to avoid the trivial solution is computing the
normals first, and using them to constrain the gradient of the fitted proxy
surface (normal constraints) [Kolluri, 2005; Guennebaud et al., 2008]. This
results in simpler and efficiently computable expressions for the implicit
function, and hence preferred if the normals have already been estimated.

Respecting these constraints, the MLS based surface reconstruction methods
solve the weighted least squares problem min f ∑i ( f (xi))

2 φ(||x− xi||) to get
the value of the implicit function f at the point x. Approximations of this
kind have also been used in statistics. In the next section, we explain one
such method that has direct connections to MLS.

x 

(a) 

x 

(b) 

x 

x* 

(c) 

Figure 3.1: Example MLS projection: (a) A least squares plane is fit. (b) The fitted plane
is used as a reference domain to fit a polynomial. (c) The point x is projected
onto this polynomial.

3.2.2 Local Kernel Regression

Similar to MLS, local kernel regression (LKR) is a method to approxim-
ate a function f (x) : Rd → R given its values yi ∈ R at the sample points
xi ∈Rd, by local fits. The input data might be corrupted with noise such that
yi = f (xi) + ε, where ε is a random variable with zero mean.
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The essence of the method is to approximate the unknown function f (xi)
around the evaluation point x in terms of a Taylor expansion:

f (xi) ≈ f (x) + (xi − x)T∇ f (x) +
1
2
(xi − x)TH f (x)(xi − x) + ...,

where H f (x) denotes the Hessian matrix of f (x). The order o of the expansion
is defined as the number of terms used in the Taylor expansion minus one.
This equation can be reformulated as a sum of inner products:

f (xi) ≈ s0 + aT
i s1 + bT

i s2 + ..., (3.7)

where ai = (xi − x), and bi = [. . . (ai)j(ai)k . . .]T with k > j. The local approx-
imation is by definition more accurate nearby the point x. This suggests the
use of a weighted least squares minimization to find the unknown parameters
s = [s0 sT

1 sT
2 . . .]:

argmin
s ∑ (yi − (s0 + aT

i s1 + bT
i s2 + ...))2φi(x), (3.8)

where φi(x) = φ(||x− xi||), and φ(x) is a symmetric and decreasing weight
function giving more weight to samples near x in the minimization.

By replacing the function f in equation 3.6 by its Taylor expansion terms,
equation 3.8 can be exactly obtained. Hence, the MLS and LKR methods are
the same if a local Taylor approximation of the fitted function is used. As
explained in Section 3.2.1, MLS based surface reconstruction methods fit a
plane, sphere, or higher order local proxy surfaces. These surfaces correspond
to lower order terms of the Taylor expansion of the implicit function. Hence,
these surface definitions can be derived in the framework of LKR with the
proper constraints. We show derivations of some MLS based surfaces in the
next section.

3.2.3 Derivation of MLS Surfaces from LKR

As explained in Section 3.2.1, the problem of implicit surface reconstruction
from point clouds consists of approximating the signed distance function to a
surface given points sampled from the surface. To approximate the signed
distance function using LKR, we assume that the sampled points are close
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to the surface so that f (xi) ≈ 0 which implies to take yi = 0. Similar to the
MLS case, in order to avoid the trivial solution s = 0, one can constrain the
norm of the gradient to be one: ‖∇ f (x)‖ = ‖s1‖ = 1, or make the gradient
of the implicit function approximate the prescribed normals, if available.
Different MLS based surfaces can be obtained by changing the degree of
local approximations o, and the constraints used. By incorporating these
two factors, we derive some of the proposed implicit MLS based surface
definitions.

Deriving Kolluri’s [2005] MLS definition. Given the Tailor expansion of
the gradient:

∇ f (xi) ≈∇ f (x) + H f (x)(xi − x) + · · · , (3.9)

taking a zero order approximation results in ∇ f (xi) ≈ ∇ f (x). Since we
assume the function f approximates a signed distance field, we can set the
normal constraint ∇ f (xi) = ni, where ni is the normal at the sample point
xi. In this case, the first order LKR minimization degenerates to a zero order
LKR:

argmin
s0,s1

∑ (yi − (s0 + aT
i s1))

2φi(x)

= argmin
s0

∑ (s0 + (xi − x)Tni)
2φi(x) .

Solving this minimization yields the following explicit formula for f (x):

f (x) = s0 =
∑nT

i (x− xi)φi(x)
∑ φi(x)

, (3.10)

which is exactly Kolluri’s [2005] definition, which we call IMLS.

Deriving Adamson and Alexa’s [2003] MLS definition. For deriving this
surface definition, the gradient constraint ||∇ f (x)||= ||s1||= 1, and o = 1 are
assumed. Under these assumptions, the LKR minimization becomes:

min
s0,s1

∑ (yi − (s0 + aT
i s1))

2φi(x) = min
s0,s1

∑ (s0 + aT
i s1)

2φi(x) (3.11)

with the constraint ||s1|| = 1.
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This constrained minimization has the following solution:

(C− ccT)s1 = 0, ||s1|| = 1

s0 = sT
1 (x− c) (3.12)

with c = ∑xiφi(x)
∑ φi(x)

, and C =
∑xixT

i φi(x)
∑ φi(x)

. Hence, s1 can be approximated by the

eigenvector of the matrix (C− ccT) with the smallest eigenvalue. Here, s0
corresponds to the MLS based surface of Adamson and Alexa [2003].

Note that s1 is also the normal of the plane fitted using the following least
squares error:

min
n,d

∑ (nTxi − d)2φi(x) (3.13)

with the constraint that n has unit length. Fitting a plane this way has been
used in other works as well [Pauly et al., 2003].

Deriving Higher Order Surfaces. In general, higher order implicit surface
fitting methods [Guennebaud and Gross, 2007; Guennebaud et al., 2008] can
also be interpreted in this framework by just adding more terms to the Taylor
expansion and using specific constraints. As an example, the sphere fitting
can be realized by using second order terms, and constraining the Hessian to
be identity:

f (xi) ≈ f (x) + (xi − x)T∇ f (x) +
1
2
(xi − x)TI(xi − x) + ...,

where I is the identity matrix.
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3.3 Robust Local Approximations for Feature Preservation

The formulation of the MLS surfaces using LKR allows us to incorporate
techniques from the regression literature to improve the surface definitions. In
this section, we focus on a particular technique, robust statistics, and show how
it can be integrated into LKR without disturbing the continuity and simplicity
of the formulation. Below we explain the relevant concepts from robust
statistics for our purposes (please refer to [Huber, 2004] for an extensive
treatment), and then show its application to LKR.

3.3.1 Robust Statistics

In many fields, the word robust is used to indicate various properties of
approximations, and has qualitative and imprecise meanings in most cases.
This, however, is not true for statistics. Robust statistics deals specifically
with outliers in the data, and a method or measure that is robust in this
sense will be resilient to unexpected data that does not follow the assumed
model. This is a fundamental deviation from classical statistical measures,
which can be affected by a single off-model data. In fact, classical methods
are affected more, as outliers become more distant from the majority of
data points. This is due to the inherent assumption that the data follows a
particular model. However, real world data is almost always contaminated
with outliers, making classical measures significantly inaccurate.

Instead of attempting to remove outliers prior to computing statistical meas-
ures, robust statistics solves this problem by proposing measures and meth-
ods that work under the influence of outliers. A well-known example of a
robust measure is the median. Using the classical counterpart, the mean,
a single wrong measurement that is very far away from the others res-
ults in a completely different estimate, such as the mean of the numbers
mean(0,1,899) = 300. With the same data, the median is 1.

Breakdown Point. The example with the mean and median shows that the
mean is affected even by one outlier, while the median can tolerate outliers
even if they approach 50% of the data. The amount of outliers that a statistical
measure can tolerate before giving arbitrary results is called the breakdown
point. The breakdown point of the mean is 0%, while that of the median is
50%. Note that 50% is the maximum breakdown point that can be achieved,
since if the outliers constitute more than half of the data, that is, if they are
the majority, they can no longer be regarded as outliers by any method.

Robust Regression Techniques. Standard local kernel regression, as
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presented in section 3.2.2, assumes the data follow a smooth model with
uniform noise. As a consequence, even a single outlier in the data can sig-
nificantly influence the solution. Robust statistics can be used to alleviate
this problem. Some popular robust regression methods are least median of
squares, least trimmed squares, and repeated median (e.g. [Morgenthaler, 2007]).
However, since the objective functions of these methods are not differentiable,
they likely generate discontinuous solutions (i.e., C−1) and require expensive
minimizations. Instead, we use the ψ-type M-Estimators to make LKR robust
to outliers while keeping the continuity and analytic expressibility of the
solution, as explained in the next section.

3.3.2 Robust Local Kernel Regression

We extend LKR to robust local kernel regression (RLKR) using ψ-type M-
Estimators, which have the significant advantage of leading to simple and
efficient minimization procedures [Huber, 2004]. Instead of the ordinary least
squares criterion, ψ-type M-Estimators minimize a different but still differ-
entiable objective function such that outliers are given less weight. Using
M-Estimation, the general LKR objective function of eq. (3.8) becomes:

argmin
s ∑ρ(yi − gs(xi))φi(x), (3.14)

where gs = s0 + aT
i s1 + bT

i s2 + ... corresponds to the local approximation of
f , and ρ is an arbitrary function. Assuming ρ is differentiable, and taking
w(x) = dρ

dx /x, this non-linear problem can be solved using the following
Iteratively Reweighted Least Squares (IRLS) [Cleveland, 1979] minimization
(see Appendix A.1 for the derivation):

sk = argmin
s ∑φi(x)w(rk−1

i )(yi − gk
s(xi))

2, (3.15)

where rk−1
i = yi − gk−1

s (xi) is the ith residual at the k− 1th iteration. Each
iteration is equivalent to a weighted least square minimization. The behavior
of this method depends on the choices of the function ρ and initial conditions,
which are discussed below.

Choice of ρ. To be robust to outliers, the function ρ should grow slowly
such that w(x) decreases to zero as x→∞. Moreover, for our purposes, its
continuity degree is also an important criteria. In this paper we used Welsch’s

function ρ(x) = σ2
r
2 (1− e−(

x
σr )

2
) which is C∞, and yields a Gaussian weight
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0

Figure 3.2: L2 error (red) versus the robust Welsh’s function (blue).

function w(x) = e−(
x
σr )

2
. A comparison between the L2 norm and Welsch’s

function is given in Figure 3.2. The L2 norm grows arbitrarily large for large
residuals, giving more importance for outliers. In contrast, Welsch’s function
stays approximately constant after a certain residual value, giving less weight
to the outliers in the minimization.

Choice of the starting point. As with any non-linear optimization, a critical
choice is the starting point. In the context of IRLS, it is usually recommended
to initialize the iterations with another robust method such as the median or
median absolute deviation. However, in the context of MLS, the continuity of
the solution is of utmost importance. Therefore, we use solutions of the least
square minimization of eq. (3.8) as the starting points. This has the significant
advantage of leading to a continuous reconstruction at any iteration step,
while being both simpler and much more efficient. In practice, this choice is
equivalent to setting all the initial weights to one (i.e., w(r0

i ) = 1).
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3.4 Robust and Feature Preserving Point Set Surfaces

In the previous sections, we showed the equivalence of MLS based surface
definitions and LKR, and how LKR can be improved using robust statistics.
In this section, we combine these formulations to develop a surface definition
that preserves sharp features and details, and also robust to outliers in the
data.

3.4.1 Derivation of the Surface Definition

Combining the IMLS surface definition as presented in Section 3.2.3 with the
general RLKR approach of Section 3.3.2 yields a robust IMLS surface (RIMLS)
defined by the following IRLS minimization:

f k(x) = argmin
s0

∑(s0 + (xi − x)Tni)
2φi(x)w(rk−1

i ) (3.16)

with the residuals rk−1
i = f k−1(x)− (x− xi)

Tni. This definition is robust to
spatial outliers which is already a great improvement over the initial version.

However, our main motivation is to increase the accuracy of the reconstruc-
tion in the case of sharp features. While it is common to assume that samples
belonging to a different surface patch across a discontinuity can also be in-
terpreted as spatial outliers, it is easy to observe that this assumption does
not hold nearby the actual first order discontinuity (Figure 3.3a). We over-
come this limitation by making the observation that, across a sharp feature,
the actual outliers are not the samples themselves, but the sample normals.
This suggests the addition of a second re-weighting term penalizing samples
having normals far away from the predicted gradient of the RIMLS surface.

Given ∆nk
i = ‖∇ f k(x) − ni‖ as the measure of the difference between the

predicted gradient and a sample normal, we define a new weight function
wn as:

wn(∆nk
i ) = e

−
(∆nk

i )
2

σ2
n . (3.17)

The iterative formula of our final RIMLS definition becomes:
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(a) (b)

(c) (d)

Figure 3.3: A corner with one outlier reconstructed using IMLS (blue) and RIMLS
(orange). Grey curves show RIMLS after one and two iterations. (a) is with
the residual term only, (b) is with the gradient term only, while (c) includes
both terms. (d) Plot of the approximate gradient in a worst case scenario.

f k(x) =
∑nT

i (x− xi)φi(x)w(rk−1
i )wn(∆nk−1

i )

∑ φi(x)w(rk−1
i )wn(∆nk−1

i )
. (3.18)

The effect of these refitting weights is illustrated in Figure 3.3. If only the
weights w are used (Figure 3.3 (a)), the surface is not effected by the outlier,
but the sharp corner is not preserved. On the other hand, if only wn is used,
the surface is attracted towards the outlier, although the corner is accurately
reconstructed (Figure 3.3 (b)). Finally, using both weights leads to a robust
and feature preserving surface (Figure 3.3 (c)).

Further insight into the robust weights wn can be gained by considering the
first order regularization term ∇ f (x) = ni we used to derive the initial IMLS
definition in section 3.2.3. The error made on this constraint is not explicitly
addressed in the residuals rk−1

i . In fact, it corresponds to the norm of the
residual gradient, which is equal to ∆nk−1

i . Finally, it is interesting to note that
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equation (3.18) can also be seen as an iterative trilateral filtering including
both zero order and first order penalizing weights.

Gradient term and the isophotic manifold. The weights wn depend on
the difference of normal vectors. Assuming that both φi and wn are selected
to be Gaussians, we can combine these two weights to get a single weight.
Assuming that the gradient has approximately unit length, this combined
weight will depend on the distance between vectors of the form [x cn]T, up to
a scaling term. Ignoring the term w, this means that the filtering is done on a
2-manifold embedded in R6, with the regularized isophotic metric [Pottmann
et al., 2004]. This metric is known to be sensitive to features [Lai et al., 2007].
This relation will allow us to design sampling algorithms that explicitly work
on this manifold with the isophotic metric in Chapter 4.

3.4.2 Computation of the Surface

The previous equation (3.18) entirely defines our RIMLS surface as the zero
set of the signed scalar field f . Computing the surface, or parts of it, can
therefore be achieved using either a marching cube algorithm, by casting rays,
or by projecting points onto the surface. In any case, evaluating the scalar
field f (x) requires the computation of the surface gradient at each iteration.

Owing to the recursive nature of our definition, computing exact derivatives
leads to rather complicated and expensive expressions. Fortunately, we show
that tolerating a minor approximation, one can get pretty accurate results in
a fairly easy manner.

The key idea is to consider that, in the definition of the current impli-
cit function f k(x), the refitting weights are constant values. Thus, fixing
wi = w(rk−1

i )wn(∆nk−1
i ), the gradient ∇ f k becomes:

∇ f k(x) =
∑ wiφi(x)ni + ∑ wi∇φi(x)(nT

i (x− xi)− f k(x))
∑ wiφi(x)

.

The error due to this approximation is maximal when the refitting weights
vary quickly, i.e., nearby very sharp edges. Figure 3.3d shows the accuracy of
this approximation in such a worst case scenario. Higher order derivatives
can be easily computed in the same manner.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.4: (a) Illustration of the robust normal smoothing algorithm on a highly noisy
input rendered as both a set of splats and a mesh. (b) After the normal filtering
pass, the normals stay accurate near the edges. (c, d) The final RIMLS
reconstruction before and after the normal smoothing step respectively. (e, f)
RIMLS in the presence of 25% and 40% outliers, respectively.

3.4.3 Robust Normal Mollification

Our RIMLS surface definition, like many others, relies on the input surface
normals. Since RIMLS embeds a low pass filter, it naturally deals very well
with both spatial and normal noise. Nevertheless, when the input normals
are extremely noisy it might be helpful to first filter them. In order to preserve
sharp features, we perform this filtering by applying the robust optimization
procedure derived in the previous sections to the normal vector field. In
particular, given a point pj, we define its smooth normal ñj as the solution of
the following IRLS minimization:

nk
j =

∑i φi(pj)wn(‖nk−1
j − ni‖)ni

∑i φi(pj)wn(‖nk−1
j − ni‖)

, (3.19)
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where φi and wn are defined as in the previous section. Again, a critical choice
is the starting point n0

j . In the bilateral filtering setting, n0
j would be set to

the initial sample normal nj. However, it is well known that this strategy
preserves outliers: for instance let’s pick a sample pj with a flipped normal,
all the similarity weights wn(‖nj − ni‖) with i 6= j will be negligible, and its
normal nj will stay unchanged. Robust starting points aim to overcome this
issue, but come with additional complexity. As a much faster approximation,
we propose to initialize the iterations with the weighted mean of the neighbor
normals without considering the current normal itself:

n0
j =

∑i,i 6=j φi(pj)ni

∑i,i 6=j φi(pj)
. (3.20)

The effectiveness of our normal filtering technique is illustrated in Figure 3.4
on a highly noisy dataset. This procedure is similar to the one of Choudhury
and Tumblin [Choudhury and Tumblin, 2003], and mainly differs in the fact
that we are doing a full minimization and in the choice of a more robust
starting point.
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3.5 Results and Analysis

This section is devoted to investigating the properties of the new surface
definition. We illustrate the robustness, feature preservation, efficiency and
convenience of the approach with various examples.

3.5.1 Implementation and Performance Analysis

Our RIMLS algorithm is straightforward to implement: as shown by equa-
tion (3.18), evaluating the scalar field f (x) is essentially a simple weighted
average over the neighbors of x repeated until some condition vanishes. In
Appendix A.2, we provide a pseudocode for the projection of a point onto the
underlying RIMLS surface using a steepest gradient descent strategy. In the
remaining parts of this section, we discuss various implementation choices
and performance.

Spatial weight function. For the spatial weight function φi(x) we used the
following C3 continuous polynomial approximation of a Gaussian:

φi(x) =

(
1− ‖x− xi‖2

h2
i

)4

, (3.21)

where the weight radii hi allow to adapt to the local density. The choice of
hi depends on the amount of noise, and typical values range from 1.4 to 4
times the local point spacing. For fast neighbor retrieval, we store the input
samples in a kd-tree data structure (e.g. [Adamson and Alexa, 2006a]).

Robust weight radii. Our robust definition introduces two additional
weight radii σr and σn. Since σr is used to scale the residual term, which
represents a difference of distance to the surface, it can be set locally as a
fraction of the spatial radius hi. Thus, the refitting weight w becomes:

w(x) = e−(
x

σrhi
)2

. (3.22)

This way, the choice of σr does not depend on the object scale anymore, and
it can be set once for all. In this paper we used σr = 0.5.

The choice of σn is much more subjective and depends on the desired degree
of sharpness. If we assume the norm of the gradient is close to one, σn is used
to scale the difference between unit vectors, and then typical choices range
from 0.5 to 1.5. Smaller values lead to sharper results. Figures 3.5 and 3.6
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σn = ∞ σn = 1 

σn = 0.5 σn = 0.33 #iters 

Figure 3.5: Illustration of the effect of the sharpness parameter σn on the reconstructions.
Note that in this example we set σr = ∞ and therefore, the case σn = ∞
corresponds to IMLS. The last picture illustrates the number of iterations to
convergence for the case σn = 0.5.

illustrate this effect. We also emphasize that this sharpness parameter can be
set locally for each sample, allowing the user to locally adjust the degree of
sharpness, via, for instance, a painting-like tool [Pauly et al., 2003].

Termination criteria. The last implementation choice concerns the stopping
criterion of the iterations. One option would be to iterate until convergence
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Figure 3.6: A cube sampled with 4 sample points per face is reconstructed by RIMLS
with σn = 3, 1.2, 0.75 and 0.55.

is detected. We detect convergence by tracking the relative change of the
refitting weights, i.e.:

max
i

∣∣∣∣∣ w(rk
i )wn(∆nk

i )

∑ w(rk
i )wn(∆nk

i )
−

w(rk−1
i )wn(∆nk−1

i )

∑ w(rk−1
i )wn(∆nk−1

i )

∣∣∣∣∣ < t,

where t is a user defined threshold (eg, t = 10−4).

On the other hand, we took a special care to build RIMLS such that at any
iteration it generates a reasonable and continuous surface. Therefore, one
may fix a constant number of iterations while still keeping the convergence
test as an early termination optimization. Note that using a fixed number of
iterations, preferably small, also allows to extract a closed form formula of
the implicit scalar field f .

As demonstrated in Figures 3.3, 3.5, and 3.7, we observed that the converge
rate of our algorithm is extremely high. Not surprisingly, the number of
refitting iterations for full convergence slightly increases near sharp features
or high frequency details, while only one iteration is needed in smooth
regions. In fact, according to our experience, in most cases the differences
after one refitting iteration are seldom perceptible (e.g. Figure 3.8).

Performance. Thanks to the very high convergence rate and simplicity
of our approach, we can achieve performance of similar order as the fast-
est MLS definitions. In practice, the neighbor search part still remains the
main computational cost. We emphasize that our RIMLS algorithm could
perfectly fit into the real-time upsampling and rendering framework of
algebraic point set surfaces (APSS) [Guennebaud et al., 2008]. The follow-
ing table summarizes for both APSS and RIMLS the number of arithmetic
operations required by one evaluation as a function of the number of neigh-
bors k and refitting iterations i.
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APSSSPSS

RIMLSIMLS

original downsampled version

1
2
3
4
5

#iterations

Figure 3.7: Comparison of different definitions and our definition under very sparse
sampling conditions. Bottom row shows the number of RIMLS iterations
with the corresponding histogram.

APSS APSS RIMLS
(approx normals) (exact normals)

k ∗ 38 + 45 k ∗ 130 + 309 i ∗ (k ∗ 56 + 13)

3.5.2 Reconstruction Results

We evaluated the capacity of our approach to reconstruct and preserve sur-
face features on a wide variety of models. In the following comparisons,
SPSS stands for Adamson et al.’s simple point set surfaces based on normal
averaging [Adamson and Alexa, 2003].

Moreover, unless stated otherwise, all the results presented here have been
produced using the raw normals without using the pre-smoothing procedure
described in Section 3.4.3.

In contrast to previous sharp feature preserving reconstruction methods for
point set surfaces, we emphasize that the goal of our algorithm is not to
generate surfaces with precise normal discontinuities, but rather to improve
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input SPSS APSS

IMLS RIMLS (1 iter) RIMLS (2 iters)

Figure 3.8: Reconstruction of sharp features for the difficult case of four intersecting
planes.

the faithfulness of the approximation at any scale. This behavior is depicted
in Figure 3.9 on a sparsely sampled model. The shape of many parts such as
the hands and chest are distorted by previous MLS definitions. In contrast,
RIMLS successfully recovers these parts, while smoothing out lower scale
details and noise. Sharp features are preserved as can be seen at the corners
and edges of the stand, and the tip of the head. The expanding and shrinking
effect at the tip of the skirt is also prevented. As can be seen in Figure 3.5, this
behavior of RIMLS is also effective in the case of very smooth objects.

The ability of our approach to recover sharp features from sparse sampling
is further demonstrated in Figure 3.7. The original model is subsampled
to contain approximately 4% of its samples and the resulting model is re-
constructed with several MLS definitions. RIMLS preserves fine details and
sharp features on the body while providing a more stable overall shape. Note
the similarity of the RIMLS reconstruction from the subsampled model to the
actual model.

In the same vein, Figure 3.10 includes a comparison to the Poisson surface
reconstruction (PSR) technique [Kazhdan et al., 2006] which also takes into
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APSSSPSS IMLS RIMLS

Figure 3.9: Top row shows a comparison of various MLS definitions on a low sampled
Ramses model. Bottom row shows details of the RIMLS reconstruction.

account input normals. While PSR works well in extracting fine details
out of densely sampled datasets, when sampling density drops, MLS based
approaches, and RIMLS in particular, are clearly superior.

Figure 3.11 illustrates the ability of our algorithm to reconstruct sharp features
from a highly noisy CAD model. As can be seen, because of the large amount
of noise, a large spatial filter has to be employed, whence the large undesirable
effects produced by both APSS and IMLS near the edges and corners. For the
same reason, PSR also produced oversmoothed edges in spite of the relatively
dense sampling. Figure 3.4 demonstrates the stability of the reconstructions
under the influence of high levels of noise and outliers. For this difficult
case, the advantage of utilizing the pre-smoothing procedure (Section 3.4.3)
is evident.
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original down-sampled Poisson

APSS IMLS RIMLS

Figure 3.10: Comparison of various reconstruction methods on a model downsampled
to about 2.8% of the original data. The Poisson reconstruction has been
generated with a limit of one sample per node and depth 12.

Input Poisson APSS 

IMLS RIMLS 

Figure 3.11: Various reconstructions of the fandisk model after being randomly corrupted
by noise of magnitude 0.5% of the object size.
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APSS IMLS Sampling 

RIMLS RIMLS 

Figure 3.12: Illustration of the reconstruction of coarsely sampled peaks. Bottom right is
a rendering of the RIMLS reconstruction with reflection lines.

Furthermore, Figures 3.8 and 3.12 show that our approach can naturally
handle high order corners and peaks respectively, which is particularly diffi-
cult with previous sharp feature reconstruction methods.
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3.6 An Application of Local Approximations with Global
Constraints
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Figure 3.13: Given an input sketch (left), depths for the points on the curves are computed
(middle), which are then used to reconstruct a surface approximating the
sketched objects’s surface.

Although local approximations are fast and can be made robust with the
methods explained in the previous sections, they become unstable when
the point set exhibits high degrees of non-uniformness. For these cases, it
is beneficial to have global terms to have a reliable reconstruction. With
this approach, evaluations of the function still remains local, while a global
system needs to be solved once to get the reconstruction coefficients.

In this section, we would like to illustrate an interesting application of this
approach using local radial basis functions (RBF) and several global energy
terms. The goal is to reconstruct a surface of an object from its sketched
illustration. The method starts with extracting a set of symmetric curves and
points (Figure 3.13 (left)). Assuming that the sketch represents an object that
is bilaterally symmetric, the depth values at the symmetric pairs of points can
be obtained (Figure 3.13 (middle)). Once we have the depths, the problem
becomes reconstructing a depth-map parametrized on the image plane using
these sparse set of depth constraints (Figure 3.13 (right)). The challenge lies
in the sparsity of these constraints. We omit the details of the method to get
the depth values and refer the reader to the relevant paper [Öztireli et al.,
2011], and focus on the reconstruction of the depth-map using the computed
depths.

Given the sparse set of points with depths, we would like to reconstruct a
smooth 3D surface that interpolates these points. We propose to combine a
continuous formulation [Ng et al., 2010] with energy terms from surface ap-
proximation and deformation literature that are known to produce tight and
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smooth reconstructions. We discretize the energy terms and minimize them
along with other terms and constraints using compactly supported radial
basis functions centered at each pixel, to get a continuous function for the
depth map. Although this formulation results in a big linear system to solve
for the coefficients, it is efficiently solvable thanks to the extreme sparseness.
Once the coefficients are computed, each evaluation of the function at a pixel
involves only a small set of neighboring pixels around the given pixel.

Function representation and constraints. We represent the depth
map function as a sum of compactly supported radial basis functions
k(x,xi) = e−||x−xi||2/σ2

such that f (x) = ∑ fik(x,xi) for pixels xi. Although
bigger σ gives smoother reconstructions, it results in much higher computa-
tion times. Since we can determine the smoothness of f through the energy
terms, we fixed σ = 1.2 such that a three-ring neighborhood of each pixel
is covered by the effective support of the Gaussian (assuming the size of a
pixel is 1). To make f (x) interpolate the known depth values, we should
have f (xd

i ) = di where we denote the points (pixels) with depth values by
xd. By writing the expression for f (xd

i ) = ∑ f jk(xd
i ,xj) = di, and gathering all

equations, we get a linear system Kf = d, where K is an nd by n matrix with
nd denoting the number of depth values and n the number of pixels.

Energy terms and minimization. We discretize the thin plate
spline energy with the following sum: ∑k f 2

xx(xk) + 2 f 2
xy(xk) + f 2

yy(xk).
Minimization of this sum leads to a quadratic form fTTf, where
Tij = ∑k ki,xx(xk)k j,xx(xk) + ki,xy(xk)k j,xy(xk) + ki,yy(xk)k j,yy(xk) and the sub-
scripts denote derivatives.

Similarly, we discretize a specific case of the Sobolev norm,
∫
||∇ f (x)||2,

which is also known to approximate the membrane or stretching en-
ergy [Terzopoulos et al., 1987; Celniker and Gossard, 1991]. This leads to
another quadratic form fTBf with Bij = ∑k∇ki(xk)

T∇k j(xk).

We gather the terms arising from the constraints and the energies as follows:

E(f) = ||Kf− d||2 + fT(λTT + λBB)f. (3.23)

By solving the linear system resulting from this minimization, different con-
tinuous functions can be defined depending on the parameters used. For the
results presented, we set λT = 3 and λB = 1.

Example reconstructions. Some example reconstructions are shown in
Figures 3.14 and 3.15. The reconstructed models capture the overall shape
of the depicted objects well. The sketch-textured depictions with the recon-
structions match our intuition of the sketch faithfully as illustrated by the
rotated views of the sketches. Having a depth map allows us to construct
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Input Input 

Figure 3.14: Given input sketches, approximate geometries can be reliably reconstructed.
This allows to change viewing directions or generate anaglyph images.

Input 

Figure 3.15: Left to right: The input sketch, reconstructed geometry, view of the sketch
from a different angle, an anaglyph image of the sketch, and a physically-
based deformation applied to the sketch.

stereoscopic images of the sketches from different angles. It is interesting
to see that, even without any 3D cues from shading, a good sense of depth
can be obtained from these images. Using the reconstructed models, one
can also deform the geometry or perform physically based simulations as in
Figure 3.15.
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3.7 Discussion and Outlook

We have demonstrated that MLS and local kernel regression can be advantage-
ously combined to design a novel surface representation with great feature
preserving ability. Our approach is particularly robust in the presence of
noise, outliers and sparse sampling. While previous sharp feature reconstruc-
tion techniques for MLS focused on the generation of exact C0 discontinuities
at edges and corners, our approach sharpifies the initial over-smoothed solu-
tion to a more faithful approximation, keeping the surface differentiable. As
a result, our approach can improve the representation of sharp features and
fine details of any frequency, and naturally deals with complex situations
such as high order corners and peaks. A central advantage of our approach
is its extreme simplicity, making it particularly appealing for interactive
applications.

Though our results show the reconstructed surface is continuous for a wide
range of sampling density and parameters, theoretical bounds on these are
yet to be derived. We show a possible approach of guaranteeing a stable
reconstruction with near-optimal sampling in Chapter 4. As most of the
non-linear techniques, ours depends on the choice of a starting point. While
our current solution already provides satisfactory results, we believe it would
still be interesting to investigate more robust alternatives.

In addition to the novel surface definition, we showed that MLS based point
set surfaces can be interpreted in terms of LKR, suggesting to adopt further
methods from regression literature to solve various problems in the geo-
metric setting. By changing the order of regression and constraints, or by
investigating unsupervised kernel regression, we believe that superior MLS
reconstructions will be possible.

Furthermore, we showed how such local approximations can be combined
with global energy functions to obtain reliable reconstructions for the case of
very sparse and non-uniform constraints. Other methods have also tried to
incorporate global information for better reconstructions (e.g. [Avron et al.,
2010; Dey et al., 2012]). We believe that integration of the LKR framework with
global statistics gathered from the sample points can significantly improve
the reconstructions when the sampling is highly non-uniform.

So far we considered a single source of data, that is, the set of points sampled
from a surface, possibly equipped with normals, as the input. For many
applications, richer data can be acquired from different sensors. Incorporation
of such data can considerably improve the reconstructions for applications
that impose specific constraints. An example of this approach applied to
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rendering where facial texture and features are considered in addition to
geometry is illustrated in Section 4.7.

Finally, we believe that considering multiple shapes, their relations, and
human visual system in addition to the data for a single shape can provide
valuable priors for reconstruction. Integration of relevant machine learning
and statistics techniques into the LKR framework can provide reconstructions
matching our intuition well even under extreme levels of noise, without
sacrificing the convenience and efficiency of the surface definitions.
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C H A P T E R 4
Spectral Sampling of Manifolds

Accuracy of reconstructions ultimately depends on how much information is
at hand in the form of point samples on a surface. The amount and distribu-
tion of point samples, coupled with the reconstruction method used determ-
ines the quality of the reconstructed surfaces. In this chapter, we show how
sampling conditions based on the spectrum of the Laplace-Beltrami operator
can be derived by using a kernel-based approximation. This approximation
allows us to connect the produced sampling pattern to the reconstruction
method presented in Chapter 3, resulting in very accurate reconstructions.

Finding an optimal sampling that ensures accurate reconstructions with
minimum redundancy is one of the fundamental issues for scattered data ap-
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proximation. The sampling problem is especially hard for general manifolds
since no parametric domain is defined and standard methods from signal
processing do not apply [Saucan et al., 2008].

There have been significant efforts in spectral graph theory and com-
putational harmonic analysis domains to extend signal processing res-
ults to discrete approximations of manifolds by utilizing techniques from
spectral analysis [Lafon and Lee, 2006]. Following the seminal work of
Taubin [1995], the developments in harmonic analysis have been inspir-
ing many successful algorithms in geometry processing [Zhang et al., 2007;
Sun et al., 2009]. Despite their excellent performance and theoretical founda-
tions, spectral methods are global and need eigendecomposition of a large
matrix. Although there have been local patching approaches to approximate
the spectral properties [Pauly and Gross, 2001], finding a decomposition of
a manifold into patches from which global spectral properties can be derived
is a difficult problem. This global nature of spectral methods makes their
application to massive datasets unfeasible even though specialized methods
are employed [Vallet and Lévy, 2008]. A more fundamental problem when
using spectral methods for sampling is coupling the samplings to reconstruc-
tions. Finding a direct link between the spectral structure of a manifold
and the reconstruction methods commonly used in geometry processing is
a highly non-trivial task. These have been hindering use of current spectral
approaches in a sampling algorithm.

In this chapter, we introduce an analysis and sampling algorithms that over-
come these drawbacks. The proposed sampling algorithms utilize new
measures derived from spectral analysis of manifolds. Combining results
from spectral analysis, kernel methods and matrix perturbation theory, we
derive our measure that quantifies the change a point causes to the man-
ifold, if it is added to the point set defining the manifold. Although the
derived measure conceptually quantifies global changes to the manifold,
it only requires local computations. This allows us to use the theoretical
framework within efficient algorithms. The measure also has strong connec-
tions to approximation by kernel regression. Hence, generated samplings
result in accurate reconstructions using kernel based algorithms such as
Moving Least Squares (MLS) based Point Set Surfaces (PSS) [Levin, 2003;
Alexa et al., 2003], and in particular the reconstruction method we introduced
in Chapter 3.

We start this chapter by an overview of the fields of spectral analysis of
manifolds (Section 4.1) and kernel techniques (Section 4.2) in the scope of
this thesis. Building on results from these two fields, we then propose a
spectral measure that quantifies the effect of a point on the definition of a
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manifold (Section 4.3), and show its relation to the reconstruction method
we presented in Chapter 3 (Section 4.4). Based on this measure, we develop
efficient sampling algorithms (Section 4.5), and analyze the performance of
the algorithms, distribution of generated points, and accuracy of resulting
reconstructions in Section 4.6. Finally, we present an application of the
algorithms to high quality facial rendering in Section 4.7.
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4.1 Spectral Analysis of Manifolds

Our analysis and algorithms depend on spectral analysis of manifolds based
on the eigenstructure of the Laplace-Beltrami operator. The Laplace-Beltrami
operator can be seen as an extension of the Laplace operator to manifolds.
It is used widely to describe the intrinsic structure of a manifold since its
eigenstructure conveniently encodes all information about the manifold up
to isometry. Below we summarize relevant concepts and results related to
the spectral analysis of manifolds.

4.1.1 Harmonic Analysis

Classical signal processing relies on constructing a basis bi(x) for a space of
functions, and representing a function f (x) in this basis, where the domain of
the functions are assumed to be an Euclidean space, f : Rd→R. The new rep-
resentation of the function is given as f̃ (x) = ∑ cibi(x). Here, the coefficients
are computed by an appropriate inner product ci =< f (x),bi(x) >.

This framework provides a high degree of flexibility to define differ-
ent spaces and bases for different applications. An important example
of this analysis is the Fourier transform of one dimensional functions,
f : R → R, where the basis functions are sines and cosines, which are
compactly written as b(w, x) = e−2πixw. Note that in this case we have a
continuous set of basis functions. Assuming an integrable function f , the
coefficients of its expansion in terms of the basis functions are given as
c(w) =< f (x),b(w, x) >=

∫
R

f (x)e−2πixwdx. Operations on this Fourier ex-
pansion have been proven to be powerful in many fields, since it provides a
tool to separate a given function into frequency components. Each frequency,
denoted by w in the above definition, represents a different level of detail in
the function. The lowest frequency, w = 0, gives a constant basis b(0, x) = 1,
and hence the coefficient c(w) is just the integral of the function f . This is
just a very global summary of the function f . As the frequency is increased,
the basis functions oscillate more and more, and higher oscillations in the
function f are captured. The frequencies naturally parallel our notion of
detail in a function.

The Fourier transform can be extended to higher dimensional Euclidean
domains Rd. It can be further extended to manifolds such that the transform
acts on the functions living on a given manifold. Such extensions are the
subject of harmonic analysis. In this setting, the basis functions are called waves.
The goal is to define these basis functions, as extensions from the classical
setting. This can be achieved by the fundamental property of wave functions
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4.1 Spectral Analysis of Manifolds

that they are eigenfunctions of the Laplace operator. As an example, it is easy
to derive that when applied to sin(2πwx), the usual Laplace operator in R,
that is the second derivative, results in ∆sin(2πwx) = −(2πw)2 sin(2πwx).
Hence, the Laplace operator applied to the wave functions only scales them.

This connection of the wave functions to the Laplace operator is used to derive
wave functions of spaces represented by manifolds through the extension of
the Laplace operator. In the following section, we present the extension of it
to Riemannian manifolds, called the Laplace-Beltrami operator.

4.1.2 The Laplace-Beltrami Operator

The Laplace-Beltrami operator, which we denote by4M for a manifold M,
is the generalization of the Laplace operator in Euclidean spaces to curved
Riemannian manifolds. Specifically, it is defined in terms of the divergence
and gradient operators on a manifold M as ∆ f = div grad f , where f is a
function defined as f : M→R. The Laplace-Beltrami operator can be precisely
defined by taking the intrinsic structure of the manifold into account via the
metric tensor for the manifold. It inherits many useful properties of the
Laplace operator. In particular, it is a linear and Hermitian operator, implying
that it has an orthogonal set of eigenfunctions for different eigenvalues.

Once defined, its eigenfunctions (waves on the manifold) and eigenvalues
(frequencies) can be computed. This is done by solving the equation

−4Mu(x) = λu(x) (4.1)

for x ∈ M and u : M→ R. The eigenfunctions and eigenvalues define the
manifold up to isometry. Hence, they are sufficient to describe the intrinsic
properties of the manifold. Unfortunately, analytical solutions of this equation
are not known for most manifolds except for simple cases. Three important
special manifolds where analytic forms of the eigenstructure is known are a
fixed-length interval, a square region in 2D, and a sphere in 3D. Assuming
Dirichlet boundary conditions, i.e. u(x) = 0 on the boundaries, the eigenfunc-

tions of an interval (0, l) can be computed as
√

2
l sin

(nπ
l x
)

with n ∈N. Note
that, similar to the case of R, this finite interval results in sines as the eigen-
functions. A more interesting case is a 2D square. The eigenfunctions of this
manifold have already been studied by Ernst Florens Friedrich Chladni in the
19th century. He used a vibrating plate of square shape to observe the patterns
formed by the sand particles on the plate. These patterns actually correspond
to the zero-crossings of the eigenfunctions of the Laplace-Beltrami operator.
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For a square (0,π)× (0,π), closed-form solutions for the eigenfunctions can
be derived as

umn(x,y) = asin(nx)sin(my) (4.2)

with the eigenvalues λmn = n2 + m2 and a certain constant a. The indices n
and m can be reduced to a single index, and one gets λ = 1,5,5,8,10,10, · · · for
the eigenvalues. Note that some of these eigenvalues are repeated twice, and
hence the corresponding eigenfunctions span a two-dimensional subspace.
For example, for λ = 5, one has the linear combination au12(x,y) + bu21(x,y).
Thus, the eigenfunctions for repeated eigenvalues can be set in different
ways. The first 30 eigenvalues and corresponding eigenfunctions are shown
in Figure 4.1.

Another important example of Laplace-Beltrami eigenvalues/functions are
the spherical harmonics, extensively used in computer graphics. The man-
ifold in this case is a sphere and the eigenvalues are given as λ = l(l + 1),
l = 0,1, · · · . Each eigenvalue is repeated 2l + 1 times, as illustrated in Fig-
ure 4.2 along with some of the eigenfunctions for three different eigenvalues.

Cases like the above examples where analytic forms of the eigenfunctions
and eigenvalues are conveniently available are very rare. For this reason,
several discrete techniques that can reliably compute these on general surfaces
represented by meshes have been developed. An example computation is
illustrated in Figure 4.3. The plots again reveal the multiresolution nature of
the eigenfunctions.

As illustrated by these examples, the eigenfunctions of the Laplace-Beltrami
operator adapt to and carry interesting information about the geometry of
the manifold they are defined on. The structure of the eigenfunctions can
be described in terms of nodal domains and nodal sets. A nodal domain of
an eigenfunction ui(x) is a region of space with a constant sign for ui(x),
and the nodal sets are the zero crossings {x|ui(x) = 0}. The geometry of
the nodal domains/sets are characterized by several theorems. It is known
that nodal sets have dimension one less than the (intrinsic) dimension of
the manifold, and they intersect at constant angles. Hence, they are curves
on a 2-dimensional manifold, and they capture various symmetries of the
manifold. Another important result states that an eigenfunction ui(x) can
have at most i nodal domains. This means that more and more oscillations are
expected for larger indices, and thus the eigenfunctions form a basis suitable
for multi-resolution analysis, with the corresponding eigenvalues resembling
frequencies.
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Figure 4.1: First 30 eigenvalues and eigenfunctions of the square. The eigenvalues for
the eigenfunctions on the first row are also indicated on the upper-left corner
of each eigenfunction.

4.1.3 The Heat Kernel

The eigenfunctions and eigenvalues of the Laplace-Beltrami operator can
be used to construct other useful operators. One prominent example of
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Figure 4.2: First 120 eigenvalues of the sphere, and some eigenfunctions corresponding
to λ = 1,2,6.

Figure 4.3: Some eigenfunctions on a surface for increasing eigenvalues from left to right.

such a construct follows from the diffusion equation on the manifold. This
differential equation explains how heat is diffused on the manifold and thus
has a very intuitive behavior. As diffusion progresses, the heat becomes
more and more evenly distributed. This results in a natural multi-resolution
structure parametrized by the time of the diffusion.

In mathematical terms, diffusion of heat on a manifold is described by the
equation (for a detailed account on the heat kernel and its properties, please
see e.g. [Grigor’yan, 1998])

4M f (x, t) = −δ f (x, t)
δt

. (4.3)

The solution of this equation can be expressed in terms of an operator applied
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4.1 Spectral Analysis of Manifolds

to the initial heat distribution at time t = 0. Starting from this initial heat
distribution f (x,0) = f (x), the distribution at time t, f (x, t), is given by
applying the heat operator to the initial distribution as Ht f (x). This operator
spreads the heat distribution over the manifold while respecting its intrinsic
structure.

It can be shown [Belkin and Niyogi, 2006] that for small t, the heat operator
converges to the Laplace-Beltrami operator as4M = limt→0

I−Ht
t . Hence, the

two operators have the same eigenfunctions and for short time, eigenvalues
of Ht can be used to approximate those of4M.

Associated with the heat operator, there is the heat kernel
ht(x,y) : M×M× IR+→ IR+ that satisfies

Ht f (x) =
∫

M
ht(x,y) f (y)dy, (4.4)

where f : M→ R and dy is the volume form on M. Hence, intuitively the
operator Ht smoothes functions on the manifold by convolving them with
the heat kernel, and ht(x,y) measures the amount of heat transferred from a
unit source at x to y at time t. Depending on the geometry of the manifold,
the rate of heat transfer and hence the distribution of heat will change. Note
that once the heat kernel is known, the solution to the diffusion equation is
also known.

Among other interesting properties, the most important property of the heat
kernel for our purposes is the expansion of it in terms of the eigenfunctions
and eigenvalues of the Laplace-Beltrami operator:

ht(x,y) =
∞

∑
i=0

e−λitui(x)ui(y). (4.5)

Note that an immediate consequence of this property is that the heat kernel is
symmetric, and can be written as a dot product ht(x,y) = φt(x)Tφt(y), where
φt(x) is a vector such that the ith component is given by

√
e−λitui(x) 1. This

interpretation allows us to define a new space where these vectors live and
establishes a direct connection to the kernel techniques, as explained in the
next section.

1For technical reasons, it is convenient to assume that the vector is finite dimensional. This is not
a limitation, since for all t > 0, one can safely truncate the series at n < ∞ without significantly
affecting the accuracy, as is done in practice.
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4.2 Kernel Techniques

Kernel techniques have been in use in meshless methods, probabilistic models,
and machine learning for decades [Scholkopf and Smola, 2001; Schaback
and Wendland, 2006; Hofmann et al., 2008]. They are used to approximate
functions, provide trial spaces for solving partial differential equations, define
covariances in probabilistic models, and form the base for many successful
learning algorithms. The basic idea of all kernel methods starts with mapping
the data to another space, a feature space with a useful structure for the problem
at hand. The power of the methods stems from the representation of this
space. In fact, the space itself is not explicitly represented. It is only known
via an inner product. This product is given by the kernel function, which can
be evaluated very efficiently. Hence, every algorithm that only depends on
inner products can be applied to the vectors in the feature space to develop
non-linear techniques. This idea is called the kernel trick in the machine
learning literature.

As explained in Chapter 2, our methods are also based on kernels. In this
chapter, we concentrate on a specific class of kernels, the positive definite kernels
and in particular Mercer kernels, and relate it to the heat kernel of manifolds.
This treatment of the heat kernel forms the basis of our spectral measures
for sampling. Before explaining these in detail in further sections, we would
like to explain the relevant facts and theorems on kernel techniques in this
section.

Central to all kernel methods is the kernel function. This is a symmetric
function of the form k(x,y) : Ω×Ω→R for x,y ∈Ω with Ω some space, and
k(x,y) = k(y, x). This function is assumed to correspond to an inner product
in some feature space F :

k(x,y) = 〈φ(x),φ(y)〉F (4.6)

for the feature map φ(x) ∈ F . Typically, the relation between the spaces Ω and
F is very complex. However, the simple form of the kernel provides an easy
and efficient way to access the space.

Characterizing kernels of the form in equation 4.6 has been well-studied and
it has been shown that the kernels that can be written as an inner product
should necessarily have the positive definiteness property. We define this
property and its consequences in the next section.
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4.2.1 Positive Definite Kernels

The definition of a positive definite kernel follows from that of a positive
definite matrix. For some given points xi ∈Ω, the matrix with the entries

Kij = k(xi, xj) (4.7)

is called the Gram matrix of the symmetric kernel function k. If

∑
ij

cicjKij ≥ 0 (4.8)

for all ci ∈ R and for all sets of distinct xi, then the kernel k is called a pos-
itive definite kernel. Although it might seem difficult to check if a kernel is
positive definite or not due to the arbitrariness of the points xi, in practice,
there exist several easy ways to construct such kernels. An important con-
struction uses the property of positive definite kernels that states sums and
multiplications of positive definite kernels are positive definite, such that
if k1(x,y) and k2(x,y) are positive definite, the so are k1(x,y)k2(x,y) and
α1k1(x,y) + α2k2(x,y) for α1,α2 ≥ 0.

Note that the kernels used for regression or density estimation in statistics
do not in general have this property. However, we utilize computational
approximations of positive definite kernels in all our methods throughout
this work (such as for local kernel regression as explained in Section 3.2.2, or
for density estimation in Section 5.3.2). Although this restriction to the class
of positive definite kernels might seem as a limitation, it actually provides a
quite flexible method to define kernels with useful structure in vastly different
spaces and forms. We present some important examples of positive definite
kernels below.

Inner Product Kernels. An important observation is that all inner product
kernels (that can be written in the form of equation 4.6) are positive definite.
To see this, one can simply expand the expression in equation 4.8 as follows

∑
ij

cicjKij = ∑
ij

cicj〈φ(xi),φ(xj)〉

= 〈∑
i

ciφ(xi),∑
j

cjφ(xj)〉

= ‖∑
i

ciφ(xi)‖2 ≥ 0.
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This is a direct result of the properties of the inner product space F . Going
in the other direction, all positive definite kernels are inner product kernels,
where the feature space can be set to the reproducing kernel Hilbert space
of the kernel, as we will explain in Section 4.2.2. The equivalence of positive
definiteness and inner product form opened the way to design a vast variety
of kernels in different domains. The examples below can all be seen as special
cases of inner product kernels.

Polynomial Kernels. A simple class of positive definite kernels is formed
by k(x,y) =

(
xTy

)p for p ∈ N and x,y ∈ Rd. An interesting property of
this simple kernel is that a feature map φ(x) of the kernel can be explicitly
constructed.

The Gaussian Kernel. This is perhaps the most widely used kernel in
many fields. It is given as

k(x,y) = e−
‖x−y‖2

σ2 , (4.9)

where ‖x‖ denotes the Euclidean norm and σ is a parameter. The Gaussian
kernel is widely used in local approximations via local kernel regression and
MLS surface definitions, as explained in Sections 3.2 and 3.4. It is also used
for the approximations in Chapters 3 and 5. Hence, it forms an interesting
link between approximation methods and kernel techniques as detailed in
Chapter 2. In addition, it is also the heat kernel of the Euclidean space (see
Section 4.1.3).

Diffusion Kernels. A useful property of positive definite kernels is
that if k(x,y) is a kernel, then f (x)k(x,y) f (y) is also a kernel. To see this,
one can first prove that the kernel f (x) f (y) is positive definite by writing
∑ f (xi) f (xj)cicj = ∑ f (xi)ci ∑ f (xj)cj = (∑ f (xi)ci)

2 ≥ 0. Since multiplication
of two positive definite kernels is also positive definite, the result follows. In
particular, if the space Ω is equipped with a measure µ, the following is a
positive definite kernel

k(x,y)
dα(x)dα(y)

, (4.10)

where d(x) =
∫

Ω k(x,y)µ(x). This kernel is used to approximate diffusion
operators on manifolds, regardless of the distribution of points [Coifman and
Lafon, 2006]. We will also use it in our approximations of the heat kernel in
Section 4.3.3.
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Graph Kernels. The generality of the kernel construction allows us to
define kernels on more abstract structures such as graphs. To define a positive
definite kernel, first a graph Laplacian is constructed. Assuming that we
have an undirected graph, the normalized graph Laplacian is given by the
expression

L = I−D−
1
2 AD−

1
2 , (4.11)

where A is the adjacency matrix, or a similarity matrix for the vertices of
the graph. The kernel matrix can then be constructed in several ways based
on L. One way is mimicking the relation between the heat operator and
the Laplace-Beltrami operator of a manifold and taking K = e−tL for some
t≥ 0 [Kondor and Lafferty, 2002]. Intuitively, this matrix describes a diffusion
process among the vertices of the graph. If one assumes that the graph is
defined on a point cloud lying near a manifold and Gaussian weights are
used for the similarity matrix such that Aij = k(xi,xj) with k defined as the
Gaussian kernel, the matrix L, its unnormalized version D − A, or other
variants can be used to approximate the heat kernel matrix of the underlying
manifold [Belkin and Niyogi, 2006; Coifman and Lafon, 2006].

4.2.2 Reproducing Kernel Hibert Spaces

A fundamental property of positive definite kernels is that they are associated
with a Hilbert space called the reproducing kernel Hilbert space (RKHS) that
we denote by H. One way to specify this space is starting with a function
kx(y) = k(x,y) for each x ∈Ω. Then one can define the RKHS for the kernel
k as

H = span{kx : x ∈Ω}. (4.12)

Here, S denotes the completion of the space S , which is formed by adding the
limit points of the Cauchy sequences (see for e.g. [Schaback and Wendland,
2006]).

This space has an associated inner product 〈·, ·〉H such that for every x ∈Ω

and f ∈ H, the following is true

f (x) = 〈kx, f 〉H. (4.13)
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Thus, the kernel k reproduces the functions in the Hilbert spaceH, hence the
name reproducing kernel Hilbert space. In particular, since ky ∈ H, one can
write

〈kx,ky〉H = ky(x) = k(x,y). (4.14)

Thus, the inner product 〈·, ·〉H is given by the kernel function k. This also
implies that the norm is given by ‖kx‖H =

√
〈kx,kx〉H =

√
k(x, x).

This form shows that every positive definite kernel can be written as an inner
product in some feature space by setting F =H. In general, F andH need
not be the same. To see this, consider a space F , such as the Euclidean space,
and the implied kernel of the form k(x,y) = 〈φ(x),φ(y)〉F , as in equation 4.6.
For this kernel, one can either operate in the space F , or the associated
RKHS H. This, however, does not result in any change in the kernel based
algorithms, since the value of the inner product, given by the kernel, stays
the same regardless of the interpretation of the kernel.

4.2.3 Mercer’s Theorem and the Heat Kernel

In this section, we will discuss a special type of positive definite kernels,
given by an explicit expansion formula. In the following sections, this will
allow us to treat the heat kernel (see Section 4.1.3) in the framework of kernel
techniques. We first state a slightly specialized form of the Mercer’s theorem:

Mercer’s Theorem. Assume that Ω ∈Rn is closed, k(x,y) : Ω×Ω→R is
a continuous positive definite kernel, and µ is a strictly positive Borel measure
on Ω. If the following is true∫

Ω

∫
Ω

k(x,y)2dµ(x)dµ(y) < ∞,

then the kernel can be expanded as

k(x,y) =
∞

∑
i=0

λiφi(x)φi(y),

where λi ≥ 0, ∑∞
i=1 λ2

i < ∞, and φi are normalized with the norm in L2
µ(Ω).
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Here, L2
µ(Ω) = { f : Ω→R :

∫
| f (x)|2dµ(x) < ∞}. Note that associated with

such a kernel, there is also the integral operator acting on the functions in
L2

µ(Ω):

K f (x) =
∫

Ω
k(x,y) f (y)dµ(y). (4.15)

This is a compact, positive, and self-adjoint operator with the eigenfunctions
φi and eigenvalues λi. Hence, the eigenfunctions φi form an orthonormal
basis for the space L2

µ(Ω), according to the Hilbert–Schmidt theorem.

The importance of Mercer’s theorem for our purposes stems from the expan-
sion of the kernel k. This expansion allows us to construct an explicit feature
space for k by writing

φ(x) =
[√

λ1φ1(x) · · ·
√

λnT φnT(x)
]T

. (4.16)

For technical reasons, we used an approximation of the expansion by trun-
cating it at the nTth term. This is not a limitation since the series converges
uniformly (e.g. [Scholkopf and Smola, 2001; Minh et al., 2006]) and hence
arbitrary accuracy can be obtained by choosing a big enough nT < ∞. It is
easy to see that the usual inner product of Euclidean spaces gives the kernel
k(x,y) = φ(x)Tφ(y).

A very interesting observation is that the heat kernel (see Section 4.1.3) of a
manifold also has a similar expansion and thus a feature space for it can be defined
accordingly. This provides a fundamental bridge between the spectral analysis
methods and kernel methods. We will use this link to develop our measures
in the next section.
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Figure 4.4: Conceptual Overview: (a) Given a set of points, (b) we map them to a higher
dimensional space implied by the heat kernel of the underlying manifold such
that the distance of a point to the span of others can be used to measure the (c)
influence of that point on the Laplace-Beltrami spectrum.

4.3 Spectral Measures for Manifold Sampling

The essence of our method is measuring the effect of a point on the global
properties of the manifold using the Laplace-Beltrami spectrum, based on the
link between spectral and kernel methods. We already established this link
in the previous sections, and now move on to the derivation of our measure.

Ideally, our measure quantifies the change in the Laplace-Beltrami spectrum
of a manifold due to a single point. It is well-known that eigenvalues of
the Laplace-Beltrami operator provide an almost unique identification of
the manifold up to isometry [Reuter et al., 2006; Rustamov, 2007]. Although
there exist isospectral manifolds (i.e. sharing the same spectrum) that are
not isometric, these cases are very rare, and many geometric and topological
properties of a manifold can be extracted from the spectrum [Kesavan, 1998;
Lévy, 2006]. The eigenspectrum is also stable under perturbations of the
manifold, thus similar manifolds will have close spectra [Dey et al., 2010]
and changes in the implicit structure of the manifold will be reflected to the
spectrum. We utilize these facts to measure changes in a manifold through
changes in its spectrum. Measuring this change due to a single point is
performed by considering the high dimensional feature space implied by the
heat kernel (Figure 4.4, see also Section 4.2.3).

As stated earlier, a sampling should necessarily be coupled to reconstructions.
We take special care in approximating the sampling measure such that the
resulting measure is closely linked to kernel based reconstruction methods,
in particular the moving least squares based reconstruction method we de-

74



4.3 Spectral Measures for Manifold Sampling

veloped in Chapter 3. To be useful in practical applications, it should also
be efficiently computable, which we achieve by developing local approxim-
ations. In this section, we show how to derive a measure exhibiting these
properties. First, we present our choice of the discrete approximation for
the spectrum of the Laplace-Beltrami operator via the heat kernel. Next, we
derive our measure in terms of the heat kernel, and finally show how to
compute it with appropriate approximations.

4.3.1 Discretization of the Laplace-Betrami Operator

In order to compute the spectrum of the Laplace-Beltrami operator in prac-
tice, we need to discretize the operator into a matrix. For samples form-
ing a simplicial mesh, several discrete approximations with nice invariance
and convergence properties have been derived [Pinkall and Polthier, 1993;
Cohen-Steiner and Morvan, 2006; Wardetzky et al., 2007; Bobenko and
Springborn, 2007; Bauer et al., 2009]. However, during sampling or re-
sampling we wish to avoid repeatedly constructing such a mesh, as it can
be a challenging problem in itself. Even if we ignore the meshing prob-
lem, these mesh based approximations do not allow us to establish a direct
connection to the kernel based reconstruction methods, which is one of
our goals. For these reasons, we rather follow the line of approximations
motivated by methods in manifold learning, spectral graph theory, and com-
putational harmonic analysis [Belkin and Niyogi, 2006; Belkin et al., 2009;
Coifman and Lafon, 2006]. These approaches rely on the connection between
the Laplace-Beltrami operator and the heat operator.

To compute an approximation of the heat operator, we can discretize the
integral defining the heat operator (equation (4.4)) to get

(Htf)i = ∑
j

ht(xi, xj)fj, (4.17)

where fj = f (xj). The entries of this heat kernel matrix are thus given by
(Ht)ij = ht(xi, xj). By expanding the heat kernel in terms of the eigenfunctions
and eigenvalues of the Laplace-Beltrami operator (as in equation 4.5), it can
be shown [Braun, 2006; von Luxburg, 2004] that the eigenvalues of the matrix
Ht converge to e−λit up to a constant, assuming the eigenvectors of Ht are
good approximations to the eigenfunctions of Ht, which is the case as the
sample set becomes denser. For small t, this implies that the eigenvalues
of Ht approximate those of the Laplace-Beltrami operator well (see also
Section 4.1.3).
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Concluding, the eigenvalues of the Laplace-Beltrami operator can be approx-
imated by computing the eigenfunctions of the discrete heat operator, i.e. the
matrix Ht. It remains to measure the change in the spectrum of Ht.

4.3.2 Spectral Change due to a Point

Given points xi on the manifold that are used to form Ht, we seek to quantify
the change in the spectrum of Ht due to the addition of a new point x.
We reformulate this problem in another space and use matrix perturbation
theory and properties of the eigenfunctions of the heat kernel to arrive at our
measure.

As explained in Section 4.2, for every symmetric positive definite kernel, there
exist feature spaces where the inner products are given by the kernel, and the
expansion of the heat kernel allows us to use a similar approach by writing
it as an inner product ht(x,y) = φt(x)Tφt(y) in a high dimensional feature
space. For brevity, we will drop the time dependency from all identities and
write φi = φt(xi) for the rest of this section. We also denote eigenvalues of a
matrix M as λi(M).

With these definitions, heat kernel matrix can be written as Hij = h(xi, xj) = φT
i φj.

More interestingly, we can define the covariance matrix C = ∑ φiφ
T
i . Non-zero

eigenvalues λi(C) of C are the same as those of H [Schölkopf et al., 1998].
Thus we can equivalently consider the change in the spectrum of C.

Adding a sample x to the point set means forming a new covariance matrix
C′ = C + φφT with φ = φ(x). The vector φ can be written as φ = r + o for the
projection r onto the span of φi’s and the orthogonal component o. Thus we
can expand the expression for C′ as

C′ = C + (r + o) (r + o)T = C + ooT + E. (4.18)

The matrix C + ooT has eigenvalues λi and ‖o‖2. We want to study how the
eigenspectrums of C + ooT and C′ differ.

Let vi denote an eigenvector of C corresponding to the eigenvalue λi(C). The
change in the eigenvalues can be studied using the following result from
matrix perturbation theory [Ipsen and Nadler, 2009]:

min
j
|λi(C + ooT)− λj(C′)|2 ≤ ‖Evi‖2. (4.19)
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Figure 4.5: Effect of adding a point to the point set on the eigenvalues of the heat kernel
matrix for (a) R2 and (b) sphere (zoomed).

Substituting the expression for E, the bound can be computed as

‖Evi‖2 = ‖(φrT + roT)vi‖2 = ‖φ‖2(rTvi)
2,

where we used the fact that o is orthogonal to vi. Thus the change in λi(C)
due to adding the point x to the set depends on δi = (rTvi)

2 = (φTvi)
2. In

Appendix A.3, we derive that if the eigenvectors of H well approximate
eigenfunctions of the heat operator, the change in the spectrum will diffuse to
many eigenvalues and effect of a point on the spectrum will not be significant.
Examples of this behavior are shown in Figure 4.5 for the cases of R2 and
sphere.

This analysis implies that if ∑ δi = ‖r‖2 is close to ‖φ‖2, x will not disturb
the distribution of the eigenvalues considerably. On the other hand, if ‖o‖2

is large, then the spectrum will have a new large eigenvalue, which will
alter the distribution of the eigenvalues. Thus we define our measure as
‖o‖2/‖φ‖2 ∈ [0,1]. Although one could define other measures based on the
individual bounds δi, this particular choice results in very efficient computa-
tions as will be shown in the next section.

In Appendix A.4, we show that this measure that quantifies the change in the
spectrum due to the addition of the point x can be computed as

s(x) = 1− hTH−1h/h(x, x), (4.20)
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Figure 4.6: On the left, black curve shows the spectrum of the heat kernel matrix and
on the right, the measure s(x) is plotted for the six black points and the heat
kernel of R2. When the blue point (represented with a small triangle) in
a region of high s(x) is added to the set of black points, the eigenspectrum
becomes the blue curve, and hence changes significantly. In contrast, the red
point (represented with a small square) does not cause much change. The
measure s(x) correctly captures this behavior.

where hi = h(x, xi). We illustrate that s(x) correctly captures changes to the
spectrum in Figure 4.6 for two cases where explicit expressions for the heat
kernel is available. If s(x) is low at a location, placing a new sample at that
location does not change the spectrum significantly. In particular, it is easy to
see that if x = xi ∃i, then s(x) = 0. This is in accordance with the expectation
that adding a point that is already in the point set does not give any new
information about the spectrum.

Note that since we do not know the heat kernel of a given manifold, a direct
computation of this expression is not possible. In the next section, we utilize
approximation methods from spectral processing of graphs to arrive at our
final measure.

4.3.3 Computation of the Measure

For a given set of points {xi ∈Rd}n
1 lying near a manifold, graph based meth-

ods try to approximate the Laplace-Beltrami operator of the manifold with
that of the weighted graph constructed from the point set. It has been shown
that under the assumption that the points are sampled according to a uni-
form probability distribution on the manifold, this approximation converges
to the Laplace-Beltrami operator as the sample set becomes denser [Belkin
and Niyogi, 2006; Coifman and Lafon, 2006]. One of the fundamental ob-
servations in their proof is that heat kernel operator of the manifold is well-
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approximated by the matrix D−1K, for a kernel function k : Rd ×Rd→ R+

encoding similarity between points, the kernel matrix Kij = k(xi,xj) and the
diagonal matrix D with entries Dii = ∑n

j=1 Kij. Hence, spectrum of the matrix
D−1K provides an approximation for that of the heat kernel matrix H.

It is easy to show that the matrices D−1K and D−1/2KD−1/2 share the same
eigenvalues. Since we are only interested in the eigenvalues, we can equival-
ently use the latter in our analysis. Let us call the latter matrix as H̃. Although
we could directly substitute H̃ for H in the definition of s(x), it is not clear
how to define hi = h(x, xi).

Instead, we consider the continuous kernel from which the entries of H̃ can
be generated by sampling and discretization [von Luxburg, 2004; Coifman
and Lafon, 2006], h̃(x,y) = k(x,y)/

√
d(x)d(y) where d(x) =

∫
Rd k(x,y)dµ(y)

for some measure µ (this is a positive definite kernel, as explained in Sec-
tion 4.2.1). Let us define the diagonal matrix Dii = d(xi) and the vector
k = [k(x,x1) · · · k(x,xn)]T. By direct substitution of h̃ for h in the expression
for s(x) (equation (4.20)), we can compute the following expression

s̃(x) = 1−
(

1√
d(x)

kTD−1/2D1/2K−1D1/2D−1/2k
1√
d(x)

)
/

k(x,x)
d(x)

,

which leads to the final expression for our measure

s̃(x) = 1− kTK−1k/k(x,x). (4.21)

The measure s̃(x) can be easily computed once the kernel k is decided upon.
However, for arbitrary kernels, computation of it will involve inversion of
the n× n matrix K. Since s̃(x) measures contribution of a single point x to
the spectrum, this inversion will be performed many times, which will make
the algorithms utilizing it very inefficient. Fortunately, this global matrix can
be substituted by a local matrix constructed from the neighbors of x for a
specific class of kernels.

Assume that k is a positive definite and symmetric kernel. Then, k can be
written as an inner product k(x,y) = ϕ(x)T ϕ(y) (see Section 4.2). As derived
in Appendix A.4, kTK−1k is the norm of the projection of ϕ(x) onto the
span of ϕ(xi)’s. Further assume that k is approximately locally supported,
meaning that k(x,y) = ϕ(x)T ϕ(xi) ≈ 0 for ‖x− xi‖ > r for a support radius
r. This means that the vectors ϕ(xi) for points ‖x− xi‖ > r will be almost
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Figure 4.7: Using a Gaussian kernel, the measure s̃(x) for the white point converges to a
value as more neighboring points are used for the computation. The points in
the blue region are sufficient for an almost exact computation, illustrating the
local nature of the measure.

orthogonal to ϕ(x). Hence, the projection of ϕ(x) onto the span of all vectors
can be well-captured by the projection onto the span of local neighbors of
x. Thus s̃(x) can be well approximated by using K and k constructed from
the neighboring points. An example of this behavior is shown in Figure 4.7.
Since number of neighboring points in the support of k for a point x will be
much smaller than total number of points in the set, this local computation
makes our sampling very efficient.

The measure s̃(x) also leads to an essential link between the approximation of
the spectrum and kernel based approximation methods that utilize the same
kernel function k, such as the surface reconstruction methods we presented
in Chapter 3. In the next section, we make this link more precise.
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4.4 Coupling Sampling to Reconstruction

For many problems in computer graphics, sampling is followed by reconstruc-
tion or inferring new data. A versatile approach to surface reconstruction
is using weighted averages of kernels. Prominent examples are radial basis
function and moving least squares (MLS) based reconstruction methods. In
this section, we show that there is a close link between the kernel based
approximation of our measure, and kernel based reconstruction methods. We
then explain how our measure can be adapted to work with the MLS based
reconstruction method we developed in Chapter 3.

4.4.1 Relation to Kernel Regression

Consider a general weighted sum of a positive definite and symmetric kernel
∑ wiki(x,xi). Since we can write k as a dot product in the feature space of it,
we can rewrite this expression as ∑ wi ϕ(x)T ϕ(xi) = ϕ(x)T ∑ wi ϕ(xi).

Thus, this approximation becomes nothing but an inner product of ϕ(x) with
a weighted average of the vectors ϕ(xi). Similar to our analysis on the heat
kernel, we can decompose any arbitrary vector ϕ(xj) into a component dj in
the span of other vectors and a component oj orthogonal to the span. Further-

more, dj can be written as a linear combination of others as dj = ∑i 6=j aj
i ϕ(xi).

With these definitions, the expression for the weighted average becomes
∑i 6=j wi ϕ(xi) + wjdj + wjoj = ∑i 6=j (wi + wja

j
i)ϕ(xi) + wjoj.

As proved in Appendix A.4, s̃(xj) = ‖oj‖2/‖ϕ(xj)‖2. If s̃(xj) is small, then
we can ignore the term wjoj and the weighted average can be computed by
modifying the weights and storing only the vectors ϕ(xi), i 6= j. Hence, small
s̃(x) implies the kernel k(x,xj) can be ignored in the reconstruction.

Another important connection is due to the nature of our approximation
of the heat kernel with the normalized adjacency matrix of the graph. The
decay of the spectrum of this matrix is directly related to how strongly the
underlying graph is connected via the edge weights [Coifman and Lafon,
2006]. Since our measure tries to quantify the change a point makes to the
spectrum, it implicitly encodes connectivity of the graph. For kernel based
reconstruction algorithms to produce accurate results, this connectivity is
essential.

This analysis implies that samplings generated by algorithms that utilize the
measure s̃(x) can be coupled to reconstructions generated by kernel based
methods, by using the same kernel for both.
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4.4.2 Reconstruction Method of Chapter 3

Although other kernel based methods can also be used for reconstructing
manifolds from the samplings obtained, we will focus on the MLS based
reconstruction method we introduced in Chapter 3, and adapt our algorithms
accordingly.

Specifically, let x =
[
p/σp n/σn

]T, where p is the position of a point, n is the
normal vector at that point, and σp and σn are user provided smoothness
parameters, then the kernel used for sampling and reconstruction is given by
k(x,y) = e−‖x−y‖2

. Higher values of σp leads to smoother surfaces and lower
values of σn causes more pronounced sharp features. This kernel definition
allows us to generate samplings adapted to the MLS based reconstruction
method introduced in Chapter 3 by operating on a 2-dimensional manifold
embedded in R6 [Lai et al., 2007]. When used for reconstructions, it leads
to sharp feature and detail preserving surfaces. For a detailed analysis and
discussion of the resulting reconstructions, please see Chapter 3.

We will use this reconstruction method and the adapted version of our meas-
ure for all results in this chapter.
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4.5 Algorithms for Sampling

Having derived our measure and demonstrated how it can be efficiently
computed, we move on to algorithms utilizing this measure for sampling.
The first algorithm is a simple subsampling algorithm developed for out-of-
core and efficient sampling of huge datasets. The second one is a gradient
ascent procedure that iteratively moves the points to maximize and equalize
their contribution to the manifold. The dense point set is first input to the
subsampling algorithm. The output point set is then input to the resampling
algorithm. The subsampling algorithm is designed to avoid expensive com-
putations that involves all points in the input point set, making the whole
sampling process very efficient.

4.5.1 Randomized Linear Scan

Point sets acquired from the real world can be very large and thus out-of-core
and fast algorithms are needed to sample these datasets effectively for a given
detail level. For this reason, we designed a simple linear scan algorithm. The
algorithm starts with an empty output point set. It randomly selects a point
xk from the input set and computes s̃(xk) using the already added points to
the output set. If s̃(xk) > ε, then xk is added to the output point set. The
algorithm stops when all input points have been considered. A pseudo code
of the algorithm is given in Algorithm 1.

Input: Initial Point set X
Output: Subsampled point set O
O = ∅
while (X 6= ∅)

remove a random point xk from X
find the set of local neighbors Nk of xk among the points in O
if (Nk 6= ∅)
compute s̃(xk) (see equation (4.21)) using points in Nk

if (s̃(xk) > ε or Nk = ∅)
add xk to O

Algorithm 1: Simplification by Randomized Linear Scan
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Iterative Inversion

The main computational burden of the linear scan algorithm comes from
finding local neighbors and inverting the local kernel matrix. To keep this
cost at a minimum, we propose to use an iterative algorithm. To compute
s̃(xk), first, the points in the neighborhood of xk are sorted according to their
distance to xk in ascending order. This is because points closer to xk will
contribute to s̃(xk) more. Starting from the closest point, at each iteration, a
new neighboring point is considered, and the inverse and s̃(xk) is updated.
Since every added point decreases s̃(xk) (this is because every added point
contributes to the span of the vectors ϕ, see also Section 4.3.3), once s̃(xk)≤ ε,
no further iterations are needed because it is for certain that xk will not be
added to the output point set.

To compute the inverse iteratively, one can use the block matrix inversion for-
mula that has been proven to be very effective for similar cases [Moghaddam
et al., 2008], which reads as follows for our case:

K−1
n+1 =

[
K−1

n + gnanaT
n −gnan

−gnaT
n gn

]
, (4.22)

where Kn is an n by n matrix with elements (Kn)ij = k(xi,xj) for i, j ≤ n,
an = K−1

n kn(xn+1), gn = (k(xn+1,xn+1) − kn(xn+1)
TK−1

n kn(xn+1))
−1, and

(kn(xn+1))i = k(xn+1,xi) for i ≤ n.

Note that in this update rule, instabilities arise when g−1
n is close to zero.

We can safely avoid these cases by omitting the point xn+1 for which g−1
n is

close to zero since this means the mapping of xn+1, ϕ(xn+1) (as defined in
Section 4.3.3) is almost in the span of already considered ϕ(xi)’s for i < n + 1
and thus do not contribute to the projection of ϕ(x) onto this span. This
allows us to compute the measure even when the kernel matrix is close to
singular.

4.5.2 Iterative Gradient Ascent

Recall that s̃(x) measures the contribution of a point to the manifold definition.
Hence, by maximizing and equalizing s̃(x) for all points, we can make sure
that each point is contributing equally to the surface. In general, this is a
difficult non-linear optimization problem involving modifying positions of
points to reach a global optimum. Instead of a global minimization, we use
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Figure 4.8: Points are moved so as to maximize and equalize their contribution to the
surface iteratively. Sum of movements of the points decrease quickly.

local operations and move points in a simple gradient ascent iteration on s̃(x).
Specifically, at each step, a point x is selected, moved to the position

xk+1 = xk +
1
2
∇s̃(xk) (4.23)

and projected onto the surface. The algorithm then continues with the next
point randomly chosen among the points that have not been moved. Once all
points are exhausted, the algorithm continues with another iteration until a
criterion is met.

In practice, this algorithm converges very fast and produces high quality
samplings with blue noise properties. An example resampling process is
shown in Figure 4.8. We illustrate and further explain properties of the
samplings in Section 4.6. For reference, one can easily compute the gradient
for the Gaussian kernel k(x,y) = e−‖x−y‖2/σ2

as

∇s̃(x) = (−2/σ2)∑
(
2x− xi − xj

)
k(x,xi)k(x,xj)K−1

ij . (4.24)

4.5.3 Parameters and Data Structures

Parameters. For our simplification algorithm (Algorithm 1), the threshold ε

is the only free parameter apart from the kernel parameters. Since s̃(x) ∈ [0,1],
we set ε = 0.5 for all results in this paper. For resampling, due to the high
convergence rate of the algorithm, we use 10 iterations. According to the
decay of the Gaussian k(x,y) = e−‖x−y‖2

, the neighborhood size is set to
r = 2.5.

85



Spectral Sampling of Manifolds

15k 7k 4k 54k 

Figure 4.9: A multiresolution hierarchy of point set surfaces is obtained by progressive
sampling and reconstruction, with indicated number of points.

Data Structures. During simplification by the linear scan, points are added
one by one to the output point set, and the measure computation for a new
point is done using only its neighbors among the points in the output set.
Thus we need a dynamic data structure that allows local neighbor retrieval.
We used a dynamic kd-tree for these reasons. For the iterative gradient
ascent algorithm, the data structure should also allow to alter positions of
the points already added. Although a grid or octree can be used efficiently
for this case, we chose to simply use a kd-tree for computing indices of
neighboring points and assume the same neighborhoods in all iterations. This
assumption holds in practice since points are already near optimum positions
after the subsampling algorithm and only a few iterations are necessary for
the resampling algorithm to converge.

4.5.4 Multi-resolution and Progressive Sampling

The linear scan algorithm can be trivially extended to sample progressively
similar to EZW encoding [Shapiro, 1993], such that a series of point sets Pi
with the property that Pi ⊂ Pi+1, 1 ≤ i ≤ n is obtained. In a coarse-to-fine
approach, starting with a large smoothing parameter, a first linear scan is
performed and the resulting set is defined as P1. To get a more detailed
version, the smoothing parameter is decreased and another linear scan is
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performed on the remaining points in the input point set, adding more points
to P1 to get P2.

One can also start with a small smoothing parameter so as to obtain a point
set Pn for a detailed surface, then reduce the parameter and run a linear scan
on Pn to subsample it and get Pn−1, and continue in this fashion until P1, the
coarsest level is reached. For each Pi, the surface can be reconstructed using
the same smoothing parameters as used for subsampling. An example of
such a multiresolution reconstruction is shown in Figure 4.9.
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4.6 Results and Analysis

To assess the effectiveness of our algorithms, we test the quality of the
samplings, accuracy of the reconstructions resulting from the sampled points,
and performance of the algorithms quantitatively in extensive experiments.
For all experiments, models are scaled such that their bounding box has a
maximum length of 100.

4.6.1 Quality of Samplings

To test the quality of the distributions generated by our sampling algorithms,
we first show that they possess high quality blue noise characteristics on
a toroidal square. We then show that the same characteristics exist when
sampling general surfaces. Finally, we illustrate that the algorithms generate
state-of-the-art results when applied to the remeshing problem with well-
shaped triangles. To our knowledge, our algorithm is the first to generate
such high quality remeshing results directly from point samples with little
time and space complexity.

Sampling in R2. One of the important special cases of isotropic manifold
sampling is sampling the plane or a bounded region in R2. For this case,
established quantitative measures to assess the quality of distributions exist.
In Figure 4.10, we show an example distribution on a toroidal square, mean
periodogram [Ulichney, 1987], power and anisotropy plots computed using
10 different random initial distributions for our and Lloyd’s (100 iterations)
method. The distributions obtained by our algorithms have characteristics
similar to Lloyd’s method, with an average normalized Poisson disk radius
of ρ = 0.793. To obtain this distribution, we start with a random sampling
of n points and resample by gradient ascent for 10 iterations. The width
of the Gaussian kernel is set to σ = 2.5r, where r = ρ/

√
(2
√
(3)n) with

ρ = 0.75 the optimal Poisson disk radius [Lagae and Dutré, 2008] to ensure
there are enough points in the support of the kernel. We can get the same
distributions if we start from a dense sampling of the domain, set a kernel
width, subsample and then resample using our algorithms.

Sampling Surfaces. We tested our sampling algorithms on different models
with different parameters. The parameter σp can be tuned to get different
smoothness and number of points, and σn controls the adaptivity of the
samplings. Example samplings are shown in Figures 4.12 and 4.11. Setting
σn = ∞, one can get uniform sampling of the surface with well-distributed
points. Lower values of σn causes the algorithms place more samples in
the curved regions and features, resulting in preservation of details. As
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Figure 4.10: (a) A distribution of points, (b) mean periodogram, and (c) power and
anisotropy graphs for our algorithm (top) and Lloyd’s algorithm (bottom).

illustrated in Figure 4.13 and Figure 4.15, our sampling algorithms are also
resilient to noise. Our algorithms depend on both the point set and the kernel
to determine the manifold they are working on. Hence, whether a point with
noise is considered important or not depends on the smoothness level of
the kernel. In Figure 4.13 (top row), the input to our sampling algorithms
contains a point with high normal noise. This point is consistently kept for
smaller values of σp (middle two figures) and the corresponding bump is
present on the circle. For bigger σp (rightmost), it is no longer selected as
important by the subsampling algorithm and the bump is eliminated.

4.6.2 Quality of Remeshings

Isotropic distributions are used to remesh surfaces with well-shaped tri-
angles [Yan et al., 2009; Valette et al., 2008] with approximations of the
geodesic Centroidal Voronoi Diagram [Du et al., 1999]. To quantitatively
measure the quality of our samplings, we compare meshes obtained by using
the sampled points output from our algorithms as vertices. We use Tight
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Figure 4.11: Uniform samplings of various models by our algorithm.
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Figure 4.12: Feature adaptive sampling (σp = 0.25, for each model from left to right:
σn = ∞, 0.5).

Cocone [Dey and Goswami, 2003] to triangulate the samples and compare
triangle qualities to those generated by a fast clustering based approach
(VR) [Valette et al., 2008] and a higher quality but slower method (YR) [Yan
et al., 2009].

We use the same measures as used in the papers [Yan et al., 2009; Valette et
al., 2008]. The θmin is the smallest angle in the mesh, θmin,ave is the average of
minimum angles of all triangles, and θ < 30o is the percentage of triangles
with minimum angle below 30o. Q denotes quality of a triangle and measured
as 6St/

(√
3ptlt

)
, where St is the area of the triangle t, pt is its half-perimeter,

and lt is the length of the longest edge. Qmin and Qave are the minimum and
average of Q’s of all triangles in the mesh.

All measures for the models in the figures are provided in Table 4.1. As can
be observed from Table 4.1, our algorithms run in comparable times to VR
but still provide triangles with qualities similar to YR. Owing to the inherent
smoothing of our algorithms, it also works for very noisy cases without
pre-smoothing as illustrated in Figure 4.15 (and the corresponding entry in
Table 4.1). The triangle quality is higher and geometry is well-captured. The
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0.15 0.25 0.5  

Figure 4.13: Top: Input to our algorithms contains one point with high normal noise
(leftmost). Resamplings are shown for increasing σp. Bottom: A noisy
surface part and its resampling.

blue noise characteristics of the distribution of the points generated by our
algorithms result in more non-regular triangles as can be seen in Figure 4.14.
Furthermore, since our algorithms are out-of-core and very efficient, they
can be applied to very large datasets such as the Lucy model with 14 million
points (Table 4.1).

4.6.3 Accuracy of Reconstructions

We test the accuracy of the reconstructions by direct comparisons with two
point-based iterative simplification algorithms which remove points accord-
ing to their distance to the surface (AS) [Alexa et al., 2001] or a kernel based
measure (KS) [Kitago and Gopi, 2006]. Reconstructions using the initial dense
point set and the simplified point sets are compared in terms of the root
mean square (RMS) error and Hausdorff distance. Note that we run only our
simplification algorithm and not the resampling for fair comparisons.

We use a variety of models of different complexity, genus, and source and a
range of σp values to illustrate the quality of the reconstructions under differ-
ent conditions. The parameter σn is set to 0.75 for adaptive sampling. After
densely triangulating the implicit function we use for reconstructions, Metro
tool [Cignoni et al., 2001] is run for computing the errors between this ground
truth mesh, and meshes generated by the algorithms. We plot the results
of our tests in Table 4.2 and show examples of reconstructions obtained in
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YR VR 

VR OURS YR 

Figure 4.14: Remeshing results for the Owl model.

INPUT YR OURS 

Figure 4.15: Remeshing results for the Bimba model with YR and our algorithm. Due to
the inherent smoothing of our approach, the geometric shape is well-captured
while achieving high triangle quality without pre-processing.

Figure 4.16. Our simplification algorithm results in more accurate reconstruc-
tions, with considerable improvements especially for complex models. In
Figure 4.16 bottom row, the reconstructions using the simplified point sets of
AS and KS result in extra surface parts and distortions on the surface while
our algorithm almost exactly reproduces the original reconstruction.

4.6.4 Performance

Linear scanning of the input points avoids costly operations such as find-
ing neighbors and taking local kernel matrix inverses with all input points.
This makes our algorithms run in comparable times to even mesh-based
subsampling methods. Point based simplification algorithms AS and KS have
much larger time complexity and become infeasible to use for large models
and large σp.

Performance of our algorithms is illustrated in Figure 4.17. In Figure 4.17 (a),
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ORIGINAL OURS 

AS KS 

ORIGINAL OURS AS KS 

Figure 4.16: Reconstructions of the Igea (top row, σp = 0.75, σn = 0.75) and Filigree
(σp = 0.5, σn = 0.75) models using the full data, and subsampled data
output from different algorithms.
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Model Num Pts Method Ѳmin Ѳmin, ave Qmin Qave Ѳ < 30o Time 

Owl 

Ours 19.34 52.62 0.3007 0.8998 0.0012 3.37 + 6.51 

13161 VR 0.61 39.19 0.0112 0.7194 6.3025 4.453 

YR 37.35 54.71 0.6548 0.9371 0 319 

Horse 

Ours 32.52 53.01 0.5844 0.9057 0 2.25 + 4.18 

8600 VR 14.76 46.24 0.3148 0.8250 0.3372 3.579 

YR 37.92 54.84 0.6562 0.9389 0 290 

Rabbit 

Ours 35.19 53.02 0.5573 0.9054 0 2.50 + 4.65 

9635 VR 10.69 44.67 0.2138 0.8036 1.1747 4.859 

YR 39.04 55.09 0.6649 0.9414 0 255 

Bimba 

Ours 17.10 52.68 0.2664 0.9016 0.0003 1.109 + 2.61 

13318 VR 0.91 37.73 0.0144 0.6993 0.0948 4.031 

YR 20.13 46.17 0.3722 0.8266 0.0030 1424 

Lucy 
3259 Ours 13.58 51.81 0.2727 0.8915 0.2222 367.56 + 1.46 

7395 Ours 11.14 51.74 0.2538 0.8906 0.3547 367.29 + 3.79 

C. Lion 38342 Ours 14.56 52.83 0.2216 0.9033 0.0082 18.83 + 22.58 

Table 4.1: Quantitative comparisons of the remeshing results. Timings for our method,
as well as for Tight Cocone is given in the rows for our algorithm. “Num Pts”
refers to the number of vertices in the output mesh.

σp = 0.5 
 

σp = 0.75 
 

σp = 1 
 

Model 

 

Error 

Metric 
Ours  AS KS Ours  AS KS Ours   AS KS 

Igea 
RMS 

HAUS 

0.0071 

0.1075 

0.0064 

0.1415 

0.0091 

0.1120 

0.0114 

0.1500 

0.0310 

0.4384 

0.0818 

0.4640 

0.0407 

0.1907 

0.0824 

1.3302 

0.1251 

2.0278 

Hand 
RMS 

HAUS 

0.0186 

0.2116 

0.1628 

1.2040 

0.1464 

1.1011 

0.0286 

0.2472 

0.5405 

2.0007 

0.5873 

2.1906 

0.0439 

0.5616 

1.0162 

2.9348 

1.0382 

2.7861 

Statue 
RMS 

HAUS 

0.0488 

1.2853 

0.2357 

1.3792 

0.2796 

1.4335 

0.0949 

1.9832 

0.5980 

2.0409 

0.6975 

2.4409 

0.1501 

2.5519 

1.0184 

3.7673 

0.7677 

2.5541 

Dragon 
RMS 

HAUS 

0.0526 

1.4130 

0.1011 

1.3971 

0.3299 

1.7840 

0.0973 

2.0595 

0.2514 

2.0062 

0.6862 

2.6382 

0.1495 

2.6049 

0.5747 

2.8164 

1.4733 

4.3328 

Filigree 
RMS 

HAUS 

0.0209 

0.2591 

0.3206 

1.3294 

0.1623 

1.1363 

0.0457 

0.4363 

0.8481 

2.2062 

0.4929 

1.7476 

0.0832 

0.8408 

1.3032 

2.6989 

1.0696 

2.5756 

Table 4.2: Quantitative comparisons of the reconstructions.

total time (including kd-tree queries and disk reads) needed to subsample
models of various sizes is plotted. Complexity grows linearly with input
size due to the linear scan used in the subsampling algorithm. Figure 4.17
(b) illustrates the same performance analysis for the resampling algorithm,
run after the subsampling algorithm. In Figure 4.17 (c), number of output
points, hence σp, is changed for the subsampling algorithm. Since we use
iterative inversion (as explained in Section 4.5.1) for computing our measure,
iterations are cut earlier if σp is large and the complexity stays constant.
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Figure 4.17: Effect of the input model size on the time complexity of the (a) subsampling
algorithm and (b) resampling algorithm. (c) Timings for the subsampling
algorithm for a fixed input model with changing output sample sizes.

4.7 Application to Facial Rendering

The samplings produced by our algorithms depend on the kernels used.
Although the algorithms so far assumed that we only have information
about the geometry to be reconstructed, further information can easily be
taken into account by modifying the domains of the kernels accordingly.
In particular, similar to aggregating normals and positions for defining the
domain Ω where the kernel operates, one can include more dimensions for
any additional information present. As an important application of this
flexibility, we developed a multi-resolution splat-based face renderer. High
quality splatting is obtained by considering the texture and important features
of the faces when sampling.

The pipeline of this algorithm is presented in Figure 4.18. After extracting
perceptually important features of the face, the sampling algorithms are run
with the kernels derived using the extracted features and colors associated
with the sample points. Finally, splat shapes are optimized accordingly, and a
dedicated splat based renderer is used for efficient and realistic rendering of
faces. Below, we focus on how the extra information is used for the sampling
algorithms we developed in the chapter.

Assume that the feature extraction is completed and for each sample point,
the position pi normal ni, color ci, and a weight wi that determines the
importance of this point as a feature is stored: xi = (pi,ni,ci,wi). We extend
the domain Ω of the kernel to include color components and the feature
weights, so that it becomes x = [p/

(
σpw

)
n/σn c/σc]T. The weights w take

two different values depending on the region of the face. If it is a perceptually
important region such as eyes, lips, or eyebrows, it takes a low constant value.
Otherwise, it takes a higher constant value. Hence, this weighting adjusts the
sampling rate such that the density will be higher for perceptually important
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Figure 4.18: The pipeline of adaptive surface splatting for facial rendering.

(a) 1,004k (b) 471k (c) 186k (d) 33k 

Figure 4.19: Multi-resolution rendering of a face.

facial features. This means we have two different kernel definitions for the
feature and non-feature areas. Although these areas have boundaries, we did
not encounter any instabilities in practice.

Note that we only have color values for the initial sample points, but values
at arbitrary points in space are needed for resampling. Following the original
derivation of the adaptive kernel definition from robust statistics (see also
Section 3.4.3), we use the following iterative formula to get the value c(x) for
a point x:

ck+1 =
∑i cik(xk,xi)

∑i k(xk,xi)
, (4.25)

where xk includes the current estimate of the color ck. Starting from the
usual kernel based approximation (σc = ∞), the iterations continue until
convergence. This gives a robust color estimate that accurately preserves
discontinuities. When processing the point x in the resampling algorithm, the
color value for it is computed with this formula, and added to the vector x.

A multi-resolution splatting result is shown in Figure 4.19. Since the distri-
bution of the samples adapts well to the facial details, much less points are
needed for high quality renderings.
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4.8 Discussion and Outlook

We presented new algorithms for simplification and resampling of manifolds.
The algorithms depend on a measure that restricts changes to the Laplace-
Beltrami spectrum. By utilizing kernel methods and matrix perturbation
theory, we were able to derive a local measure linked to the MLS based
reconstruction method we introduced in Chapter 3. We then utilized this
measure in efficient simplification and resampling algorithms. The generated
samplings have high quality blue noise characteristics and result in accurate
reconstructions. We also demonstrated an application of our algorithms to
high quality multi-resolution facial rendering. By changing the domain of
the kernel used to compute the spectral measure, our method can be easily
adapted for preservation of application specific features.

We tested and validated the results of our algorithms for a diverse selection
of models and conditions. Although we observed that our algorithms are
efficient and accurate, they are greedy and thus not theoretically guaranteed
to give the optimal sampling. We believe however, that our analysis of the
Laplace-Beltrami spectrum can be utilized for more sophisticated algorithms
as well. There exist some results on theoretical optimal sampling conditions
when using Delaunay triangulation based reconstruction algorithms [Amenta
and Bern, 1998; Amenta et al., 2000; 2001; Dey, 2006]. However, they depend
on the local feature size, which is hard to estimate in general. For MLS
or radial basis functions based reconstruction techniques, no such results
exist. Hence, there is a general need in developing sampling conditions that
are robustly computable. On the other hand, many works have focused on
improving the Laplace-Beltrami operator for meshes [Zhang et al., 2007] and
point sets [Belkin et al., 2009]. Deriving optimal sampling conditions based
on the Laplace-Beltrami operator will allow the researchers to utilize these
improvements and can lead to algorithms with theoretical guarantees.

Sampling is ultimately related to signal processing and multiresolution ana-
lysis. Computational harmonic analysis gives us a unified framework to
perform multiresolution analysis on general manifolds. We presented an
effective application of it to sampling. We believe that these and similar
ideas from data analysis, sparse coding, and kernel methods will be useful to
understand the sampling problem better and develop practical algorithms
with theoretical guarantees.

Apart from the sampling problem, the interpretation of the heat kernel in the
framework of kernel techniques can have direct consequences for many tech-
niques that utilize the eigenstructure of the Laplace-Beltrami operator [Zhang
et al., 2007]. Beyond these works in the geometry processing literature,
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the proposed sampling measure and interpretation of the heat kernel can
also have impact on the data analysis and pattern recognition methods that
work with high dimensional data. Many of these methods deal with vast
amounts of data and hence developing new compact representations can
considerably speed up the algorithms. In general, diffusion on manifolds has
been one of the fundamental tools for analysis [Kondor and Lafferty, 2002;
Coifman et al., 2005; Coifman and Lafon, 2006; Lafon and Lee, 2006;
Coifman and Lafon, 2006], which is directly linked to the heat kernel. Hence,
we anticipate further developments by utilizing and unifying the theoretical
frameworks developed in data analysis and machine learning via the heat
kernel.
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C H A P T E R 5
Reconstruction of Point Patterns

Many geometric structures exhibit repetitive and stochastic patterns that
can be explained well in a distributional sense. Although an individual
tree in a forest can be represented by a point set and reconstructed via the
algorithms proposed in Chapter 3, synthesizing a virtual forest with the
distribution of the trees learned from a real forest poses a completely different
problem. The entity to be reconstructed in this case becomes a stochastic
point pattern/distribution with certain characteristics matching those of
given patterns. Such a reconstruction consists of analyzing point patterns
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generated by a process to learn their characteristics, and synthesizing new
distributions having the same characteristics.

Although stochastic point distributions arise in many contexts, analysis tools
and synthesis algorithms in computer graphics have been mostly focused on
blue-noise distributions, in which points are distributed randomly with a min-
imum distance between pairs. Such distributions have been observed in many
biological and natural structures including the human visual system [Yellott,
1983]. It is well-known that using such a distribution for sampling leads to
high quality anti-aliasing. They are also used in many other applications,
as explained in Section 2.3. This has lead to extensive analysis and many
synthesis algorithms that generate blue-noise distributions with different reg-
ularity, density, and randomness. However, these algorithms cannot generate
general distributions with controllable characteristics.

Point distributions have also been extensively studied in physics and spatial
statistics [Torquato, 2002; Illian et al., 2008]. The emphasis in these fields
is put on analyzing general distributions and fitting models to understand
natural processes. Statistics that depend on correlations of locations and
marks of points are used to analyze a diversity of distributions and have been
proven to be powerful and discriminative.

In this chapter, we introduce methods for analysis and synthesis of general
multi-class point distributions based on the statistical measure pair correla-
tion function (PCF). To explore the nature of this measure, we introduce an
analysis based on the interpretation of it as a mean in a high dimensional
vector space that we call the pair correlation space (PCS). We show that in this
space, the degrees of freedom to characterize point distributions is low and
directly linked to regularity. This analysis allows us to explain distributions
and existing synthesis algorithms in a unified way, propose an irregularity
measure, and show that the PCF provides a compact representation for the
characteristics. Following this analysis, we propose two general synthesis al-
gorithms. The first one is a generalization of dart throwing for arbitrary PCFs
and the other is a gradient descent based fitting of the PCFs. The output of
the first algorithm is used as the input for the second to facilitate convergence.
These algorithms can generate point distributions with desired characteristics
extracted from example distributions or synthesized. The example point sets
and generated point sets can be of different dimensions and sizes, contain
multiple classes, and reside on non-Euclidean domains. The algorithms are
simple to implement and run in O(n) time.

We start the chapter by reviewing the relevant concepts and methods from
the statistical field of point processes (Section 5.1). We then explain the theory
behind the statistical analysis tools for point distributions in this field in Sec-
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tion 5.2. Next, we propose a new interpretation of the PCF and define a new
irregularity measure in Section 5.3. This new analysis allows us to develop
synthesis algorithms for distributions in Section 5.4, which are evaluated
extensively (Section 5.5), and used in applications where stochastic structures
need to be synthesized (Section 5.6).
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Figure 5.1: Examples of random (left), hard-core (middle), and clustering (right) distri-
butions.

5.1 Point Processes

A point process is defined as the generating stochastic model for a point dis-
tribution/pattern. A distribution/pattern of points generated using a point
process is one of the infinitely many realizations of that process. The goal of
point process statistics is to describe, analyze, and compare point patterns in
the most effective way. This branch of statistics differs from classical statistics.
While classical statistics relies on moments of probability distributions such
as the mean or standard deviation, point process statistics focuses on describ-
ing distributions of points using correlations among locations and marks of
points. This field also has strong connections to physics and material sciences.
Explaining repetitive structures such as the distribution of molecules in a gas,
or pores in a concrete requires to rely on similar statistics in these fields. For
an excellent review of the theory and applications of point processes, we refer
the reader to Illian et al.’s book [Illian et al., 2008].

In this chapter, we consider infinite (i.e. the process can be used to generate
patterns of any number of points covering arbitrarily large volumes in space),
stationary (i.e. translation invariant), isotropic (i.e. rotation invariant), and
ergodic (i.e. analysis on a particular generated pattern is sufficient) point
processes. Hence, the analysis of the point set does not depend on the point,
direction, or window chosen. We will call such point processes and generated
point sets simply as isotropic. The cases where an adaptive or anisotropic
distribution is needed can be considered as uniform sampling of a domain
and warping that domain via a distance measure [Li et al., 2010b].

The characteristics of the distributions generated by point processes depend
on the underlying rules used. One thread of rules involves interaction of
points. Repulsion and attraction are two interactions that can exist among
points. Point processes with repulsion result in distributions where each
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pair of points is a minimum distance apart. Such distributions can posses
blue-noise properties (see Chapter 4) and the underlying point processes
are called hard-core processes, since each point resembles a hard sphere. In
contrast, if attraction among the points is dominant, points tend to cluster
together. These processes are called clustering processes. In nature, repulsion
and clustering can happen at different scales, leading to more complex distri-
butions. Nevertheless, many distributions can be modeled well by assuming
a hard-core or clustering model. In addition to interactions, other operations
such as thinning, that is, taking out points from an initial point set, or super-
position of different point sets can be used as generating rules. We review
some of the proposed models for hard-core and clustering point processes
below. Examples of typical random, hard-core, and clustering distributions
are shown in Figure 5.1.

5.1.1 Hard-core Processes

Hard-core processes can be generated in two fundamental ways. The first
one involves thinning a given point cloud. Starting from a dense point set,
thinning can be applied to get a new set with no points closer to each other
than a specified distance. Although simple, this procedure often results in
a low density distribution. A familiar example of this procedure is known
as dart throwing in computer graphics, simple sequential inhibition in statistics,
and random sequential adsorption in physics. The second method to obtain a
hard-core process involves repulsion of points. In practice, this means the
points are moved in space according to the interactions among them. Such
simulations based on particle models have also been used in graphics [Turk,
1992; Witkin and Heckbert, 1994; Schmaltz et al., 2010].

Matérn Hard-core Processes. This process [Matern, 1960] is an instance
of the thinning-based hard-core processes. There are three variants of the
process depending on the thinning rule used. The process starts with an
initial point set distributed according to a Poisson process (i.e. uniformly
randomly distributed). The first type simply visits each point, and deletes
the points that have neighbors within a specified radius independently. The
second type generates a random mark in [0,1] for each point in the initial
dataset. The thinning is then performed by retaining only the points that
have no neighbors with smaller marks within a specified radius. A mark
for a given point can be seen as the time that point arrives. Then the second
type can be interpreted as retaining the points that arrived earlier than their
neighbors. The third type uses the same thinning procedure as the second
type iteratively. In the first iteration, it is exactly equivalent to the second
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type. For the next iteration, only the points that are not in the neighborhoods
of the points that were kept at the first iteration are considered when thinning.
The algorithm iterates by pruning the space of allowable points further at
each iteration.

The third type generates the densest patterns, followed by the second and the
first, respectively. Since all thinning operations are independent of each other,
the first and second type can be implemented in an embarrassingly parallel
way, while the third type needs multiple parallel steps corresponding to the
iterations.

The Dead Leaves Model. This model [Matheron, 1968] follows the natural
process of the piling up of dead leaves in nature. Each leaf is modeled as
a circular disk and falls onto the others at a time in (−∞,0]. The leaves are
allowed to overlap. After a given number of leaves fall, only the ones in the
top layer that can be seen fully are retained. This process approaches the
second Matérn hard-core process as the number of leaves goes to infinity.

Random Sequential Adsorption (RSA). This process is equivalent to the
well-known dart throwing method in computer graphics. At each iteration, a
new point is generated uniformly randomly in space, and it is retained if there
is no other point in the neighborhood of it. Unlike the previous processes,
RSA is an inherently sequential algorithm, although parallel algorithms that
approximate the RSA process have been devised [Wei, 2008]. RSA can be
interpreted as thinning an infinitely dense initial point set corresponding to
the whole space.

Force-based Interactions. An interaction-based approach to generate hard-
core distributions parallels the physical forces between particles. Depending
on the forces used, many different algorithms have been devised in physics
and statistics [Jodrey and Tory, 1985; Moscinski et al., 1989; Bezrukov et
al., 2002], and computer graphics [Turk, 1992; Witkin and Heckbert, 1994;
Schmaltz et al., 2010]. The algorithms move points according to the computed
forces so as minimize the defined energy. Since a continuous movement is
allowed, the distributions can have much higher density of points than the
ones generated by the thinning-based algorithms. However, distributions
converge to a regular pattern due to the deterministic nature of the algorithms,
and they have typically higher time complexity.

5.1.2 Clustering Processes

Clustering processes are characterized by a heterogeneous point pattern with
lumps of points. This is a very broad definition and without the assumption
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of isotropy, is not well-defined. This is because clusters can also be seen as
density variations in the point pattern. Many object distributions in nature
such as distributions of galaxies, plants, or seeds, exhibit clustering patterns
at various scales. Formation of a clustering pattern can be due to several
processes. Thinning of an initial uniform pattern or generation of points
around initial seed points are two instances of constructions. Apart from
these, interactions among points in the form of attraction can also lead to
clustering. Below we describe a seed-based clustering process, the Neyman-
Scott process, and two other processes that can be seen as special cases of the
Neyman-Scott process.

Neyman-Scott Processes. Neyman-Scott processes [Neyman and Scott,
1952] are based on generating secondary points around an initial set of seed
points. The seed points are uniformly distributed according to a Poisson
process. Around each seed point, a random number of secondary points are
produced, following a specified distribution. Only the secondary points are
retained for the final pattern. For isotropic processes, the distribution of the
secondary points around each seed point is the same and radially symmetric.
Assuming a seed point at the origin, this distribution can be described by
a uniform sampling of directions, and some distribution of distances of the
secondary points to the origin.

Since the generation of seed and secondary points is done independently, the
process is quite simple to simulate from. First, a uniformly distributed set
of seed points is generated. Then, for each seed point xs, a random number
n from a given discrete probability distribution P(n) is drawn. Finally, n
secondary points are placed around this seed point. Each secondary point’s
location is given by x = xs + rd, where d is a direction drawn from a uniform
distribution, and r is a distance following a given continuous probability
distribution p(r). Depending on the choice of these probability distributions,
different processes can be obtained. A choice of uniform distribution for p(r)
leads to the Matérn Clustering Process [Matern, 1960], whereas a normal
distribution for p(r) leads to the Modified Thomas Process [Thomas, 1949].

5.1.3 General Process Models

Apart from the discussed dedicated models, there exist more general models
that can be used to generate more complex patterns. We will describe two
such processes: Cox processes and Gibbs processes. In particular, Gibbs
processes are quite flexible and can be used to synthesize a variety of distribu-
tions once pairwise correlations are extracted. We start with Cox processes.
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Cox Processes. A Cox process is constructed in two steps. In the first step,
a stochastic intensity Λ(x) is set, and an instance λ(x) is drawn. Intuitively,
this means the density of points at different locations in space is random
and determined by drawing from a probability distribution for a particular
instance of the process (please see Section 5.2.2 for a precise definition of
intensity). In the second step, a random point set is generated according to
the drawn intensity. This two-level construction results in a valid definition
of an isotropic process and yet very flexible to model especially clustering
processes.

Gibbs Processes. A fundamental limitation of Cox processes is that they
ignore any interactions between points. Gibbs processes (also called Markov
point processes) are specifically designed to take pairwise interactions into
account. For modeling the interactions, a potential function ψ(d(xi,xj)), for
a distance function d, is defined. For a particular distance r in the process,
ψ(r) = 0 means that there is no interaction between the points at this distance.
The case ψ(r) > 0 implies a repulsion, and conversely ψ(r) < 0 leads to
attraction between points. For simplicity, if we assume that the point process
is finite and the number of points in the space under consideration is fixed to
n, then the unnormalized probability p(x1, · · · , xn) of having the particular
configuration {xi} of points is given by the following expression:

p(x1, · · · , xn) = e−∑n−1
i=1 ∑n

j=i+1 ψ(d(xi,xj)). (5.1)

Note that the points denoted by xi are abstract identities for which xi’s are
the locations. This probability is defined over the set of all possible point
configurations. Using different potential functions ψ, very different processes
can be obtained. An example is a hard-core process with separation distance
r0 between the points. For this case, the potential function is ψ(r) = ∞ for
r ≤ r0 and ψ(r) = 0 for r > r0. Hence, there is no interaction beyond the
distance r0, and the points repel each other with infinite strength for smaller
distances.

The power of Gibbs processes comes from the definition of the probabil-
ity in Equation 5.1. Once defined, it can be used in Markov Chain Monte
Carlo algorithms that accept unnormalized densities for simulations. These
algorithms are extensively used to sample from high dimensional distribu-
tions and typically involve proposals of addition/deletion of points at each
iteration.
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5.2 Statistics for Point Processes

For most cases, only a single distribution of points is known, and no inform-
ation about the underlying point process is available. Hence, it is crucial
to develop appropriate statistical measures to explain distributions without
reference to the underlying process. Such statistical measures have been
proposed and extensively used to analyze distribution of locations of objects
ranging from atoms to galaxies. In this section, we focus on some important
measures and their properties.

For isotropic point processes, there exist several commonly used statistics.
Since correlations among points far away from each other are typically insig-
nificant, the statistics focus on explaining short-distance correlations between
the points. A fundamental property that shapes point process statistics is the
degree of the correlations. A 1st order statistic considers each point at a time
and hence interactions between points cannot be understood. A 2nd order
statistic can be used to investigate interactions between pairs of points. Stat-
istics of higher orders are similarly defined. In order to properly define the
statistics, we first explain the probabilistic framework, and then summarize
some of the important statistics commonly used in the statistics and physics
literature.

5.2.1 Definitions

Statistical analysis of point processes calls for definitions of probabilities,
from which average values can be obtained. One way to assign probabilities
for processes is considering subsets of the space the points live in. Specifically,
let V be a Borel set and N(V) be the random number of points in set V. Note
that since the point process is stochastic, N(V) is a random variable for a
fixed V (assuming that N(V) < ∞ for a bounded V). Then, the probability
P(N(V) = n) of having n number of points in set V, the expected value
E[N(V)] of the number of points in set V, and higher order moments can be
defined.

For isotropic point sets, the choice of the origin does not affect the computed
statistics. We assume that the point process is shifted such that there is a
point of the process at the location o. Then, probabilities and statistics can
be defined with respect to the point o. For example, E[N(b(o,r) \ {o})] is
defined as the expected number of points in a spherical neighborhood of
radius r centered at o, without counting o. Finally, we denote a distance
metric of the space that the points live in with d(x,y) or d(x,y), depending
on the implications.
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5.2.2 First Order Statistics

A familiar 1st order statistic is the intensity of a point process. Specifically,
given a Borel set V, the intensity is defined as:

λ =
E[N(V)]

|V| , (5.2)

where |V| denotes the volume measure of the set V. For isotropic processes,
this is a constant number that identifies how many points are to be expected in
a given unit area. Hence, for isotropic point sets, simply counting the number
of points in the given point set and dividing by the area of the observation
window gives an estimate of intensity. Note that intensity is more commonly
known as density in computer graphics. Intensity is very simple to compute
and interpret, but is insufficient to describe distributions since it completely
ignores any interactions among the points. This lead to the development of
higher order statistics, as explained in the next sections.

5.2.3 Second Order Statistics

Statisticians and physicists regard 2nd order statistics and in particular the pair
correlation function (PCF) as the most informative and for most distributions
sufficient for unique determination (this is called the second order dogma [Illian
et al., 2008]). This is supported by a theorem by Boutin et al. [Boutin et al.,
2004; Boutin and Kemper, 2007]. The theorem states that the set of point distri-
butions that are not uniquely determined by their distance distributions has
Lebesgue measure zero in the nd dimensional space of point configurations,
when n ≥ max(3,d + 2) for n points in d dimensions. Thus, for isotropic
point sets, the distribution of pairwise distances, and hence the PCF, uniquely
determines most of the point distributions (for the interpretation of the PCF
as the distribution of pairwise distances, please see Section 5.3.1).

Below we explain three fundamental 2nd order statistics: Ripley’s K-function,
the L-function, and the PCF.1 These measures are related to each other by
simple formulas, which lead to the definition of the PCF. Hence, they allow
to see how the PCF is derived starting from basic probabilities.

Ripley’s K-function. This statistic measures the number of points in a
spherical neighborhood of a point of the process, not counting the point itself.
It is defined as follows:

1The pair correlation function will be investigated in detail in Section 5.3 from a slightly different
perspective.
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K(r) =
E [N(b(o,r) \ {o})]

λ
. (5.3)

The statistic K(r) is proportional to rd for points in Rd. This means the
fluctuations and hence the information content is more observable for small
r’s. This limits its use in practical applications.

The L function. The L function is defined in terms of Ripley’s K-function
as:

L(r) =
(

K(r)
|Vd|

)1/d

, (5.4)

where |Vd| denotes the volume a unit sphere in d dimensions. Although
L(r) contains exactly the same information as K(r), L(r) is more suitable for
analysis since it always grows proportional to r.

The Pair Correlation Function. The pair correlation function can also be
defined in terms of Ripley’s K-function with a simple formula:

g(r) =
K′(r)
|δVd|rd−1 , (5.5)

where |δVd| denotes the volume of the boundary of a unit sphere in d dimen-
sions. Similar to the L function, it grows more slowly with r and hence more
amenable to analysis. We will give another interpretation of this measure,
and investigate its properties in detail in Section 5.3.

5.2.4 Higher Order Statistics

It is possible, and necessary for some applications, to consider higher order
statistics for analysis of some point patterns. These statistics measure various
indicators of the correlations among points. However, most are rarely used
in practice.

One possible way to get higher order statistics is utilizing the Voronoi diagram
of the set of points in a given distribution. Voronoi-based statistics start with
computing the Voronoi diagram or the Delaunay triangulation of the points.
Next, quantities related to the shapes of the simplices are computed and
compared [Medvedev and Naberukhin, 1987; Naberukhin et al., 1991]. In
general, it is easier to distinguish fine-scale details by considering simplices
in a Delaunay triangulation than in a Voronoi diagram [Illian et al., 2008].
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This is because a simplex in the Delaunay triangulation typically depends on
less points.

An example usage of these statistics appeared in the paper by Balzer et
al. [Balzer et al., 2009], where the authors use the number of neighbors of the
Voronoi regions to determine regularity in the point set. The presence of large
patches of hexagonal regions reveal that the point set has regularities.
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5.3 Analysis of Point Distributions

As pointed out in Section 5.2.3, second order statistics and in particular the
pair correlation function (PCF) is regarded as the most informative of all,
and there is also a strong theoretical support for this conjecture. As will be
shown below, the PCF has a very simple and smooth estimator that can be
regarded as a kernel based estimator of the probability density function of
distances between points. We base our analysis on this estimator of the PCF
and show how it can be re-interpreted in a novel way to define a new and
unified characterization of point patterns.

In Sections 5.3.1 and 5.3.2, we explain the concepts needed for our purposes.
In Sections 5.3.3, 5.3.4, and 5.3.5 we introduce a new analysis of point distri-
butions in a space implied by the PCF.

5.3.1 The Pair Correlation Function

Intuitively, the pair correlation function g(x,y) describes the joint probability
of having points at locations x and y at the same time. A precise definition of
the PCF can be given in terms of the intensity λ and product density $ of a
point process. The intensity λ(x) of a point process is the average number of
points in an infinitesimal volume around x. Hence, intuitively it measures
the average density of the points. For isotropic point processes, this is a
constant value λ. To define the product density, let xi denote the points, Bi
infinitesimal spheres around the points, and dVi the volume measures of
Bi. Then p(x1, · · · ,xn) = $(x1, · · · ,xn)dV1 · · ·dVn is defined as the probability
of having xi in the infinitesimal spheres Bi. For a pair of points, a second
order version of this probability is p(x,y) = $(x,y)dVxdVy. In the isotropic
case, $ only depends on the distance between the points, hence one can write
$(x,y) = $ (‖x− y‖) = $(r) and p(r) = $(r)dxdy. The PCF is then defined as

g(r) =
$(r)
λ2 . (5.6)

For Poisson processes, there are no correlations between the point locations
and thus p(r) = λdxλdy, which implies that g(r) = 1. Generally, the shape
of the PCF depends on the clustering and repulsion among the points. It can
be shown that as r→ ∞, g(r)→ 1. For many point sets, there is a finite rc
such that g(r) = 1 for r > rc and hence, most information about the point set
is contained in g(r) for the lower values of r.
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Figure 5.2: PCF, irregularity, and radial spectral measures for distributions generated by
various algorithms. All point sets have approximately 1024 points. For the
PCF and irregularity graphs, r ∈ [σ,5] rmax.

5.3.2 Estimation of the PCF

In order to estimate the PCF, the intensity and product density should be
estimated. The trivial way to estimate the intensity is dividing the number
of points by the volume of the observation region, that is λ̂ = n/|V|, which
provides an unbiased estimator. Estimating the product density is more
involved and window edge effects should be taken into account. In practice,
edge effects are less important when hard-core processes are considered.

We adapt an estimator designed for isotropic distributions [Ohser and Mck-
lich, 2000; Illian et al., 2008]. Disregarding the window edge effects, the
estimator can be given by
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Figure 5.3: PCF, irregularity, and radial spectral measures for clustering distributions
generated by the Matérn clustering process with clustering radius 0.8rmax.
All point sets have approximately 1024 points. For the PCF and irregularity
graphs, r ∈ [σ,5] rmax.

ĝ(r) =
|V|

|∂Vd|rd−1n2 ∑
i 6=j

kσ

(
r− d(xi,xj)

)
. (5.7)

Here |∂Vd| denotes the volume of the boundary of a unit sphere in a d di-
mensional domain, and d(xi,xj) is its distance measure. We use the Gaussian
kernel kσ(x) = 1√

πσ
e−x2/σ2

in our estimators.

This estimator makes it clear that the PCF boils down to a density estima-
tion of the distribution of the distances. The inverse weighting by the term
|∂Vd|rd−1 normalizes the distribution by the volume of an infinitesimal spher-
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ical shell of radius r since there will be naturally more distances at larger
radiuses.

In Figures 5.2 and 5.3, PCFs of some point distributions are plotted. Unlike
the spectral measures, the smoothing level we set makes the PCF estimates
smooth and indistinguishable for different instances of the same distribution.
This property is important if only a single distribution is all we have to extract
the properties of the underlying point process.

Relation to Other Analysis Methods. The power spectrum and the dif-
ferential domain analysis of Wei and Wang [2011] are two proposed tools
for the analysis of distributions in computer graphics. We also utilized the
power spectrum to analyze the distributions obtained in Chapter 4. It can be
shown [Wei and Wang, 2011] that the power spectrum is the cosine transform
of the function used for differential domain analysis. Hence, both contain the
same information. The power spectrum and the differential domain function
are computed using the difference vectors xi− xj (assuming Rd for simplicity).
The differential domain function can be defined in terms of the probability
density function of these difference vectors, which implies that power spec-
trum also depends on this density. For analysis, radial averages around the
origin are computed to generate R→R functions via a histogram with a bin
for each concentric shell. The variation of the function values within each
bin is defined as anisotropy, which measures the deviation of the distribu-
tion from being isotropic. Thus, the main statistics used for discriminating
isotropic distributions are the radial mean plots.

The estimator ĝ approximates the probability density function of the mag-
nitude of the difference vectors, ||xi − xj||. This means it contains the same
information as the radial averages for the mentioned analysis methods, and
one can be obtained from the other. For isotropic distributions, the mag-
nitudes of the difference vectors are the only quantities that need to be used
in a 2nd order statistic, since they are rigid motion invariant.

Parameters. The most important parameter of the estimation is σ. In
point process statistics, there is no general consensus on how to choose this
parameter [Illian et al., 2008]. Small values will cause fluctuations in the
density estimation and make the estimator change from one instance of a
point distribution to another. Although this is desired for the analysis of a
particular instance, obtaining a general characteristic for a particular type
of distributions requires to choose a certain degree of smoothness. Another
parameter is the range [ra,rb] of the r values. This range should ideally cap-
ture enough of the characteristics to distinguish different processes without
redundancy.
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In order to define these parameters in relative terms, we first normalize the
distances by the distance rmax defined as the minimum distance between
pairs of points for the maximum packing of points in a given volume [Lagae
and Dutré, 2008; Gamito and Maddock, 2009]. This normalization ensures
that the number of points and the volume considered do not affect the PCFs.
We then assign σ = 0.25 and rb = 2.5 or 5, for all results obtained in this
chapter (several PCF plots in the figures have rb = 5 for illustration purposes).
In our experiments, values σ ∈ [0.1,0.5] and rb > 2.0 provided good results.
The lower limit ra cannot be set to 0 due to the numerical problems. Although
there exist solutions such as the reflection method to accurately handle the
unstable range [0,σ] [Illian et al., 2008], we refrained from using them for
simplicity of the algorithms and expressions. In practice, we used values as
low as ra = 0.01σ in our algorithms without problems. All plots in the figures
also use this value for ra, unless stated otherwise. Finally, a sampling of r
should be specified to reliably capture the shape of the estimator for the given
smoothness level. We use a simple regular sampling with a spacing of 0.05
between the samples.

5.3.3 The Pair Correlation Space

Equation 5.7 can be interpreted as the average of distance distributions for
each point

ĝ(r) =
1
n ∑

i
ĝi(r), (5.8)

where ĝi(r) =
|V|

n|∂Vd|rd−1 ∑j 6=i kσ

(
r− d(xi,xj)

)
. This implies that we can con-

sider all ĝi(r)’s to describe the distributional characteristics instead of just
using the mean given by the PCF. Although one can work in the functional
space, for the convenience of the exposition and its connection to the al-
gorithms we use in practice, we consider a discretized PCF such that the
functions are evaluated at discrete radiuses r1 · · · rnr . With this discretization,
one can define the vectors φi = [ĝi(r1) · · · ĝi(rnr)]

T and their mean φ̄ = 1
n ∑i φi

to describe the distribution of the points. We call the space where φi’s live as
the pair correlation space (PCS).

Since the PCS only depends on the distribution of the distances, it is rigid
motion invariant. As long as the same discretization for r is used, one can map
different point sets into the same space. Hence, each point set is described by a
distribution of vectors in this space and the empirical mean of this distribution
is given by φ̄. Precise matching of the distributional characteristics requires
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matching of the probability distributions of φi’s. However, as we will see in
the next section, the distribution of φi’s, the mean φ̄, and regularity are highly
correlated.
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Figure 5.4: Vectors in the PCS for different distributions (left to right, top to bottom:
Regular grid, dart throwing, [Balzer et al. 2009], and random distribution)
are plotted. The r changes along the x axis, and index of points along the y
axis.

5.3.4 Characterization of the Distributions in the PCS

In general, matching probability distributions requires parameter estimates
that can be costly. In the high dimensional PCS, this will manifest itself as
computational and algorithmic complexity when one tries to match point
distributions. On the other hand, we expect that the mean φ̄ might properly
capture all characteristics of point distributions since it is widely used in
many fields. To provide evidence for this conjecture, we perform an analysis
of the distributions of the vectors in the PCS.

In Figure 5.5, PCS vectors for different distributions are plotted. We embed-
ded the vectors into a 2D space using principle component analysis computed
on all φi’s (c) and means φ̄ (a and b) of 10 instances of distributions with ap-
proximately 1000 points. To generate the clustered distributions, we used the
Matérn clustering process with different seed points and radiuses of clusters.
This process is simulated by seeding a number of points in space following
a Poisson distribution and generating clusters of points around those seeds
within a given clustering radius uniformly. The number of points in the
clusters follows a Poisson distribution. The mean of this distribution is set to
the number of points desired (1000) divided by the number of seed points.

The magnitude of the eigenvalues (d) clearly show that the data can be well
explained using only 2 dimensions. Figure 5.5 (a) illustrates that there is a
clear separation between clustering and hard-core processes, with the random
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Figure 5.5: (a) 2D embedding of the vectors φ̄ in the PCS for both clustering and hard-
core point processes with 10 different distributions for each different point
process. (b) Embedding of the hard-core part. (c) Embedding of the vectors
φi for the hard-core distributions. (d) Left to right: the eigenvalues of the
covariance matrices for the three embeddings in (a), (b), and (c), respectively.
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distribution on the border. For clustering processes, decreasing number of
seed points for clusters results in scattering of φ̄’s. For hard-core processes,
going from random to more regular point distributions, the variance of
the φi (c) and scattering of φ̄ vectors (b) diminish and in particular, for the
regular grid, the φi distribution becomes a single spike. Hence, regularity and
uniformity in point distributions result in less variance of the vectors in the
PCS. This is further illustrated in Figure 5.4, where we plot all φi vectors for
different distributions. It can be clearly seen that the variance of the vectors
is higher for less regular distributions.

Another interesting property of the PCS is that the φ̄’s effectively lie on a
line, as can be observed from the magnitude difference between the first
eigenvalue of the covariance matrices and the others in Figure 5.5 (d), and
also from the embeddings in Figure 5.5 (a), (b), and (c). For the hard-core
distributions, this line extends from the φ̄ for random distributions to that of
the regular grid. The parameter of the means on this line correctly determines
the order of regularity in the point distributions. In particular, Schlömer et
al.’s algorithm [2011] is found to be the most regular, followed by Balzer et
al.’s algorithm [2009] and then dart throwing and different levels of jittering.
This ordering matches the regularity and packing density observed for these
algorithms in practice [Schlömer et al., 2011].

This analysis gives us a tool to characterize the distributions generated by
different processes or algorithms. The means φ̄ for a distribution are clustered
with variance getting smaller as the means for different distributions start to
approach each other. Hence, the φ̄’s are sufficient to discriminate different
types of distributions. Furthermore, the means approximately lie on a 1D line
in the high dimensional PCS, which provides an easy quantitative measure of
the closeness of distributions generated by different algorithms. We quantify
such a measure in the next section.

5.3.5 A Measure of Irregularity

Regularity in a point distribution can be intuitively described as the indis-
tinguishability of the neighborhoods of points. As the distribution becomes
more random, or exhibit clearly distinctive structures at different locations in
space, the neighborhoods deviate more and more from each other. Following
this intuition, irregularity in a distribution can be described by the vectors
φi, which effectively describe the neighborhoods of the points in terms of the
distance distributions.

We illustrate that the variance in φi’s correctly captures irregularity in Fig-
ure 5.5 (c). When points are regularly distributed, the components of different
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φi’s match since the distance distribution around each point xi is the same. As
more randomness is added, this regularity degrades and in the case of com-
plete randomness, the vectors no longer correlate with each other. Clustering
processes further increase irregularity by introducing different structures at
different points.

This observation can be quantified as an irregularity measure as follows:

ιk =
1
n ∑

i
(φik − φ̄k)

2. (5.9)

This measure describes the observed irregularity in the point set at different
radiuses rk. In practice, we normalize this measure by the irregularity of the
empirical random distribution obtained by averaging 10 ι’s. The ι statistics
(irregularity) for different distributions are plotted in Figures 5.2 and 5.3. The
level of irregularity in hard-core and clustering processes considered exactly
match the order and scattering of the means φ̄ in Figure 5.5 (a) and (b), which
shows that ι is also an accurate measure of closeness in the PCS.
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Figure 5.6: Given a single example point set generated by different algorithms shown on
the top, our algorithm can generate new point sets with matching spectral
characteristics. Average spectra of 10 distributions are shown.

5.4 Synthesis of Point Distributions

All statistics for point processes are aimed at providing a good summary of
the distributional characteristics. Unlike other measures such as periodo-
grams, the PCF has a simple form and interpretation directly linked to the
distribution of the distances between pairs of points. The PCS analysis we
presented also shows that it characterizes point distributions well. In this
section, we build on these properties and propose two simple synthesis al-
gorithms that use the PCF as a global statistic. The first one relies on simple
random sampling and can provide an initial distribution for the second relax-
ation based method. We assume that a target PCF g0(r) is computed using
one or more examples, or given by the user. The goal of the algorithms is to
transform an arbitrary input point set such that its PCF matches the target
PCF. The reader will see similarities between the algorithms explained below
and the algorithms proposed in Chapter 4. Indeed, our aim is to general-
ize the commonly used algorithmic techniques for generating blue-noise
distributions to general distributions.
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5.4.1 Generalized Dart Throwing

Our first algorithm generalizes the well-known dart throwing algorithm.
In the original algorithm, at each step a random point is generated. If the
distance of this point to the closest point in the set of already accepted points
is smaller than desired, it is rejected and otherwise it is accepted. From this
definition of the algorithm, it is clear that only the lower end of the PCF is
used in the decision step. In order to extend this algorithm for a given target
PCF g0, one can simply impose the condition that at any given iteration,
g(rk) ≤ g0(rk) ∀rk. Here, g(r) is normalized by the target number of points.

The pseudo code of the resulting algorithm is provided in Algorithm 2. The
algorithm reduces to standard dart throwing if the range upper limit rb is set
to the hard-core radius between the points. In practice, we use a parameter
ε and relax the condition as maxk(g(rk) − g0(rk)) ≤ ε. The ε is changed
at each iteration with a user defined function. We used a simple function
fε(iteration) = c iteration, for some constant c. Using this relaxed version
avoids the expected high rejection rates and deadlocks due to infeasible
configurations but also distorts the desired characteristics. Nevertheless, this
algorithm provides a very good initial distribution for our gradient descent
based fitting algorithm.

Input: Target g0(rk), number of points nT, dimension d, volume V
Output: Point Set P
P = ∅, g(rk) = 0 ∀k, iter = 0

while (|P| < nT)
ε← fε(iter)
generate a random point x in V
update g(rk) ∀k for x using equation 5.11
with n = nT in the normalization

if (maxk(g(rk)− g0(rk)) ≤ ε)
add x to P

else
restore previous g(rk) ∀k

iter← iter + 1
Algorithm 2: Generalized Dart Throwing
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5.4.2 PCF Fitting by Gradient Descent

This fitting algorithm takes a random point set, or the output of Al-
gorithm 2 as the input, and tries to minimize the least squares fitting error
E(x1, · · · ,xn) =

∫ ∞
0 (g(r)− g0(r))

2 dr. This corresponds to a least squares fit-
ting of the means ||φ̄ − φ̄0||2 in the PCS. Since we discretize r to rk’s, the
integral turns into a sum and the normalized gradient with respect to a point
xm can be computed as follows:

∆m = −∑i 6=m umiwmi

|∑i 6=m wmi|
, (5.10)

wmi = ∑
k

g(rk)− g0(rk)

rd−1
k

(dmi − rk) kσ(dmi − rk).

Here, umi = ∇xm dmi (the unit vector from xi to xm for Euclidean spaces)
and dmi = d(xm,xi), which is assumed to be symmetric for brevity of the
expressions.

At each iteration, each point xm is moved by a gradient descent
xk+1

m = xk
m − λ∆m. To determine the step size λ, the algorithm performs a

simple search by taking 5 different λ values 10−i i = 1, · · · ,5 and accepts the
one that causes the most reduction in the error. When a random point set is
used as the input, reaching convergence takes longer, but the characteristics
of the output point sets are not affected significantly. However, computing
the initial point set with Algorithm 2 improves convergence such that the
number of iterations are not affected by the number of points [Schmaltz et al.,
2010].

5.4.3 Analysis

Updating the PCF In both algorithms, the PCFs should be updated after
each operation of point insertion or movement. The effect of a point xm on
the PCF can be computed using the following formula

δk(xm) =
|V|

|∂Vd|rd−1
k n2 ∑

i 6=m
kσ (rk − dim) + kσ (rk − dmi). (5.11)

As an example, when moving a point, δk(xnew)− δk(xold) should be added to
the PCF.
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Figure 5.7: (a) Running times of the algorithms as a function of the number of points. (b)
Convergence of the gradient descent algorithm for (left) hard-core distribu-
tions with different number of output points, and (right) for the distributions
in Figure 5.8.

Time Complexity The time complexity of the algorithms depends on the
number of iterations to convergence, number ns of rk samples, and the neigh-
borhoods used when computing the gradient of the PCF and the PCF itself.
The maximum neighborhood size depends on two factors, σ and rb, and can
be precisely given as rmax(rb + ςσ) where ς is the cutoff factor used for the
Gaussian kernels. For isotropic point sets, rmax = cdλ−1/d for a constant cd
that depends only on the dimension. The number of points in a hypersphere
of radius r in d dimensions is given by rd|Vd|λ with |Vd| the volume of a unit
sphere. Substituting the expression of the maximum neighborhood size, we
get that number of points in the neighborhoods is αd

d|Vd|with αd = cd(rb + ςσ),
which only depends on the dimension d. Hence, updating the PCF or comput-
ing the gradient of the PCF for a single point takes constant time with respect
to the number of points, resulting in O(n) complexity for all algorithms. We
verify the linear complexity of our algorithms and illustrate the convergence
of the gradient descent algorithm in Figure 5.7 (a) and (b), respectively. Con-
vergence of the gradient descent algorithm is independent of the number of
points and 5 iterations for hard-core and 10 for clustering distributions are
sufficient to get accurate characteristics.
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5.4.4 Extensions

Multi-class Sampling In point process statistics, marked point processes
are used to describe point sets where the points have associated properties in
addition to locations [Illian et al., 2008]. Each point can have a qualitative, dis-
crete, or continuous mark. When discrete marks are used to indicate different
classes of points, the pair correlation functions are extended to include correl-
ations between classes such that one has the interclass pair correlations gij(r)
for all classes i and j. The exact form of gij(r) depends on the mark correlation
functions chosen. Since interclass correlations are coupled, minimization of
an energy that involves all gij(r)’s will be unnecessarily complex. Instead
of using all interclass correlations, we include only the intraclass pair cor-
relations in the energy function to be minimized such that Etotal = E + ∑i Ei,
where E is defined in Section 5.4.2 and Ei is computed using only the points
in class i. In our experiments, this produced comparably accurate reconstruc-
tions and also reduced the time complexity and number of iterations of the
algorithms.

Adaptive Sampling By adjusting the distance measure used, one can easily
extend the algorithm to generate adaptive isotropic or anisotropic samplings.
Here, we concentrate on adaptive isotropic samplings where the distance is
given by d(x,y) = ||x− y||/s(x) for a scaling function s. Ignoring the change
in the scaling function [Fattal, 2011], the expressions for the PCF and its
gradient change trivially. Given an arbitrary importance function f (x), the
scaling function can be set as s(x) ∝ f (x)−1/d.
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Figure 5.8: Reconstruction of clustering patterns generated by the Matérn clustering
process with different number of seeds and clustering radiuses.

5.5 Results

As the first experiment, we tested if our algorithms can reproduce the charac-
teristics of distributions generated by existing algorithms. In Figure 5.6, top,
we show averaged spectra of 10 distributions generated by dart throwing,
Balzer et al.’s algorithm [2009], and Matérn clustering process. For each
algorithm, we used a single distribution generated as the example (shown
in the figure), and ran our algorithm 10 times using the same example. The
spectra of the generated distributions (Figure 5.6, bottom) almost exactly
match those of the distributions by the original algorithms. As a further
test, we generated points from the Matérn clustering process with different
number of seed points and clustering radiuses in Figure 5.8. For all cases,
our algorithm could accurately reproduce the same characteristics. We used
rb = 5 for the clustering processes to get more accurate results.

Multi-class distributions can also be accurately reconstructed by our method.
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Figure 5.9: Given an example point set with 600 points, our algorithm can generate point
sets with any number of points.

This is illustrated in Figures 5.14, 5.13, and 5.15 (a, b). Intraclass as well
as overall PCFs are well-preserved. The distributions of points in different
classes can have very different characteristics. In Figure 5.14, although a
small number of points from each class are used as examples, accurate results
are obtained for all four classes.

As illustrated in Figure 5.9, our algorithm does not need the example sample
size to be the same as the output size. An example point set with 600 points
is sufficient to generate outputs of various sizes with identical characteristics.
Yet, since the PCF depends on a density estimation of distances, for extremely
small point sets, there can be unwanted fluctuations. We experimentally
found out that for rb = 2.5, example sets of around a hundred points are
sufficient to produce accurate PCFs for 2 dimensions. Dimensionality of
the example and output point sets can also be set arbitrarily since the PCF
is defined for any dimensions. We show an example in 3 dimensions in
Figure 5.10.
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Figure 5.10: A 3D point set generated using a given 2D example and their PCFs.
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Figure 5.11: By interpolating PCFs of point sets generated by Balzer et al.’s algorithm
[2009] and Matérn clustering process, distributions with novel charac-
teristics can be obtained. Average spectra of 10 distributions are shown.

By interpolating the PCFs, a family of distributions with novel character-
istics can be obtained. Since the PCFs effectively lie on a line as shown in
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Input Density 200 Points 1000 Points Example Distribution 

Figure 5.12: An example distribution and input density can be combined for adaptive
sampling.

Figure 5.5, simple linear interpolation can generate valid PCFs from which
distributions can be synthesized. An interesting application of this interpola-
tion is to combine hard-core and clustering distributions. Results of such an
experiment are shown in Figure 5.11. The PCF φ̄0 of a hard-core (Balzer et
al.’s algorithm [2009]) and that φ̄1 of a clustering (Matérn clustering process)
distribution are interpolated as φ̄0(1− t) + φ̄1t and new distributions having
the interpolated PCFs are synthesized (with rb = 5). As the parameter t is
changed, the evolution of the spectra and point distributions can be clearly
seen.

Finally, density adaptation of our algorithm is illustrated in Figure 5.12 for dif-
ferent number of points. Given an example sample distribution and an input
density, our algorithm can generate adaptive samplings with characteristics
matching the example, and density matching the input density.
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Figure 5.13: Given a small example distribution of two types of trees, our algorithm can
generate a bigger forest with the same characteristics. For the PCF graphs,
r ∈ [σ,5] rmax.

5.6 Applications

5.6.1 Synthesizing Real World Structures

Many entities in the real world have distributions with particular characterist-
ics. Often, these distributions have various scales of clustering and repulsion,
and interclass as well as intraclass interactions, leading to interesting patterns.
We applied our algorithms to learn PCFs of real world distributions and
generate new distributions with the same characteristics.

An example synthesis result is shown in Figure 5.14, where a photo of candies
with four different colors is used to generate the example PCFs (the black
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curve in each PCF graph is the PCF of all points). As shown in the PCF
graphs, our algorithms are able to precisely match the characteristics of all
the distributions. This is also apparent in the rendering, where red candies
are in clusters, and all candies as well as candies of the same colors are
distributed with a hard-core distance between them. A further example is
shown in Figure 5.13, where data gathered from a real distribution of oak and
beech trees [Pommerening, 2002] is used as the input example. Our synthesis
algorithm can precisely reproduce the characteristics, which allows us to
construct and render a bigger forest following the real world distributions.
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Real world (photo) Synthesized  (rendering) 

Figure 5.14: A new distribution of candies is generated based on a real world distribution
extracted from a photograph.

5.6.2 Turbulent Fluid Simulations

In fluid simulations, methods for detail enhancement have become popular
in recent years. These methods augment a low-resolution base simulation
with synthetic sub-grid detail, by e.g. applying a curl noise turbulence texture
[Kim et al., 2008]. While the detail structure is known for the special case of
homogeneous, fully-developed turbulence in which Kolmogorov’s law holds,
turbulent details in real flows tend to be more complex, due to anisotropic
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effects and transition processes. It would therefore be interesting to extract
the fingerprint of a set of given reference turbulent flow simulations, and use
this as a basis for detail synthesis on top of other arbitrary flows.
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Figure 5.15: (a) Top: a vorticity field extracted from a reference high-resolution simula-
tion, and bottom: an example distribution with negative (blue) and positive
(red) particles generated according to the field. (b) Synthesized particle
distribution. (c) Top: base simulations, and bottom: base simulations with
the synthesized vorticity. (d) Using different example fields leads to different
behavior.

Our method allows us to achieve this transfer directly in a Lagrangian manner,
using a very compact fingerprint. A small vorticity field from a real high-
resolution simulation is taken as the input (Figure 5.15 (a), top). This field
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is positive (red) in some regions and negative (blue) in others. The sign
determines the direction of rotation (clockwise or counterclockwise), and the
absolute value determines how strong the vorticity is, i.e. how much the fluid
is rotating in that region. The field is separated into a negative and a positive
field, and for each, a set of vortex particles is randomly placed according to the
absolute value of the density field (Figure 5.15 (a), bottom). Next, we compute
the PCFs for this two-class distribution of negative and positive particles,
and use our multi-class synthesis algorithm to generate a large distribution
of arbitrary size and resolution (Figure 5.15 (b)). Finally, these synthesized
vortex particles act as our turbulence representation [Selle et al., 2005], which
means they induce small-scale rotations to the flow. Figure 5.15 (c) illustrates
the base simulations and the synthesized flows using the generated vortex
particles. Using fingerprints recorded from different reference simulations,
we can also obtain different turbulence strength and behavior as illustrated
in Figure 5.15 (d).

134



5.7 Discussion and Outlook

5.7 Discussion and Outlook

In this chapter, we introduced novel analysis and synthesis techniques for
point distributions with general characteristics. We also presented several
experiments and example applications where our techniques can be useful.

A fundamental limitation of utilizing the PCF is that it is only a second-order
statistic depending on pairs of points and hence cannot uniquely characterize
a given point pattern. However, as explained in Section 5.2.3, there is strong
empirical and theoretical results stating that the PCF is sufficient to charac-
terize most of the point processes uniquely. Nevertheless, the approach we
developed can also be generalized to higher order statistics.

On a more practical level, we observed that point distributions with highly
regular structures are harder to synthesize, as illustrated for the hexagonal
and regular grids in Figure 5.16. Furthermore, the Poisson disk radi-
uses [Lagae and Dutré, 2008] of the generated blue-noise distributions are
slightly lower than expected. For example, if dart throwing or Balzer et al.’s
algorithm [2009] is used to produce an example distribution, the Poisson disk
radiuses are in the range [0.67,0.75] and [0.73,0.74] with an average of 0.7031
and 0.7352, respectively. In comparison, the example distributions we used
have 0.7137 and 0.7765 as Poisson disk radiuses. Due to the global nature of
the PCF, our algorithms cannot precisely see the minimum of the distances,
in other words, summing many small distances reduces the effect of a single
distance. In addition, setting a lower limit ra due to numerical instability
causes the algorithms to not see some of the low distances. To solve this
problem, a minimum distance constraint can be imposed, and estimation
methods for lower r values [Illian et al., 2008] can be utilized.

We believe the proposed analysis and synthesis methods can be extended in
several ways and be utilized in many other interesting applications. Although
we presented results based on discrete marks, i.e. classes, the synthesis al-
gorithms can also be extended to reconstruct distributions of points with
continuous marks. This will allow to reconstruct various quantitative proper-
ties of objects such as length, size or age along with their locations. Another
important direction is using space-time processes and associated statistics [Il-
lian et al., 2008] to learn, categorize, and synthesize realistic movements of
objects such as humans or animals along with marks for further properties
such as gazing direction. Space-time processes can be further used to generate
point samplings for dynamic data such as videos or simulations.

By approximating the distance metric of a manifold [Wei and Wang, 2011;
Li et al., 2010b], our methods can also be extended to manifolds. Since the
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Figure 5.16: Distributions with highly regular structures are harder to synthesize.

algorithms only operate on the lower values of r, i.e. shorter distances, local
approximations of geodesic distances can be used. An interesting direction is
deriving an expression that can be used in a generalization of the gradient-
descent-and-projection algorithm we presented in Chapter 4, by appropriate
approximations of the metric of a surface defined as in Chapter 3. This will
lead to a unified treatment of general point distributions on point-sampled
surfaces.

Running times of our algorithms can be significantly improved by integrating
parallelization [Wei, 2008; Schmaltz et al., 2010] or tiling [Ostromoukhov et
al., 2004; Kopf et al., 2006] approaches. For the generalized dart throwing
algorithm, the third type of the Matérn hard-core process can be adapted
for increased parallelism. This process allows parallel updates of all points
at once at each iteration of the simulation. The gradient descent algorithm
resembles force based synthesis algorithms and hence can be parallelized
with similar techniques [Schmaltz et al., 2010].

Finally, we believe that many ideas from the point process statistics literature
can be extended and adapted for various applications in computer graphics
to help us better understand and computationally mimic the nature.
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C H A P T E R 6
Conclusions

In this thesis, we proposed novel methods for processing manifolds and point
patterns. We presented a manifold reconstruction method that offers a sharp
feature preserving and continuous MLS based surface definition, a manifold
sampling technique that results in accurate reconstructions and high quality
blue-noise samplings, and point pattern analysis-synthesis/reconstruction
algorithms that are the first to provide a unified treatment of general point
distributions. In addition to our extensive experiments, the utility of our
techniques has been tested and observed by many researchers worldwide,
resulting in high recognition and number of citations. We also published the
source codes resulting from our projects online.

On the way of developing our algorithms, we introduced several theoretical
ideas to computer graphics. We believe that the link between MLS surfaces
and LKR can be used to further improve reconstructions by integrating
various statistical methods into reconstruction algorithms. We also anticipate
that kernel based techniques can be utilized for improved processing of
manifolds, following the idea of operating in the RKHS of the heat kernel. For
point patterns, our analysis opens up a new way of looking at distributions
and underlying processes. We believe that such unified techniques can lead to
better understanding of possibly marked distributions in a diverse selection
of fields in computer graphics.

During the course of this thesis, we tried to unify concepts and methods by
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establishing relations among different techniques. This unification served
two purposes: it enabled us to better understand and compare different tech-
niques, and to see new ways of improving existing methods. This effort forced
us to look beyond the computer graphics literature, especially into statistics,
machine learning, data analysis, spectral analysis, and physics. We observed
that many fundamental ideas have been created from scratch in different
fields, emphasizing different aspects and consequences. Hence, it turned out
to be crucial to investigate various related fields to fully grasp the properties
of particular methods. We believe that we contributed to the inter-disciplinary
understanding of some concepts and methods in manifold/pattern sampling
and reconstruction, and that widening of the communication channels among
different fields is essential for further advancement.

6.1 Wider Outlook

In addition to the future directions and extensions we have mentioned, we en-
vision several other research directions in the scope of geometry and pattern
processing.

Due to the availability of vast sources of data, fusing and utilizing the diverse
variety of information for manifold processing is increasingly becoming a
necessity. The kernel based methods we have presented are particularly
suited for such tasks, by enhancing the kernels with different types of data.
Indeed, this has been the focus of kernel engineering in other fields, which
amounts to designing kernels and the associated feature spaces such that the
information at hand is used optimally.

Another fruitful idea that has been started to be explored recently is abandon-
ing the local approximation methods for a global and structure-aware recon-
struction. This development follows the non-local filtering approaches in, for
example, image processing, and depends on the assumption that repetitions
are indispensable in almost all geometry around us (see Section 2.1.4 for some
examples of these methods). This idea can be further extended to propose
glocal methods, that is, methods that integrate global structure preservation
into local approximations to achieve continuous, analytic, efficient, and flex-
ible representations. We believe that kernels provide a unifying framework
for such approaches. Furthermore, by treating the repetitions in a stochastic
framework, synthesis by using point pattern techniques can also be utilized.

The complexity of the geometric data has started to force the researchers to
leave the manifoldness assumption. Processing non-manifold geometry can
significantly widen the scope of the current methods and impact other fields

138



6.1 Wider Outlook

that have traditionally worked under the manifoldness assumption such as
image processing and data analysis. Although there have been recent efforts
for identifying non-manifold structures and their types [Dey et al., 2012],
a principled approach for handling manifold mixtures and singularities is
missing.

Learning manifold mixtures can also be coupled with point pattern methods
for better preservation of stochastic structures. Our pattern reconstruction
methods can work in arbitrary metric spaces. By extending them such that
the resulting distributions of points also respect the singularities, sampling
of manifold mixtures with given characteristics can be obtained. Immediate
benefiting applications from such an approach will be image stippling and
halftoning, where the current approaches typically assume some smooth
density field, although the image itself can contain non-smooth intensity.

In general, we believe that many methods that deal with stochastic point
distributions can be improved and enhanced by incorporating concepts from
spatial statistics, physics, and point processes. As mentioned in Section 5.7,
space-time processes and marked processes are two important subjects of
study that promises a principled treatment of a wide range of problems.

Finally, we believe that perception still plays a minor role in the manifold and
pattern reconstruction literature, unlike other fields such as image processing.
Utilizing perceptual metrics instead of the common practice of formulating
problems based on researchers’ intuition can have a prominent impact on
many current methods used.
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A P P E N D I X A
Appendix

A.1 Iteratively Reweighted Least Squares

Iteratively Reweighted Least Squares (IRLS) iteratively solves a non-linear
problem by solving a linear system at each iteration, weighted by the resid-
uals of the previous iteration. This allows to use arbitrary error functions
generalizing the usual least squares error. By making the error function less
sensitive to the outliers, robust approximation methods can be obtained.

Here, we derive the general formula for IRLS. Assume that the data is given
in the form {xi ∈Rd,yi ∈R}, where xi’s reside in the domain of the function
we would like to estimate robustly, and yi’s are the corresponding values
of the function. Then, we would like to solve the following minimization
problem

min
s ∑ρ(xi,yi,s). (A.1)

This in fact corresponds to the general form of an M-Estimator. To make it
more tractable, IRLS uses the following form:

min
s ∑ρ( f (xi,s)− yi) = min

s ∑ρ(ri). (A.2)
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Here, the ri’s denote the residuals, that is, the deviation of the estimated
function value from the expected value. Note that a least squares problem is a
special case of this problem with the quadratic error, ρ(ri) = r2

i . For the ψ-type
M-Estimators, the function ρ is differentiable and hence this minimization
problem can be solved by taking derivative with respect to the parameter
vector s and setting it to zero:

∂ ∑ ρ(ri)

∂s
= ∑ψ(ri)

∂ri

∂s
= ∑w(ri)ri

∂ri

∂s
= 0. (A.3)

Here, ψ(x) = ∂ρ
∂x is called the influence function, and w(x) = ψ(x)/x. The

reason for writing the problem this way becomes apparent if we consider
the weighted least squares problem: mins ∑ w(ri)r2

i . If we assume that the
weights w(ri) are constant, the solution of this weighted least squares problem
corresponds exactly to that in equation A.3. This suggests that one can get
the weights using the residuals from the previous iteration and solve the
following least squares system mins ∑ w(rk−1

i )r2
i , and then update the weights

according to the new residuals, and continue iteratively.

For a simple illustration of this general solution method, consider the
linear function f (x) = ax, f (x) : R → R. We would like to estimate a
with the IRLS. The residuals are given by ri = axi − yi, and their derivat-

ives are ∂r2
i

∂a = 2(axi − yi)xi. Hence, the ordinary least squares solution is
a = ∑ yixi/ ∑ xixi. To generalize this solution for another error function with
IRLS, this expression is simply replaced by ak = ∑ yixiw(rk−1

i )/ ∑ xixiw(rk−1
i ),

where rk−1
i = ak−1xi − yi. Note that all information about the error function

is buried into the weight function w and thus it is trivial to implement this
new minimization once the weight function is decided upon. So the main
decision to make is how to choose the weight functions.

Initial Weights. Since this is an iterative procedure, the initial condition,
i.e. the initial weight functions, should be chosen. A trivial choice is to
select w0

i = 1, which means the system to solve for the first iteration is just an
ordinary least squares system. Although it is known that this choice is not
optimal [Huber, 2004; Hoseinnezhad and Bab-Hadiashar, 2007], it provides
an easy and general way to handle the initial weights and performs well in
practice. Hence, we use this simple choice of the initial weights.

Weight Functions. A more fundamental question is how to choose the
weight functions w. As defined above, the weights are derived from the
objective function ρ and the influence function ψ. The most important property
of ρ(r) is that it should be robust to outliers, meaning that it should not
grow if the residual r > r0, where r0 depends on the expected residuals of
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Figure A.1: Some objective, influence and weight functions.

outliers. This causes that the outliers have less effect on the solution of the
minimization problem. Apart from this, the following properties are often
required for stable evaluation: bounded ψ, symmetric, positive-definite, and
convex ρ in the parameter s with a unique minimum at zero. We plot some
objective, influence, and weight functions in Figure A.1.
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A.2 Pseudocode for Projecting a Point onto the Surface
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A.3 Distribution of Effect of a Point on the Spectrum

Suppose that the eigenvectors ui of the n× n matrix H sample the eigenfunc-
tions ui such that (ui)j = ui(xj). Then eigenvalues of H also well approximate
those of h [Braun, 2006], thus we can approximately set λi(H) = e−λit. If we
define the eigenvector matrix as UT

ij = (ui)j, it can be shown [Schölkopf et al.,
1998] that there is the following relation between vi and U:

vi =
1√

λi(H)

n

∑
d=1

UT
idφd

Hence, we can write

δi = (φTvi)
2 =

1
λi(H)

(
n

∑
d=1

UT
id(φ

Tφd)

)2

=
1

e−λit

(
n

∑
d=1

UT
idh(x, xd)

)2

=
1

e−λit

(
n

∑
d=1

UT
id

∞

∑
k=0

e−λktuk(x)uk(xd)

)2

=
1

e−λit

(
∞

∑
k=0

e−λktuk(x)
n

∑
d=1

UT
idUdk

)2

=
1

e−λit

(
e−λitui(x)

)2

= e−λitu2
i (x)

In the fourth step, we used the fact that U is a unitary matrix. This means
that as long as ui(x)’s are not simultenously zero and for short time, each
δi will get a non-zero value. The zero set of ui(x) is called the nodal set (for
2-manifolds, the nodal line) with dimension one less than the manifold and
can have at most i + 1 nodal domains, where its sign does not change, for
λi in increasing order [Cheng, 1976]. This implies that those points where
more than one ui(x) is zero should be at the interesection of many nodal sets.
Hence, for most points on the maniold, most δi’s will be non-zero.
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A.4 Projection onto a Span in a Reproducing Kernel Hilbert
Space

Suppose we have vectors φi = φ(xi) that form the span, and the vector
φ = φ(x) to be projected onto the span. We also assume that dot product
in this vector space is given by the kernel k such that k(x,y) = φ(x)Tφ(y).
Although it is possible to find a basis of the span and compute the norm of
the projection, an easier way is using the fact that projection of φ is the closest
point of φ on the span. Thus it is sufficient to minimize the distance of φ to
the span to compute the norm of the orthogonal component ‖o‖, from which
norm of the projection follows as ‖d‖2 = ‖φ‖2 − ‖o‖2.

We want to minimize the distance of φ to the span, which is given by
‖φ−∑ aiφi‖2 with respect to ai’s. Denoting the kernel matrix as Kij = k(xi,xj),
and defining the vectors (a)i = ai and (k)i = k(x,xi), this minimization can
be expressed as

‖φ‖2 + ‖∑ aiφi‖2 − 2φT ∑ aiφi = k(x,x) + aTKa− 2kTa

which is minimized for a = K−1k. Substituting this expression into
‖φ‖2 − ‖φ−∑ aiφi‖2 we get ‖d‖2 = kTK−1k.
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A.5 Notation and Glossary

A.6 Notation

A.6.1 Spaces

Ω . . . . . . . . . . . . . General space
∅ . . . . . . . . . . . . . The empty set
R . . . . . . . . . . . . . Real numbers
N . . . . . . . . . . . . . Natural numbers
Rn . . . . . . . . . . . . The n-dimensional real space
H . . . . . . . . . . . . . A Hilbert space
F . . . . . . . . . . . . . A feature space
M . . . . . . . . . . . . . A manifold
L2

µ(Ω) . . . . . . . . . The space of square-integrable functions over Ω

with measure µ

A.6.2 Operators∫
Ω f (x)dx . . . . . Integral of f over a space Ω, x ∈ S

δ f (x)
δx . . . . . . . . . . .Partial differentiation of f with respect to x
〈·, ·〉S . . . . . . . . . . Dot product in space S
xTy . . . . . . . . . . . .Dot product of the vectors x ∈Rd and y ∈Rd

f̃ . . . . . . . . . . . . . . Approximation of a function or operator f
f̂ . . . . . . . . . . . . . . Estimator of a function or operator f
x̄ . . . . . . . . . . . . . . Empirical mean of a set of numbers xi

‖x‖I . . . . . . . . . . The norm of x in an inner product space I
‖x‖ . . . . . . . . . . . .The vector norm of x in Rd

E[x] . . . . . . . . . . . Expected value of x
D fx . . . . . . . . . . . Differential of f at x
∇ . . . . . . . . . . . . . Gradient operator
4 . . . . . . . . . . . . . The Laplace operator
4M . . . . . . . . . . . The Laplace-Beltrami operator for manifold M
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A.6.3 Other Definitions

µ . . . . . . . . . . . . . . Measure
λi(M) . . . . . . . . . The ith eigenvalue of the matrix M
σ . . . . . . . . . . . . . . Scale parameter of a kernel
d(x,x) . . . . . . . . . A distance function
bi(x) . . . . . . . . . . The ith basis function of a space
K . . . . . . . . . . . . . Kernel matrix with Kij = k(xi, xj) for a kernel k

A.6.4 Background and Related Work

f . . . . . . . . . . . . . . Implicit function of a surface
k . . . . . . . . . . . . . . Radial basis function
α . . . . . . . . . . . . . . Coefficient in RBF based approximations
w . . . . . . . . . . . . . Blending weight function in partition of unity
g . . . . . . . . . . . . . . Locally approximating function in partition of

unity
u . . . . . . . . . . . . . . Vector of coefficients in MLS
b . . . . . . . . . . . . . . Vector of basis functions in MLS
φ . . . . . . . . . . . . . . Weighting function in MLS
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A.6.5 Meshless Reconstruction of Manifolds

f . . . . . . . . . . . . . . Implicit function of a surface
v . . . . . . . . . . . . . . Regular value of a function
n . . . . . . . . . . . . . . Normal vector on a surface
H . . . . . . . . . . . . . Hessian matrix
φ . . . . . . . . . . . . . . Radially decaying weight function
ρ . . . . . . . . . . . . . . Error function to be minimized
gs . . . . . . . . . . . . . Local approximation parametrized by s
w . . . . . . . . . . . . . Weight function for robust approximation
r . . . . . . . . . . . . . . Residual in kernel regression
σr . . . . . . . . . . . . . Scaling factor for spatial robustness terms
σn . . . . . . . . . . . . . Scaling factor for normal robustness terms
h . . . . . . . . . . . . . . Kernel scaling factor
k . . . . . . . . . . . . . . Radial basis (kernel) function
d . . . . . . . . . . . . . . Vector of known depth values
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A.6.6 Spectral Sampling of Manifolds

u . . . . . . . . . . . . . . Eigenfunction of the Laplace-Beltrami operator
λ . . . . . . . . . . . . . . Eigenvalue of the Laplace-Beltrami operator
Ht . . . . . . . . . . . . .The heat operator of a manifold
ht . . . . . . . . . . . . . The heat kernel of a manifold
φ(x) . . . . . . . . . . .Feature vector/map for x
L . . . . . . . . . . . . . . Normalized graph Laplacian matrix of a graph
Ht or H . . . . . . . Heat kernel matrix
C . . . . . . . . . . . . . .Covariance matrix of points in a feature space
vi . . . . . . . . . . . . . The ith eigenvector of C
o . . . . . . . . . . . . . . Orthogonal component of a vector to a subspace
r . . . . . . . . . . . . . . Component of a vector in a linear subspace
s(x) . . . . . . . . . . . The measure that quantifies the change in the

Laplace-Beltrami spectrum due to the point x
h . . . . . . . . . . . . . . Vector with entries hi = ht(x, xi)

k . . . . . . . . . . . . . . Vector with entries ki = k(x, xi) for a kernel k
D . . . . . . . . . . . . . Diagonal normalization matrix with Dii = ∑j Kij

ϕ(x) . . . . . . . . . . Feature vector/map for x
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A.6.7 Reconstruction of Point Patterns

xs . . . . . . . . . . . . . Seed point
V . . . . . . . . . . . . . Borel set
N(V) . . . . . . . . . Number of points in the Borel set V
|V| . . . . . . . . . . . . Volume of the set V
Vd . . . . . . . . . . . . . Unit sphere in d dimensions
δVd . . . . . . . . . . . . Boundary of a unit sphere in d dimensions
P(n) . . . . . . . . . . Probability mass function of n
p(x) . . . . . . . . . . . Probability density function of x
o . . . . . . . . . . . . . . Typical point of an isotropic point process
b(o,r) . . . . . . . . . Ball of radius r centered at o
Λ(x) . . . . . . . . . . Stochastic density
λ(x) . . . . . . . . . . . Density of a point distribution
$ . . . . . . . . . . . . . . Product density
dV . . . . . . . . . . . . Volume measure
g(x,y) . . . . . . . . . The pair correlation function
g(r) . . . . . . . . . . . The PCF for isotropic point distributions
ra . . . . . . . . . . . . . Lower limit for a PCF estimate
rb . . . . . . . . . . . . . Upper limit for a PCF estimate
φ . . . . . . . . . . . . . . Vector in the pair correlation space
ι . . . . . . . . . . . . . . .The irregularity measure
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A.7 Glossary

APSS . . . . . . . . . . The reconstruction method of [Guennebaud and
Gross, 2007]

AS . . . . . . . . . . . . The sampling method of [Alexa et al., 2001]

IMLS . . . . . . . . . . The reconstruction method of [Kolluri, 2005]

IRLS . . . . . . . . . . Iteratively reweighted least squares
KS . . . . . . . . . . . . The sampling method of [Kitago and Gopi, 2006]

LKR . . . . . . . . . . .Local kernel regression
MLS . . . . . . . . . . Moving least squares
PCA . . . . . . . . . . Principle component analysis
PCF . . . . . . . . . . . The pair correlation function
PCS . . . . . . . . . . . Pair correlation space
PSR . . . . . . . . . . . The reconstruction method of [Kazhdan et al.,

2006]

RIMLS . . . . . . . . Robust IMLS
RKHS . . . . . . . . . Reproducing kernel Hilbert space
RLKR . . . . . . . . . Robust local kernel regression
RMS . . . . . . . . . . Root mean square
RSA . . . . . . . . . . . Random sequential adsorption
SPSS . . . . . . . . . . The reconstruction method of [Adamson and Al-

exa, 2003]

VR . . . . . . . . . . . . The sampling method of [Valette et al., 2008]

YR . . . . . . . . . . . . The sampling method of [Yan et al., 2009]
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iterative, feature-preserving mesh smoothing. In SIGGRAPH 2003: ACM SIG-
GRAPH 2003 Papers, pages 943–949, New York, NY, USA, 2003. ACM.

[Jones, 2006] Thouis R. Jones. Efficient generation of poisson-disk sampling pat-
terns. journal of graphics, gpu, and game tools, 11(2):27–36, 2006.

[Karoui and d’Aspremont, 2009] Noureddine El Karoui and Alexandre
d’Aspremont. Approximating eigenvectors by subsampling. 2009.

[Kazhdan et al., 2006] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Eurographics Symposium on Geometry Processing
2006, pages 43–52, 2006.

[Kazhdan, 2005] Michael Kazhdan. Reconstruction of solid models from oriented
point sets. In Proceedings of the third Eurographics symposium on Geometry pro-
cessing, SGP ’05, Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics
Association.

[Kesavan, 1998] S. Kesavan. Listening to the shape of a drum. Resonance, 3:49–58,
1998. 10.1007/BF02841422.

[Kim et al., 2008] Theodore Kim, Nils Thürey, Doug James, and Markus Gross.
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