
Diss. ETH No. 20563

Detail Enhancement for Fluid

Simulations using Turbulence

Modeling

A dissertation submitted to

ETH Zürich

for the Degree of

Doctor of Sciences

presented by

Tobias Pfaff
Dipl. Phys., Universität Konstanz, Germany
born 3. October 1980
citizen of Germany

accepted on the recommendation of

Prof. Dr. Markus Gross, examiner
Prof. Dr. James O’Brien, co-examiner
Dr. Nils Thürey, co-examiner
Prof. Dr. Ronald Peikert, co-examiner

2012



ii



Abstract

The complex and exciting appearance of the natural phenomena of smoke, water
and fire make them powerful tools to convey realism and create visually thrilling
settings in virtual scenarios and movies. Their characteristic look is determined
by the chaotic nature of turbulent flows. Unfortunately, turbulence also makes it
hard to reproduce these flows in numerical simulations, as it induces an immense
amount of detailed motion which needs to be stored and processed.

Instead of direct simulation, we study and model turbulence production and transi-
tion processes in suitable higher level representations. This allows the generation of
synthetic turbulence at arbitrary resolution, thereby producing very detailed results
at a fraction of the cost of a full simulation. This thesis explores new ways to make
these powerful tools available for a wide range of flow phenomena.

The first part of this thesis thesis presents a particle-based turbulence representation
and prediction model that is suitable for real-time simulation of highly-detailed
turbulent flows. We use a complete energy transfer model to predict turbulence
intensity, and curl-noise texture based synthesis to augment a base simulation with
synthetic detail. To correctly reproduce the anisotropic turbulence generation, we
extend our predictor and synthesis step for planar anisotropy based on Reynold
stress transport theory. Relying on the turbulence model for complex dynamics
and eliminating feedback to the main solver enables a design that scales very well
on parallel hardware.

In the second part, we investigate a vorticity-based turbulence representation. This
representation is suitable for modeling the breakdown of coherent structures into
turbulence, which is hard to achieve in a curl-noise texture formulation. To predict
turbulence generation, we precompute and track the boundary layer around flow
obstacles, and estimate flow instabilities using turbulence modeling. This results
in turbulence seeded with full anisotropy information which seamlessly integrates
in the main flow. Our precomputation allows us to predict turbulence seeding
from even complex obstacles below simulation resolution.

The third part of the thesis focuses on the problem of simulating detailed large-scale
buoyant plumes. We propose a method that only operates on the plume’s interface
surface without the need of volumetric computations. We directly model the
baroclinity-driven vortex sheets at the interface. This makes it possible to reproduce

iii



the characteristic cloud billowing effect, which is a transition effect therefore cannot
be represented by turbulence synthesis. To make this approach orthogonal to
other turbulent methods, we introduce a turbulence predictor which discriminates
obstacle-induced and free-stream baroclinic turbulence. We demonstrate that
this method can be easily combined with the bulk turbulence approach in the
first part of the thesis. By reducing the dimensionality of the problem, and the
introduction of a local evaluation scheme, this method is very efficient for large-
scale phenomena.

iv



Zusammenfassung

Die Natuerphänomene Rauch, Wasser und Feuer sind wegen ihrer Komplexität
und ihrem faszinierenden Erscheinungsbild wirksame Mittel, um in Filmszenen
Authentizität und Spannung zu vermitteln. Ihr charakteristisches Aussehen er-
halten diese Phänomene durch die chaotische Dynamik turbulenter Flüssigkeiten.
Diese Turbulenzdynamik erzeugt jedoch eine ganze Kaskade an kleinskaligen
Bewegungen in der Flüssigkeit, die gespeichert und berechnet werden müssen.
Dies macht es schwierig, turbulenten Fluss numerisch zu simulieren.

Anstelle einer direkten Simulation, analysieren und modellieren wir die
Entstehungs- und Übergangsprozesse von Turbulenzen daher in einer geeigneten
übergeordneten Darstellung. Dies macht es möglich, Turbulenzen in beliebigen
Auflösung zu synthetisieren, und damit detaillierte Flussfelder zu einem Bruchteil
der Kosten einer vollen Simulation zu erhalten. Diese Arbeit erschliesst neue
Ansätze, die mächtigen Instrumente der Turbulenzmodellierung und Synthese für
eine Vielzahl Flussphänomenen verfügbar zu machen.

Der erste Teil dieser Arbeit stellt eine partikelbasierte Turbulenzdarstellung und
ein Vorhersagemodell vor, die die Simulation von detaillierten turbulenten Flüssen
in Echtzeit ermöglichen. Wir verwenden ein komplettes Energietransfermodell
zur Vorhersage der Turbulenzintensität und einen Synthesealgorithmus mit Curl-
Noise Texturen, um eine Basissimulation mit synthetischen Details zu erweitern.
Um die anisotrope Turbulenzproduktion korrekt wiedergeben zu können, wird
die Turbulenzvorhersage und Synthese mit einem planeren Anisotropiemodell
basierend auf einem Reynolds-Spannungstransportmodell erweitert. In unserem
Modell wird die komplexe Dynamik der kleinen Skalen zu grossen Teilen vom
Turbulenzmodell übernommen und eine Rückkopplung der synthetischen Details
in die Basissimulation vermieden. Dies ermg̈licht ein Design, das sehr gut auf
paralleler Hardware skaliert.

Im zweiten Teil der Arbeit untersuchen wir die Repräsentation von Turbulenz
durch die Wirbelstromstärke. Im Gegensatz zu Curl-Noise Texturen ist diese
Darstellung sehr gut geeignet, um den Zerfall von kohärenten Strukturen zu
Turbulenz zu beschreiben. Zur Vorhersage der Turbulenzentstehung ermitteln
wir die Grenzschicht von Hindernissen im Fluss in einem Vorberechnungsschritt,
und bestimmen Instabilitäten im Fluss mittels Turbulenzmodellierung. Die syn-

v



thetischen Turbulenzen besitzen somit vollständige Anisotropieinformation, und
integrieren sich nahtlos in den Fluss der Basissimulation. Durch Vorberechnung
können wir sogar die Erzeugung von Turbulenzen durch Hindernisse unter der
Auflösungsgrenze der Simulation korrekt vorhersagen.

Der dritte Teil der Arbeit konzentriert sich auf die Simulation von grossskali-
gen, aufsteigenden Rauchschwaden. Wir stellen eine Methode vor, die direkt
auf der Grenzfläche der Rauchwolke operiert, und ohne Berechnungen im in-
neren Volumen auskommt. Wir modellieren die durch Baroklinität hervorgerufene
Wirbelschicht an der Grenzfläche, und erhalten dadurch die charakteristischen
Oberflächenformationen von Quellwolken, die mit Turbulenzsynthese schwer zu
reproduzieren sind. Wir führen zusätzlich ein Vorhersagemodell ein, das zwis-
chen Turbulenzentstehung im freien Fluss und Entstehung an Flusshindernissen
unterscheidet. Dies macht unser Modell kompatibel zu anderen volumetrischen
Turbulenzmodellen, was wir anhand des Modells im ersten Teil der Arbeit demon-
strieren. Die Reduzierung der Dimensionalität des Problems und die Einführung
eines lokalen Auswerteschemas machen diese Methode sehr effizient für die Simu-
lation von grossskaligen Phänomenen.

vi



Acknowledgments / Danksagung

My sincere thanks go to my advisor Prof. Markus Gross. I have been very fortunate
to have an advisor who gave me the freedom to explore my own ideas, and at the
same time guidance when I was ’lost in research’. His continuing support for my
work, and his scientific intuition were invaluable to make this thesis possible. I am
also very thankful to Dr. Nils Thürey – I was in the lucky position to learn from one
of the best in the field of fluid simulation. Nils introduced me into the wondrous
world of fluid simulation in Graphics during my first years, helped me through
the hurdles of writing my first research paper and stayed a close collaborator for
many recent projects. I am very grateful to have Nils as a supervisor, collaborator
and last but not least as a friend. I would also like to thank Prof. James O’Brien for
his openness and interest in my ideas, and the fruitful discussions at Berkeley. I am
very happy to have him as an examiner for my thesis. I’m grateful to Prof. Ronald
Peikert, who jumped in at the last minute to save this thesis from the secret, evil
directive on videoconferencing.

Many thanks go to my collaborators Jon Cohen, Sarah Tariq and Andrew Selle who
contributed in many ways to the research work in this thesis. It was a pleasure to
work with them and I am thankful for their effort and commitment to the realized
projects. I would also like to thank Matthias Hölling from ETH and the nVidia
tech team for making the world’s fastest exchange of source code across difficult
copyright territory possible, which allowed us to meet the deadline. Special thanks
go to Theodore Kim, Chris Wojtan, Sebastian Martin and Cengiz Öztireli for their
insightful thoughts and inspiring discussions about various topics in simulation.

Furthermore, I also want to thank my former office mates in the glorious hippo
office, Thomas Oskam and Marcel Germann, together with all the good people at
CGL, IGL, AGG and DRZ for the great time at ETH. No matter what time of day
or night, someone was always around for a coffee and a nice chat. Thanks also to
my improv people, who made sure I get out of the lab once in a while even during
stressful times, and kept my general sanity up.

This work has been made possible by the ETH grant TH-23 07-3.

vii



Ich sage ’Danke’ an alle meine Freunde und meine Familie für ihre Unterstützung
und ihr Verständnis in diesen vier Jahren. Schliesslich will ich noch meiner Fre-
undin Sonja danken, die mit mir durch diese manchmal schöne, manchmal auch
schwere Zeit gegangen ist und mich immer mit einem Lächeln im Gesicht und
einem Plüschrochen auf der Schulter unterstützt hat.

viii



Contents

Introduction 1
1.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Related Work 7
2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Fluid Simulation in Computer Graphics . . . . . . . . . . . . . . . . 8

2.2.1 Low-dissipative Methods . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Sub-grid Methods . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Real-time Fluid Simulation . . . . . . . . . . . . . . . . . . . 10

2.3 Lagrangian Vortex Methods . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Turbulence Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Turbulence Synthesis . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Recent works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Theory and Numerical Methods 19
3.1 Fluid dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Eulerian discretization . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Lagrangian primitives . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 The Reynolds Average . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Energy Transport Models . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Extending Energy Transport Models . . . . . . . . . . . . . . 33

3.4 The Energy spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Turbulence synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Curl Noise Synthesis . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ix



Contents

Real-Time Turbulence Methods 47
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Turbulence Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Energy transport . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Turbulence Synthesis . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Modeling Obstacle-Induced Turbulence 67
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Wall-Induced Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Generation of turbulence . . . . . . . . . . . . . . . . . . . . 70
5.2.2 Precomputing the Artificial Boundary Layer . . . . . . . . . 73

5.3 Turbulence Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.1 Vortex particle dynamics . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Vorticity Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.1 Precomputation . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.2 Simulation loop . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Detail Enhancement on Fluid Interfaces 91
6.1 Vortex Sheet Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Local evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Wall-based Turbulence Model . . . . . . . . . . . . . . . . . . . . . . 98
6.2.1 Modified Energy Model . . . . . . . . . . . . . . . . . . . . . 99
6.2.2 Turbulence Synthesis . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.1 Turbulence Model . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.2 Mesh Resampling . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Conclusion 111
7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Application Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

x



Contents

Appendix 119
A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.2 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 127

Curriculum Vitae 137

xi



”When I meet God, I am going to ask him two questions: Why relativity? And why
turbulence? I really believe he will have an answer for the first.”
Werner Heisenberg, according to a dubious source



C H A P T E R 1
Introduction

The natural phenomena of smoke, water and fire are fascinating to watch, be
it in nature or in movies. What makes them so interesting is the incredible
amount of detail they exhibit. In smoke plumes from volcanoes or large
explosions, complex surface structures at scales from the millimeter range to
several meters are visible. The characteristic look of fire is determined by the
chaotic movements of the flames, driven by small whirls. And perhaps the
most classical example, white-water rapids only look exciting due to their
intricate dynamics, from little splashes to big vortices. Their complex and
exciting appearance make these effects powerful tools to convey realism and
to create visually thrilling settings in movies and computer games. Numerical
simulations used in these areas therefore need to be able to reproduce such
dynamics.

Most of the chaotic behavior of fluids can be ascribed to their turbulent
nature. At high velocities and low viscosity values, fluid flows quickly
become instable, and a whole cascade of vortical movement forms, turning
laminar into turbulent flow. The fact that small instabilities can lead to very
different large-scale dynamics makes turbulent flows hard to control and
predict in simulations. This is a fundamental issue for most areas which deal
with the simulation of fluids, such as engineering or meteorology, and the
reason why fluid simulation is considered a difficult problem. For simulations
in Computer Graphics, another problem arises. As the fluid motion is to be

1



Introduction

visualized, the scene has to be represented from the smallest details to the
largest scales. This requires a very high simulation resolution, and therefore
computation time, since the defining equations for fluid motion scale badly
with increasing resolution. At the same time, fewer computational resources
are available compared to applications in other sciences, as fast turnaround
times in the case of movies, or even real-time response in the case of computer
games is required.

Although current movies present convincing fluid animation scenes, this
problem is far from being solved. To obtain such visual quality, animators
have to operate under a number of restrictions and rely on costly manual
operations. Fluid effects shots are often very short and heavily edited using
artist-defined particles systems and additional rendering layers. For large
simulations, the artistic process becomes even more involved due to long
turnaround times. Techniques to increase the detail level without the as-
sociated cost of a full simulation would remove some of these restrictions,
providing more stylistic freedom to animators and opening up new possibility
for fluid simulations in e.g. interactive applications.

In Computer Graphics research, many approaches have been developed to al-
leviate the problems mentioned above. A large part of previous work focuses
on reducing numerical viscosity, which dampens out small-scale turbulence.
This can be performed by e.g. improving accuracy of the advection [Selle
et al., 2008] or using energy-conserving integration schemes [Mullen et al.,
2009]. While such methods have been applied with success, the fundamental
issues remain as the potential detail scale is still limited to the simulation
resolution.

In this thesis, we will take a different approach to the resolution problem.
In our methods, we detach turbulent details from the main fluid flow using
Reynolds averaging [Pope, 2000]. Instead of a direct simulation of the motion
detail using the equations of fluid dynamics, we aim to understand, analyze
and model the processes leading to the creation and evolution of turbulence.
Reasoning about turbulence in a high-level manner is very advantageous
for a number of reasons. Most importantly, we are able to store and process
data about turbulence in a compact and efficient manner. Based on this
information, we are able to synthesize turbulence at arbitrary resolutions at
a fraction of the cost of a full simulation. But the separation of turbulence
also allows artists to manipulate turbulence in an intuitive manner without
disturbing the flow, it makes it possible to augment existing flow data in a
post-production step, and opens up new possibility for LOD adaptivity. This
procedure however only works for turbulent processes which are understood,
correctly modeled and can be represented and synthesized in a meaningful

2



1.1 Thesis Overview

manner. Otherwise, the synthesis will produce visual artifacts or unrealistic
flow behavior. In this thesis, we explore new ways for representing turbulence
and modeling flow processes, in order to make the powerful tools of detail
separation available for a wide range of flow phenomena.

1.1 Thesis Overview

In the course of this thesis, we will address the topic of detail enhancement
and turbulence from various angles, for different applications. The research
performed is summarized below, classified in advancements in modeling and
synthesis.

Representation and Synthesis We first investigate representations for tur-
bulence that are both efficient and powerful. Especially for performance-
sensitive applications, turbulent kinetic energy (TKE) based models are an
evident choice, as their behavior is well-studied in Computational Fluid
Dynamics (CFD), and they work well in combination with fast frequency-
matched curl noise synthesis [Kim et al., 2008b]. However, unlike Kim et
al. we choose Lagrangian particles instead of a volumetric grid to store
the turbulence information. We unify the representation of turbulence and
smoke density, which allows us to represent sub-grid detail exactly where
it is needed for rendering. This representation also enables a solver design
which scales very well on parallel hardware. On the other hand, curl noise
synthesis and TKE-based models are not suitable for representing the im-
portant class of turbulence production effects, as these processes are highly
anisotropic. To improve the generality of this approach, we also predict and
track anisotropy, and develop a modified synthesis algorithm to generate the
subclass of planar anisotropic turbulence which is most often encountered in
production processes.

Even with anisotropy extensions, curl-noise synthesis has its limits. The break-
down of coherent structures into turbulence, and the alignment of turbulence
features to the base flow can hardly be mapped to such a representation.
We therefore propose vorticity-based approaches to simulate complex flow
processes. As a general turbulence representation, we study vortex particles
[Selle et al., 2005] which allow coherent structures and complex anisotropy
modeling. Compared to the original method, we synthesize the turbulence
using Biot-Savart integration instead of forcing, which decouples turbulence
further from the underlying simulation and allows sub-grid synthesis. As

3



Introduction

energy transfer via vortex stretching is hard to stabilize in a sparse vortex
particle setting, we calculate energy transfer based on the K41 spectrum.

Certain types of flows, such as buoyant plumes, are completely determined
by the vorticity dynamics on the plume interface. By tracking this plume in-
terface with a Lagrangian surface mesh, and evaluating the vorticity-induced
motion equations on this surface, it is therefore possible to obtain the flow
dynamics including details on mesh resolution level without any volumetric
computations [Stock et al., 2008]. The velocity integration is however of
quadratic complexity, and therefore scales badly. Also, certain effects such
as the interaction with flow obstacles are hard to model in this representa-
tion. We introduce a local evaluation scheme which reduces the numerical
complexity of this operation by coupling it to a low-resolution Navier-Stokes
solver in a manner similar to turbulence separation. This also allows us to
relax the constraint of purely buoyancy-driven dynamics, such that complex
base flows with obstacles interaction can be used.

Modeling Turbulence models predict the spatial distribution and evolution
of turbulence properties such as the TKE. Direct predictor methods use
small eddies in the base flow as turbulence indicators [Kim et al., 2008b;
Fedkiw et al., 2001], which breaks down if turbulence production happens on
scales below the grid resolution. Schechter et al. [2008] on the other hand use
a simple energy transport model for prediction. As this model is incomplete,
it relies on a uniform turbulent viscosity model, which is only valid for a
narrow set of flows with fully-developed turbulence. We therefore introduce
a modified version of the k–ε model to Graphics, which is a complete, general-
purpose model which predicts correct production terms for a wide range of
settings.

While TKE models are able to provide valid predictions for turbulence gener-
ation and transition, within certain boundaries, the TKE representation does
not contain the relevant information to synthesize the respective transition
motion. Vorticity-based turbulence representations, on the other hand, are
better suited for this task, but there are no standard models for turbulence
modeling and prediction in this formulation. We therefore develop a hybrid
model for modeling turbulence generation at obstacles in vorticity space,
which uses the reliable TKE methodology for prediction of flow instability,
while tracking anisotropy and vortex strength in a vorticity formulation.
This enables the accurate simulation of vortex shedding from obstacles with
complex geometry.

Finally, we also study baroclinic instabilities which give rise to the charac-

4



1.2 Contributions

teristic ’billowing’ observed in smoke plumes stemming from explosions or
volcanic activity. As this a transition effect, it cannot be reproduced using
TKE turbulence models. We find that this effect is best modeled by solving
baroclinic vorticity dynamics on the plume interface. Synthesis is performed
using Biot-Savart integration directly on the surface mesh, yielding baroclinic
sub-grid detail efficiently. To be able to use this model in a general case,
which also includes turbulence seeded from obstacle interaction, we develop
a turbulence predictor which discriminates obstacle and baroclinic turbulence.
The obstacle-induced component can then be handled by a TKE turbulence
model as described above.

1.2 Contributions

The thesis makes the following principal contributions:

• A robust and scalable particle based TKE turbulence model that is designed
to work without particle-particle interaction, and is therefore suitable for
massively parallel computations. (Chapter 4)

• A synthesis and prediction model for anisotropic turbulence in TKE formu-
lation which efficiently captures directional vortices, thereby realistically
integrating the turbulence into the base flow. (Chapter 4)

• A vorticity-based predictor for the generation of turbulence at flow obstacles.
By precomputing boundary layer vorticity, and using a TKE model to predict
instabilities we can correctly predict turbulent vortex shedding. (Chapter 5)

• A modified vortex particle representation which uses direct velocity synthesis
to decouple from the base flow, and uses K41-based energy dynamics to
avoids vortex-stretching instabilities.(Chapter 5)

• A baroclinity model based on vortex sheets, which is able to reproduce the
billowing effect. By evaluating the model only the interface surface and using
a local evaluation scheme, we obtain a high level of detail very efficiently.
(Chapter 6)

• A selective turbulence predictor which separates turbulence energy production
from free-stream baroclinity and obstacle interaction, and makes it possible
to orthogonally combine the vortex sheet-based baroclinity model with a
TKE model without overlap. (Chapter 6)

1.3 Thesis outline

This thesis is organized in the following manner: Chapter 2 reviews the
related work in the fields of turbulence modeling and vortex methods in

5



Introduction

Computer Graphics and CFD. As this thesis builds upon classical turbulence
modeling theory, and makes use of different velocity and vorticity represen-
tations to describe fluid motion, these concepts will be introduced in Chapter
3. Chapter 4 presents our general-purpose anisotropic TKE model, and a
particle-based synthesis method. We will demonstrate the real-time simu-
lation of detailed turbulent flows using these methods. In Chapter 5, the
development of turbulence in the wake of flow obstacles is studied. We will
present a predictor which directly models this process using artificial bound-
ary layers and TKE-based instability prediction, and a turbulence synthesis
step which uses a modified vortex particle representation. The simulation
of detailed large-scale buoyant plumes by solving vortex sheet equations on
an interface surface mesh is described in Chapter 6. Chapter 7 concludes the
thesis by providing an assessment of the techniques presented in this thesis
and suggesting potential further research topics. The source code to many of
the methods discussed here is publicly available in the framework Mantaflow
(Appendix A.3), which was developed during the course of this thesis.

1.4 Publications

The methods presented in this thesis have been published in the following
peer-reviewed journals:

• T.PFAFF, N. THUEREY and M. GROSS. Lagrangian Vortex Sheets for Animat-
ing Fluids. In Proceedings of ACM SIGGRAPH (Los Angeles, USA, August 5-9,
2012), ACM Transaction on Graphics, vol. 31, no. 4, pp. 112:1–112:8.
This paper describes our vortex sheet model for efficiently simulating de-
tailed buoyant smoke plumes.

• T. PFAFF, N. THUEREY, J. COHEN, S. TARIQ and M. GROSS. Scalable Fluid
Simulation using Anisotropic Turbulence Particles. In Proceedings of ACM
SIGGRAPH Asia (Seoul, Korea, December 15-18, 2010), ACM Transaction on
Graphics, vol. 29, no. 5, pp. 174:1–174:8.
In this work, we present an anisotropic TKE turbulence model and particle-
based synthesis method suitable for real-time fluid simulation.

• T. PFAFF, N. THUEREY, A. SELLE and M. GROSS. Synthetic Turbulence
using Artificial Boundary Layers. In Proceedings of ACM SIGGRAPH Asia
(Yokohama, Japan, December 16-19, 2009), ACM Transactions on Graphics, vol.
28, no.5, pp. 121:1–121:10.
This paper introduces a vorticity-based predictor for obstacle-induced tur-
bulence, based on boundary layer modeling and TKE instability prediction.

6



C H A P T E R 2
Related Work

Methods for modeling and simulating fluid system have a long tradition in
the fields of engineering and physics, and have become vital tools in Com-
puter Graphics, too. The requirements for applications in Computer Graphics
are however very different from their counterparts in CFD. Therefore, while
similar in theoretical background, methods in Graphics often approach the
problems at hand from a different angle, and much is to be learned from
studying both sides. In this chapter we will summarize the history and recent
works from both Computer Graphics and CFD, focusing on methods for
simulating turbulent fluid systems. A good overview can also be found in
the textbooks by Wilcox [1993] and Pope [2000] for turbulence theory, and the
recapitulation of fluid simulation methods in Computer Graphics by Bridson
[2008].

2.1 History

Fluid dynamics are described by the Navier-Stokes equations, a set of partial
differential equations. To solve these equations numerically, several dis-
cretization schemes have been proposed. Most applications in Engineering
base on either finite elements (FEM) [Oden and Wellford, 1972] or finite
difference (FDM) / finite volume (FVM) [Hsu, 1981] discretizations. Finite

7



Related Work

difference methods operate on structured grids, while finite element meth-
ods evaluate base functions on irregular meshes. The latter allows to focus
resolution on critical regions if known in advance, but require a separate
meshing step and have a larger computational overhead. Marker-and-Cell
(MAC) discretizations [Harlow and Welch, 1966] extend the FDM approach
by placing velocity information on the cell faces instead of centers, which
increases precision when calculating derivatives.

Although most methods for numerical simulation of fluid systems use a
direct discretization of the Navier-Stokes equations, different principles have
been proposed in literature. The fully Lagrangian Smoothed Particle Hy-
drodynamics (SPH) models fluid dynamics by the interaction of particles
with a compressible kernel [Gingold and Monaghan, 1977]. This method has
become popular in Computer Graphics for free-surface problems [Müller et
al., 2005]. It does however require small timesteps for stability in complex
scenarios. Lattice Boltzmann methods on the other hand base on Boltzmann
gas dynamics [Hardy et al., 1976], and directly model the flux and collision
of fluxes on a regular mesh. While not common in Graphics, they have
successfully been used for the simulation of liquids [Thuerey et al., 2006].

2.2 Fluid Simulation in Computer Graphics

Fluid simulation in Computer Graphics was popularized by Stam [1999], who
introduced the combination of semi-Lagrangian advection with first order
pressure projection using a MAC discretization. This unconditionally stable,
albeit very dissipative type of solver is the most commonly used simulation
technique in Computer Graphics and it will serve as reference and base solver
in this thesis as well.

Over the years, many extensions of this basic solver have been made. This
includes for example methods to simulate liquids [Enright et al., 2002a], bub-
ble flows [Hong and Kim, 2003], viscoelastic fluids [Goktekin et al., 2004],
or interactions with rigid bodies [Carlson et al., 2004]. Possibly the biggest
challenge for fluid simulation for Computer Graphics, however, is to rep-
resent highly detailed flows efficiently. This problem is two-fold, and due
to the dissipative nature of stable semi-Lagrangian advection, and the more
fundamental issue of the memory and computation costs involved in high-
resolution simulations. Below, recent methods to alleviate issues concerning
dissipation, grid resolution and efficiency are summarized.

8



2.2 Fluid Simulation in Computer Graphics

2.2.1 Low-dissipative Methods

The first part of the problem in preserving detail is the inherent damping
of turbulence detail due to numerical dissipation. A popular approach to
alleviate this problem is the use of higher order advection schemes. Back and
Forth Error Correction [Kim et al., 2005], MacCormack advection [Selle et al.,
2008], QUICK [Molemaker et al., 2008] and CIP methods [Kim et al., 2008a]
improve the accuracy of the semi-Lagrangian advection to obtain second- or
third order accurateness. The PIC/FLIP approach [Zhu and Bridson, 2005]
which is popular in industry productions uses an additional particle set for
a more accurate advection. Mullen et al. [2009], on the other hand, propose
an implicitly energy-preserving velocity integration scheme for tetrahedral
meshes.

Alternatively, Fedkiw et al. [2001] advocate detecting and amplifying existing
vortices to combat dissipation. This is extended to multilevel confinement by
Jang et al. [2010]. Similarly, manually seeded vortex particles can be used to
reinforce turbulence vortices and combat dissipation [Selle et al., 2005].

While these methods help to reduce the numerical dampening, the detail
that can be represented is still inherently limited by the underlying grid
resolution.

2.2.2 Sub-grid Methods

Another way to combat numerical dissipation is to adaptively refine the sim-
ulation grid in critical areas. Losasso et al. [2004] use an adaptive octree struc-
ture to discretize the simulation grid, while the method by Feldmann [2005]
operates on unstructured meshes. The combination of two-dimensional and
three-dimensional simulations [Irving et al., 2006], [Chentanez and Mueller,
2011] has also successfully been used to represent large bodies of fluids. The
computational overhead introduced by the adaptivity however only pays off
if the detailed motion is confined to only a small part of the simulation space,
or for very high resolutions.

A different approach to obtain sub-grid accurate results is to track the visible
quantity, e.g. smoke or liquid using Lagrangian markers. Traditionally, these
fields are represented using Volume-of-Fluid [Hirt and Nichols, 1981] meth-
ods in Engineering and density fields or level-sets in Graphics. For liquids,
particle level-sets [Enright et al., 2002a] increase the resolution of a level-set
using Lagrangian markers. Bargteil et al. [2006] and Wojtan et al.[2010] use a
triangle mesh to represent and track liquid-air interfaces. Brochu et al. [2010]

9



Related Work

use Voronoi diagrams to generate a surface sub-grid accurate meshes for
liquids. A triangle mesh representation to represent the smoke/air surface
for plumes has been proposed by Brochu et al. [2009]. Particle representa-
tions are another popular choice, but large numbers are usually necessary
to represent dense surfaces without noise. While the Lagrangian markers
in these methods allow for the detailed representation below grid scale, the
dynamics are still limited by the grid resolution of velocity field. Similar in
spirit to the approaches presented in this thesis, Thuerey et al. [2010] take
advantage of the Lagrangian representation and compute sub-grid surface
tension dynamics directly on a air/liquid interface mesh.

A major source of turbulent detail is the interaction of fluids with solids. By
improving the accuracy of boundary dynamics or modeling the interaction,
higher detail levels can be achieved for the fluid system. Two-way coupling
of fluids has been addressed by Carlson et al. [2004], Guendelmann et al.
[2003] and Klingner [2006]. More recently researchers have modeled subgrid
interactions with objects more accurately through the use of apertures [Batty
et al., 2007; Robinson-Mosher et al., 2008]. Nevertheless, very little previous
work in graphics addresses the problem that the thin turbulent boundary
layer is not resolved in the simulation, resulting in turbulence not being shed.

2.2.3 Real-time Fluid Simulation

There are only few methods that enable detailed fluid simulation at interactive
frame rates. Crane [2007] demonstrated the realization of three-dimensional
Eulerian fluid solvers on a GPU, while Cohen et al. [2010] use a multigrid
GPU based-solver to efficiently solve the Navier-Stokes equations in real-
time. However, fine-grained turbulent detail is hard to achieve with these
direct approaches. Treuille et al. [2006] presented a method to precompute
reduced bases of flows, enabling simulations at real-time frame rates. This
approach is extended by Wicke et al. [2009] to couple precomputed fluid tiles,
which allows the simulation of large scenes. As the method requires large
amounts of memory for complex scenes, it is difficult to apply in interactive
scenarios. Horvath et al. [2009] use a hybrid particle approach with a coupled
2D and 3D simulation to efficiently simulate fire simulations on the GPU
using a fixed camera perspective. Chentanez et al. also combine two- and
three-dimensional techniques [Chentanez and Mueller, 2011] or couple a
grid-based simulation with particle systems [Chentanez and Müller, 2010]
to enable real-time simulation of open water channels and ocean surfaces.
Real-time simulations of particle based liquids have been demonstrated in
[Müller et al., 2005], but as these simulations heavily depend on neighborhood

10



2.3 Lagrangian Vortex Methods

calculations, detailed simulations can be very expensive, and can be difficult
to stabilize.

2.3 Lagrangian Vortex Methods

Instead of solving the Navier-Stokes equations in the velocity space, they
can also be solved in vorticity space. Vorticity describes flow rotation, and
is an equivalent description of fluid motion. The vorticity equation can be
evaluated on regular meshes and grid using FDM or FEM formulations with
similar accuracy and performance as the Navier-Stokes equation. Boundary
conditions, obstacle interaction and free surfaces are however more efficiently
treated in a velocity representation. Purely Eulerian vortex methods are
therefore rarely used in practice. On the other hand, vortex methods have the
desirable property that rotational flow features such as eddies are more com-
pactly represented than in the velocity formulation. This makes Lagrangian
or hybrid vortex methods an attractive choice for strongly rotational flows, es-
pecially those with strong turbulence generation. In this section, an overview
of Lagrangian vortex methods in CFD is given.

Lagrangian Primitives The most general and commonly used primitive
for vortex methods is the Vorton, a point representation of vorticity. Vorton
methods in two dimensions have been discussed as early as 1931 [Rosenhead,
1931]. In three dimensions, vortex dynamics are much more involved as a
vortex stretching term appears, which is hard to stabilize in a Lagrangian
setting. The first three-dimensional methods appeared therefore much later
[Beale and Majda, 1982] with the convergence being proven by Hald [1979].
A stable treatment of the vortex stretching term still remains one of the main
challenges of vorton methods. To this end, hybrid methods employing an
additional grid representation [Marshall and Grant, 1996] have been success-
fully used to stabilize this term. Vortex filament methods [Leonard, 1975;
Leonard, 1980], which discretize vorticity using one-dimensional space
curves, do not share this problem as the vortex stretching term vanishes in
their motion equations. However, this comes at the price of ever-increasing ge-
ometry due to re-meshing of the connected elements [Chorin, 1981]. Although
global re-meshing using vorticity transfer has been proposed to partly reduce
geometric complexity [Lindsay and Krasny, 2001] this is still a largely un-
solved problem which restricts simulation run-length and complexity. Finally,
vortex sheets, a representation of vorticity on two-dimensional surface, have
successfully been used to simulate vorticity dynamics at interfaces. While
early methods used points or filaments to discretize the vortex sheet surface

11



Related Work

[Agishtein and Migdal, 1989], more recent methods employ a mesh of triangu-
lar [Brady et al., 1998] or quadrangular surface elements [Lozano et al., 1998;
Stock et al., 2008]. Vortex sheets share the advantages and drawbacks of
filaments, but their two-dimensional connectivity makes them very suitable
for interface transition modeling, while filaments are often employed for
problems including vortex ring breakup.

Extensions A common problem of all Lagrangian vortex methods is the
handling of diffusion. Two types of solutions have been proposed, firstly core-
spreading [Leonard, 1980], in which the primitives kernel is widened, and
second vorticity redistribution between neighboring primitives [Gharakhani,
2003]. While these methods have been used successfully for densely sampled
vorton simulations, they are largely unsuitable for sparse simulations and
the higher dimensional filaments and vortex sheets. Therefore, Lagrangian
vortex methods are often applied to problems where diffusion is not relevant
and can be omitted, e.g. turbulent flows.

Another big issue is the complexity of the velocity evaluation. Classically,
the velocity is obtained by applying the Biot-Savart law between primitives,
resulting in a complexity of O(n2). Treecodes [Ploumhans et al., 2002; Wang,
2004] employ spatial acceleration structures to increase performance, while
fast multi-pole methods [Winckelmans et al., 1996; Dehnen, 2002] use far-
field approximations of the Biot-Savart law to compute distant interactions
more efficiently. Another approach is the Vortex-in-Cell (VIC) method [Cottet
and Koumoutsakos, 1999; Cottet and Poncet, 2003; Stock et al., 2008], which
projects vorticity to a grid, and solves a Poisson problem to obtain velocity.
This however induces a strong regularization for moderate grid resolutions,
which may not be desired.

Finally, extensions to vorticity generation have been proposed. While vortic-
ity generation at obstacles may be represented using boundary conditions,
baroclinic generation has to be included as a source term. This theory was
proposed by Meng [1978] and studied by Tryggvason et al. [1983].

Sparse Sampling In Computer Graphics, vortex methods are mainly used
as a sparse representation. Instead of completely discretizing the motion
field, vortex primitives are often used to reinforce eddies, and augment a
base simulation. Selle et al. [2005] uses vortons to reinforce bulk turbulence
on a Eulerian base simulation. Filament methods, on the other hand, have
been used to control a fluid simulation by manually adding vortex rings
[Angelidis and Neyret, 2005; Angelidis et al., 2006]. Vortex sheet theory is

12



2.4 Turbulence Methods

used by Kim et al. [Kim et al., 2009] to reinforce the breakup of liquid sheets.
However, they discretize the vortex sheet on the grid, and synthesize motion
using Eulerian vorticity confinement. While vortex methods are increasingly
being used in Graphics, the research base is still very weak, compared to both
velocity methods and vortex methods in CFD. Most application in Graphics
simply add vortons manually to obtain a more turbulent look and feel.

2.4 Turbulence Methods

The high numerical cost involved in the simulation of small-scale turbulence
has given rise to turbulence modeling approaches. These models separate
turbulent fluctuations from the mean flow, and aim to describe these fluctua-
tions in a statistical manner, based on properties obtained from the large-scale
mean flow. Turbulence modeling methods have a long tradition in Engineer-
ing. They are usually employed to estimate the influence of turbulence on
the mean flow, e.g. the forces exerted on airplane wings, or the flux reduction
in pipe flow. In Computer Graphics, on the other hand, the main interest
is not obtaining corrected mean flows, but to obtain the transient turbulent
detail itself to enhance visual detail. Therefore, turbulence synthesis meth-
ods are employed to generate artificial detail. Advanced synthesis methods
use turbulence modeling methods as an estimator to predict the turbulence
distribution to synthesize. Below, an overview of turbulence modeling and
turbulence synthesis models is given.

2.4.1 Turbulence Modeling

Classical turbulence models in CFD model turbulent viscosity, that is the
virtual diffusion turbulence induces on the mean flow [Prandtl, 1945]. The
simplest classical turbulence models which are able to describe non-trivial
flows are mixing length models [Smagorinsky, 1963], [Baldwin and Lomax,
1978]. Mixing length models have been used successfully to describe bound-
ary layer flow in e.g. the aerospace industry. However, they rely on manual
specification of the mixing length, which is scene-dependent and only known
for certain types of flows. To alleviate this issue, complete convective-diffuse
models have been proposed, which model the dynamic of turbulence us-
ing a set of differential equations without the need for a scene-dependent
specification. The Spalart-Almaras models [1994], which is used in aeronau-
tic applications, directly models turbulent viscosity using one PDE. Two-
equation models, on the other hand, model the evolution of parameters such
as turbulent kinetic energy and dissipation using two PDEs. The k–ε model

13



Related Work

[Launder and Sharma, 1974] and the k–ω model [Wilcox, 1993] are still the
most commonly used turbulence models in Engineering today, and included
in most CFD applications due to their generality and simplicity. However, the
prediction quality and stability of these models strongly depends on the type
of flow. Therefore, extensions have been proposed for e.g. better stability in
wall-regions [Jones and Chen, 1994], to cite one example.

The class of classical turbulence models has however two fundamental limits.
First, it relies on Reynolds averaging to separate mean flow and turbulence,
which might not be sufficient, especially to describe turbulence transition
and coherent eddies. To this end, Large Eddy Simulations (LES) have been
introduced [Smagorinsky, 1963]. LES models use more accurate frequency
filters for separation, and directly simulate coherent eddies. Originally, LES
was used to describe internal flows in meteorology, but has been adapted
for more general applications in CFD as well [Haworth and Jansen, 2000].
A recent extension to LES are Detached Eddy Simulations (DES) [Spalart,
2009] which are even more suitable to represent coherent eddies. The second
limit concerns the information provided by classical models. While turbulent
viscosity is sufficient to describe the virtual diffusion of the mean flow, is does
not provide information on flow anisotropy and energy exchange. Reynold
stress transport models solve this by modeling not only turbulent viscosity,
but the complete turbulent stress tensor [Launder et al., 1975], [Chung and
Kim, 1995]. Even further, probability density functions such as the Gen-
eral Langevin Equation [Pope, 1983] directly describe higher-order statistical
properties of turbulence using a particle method, while Elliptic Relaxation
methods [Durbin, 1993] replace the local convection-diffusion processes in
turbulence models by global optimization. While all these methods have
higher prediction power than classical turbulence models in theory, they
also come at the price of higher complexity, numerical cost and tuning effort.
Therefore, they are mainly used in the context of CFD research and high fi-
delity simulation in e.g. meteorology. With the increasing computation power
in the recent years, especially LES and Reynolds stress transport models are
however slowly becoming more popular for standard applications.

While the fundamentals of CFD turbulence modeling were developed in the
1970s and 80s, this does not imply no progress has been made in recent years.
The topics have however shifted from general purpose turbulence modeling
towards more specific topics, as it is common in mature fields. Recent topics
include the modeling of turbulence in compressive flows [Aupoix, 2004] or
turbulence transition modeling [Langtry et al., 2006], [Dandois et al., 2007],
to cite a few examples. A very interesting recent trend is the development of
multi-scale turbulence modeling techniques using LES [Chaoat and Schiestel,
2007] or scale adaptive simulation (SAS) [Menter and Kuntz, 2005].

14



2.5 Recent works

2.4.2 Turbulence Synthesis

Early turbulence methods in Computer Graphics used uniform fields of syn-
thetic turbulence to augmented or replaced basic fluid simulation with syn-
thetic turbulence. Stam [1993] introduced a method that used a Kolmogorov
spectrum to produce procedural divergence free turbulence. This approach
was used to model nuclear explosions and flames [Rasmussen et al., 2003;
Lamorlette and Foster, 2002]. Bridson et al. [2007] suggest taking the curl
of vector noise fields to produce divergence free velocity fields. They ex-
plicitly address computing flows around objects efficiently by modulating
the potential field. These methods however do not take into account the
spatial and temporal distribution and dynamics of turbulence, and may lead
to unrealistic results for complex flows.

Recent methods use a more complex estimation of flow statistics to better
capture the characteristics of turbulence. Kim et al. [2008b] use wavelet
decomposition to determine local turbulence intensities, and synthesize tur-
bulence using frequency-matched curl noise. This approach assumes that
the base solver can resolve the turbulence dynamics, which is not always the
case, e.g., for complex scenes or very coarse solver resolutions. Schechter
[2008] and Narain [2008] use transport models to derive turbulence parame-
ters. While this improves the turbulence dynamics, they need to significantly
simplify the energy transport, as in Schechter [2008], or make strong assump-
tions, such as mixing-length models to close their one-equation energy model
[Narain et al., 2008]. The combination of complete turbulence models and
synthesis is introduced by our work in § 4.

2.5 Recent works

Turbulence methods and vorticity representations for fluid simulations are
an active area of research in Computer Graphics. It is therefore not surprising
that a number of works on these topics has been published concurrent to or as
a follow-up work to the methods presented in this thesis. These approaches
will be discussed below.

Turbulence Synthesis While this thesis focusses on synthesis based on curl-
noise textures and vorticity, alternative methods for synthesis have been
presented in recent years. Chen et al. [2011] present a hybrid turbulence
method, which synthesizes turbulence on a particle system, based on our
work in § 4. Instead of using a RANS-based turbulence model, however,

15



Related Work

they follow a pdf approach and solve the Langevin equation [Pope, 2000] on
the particle system. The resulting velocity update is directly used as detail
motion of the particles. This avoids both the coherence problem of curl-
noise synthesis and the stability issues of two-equation turbulence models
employed in our model. However, by interpreting the stochastical Langevin
velocities as actual particle motion, the synthesized motion will neither be
divergence-free nor spatially coherent. We found these two properties to be
vital for producing the characteristic swirly look of turbulent fluid motion
and therefore a realistic appearance.

Zhao et al. [2010], on the other hand, propose the use of random forcing on
an up-sampled grid as a synthesis method. The divergence-free force fields
are precalculated and follow a given energy spectrum. This representation
does not require a separate set of markers such as vortex primitives or texture
coordinates for curl-noise synthesis. However, the synthesized forces can not
directly be animated; instead, alternating pre-computed fields are applied.
This temporal inconsistency will lead to artifacts and flow disturbance if the
method is used beyond small scales. Still, this method might provide a very
attractive alternative for synthesis, if extended such that force fields can be
updated at runtime.

Vorticity methods The original vortex particles paper [Selle et al., 2005] was
extended by Yoon et al. [2009] concurrently to our work in § 5. Very similar
to our approach, they applied the vortex particles onto an up-sampled higher
resolution grid. Particles were however seeded manually, as the method
did not include a turbulence predictor, which was the focus of our method.
Kim et al. [2012] extended the vortex particle approach for buoyant sources.
The source terms are calculated on the grid and then mapped to the vortex
particle system.

Weissmann et al. [2010] proposed a simulation driven entirely by vortex
filaments, with source terms for obstacle-induced shedding. They are able to
represent flows with a medium level of turbulence in a very compact fashion,
which makes the method very efficient in this regime. This approach was
recently extended by an improved re-sampling scheme for filaments, which
limits the geometry growth [Barnat and Pollard, 2012]. An introduction to
the vortex primitives of particles, filaments and sheets and a comparison of
their strengths and weaknesses can be found in § 3.1.2 and § 7.2.

Finally, Brochu et al. [2012] presented a vortex sheet method which is very
similar to our work in § 6. The main difference is the replacement of our local
evaluation scheme with a fast multipole method (FMM) to accelerate the

16



2.5 Recent works

Biot-Savart velocity integration. This has the advantage that no Eulerian base
simulation is necessary, which obviates the need to tune the grid’s buoyancy
terms to the mesh-based buoyancy and avoids artifacts induced by the scale
separation. On the other hand, it is hard to represent inflows, source terms,
obstacle interaction and the coupling to e.g. turbulence methods in this
pure vorticity formulation, while these effects are trivial to achieve using our
hybrid model. It therefore depends on the application scenario which of the
methods is best suited.

17



Related Work

18



C H A P T E R 3
Theory and Numerical Methods

This chapter discusses elements of fluid mechanics theory and computational
methods for its numerical treatment. It will serve as the theoretical basis for
the later chapters, and focusses on topics relevant to our novel methods in the
later part of the thesis. The chapter is divided into two blocks, fluid simulation
and turbulence theory. We first introduce methods for fluid simulation in its
velocity and vorticity form (§ 3.1). Then, turbulence theory is summarized
(§ 3.2) and approaches for modeling turbulence properties are introduced
(§ 3.3). Finally, we discuss the turbulent energy spectrum (§ 3.4) and methods
to synthesize turbulence based on statistical properties (§ 3.5).

3.1 Fluid dynamics

Fluid dynamics describe the behavior of gases and liquids by the means of
continuum mechanics. The equations of motion are derived by the application
of Newton’s second law, in accordance to solid mechanics. In constrast to
solids or deformables however, fluids do not sustain shearing stresses without
continuously deforming, and do not have a rest state. Therefore, the modeling
equations and numerical methods employed differ from solid mechanics,
although it is technically possible to treat fluids using stress-strain relations
as used in the modeling of deformable bodies.

19



Theory and Numerical Methods

Velocity formulation The motion equations for Newtonian fluids in its
continuum formulation are called the Navier-Stokes (NS) equations. They
are a set of partial differential equations in the velocity field u(x, t). For the
case of incompressible fluids, they are written as

∇ · u = 0 (3.1)
Du
dt

= −1
ρ
∇p + ν∇2u +

1
ρ

g , (3.2)

with the fluid viscosity ν, density ρ, and the gravity g. The pressure field is
denoted by p. Eq. (3.1) is called continuity equation, and ensures conservation
of mass. The momentum equation Eq. (3.2) consists of several parts. The first
term on the right-hand side of the equation is the pressure correction. The
pressure field p effectively counteracts fluid compression and gravity, and
is chosen such that the continuity equation is fulfilled. The remaining terms
describe the diffusion introduced by viscosity and gravitational and external
forces.

The left-hand side of the momentum equation is the substantial derivative of
u, defined as

Du
dt

=
∂u
∂t

+ u · ∇u . (3.3)

From an Eulerian viewpoint, this implies a self-advection of the velocity field,
while in a Lagrangian representation this term is implicitly handled by the
movement of the primitives.

Vorticity formulation Vorticity is defined as the curl of the velocity field
ωωω = ∇ × u and is a description of flow rotation. This representation is
advantageous especially for describing turbulent flows, which consist of
small rotational whirls, as these structures have a more compact support in
vorticity than in velocity formulation. By applying the curl operator to the
NS equations, we obtain the vorticity equation

Dωωω

dt
= ωωω · ∇u + ν∇2ωωω +

1
ρ
∇ρ ×

(
g +

1
ρ
∇p
)

. (3.4)

The substantial derivative on the left-hand side includes vorticity advection,
while the right-hand side consists of the vortex stretching, diffusion and baro-
clinity terms. Vortex stretching describes the deformation of the vorticity field
under the influence of the velocity field, while baroclinity models its behavior
across density gradients and gravity. One implication of this baroclinity term
is buoyant movement, which in the vorticity formulation is represented by a

20



3.1 Fluid dynamics

Figure 3.1: A simulation of the Karman Vortex Street, the flow around a cylinder, is
shown. Velocity vectors are drawn in black, vorticity in red (positive) and blue
(negative). Concentrated vorticity, as in the middle of the image, describes
a vortex. The elongated streaks of vorticity, so-called vortex sheets, separate
flow regimes and indicate the boundary layer around the obstacle.

sheet of vorticity at the density gradient or interface, yielding e.g. the typical
vortex rings for rising smoke.

The continuity equation Eq. (3.1) on the other hand is implicitly satisfied,
as rotational fields are divergence-free. We also note that the pressure term
vanishes for flows with constant densities. However, advection and vortex
stretching require a velocity field, which has to be obtained by integrating
the vorticity field.

As the Helmholtz theorem shows, we can decompose a given velocity field
u into a curl-free component uΦ and a divergence-free component uΨ. The
divergence-free component can be related to a vector potential Ψ and the
vorticity by

uΨ =∇×Ψ , ωωω =∇× uΨ .

Applying the continuity equation for incompressible fluids, we find that
uΦ has to be constant. Therefore the velocity field is completely described
by vorticity or the vector potential Ψ. This is strictly only true for the free-
space case, however. With limited domains, as encountered in all grid-based
simulations, additional terms are needed to describe the behavior at the
domain boundaries, if velocity does not vanish there. Finally, to integrate the
velocity field induced by vorticity we can use the free-space solution to the
rotation operator, the Biot-Savart law

uΨ(x) =
1

4π

∫
ωωω(x′)× x− x′

|x− x′|3
dx′ . (3.5)

21



Theory and Numerical Methods

Vorton Filament Vortex Sheet

ω γΓ

Figure 3.2: Three different Lagrangian primitives to represent vorticity are shown, with
their induced velocity marked in red. Vortons are particles which induce a
rotation around the axis of their associated vorticity ωωω. One-dimensional
curve primitives are called filaments. They induce circular motion around the
curve tangent based on a circulation number Γ. Vortex sheets contain the
vorticity γ confined to a surface. They represent a velocity jump between two
flow regimes.

3.1.1 Eulerian discretization

There are several ways to solve the NS equations. In Computer Graphics,
the most common approach are Eulerian solvers with semi-Lagrangian ad-
vection as introduced by Stam [1999]. The velocity field is discretized on a
Marker-and-Cell (MAC) grid, and operator splitting is applied to Eq. (3.2)
to handle the individual terms separately. The semi-Lagrangian advection
scheme is unconditionally stable, but introduces artificial dampening, the
so-called numerical viscosity, which is much higher than the natural fluid
viscosity. Therefore, the viscosity term in Eq. (3.2) is neglected. To obtain the
pressure field, a Poisson equation is solved which is the most costly step of
the simulation. A detailed account on implementing Eulerian fluid solvers
can be found in the book by Bridson [2008].

In the same manner it is possible to solve the vorticity equation on a regular
grid. In addition to velocity, vorticity is sampled on a grid, and integrated
over time using the vorticity equation Eq. (3.4). Additionally, the vector
Poisson equation ωωω =∇2Ψ is solved in each step to obtain the vector potential,
and by derivation the velocity field uΨ.

22



3.1 Fluid dynamics

3.1.2 Lagrangian primitives

There are also pure Lagrangrian approaches to solve the NS equation in its
velocity form. The most commonly used method in Computer Graphics
is Smoothed Particle Hydrodynamics (SPH), which is especially suitable for
free-surface problems. SPH uses particles with a smooth density kernel
to represent fluid properties and solves pressure correction using particle-
particle interaction. This method is however not the focus of this thesis and
the reader is referred to [Monaghan, 2005] for an overview of SPH.

Lagrangian solutions for the vorticity equation are common in CFD, and
becoming increasingly popular in Computer Graphics. This thesis is heavily
based on Lagrangrian methods for vorticity, therefore the theory is expanded
here in more detail.

There are two ways in which Lagrangian vortex elements can be used. On
the one hand, they can be used to discretize the complete vorticity field as
an alternative representation to velocity. On the other hand, sparse elements
can be used to augment an existing simulation. The second approach can
increase performance by focusing resolution in desired areas. Also, remeshing
inaccuracies are not as critical since the underlying simulation provides
consistency. However, the interplay between the vortex primitives and the
underlying simulation is nontrivial. In particular, vorticity structures need to
be mutually exclusive in both simulations, to avoid injecting excess energy
into the system.

Below, we will introduce three types of Lagrangian primitives for discretizing
vorticity. Vortons are zero-dimensional point elements, Filaments represent
vorticity confined to a one-dimensional curve, while Vortex sheets describe
vorticity on a thin two-dimensional surface. Fig. 3.2 visualizes these prim-
itives. In theory, a given vorticity field can be discretized equally well by
all three primitives. However, each of them has inherent advantages and
disadvantages as far as re-meshing, motion equation and connectivity are
concerned. Also, some forms allow a more natural representation of a certain
flow geometry than others. It is e.g. possible to discretize vorticity on a thin
surface using a patch of filaments. However, it is much easier to ensure a
uniform coverage of a surface deforming in the flow by representing it using
vortex sheets. A detailed comparison of vortex primitives can be found in
[Stock, 2006] and [Cottet and Koumoutsakos, 1999].

23



Theory and Numerical Methods

Vortons

The most popular and well-researched primitive is the point element Vorton
[Hald, 1979]. Each vorton i owns a position xi and its associated vorticity ωωωi.
The total vorticity field of the system is given by

ωωω(x) = ∑
i

ωωωiδ(x− xi) (3.6)

using Dirac’s delta function δ. In many methods, an additional particle radius
or kernel is used. Vortons are the most general primitive and are especially
suitable for highly turbulent flows. In these flows, coherent structures break
down to small isolated vortices, and the role of connectivity is diminished.

Dynamics The motion equation for the vortons is given by Eq. (3.4). While
advection is handled implicitly, the right-hand side terms are not easily ex-
pressed in terms of a particle system. The vortex stretching term can be
evaluated by explicitly calculating the velocity gradient tensor at the particle
position. However, this has been shown to produce divergent flow fields
[Cottet and Koumoutsakos, 1999]. One way to regularize this problem is
to use an intermediary grid [Marshall and Grant, 1996]. The diffusion term
can be implemented by core-spreading, that is increasing the particles ra-
dius [Leonard, 1980] or particle strength exchange methods [Degond and
Mas-Gallic, 1989]. Full vorton models require overlapping particles for con-
vergence, therefore re-meshing is needed to ensure full coverage. While
local re-meshing methods do exist [Shankar and van Dommelen, 1996], most
vorton methods use a form of global re-meshing [Cottet and Koumoutsakos,
1999].

Velocity integration The most direct approach to obtain a velocity field
from a vorton system is the discretization of Eq. (3.5)

uΨ(x) =
1

4π ∑
i

ωωωi ×
xi − x
|xi − x|3 . (3.7)

This equation is however singular for points close to vortons. Chorin et
al. [1973] therefore introduced a regularization mechanism

ureg(x) =
1

4π ∑
i

ωωωi ×
xi − x

(|xi − x|2 + α2
R)

3
2

. (3.8)

The regularization parameter αR effectively controls the minimal size of the
generated vortices. As an alternative to direct integration, the particles can

24



3.1 Fluid dynamics

be projected on an auxiliary grid using a smoothing kernel. On the grid,
the velocity can be obtained by solving the Poisson equation for the vector
potential as in the Eulerian case. This hybrid method is called Vortex-in-Cell
(VIC) and can be used for all vortex primitives [Cottet and Poncet, 2003]. The
grid and particle projection kernel act as an implicit regularization, so no
additional terms are needed.

Sparse Vortons In Graphics, Vortons are called Vortex Particles, and mostly
used in a sparse setting. Therefore, less strict re-meshing is used. Also, the
diffusion term is commonly ignored, for the same reasons as in the velocity
form of the NS equations. The original approach for vortex particles [Selle et
al., 2005] does not use velocity integration using the Biot-Savart law, but a
confinement force that acts on the underlying simulation, in a similar manner
as vorticity confinement [Fedkiw et al., 2001]

F(x) = ε∑
i

xi − x
|xi − x| ×ωωωi δ(xi − x) (3.9)

where ε is the confinement strength. This treatment ensures only vorticity
not already present in the underlying simulation is added, but suffers from
instabilities if ε is chosen inappropriately.

Filaments

Vortex filaments discretize vorticity using one-dimensional line segments or
spline curves. Instead of directly storing the contained vorticity on the line
elements, an equivalent representation is used. This has advantages for the
formulation of the motion equation, as will be shown is the next paragraph.
Each segment has an associated circulation number Γ which defines a rotation
around the curve segment. It relates to vorticity by

ωωω(x) = Γ(s) t δ(r⊥(s)) (3.10)

where t denotes the line tangent and r⊥ is the distance perpendicular to the
tangent of the curve. Filaments are suitable for e.g. rising smoke with low
levels of turbulence, as the characteristic vortex rings arising in such settings
are represented naturally using closed filaments.

Dynamics By expressing the vorticity equation in the circulation formula-
tion, we obtain

DΓ

dt
= ν

∫
L
∇2u · dx +

1
ρ

∫
L
∇pdx (3.11)

25



Theory and Numerical Methods

with the line integral of diffusion and baroclinity, respectively. Diffusion is
hard to express efficiently for filaments, therefore filaments are mainly used
in low-viscous flows, where diffusion can be neglected. This means that for
flows without baroclinic generation, circulation effectively remains constant,

DΓ

dt
= 0 (3.12)

as vortex stretching is implicitly handled by elongation of the primitive itself.
This is a very desirable property, as it avoids the problems associated with
evaluation of the velocity gradient for vortex stretching in e.g. vorton meth-
ods. On the other hand, elongation also leads to ill-shaped line segments,
therefore remeshing is necessary. A simple remeshing by subdividing ele-
ments that are too long or are strongly curved is often sufficient [Chorin, 1981].
For turbulent flows, however, this means that geometry will increase over
time, as complex structures tend to generate even more complex structures on
neighboring filaments. For fully-developed turbulence for example, filament
strands will inevitably overlay and form a complex intertwined structure
which could be represented using a much smaller number of vortons. Some
effects of this can be mitigated by hairpin removal techniques [Chorin, 1996]
or vortex loop optimization [Weissmann and Pinkall, 2010].

Velocity integration Filaments are integrated by directly evaluating the
Biot-Savart law, which for circulation takes the form of the line integral

uΨ(x) =
1

4π

∫
L

Γ(s)t× x− r(s)
|x− r(s)|3 ds . (3.13)

In this form, r(s) is the line parameterization and t is the tangent. Regular-
ization is introduced in the same manner as in Eq. (3.8). Depending on the
concrete form of line discretization, flat line segments or spline curves, the
discretized form of Eq. (3.13) varies.

Vortex sheets

The description of vorticity confined to a two-dimensional surface is a called
a vortex sheet. Vortex sheets are particularly useful to describe thin sheets
of vorticity that are induced at flow boundaries in the boundary layer and
across steep density gradients, between e.g. cold and hot air of a rising plume.
This surface is described by a surface mesh, triangle meshes being the most
common approach. Vorticity on a surface element is represented using the
vortex sheet strength γγγ, which is defined as

ωωω(x) = γγγ(x)δ(x) . (3.14)

26



3.1 Fluid dynamics

For deriving relations for the vortex strength, it is useful to consider the
velocity jump ∆u that is induced by the vortex sheet. It relates to vortex
strength by γγγ = n×∆u, with the surface normal n.

Dynamics Using the velocity jump definition, the inviscid transport equa-
tion for vortex sheet strength can be derived as

Dγγγ

dt
= γγγ · ∇u− γγγ(P · ∇ · u)− 2βA n× g . (3.15)

The first term on the right-hand side is the familiar vortex stretching, while
the second term describes changes in vortex strength due to elongation in
the direction of γγγ. Here, P = I− nn is the tangential projection operator. The
baroclinity term is expressed using the Boussinesq approximation [Meng,
1978] which is proportional to the Atwood ratio βA. The Atwood ratio relates
the densities of the two fluids to each other, and is defined as

βA =
ρ1 − ρ2

ρ1 + ρ2
. (3.16)

The Boussinesq approximation assumes a small Atwood ratio, and is valid
for e.g. hot/cold air, but not air/water interfaces. As for filaments, diffusion
is not easily modeled for vortex sheets, so they are mostly used in the invis-
cid limit. Re-meshing is essential for vortex sheet methods as the induced
vorticity quickly deforms the sheets. As in the case of filaments, however,
the splitting of ill-shaped elements causes a steady increase in geometry for
turbulent flows.

Velocity integration The Biot-Savart law for the vortex sheets has the form

u(x) =
1

4π

∫
S

γγγ(x′)× x− x′

|x− x′|3
dx′ . (3.17)

Again, regularization can be performed as in the case of Vortons. Alterna-
tively, VIC can be used for integration and regularization.

Conversion between representations

The primitives introduced above use different representations for vorticity,
namely vorticity ωωω, circulation Γ and vortex sheet strength γγγ. As each
representation has different properties as far as dynamics or source terms are
concerned, it is sometimes advantageous to convert between representations,

27



Theory and Numerical Methods

vorticity vortex strength circulation

Figure 3.3: The continuous vorticity field around a surface can be represented in terms
of a vortex sheet strength or circulation. Both are stored per surface triangle,
and are equivalent representations. Vortex strength is a vector value, while
circulation consists of three scalar rotation values around the edges of the
triangle.

and use the one most appropriate for the task. We will focus on vorticity
confined to thin sheets here, as this theory is used in § 6.

While vortex sheet strength, discretized using a triangle mesh, is the most
natural representation for this case, its dynamic equations are more involved
than those of the circulation formulation. According to Stock et al. [2008],
the vortex sheet strength vector γγγ of a triangle uniquely relates to the three
circulations numbers Γi around the triangles edge vectors ei. We can therefore
express the motion equations in terms of both circulation and vortex sheet
strength. This is illustrated in Fig. 3.3. It should be noted that the circulation
numbers are defined per triangle, which means that adjacent triangles may
have different circulation numbers for the same edge. In order to convert to
vortex sheet strength, we can use the relation

γγγ =
1
A

3

∑
i=1

Γi ei (3.18)

with A denoting triangle area. On the other hand, conversion from vortex
sheet strength to circulation can be performed by solving the overdetermined
linear system [

e1 e2 e3
1 1 1

]Γ1
Γ2
Γ3

 = A
(

γγγ

0

)
. (3.19)

During this conversion process, the vorticity component normal to the surface
is lost. For vortex sheets, this is however a desired property [Stock et al.,
2008].

28



3.2 Turbulence

3.2 Turbulence

Many complex flows, ranging from chimney smoke and explosions to the
wake of a ship in the ocean, show chaotic and irregular vortical flow distur-
bances. These flows are called turbulent flows. Compared to laminar flows,
such as slow-moving rivers, or the air flow field over a candle, turbulent
flows show an abundance of detail on many length scales. While this detail
constitutes the appealing look of many flow phenomena, representing it
directly in the simulation requires enormous storage and computing capabili-
ties. It is however possible to describe turbulence in terms of their statistical
properties. Turbulence modeling theory aims exactly at that. In this section,
established turbulence theory is introduced which forms the basis for our
turbulence-aware simulations in § 4, § 5 and § 6. A more detailed overview of
turbulence theory can be found in the books of Pope [2000] and Wilcox [1993].

3.2.1 The Reynolds Average

To provide a measure of the overall strength of turbulence in the flow, the
Reynolds number

Re =
vL
ν

(3.20)

is used. Flows with a Reynold number below 1500 are typically laminar,
while a Reynolds numbers over 5000 are a strong indicator for a turbulent
flow [Pope, 2000]. The quantities used here are the flow velocity v, the fluid
viscosity ν and the characteristic lengthscale L. The definition of L depends
on the problem at hand, for pipe flow it would e.g. correspond to the pipe
diameter.

While the Reynolds number provides a general estimate on turbulence be-
havior, most flows are not completely turbulent or laminar. A river with an
immersed obstacle, for example, may be laminar in most regions, but show
transition to turbulence in the wake of the obstacle. To study the behavior
of turbulence, it is therefore beneficial to decompose the flow field in a tur-
bulent and mean flow component. The Reynolds decomposition achieves this
by introducing a mean velocity field by the average Ū = 〈u〉. The remaining
component u′ = u− 〈u〉 then describes the turbulent fluctuation. It can be
shown that both components remain divergence-free [Pope, 2000].

The averaging operator 〈·〉 introduced above is interpreted in the sense of an
expectation value of a random field. Its concrete realization, and therefore
the concrete classification of turbulence and mean component depends on

29



Theory and Numerical Methods

the type of problem investigated. For most applications, an average over en-
sembles, time or lengthscale is used. The equivalence of these interpretations
for large sample numbers is given by the ergodicity theorem.

RANS Using the mean flow definition, it is possible to derive properties
for the mean and the fluctuating component separately. If we apply the
ensemble average operator to the Navier-Stokes equation, we obtain the
motion equation for the mean component, the Reynolds-averaged Navier-Stokes
equation (RANS)

DŪ
dt

= ν∇2Ū− ρ(∇ · τττ)− 1
ρ
∇〈p〉 . (3.21)

This equation is identical to the Navier-Stokes momentum equation, except
for the additional stress term ρ(∇ · τττ). The symmetric tensor τij = 〈u′i u′j〉
is called the Reynolds stress tensor, and describes the influence of turbulent
fluctuations on the mean flow field.

The RANS equation is used in many engineering applications, as it allows to
predict the impact of small-scale turbulent detail on e.g. the mean flux in an
pipe or engine, without directly simulating it. Unfortunately, the Reynolds
stress tensor still depends on the fluctuating components, and cannot be
expressed in terms of averaged properties. This closure problem in CFD is
solved by additional assumptions and models of the behavior of turbulence,
and has given rise to an area of research, namely turbulence modeling.

Turbulent Viscosity Hypothesis To investigate the effect of the Reynolds
stress tensor in Eq. (3.21), it is helpful to split the Reynolds tensor into a
isotropic and and anisotropic part. The isotropic component can be expressed
in terms of the turbulent kinetic energy, that is the energy contained in turbulent
fluctuations. It is defined as

k =
1
2
〈u′ · u′〉 . (3.22)

The isotropic component now becomes a diagonal tensor 2
3 kδij and can there-

fore be expressed as a scalar. This means its effect in Eq. (3.21) is that of a
pressure, and it can easily be absorbed in an effective pressure 〈p〉E = 〈p〉+ 2

3 k.
The anisotropic component, on the other hand, is defined as aij = τij − 2

3 kδij
and still needs to be modeled. The turbulent viscosity hypothesis assumes
that its effects is purely viscous. This is a reasonable approximation, as the
superposed small-scale movements act as a diffusion on larger scales. The

30



3.3 Turbulence Modeling

turbulent viscosity hypothesis is therefore expressed in analogy to viscous
stress by

aij = 2ρ νTSij (3.23)

with the scalar turbulent viscosity νT and the mean strain tensor

Sij =
1
2(

∂Ūi
∂xj

+
∂Ūj
∂xi

). If we substitue the Reynolds tensor and the effective
pressure and turbulent viscosity in Eq. (3.21), we obtain

Du
dt

= −1
ρ
∇〈p〉E +∇((ν + νT)∇u) (3.24)

which has the form of the NS equation Eq. (3.2) with modified pressure and
the increased viscosity term ν + νT. We have to note, though, that νT is in
general a function of space and time, while the molecular viscosity ν is a
constant.

If the turbulent viscosity hypothesis is used, the problem of modeling the
Reynolds stress tensor reduces to modeling the scalar turbulent viscosity νT.
Most classic turbulence models are based on this assumption. However, it
has to be noted that turbulent viscosity is only an approximation, and cannot
describe certain effects, such as anisotropic turbulence generation. Turbulence
models based on turbulent viscosity are discussed in the next chapter. A short
outlook on including anisotropic effects will also be provided.

3.3 Turbulence Modeling

Turbulence modeling tries to predict properties of the fluctuating turbulence
based on the mean velocity field. For averaged simulations such as RANS,
the important variable to model is the Reynolds stress tensor, and therefore a
big part of existing research in turbulence focuses on predicting the Reynolds
stress as accurate and general as possible. In this section, classical turbulence
modeling based on turbulent viscosity is introduced. This is what is used
in most CFD simulation packages for engineering, and it also forms a basis
for our methods in § 4, § 5. There are also other, fundamentally different
approaches for describing turbulence, most notably stochastic pdf methods
[Pope, 1983] and Large Eddy Simulations (LES) which are used heavily in e.g.
meteorology. An overview of LES methods can be found in [Galperin and
Orszag, 1993] and [John, 2006].

31



Theory and Numerical Methods

3.3.1 Energy Transport Models

There are different approaches for modeling turbulent viscosity, most of
which are based on empirical assumptions. These methods can be classified
by the number of model variables and in terms of their completeness, that
is whether they require scene-dependent constants or fields. The simplest
conceivable model is assuming νT to be constant across the flow. This model
is limited to very simple flows, and does not provide much insight over
directly specifying turbulence energy. It is thus not useful for any practical
application.

A better approach is to model νT in terms of a mixing length. These models
can be accurate if the mixing length of the respective problem is known, and
have successfully been used in aerospace engineering [Baldwin and Lomax,
1978]. Other models use the fact that turbulence properties are well described
by advection-diffusion processes, and model these processes using one or
more partial differential equations. Due to their generality, these models are
among the most common turbulence models. Below, a mixing-length model
and one common two-equation model are presented.

Mixing length model The mixing length model is based on a generalization
of the explicit turbulent viscosity term from boundary layer flows. Baldwin
et al. [1978] suggest the definition

νT = l2
m‖Ω‖ (3.25)

where lm is the characteristic mixing lengthscale, and Ωij =
1
2(

∂Ūi
∂xj
− ∂Ūj

∂xi
)

the rotation tensor of the mean flow field. The mixing length encodes the
geometry of the problem, and the accuracy of the model largely depends on
the correct specification of this length. Analytic expressions for lm are known
for a certain type of problems, such as its linearity in wall distance in the
log-law region of boundary layers. On the other hand, for the general case
far from boundary layers, the mixing length behavior is largely unknown.
Therefore, this model is considered incomplete.

k–ε model The k–ε model uses a similar definition of turbulent viscosity as
mixing length models, but expresses it in terms of turbulent kinetic energy k
and turbulence dissipation ε as

νT = Cµ
k2

ε
. (3.26)

32



3.3 Turbulence Modeling

The modeling constant Cµ is defined as 0.09 from empirical observation
[Launder and Sharma, 1974]. An evolution equation for the variables k, ε

could theoretically be obtained by a Reynolds-average of the Navier-Stokes
equation in the same way as Eq. (3.21). As this equation contains mainly terms
that cannot be derived from mean flow properties, however, the implication
of the individual terms is studied and modeled. The complete PDE system in
this model is defined as

Dk
dt

= ∇(νT

σk
∇k) + P − ε (3.27)

Dε

dt
= ∇(νT

σε
∇ε) +

ε

k
(C1P − C2ε) .

The terms P and ε denote production and dissipation of turbulent kinetic
energy respectively, while the modeling constants are specified as σk = 1,
σε = 1.3, C1 = 1.44 and C2 = 1.92. It can be observed that both equations con-
sist of a turbulent diffusion term in analogy to the RANS equation Eq. (3.21)
as well as advection and production and dissipation terms. The implicit
advection contained in the substantial derivative on the left-hand side refers
to advection in the mean flow field Ū. The production term depends on the
strain of the mean flow field and is deduced as

P = 2νT‖S‖2 . (3.28)

The equation system is now fully specified and only depends on properties of
the averaged flow field, and is therefore considered complete. It is due to this
generality that the k–ε model is among the most commonly used turbulence
models in CFD.

3.3.2 Extending Energy Transport Models

Turbulence models are, due to their semi-empirical nature, only accurate
under certain conditions. A multitude of turbulence models exist, and is
used depending on the scenario. For example, the k–ε model performs well
for shear flows with small pressure gradient – for strong pressure gradients,
the k-ω model is superior, but has other drawbacks. In general, RANS
turbulence modeling is considered much less accurate than using Reynolds
stress transport models, pdf methods or LES. On the other hand, it is by
far the best understood approach, easy to implement and most importantly,
computationally inexpensive. For the detail level desired in typical Graphics
applications, LES for example does not gain much over direct simulation in
terms of performance. Therefore, RANS is still the most commonly employed
method, even in CFD where accuracy is of more importance than in Graphics.

33



Theory and Numerical Methods

Stability To address some of the shortcomings of RANS-based turbulence
methods, model extensions have been proposed. For our purposes, the most
vital issues is to address to instability of the k–ε model for low values of
k and ε. This model therefore requires a minimal turbulence intensity to
be present. But even a simulation with high turbulence level may become
instable in wall regions, as the viscous sublayer very close to the wall drives
the effective Reynolds number to zero. The k–ε model is therefore often
extended by Low-Reynolds models, which consist of additional dampening
terms that are active in near-wall regions. For e.g. real-time simulations
with large timesteps, however, even this may however not be sufficient as
the simulation can still easily become instable. An alternative is a clamping
system that restricts the parameters to a meaningful range. Such a system is
described in § 4.3.

Reynolds Stress Transport Models A further limitation of all RANS-based
turbulence models is their reliance of the turbulent viscosity hypothesis. The
assumption implies that the Reynolds tensor is aligned to the mean flow
strain field, which is not the case for e.g. flows with fast varying mean flow.
It also provides few information on the turbulence anisotropy, which would
prove useful for turbulence synthesis. Reynolds stress transport models
avoid this limitation by solving a partial differential equation system for the
complete Reynolds stress tensor, instead of the energy k. The model is written
as

D〈uiuj〉
dt

+ ∑
k

∂

∂sk
(Tν

kij + Tp
kij + Tu

kij) = Pij +Rij − εij . (3.29)

The transfer tensors Tν
kij,T

p
kij,T

u
kij describe viscous diffusion, pressure transport

and turbulent convection, respectively. Pij and εij are the production and
dissipation tensors, in analogy to the scalar terms introduced in § 3.3.1. The
most interesting difference compared to energy transfer models is the appear-
ance of the redistribution termRij. Redistribution characterizes the transfer of
energy between between isotropic and anisotropic components of turbulence.
The major effect in this process is isotropization: Turbulence generated from
the mean flow is usually highly anisotropic, and over time driven towards
isotropy by energy exchange. The most commonly used realization ofRij is
the LRR-IP model [Launder et al., 1975]

Rij = −CR
ε

k
(〈uiuj〉 −

2
3

kδij)− CI(Pij −
2
3
Pδij) (3.30)

with the model constants CR = 1.8 and CI = 0.6. We will make use part of
this model to augment an energy transfer model for anisotropy awareness in
§ 4.2.3.

34



3.4 The Energy spectrum

log(wave number)

lo
g(

en
er

gy
)

model
range

inertial
range

dissipative
range

energy is 
introduced

energy cascade

energy  is
removed

Figure 3.4: This graph shows the typical evolution of the energy per vortex wavenumber.
Energy is introduced into the system at large scales in the model range. The
energy is subsequently transferred into smaller scales by scattering of vortices,
and finally dissipates due to viscosity in the dissipative range.

3.4 The Energy spectrum

In the previous sections the spatial distribution of turbulent kinetic energy
was described. We will now investigate turbulence in terms of its spectral
distribution. One way to approach this is the solution of the NS equation in
the frequency domain, e.g. [de Frutus and Novo, 2001]. These spectral
methods have some desirable properties, such as fast convergence, and
drawbacks such as difficulties in boundary geometry handling. In terms
of turbulence, however, they do not provide more insight than their time
domain counterparts. Instead, in this chapter the spectral distribution of
turbulent kinetic energy as defined in § 3.2.1 is studied.

Turbulent length scales We can think of turbulent length-scales as the size
of the eddies that compose the turbulence. From experiments we can observe
that while turbulent fluctuations occur on many length scales, its behavior is
very different on these scales. For high-Reynolds number flows, it is observed
that turbulent energy is generated mainly on large scales and dissipated on
small scales. The Richardson interpretation of this states that large eddies
are instable, and break up to form smaller eddies until they are eventually
dissipated to heat by viscous processes1. This results in an energy cascade,
that is the transfer of turbulent kinetic energy from large to small scales.

1”Big whorls have little whorls, which feed on their velocity, and little whorls have lesser whorls, and so on
to viscosity.” – Lewis Richardson

35



Theory and Numerical Methods

Following this notion, the energy spectrum can be divided into three regimes.
This is also illustrated in Fig. 3.4.

• Model range. In this region, large-scale structures are dominant and most of
the spectrum’s energy is contained. Its behavior is strongly dependent on
the flow geometry, and is therefore not easily described by statistical models.
The production of turbulence mainly occurs in the model-dependent range
by strain processes acting on the mean flow.

• Inertial subrange. This range shows very little production and dissipation.
The main active process being forward scattering, that is the transfer of
energy from small to high wave numbers.

• Dissipation range. The main energy dissipation occurs in the range of large
wave numbers. This is driven by molecular viscosity, which is active for
very small structures typically below the millimeter range.

Kolmogorov’s law In his famous work, Kolmogorov [1941] proposed that
for high-Reynolds number flows, fully-developed turbulence can be de-
scribed very easily in a statistical sense. While large eddies are in general
anisotropic and strongly influenced by boundary conditions, this behavior is
lost by the energy exchange in forward scattering. Turbulence in the inertial
subrange and the viscous range can thus be assumed to be locally isotropic
and the statistical turbulent behavior in this regime is fully determined by
the dissipation ε and viscosity ν. Kolmogorovs hypothesis further states that
energy spectrum in the inertial subrange can be described as

E(κ) = Cε
2
3 κ−

5
3 (3.31)

with the wavenumber κ and constant C. This is referred to as Kolmogorovs
five-thirds law or K41 theory.

Beyond Kolmogorov While Kolmogorovs law is a useful tool to describe
fully-developed turbulence, transition to turbulence and larger scale turbu-
lence are not covered by K41 theory. There are, however, extensions to this
model. Most notably, the energy spectrum can be extended to cover the
dissipation range as well without losing too much of its generality [Pao, 1965].
This regime is not very interesting for Graphics though, as it is situated on a
length scale well below the desired resolution for most Graphics simulations.
The model-dependent range, on the other hand, is very hard to describe sta-
tistically in a general way. Even if such an averaged energy spectrum existed,
its expressiveness would be limited, as the dynamics in the model range
are dominated by anisotropic, coherent structures and their interplay with

36



3.5 Turbulence synthesis

boundary conditions. An accurate description of this regime will therefore
necessarily have to track individual structures.

Another possibility of obtaining more generality is to model the energy evo-
lution of the energy spectrum, instead of considering an stationary spectrum.
This can describe some of the effects of turbulent transition. Spectral energy
transfer models approach this in the same manner as the spatial transfer mod-
els introduced in § 3.3.1. In contrast to spatial transfer models, the individual
terms are however not as easy to model, and result in complex and instable
systems. Therefore, these models are mainly used to derive stationary spectra
instead of transient modeling [Pope, 2000]. A review on spectral energy
transfer methods can be found in [Panchev, 1971].

This being said, it is possible to describe the behavior outside K41 using
additional data. We present a method that shifts the border towards the
model range by explicit modeling anisotropy in § 4.2.3.

3.5 Turbulence synthesis

For CFD applications, the interest in turbulence is mainly focused on aver-
aged properties: its influence of turbulence on the mean velocity, turbulent
mixing or the induced forces. In Computer Graphics, however, the transient
behavior of turbulent detail itself is important, as it makes out the desired
visual appearance. Based on the observations in § 3.4 that fully-developed
turbulence has a rather uniform behavior, it is possible to generate detail
without a costly full simulation. This turbulence synthesis generates detail that
obeys certain statistical properties predicted by CFD turbulence models, such
as the ones described in the previous sections. Detail generated this way will
therefore correspond to detail actually observed in high-resolution reference
simulations or real-world experiments only in a statistical sense.

The most common approach is to synthesize a high-resolution velocity field
to represent the additional detail. There are however different statistics that
can be used for synthesis, and different ways to generate detail with given
statistical properties. This does not mean all of these realizations will produce
realistic output, though. Since turbulence generation does not imply the
fulfillment of the NS equations, there is no guarantee that a given realization
of a statistical representation will behave like a fluid. This means that to obtain
believable results, additional information beyond the spatial distribution and
the frequency spectrum are necessary. The goal of turbulence synthesis is
therefore to find a combination of conditions that produces turbulent detail
in a believable manner. In this section, we will introduce the commonly used

37



Theory and Numerical Methods

curl noise synthesis. Other synthesis approaches include random forcing
[Zhao et al., 2010] or synthesis using Lagrangian vorticity primitives which
will be introduced in § 5.

Believable detail To our knowledge, there is no direct comparative study
on which properties are exactly required for realistic appeal of turbulence. In
our experience, the qualities listed below are vital in order achieve realism
and we try to obey these criteria in our methods. Recent research papers on
turbulence synthesis seem to back this assessment.

1. Solenoidality. The most distinguished property of fluid flows is their
solenoidal behavior Eq. (3.1). It is responsible for the swirly look of fluids,
especially on the small scales. Thus, it is vital that the generated detail
velocity field remains divergence-free in order to produce realistic results.

2. Temporal coherence. The temporal continuity is of equal importance as dis-
continuities between timesteps will cause visible artifacts in the flow field.
Particular care has to be taken that coherent turbulent features such as ed-
dies are preserved over time, otherwise turbulence appears as discoherent
noise.

3. Spectral distribution. To obtain the characteristic look of turbulence, the dis-
tribution of vortex sizes is important. Such distribution can be for example
obtained from the Kolmogorov law for the inertial subrange.

4. Spatial distribution. In most flows, the turbulence intensity is not homoge-
neous in whole domain, but areas with strong turbulence and areas with
negligible turbulence will exist. This is especially true for flows with high
turbulence production, such as flows around obstacles and buoyant plumes,
in which turbulence intensity varies strongly. Traditionally, information
about spatial distribution of turbulence is extracted from the flow field. This
is however only viable for resolutions high enough to resolve turbulence
generation. This thesis will introduce an approach that uses energy trans-
fer models to predict spatial distribution, therefore allowing lower base
resolutions (§ 4).

3.5.1 Curl Noise Synthesis

The most straightforward approach to satisfy both solenoidality and a pre-
scribed spectral distribution is curl noise synthesis. In curl noise synthesis,
a three-dimensional noise field N f is synthesized from an energy spectrum.
First, the desired spectrum E(κ) is overlaid with a random phase ϕ ∈ [0 . . . 1]

38



3.5 Turbulence synthesis

log κ

lo
g 

E

noise texture velocity �eldfrequency spectrum

-5/3

Figure 3.5: Curl noise synthesis for the Kolmogorov spectrum. The energy spectrum
is transformed into a noise field using a Fourier transform. Applying the
curl operator yields a divergence-free velocity field with the desired frequency
behavior.

and transfered to a spatial noise field using the Fourier transform

N f (x) =
∫

E(κ) · e−i κ x+i 2π ϕ(κ)dκ . (3.32)

The same effect can be achieved by dividing the energy spectrum into oc-
taves, and stacking multiple octaves of a narrow-band noise field Ni, for
example Wavelet Noise [Cook and DeRose, 2005], with the respective energy
coefficients Ei

N f (x) = ∑
i

Ei Ni(x) . (3.33)

This noise field can now be used to generate a detail velocity field. First, three
noise fields Nx, Ny, Nz are generated using the same energy spectrum but
different phases. These fields can now be interpreted as a vector potential.
The detail velocity is then generated by applying the curl operator

uD(r) =∇×
√

αS

 Nx(r)
Ny(r)
Nz(r)

 (3.34)

with a detail strength coefficient αS. This process is illustrated in Fig. 3.5
for the Kolmogorov spectrum Eq. (3.31). The curl operator guarantees the
solenoidality of the resulting velocity field. As the curl operator is linear,
the frequency characteristic of the noise field also remains intact. A detailed
account on accurately computing this velocity on discrete grids can be found
in Kim et al. [2008b].

39



Theory and Numerical Methods

3.5.2 Composition

After synthesizing a velocity field with the desired frequency spectrum, this
field has to be combined with the large-scale simulation to form a coherent
flow. First, a separation of the scales for model-dependent large-scale flow
and uniform turbulent behavior has to be introduced. In LES, this is realized
by applying frequency filters while for RANS simulations, the mean flow
field Ū represents the large-scale simulation. Methods employed in Graphics
use a notion similar to RANS. As base simulations with low resolution and a
diffusive semi-Lagrangrian advection typically have an inherent diffusion
higher than the turbulent diffusion in RANS, the simulation is used directly
as the large-scale flow. For synthesis methods based on K41, this assumes the
grid resolution marks the division between the model-dependent range and
the inertial subrange. The former is then represented by the large-scale flow,
while later is obtained by synthesized sub-grid detail.

The most common solution to store sub-grid detail is using a grid of higher
resolution than the base simulation. Some methods also operate on the same
grid resolution as the base simulation – this makes sense as the frequency
cutoff induced by numerical dissipation happens on the scale of the multiple
grid cells. However, the improvement in detail obtained this way is obviously
limited.

To combine large-scale flow and synthetic detail, these two fields are com-
posed. As a first step, this requires upsampling the large-scale velocity field to
the resolution of the detail field. If the frequency spectra of the two fields can
be assumed to be disjunct in the sense of RANS, they can be simply added
(Fig. 3.6). If, on the other hand, the spectra overlap, care has to be taken
that features are not duplicated. This is especially the case if detail field and
large-scale flow fields are of the same resolution. In this case, reinforcement
techniques are applied: The turbulence intensity is measured on the large-
scale field, and compared to the detail field. Only the difference between
these fields is then added to form the resulting field. This approach is used
e.g. in vorticity reinforcement [Selle et al., 2005] and vorticity confinement
[Fedkiw et al., 2001].

Spatial distribution Combining a simulation with a synthesized detail field
as above results in uniform, homogeneous turbulence over the complete field.
For most scenarios, this is not sufficient, as turbulence intensity will vary over
the domain. Here, turbulence predictors are employed to estimate the spatial
distribution of turbulence strength. Simple turbulence predictors measure
small-scale whirls present in the base simulation by vorticity [Fedkiw et al.,

40



3.5 Turbulence synthesis

generated detail combined �eldlarge-scale �ow

+ =

Figure 3.6: A large-scale flow field from a simulation is combined with detail generated
by curl noise synthesis.

2001] or wavelet decomposition [Kim et al., 2008b] and assume they form
the upper level of the turbulent energy cascade. Based on their energy, the
lower levels of turbulence can then be reconstructed. This however requires
a simulation resolution high enough that turbulence is formed at all. In
our methods, we employ energy transfer models as described in § 3.3.1 to
estimate the spatial turbulence intensity.

To incorporate spatially varying fields of turbulence intensity obtained either
way into curl noise synthesis, the detail strength coefficient in Eq. (3.34) can
be modified. Based on Eq. (3.31), this can be achieved either via the turbulent
kinetic energy or dissipation

αS(r) ∝ k ∝ ε
2
3 . (3.35)

Strictly speaking, this violates solenoidality, as the modulation may introduce
divergence. In practice, this is not a problem as long as the gradient of αS is
not too steep, as these divergences do not accumulate over time. For steep
gradients, such as interfaces of buoyant plumes, this will however lead to
visual artifacts. A more correct synthesis could be achieved by incorporating
the spatial intensity distribution directly into the synthesis, for example using
wavelets. To our knowledge, this approach has not been used in any synthesis
method so far, which is largely due to the numerical complexity of performing
a full spectral transfer in each simulation frame.

Temporal coherence One of the most intricate issues in turbulence synthe-
sis is ensuring temporal coherence. This is due to the fact that the two main
goals in temporal coherence are incompatible. First, the generated velocity
field should deform in accordance with the flow. As the turbulent energy
cascade mainly involves forward scattering, it is assumed that the detail field

41



Theory and Numerical Methods

β=1β=0.5initial

Figure 3.7: The texture coordinate field t2 is depicted. Initially, the coordinates corre-
spond to position in space. Over time, the field deforms due to mean flow
velocity, drawn in red here. The field t2 is reset on β = 1, when its coefficient
in Eq. (3.36) is zero.

remains passive, and moves within the large-scale flow. It should however
also not strongly deform, as this will distort the frequency behavior, and
destroy the characteristic turbulent shapes. By advecting the detail field in
the large-scale flow, deformations accumulate and will inevitably induce
strong deformation. This is also a common problem in texture synthesis, and
the solutions are similar in both fields.

The advection in the large-scale flow can be realized using texture coordinates
which index positions in the detail field. At the start of the simulation, the
texture coordinates will correspond to their position in space. Over the course
of the simulation, they are advected in the velocity field which leads to dis-
tortion of the field. The most commonly used technique in preventing strong
distortions is coordinate resetting. After a number of steps, all coordinates
are reset to their position in space. As this will naturally induce jumps in the
velocity field, two sets of texture coordinates are used, and reset alternately.
The generated velocity at a point is then the linear combination based on its
two texture coordinates t1, t2.

u′ = βuD(t1) + (1− β)uD(t2) (3.36)

with β ∈ [0,1] being a sawtooth function in time. The texture coordinate sets
can be reset when its respective coefficient is zero. This process is illustrated
in Fig. 3.7. There are also alternative approaches, such as local resetting based
on deformation strength [Kim et al., 2008b].

42



3.5 Turbulence synthesis

3.5.3 Discussion

When applying turbulence methods, it is important to realize the limits of the
used model and statistic methods in general. This is a point often neglected
in turbulence methods for Graphics. Some violations of the limits will not be
visible and may be tolerable, due to the fact that the human perception system
is not trained to spot inaccuracies in fluid dynamics. Others might severely
affect the perceived realism of the scene. This will also heavily depend on
scene setup and rendering – for example, the anisotropic turbulent transition
region is directly visible for dense smoke, while its effect is less visible for
diffuse smoke. Therefore, statistical, isotropic turbulence models as the ones
described in the previous chapters are likely to produce artifacts for dense
smoke clouds, while results may perceived realistically for a similar setup
with diffuse smoke. In absence of solid perceptional studies, it is therefore
best to be clear about the limits and its violations of the model used. Below,
some common pitfalls and limits of turbulence methods are listed.

The Scales of Turbulence Turbulence modeling and synthesis base on
the fact that turbulence can be separated from the mean flow, and has a
uniform dynamic that is well-described by statistical properties. This is
true only under certain conditions. Most importantly, turbulence should
only be generated for the inertial subrange. Larger scales show nontrivial
interaction with flow obstacles, and both forward and backward scattering.
This means not only is the K41 energy distribution not valid in this regime,
but the dynamics are dominated by coherent structures that can hardly be
captured by a statistical model. Here, a simulation is essential as synthesized
turbulence will inevitably introduce an unnatural look. This means that the
division between simulation resolution and generated subgrid detail has to be
carefully chosen. Another aspect of this is that turbulence models base their
prediction on the mean flow. This means the predicted turbulence intensity
will change depending on the base simulation resolution. This is especially
critical if many turbulent details are already resolved by the base solver, as
the details will act as turbulence sources, resulting in a strong overprediction
of turbulence. In these cases, a full RANS simulation, or an averaged flow
field should be used instead of the base simulation.

Isotropy Both the turbulence models and synthesis algorithms presented
in this chapter only take into account isotropic turbulence. This is a good as-
sumption for fully developed turbulent flows, but not for areas of turbulence
generation or transition. This is due to the fact that turbulence generated from

43



Theory and Numerical Methods

shear will create whirls with a preferred direction, which will only become
isotropic over time (see § 3.3.2). In flows where these areas are clearly visible,
such as open channels and turbulent dense smoke, isotropic models should
not be used – isotropic turbulence will be perceived as noise disturbing the
flow. To include the effects of anisotropy, extensions to both turbulence
prediction and synthesis have to be made. Such a model is presented in
§ 4.2.3. However, even with anisotropic methods, such as Reynolds stress
transport models, there is no guarantee that turbulence transition is well rep-
resented. Turbulence induced by breakdown for example from large coherent
structures can hardly be represented using a statistical approach – for this,
the breakdown has to be modeled explicitly with methods such as the one
presented in § 6.

Accuracy of Synthesis Synthesis methods have to fulfill several constraints,
which are often incompatible, as discussed in § 3.5.1. Therefore inevitably
compromise solutions have to be implemented, whose effectiveness will
depend on a good choice of parameters. Synthesis based on curl noise is
especially problematic at steep interfaces of turbulence intensity, e.g. buoyant
smoke with a sharp density gradient, and flows with strong strain effects.
The latter will induce either strong deformations of the turbulence field, or
interpolation artifacts associated with frequent resets. Either way, coherent
whirls may be reduced to structure-less noise.

Liquids Although in principle turbulence modeling can be applied to liq-
uids as well as smoke and fire, several issues prevent an efficient adoption
of turbulence methods for liquids. First, the energy transfer near the liquid
surface is not well-described by turbulence models. This is a topic of ongoing
research in the CFD community, so far no standard theory as universal and
accurate as bulk flow turbulence theory has been established. The synthesis
step is even more problematic for liquids. The most interesting region is the
fluid surface, which is shown in rendering. However, turbulence at the inter-
face has a completely different dynamic in the bulk flow. The reason for this
is that the interface breaks the separation of mean flow and turbulent detail.
If for example a whirl is synthesized on the surface, secondary waves will
form, which may influence the mean flow. This means applying synthesized
subgrid turbulence is not sufficient, but subgrid interface dynamic has to be
simulated as well, which nullifies the performance gain of the turbulence
method. It is however possible to use turbulence reinforcement in the bulk
flow, which will not increase resolution but counteract unwanted turbulent
dissipation in the flow.

44



3.5 Turbulence synthesis

Outlook In this chapter, the state-of-the art of classical turbulence modeling
and vorticity-based fluid simulation was summarized. In the following
chapters, we will present the methods developed during the course of this
PhD thesis. We build on the theory presented here, extend and adapt the
models to the task of enhancing realism in fluid simulations for Computer
Graphics. First, a general purpose turbulence method for predicting and
synthesizing turbulent detail is presented in § 4. Our approach is geared
towards interactive applications, and designed to be able to produce fine
detail at real time. In § 5 we will then investigate the formation of turbulence
in the wake of obstacles, and develop a method to directly model these
formation processes which allows for realistic detail in the transition range.
Finally, we will study interface effects of turbulent buoyant plumes in § 6.
By appying vortex methods directly on the interface of the plume, we can
generate detail on the surface without the need of volumetric computations.

45



Theory and Numerical Methods

46



C H A P T E R 4
Real-Time Turbulence Methods

In this chapter, we will develop methods to simulate highly detailed, turbu-
lent fluid systems in real time. To this end, we will investigate turbulence
synthesis and prediction techniques which are able to represent complex
features of turbulence without strong reliance on the base solver, and which
are suitable for GPGPU computation. Such approaches will prove useful to
enhance the realism of fluid simulations in interactive applications, such as
Computer Games.

It is generally very difficult to resolve the fine details of turbulent flows
in a simulation, and real-time systems impose even stricter limits on the
simulation resolution used. Real-time simulations would therefore be a
prime field of application for turbulence synthesis methods – as synthesizing
turbulent detail is more efficient and scales better than the direct simulation
of this detail. However, turbulence prediction using real-time solvers is non-
trivial. The low resolution available to the base simulation will result in
a coarse and diffusive velocity field which dampens out flow instabilities.
This means many types of turbulence will not even be generated in this base
simulation. Methods such as the popular Wavelet Turbulence [Kim et al.,
2008b] which directly rely on the base grid as a turbulence predictor will
therefore fail in this scenario. In addition, the real-time constraint precludes
the use of high-resolution grids to store and render the generated turbulence.

We therefore present a synthesis method which uses an energy transfer model

47



Real-Time Turbulence Methods

Figure 4.1: Here, the simulation of the wake of a moving car is shown. The base sim-
ulation in the top left pictures uses a resolution of only 32× 8× 32. This
simulation is augmented with our turbulence method, with a varying number
of particles from 250k to 1M and 4M from left to right. For the simulation
with 1M particles we achieve 15 frames per second on average, including
rendering. While the amount of detail directly depends on the number of
particles used, the overall flow remains consistent.

to correctly predict turbulence intensity even on low resolution grids. In
particular, we explicitly model anisotropy, which allows us the represent
the anisotropic turbulence formation process using turbulence synthesis,
instead of relying on the simulation, enabling realistic behavior even at very
low base resolutions. The method is designed to operate directly on the
Lagrangian markers used for rendering, which eliminates the need for a
costly high-resolution grid representation and allows us to perform synthesis
exactly where needed. As we offload complexity from the fluid solver to
the particle system, we can control the detail of the simulation easily by
adjusting the number of particles, without changing the large scale behavior.
We demonstrate that our algorithm is highly suitable for massively parallel
architectures, and is able to generate detailed turbulent simulations with
millions of particles at high frame-rates.

48



4.1 Overview

+

Grid Particle System
k

u’

U

S u

  Eulerian !uid
  solver

Energy transport
model

Turbulence
synthesis

Particle
advection

Iso

AnIso

q

Guiding 
particles

U

Figure 4.2: An overview of our algorithm. A low resolution grid-based solver provides a
base velocity and strain field. For each particle, a turbulence model is com-
puted, which drives the turbulence synthesis with isotropic and anisotropic
turbulence. The particles velocity is given by the large scale velocity from the
grid and the small scale turbulent velocity.

4.1 Overview

To efficiently simulate small scale turbulence it is not feasible to directly
represent the turbulent motion using a high resolution velocity grid, as the
computational effort increases strongly with grid resolution. Instead, we
describe the turbulence field by its statistical properties, and synthesize tur-
bulence only where needed. Our approach is based on a separation of the
large scale dynamics from the small scale turbulence: large scales are com-
puted using a low resolution fluid solver, while the turbulent detail with
anisotropic effects is computed on the particle system. The particles coincide
with the smoke particles used for rendering, while the grid-based solver is
used to obtain the large scale characteristics of the flow. The turbulence is
computed and synthesized directly on the particles, each of which is influ-
enced by a texture based turbulence representation, and stores a preferred
axis of rotation for anisotropic effects. An overview of our model is given in
Fig. 4.2.

In § 4.2 we describe the modified energy transport model used for prediction
of the spatial distribution of turbulence. This drives the synthesis model
§ 4.2.2, which is extended for anisotropy in § 4.2.3. § 4.3 discusses imple-
mentation details of our approach. Finally, the complete model is tested in
reference scenarios and compared to other methods in § 4.4.

49



Real-Time Turbulence Methods

4.2 Turbulence Model

We chose to describe the turbulence using an energy representation, as this
allows us to adapt powerful transport models for our simulations. The
spatial and temporal energy distributions driving the turbulence synthesis
are obtained using a modified k–ε turbulence model that we will explain in
the following sections.

4.2.1 Energy transport

To simulate the energy dynamics, we use a modified version of the k–ε

model by Launder and Sharma [1974]), which is one of the most widely
used turbulence models in CFD. It is a complete two-equation model, which
unlike one-equation models used by previous methods requires no additional
problem-dependent assumptions. On the basis of a large scale flow field Ū,
it models the two variables k and ε on an averaged large scale. While k
represents the turbulent kinetic energy contained in the smaller scales, ε

stands for the dissipation of the turbulence structures. The k–ε model and
other turbulence models are discussed in the theory section § 3.3.1.

We start with the partial differential modeling equations of the k–ε model

∂k
∂t

+ Ū∇ k = ∇
(

νT

σ1
∇k
)
+ P− ε (4.1)

∂ε

∂t
+ Ū∇ ε = ∇

(
νT

σ2
∇ε

)
+

ε

k
(C1P− C2ε) . (4.2)

Both equations share the same structure: the left-hand side contains an
advection in the mean flow field. The right-hand side of both equations
consist of a viscous diffusion term, a production and a dissipation term, in
that order. The equations are coupled to the mean flow field via the velocity
field Ū and the mean flow strain Sij in the production term

P = 2νT ∑
ij

Sij
2 . (4.3)

Instead of discretizing and solving these PDEs on a Eulerian grid, we compute
them directly on the particle system. This means each particle stores a value of
k and ε, while the coupling parameters of mean flow velocity and mean flow
strain are interpolated from the base flow field. In this Lagrangian setting,
Eq. (4.1) and Eq. (4.2) simplify, as the advection is inherently handled by the
motion of the particles with the flow. Next, let us reconsider the role of the

50



4.2 Turbulence Model

Figure 4.3: We apply our method to an accelerating train that, in the end, comes to
an abrupt halt. Due to our energy transport model, turbulence intensities
correctly adapt to the direction of the flow and the train’s velocity.

diffusion term. The turbulent viscosity νT is a virtual diffusion, which models
the averaged effect of the small-scale turbulent motion as a viscous diffusive
effect on the larger scale of the model. In contrast to CFD however, we solve
the model equations and track our turbulence properties on the particle set.
The particle set is not only advected by the averaged large-scale flow, but
also contains a secondary advection by the synthesized detail motion. This
small-scale advection term causes turbulent mixing of the particles and thus
implicitly describes the behavior which is modeled by turbulent diffusion
term for the large scales in the standard k–ε model. Therefore, the turbulent
viscosity term vanishes in our representation. Avoiding these terms also
allows us to track k and ε independently for all particles and skip a costly
communication step, which is important for GPGPU parallelization. So
far, the isotropic version of our model therefore consists of the following
equations

Dk
Dt

= P− ε (4.4)

Dε

Dt
=

ε

k
(C1P− C2ε). (4.5)

51



Real-Time Turbulence Methods

4.2.2 Turbulence Synthesis

To obtain the detailed motion for the particle system, in addition to the
base flow velocity, a detail velocity component is evaluated directly on the
particles. Unlike previous works which rely on the base solver to predict the
turbulence distribution, we will use the energy transfer model described in
the previous chapter to estimate the spatial distribution of turbulence. We
will discuss our energy model spectrum, and then describe our approach
to compute isotropic turbulence. Extensions for anisotropic effects will be
presented in the following chapter.

Model Spectrum Turbulent energy is usually studied with respect to the
spatial scales of the structures in the flow field. The production of turbulent
energy is typically concentrated in the energy-containing range of a fluid,
its large scales, while dissipation to heat is growing stronger for the small
scales. In between these two extrema lies the so called inertial subrange, in
which the predominant energy transport mechanism is forward-scattering,
transporting the energy from large to small scales. This transfer process can
be modeled with time dependence, e.g. using the transient model of Obukhov
[1941]. However, the model is often not practical, as the exponential nature
of the transfer terms requires a high spectral and temporal resolution for a
stable solution [Panchev, 1971]. Fortunately the transfer phenomena in a flow
quickly drive the distribution to a stationary solution for fully-developed
turbulence. Therefore, practical approaches typically focus on the stationary
solution only. Our method concentrates on scales mostly within the inertial
subrange for which the well known Kolmogorov K41 law, as in [Frisch, 1995],
is a reasonable approximation.

Synthesis To synthesize isotropic turbulence, frequency-matched curl noise
(§ 3.5.1) is used. Similar to [Kim et al., 2008b] the spectrum is divided into N
octaves and each band is synthesized using the curl of band-limited wavelet
noise [Cook and DeRose, 2005] with band coefficients determined using the
K41 law. In all our demos, we uses three octaves. The total velocity u of a
particle is then given by the large scale flow velocity Ū, interpolated from the
low resolution Eulerian solver, and the turbulence velocity:

u = Ū + 2(αSk)
1
2

N

∑
i

ci(q)2−
5
6 i (4.6)

Here, ci(q) =∇×Ni(q) are the curl noise textures as described in § 3.5.1. q
represents a texture coordinate, and k denotes the energy of the largest-scale

52



4.2 Turbulence Model

q u

Figure 4.4: Each particle owns a lookup coordinate into the turbulence velocity texture.
Both the particle position and the texture coordinate are advected by this
velocity, allowing coherent eddies to form.

turbulence band. Instead of storing the texture coordinate on a grid as in
Kim et al. [2008b], in our case the coordinate is stored directly on the particle
system. As we only model forward scattering, we can assume the turbulent
detail map is passively advected in the large-scale flow. This means that both
particles position and the texture coordinate are updated using the turbulent
detail velocity, but only the particle position is advected using the large-scale
flow velocity Ū. This allows the formation of coherent turbulent whirls over
multiple particles, as shown in Fig. 4.4.

The scaling of the wavelet turbulence is chosen such that the largest syn-
thesized vortices cover 2–4 grid cells, as vortices on these scales are usually
dampened out by numerical viscosity of the Eulerian simulation which is bet-
ter able to represent larger vortices. The energy for the synthetic turbulence is
directly given by the k− ε model with k = kiso + kan for each particle, where
kiso denotes the isotropic energy, and kan the anisotropic energy. Assuming
kan = 0 for now, the energy for the largest band is given by α kiso. The scaling
parameter α encodes the shape of the assumed energy spectrum, and can be
used to artificially increase or decrease the strength of the turbulence. This is
one of the two main tuning parameters of our model.

4.2.3 Anisotropy

So far we have only considered isotropic turbulence. Some important effects,
however, most notably the production of turbulence, are highly anisotropic.
Neglecting anisotropy would therefore result in turbulence structures that
are not fully connected to the motion of the underlying base flow. Captur-
ing anisotropy requires both a way to synthesize anisotropic noise, as well

53



Real-Time Turbulence Methods

as an energy transport model capable of providing the anisotropic energy
distribution. For the latter, Reynolds stress transport models as mentioned in
§ 3.3.2 can be used. These models describe the evolution of tensor quantities,
most notably the Reynolds stress tensor. While the complete model is far too
complex to be applied in real-time applications, we will use selected elements
of this theory to augment our model. According to [Pope, 2000], the most
relevant case of anisotropy is the production of elongated vortex structures
due to shear effects. This happens, e.g., at boundaries and leads to rotational
velocities perpendicular to the shear plane, reducing the dimensionality of
the effect from three to two dimensions. Therefore, we consider the case
of turbulence consisting of an isotropic component with energy kiso that is
handled as described above, and a completely anisotropic two-dimensional
component with the energy vector kA. The direction of kA defines the normal
of a plane to which the anisotropic turbulence is confined. This is equivalent
to a preferred rotation axis, and the magnitude of kA defines the energy
contained in the anisotropic vortices.

Energy Dynamics While the k–ε equations Eq. (4.4),(4.5) still hold for the
total energy k = kiso + kan = kiso + |kA|, we need to determine the evolu-
tion equation of the anisotropic component kA. The mechanisms here are
similar to transport of total energy: there is a production, a dissipation and
additionally, a redistribution term. Analogous to Eq. (4.3), the production
vector is given by the turbulent viscosity νT and the strain. We use an eigen-
decomposition to divide the strain tensor into an anisotropic component,
represented with two-dimensional turbulence, and an isotropic component.
In the following, λi denote the eigenvalues and vi the eigenvectors of Sij,
where λ1 has the biggest and λ3 the smallest absolute value. Now consider
the production ellipsoid defined by the vectors pi = 2νT λ2

i vi. The plane
of two-dimensional shear stress is spanned by its two longest vectors p1,
p2, while the plane normal is given by v3. The isotropic component, on the
other hand, is the sphere spanned by the smallest common component of
all vectors, that is |p3|. Therefore, we can define the anisotropic production
vector to be

PA = 2νT (λ
2
1 + λ2

2 − 2λ2
3)v3 . (4.7)

While in areas of high production, e.g. near obstacle boundaries, anisotropic
effects can be observed, the turbulence further away from these regions is
largely isotropic. This is due to the fact that transport processes lead to a
quick isotropization of the turbulent flow. This is true for spatial turbulent
transport as well for transport through the energy cascade. The LRR-IP model
mentioned in § 3.3.2 models this isotropization. If we transfer this model to

54



4.3 Implementation

our turbulence setting, it yields an energy transfer rate of

DkA

Dt
= (1− CA)PA − CR

ε

k
kA . (4.8)

from |kA| to kiso. The standard model constants are defined as CA = 0.6,
CR = 1.8. Here, the dissipation ε is generally assumed to be isotropic, as
it occurs on very small scales, while the anisotropic vortices are initiated
primarily on the larger scales. This means that it is sufficient to solve the
isotropic Eq. (4.5) for dissipation.

Synthesis We now extend the synthesis algorithm from § 4.2.2 for anisotropy
by including additional turbulence bands. As the turbulent kinetic energy k
is composed of an isotropic component kiso and an anisotropic component
kA, we will compose the synthesis term using an isotropic and an anisotropic
part. The isotropic part is equivalent to Eq. (4.6) with kiso instead of the total
energy k. For the anisotropic component, on the other hand, the 2D curl noise
field

c2D(q,kA) =∇× N(q)
kA

|kA|
(4.9)

is used. It is aligned to kA, and thus generates turbulent eddies in the
plane normal to the anisotropy vector. For easier precomputation, we effec-
tively use the field c2D(q) = c2D(q,ez) and then apply the rotation operator
R(kA) = Rot(ez← kA) during the lookup. The total velocity u of a particle
can therefore be determined by the equation

u = Ū + 2(α kiso)
1
2

N

∑
i

ci(q)2−
5
6 i+

2 |α kA|
1
2

M

∑
j

R(kA) c2D
j (q)2−

5
6 j (4.10)

with kiso = k− |kA|. As anisotropy decays quickly in the spectral cascade, we
have found that it is sufficient to use one band of anisotropic turbulence for
the largest scale.

4.3 Implementation

We have implemented our model to execute both the Eulerian fluid simula-
tion and the particle based turbulence model on a GPU. For the underlying
Eulerian solver, we use a typical MAC discretization with second order semi-
Lagrangian advection, as described in [Bridson, 2008] and [Selle et al., 2008].

55



Real-Time Turbulence Methods

Our implementation makes use of a multi-grid solver for computing the
pressure correction, as described in [Cohen et al., 2010]. For the Lagrangian
turbulence model, each particle stores its position and velocity as well as the
turbulence parameters k, ε,kA and q. The evolution of these variables is given
by integrating Eq. (4.4), Eq. (4.5), Eq. (4.8), and evaluating Eq. (4.10), respec-
tively, on the particle system. We use a simple forward Euler integrator for all
of these equations. The strain eigen-decomposition required for Eq. (4.7) is
calculated on each grid cell. As the 3× 3 strain tensor is symmetric, eigenval-
ues can be found efficiently using the analytic formulation [Smith, 1961]. Our
model is designed to work without any particle-particle interactions, and
only a few linear interpolations of data from simulation grid for velocity and
strain are necessary to compute the particle dynamics. This makes it very
efficient to compute even in massively parallel settings. In our setup, the
smoke is rendered online using half-angle volumetric shadowing by Ikits et
al. [2004], enabling the complete framework to run at interactive frame-rates
and therefore providing immediate results. Below, we will discuss important
details concerning stability and initialization.

Stability The k–ε model, being a coupled system of two PDEs in its original
form, has inherent stability problems. Especially k in the denominator of
Eq. (4.5) causes instabilities for flows with low turbulence. Therefore, the
model is usually modified to guarantee stability. A commonly used approach
is a low-Reynolds number treatment, as described in [Pope, 2000]. We use a
simplified version of this approach to ensure that a minimal turbulent energy
is always present in the simulation.

A meaningful range for the turbulent energy k is given by k = 3
2U0

2 I2 , with
the turbulent intensity I ∈ [0 . . . 1]. Here, U0 is the characteristic velocity
scale, which can be determined from the simulation parameters, e.g., the
maximal speed of the car in Fig. 4.1. As suggested in the field of aerodynamics
research [Spalart and Rumsey, 2007], we use a value of Imin = 10−3 as a
minimal turbulent intensity, while, naturally, the maximal intensity is given
by Imax = 1. By restricting the simulation to this meaningful range of values,
the system quickly recovers from overshoots and is stable for arbitrary time
steps.

Similarly, we can define a corresponding range for the values of ε. We obtain
a minimum dissipation by specifying a minimal turbulent viscosity equal to
the molecular viscosity of air νair, which represents a natural lower bound
for the viscosity of smoke simulations. Using the definition of turbulent

viscosity Eq. (3.26) for the k–ε model, we obtain εmin = Cµ
kmin

2

νair
. The maximal

dissipation, on the other hand, can be derived on the basis of a minimal

56



4.3 Implementation

turbulent length scale Lmin, and is given by εmax = Cµ
3
4 kmax

3
2 1

Lmin
. We use a

minimal length scale of 1
10 of a grid cell in our simulations.

Note that these ranges for turbulent energy and dissipation are useful when
allowing users to interact with the simulation. They can, e.g., provide artists
with intuitive parameter ranges for setting up turbulence sources in a scene.

Initial state We seed the particles at the smoke inflow of the scene. As this
will usually not coincide with the fluid inflow region, we need to specify
sensible initial values for the turbulence parameters of these particles. In cases
where the inlet is in a low-turbulence area, we can use the lower boundaries k0
and ε0 as initial values. If, on the other hand, the smoke should be generated
in a turbulent region, we need to specify initial energy levels, as we have
no information about the history of the particles. This can be achieved with
different approaches. We estimate typical turbulent intensities for k and
ε similar to the estimation of maximal bounds described in the previous
paragraph, and use these values for initializing the particles. Here, the
minimal length scale Linlet is another important parameter of our model, and
can be used to tune the amount of turbulence injected into the scene. Another
possibility is to initialize particles with the lower bounds k0 and ε0, and then
perform a small number of iterations of the turbulence model on the newly
seeded particles.

Texture Advection Naturally, the structure of the turbulence should deform
as given by the motion of the flow. However, using a naive approach, e.g.,
updating the local texture coordinate q of each particle using only the large
scale motion with Dq

Dt = u− Ū quickly destroys coherence of the turbulent
structures. By compression and mixing in flow, adjacent particles will even-
tually own strongly divergent texture coordinates. This destroys coherent
structures as in Fig. 4.4 and will inevitably lead to uniform noise instead of
recognizable swirling motions. This loss of coherence is closely related to the
problem of texture field deformation in methods such as [Kim et al., 2008b].
We however do not want to rely on local resetting, as by construction, our
aim is to update each particle without having to know about its neighbors. It
is therefore undesirable to perform any kind of spatial interpolation on the
particles.

We instead use guiding particles to preserve the local coherence of the turbu-
lence. Guiding particles are seeded together with the actual smoke particles,
and assigned to a small group of smoke particles based on local neighbor-
hood. On seeding, each guiding particle is assigned a fixed texture coordinate

57



Real-Time Turbulence Methods

1: // Grid-based Fluid solver
2: Semi-Lagrangian advection of Ū
3: Pressure projection
4: Calculate strain field Sij
5:
6: Seed and initialize new particles
7:
8: for each particle do
9: Sample U, Sij at particle position x

10:
11: // Energy dynamics
12: Compute turbulent viscosity: νT← Cµ

k2

ε
13: Compute production: P←Eq. (4.7)
14: Integrate k← k + ∆t (|P| − ε)
15: Integrate ε← ε + ∆t ε

k (C1P− C2ε)
16: Energy transfer: kA← kA + ∆t (1− C2)P−∆t CR

ε
k kA

17: Stabilize k, ε using kmin,max and εmin,max
18:
19: // Motion equations
20: Synthesize velocity: u← Eq. (4.10)
21: Integrate x← x + ∆t u
22: Integrate q← q + ∆t (qG + x− xG)
23: end for
24: Advect guiding particles in flow field Ū
25:
26: Render simulation data

Figure 4.5: Pseudo-code for the simulation loop.

qG based on its world coordinate, which acts as a local frame of reference for
the texture coordinates of the attached smoke particles (Fig. 4.6).

As the guiding particles represent the motion of the turbulence textures, they
are advected using only the large scale flow from the underlying simulation.
The local texture coordinate of each smoke particle can now be computed
using the local position x with respect to the assigned guiding particle as
q = x− xG +qG. This approach allows us to efficiently preserve locality while
adhering the turbulence motion to the large scale flow. While coherence and
incompressibility are exactly preserved within the particle cloud of a guiding
particle, coherence loss and small-scale deviations from incompressibility
may appear between these clouds. Therefore, guiding particles should be

58



4.4 Results and Discussion

qG

qG

Figure 4.6: Two groups of particles (blue, green) with an associated guiding particle are
shown. The texture coordinate lookup of the individual particles is performed
by taking the geometric distance to the guiding particle, and the associated
guiding texture coordinate qG, which is the same for the cluster. This way,
texture coordinates will stay coherent within the cluster.

seeded such that the associated clouds are compact, sized above turbulence
length scale, and cover all flow paths.

While more sophisticated models for texture advection, e.g., [Yu et al., 2009],
or a dynamic re-assignment of guiding particles could be used, we find that
the described approach works well in practice. In our example scenes, we
seed between 1 and 10 guiding particles per timestep, randomly distributed
across the seeding area. We found this to be sufficient to prevent visual
artifacts due to coherence loss. For more complex flows, one can revert to
global coordinate resetting as described in § 3.5.2 using two sets of texture
coordinates, which provides coherence even under strong deformations. This
may however introduce some additional diffusion, due to the interpolation
between two texture lookups.

The complete simulation loop is specified in the pseudo-code in Fig. 4.5.

4.4 Results and Discussion

In the following, we will discuss several simulations to highlight the features
of our model and differences to previous work.

Comparison with reference simulation In order to evaluate the realism of
our model, we simulate the flow in the wake of a car (Fig. 4.7). The simulation
uses 1M particles, and a base solver resolution of 32× 8× 32. We compare our
model to a 256× 64× 256 high-resolution reference solver. While the exact

59



Real-Time Turbulence Methods

Figure 4.7: The wake behind a car is simulated with 1M particles. Our method (top) and
the reference high-resolution solver (bottom) show similar small-scale details.

form of the turbulence is different between our method and the reference
solver, we observe that both show a similar level of small-scale detail.

Energy model We demonstrate the ability of our model to handle obstacle-
induced turbulence by simulating a flow over a ramp shown in Fig. 4.11. This
setup uses a resolution of the base solver of 64× 16× 16 grid cells. When
using low grid resolutions such as this, flow instabilities induced by obstacles
are dampened out, and no turbulence is induced. This effect can be seen in
the top image of Fig. 4.11. In this example, turbulence should develop to
the left of the ramp as the flow travels from right to left. Our method tracks
causality in the production of turbulence, resulting in a correct swirling
motion perpendicular to the edge of the step, purely behind the sharp edge.
Turbulence synthesis methods such as Kim et al. [2008b] that amplify or
derive turbulent energy directly from the computed velocity field do not
track the causality in the production of turbulence. In this case, Wavelet

60



4.4 Results and Discussion

isotropic

anisotropic

Figure 4.8: In this example, a thin sheet of smoke flows around a cylinder. Here, the side
view is depicted. Using only the isotropic turbulence model (top), the induced
turbulence disturbs the flow, as can be seen by the unrealistic spikes left of the
cylinder. Using our anisotropy extensions (bottom), the turbulence integrates
into the overall flow, and a smooth transition to full isotropic turbulence can
be observed.

turbulence incorrectly produces turbulence in the laminar region right of the
edge.

In a more complex example shown in Fig. 4.3, we simulate a train accelerating
and braking. Here, the source of turbulence is not induced by obstacles, as
in the ramp example, but is due to the pulsed emission of smoke from the
chimney. This is also inherently handled by the production term of our energy
model. Also, correct adaptation of turbulence intensity to the train’s velocity
can be observed.

Anisotropy The effect of anisotropic turbulence is demonstrated in a simu-
lation of a strongly turbulent flow past a cylinder. We seed a thin horizontal
sheet of smoke to the right, visualizing only a slice of the 3D problem. The
side-view of the simulation, with anisotropy handling disabled (top) and
enabled (bottom) is shown in Fig. 4.8. If anisotropy is not handled, isotropic

61



Real-Time Turbulence Methods

Figure 4.9: In this game-like scenario, we show that our approach works well for real-time
applications. The algorithm is easily integrated in the rendering pipeline, and
we are able to achieve frame-rates of 18 frames per second for the complete
game, including simulation and rendering.

turbulence is injected immediately downstream of the obstacle. This leads
to strong disturbances normal to the plane of motion, as can be seen in the
top image of Fig. 4.8. Our model predicts a zone of high anisotropy be-
hind the cylinder. Here, the turbulence is expected to be confined within
the smoke sheet, therefore integrating with the large scale Karman vortices,
before becoming more and more isotropic, towards the left side of the lower
image.

Scalability To demonstrate the scalability of our model, we simulate a
smoke wake behind a car with varying particle numbers, while keeping
the grid resolution fixed at 32× 8× 32. As can be seen in Fig. 4.1, the large
scale flow remains consistent in all cases, while the amount detail is controlled
by the number of particles. As it is sufficient to use a very low grid resolution
for the Eulerian solver in all examples, the performance scales approximately
linearly in the number of particles. With one million particles, our model
achieves 15 frame per second on average (including rendering). Increasing
the number of particles to four millions, we still achieve 4.7 frames per second.
The exact numbers can be found in Table 4.1. This means our model is able
to compute accurate turbulence dynamics efficiently. GPU-based methods
relying on grids are strongly limited in detail due to the available memory,

62



4.5 Conclusions

Figure 4.10: The smoke in this turbulent wake is represented using a particle system. As
we synthesize turbulence directly on the particle system, the particles may
leave the simulation domain, shown as a red box in this image.

the Eulerian solver of our implementation, e.g., is limited to a 1283 resolution
using the same hardware. Using our particle based approach we are, on the
other hand, able to achieve very detailed motion in an efficient manner.

An example of our method in an interactive game-like setting can be seen in
Fig. 4.9. The user controls a smoke emitting gun, demonstrating free stream
turbulence as well as turbulence induced by obstacle interaction. Our method
also opens up the possibility to compute and synthesize turbulence outside
the grid-based solver. If no underlying grid is present, zero turbulence
production and the last encountered large-scale velocity are taken as an input
for the calculation. This allows a smoke volume to leave the domain of the
Eulerian simulation, while still exhibiting turbulent motion, as shown in
Fig. 4.10. This is very useful for interactive applications where the spatial
limits of the domain should be hidden from the user.

For all of our examples, we vary only the α and Lin f low parameters. Recall that
α controls the overall amount of turbulence and Lin f low controls turbulence
at an inlet. Varying only these parameters allows for artistic control while
retaining visual realism.

4.5 Conclusions

In this chapter, a novel scalable algorithm for simulating anisotropic turbu-
lence was introduced. By separating the system into a grid-based solver
and a decoupled particle system without particle-particle interactions, our

63



Real-Time Turbulence Methods

Setup Grid res. #part α Lin Base Part. Total
[ms] [ms] [fps]

Car (Fig. 4.1) 32× 8× 32 250k 2.5 0.04 20 7.6 34
Car 32× 8× 32 1M 2.5 0.04 19 27 15
Car 32× 8× 32 4M 2.5 0.04 20 92 4.9
Car (no turb.) 32× 8× 32 1M – – 19 6.4 20
Ramp (Fig. 4.11) 64× 16× 16 1M 2.6 0.08 19 23 17
Aniso. (Fig. 4.8) 64× 16× 16 1M 15.0 0.1 19 27 15
Iso. (Fig. 4.8) 64× 16× 16 1M 15.0 0.1 14 27 16
Smoke gun (Fig. 4.9) 48× 48× 48 1M 4.2 0.02 25 18 18
Train (Fig. 4.3) 64× 32× 16 6M 3.0 0.05 44 161 3.7

Table 4.1: Performance numbers for our simulation runs. Timings are given per frame.
Base refers to the grid-based solver, while Part. represents turbulence compu-
tation, synthesis and particle system update. The total framerate includes both
simulation and online rendering. All simulations were run on a NVidia GTX
480 graphics card on a workstation with an Intel Core i7 CPU and 8GB of
RAM.

method is highly efficient on parallel systems. The algorithm is driven by
an anisotropic energy transport mechanism, and handles both free stream
turbulence production and turbulence induced by walls. Turbulence is syn-
thesized directly on the rendered particles, which allows the simulation to
handle the full detail that will later on be displayed, while not wasting any
processor cycles for regions that are not visible. This way, we achieve frame
rates of more than 15 frames per second even for detailed simulations with
millions of particles.

On the other hand, our approach is the restriction to single phase fluid simu-
lations. Also, the algorithm does not perform well for large, non-turbulent
smoke volumes, which can have unnecessarily large numbers of particles in-
side the volume that hardly move. Both of these points are interesting venues
for future research. It would be highly interesting to extend our model to
free surface flows for liquids, and use an adaptive particle representation to
handle larger smoke volumes more efficiently.

In addition, we plan to extend our framework to automatically adapt the
level-of-detail for large interactive scenes, as the modularity of our approach
makes it highly suitable to combine different simulation approaches. This will
allow us to smoothly transition from a simple static flow field, to a Eulerian

64



4.5 Conclusions

Figure 4.11: A flow over a ramp is simulated. The low-resolution solver (top) does
not represent the flow instability after the edge of the ramp. Therefore
methods like Wavelet Turbulence (middle) that depend on the solver for
energy calculations also fail to catch the correct turbulence seeding region.
Our model (bottom) is able to predict turbulence production due to a full
energy transport model.

fluid simulation, while finally adding detail with our anisotropic Lagrangian
turbulence model.

Another limitation is that our algorithm can exhibit artifacts when the un-
derlying simulation is not able to resolve all features of a flow, e.g., in the
presence of very thin objects. As our underlying coarse grid solver [Cohen et
al., 2010] can only handle first-order accurate boundary conditions, stair-step
artifacts may appear around solid curved obstacles. It would therefore be
interesting to pair our method with a more accurate real-time solver, and to
extend our particle based simulation to handle sub-grid geometric detail.

Finally, this approach shares the limitations of all statistical turbulence syn-
thesis methods, in that turbulence transition is not well-represented. The

65



Real-Time Turbulence Methods

breakdown of coherent structures to turbulence is not easily modeled in a
statistical manner. As our extension for anisotropy guarantees that the overall
shape of the turbulence distribution behaves accordingly, it is able to produce
convincing results for fast-developing turbulence. The statistical approach
will fail, however, for slow turbulence breakdown, which is visible e.g. in the
interface of dense buoyant smoke plumes, or in instable flows.

The methods developed in the two following chapters will address this
inherent issue. By directly modeling the turbulence transition process using
vortex methods, they allow to represent a wide range of turbulent effects that
have not been accessible to turbulence methods.

66



C H A P T E R 5
Modeling Obstacle-Induced Turbulence

Many interesting forms of turbulent flow originate from the complex inter-
action of flows with obstacles. At the wall of these obstacles, a very thin
boundary layer forms, which may separate from the wall, become instable
and form free turbulence. As these processes occur on a lengthscale below
the resolution of most simulations, the turbulence generation process is often
misrepresented or simply omitted. Even turbulence reference scenarios from
CFD, such as driven cavities or passive grids are only represented correctly
using very expensive high-resolution simulations.

In this chapter, we will develop a method to model this process and predict
turbulence generation by flow obstacles. Instead of synthesizing turbulence
using a frequency-matched curl noise texture as in § 4, we will directly rep-
resent the turbulence eddies using vortex particles, which enables coherent
anisotropic structures in e.g. turbulence transition. Together with predic-
tion, this will allow us to represent a wide range of complex turbulence
effects, which can not be achieved using the general-purpose turbulence
model presented in the previous chapter. As we are able to precompute
the formation process for a given obstacle geometry, we can even correctly
predict turbulence generation from obstacles thinner than grid resolution
(Fig. 5.1).

While turbulence detail enhancement using vortex particles has been previ-
ously studied in Graphics [Selle et al., 2005], these methods deal with the

67



Modeling Obstacle-Induced Turbulence

Figure 5.1: Our algorithm allows us to precompute detailed boundary layer data and
efficiently reuse it for new simulations. We are able to generate turbulent
vortices taking into account the relative velocity of an obstacle in the flow.
Here, we apply our algorithm to a very thin object that is barely represented
on the simulation grid.

preservation of vortices manually injected in the flow. We use an enhanced
version of the vortex particle approach and combine it with turbulence meth-
ods to guarantee that particles are accurately seeded and the energy dynamic
adheres to what is predicted by CFD turbulence theory. Moving the compu-
tations for the generation of turbulence into a preprocessing step allows us to
quickly set up new simulations around a given object. The contributions of
our method are:

• A new method to accurately track and precompute boundary layer vorticity
using an artificial boundary layer whose accuracy is independent of a final
simulation resolution.

• An algorithm to process the precomputed data in a dynamic simulation to
spawn vortices according to the current flow.

• A vortex particle method that models vortex interactions and adheres to
turbulent energy transport theory.

68



5.1 Overview

5.1 Overview

The algorithm presented consists of a precomputation step for the scene
geometry, and a simulation step.

The precomputation step captures the characteristics of the boundary layer
around the object, and stores it for different sets of flow directions. This allows
us to purely resolve the geometry of the object with the precomputation,
instead of having to fully resolve the actual flow velocity in the often very
thin boundary layer. For this precomputation, we assume that an object can
be characterized by a relative translational and rotational velocity, allowing
for simulations of rigid body motion or static flows of arbitrary direction.

The main simulation method consists of a standard, grid-based fluid solver,
e.g. according to Stam [1999], augmented with a turbulence representation.
The precomputed boundary layer data is used to efficiently calculate where
vortices are created around the object in a separate simulation. We compute
the evolution of boundary layer around the object, and estimate regions where
this field becomes unstable to form actual turbulent vortices. The turbulent
vortices are represented using an improved variant of vortex particles [Selle
et al., 2005], which induce rotation in the flow around the particle position.
While the vortex particles are created based on boundary layer vorticity, their
dynamics is based on the vorticity equation. In an additional step, we re-
mesh the particles and adjust the particle kernel to ensure a correct turbulent
energy distribution. The resulting vorticity is finally reconstructed onto a
grid with higher resolution than the base simulation.

The key point of this chapter is the turbulence estimation and vortex particle
seeding mechanism. In § 5.2, we will develop a theory for this. In § 5.3,
the dynamics of the vortex particles are described, and the coupling of the
vortex particles to the flow field is explained. The actual simulation loop and
implementation details are discussed in § 5.4. The simulation loop is also
visualized in Fig. 5.2. Finally, we will evaluate the method and present results
in § 5.5.

5.2 Wall-Induced Turbulence

While turbulence in flows is generated by various processes, a very common
and visually important one is turbulence generation at the flow boundaries.
Therefore, our algorithms explicitly model this important process. In this sec-
tion, our turbulence estimation method is introduced. It bases on turbulence

69



Modeling Obstacle-Induced Turbulence

2) Compute Flow Field 3) Re-use Boundary Layer
and Compute Separation

4) Identify Turbulent
Transition Regions

1) Pre-compute Arti�cial
Boundary Layers

5) Simulate Vortex 
Dynamics

Figure 5.2: An overview of different steps of our algorithm. After precomputing the
artificial boundary layer (1), we run or not a new simulation (2) and apply the
confined vorticity from the precomputation (3). Regions transitioning into
turbulence are identified with an approximation of the Reynolds stress (4).
This results in the creation of vortex particles. Their dynamics are computed
in an additional step (5).

modeling and wall flow theory, which is introduced in § 3.3. A more detailed
account can be found in the book by Pope [2000].

5.2.1 Generation of turbulence

In wall-bounded flows, wall friction enforces a tangential flow velocity of
zero at the wall. This leads to the formation of a thin layer with reduced
flow speed, called the boundary layer. Fig. 5.3 shows a velocity profile in
the boundary layer. It has been shown that this profile is equivalent for all
wall-bound flows when using normalized units. This universal law of the wall
was stated by van Driest in [1956].

The gradient of tangential flow velocity in the boundary layer leads to the
creation of a thin sheet of vorticity ωωω =∇× u. For planar walls, this vorticity
remains mostly confined to the boundary layer, and we will thus refer to it as
confined vorticity. At regions of high flow instability however, vorticity may
be ejected from the boundary layer and enter the flow as turbulence. This
happens e.g. at sharp edges, where the boundary layer is separated from
the wall, and likely to become unstable, or when other turbulent structures
disturb the boundary layer. This process of turbulence formation is referred
to as roll-up, and is the predominant mechanism of wall-induced turbulence
generation [Jiménez and Orland, 1993]. There is no theory quantitatively
describing the boundary layer roll-up process. We will therefore model this
process in a statistical sense, as explained below.

70



5.2 Wall-Induced Turbulence

Turbulence modeling We base our approach on CFD turbulence modeling
techniques. These techniques model statistical properties of turbulence based
on the ensemble-average of the flow field u. For a quasi-static flow, ergodicy
permits us to use the time-averaged flow field, i.e. the flow field with all fluc-
tuating turbulent structures averaged out, instead of the more complicated
ensemble averaging.

One of the most important quantities that can be modeled in such a way is
the Reynolds stress tensor. It governs the transfer of energy from the bulk
flow to turbulent structures, and thus the generation of turbulence. This fact
is commonly used for RANS or LES simulations, and we will make use of it
for our method as well. Next, we will describe how we model the boundary
layer.

Boundary layer modeling In order to accurately model wall-induced tur-
bulence formation, we need to track the confined vorticity, simulate the
boundary layer separation and finally identify the transition points to turbu-
lence.

As the boundary layer attached to an obstacle is very thin (smaller than
simulation grid resolution in most cases), it is difficult to directly measure
the confined vorticity. Instead, we leverage the universal law of the wall,
and note that the confined vorticity only depends on the velocity scale and
materials constants. For each point in the wall-attached boundary layer we
therefore determine the confined vorticity as

ωωωABL = β(Us × n) . (5.1)

The velocity scale Us is the tangential component of the averaged flow ve-
locity just outside the boundary layer. The constant β accounts for the two
material constants, skin friction coefficient and the fluid viscosity. In our
model, β is a user-defined parameter. We call the resulting field ωωωABL the
artificial boundary layer.

On the other hand, boundary layer separation is an advective transport
process. If the wall-attached part of the artificial boundary layer is known,
then the separation plume can be derived by advecting this field with the
flow field during the simulation run.

The last missing part is to identify regions where the separated boundary
layer becomes unstable, and the confined vorticity ωωωABL transitions to free
turbulence. The anisotropic part of the Reynolds tensor aij, which is responsi-
ble for the production of turbulence, is a good indicator for such transition

71



Modeling Obstacle-Induced Turbulence

tangential �ow velocity

di
st

an
ce

 to
 w

al
l

viscous
sublayer

bu�er
layer

log-law
region

Figure 5.3: The mean velocity profile near a wall (in normalized units) has the form
shown above. This has been confirmed in numerous experiments, and was
formulated as a universal law by van Driest.

regions. We therefore define a transition probability density pT, which is used
to seed turbulence,

pT = cP ∆t
‖aij‖
|U0|2

(5.2)

such that regions with high Reynolds stresses are likely transition regions.
Here, ‖ · ‖ denotes the Euclidean matrix norm. Reynolds stresses are nor-
malized to a uniform scale by the inflow velocity U0, and cP is a parameter
to control the seeding granularity. If using varying time-steps, pT has to be
multiplied by ∆t to ensure consistent behavior. In the following, we will
describe how to compute the Reynolds stress tensor based on stresses in the
averaged flow field.

Reynolds models The anisotropic component aij of the Reynolds stress
tensor Rij can be expressed using the turbulent viscosity hypothesis

aij = −2νTSij , (5.3)

where νT is the turbulent viscosity and Sij denotes the strain tensor. The
turbulent viscosity can be expressed in terms of a mixing length lm. We chose
the model of Baldwin [1978] for modeling the turbulent viscosity which states

νT ≈ lm2‖Ωij‖ . (5.4)

72



5.2 Wall-Induced Turbulence

with the rotation tensor Ωij. While the mixing length is not known for the
general case, we will only apply this model in the near-wall region, where lm
is known to be linear in wall distance. Using these standard methods, it is
possible to predict the generation of turbulence using only the non-turbulent
mean flow velocities.

However, the presented Reynolds stress model requires a high grid resolution
around the boundaries to capture the thin boundary layer accurately. In a
typical fluid simulation in graphics, the boundary layer thickness is often
smaller than a grid cell. Consequently, the discrete S and Ω operators will
fail to capture the desired effect, or even cause instabilities due to highly
discontinuous gradients, as also mentioned by, e.g. Narain [2008].

We therefore propose two changes to this model. First, we know that in
regimes close to a wall, the norm of the rotation tensor equals the norm of
the confined boundary layer vorticity, ‖Ωij‖ = |ωωωABL|. Also, we assume
that ‖Sij‖ ≈ ‖Ωij‖. This is a good approximation if the velocity gradient is
dominated by the component normal to the wall [Pope, 2000], which, except
for sharp corners, is usually the case in the near-wall region. With these
assumptions, we can rewrite the Reynolds stress without the problematic
discrete stress and rotation tensors as

‖aij‖ ≈ 2lm2|ωωωABL|2. (5.5)

Combined with Eq. (5.2) this leads to the final equation for the transition
probability.

pT = 2 cP ∆t lm2 |ωωωABL|2
|U0|2

. (5.6)

The seeding process for vortex particles, based on pT, is explained in § 5.3.2.

5.2.2 Precomputing the Artificial Boundary Layer

The artificial boundary layer together with Eq. (5.6) can be used to seed
turbulence, in the form of vortex particles, in the appropriate places of the
flow. However, the expression for the wall-attached ωωωABL depends on the
averaged flow field U, which is not accessible during the simulation. It is not
possible to use the instantaneous flow field of the simulation, as the emerging
turbulence would lead to feedback loops. However, we can precompute
ωωωABL for quasi-static scenes or scenes with rigidly moving objects. This
has the additional advantage that we can choose simulation resolution and
precomputation resolution independently, allowing us to precompute fine
boundary geometries, while running the simulation on a coarse grid.

73



Modeling Obstacle-Induced Turbulence

Figure 5.4: The top picture show a basic simulation of a fluid flowing left to right over a
cavity. This flow produces a big vortex in the cavity, but is unable to capture
any generation of turbulence from the walls. With our method (pictures on
the right) we are able to identify the confined vorticity shedding off the two
edges of the cavity, and introduce corresponding vortex particles to represent
the turbulent structures forming in the flow.

Precomputation is done by running a standard fluid solver, and time-
averaging the flow field. At all obstacle boundary voxels, Eq. (5.1) is evalu-
ated, and ωωωABL is stored in a suitable data structure (see pseudo-code Fig. 5.5).
More details on the implementation of the precomputation step, and how
the precomputed data is used in the simulation will be given in § 5.4. In the
next section, we will explain how to compute the dynamics of our turbulence
representation.

74



5.3 Turbulence Synthesis

1: Perform standard grid-based simulation
2: Obtain time-averaged flow field U
3: for each voxel x on the obstacle boundary do
4: // Get voxel outside the boundary layer
5: xe← x + l n
6: ωωωPRE← β (U(xe)× n)
7: Store (x,ωωωPRE) in a point set
8: end for

Figure 5.5: Pseudo-code for precomputing the Artificial Boundary Layer. n denotes the
surface normal and l is the boundary layer thickness. l is chosen to be the
distance from the wall at which the velocity gradient approaches zero, usually
1-2 grid cells.

5.3 Turbulence Synthesis

We chose to synthesize turbulence using vortex particles. In contrast to curl
noise-texture based turbulence methods, vortex method directly represent
the turbulent structures, and therefore automatically preserve coherence.
Transition processes can directly be modeled, as they allow more degrees
of freedom in anisotropy. Sparse particles allow us to focus on sampling
the regions where turbulence is actually generated. Narain et al. [2008] use
particles with curl noise textures as a turbulence representation. However, the
blending of noise textures creates diffusion, and this approach only supports
isotropic turbulence. As we want to model highly anisotropic generation
processes, and extend our model into the model-dependent range, where
no uniform direction and energy distribution can be assumed, we use an
enhanced variant of the vortex particle method by Selle [2005] instead. In
contrast to the original paper, we also model energy transfer and make use of
an improved synthesis step.

5.3.1 Vortex particle dynamics

Turbulence dynamics can be seen from two points of view: The vorticity
differential equation describes the direct evolution of the vorticity field, while
the energy transport equation describes its statistical behavior. Both consist
of terms for advection, generation, dissipation and scale transfer, but have
different advantages for a Lagrangian representation. While the vorticity
equation is well suited for describing dynamics, the injection and dissipation
of energy via particle creation and dissipation is easier in an energy formu-

75



Modeling Obstacle-Induced Turbulence

lation. We will use a combination of both representations to leverage the
strengths of both models.

Motion equation The motion of vortex particles is described by the vorticity
equation Eq. (3.4). However, we will use the vortex particles not as a full
representation of the velocity field, but use it in combination with a grid-
based Navier-Stokes solver. The velocity field u therefore consists of two
parts, the flow field of the grid solver Ū and the detail velocity induced by the
vortex particles. We leave external forces and baroclinity to the underlying
solver, which will affect the vortex particles via its velocity field. With this,
the evolution for the vortex particles becomes

∂ωωω

∂t
+ (u · ∇)ωωω = (ωωω · ∇)u + ν∇2ωωω . (5.7)

The left side of the equation is handled by advecting the particles in the
final high-res flow field augmented with turbulence. The first term on the
right-hand side is the vortex stretching term. It is computed by trilinear
interpolation of the discrete gradient of the velocity grid, and is used to adjust
the particles’ vorticity magnitude by ∆t(ωωω · ∇)u. This term is problematic
as it might introduce exponential accumulation of vorticity magnitude in a
particle. Therefore, the particle is rescaled after the update to preserve the
magnitude, effectively only spinning the particle, but not altering its strength.
The strength, effectively a measure of energy gain and loss, is handled by
the energy dynamics, which is explained in the next section. Similarly, the
viscous diffusion term (the second term on the right hand side of Eq. (5.7)),
will be handled by energy dynamics, as it is not easily represented on a sparse
particle system.

This gives us a reduced formulation of Eq. (5.7) which conserves vorticity as
well as energy. It is therefore orthogonal to the energy transfer equations, the
computation of which we will describe next.

Energy dynamics To model the transfer of energy, we will model energy
transport in the sense of a turbulence model § 3.3. As the turbulent energy
in our system is represented using vorticity, not kinetic energy k, it is not
practical to directly solve the energy transport equation of a turbulence model.
Instead, we express the individual energy transport terms to our vorticity
model and apply it directly on our particle system. In its most general
formulation, the turbulent energy transport equation states

∂k
∂t

+ (u · ∇)k = −∇ · T + P − ε . (5.8)

76



5.3 Turbulence Synthesis

Figure 5.6: Example of a moving object inducing turbulence in its wake. On the left, the
base simulation is shown. In the images on the right, this simulation has been
augmented with vortex particles using our method. As the car accelerates
(middle and lower picture), more turbulence is expected – this behavior is
correctly predicted by our model.

The left hand side again is represented by advection of the particles. The right-
hand side consists of production P , dissipation ε and the energy transfer
term∇ · T, which is approximated using the gradient diffusion hypothesis in
classical turbulence models. Outside the inertial subrange, this quantity is
however hard to model. Its behavior will therefore be based on the length
scale, as explained below.

For the production term, we can use the information from our artificial
boundary layer (see § 5.2.2). The dissipation ε occurs at wavenumbers that
are usually well below the resolved grid resolutions. Dissipation is therefore
implemented by removing particles whose radii are too small to be repre-
sented on the grid. We use a threshold of 2∆x for our simulations. Finally, for
handling the remaining energy transfer term for T of Eq. (5.8), we distinguish
the following two cases:

1. The particle is in the inertial subrange. We represent the energy cascade by de-
caying a particle with wavenumber κa into n particles of smaller wavenum-
ber κb. We typically use n=2 in our simulations. From Kolmogorov’s law,

77



Modeling Obstacle-Induced Turbulence

−5 −4 −3 −2 −1 0 1 2 3 4 5

−0.5

0

0.5

1.0

x [ σ ]

[ ω
P ]

 

Ψ
Velocity  u 
Vorticity  

Vector Potential 

ω
y

z

z

σ

Figure 5.7: Vector potential, velocity and vorticity of the vortex particle kernel are shown
along a x-axis slice.

we can derive a timescale of decay as ∆t = C(κ−
2
3

a − κ
− 2

3
b ), where C denotes

a parameter that depends on the rate of dissipation ε. In practice we can
use a value normalized by the averaged flow U here. We also know that for
the turbulent energies ka/kb = n (κa/κb)

− 5
3 holds, which is used to derive

the vorticity magnitude of the new particles. For practical reasons, we also
add a small position and angle displacement to the new vortex particles, as
they would otherwise lump together.

2. The particle is in the model-dependent range. As transfer cannot be easily
described in this regime, a heuristic is used. Typically, small vortices with
aligned direction tend to form larger vortices in this range. Therefore, we
merge vortex particles in the model-dependent range with a distance of less
than the particle radius to a single larger vortex particle. Here, the vortex
magnitude is chosen so that total the energy is conserved as knew = k1 + k2.
As very small and strong vortex particles might induce stability problems,
we also conserve the energy density, i.e. knew

Vnew
= k1

V1
+ k2

V2
. This specifies the

radius and strength of the merged particle. The new direction is obtained
by a weighted average, with the respective energies as a weight.

5.3.2 Vorticity Synthesis

To synthesize turbulence from the vortex particles, we need to obtain a detail
velocity field from the particles system. Each vortex particle has a vorticity
vector ωωωP, encoding magnitude and rotation axis, and a kernel over which
this value is applied. The detail field can be obtained by integrating this
vorticity kernel and mapping it on a higher-resolution grid.

78



5.3 Turbulence Synthesis

Kernel For the direct regulation of vorticity, a kernel with the following
properties is desired: at the vortex particle center, vorticity should be equal
to ωωωP. Also, the resulting vector field should mainly contain rotation around
ωωωP, and smoothly fade out with the particle radius without causing discon-
tinuities. And lastly, the associated velocity field, and its integral, which is
needed for e.g. energy calculation, should be a simple analytic form. We
chose a Gaussian peak with standard deviation of σ in the vector potential to
meet these requirements. In cylindrical coordinates, it is given by

Ψ(z, ϕ,ρ) = −|ωωωP|σ2 exp
−ρ2−z2

2σ2 ez , (5.9)

where the vortex axis ez is aligned with ωωωP. We can then derive the velocity
field

u =∇×Ψ = −|ωωωP|ρ exp
−ρ2−z2

2σ2 eϕ , (5.10)

and the vorticity kernel

ωωω =∇× u = −|ωωωP|
σ2

(
ρz eϕ − (ρ2 − 2σ2)ez

)
exp

−ρ2−z2

2σ2 . (5.11)

A cut-off radius is used to make the kernel support finite. We use r =
√

6σ

at which point the exponential term of the kernel function has fallen to 10−3.
The length scale is defined at the kernels’ origin, so that its wavenumber is
κ = 1

σ . For the contained energy E ∝ ωωωP
2 σ5 holds.

Synthesis To combine the detail field and the velocity field from the under-
lying solver, these two fields could be simply added, as in the method in § 4.
However, we also want to allow vortex sizes above the grid resolution of the
underlying solver, which means turbulent detail might overlap with existing
vortices from the base solver. Therefore, we need to exclude vorticity already
represented in the base solver to avoid duplication. To achieve this, the base
grid vorticity is measured, and only the difference is synthesized on the detail
field.

The synthesis is a three-step process: First, the vorticity field ωωω =∇× u of the
velocity grid is computed by finite differences. Second, all particle vorticity
kernels are summed up to obtain a desired vorticity field ωωωD. And third, each
particle adds its kernel to the velocity field, scaled by a weight wk, computed
as:

wk =
∑kernel(ωωωD −ωωω) · ω̄ωωP

∑kernel ωωωD · ω̄ωωP
, (5.12)

where ω̄ωωP is the particles’ normalized rotation axis. The dot product with ω̄ωωP
ensures that only the vortex particles’ direction is considered, and the kernel

79



Modeling Obstacle-Induced Turbulence

Figure 5.8: In this example a static flow field is used to generate complex turbulence
around an object with our method.

is normalized by the sum of desired vorticity. We achieve an exact regulation
of the vorticity sum under the kernel in one timestep by this process.

Vortex particle seeding As explained in 5.2.2, particles will be seeded in
regions of high normalized Reynolds stress. Based on the probability pT(x)
from Eq. (5.6), a particle is created at position x.

All confined vorticity ωωωABL within the particle’s radius is removed from the
artificial boundary layer, and the particle’s strength and direction ωωωP are set
such that the vorticity integrated over the kernel equals the removed vorticity
sum. We choose the particle radius to be as large as possible without touching
an object. We allow for radii up to a size rmax which is fully resolved by the
main simulation (we have used a value of rmax = 6∆x below).

The constant cP in Eq. (5.6) controls the granularity of the seeding process. If
set to a high value, confined vorticity is turned into free turbulence relatively
quickly. This results in a large number of weaker particles near the object,
which then merge to large vortices. On the other hand, if cP is set to a high
value, the artificial boundary layer plume can grow, and fewer, stronger
particles form. With an appropriately chosen cP, numerical cost can be kept
low while avoiding popping artifacts that may occur if overly large particles
are seeded. We use a cp of ≈ 1− 4 in our simulations.

80



5.4 Implementation

10 20 30 40 50 60
0

10

20

30

40

50

number of samples N

m
ea

n 
de

vi
at

io
n 

[%
]

Figure 5.9: Mean relative error of the artificial boundary layer values for the car model. A
reference simulation is compared to a spherical interpolation with N samples
for the azimuth.

5.4 Implementation

In this section, details on our implementation of the precomputation step and
the main simulation loop are provided.

5.4.1 Precomputation

For precomputing the artificial boundary layer, it is essential to resolve the
mean flow around an object. This can be done using time-averaging over
a long period of time with a standard solver, or using a RANS solver. As
we are only interested in the velocities around the boundary layer, we have
used a standard solver with an artificially increased viscosity in the form
of a diffusion step for the velocities. Due to the increased viscous effect, it
stabilizes quickly and an average over fewer frames can be used. We have
found that using the more complex RANS or longtime-averaging does not
pay off visually compared to this more efficient solution. After obtaining
the averaged flow field, the boundary layer is calculated according to the
pseudo-code (Fig. 5.5) and stored as a point set.

Moving objects To precompute the flow for scenes with moving objects, the
boundary layer around each moving objects is precalculated. If the object can

81



Modeling Obstacle-Induced Turbulence

move and rotate freely, or its movement is not known a priori, our algorithm
allows us to precompute the whole range of movement directions to later on
generate arbitrary simulations of the object in a flow. For this, we split the
movement into a translational and a rotational component and precompute
artificial boundary layers for each.

To perform the precomputation, the object is placed in the center of a simu-
lation grid. The domain box is chosen large enough not to disturb the flow
around the object. For the translational component, we leave the object fixed
and use different inflow velocities, defined as boundary conditions on the
domain box. As ωωωABL is linear in the velocity magnitude, we only need to
sample the velocity direction. In our simulations, we use 10× 20 samples
in spherical coordinates. For the rotational component, the object is placed
in a standing fluid, and we rotate the object with normalized speed around
a chosen axis. Again, we use 10× 20 samples in spherical coordinates to
sample the rotation axis direction.

The simulations stabilize quickly due to the increased viscosity. We have
used 50 steps for the examples shown in our video. In the precomputations
for the rotational component, this is equivalent to one full rotation. After
stabilizing, we average the velocities over another 50 frames. We note that
precomputations for each direction can be trivially done in parallel.

Applying the precomputed set At simulation time, we determine the ob-
jects linear velocity relative to the scene, and its rotation axis. We then look
up the nearest values in the precomputed database. A bilinear spherical
interpolation is performed for both the linear velocity direction as well as
the rotation axis. The results of the interpolation are scaled by respective
magnitude and added. We have performed error measurements for the linear
interpolation of the boundary layer values. The corresponding graph can be
seen in Fig. 5.9. Our choice of 20 directional samples in the azimuth means
we have an interpolation error of 1.6%. As the decomposition into rotational
and linear component is only an approximation, we have also measured its
error for the car model (Fig. 5.6). In this case the error is 8% on average, and
thus small enough not to cause visual artifacts.

It is not necessary to fully resolve the boundary layer during the precom-
putations, as our model described in § 5.2.1 takes care of this. Instead, one
should make sure the resolution of the precomputation is sufficiently fine to
resolve all important geometric features of the object. This is eased by the
precomputation focusing only on that object, even if it will only occupy a
tiny fraction of the final simulation domain. In addition, since the precompu-

82



5.4 Implementation

Setup Fig. 5.1 Fig. 5.6 Fig. 5.10 Fig. 5.8

Grid res. 160·70·160 150·40·200 100·25·60 250·80·150
ABL upscaling 2 2 2 1
Frame time [s] 19.5 13.4 10.0 1.3
ABL time [s] 5.5 3.7 0.05 0.7
# particles ∼900 ∼700 ∼600 ∼1000
Vortex gain β 6.2 0.4 3.2 4.0
Precomp. res. 70x150x70 70x70x120 100x25x60 250x80x150
Precomp. [s] 220 112 59 227

Table 5.1: Detailed statistics for our simulation runs. ABL upscaling refers to the up-
sampled grid on which vortex particle evaluation and smoke/levelset advection
is performed. The precomputation time is given per database parameter.

tation can be used on many simulations, a high resolution precomputation
grid can quickly pay off. In § 5.5 we demonstrate the effectiveness of the
precomputation even when an object is extremely thin.

5.4.2 Simulation loop

For the actual simulation, a standard fluid solver and a vortex particle system
are coupled. In each simulation step, the artificial boundary layer is updated,
new vortex particles are created and vortex particle dynamics are applied.
Afterwards, the turbulence forces are added to the flow field, and finally,
the remaining steps of the standard fluid simulation are performed. This is
repeated each time-step. Pseudo-code for this extended simulation loop can
be found in Fig. 5.12

Note that we can also independently choose a higher grid resolution for the
evaluation of the vortex particles. This allows us to more accurately evaluate
the particle kernels, which is especially useful for small scale vortex details.
This high resolution velocity field is down-sampled for the main simulation
steps (line 28 in the pseudo-code), and up-sampled for our algorithm before
starting with line 1. Performing the algorithm (line 1–25) with a higher
resolution enables us to simulate detailed features, e.g., when advecting
smoke densities or a free surface level set, while the costly pressure projection
operates on a small grid resolution. Typically, we have used a two times
higher resolution for the examples below.

83



Modeling Obstacle-Induced Turbulence

5.5 Results and Discussion

In the following section we discuss comparisons of our method to previous
work and a reference simulation. In addition, we demonstrate several com-
plex examples of turbulence being generated around moving objects or due
to effects such as wind or a flowing river.

Comparisons In Fig. 5.4 the effect of our wall-induced turbulence can be
seen for the flow over a cavity with a grid resolution of 120× 60× 40. The top
image shows a standard, unmodified simulation, while the lower image uses
our algorithm to introduce wall-induced turbulence. Both simulations use the
same grid resolution, but the unmodified simulation is unable to capture any
turbulence being generated from the shearing near the walls. Our simulation
exhibits complex vortices due to the vorticity generated at the wall bound-
aries. To compare our method to approaches for synthetic detail generation,
we have simulated the same cavity setup including wavelet turbulence, using
the implementation available on the paper’s website [Kim et al., 2008b]. This
comparison is shown in Fig. 5.11(B). Wavelet turbulence successfully adds
small detail to the overall flow, but has difficulties introducing larger vortices
to the strong horizontal motion. In contrast, our method introduces persistent
larger vortices, while the resulting smoke filaments are successfully broken
up by the wavelet turbulence. This shows that our method is suitable for
bridging the gap between small synthetic vortices and the vortices resolved
by a standard simulation.

We use the setup shown in Fig. 5.11 to compare our method with normal
vortex particles [Selle et al., 2005]. The simulations now focus on the left
edge of the cavity. The image (A) shows a reference simulation, using a
four times increased grid resolution. Note that the flow along the wall to
the left is completely straight, while turbulent structures form to the right
of the backward facing step. This behavior has been confirmed in various
experiments and simulations (e.g. [Le et al., 1997]). The image (C) shows the
flow after randomly introducing vortex particles along the walls. Naturally,
the vortex particles do not take the overall flow into account, and strongly
distort the structure of the flow. Our method, shown in picture (D), is able
to recover the vortices being shed off the step, without distorting the flow
along the wall to the left. Although we are not able to fully recover the flow
of the reference simulation due to the different numerical viscosities, our
method is able to qualitatively capture the wall-induced turbulence at a much
lower computational cost. On average, the time per frame for the reference
simulation was 218 times higher than for the simulation with our algorithm.

84



5.5 Results and Discussion

Figure 5.10: Our algorithm naturally extends to simulations of liquids. Here, we apply
our algorithm to a river flow around three obstacles, resulting in turbulent
wakes behind them.

The limitation that motivated vortex particles was that vorticity confinement
uniformly amplified vorticity magnitude. Our method, like vortex particles,
overcomes this by allowing local modeling of vorticity, including effects
like tilting and stretching. However, by modeling the boundary layer and
considering the directions of particles vortices with Eq. (5.1), we are able
to keep vortex particles from disturbing the bulk flow. This allows us to
use vortex particles of larger magnitude than the randomly seeded vortex
particles.

Complex Examples Next we consider examples with more complex geome-
try. Fig. 5.6 shows the simulation of a moving car that is emitting smoke. It
can be observed how our model reproduces the dependence of turbulence
strength from the cars velocity. As can be seen in the top row of Fig. 5.6, a
normal simulation of the same resolution would not resolve any shed vortices
at the car’s surface. Second, Fig. 5.1 shows a thin whisk geometry stirring

85



Modeling Obstacle-Induced Turbulence

smoke. The boundary layer precomputation was done with a high resolution
grid that resolved the whisk’s wires, while its subsequent use in a smoke
simulation was done on a much coarser grid. The standard grid did not
resolve the wires, and only approximate velocity boundary conditions were
set, resulting in the fluid slightly following the whisk’s motion. Still, our
algorithm was able to accurately generate vortices that are produced by its
motion.

In Fig. 5.8 we show how our method works in conjunction with static flow
fields. In this case we precompute a snapshot image of static flow around the
object, and use it to advect the boundary layer, the vortex particles and the
smoke densities. This simple form of simulation works without an expensive
pressure correction step. Despite the simple underlying setup, we are able
to produce complex structures forming in the wake behind the obstacle
from the interactions of the vortex particles amongst themselves. Lastly,
we demonstrate that our method can be easily extended to free surfaces in
Fig. 5.10. Here three obstacles in the liquid produce turbulent wakes behind
them. For this simulation, a particle level set [Enright et al., 2002b] was used
to represent the liquid’s surface. Similar to particles near obstacle walls, we
reduce a particle’s kernel size once it extends past the liquid phase to avoid
non-divergence free velocity fields.

Detailed grid sizes and timings for the examples above can be found in
Table 5.1. The performance was measured on an Intel Core i7 CPU with 3.0
GHz. The majority of the time used for our approach (denoted by ABL time
in Table 5.1) is taken up by the advection of the artificial boundary layer. For
the liquid example of Fig. 5.10, the performance is strongly dominated by the
particle level set. Overall, we achieve computing times ranging from 10 to 20
seconds per frame on average. An exception is the example with a static flow
field, which requires only 1.3 seconds per frame.

5.6 Conclusions

In this chapter, we have presented an algorithm for simulating wall-induced
turbulence. By leveraging turbulence modeling and wall flow theory, we are
able to precompute turbulence generation based on the obstacle geometry.
This precomputed object can then be included in various simulations. During
the simulation, we determine transitioning regions and introduce appropri-
ate vortex particles to represent turbulence. The particles are then evolved
according to the vortex equations of flow to respect energy conservation and
cascading. This yields the ability to efficiently compute physically plausible

86



5.6 Conclusions

simulations of turbulence around rigid objects in a variety of settings. In
contrast to other turbulence methods, the model presented can be used for
obstacles which are too fine to be resolved on the simulation grid, and it
can be applied for free surface flows, a topic that has been barely studied in
previous work on turbulence. We do note however, that the model is passive
in a sense that turbulence generation from the liquid surface is not handled
in the model.

A limitation of our method is that our precomputation currently assumes a
rigid object, making it difficult to apply it to deforming objects such as cloth.
To resolve this, a RANS solver could be coupled to a normal fluid solver to
determine the current shear stresses at the object surface. Alternatively, it
may be possible to precompute suitable boundary layer data for deforming
objects by making use of data compression schemes. Also, our approach for
the precomputation assumes the flow around the object can be described by
the translational and rotational velocity components. If the flow around the
object varies strongly, e.g., due to strong external forces or due to multiple
objects in close vicinity, the resulting confined vorticity can differ from the
desired values. Extending our approach to handle this more accurately is
interesting future work.

As we modeled the turbulence generation based on wall flow, the method
will only generate turbulence from obstacle interaction. Turbulence driven by
free-stream effects or buoyancy are not handled yet. In addition, a trade-off of
our method is the use of vorticity reconstruction at a higher resolution. While
this allows us to go beyond the coarse simulation Nyquist limit and get higher
resolution detail (a limitation of the original vortex particle method), it means
the domain and object boundaries as well as the free-surface boundary condi-
tions are not as well modeled by the reconstructed high resolution velocity
field. The need for a high-resolution field also limits the detail level that can
be achieved, as for big scenes with fine detail, memory and computation time
for operations on the high-resolution field can easily become the bottleneck.

The method presented in this chapter is specifically designed for the impor-
tant special case of obstacle-induced turbulence. Many flows, such as plumes
or explosions, however involve expansion forces and buoyancy, which are
also strong sources of turbulence. In the following chapter, we will introduce
a method that is able to represent these free-stream sources of turbulence, but
can also handle obstacle source. Using vortex methods on interfaces, we can
even avoid the need for a high-resolution grid to represent detail.

87



Modeling Obstacle-Induced Turbulence

Figure 5.11: Comparison between a high-resolution reference simulation (A), Wavelet
turbulence (B), a simulation with randomly seeded vortex particles along
the walls (C), and our method (D). Wavelet turbulence does not predict
the turbulence formation, and therefore only amplifies noise. The random
vortex particles destroy the overall flow structure, although the number and
strength of the vortex particles are similar to those used in our method. Our
approach correctly identifies the turbulence being shed off the step, similar
to the reference simulation (A), and insert particles into the flow with the
correct orientation, strength and seeding position.

88



5.6 Conclusions

1: // Initialize boundary layer
2: for each voxel x on an obstacle boundary do
3: Find corresponding (xpre,ωωωpre) in precomputed set
4: // Initialize wall-attached ABL
5: ωωωABL(x)←max(ωωωABL(x),ωωωpre)
6: end for
7:
8: // Simulate boundary layer separation
9: Advect ωωωABL with the main flow

10:
11: // Seed vortex particles
12: for each voxel x with ωωωABL(x) 6= 0 do
13: pT← 2 cP ∆t (lm |ωωωABL(x)|/|U0|)2

14: if random() < pT then
15: (Y)← voxels within particle radius of x
16: ωωωS = ∑(Y) ωωωABL // sum within particle radius
17: ωωωABL(Y)← 0 // remove vorticity from ABL
18: Seed particle at x with total vorticity ωωωS
19: end if
20: end for
21:
22: // Vortex particle dynamics
23: Advect vortex particles
24: Merge, split, dissipate vortex particles (§ 5.3.1)
25: Synthesize turbulence (§ 5.3.2)
26:
27: // Standard fluid simulation steps
28: Velocity self-advection, pressure projection etc.

Figure 5.12: Pseudo-code for a main simulation loop including our turbulence model.

89



Modeling Obstacle-Induced Turbulence

90



C H A P T E R 6
Detail Enhancement on Fluid Interfaces

One of the most visually interesting features of turbulent flows is their com-
plexity. Smoke plumes from volcanoes, explosions or collapsing buildings
show detailed motion on scales from several meters down to the millimeter
range, and the structure of the developing turbulent eddies is clearly visible
at the sharp interface of the thick smoke and the air. At the same time, the
thick clouds typically hide everything that is happening further inside the
volume. Unfortunately, such scenes are numerically expensive to simulate,
and we spend large amounts of computation on detail inside the cloud that
will never be visible.

One way of dealing with these complex flow are volumetric turbulence
methods, as presented in § 4 and § 5. However, even with a turbulence model
the synthesized detail has to be represented in the simulation, and using a
volumetric representation resolving the small-scale details requires immense
storage capacity.

In this chapter, we therefore chose to explicitly discretize and track only the
smoke-air interface. This greatly reduces the amount of information we need
to store. In addition, this representation is a very suitable basis for detail
synthesis. Instead of unnecessarily calculating detail that is hidden inside the
smoke volume, we restrict synthesizing detail purely to the visible smoke
interface.

91



Detail Enhancement on Fluid Interfaces

Figure 6.1: A dense cloud subject to buoyancy forces and interaction with a moving
obstacle is simulated. We use a Eulerian solver to compute a base flow, as
shown on the left. Small-scale detail is synthesized directly on the interface
of the cloud. An adapted turbulence model provides details from obstacle
interaction (middle left), while small-scale buoyancy effects are calculated
using vortex sheet dynamics (in the middle right). The picture on the right
shows the combined model.

92



The phenomena mentioned above exhibit another interesting effect: turbu-
lence production in such flows mainly stems from buoyancy, which induces
a vortex sheet at the smoke-air interface. This sheet reinforces small-scale
surface instabilities, which then develop into turbulence. This means that
the transition region where the turbulence is created is clearly visible, and
this turbulent onset strongly influences the visible shape of the interface.
However, the simulation resolution is typically too limited to directly capture
these small-scale buoyancy effects. Furthermore, most turbulence models
assume fully-developed homogeneous turbulence, which means they are
valid inside the bulk smoke volume, but not at the interface. Here, the tur-
bulence generation process is highly anisotropic and model-dependent in
nature. This means it is not well described using the statistical approaches
that are the basis for most turbulence methods.

Our method addresses this problem by directly tracking the vortex sheet at
the smoke-air interface. This allows us to compute buoyancy effects at scales
independent of an underlying grid, and accurately model the turbulence
generation process due to buoyancy. While vorticity-based methods are
well-suited to describe turbulence formation, correct handling of obstacle
boundaries is very difficult. Our model therefore handles basic interaction
with static or moving obstacles using a Eulerian solver, and tracks the obstacle-
induced turbulence with a model specifically tailored to our needs. We will
ensure that the turbulence model for obstacles is orthogonal to our buoyancy
approach, which makes it possible to use both in combination or separately
as needed.

To summarize, we propose an algorithm with the following contributions:

• A local evaluation scheme for vortex sheets which allows us to efficiently
capture detailed buoyant and obstacle based turbulence effects.

• A turbulence model for obstacles that is able to estimate wall-induced turbu-
lence and is orthogonal to buoyancy based turbulence.

• A mesh resampling technique for efficiently pruning invisible detail to reduce
mesh complexity.

We use an adaptive triangle mesh to simulate non-diffusive smoke surfaces,
and couple it to an Eulerian solver which captures the large-scale motion
of the flow. We will demonstrate that this representation is very suitable
for vorticity based methods and that it produces highly detailed visuals
efficiently.

93



Detail Enhancement on Fluid Interfaces

Figure 6.2: A buoyant plume is simulated without evaluation cutoff (left), with a cutoff
of 10 cells (middle) and 5 cells (right, our default setting). While details are
different due to accumulation of small differences over time, the visual quality
is comparable.

6.1 Vortex Sheet Methods

Fluid solvers in graphics typically use the velocity formulation of the NS
equations to obtain the fluid motion. For dealing with turbulence, however,
the vorticity formulation of the NS equations is often advantageous. In
general, the evolution of vorticity can be described with the vorticity equation
Eq. (3.4). For this method, we will focus on plumes with a sharp density
interface, which is a good approximation model for e.g. heavy smoke plumes,
or two liquids with different densities. Under the influence of buoyancy or
external forces, a thin sheet of vorticity forms at this interface. In our model,
we will not track the volumetric velocity or vorticity field, but represent this
interface vorticity, or vortex sheet, on a surface mesh. The theory of vortex
sheets is introduced in § 3.1.2.

Most commonly, the vorticity in vortex sheets is expressed via the vortex
sheet strength vector γγγ. If we formulate the vorticity equation using γγγ, we
obtain the evolution Eq. (3.15), with terms for advection, vortex stretching,
elongation and baroclinity. By integrating this equation we would be able to
calculate the full dynamics of a buoyant plume. As the evolution equation
contains operators which are hard to express on a surface representation, this
is however not trivial. We therefore also make use of another expression of
vorticity, namely the circulation. For vortex sheets, these representations are
equivalent and can be converted as explained in § 3.1.2. As some operations
are formulated easier in a circulation notation than for vortex strengths, and
vice versa, we can simplify the evolution equations by switching between
representations. This procedure will be explained in the following paragraph.

94



6.1 Vortex Sheet Methods

Our Model To solve the vorticity dynamics equations, it is necessary to
have a discretization of the interface. For this we use a mesh consisting of
triangles, where each triangle i has a corresponding vortex strength γγγi. As
we want to make use of the filament representation, too, the three circulation
numbers are stored for each triangle in addition to the vortex strength. These
circulation numbers Γ1...3 define a rotation around the triangle’s edges e1...3.

As we are interested in buoyant effects, we apply the baroclinic source term
in vortex sheet strength notation for each time step.

∂γγγ

∂t
= −2βA n̂× g . (6.1)

We now recall the fact that the vortex stretching and elongation terms of the
evolution equation are implicitly handled in circulation notation, and vanish
from the equation. Before evaluating the advection of out surface mesh, we
therefore switch to circulation notation[

e1 e2 e3
1 1 1

]Γ1
Γ2
Γ3

 = A
(

γγγ

0

)
(6.2)

and return to vortex strength notation afterwards

γγγ =
1
A

3

∑
i=1

Γi ei . (6.3)

Using this process, we can avoid the calculation of these operators altogether.
We now have taken care of all terms in the vorticity equation. For evaluation
of the advection term, we however still need velocity information. This can
be integrated from the vortex strength values using the Biot-Savart law, as
explained in § 3.1.2. If we look at the integration equation

u(x) =
1

4π

∫
γγγ(x′)× x− x′

|x− x′|3
dx′ . (6.4)

we however note that such an evaluation is numerically very complex. For
each mesh node, we need to integrate over all triangles, which results inO(n2)
complexity. As we want to simulate very detailed meshes with millions of
triangles, this is prohibitively expensive. Even more importantly, we note that
so far, we are only able to obtain the dynamics prescribed by ideal buoyancy
in free space. Most practical scenes, however, have a nontrivial underlying
flow due to interaction with obstacles and boundary conditions.

In the next section, we therefore introduce a local evaluation scheme, which
resolves this issues.

95



Detail Enhancement on Fluid Interfaces

Figure 6.3: We simulate the dynamics of a dense fluid in water with pulsed inflow
conditions. The buoyancy leads to complex surfaces in the downstream region
to the right.

6.1.1 Local evaluation

In our local evaluation model, we split the simulation into two parts: first,
a Eulerian solver which computes a consistent flow field from obstacle in-
teraction, inflows, and the large-scale effects of buoyancy. Second, a surface
mesh which is used for front tracking of the smoke cloud and the simulation
of detail due to small-scale buoyancy effects and obstacle turbulence.

For computation of the large-scale flow, we use a standard grid-based solver
[Stam, 1999] with second order semi-Lagrangian advection as described in
Selle et al. [2008]. Our vortex sheet approach enables us to use low grid
resolutions, as details will be computed directly on the Lagrangian mesh. In
the grid-based solver, a density field is tracked which is then used to compute
coarse-scale buoyancy forces on the velocity field.

Evaluation of the small-scale buoyancy effects is performed using the vorticity
of the mesh. To avoid duplication of buoyancy forces between grid and
mesh, we remove the large-scale component of the baroclinic vorticity from
the mesh. We first apply a Gaussian smoothing kernel on the vortex sheet
strength γγγ. The kernel width σ is set to match the grid cell width ∆x to
obtain the smoothed, grid-scale vortex strength component γ̄γγ. The difference
γγγ′ = γγγ− γ̄γγ now represents the details below grid scale, which are evaluated
on the mesh.

By removing the mean only the high-frequency variations γγγ′ remain, whose

96



6.1 Vortex Sheet Methods

1: // Grid-based Fluid solver
2: Semi-Lagrangian density and velocity advection
3: Add grid-based buoyancy
4: Pressure projection
5:
6: // Turbulence model
7: Compute production: Pwall = 2νT|∇ ×U−ωωωg|2
8: Update ωωωg based on Eq. (6.11) and advect
9: Update k, ε based on Eq. (6.8) and advect

10:
11: // Mesh dynamics
12: Integrate baroclinity: γγγi← γγγi −∆t2βA n̂× g
13: Compute Gaussian filtered vortex strengths γ̄γγi
14: Small-scale vortex strength: γγγ′i← γγγi − γ̄γγi
15:
16: Compute circulations Γi⇐ γγγi , Eq. (6.2)
17: for each mesh vertex i do
18: ui⇐ Integrate Eq. (6.7) for sources γγγ′i within rC
19: Advect vertex with ui and grid velocity field
20: Advect vertex with synthesized curl noise uT =

√
αSky

21: end for
22: Compute Vortex strengths γγγi⇐ Γi , Eq. (6.3)
23:
24: Perform mesh surface smoothing
25: Perform edge collapses and triangle subdivision

Figure 6.4: Pseudo-code for the simulation loop of our algorithm.

effect decays very quickly in the far field. This corresponds to the formation
of small vortices, which act locally. We are therefore able to introduce a cutoff
radius rC to the evaluation. Only triangles within this radius have to be
evaluated in the summation of Eq. (6.7). As we can rely on the grid solver
to capture the large scale buoyant motion, the effects of this approximation
are negligible. A comparison of a full evaluation versus two different cutoff
radii can be seen in Fig. 6.2. As the cutoff approximation introduces small
differences which accumulate over time, the resulting surfaces differ. How-
ever, the visual quality is comparable for all three simulations, while the
processing time is five times faster using rC = 5∆x. We use this value for all
following simulations with our model. The position update for the mesh
nodes is performed based on the Eulerian velocity field, and by applying a
per-node velocity update for the small-scale structures, which is described

97



Detail Enhancement on Fluid Interfaces

next. The complete simulation loop for our combined solver is summarized
in pseudo code in Fig. 6.4.

6.1.2 Regularization

To obtain the small-scale velocity update for the mesh, Eq. (6.4) is discretized,
using the residual vorticity γγγ′ as a source. As this equation is singular for
points on the interface, we chose to regularize the equation analogous to the
vortex blob regularization for vorticity particles [Chorin and Bernard, 1973]

ureg(x) =
1

4π

∫
S

γγγ′(x′)× freg(x− x′)dx′ (6.5)

freg(r) =
r

(|r|2 + α2
R)

3
2

. (6.6)

The regularization parameter αR effectively controls the minimal size of the
generated vortices. We therefore set αR proportional to the mesh resolution,
as will be explained in § 6.3.2. To discretize this equation, we use Gaussian
quadrature. If Gj(r) is the Gaussian quadrature of freg for triangle j, Eq. (6.5)
becomes

ui =
1

4π

m

∑
j=1

Ajγγγ
′
j × Gj(ri) , (6.7)

for all triangles within the cutoff radius. This means we need to evaluate a
sum over all triangles j = 1 . . . m per mesh node i. In our examples, we use
three-point quadrature, and refer the reader to [Cowper, 1973] for details on
how to compute the integration weights.

6.2 Wall-based Turbulence Model

The method presented so is able to model buoyancy driven below grid scale,
but does not deal with interaction with flow obstacles yet. While the coarse
grid solver introduced in the local evaluation scheme provides the large scale
interaction of the flow with obstacles, turbulence shed from these interactions
is not represented. However, since our mesh representation allows us to
evaluate synthesized turbulence directly on the interface, we can employ a
turbulence model similar to § 4 for this type of turbulence.

The turbulence model we propose in the following is orthogonal to the
buoyancy model of the previous sections, and both models can be used
independently or in combination. We first model the spatial and tempo-
ral distribution of turbulent kinetic energy k using an energy transfer model,

98



6.2 Wall-based Turbulence Model

Figure 6.5: To separate the sources of buoyancy and wall-based turbulence, buoyant
vorticity is tracked over time. The total vorticity of a snapshot from Fig. 6.1
is shown in the middle picture, while the difference to the tracked buoyant
vorticity is shown to the right. The gray circle marks the position of the
cylinder. We observe that despite a small residual halo, our model tracks the
area of obstacle influence behind the cylinder very well.

and then synthesize turbulent detail on the surface using frequency-matched
curl noise. Below, we will briefly outline the theory used, and explain our
modifications. Turbulence modeling is described in more detail in the § 3.3.

6.2.1 Modified Energy Model

We compute the energy dynamics based on the commonly used k–ε model
by Launder and Sharma [1974], which models the evolution of the turbulent
energy k:

Dk
dt

= ∇(νT

σk
∇k) + Pwall − ε (6.8)

Dε

dt
= ∇(νT

σε
∇ε) +

ε

k
(C1P − C2ε) .

Details of the model can be found in 3.3.1.

Instead of solving this equation system on the Lagrangian markers as in § 4,
we solve it on the coarse grid which is also used for the local evaluation
§ 6.1.1. The model can also be solved on the high-resolution surface mesh,
this did not yield a significant difference in our experiments. The reason
for this is that the variables k and ε are averaged properties, and spatially
vary smoothly due to turbulent diffusion. The Eulerian approach has the
advantage that it is easier to exclude the effects of buoyancy, as discussed
below.

99



Detail Enhancement on Fluid Interfaces

The primary interest here is to compute source terms for driving the model.
The sources should capture the wall-induced turbulence, but exclude tur-
bulence induced by buoyancy. If we were to directly use k for injecting
turbulence we would include the effects of buoyancy twice: once from the
k–ε model, and once from the vortex sheet model. In addition, a general
turbulence model would not be able to capture the characteristic effects of
buoyancy, such as the cloud billowing. We therefore need to guarantee or-
thogonality of the two methods, by excluding the effects of buoyancy from
Eq. (6.8), such that each model can focus on the type of turbulence it is most
suitable for. With a strain-based production term that is commonly used for
the k–ε model, this would however imply separating the wall induced turbu-
lence from the total one. This is, to the best of our knowledge, not possible
for a strain based production. There is, however, an alternative production
term PR based on rotation. Compared to the strain based measure, it is
less accurate for free-stream generation but still captures buoyancy and wall
induced turbulence very well. Assuming we have a measure for the current
buoyancy-induced turbulence, we can subtract it from PR to single out the
turbulence induced by obstacles. We have found that using the rotation-based
production term from Spalart [1994] and a vorticity based integration of the
buoyancy production allows us to do just this.

According to Spalart [1994], the production is given by

PR = 2νT ∑
i,j

Ω2
ij (6.9)

with the rotation tensor Ωij. We now express its tensor norm in terms of
vorticity as ∑i,j Ω2

ij = |ωωω f |2. Here ωωω f is simply the vorticity of the grid-based
flow field given by ωωω f = ∇ × U. With ωωωg, which denotes the buoyancy
induced vorticity strength that we will compute below, we obtain turbulence
production for purely wall-generated turbulence using the difference of the
two:

Pwall = 2νT|∇ ×U−ωωωg|2 . (6.10)

For stability, we ensure that |∇×U| ≥ |ωωωg|. An example from the simulation
of Fig. 6.1 comparing the two vorticity measurements can be found in Fig. 6.5.
Finally, we need to compute the accumulated vorticity induced by buoyancy
ωωωg. Applying the Boussinesq assumption and omitting external forces, we
obtain an evolution equation for the buoyant vorticity ωωωg with

Dωωωg

dt
= ωωωg · ∇u +

1
ρ
(∇ρ× g) . (6.11)

We integrate this equation over time on the grid in combination with the k–ε

model to obtain the wall based turbulence production Pwall as outlined in

100



6.3 Implementation

D
D

D
E

(a) (b) (c) (d)

Figure 6.6: To simplify mesh geometry, we collapse invisible thin sheets. We fist identify
candidate nodes in very thin sheets (a). Next, we compute an eroded inside
volume on grid in steps (b) and (c). Finally, we check whether these cells are
visible with a raycast towards an enclosing sphere (d). All thin sheet nodes in
the blue region of (d) are marked for edge collapses.

Fig. 6.4. Equipped with this production term we compute the spatial distri-
bution of the turbulent kinetic energy k that we use to synthesize turbulent
detail on the smoke surface.

6.2.2 Turbulence Synthesis

In contrast to buoyancy induced turbulence, we can synthesize the turbulence
triggered by our obstacle-induced turbulence model using K41 theory § 3.4.
In this regime energy is mainly scattered from large to small scales, so we
can approximate the velocity of the turbulent details using a frequency-
matched curl noise texture that is advected through the large-scale velocities,
as described in § 3.5.1. Instead of evaluating the turbulence at each cell of
a higher resolution grid, we can synthesize it more accurately on the mesh.
Each mesh node carries a texture coordinate q for curl noise texture, and
its turbulent kinetic energy k is interpolated from the grid. The additional
velocity per node is then given by

uD(r) =∇×
√

αSk Nf(r) (6.12)

where Nf are the curl noise functions and αS is a scaling parameter to control
turbulence strength. We will demonstrate the interplay of the two turbulence
models and their orthogonality in § 6.4.

6.3 Implementation

In this section, details and parameters of our implementation in respect to
turbulence estimation, mesh resampling and rendering are specified. To ease

101



Detail Enhancement on Fluid Interfaces

the reproduction of our algorithm, the source code is also publicly available
in the MantaFlow project, see § A.3.

6.3.1 Turbulence Model

To solve Eq. (6.8) on the grid, we perform operator splitting as for the Navier-
Stokes equations. The advection of k and ε in the PDE system is treated
identical to the velocity self-advection using the MacCormack algorithm.
The diffusion component ∇( νT

σk
∇k) is expressed using finite differences, with

substepping if the CFL condition is violated. To prevent instabilities in the k–ε

model for low turbulence intensities we ensure that k and ε are always in a
meaningful range where a minimal amount of ambient turbulence is present.
Bounds for k are given in terms of turbulence intensity I as k = 3

2U0
2 I2, with

the characteristic velocity U0 which is an estimate of the velocity scale in the
simulation. We use Imin = 10−3, Imax = 1. We found ε is best limited using
the equation for the turbulent viscosity νT, as this parameter linerly affects
production. In our experiments, νmin = 10−3, νmax = 5 are used. As starting
parameters for a weakly turbulent initial state we found νT = 0.1, k = 0.1 to
produce stable results.

6.3.2 Mesh Resampling

Due to advection and buoyancy, the mesh will undergo strong deformations.
On the other hand, Gaussian smoothing and buoyancy integration rely on a
relatively uniform mesh geometry. Therefore, we split and collapse triangle
edges to keep all edge lengths l in the range ∆l < l < 2∆l, where ∆l is the de-
sired minimal edge length. Vortical forces smaller this minimal length would
only be visible as a slight noise on the surface. So we use the regularization
parameter αR in Eq. (6.5) to enforce a minimum vortex size larger than ∆l. For
our example scenes, we chose αR = 2∆l. Finally, we apply a small amount of
explicit Laplacian smoothing to the mesh [Desbrun et al., 1999], to prevent
the accumulation of small-scale noise on the surface.

The vortical motion on the mesh interface creates vortex roll-ups, which lead
to the generation of spiral-shaped thin sheets. Since vorticity generation is
linked to the surface normal, both sides accumulate almost equal amounts
of vorticity, with opposing direction vectors. As the sheets become thinner,
the vorticity effect on surrounding nodes therefore becomes smaller and
effectively cancels out. Also, many of these thin structures are typically
hidden inside the bulk volume of the cloud. Based on these two observations
we propose the following algorithm to identify these sheets and remove the

102



6.3 Implementation

ones that are invisible from the outside. First, we mark nodes on thin sheets,
check which of these are far inside volume, and finally perform a visibility
test to determine nodes not visible from the outside. The process is visualized
in Fig. 6.6.

As a first step, thin sheet nodes are identified by checking for a vertex with
opposing normal (± 20◦) within close proximity, i.e. at a distance less than ∆l
opposing the vertex normal. This can be done efficiently using the grid as
acceleration data structure. Next, we identify the volume inside the cloud on
the grid. As a coarse representation of the outer hull, we first compute a level
set for the mesh. Since triangle size is always well below the size of a grid
cell, we can employ a simple and fast method [Kolluri, 2005] to obtain the
signed distance function (SDF). We then enlarge and shrink the level set to
close small holes and cavities induced by the complex mesh geometry. The
level set is enlarged by D = 4 cells to compute an outer interface. We rebuild
the SDF at a distance E = −(D + 2) from this interface, to obtain a faired
volume slightly smaller than the original one. All cells inside this volume are
marked as inside cells.

As cells in a cavity might still be visible from the outside, we finally compute
visibility for the inside cells by performing a raycast towards target points on
a sphere enclosing the surface mesh. The cost for these tests is less than 5%
for our simulations, as there are typically few cells to be tested. All thin sheet
nodes that are located in cells identified as not visible from the outside are
marked to be collapsed during the next edge collapse step in line 25 of Fig. 6.4.
For the example setup of Fig. 6.8, this method reduces the number of triangles
by 32% at the end of the simulation, resulting in an overall speedup of 43%.
We note that this reduction based on edge collapses could be improved, e.g.,
by using methods like [Wojtan et al., 2010], but we have found it to be efficient
both in terms of stability as well as performance.

Rendering We use three different methods to render the simulation results.

• For very dense volumes, the mesh could be displayed directly. However, we
have found that it is beneficial to add a certain amount of transparency for
very thin structures. In the shader, we check the thickness of the volume.
If it is above a certain threshold, we render it opaque, otherwise semi-
transparently with a transparency proportional to its thickness. We use a
threshold of ∆x/2 in our examples.

• To emphasize the detailed structures from the surface vorticity model we
can leverage the fact that smoke often concentrates on the vortex sheets
[Stock, 2006]. To highlight these surfaces, we modulate the transparency

103



Detail Enhancement on Fluid Interfaces

Figure 6.7: A plume is rendered using semi-transparent rendering (left), wispy smoke
rendering (middle) and volume rendering (right). While volume rendering
produces the most realistic results for dense plumes, semi-transparent and
wispy rendering enhance the visualization of the vortex sheet structure.

by an approximation term for smoke sheets as given in Funck et al. [von
Funck et al., 2008]. To prevent the apparent increase of smoke density by
elongation of the mesh, we track the smoke concentration at each triangle
during simulation. It is seeded with a constant value at the inflow, and
distributed during re-meshing. This per-triangle concentration is multiplied
onto the transparency during rendering.

• Lastly, it can be useful to leverage the commonly used volumetric shaders
of an existing rendering pipeline. To do this, we project the mesh onto a
grid data structure. This density grid might require a high resolution, but is
independent of the simulation resolution and only required for rendering.

The effect of these different rendering techniques can be seen, e.g., in Fig. 6.7.
For most of the example scenes we have used the semi-transparent shader,
the only exception is Fig. 6.9, where we used the volumetric shader.

Performance For high-resolution triangle meshes, the two most costly steps
in the simulation loop are applying the Gaussian kernel to the mesh, and
integrating Eq. (6.7). However, these operations are simple and do not de-
pend on neighborhood information. Therefore, they are very suitable for
parallelization. Using GPU computing with CUDA, we obtained significant
speedups of approximately a factor of 10. In the CUDA routine for calculating
the velocity update, we use a precomputed hash grid structure to exclude
triangles outside the cutoff radius. We note that the complexity can be fur-

104



6.4 Results

Figure 6.8: We compare the simulation of a buoyant plume with isotropic turbulence
modeling (middle) to our method (right). The base simulation is shown on
the left. While isotropic turbulence creates unrealistic surface distortions, the
turbulence onset is calculated correctly using our approach.

ther reduced using Treecodes, e.g. [Qian and Vezza, 2001]. For our example
scenes with a few hundred thousand vertices, we however found our simple
approach to be sufficient.

6.4 Results

In the following, we demonstrate the properties of our model based on several
simulations setups.

Turbulence onset To demonstrate the ability of our vortex sheet dynamics
to correctly compute the turbulence onset, we simulated a buoyant smoke
plume as shown in Fig. 6.8. The setup uses 64× 96× 64 grid cells for the base
solver, and a triangle edge length ∆l = 0.18∆x. Without artificial disturbing
forces, the base flow remains smooth and does not show any turbulent detail.
To demonstrate the effect of standard turbulence methods, we synthesize
turbulence using vortex particles. The vortex particles are emitted at the
inflow and moved along the flow with the smoke plume. For the particles,
we use a size and energy distribution based on the Kolmogorov spectrum.
This is typically a good assumption for bulk volume flows, as isotropization

105



Detail Enhancement on Fluid Interfaces

Figure 6.9: In this example scene, an expanding, turbulent smoke front is simulated. The
typical cloud billowing is clearly visible in the smoke plume shape. This effect
can not be achieved using turbulence synthesis.

drives the turbulence towards a Kolmogorov spectrum eventually. At the
interface, however, the length scales are model-dependent and production is
highly anisotropic. This leads to a lack of coherent features using isotropic
turbulence methods. Using our method, we observe that the generated detail
organically integrates with the large-scale flow.

Eulerian-Lagrangian coupling We demonstrate the generality of our model
by simulating two setups with more complex boundary conditions. The first
scene, depicted in Fig. 6.9, shows strongly billowing clouds moving through
a channel of irregularly shaped obstacles. We simulate an expanding front of
smoke with density slightly above air, with a base resolution of 40× 40× 128.
It can be seen that the flow easily follows the geometry of the scene due to the
Eulerian simulation, while our vortex sheet model leads to the development
of the typical billowing cloud surfaces. In the second scene, the interaction
between water and a heavier liquid is simulated. We use a base solver with

106



6.4 Results

96× 64× 64 grid cells, and pulsed inflow conditions to simulate the injection
of multiple drops of fluid. In this case, the temporally changing inflow
leads to complex density surfaces developing over time from the buoyant
turbulence. Note that the irregular walls of the first, and the pulsed inflow of
the second example would be difficult to realize with a simulation based on a
pure vorticity formulation.

Wall turbulence In a next example, the interplay between mesh buoyancy
and our turbulence model is investigated. To this end, we simulate a plume
under the influence of buoyancy and a moving obstacle. Fig. 6.1 shows the
orthogonality of the both models: with only the turbulence model activated,
we observe detailed structures forming in the wake of the obstacle, while
the rest of the flow remains laminar. Once the vortex sheet model is enabled,
the mesh shows small-scale deformations with correct orientation due to
buoyancy. We show that by combining the two models, we can benefit from
both the accurate prediction of source regions by the turbulent energy model,
as well as the anisotropic generation of the vortex sheet method. This example
exhibits a large number of highly detailed swirls, many of them less than a
fifth of a cell in diameter. These surface details are not smeared out despite
moving along with the fast and turbulent velocities. Representing this detail
during the course of a purely grid-based simulation would require a large
amounts of memory, and corresponding amounts of computation for the
advection step.

Performance The two most costly steps are applying the Gaussian kernel
to the mesh, and integrating Eq. (6.7). Since these operations are simple and
do not depend on neighborhood information, we evaluate them on the GPU.
This leads to an average time of 10s per frame for the example scenes shown.
The majority of this time is spent on the vortex sheet evaluation, i.e. the
performance primarily depends on the number of triangles in the mesh. The
number of triangles is in turn determined by two factors: the shot length, as
triangle numbers typically increase during the course of a simulation, and
the re-meshing resolution ∆l. The parameter ∆l can therefore be used as a
means for fine-tuning detail versus performance. The performance numbers
and statistics for all scenes can be found in Table 6.1, where base only refers to
the plume simulation without a turbulence model.

To evaluate the performance of our approach compared to the Vortex-in-
Cell (VIC) scheme used, e.g., in Stock et al. [2008], we have simulated the
buoyancy only setup shown in Fig. 6.10. We measured computation times up
to 19 times faster using our algorithm. We note that our VIC implementation

107



Detail Enhancement on Fluid Interfaces

Setup Grid res. #tris ∆l/∆x Mesh Grid
mio. [s] [s]

Bunny Fig.6.1 64× 64× 64 0.9 / 2.6 0.2 9 / 33 0.6
Water Fig.6.3 96× 64× 64 0.8 / 3.2 0.15 12 / 40 1.3
Plume Fig.6.8 64× 96× 64 0.6 / 2.3 0.18 7 / 22 0.6
- w/o cutoff 64× 96× 64 0.6 / 2.4 0.18 36 / 101 0.5
- base only 64× 96× 64 0.2 / 0.8 0.18 1 / 6 0.5
- vortex part. 64× 96× 64 0.4 / 1.5 0.18 5 / 16 0.6
Street Fig.6.9 40× 40× 128 1.0 / 1.8 0.2 11 / 41 0.9
Duck Fig.6.10 64× 96× 64 0.8 / 3.1 0.2 8 / 30 0.4
- VIC 64 64× 96× 64 0.1 / 0.3 0.2 0.2 / 0.4 6 / 16
- VIC 256 256× 384× 256 0.8 / 3.8 ” 4 / 11 156 / 350

Table 6.1: Performance measurements for our simulation runs. Timings are mean
runtime per frame. Two values with a ”/” denote the mean and maximum
values, respectively. Grid refers to all Eulerian operations, while Mesh
represents vortex sheet dynamics. All simulations were run on a workstation
with an Intel Core i7 CPU, a NVidia GTX 580 graphics card and 8GB of
RAM.

uses OpenMP, but no GPU acceleration, as we found that the algorithm
is non-trivial to port to the GPU. We still think that this comparison is a
good indicator of the complexity of the algorithms, despite the fact that both
implementations are not optimized to their full extent.

6.5 Conclusion

In this chapter, a novel algorithm for simulating buoyant, turbulent smoke
plumes was presented. A Lagrangian surface mesh is used to track the
smoke/air interface. On this mesh, we solve the vortex sheet dynamics,
and couple it to a low-resolution Eulerian fluid solver. This allows us to
correctly simulate the turbulence generation process on the interface, which
is important for visual coherency. On the other hand, the coupling with
Eulerian large-scale dynamics allows us to evaluate the update of the velocity
in a purely local fashion. This greatly reduces the complexity, and enables the
efficient simulation of detailed plumes with non-trivial static boundaries or
moving obstacles. In addition, we have proposed an orthogonal turbulence
model for capturing turbulence production from obstacles.

A limitation of this approach is that it can lead to meshes with large numbers
of triangles. Due to re-meshing, the number of triangles will increase over
time in turbulent regions for long simulation times. Although our resampling

108



6.5 Conclusion

Figure 6.10: We compare our method to Vortex-in-Cell integration. Our approach
(middle) produces similar results as VIC on a 256 grid (right), while being
19 times faster. On the other hand, VIC with a resolution of 64 (left) has a
comparable runtime to our method, but exhibits significantly less detail.

approach reduces the complexity of the meshes, more aggressive approaches
are an interesting topic for future work. In addition, accumulated integration
errors and re-meshing operations can lead to self-intersecting surfaces. Our
method is naturally not well-suited for diffuse, hazy smoke. It would how-
ever be very interesting to combine our approach with a lower-resolution
volumetric density representation. Sharp, detailed interfaces could then be
tracked with our method, while the developing diffuse haze around the dense
cloud could be represented on the volumetric grid. It would also be possible
to add further detail based on the texture coordinates of the mesh, as we have
a temporally coherent discretization of the surface over time.

109



Detail Enhancement on Fluid Interfaces

110



C H A P T E R 7
Conclusion

In this chapter we summarize and discuss the principal contributions of
the methods introduced in the previous chapters and suggest directions for
future investigations.

7.1 Discussion

In this thesis, we presented three different approaches for enhancing detail of
turbulent fluid simulations for Computer Graphics. We leveraged a variety
of flow representations and concepts from Computational Fluid Dynamics to
analyze flow structure and measure flow properties. This allowed us to obtain
deeper insights into turbulence dynamics, with focus on the breakdown of
coherent flow features and the formation of turbulence. The understanding
of turbulent flow processes is the key element in this thesis, as it enables us to
devise methods to accurately model these processes, and use it to augment
simulation with generated detail.

In chapter 4, we presented a method to simulate highly detailed turbulent
fluids at real time. We used a modified turbulence model based on the k–ε

model [Launder and Sharma, 1974] to predict turbulence strength in the
flow regime, and extended it to include anisotropic effects. Unlike simpler
prediction methods such as [Kim et al., 2008b], this model is general and

111



Conclusion

complex enough to capture the most important turbulent effects from a
low-resolution base simulation. Moreover, the complex prediction scheme
enables us to avoid feedback of the generated turbulence into the main solver,
which is used in e.g. [Selle et al., 2005] for consistency. Avoiding feedback
allows for efficient massive parallelization, which is one key element for
making our method real-time capable. The second key element for efficiency
is that we directly synthesize the turbulent detail onto the particles used for
rendering, thereby creating detail exactly where needed. For this synthesis,
an anisotropic version of frequency-matched curl noise synthesis was used.
In this manner, we have achieved frame-rates between 5 and 30 fps for our
million-particle simulations.

While the predictor of the method in § 4 can be considered a general-purpose
turbulence model and is applicable in a variety of scenarios, the synthesis
does not represent the important transition from laminar to turbulent flow
correctly in this model. The reason for this is that the K41 spectrum used
assumes fully-developed turbulence, which is not given in transition. But
more fundamentally, all classical turbulence methods based on statistical
synthesis cannot represent this process, as it involves the breakdown of
coherent structures which is hard to represent in a meaningful way for a
statistical model. Also, the method is based on curl-noise texture synthesis,
and therefore shares the limitations in dynamics of this approach. This aspect
will be explained in more detail below.

In § 5, we therefore took a different approach to synthesis, by employing
a Lagrangian vortex representation for turbulence which uses an extended
version of vortex particles [Selle et al., 2005]. This allowed us to represent
coherent features with full anisotropy information, and a more dynamic tur-
bulent motion compared to the application of detail textures. To model the
turbulent transition after flow obstacles, we directly modeled the breakdown
process in the vorticity formulation using artificial boundary layers. We
precomputed the boundary layer source terms for the flow obstacle geometry,
and tracked the boundary layer strength in the simulation. A turbulence
predictor was then used to determine regions of flow instability where the
boundary layer breaks down into turbulence. This not only allows for a
correct seeding of turbulence, but enables us to calculate turbulence seeding
even from geometries thinner than the grid resolution. The vorticity formula-
tion makes it also very easy for animators to modify the generated turbulence
for a desired look.

The turbulence methods presented in § 4 and § 5 have a better scaling be-
havior than regular reference simulations, and are therefore very useful for
the simulation of very detailed smoke plumes. However, dense, highly tur-

112



7.1 Discussion

bulent large-scale phenomena such as volcanic plumes are still out of reach
for desktop simulations. Due to the dense smoke, the turbulent detail is
clearly visible on the interface, and an immense resolution is required to
store the simulated and generated detail which is needed for a convincing
representation. Also, the shape of such smoke clouds is defined by cloud
billowing, which is an effect of slow turbulence transition from buoyancy. As
in the case of obstacle-induced turbulence, this process cannot be represented
using statistical turbulence synthesis.

On the other hand, the dynamics inside dense plumes are often not visible.
In § 6, we therefore developed a model which is not applied to volumetric
data, but is able to operate only on the visible interface of smoke plumes.
This reduces the dimensionality of the problem and makes the method very
efficient for large volumes of smoke. As in § 5, we used a vorticity repre-
sentation for the synthesis of detail. As we modeled the buoyancy source
terms on this vortex sheet representation, we have obtained cloud billowing
effects, which is not possible using any of the previous detail enhancement
techniques. This approach is orthogonal to bulk turbulence models and can
also be combined with a modified version of our model in § 4. In this way
we were able to achieve highly detailed simulations of large-scale turbulent
plumes efficiently.

Significance While the three methods presented use different mechanics
and focus on different processes, their general structure is quite similar. A
prediction step models a flow process, such as the formation of a certain
type of turbulence, and quantifies flow properties in a statistical sense. This
information is used to drive a synthesis step to generate synthetic detail
which adheres to the predicted statistics. Finally, the generated detail is used
to augment a low-resolution base simulation.

This effectively creates a separation of scales. The larger scales are directly
simulated, while the smaller scales are approximated using synthetic detail.
By modeling complex turbulence dynamics such as anisotropic generation
and vortex sheet rollup, this thesis offloads much of the complexity of a
turbulent flow onto detail prediction and synthesis. This shifts the barrier
between the simulation and detail synthesis scales. It allows simulations
with lower base resolutions and less reliance on the base solver, which results
in higher performance. Equally important, it provides us with semantic
annotations to the flow. While a detailed flow obtained from a regular high-
resolution simulation is hard to manipulate, our methods make it easy for an
animator to manipulate turbulence strength, edit the distribution of vortices
or add additional sources of turbulence in the flow. We are also able to adjust

113



Conclusion

the detail level while retaining the overall large-scale flow, which is hard to
achieve in a regular simulation due to the chaotic nature of fluids. We see this
work as a step forward towards higher-level representation of fluid flows,
which will enable new applications in flow analysis and stylistic control.

7.2 Application Guidelines

The new techniques developed in this thesis together with previous meth-
ods summarized in § 3 are best seen as a toolbox of methods for simulating
complex, turbulent flows. Many of the elements can be interchanged, or
combined in different ways depending on the requirements. This section pro-
vides guidelines for the practical use of these individual components. Most of
them are also available as modules in the open source fluid solver Mantaflow
described in § A.3, which can serve as a framework for experimentation and
research in turbulent fluid dynamics.

Turbulence Prediction The simplest turbulence predictors are vorticity
[Fedkiw et al., 2001] and wavelet-decomposition of the velocity field [Kim
et al., 2008b]. These prediction however only produces meaningful results
for strongly forced turbulence, and will fail in most complex cases, especially
when using low resolution base solvers. The arguably most useful representa-
tion for non-trivial turbulence prediction is TKE, as a vast set of well-proven
tools exists for this representation by the means of classical turbulence models.
For many use cases, a turbulence predictor based on a complete two-equation
model such as the k–ε model § 4.2.1 provides the best trade-off between
complexity and prediction power. On the one hand, the simpler incomplete
one-equation models require scene-dependent information such as a mixing
length, which are hard to specify in the general case. On the other hand,
more complex models such as full Reynolds stress transport rarely pay off for
Graphics applications. While they provide more prediction power especially
for highly anisotropic and transition flows, it is hard to use the information
gained in a meaningful way, as accuracy is limited by the statistical synthesis
methods.

Turbulence Synthesis The most popular turbulence synthesis method in
Graphics is frequency-matched curl noise texture synthesis as described in
§ 3.5. This is due to their simplicity, efficiency and the fact that they work well
in combination with TKE predictors. Instead of representing and simulat-
ing turbulence dynamics, only a texture lookup has to be performed, which

114



7.3 Future work

makes it the prime choice in methods geared towards real-time such as § 4.
However, this method suffers from a number of severe drawbacks. Firstly,
the transition between coherent anisotropic structures and the isotropic tex-
tures creates visual artifacts. This can be partly alleviated by 2D anisotropy
extensions as described in § 4.2.3, but the method is inherently limited in that
detail structures cannot easily be edited or aligned to coherent flow features.
Therefore, it will always remain disconnected from the base flow. Also, the
modulation of the noise texture with the TKE effectively creates divergences,
which may be a problem if strong gradients of turbulence intensity exist
in the scene. Even more importantly, the detail dynamics is limited by the
static nature of texture. Within an octave, there is no interaction between
the generated turbulent eddies, which creates an unrealistic frayed-out look
especially if no background flow is present.

For small synthesis scales, i.e. using a high resolution base solver to cover
the mid-range turbulence, for flows with mostly homogeneous turbulence
intensities or for real-time scenarios, curl noise texture synthesis is therefore
a good choice. For all other cases it pays off to directly represent turbulence
using a vortex representation, such as vortex particles (§ 5), filaments [Weiss-
mann and Pinkall, 2010] or vortex sheets (§ 6). This most often results in
more plausible turbulence dynamics, and allows to model more complex
turbulent effects such as transition and breakdown. On the downside, it takes
more effort to couple these representations to turbulence predictors, and
re-meshing can be an issue. To represent strong turbulence, vortex particles
are the prime choice, as these flows tend to be less connected and represented
most compactly using particle kernels. Filaments are very efficient to cover
mid-level turbulence, and are also useful for the modeling of transition effects.
For interface effects, vortex sheets are most efficient. They are also the suited
best for baroclinity-driven effects, such as cloud billowing which is hard to
model in other representations.

7.3 Future work

The work introduced in this thesis opens up various possibilities for further
research. While turbulence prediction has become sufficiently mature for
most applications, we believe many interesting research opportunities re-
main in the area of turbulence representation and synthesis, which are the
bottleneck for the methods presented in this thesis.

115



Conclusion

Noise Texture Synthesis While synthesis using noise textures is very fast,
it tends to produce unrealistic dynamics. Since the synthesized velocity does
not interact with itself, the generated field remains largely static. Removing
this limitation by animating the noise texture would therefore improve the
realism of this synthesis approach. However, memory limitations make it
hard to store an animated 3D noise texture, and the dynamic animation of
the texture at run-time is computationally expensive, which precludes its use
for the very scenarios the method is useful for. To improve the dynamics,
it should be possible to use a number of narrow-band textures instead of
wide-bandwidth noise textures. Each detail velocity lookup would then
involve a set of texture coordinates, which causes the high-frequency textures
to be advected in the lower-frequency ones. Alternatively, texture animation
at run-time could be feasible if the information would not be stored as a
Eulerian velocity field, but in a sparser parameterization, e.g. as Lagrangian
vector potential elements.

Another field of future research is the behavior of detail texture synthesis
over TKE gradients, as the direct modulation of the detail field with the TKE
causes divergences in the velocity field. A solution for this problem could
be to replace the local lookup with a global synthesis of the detail velocity
field incorporating turbulence intensity, using e.g. wavelet functions. The
challenge is to perform this global synthesis in an efficient manner.

Lagrangian Representations Lagrangian vorticity primitives are a power-
ful means to represent and synthesize turbulence. As explained in § 3.1.2,
the different primitive types are suitable for representing different types of
turbulence. While sheets or filaments are appropriate to simulate turbulence
breakdown, fully-developed turbulence is best represented using vortex par-
ticles. It would therefore be interesting to combine the various primitives in
a simulation, and use them where most appropriate. The main challenges
include reconstructing connectivity at the transitions, and ensuring continuity
in the velocity field when exchanging primitives, as otherwise coherent flow
features will become unstable by the transition.

It is also possible to enhance the capabilities of vorticity primitives by tracking
additional parameters. Viscous diffusion could e.g. be introduced by storing
a diffuse radius at each primitive, similar to the work of [Leonard, 1980]. This
is especially useful for the vortex sheets method § 6, as it allows to model
the development of hazy smoke around the cloud interface by diffusive
processes.

116



7.3 Future work

Adaptivity Finally, we note that the complete separation between detail and
low-resolution base solver of methods such as § 3 opens up new possibilities
for adaptive methods. While it is hard to change particle numbers in e.g.
SPH simulations, since this will create pressure waves, changing the particle
resolution in § 3 is unproblematic, as changes are not fed back into the base
solver. This allows the development of LOD techniques which adjust particle
resolution depending on distance to the camera, or decrease particle density
in invisible regions inside e.g. a smoke plume. The challenge is then to
recreate shape information when up-sampling a previously down-sampled
region.

117



Conclusion

118



A P P E N D I X A
Appendix

A.1 Notation

This section reviews the notation employed throughout the thesis.

Operators and Functions

δ(·) . . . . . . . . . . . . . . . . . . . .Dirac’s delta function
δij . . . . . . . . . . . . . . . . . . . . . Kronecker delta function
× . . . . . . . . . . . . . . . . . . . . . Vector cross product
· . . . . . . . . . . . . . . . . . . . . . . .Vector dot product
∇ . . . . . . . . . . . . . . . . . . . . . Gradient / Divergence operator
∇× · . . . . . . . . . . . . . . . . . . Curl operator
∇2 . . . . . . . . . . . . . . . . . . . . Laplace operator∫

L . . . . . . . . . . . . . . . . . . . . . Line integral∫
S . . . . . . . . . . . . . . . . . . . . . Surface integral
〈·〉 . . . . . . . . . . . . . . . . . . . . . Averaging operator
|| · || . . . . . . . . . . . . . . . . . . . Euclidean norm

119



Appendix

Scalar parameters

k . . . . . . . . . . . . . . . . . . . . . . Turbulent kinetic energy k = 1
2〈u′ · u′〉

cp . . . . . . . . . . . . . . . . . . . . . turbulence transition parameter
lm . . . . . . . . . . . . . . . . . . . . . Mixing length
p . . . . . . . . . . . . . . . . . . . . . . Pressure
pT . . . . . . . . . . . . . . . . . . . . . Probability density for turbulence transition
r . . . . . . . . . . . . . . . . . . . . . . Radius
t . . . . . . . . . . . . . . . . . . . . . . .Time
s . . . . . . . . . . . . . . . . . . . . . . Curve length
∆x . . . . . . . . . . . . . . . . . . . . .Cell width
A . . . . . . . . . . . . . . . . . . . . . .Triangle area
Cx . . . . . . . . . . . . . . . . . . . . . Turbulence model constants
E . . . . . . . . . . . . . . . . . . . . . . Energy distribution
I . . . . . . . . . . . . . . . . . . . . . . Turbulence intensity
L . . . . . . . . . . . . . . . . . . . . . . Length scale
N f . . . . . . . . . . . . . . . . . . . . Noise field
Re . . . . . . . . . . . . . . . . . . . . . Reynolds number Re = ν L/v
V . . . . . . . . . . . . . . . . . . . . . .Volume
ε . . . . . . . . . . . . . . . . . . . . . . Turbulent energy dissipation
P . . . . . . . . . . . . . . . . . . . . . Turbulent production
αS . . . . . . . . . . . . . . . . . . . . . Turbulence detail strength coefficient
βA . . . . . . . . . . . . . . . . . . . . Atwood ratio βA = (ρ1 − ρ2)/(ρ1 + ρ2)

κ . . . . . . . . . . . . . . . . . . . . . . Wavenumber
ρ . . . . . . . . . . . . . . . . . . . . . . Fluid density
ν . . . . . . . . . . . . . . . . . . . . . . Viscosity
νT . . . . . . . . . . . . . . . . . . . . . Turbulent viscosity
σ . . . . . . . . . . . . . . . . . . . . . . Kernel width
Γ . . . . . . . . . . . . . . . . . . . . . . Circulation number

120



A.1 Notation

Vector-valued parameters

c . . . . . . . . . . . . . . . . . . . . . . Curl noise field
e . . . . . . . . . . . . . . . . . . . . . . Edge vector
g . . . . . . . . . . . . . . . . . . . . . . Gravitation
kA . . . . . . . . . . . . . . . . . . . . Anisotropic kinetic energy
n . . . . . . . . . . . . . . . . . . . . . . Surface normal
q . . . . . . . . . . . . . . . . . . . . . . Texture coordinate
u . . . . . . . . . . . . . . . . . . . . . . Velocity
u′ . . . . . . . . . . . . . . . . . . . . . Fluctuating turbulent velocity
uΨ . . . . . . . . . . . . . . . . . . . . Divergence-free velocity component
uΦ . . . . . . . . . . . . . . . . . . . . Curl-free velocity component
uD . . . . . . . . . . . . . . . . . . . . Velocity of the synthesized detail
t . . . . . . . . . . . . . . . . . . . . . . .Tangent vector
x . . . . . . . . . . . . . . . . . . . . . . Position in space
F . . . . . . . . . . . . . . . . . . . . . . External force
Nf . . . . . . . . . . . . . . . . . . . . .Vector noise field
PA . . . . . . . . . . . . . . . . . . . . Anisotropic production
Ū . . . . . . . . . . . . . . . . . . . . . Averaged velocity field
U0 . . . . . . . . . . . . . . . . . . . . .Reference velocity, e.g. inflow speed
ωωω . . . . . . . . . . . . . . . . . . . . . Vorticity ωωω =∇× u
γγγ . . . . . . . . . . . . . . . . . . . . . . Vortex sheet strength
γ̄γγ . . . . . . . . . . . . . . . . . . . . . . Filtered vortex sheet strength
γγγ′ . . . . . . . . . . . . . . . . . . . . . Detail vortex sheet strength
Ψ . . . . . . . . . . . . . . . . . . . . . .Vector potential

121



Appendix

Tensors

a . . . . . . . . . . . . . . . . . . . . . . Anisotropic Reynolds stress tensor aij = τij− 2
3 kδij

I . . . . . . . . . . . . . . . . . . . . . . Identity operator
P . . . . . . . . . . . . . . . . . . . . . . Projection operator P = I− n n

S . . . . . . . . . . . . . . . . . . . . . . Strain tensor Sij =
1
2(

∂Ui
∂xj

+
∂Uj
∂xi

)

T . . . . . . . . . . . . . . . . . . . . . . Turbulence transport tensor (third-rank)
P . . . . . . . . . . . . . . . . . . . . . Turbulence production tensor
R . . . . . . . . . . . . . . . . . . . . . Turbulence redistribution tensor
ε . . . . . . . . . . . . . . . . . . . . . . Turbulence dissipation tensor
τ . . . . . . . . . . . . . . . . . . . . . . Reynolds stress tensor τij = 〈u′iu′j〉
Ω . . . . . . . . . . . . . . . . . . . . . Rotation tensor Ωij =

1
2(

∂Ui
∂xj
− ∂Uj

∂xi
)

122



A.2 Glossary

A.2 Glossary

ABL . . . . . . . . . . . . . . . . . . . Artificial boundary layer
CFD . . . . . . . . . . . . . . . . . . . Computational fluid dynamics
CFL . . . . . . . . . . . . . . . . . . . Courant-Friedrichs-Lewy condition
FDM . . . . . . . . . . . . . . . . . . Finite difference method
FLIP . . . . . . . . . . . . . . . . . . .Fluid implicit particle
FEM . . . . . . . . . . . . . . . . . . .Finite element method
FFM . . . . . . . . . . . . . . . . . . . Fast multipole method
FVM . . . . . . . . . . . . . . . . . . Finite volume method
GPGPU . . . . . . . . . . . . . . . General purpose graphics processing unit
GPU . . . . . . . . . . . . . . . . . . Graphics processing unit
K41 . . . . . . . . . . . . . . . . . . . [Kolmogorov, 1941]

LES . . . . . . . . . . . . . . . . . . . Large eddie simulation
LOD . . . . . . . . . . . . . . . . . . Level of detail
MAC . . . . . . . . . . . . . . . . . . Marker and cell
NS . . . . . . . . . . . . . . . . . . . . Navier-Stokes
PDE . . . . . . . . . . . . . . . . . . . Partial differential equation
PIC . . . . . . . . . . . . . . . . . . . .Particle in cell
RANS . . . . . . . . . . . . . . . . . Reynolds-averaged Navier Stokes
SPH . . . . . . . . . . . . . . . . . . . Smoothed particle hydrodynamics
TKE . . . . . . . . . . . . . . . . . . . Turbulent kinetic energy
VIC . . . . . . . . . . . . . . . . . . . Vortex in cell

123



Appendix

A.3 Software

Most of the methods described
in the previous chapters have
been implemented in Mantaflow.
Mantaflow is an open-source fluid
solver framework, which was developed as part of this thesis. It aims at mak-
ing it easy for researchers to implement new algorithms and experiment with
new concepts in the context of fluid simulation. The output can be visualized
during runtime using an integrated GUI or rendered in Maya using a plugin.

A simulation in Mantaflow is set up using a scene-definition file written in
Python. This is a high-level description of both scene geometry, data flow
and the simulation loop, similar to pseudo code given in many fluid research
papers. Fig. A.1 shows an example scene definition file for the simulation
of a rising plume. Mantaflow comes with many useful classes and plugins,
so standard simulation tasks can be performed simply by editing scene
definition files.

As the framework is geared towards research, a design goal was to make
it easy to extend for new algorithms and data types. The functions and
statements called from in the scene definition file are implemented in C++
for performance reasons. Classes such as RealGrid are implemented as
(templated) C++ classes, while plugins such as solvePressure are free C++
functions. A custom preprocessor automatically generates the glue code
to keep the definition of new plugins and classes simple. A very simple
extension plugin function is shown in Fig. A.2, which multiplies a real grid
(e.g. density) with a factor. The PLUGIN keyword tells the pre-processor to
generate glue code to expose the function to Python. KERNEL defines a kernel
which is evaluated for each cell of a grid, or each particle in a particle system.
Kernels can be reused between plugins and are automatically parallelized
using Thread Building Blocks.

This section aimed at providing a short glimpse at how to use this fram-
work. A short tutorial, documentation and the full sources are available at
http://mantaflow.ethz.ch.

124

http://python.org
http://threadingbuildingblocks.org
http://mantaflow.ethz.ch


A.3 Software

1 from manta import *

3 # solver params

4 res = 64

5 gs = vec3(res ,res ,res)

6 s = Solver(name=’main’, gridSize = gs)

7 s.timestep = 1.0

9 # prepare grids

10 flags = s.create(FlagGrid)

11 vel = s.create(MACGrid)

12 density = s.create(RealGrid)

13 pressure = s.create(RealGrid)

15 flags.initDomain ()

16 flags.fillGrid ()

18 # define shape for smoke inflow

19 smokeSource = s.create(Cylinder , center=gs*vec3 (0.5 ,0.13 ,0.5) ,

20 radius=res *0.14 , z=gs*vec3(0, 0.03, 0))

22 # main loop

23 for t in range (250):

24 smokeSource.applyToGrid(grid=vel , value=velInflow)

26 # MacCormack advection

27 advectSemiLagrange(flags=flags , vel=vel , grid=density , order =2)

28 advectSemiLagrange(flags=flags , vel=vel , grid=vel , order =2)

30 setWallBcs(flags=flags , vel=vel)

31 addBuoyancy(density=density , vel=vel , gravity=vec3(0,-6e-4,0), flags=flags)

33 solvePressure(flags=flags , vel=vel , pressure=pressure)

34 setWallBcs(flags=flags , vel=vel)

36 s.step()

Figure A.1: A scene definition file for a simple rising smoke plume. First, the Solver and
Grid objects are set up. Then, geometry is initialized. The main loop consists
of the advection of smoke density and velocity fields, integration of buoyancy
forces, and the pressure projection operation.

1 KERNEL(ijk) KnScaleField(FlagGrid& flags , Grid <Real >& density , Real factor)

2 {

3 if (flags.isFluid(i,j,k))

4 density(i,j,k) *= factor;

5 }

7 PLUGIN void scaleField(FlagGrid& flags , Grid <Real >& density , Real factor)

8 {

9 KnScaleField(flags , density , factor );

10 }

Figure A.2: This C++ code snippet defines and registers the simple plugin function
scaleField. The plugin function applies a kernel over the density grid, which
multiplies the density field with a given Scalar for all fluid cells.

125



Appendix

126



Bibliography

[Agishtein and Migdal, 1989] M. E. Agishtein and A. A. Migdal. Dynamics of
vortex surfaces in three dimensions: Theory and simulation. Physica D, 40:91–
118, 1989.

[Angelidis and Neyret, 2005] Alexis Angelidis and Fabrice Neyret. Simulation of
smoke based on vortex filament primitives. In ACM SIGGRAPH / EG Symposium
on Computer Animation, 2005.

[Angelidis et al., 2006] Alexis Angelidis, Fabrice Neyret, Karan Singh, and Derek
Nowrouzezahrai. A controllable, fast and stable basis for vortex based smoke
simulation. In ACM SIGGRAPH / EG Symposium on Computer Animation, 2006.

[Aupoix, 2004] B. Aupoix. Modeling of compressibiliy effects in mixing layers.
Journal of Turbulence, 5, 2004.

[Baldwin and Lomax, 1978] B. S. Baldwin and H. Lomax. Thin Layer Approxima-
tion and Algebraic Model for Seperated Turbulent Flows. American Institute of
Aeronautics and Astronautics Journal, 1978.

[Bargteil et al., 2006] Adam W. Bargteil, Tolga G. Goktekin, James F. O’Brien, and
John A. Strain. A semi-lagrangian contouring method for fluid simulation. ACM
Transactions on Graphics, 25(1), 2006.

[Barnat and Pollard, 2012] Alfred Barnat and Nancy S. Pollard. Smoke sheets for



Bibliography

graph-structured vortex filaments. In Proceedings of the 2012 ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation, SCA ’12. ACM, 2012.

[Batty et al., 2007] Christopher Batty, Florence Bertails, and Robert Bridson. A fast
variational framework for accurate solid-fluid coupling. ACM Transactions on
Graphics, 26(3):Article 100, 2007.

[Beale and Majda, 1982] J. T. Beale and A. Majda. Vortex methods i: convergence
in three dimensions. Math. Comput., 159:1–27, 1982.

[Brady et al., 1998] M. Brady, A. Leonard, and D. I. Pullin. Regularized vortex
sheet evolution in three dimensions. J. Comput. Phys., 146:520–545, 1998.

[Bridson et al., 2007] Robert Bridson, Jim Houriham, and Marcus Nordenstam.
Curl-noise for procedural fluid flow. ACM SIGGRAPH papers, 26(3):Article 46,
2007.

[Bridson, 2008] Robert Bridson. Fluid Simulation for Computer Graphics. A K Peters,
2008.

[Brochu and Bridson, 2009] T. Brochu and R. Bridson. Animating smoke as a
surface. SCA posters, 2009.

[Brochu et al., 2010] Tyson Brochu, Christopher Batty, and Robert Bridson. Match-
ing fluid simulation elements to surface geometry and topology. ACM Trans.
Graph., 29(4):47:1–47:9, July 2010.

[Brochu et al., 2012] Tyson Brochu, Todd Keeler, and Robert Bridson. Linear-time
smoke animation with vortex sheet meshes. In ACM SIGGRAPH / EG Symposium
on Computer Animation, 2012.

[Carlson et al., 2004] M. Carlson, P. J. Mucha, and G. Turk. Rigid fluid: Animating
the interplay between rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH
Proc.), 23:377–384, 2004.

[Chaoat and Schiestel, 2007] B. Chaoat and R. Schiestel. From single-scale turbu-
lence models to multiple-scale and subgrid-scale models by fourier transform.
Theor. and Comp. Fluid Dyn., 21(3):201–229, 2007.

[Chen et al., 2011] Fan Chen, Ye Zhao, and Zhi Yuan. Langevin particle: A self-
adaptive lagrangian primitive for flow simulation enhancement. Computer
Graphics Forum, 30(2):435–444, 2011.

[Chentanez and Mueller, 2011] Nuttapong Chentanez and Matthias Mueller. Real-
time eulerian water simulation using a restricted tall cell grid. ACM Trans.
Graph., 30:82:1–82:10, 2011.

128



Bibliography

[Chentanez and Müller, 2010] Nuttapong Chentanez and Matthias Müller. Real-
time simulation of large bodies of water with small scale details. Proceedings
of the 2010 ACM SIGGRAPH Symposium on Computer Animation, pages 197–206,
2010.

[Chorin and Bernard, 1973] A. J. Chorin and P. S. Bernard. Discretization of a
vortex sheet, with an example of roll-up. J. Comp. Phys., 13:423–429, 1973.

[Chorin, 1981] A. J. Chorin. Estimates of intermittency, spectra and blow-up in
developed turbulence. Comm. on Pure and Applied Math., 34:853–866, 1981.

[Chorin, 1996] A. J. Chorin. Microstructure, renormalization and more efficient
vortex methods. ESAIM Proc., 1:1–14, 1996.

[Chung and Kim, 1995] M. K. Chung and S. K. Kim. A nonlinear return-to-
isotropy model with turbulent fluctuations. Phys. Fluids, 7:1425–1436, 1995.

[Cohen et al., 2010] Jonathan Cohen, Sarah Tariq, and Simon Green. Interactive
fluid-particle simulation using translating eulerian grids. In Proceedings of the
2010 SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2010.

[Cook and DeRose, 2005] Robert Cook and Tony DeRose. Wavelet noise. In Pro-
ceedings of ACM SIGGRAPH 2005, volume 25, 2005.

[Cottet and Koumoutsakos, 1999] Georges-Henri Cottet and Petros Koumout-
sakos. Vortex Methods: Theory and Practice. Cambridge Univ. Press, 1999.

[Cottet and Poncet, 2003] G. H. Cottet and P. Poncet. Advances in direct numerical
simulations of 3d wall-bounded flows by vortex-in-cell methods. J. Comput.
Phys., 193:136–158, 2003.

[Cowper, 1973] G.R. Cowper. Gaussian quadrature formulas for triangles. Int. J.
Num. Methods, 7(3):405–408, 1973.

[Crane et al., 2007] Keenan Crane, Ignacio Llamas, and Sarah Tariq. Real Time
Simulation and Rendering of 3D Fluids, chapter 30. Addison-Wesley, 2007.

[Dandois et al., 2007] J. Dandois, E. Garnier, and P. Sagaut. Numerical simulation
of active separation control by a synthetic jet. J. Fluid Mech., 574:25–58, 2007.

[de Frutus and Novo, 2001] Javier de Frutus and Julia Novo. A spectral element
method for the navier-stokes equations with improved accuracy. SIAM journal
on Numerical Analysis, 38(3):799–819, 2001.

[Degond and Mas-Gallic, 1989] P. Degond and S. Mas-Gallic. The weighted par-
ticle method for convetion-diffusion equations. Part I: The case of an isotropic
viscosity, 53:485–507, 1989.

129



Bibliography

[Dehnen, 2002] Walter Dehnen. A hierarchial o(n) force calculation algorithm. J.
Comput. Phys., 179:27–42, 2002.

[Desbrun et al., 1999] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan
Barr. Implicit fairing of irregular meshes using diffusion and curvature flow.
Proc. SIGGRAPH, pages 317–324, 1999.

[Driest, 1956] E. R. Van Driest. On turbulent flow near a wall. J. Aeronaut. Sci.,
23(11):1007–1011, 1956.

[Durbin, 1993] P. A. Durbin. A reynolds stress model for near-wall turbulence. J.
Fluid Mech., 249:465–498, 1993.

[Enright et al., 2002a] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid
particle level set method for improved interface capturing. J. Comp. Phys., 183:83–
116, 2002.

[Enright et al., 2002b] D. Enright, S. Marschner, and R. Fedkiw. Animation and
rendering of complex water surfaces. In Proceedings of ACM SIGGRAPH, pages
pp. 736–744, 2002.

[Fedkiw et al., 2001] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual
simulation of smoke. In Proceedings of ACM SIGGRAPH, pages 15–22, 2001.

[Feldman et al., 2005] Bryan E. Feldman, James F. O’Brien, and Bryan M. Klingner.
Animating gases with hybrid meshes. In Proceedings of ACM SIGGRAPH, 2005.

[Frisch, 1995] Uriel Frisch. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge
University Press, 1995.

[Galperin and Orszag, 1993] B. Galperin and S. A. Orszag. Large Eddy Simulations
of Complex Engineering and Geophysical Flows. Cambridge University Press, 1993.

[Gharakhani, 2003] A. Gharakhani. Application of vrm to les of incompressible
flow. J. Turb., 4:4, 2003.

[Gingold and Monaghan, 1977] R. A. Gingold and J. J. Monaghan. Smoothed
particle hydrodynamics: theory and application to non-spherical stars. Mon.
Not. R. Astron. Soc., pages 375–389, 1977.

[Goktekin et al., 2004] Tolga G. Goktekin, Adam W. Bargteil, and James F. O’Brien.
A method for animating viscoelastic fluids. ACM Transactions on Graphics (Proc.
of ACM SIGGRAPH 2004), 23(3):463–468, 2004.

[Guendelman et al., 2003] E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex
rigid bodies with stacking. ACM Trans. Graph. (SIGGRAPH Proc.), 22(3):871–878,
2003.

130



Bibliography

[Hald, 1979] O. H. Hald. The convergence of vortex methods. SIAM J. Numer.
Anal., 32:791–809, 1979.

[Hardy et al., 1976] J. Hardy, O. De Pazzis, and J. Pomeau. Molecular dynamics
of a classical lattice gas: Transport properties and time correlation functions.
Physical Review A, 13:1949–1960, 1976.

[Harlow and Welch, 1966] F. Harlow and E. Welch. Numerical calculation of time-
dependent viscous incompressible flow of fluids with free surface. Physics of
Fluids, 8, 1966.

[Haworth and Jansen, 2000] D. C. Haworth and K. Jansen. Large-eddy simulation
on unstructured deforming meshes: towards reciprocating ic engines. Computers
and Fluids, 29:493–524, 2000.

[Hirt and Nichols, 1981] C. W. Hirt and B. D. Nichols. Volume of fluid (vof)
method for the dynamics of free boundaries. J. Comp. Phys, 39:201–225, 1981.

[Hong and Kim, 2003] J. Hong and C. Kim. Animation of bubbles in liquid. Pro-
ceedings of Eurographics 2003, 22(3), 2003.

[Horvath and Geiger, 2009] C. Horvath and W. Geiger. Directable, high-resolution
simulation of fire on the gpu. ACM SIGGRAPH papers, 2009.

[Hsu, 1981] C. Hsu. A curviliniear-coordinate method for momentum, heat and mass
transfer in domains of irregular geometry. PhD thesis, University of Minnesota,
1981.

[Ikits et al., 2004] M. Ikits, J. Kniss, A. Lefohn, and C. Hanson. GPU Gems: Pro-
gramming techniques for real-time Graphics. Addison Wesley, 2004.

[Irving et al., 2006] G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. Efficient
simulation of large bodies of water by coupling two and three dimensional
techniques. ACM Transactions on Graphics, 25(3):805–811, 2006.

[Jang et al., 2010] Taekwon Jang, Heeyoung Kim, Jinhyuk Bae, Jaewoo Seo, and
Junyong Noh. Multilevel vorticity confinement for water turbulence simulation.
Vis. Comput., 26(6-8):873–881, June 2010.

[Jiménez and Orland, 1993] Javier Jiménez and Paolo Orland. The rollup of a
vortex layer near a wall. Journal of Fluid Mechanics, 1993.

[John, 2006] Voker John. On large eddy simulation and variational multiscale
methods in the numerical simulation of turbulent incompressible flows. Applica-
tions of Mathematics, 51:321–353, 2006.

[Jones and Chen, 1994] M. Jones and M. Chen. A new approach to the construction
of surfaces from contour data. Computer Graphics Forum, 13(3):pp. 75–84, 1994.

131



Bibliography

[Kim et al., 2005] ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and Jarek
Rossignac. Flowfixer: Using BFECC for fluid simulation. In Proceedings of
Eurographics Workshop on Natural Phenomena, 2005.

[Kim et al., 2008a] Doyub Kim, Oh young Song, and Hyeong-Seok Ko. A semi-
lagrangian cip fluid solver without dimensional splitting. Comput. Graph. Forum
(Proc. Eurographics), 27(2):467–475, 2008.

[Kim et al., 2008b] Theodore Kim, Nils Thuerey, Doug James, and Markus Gross.
Wavelet turbulence for fluid simulation. ACM SIGGRAPH Papers, 27(3):Article
6, Aug 2008.

[Kim et al., 2009] Doyub Kim, Oh-Young Song, and Hyeong-Seok Ko. Stretching
and wiggling liquids. ACM Transactions on Graphics, 28(5):120, 2009.

[Kim et al., 2012] Doyub Kim, Seung Woo Lee, Oh young Song, and Hyeong-
Seok Ko. Baroclinic turbulence with varying density and temperature. IEEE
Transactions on Visualization and Computer Graphics, 18:1488–1495, 2012.

[Klingner et al., 2006] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chen-
tanez, and James F. O’Brien. Fluid animation with dynamic meshes. In Proceed-
ings of ACM SIGGRAPH, 2006.

[Kolluri, 2005] Ravikrishna Kolluri. Provably good moving least squares. In
Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pages 1008–1018,
August 2005.

[Kolmogorov, 1941] A.N. Kolmogorov. The local structure of turbulence in incom-
pressible viscous fluid for very large reynolds number. Dokl. Akad. Nauk SSSR,
30, 1941.

[Lamorlette and Foster, 2002] Arnauld Lamorlette and Nick Foster. Structural
modeling of flames for a production environment. In Proceedings of ACM SIG-
GRAPH, 2002.

[Langtry et al., 2006] R. B. Langtry, F. R. Menter, S. R. Likki, and Y. B. Suzen. A
correlation-based transition model using local variables. J. Turbomach., 128:123–
143, 2006.

[Launder and Sharma, 1974] B. E. Launder and D. B. Sharma. Applications of
the energy-dissipation model of turbulence to the calculation of flow near a
spinning disc. Lett. Heat Mass Transf., 1:1031–138, 1974.

[Launder et al., 1975] B. E. Launder, G. J. Reece, and W. Rodi. Progress in the
development of a reynolds-stress turbulence closure. J. Fluid Mech., 68:537–566,
1975.

132



Bibliography

[Le et al., 1997] Hung Le, Parviz Moin, and John Kim. Direct numerical simulation
of turbulent flow over a backward-facing step. J. Fluid Mech., 330(01):349–374,
1997.

[Leonard, 1975] A. Leonard. Numerical simulation of interacting, three-
dimensional vortex filaments. In Proceedings of the IV Intl. Conf. on Numerical
Meth., 1975.

[Leonard, 1980] A. Leonard. Vortex methods for flow simulation. J. Comput. Phys.,
37:289–335, 1980.

[Lindsay and Krasny, 2001] K. Lindsay and R. Krasny. A particle method and
adaptive treecode for vortex sheet motion in three-dimensional flow. J. Comput.
Phys., 172:879–907, 2001.

[Losasso et al., 2004] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and
smoke with an octree data structure. Proceedings of ACM SIGGRAPH, pages
457–462, 2004.

[Lozano et al., 1998] A. Lozano, A. Garc?a-Olivares, and C. Dopazo. The instability
growth leading to a liquid sheet breakup. Phys. Fluids, 10(9):2188–2197, 1998.

[Marshall and Grant, 1996] J. S. Marshall and J. R. Grant. Penetration of a blade
into a vortex core: vorticity response and unsteady blade forces. J. Fluid Mech.,
306:83–109, 1996.

[Meng, 1978] J. C. S. Meng. The physics of vortex-ring evolution in a stratified and
shearing environment. J. Fluid Mech., 84(3):455–469, 1978.

[Menter and Kuntz, 2005] F. Menter and M. Kuntz. A scale-adaptive simulation
model using two-equation models. AIAA paper 05-1095, 2005.

[Molemaker et al., 2008] Jeroen Molemaker, Jonathan M. Cohen, Sanjit Patel, and
Jonyong Noh. Low viscosity flow simulations for animation. In ACM SIGGRAPH
/ EG Symposium on Computer Animation, pages 9–18, July 2008.

[Monaghan, 2005] J. J. Monaghan. Smoothed particle hydrodynamics. Rep. Prog.
Phys., pages 1703–1759, 2005.

[Mullen et al., 2009] Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong,
and Mathieu Desbrun. Energy-Preserving Integrators for Fluid Animation.
ACM SIGGRAPH Papers, 28(3):Article 38, Aug 2009.

[Müller et al., 2005] M. Müller, B. Solenthaler, R. Keiser, and M. Gross. Particle-
based fluid-fluid interaction. ACM SIGGRAPH / EG Symposium on Computer
Animation, 2005.

133



Bibliography

[Narain et al., 2008] Rahul Narain, Jason Sewall, Mark Carlson, and Ming C. Lin.
Fast animation of turbulence using energy transport and procedural synthesis.
ACM SIGGRAPH Asia papers, page Article 166, 2008.

[Obukhov, 1941] A.M. Obukhov. The spectral energy distribution in a turbulent
flow. Dokl. Akad. Nauk, 32:22–24, 1941.

[Oden and Wellford, 1972] J. T. Oden and L. C. Wellford. Analysis of viscous flow
by the finite element method. AIAA J., 10:1590, 1972.

[Panchev, 1971] S. Panchev. Random Functions and Turbulence. Oxford: Pergamon
Press, 1971.

[Pao, 1965] Y. H. Pao. Structure of turbulent velocity and scalar fields at large
wavenumbers. Phys. Fluids, 8:1063–1075, 1965.

[Ploumhans et al., 2002] P. Ploumhans, G. S. Winckelmans, J. K. Salmon,
A. Leonard, and M. S. Warren. Vortex methods for direct numerical simu-
lation of three-dimensional bluff body flows. J. Comput. Phys., 178:427–463,
2002.

[Pope, 1983] S. B. Pope. A lagrangian two-time probability density function equa-
tion for inhomogeneous turbulent flows. Phys. Fluids, 26:3448–3450, 1983.

[Pope, 2000] Stephen B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[Prandtl, 1945] L. Prandtl. über ein neues formelsystem für die ausgebildete
turbulenz. Nachr. Akad. Wiss. Göttingen K1, pages 6–10, 1945.

[Qian and Vezza, 2001] L. Qian and M. Vezza. A vorticity-based method for in-
compressible unsteady viscous flows. J. Comput. Phys., pages 172:515–542, 2001.

[Rasmussen et al., 2003] Nick Rasmussen, Duc Quang Nguyen, Willi Geiger, and
Ronald Fedkiw. Smoke simulation for large scale phenomena. In Proceedings of
ACM SIGGRAPH, 2003.

[Robinson-Mosher et al., 2008] Avi Robinson-Mosher, Tamar Shinar, Jon Gretars-
son, Jonathan Su, and Ron Fedkiw. Two-way coupling of fluids to rigid and
deformable solids and shells. ACM SIGGRAPH papers, 27(3):Article 46, August
2008.

[Rosenhead, 1931] L. Rosenhead. The formation of vorticies from a surface of
discontinuity. Proc. Roy. Soc. London, 134:170–192, 1931.

[Schechter and Bridson, 2008] Hagit Schechter and Robert Bridson. Evolving sub-
grid turbulence for smoke animation. In Proceedings of the 2008 ACM/Eurographics
Symposium on Computer Animation, 2008.

134



Bibliography

[Selle et al., 2005] Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex
particle method for smoke, water and explosions. Proceedings of ACM SIG-
GRAPH, 24(3):910–914, 2005.

[Selle et al., 2008] Andrew Selle, Ronald Fedkiw, ByungMoon Kim, Yingjie Liu,
and Jarek Rossignac. An unconditionally stable MacCormack method. Journal
of Scientific Computing, 2008.

[Shankar and van Dommelen, 1996] S. Shankar and L. van Dommelen. A new
diffusion procedure for vortex methods. J. Comput. Phys., 127:88–109, 1996.

[Smagorinsky, 1963] J. Smagorinsky. General circulation experiments with the
primitive equations. i. the basic experiment. Monthly Weather Review, 1963.

[Smith, 1961] Oliver K. Smith. Eigenvalues of a symmetric 3× 3 matrix. Comm. of
the ACM, 4, 1961.

[Spalart and Allmaras, 1994] P. R. Spalart and S. R. Allmaras. A one-equation
turbulence model for aerodynamic flows. AIAA Paper, 92:0439, 1994.

[Spalart and Rumsey, 2007] Philippe R. Spalart and Christopher L. Rumsey. Effec-
tive inflow conditions for turbulence models in aerodynamic calculations. AIAA
Journal, 45(10), 2007.

[Spalart, 2009] P. R. Spalart. Detached eddy simulation. Annual Review of Fluid
Mechanics, 41:181–202, 2009.

[Stam and Fiume, 1993] Jos Stam and Eugene Fiume. Turbulent wind fields for
gaseous phenomena. In Proceedings of ACM SIGGRAPH, 1993.

[Stam, 1999] Jos Stam. Stable fluids. In Proceedings of ACM SIGGRAPH, 1999.

[Stock et al., 2008] M. Stock, W.J.A. Dahm, and G. Tryggvason. Impact of a vortex
ring on a density interface using a regularized inviscid vortex sheet method. J.
Comp. Phys., 227:9021–9043, 2008.

[Stock, 2006] Mark Stock. A Regularized Inviscid Vortex Sheet Method for Three
Dimensional Flows With Density Interfaces. PhD thesis, University of Michigan,
2006.

[Thuerey et al., 2006] N. Thuerey, K. Iglberger, and U. Rüde. Free Surface Flows
with Moving and Deforming Objects for LBM. Proceedings of Vision, Modeling
and Visualization 2006, pages 193–200, Nov 2006.

[Thuerey et al., 2010] Nils Thuerey, Chris Wojtan, Markus Gross, and Greg Turk.
A multiscale approach to mesh-based surface tension flows. ACM Trans. Graph.,
29(4):48:1–48:10, July 2010.

135



Bibliography

[Treuille et al., 2006] Adrien Treuille, Andrew Lewis, and Zoran Popovic. Model
reduction for real-time fluids. In Proceedings of ACM SIGGRAPH, 2006.

[Tryggvason and Aref, 1983] G. Tryggvason and H. Aref. Numerical experiments
on hele-shaw flow with a sharp interface. J. Fluid Mech., 136:1–30, 1983.

[von Funck et al., 2008] Wolfram von Funck, Tino Weinkauf, Holger Theisel, and
Hans-Peter Seidel. Smoke surfaces: An interactive flow visualization technique
inspired by real-world flow experiments. IEEE Transactions in Visualization and
CG, 14(6):1396–1403, 2008.

[Wang, 2004] Qian Xi Wang. Variable order revised binary treecode. J. Comput.
Phys., 200:192–210, 2004.

[Weissmann and Pinkall, 2010] S. Weissmann and U. Pinkall. Filament-based
smoke with vortex shedding and variational reconnection. ACM Transactions on
Graphics, 29(4), 2010.

[Wicke et al., 2009] Martin Wicke, Matthew Stanton, and Adrien Treuille. Modular
Bases for Fluid Dynamics. ACM SIGGRAPH Papers, 28:Article 39, Aug 2009.

[Wilcox, 1993] D. C. Wilcox. Turbulence modelling for CFD. DCW Industries, 1993.

[Winckelmans et al., 1996] G. S. Winckelmans, J. K. Salmon, M. S. Warren,
A. Leonard, and B. Jodoin. Application of fast parallel and sequential tree coeds
to computing three-dimensional flows with the vortex element and boundary
element methods. ESAIM Proc., 1:225–240, 1996.

[Wojtan et al., 2010] Chris Wojtan, Nils Thuerey, Markus Gross, and Greg Turk.
Physics-inspired topology changes for thin fluid features. ACM Transactions on
Graphics, 29,3:8, July 2010.

[Yoon et al., 2009] J.-C. Yoon, H. R. Kam, J.-M. Hong, S.-J. Kang, and C.-H. Kim.
Procedural synthesis using vortex particle method for fluid simulation. Compu.
Graph. Forum, 28(7):1853–1859, 2009.

[Yu et al., 2009] Qizhi Yu, Fabrice Neyret, Éric Bruneton, and Nicolas Holzschuch.
Scalable real-time animation of rivers. Comput. Graph. Forum, 28(2):239–248,
2009.

[Zhao et al., 2010] Ye Zhao, Zhi Yuan, and Fan Chen. Enhancing fluid animation
with adaptive, controllable and intermittent turbulence. ACM Eurographics,
2010.

[Zhu and Bridson, 2005] Yongning Zhu and Robert Bridson. Animating sand as a
fluid. Proceedings of ACM SIGGRAPH, 24(3):965–972, 2005.

136



Curriculum Vitae

Tobias Pfaff

Personal Data

3. Oct 1980 Born in Bühl, Germany
Nationality German

Education

12. Jul 2012 Ph.D. defense

Mar 2008 – Jun 2012 Research assistant and Ph. D. student, ETH Zurich
Advisor: Prof. Markus Gross

Sep 2007 Diploma degree in Physics
Numerical modeling and joint inversion of ERT and solute transport
Advisor: Prof. Kurt Roth, University of Heidelberg

Oct. 2001 – Sep. 2007 Studies of Physics, Universität Konstanz, Germany
Specialization: Quantum Physics, Semiconductor Physics

Oct. 2003 – Apr 2006 Studies of Computer Sciene, Fernuniversität Hagen, Germany
In parallel to studies of Physics
Graduation with Vordiplom in Computer Science



Curriculum Vitae

Awards

2001 – 2007 Holder of a full scholarship, Studienstiftung des deutsches Volkes

2003 – 2004 JASSO fellowship, Japanese Education Department

2001 National winner of the 19th Bundeswettbewerb Informatik (Ger-
man National Computer Science Competition)

Scientific Publications

T.PFAFF, N. THUEREY and M. GROSS. Lagrangian Vortex Sheets for Animating Fluids. In
Proceedings of ACM SIGGRAPH (Los Angeles, USA, August 5-9, 2012), ACM Transaction on
Graphics, vol. 31, no.4, pp.112:1–112:8.

T. PFAFF, N. THUEREY, J. COHEN, S. TARIQ and M. GROSS. Scalable Fluid Simulation
using Anisotropic Turbulence Particles. In Proceedings of ACM SIGGRAPH Asia (Seoul,
Korea, December 15-18, 2010), ACM Transaction on Graphics, vol. 29, no. 5, pp. 174:1–174:8.

T. PFAFF, N. THUEREY, A. SELLE and M. GROSS. Synthetic Turbulence using Artificial
Boundary Layers. In Proceedings of ACM SIGGRAPH Asia (Yokohama, Japan, 16-19, 2009),
ACM Transactions on Graphics, vol. 28, no.5, pp. 121:1–121:10.

U. WOLLSCHLÄGER, T. PFAFF and K. ROTH. Field-scale apparent hydraulic parameteriza-
tion obtained from TDR time series and inverse modeling. In Hydology and Earth System
Sciences, vol. 13, pp. 1953, 2009.

Employment and Research

Mar 2008 – Jun 2012 Research assistant, Computer Graphics Lab, ETH Zurich, Switzer-
land. Turbulence methods, Fluid Simulation

Jul 2007 – Sep 2008 Visiting researcher, Soil Physics Group, CAS Lanzhou, China.
Evaluation of ERT measurements for studying permafrost soils

Sep 2006 – Sep 2007 Research assistant, Institute of Environmental Physics, Universität
Heidelberg, Germany. Inverse modeling of geophysical data, Solute
transport models

Feb 2005 – Apr 2005 Research internship, Bosch GmbH, Germany. Development of algo-
rithms for a novel 3D-optical sensor system

Jul 2005 – Sep 2005 Visiting researcher, AI Media Lab, KAIST, Korea. Optimal trajec-
tory planning for bipedal robots using a full-friction model

Mar 2002 – Sep 2002 Undergraduate research assistant, Solid-state Physics Group, Uni-
versität Konstanz, Germany. Characterization of a novel acoustic
microscope (SNAM)

138


	Introduction
	Thesis Overview
	Contributions
	Thesis outline
	Publications

	Related Work
	History
	Fluid Simulation in Computer Graphics
	Low-dissipative Methods
	Sub-grid Methods
	Real-time Fluid Simulation

	Lagrangian Vortex Methods
	Turbulence Methods
	Turbulence Modeling
	Turbulence Synthesis

	Recent works

	Theory and Numerical Methods
	Fluid dynamics
	Eulerian discretization
	Lagrangian primitives

	Turbulence
	The Reynolds Average

	Turbulence Modeling
	Energy Transport Models
	Extending Energy Transport Models

	The Energy spectrum
	Turbulence synthesis
	Curl Noise Synthesis
	Composition
	Discussion


	Real-Time Turbulence Methods
	Overview
	Turbulence Model
	Energy transport
	Turbulence Synthesis
	Anisotropy

	Implementation
	Results and Discussion
	Conclusions

	Modeling Obstacle-Induced Turbulence
	Overview
	Wall-Induced Turbulence
	Generation of turbulence
	Precomputing the Artificial Boundary Layer

	Turbulence Synthesis
	Vortex particle dynamics
	Vorticity Synthesis

	Implementation
	Precomputation
	Simulation loop

	Results and Discussion
	Conclusions

	Detail Enhancement on Fluid Interfaces
	Vortex Sheet Methods
	Local evaluation
	Regularization

	Wall-based Turbulence Model
	Modified Energy Model
	Turbulence Synthesis

	Implementation
	Turbulence Model
	Mesh Resampling

	Results
	Conclusion

	Conclusion
	Discussion
	Application Guidelines
	Future work

	Appendix
	Notation
	Glossary
	Software

	Bibliography
	Curriculum Vitae

