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Abstract

The detection and segmentation of foreground objects in videos is a fundamental
problem in computer vision research and a key component for a wide array of
applications. Ranging from higher-level vision problems such as semantic scene
understanding and video summarization, to low-level video post-production and
editing tools, video segmentation encompass the entire spectrum of video related
tasks. This diverse set of applications yields different objectives and impose dif-
ferent requirements in terms of quality, efficiency, and manual effort necessary.

This thesis investigates novel video object segmentation techniques, spanning dif-
ferent types of end applications. First, we study the problem of reducing or elimi-
nating human effort to enable unsupervised segmentation of videos by proposing
approaches to roughly estimate the primary or ”salient” object. Next, we explore
methods that operate in a semi-automatic fashion, i.e. with minimal human super-
vision, and methods that enable user control and interaction. Finally, we introduce
a new dataset and evaluation methodology to enable a deeper understanding of
the results and to point towards promising avenue for future research.

The first part of the thesis addresses the problem of discovering salient objects in
still images. Motivated by psychological and neurobiological studies, we tackle
the problem from complementary perspectives. On one hand, we combine, in a
single-high dimensional Gaussian filtering framework, color contrast and spatial
color distribution. On the other hand, we exploit spectral clustering properties
to model common rules of photographic composition. These two approaches are
orthogonal to each other and instrumental to unsupervised video object segmen-
tation.

The second part of the thesis explores semi-automatic video segmentation tech-
niques with different type of annotations and therefore different levels of human
supervision and suitable applications. We demonstrate robustness to challeng-
ing situations such as occlusions, by estimating the maximum-a-posteriory of a
fully connected graphical model built over object proposals. We leverage the dis-
criminative power of fully convolutional networks trained on static images and
initialized with precise segmentation masks or bounding-boxes.

The third part of the thesis is related to interactive segmentation techniques. In
this domain, responsiveness is crucial to enable user interaction. Therefore we
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propose to perform the segmentation on a sparse and regularly sampled data
structure known as bilateral grid to provide iterative feedback in a fraction of
the time of the previous approaches. Results demonstrates that the proposed
approach is not only suitable for interactive segmentation but it is also able to
generate high-quality results in semi-automatic settings, without any type of user
interaction.

The fourth and concluding part of the thesis, introduces a new dataset and eval-
uation methodology specifically designed for the problem of segmenting fore-
ground objects in videos. We analyze several state-of-the-art segmentation ap-
proaches as well as those proposed in this thesis to uncover their strengths and
weaknesses and highlight promising directions for future works.

The novel approaches that will be presented in this thesis enabled improvements
upon the state-of-the-art both in terms of accuracy and efficiency. Furthermore,
the knowlegdge collected during the aforementioned studies has lead to the or-
ganization of the first workshop on video object segmentation that will be held at
the Computer Vision and Pattern Recognition conference in 2017.
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Sommario

L’identificazione e la segmentazione di oggetti nei video è un problema fonda-
mentale nella ricerca in computer vision e componente chiave per una vasta gam-
ma di applicazioni. A partire dai problemi di visione a livello superiore, come la
comprensione semantica delle immagini e la classificazione dei video, per arriva-
re agli strumenti di video editing per la post-produzione, la segmentazione è uno
strumento utilizzato nell’intero spettro delle applicazioni relative al video. Que-
sta varietà di applicazioni introduce diversi obiettivi e impone requisiti diversi in
termini di qualità, efficienza e sforzo manuale.

Questa tesi esamina nuove tecniche di segmentazione di oggetti presenti in video,
utili per diversi tipi di applicazioni finali. In primo luogo, studiamo il problema
della riduzione o dell’eliminazione dello sforzo umano per consentire la segmen-
tazione non monitorata dei video proponendo approcci per individuare approssi-
mativamente la locazione dell’oggetto primario o ”saliente”. Quindi, esploriamo
metodi che operano in modo semi-automatico, cioè con una minima supervisio-
ne umana e metodi che consentono il controllo e l’interazione dell’utente. Infine,
introduciamo un nuovo set di dati e una metodologia di valutazione per consen-
tire una comprensione profonda dei risultati e delineare nuovi percorsi di ricerca
futura.

La prima parte della tesi esamina il problema di scoprire oggetti salienti nelle
immagini statiche. Motivati da studi psicologici e neurobiologici, affrontiamo
il problema da prospettive complementari. Da una parte, combiniamo in un
singolo framework di high-dimensional Gaussian filtering, il contrasto di colo-
re e la distribuzione loro distribuzione all’interno dell’immagine. Dall’altra par-
te, sfruttiamo le proprietà di clustering spettrale per modellare regole comuni di
composizione fotografica. Questi due approci sono ortogonali l’uno all’altro e
necessari per lo sviluppo di tecniche di video segmentazione degli oggetti non
supervisionata.

La seconda parte della tesi esplora tecniche semi-automatiche di segmentazione
video con diversi tipi di annotazioni e quindi diversi livelli di supervisione umana
e applicazioni. Qui dimostriamo robustezza a situazioni impegnative quali occlu-
sioni, valutando la stima del massimo-a-posteriori di un modello grafico comple-
tamente connesso costruito su proposte di oggetti. Inoltre sfruttiamo il potere di-
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scriminatorio di reti convoluzionali esercitate su immagini statiche e inizializzate
con precise maschere di segmentazione o bounding-boxes.

La terza parte della tesi è legata a tecniche di segmentazione interattiva. In que-
sto dominio, la velocità di risposta dell’algoritmo è cruciale per consentire l’in-
terazione dell’utente. Pertanto proponiamo di eseguire la segmentazione su una
struttura di dati efficiente, conosciuta come griglia bilaterale per fornire un feed-
back iterativo in una frazione del tempo degli approcci precedenti. I risultati
dimostrano che l’approccio proposto non è solo adatto alla segmentazione inte-
rattiva, ma è anche in grado di generare risultati di alta qualità in impostazioni
semi-automatiche, senza alcun tipo di interazione tra utenti.

La quarta e conclusiva parte della tesi, introduce un nuovo set di dati e una me-
todologia di valutazione specificatamente progettata per il problema di segmen-
tazione di oggetti nei video. Analizziamo diversi approcci di segmentazione oltre
a quelli proposti in questa tesi per scoprire i loro punti di forza e debolezza e
mettere in evidenza le direzioni promettenti per la ricerca futura.

Gli algoritmi presentati in questa tesi hanno consentito miglioramenti dello stato
dell’arte sia in termini di precisione che di efficienza. Inoltre, la conoscenza rac-
colta durante i suddetti studi ha portato all’organizzazione del primo workshop
sulla segmentazione degli oggetti video che si terrà alla conferenza Computer Vi-
sion e Pattern Recognition nel 2017.
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C H A P T E R 1
Introduction

A massive amount of video data is generated everyday by millions of people
around the world and made publicly available on the Internet. This large
amount of visual information is generally associated by users with labels to
identify content and location. While these noisy labels represent a form of
weak annotations useful for some supervised machine learning tasks such
as scene classification and action recognition they do not provide enough
context to leverage the rich spatio-temporal signal represented by videos.

At the other end of the spectrum, further away from noisy scene classifi-
cation labels, lie dense, per-pixel accurate, manual annotations of videos,
(Figure 1.1). This type of annotation enables a deeper level of visual scene
understanding which is required, for example, in the context of self-driving
cars, and video surveillance. Besides, visual understanding, pixel-wise an-
notations are ubiquitous in the media content post-production pipeline en-
abling independent processing of different image regions.

However, dense per-pixel annotations are tedious to obtain. Depending on
the complexity of the scene, a trained human can process on average be-
tween 5 to 15 frames per day [Cordts et al., 2016]. Dense per-pixel video
labeling, therefore, represents a significant investment both in terms of time
and money and therefore large-scale datasets with per-pixel annotations are
scarce.

As demonstrated by recent success on the tasks of object recognition and
detection in still images, large-scale datasets are of fundamental impor-
tance to enable fast-paced progress in computer vision [Lin et al., 2014;
Russakovsky et al., 2014; Torralba and Efros, 2011]. Thus, it is not a surprise
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Introduction

Classification Semantic Segmentation

Figure 1.1: Different type of image annotations. Left: image is associated to weak la-
bels specifying type of object and other semantic attributes. Right: dense
per-pixel semantic labeling. Every pixel is associated with the object class
it belongs to. Sources: ImageNet (www.image-net.org) and CityScapes
(https://www.cityscapes-dataset.com).

that one of the trend topics currently being investigated by the computer
vision community is that of developing novel learning techniques to bet-
ter exploit the information that a video source provides, while reducing or
eliminating the manual effort required to manually label individual pixels.

One branch of computer vision that is related to the task above is know
as video segmentation. Video segmentation refers to a broad range of com-
puter vision techniques aiming to group perceptually or semantically similar
regions in videos. This grouping enables the propagation of spatially dense,
but temporally sparse labels (Figure 1.2) along successive video frames, re-
ducing the amount of manual labour required to densely annotate a video.

Based on the type of grouping, video segmentation algorithms can be
broadly classified into over-segmentation and object segmentation. While
the former aims to group perceptually similar compact regions of a video,
the latter aims to congregate pixels belonging to the same object instance.
This thesis focuses on video object segmentation.

Besides low level tasks such as label propagation and video analysis, video
object segmentation is instrumental for many high-level applications related
to media content production. In particular video object segmentation is es-
sential to special effect post-production. Complex editing, such as composit-
ing, requires independent processing of several elements of a scene and
video segmentation tools can help the artists to speed up their work flow.
However, despite remarkable progress in recent years, video object segmen-
tation still remains a challenging problem and most existing approaches still
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1.1 Contribution and Organization

Ground-truth Frame 16 Frame 38 Frame 69

Figure 1.2: Sparse label propagation. The first frame is human annotated and it serves
the purpose of initializating the algorithm that propagates the annotations
forward to successive frames. Source: DAVIS (davischallenge.org).

exhibit too severe limitations in terms of quality and efficiency to be appli-
cable in practical applications, such as video post-production and editing in
the visual effects industry.

In this thesis we investigate different statistical approaches to perform the
task of video object segmentation while spanning different degrees of hu-
man supervision. First, we study low-level techniques to distinguish salient
object from background regions as a form of bootstrapping for automatic
video object segmentation algorithms. Next, we explore the usage of rough
annotations such as bounding boxes or object proposal, i.e. regions that are
likely to contain an objects, to initialize our algorithms in a semi-automatic
fashion. Finally, we create a new dataset and propose a evaluation method-
ology that take into account three essential factors to assess the quality of
the segmentation, namely region similarity, contour accuracy and temporal
stability.

1.1 Contribution and Organization

This thesis aims to advance the field of video object segmentation propos-
ing a new evaluation methodology and novel image based techniques for
discovering and segmenting objects in videos. The main thread, delineating
the structure of the thesis is the increasing amount of supervision, or hu-
man effort, required to perform the segmentation. Briefly, methods can be
categorized as unsupervised, semi-automatic or interactive, depending whether
they discover the object to segment without any human supervision, use few
manually annotated frames as initialization, or allow user to repeatedly in-
teract with them to provide feedback and improve the segmentation results.
Note that the boundaries between these categories are fuzzy and several ap-
proaches are designed to operate in different modalities. In detail the thesis
is structured as follows.

In Chapter 2 we review the literature that is most closely related to this thesis.

3



Introduction

The section begins with a selection of salient detection approaches which are
often used to roughly locate the object to segment. Next we describe several
state-of-the-art video object segmentation algorithms. Reflecting the overall
structure of the thesis, they are grouped based on the amount and type of
labeling. The section closes with an overview of existing datasets, which
commonly used to benchmark the performance of video object segmentation
algorithms.

Chapter 3 is related to unsupervised video segmentation. We introduce two
different approaches to discover salient foreground objects in still images
and videos. These approaches are instrumental to replace human annota-
tions with a rough object localization. The first method implements the no-
tion of color-contrast efficiently using high-dimensional gaussian filters. The
second approach is based on the assumption that most of the image bound-
aries are non-salient and exploits known properties of the Fiedler vector to
infer the saliency.

Chapter 4 we present a novel approach to perform video segmentation which
is well suited to employ the saliency algorithms presented in the previous
chapter, in order to operate in an unsupervised fashion. Our proposed tech-
nique exploits a fully connected spatiotemporal graph built over object pro-
posals i.e. regions of an image that are likely to contain an object. The prob-
lem is formulated as a minimization of a novel energy function that com-
bines appearance with long-range point tracks to ensure robustness to chal-
lenging situations such as occlusions.

In Chapter 5 we investigate the usage of different types of manual annota-
tions such as segments and bounding-boxes and propose a convolutional
neural network (ConvNet) based, semi-supervised approach for video ob-
ject segmentation. We couple the discriminative power of deep neural net-
works with an external guidance given in the form of a human annotated
segmentation mask or a bounding box and demonstrate that highly accurate
object segmentation in videos can be enabled by using a ConvNet trained
with static images only. The novel idea of our approach is a combination
of offline and online learning strategies, where the former serves the pur-
pose of localizing the object from the previous frame estimate and the latter
allows to capture the appearance of the specific object instance.

In Chapter 6 we present an interactive approach to video segmentation that
operates in bilateral space. This method enables near real-time user inter-
action and it is suitable for post-production applications that require higher
level of accuracy. We design a new energy on the vertices of a regularly sam-
pled spatio-temporal bilateral grid, which can be solved efficiently using a
standard graph cut label assignment. Our formulation implicitly approx-
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1.2 Publications

imates long-range, spatio-temporal connections between pixels while still
containing only a small number of graph nodes and only local edges, yield-
ing a method that is both efficient and robust to several challenging situa-
tions such as occlusions, appearance changes and non-linear deformations.

In Chapter 7 we introduce a new dataset specifically designed for the task
of video object segmentation. The dataset contains professionally annotated
video sequences which have been carefully captured to cover multiple in-
stances of major challenges typically faced in video object segmentation. The
dataset is accompanied with a comprehensive evaluation of several state-of-
the-art approaches. A series of attributes such as occlusions, fast-motion,
non-linear deformation and motion-blur are associated to each video and
evaluated independently enabling a deeper understanding of the results and
pointing towards promising avenues for future research.

Chapter 8 concludes the thesis, summarizes its main contributions.

1.2 Publications

The technical contributions have led to top-tier conference publications and
a Computer Vision and Pattern Recognition (CVPR) Workshop on video ob-
ject segmentation.

• Saliency Filters: Contrast Based Filtering for Salient Region Detec-
tion, F. Perazzi, P. Krähenbühl, Y. Pritch and A. Sorkine-Hornung, CVPR
2016, Providence, Rhode Island, USA. (Chapter 3).

• Efficient Salient Foreground Detection for Images and Video using
Fiedler Vectors, F. Perazzi, O. Sorkine-Hornung, A. Sorkine-Hornung
Eurographics Workshop on Intelligent Cinematography and Editing 2014,
Zurich, Switzerland. (Chapter 3).

• Fully Connected Object Proposals for Video Segmentation, F. Perazzi,
O. Wang, M. Gross, A. Sorkine-Hornung, ICCV 2015, Santiago, Chile.
(Chapter 4).

• Bilateral Space Video Segmentation, N. Märki, F. Perazzi, O. Wang, A.
Sorkine-Hornung CVPR 2016, Las Vegas, USA. (Chapter 6).

• A Benchmark Dataset and Evaluation Methodology for Video Object
Segmentation, F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.
Gross, A. Sorkine-Hornung CVPR 2016, Las Vegas, USA. (Chapter 7).
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• Learning Video Object Segmentation From Static Images, F. Perazzi*,
A. Khoreva*, R. Benenson, B. Schiele, A. Sorkine-Hornung, CVPR 2017,
Hawaii, USA. (Chapter 5).

Although not relevant to the scope of this thesis, the following two confer-
ence paper were published during my PhD studies:

• Non-Polynomial Galerkin Projection on Deforming Meshes, M. Stan-
ton, Y. Sheng, M. Wicke, F. Perazzi, A. Yuen, S. Narasimhan, A. Treuille
ACM Transactions on Graphics 32(4) - SIGGRAPH 2013.

• Panoramic Video from Unstructured Camera Arrays, F. Perazzi, A.
Sorkine-Hornung, H. Zimmer, P. Kaufmann, O. Wang, S. Watson, M.
Gross Eurographics 2015, Computer Graphics Forum, Vol. 34, No. 2,
Zurich, Switzerland.

Motivated by the popularity gained by the DAVIS dataset and benchmark
proposed in Chapter 7, we organized the First DAVIS Challenge for Video
Object Segmentation. The objective is to promote and facilitate the devel-
opment of research techniques aiming to separate foreground objects from
background regions in video sequences.

• The DAVIS Challenge on Video Object Segmentation 2017, J. Pont-
Tuset, F. Perazzi, S. Caelles, A. Sorkine-Hornung, P. Arbeláez, L. Van Gool,
CVPRW 2017, Hawaii , USA.
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C H A P T E R 2
Related Work

We categorize the body of literature related to this thesis based on the
amount and type of annotations required. As briefly discussed in Chapter 1,
video object segmentation approaches can be broadly classified as unsuper-
vised, semi-automatic and interactive. Based on heuristics or supported by
salient object detection mechanisms (§2.1), unsupervised video segmenta-
tion techniques (§2.2)) do not require any type of human supervision and
instead discover the foreground object in a video sequences and proceed
with the segmentation. In contrast semi-automatic approaches (§2.3) re-
quire some sort of human initialization. As discussed in details in Chapter 4
and Chapter 5 the level of supervision may vary and it can take the form
of bounding-boxes, rough segmentations like object proposals, or ground-
truth binary masks that precisely mark the object to be segmented in one or
more video frames (Figure 2.1). Finally interactive approaches (§2.4) assume
a human annotator in the cycle, such that the underlying algorithm can be
guided towards the desired segmentation. The chapter concludes in Sec-
tion 2.5 with an overview of existing dataset commonly used to benchmark
video object segmentation algorithms.

2.1 Salient Object Detection

Automatic detection of salient image regions can alleviate, the tedious task
of manually annotating video frames. Several video segmentation ap-
proaches have exploited saliency prior to initialize their segmentation in a
fully automatic fashion [Papazoglou and Ferrari, 2013; Wang et al., 2015;
Faktor and Irani, 2014]. Furthermore saliency detection is a useful tool with
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Related Work

Bounding Box Object Proposal Segmentation Mask

Figure 2.1: Types of input annotations. From left to right, bounding box, object proposal
and accurate segmentation mask.

applications in intelligent camera control, surveillance, video summariza-
tion and editing.

The pre-attentive human visual system is driven by bottomup, low-level
stimuli such as color, contrast, orientation of edges, disparity and sudden
movements. Depending on the nature of their features, methods that model
bottom-up visual saliency can be categorized into biologically inspired or
computationally based approaches, Figure 2.2. Works belonging to the first
class [Itti et al., 1998; Harel et al., 2006] are generally based on the architec-
ture proposed by Koch and Ullman [1985], in which the low-level stage pro-
cesses features such as color, orientation of edges, or direction of movement.
One implementation of this model is the work by Itti et al. [1998], which use
a Difference of Gaussians approach to evaluate those features. However,
as the evaluation by Cheng et al. [2011] shows, the resulting saliency maps
are generally blurry, and often overemphasize small, purely local features,
which renders this approach less useful for applications such as segmenta-
tion, detection, etc.

In contrast, computational methods may also be inspired by biological prin-
ciples, but relate stronger to typical applications in computer vision and
graphics. For example, frequency space methods [Hou and Zhang, 2007;
Guo et al., 2008] determine saliency based on the amplitude or phase spec-
trum of the Fourier transform of an image. The resulting saliency maps bet-
ter preserve the high level structure of an image than [Itti et al., 1998], but
exhibit undesirable blurriness and tend to highlight object boundaries rather
than its entire area. For colorspace techniques one can distinguish between
approaches using local or global analysis of (color-) contrast. Local methods
estimate the saliency of a particular image region based on immediate im-
age neighborhoods, e.g., based on dissimilarities at the pixel-level [Ma and
Zhang, 2003], using multi-scale Difference of Gaussians [Itti and Baldi, 2005]
or histogram analysis [Liu et al., 2007]. While such approaches are able to
produce less blurry saliency maps, they are agnostic of global relations and
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Input Gaze Prediction Salient Object Detection

Figure 2.2: Difference between biologically inspired and computationally based saliency
techniques. While the former aims to predict eye gaze, the latter aims to
discover and uniformly highlight the most prominent object in the image.

structures, and they may also be more sensitive to high frequency content
like image edges and noise [Achanta et al., 2009].

Global methods take contrast relations over the complete image into ac-
count. For example, there are different variants of patch-based meth-
ods which estimate dissimilarity between image patches [Liu et al., 2007;
Goferman et al., 2010; Wang et al., 2011]. While these algorithms are more
consistent in terms of global image structures, they suffer from the involved
combinatorial complexity, hence they are applicable only to relatively low
resolution images, or they need to operate in spaces of reduced dimension-
ality [Duan et al., 2011], resulting in loss of small, potentially salient detail.
The works of Singh et al. [2012] and Doersch et al. [2013] aim to extract a
set of discriminative patches that occur frequently enough in images while
being different from the other set of discriminative patches. While the fi-
nal goal is not salient object detection, their output could be used a basis to
compute patch-based global contrast.

The method of Achanta et al. [2009] also works on a per-pixel basis, but
achieves globally more consistent results by computing color dissimilarities
to the mean image color. They use Gaussian blur in order to decrease the in-
fluence of noise and high frequency patterns. However, their method does
not account for any spatial relationship inside the image, and may highlight
background regions as salient. Liu et al. [2007] combines multi-scale con-
trast, local contrast based on surrounding, context, and color spatial distri-
bution to learn a Conditional Random Field (CRF) for binary saliency esti-
mation. However, the significance of features in the CRF remains unclear.
Ren et al. [2010] and Cheng et al. [2011] employ image segmentation as
part of their saliency estimation. Ren et al. [2010] the segmentation solely
to alleviate the negative influence of highly textured regions, noise and out-
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liers during their subsequent clustering. Cheng et al. [2011], achieves high-
quality results employing color dissimilarities between 3D color histogram
bins. However, due to the use of larger-scale image segments in both ap-
proaches [Ren et al., 2010; Cheng et al., 2011], contrast measures involving
spatial distribution cannot easily be formulated. Moreover, such methods
have problems handling images with cluttered and textured background.
Despite many improvements, the varying evaluation results in [Cheng et al.,
2011] indicate that the actual significance of individual features and contrast
measures in existing methods is difficult to assess. In Section 3.1 we propose
to reduce the set of contrast measures to just two, namely, color uniqueness
and distribution. These measures can be intuitively defined over abstract
image elements, while still producing pixel-accurate saliency masks.

While contrast-based methods have proven to be very effective, their ba-
sic assumptions do not always hold. Therefore, research has also focused
on additional visual cues. For example, Wei et al. [2012] note that image
boundaries are most likely to be part of the background and introduce a
measure of saliency based on the color-based geodesic distance between in-
terior image regions and boundaries. Their method produces good results
in high-recall areas, but it may suffer from non-smooth backgrounds, pro-
ducing noisy saliency maps. Motivated by the same assumption of image
boundaries being mostly non-salient, in Section 3.2 we propose an approach
that leverage spectral clustering and effectively resolves the aforementioned
issues of Wei et al. [2012] while producing more globally coherent saliency
maps.

Since the publication of our studies [Perazzi et al., 2012; Perazzi et al., 2015a]
our ideas have inspired several follow-up works. For example Cheng et
al. [2013] improved our image abstraction with a Gaussian Mixture Model
representation. Their formulation capture larger scale perceptually homoge-
neous elements, resulting in improved salient object region detection accu-
racy.

Recently, deep learning has re-defined the state-of-the-art of several visual
tasks, ranging from scene classification [He et al., 2015] and object recogni-
tion [Ren et al., 2015] to inpainting [Pathak et al., 2016] and image coloriza-
tion [Zhang et al., 2016]. Salient object detection is also taking advantage
of the recent progresses and currently, most promising techniques are based
on deep ConvNets. For instance, Li et al. [2015] extract deep features around
multi-scale image regions and train a neural network regressor to determine
their saliency score. Wang et al. [2015] train a deep neural network to learn
local patch features and employ global contrast to determine the saliency
value for each patch-centered image pixel. Similarly Zhao et al. [2015] inte-
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Source Over Seg. Motion Seg. Object Seg.

Figure 2.3: Different sub-tasks of video segmentation. From left to right, source image,
over-segmentation of a video into supervoxels, motion segmentation, and
video object segmentation.

grate global and local context patches in a deep learning based pipeline. Li et
al. [2016], observe that methods operating on patches tend to produce blurry
saliency maps near the edges, therefore they propose a pixel-level fully con-
volutional stream paired with a segment-wise spatial pooling architecture
that better models discontinuities along boundaries.

2.2 Unsupervised Video Segmentation

Unsupervised video object segmentation approaches extend the concept of
salient object detection to videos [Papazoglou and Ferrari, 2013; Shen et al.,
2015; Zhang et al., 2013; Taylor et al., 2015; Li et al., 2013]. They do not
require any manual annotation and do not assume any prior information
on the object to be segmented. Typically they are based on the assump-
tion that object motion is dissimilar from the surroundings i.e. the motion is
salient. To this end, Wang et al. [2015] use a saliency detector to locate the
object and the geodesic between two superpixels on the image to compute
a probability of a superpixel to belong to the foreground object. Instead,
Faktor and Irani [2014] refine salient object detection using a Markov chain
that fully connects the video frames. Besides using saliency, of some meth-
ods are based on object proposals and generate several ranked segmentation
hypotheses [Lee et al., 2011; Zhang et al., 2013]. Unsupervised approaches
are well suited for parsing large scale databases, they are bound to their
underlying assumption and fail in cases it does not hold. While this thesis
specifically address the topic of video object segmentation, unsupervised ap-
proaches have historically targeted over-segmentation, [Grundmann et al.,
2010; Xu and Corso, 2012] or motion segmentation, [Brox and Malik, 2010;
Fragkiadaki et al., 2012] and therefore this different domains will be briefly
discussed in the following paragraphs. Visual output from the aforemen-
tioned sub-tasks, is shown in Figure 2.3. In Chapter 4 we employ sev-
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eral strategies often used for unsupervised video segmentation. We for-
mulate the problem of reducing overlapping segments into a foreground-
background partition (§2.2.1) by minimizing a novel energy function which
we solve optimally by inference on a fully connected Conditional Random
Field (CRF). The fully connected graph is built over object proposals (§2.2.2).
Furthermore, following a line of works (§2.2.3) aiming to segment coherent
motion, we exploit point-tracks to increase stability of long term temporal
connections.

2.2.1 Over-segmentation

Unconstrained motion can be handled by methods based on supervoxels
[Grundmann et al., 2010; Xu and Corso, 2012; Hickson et al., 2014]. These
methods generate an oversegmentation of the video into space-time homo-
geneous, perceptually distinct regions. They are important for early stage
video preprocessing, but do not directly solve the problem of video object
segmentation as they do not provide any principled approach to flatten the
hierarchical decomposition of the video into a binary segmentation [Papa-
zoglou and Ferrari, 2013].

2.2.2 Proposals-based Segmentation

Recent advances in state-of-the-art image analysis [Carreira et al., 2012;
Girshick et al., 2014] have motivated the use of object proposals [Carreira
and Sminchisescu, 2012; Endres and Hoiem, 2014; Arbeláez et al., 2014;
Krähenbühl and Koltun, 2014] in video object segmentation. [Lee et al.,
2011] discover clusters of key-segments in videos, coupling the notion of ob-
jectness and appearance similarity. Hypotheses are later ranked and the top
scoring one is automatically selected for video segmentation. Their work is
well suited to determine groups of segments with consistent appearance and
motion, but disregards spatial and temporal relations between segments.
Ma and Latecki [2012] account for these by imposing the selection of one
proposal in every frame, formulating the problem as finding a maximum
weighted clique in a locally connected graph with mutex constraints. How-
ever, the strict assumptions that the object should appear in every frame lim-
its their efficacy in real world scenarios. Similar to Ma and Latecki [2012] ,
Zhang et al. [2013] create a layered Directed Acyclic Graph (DAG) which com-
bines unary edges measuring the objectness of the object proposal and pair-
wise edges modeling affinities. A shortest path determines the video ob-
ject segmentation. Both formulate the problem on a locally connected graph
structure, requiring that objects appear in every frame.
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2.2.3 Motion Segmentation

Significant progress has been achieved by methods designed to track key-
points over time and, more recently, over image regions [Brendel and Todor-
ovic, 2009; Li et al., 2013; Varas and Marqués, 2014]. These methods, how-
ever, only consider two consecutive frames of video and are sensible to sud-
den motion and appearance changes (i.e. due to lighting). Related to tracking
systems, Brox et al. [2010] propose an approach to segment motion by spec-
tral clustering of long term point trajectories based on their motion affin-
ity [Brox and Malik, 2010] and a variational approach [Ochs and Brox, 2011]
to turn the resulting sparse trajectory clusters into dense regions. By defin-
ing the pairwise distance between trajectories as the maximum difference
of their motion, they assume a translational motion model. Despite this be-
ing a reasonable approximation for spatially close point trajectories, these
methods have difficulties to segment articulated bodies following non-rigid
motion.

2.3 Semi-automatic Video Segmentation

Semi-automatic video object segmentation methods propagate a sparse
manual labeling, generally given in the form of one or more annotated
frames, to the entire video sequence. While being different from each
other, they often solve an optimization problem with an energy defined
over a graph structure [Ramakanth and Babu, 2014; Badrinarayanan et al.,
2010; Vijayanarasimhan and Grauman, 2012]. To model long-range spatio-
temporal connections some approaches use higher-order potentials [Jain
and Grauman, 2014]. Semi-automatic segmentation is closely related to ob-
ject tracking. While the scope of tracking is that of inscribing the object
within a rectangular bounding box, video segmentation aims to delineate
the object boundaries as accurately as possible. Due to the intrinsic objec-
tive similarity, several approaches have investigated approaches that im-
prove segmentation quality by leveraging object tracking and vice versa,
[Ren and Malik, 2007; Duffner and Garcia, 2013; Chockalingam et al., 2009;
Xiao and Lee, 2016]. In Chapter 5 we propose a Convolutional Neural Net-
work (ConvNet) based approach that, inspired by recent advances in object
tracking, proceeds on a per-frame basis, and it is guided by the output of the
previous frame towards the object of interest in the next frame. As detailed
in the corresponding section this approach can handle different types of in-
put annotations such as: bounding boxes or segments, making the system
suitable for a diverse set applications.

13



Related Work

2.3.1 Bounding-Box Tracking and Segmentation

Previous works have investigated approaches that improve segmentation
quality by leveraging object tracking and vice versa [Ren and Malik, 2007;
Duffner and Garcia, 2013; Chockalingam et al., 2009; Xiao and Lee, 2016].
More recent, state-of-the-art tracking methods are based on discriminative
correlation filters over handcrafted features (e.g. HOG) and over frozen
deep learned features [Danelljan et al., 2015; Danelljan et al., 2016], or are
convnet based trackers on their own right [Held et al., 2016; Nam and Han,
2016]. Our approach is most closely related to the latter group. GOTURN [Held
et al., 2016] proposes to train offline a convnet so as to directly regress the
bounding box in the current frame based on the object position and appear-
ance in the previous frame. MDNet [Nam and Han, 2016] proposes to use on-
line fine-tuning of a convnet to model the object appearance. Our training
strategy is inspired by GOTURN for the offline part, and MDNet for the online
stage. Compared to the aforementioned methods our approach operates at
pixel level masks instead of boxes. Differently from MDNet, we do not replace
the domain-specific layers, instead finetuning all the layers on the available
annotations for each individual video sequence.

2.3.2 Graph Based Video Segmentation

Images and videos naturally lend themselves to a regular graph struc-
ture where edges connect neighboring pixels in either a spatial or spatio-
temporal configuration. Video segmentation can then be formulated as
an optimization problem that tries to balance a coherent label assign-
ment of neighboring vertices, while complying to a predetermined object
model or user constraints. Graph-cuts techniques have long been used
to efficiently solve this problem, both for image [Boykov and Jolly, 2001;
Rother et al., 2004] and video segmentation [Li et al., 2005; Wang et al., 2005;
Kohli and Torr, 2007; Price et al., 2009; Reso et al., 2014b; Dondera et al.,
2014]. Building on this general framework, subsequent methods have low-
ered the computational cost by reducing the number of nodes in the graph
using clustering techniques such as a per-frame watershed algorithm [Li et
al., 2005; Price et al., 2009], mean-shift segmentation [Wang et al., 2005], or
spatio-temporal superpixels [Reso et al., 2014b]. The last work showed high
quality results when used with a contour-based EM optimization [Reso et
al., 2014a] as well as faster, but still accurate results with online video seeds
[Van den Bergh et al., 2013]. However, these methods still do not achieve
interactive rates due to costly clustering steps, and allow only rough user
control [Li et al., 2005], or require expensive per-pixel refinement on each
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frame [Wang et al., 2005]. Additionally, the above clustering methods can
fail in regions with poorly defined image boundaries. In Chapter 6 we pro-
pose to efficiently approximate non-local connections minimizing the graph
energy in bilateral space. Minimize the energy function in bilateral space is
efficient due to the reduced number of graph nodes and edges.

2.4 Interactive Video Segmentation

Supervised approaches assume manual annotation to be repeatedly added
during the segmentation process, with a human correcting the algorithm
results in an iterative fashion. These methods generally operate online, for-
ward processing frames to avoid overriding of previous manual corrections.
They guarantee high segmentation quality at the price of higher level of hu-
man supervision, hence they are well suited for specific scenarios such as
video editing. In post-production, scene segmentation is regarded with the
term rotoscoping. Rotoscoping is not driven only by the generic notion of
object but also requires creative control and therefore it cannot be fully au-
tomated. Furthermore the task is extremely time-consuming and expensive.
As a consequence, a large body of research have investigated this topic, with
the aim of reducing the amount of human effort required to reach high qual-
ity.

The seminal work of Chuang et al. [2002] uses a Bayesian matting tech-
nique on top of back-forward flow propagated tri-maps to yield accurate
soft-segmentation of moving objects. Agarwala et al. [2004] reformulates
contour-based tracking as part of a user-driven key frame system. Based on
user-defined key frames a space-time optimization problem finds the best in-
terpolation of the roto-curves over time. Li et al. [2014], apply 3D graph cut
based segmentation approach on the spatio-temporal video volume. Their
algorithm partitions watershed segmentation regions into foreground and
background while preserving temporal coherence. The resulting segmenta-
tion is further refined using 2D graph-cuts inside tracked boxes. Wang et
al. [2014] aims to reduce user interaction proposing an algorithm that re-
quires only one finger touch to identify the object of interest and perform
the segmentation. Their approach proposes a new model for object segmen-
tation that fuses edge, region, and geometric cues within a level set frame-
work. To cope with a diverse set of situations, Price et al. [2009] propose
an interactive approach that extract multiple features and learn how to com-
bine automatically based on user input corrections, yielding a method that
selectively applies the cues that are likely to segment the object in that par-
ticular scene context. Video SnapCut [Bai et al., 2009] uses overlapping local
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classifiers that predict the foreground probability, which are propagated and
refined over time. SnapCut was later integrated into Adobe After Effects as
the Rotobrush tool. This approach was extended to a combination of local
and global classifiers [Zhong et al., 2012] to improve robustness. Dondera
et al. [2014], apply the spectral clustering method of Ng et al. [2002] on a
graph of super-pixels in a 3D video volume. An initial segmentation is ob-
tained without additional input, the user can then add constraints to correct
the solution. Labels are then inferred using a conditional random field for-
mulation. Fan et al. [2015] propose a method that propagates masks using
nearest neighbor fields, and then refines the result with active contours on
classified edge maps. As this is one of the top performing methods in the
semi-automatic settings while still enabling user-interaction, in Chapter 6
we use it as a basis for our comparisons.

2.5 Datasets

Over the years, datasets and benchmarks have proven their fundamental
importance in computer vision research, enabling targeted progress and ob-
jective comparisons in many fields [Torralba and Efros, 2011]. There exist
several datasets for video segmentation, but none of them has been specifi-
cally designed for video object segmentation, the task of pixel-accurate sepa-
ration of foreground objects from the background regions.

The Freiburg-Berkeley Motion Segmentation (MoSeg) dataset [Brox and Malik,
2010] is a popular dataset for motion segmentation, i.e. clustering regions
with similar motion. Despite being recently adopted by works focusing
on video object segmentation [Perazzi et al., 2015b; Taylor et al., 2015], the
dataset does not fulfill several important requirements. Most of the videos
have low spatial resolution, segmentation is only provided on a sparse sub-
set of the frames, and the content is not sufficiently diverse to provide a
balanced distribution of challenging situations such as fast motion and oc-
clusions.

The Berkeley Video Segmentation Dataset (BVSD) [Sundberg et al., 2011] com-
prises a total 100, higher resolution sequences. It was originally meant to
evaluate occlusions boundary detection and later extended to over- and
motion-segmentation tasks (VSB100 [Galasso et al., 2013]). However, sev-
eral sequences do not contain a clear object. Furthermore, the ground-truth,
available only for a subset of the frames, is fragmented, with most of the ob-
jects being covered by multiple manually annotated, disjoint segments, and
therefore, most of this dataset is not well suited for evaluating video object
segmentation.

16



2.5 Datasets

SegTrack [Tsai et al., 2010] is a small dataset composed of 6 densely annotated
videos of humans and animals. It is designed to be challenging with respect
to background-foreground color similarity, fast motion and complex shape
deformation. Although it has been extensively used by several approaches,
its content does not sufficiently span the variety of challenges encountered
in realistic video object segmentation applications. Furthermore, the image
quality is not anymore representative of modern consumer devices, and due
to the limited number of available video sequences, progress on this dataset
plateaued. Li et al. [2013] extended this dataset with 8 additional sequences.
While this is certainly an improvement over the predecessor, it still suffers
of the same limitations.

Other datasets exist, but they are mostly provided to support specific find-
ings and thus are either limited in terms of total number of frames, [Chen
and Corso, 2010; Tsai et al., 2010; Li et al., 2013; Grundmann et al., 2010], or
do not exhibit a sufficient variety in terms of content [Tron and Vidal, 2007;
Brostow et al., 2009; Badrinarayanan et al., 2010; Fragkiadaki and Shi, 2011;
Gorelick et al., 2007; Brox and Malik, 2010; Fathi et al., 2011; Ren and Phili-
pose, 2009]. Others cover a broader range of content but do not provide
enough ground-truth data for an accurate evaluation of the segmentation
[Grundmann et al., 2010; Prest et al., 2012]. Video datasets designed to
benchmark tracking algorithms typically focus on surveillance scenarios
with static cameras [Collins et al., 2005; Fisher, 2004; Oh et al., 2011], and
usually contain multiple instances of similar objects [Wu et al., 2013] (e.g. a
crowd of people), and annotation is typically provided only in the form of
axis-aligned bounding boxes, instead of pixel-accurate segmentation masks
necessary to accurately evaluate video object segmentation. Importantly,
none of the aforementioned methods includes contemporary high resolu-
tion videos, which is an absolute necessity to realistically evaluate the actual
practical utility of such algorithms.

In Chapter 7, we propose a new dataset specifically geared towards the task
of video object segmentation. The dataset aims to overcome the limitations
of the aforementioned datasets and it comes with a well defined evaluation
protocol and an extensive benchmark of current state-of-the-art approaches.

17



Related Work

18



C H A P T E R 3
Salient Object Detection

In this chapter we investigate two orthogonal approaches aiming to dis-
cover salient objects. An object is salient when it stands out relative to
neighboring image regions. The ability to automatically detect salient ob-
jects is particularly relevant to the task of video object segmentation as it en-
ables semi-automatic techniques to operate in unsupervised mode, i.e. with-
out need of manual annotations. Saliency detection finds its root in the
mechanism of human attention. In particular the pre-attentive human vi-
sual system is driven by bottom-up, low-level stimuli such as color, con-
trast, orientation of edges, disparity and sudden movements [Koch and
Ullman, 1985]. Depending on the nature of their features, methods that
model bottom-up visual saliency can be categorized into biologically in-
spired or computationally based approaches. Biologically inspired meth-
ods aim to determine eye fixations, i.e., a set of points or blobs in the im-
age that are likely to attract the viewer’s eye attention. As a result, saliency
maps are often blurry and highlight sparse local features, making their us-
age in computer vision applications such video object segmentation or im-
practicable [Cheng et al., 2011]. In contrast, computational methods are
often inspired by biological principles but strongly focus on their practi-
cal usage in computer vision and graphics. Central to those applications
is the ability to determine salient objects, instead of eye fixation points.
Hence, an important aspect to consider is the ability to segment and as-
sign a uniform saliency value to the entire salient object [Chang et al., 2011;
Achanta et al., 2008], preserving edges and producing a pixel-level accurate
saliency map. In this chapter we propose two different computational ap-
proaches to tackle the task of salient object detection.
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Perceptual research studies indicates that color-based contrast is a funda-
mental cue to determine bottom-up visual attention [Parkhurst et al., 2002;
Einhauser et al., 2003]. In Section 3.1 we present a novel approach that de-
rives a saliency estimate from two well-defined contrast measures based on
the uniqueness and spatial distribution of color within an image. In Sec-
tion 3.2 we propose to identify salient regions by eigenvalue analysis of a
graph Laplacian that is defined over the color similarity of image super-
pixels. In this case, the underlying assumption is that the majority of pix-
els on image boundaries belong to non-salient background. Experiments
demonstrates the complementary nature of the ”background-prior” prop-
erty to color contrast-based approaches.

3.1 Saliency Filters

Results from perceptual research [Reinagel and Zador, 1999; Parkhurst et al.,
2002; Einhauser et al., 2003] indicate that the most influential factor in low-
level visual saliency is contrast. However, the definition of contrast in pre-
vious works is based on various different types of image features, including
color variation of individual pixels, edges and gradients, spatial frequencies,
structure and distribution of image patches, histograms, multi-scale descrip-
tors, or combinations thereof. The significance of each individual feature of-
ten remains unclear [Liu et al., 2007], and as recent evaluations show [Cheng
et al., 2011] even quite similar approaches may exhibit considerably varying
performance.

We reconsider the set of fundamentally relevant contrast measures and their
definition in terms of image content. Our method is based on the observa-
tion that an image can be decomposed into basic, structurally representa-
tive elements that abstract away unnecessary detail, and at the same time
allow for a very clear and intuitive definition of contrast-based saliency.
Our first main contribution therefore is a concept and algorithm to decom-
pose an image into perceptually homogeneous elements and to derive a
saliency estimate from two well-defined contrast measures based on the
uniqueness and spatial distribution of those elements. Both, local as well
as the global contrast are handled by these measures in a unified way. Cen-
tral to the contrast and saliency computation is our second main contribu-
tion; we show that all involved operators can be formulated within a sin-
gle high-dimensional Gaussian filtering framework. Thanks to this formu-
lation, we achieve a highly efficient implementation with linear complex-
ity. The same formulation also provides a clear link between the element-
based contrast estimation and the actual assignment of saliency values to all
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Source Image Abstraction Uniqueness Distribution Saliency

Figure 3.1: Illustration of the main phases of our algorithm. The input image is first
abstracted into perceptually homogeneous elements. Each element is repre-
sented by the mean color of the pixels belonging to it. We then define two
contrast measures per element based on the uniqueness and spatial distribu-
tion of elements. Finally, a saliency value is assigned to each pixel.

image pixels. As we demonstrate in our experimental evaluation, each of
our individual measures already performs close to or even better than ex-
isting approaches, and our combined method currently achieves the best
ranking results on the public benchmark provided by [Liu et al., 2007;
Achanta et al., 2009].

3.1.1 Method

We propose an algorithm that first decomposes the input image into basic
elements. Based on these elements we define two measures for contrast that
are used to compute per-pixel saliency. Hence, our algorithm consists of the
following steps (Figure 3.1):

Abstraction. We decompose the image into perceptually homogeneous re-
gions that preserve relevant structure, but abstract undesirable detail. Dis-
continuities between such regions, i.e. , strong contours and edges in the im-
age, should be preserved as boundaries between individual elements. One
approach to achieve this type of decomposition is an edge-preserving, local-
ized oversegmentation based on color, Figure 3.1. Thanks to this abstraction,
contrast between whole image regions can be evaluated using just those ele-
ments. Furthermore, we show that the quality of saliency maps is extremely
robust to the number of elements. We can then define our two measures for
contrast.

Element uniqueness. This first contrast measure implements the commonly
employed assumption that image regions, which stand out from other re-
gions in certain aspects, catch our attention and hence should be labeled
more salient. We therefore evaluate how different each respective element
is from all other elements constituting an image, essentially measuring the
“rarity” of each element. In one form or another, this assumption has been
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the basis for most previous algorithms for contrast-based saliency. How-
ever, thanks to our abstraction, variation on the pixel level due to small scale
textures or noise is rendered irrelevant, while discontinuities such as strong
edges stay sharply localized. As discussed in Section 2.1, previous multi-
scale techniques often blur or lose this information.

Element distribution. While saliency implies uniqueness, the opposite
might not always be true [Kadir and Brady, 2001]. Ideally colors belong-
ing to the background will be distributed over the entire image exhibiting a
high spatial variance, whereas foreground objects are generally more com-
pact [Liu et al., 2007; Goferman et al., 2010].

The compactness and locality of our image abstracting elements allows us
to define a corresponding second measure, which renders unique elements
more salient when they are grouped in a particular image region rather than
evenly distributed over the whole image. Techniques based on larger-scale
image segmentation such as Cheng et al. [2011] lose this important source of
information.

An example showing the differences between element uniqueness and ele-
ment distribution is shown in Figure 3.2.

Saliency assignment. The two above contrast measures are defined on a
per-element level. In a final step, we assign the actual saliency values to the
input image to get a pixel-accurate saliency map. Thanks to this step our
method can assign proper saliency values even to fine pixel-level detail that
was excluded, on purpose, during the abstraction phase, but for which we
still want a saliency estimate that conforms to the global saliency analysis.

3.1.1.1 Abstraction

For the image abstraction we use an adaptation of SLIC superpixels
[Achanta et al., 2012] to abstract the image into perceptually uniform re-
gions. SLIC superpixels segment an image using K-means clustering in RG-
BXY space. The RGBXY space yields local, compact and edge aware super-
pixels, but does not guarantee compactness. For our image abstraction we
slightly modified the SLIC approach and instead use K-means clustering in
geodesic image distance [Criminisi et al., 2010] in CIELab space. Geodesic
image distance guarantees connectivity, while retaining the locality, com-
pactness and edge awareness of SLIC superpixels.
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Source Image Uniqueness Distribution Saliency

Figure 3.2: Uniqueness, spatial distribution, and the combined saliency map. The
uniqueness prefers rare colors, whereas the distribution favors compact ob-
jects. Combined together those measures provide better perfomance.

3.1.1.2 Element uniqueness

Element uniqueness is generally defined as the rarity of a segment i given
its position pi and color in CIELab ci compared to all other segments j:

Ui =
N

∑
j=1
‖ci − cj‖2 · w(pi, pj)︸ ︷︷ ︸

w(p)
ij

. (3.1)

By introducing w(p)
ij we effectively combine global and local contrast esti-

mation with control over the influence radius of the uniqueness operator.
A local function w(p)

ij yields a local contrast term, which tends to overem-
phasize object boundaries in the saliency estimation [Ma and Zhang, 2003],
whereas w(p)

ij ≈ 1 yields a global uniqueness operator, which cannot repre-
sent sensitivity to local contrast variation.

Moreover, evaluating Eq. (3.1) globally generally requires O(N2) operations,
where N is the number of segments. This is why some related works down-
sample the image to a resolution where quadratic number of operations is
feasible. Saliency maps computed on down-sampled images cannot pre-
serve sharply localized contours and generally exhibit a high level of blur-
riness (§3.3). Cheng et al. [2011] approximate Eq. (3.1) using a histogram.
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Achatan et al. [2009] approximate it as the distance to mean color. Both ap-
proximations are completely global with w(p)

ij = 1.

We show that for a Gaussian weight w(p)
ij = 1

Zi
exp(− 1

2σ2
p
‖pi − pj‖2) Eq. (3.1)

can be evaluated in linear time O(N). σp controls the range of the unique-

ness operator and Zi is the normalization factor ensuring ∑N
j=1 w(p)

i,j = 1. We
decompose Eq. (3.1) by factoring out the quadratic error function:

Ui =
N

∑
j=1
‖ci − cj‖2w(p)

ij

= c2
i

N

∑
j=1

w(p)
ij︸ ︷︷ ︸

1

−2ci

N

∑
j=1

cjw
(p)
ij︸ ︷︷ ︸

blur cj

+
N

∑
j=1

c2
j w(p)

ij︸ ︷︷ ︸
blur c2

j

. (3.2)

Both terms ∑N
j=1 cjw

(p)
ij and ∑N

j=1 c2
j w(p)

ij can be evaluated using a Gaussian
blurring kernel on color cj and the squared color c2

j . Gaussian blurring is
decomposable along x and y axis of the image and can thus be evaluated
very efficiently.

In our implementation we use the permutohedral lattice embedding pre-
sented in Adams et al. [2010], which yields a linear time approximation of
the Gaussian filter in arbitrary dimensions. The permutohedral lattice ex-
ploits the band limiting effects of Gaussian smoothing, such that a corre-
spondingly filtered function can be well approximated by a sparse number
of samples. Adams et al. [2010] use samples on simplices of a high dimen-
sional lattice structure to represent the result of the filtering operation. They
then evaluate the filter by downsampling the input values onto the lattice,
blur along each dimension of the lattice and reconstruct the resulting signal
by interpolation.

By using a Gaussian weight w(p)
ij we are able to evaluate Eq. (3.1) in linear

time, without crude approximations such as histograms or distance to mean
color. Parameter σp was set to 0.25 in all experiments, which allows for a bal-
ance between local and global effects. Examples for the uniqueness measure
are shown in Figure 3.2b.

3.1.1.3 Element distribution

Conceptually, we define the element distribution measure for a segment i
using the spatial variance Di of its color ci, i.e., we measure its occurrence
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elsewhere in the image. As motivated before, low variance indicates a spa-
tially compact object which should be considered more salient than spatially
widely distributed elements. Hence we compute

Di =
N

∑
j=1
‖pj − µi‖2 w(ci, cj)︸ ︷︷ ︸

w(c)
ij

, (3.3)

where w(c)
ij describes the similarity of color ci and color cj of segments i and

j, respectively, pj is again the position of segment j, and µi = ∑N
j=1 w(c)

ij pj

defines the weighted mean position of color ci.

Again naive evaluation of Eq. (3.3) has quadratic runtime complexity. By
choosing the color similarity to be Gaussian w(c)

ij = 1
Zi

exp(− 1
2σ2

c
‖ci − cj‖2),

we can efficiently evaluate it in linear time:

Di =
N

∑
j=1
‖pj − µi‖2w(c)

ij

=
N

∑
j=1

p2
j w(c)

ij − 2µi

N

∑
j=1

pjw
(c)
ij︸ ︷︷ ︸

µi

+µi
2

N

∑
j=1

w(c)
ij︸ ︷︷ ︸

1

=
N

∑
j=1

p2
j w(c)

ij︸ ︷︷ ︸
blur p2

j

− µi︸︷︷︸
blur pj

2. (3.4)

Here the position pj and squared position p2
j are blurred in the 3-

dimensional color space. It can be efficiently evaluated by discretizing
the color space and then evaluating a separable Gaussian blur along each
of the L, a and b dimension. Since the Gaussian filter is additive, we can
simply add position values associated to the same color. As in Eq. (3.2) we
use the permutohedral lattice [Adams et al., 2010] as a linear approximation
to the Gaussian filter in the Lab space.

The parameter σc controls the color sensitivity of the element distribution.
We use σc = 20 in all our experiments. See Figure 3.2 for a visual comparison
of uniqueness and spatial distribution.

In summary, by simple evaluation of two Gaussian filters we can compute
two non-trivial, but intuitively defined contrast measures on a per-element
basis. By filtering color values in the image, we compute the uniqueness of
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an element, while filtering position values in the Lab color space gives us
the element distribution. Next we will look at how to combine both mea-
sures, which have a different scaling and units associated to them, in order
to compute a per-pixel saliency value.

3.1.1.4 Saliency assignment

We start by normalizing both uniqueness Ui and distribution Di to the range
[0..1]. We assume that both measures are independent, and hence we com-
bine these terms as follows to compute a saliency value Si for each element:

Si = Ui · exp(−k · Di), (3.5)

In practice we found the distribution measure Di to be of higher significance
and discriminative power. Therefore, we use an exponential function in or-
der to emphasize Di. In all our experiments we use k = 6 as the scaling
factor for the exponential.

Figure 3.2 shows a visual comparison of the uniqueness Ui, distribution Di
and their combination Si. As the final step, we need to assign a final saliency
value to each image pixel, which can be interpreted as an up-sampling of
the per-element saliency Si. However, naive up-sampling by assigning Si
to every pixel contained in element i carries over all segmentation errors of
the abstraction algorithm. Instead we adopt an idea proposed in the context
of range image up-sampling [Dolson et al., 2010] and apply it to our frame-
work. We define the saliency S̃i of a pixel as a weighted linear combination
of the saliency Sj of its surrounding image elements

S̃i =
N

∑
j=1

wijSj. (3.6)

By choosing a Gaussian weight wij =
1
Zi

exp(−1
2(α‖ci − cj‖2 + β‖pi − pj‖2),

we ensure the up-sampling process is both local and color sensitive. Here
α and β are parameters controlling the sensitivity to color and position. We
found α = 1

30 and β = 1
30 to work well in practice.

As for our contrast measures in Eq. (3.1) and (3.3), Eq. (3.6) describes a high-
dimensional Gaussian filter and can hence be evaluated within the same
filtering framework [Adams et al., 2010]. The saliency value of each element
is embedded in a five-dimensional space using its position pi and its color
value ci in RGB (as we found it to outperform CIELab for up-sampling).
Since our abstract elements do not have a regular shape we create a point
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sample in RGBXY space at each pixel position p̃i within a particular ele-
ment and blur the RGBXY space along each of its dimensions. The per-pixel
saliency values can then be retrieved with a lookup in that high-dimensional
space using the pixel’s position p̃i and its color value c̃i in the input image.

The resulting pixel-level saliency map can have an arbitrary scale. In a final
step we rescale the saliency map to the range [0..1] or to contain at least 10%
saliency pixels.

In summary, our algorithm computes the saliency of an image by first ab-
stracting it into small, perceptually homogeneous elements. It then applies
a series of three Gaussian filtering steps in order to compute the uniqueness
and spatial distribution of elements as well as to perform the final per-pixel
saliency assignment. Qualitative results are shown in Figure 3.10, while we
refer the reader to Section 3.3 for quantitative results.

3.2 Saliency Detection using Fiedler Vectors

In the previous section we described a method for detecting salient ob-
jects that implements the color-contrast assumption. While quantitative and
qualitative results demonstrate the effectiveness of this prior, there are sev-
eral scenarios where it fails. To this end, we investigate a new method that
is based on the basic assumption that most of the image boundaries are cov-
ered by non-salient background. Background color priors and local color
similarities are encoded in a graph structure defined over a superpixel seg-
mentation of images or video frames. Starting from the eigenvalue decom-
position of the graph Laplacian, we demonstrate that the eigenvector corre-
sponding to the second smallest eigenvalue (Fiedler vector) provides a very
effective and robust way to compute saliency masks. In addition, differently
from previous approaches that use various heuristics or graph-cut segmen-
tation to binarize saliency maps, the entries of the Fiedler vector yield both
a continuous estimate and a content-adaptive binary partition.

Despite its computational simplicity, we show in our examples and evalua-
tion that our method compares favorably to recent methods and efficiently
handles various image and video types that are challenging for previous
approaches. To demonstrate the complementary nature of our method, we
also show that the performance can be further increased when combining
our approach with the technique presented in Section 3.1, which is based on
color-contrast.
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3.2.1 Method

The algorithm consists of three simple steps. First, the input image is de-
composed into superpixels (§3.2.1.1). Next, we compute a weighted graph
G connecting adjacent superpixels to a dummy node representing the un-
known background regions. Finally, a saliency score is assigned to each
superpixel based on the eigenvalue analysis of the Laplacian matrix of G.
Details are given in the following paragraphs.

3.2.1.1 Image representation

As a first step our algorithm, similarly to the technique proposed in Sec-
tion 3.1, decomposes an input image into superpixels, as they provide an
effective and perceptually meaningful level of abstraction, and remove un-
necessary detail such as small scale non-salient structures and noise. To seg-
ment the image into superpixels we use a variant of Achanta et al. [2012] as
described in Section 3.1, which is fast and preserves discontinuities such as
edges well.

The superpixel-decomposition of the image induces an undirected graph
G = (V , E) where the vertices V correspond to superpixels and the edges
E represent an adjacency relationship between the superpixels. Similarly to
segmentation algorithms such as Shi and Malik [1997], we model only lo-
cal relationships, i.e. (i, j) ∈ E only if the superpixels corresponding to the
nodes vi, vj share contiguous pixels in the image. We assign each node vi the
mean Lab color of the superpixel it belongs to, denoted as ci. The Lab color
space is chosen because its Euclidean metric mimics the human color per-
ception. Each edge (i, j) is assigned a positive weight wi,j that measures the
color similarity between superpixels vi and vj, higher values corresponding
to higher similarity:

wi,j =
1

‖ci − cj‖2 + ε
(3.7)

where ε is a small constant to avoid infinite weights.

Performing a straightforward partitioning of the graph, e.g., using Ratio-
Cut [Hagen and Kahng, 1992], to separate the superpixels into potential fore-
and background regions is not sufficient to obtain a reliable salient object es-
timate. The quantitative evaluation on the MSRA dataset (§3.3) shows that
the performance is substantially below state-of-art methods. See also Fig-
ure 3.3 for a representative saliency result.

We therefore incorporate a simple prior assuming that the majority of
boundary superpixels belongs to non-salient background, motivated by re-
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Source Image No Augmentation Augmentation Ground Truth

Figure 3.3: Graph augmentation with background prior. From left to right: source im-
age, saliency map computed without our graph augmentation, saliency map
using our method, and ground truth. The boundary prior and our graph
augmentation are key to separating the background from the salient fore-
ground object.

cent studies in gaze prediction which indicate that humans have a tendency
to focus attention on the center of an image. This is also reflected in vari-
ous photographic rules and utilized in saliency estimation techniques such
as Wei et al. [2012] . This prior is integrated by augmenting the graph with a
background node b and a set of edges U connecting b to the nodes forming
the image boundaries, i.e., to those superpixels that are in immediate contact
with the image border.

The augmented graph is hence Ga = (Va, Ea) with Va = V ∪ {b} and Ea =
E ∪U . The edge weights in U model the confidence of a node in being part of
the background. We use the Euclidean distance to the mean boundary color.
We assign the mean boundary color to b and compute the weights of the
edges in U with Eq. (3.7). With this formulation, most of the edges in U are
likely to be attached to background superpixels and carry high weight, while
few edges (if any) are attached to salient regions and have low weights.

3.2.1.2 Saliency estimation

Denote n = |Va|. We compute an eigendecomposition of the weighted graph
Laplacian matrix L ∈ Rn×n of Ga:

Li,j =


−wi,j i 6= j, (i, j) ∈ Ea

∑(i,k)∈E wi,k i = j
0 otherwise

. (3.8)
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Figure 3.4: Saliency computation using the Fiedler vector. In our approach the input
image on the top left is represented by a graph structure that encodes color
similarities between superpixels and a background color prior computed from
the image boundary. The Fiedler vector of the graph Laplacian results in a
continuously-valued saliency estimate for every superpixel, illustrated by
the saliency map on the bottom left and the plot.

The eigenvector f corresponding to the second smallest eigenvalue, also
known as the Fiedler vector, represents an optimal soft segmentation of Ga ac-
cording to a relaxed, continuously valued RatioCut objective [von Luxburg,
2007] by minimizing

min
f

∑
i,j∈E

wi,j( fi − f j)
2. (3.9)

The entries of this vector can be interpreted as a one-dimensional (linear)
embedding of Ga, where vertices are closer to each other if they are con-
nected by large weights.

We found that this property of the Fiedler vector f provides a meaning-
ful, continuously valued saliency score (Figure 3.4). We can derive either
a saliency score Scont ∈ [0, 1]n or a binary partition Sbin ∈ {0, 1}n. Both
measures are based on the sign of the entries of the Fiedler vector. Entries
having the same sign as the entry fb corresponding to the background node
b will be less salient than those having the opposite sign. Hence we define
the continuously-valued saliency score Scont as:

Scont = −sign( fb) · f (3.10)

This sign-corrected Scont is then scaled to the range [0, 1], possibly with pre-
cropping of the value range such that the resulting mean saliency is at least
0.1.
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Source Saliency Ground Truth

Figure 3.5: Robustness to salient objects being part of the image boundaries. From left
to right: source, our saliency map Scont, ground truth saliency.

A binary partition is obtained by discretizing the entries of the Fiedler vector
f . This operation can be performed based on the sign of fb, such that entries
having opposite sign to fb are defined as salient:

Sbin(i) = 1 if fi · fb ≤ 0, Sbin(i) = 0 otherwise (3.11)

To subdivide the graph into more than two partitions, i.e., to identify multi-
ple individual salient objects, the entries of f can be interpreted as points in
R and partitioned by a clustering algorithm such as k-means.

The above approach is quite robust even in challenging cases where the
salient object is actually part of the image boundary. As long as the ma-
jority of the superpixels is part of the background, the graph partitioning
correctly distinguishes between salient and non-salient areas (Figure 3.5).

3.3 Results

In order to compare our two proposed techniques, with respect to previ-
ous works, we evaluate the per-image saliency maps on a well established
dataset, with manually labeled ground-truth saliency: the MSRA [Cheng et
al., 2011; Achanta et al., 2009] dataset with 1000 images.

In accordance with Borji et al. [2012] we compare our result with several
state-of-the-art approaches such as, context-aware saliency (CA [Goferman
et al., 2010]) and global-contrast (RC [Cheng et al., 2011]). We also com-
bine the methods proposed in Section 3.1 and Section 3.2 by simple averag-
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ing of the saliency maps (denoted by FV+SF) in order to demonstrate the
complementary nature of our approach to contrast-based techniques. Next
we describe the two error measures commonly used to evaluate the per-
formance of the aforementioned algorithms and discuss the results or our
proposed approaches. In Section 3.4 we summarize conclusions, limitations
and future works. The algorithm proposed in Section 3.1 is also used as a
pre-processing baseline in our benchmark of video segmentation algorithms
and therefore further evaluation can be found in Section 7.4.1.

In Figure 3.10 we show a qualitative evaluation of our approaches.

3.3.1 Precision and Recall

We evaluate the performance of our algorithm measuring its precision and
recall rate. Precision corresponds to the percentage of salient pixels correctly
assigned, while recall corresponds to the fraction of detected salient pixels
in relation to the ground truth number of salient pixels.

High recall can be achieved at the expense of reducing the precision and
vice-versa so it is important to evaluate both measures together. We per-
form two different experiments. In both cases we generate a binary saliency
map based on some saliency threshold. In the first experiment we compare
binary masks for every threshold in the range [0..255]. The resulting curves
in Figure 3.6 show that our algorithms (SF,FV) consistently produces results
closer to ground truth at every threshold and for any given recall rate.

In the second experiment we use the image dependent adaptive threshold
proposed by [Achanta et al., 2009], defined as twice the mean saliency of the
image:

Ta =
2

W × H

W

∑
x=1

H

∑
y=1

S(x, y), (3.12)

where W and H are the width and the height of the saliency map S, re-
spectively. In addition to precision and recall we compute their weighted
harmonic mean measure or F-measure, which is defined as:

Fβ =
(1 + β2) · Precision · Recall

β2 · Precision + Recall
. (3.13)

Similar to Achanta et al. [2009] and Cheng et al. [2011] we set β2 = 0.3.
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V
V

V
V

V

Figure 3.6: Precision and recall rates for adaptive (top) and fixed (bottom) thresholds.
We split adaptive threshold comparison of all methods into two plots for
improved readability.

3.3.2 Mean Absolute Error

Neither the precision nor recall measure consider the true negative saliency
assignments, i.e., the number of pixel correctly marked as non-salient. This
favors methods that successfully assign saliency to salient pixels but fail to
detect non-salient regions over methods that successfully detect non-salient
pixels but make mistakes in determining the salient ones. Moreover, in some
application scenarios [Avidan and Shamir, 2007] the quality of the weighted,
continuous saliency maps may be of higher importance than the binary
masks.

For a more balanced comparison that takes these effects into account we
therefore propose to evaluate the mean absolute error (MAE) between the con-
tinuous saliency map S (prior to thresholding) and the binary ground truth
GT. The mean absolute error is then defined as

MAE =
1

W × H

W

∑
x=1

H

∑
y=1
|S(x, y)− GT(x, y)|, (3.14)
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Figure 3.7: Mean absolute error of the different saliency methods to ground truth. The
proposed approaches (FV,SF) outperform the state-of-the-art.

where W and H are again the width and the height of the respective saliency
map and ground truth image.

Figure 3.7 shows that our methods also outperforms the other approaches in
terms of the MAE measure, which provides a better estimate of the dissimi-
larity between the saliency map and ground truth.

3.4 Discussion

In this chapter we presented two methods for detecting salient objects in
still images. In Section 3.1 we presented a method for saliency computation
based on an image abstraction into structurally representative elements and
contrast-based saliency measures, which can be consistently formulated as
high-dimensional Gaussian filters. Our filter-based formulation allows for
efficient computation and produces accurate per-pixel saliency maps. In Sec-
tion 3.2 we presented a complementary method that combines the assump-
tion of image boundaries covered mostly by background with soft graph
segmentation using the Fiedler vector, yielding a continuously-valued so-
lution to salient foreground detection and segmentation. Our approaches
compare favorably to the state-of-the-art on a well established benchmark
for salient object segmentation.

Limitations and Future Works. Saliency estimation based on color contrast
may not always be feasible, e.g., in the case of lighting variations, or when
fore- and background colors are very similar. In such cases, the thresholding
procedures used for all the above evaluations can result in noisy segmenta-
tions (Figure 3.8). One option to significantly reduce this effect is to perform
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a single min-cut segmentation [Boykov and Kolmogorov, 2004] as a post pro-
cess, using our saliency maps as a prior for the min-cut data term, and color
differences between neighboring pixels for the smoothness term. The graph
structure facilitates smoothness of salient objects and significantly improves
the performance of our algorithms.

Similarly the method presented in Section 3.2 fails when the boundary prior
does not old, i.e., when a salient object covers most of image boundaries.
Furthermore, in its current formulation, our approach is particularly effec-
tive for the detection of single salient objects. For example, in Figure 3.9
our algorithm correctly detects the salient object with the strongest separa-
tion from the background, but fails to detect the remaining pieces. Multiple
salient objects could be retrieved by repeatedly segmenting the salient re-
gion [Lu et al., 2011] or using a sliding window approach [Feng et al., 2011].
For the latter, the shape of the Fiedler vector might well serve as an addi-
tional indicator of the number of salient objects within the window.

As discussed in the limitations, an interesting direction for future work is
the detection of multiple salient objects. Moreover, combinations of dif-
ferent computational saliency methods with complementary properties can
lead to improved accuracy of the computed saliency maps. Most promising
saliency models [Pan et al., 2016; Liu and Han, 2016] are now built over Con-
vNets designed for semantic segmentation. An interesting direction could
be to incorporate semantics in the model, instead of performing class agnos-
tic saliency detection.
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Figure 3.8: Limitations of contrast based saliency (Section 3.1) and min-cut segmenta-
tion improvements. From left to right: Input image, saliency map computed
with our method, the noisy result of simple thresholding, and min-cut seg-
mentation applied to the saliency map.

Input Superpixels SF Ground truth

Figure 3.9: Failure cases of saliency based on the Fiedler vector (Section 3.2). In the case
of multiple disconnected objects our current algorithm correctly detects only
the most salient one. Non-salient objects with distinctive colors cause the
method to fail in some instances.
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SRC CA RC GS AC SF FV G

Figure 3.10: Qualitative comparison of the results of our algorithms (SF, FV) with
ground truth (GT) and several other state-of-the art approaches. Our
methods consistently produce a foreground-background separation close to
ground truth. Note their failure modes, when the prior they model does not
hold. From left to right: source image (SRC), context-aware saliency (CA),
global-contrast (RC), geodesic saliency (GS), salient region detection (AC),
saliency filters (SF), fiedler saliency (FV) and ground-truth (GT).
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C H A P T E R 4
Semi-automatic Segmentation with
Object Proposals

In Chapter 3 we have discussed two different approaches to determine the
location of a salient object in static images. While salient object detection
techniques have demonstrated promising results applied on images con-
taining a single foreground object, the subjective nature of saliency makes
them less suited to process complex images with multiple objects. To this
end, object proposals become handy. Object proposals indicate regions of
an image that are likely to contain an object. Multiple proposals are ex-
tracted from a single image and assigned to an objectness score according
to different heuristics, among them saliency. The striking advances that
object proposals enabled in fields such as object recognition, have moti-
vated their usage in several video object segmentation algorithms. These
methods are often designed to operate unsupervised. An objectness score,
which can incorporate saliency information, is assigned to each of the pro-
posals and used to automatically select a set of temporally coherent seg-
ments that are likely to correspond to the foreground object. Typically the
best proposal per-frame, is selected by minimizing an energy function de-
fined over a locally connected spatiotemporal graph. While these methods
have achieved state-of-art performance [Ma and Latecki, 2012; Li et al., 2013;
Zhang et al., 2013], the sparse graph structure limits their ability to segment
videos with fast motion and occlusions.

To overcome the aforementioned limitations of local graph connectivity, in
this chapter, we propose an efficient alternative approach which exploits
a fully connected spatiotemporal graph connecting all object proposals to
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each other. The fully connected nature of the graph implies information
exchange between both spatially and temporally distant object proposals,
which makes our method robust to the difficult cases of fast frame-to-frame
motion and object occlusions. We additionally propose an energy term that
incorporates sparse but confident long range feature tracks, in order to en-
sure similar temporal labeling of objects. While previous approaches are
constrained to the selection of one proposal per frame, our formulation en-
ables the grouping of multiple overlapping proposals in the same frame,
yielding robustness to outliers and incorrect proposal boundaries.

4.1 Method

Our method consists of three stages. Given an input video V , for each frame
V t we compute a large set of object proposals S t = {st

i}, using existing tech-
niques [Krähenbühl and Koltun, 2014]. The goal of this step is to generate
a wide range of different proposals, such that a sufficient number of seg-
ments overlap with the object (§4.1.1). Then our method learns an SVM-
based classifier in order to resample S into a smaller set of higher quality
proposals S̄ (§4.1.1.1). Finally we refine this classification by solving for the
maximum a posteriori inference on a densely connected CRF (§4.1.2). The
fully connected graph structure is coupled with a novel energy function that
considers overlap between point-tracks in the pairwise potentials, exploits
temporal information, and ensures robustness to fast motion and occlusions.

4.1.1 Object Proposal Generation

Algorithms for computing object proposals are generally designed to have a
high recall, proposing at least one region for as many objects in the image as
possible. While the set of candidates must remain of limited size, the task of
selecting positive samples is left to later stages, and the ratio of regions that
truly belong to an object, i.e. precision, is usually not considered a measure
of performance.

While other approaches leverage the high recall property by assuming that
there is one good proposal per-frame, our goal is to exploit the redundancy
in the data of multiple proposals with a high degree of overlap with the
foreground object. In order to have a significant amount of such positive in-
stances, we modified the parameters of Krähenbühl and Koltun [2014] that
control seed placement and level set selection to generate around twenty
thousands proposals per frame. Otherwise we consider the proposal gener-
ator as a black box, and other object proposal methods could be used instead.
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It is important to note, however, that the resulting set of proposals is likely
imbalanced, with potentially many more proposals on background regions
than on foreground, depending on object size. Furthermore, many propos-
als will cover both foreground and background. These issues negatively
impact segmentation, both in terms of quality and efficiency. To overcome
this problem we train an SVM classifier and resample the pool of proposals.

4.1.1.1 Candidate Proposal Pruning

We introduce a per-frame pruning step with the goal of rebalancing the
set of proposals and selecting only those with higher discriminative power,
i.e. those that do not overlap both with foreground and background. The
choice of the SVM is justified by its proven robustness to skewed vector
spaces resulting from class imbalance [Wang and Japkowicz, 2008] and rel-
atively fast performance. We train an SVM classifier which operates on el-
ements of S , separating those that overlap with foreground from those that
belong to the background (§4.1.1.2), and then resample the set (§4.1.1.3).
Finally, we use the output of the SVM to initialize the unaries of the CRF
(§4.1.2.1).

4.1.1.2 Feature Extraction and Training

Features. From each of the proposals we extract a set of features that char-
acterize its appearance, motion and objectness as summarized in Table 4.1.
The global appearance and spatial support are defined in terms of average
color, average position and area. The local appearance is encoded with His-
togram of Oriented Gradients (HOG) [Lowe, 2004] computed over the pro-
posal bounding box rescaled to 64x64 pixels and divided into 8x8, 50% over-
lapping cells quantized into 9 bins. The motion is defined with Histogram
of Oriented Optical Flow (HOOF) [Chaudhry et al., 2009] extracted from the
proposal bounding box rescaled to 64x64 pixels and quantized into 32 bins.
The objectness is measured in terms of region boundaries encoded by 8x8
normalized gradients patches [Cheng et al., 2014]. The set of features is ag-
gregated into a 1398 dimensional descriptor xi ∈ X .

Training. The classifier is trained from a small set of proposals S̃ known
to belong to the foreground object. This set S̃ = {s̃i} may be either de-
termined using automatic approaches such as the salient object detectors
presented in Chapter 3, based on objectness [Endres and Hoiem, 2014;
Lee et al., 2011], manually using interactive video editing tools, or a com-
bination thereof. In our experiments we manually annotated 1 or 2 fore-
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Feature Description Dim

(ACC) Area, centroid, average color 6
(HOOF) Histogram of Oriented Optical Flow 32
(NG) Objectness via normalized gradients 64
(HOG) Histogram of oriented gradients 1296

Table 4.1: Set of features extracted from each object proposal by the SVM classifier and
corresponding dimensionality.

ground proposals per-sequence. S̃ is augmented with all proposals that
spatially overlap with one of its initial elements by a factor of more than
a threshold τ (0.95 in our experiments). All remaining proposals are marked
as background. A binary SVM classifier with linear kernel and soft margins
is trained on the labeled data yielding the score function C(xi) = wTxi + b
which measures the distance of the proposal s̃i with associated feature vec-
tor xi from the decision surface w⊥. While sign(C(xi)) is enough to clas-
sify proposals as either fore- or background, in Section 4.1.2 we can addi-
tionally include the distance from the hyperplane wTxi + b ∈ [−∞,+∞]
as the posterior probability P(yi|xi) ∈ [0, 1] in order to initialize the unary
potentials of the CRF. We use Platt Scaling [Platt, 1999] to fit a logistic re-
gressor Q to the output of the SVM and the true class labels, such that
Q(C(xi)) : R→ P(yi|xi). Parameters of the SVM are reported in Section 4.2.

4.1.1.3 Classification and Resampling

Given the trained classifier C, we aim to roughly subdivide the set of ob-
ject proposals S t extracted at frame t into two spatially disjoint sets S t

+ and
S t
− such that

⋃ S t
+ lies within the foreground region and

⋃ S t
− on the back-

ground. Initially we form S t
+ = {st

i |P(yi|xi) > 0.5}. Next, we select ele-
ments from the set of proposals classified as background such that they do
not overlap with S t

+, i.e., S t
− = {st

i | |S t
+∩ st

i | < ε̄}. The slack variable ε̄ is nec-
essary to avoid S t

− = ∅, which can happen in videos where the foreground
object occupies most of the frame. We initially set ε̄ to 0 and iteratively in-
crement it with steps of 20 until the constraint |S t

−| > 500 is satisfied or the
total amount of background proposal is reached. In our experiments we re-
tain ∼ 10% of the proposals generated (roughly 2000 proposals per-frame).

The positive impact of our pruning and resampling step on the quality of
the video segmentation is shown in Section 4.3. The resulting classification
can still be imprecise, but serves the purpose of rebalancing positive and
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(a) Source (b) GOP (c) Background (d) Foreground (e) Resampled

Figure 4.1: Left to right: distribution of object proposals on arbitrary frames. Colormaps
are computed as the sum of the object proposals normalized to range [0,1].
Starting from a source image (a) we generate a set of geodesic object propos-
als with resulting distribution over the image (b). Note that many proposals
fall on background regions. An SVM classifier (§4.1.1.2) resamples the set
of proposals into foreground (c) and background (d). The new set (e), corre-
sponding to the union of (c) and (d), is now balanced and contains proposals
with higher discriminative power (§4.1.1.3).

negative instances. The union of the two newly generated sets S̄ t = S t
+ ∪S t

−
forms the input S̄ = {S̄ t} to the following step, which then provides a global
solution considering spatial and temporal information jointly with the color
appearance. Note that for ease of notation we refer to S̄ as S throughout the
remaining part of paper. The original and newly generated distribution of
proposals is visualized in Figure 4.1.

4.1.2 Fully Connected Proposal Labeling

In order to accurately classify elements of S , we must enforce a smoothness
prior that says that similar proposals should be similarly classified. Condi-
tional random fields provide a natural framework to incorporate all mutual
spatiotemporal relationships between proposals as well as our initial pro-
posal confidences.

4.1.2.1 Inference

Let us define a set of labels L = {bg = 0, fg = 1}, corresponding to back-
ground and foreground regions respectively. Let F = {fi} be a newly
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generated set of features extracted from each element in S , as defined in
Eq. (4.3). Let us define the set of random variables Y = {yi}, yi ∈ L.
Consider a fully-connected random field (Y,X ∪ F ) defined over a graph
G = (V , E) whose nodes correspond to object proposals. Let Z(X ,F ) be the
partition function. The posterior probability for this model is P(Y|X ,F ) =

1
Z(F ) exp(−E(Y|X ,F )) with the corresponding Gibbs energy defined over
the set of all unary and pairwise cliques:

E(Y|X ,F ) = ∑
i∈V

ψu(yi;X ) + ∑
i,j∈E

ψp(yi, yj;F ) . (4.1)

Unary Potentials. The unary term ψu is directly inferred from the output
of the SVM and the set of annotated proposals S̃ . We formulate an up-
dated conditional probability P(yi|xi) = λ · Q(C(xi)) +

(1−λ)
2 , with the user-

defined parameter λ ∈ [0, 1] modulating the influence of the SVM prediction
on the CRF initialization. For all experiments, we set the parameter λ to 0.1.
We define ψu as a piecewise function

e−ψu(yi,X ) =

{
li + ε̂, li ∈ L si ∈ S̃
P(yi|xi) si /∈ S̃ . (4.2)

Pairwise Potentials. We define the label compatibility function µ to be the
Potts model µ(yi, yj) = [yi 6= yj], a Gaussian kernel k∗(x) = exp

(
− x2

2σ2∗

)
,

and scalar weights ω∗. In order to distinguish proposals that have similar
appearance but belong to different image regions we define the pairwise po-
tential ψp to be a linear combination of several terms that jointly incorporate
color, spatial and temporal information:

ψp(yi, yj;F ) = [yi 6= yj] ·
(

ωckc(Dc(ci, cj))︸ ︷︷ ︸
appearance kernel

+

ωsks(Ds(si, sj))︸ ︷︷ ︸
spatial kernel

+ωpkp(Dp(pi, pj))︸ ︷︷ ︸
trajectory kernel

+ωtkt(|ti − tj|)︸ ︷︷ ︸
temporal kernel

)
. (4.3)

The color appearanceDc is defined in terms of the chi-squared kernel χ2(ci, cj)
where ci and cj are normalized RGB color histograms of proposals si and
sj, respectively, with 20 bins per dimension. The spatial relation between
any pairs of proposals is defined in terms of the intersection-over-union:

Ds(si, sj) = 1 − |si∩sj|
|si∪sj|

. The last two kernels establish temporal connectiv-
ity among proposals, reducing the penalty of assigning different labels to
those that are not intersected by the same trajectory or that belong to a dif-
ferent frame. The trajectory kernel exploits that the proposals we use consist
of compact sub-regions in the form of superpixels. Let pi ⊂ si and pj ⊂ sj
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be the set of superpixels that share at least one point-track with sj or si, re-
spectively. We define Dp based on the area that is intersected by common

trajectories Dp(pi, pj) = 1− |pi∪pj|
|si∪sj|

. In the last term, ti and tj are the corre-
sponding frame numbers of proposals si and sj, which reduces penalty for
assigning different labels to proposals that are distant in time. The maximum
a posteriori (MAP) labeling of the random field Y∗ = argmaxY∈LP(Y|X ,F )
minimizing the Gibbs energy E(Y|X ,F ) produces the segmentation of the
video.

To efficiently recover Y∗ we use the framework of Krähenbühl and
Koltun [2011], which provides a linear time O(N) algorithm for the in-
ference of N variables on a fully-connected graph based on a mean field
approximation to the CRF distribution. The efficiency of the method comes
with the limitation that the pairwise potential must be expressed as a linear
combination of Gaussian kernels having the form:

ψp(yi, yj,F ) = µ(yi, yj)
K

∑
m=1

wmkm(fi, fj) (4.4)

where each Gaussian kernel defined as:

km(fi, fj) = exp
(
−1

2
(fi − fj)

TΛm(fi − fj)

)
. (4.5)

We now describe the embedding techniques we employ to project F into
Euclidean space in order to overcome this limitation.

4.1.2.2 Euclidean Embedding

To enable the use of arbitrary pairwise potentials we seek a new representa-
tion of the data in which the l2-norm is a good approximation to the distance
of the original nonlinear space. In practice, given the original set of features
F we seek a new embedding F̂ into the Euclidean space Rd s.t.:

D(fi, fj) ≈
∣∣∣∣∣∣f̂i − f̂j

∣∣∣∣∣∣
2

. (4.6)

Campbell et al. have demonstrated the effectiveness of Landmark Multi-
dimensional Scaling (LMDS) [de Silva and Tenenbaum, 2002] in a context
similar to ours. LMDS is an efficient variant of Multidimensional Scal-
ing [Cox and Cox, 1994] that uses the Nystrom approximation [Belongie et
al., 2002a] to reduce the complexity from O(N3) to O(Nmk + m3) where N
is the number of points, m is the number of landmarks and k the dimen-
sionality of the new space. We refer the reader to [Campbell et al., 2013;
Platt, 2005] for more details.

45



Semi-automatic Segmentation with Object Proposals

Stage Time

Optical flow 113.1
Object Proposals 55.6
Feature Extraction 541.7
SVM Classification 42.7
MDS Embedding 78.4
CRF Inference 260.0

Video Segmentation 1091.5

Table 4.2: Running time in seconds for each individual stage to segment a video of 75
frames and spatial resolution 960x540.

We use LMDS to conform the pairwise potential to Eq. (4.4). We express pair-
wise potentials ψp in Eq. (4.3) as a linear combination of several terms. For
better control of the resulting embedding error, we separately embed each
of the components. For each D∗ term of Eq. (4.3), we empirically determine
the dimensionality of the embedding space from the analysis of their dis-
similarity matrix eigenvalues. The resulting pairwise potential conforming
to Eq. (4.4) is:

ψp(yi, yj; F̂ ) = [yi 6= yj](ωckc(ĉi, ĉj)+

ωsks(ŝi, ŝj) + ωpkp( p̂i, p̂j) + ωtkt(ti, tj)). (4.7)

The features ĉ, ŝ, p̂ are Euclidean vectors of 10, 20 and 50 dimensions respec-
tively. Note that the temporal term t is already Euclidean, and so it does not
require embedding.

4.1.2.3 Segmentation

The final video segmentation is computed as the sum of the proposals
weighted by the conditional probability P(y = fg|X , F̂ ) and scaled to range
[0, 1] on a per-frame basis. As a final post-processing step, we refine the
segmentation with a median filter of width 3 applied along the direction
of the optical flow [Brox and Malik, 2010]. This has the effect of removing
temporal instability that arises from different per-frame object proposal con-
figurations. The final segmentation can then be thresholded by β to achieve
a binary mask.
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4.2 Implementation Details

We conducted all experiments on a machine with 2 Intel Xeon 2.20 GHz
processors with 8 cores each. The algorithm has been implemented in
Python. For the SVM-based pruning we employ the implementation of
scikit-learn [Pedregosa et al., 2011]. Most of the components of our algorithm
are parallelizable. Those that are not, such as MDS and the CRF, are rela-
tively efficient. In Table 4.2 we report the time consumption of each individ-
ual component for a sample video of 75 frames and resolution of 960x540.
It takes about 20 minutes to complete the segmentation which is about 16
seconds per frame. The running time performance of our algorithm is com-
parable to the fastest existing methods such as [Ramakanth and Babu, 2014;
Papazoglou and Ferrari, 2013; Faktor and Irani, 2014]. The weights of the
CRF pairwise potential ψp of Eq. (4.3) are specific to the dataset. For FBMS
we used ωc = 1.0, ωs = 0.15, ωp = 0.3 and ωt = 0.2, while for SegTrack we
reduced the impact of spatial-temporal relationships between proposals set-
ting ωs = ωt = 0.01. The proposal generation step uses 200 seeds, 200 level
sets, with the rejection overlap set to 0.95. The only necessary modification
of parameters was a reduction of the number of proposals for the evaluation
of the CRF step only (without proposal pruning), which we discuss in de-
tail below. For that experiment, we reduced the number of proposals using
30 seeds, 30 level sets and rejection threshold of 0.88.The parameter β that
binarizes the final segmentation is set empirically to 0.03 for FBMS and 0.07
for SegTrack.

4.3 Results

We quantitatively evaluate our approach and its components with respect to
various state-of-the-art techniques on the Freiburg-Berkeley Motion Segmenta-
tion Dataset (FBMS [Brox and Malik, 2010]), see Figure 4.2 for qualitative
results. Further evaluation of the proposed approach is provided in Chap-
ter 7.

FBMS Results. The FBMS dataset consists of 59 sequences featuring typ-
ical challenges of unconstrained videos such as fast motion, motion blur,
occlusions, and object appearance changes. The dataset is split into a train-
ing and testing set. Since none of the methods we compare with requires
a training phase, we measure performance on both sets. Due to running-
time and memory constraints of the prior approaches that we compare to,
we limit the length of the videos to 75 frames. For the purpose of testing
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Figure 4.2: Top to bottom, left to right: qualitative video object segmentation results on
six sequences (horses05, farm01, cats01, cars4, marple8 and people5) from
the FBMS dataset. Our method demonstrates reasonable segmentation qual-
ity for challenging cases, e.g., non-rigid motion and considerable appearance
changes (horse05, cats01). The rich set of features of the SVM and the pair-
wise potentials of the CRF make our method robust to cluttered background
(farm1, cars4), while the fully connected graph on which we perform infer-
ence provides robustness to partial and full occlusions (marple8). The aggre-
gation of object proposals is also effective for complex, multi-colored objects
(people05).

segmentation quality in the presence of fast motion we temporally subsam-
ple frames from videos exhibiting slow motion. In videos that have mul-
tiple objects we manually selected the one with dominant motion. Simi-
lar to previous works [Li et al., 2013; Faktor and Irani, 2014] we measure
the segmentation quality in terms of intersection-over-union, which is invari-
ant to image resolution and to the size of the foreground object. We com-
pare our method (FCP) with several recent state-of-the-art approaches [Pa-
pazoglou and Ferrari, 2013; Ramakanth and Babu, 2014; Zhang et al., 2013;
Faktor and Irani, 2014]. These methods have been selected based on their
quality of results, underlying approaches, and availability of their source
code. SeamSeg (SEA), seeks connected paths of low energy to track the ob-
ject boundaries. Zhang et al. [2013] (DAG) integrate objectness and appear-
ance similarity in a directly acyclic graph whose shortest-path corresponds
to a video segmentation. Under the assumption that the object moves dif-
ferently from the background Papazoglou and Ferrari [2013] (FST) find the
closed motion boundary and propagate the initial estimate using a spatio-
temporal optimization. Finally, Faktor and Irani [2014] (NLC) consolidate
an initial foreground estimate based on saliency using a Markov chain.

Our method and SEA are semi-supervised while the others are unsuper-
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FCP CRF SVM SEA FST DAG NLC

cars1 69.0 80.0 68.0 83.0 82.0 10.0 27.0
cats01 83.0 68.0 76.0 62.0 80.0 34.0 71.0
cats03 39.0 00.0 11.0 17.0 53.0 32.0 12.0
dogs01 55.0 22.0 39.0 38.0 53.0 56.0 54.0
goats01 82.0 84.0 78.0 53.0 84.0 79.0 58.0
horses05 77.0 66.0 47.0 69.0 34.0 44.0 38.0
lion01 84.0 74.0 80.0 73.0 80.0 77.0 67.0
marple2 59.0 57.0 71.0 78.0 65.0 56.0 60.0
marple4 88.0 73.0 87.0 69.0 15.0 45.0 19.0
marple6 77.0 64.0 77.0 86.0 24.0 18.0 48.0
people1 68.0 64.0 22.0 58.0 54.0 69.0 85.0
people2 81.0 78.0 76.0 77.0 92.0 48.0 77.0
rabbits02 66.0 11.0 33.0 42.0 65.0 32.0 71.0
rabbits03 43.0 40.0 23.0 42.0 41.0 22.0 44.0
rabbits04 29.0 00.0 12.0 23.0 38.0 12.0 20.0
tennis 48.0 27.0 41.0 55.0 30.0 51.0 64.0

Avg. Test 65.0 51.0 53.0 58.0 56.0 43.0 51.0
Avg. Training 77.0 62.0 61.0 71.0 68.0 60.0 56.0

Table 4.3: Intersection-over-union comparisons on a subset of the FBMS dataset. The
columns SVM and CRF correspond to the results obtained using either only
our SVM-based classification, or only our CRF-based labeling, respectively.
Our full approach (FCP) is generally (close to) the best performing one (high-
lighted in bold), and achieves the highest average values of all methods.

vised. For a more informative and fairer comparison, we therefore removed
any of the videos from the comparison in Table 4.3, for which at least one
of these unsupervised methods did not detect the object. We report detailed
sequence evaluation for the test set and the average for the training set. We
separately evaluate the steps of our algorithm: SVM only, CRF only, and
the full approach FCP. Corresponding precision, recall, and f-measure plots
are shown in Figure 4.3. As discussed in the implementation section, in the
CRF experiment we modified the parameters generating object proposals to
produce roughly the same number of proposals that are retained during the
pruning step.

Results in Table 4.3 demonstrates that our method consistently produces a
good segmentation yielding roughly a 10% improvement over the current
state-of-the-art in terms of average performance. The importance of com-
bining both the SVM and CRF steps is also apparent.
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Figure 4.3: Left: Precision-Recall curves and F-score isolines (β2 = 0.3) for the SVM
and CRF classification of object proposals into foreground and background,
obtained by varying the minimum amount of overlap τ required for a pro-
posal to be considered foreground. The SVM classification (SVM) is less
precise but has better recall, preventing the removal of foreground proposals,
with which the CRF can perform the final classification (FCP). The plot also
evaluates the individual importance of the SVM features of Table 4.1 and the
CRF potentials of Eq. (4.3) in terms of the resulting loss if they were removed
during the classification. Right: Average, maximum and minimum F-score.
Our solution FCP outperforms the SVM only classification. Note that the
best scores, respectively SVM and FCP, are obtained when all features and
potentials are employed.

4.4 Discussion

We presented a novel approach to segment objects in unconstrained videos,
which provides state-of-the-art performance on challenging video data.
During these studies we realized that, due to the constant increase in terms
of video resolution and quality, more complex benchmarks than FBMS are
required to provide real-world application scenarios for evaluating video
segmentation algorithms. Therefore, in Chapter 7 we propose a new dataset
comprising 50 densely annotated, high-resolution video sequences. Addi-
tional evaluation on the new benchmark demonstrated that methods based
on object proposals appear to be a great candidate for addressing the com-
putational challenges arising from higher resolution video data, since the
use of proposals greatly reduces computational complexity, allowing us to
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FCP NLC FST DAG TMF KEY HVS

birdfall 25.0 74.0 59.0 71.0 62.0 49.0 57.0
cheetah 49.0 69.0 28.0 40.0 37.0 44.0 19.0
girl 54.0 91.0 73.0 82.0 89.0 88.0 32.0
monkeydog 64.0 78.0 79.0 75.0 71.0 74.0 68.0
parachute 91.0 94.0 91.0 94.0 93.0 96.0 69.0

Average 57.0 81.0 66.0 72.0 70.0 70.0 49.0

Table 4.4: Intersection-over-union computed on the SegTrack dataset. On low resolution
video, there are insufficient foreground proposals generated for our method to
work well.

employ a fully connected CRF over a complete video sequence. A similar,
fully connected formulation at the pixel level would be infeasible.

Limitations and Future Works. Our approach is designed to work with real-
world video sequences with fast object motion, and occlusions. In particu-
lar, since our method is based on object proposals, it requires a sufficiently
high video resolution such that the computation of proposals using exist-
ing techniques produces meaningful results. This becomes clear in Table 4.4,
when running our approach on lower resolution video such as the SegTrack
benchmark1 [Lee et al., 2011; Papazoglou and Ferrari, 2013]. We additionally
compare with Li et al. [2013] (TMF), Lee et al. [2011] (KEY) and Grundmann
et al. [2010] (HVS). In this dataset, very few proposals overlap with the fore-
ground object due to the limited image resolution (highest is 414x320) and
the small size of the objects, so our approach, which is based on aggregat-
ing multiple object hypothesis works less well. For example the training set
of the birdfall video has a ratio of 1:4000 foreground and background pro-
posals, with only 13 proposals on the object. The lack of positive samples
weakens the self-training of the SVM and, as consequence, the effectiveness
of the CRF is severely limited. While some of the results are comparable with
other approaches, these limitations are the reason why our method performs
significantly better on the FBMS dataset.

There exist several further opportunities for followup work. For example, to
improve the final segmentation accuracy, it would be interesting to investi-
gate approaches to combine the prediction of the CRF in a more principled
manner (e.g., incorporating higher-order potentials), or to employ bilateral
filtering techniques to refine the proposal-based segmentation to the pixel
level.

1In accordance with prior works we do not evaluate ’penguin’
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C H A P T E R 5
Learning Video Segmentation from
Static Images

In the previous chapter we explored the usage of object proposals and hand-
crafted features to segment foreground objects. We demonstrated that solv-
ing a global energy minimization problem over the entire video volume have
several advantages, such as robustness to occlusion, fast-motion and ap-
pearance changes, and overall it shows lower performance decay and good
temporal stability. However processing the entire video at once might not
always be feasible due to the memory footprint required by the algorithm.
In contrast to Chapter 4, in this part of the thesis we investigate how accu-
rate video object segmentation can be enabled by training a Convolutional
Neural Network (ConvNet) on static images only and processing the video
sequence on a frame-by-frame basis.

Many fundamental areas of computer vision have recently witnessed dra-
matic progresses thanks to the rise of deep learning techniques coupled with
the availability of large-scale annotated data. However, in the domain of
video segmentation, densely annotating a large-scale dataset is almost pro-
hibitive. Motivated by the lack of per-pixel labeled video data, we demon-
strate that highly accurate video object segmentation can be enabled using a
ConvNet trained with static images only. This is one of key insights and con-
tribution of this chapter. Furthermore, our method is efficient due to its feed-
forward architecture and can handle different type of initialization, ranging
from precise segmentation masks, to weaker object localizations such as a
bounding-boxes. These two characteristics render our approach well suited
to parse large-scale datasets.

53



Learning Video Segmentation from Static Images

MaskTrack ConvNet

Input frame t

Mask estimate t-1

Refined mask t

Figure 5.1: Given a rough mask estimate from the previous frame t − 1 , we train a
ConvNet to provide a refined mask output for the current frame t.

Inspired by recent advances of deep learning in instance segmentation and
object tracking in this chapter we present a novel approach that adapt a se-
mantic segmentation network to class agnostic video object segmentation.
To this end, we introduce the concept of guidance, to steer the model to
focus on the desired instance of the object. The propose approach is semi-
supervised but can handle different type of input annotations, such as seg-
ments or bounding boxes, and therefore is suitable for a variety of applica-
tion that require different manual effort.

To the best of our knowledge our approach is the first to use a pixel labelling
network, e.g. DeepLabv2 [Chen et al., 2016], for the task of video object seg-
mentation. We name our approach MaskTrack.

5.1 Method

We tackle the video objects segmentation problem from a new perspective.
We build upon an existing architecture designed for semantic pixel label-
ing and adapt it to generate per-frame segments of generic object instances.
Specifically, we choose DeepLabv2 [Chen et al., 2016] as our baseline Con-
vNet, as at the time of these studies it was one of the best performer on
Pascal VOC [Everingham et al., 2012] and the code was publicly released.
Nevertheless, our approach can be easily built around any other architec-
tures. Given a ConvNet trained for instance segmentation, the challenge
is then how to inform the network to segment a particular object instance.
We tackle this problem with two complementary strategies. One is guiding
the network towards the instance of interest, stacking a rough segmentation
into the RGB input image. The imperfect input segmentation can be either

54



5.1 Method

a manual annotation, e.g. in the case of the first video frame of a sequence,
or the previous frame mask. The network learns to refine the segmentation
mask during the offline training (§5.1.1). The second strategy learns the ap-
pearance of the specific instance to be segmented by fine-tuning the model
with an online training procedure (§5.1.2). In the ablation study (§5.3.2) we
demonstrate that the combination of online and offline training yields highly
accurate results. A visual representation of the proposed approach is shown
in Figure 5.1.

5.1.1 Offline Training

To provide the ConvNet with guidance towards the object of interest to be
segmented, we extend the data layer of the network from 3-channels RGB to
4-channels RGB+mask. The augment channel has the purpose of providing
the network with a rough shape and location of the object instance. The net-
work refines this prior estimate into a high-quality segmentation. Therefore
we can interpret our model as a ”mask-refinement” network (Figure 5.1).

Two key observations make the approach we propose appealing from a prac-
tical point of view. First, it doesn’t require highly accurate segmentation
masks to be initialized. In our experiments, we found that a coarse input
masks and even simple bounding boxes, as demonstrated in the ablation
study (§5.3.2) are enough for the trained network to produce sensible out-
put results. Second, our approach does not require densely annotated video
data and therefore we are able to exploit a large set of diverse images and
avoids having to use existing video segmentation benchmarks for training.

A simplified architecture of our system is shown in Figure 5.1. In order to
make the ConvNet robust to inaccurate masks priors during offline training,
we generated novel input masks deforming the ground-truth mask. We em-
ploy affine and non-rigid transformations via thin-plate splines [Bookstein,
1989] to simulate the motion the object might undergoes in the successive
frames. Furthermore we coarsen the input mask throughout morphologi-
cal dilation to remove small details of the object contour. The coarsening
generates a mask that is a better representative of the test time data, simu-
lating the blobby shape of the output ConvNet mask. The aforementioned
sets are necessary to increase robustness to noisy input and to reduce error
accumulation from the preceding frames.

An exemplar deformed mask is shown in Figure 5.2. Note that we apply
this procedure during the offline training, over an ensemble dataset of ∼104

images. During test-time we only coarsen output mask estimate at time t−1,
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Annotated Image Example training masks

Figure 5.2: Examples of training mask generation. From one annotated image, multiple
training masks are generated. The generated masks mimic plausible object
shapes on the preceding frame.

with dilation and use that as rough mask for frame t, but we do not apply
any transformation.

The outcome of the offline training is a ConvNet similar to DeepMask [Pin-
heiro et al., 2015] and Hypercolumns [Hariharan et al., 2015], that takes a
coarse input mask as guidance instead of a bounding box. We provide fur-
ther training details such as parameters in Section 5.2. The offline trained
network achieve competitive performance compared to state-of-the-art on
several benchmarks (§5.3.2), however in our studies we found possible to
improve the results encoding into the network the appearance knowledge
of the specific object instance to be segmented. We call this online training
strategy and we discuss it in the next section.

5.1.2 Online Training

For further boosting the video segmentation quality, we borrow and extend
ideas that were originally proposed for tracking.

Inspired by current to performing tracking techniques [Danelljan et al., 2016;
Nam and Han, 2016] that all exploits different nuances of online training, we
adopt the same strategy to improve the segmentation quality. In practice, in
a semi-automatic setting test-time, we are given at least an annotated frame
that indicates to our method which object is to be segmented. The idea is to
use this information as additional training data and to fine-tune the network
to incorporate the appearance of the specific object instance.

In order to fine-tune the network, we augment the annotate data available
with the same strategies we used to improve robustness to noisy input dur-
ing the offline training (§5.1.1). Having obtained multiple variants of the
same annotation we proceed fine-tuning our model.

While fine-tuning, in theory, could be applied recursively frame after frame,
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Figure 5.3: By propagating annotation from the 1st frame, either from segment or
just bounding box annotations, our system generates results comparable to
ground truth.

this, would not only drastically increase the running time, but might lead to
over-fitting and drifting from the foreground object to background. There-
fore, in our experiments we only do fine-tuning using the manually anno-
tated frame(s). The details of the online fine-tuning are provided in Sec-
tion 5.2.

5.1.3 Variants

In this section we consider variances of the proposed model. We demon-
strate the flexibility of our approach to handle different different type and
levels input annotations. Furthermore we show, how motion information
could be seamless integrated, improving the quality of the segmentation. In
particular motion helps to disambiguate foreground moving objects from
static background.

Box annotation. Our system can simply handle bounding boxes as initial-
ization, by replacing the manual segmentation of the first frame with a rect-
angle having the bounding box coordinates of the object. To improve per-
formance we re-train a model named MaskTrackBox, that takes a bounding
box as input and output a segmentation mask. Therefore to segment videos
annotated with a bounding box, we use MaskTrackBox on the first frame, and
then proceed from the second frame onward with the standard MaskTrack

model.

Motion. Inter-frame motion is an additional source of information that
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RGB Images

Optical flow magnitude

Figure 5.4: Examples of optical flow magnitude images.

can be used to guide the segmentation. Given a video sequence, we com-
pute the optical flow using EpicFlow [Revaud et al., 2015] with Flow Fields
matches [Bailer et al., 2015] and convolutional boundaries [Maninis et al.,
2016]. Therefore, a second segmentation using as input the motion magni-
tude, is computed using the same model trained on images. To match the
tensor dimension of the input, the motion magnitude is replicated along the
depth dimension, into the three channels. Despite the model being trained
on RGB images, it can be employed to process motion magnitude as it resem-
bles a gray-scale object (Figure 5.4) and thus, it captures the object shape.
The RGB and motion magnitude output are later fused by averaging the
probability scores. We name this variant MaskTrack+Flow. As demonstrate
by the results of Section 5.3, inter-frame motion provides a complementary
information to MaskTrack with RGB images.

5.2 Network implementation and training

In all experiments, we employ the publicly available implementation of
DeepLabv2-VGG network [Chen et al., 2016]. DeepLabv2-VGG was origi-
nally designed for semantic segmentation of static images and at the time of
this research it was one of the best performing approaches, on Pascal VOC
[Everingham et al., 2012]. The model is initialized from the VGG16 architec-
ture, pre-trained on ImageNet [Simonyan and Zisserman, 2015]. In order to
accommodate the input mask, we extend the first convolutional layer by in-
creasing the dimensionality along the depth. Weights for the extra-channel
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are randomly initialized sampling from a gaussian distribution with zero
mean and unit variance.

Offline training. As discussed in Section 5.1 our method does not em-
ploy any pixel-labeled video dataset for training. Instead we use annotated
images from an ad-hoc ensemble of salient object segmentation datasets.
Specifically we combine the following datasets: ECSSD [Shi et al., 2016],
MSRA10K [Cheng et al., 2015], SOD [Movahedi and Elder, 2010], and
PASCAL-S [Li et al., 2014], yielding an aggregated total of 11 282 training im-
ages. To deform the input masks we use affine transformation with random
scaling (±5% of object size) and translation (±10% shift). Furthermore, we
apply non-rigid deformations via thin-plate splines [Bookstein, 1989] plac-
ing 5 control points along the annotated shape contours and randomly shift-
ing the points in xy direction within sampling from a uniform distribution
of in range ±10%. Eventually, we coarsened the mask using morphological
operations such as dilation and erosion with a 5 pixel radius. We keep the
training parameters reported in [Chen et al., 2016], specifically we use SGD
with mini-batches of 10 images and a polynomial learning policy with initial
learning rate of 0.001. The momentum and weight decay are set to 0.9 and
0.0005. The network is trained for 20k iterations.

Online training. The online adaptation is performed fine-turning, on the
first-frame, the model previously trained offline an the saliency dataset. The
online training runs for a total of 200 iterations with training samples ob-
tained from the first frame annotation. We introduce diversity in the sam-
ples by performing the same type of augmentations and the same parame-
ters, applied in during the offline training, for a total of ∼ 103 variations of
the first annotated image. Amortizing the online training time over the en-
tire video sequence, the proposed approach runtime is 12 seconds per frame,
which is a magnitude faster of compared to other state-of-the-art approaches
such as ObjFlow [Tsai et al., 2016].

5.3 Results

In this paragraph, we investigate the relevance of the different components
of our techniques (§5.3.2) and report both a quantitative and qualitative
comparison with respect to the state-of-the-art over three well established
datasets (§5.3.3).
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5.3.1 Experimental setup

Datasets. To evaluate the proposed approach we employ three different
datasets: DAVIS (§7), YoutubeObjects [Prest et al., 2012], and SegTrackv2
[Li et al., 2013]. The union of these datasets, provide us with a diverse set
of challenges such as fast-motion, occlusions, small-resolution and multiple
objects instances.

DAVIS is the dataset and benchmark we propose in Chapter 7. Briefly, it
comprises a total of 50 high quality videos. The dataset comes with binary,
spatio-temporally dense per-pixel annotations separating foreground ob-
ject(s) from background. Further evaluation of MaskTrack on this dataset is
bundled together with the evaluation of the approaches proposed in Chap-
ter 4 and Chapter 6 and detailed in Section 7.4.

YoutubeObjects [Prest et al., 2012] was designed around 10 object categories.
Following previous evaluation protocols we evaluate our approach on a
subset of 126 videos with more than 20 000 frames, for which temporally
sparse, pixel-level ground truth segmentation masks are provided by [Jain
and Grauman, 2014].

SegTrackv2 [Tsai et al., 2010] is a smaller dataset, containing only 14 videos for
a total of 24 target objects to segment. Similarly to DAVIS, each frame comes
with a per-pixel annotation. In the case of sequences containing multiple
target objects, each instance is assigned a different label. We process each
instance separately.

Evaluation. Following the procedure of Section 4.3, to measure the quality of
our results, we employ the intersection-over-union metric or Jaccard Index, com-
puted, on a per-frame basis, over the estimated segmentation and the pro-
vided ground-truth. The per-frame results are first averaged per-sequence
and then over the entire dataset. Consistently with previous approaches,
we exclude the first frame from the evaluation of YoutubeObjects and Seg-
Trackv2 [Tsai et al., 2010], while on DAVIS the last frame is also dismissed.

Since previous works were not coherent with the evaluation protocols pre-
viously described, we re-computed the scores ourself. Specifically, we col-
lected new results for ObjFlow [Tsai et al., 2016] and BVS [Maerki et al., 2016]
to ensure consistency in the results.

5.3.2 Ablation study

In this section we investigate the performance gain produced by the dif-
ferent components of our approach. Experiments are performed over the
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DAVIS dataset and measured using the intersection-over-the-union measure
(mIoU). In Table 5.1 we report the contribution of each component described
in Section 5.1. Results demonstrate that each individual component is bene-
ficial and improves the accuracy of the MaskTrack model.

Add-ons. Combining our base model (MaskTrack) with complementary
information such as inter-frame motion (§5.1.3) improves the results from
74.8% to 78.4% mIoU. Despite optical flow producing a sensible boost for
the DAVIS dataset we found it to provide inconsistent gains across all the
three datasets and therefore, in order to provide a single solution with fixed
parameters, we do not include a per-dataset optimized optical flow in the
results of Section 5.3.3.

Besides optical flow, post-processing the output of the ConvNet with a CRF
[Krähenbühl and Koltun, 2011] improves the performance by∼2%, reaching
∼80% mIoU on DAVIS.

Training. In this paragraph we study the contribution of training the net-
work online and offline. In our experiments we found that disabling online
fine-tuning substantially reduce the performance of ∼ 5% mIoU. If instead
we skip offline training and only rely on online fine-tuning performance
drops drastically, albeit the absolute quality (57.6 mIoU) is surprisingly high
for a system trained on ImageNet for classification and on a single frame for
class agnostic segmentation.

In our experiments we note that the amount of data is not critical and de-
creasing the number of training images from 11k to 5k yields only a minor
decrease in terms of mIoU.

Finally we test offline training on video data. We train our model on Seg-
Track and YoutubeObjects and evaluate the results on DAVIS. We report a
minor descrease in mIoU which could explained with by insufficient diver-
sity and the domain shift between different datasets, validating once more
the usage of static images for training video object segmentation tasks.

Mask deformation. Exploring the contribution of coarsening and non-
rigidly deforming the input masks, we found that both strategies provide
a decent gain. However, as demonstrated in Table 5.1, it is the absence of
any form of deformation that is mostly critical for our approach. Therefore,
deforming input masks is essential to make our model robust to noisy input
segmentation at test time.

Input channels. As discussed in Chapter 1, accurate manual segmentation
are expensive to obtain. Therefore we study the effect of varying the extra-
channel input with a form of weaker annotation i.e. bounding boxes and
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Aspect System variant mIoU ∆mIoU

Add-ons
MaskTrack+Flow+CRF 80.3 +1.9
MaskTrack+Flow 78.4 +3.6
MaskTrack 74.8 -

Training

No online fine-tuning 69.9 −4.9
No offline training 57.6 −17.2
Reduced offline training 73.2 −1.6
Training on video 72.0 −2.8

Mask
defor-
mation

No dilation 72.4 −2.4
No deformation 17.1 −57.7
No non-rigid deformation 73.3 −1.5

Input
channel

Boxes 69.6 −5.2
No input 72.5 −2.3

Table 5.1: Ablation study of our MaskTrack method on DAVIS. Given our full system,
we remove one component at a time, to understand each individual contribu-
tion. See §5.3.2 for discussion.

found the performance to be comparable. Most interestingly, however, we
tested our approach without the additional input channel, therefore oper-
ating in the modality of a salient object detector. The competitive results
indicate that the fine-tuning is able to capture the appearance of the object.

5.3.3 Evaluation

As demonstrated in Table 5.2, MaskTrack obtains competitive performance
across all three datasets. The results are obtained using purely our feed-
forward network trained on the same data and sharing the same parameters
across the three datasets. JOTS [Wen et al., 2015] achieved a higher score
of (71.3 mIoU) on SegTrackv2. However they tune the parameters per video
and therefore their results are not comparable with our fix-parameters setup.

In Table 5.2 we report the results for the variant of our base model that is
initialized with a bounding-box annotation instead of a segmentation mask.
We refer to this variant as MaskTrackBox (§5.1.3). Despites the annotation
being weaker, the performance loss is only minor and our method ranks
among the top three best results in all datasets.

We note that, adding components specifically trained for different datasets,
we can further boost the performance of our technique. Specifically, adding
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DAVIS YoutbObjs SegTrackv2

Box oracle 45.1 55.3 56.1
Grabcut oracle 67.3 67.6 74.2
ObjFlow [Tsai et al., 2016] 71.4 70.1 67.5
BVS [Maerki et al., 2016] 66.5 59.7 58.4
NLC [Faktor and Irani, 2014] 64.1 - -
FCP [Perazzi et al., 2015b] 63.1 - -
W16 [Wang et al., 2016] - 59.2 -
Z15 [Zhang et al., 2015] - 52.6 -
TRS [Xiao and Lee, 2016] - - 69.1
MaskTrack 74.8 71.7 67.4
MaskTrackBox 73.7 69.3 62.4

Table 5.2: Video object segmentation results on three datasets. Compared to related state-
of-the-art, our approach provides consistently good results. On DAVIS the
extended version of our system MaskTrack+Flow+CRF reaches 80.0 mIoU.
See §5.3.3 for details.

optical flow and CRF post-processing (§5.1.3) we obtain a score of 80.0 mIoU
on DAVIS, 72.6 on YoutubeObjects and 70.3 on SegTrackv2

Qualitative evaluation of our approach is provided in Figure 5.5

Attribute-based analysis. Table 5.3 presents an attribute-based evaluation
on DAVIS (§7). Video attributes represent challenging factors and allow us
to identify groups of videos with a dominant feature e.g., presence of oc-
clusions, which is key to explaining the algorithms’ performance. The at-
tribute based analysis shows that our generic model, MaskTrack, is robust to
various video challenges present in this dataset. It compares favourably on
any subset of videos sharing the same attribute, except camera-shake, where
ObjFlow [Tsai et al., 2016] marginally outperforms our approach. We observe
that MaskTrack handles fast-motion and motion-blur well, which are typical
failure cases for methods relying on spatio-temporal connections [Tsai et al.,
2016].

Due to the online fine-tuning on the first frame annotation of a new video,
our system is able to capture the appearance of the specific object of inter-
est. This allows it to better recover from occlusions, out-of-view scenarios
and appearance changes, which usually affect methods that strongly rely on
propagating segmentations on a per-frame basis.

Incorporating optical flow information into MaskTrack substan-
tially increases robustness on all categories. As one could expect,
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Method, mIoU

Attribute BVS ObjFlow MSK MSK+FlowMSK+Flow+CRF

Appearance change 46.0 54.0 65.0 75.0 76.0
Fast-motion 53.0 55.0 66.0 74.0 75.0
Background clutter 63.0 68.0 77.0 78.0 79.0
Camera-shake 62.0 72.0 71.0 77.0 78.0
Dynamic background 60.0 67.0 69.0 75.0 76.0
Deformation 70.0 77.0 77.0 78.0 80.0
Edge ambiguity 58.0 65.0 68.0 74.0 74.0
Heterogeneous object 63.0 66.0 71.0 77.0 79.0
Interacting objects 63.0 68.0 74.0 75.0 77.0
Low resolution 59.0 58.0 60.0 75.0 77.0
Motion blur 58.0 60.0 66.0 72.0 74.0
Occlusion 68.0 66.0 74.0 75.0 77.0
Out-of-view 43.0 53.0 66.0 71.0 71.0
Scale variation 49.0 56.0 62.0 72.0 73.0
Shape complexity 67.0 69.0 71.0 72.0 75.0

Table 5.3: Attribute based evaluation on DAVIS.

MaskTrack+Flow+CRF better discriminates cases involving color ambiguity
and salient motion. However, we also observed less-obvious improvements
in cases with scale-variation and low-resolution objects.

5.4 Conclusion

In this chapter we presented a ConvNet based approach to video object seg-
mentation. Introducing the concept of guidance, we adapted an architecture
designed for semantic image segmentation into a class agnostic object seg-
menter.

We demonstrated that a combination of offline and online trained on static
images yields highly accurate results on three heterogeneous datasets, while
sharing the same parameters among all video sequences. Our approach is
efficient in terms of running time and versatile enough to employ different
type of annotations such as bounding boxes. The ablation study reveals the
effect of each components.

This is one of the first approaches to use ConvNet for video object segmenta-
tion. The state-of-the-art performance leads us to believe more sophisticated
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Figure 5.5: Qualitative results of three different datasets. Our algorithm is robust to
challenging situations such as occlussions, fast motion, multiple instances
of the same semantic class, object shape deformation, camera view change
and motion blur.

networks should be investigated, especially, those such as LSTM, that could
better leverage the previous frames’ information.
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C H A P T E R 6
Interactive Segmentation in Bilateral
Space

In Chapter 5 we describe a method that produces a fairly precise segmenta-
tion given minimal user input. However the quality of the results does not
reach yet the level of accuracy that is required for specific applications such
as movie post-production. Therefore for such application scenarios video
segmentation must be addressed interactively, with the user providing feed-
back in order to correct erroneous estimates of the underlying algorithm.

A crucial aspect of interactive video segmentation methods is responsiveness.
A user expects instant feedback, and any computation delay present signifi-
cant challenges to the adoption of these technologies. This is one of the key
reasons that segmentation related tasks, such as rotoscoping, form the bulk
of manual labor, and therefore associated costs, of video effects. In this chap-
ter, we present a highly efficient method for user-guided video segmentation
that is able provide iterative feedback in a fraction of the time of previous
approaches, while still generating high quality results in semi-supervised
applications, as demonstrated on multiple benchmarks.

We accomplish this by performing the segmentation in “bilateral space”,
which is a high dimensional feature space, originally proposed for accel-
erated bilateral filtering [Chen et al., 2007], and recently extended to com-
puting depth from stereo triangulation [Barron et al., 2015]. We describe
a novel energy on a “bilateral grid” [Chen et al., 2007], a regular lattice in
bilateral space, and infer labels for these vertices by minimizing an energy
using graph cuts. Processing on the bilateral grid has several advantages
over other approaches. First, the regular and data-independent structure al-

67



Interactive Segmentation in Bilateral Space

lows for a more efficient mapping from image to bilateral space (and vice
versa) than super-pixels or k-means clustering approaches. Second, it al-
lows for flexible interpolation schemes that lead to soft assignments of pix-
els to multiple intermediate variables. And finally, a bilateral representation
allows us to infer labels on a simple, locally connected graph, while still en-
forcing large spatio-temporal neighborhood regularization, which would be
intractable to solve directly. We show that the combination of these advan-
tages significantly improves segmentation quality, and importantly, allows
us to segment video data, generating temporally consistent results with ro-
bustness to object and camera motion.

6.1 Method Overview

Let V : Ω → R3 be a color video, defined on a finite discrete domain Ω ⊂
R3. Given some user input as a set of known foreground and background
pixels, FG, BG ⊂ Ω, we seek a binary maskM : Ω→ {0, 1} that labels each
pixel of the video either as background or foreground.

Our approach makes use of a bilateral grid [Chen et al., 2007], Γ, consisting
of regularly sampled vertices v ∈ Γ. The maskM is computed in four main
stages, Figure 6.1: by lifting pixels into a higher dimensional feature space
(§6.1.1), splatting them onto regularly sampled vertices (§6.1.2), computing a
graph cut label assignment (§6.1.3), and slicing vertex labels back into pixel
space (§6.1.4).

6.1.1 Lifting

The first step is to embed each pixel p = [x, y, t]T in a higher d-dimensional
feature space, for example by concatenating YUV pixel color and spatial and
temporal coordinates:

b(p) =
[
cy, cu, cv, x, y, t

]T ∈ R6 (6.1)

In this bilateral space, Euclidean distance encodes both spatial proximity
and appearance similarity. We evaluated a number of feature spaces, gen-
eralized as the concatenation of appearance features A(p) and position
features P(p), and interestingly found that state-of-the-art results can be
achieved by simply extending traditional 5D bilateral features with a tem-
poral dimension, which is very efficient due to the low dimensionality.
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(a) Lifting

Partially annotated input frame

(c) Graph cut (d) Slicing

Segmented output frame

(b) Splatting

Figure 6.1: Our pipeline, demonstrated on a 1D example. Pixels are lifted into a 2D
feature space (a), with two user assigned labels (red and green highlighted
pixels). Values are accumulated on the vertices of a regular grid (b), a graph
cut label assignment is computed on these vertices (c), and finally pixel val-
ues are sliced at at their original locations (c), showing the final segmentation
(again, red and green boundaries).

6.1.2 Splatting

Instead of labeling each lifted pixel b(p) directly, we resample the bilateral
space using a regular grid [Chen et al., 2007; Barron et al., 2015] and compute
labels on the vertices of this grid. The process of accumulating values on the
bilateral space vertices is known as “splatting”. For each vertex v ∈ Γ, a
weighted sum of lifted pixels b(p) is computed as:

S(v) = ∑ w(v, b(p)) · (p̂) (6.2)

where
p̂ = (1FG(p),1BG(p), 1) (6.3)

and 1×(p) is an indicator function that is 1 iff p ∈ ×.

The weight function w(v, b(p)), determines the range and influence that
each lifted pixel b(p) has on the vertices of Γ. Prior work has used a near-
est neighbor (NN) indicator [Barron et al., 2015] or multi-linear interpolation
weights [Chen et al., 2007]. Importantly, these approaches have limited sup-
port, (1 nonzero vertex for each pixel using NN, and 2d−1 for multi-linear),
which is necessary for computation and memory efficiency. The NN ap-
proach is the fastest, but can lead to blocky artifacts, while the multi-linear
interpolation is slower, but generates higher quality results. We propose an
adjacent interpolation that provides a good compromise between the two,
yielding high quality results, but with a linear growth in the number of non-
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Nearest Multi-linear Adjacent

Figure 6.2: Different interpolation schemes. Adjacent interpolation scales significantly
better to higher dimensionality when compared to multi-linear interpolation,
with only a small reduction in quality.

zero weights as a function of feature space dimension, as opposed to the
exponential growth of the multi-linear case (Figure 6.2).

The idea behind adjacent weighting is that with multi-linear interpolation,
weights quickly decrease for vertices that differ from the nearest neighbor
Nb(p) in many dimensions. More precisely,

wl(v, b(p)) ≤ 0.5|v−Nb(p)|0 (6.4)

presents an upper bound for the weight, because each factor of the linear in-
terpolation is smaller than 0.5 if for that dimension vi is not the integer value
that bi(p) was rounded to. We use this bound to skip weight computation
where the result would have been small anyway:

wa(v, b(p)) =

{
∏d

i=1

∣∣∣vi − Nb(p)

∣∣∣ if v ∈ Ab(p)

0 otherwise
(6.5)

We found that interpolation between the nearest neighbor and vertices that
differ in only one dimension (the set of adjacent vertices Ab(p)) already pro-
duces significantly better results than hard nearest neighbor assignments
with only a minor increase in runtime.

6.1.3 Graph Cut

We now seek binary labels α, that mark each vertex v as foreground, αv = 1,
or background, αv = 0.

We compute these labels by constructing a graph G = (Γ, E) where the
vertices are the vertices in the bilateral grid, and edges connect immediate
neighbors (e.g., 4 neighbors when d = 2, 6 neighbors when d = 3, . . . ). We
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then define an energy based on the assumption that the label assignment is
smooth in bilateral space:

E(α) = ∑
v∈Γ

θv(v, αv) + λ ∑
(u,v)∈E

θuv(u, αu, v, αv) (6.6)

θv is the unary term, θuv is the pairwise term, and λ is a weight that balances
the two.

The unary term θv models deviations from the supplied user input. As
we invert the splatting step to retrieve final pixel labels, the splatted value
SBG(v) expresses the total cost of assigning v to foreground, αv = 1, and
SFG(v) the cost of assigning it to background, αv = 0, respectively.

θv(v, αv) = (1− αv) · SFG(v) + αv · SBG(v) (6.7)

The pairwise term θuv attempts to ensure that neighboring vertices are as-
signed the same label. In order to derive θuv, we consider that the bilateral
space graph G is equivalent to a densely connected pixel graph, where edge
weights between pixels assigned to the same vertex are set to infinity (as it
is impossible to assign them different labels in bilateral space). The edge
weight between other pixels is then approximated by the distance of their
respective vertices. With that in mind, it becomes clear that the weights be-
tween vertices need to be scaled by the total number of points S#(u) and
S#(v) that have been assigned to the two vertices (we can retrieve S#(u) and
S#(v) from the homogeneous (3rd) coordinate in Eq. (6.4)). That way, assign-
ing different labels to two vertices is (approximately) equivalent to assigning
the labels to all the original points and our pairwise term can be written as:

θuv(u, αu, v, αv) = g(u, v) · S#(u) · S#(v) · [αu 6= αv] (6.8)

where g(u, v) is a high-dimensional Gaussian kernel where the diagonal ma-
trix Σ scales each dimension to balance color, spatial and temporal dimen-
sions:

g(u, v) = e−
1
2 (u−v)TΣ−1(u−v) (6.9)

This formulation also reduces the complexity of the graph cut due to the
fact that all vertices without any assigned pixels, S#(v) = 0, are now com-
pletely excluded from any computation and thus need no representation in
the graph. We can now efficiently apply a max-flow computation to find the
vertex labeling with minimal energy [Boykov et al., 1999].

Connectivity analysis. So far we have assumed that increased connectiv-
ity leads to higher quality results. We validate this by conducting exper-
iments where we compute a graph cut segmentation on a per-pixel (not
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Figure 6.3: Mask propagation on a pixel-level graph with increasing neighborhood sizes
w. Error decreases with larger neighborhoods at the expense of larger run-
times. Our approach (BVSQ) is shown for comparison. We obtain lower
error than even large window sizes, while being much faster as well.

bilateral) graph, as in [Boykov and Jolly, 2001]. We begin with just lo-
cal neighbor edges (4 neighbors on a 2D graph), and increase the con-
nectivity by connecting all points in an n × n window (Figure 6.3). This
plot clearly shows that increasing connectivity leads to better results, but
at an increased running time [Faktor and Irani, 2014; Choi et al., 2012;
Li et al., 2013].

6.1.4 Slicing

Given the foreground and background labels of the bilateral vertices, the
final mask M is retrieved by slicing, i.e. interpolating grid labels at the
positions of the lifted pixels in the output frame. We generally use the same
interpolation scheme for both splatting and slicing, although a even more
precise adjustment of the quality/speed trade-off is possible by choosing
different interpolations.

M(p) = ∑
v∈Γ

w(v, b(p)) · L(v) (6.10)

Finally, we post-process each frame with a simple 3× 3 median filter in order
to remove minor high frequency artifacts that arise due to the solution being
smooth in bilateral space, but not necessarily pixel space, however we note
that a more sophisticated method like the geodesic active contours of [Fan
et al., 2015] could also be applied.

72



6.2 Results

BVSQ (quality) BVSS (speed)

Feature space YUV XY T YUV XY T
Intensity grid size 35 15
Chroma grid size 30 10
Spatial grid size w/35, h/35 w/50, h/50
Temporal grid size 2 2
Interpolation Linear Adjacent

Runtime 0.37s 0.15s

Table 6.1: The parameters for two different configurations used for the evaluation.

6.2 Results

Implementation. Our approach is implemented in Matlab, with C++ bind-
ings for most time consuming routines. All our experiments were performed
on a Mac Pro with a 3.5 GHz 6-Core Intel Xeon E5 CPU and 16 GB RAM. The
measured timings include the complete pipeline except for IO-operations.
Unlike many other approaches, we do not rely on pre-computed flows, edge
maps or other information.

Parameters. We evaluate two different sets of settings, one tuned for quality,
BVSQ, and the other for speed, BVSS, parameters are listed in Table 6.1. In
the remaining part of this thesis, for simplicity, we will reference to BVSQ as
BVS. Our method can predict temporally global segmentations, and higher
temporal resolutions allow for compensating for large degrees of object mo-
tion. However, this did not improve result quality on the benchmarks due
to limited object motion, and the testing strategy of Fan et al. [2015], where
a single keyframe is propagated forward by multiple frames. In cases where
user input is distributed temporally, e.g., in the interactive interface, we use
a higher temporal grid size of N = 5, . . . , 15.

We set the pairwise weight to λ = 0.001 for all results. The lifting stage
also allows for different feature dimensions to be scaled independently of
each other (Σ in Equation 6.9). For all results, we scale by 0.01, 0.5, 1.3, 1.5
the temporal (t), spatial (xy), the intensity (cy) and the chroma (cucv) dimen-
sions respectively, but we didn’t notice any particular dependency on the
unary edge factor or the dimension scaling. All parameters could be tuned
to achieve better results per benchmark or even per video, but we leave them
fixed in all tests to represent a more real-world scenario.

Runtime. Comparing runtime is difficult, with different code bases and lev-
els of optimization, however, we give some average runtimes from our ob-
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BVSQ BVSS SEA JMP NLC HVS

480p 0.37s 0.15s 6s 12s 20s 5s
1080p 1.5s 0.8s 30s 49s 20s 24s

Table 6.2: Approximate running time per frame for a number of fast methods with code
available. Ours is roughly an order of magnitude faster than prior methods,
and scales linearly with image size. NLC has mostly constant running time
because it uses a fixed number of superpixels.

servations as a rough idea of the expected computational complexity. As
many existing video segmentation methods take even up to one hour for
a single frame, we compare only with the following fastest state-of-the-art
methods: SEA: SeamSeg [Ramakanth and Babu, 2014], JMP: JumpCut [Fan
et al., 2015], NLC: Non-Local Consensus Voting [Faktor and Irani, 2014], and
HVS: Efficient Hierarchical Graph-Based Video Segmentation [Grundmann
et al., 2010].

Our method computes 480p masks in as little as 0.15 seconds (Table 6.2)
which is roughly an order of magnitude faster than all other approaches.
Even if we trade speed for quality, our method still takes significantly less
time than the second-fastest approach. Furthermore, the two most expensive
steps, i.e. lifting and slicing, can be trivially parallelized since their output
values only depends on color and position of individual pixels. Splatting can
also be performed on concurrent threads, simply augmenting the grid with
a small number of accumulators at bilateral vertices. The only stage that is
not easily parallelizable is graph-cut, which anyway has small runtime due
to the size and sparsity of the bilateral grid. Therefore we would expect a
tuned GPU implementation to report substantial performance gains.

6.2.1 Quantitative Evaluation

In order to evaluate our approach with respect to existing methods, we focus
on the task of mask propagation, which has been widely used by previous
work. Given a manual segmentation of the first frame, each method predicts
subsequent frames, without any additional user input. Using this approach,
we measured the performance on three different benchmark datasets. In
this section we discuss results on JumpCut and SegTrack datasets, while in
Chapter 7 we provide the evaluation based on our proposed dataset and
evaluation protocol DAVIS.

JumpCut. The recent method of Fan et al. [2015] includes a dataset consist-
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6.2 Results

BVSQ BVSS RB DA SEA JMP

animation 0.78 1.77 1.98 1.26 1.83 1.59
bball 1.36 3.29 1.55 1.71 1.90 1.61
bear 1.34 1.56 1.82 1.07 1.84 1.36
car 1.01 5.48 1.35 1.38 0.73 0.54
cheetah 2.72 3.56 7.17 3.99 5.07 4.41
couple 2.65 6.43 4.09 3.54 3.78 2.27
cup 0.99 4.54 3.72 1.34 1.19 1.16
dance 5.19 23.96 6.65 9.19 7.55 6.62
fish 1.78 4.06 2.80 1.97 2.54 1.80
giraffe 4.06 9.89 8.49 6.99 4.77 3.83
goat 2.68 4.87 3.68 2.57 3.30 2.00
hiphop 3.21 8.08 8.02 4.62 6.94 3.37
horse 3.60 16.32 3.99 4.14 3.00 2.62
kongfu 1.97 2.51 5.42 3.71 5.78 3.28
park 2.35 5.89 3.95 3.49 3.33 2.93
pig 2.15 3.18 3.86 2.08 3.39 2.97
pot 0.62 1.25 0.94 1.49 0.80 0.70
skater 4.72 11.23 6.33 5.33 5.09 4.89
station 2.07 8.55 2.53 2.01 2.37 1.53
supertramp 9.68 9.76 14.70 8.99 17.40 6.17
toy 0.66 7.16 1.02 1.32 0.70 0.58
tricking 4.23 5.57 42.20 9.71 11.90 5.02

Average 2.72 6.77 6.19 3.72 4.33 2.78

Table 6.3: Errors (lower is better) on the JumpCut benchmark for two transfer distances
and several different methods as reported by Fan et al. [2015].

ing of 22 videos with medium resolution and good per-frame ground truth
masks. In addition to the methods mentioned above, we compare to RB: Ro-
toBrush, based on SnapCut [Bai et al., 2009], and DA: Discontinuity-aware
video object cutout [Zhong et al., 2012]. As we do not have access to im-
plementations for all methods reported on this dataset, we instead adapt
our method to conform to the same testing strategy and error metric used
in [Fan et al., 2015]. That is, propagating masks from multiple keyframes
0, 16, . . . , 96, over different transfer distances (1, 4, 8, 16 frames), and report-
ing error as follows:

Err =
100
n

n

∑
i=1

# error pixels in i-th frame
# foreground pixels in i-th frame

(6.11)

Overall, our method performs best on this benchmark, closely followed by
JumpCut (Table 6.3).
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Figure 6.4: This plot shows how IoU (higher is better) decreases when a single mask is
propagated over increasing numbers of frames. Our method degrades favor-
ably when compared to other approaches. The NLC approach stays constant
as it is an automatic method that doesn’t depend on the input of the first
frame.

We note that our approach uses a simple refinement step (3x3 median filter).
However, we conducted an experiment using an active contour refinement,
similar to JumpCut, and our result improved to 2.45 on average, with a run-
ning time of only 1s per frame. We additionally observe that many methods
degrade in quality over long sequences, as errors accumulate over time. In
contrast, our method scores better on long videos, experiencing less drift of
the object region than other approaches (Figure 6.4).

SegTrack. For the sake of completeness we also present an evaluation on
the popular benchmark of Tsai et al. 2010. We additionally compare to:
FST: Fast Object Segmentation in Unconstrained Video [Papazoglou and Fer-
rari, 2013], DAG: Video object segmentation through spatially accurate and
temporally dense extraction of primary object regions [Zhang et al., 2013],
TMF: Video segmentation by tracking many figure-ground segments [Li et
al., 2013], and KEY: Key-segments for video object segmentation [Lee et al.,
2011]. In this case, it can be seen from Table 6.4 that our method clearly
struggles to compete with existing approaches. This is most likely due to a
combination of factors related to the low quality and resolution of the input
videos, which lead to many mixed pixels that confuse the bilateral model.
We also note that many of these methods were optimized with this dataset
in mind, using different parameter settings per sequence. Instead, we use the
same parameter settings for all three datasets. We also believe that the more
recent datasets from JumpCut and our additional videos provide a more
contemporary representation of video segmentation tasks.
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6.2 Results

BVSQ BVSS NLC FST DAG TMF KEY HVS

birdfall 66.0 40.0 74.0 59.0 71.0 62.0 49.0 57.0
cheetah 10.0 14.0 69.0 28.0 40.0 37.0 44.0 19.0
girl 89.0 87.0 91.0 73.0 82.0 89.0 88.0 32.0
monkeydog 41.0 38.0 78.0 79.0 75.0 71.0 74.0 68.0
parachute 94.0 92.0 94.0 91.0 94.0 93.0 96.0 69.0

Average 60.0 54.0 81.0 66.0 72.0 70.0 70.0 49.0

Table 6.4: Comparison of our method on the SegTrack dataset, using the IoU metric
(higher is better).

Figure 6.5: Qualitative video segmentation results from three sequences of DAVIS
(horsejump, stroller and soapbox). The segmentation is computed non-
interactively, given the first frame as initialization. Our method demon-
strates robustness to challenging scenarios such as complex objects, fast-
motion, and occlusions.

6.2.2 Interactive Segmentation

It is important to note that while our method scores well on these two higher-
resolution benchmarks, the real advantage is the fast running time, when
used in an interactive framework. To demonstrate this, we built a simple
prototype editor (Figure 6.6) in Matlab that allows a user to draw strokes
on an image to mark foreground or background regions. After every stroke,
the newly marked pixels are splatted to the bilateral grid and a global spatio-
temporally solution is computed. Finally, the mask is sliced from the current
frame and its outline is overlaid on the image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.6: Our interactive segmentation editor. Very simple input (a) is sufficient to
infer an accurate foreground mask (b) and track it over time. As a new object
enters the scene (c), the user can choose to add it to the foreground with an
additional input stroke (d). The mask is then automatically propagated to to
the other frames (e-h) without further corrections.

6.3 Discussion

In this chapter, we have shown how simple and well-understood video seg-
mentation techniques leveraging graph cuts can yield state-of-the-art results
when performed in bilateral space.

There are many exciting avenues for extending the research in this area. For
example, one could consider alternate, more descriptive feature spaces in the
lifting step. We made some initial experiments with using patches, and ob-
tained marginally better results, but at the expense of higher running time.
Additionally, while the bilateral representation can handle some degree of
motion, it does not explicitly account for camera or object motion. One pos-
sibility is to warp pixels using their optical flow before splatting. Our initial
experiments indicated that due to the instability of flow, such methods were
unreliable; sometimes leading to large improvements in quality, but in other
times made the results worse. These methods also rely on precomputing op-
tical flow, which is costly. Nonetheless, explicitly exploring scene motion is
a promising venue to future work.

Despite this, we believe that the method as presented here has many attrac-
tive qualities. It is simple to implement, parallelizable, and fast, all without
sacrificing quality. This efficiency gain is not only vital to providing faster
feedback to users, but is also important for extending to low computational
power (mobile) devices, or large scale (cloud-based) problems, which will
hopefully enable new applications.
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C H A P T E R 7
Dataset and Evaluation Methodology

In the previous chapters we presented novel approaches aiming to discover
and separate foreground objects from the background region of a video.
The resulting pixel-level, spatio-temporal bipartition of the video is instru-
mental to several applications including, action recognition, object tracking,
video summarization, or rotoscoping for video editing. Despite remarkable
progress in recent years, video object segmentation still remains a challeng-
ing problem and most existing approaches still exhibit severe limitations
in terms of quality and efficiency to be applicable in practical applications,
e.g.for processing large datasets, or video post-production and editing in the
visual effects industry.

What is most striking is the performance gap among state-of-the-art video
object segmentation algorithms and closely related methods focusing on im-
age segmentation and object recognition, which have experienced remark-
able progress in the recent years. A key factor bootstrapping this progress
has been the availability of large scale datasets and benchmarks [Rus-
sakovsky et al., 2014; Martin et al., 2001; Everingham et al., 2010]. This is
in stark contrast to video object segmentation. While several datasets exists
for various different video segmentation tasks [Tsai et al., 2010; Li et al., 2013;
Tron and Vidal, 2007; Brostow et al., 2009; Badrinarayanan et al., 2010;
Gorelick et al., 2007; Fathi et al., 2011; Ren and Philipose, 2009; Grundmann
et al., 2010; Prest et al., 2012; Brox and Malik, 2010; Sundberg et al., 2011],
none of them targets the specific task of video object segmentation.

To date, the most widely adopted dataset is SegTrack [Tsai et al., 2010],
which, however, was originally proposed for joint segmentation and track-
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Figure 7.1: Sample sequences from our dataset, with ground truth segmentation masks
overlayed. Please refer to Figure 7.6 for the complete dataset.

ing and only contains six low-resolution video sequences, which are not
representative anymore for the image quality and resolution encountered
in today’s video processing applications. As a consequence, evaluations
performed on such datasets are likely to be overfitted, without reliable in-
dicators regarding the differences between individual video segmentation
approaches, and the real performance on unseen, more contemporary data
becomes difficult to determine [Butler et al., 2012]. Despite the effort of some
authors to augment their evaluation with additional datasets, a standardized
and widely adopted evaluation methodology for video object segmentation
does not yet exists.

To this end, we introduce a new dataset DAVIS (Densely Annotated VIdeo
Segmentation) specifically designed for the task of video object segmenta-
tion. The dataset is publicly available and contains fifty densely and pro-
fessionally annotated high-resolution Full HD video sequences, with pixel-
accurate ground-truth data provided for every video frame. The sequences
have been carefully captured to cover multiple instances of major challenges
typically faced in video object segmentation. The dataset is accompanied
with a comprehensive evaluation of the techniques proposed in this thesis
and several other state-of-the-art approaches [Papazoglou and Ferrari, 2013;
Ramakanth and Babu, 2014; Brox and Malik, 2010; Fragkiadaki et al., 2012;
Shen et al., 2015; Faktor and Irani, 2014; Lee et al., 2011; Taylor et al., 2015;
Chang et al., 2013; Fan et al., 2015; Grundmann et al., 2010]. To evaluate the
performance we employ three complementary metrics measuring the spatial
accuracy of the segmentation, the quality of the silhouette and its temporal
coherence. Furthermore, we annotated each video with specific attributes
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7.1 Dataset Description

Dataset SIZE HD-Q VARY DENSE-GT OBJ

DAVIS 3 3 3 3 3

MoSeg [Brox and Malik, 2010] 3 3

BVSD [Sundberg et al., 2011] 3 3 3

SegTrack [Tsai et al., 2010] 3 3

SegTrack v2 [Li et al., 2013] 3 3 3

Table 7.1: Summary of requirements fulfilled by datasets most relevant to video ob-
ject segmentation. From left: large overall size of the dataset (SIZE), high-
resolution videos (HD-Q), variety of content and challenges (VARY), pixel-
accurate, per-frame ground-truth (DENSE-GT) and object presence (OBJ). A
detailed overview of the requirements is described in Section 7.1. Our dataset
is the only one meeting all requirements.

such as occlusions, fast-motion, non-linear deformation and motion-blur. Corre-
lated with the performance of the tested approaches, these attributes enable
a deeper understanding of the results and point towards promising avenues
for future research. The components described above represent a complete
benchmark suite, providing researchers with the necessary tools to facilitate
the evaluation of their methods and advance the field of video object seg-
mentation.

7.1 Dataset Description

In this section we describe our new dataset DAVIS (Densely Annotated
VIdeo Segmentation) specifically geared towards the task of video object
segmentation. Example frames of some of the sequences are shown in Fig-
ure 7.1, refer to Figure 7.6 for the complete dataset. Based on experiences
with existing datasets we first identify four key aspects we adhere to, in
order create a balanced and comprehensive dataset. A summary of the re-
quirements detailed below can be found in Table 7.1.

Data Amount and Quality. A sufficiently large amount of data is neces-
sary to ensure content diversity and to provide a uniformly distributed set
of challenges. Furthermore, having enough data is crucial to avoid over-
fitting and to delay performance saturation, hence guaranteeing a longer
lifespan of the dataset [Butler et al., 2012]. The quality of the data also plays
a crucial role, as it should be representative of the current state of technol-
ogy. To this end, DAVIS comprises a total of 50 sequences, 3455 annotated
frames, all captured at 24fps and Full HD 1080p spatial resolution. Due to
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ID Description

BC Background Clutter. The back- and foreground regions around
the object boundaries have similar colors (χ2 over histograms).

DEF Deformation. Object undergoes complex, non-rigid deformations.
MB Motion Blur. Object has fuzzy boundaries due to fast motion.
FM Fast-Motion. The average, per-frame object motion, computed

as centroids Euclidean distance, is larger than τf m = 20 pixels.
LR Low Resolution. The ratio between the average object

bounding-box area and the image area is smaller than tlr = 0.1.
OCC Occlusion. Object becomes partially or fully occluded.
OV Out-of-view. Object is partially clipped by the image boundaries.
SV Scale-Variation. The area ratio among any pair of bounding-

boxes enclosing the target object is smaller than τsv = 0.5.

AC Appearance Change. Noticeable appearance variation, due
to illumination changes and relative camera-object rotation.

EA Edge Ambiguity. Unreliable edge detection. The average ground-truth
edge probability (using [Dollár and Zitnick, 2013]) is smaller than τe = 0.5.

CS Camera-Shake. Footage displays non-negligible vibrations.
HO Heterogeneus Object. Object regions have distinct colors.
IO Interacting Objects. The target object is an ensemble of multiple,

spatially-connected objects (e.g.mother with stroller).
DB Dynamic Background. Background regions move or deform.
SC Shape Complexity. The object has complex boundaries such as

thin parts and holes.

Table 7.2: List of video attributes and corresponding description. We extend the annota-
tions of We et al. [2013] (top) with a complementary set of attributes relevant
to video object segmentation (bottom). We refer the reader to Table 7.6 for the
list of attributes for each in video in the dataset.

the computational complexity being a major bottleneck in video processing,
the sequences have a short temporal extent (about 2-4 seconds), but include
all major challenges typically found in longer video sequences, see Table 7.2.

Experimental Validation. For each video frame, we provide pixel-accurate,
manually created segmentation in the form of a binary mask. While we
subdivide DAVIS into training- and a test-set to provide guidelines for future
works, in our evaluation, we do not make use of the partition, and instead
consider the dataset as a whole, since most of the evaluated approaches are
not trained and a grid-search estimation of the optimal parameters would
be infeasible due to the involved computational complexity.

82



7.2 Evaluated Algorithms

Object Presence. Intuitively each sequence should contain at least one tar-
get foreground-object to be separated from the background regions. The
clips in DAVIS contain either one single object or two spatially connected
objects. We choose not to have multiple distinct objects with significant mo-
tion in order to be able to fairly compare segmentation approaches operat-
ing on individual objects against those that jointly segment multiple objects.
Moreover, having a single object per sequence disambiguates the detection
performed by methods which are fully automatic. A similar design choice
made in [Liu et al., 2011] has been successfully steering research in salient
object detection from its beginnings to the current state-of-the-art. To ensure
sufficient content diversity, which is necessary to comprehensively assess
the performance of different algorithms, the dataset spans four evenly dis-
tributed classes (humans, animals, vehicles, objects) and several actions.

Unconstrained Video Challenges. To enable a deeper analysis and under-
standing of the performance of an algorithm, it is fundamentally important
to identify the key factors and circumstances which might have influenced
it. Thus, inspired by Wu et al. [2013] we define an extensive set of video at-
tributes representing specific situations, such as fast-motion, occlusion and
cluttered background, that typically pose challenges to video segmentation
algorithms. Attributes are summarized in Table 7.2. They are not exclusive,
therefore a sequence can be annotated with multiple attributes. Their dis-
tribution over the dataset, i.e.number of occurrences, and their pairwise de-
pendencies are shown in Figure 7.2. The annotations enable us to decouple
the analysis of the performance into different groups with dominant charac-
teristics (e.g. occlusion), yielding a better understanding of each methods’
strengths and weaknesses.

7.2 Evaluated Algorithms

Besides the methods proposed in this thesis, we evaluate a total of twelve
video segmentation algorithms, which we selected based on their demon-
strated state-of-the-art performance and source code availability, and one
technique commonly used for preprocessing. The source code was either
publicly available or it was shared by the authors upon request. We now
mantain a webpage (davischallenge.org) with up-to-date state-of-the-arts re-
sults of the new techniques published at top-tier computer vision confer-
ences.

Within the unsupervised category we evaluate the performance of NLC
[Faktor and Irani, 2014], FST [Papazoglou and Ferrari, 2013], SAL [Shen et
al., 2015], TRC [Fragkiadaki et al., 2012], MSG [Brox and Malik, 2010] and
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Figure 7.2: Left: Attributes distribution over the dataset. Each bin indicates the number
of occurrences. Right: Mutual dependencies among attributes. The presence
of a link indicates high probability of an attribute to appear in a sequence, if
the one on the other end is also present.

CVOS [Taylor et al., 2015]. The three latter approaches generates multiple
segments per-frame, and therefore, as suggested in [Brox and Malik, 2010],
we solve the bipartite graph matching that maximizes region similarity in
terms of J to select the most similar to the target object. Among the semi-
automatic techniques, we compare the approaches proposed in this thesis
FCP (§4), MSK (§5) against SEA [Ramakanth and Babu, 2014], JMP [Fan et
al., 2015], TSP [Chang et al., 2013] and HVS [Grundmann et al., 2010]. HVS
is meant for hierarchical over-segmentation, hence we search the hierarchy
level and the corresponding segments that maximizes J of the first frame,
keeping the annotation fixed throughout the entire video. FCP (§4) uses a
pair of annotated object proposals to initialize the classifiers. In our evalua-
tion KEY [Lee et al., 2011] is deemed to be semi-automatic since we override
their abjectness score and instead use the ground-truth to select the optimal
hypotheses which is then refined solving a series of spatio-temporal graph-
cuts. The other methods are initialized using the first-frame, ground-truth
segmentation.

The selected algorithms span the categories devised in Chapter 2 based on
the level of supervision. However, interactive approaches with manual feed-
back could theoretically yield optimal results, and are not directly compara-
ble with un- and semi-automatic approaches, since the number of user edits,
e.g.strokes, should be also taken into account. Therefore we cast JMP [Fan et
al., 2015] and BVS (§6) into semi-automatic methods that propagates masks
to consecutive frames similar to SEA [Ramakanth and Babu, 2014]. We re-
duce the number of categories in Table 7.4 and Table 7.5 accordingly.
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7.3 Experimental Validation

Additionally we evaluate the performance of the salient object detector pro-
posed in Section 3.1 and the performance of an object proposal generator, as
their output is a useful indicator with respect to the various video segmenta-
tion algorithms that are built upon them. We extract per-frame saliency from
CIE-Lab images SF-LAB (§3.1) and from inter-frame motion SF-MOT (§3.1),
while we use ground-truth to select the hypotheses of the object proposal
generator MCG [Pont-Tuset et al., 2016] maximizing the per-frame Jaccard
region similarity J .

7.3 Experimental Validation

In order to judge the quality of a segmentation, the choice of a suitable met-
ric is largely dependent on the end goal of the final application [Csurka et
al., 2013]. Intuitively, when video segmentation is used primarily a classi-
fier within a larger processing pipeline, e.g.for parsing large scale datasets,
it makes sense to seek the lowest amount of mislabeled pixels. On the other
hand, in video editing applications the accuracy of the contours and their
temporal stability is of highest importance, as these properties usually re-
quire the most painstaking and time-consuming manual input. In order to
exhaustively cover the aforementioned aspects we evaluate the video seg-
mentation results using three complementary error metrics. We describe the
metrics in Section 7.3.1 and we empirically validate their complementary
properties on the proposed dataset in Section 7.3.2.

7.3.1 Metrics Selection

In a supervised evaluation framework, given a ground-truth mask G on a
particular frame and an output segmentation M, any evaluation measure ul-
timately has to answer the question how well M fits G. As justified in [Pont-
Tuset and Marques, 2015], for images one can use two complementary points
of view, region-based and contour-based measures. As videos extends the
dimensionality of still images to time, the temporal stability of the results
must also be considered. Our evaluation is therefore based on the following
measures.

Region Similarity J . To measure the region-based segmentation similarity,
i.e.the number of mislabeled pixels, we employ the Jaccard index J defined
as the intersection-over-union of the estimated segmentation and the ground-
truth mask. The Jaccard index has been widely adopted since its first appear-
ance in PASCAL VOC2008 [Everingham et al., 2010], as it provides intuitive,
scale-invariant information on the number of mislabeled pixels. Given an
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Figure 7.3: Discrepancy between metrics. Ground truth in red and an example segmen-
tation result in green. On the left, the result is penalized by J because in
terms of number of pixels there is a significant amount of false negatives
(head and foot), while with respect to the boundary measure F the missed
percentage is lower. On the right the response of both measures is switched.
The discrepancy in terms of pixels is low because the erroneous area is small,
but the boundaries are highly inaccurate.

output segmentation M and the corresponding ground-truth mask G it is
defined as J = |M∩G|

|M∪G| .

Contour Accuracy F . From a contour-based perspective, one can interpret
M as a set of closed contours c(M) delimiting the spatial extent of the mask.
Therefore, one can compute the contour-based precision and recall Pc and Rc
between the contour points of c(M) and c(G), via a bipartite graph match-
ing in order to be robust to small inaccuracies, as proposed in [Martin et al.,
2004]. We consider the so called F-measure F as a good trade-off between
the two, defined as F = 2PcRc

Pc+Rc
. For efficiency, in our experiments, we ap-

proximate the bipartite matching via morphology operators.

Temporal stability T . Intuitively, J measures how well the pixels of the
two masks match, while F measures the accuracy of the contours. How-
ever, temporal stability of the results is a relevant aspect in video object
segmentation since the evolution of object shapes is an important cue for
recognition and jittery, unstable boundaries are unacceptable in video edit-
ing applications. Therefore, we additionally introduce a temporal stability
measure which penalizes such undesired effects.

The key challenge is to distinguish the acceptable motion of the objects from
the undesired instability and jitter. To do so, we estimate the deformation
needed to transform the mask at one frame to the next one. Intuitively, if the
transformation is smooth and precise, the result can be considered stable.

Formally, we transform mask Mt of frame t into polygons representing its
contours P(Mt). We then describe each point pi

t ∈ P(Mt) using the Shape
Context Descriptor (SCD) [Belongie et al., 2002b]. Next, we pose the match-
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Figure 7.4: Correlation between the proposed metrics. Markers correspond to video
frames. Colors encode membership to a specific video sequence. The con-
tour accuracy measure F exhibits a slight linear dependency with respect to
the region similarity J (left), while it appears uncorrelated to the temporal
stability T (right).

ing as a Dynamic Time Warping (DTW) [Rabiner and Juang, 1993] problem,
were we look for the matching between pi

t and pj
t+1 that minimizes the SCD

distances between the matched points while preserving the order in which
the points are present in the shapes.

The resulting mean cost per matched point is used as the measure of tempo-
ral stability T . Intuitively, the matching will compensate motion and small
deformations, but it will not compensate the oscillations and inaccuracies
of the contours, which is what we want to measure. Occlusions and very
strong deformations would be misinterpreted as contour instability, so we
compute the measure on a subset of sequences without such effects.

7.3.2 Metrics Validation

To verify that the use of these measures produces meaningful results on our
dataset, we compute the pairwise correlation between the region similarity
J and the contour accuracy F and between F and the temporal stability
measure T . The degree of correlation is visualized in Figure 7.4. As can be
expected, there is a tendency towards linear correlation between J and F
(Figure 7.4, left), which can be explained by the observation that higher qual-
ity segmentations usually also result in more accurate contours. We note,
however, that the level of independence is enough to justify the use of both
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Preprocessing Unsupervised Semi-Supervised

MCG SF-LAB SF-MOT NLC CVOS TRC MSG KEY SAL FST TSP SEA HVS JMP FCP BVS MSK

Time 1498s 85s 84s 880s 6190s 16612 2614s 55191s 149s 2319s 2870s 299s 634s 576s 2261s 29s 960s

Table 7.3: Running times. Estimated running times (in seconds) for each of the eval-
uated approaches on a video sequence of 80 frames. Due to the substantial
processing power required to carry out this large scale evaluation, we used
multiple machines and a cluster with thousands nodes and different CPU,
therefore while computing times have been normalized to comparable process-
ing power, they should be considered an aproximate estimate.

measures. To get a qualitative idea of the differences between the two mea-
sures, Figure 7.3 shows two results of discrepant judgments between J and
F . The temporal stability measure T and the contour accuracyF instead are
nearly uncorrelated (Figure 7.4, right), which is also expected since temporal
instability does not necessarily impact the per-frame performance.

7.4 Quantitative Evaluation

In this section we report the results of the fifteen evaluated approaches. We
first provide different statistics evaluated for each of the three error mea-
sures (regions, contours, temporal), and then discuss evaluation results at
the attribute level (e.g., performance with respect to appearance changes).

For each of the methods we kept the default parameters fixed throughout
the entire dataset. Despite a considerable effort to speed-up the computation
(parallelizing preprocessing steps such as motion estimation or extraction of
boundary preserving regions) and to reduce the memory footprint (caching
intermediate steps), several methods based on global optimization routines
cannot be easily accelerated. Therefore, in order to be able to evaluate all
methods with respect to each other, we were forced to down-sample the
videos to 480p resolution. Due to the enormous processing power required,
we performed experiments on different machines and partly on a cluster
with thousands of nodes and heterogeneous CPU cores. Indicative runtimes
are reported in Table 7.3.

The evaluation scripts, the input data, and the output results are made pub-
licly available.

We exclude from the evaluation the first frame, which is used as ground-
truth by semi-automatic methods, and the last frame which is not processed
by some of the approaches. The overall results and considerations are re-
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Preprocessing Unsupervised Semi-Supervised

Measure MCG SF-LAB SF-MOT NLC CVOS TRC MSG KEY SAL FST TSP SEA HVS JMP FCP BVS MSK

MeanM ↑ 72.4 17.3 53.2 64.1 51.4 50.1 54.3 56.9 42.6 57.5 35.8 55.6 59.6 60.7 63.1 66.5 80.3
J Recall O ↑ 91.2 7.5 67.2 73.1 58.1 56.0 63.6 67.1 38.6 65.2 38.8 60.6 69.8 69.3 77.8 76.4 93.5

Decay D ↓ 2.6 -2.0 5.0 8.6 12.7 5.0 2.8 7.5 8.4 4.4 38.5 35.5 19.7 37.2 3.1 26.0 8.9
MeanM ↑ 65.4 21.8 45.2 59.3 49.0 47.8 52.5 50.3 38.3 53.6 34.6 53.3 57.6 58.6 54.6 65.6 75.8

F Recall O ↑ 78.1 5.2 44.0 65.8 57.8 51.9 61.3 53.4 26.4 57.9 32.9 55.9 71.2 65.6 60.4 77.4 88.2
Decay D ↓ 4.6 -1.6 5.2 8.6 13.8 6.6 5.7 7.9 7.2 6.5 38.8 33.9 20.2 37.3 3.9 23.6 9.5

T MeanM ↓ 65.2 75.8 63.7 35.6 24.3 32.7 25.0 19.0 60.0 27.6 32.9 13.7 29.6 13.1 28.5 31.6 18.6

Table 7.4: Overall results of region similarity (J ), contour accuracy (F ) and temporal
(in-)stability (T ) for each of the tested algorithm. For rows with an upward
pointing arrow higher numbers are better (e.g., mean), and vice versa for rows
with downward pointing arrows (e.g., decay, instability).The per-sequence
evaluation of each of the aforementioned approaches can be found in Tables
7.7, 7.8, 7.9.

ported in Section 7.4.1 and summarized in Table 7.4, while the attributes-
based evaluation is discussed in Section 7.4.2 and summarized in Table 7.5.

In Figure 7.5 we visualize the mean performance of all evaluated ap-
proaches, based the per-sequence region-similarity J and contour accuracy
F . The results are an estimator of the expected segmentation difficulty for a
specific sequence. Sequences are sorted with respect to the estimated diffi-
culty.

7.4.1 Error Measure Statistics

For a given error measure C we consider three different statistics. Let
R = {Si} be the dataset of video sequences Si and let C̄(Si) be the error
measure average on Si. The mean is the average dataset error defined as
MC(R) = 1

|R| ∑S∈R C̄(Si). The decay quantifies the performance loss (or

gain) over time. Let Qi = {Q1
i , .., Q4

i } be a partition of Si in quartiles, we
define the decay as DC(R) = 1

|R| ∑Qi∈R C̄(Q1
i )− C̄(Q4

i ). The object recall mea-
sures the fraction of sequences scoring higher than a threshold, defined as
OC(R) = 1

|R| ∑S∈R 1C̄(Si)>τ, with τ = 0.5 in our experiments.

The region-based evaluation for all methods is summarized in Table 7.4. The
best performing approach in terms of mean intersection-over-union is MSK
(§5,MJ = 80.3). It outperforms by an ample margin of∼10 points BVS (§6,
MJ = 66.5), which is closely followed by NLC [Faktor and Irani, 2014] and
FCP (§4,MJ = 63.1)

With the exception of FCP (§4), which solves a global optimization problem
over a fully connected graph and MSK (§5) that uses the previous estimate as
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a rough guidance, all the others semi-automatic approaches such as BVS (§6),
propagate the initial manual segmentation iteratively to consecutive frames
and thus exhibit higher temporal performance decay as reflected in the re-
sults. To alleviate this problem, propagating using bigger steps and inter-
polating the results in-between can reduce the drift and improve the overall
results [Fan et al., 2015]. TRC [Fragkiadaki et al., 2012] and MSG [Brox and
Malik, 2010] belong to a class of methods that uses motion segmentation as a
prior, but the resulting over-segmentation of the object reflects negatively on
the average performance. CVOS [Taylor et al., 2015] uses occlusion bound-
aries, but still encounters similar issues. Differently from TRC and MSG,
CVOS performs online segmentation. It scales better to longer sequences in
terms of efficiency but experiences higher decay.

Aiming at detecting per-frame indicators of potential foreground object lo-
cations, KEY [Lee et al., 2011], SAL [Shen et al., 2015], and FST [Papa-
zoglou and Ferrari, 2013] try to determine prior information sparsely dis-
tributed over the video sequence. The prior is consolidated enforcing spatio-
temporal coherence and stability by minimizing an energy function over a
locally connected graph. While the local connectivity enables propagation
of the segmentation similar to those of the semi-automatic approaches listed
above, these methods suffer less decay as annotations are available at multi-
ple different time frames.

Within the preprocessing category, the oracle MCG [Pont-Tuset et al., 2016] is
an informative upper-bound for methods seeking the best possible proposal
per-frame. It has the highest region-based performance J and superior ob-
ject recallMJ . The performance of MCG, also supported by the good per-
formance of FCP and KEY that use concurrent object proposal generators,
indicates that this could be a promising direction for more future research.
As expected, in video sequences motion is a stronger low-level cue for object
presence than color. Consequently salient motion detection SF-MOT (§3.1)
hows a significantly better performance than SF-LAB.

In terms of contour accuracy the best performing approaches are MSK (§5)
and BVS (§6). Our deep-learning based approach MSK, exploits the ex-
pressiveness of convnet features which, coupled with a per-pixel CRF, con-
sistently yields accurate contours. The good performance of BVS, demon-
strates that the adjacent interpolation scheme we propose in Section 6.1.2 is
a good compromise between speed and accuracy. The two aforementioned
approaches are followed by NLC and JMP. The former uses a large number
of superpixels per-frame (∼2000) and a discriminative ensemble of features
to represent them. In contrast, JMP exploits geodesic active contours to re-
fine the object boundaries. The motion clusters of TRC and MSG, as well
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7.4 Quantitative Evaluation

Unsupervised Semi-Supervised

Attr NLC CVOS TRC MSG KEY SAL FST TSP SEA HVS JMP FCP BVS MSK

AC 54 +13 42 +12 37 +17 48 +8 42 +19 33 +12 55 +4 17 +23 46 +12 42 +23 58 +3 51 +16 46 +26 77 +4

DB 53 +15 37 +18 39 +15 43 +15 52 +7 35 +10 53 +6 40 -6 58 -3 60 -1 60 +1 62 +1 60 +3 76 +5

FM 64 +0 37 +24 41 +16 46 +14 50 +12 35 +13 50 +12 18 +31 40 +28 42 +31 50 +18 55 +13 54 +22 76 +8

MB 61 +4 36 +23 32 +27 35 +29 51 +8 33 +15 48 +14 15 +32 39 +24 44 +24 51 +15 53 +15 58 +13 74 +9

OCC 70 -9 43 +13 44 +10 48 +10 52 +8 44 -2 53 +7 27 +14 47 +13 53 +11 47 +21 59 +7 68 -12 77 +4

Table 7.5: Attribute-based aggregate performance. For each method, the respective left
column corresponds to the average region similarity J over all sequences with
that specific attribute (e.g., AC), while the right column indicates the perfor-
mance gain (or loss) for that method for the remaining sequences without that
respective attribute.

as the occlusion boundaries of CVOS generate sub-optimal results along the
boundaries.

The top ranked methods in terms of temporal stability are those that propa-
gate segmentation on consecutive frames (JMP, SEA). Despite processing the
video sequence on a per-frame basis, MSK is refined with a CRF over a tem-
poral window of three frames that reduces the temporal instability, yielding
overall good performance. Similarly the temporal stability of BVS could be
improved at the cost of efficiency, by embedding more frames on the bilat-
eral grid. As expected those that are used on a per-frame basis and cannot
enforce continuity over time, such as MCG and SF-(*) generate considerably
higher temporal instability. As a sanity check, we evaluate the temporal sta-
bility of the ground truth and we get T = 9.3, which is lower than any of
the sequences. The per-sequence evaluation of each of the aforementioned
approaches can be found in Tables 7.7, 7.8, 7.9.

7.4.2 Attributes-based Evaluation

As discussed in Section 7.1 and Table 7.2 we annotated the video sequences
with attributes each representing a different challenging factor. These at-
tributes allow us to identify groups of videos with a dominant feature
e.g., presence of occlusions, which is key to explaining the algorithms’
performance. However, since multiple attributes are assigned to each se-
quence (Table 7.6), there might exists hidden dependencies among them
which could potentially affect an objective analysis of the results. Therefore,
we first conduct a statistical analysis to establish these relationship, and then
detail the corresponding evaluation results.
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Attributes Dependencies. We consider the presence or absence of each at-
tribute in a video sequence to be represented as a binary random variable,
the dependencies between which can be modelled by a pairwise Markov
random field (MRF) defined on a graph G with vertex set V ∈ {1, . . . , 16}
and (unknown) edge set E. The absence of an edge between two attributes
denotes that they are independent conditioned on the remaining attributes.
Given a collection of n = 50 binary vectors denoting the presence of at-
tributes in each video sequence, we estimate E via `1 penalized logistic re-
gression. To ensure robustness in the estimated graph we employ stability
selection [Meinshausen and Bühlmann, 2010]. Briefly, this amounts to per-
forming the above procedure on n/2-sized subsamples of the data multiple
times and computing the proportion of times each edge is selected. Setting
an appropriate threshold on this selection probability allows us to control
the number of wrongly estimated edges according to Theorem 1 in [Mein-
shausen and Bühlmann, 2010]. For example, for a threshold value of 0.6
and choosing a value of λ which on average selects neighbourhoods of size
4, the number of wrongly selected edges is at most 4 (out of 162 = 256
possible edges). The estimated dependencies are visualized in Figure 7.2
(right). As expected there is a mutual dependency between attributes such
as fast-mostion (FM) and motion-blur (MB), or interacting-object (IO) and shape-
complexity (SC). We refer the reader to Section 7.5 for further details.

Results. In Table 7.5 we report the performance on subsets of the datasets
characterized by a particular attribute. We reduce the analysis to the most
informative and recurrent attributes. The full attribute-based evaluation is
reported in Table 7.10.

Appearance changes (AC) poses a challenge to several approaches, in particu-
lar for those methods strongly relying on color appearance similarity such as
HVS and TCP. For example, TSP performance drops almost 50% as a conse-
quence of the Gaussian process it uses to update the appearance model and
therefore not being robust enough to strong appearance variations. Despite
the dense connectivity of its conditional random field, FCP also experiences
a considerable loss of performance. The reason resides in a sub-optimal au-
tomatic choice of the annotated proposals. Likely the proposals did have
enough variety to span the entire object appearances causing the classifiers
to overfit. Similarly BVS is not robust to appearance changes. The perfor-
mance loss is due to the efficient, but simple, bilateral features that are too
sensitive to color changes. In contrast, MSK captures a robust, global rep-
resentation of the object which is less subject to appearance changes. This
is, in part thanks to the invariance of the convnet based features, but mostly
due to the fine-tuning step and in particular to the data augmentation that
mimics unseen instances of the object.
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Dynamic background (DB) scenes, e.g.flowing water, represent a major diffi-
culty to the class of unsupervised methods, such as NLC and SAL, which
adopt distinctive motion saliency as the underlying assumption to predict
the object location. Interestingly the assumption of a completely closed mo-
tion boundary curve coinciding with the object contours can robustly ac-
commodate background deformations (FST). Finally, MSG and TRC expe-
rience a considerable performance degradation as the motion clusters they
rely on [Brox and Malik, 2010] are constructed from dissimilarities of point-
trajectories, under the assumption that translational models are a good ap-
proximation for nearby points, which is not true on deforming image re-
gions. None of the methods we propose in this thesis explicitly employ intra-
frame motion and therefore they are not subject to scenes exhibiting dynamic
background, therefore the loss of all three approaches is only marginal.

Fast motion (FM) is a problem for any of the algorithms exploiting motion in-
formation as the condition is a major challenge to reliable optical-flow com-
putation. Note that there is a strong dependency between fast motion and
motion-blur (MB) (Figure 7.2, right), yielding fuzzy object boundaries almost
impossible to separate from the background region. Methods such as TRC
and MSG use point-tracks for increased robustness towards fast motion, but
are still susceptible with respect to motion-blur due to the sensitivity of the
underlying variational approach used for densification of the results. NLC
is the only method which has none or negligible loss of performance in both
circumstances, possibly because the saliency computation is still reliable on
a subset of the frames, and their random-walk matrix being non-locally con-
nected is robust to fast motion. Fast motion is also a major challenge for
BVS which uses pixel coordinates to splat the data into the bilateral grid.
The grid discretization plays a major role in this case. Under fast motion
a fine grid causes corresponding pixels to end-up in distant grid cells. In
the case of fast-motion a coarse grid along the pixel-coordinates dimensions
might help. MSK also experience a loss due to fast motion, this is likely to
the guiding segmentation from the previous frame, being less accurate due
to the substantial change of the object position. Similarly for FCP the point-
tracks are less reliable causing a degrade of accuracy.

Occlusions (OCC) being one of the well known challenges in video segmen-
tation, only a small subset of the algorithms, which propagate sequentially
manually annotated frames such as SEA and JMP, struggle with this type
of situation. Despite processing the video sequence on a per-frame bases,
MSK holds a specific representation of the object instance to segment and
therefore is robust to occlusions. As expected, methods that exploit large
spatio-temporal connectivity such as BVS,FCP and NLC are quite robust to
these challenges.
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7.5 Attributes Dependency

We consider the presence or absence of each attribute in a video sequence
to be represented as a binary random variable X = (X1, X2, . . . , Xd). The
dependencies between the attributes can be modelled by a pairwise Markov
random field (MRF) defined on the undirected graph G = (V, E) where
V = {1, . . . , d} is the set of vertices and E is the (unknown) set of edges. Each
variable Xs is associated with a vertex s ∈ V. The pairwise MRF associated
with G is the family of distributions which factorise as

Pθ(x) ∝ exp

 ∑
(s,t)∈E

θs,t xsxt

 .

The absence of an edge between s and t means that Xs and Xt are independent
conditioned on their respective Markov blankets1. In other words, given the
state of the neighbours of s and t, knowing t gives us no information about
s and vice-versa.

Equivalently, θ can be viewed as a (d
2)-dimensional vector which indexes

all distinct pairs of vertices but is non-zero only when the vertex pair (s, t)
belongs to the edge set E of the graph. Recovering E is equivalent to recov-
ering the neighbourhood set N (r) := {t ∈ V|(r, t) ∈ E} for each r ∈ V.
Estimating the neighbourhood set N (r) is equivalent to estimating the sup-
port (i.e. location of non-zero entries) of the (d− 1) dimensional sub-vector
θ\r := {θu, u ∈ V\r}.

Following [Ravikumar et al., 2010], given a collection of n observationsX n =
{x(1), . . . , x(n)} of d-dimensional binary vectors x(i), the support of each θ\r
can be estimated by solving the following minimization problem

min
θ\r∈Rd−1

− 1
n

n

∑
i=1

log Pθ(x(i)r |x
(i)
\r ) + λ‖θ\r‖. (7.1)

Since the random variables are binary, minimizing the penalised negative
log likelihood above corresponds to solving `1 penalised logistic regression
treating x(i)\r ∈ Rn×(d−1) as covariates and x(i)r as the response.

The solution to (7.1) can be highly sensitive to the regularization strength λ

which controls the sparsity of the solution. In order to determine the correct
degree of sparsity we employ stability selection [Meinshausen and Bühlmann,
2010]. Briefly, this amounts to performing the above procedure on multiple

1For a MRF this consists of the neighbours of s and t, respectively

94



7.6 Discussion

n/2-sized subsamples of the data and computing the proportion of times
each edge is selected. Setting an appropriate threshold on this selection
probability allows us to control the number of wrongly estimated edges ac-
cording to Theorem 1 in [Meinshausen and Bühlmann, 2010]. For example,
for a threshold value of 0.6 and choosing a value of λ which on average se-
lects neighbourhoods of size 4, the number of wrongly selected edges is at
most 4 (out of 162 = 256 possible edges).

7.6 Discussion

To the best of our knowledge, this work represents the currently largest scale
performance evaluation of video object segmentation algorithms. One of
course has to consider that the evaluated approaches have been developed
using different amounts and types of input data and ground-truth, or were
partially even designed for different problems and only later adapted to the
task of video object segmentation. However, the primary aim of our eval-
uation is not to determine a winner, but to provide researchers with high-
quality, contemporary data, a solid standardized evaluation procedure, and
valuable comparisons with the current state-of-the-art.

Currently, running time efficiency and memory requirements are a major
bottleneck for the usability of several video segmentation algorithms. In
our experiments we observed that a substantial amount of time is spent
preprocessing images to extract boundary preserving regions, object pro-
posals and motion estimates. We encourage future research to carefully se-
lect those components bearing in mind they could compromise the practical
utility of their work. Efficient algorithms will be able to take advantage of
the Full HD videos and accurate segmentation masks made available with
this dataset. Leveraging high resolution might not produce better results in
terms of region-similarity, but it is essential to improve the segmentation of
complex object contours and tiny object region.

Workshop Supported by the growing interests of the video segmentation
community towards the DAVIS dataset and benchmark we organized the
first DAVIS Challenge on Video Object Segmentation 2017. The workshop,
co-located with CVPR, has the objective to promote and facilitate the de-
velopment of research techniques aiming to separate foreground objects
from background regions in video sequences. Motivated by the substantial
amount of feedback we collected, we (i) extended the original dataset with
100 extra sequences, totaling around 10K of pixel-accurate annotated frames;
(ii) hosted a public challenge and competition to further engage researchers
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Figure 7.5: Per-sequence mean performance. Mean and variance of region Jaccard J
(blue) and boundary F measure F (orange). Sequences are sorted by diffi-
culty, i.e. mean performance of J over all techniques.

around the increasingly popular topic of video object segmentation. Sev-
eral speakers were invited to present the current methods and future trends
encouraging constructive discussion among participants.
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Figure 7.6: Sample sequences from our dataset DAVIS, with ground truth segmentation
masks overlayed.
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Sequence AC BC CS DB DEF EA FM HO IO LR MB OCC OV SC SV

bear 3

blackswan
bmx-bumps 3 3 3 3 3 3 3 3 3 3 3

bmx-trees 3 3 3 3 3 3 3 3 3 3 3 3

boat 3 3 3 3

breakdance 3 3 3 3 3 3 3

breakdance-flare 3 3 3 3 3

bus 3 3 3 3

camel 3 3 3

car-roundabout 3

car-shadow 3 3 3 3

car-turn 3 3

cows 3 3 3 3 3

dance-jump 3 3 3 3 3 3 3

dance-twirl 3 3 3 3 3 3 3

dog 3 3 3 3 3

dog-agility 3 3 3 3 3 3 3 3

drift-chicane 3 3 3 3 3 3 3

drift-straight 3 3 3 3 3 3 3 3 3

drift-turn 3 3 3 3 3 3 3

elephant 3 3 3 3

flamingo 3 3 3 3 3

goat 3 3 3 3

hike 3 3 3

hockey 3 3 3 3

horsejump-high 3 3 3 3 3

horsejump-low 3 3 3 3 3 3

kite-surf 3 3 3 3 3 3 3 3

kite-walk 3 3 3 3 3 3

libby 3 3 3 3 3 3

lucia 3 3 3

mallard-fly 3 3 3 3 3 3 3 3 3

mallard-water 3 3 3 3

motocross-bumps 3 3 3 3 3 3 3

motocross-jump 3 3 3 3 3 3 3 3 3 3

motorbike 3 3 3 3 3 3 3 3

paragliding 3 3 3 3

paragliding-launch 3 3 3 3 3

parkour 3 3 3 3 3 3 3

rhino 3 3 3

rollerblade 3 3 3 3 3 3

scooter-black 3 3 3 3

scooter-gray 3 3 3 3 3 3 3

soapbox 3 3 3 3 3 3

soccerball 3 3 3 3 3

stroller 3 3 3 3 3 3

surf 3 3 3 3 3 3 3

swing 3 3 3 3 3 3

tennis 3 3 3 3 3 3

train 3 3 3

Table 7.6: List of attributes for each video in the dataset. Left to right: appearance
changes (AC), background clutter (BC), camera shake (CS), dynamic back-
ground (DB), non-linear deformation (DEF), edge ambiguity (EA), fast-
motion (FM), heterogeneus object (HO), interacting objects (IO), low reso-
lution (LR), motion blur (MB), occlusions (OCC), out-of-view (OV), shape
complexity (SC), scale variation (SV). See Table 1 in the paper for the descrip-
tion of each attribute.98
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Preprocessing Unsupervised Semi-Supervised

Sequence MCG SF-LAB SF-MOT NLC CVOS TRC MSG KEY SAL FST TSP SEA HVS JMP FCP BVS MSK

bear 93.7 12.6 55.6 90.6 86.4 87.3 85.1 89.1 65.7 89.8 77.8 91.2 93.8 92.9 90.6 95.5 93.1
blackswan 87.1 52.4 54.7 87.4 42.2 56.9 52.6 84.2 22.2 73.2 87.2 93.3 91.7 93.0 90.8 94.3 90.3
bmx-bumps 49.0 3.0 28.1 63.5 36.8 35.0 35.3 30.9 18.8 24.1 29.0 19.8 42.8 33.6 30.0 43.4 57.1
bmx-trees 47.3 2.1 46.8 21.2 12.1 16.2 18.8 19.3 19.4 18.0 9.5 11.3 17.8 22.9 24.8 38.2 57.5
boat 61.9 6.8 17.1 0.7 5.6 13.0 14.4 06.5 27.1 36.1 65.6 79.3 78.2 70.5 61.3 64.4 54.8
breakdance 71.3 20.4 64.9 67.3 18.3 11.4 23.7 54.9 42.2 46.7 5.6 32.9 55.0 47.8 56.7 50.0 76.2
breakdance-flare 73.3 20.6 62.9 80.4 31.7 24.5 15.7 55.9 47.6 61.6 4.0 13.1 49.9 43.0 72.3 72.7 77.6
bus 74.9 29.0 79.7 62.9 66.4 68.4 88.5 78.5 73.9 82.5 51.5 75.2 80.9 66.8 83.2 86.3 89.1
camel 79.5 1.5 62.0 76.8 85.0 77.8 75.6 57.9 32.0 56.2 65.4 64.9 87.6 64.0 73.4 66.9 80.1
car-roundabout 78.6 30.6 70.8 50.9 87.1 55.2 63.0 64.0 50.0 80.8 61.4 70.8 77.7 72.6 71.7 85.1 96.0
car-shadow 70.1 13.5 76.5 64.5 75.9 44.9 88.0 58.9 53.8 69.8 63.6 77.5 69.9 64.5 72.3 57.8 93.5
car-turn 86.5 7.1 59.3 83.3 82.0 80.5 62.1 80.6 61.1 85.1 32.3 90.9 81.0 83.4 72.4 84.4 88.6
cows 81.1 13.9 68.4 88.3 56.2 83.3 79.9 33.7 62.3 79.1 59.5 70.7 77.9 75.6 81.2 89.5 88.2
dance-jump 47.0 25.1 58.2 71.8 34.1 30.3 06.5 74.8 29.1 59.8 13.2 66.2 68.0 49.0 52.2 74.5 78.8
dance-twirl 64.4 9.3 62.4 34.7 45.2 36.6 36.6 38.0 37.2 45.3 9.9 11.7 31.8 44.4 47.1 49.2 84.4
dog 62.1 19.5 53.2 80.9 75.3 78.6 33.1 69.2 56.6 70.8 31.3 58.1 72.2 67.3 77.4 72.3 90.9
dog-agility 66.3 6.0 35.4 65.2 19.3 13.8 11.0 13.2 5.5 28.0 07.9 35.4 45.7 69.9 45.3 34.5 78.9
drift-chicane 80.6 4.6 39.6 32.4 31.3 72.2 75.8 18.8 24.4 66.7 01.8 11.9 33.1 24.3 45.7 3.3 86.2
drift-straight 75.3 17.1 42.7 47.3 34.4 43.1 57.5 19.4 26.8 68.3 19.7 51.3 29.5 61.8 66.8 40.2 56.0
drift-turn 85.6 16.1 35.9 15.4 61.5 41.2 63.8 25.5 34.9 53.3 16.2 66.7 27.6 71.7 60.6 29.9 85.9
elephant 68.6 9.9 64.0 51.8 49.4 76.0 68.9 67.5 51.0 82.4 66.6 55.3 74.2 75.0 65.5 84.9 87.2
flamingo 85.0 24.7 51.7 53.9 78.3 73.1 79.4 69.2 57.0 81.7 66.6 58.3 81.1 53.0 71.7 88.1 79.0
goat 64.1 5.7 13.8 01.0 7.4 79.3 73.6 70.5 25.7 55.4 44.4 53.5 58.0 73.1 67.7 66.1 84.5
hike 90.0 33.5 65.7 91.8 87.8 75.6 60.3 89.5 68.3 88.9 67.9 77.6 87.7 66.4 87.4 75.5 93.1
hockey 77.5 8.0 53.8 81.0 81.7 67.4 71.3 51.5 56.6 46.8 41.3 71.4 69.8 67.7 64.7 82.9 83.4
horsejump-high 64.9 26.3 59.6 83.4 83.0 36.4 73.4 37.0 56.8 57.8 23.6 63.7 76.5 58.6 67.6 80.1 81.7
horsejump-low 54.5 12.5 61.8 65.1 74.3 70.5 68.2 63.0 38.8 52.6 29.1 49.8 55.1 66.3 60.7 60.1 80.6
kite-surf 65.4 5.9 20.8 45.3 35.7 50.1 41.9 58.5 19.3 27.2 36.6 48.7 40.5 50.0 57.7 42.5 60.0
kite-walk 73.6 66.8 42.0 81.3 44.7 5.2 59.7 19.7 72.5 64.9 44.7 49.8 76.5 50.9 68.2 87.0 64.5
libby 65.5 9.7 44.3 63.5 16.9 7.3 5.0 61.1 47.0 50.7 7.0 22.6 55.3 29.5 31.6 77.6 77.5
lucia 82.0 11.9 76.0 87.6 84.0 66.9 41.7 84.7 70.6 64.4 37.7 62.6 77.6 83.6 80.1 90.1 91.1
mallard-fly 79.9 2.2 31.0 61.7 38.0 29.3 03.3 58.5 22.7 60.1 20.0 55.7 43.6 53.6 54.1 60.6 57.3
mallard-water 75.5 3.5 1.7 76.1 24.5 19.0 4.5 78.5 8.5 8.7 62.3 86.5 70.4 75.1 68.7 90.7 90.4
motocross-bumps 82.7 23.6 46.0 61.4 60.3 50.2 46.6 68.9 35.1 61.7 13.3 47.0 53.4 76.1 30.6 40.1 59.9
motocross-jump 76.0 20.4 42.8 25.1 24.5 33.8 61.8 28.8 49.1 60.2 12.3 38.6 9.9 58.3 51.1 34.1 68.5
motorbike 68.8 11.6 57.2 71.4 38.7 72.3 73.7 57.2 33.5 55.8 34.0 45.1 68.7 50.6 71.3 56.3 56.6
paragliding 87.7 14.0 74.3 88.0 89.0 81.6 93.3 86.1 56.8 72.5 73.5 86.3 90.7 95.1 86.6 87.5 95.9
paragliding-launch 59.9 25.5 50.1 62.8 59.1 55.5 51.3 55.9 53.9 50.6 30.1 57.7 53.7 58.9 57.1 64.0 62.1
parkour 81.5 28.8 49.1 90.1 14.6 34.5 29.5 41.0 39.2 45.8 7.0 12.1 24.0 34.2 32.2 75.6 88.2
rhino 86.4 25.3 61.5 68.2 52.0 84.6 90.2 67.5 68.5 77.6 69.4 73.6 81.2 71.6 79.4 78.2 91.1
rollerblade 55.4 0.4 56.4 81.4 40.6 56.6 80.1 51.0 14.1 31.8 9.8 13.8 46.1 72.6 44.9 58.8 78.7
scooter-black 70.4 12.5 61.3 16.2 75.9 43.5 57.9 50.2 34.8 52.2 37.8 79.3 62.4 62.6 50.4 33.7 82.5
scooter-gray 65.3 3.9 70.3 58.6 32.7 35.7 34.5 36.3 42.1 32.5 13.3 24.1 43.3 12.3 48.3 50.8 82.9
soapbox 68.0 16.3 57.9 63.4 83.2 29.4 67.2 75.7 33.2 41.0 24.7 78.3 68.4 75.9 44.9 78.9 89.9
soccerball 85.6 5.2 73.2 82.9 24.2 35.0 37.0 87.8 37.8 84.3 02.9 65.3 6.5 9.6 82.0 84.4 89.0
stroller 60.0 31.3 57.3 85.0 61.9 72.0 67.8 75.9 46.6 58.0 36.9 46.4 66.2 65.6 59.7 76.7 85.4
surf 94.4 52.1 65.3 77.5 27.3 46.4 77.0 89.3 31.2 47.5 81.4 82.1 75.9 94.1 84.3 49.2 92.8
swing 70.9 38.7 67.7 85.1 53.3 41.3 62.2 71.0 56.9 43.1 09.8 51.1 10.4 11.5 64.8 78.4 81.9
tennis 71.4 3.2 56.2 87.1 49.4 19.6 59.0 76.2 48.0 38.8 7.4 48.2 57.6 76.5 62.3 73.7 86.1
train 53.5 20.5 54.8 72.9 90.3 87.6 88.7 45.0 62.0 83.1 64.8 85.4 84.6 87.3 84.1 87.2 90.4

Mean 72.4 17.3 53.2 64.1 51.4 50.1 54.3 56.9 42.6 57.5 35.8 55.6 59.6 60.7 63.1 66.5 80.3

Table 7.7: Results of region similarity (J ) for each video sequence in the dataset. The
best performing method of each category is highlighted in bold.
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Preprocessing Unsupervised Semi-Supervised

Sequence MCG SF-LAB SF-MOT NLC CVOS TRC MSG KEY SAL FST TSP SEA HVS JMP FCP BVS MSK

bear 93.4 18.0 45.1 85.0 84.5 83.2 78.1 77.5 49.5 86.0 63.5 89.9 90.5 90.4 84.5 94.5 90.6
blackswan 87.3 49.1 50.0 82.0 69.5 65.4 70.0 78.7 43.0 73.6 85.7 95.7 91.0 94.5 90.5 96.5 89.4
bmx-bumps 59.7 10.6 28.3 73.4 40.9 32.5 41.0 45.3 31.3 34.9 33.8 25.4 52.5 39.7 34.0 49.3 67.8
bmx-trees 60.5 14.5 55.7 33.0 11.8 18.9 26.3 36.6 20.6 34.8 13.8 12.5 28.2 30.9 32.4 65.2 73.6
boat 53.6 28.9 13.5 3.6 10.8 40.3 48.5 0.0 26.4 19.7 68.2 76.4 80.7 60.7 46.0 64.8 50.3
breakdance 67.0 26.5 63.5 66.1 19.1 12.1 23.1 46.3 30.0 41.1 7.0 38.9 47.3 51.1 47.3 48.8 72.5
breakdance-flare 78.1 21.5 62.6 80.8 33.5 30.1 23.0 58.5 51.2 69.4 11.6 16.7 62.5 52.3 73.8 77.5 78.4
bus 49.7 29.6 50.5 40.6 53.5 54.2 65.7 63.5 57.0 58.4 47.7 72.4 68.2 60.4 53.9 84.4 65.3
camel 72.8 8.5 49.8 71.9 87.3 69.8 62.9 43.7 43.2 59.0 52.9 61.4 87.1 71.1 61.7 70.5 73.5
car-roundabout 51.2 24.6 49.1 25.0 67.8 45.1 60.2 36.2 30.1 62.5 43.5 71.0 55.1 61.9 47.8 62.4 92.6
car-shadow 58.8 23.3 62.8 54.6 61.7 47.4 85.8 45.9 44.1 54.0 51.3 75.5 59.4 62.5 64.2 47.4 94.7
car-turn 76.0 11.3 43.1 63.4 70.3 74.1 67.7 63.2 48.5 73.1 37.9 88.3 60.5 74.2 61.4 68.9 78.2
cows 73.6 16.8 55.4 80.7 49.9 72.1 62.1 29.3 49.9 68.1 54.4 67.7 63.2 70.0 66.7 85.1 81.2
dance-jump 37.2 20.4 49.7 56.7 28.2 27.2 3.8 56.9 26.2 46.2 18.6 56.7 57.1 52.6 41.8 64.5 62.9
dance-twirl 60.4 12.1 58.9 36.5 44.4 37.6 32.5 31.7 30.1 47.1 12.8 21.3 51.6 52.0 42.7 48.1 80.9
dog 58.2 14.0 49.5 70.7 76.1 69.5 30.4 63.3 41.8 65.9 29.5 54.3 63.5 59.6 67.2 59.4 88.5
dog-agility 51.7 15.3 28.8 55.1 26.2 12.2 7.6 9.5 10.2 26.5 8.3 41.0 44.6 65.4 31.5 34.6 68.4
drift-chicane 90.6 15.4 36.4 31.2 39.7 82.3 88.6 19.2 20.6 73.1 3.3 15.9 54.7 33.8 47.7 07.6 96.4
drift-straight 59.3 15.2 31.2 38.5 33.0 40.8 50.9 5.3 16.7 47.0 21.3 50.0 26.6 47.3 47.9 41.9 55.0
drift-turn 70.0 20.7 19.9 18.5 48.0 31.0 45.9 1.8 23.1 44.2 21.7 51.2 21.6 63.1 48.8 37.1 80.9
elephant 50.6 8.0 44.6 25.1 35.9 54.6 50.5 32.4 23.1 56.9 52.3 39.9 57.9 54.2 43.0 63.2 64.3
flamingo 87.6 25.3 62.2 61.0 80.6 66.3 77.6 58.9 62.1 76.3 54.4 56.3 79.0 65.0 64.1 93.3 72.4
goat 52.6 17.1 22.5 13.3 24.1 72.4 65.7 55.2 18.7 40.0 40.4 47.0 54.6 61.7 57.6 58.4 81.4
hike 92.6 31.2 54.0 94.3 92.2 80.4 70.2 92.5 69.1 91.8 67.5 79.6 87.8 74.4 91.2 76.4 96.0
hockey 74.2 19.8 43.0 80.8 78.9 65.1 76.1 56.0 55.9 58.4 57.9 72.1 77.8 72.6 61.2 85.0 79.1
horsejump-high 70.3 32.6 56.1 88.1 84.1 40.5 74.8 39.2 61.3 62.1 34.3 65.5 80.7 65.3 69.9 80.4 85.1
horsejump-low 54.8 15.2 51.6 65.9 70.9 67.2 63.7 53.3 41.9 49.0 35.6 54.8 57.2 69.6 53.3 56.5 81.2
kite-surf 44.7 22.1 28.6 44.8 24.1 42.2 52.1 50.4 36.8 34.6 26.8 28.5 37.5 30.9 36.2 64.5 43.8
kite-walk 48.6 52.4 28.5 66.2 43.8 1.4 57.7 12.8 52.6 56.1 43.5 35.5 62.4 35.9 41.1 72.8 44.1
libby 73.3 24.4 58.1 74.8 18.5 8.6 11.8 73.0 52.9 71.8 9.1 20.9 64.1 36.5 38.9 83.9 85.6
lucia 74.3 23.3 73.6 87.2 80.1 66.3 49.1 81.9 69.1 56.8 45.3 54.2 78.2 87.0 70.8 90.0 89.5
mallard-fly 82.4 7.1 33.8 66.0 39.1 33.2 1.9 63.1 29.3 63.3 23.5 60.7 44.1 57.9 53.9 64.5 60.1
mallard-water 70.1 11.5 3.4 69.2 25.4 22.5 0.0 73.3 11.5 7.9 58.5 88.6 64.6 75.5 55.7 91.4 93.9
motocross-bumps 71.0 24.2 33.8 56.0 56.7 49.7 46.6 67.4 30.0 61.0 18.4 52.0 54.8 74.3 30.2 49.0 55.4
motocross-jump 56.8 27.4 29.0 30.3 18.6 30.7 39.3 23.7 38.8 45.3 11.6 40.4 13.7 53.9 38.6 37.6 52.7
motorbike 64.2 24.7 26.4 57.1 38.0 54.1 59.4 72.6 39.1 58.5 40.6 48.1 82.3 57.8 63.2 69.6 59.7
paragliding 74.2 13.3 79.8 74.4 74.4 72.4 90.9 68.1 54.1 67.5 63.4 74.4 85.7 90.7 72.7 77.3 93.3
paragliding-launch 20.0 18.8 17.1 24.3 18.2 15.7 19.6 25.3 16.9 18.5 12.2 18.0 20.6 17.6 18.3 32.4 22.9
parkour 81.1 30.4 55.3 91.6 15.8 42.1 40.1 37.4 35.9 47.8 9.4 27.8 32.3 41.8 29.2 67.8 87.4
rhino 76.7 19.3 47.2 43.1 46.9 73.9 82.6 42.9 48.7 63.4 49.9 65.8 65.8 65.3 64.7 59.0 82.6
rollerblade 57.7 11.4 58.6 86.8 47.5 68.7 82.2 35.1 21.1 41.1 14.3 15.5 55.2 75.9 57.6 64.5 85.0
scooter-black 54.8 17.7 45.1 22.8 55.7 30.4 56.5 42.0 25.7 39.5 41.1 72.2 57.4 52.9 36.3 40.7 66.1
scooter-gray 49.4 12.6 43.4 46.7 21.2 26.6 27.2 36.7 33.3 32.1 12.2 27.5 54.5 12.3 43.7 60.2 65.9
soapbox 64.7 19.0 45.3 65.8 75.4 38.9 63.3 71.9 30.7 35.5 33.6 75.0 69.0 67.7 42.3 76.2 84.2
soccerball 89.8 4.3 75.4 85.5 26.2 37.7 40.1 92.4 35.5 90.0 5.9 69.7 7.4 12.7 83.6 84.9 92.8
stroller 63.5 42.6 48.8 87.4 60.6 69.1 66.2 75.1 41.7 55.8 40.4 52.5 70.8 71.8 58.1 79.0 85.5
surf 88.1 52.4 37.2 67.3 51.5 63.7 80.4 82.0 39.5 44.5 64.1 73.2 65.2 87.2 71.3 53.1 91.1
swing 59.9 37.3 57.1 77.8 49.3 41.7 61.1 61.4 50.2 49.1 8.7 40.9 9.1 10.9 53.8 74.6 74.5
tennis 75.1 15.1 45.0 92.7 54.7 30.1 67.0 81.8 53.0 56.7 11.4 53.7 57.9 81.8 65.2 84.5 91.1
train 40.3 34.7 50.4 52.1 83.1 76.6 77.0 46.4 44.0 66.0 58.9 71.3 68.8 77.0 73.6 79.2 83.5

Mean 65.4 21.8 45.2 59.3 49.0 47.8 52.5 50.3 38.3 53.6 34.6 53.3 57.6 58.6 54.6 65.6 75.8

Table 7.8: Results of boundary precision (F ) for each video sequence in the dataset. The
best performing method of each category is highlighted in bold.
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7.6 Discussion

Preprocessing Unsupervised Semi-Supervised

Sequence MCG SF-LAB SF-MOT NLC CVOS TRC MSG KEY SAL FST TSP SEA HVS JMP FCP BVS MSK

bear 0.2 63.3 84.0 15.1 5.9 27.2 15.6 6.8 44.8 22.7 7.7 4.7 8.6 5.1 11.4 7.6 8.3
blackswan 30.9 33.2 32.2 11.0 5.8 21.9 14.5 4.9 66.0 22.5 4.9 3.2 6.0 2.9 6.4 3.3 6.1
boat 81.3 43.7 97.1 55.9 1.6 35.0 16.3 1.5 38.2 17.7 06.7 5.5 12.5 6.2 13.6 56.1 18.6
bus 74.1 75.7 39.7 17.8 14.6 19.4 15.4 14.3 36.9 27.0 29.3 10.9 30.6 19.3 15.6 19.9 15.8
camel 59.3 43.8 34.1 23.2 12.3 17.2 12.9 13.8 38.0 16.1 08.4 5.5 11.7 6.2 21.2 9.5 16.8
car-roundabout 54.5 1.2 42.8 35.2 6.4 38.2 29.1 16.1 53.6 24.2 15.8 7.1 25.5 7.8 28.3 14.8 9.7
car-shadow 1.2 1.3 22.7 36.1 18.0 45.2 20.6 31.3 79.3 35.3 20.6 23.0 35.1 27.4 33.9 51.4 11.3
car-turn 27.4 71.4 47.7 23.5 11.8 20.2 20.4 10.8 56.6 21.4 79.6 11.7 13.5 6.5 25.6 9.8 10.8
cows 49.4 1.0 45.7 14.7 13.3 14.8 19.6 41.2 51.1 28.2 17.9 4.4 16.4 5.5 16.3 12.7 12.6
dance-jump 1.1 63.0 87.0 31.6 45.9 57.6 11.0 21.4 58.6 24.2 27.2 28.6 32.4 17.3 50.6 25.8 23.4
drift-straight 96.9 1.2 77.5 59.9 90.0 63.8 54.3 29.2 95.0 48.2 82.6 39.6 82.3 31.7 59.7 52.8 48.6
drift-turn 39.1 98.7 98.4 85.0 33.4 47.5 40.2 15.0 1.0 25.8 63.3 16.8 70.3 12.8 32.8 70.7 23.5
elephant 1.1 96.0 55.7 31.5 11.8 23.6 23.6 8.5 42.6 13.9 9.7 7.6 21.3 7.5 40.4 14.0 14.4
flamingo 52.3 31.9 76.9 13.8 17.3 21.5 38.2 11.3 48.6 17.5 11.8 6.9 13.3 8.9 18.2 13.4 13.7
hike 33.1 87.3 28.2 15.8 12.5 23.0 25.1 11.7 41.2 24.7 14.1 12.2 12.0 9.2 16.4 12.8 13.2
hockey 51.9 1.0 37.8 22.7 15.9 22.8 21.1 16.2 37.7 27.6 40.3 10.3 25.8 10.2 22.8 24.5 13.1
kite-surf 42.0 46.4 88.8 94.4 24.8 43.2 50.7 23.3 56.8 40.4 27.8 12.5 49.7 11.7 21.2 70.1 41.7
kite-walk 40.9 32.2 82.9 22.1 12.7 00.2 32.8 36.6 35.6 30.1 24.1 17.3 18.5 15.4 16.6 15.7 26.3
mallard-water 81.5 57.9 1.6 24.2 39.4 64.1 0.0 18.4 1.7 23.0 28.7 12.3 29.5 21.9 31.7 14.1 16.2
motocross-bumps 60.6 75.6 91.9 54.1 32.7 56.6 48.1 34.4 90.3 32.9 62.8 28.9 76.7 21.1 48.6 66.3 39.1
paragliding-launch 49.8 59.8 32.4 25.9 27.3 34.7 33.1 21.3 60.2 70.3 66.0 20.8 31.6 18.0 32.9 23.0 22.6
rhino 30.8 39.6 70.0 18.8 6.4 15.3 9.3 5.6 39.0 13.8 6.6 3.7 9.3 3.7 15.1 8.8 8.4
scooter-black 1.0 91.0 41.9 76.0 32.0 57.7 36.4 55.8 79.0 47.5 96.0 21.6 59.9 28.2 42.3 83.7 22.6
soapbox 98.3 61.3 50.4 39.0 15.4 41.3 21.4 16.0 61.3 15.8 76.3 11.2 31.4 12.6 37.9 23.5 21.8
stroller 1.2 96.8 86.4 20.5 11.6 23.5 36.6 12.7 54.6 18.4 13.4 13.0 36.3 18.9 37.6 25.1 21.4
surf 23.4 1.3 72.8 36.4 16.9 37.5 22.3 8.6 1.1 39.8 20.7 23.8 29.1 12.7 27.6 87.1 15.5
train 1.0 73.9 37.7 57.6 5.6 11.0 7.0 27.0 39.6 15.9 24.9 6.9 10.6 4.7 44.8 31.9 6.2

Mean 65.2 75.8 63.7 35.6 24.3 32.7 25.0 19.0 60.0 27.6 32.9 13.7 29.6 13.1 28.5 31.4 18.6

Table 7.9: Results of temporal stability (T ) for each video sequence in the dataset. The
best performing method of each category is highlighted in bold. Please note
that this measure is only computed on those sequences without occlusions
and strong deformations.

101



Dataset and Evaluation Methodology

Unsupervised Semi-Supervised

Attr NLC CVOS TRC MSG KEY SAL FST TSP SEA HVS JMP FCOP BVS MSK

AC 53 +13 41 +12 36 +17 47 +8 41 +19 33 +12 54 +4 17 +23 45 +12 41 +22 57 +4 50 +16 46 +26 76 +5

BC 45 +22 45 +6 50 -2 54 -1 52 +5 42 +0 57 -0 41 -7 58 -4 61 -4 60 -0 58 +5 63 +5 79 +2

CS 59 +6 41 +12 54 -6 53 -0 51 +6 36 +9 53 +5 34 +1 42 +17 54 +6 60 +0 60 +3 62 +6 78 +2

DB 52 +14 37 +18 38 +14 43 +14 51 +7 34 +1 52 +6 39 -6 57 -3 59 -1 59 +1 61 +1 60 +8 76 +6

DEF 67 -11 51 -1 48 +1 51 +5 57 -1 45 -8 56 +1 31 +1 49 +14 58 +0 58 +3 60 +4 70 -10 81 -1

EA 50 +24 40 +19 45 +7 45 +16 48 +15 35 +12 51 +1 31 +6 51 +7 53 +1 54 +9 57 +1 58 +17 75 +10

FM 62 +1 36 +25 40 +16 44 +15 49 +12 34 +13 49 +13 17 +31 39 +28 40 +31 49 +18 54 +13 54 +22 76 +8

HO 64 -4 49 +5 45 +14 53 +1 53 +12 42 -1 54 +1 27 +29 49 +23 53 +21 55 +17 59 +13 63 +14 79 +5

IO 61 +3 54 -6 46 +5 57 -7 53 +5 41 +2 48 +16 34 +3 53 +3 55 +6 58 +4 59 +7 63 +7 78 +6

LR 65 -3 40 +14 45 +5 48 +6 53 +5 32 +13 52 +6 29 +8 46 +11 46 +16 50 +13 58 +6 59 +10 77 +5

MB 59 +5 35 +23 31 +28 33 +3 50 +8 32 +15 47 +15 14 +32 39 +24 42 +25 50 +15 52 +15 58 +13 74 +9

OCC 68 -8 42 +13 42 +11 46 +11 51 +8 43 -2 52 +8 26 +14 46 +13 51 +12 46 +21 58 +7 68 -3 78 +4

OV 49 +17 34 +2 32 +21 39 +17 42 +18 30 +15 48 +1 20 +19 43 +14 39 +24 59 +0 51 +13 43 +29 72 +11

SC 59 +6 49 +2 46 +6 52 +1 50 +11 45 -5 51 +9 32 +5 50 +9 56 +5 51 +14 58 +7 67 -1 75 +9

SV 52 +16 42 +12 42 +11 50 +5 49 +1 33 +14 49 +11 23 +18 48 +9 44 +21 57 +4 51 +16 49 +26 73 +10

Table 7.10: Attribute-based aggregate performance. For each method, the respective left
column corresponds to the average region similarity J over all sequences
with that specific attribute (e.g., AC), while the right column indicates the
performance gain (or loss) for that method for the remaining sequences with-
out that respective attribute. The best performing method of each category is
highlighted in bold.
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C H A P T E R 8
Conclusion

We began our studies in Chapter 3 revising the notion of color contrast
within the domain of salient object detection. Perceptual studies suggest
color contrast to play a key role steering human gaze. Previous approaches
implemented contrast based on different type of images features such as
color histograms, multi-scale descriptors, structure and repetitivity of image
patches, edges gradients and spatial frequencies or combinations thereof.
The varying performance of similar approaches led us to conclude that the
relevance of each features was unclear. To this end, we reconsidered some of
the design choices of previous methods and proposed a conceptually clear
and intuitive algorithm for contrast-based saliency estimation. Our first
contribution was a novel derivation of saliency based on color uniqueness
and spatial distribution computed over perceptually homogeneous element
that abstract away unnecessary details. Our second contribution a was uni-
fied way to handle the definition of color measures using high-dimensional
Gaussian filters. We demonstrated that the entire algorithm can be im-
plemented within a single high-dimensional Gaussian filtering framework
yielding linear time complexity.

While the concept of saliency based on color contrast has proven to be over-
all effective, some of the assumptions underlying its definition are in prac-
tice often violated in natural images. In particular, methods based on color
contrast appeared to be less suitable for circumstances such as the case of
multiple unique colors or multicolored objects. To this end we proposed
a new method with orthogonal properties to the aforementioned approach
based on the assumption that most of the image boundaries are covered by
non-salient background. In our exploration we found the Fiedler vector of
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the Laplacian graph built over image superpixels to be a robust saliency
indicator. The image graph augmented with a dummy node representing
the image background conveniently encodes the background prior and lo-
cal perceptual similarities. As a result, we demonstrated that simple eigen
decomposition is sufficient to reliably estimate saliency.

In the second part of the thesis we focused our attention towards develop-
ing novel semi-automatic techniques aimed to segment foreground objects
in videos. We developed two novel approaches reaching state-of-the-art per-
formance, while using different type of annotations such as segments, ob-
ject proposals and bounding boxes. Motivated by the successes that object
proposals enabled in the domain of object detection, several video object
segmentation methods investigated techniques to select a set of proposals,
one for each frame. These proposals are generally employed as a rough ini-
tial segmentation and later refined via different nuances of graph-cuts. De-
spite these methods having achieved good performance, we observed that
the sparsity of the graph upon which they minimize the energy function se-
lecting proposals, is brittle in challenging scenarios such as in the presence
of occlusions or fast motion. Therefore, differently from previous methods
that select the best proposal per-frame, we study the problem of grouping
multiple, possibly incomplete proposals, that overlap with the foreground
object(s) to be segmented. To this end, our main contribution was a novel
approach that fully connects the entire set of object proposals and select a
subset of those overlapping with the foreground object based on the max-
imum a posteriori of the resulting conditional random field. We map our
similarity term into a Euclidean space, which is computationally efficient
to optimize and well suited for modeling long-range connections. Message
passing throughout the entire set of proposals coupled with sparse but con-
fident point-tracks based features ensure robustness to occlusions and other
difficult situations as demonstrated in the evaluation of Section 7.4.2. Later,
motivated by the unprecedented advances of deep-learning we investigated
its application in the field of video object segmentation. Our contribution is
a novel approach which incorporates the concept of guidance in fully convo-
lutional networks designed for semantic segmentation. Processing a video
frame by frame, our network is directed toward the object of interest through
either a bounding box or the previous frame segmentation mask. The archi-
tecture is derived from a well known per-pixel semantic segmentation con-
vnet, and adapted to be class agnostic. The network is conveniently trained
only on static images, therefore overcoming the scarcity of densely anno-
tated video data.

In the third part of the thesis we investigated a novel approach suitable
for interactive video segmentation. During our studies on semi-automatic
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video segmentation, we observed that the fully connected object proposal
approach is robust to occlusion and exhibited minor performance decay over
time, however, depending on the size of the pool of proposals and the length
of the video, it’s usage might not be practical due to heavy memory foot-
print and running time. While the problem could be overcome with a naive
sliding window approach, we study a more principled way to incorporate
local and global connections efficiently. To this end we proposed a novel
approach that implicitly approximates long-range, spatio-temporal connec-
tions between pixels while limiting the number of graph nodes and edges.
Our main contribution was a novel energy function that is defined on the
vertices of a regularly sampled spatiotemporal bilateral grid and has only lo-
cal edge connectivity. The formulation yield an efficient minimization prob-
lem that can be solved using a standard graph cut label assignment. To fur-
ther improve run-time efficiency while preserving the segmentation quality,
we proposed a fast “adjacent” interpolation scheme for high-dimensional
grids. As a result, our method is highly efficient and scales linearly with
image resolution, allowing the user to interact with the algorithm to correct
possible inaccuracies.

In the fourth and last part of the thesis we address the lack of densely
annotated video data. When we began exploring the topic of video ob-
ject segmentation the most commonly used benchmark in this domain only
included about fifteen sequences of mixed resolution videos. While this
dataset has been a driving force for research on this topic, several years of
progress led to saturation of the results making difficult to appreciate the real
performance of the new approaches. In addition, a clear evaluation protocol
was not yet defined and different measures were being used. To this end we
proposed a new dataset and evaluation methodology specifically designed
for the topic of video object segmentation. Furthermore we analyzed and
provided an extensive analysis of several state-of-the-art approach, includ-
ing those we proposed in this thesis. Besides establishing three measures
to evaluate region accuracy, boundary and temporal stability, we proposed
an attributed-based evaluation, where these attributes, manually assigned
to each video sequence, allowed us to identify groups of videos with a dom-
inant feature e.g., presence of occlusions, which is key to explaining the al-
gorithms’ performance. This type of analysis lead us to get a deeper under-
standing of the strength and weaknesses of the benchmarked approaches.
The attention gained by our latest work on video object segmentation and
the experience collected during these studies motivated us to organized the
first workshop on video object segmentation.
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8.1 Future Works.

In this section we summarize potential avenues for future for research. Sev-
eral ideas have been already outlined in the concluding paragraphs of the
respective chapters.

Salient Object Detection. The field of salient object detection has recently
witnessed substantial advances due to the rise of deep learning and several
approaches have been proposed that demonstrated superior performance on
more challenging datasets, thanks to the power of extracted deep features.
While theoretically the network should implicitly learn high level assump-
tions, e.g. color-contrast and non-salient boundaries, it might be beneficial
and certainly interesting to investigate how these observation could be ex-
plicitly incorporated into the networks.

Video Object Segmentation. In this domain we proposed one of the first
approaches that use and end-to-end trained convnet. Our method demon-
strated high performance but only partially leverages the entire information
present in the video signal. Therefore we believe future research in this do-
main should exploit different architectures such as LSTM Recurrent Neural
Networks that naturally incorporate and exploit previous information. This
could help to better disambiguate challenging scenarios such as fast motion,
or appearance changes. Another open question which remained unresolved
in our research is whether the pairwise-frame motion information helps, or
given the extreme discriminative power of deep-features, it is redundant
or misleading when inaccurate. Another important information that is cur-
rently not exploited is a prior knowledge of the object shape. Learning a
manifold embedding for specific classes and navigating this manifold to per-
form the segmentation is certainly an interesting topic for future research.
While the per-pixel classification style of segmentation has lot of potential
for future research we also believe that novel approaches that operate on
parametric shapes should be investigate. This type of approaches will have
immediate application in the visual effects industry as they would seam-
lessly merging into the industry workflow helping the artists to get better
results faster.

Dataset and Benchmarks. Producing per-pixel accurate and temporally sta-
ble segmentation masks for videos is a tedious and costly job. Due to budget
limitations our first data releases comprised a total of fifty videos for a total
of about 3.5K frames. Despite the large amount of data the high correla-
tion between frames of the same video sequence prevents the training of
deep networks. Furthermore, to reduce costs we constrained the footage to
have a single foreground object, yielding a slight bias towards salient mo-
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tion being well aligned with the foreground object. As mentioned in the
introduction and the respective chapter, this dataset became part of a bigger
project and a it resulted in a Workshop co-located with CVPR 2017. We have
collected more funding from academic and corporate sponsors and we are
planning to release another set of 100 annotated videos with multiple objects
annotated and novel challenges such as multi-object instance segmentation.
Future works comprises even mores video and a fully automated evaluation
platform.
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