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Abstract

Binocular vision enables a precise estimation of depth in visual space through
a process called stereopsis. Combined with other visual cues to depth, hu-
mans can efficiently interpret a complex three-dimension world. Various
forms of technology exist to recreate this visual experience. The most com-
mon today is the use of stereoscopic 3D images or video. The fundamental
idea is to present two images, one to each eye, which are fused to provide
a compelling sensation of depth. Stereoscopic image viewing, however, in-
troduces several perceptual distortions, which impact visual quality, depth
interpretation and comfort.

Since the complexity is high, there is a need to develop technology to facilitate
understanding of how stereoscopic images are perceived. The technology is
based on computational models that encompass theory, representation and
implementation of the models. This thesis presents a combination of percep-
tual models based on existing research and novel experimental methods. The
findings support the challenging, yet important endeavor to develop models
of stereoscopic image quality.

This thesis makes four primary contributions. First, a collection of model-
ing topics related to stereoscopic imaging are presented. This helps to frame
the space of limitations influencing both the presentation and perception of
stereoscopic images. A second contribution is the exploration of how a dom-
inant perceptual conflict between eye vergence and accommodation influ-
ences a viewers ability to change visual attention. A third contribution is
the exploration of another perceptual distortion when one of the strongest
depth cues, occlusion, is in conflict with another strong cue, stereopsis. Fi-
nally, because visual attention plays such a critical role in the perception
of stereoscopic depth, we develop a framework producing an edge-aware,
spatio-temporally smooth stereoscopic saliency representation.
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Zusammenfassung

Das binokulare Sehen ermöglicht eine präzise Schätzung der Tiefe im sicht-
baren Raum durch einen Prozess namens Stereopsis. In Kombination mit
anderen optischen Tiefenmerkmalen kann der Mensch die komplexe dreidi-
mensionale Welt effizient interpretieren. Heutzutage existieren verschiedene
Technologien, die das visuelle Erlebnis replizieren können. Am häufigsten
werden stereoskopische Bilder oder stereoskopisches Video verwendet. Die
grundlegende Idee besteht darin, zwei Bilder, eines für jedes Auge, so zu
präsentieren, dass diese fusioniert werden, um dann ein überzeugendes
Gefühl von Tiefe zu bieten. Stereoskopische Bildbetrachtung führt jedoch
zur Verzerrungen der Wahrnehmung, welche die optische Qualität, Tiefen-
empfinden und den Komfort des Betrachters beeinflussen.

Da die Komplexität hoch ist, besteht ein Bedarf dafür Technologien zu
entwickeln, die zum Verständnis beitragen, wie stereoskopische Bilder
wahrgenommen werden. Solche Technologie basieren oft auf comput-
ergestützte Modelle, die aus Theorie, Darstellung und Umsetzung der Mod-
elle bestehen. Diese Arbeit stellt eine Kombination von Wahrnehmungsmod-
ellen auf Grundlage der aktuellen Forschung sowie neuen experimentellen
Forschungsmethoden dar. Die Ergebnisse unterstützen das schwierige aber
wichtige Bestreben Modelle für die Qualität von stereoskopischen Bildern zu
entwickeln.

Diese Arbeit beinhaltet vier Hauptbeiträge. Zuerst wird eine Taxonomie
über Wahrnehmungs- und technologische Stereoskopiethemen vorgestellt.
Diese Taxonomie beschreibt insbesondere die Grenzen, die die Darstellung
und Wahrnehmung von stereoskopischen Bildern beeinflussen. Ein zweiter
Beitrag ist die Erforschung des dominanten Wahrnehmungskonflikts zwis-
chen der Konvergenz und der Akkommodation des Auges sowie wie dieser
Konflikt die Fähigkeiten des Betrachters, seine visuelle Aufmerksamkeit zu
ändern, beeinflusst. Ein dritter Beitrag besteht in der Erforschung einer
anderen Wahrnehmungsverzerrung, die dann entsteht, wenn die stärksten
Tiefenmerkmale, nämlich die Verdeckungen, in einem Konflikt mit dem
stereoskopischen Sehen sind. Auf Grund der Tatsache, dass die visuelle
Aufmerksamkeit eine so wichtige Rolle in der Wahrnehmung der stere-
oskopischen Tiefe spielt, entwickeln wir schliessich ein System zur Herstel-
lung einer räumlich und zeitlich glatten aber kantensensitiven Merkmal-
skarte zur Darstellung von stereskopisch-hervorstechenden Merkmalen.
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C H A P T E R 1

Introduction

Stereoscopic 3D (S3D) has experienced a revival in entertainment applica-
tions including cinema, television and interactive games. Digital video tech-
nology has enabled much of the recent success of S3D, making it possible to
more easily capture, edit, transmit and display stereoscopic content. While
the continued success of S3D benefits from digital video technology, human
factors, in terms of quality of viewing experience, are gaining importance.
The aim is to produce compelling stereoscopic content that provides a more
immersive visual experience while not increasing visual discomfort and fa-
tigue.

Evaluating the quality of stereoscopic viewing experience is a challenging
task, often requiring an experienced professional stereographer who can pre-
dict when a stereoscopic scene composition will be visually problematic. This
is a complex process requiring much experience to balance artistic, percep-
tual and technical aspects of S3D production. In order to assist more stereo-
scopic content creators in the production of "good" stereoscopic 3D images or
video, technological solutions are needed which provide guidance or quality
analysis. This requires computational models of how S3D content is per-
ceived.

David Marr [1982] proposed the importance of a information-processing per-
spective on computational modeling. He advocated that while algorithms
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1 Introduction

(a) Poor quality of experience (b) Good quality of experience

Figure 1.1: Simple assessment of quality of experience. (a) Although the visual
content may seem good, the viewer experiences visual discomfort and
is motivated to stop watching. (b) Subtle changes to the same content
that maintain visual comfort enables to the viewer to better engage in
the visual experience.

and mechanisms facilitate understanding a system, it is more important to
know the nature of computations underlying perception of a computational
problem. Essentially, the nature of the problem is more important than an
algorithm that solves the problem. Marr identifies three levels for carrying
out information-processing tasks. First, a computation theory must be devel-
oped to understand what must be computed and why. Second, it is necessary
to determine the information representation and algorithm that can achieve the
computational theory. Finally, a hardware implementation must be capable of
physically realizing the data representation and algorithm.

1.1 Motivation

This thesis aims to explore computational modeling as it relates to the per-
ception of stereoscopic image viewing. At a high level, the task can seem
easy: Simply build a detector for a specific problematic situation. However,
building the detector can be quite challenging and can also be confounded by
a variety of perceptual factors. The aim of this thesis is to explore the space
of existing computational models of stereoscopic image perception. We then
explore several aspects of stereoscopic perception with the goal of under-
standing specific stereoscopic image quality problems and the application of
that knowledge in computational systems.

We utilize empirical methods to evaluate quality of experience and to con-
struct a computational perceptual model. The goal is to identify the some-
times subtle factors that influence the viewing experience as represented in

2



1.1 Motivation

Define Model 
• Conduct experiments to validate hypothesis 
• Experiment data drives model 

Ground-truth 
labeled data 
• Experiment data 

Apply Model 

 Stereo 
Test Scenes 

Check 
Accuracy 

Figure 1.2: Typical workflow for computational system development. The bottom
portion of the flow diagram represents the construction of model by
careful creation of visual stimuli and application of that model to real
image content. The upper portion of the flow represents the develop-
ment of ground truth or user labeled data, which is used to evaluate
model performance. This is an iterative process requiring refinement.

Figure 1.1. Quality of stereoscopic viewing experience is a complex, multidi-
mensional problem, which is best explored in parts that end up in a meaning-
ful technical system. The experience of professional artists and content cre-
ators is useful for getting first-hand experience with problematic situations
encountered while presenting stereoscopic 3D. However, building compu-
tational systems of stereoscopic visual perception requires interdisciplinary
skills ranging from image processing and computer vision to psychophysics
and neurophysiology. The combination of these diverse domains enables a
better prediction of visual experience.

In additional to combining knowledge from diverse domains, developing a
computational system generally requires a workflow as represented in Fig-
ure 1.2. It is necessary to create visual stimuli to facilitate the creation of a
perceptual model. The stimuli should enable modification to specific percep-
tual factors without introducing additional confounding factors. The model
can then be applied to real image content that is representative of the prob-
lem motivating the computational system development. It is also useful to
create ground truth data, used to evaluate the performance of the computa-
tional model. An iterative process is often necessary to refine the stimuli and
also to create representative ground truth stimuli.
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1 Introduction

1.2 Thesis Overview

A significant challenge in stereoscopic perceptual research is understanding
the limitations imposed by both human perception and stereoscopic image
technologies. Many dimensions exist with an ever growing amount of re-
search. Chapter 2, Modeling Topics in Stereoscopic Imaging, provides a struc-
tured overview of relevant topics and significant research. This knowledge
has not only been utilized to support research contributions of this thesis, but
also plays a critical role in formulating computational theories about stereo-
scopic perception.

Chapter 3, Attention Transitions in Stereoscopic Depth, presents novel research
demonstrating how additional visual information embedded in a stereo-
scopic scene can facilitate the time to achieve visual attention transitions. The
decoupling of eye vergence and accommodation is believed to hinder atten-
tion transitions, and we demonstrate the use of a visual cue to help compen-
sate. Both objective performance measures and subjective self-assessments
were utilized to observe visual performance and comfort during attention
transition tasks. The findings provide a significant example of how stereo-
scopic 3D content creators may learn scene composition, framing and mon-
tage from visual psychophysics.

Another significant stereoscopic distortion is presented in Chapter 4, Stereo-
scopic Window Violations. In this case, the dominant conflict is between the
perception of occlusion and stereopsis depth cues near the image border. We
demonstrate how experimental psychophysics can be used to both develop
perceptual models and validate the results. Our window violation detector
assists content creators in identifying problematic window violations so the
scene composition may be manually adjusted or to utilize automatic tech-
niques for removing the violation.

Visual attention is a critical component of any visual quality metric. On one
hand, visual distortions can influence visual attention. On another hand,
visual attention can help guide the image regions where perceptual qual-
ity should have greater significance. In Chapter 5, Multimodal Stereoscopic
Saliency, we demonstrate how multiple models of visual saliency estima-
tion can be combined to provide an edge-aware, spatio-temporally smooth
saliency map for stereoscopic video. We present the challenges construct-
ing and analyzing a stereoscopic data set as well as the performance of our
saliency model on that data set. Stereoscopic saliency enables many useful
forms of quality control and content manipulation, such as the remapping of
stereoscopic depth.

4



1.2 Thesis Overview

The thesis concludes by summarizing the key results, which span the space
of utilizing existing perceptual models, validating hypothesis through visual
psychophysics, development of new perceptual models and creation of ap-
plications for those models. An outlook for future research is then discussed,
which provides some future directions for exploration of the challenging task
of modeling the quality of visual experience for stereoscopic 3D content.
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C H A P T E R 2

Modeling Topics in Stereoscopic
Imaging

Exploration in stereoscopic vision research benefits from understanding the
many aspects influencing the perception of stereoscopic images. This chap-
ter presents a collection of relevant stereoscopic topics and perceptual models
that were explored during the thesis, either to support the design of experi-
ments or the creation and analysis of stereoscopic content.

2.1 Introduction

Over the past century, knowledge of visual perception has grown consider-
ably, which has lead to the development of many models of the perception
of both 2D and stereoscopic 3D image content. Digital image and video tech-
nology has enabled the creation and presentation of specialized visual con-
tent, supporting analysis of many perceptual topics. This chapter provides
a structured overview of relevant topics, significant research and computa-
tional models influencing our understanding of stereoscopic 3D perception.

We have applied this knowledge in many ways throughout the thesis. First,
it guides the creation of stimuli, both the carefully controlled stimuli to iso-
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2 Modeling Topics in Stereoscopic Imaging

late experiment factors as well as stimuli that is representative of real-world
stereoscopic content. Second, this knowledge has guided the process of creat-
ing and presenting stereoscopic content while exploring the stereoscopic con-
tent production pipeline. Several short stereoscopic movies have been pro-
duced using knowledge presented in this chapter. Third, it has guided our
work in disparity editing (aka. disparity remapping) to recompose stereo-
scopic content to be more comfortable or pleasing to view.

Chapter Organization. The chapter is organized into the following sec-
tions:

w Depth Interpretation

w Stereopsis

w Vergence, Accommodation, and Comfort

w Distortions

w Attention and Saliency

2.2 Depth Interpretation

Human vision utilizes many different types of visual information to perceive
depth in visual space. This section presents cues to depth as well as theories
about cue integration and examples of the effects of conflicting cues.

2.2.1 Depth Cues

Depth interpretation is influenced not only by binocular disparity, but also a
collection of other depth cues. Depth cues include the following classification
described by Cutting and Vishton [1995]:

w Occlusion - provides depth ordering, nearer objects occlude farther ob-
jects [pictorial]

w Relative size and relative density - can provide scaled information
about depth, based on the retinal size of objects (or textures) or retinal
density of clusters of objects (or textures). Texture gradients and linear
perspective can also be considered a subset. Size information from light
and shading can also be grouped here. [pictorial]

8
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Figure 2.1: Just-discriminable depth thresholds as a function of the log of distance
from the observer [Cutting and Vishton, 1995].

w Height in Visual Field - when viewed from above a planar surface, ob-
jects on the plane will appear higher with greater distance. [pictorial]

w Aerial perspective - moisture and pollutants in the atmosphere repre-
sent forms of participating media that decrease visual contrast with dis-
tance. [pictorial]

w Motion perspective - more distant objects appear to move more slowly.
[motion]

w Convergence and accommodation - self-awareness (or proprioception)
of eye convergence and lens accommodation can influence perception
of depth. [oculomotor] Perception of blur can also provide a pictorial
cue to depth. [pictorial]

w Binocular disparity, stereopsis and diplopia - relative difference in pro-
jection of the same object on the two eyes. [stereopsis]

2.2.2 Depth Cue Integration

Depth cue integration is the process of combining depth cues to produce
a single perceived depth interpretation. There are different approaches to
depth cue integration including: cue range in visual space, cue dominance,
cue averaging, and cue spatialization.

Cue range (or range extension) is represented well by the work of Cutting

9



2 Modeling Topics in Stereoscopic Imaging

and Vishton [1995]. They explore the depth cue classification listed above
and provide an evaluation of their relative strength as a function of view-
ing distance. Figure 2.1 provides an idealized representation of the just-
discriminable depth thresholds as a function of the log distance from the
observer. It is based on measurements of depth discrimination threshold
functions for a variety of different depth cues. An important observation
is that the distance of visual space has a significant influence on the rela-
tive importance of different depth cues. Occlusion is the strongest depth cue
throughout the range of personal, action and vista space. The strength of the
binocular disparity cue is greatest in a viewer’s personal space and falls off
in the action and vista spaces.

Cue dominance occurs when a specific depth cue has a more significant impact
on depth perception [Howard, 2002]. The assumption is that the strongest
depth cue overrules the depth interpretation from other cues. Occlusion is
a good example because it can overrule depth ordering perceived by other
cues. However, other depth cues may provide more precise position infor-
mation.

Cue averaging is represented by a weighted combination of depth cues. An
example of this approach is a weighted linear cue combination strategy com-
bining the linear perspective and texture gradient cues [Oruç et al., 2003].

Cue specialization considers that the depth interpretation task can influence
cue prioritization [Bradshaw et al., 2000; Schrater and Kersten, 2000]. For
example, the occlusion depth cue can efficiently be used for depth order-
ing tasks and perspective projection is useful when parallel lines converge.
Ware and Mitchell [2008] demonstrated how the depth relationship of com-
plex 3D graphs can be better interpreted with a combination of stereo and
motion cues. Such a task would be difficult with linear perspective (or rela-
tive size/density) alone.

Depth cues can also play complimentary roles compensating for limitations
in our visual system. For example, blur and disparity cues co-vary according
to geometric optics. The strength of blur cue increases at distances as the dis-
parity cue becomes weaker [Mather and Smith, 2000]. Held et al. [2012] uti-
lized a volumetric display to independently control disparity and blur depth
cues. They found disparity to be a more precise depth cue near fixation and
blur to be more precise in depths away from fixation. Additionally, they hy-
pothesize that blur provides a stronger depth cue at visual eccentricities be-
yond central foveal fixation.

Hybrid approaches exist, exploring the combination of cue averaging and cue
specialization. Cipiloglu et al. [2010] developed a weighted cue summation
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model with linear cue prioritization using fuzzy logic. Their system takes as
input the scene and task. It then prioritizes depth cues to include for effi-
cient rendering. The focus is on reducing computational cost while preserv-
ing the most important visual information supporting depth interpretation
tasks. This concept could be applied to help one parameterize depth cues
and evaluate their relative strength within a scene (and task). For example,
the strength of other depth cues may reduce the importance of exaggerating
disparity within a scene.

2.2.3 Depth Cue Distortions

Conflicts between depth cues can influence interpretation in stereoscopic im-
ages. For example, it has been observed that decoupling eye vergence and
accommodation, which is inherent in stereoscopic image viewing, can result
in distorted perception of depth [Watt et al., 2005; Banks et al., 2008; Hoffman
et al., 2008]. Occlusion can also play a significant role in depth interpreta-
tion, due to the loss of disparity information. Harris and Wilcox provide an
overview of different types of occlusion and their influence on depth percep-
tion [2009]. Tsirlin et al. [2010] demonstrated how monocular occlusion clues
alone can be used to infer location and direction of depth discontinuities and
object boundaries in a scene.

When evaluating stereoscopic image content, it is often beneficial to consider
which depth cues are visible and to verify that they agree and are appropriate
for intended depth discrimination of the content.

2.3 Stereopsis

Binocular vision is the process of seeing the world with our two eyes. At a
high level, there are two theories about how visual information is perceived
between the two eyes to produce a single perception of the world [Stein-
man et al., 2000]. On one hand there is binocular alternation or suppression
theory, in which perception of the world alternates between the eyes based
on a process of binocular rivaly. The alternate theory is that the world is per-
ceived through a binocular fusion, in which visual information from both eyes
is fused to produce a single percept of the three-dimensional world. Not sur-
prisingly, binocular vision utilizes both theories, although the fusion is more
often used for natural viewing.
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Stereopsis represents the perception of three-dimensional depth that comes
about from fusing the different projection of the world on our two eyes. The
resulting visual information, which can only be perceived when stereoscopi-
cally fused by both eyes, is called cyclopean vision [Steinman et al., 2000]. The
Random dot stereogram (RDS) is an example of encoding visual information
that cannot be perceived by monocular luminance or color changes [Julesz,
1960].

2.3.1 Disparity

The difference between corresponding points in the two eyes is termed binoc-
ular disparity or retinal disparity. Figure 2.2 provides an overview of several
aspects of horizontal disparity, which are presented in this section. Based on
the geometry of our eyes, horizontal disparity has a more significant effect
than representing vertical disparity, and it is easier to visualize. Figure 2.2
visualizes the scenario where the eyes are converged on a fixation point, F.
Point P represents a nearer point that is simultaneously fused while fixated
on point F. The disparity, δ, between points F and P is represented by

δ = αL − αR = αFL − αFR − (αPL − αPR) = αF − αP. (2.1)

Disparity is often represented in units of degrees and is expressed as the an-
gular difference in projection of corresponding points on each retina, as visu-
alized in αL and αR in Figure 2.2. Visual processing of stereopsis can produce
both absolute and relative depth perception.

Absolute and Relative Disparity represent two forms of depth interpreta-
tion and disparity processing in the visual system. Absolute disparity repre-
sents the interpretation of visual information at absolute depth from the eyes.
Relative disparity represents depth relationships between visual information
(e.g. the depth between objects). Interestingly, absolute disparity informa-
tion is produced in early portions of the visual system (neurophysiological
components), however, psychophysical reporting is often in terms of relative
disparity [Cumming and DeAngelis, 2001]. This is an indication that both
low- and high-level forms of visual processing work together.

In the visual processing pipeline, the primary visual cortex (known as V1)
represents the first area of the human visual system where single neurons can
be activated by stimulation from both eyes [Cumming and DeAngelis, 2001].
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P

αL αR

αFL

αPL

αFR

αPR

d

be

Vieth-Mueller Circle

Horopter

Screen

Figure 2.2: Visualization of angular relationships to compute disparity. The eyes
have a baseline, be, and are fixated at point F at distance d from the
observer. The Vieth-Mueller Circle, Horopter and Screen plane are also
represented. Note: angles αFL and αPL, for example, could also be de-
fined relative to the horizontal axis passing through the baseline, be.

Interestingly, neurons in V1 have been found to be tuned to absolute disparity,
in which the disparity in retinal coordinates of visual information forms a
percept of depth information in space. The difference in retinal disparity,
determined by displacement from the left and right eye fovea, is influence by
foveal fixation (eye vergence).

In Figure 2.2, the fixation point, F, is located at depth, d. The disparity of
point P is δP = αF − αP. The depth of P is then perceived at a corresponding
∆d from the fixation depth, d. Production of absolute disparity information
in early parts of the visual system (the first stages of visual processing) can
be utilized for important visual tasks, such as guiding binocular eye conver-
gence while viewing motion in depth. Absolute disparity can be considered
as representing the depth range equation to compute the depth and direction
of a point in space.

Relative disparity is the difference between two absolute disparities. Figure 2.4
provides an example. Given a fixation point, F, the disparity between the
near and far points is δNF = αPN − αPF. This disparity corresponds to a
depth difference, ∆dNF, that is invariant to fixation changes. This represen-
tation offers the major advantage that depth relationships remain constant
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H < 0
H = 0

H > 0

Increasing fixation distance

Figure 2.3: Visualization of a horizontal slice of the horopter. Corresponding
points lying on the horopter are perceived to have the same dispar-
ity. The Hering-Hillebrand deviation, H, represents how the empiri-
cally observed horopter deviates from the theoretical horopter, the Vieth-
Mueller (V.M) circle.

with changes in eye vergence. Visual processing mechanisms utilizing rela-
tive disparity can then maintain a stable depth representation of the visual
space while viewing motion in depth or changing eye vergence through sac-
cadic motion about a scene.

The Horopter represents all points in visual space whose projection on the
retina appear in corresponding points on both eyes. The horopter represents
a surface in the visual field [Schreiber et al., 2008]. For simplicity of visual-
ization, Figure 2.3 represents a slice of corresponding points in the horizontal
dimension. Given a fixation point (labeled "F" in figure), the curved lines rep-
resent example horopter shapes depending on the fixation distance. While
fixating, a point on a given horopter is perceived by each retina (monocu-
larly) to come from the same direction (and distance) [Ogle, 1932]. These
points are perceived to have zero disparity.

The horopter was originally thought to correspond to the Vieth-Mueller cir-
cle, which is the circle passing through both of the eyes as well as the fix-
ation point. Empirically, however, the horopter has been observed to de-
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viate from the Vieth-Mueller circle by a fixation dependent value called the
Hering-Hillebrand deviation (H) [A. Ames et al., 1932; Ogle, 1932]. H is influ-
enced by the mapping of corresponding points as well as the magnification
experienced between the two eyes.

H = cot(αR)− Lcot(αL) (2.2)

The angles αR and αL represent the azimuth between the fixation point and
another corresponding point for each eye. L is a skew factor related to the
magnification of one eye relative to the other.

Curvature of the Vieth-Mueller circle is proportional to fixation distance.
The Hering-Hillebrand deviation does not change with fixation distance (see
Howard and Rogers for discussion of small variations [2002]). As a result,
the difference in curvature between the horopter and Vieth-Mueller circle re-
mains constant. The benefit is that the layout of corresponding retinal points
remains constant with changes in eye vergence distance [Steinman et al.,
2000].

In Figure 2.3, the horizontal line labeled, Abathic, represents the condition
when the horopter actually is flat, forming a frontal parallel plane passing
through the fixation point. The abathic distance occurs when

H =
be

d
(2.3)

where be is the interpupillary distance and d is the fixation distance.

Disparity Channels

By studying anomalies in stereoscopic depth perception, Whitman Richards
postulated the existence of three forms of disparity processing selective for
zero disparity (e.g. corresponding points located on the horopter), crossed
(near) disparity or uncrossed (far) disparity [1971]. Richards observed
stereoanomolies in which viewers were stereo-blind for one of the three
types, for example stereo-blind to only crossed disparities. This is an impor-
tant observation in that it helps to explain why experimental subjects may
have difficulty stereoscopically fusing specific disparity ranges.

Using experiments that induce adaptation effects on the processing of spe-
cific types of disparities, it has been possible to measure a tuning curve
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Figure 2.4: Visualization of geometry to perceive a corresponding feature pair as
nearer (PN) or farther (PF) than the fixation point (shown at screen
plane). Angles, ω, are presented to facilitate presentation of stereo-
scopic acuity and stereoscopic resolving power in Section 2.3.2.

for a specific disparity-tuned channel [Steinman et al., 2000]. These exper-
iments have shown that disparity channels are broadly tuned. For example,
Steinman [2000] noted that the crossed disparity channel has a maximum of
6 arcmin disparity and a half-height bandwidth of 10 arcmin, which is broad
considering stereo thresholds are on the order of 10 arcsec. Recent experi-
ments suggest that more than three channels may exist, but the precise num-
ber of disparity-tuned channels is not yet known [Steinman et al., 2000].

Depth Position

In addition to representing disparity as an angular measure, disparity in
stereoscopic images are also represented in units of image pixels or millime-
ters of separation. Figure 2.4 visualizes an example of fixating on an image
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plane while fusing points x1 and x2. Depth of the disparate point can be
computed relative to the viewer:

dv =
dbe

be − s
(2.4)

where d is the viewing distance to the stereoscopic screen. s is the on screen
separation or pixel disparity of corresponding points. be is the baseline eye
separation. dv represents the depth perceived relative to the viewer.

Depth can also be computed relative to screen given a viewing distance:

ds =
ds

be − s
(2.5)

A positive pixel disparity corresponds to perceiving points behind the screen.
A negative pixel disparity corresponds to points perceived at depths nearer
than the screen plane.

2.3.2 Lower Disparity Limit

The lower disparity limit represents the smallest amount of perceived dis-
parity. This limit can also be called the stereoacuity, which is the disparity
analog to luminance-based visual acuity.

Visual Acuity

Visual acuity is the resolving limit of spatial vision. The resolving power is
the angle subtended by the detail at minimum acuity. Visual acuity is the
reciprocal of the resolving power. There are many factors influencing visual
acuity including optical properties of the eye, photoreceptor characteristics
that collect visual information and receptive field sizes determined by the
various processing centers of visual information. To a simple approximation,
visual acuity for a bright, high luminance stimulus is approximately 30 arcsec
in the foveal region and decreases in the periphery.

Vernier acuity measures the ability to align two line segments. It is a form
of hyperacuity, which means the resolving power to align lines is higher at
around 8 arcsec than that for visual acuity (∼ 30 arcsec).

17



2 Modeling Topics in Stereoscopic Imaging

Stereoacuity

Stereoacuity is the resolving limit of stereopsis. It is the depth discrimina-
tion threshold when the only depth cue is binocular disparity. Measure-
ment of stereo acuity is dependent on many factors including the testing
method, stimuli characteristics and neurophysiological limitations of the
viewer. Howard and Rogers [2002] provide a review. For example, using a
Keystone stereo test, Coutant and Westheimer [1993] tested 188 students and
observed that 97.3% of them had stereo acuity of 2.3 arcmin or smaller. They
also observed that at least 80% to have a stereoacuity of 30 arcsec disparity.
Howard and Rogers note that some observers can achieve a stereo acuity in
the range of 2 to 6 arcsec. However for for clinical purposes, a stereoacuity
better than 40 arcsec is an indication of "stereoefficiency" in adults [Howard
and Rogers, 2002]. Stereoacuity thresholds are also a form of hyperacuity

Figure 2.4 represents example geometry used to compute an approximate
stereoscopic resolving power and ultimately the intervals of stereoscopic
depth discrimination. The structure of the following formulation is based
on derivations presented by Valyus [1966].

Stereoacuity (ω) is the depth-descrimination threshold approximated by

ω =
be∆d

d2 in radians (2.6)

given the interpupillary distance (be), the depth difference (∆d) is the small-
est detected depth range at a given distance d. Radians can be converted to
seconds by multiplying by 180

π . Stereoacuity is, to a first approximation, pro-
portional to the distance between the eyes and inversely proportional to the
square of the viewing distance.

Depth Intervals

The concept of depth interval or depth steps helps to visualize the range of dis-
parities that are perceived to be the same. Or alternatively, given an object,
the distance where a second object will be interpreted to be at a different
depth (using only the binocular disparity cue). Although disparity limits are
influenced by many factors, such as spatial frequency, it can be helpful to
visualize depth intervals as an approximation with fixed stereoscopic acuity.
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Equation 2.7 represents the stereoscopic resolving power given baseline, be, de-
tectable threshold width (aka. stereoacuity), ω, and distance, d. For an av-
erage observer, let be = 65 mm and 30 arcsec threshold width be w =
0.000145 radians.

W(d) =
be

ωd2 (2.7)

The stereoscopic resolving power units are the inverse of the depth range (e.g.
1/meter). This reciprocal of the discriminable depth is called the stereodiopter
or diopter.

The stereoscopic resolving power using a binocular device, W ′(r), proportionally
increases the optical magnification, G (decreases the threshold angle), and
base magnification, B, given by equation 2.8. Let the product of the optical
and base magnifications be represented by π.

W ′(d) =
B

(ω
G )d

2 =
πbe

ωd2 (2.8)

The quantity, π, is a dimensionless coefficient that represents the depth-
sensitivity of a display device. It indicates the magnifying power of an optical
system.

The amount of stereoscopic information, as shown in equation 2.9, represents the
number of discriminable depth planes within a region of space, defined by
the nearest, d1, and farthest, d2, distances. Remove the d2 term if the farthest
distance is at infinity.

|N|d2
d1

=
πbe

ω

(
1
d1
− 1

d2

)
(2.9)

The result approximates the number of unique depth planes that can be per-
ceived between two depths.

Stereoacuity at Projection

For stereoscopic projection, the viewing distance and image pixel size influ-
ence the minimum stereoacuity threshold. In equation 2.10, ∆s represents the
threshold detectable width at screen distance ds.
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∆s = ωds (2.10)

If ∆s is less than the image pixel image separation, we should modify ω to
account for the limit due to screen resolution as opposed to human limit. The
stereoscopic resolving power and depth intervals would be computed with the
greater ω.

Stereoacuity and Contrast

In the previous sections, stereoacuity was assumed to be constant. However,
there are many additional factors influencing stereoacuity. For example, Cor-
mack et al. [1991] explored the thresholds for interocular correlation. They
observed luminance contrast to have a significant influence. At low con-
trast, stereo acuity was inversely proportional to to the square of contrast.
At higher contrast over a range of approximately one log unit, a cube root
law contrast dependence was observed.

Stereoscopic Contrast Sensitivity Function

Stereoacuity is also influenced by contrast sensitivity. Frisby and Mayhew’s
demonstrated a correlation between stereopsis sensitivity and contrast detec-
tion sensitivity as a function of spatial frequency [1978]. Their findings show
that the shape of contrast detection and stereopsis are similar, although with
a shift representing a decreased stereoacuity. These results agree with other
findings, for example, Filippini & Banks [2009] and Tyler [1975] observations
of the influence of disparity amplitude and spatial frequency on disparity
sensitivity. The CSF correlation with stereopsis has lead to models of per-
ceived depth of frequency and magnitude changes in disparity [Didyk et al.,
2011].

2.3.3 Upper Disparity Limit

The upper disparity limit represents the maximum range of disparities that
can be simultaneously fused. It is best visualized through four concepts:
Panum’s Fusional Area, Disparity Gradients, Diplopic Depth Perception and
the Divergence Limits of Stereopsis.

20



2.3 Stereopsis

Figure 2.5: Panum’s fusional lies between the inner and outer limits of single binoc-
ular vision. This figure represents observations for a stimuli distance of
40 cm. The figure is reproduced with permission of Webvision [Kallo-
niatis and Luu, 2013].

Panum’s Fusional Area

Panum’s Fusional Area (aka Panum’s Zone) represents the region of points
(see Figure 2.5) that can be simultaneously fused while fixated on a point in
space. The area of fusion in the visual field is a function of our receptive field
size and the mapping of disparity-tuned cells in the primary visual cortex.
The receptive field size is smallest in central (foveal) vision and it increases
in the periphery of our visual field. Panum’s Fusional Area, as represented
in Figure 2.5 has an inner limit of maximal crossed (near) disparities and
outer limit for maximum uncrossed disparities. See Ogle [1932; 1950] for
observational data of Panum’s Fusional Area.

The region of simultaneous fusion ranges from roughly ±10 arcmin up to ±1
degree, depending on retinal eccentricity [Steinman et al., 2000]. It is helpful
to differentiate the central region of stereopsis, which is a narrow±0.5 degree
range at the fovea, from peripheral region of stereopsis, which operates up to
±7 to ±10 degrees [Steinman et al., 2000]. The foveal region is selective for
small disparities while the periphery is selective for large disparity ranges.

As with the lower disparity limits, it is important to note that Panum’s Fu-
sional Area does not represent strict fusion limits. The limits are dependent
on other factors such as contrast magnitude and frequency of both luminance
and disparity information. As such Panum’s Fusional Area can vary when
comparing fusion limits observed by fusion of RDS versus line patterns. Fur-
thermore, Panum’s Fusional Area has been found to be an estimate of the
limits for achieving initial fusion. Fender and Julesz [1967] observed that af-
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ter fusion of a 6 arcmin is achieved, the disparity can be slowly increased up
to 2 degrees horizontal disparity and still maintain fusion. If the disparity
increase is too fast or exceeds 2 degrees, fusion is lost.

Disparity Gradient

The disparity limit for fusion described by Panum’s Fusional Area can be re-
duced due to the proximity of corresponding features. Burt and Julesz [1980]
found the gradient of the disparity rather than the magnitude of the dispar-
ity to be the limiting factor for fusion when objects are near each other in
the visual field. They defined the disparity gradient between nearby objects
to be the difference in their disparities divided by their separation in visual
angle. Figure 2.6 provides an example of two nearby points. The binocular
disparity difference is the difference between the individual dot disparities,
db = d1 − d2 = RrcosΘr − RlcosΘl. The disparity gradient is the ratio of
the binocular disparity to the binocular dot separation, db/Rb. Equation 2.11
represents a critical dot separation, R̂b, marking the boundary between fu-
sion and diplopia.

R̂b = kdb (2.11)

Burt and Julesz experimentally found that fusion is not obtained when the
disparity gradient is greater than 1◦ of disparity per degree of dot separa-
tion [1980]. They found that fusion can be lost at less than a third of the value
reported by Ogle for the width of Panum’s fusional area.

Diplopic Depth Perception

Diplopia occurs beyond Panum’s fusional area. Ogle [1950] noted that just
beyond Panum’s zone there is a range of disparities that, although diplopic,
can still produce strong impressions of depth. Ogle called region of strong
depth impression from either fusion or diplopia, "patent stereopsis" [Howard,
2002]. Beyond this region there is a region of vague depth interpretation,
which he called qualitative stereopsis. Qualitative stereopsis has also been
called latent stereopsis. In the foveal area, Ogle observed the fusional area
to be ±5 arcmin while the patent stereosis extended to ±10 arcmin and qual-
itative stereopsis to ±15 arcmin. At 6 degree eccentricity, patent stereopsis
increased to 70 arcmin and qualitative stereopsis to about 2 degree [Howard,
2002].
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Figure 2.6: Geometry for computing disparity gradient using a two-dot stere-
ogram. (A) The images shown to each eye and (B) the disparities
required for stereoscopic fusion. There is no vertical disparity, so
Rlsinθl = Rrsinθr. The right eye dots are unfilled to visualize the
example. Normally, the left and right eye dots would both be filled.
Figure notation from Burt and Julesz [1980].
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Figure 2.7: Visualization of divergent disparity. Divergent disparities up to 1.75
degrees can be fused.

Divergence Limit

Although counter intuitive, it is possible to fuse stereoscopic image dispar-
ities that exceed the eye separation. The limits of stereoscopic fusion are a
function of receptive field size [Howard, 2002]. Given an eye fixation, there
is a range of uncrossed disparities that can be fused. Jin et al. [2005] ex-
perimentally found that divergent angular disparities up to 1.75 degrees can
be fused. They saw this as a neurophysiological limit across viewing dis-
tance. This observation agrees with common production practices as stated
by Mendiburu [2009] and Lipton [1982]. Lipton, for example, found 1 degree
divergence to be acceptable.
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Figure 2.7 provides an example visualization of divergent disparity, where
the angle of divergent disparity, δdiv, is represented as

δdiv = αDL − αDR (2.12)

where αDL and αDR are the divergent angles of each eye from parallel view-
ing. Divergent disparities can be computed as divergent on-screen separa-
tion, sdiv,

sdiv = s− be (2.13)

where s is the on screen separation or pixel disparity. The divergent angular
disparity is then

δdiv ≈ arctan
sdiv
d

(2.14)

where d is the viewing distance to the screen. It is important to note that chil-
dren, for example, will reach the divergence limit earlier due to the smaller
eye separation. Divergent viewing ability is especially useful in large cinema
viewing environments.

2.3.4 Spatiotemporal Interactions

In the luminance domain, it has been observed that both spatial frequency
and temporal frequency influence the detection of visual luminance infor-
mation. The concept, window of visibility, is used to represent the influence
motion and time have on the detection of luminance information [Watson
et al., 1986]. For example, fine details are best viewed with static images.
Sensitivity to fine details decreases with an increase in temporal variation.

The upper and lower disparity limits of stereopsis have also been shown to
be influenced by spatio-temporal interactions. Kane et al. [2014] observed
that spatial frequency and temporal frequency of disparity modulation influ-
ences the detection thresholds of the disparity. They observed that spatial
and temporal influence are separable. They fit their observations to a win-
dowed, cross-correlation energy model of disparity, and observed that both
the upper and lower disparity limits are influenced by the same spatial and
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temporal windowing function. They observed a best mean fit with a spatial
windowed Gaussian, σ = 12 arcmin, and a temporal windowed Gaussian,
τ = 24ms.

Temporal Disparity Gradient

Kane et al [2014] also observed that the disparity gradient concepts extends
to the temporal domain. They experimentally observed the expected spatial
temporal gradient

∇ds = 2a fs (2.15)

Where a is the peak-to-trough disparity amplitude and fs is spatial frequency.
They observed a spatial upper disparity limit when the disparity change,
a, was greater than 1.5 deg for a 1.0 deg change in spatial position. They
observed ∇ds = 1.5, which is consistent with previous findings [Burt and
Julesz, 1980].

They also observed the following temporal disparity-gradient limit:

∇dt = 2a ft = 0.7 (2.16)

where ft is temporal frequency and ∇dt is in units of arcmin/msec.

They then combined the two gradient limits to produce a spatio-temporal
gradient, 2a fst, where:

fst =
√

f 2
s + (k ft)2 (2.17)

k represents a constant such that the two gradients are equivalent. They
found k = 0.09 minimizes the differences between data points. The resulting
spatio-temporal disparity gradient, ∇dst ≈ 1.5 for nearly all combinations of
spatial and temporal frequency.

Through the experimental design, Kane et al. [2014] were able to demonstrate
that the minimum disparity thresholds are separable in terms of disparity
variations of spatial and temporal frequencies. Their results demonstrate
how spatio-temporal disparity sensitivity is more restricted than spatio-
temporal luminance sensitivity.
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2.3.5 Modeling Stereopsis

There are many challenges in modeling stereopsis. One challenge is to un-
derstand how the functional neural wiring in the visual system responds to
binocular stimuli. Another challenge is solving the correspondence problem,
which requires strategies to balance both locally and globally optimal solu-
tions to disparity estimation. Finally, computational methods for applying
the model must be implemented.

In the 1990s, significant progress was made to experimentally model the
functional neural wiring of how V1 complex cells respond to binocular stim-
uli, such as RDS patterns [Ohzawa, 1998; Fleet et al., 1996]. Disparity energy
models were developed based on experimental data to model the behavior of
binocular energy neurons [Ohzawa et al., 1990]. Ohzawa’s model [1998], for
example, represents two stages: First, an array of binocular simple cells each
produces a half-squaring nonlinearity, achieved by rectification and squaring
of the cellular response. The second stage is to sum the output of each binoc-
ular simple cell by a binocular complex cell. The result of which produces
a disparity tuning curve representing the specific disparity sensitivity of a
given binocular complex cell’s receptive field. This is a local representation
based on the RF size.

The correspondence problem represents the challenge of selecting the correct
feature matches between the two eyes. Selecting incorrect matches can result
in a false binocular interpretation of depth. Although disparity energy mod-
els such as Ohzawa’s are primarily local, they are able to reduce the com-
plexity of the correspondence problem. Since binocular complex cells can
be tuned to different spatial frequencies, the result is that disparity tuning
can be achieved at several band-pass frequency scales. Combination of the
frequency scales can help to find a more global solution, or at least help to
significantly reduce the complexity to find a globally optimal solution. The
limitations on finding a global solution are based the receptive field sizes
used in the summation process. Fleet et al. [1996] demonstrated how dispar-
ity energy models based on position-shift and/or phase-shift can produce
highly accurate disparity estimation with the right pooling strategy. They
also demonstrate improved performance when linearly pooling over spatial
scales in addition to orientations and local spatial neighborhoods.

Disparity energy models are computationally similar to interocular cross-
correllation [Ohzawa, 1998; Fleet et al., 1996]. However, there is an important
difference. Fleet et al.[1996] point out that disparity energy models modu-
late a complex cell response about a baseline input, which is the sum of input
monocular energies. Cross-correlation does not predict a stimulus dependent
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baseline. Initial binocular interaction is multiplicative for cross-correlation
and additive for energy models [Fleet et al., 1996].

Cross-correlation is successfully applied to agree with physiological obser-
vations of disparity sensitivity. Banks et al. [2004] demonstrated how well
a cross-correlation algorithm with adaptive window size can model perfor-
mance of the human visual system. They observed algorithms to perform
well on image content that is frontoparallel surface having a disparity gradi-
ent of zero, and with an appropriately sized spatial window for computing
the cross correlation [Banks et al., 2004]. Their findings agree with physio-
logical observations that disparity-selective neurons are limited by their re-
ceptive field size [Nienborg et al., 2004]. Importantly, Nienborg et al. [2004]
observed that V1 receptive fields prefer uniform disparity, which helps to ex-
plain why disparity sensitivity is highest for zero disparity gradients. This is
also reasoned to be a cause of low spatial stereo resolution [Banks et al., 2004;
Filippini and Banks, 2009]. Higher order neurons could be constructed to be
selective for a specific magnitude or direction of disparity gradient, however,
they would not have a higher stereo resolution than observed in V1 [Filippini
and Banks, 2009].

Motivated by the well known contrast sensitivity function, there has also
been effort to define a disparity sensitivity function [Bradshaw and Rogers,
1999]. This has motivated the application of experimental methodologies
used to observe luminance thresholds to detect disparity sensitivity thresh-
olds. Didyk et al. [2011] modeled the influence of disparity amplitude and
disparity frequency. They later model the influence of luminance magni-
tude and luminance frequency on the disparity sensitivity thresholds [Didyk
et al., 2012]. These results agee with earlier findings, for example Filippini
& Banks [2009] and Tyler [1975] observations of the influence of disparity
amplitude and spatial frequency on disparity sensitivity.

This section has detailed several important aspects of stereopsis. The concept
of disparity was defined. Upper and lower limits of disparity sensitivity were
also presented. The following sections build on stereopsis in ways influenc-
ing visual comfort, attention and detection of additional visual distortions.

2.4 Vergence, Accommodation and Comfort

When viewing objects in the real world, eye vergence and accommodation is
harmoniously coupled in our visual system. Stereoscopic viewing disturbs
this relationship. The visual system must maintain focus on the screen (where
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the information is located) and change vergence to fixate on the scene depth.
This has been found to influence depth interpretation, fatigue and discom-
fort [Hoffman et al., 2008; Shibata et al., 2011].

This section introduces eye vergence, accommodation, and the coupling be-
tween them. The impact of stereoscopic image viewing is then presented.

2.4.1 Vergence

Eye vergence is the movement of both eyes to converge the central fovea of
each eye on a common point in space. This provides the highest visual acu-
ity of the eyes on that point in space. Vergence eye movement serves three
basic functions: stabilization of the retinal image as the head moves, fixa-
tion and tracking of objects, and convergence of visual axes on a particular
object [Howard, 2002]. There are three forms of vergence eye movement:
horizontal, vertical and rotational (aka. ocular torsion or cycloversion). We
present vergence in the context of horizontal eye movement since it is most
important for stereopsis.

The vergence angle is expressed using geometry formed by the eyes fixating
on a point in space. Figure 2.2 presents the simple geometry representing the
horizontal angle of vergence, αF.

tan(αF/2) = be/2d (2.18)

Equation 2.18 represents this basic geometric with be as eye separation and d
as distance to the fixation point from midpoint between the two eyes.

In Howard’s [2002] review of eye vergence topics, he presents the following
four types of horizontal vergence:

w Tonic vergence - the default eye vergence state when no visual informa-
tion is stimulating vergence

w Proximal vergence - image cues can influence perception of where an
object is in space

w Accommodative vergence - a change in eye accommodation is normally
associated with a change in vergence

w Fusional, or disparity-induced vergence - eye movement driven by ab-
solute disparity and the maximization of correspondence between the
two eye images.
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As with all neurophysiological processes, eye vergence is not exactly on
the intended point in space. For stereopsis, the error need only be within
the range of Panum’s Fusional Area to achieve proper fusion. Kenneth
Ogle [1950] called this occurance fixation disparity.

2.4.2 Accommodation

Accommodation is the process of adjusting refractive power of the eye lens
to bring the intended image of objects into focus. Refractive power is rep-
resented in units of diopter. It represents the inverse distance (in units of
meters) of the intended visual stimulus in visual space. 1 diopter (aka. 1D)
corresponds to an object that is one meter away. A refractive power of 2D
is required to accommodate an object that is 0.5 meters away. The refrac-
tive power of the lens can vary by approximately 10 diopters. However, this
range reduces with age to approximately 1 diopter at age 70 [Howard, 2002].

Similar to vergence, there are four types of accommodation [Howard, 2002]:

w Tonic accommodation - the default, or resting state, of eye accommoda-
tion state when no visual information is stimulating accommodation

w Proximal accommodation - image cues can influence perception of
where an object is in space

w Blur accommodation - perceived blur of the retinal image

w Convergence accommodation - a change in eye vergence is normally
associated with a change in accommodation.

Fortunately, as with vergence, there is also an an acceptable error in the
amount of accommodation to perceive an object as clear. This range is called
the Depth of Focus.

2.4.3 Depth of Focus

Depth of Focus is the range of distances in image space (projected on the retina)
that appear in focus. It is a symmetric value, relative to the image sens-
ing plane, which is the retina for human vision. The value is represented
in diopters. Depth of Field is the projection of depth of focus into object space.
Depth of Field is the range of distances in object space that appear in focus.
This value is not symmetric about the fixation point and often represented in
meters.
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In a similar way that Panum’s Fusional Area provides a neurophysiological
tolerance for vergence, depth of focus provides a tolerance for accommoda-
tion. As long as the intended object is within the bounds of depth of focus, the
object will be perceived to be in focus. It is important to distinguish between
retinal defocus and blur [Wang and Ciuffreda, 2006]. Blur is the perceptual sen-
sation of a decrease in sharpness. Retinal defocus is an optical phenomenon,
which results in a smaller retinal image contrast gradient [Wang and Ciuf-
freda, 2006]. Retinal defocus is acceptable as long as it is within the threshold
for detection of blur.

Depth of focus can be measured objectively, however, it is more common to
measure it subjectively. Vasudevan et al. [2007] observed a mean objective
depth of focus of ±0.59± 0.10D with a range of ±0.46D to ±0.75D. Through
subjective measures, they observed a larger mean depth of focus of ±0.63±
0.22D, with a range from ±0.37D to ±0.96D. Wang et al. [2006] reviewed
experimental findings of depth of focus and found a large variation in foveal
depth of focus from 0.04D to 3.50D. They state that the large variance is due
to different experimental stimuli and methodology. However, they stated the
typical depth of focus in young experienced observers is approximately 0.8D
to 1.2D.

Wang et al. [2006] summarized internal and external factors influencing
depth of focus. External factors include attributes of the observed visual in-
formation (e.g., luminance, contrast, spatial frequency, wavelength). Gener-
ally, for the external factors, a decrease in detectability of the external factor
helps to increase the subjective depth of focus. Internal factors refer to op-
tical and neurological attributes of the viewer (e.g., visual acuity, pupil size,
age, retinal eccentricity, refractive state). A complete model of depth of focus
requires consideration of these factors.

For example, considering internal factors, pupil diameter influences
depth of focus much like an aperture of a traditional camera. Ogle and
Schwartz [1959] observed a 0.12 diopter reduction in depth of focus per
millimeter of increase in pupil size. Ogle and Schwartz also found stimulus
size to influence the depth of focus. They observed an increase of 0.3D to
0.4D per 0.25 arcmin increase in stimulus target size.

2.4.4 Coupling of Vergence and Accommodation

In natural image viewing, eye vergence, accommodation and pupil diame-
ter work together to form a clear image. The interrelated change is known
as a near-triad response [Howard, 2002]. For example, when looking near,
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the pupil diameter reduces to increase depth of field and decrease spheri-
cal aberration. When looking far, the pupil dilates (increases diameter) to
improve retinal illumination and decrease diffraction. The primary benefit
of the coupling is an improved visual performance reducing the amount of
time to transition visual attention.

Accommodative convergence (AC) occurs when a change in accommo-
dation induces a change in eye vergence. An increase in accommodation
will converge the eyes while a decrease in accommodation will diverge the
eyes. The AC/A ratio represents the amplitude of accommodative conver-
gence (AC) induced by a 1 diopter change of accommodation (A).

Convergence accommodation (CA) occurs when a change in eye ver-
gence induces a change in accommodation. The CA/C ratio represents the
amplitude of convergence accommodation (CA) induced per unit change in
convergence [Howard, 2002].

There is a significant amount of research about the linkage between AC and
CA. Ian Howard [2002] provides an informative overview and references to
more detailed reviews. The following two important topics arise in the con-
text of accommodation and convergence: phoria and the zone of clear single
binocular vision.

Phoria represents the tendency of the visual system to return to its natu-
ral resting state, the tonic points of accommodation and/or vergence. Fig-
ure 2.8 represents the effect of this phenomena. The dashed-diagonal line in
the left panel represents the ideal correspondence between stimulus induced
eye vergence and accommodation (note: both represented in diopter for vi-
sualization). The green line represents the influence of Phoria while the other
two lines represent the bounds. In typical vision, a viewer under converges
for far focal distances and over-converges for near distances. In both case, the
deviation of convergence is in the direction of the tonic point. The right panel
of Figure 2.8 shows the typical viewing distances for difference stereoscopic
displays.

Zone of Clear Single Binocular Vision (ZCSBV) is the range of eye ver-
gence that can be observed clearly for a given fixed focus on a stimuli (see
Figure 2.9). The shape of the ZCSBV is roughly parallel to the Phoria.
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Figure 2.8: Visualization of natural viewing, phoria, and typical display viewing
distances visualized by Shibata et al [2011]. Reproduced with permis-
sion from the authors 1.

2.4.5 Influence of Stereoscopic Imaging

The right panel of Figure 2.8 represents a fundamental problem of stereo-
scopic image viewing. While each stereo display modality is capable of
presenting some range of vergence disparity, each viewing scenario is con-
strained to a fixed focal distance. This represents the well-known decoupling
of vergence and accommodation.

Many researchers have stated the visual conflict between vergence and
accommodation influences visual comfort, depth interpretation or fa-
tigue [Emoto et al., 2005; IJsselsteijn et al., 2005; Lambooij et al., 2009;
Patterson, 2007; Ukai and Howarth, 2008; Yano et al., 2004]. Some have
experimentally observed an effect of discomfort or fatigue by comparing
stereoscopic image viewing to 2D image viewing [Emoto et al., 2005; Kuze
and Ukai, 2008; Yano et al., 2002]. However, those findings do not prove
the discomfort is caused specifically by the vergence accommodation con-
flict. Kooi and Toet [2004], for example, explored a variety of additional
perceptual distortions caused by stereoscopic viewing that can cause visual
discomfort.

1Journal of vision by Association for Research in Vision and Ophthalmology Reproduced
with permission of ASSOCIATION FOR RESEARCH IN VISION AND OPHTHALMOL-
OGY in the format Republish in a thesis/dissertation via Copyright Clearance Center.
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Figure 2.9: Zone of clear single binocular vision estimated by Shibata et al [2011].
Reproduced with permission from the authors 1.

Hoffman et al. [2008] were the first to convincingly prove an effect of the
vergence-accommodation conflict on visual discomfort, depth interpretation
and fatigue. This was achieved through the development of a volumetric
stereoscopic display, which enables the control of both vergence and (ap-
proximate) accommodation cues [Akeley et al., 2004]. Accommodation was
interpolated between several fixed states. This experimental system makes
it possible to isolate and control the degree of vergence and accommodation
conflict.

The results of Hoffman et al. [2008] were compelling, but experimental ob-
servations were limited to a specific viewing distance (39 cm or 2.5D). This
research was extended to predict the zone of comfort of a stereoscopic dis-
play [Shibata et al., 2011]. They conducted a detailed exploration in three
parts: First, demonstrating the influence of viewing distance on discomfort
and fatigue. Second, exploring the influence of disparity sign (in front or
behind screen) on discomfort and fatigue. Third, measuring the phoria and
zone of clear single binocular vision, which are predictors of the discomfort
observed in the first two experiments.

Comfortable Depth Ranges

Figure 2.10 represents the comparison of Shibata et al.’s [2011] observed Zone
of Comfort to previous, well known predictions. The Zone of Comfort de-
fined by Sheard and Percival are both relative to the zone of clear single
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Figure 2.10: Comparison of the Zone of Comfort as defined by Sheard, Percival, and
Shibata et al. [2011]. Reproduced with permission from the authors 1.

binocular vision (ZCSBV). Perceival’s zone of comfort is the central 1/3 region of
the ZCSBV. Sheard’s zone of comfort is centered on the phoria and extends 1/3
the distance toward each bound of the ZCSBV. Perceival and Sheard defini-
tions overlap in the purple region. The yellow lines represent the boundaries
of the zone of comfort observed by Shibata et al [2011]. The far boundary (left
of dashed line representing natural viewing) is represented by Equation 2.19.

D f = mnearDv + Tnear (2.19)

where D f is focal distance in diopters, Dv is vergence distance in diopters.
They found mnear = 1.035 and Tnear = −0.626.

D f = m f arDv + Tf ar (2.20)

Equation 2.20 is defined by m f ar = 1.129 and Tf ar = 0.442.

The results of Shibata et al. are also represented in terms of angular disparity
in Figure 2.11. The near limit of comfortable stereoscopic viewing increases
with viewing distance while the far limit decreases with viewing distance.
The discontinuity in the far boundary representation is a correction to pre-
vent eye divergence at larger viewing distances (such as for cinematic view-
ing).
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Figure 2.11: Zone of comfort estimated by Shibata et al. [2011]. Far and near
boundaries represented as angular disparity for a given viewing dis-
tances. Reproduced with permission from the authors 1.

Rules of Thumb

Stereoscopic cinematography has evolved with empirical data providing var-
ious rules-of-thumb. Film-based stereographers assumed that there should
be a maximum on-film deviation. Ferwerda, for example, recommended a
maximum deviation of 1.2 mm when using a 35mm film format [2003]. Other
cinematographers applied a percentage rule, such as the 3% rule, which cor-
responds to the maximum allowable pixel or screen disparity relative to the
screen width. This rule corresponds to the notion that the baseline separation
of a stereoscopic camera system should not exceed 1/30th of the camera dis-
tance to the nearest object. For a camera baseline of 6.5 cm, the camera should
be approximately 2 meters from the nearest subject. Shooting a subject that is
0.5 meters away would require a baseline of 1.7 cm. This rule is designed to
maintain an acceptable amount of depth from the nearest element to infinity.

bc = an/30 (2.21)

The 3% rule is also sometimes called the 2% or even 1% rule, depending on
how conservative the stereographer wants to be. Shibata et al. [2011] demon-
strated that the 2% rule is often too conservative compared to their experi-
mental observations of the comfort zone.
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Figure 2.12: The general geometry of a stereo camera with a focus distance, near
object, far object, baseline and projection on an image sensor.

Depth Range Equations

When capturing (or rendering) stereoscopic content, it can be very useful to
quickly compute the appropriate baseline to achieve maximum and mini-
mum comfortable depth ranges. Bercovitz [1998] formulated the stereo cam-
era base equation with a maximum deviation in mind. Figure 2.12 represents
the general geometry of the stereo camera. Equation 2.22 computes the base-
line as a function of nearest object, an, farthest object, a f , focus distance, a,
focal length, f , and maximum deviation, d. The maximum deviation is the
difference between the far and near point image separations projected on the
sensor, d = b f − bn.
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b0 = d
a f an

a f − an
(

1
f
− 1

a
) (2.22)

Selection of the appropriate maximum deviation can then be used to improve
the stereoscopic camera parameters.

2.5 Distortions

Stereoscopic imaging has much potential to provide immersive visual expe-
riences. However, it also has much potential to induce perceptual distor-
tions, which cause visual discomfort, depth misinterpretation, and fatigue.
An undesirable outcome is for the distortions caused by stereoscopic image
viewing to distract or hinder the presentation of story or exploration of the
immersive world. There is a fundamental need to characterize the space of
visual distortions and provide the technology to resolve them.

The challenge is to understand the perceptual limits as well as cost/benefits
of including potential distortions. This requires perceptually-based compu-
tational models to predict the quality of visual experience. This section iden-
tifies several perceptual distortions. As reference, Kooi et al [2004] conducted
a systematic evaluation of 35 different stereoscopic distortions and evaluated
them in terms of the discomfort experienced by the viewer.

2.5.1 Depth Distortions

Depth distortions could be considered as the catch-all of stereoscopic dis-
tortions. Just as 2D image viewing has the potential to invoke the percep-
tion of geometric spatial distortions, the use of stereoscopic 3D imagery only
increases the potential for conflict. Geometric distortions come about from
a mismatch between stereoscopic capture, display and viewing conditions.
These geometric relationships have been well studied [Woods et al., 1993;
Jones et al., 2001; Masaoka et al., 2006; Yamanoue et al., 2006; Zilly et al.,
2011]. These approaches primarily rely on geometric relationships, ignoring
limitations inherent within the human visual system. Depth distortions also
require the ability to isolate and evaluate specific factors to make meaning-
ful conclusions. Below, we present several specific stereoscopic distortions,
many of which also fall within the category of depth distortion.
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2.5.2 Stereoscopic Image Scale

The stereoscopic depth cue can influence the sense of scale and thus influence
the perception of space and sense of immersion. In 2D image viewing, ortho-
scopic projection is achieved through alignment of camera perspective to the
viewer perspective. Orthostereoscopic projection is the 3D equivalent where the
baseline also corresponds to the baseline of the viewer. Magnification and the
correspondence between captured and observed scene geometries also have
an influence.

Magnification and Orthoscopic projection The value of orthoscopy is
task dependent. If it were always required, we would need to change our
viewing distance depending on the lens used to capture an image. We have
learned how to interpret images captured with different projections/focal
lengths.

Ortho-stereoscopic Perspective The ortho-stereoscopic perspective is
obtained when the field of view, viewing/capture distance, and baseline of
the scene capture system and observer match. The stereo camera baseline
should be approximately 6.5 cm. The field of view of the projected image
should match the camera system.

Hyper- and hypo-stereo A viewer interprets a stereoscopic image as if it
were captured with the same baseline as their vision (approximately 6.5 cm).
When the baseline of stereo capture is increased (hyperstereo), the conver-
gence angle about the scene objects is higher. A higher convergence angle
corresponds a closer object as shown in Figure 2.13. Since the size of the
object has not changed, the object is interpreted to be smaller. Hypostereo
occurs when the baseline of capture is reduced. Objects are interpreted to be
larger.

Interestingly, the phenomenon of scale perception influences viewing the real
3D world. Children and women see the world as larger than men [Ramadan,
2009]. This is due to the average eye separation distance of men (6.6 cm),
women (5.7 cm), and children (4.5 cm). For example, women view men 20%
larger than men view themselves.
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Figure 2.13: Effect of baseline extension (camera capture separation) on perceived
depth and size of an object. (1.) Represents a normal capture at a
small convergence angle αn. (2.) When the baseline is extended, the
convergence angle is higher, αe. (3.) The brain processes the image on
the basis of the normal eye baseline. Higher convergence corresponds
to a closer position object (magenta triangle). As a result, the object
appears to be closer, but it’s visible size does not scale as expected. The
effect is that the object appears smaller.

2.5.3 Stereoscopic Cardboarding

Stereoscopic cardboarding is the perception of objects to be flatter than they
would be expected to appear. One factor influencing the perception of card-
boarding is the mismatch between perception of object size and object dispar-
ity with distance. Howard and Rogers [2002] point out that size sensitivity
is inversely proportional to distance, while disparity sensitivity is inversely
proportional to the squared distance. This results in a conflict between size
and depth scaling.

Another significant factor that influences cardboarding is a geometric mis-
match between the stereoscopic capture, display and viewing conditions.
Masaoka et al. [2006] sought to develop a spatial distortion prediction sys-
tem to determine the extent of the stereoscopic cardboarding effect. However,
they developed geometric relations without taking the subjective perception
of the artifact into account.

39



2 Modeling Topics in Stereoscopic Imaging

Yamanoue et al [2000] experimentally evaluated perceived cardboarding by
exploring several factors including lighting and variation of spatial thick-
ness. They observed a significant effect of spatial thickness in the subjective
rating of perceived cardboarding. Only one object with three spatial thick-
ness values was evaluated, thereby making it difficult to draw more general
conclusions regarding finer scale changes in spatial thickness. Yamanoue et
al. [2006] later geometrical modeled the cardboarding effect as the ratio of
size and depth magnification. They observed a good correlation with their
previous experimental observations from one object [2000].

2.5.4 Ghosting

The perception of stereoscopic crosstalk is often called ghosting. Ghosting
can be considered a“binocular noise" that further hinders fusion limits and
visual comfort. Yeh and Silverstein [1990] demonstrated that crosstalk sig-
nificantly influences the ability to fuse widely separated images via binocu-
lar eye vergence movement. Ghost images may introduce unintended edges
and binocular rivalry making visual processing unstable, unpredictable, and
impair guiding visual attention [Patterson, 2007]. It has also been found to
inhibit the interpretation of depth [Tsirlin et al., 2011a,b].

Use of even minimal crosstalk has been found to strongly affect subjective rat-
ings of display image quality and visual comfort [Yeh and Silverstein, 1990;
Kooi and Toet, 2004]. Although acceptable crosstalk may generally be as high
as 5-10%, the detection and acceptability thresholds can be significantly re-
duced with higher image contrast or larger disparity [Wang et al., 2011a].
There is a significant need to remove the detection of crosstalk.

This need has motivated a variety of ghosting removal methods (aka.
deghosting). Typically, these methods rely on some form of subtractive com-
pensation [Konrad et al., 2000]. A perceptually motivated extensions to tra-
ditional subtractive compensation was presented [Smit et al., 2007], which
utilizes a perceptually uniform CIE-Lab colorspace for subtractive compensa-
tion. However, these methods fail when negative light is required to achieve
sufficient subtractive compensation. We developed a perceptually-based dis-
tribution of the ghosting signal to reduced sensitivity regions of the human
visual system [van Baar et al., 2011]. We demonstrated that our compensa-
tion method produces more comfortable stereoscopic images as compared to
traditional subtractive compensation methods.
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2.5.5 Vergence-Accommodation Conflict

As presented earlier in Section 2.4, the vergence-accommodation conflict has
been experimentally observed to induce visual discomfort, depth misinter-
pretation and fatigue. This problematic situation has motivated our explo-
ration in Chapter 3 of using scene composition to compensate for visual at-
tention transitions.

2.5.6 Microstereopsis

Motivated by the vergence-accommodation conflict, there are many efforts to
reduce the range of disparities to be within the zone of comfortable viewing,
as discussed in Section 2.4. One extreme solution is to apply minimal scene
disparities. Siegel and Nagata [2000] proposed the concept of microstereop-
sis, in which small interocular separation is combined with alignment of in-
teresting content about the zero parallax plane. Their informal experiments
demonstrated sensitivity to small disparities and they hypothesize that min-
imal detectable disparity is sufficient when combined with other visual cues
to stereoscopic depth. Didyk et al. [2011; 2012] formulated perceptually-
based depth discrimination thresholds and also demonstrated an application
of minimal stereopsis.

2.5.7 Disparity Remapping

Another approach to position stereoscopic content within the comfort zone
is to apply disparity remapping operators. A global approach to disparity
remapping is to linearly adjust the disparities, effectively by adjusting the
camera baseline and, perhaps, reconverging the zero parallax plane (via cam-
era convergence or horizontal image translation). The previously mentioned
geometric relationships represent this case [Woods et al., 1993; Jones et al.,
2001; Masaoka et al., 2006; Yamanoue et al., 2006; Zilly et al., 2011]. Holliman
et al. [2004] proposed piecewise linear remapping to alter the remapping op-
erator based on regions of interest.

Our own disparity remapping work was among the first to implement a
framework based on a set of basic disparity remapping operators than can
produce local and global disparity remapping [Lang et al., 2010]. We also
demonstrated how our algorithms, combined with image warping tech-
niques and sparse disparity information, can be used to benefit a variety
of practical stereoscopic disparity editing applications. Later work, such as

41



2 Modeling Topics in Stereoscopic Imaging

Basha et al. [2011], extended seam carving to retargeting of stereoscopic im-
ages while maintaining geometric consistency to minimize both image dis-
tortion and depth distortion. There have been more recent works combin-
ing image retargeting and disparity remapping [Chang et al., 2011; Qi and
Ho, 2013]. Perceptually-based remapping operators have been proposed
by Didyk et al. [2011; 2012]. More recently we have motivated remapping
based on the constraints introduced by autostereoscopic, multi-view dis-
plays [Chapiro et al., 2014].

2.5.8 Inconsistent Depth Cues

As discussed in Section 2.2, depth interpretation can be hindered by incon-
sistent depth cues. The vergence-accommodation conflict is one example,
which motivates our attention transitions research presented in the follow-
ing chapter. Another example is the Stereoscopic Window Violation, which is
presented in Chapter 4.

2.6 Attention and Saliency

Visual attention is an important survival skill. It enables the focus of limited
visual processing resources on interpreting important parts of the real 3D
world. The seminal work of Koch and Ullman [1985] proposed a model for
pre-attentive visual attention. They identified two stages of visual attention.
First, a "preattentive" mode in which simple visual features are processed in
parallel over the entire visual field. The second, "attentive" mode represents
the process of focusing visual attention. The attentive stage is believed to be
a serial process utilizing many visual cues and volitional factors to maintain
visual attention.

Koch and Ullman [1985] proposed that the pre-attentive vision model should
be composed of parallel processing of simple visual features including color,
orientation, movement and disparity in a winner-take-all network. This
theoretical framework was later implemented by Itti and Koch [1998] who
computed center-surround differences of pre-attentive features. Their sys-
tem consisting of stimuli-driven, bottom-up mechanisms accurately described
how attention is deployed within the first few hundreds of milliseconds after
the presentation of a new scene. Preattentive temporal dynamics were addi-
tionally modeled by allowing the maximal conspicuity feature to decay in the
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winner-take-all process. They further acknowledge that modeling the atten-
tive stage requires more sophisticated models with top-down mechanisms
accounting for volitional biasing.

Feature contrast is the primary concept supporting saliency models. Itti et
al. [1998] utilized center-surround feature structure, which provided a local
contrast measure for a given receptive field. Through a global normaliza-
tion, they were able to reduce the influence of strong contrast that were com-
mon while amplifying the strong contrasts that were unique. This process
produced conspicuity maps per feature, which were then linearly combined
with other feature maps before applying a winner-take-all prediction of pre-
attentive saliency.

There are other saliency approaches, which may be less biologically inspired,
however they often use some form of contrast metric. Frequency space meth-
ods [Guo et al., 2008; Hou and Zhang, 2007] determine saliency in the fre-
quency domain, evaluating the amplitude or phase spectrum. These meth-
ods tend to label object boundaries as salient. Colorspace methods can be
global or local. Local colorspace methods can evaluate pixel dissimilar-
ity [Ma and Zhang, 2003] and multi-scale bandpass frequency representa-
tions [Itti and Baldi, 2005]. These methods can also emphasize edges and
noise. Global colorspace methods include estimation of contrast between im-
age patches [Goferman et al., 2010; Liu et al., 2011; Wang et al., 2011b]. These
methods can identify larger image structures as salient, but at the cost of high
computational complexity. Dimension reduction can be applied [Duan et al.,
2011] with potential loss of important information. Similar to Itti and Koch,
another colorspace method applied a simple difference from the mean to pro-
vide more global information [Achanta et al., 2009].

Other saliency methods aim to produce binary saliency labels to entire objects
or image regions. They utilize image segmentation techniques [Ren et al.,
2010] and also clustering [Cheng et al., 2011] to identify individual objects.
Perazzi et al. [2012] decomposed their saliency into two color contrast com-
ponents: uniqueness and distribution of color information. Their approach
is able to efficiently label an object as salient. These methods perform well
on saliency ground-truth data sets, which have a single labeled salient re-
gion. However, they perform poorly when scenes are cluttered. This leads to
the importance of identifying the type of content to be analyzed and the pre-
ferred saliency representation. For example, the object versus feature region
saliency labels.
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Motion Saliency

Itti and Dhavale [2003] proposed a complete spatiotemporal framework by
extending earlier work on image saliency [Itti et al., 1998] with additional
center-surround mechanisms for flicker and motion. More recent methods
have been designed to only compute motion saliency [Cui et al., 2009; Belar-
dinelli et al., 2009] or spatiotemporal saliency [Rapantzikos et al., 2009; Ma-
hadevan and Vasconcelos, 2010]. Appropriate motion contrast mechanisms
are also a topic of active research.

Stereoscopic Saliency

There has been some research in stereoscopic saliency. Two saliency meth-
ods apply depth weighting as a post process after computing monocular
spatiotemporal saliency for each eye [Jeong et al., 2008; Fernandez-Caballero
et al., 2008]. For example, Jeong et al [2008] developed a biologically inspired
saliency framework utilizing similar features to Itti and Koch. They utilize
fuzzy logic to support feature combination. They compute saliency for each
eye independently and then weight the saliency maps with disparity infor-
mation, preferring objects that pop out. Both of these saliency methods, how-
ever, lack subjective evaluation and the application scenarios enabled by the
saliency representation is not clear.

Niu et al. [2012] developed a more recent stereoscopic saliency method for
still images. They proposed a disparity contrast metric and combined it with
domain knowledge about the preference for specific ranges of disparities.
Their disparity metric extends the histogram based color contrast method of
Cheng et al [2011]. They segment the image and then identify regions with
more abrupt disparity changes as more salient. They evaluate their results
relative to other 2D methods on a stereoscopic dataset. However, the dataset
also lacks ground truth provided by eye tracking.

There are many open questions related to stereoscopic saliency. First, there
is very limited available eye track data on stereoscopic data sets. Second,
there has yet to be a comprehensive study specifically exploring the role that
stereopsis, comfort or other perceptual distortions play on visual attention
in stereoscopic imaging. Finally, there is need for compelling applications to
guide the appropriate saliency representation.
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2.7 Conclusion

This chapter on modeling topics in stereoscopic imaging has provided a
structured overview of many relevant topics, significant research and com-
putational models. Details of these models are provided to describe how
they are implemented to support computational analysis of stereoscopic per-
ception. These models have been applied in various forms during the thesis,
for example, guiding the capture and display of stereoscopic content for ex-
periments as well as the production of stereoscopic movies. The following
two chapters explore influence of different perceptual distortions caused by
inconsistent depth cues. The next chapter explores how a conflict between
vergence and accommodation can hinder the time to change visual attention
within a stereoscopic scene. The subsequent chapter explore how a conflict
between the depth cues occlusion and stereopsis influence visual quality and
comfort.
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C H A P T E R 3

Attention Transitions in
Stereoscopic Depth

This chapter represents exploration of how changes to stereoscopic scene
composition can compensate for a common perceptual distortion in stereo-
scopic images, the decoupling of vergence and accommodation.

3.1 Introduction

Viewing stereoscopic 3D is inherently an unnatural experience. It has been
shown that the decoupling of eye vergence and accommodation experienced
during stereoscopic image viewing can lead to depth misinterpretation, dis-
comfort and fatigue [Hoffman et al., 2008]. We explore the impact stereo-
scopic image viewing can have on the ability to change visual attention in
depth. Our hypothesis is that scene composition can help compensate for
the eye-vergence and accommodation conflict and facilitate the viewing of
stereoscopic content.

To explore this question we attempt to mimic a ubiquitous cinematic scene
setting: the basic dialog shot (aka. two-shot) in which viewer attention tran-
sitions between two actors [Mascelli, 1965]. Figure 3.1 provides several visu-
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Figure 3.1: Visualization of different forms of the two-shot. Actor positions are
fixed in depth. (A) Represents an over-the-shoulder shot without depth
continuity. Insets (B-D) represent potential ways to provide depth con-
tinuity.

alizations of a two-shot (see insets A-D) with stereoscopic scene depth repre-
sented on the left. Figure 3.1-(A) represents an over-the-shoulder shot with-
out depth continuity. The remaining three insets (B-D) provide depth conti-
nuity through changes to the camera placement and scene composition. We
introduce a variable that corresponds to the difference in scene composition
between a mid-level shot (inset A) and a down-shot that provides continuity
between two actors (insets B-D). In these examples, continuity is provided
by a table, wall or floor element that span the depth range between the two
actors. We hypothesize that these continuous visual depth cues visually link
the two actors and provide an intermediate element that the viewer can use
to smoothly saccade from one actor to another.

Our experiment also explores an additional question: can fatigue be mea-
sured using a quantitative technique, such as measuring the time required
to change visual attention from one actor to another. One would presume
that as fatigue grows, the subject will tire and the speed with which they
can modify vergence/accommodation will decline, thus providing an indi-
rect measure of fatigue. We administered questionnaires in order to compare
self-assessed measure of fatigue against our quantitative approach.

Contributions. Our work makes the following contributions:

w Demonstrate that a continuous depth element can reduce the time re-
quired to change visual attention in a stereoscopic scene.
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w Present the correlation of data between performance and subjective
measures of visual fatigue.

w Motivate that stereoscopic 3D content creators may learn scene compo-
sition, framing and montage from visual psychophysics.

Chapter Organization. Related work is presented in Section 3.2 followed
by the experimental design in Section 3.3. Results, including our experimen-
tal setup and a user evaluation, are presented in Section 3.4. The chapter is
concluded in Section 3.5.

3.2 Related Work

Binocular spatial perception is among the most demanding and energy con-
suming visual tasks viewers perform [Parker, 2007]. In natural image view-
ing, eye vergence, accommodation and pupil diameter work together to
form a clear image. The interrelated change is known as a near-triad re-
sponse [Howard, 2002]. The primary benefit of the coupling is an improved
visual performance reducing the amount of time to transition visual atten-
tion.

Stereoscopic image viewing disrupts natural viewing behavior due to the de-
coupling of eye vergence and accommodation. Many researchers have stated
the visual conflict between vergence and accommodation influences visual
comfort, depth interpretation or fatigue [Emoto et al., 2005; IJsselsteijn et al.,
2005; Lambooij et al., 2009; Patterson, 2007; Ukai and Howarth, 2008; Yano
et al., 2004]. Some have experimentally observed an effect of discomfort or fa-
tigue by comparing stereoscopic image viewing to 2D image viewing [Emoto
et al., 2005; Kuze and Ukai, 2008; Yano et al., 2002]. However, those findings
do not prove the discomfort is caused specifically by the vergence accommo-
dation conflict. Kooi and Toet [2004], for example, explored a variety of ad-
ditional perceptual distortions caused by stereoscopic viewing that can cause
visual discomfort.

Hoffman et al. [2008] were the first to convincingly demonstrate an effect of
the vergence-accommodation conflict on visual discomfort, depth interpreta-
tion and fatigue. This was achieved through the development of a volumet-
ric stereoscopic display, which enables the control of both vergence and (ap-
proximate) accommodation cues [Akeley et al., 2004]. Accommodation was
interpolated between several fixed states. This experimental system makes
it possible to isolate and control the degree of vergence and accommodation
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3 Attention Transitions in Stereoscopic Depth

conflict. The research was continued by Shibata et al. [2011] who demon-
strated the influence of viewing distance and disparity sign (e.g. in front or
behind the screen) on discomfort and fatigue.

There are several approaches to compensate for the vergence-accommodation
conflict. One approach involves presenting microstereopsis, which is a min-
imally required disparity [Siegel and Nagata, 2000; Didyk et al., 2011, 2012].
Another approach is to apply linear and nonlinear disparity remapping
operators to recompose the scene depth and better utilize the limited depth
budget [Lang et al., 2010]. Others have sought to ease attention transitions
by aligning the depth position of visually salient scene elements between
cuts [Koppal et al., 2011]. Our aim is to demonstrate that it is possible to
maintain a large depth volume and utilize other visual cues to improve the
time to change visual attention.

3.3 Methods

We use a restricted cinematic domain, similar to a dialog (aka. two-shot) be-
tween two spatially separated actors, to motivate visual attention transitions.
We do so because the two-shot is one of the most widely used cinematic shots.
We measure the response time necessary to change attention between the two
scene elements. To ensure visual attention at the appropriate depth, we used
random dot stereogram targets [Julesz, 1960] to represent the two actors. An
example is provided in Figure 3.3. We asked the viewer to determine if the
center portion of the target emerges or recedes from the target background.
This is a task that requires binocular fusion to discriminate between these
two conditions.

Subjects Twelve adult volunteers (8 male, 4 female, ages 21-37), with nor-
mal vision (corrected and uncorrected) participated in the study. An evalu-
ation of the subjects spatial perception was assessed before the test was ad-
ministered requiring consecutively correct evaluation of the RDS test target at
increasing disparities until the subject demonstrated their ability to correctly
perceive these targets at the disparities used in the test.

Stimuli The stimulus consists of two modified random dot stereograms
(RDS) presented at 3 possible stereoscopic depths. Because some partici-
pants had trouble viewing binary random dot stereograms, a modified RDS
was used. This phenomena was noted by Julesz [1960]. Edge detection and
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Figure 3.2: Modified random dot stereogram (RDS) target stimuli. The circle ap-
peared either in front of the square (Outside) or within the square (In-
side). A modified RDS was used to make it easier to fuse the circle.

matching is a critical component of disparity tuned cortical vision to produce
stereoscopic fusion. In order to keep our potential subject pool as large as
possible, we encoded the stereogram with 8 shades of grey (see Figure 3.2).
The darker seven shades are used to encode the dots on the target plane and
the lighter seven are used to encode the shape portion of the RDS. Because
this shape can be perceived monoscopically, subjects do not identify the en-
coded shape, but rather interpret the depth location of the shape relative to
the target plane (e.g. emerging or receding). The shape is encoded with a 12
pixel disparity and the entire stereogram is 193 pixels square, corresponding
to an approximate angular width of 5.6 degrees.

The targets are placed on a floor plane, which is textured with a checkerboard
pattern for the continuous depth trials (50%) and not visible (no texture) for
the others (see Figure 3.3). When visible, the continuous depth floor plane
extended from the nearest target location to the farthest target. Targets are
mounted on either the left or right side of the plane at three depth locations.
The depth locations were chosen to test three disparities (-1.72, 0, and +1.69
degrees), corresponding to on-screen disparities of approximately -59, 0 and
58 pixels. The relative disparity for the far target was set so as not to ex-
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a)

b)

Figure 3.3: Example trials in monoscopic view. (a) represents a trial with continu-
ous depth cue. Previous target is located in the far depth and the current
target (with yellow border) is in the near depth location. (b) represents
a trail without continuous depth cue. Previous target is at near depth
and the current target (with yellow border) is at the zero parallax depth
location.

ceed average inter-pupillary distance and was reduced to avoid divergent
viewing. The near target was set to provide spatial symmetry across the zero
parallax plane.

A 50% grey background was used for two purposes. First, a grey background
hid some of the crosstalk that is present in our circularly polarized projection
system. This crosstalk can be distracting for some viewers, especially when
presenting high contrast, black and white images. Second, the use of 50%
grey helped to balance the influence of our continuous depth plane. The
plane is a black and white checkerboard pattern, which has a local luminance
that alternates between black and white and averages globally to 50% grey.

3.3.1 Procedure

Participants were tested individually in the same, darkened experimental
room. They were seated at a distance of 2 meters from the projected image.
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The image size was 130cm x 78 cm (36 degree FOV) and the resolution was
1280x768 pixels. Circular polarizing filters were used to separate the left and
right image channels. Participants wore circularly polarized glasses through-
out the experiment to view the stereoscopic images and questionnaires. Im-
age brightness on the projectors was reduced to simulate the illumination
levels in a dark theater. Approximately 15 cd/m2 was measured to be pass-
ing through the polarizing glasses at a distance of 2 meters. Less light results
in a larger pupil size and decreases the depth of focus. User input was pro-
vided by a standard computer keyboard, which was placed on the lap of the
experiment participant.

Pre-test Participants were first tested to determine if they could perceive
the range of depths presented in the study. They were presented near and far
targets (one at a time) and asked to respond to the stimulus in the target. Par-
ticipants were instructed to press specific arrow keys depending on whether
they perceived the shape encoded in the RDS to be in front of or behind the
RDS target plane. Correct answers resulted in targets that were presented
farther from the zero parallax plane. The test ended when the participant
demonstrated perception of the depths used in the study. Participants who
could not view the required depths were not permitted to continue with the
experiment. A short break was given between the pretest and the experiment.

Questionnaire A 23 question survey was given at the beginning, mid-
dle and end of the experiment. All questions are summarized in Table 3.1.
The survey first asks a general question about eye fatigue. The next 6
questions originated from a German survey, Kurzfragebogen zur aktuelen
Beanspruchen (KAB), which was designed to provide a short scale for as-
sessing stress [Müller and Basler, 1993]. The remaining 16 questions are
standardized questions from the Simulator Sickness Questionnaire, which
was originally designed to assess motion sickness in virtual reality simula-
tors [Kennedy et al., 1993]. Although we lack motion in our experiment, the
oculomotor factors of the SSQ are relevant to the viewing of stereoscopic im-
ages. The SSQ enabled us to quickly apply a standard survey that is relevant
to stereoscopic eye fatigue. Questions were presented one at a time on the
same image screen as the stereoscopic test so that the viewing condition did
not change. Using a keyboard, the subject selected the desired response to a
question and then confirmed the answer before proceeding.

Experiment Design The experiment is a three factor design. One factor
is the depth change with 9 levels of change in depth between the two targets
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Source Question Response (Integer or discrete choice)
Ours How strong is fatigue of

your eyes at the moment?
1 ("not at all") - 6 ("very strong")

KAB At the moment I feel

1 ("tense") - 6 ("relaxed")
1 ("relaxed") - 6 ("queasy")
1 ("worried") - 6 ("untroubled")
1 ("calm") - 6 ("nervous")
1 ("skeptical") - 6 ("trustful")
1 ("comfortable") - 6 ("miserable")

SSQ

General discomfort

"none", "slight", "moderate", "severe"

Fatigue
Headache
Eyestrain
Difficulty focusing
Increased salivation
Sweating
Nausea
Difficulty concentrating
Fullness of head
Blurred vision
Dizzy (eyes open)
Dizzy (eyes closed)
Vertigo
Stomach awareness
Burping

Table 3.1: Summary of 23 question survey. The first question is our own.
The next six are from the Kurzfragebogen zur aktuelen Beanspruchen
(KAB) [Müller and Basler, 1993]. The last 16 are from the Simulator
Sickness Questionnaire [Kennedy et al., 1993]. The questionnaire was
integrated directly in the experiment using the same display and key-
board.
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(see Figure 3.4-left and also footnote for depth change codes 1). The sec-
ond factor is the presence of the continuous depth cue (continuous depth or
non-continuous depth), as represented by the checkboard plane. The third
factor is the experiment block depicted in Figure 3.5. Blocks are composed
of 2 sub-blocks, one for continuous depth trials and one for non-continuous
depth trials. The sub-block order is constant per participant and is balanced
between participants.

An RDS target is presented in one of 6 locations (3 depths and 2 positions per
depth as presented in Figure 3.4-left). The target to be assessed is outlined
with a yellow border. The participant is instructed to decide if the shape
encoded on the target is in front of or behind the RDS target plane. Immedi-
ately after their response, a new target is presented on the opposite side (left
or right) and in one of the 3 depth locations. The new target is outlined with
the yellow border as shown in Figure 3.3. The previous target is still visible,
but without the yellow border. Two targets are visible at all times

The entire experiment encompasses 2280 trials, composed of 6 blocks made
up of balanced sub-blocks. Each sub-block is composed of 10 cycles. Fig-
ure 3.5 provides an overview of stimuli presentation. A cycle contains ev-
ery permutation of depth change. Figure 3.4-right provides an example of
a complete cycle. Cycles are used to ensure that the depth change factor is
balanced throughout the experiment. Each cycle is composed of 18 trials (9
depth changes and two possible positions: left and right) plus one additional
trial (a 19th trial) to transition from one cycle to another. Responses from the
additional transition trial are not included in the results because the 19th trial
in each cycle would not be balanced. The orientation of the encoded shape
(in front or behind the RDS target plane) is randomized. Response time and
response are recorded for analysis.

3.4 Results and Discussion

The collected data enabled us to analyze response time, accuracy and self-
assessments from the questionnaires. Analysis was performed with a three
factor repeated measure ANOVA, using Greenhouse-Geisser adjusted de-
grees of freedom. Post-hoc pair- wise comparisons with Bonferroni correc-
tions were run for multiple comparisons. All three main effects were signifi-
cant.

1Depth change codes: F-F (Far to Far), N-N (Near to Near), Z-Z (Zero Parallax to Zero
Parallax), F-N (Far to Near), F-Z (Far to Zero Parallax), N-F (Near to Far), N-Z (Near to
Zero Parallax), Z-F (Zero Parallax to Far), Z-N (Zero Parallax to Near)
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Figure 3.4: On left: Possible target locations (circles) and depth change levels
(lines). Assuming symmetry, the 18 lines reduce to 9. On right: An
example cycle, which is balanced to contain 18 (2x9) balanced depth
changes.

Main Effect: Continuous Depth The main effect of Continuous Depth had
a significant influence on the response time (F(1,11) = 7.587, MSE = 1.51 ∗ 106,
p < .05). Participant average response time was 1086 ms with and 1253 ms
without continuous depth, an average performance increase of 13.4%.

Main Effect: Depth Change The main effect of Depth Change also sig-
nificantly influenced the response time (F(8,88) = 10.046, MSE = 6.29 ∗ 105,
p < .001). A significant interaction was observed between Continuous Depth
and Depth Change (F(8,88) = 4.386, MSE = 6.74 ∗ 104, p < .001). This implies
that the Continuous Depth cue does not always reduce the response time. A
detailed discussion of the influence of continuous depth on each of the nine
possible depth changes proceeds below.

3.4.1 Depth Change

Response time per depth change are summarized in Figure 3.6. To facilitate
analysis, we classify the depth changes into three different types: lateral, in-
ward, and outward changes.

Lateral Change Trials in which both stimuli are located at the same depth
are labeled as lateral change. Three depth changes meet this condition: F-F
(Far-to-Far), N-N (Near-to-Near), and Z-Z (Zero Parallax-to-Zero Parallax).
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Figure 3.5: Six blocks total, each containing six sub-blocks of continuous depth
and non-continuous depth trials (balanced order across subjects). Each
sub-block contained ten randomly selected, balanced cycles of all depth
changes, plus transition trials to the next cycle.

For the Z-Z condition, attention transitions are along the zero parallax plane.
We observed an improvement of 4.73% in response time in the presence of the
CDP, however the effect was not statistically significant (p = 0.187). We hy-
pothesize the small improvement is due to the CDP providing an additional
cue to direct attention between the two target stimuli [Egly et al., 1994].

The other two lateral changes exhibited significant improvement in the pres-
ence of the CDP (p < .05). Mean improvement due to the CDP was 15%
for near (N-N) and 8.74% for far (F-F) lateral changes. It appears the CDP
again provides a visual cue to direct attention. However, we may observe
statistical significance because the cue additionally helps the visual system
maintain the decoupling of eye-vergence and accommodation during the at-
tention transition. We hypothesize that during the attention transition, the
visual system tries to return to a state of natural correspondence between
eye-vergence and accommodation.

It should also be noted that the lateral distance between stimuli differed for
each lateral change condition. The lateral distance was greatest for N-N
and smallest for F-F. In both cases, the continuous depth plane improved vi-
sual performance to change attention, with a greater improvement occurring
when the lateral distance was longer. The CDP appears to both provide a di-
rected attention cue [Egly et al., 1994] and also to help maintain the necessary
decoupling between eye-vergence and accommodation [Howard, 2002].

Inward Changes Trials in which visual attention changes from a far target
to a near target are labeled as inward changes. Three depth changes meet

57
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this condition: Far-to-Zero Parallax (F-Z), Zero Parallax-to-Near (Z-N), and
Far-to-Near (F-N). The F-Z condition is interesting in that visual attention is
transitioned to the zero-parallax plane, where the eye-vergence and accom-
modation conflict is minimum. As would be expected, we do not observe a
statistically significant improvement (p = 0.102).

The F-N condition exhibits a trend of reducing response time with the CDP.
However, the mean improvement was near, but not yet statistically signifi-
cant (p = .078). The Z-N condition did exhibit statistically significant effect
of CDP.

Outward Changes Trials in which visual attention changes from a near tar-
get to a far target are labeled as outward changes. The remaining three depth
changes meet this condition: Near-to-Zero Parallax (N-Z), Zero Parallax-to-
Far (Z-F) and Near-to-Far (N-F). The transition to zero parallax (N-Z) exhibits
a similar behavior as F-Z, in which attention transitions to a location of min-
imum eye-vergence and accommodation conflict. The response time for N-Z
was not significantly reduced by the CDP (p = 0.134).

The remaining two outward depth changes, Z-F and N-F, do show statisti-
cally significant improvement (p < .05). The performance improvement is
especially interesting. We observe an 18% reduction in response time for Z-
F and 20% reduction for N-F. The outward depth changes show a trend to
take longer than all other depth changes. We observed a mean reduction in
response time of approximately 300ms for those two conditions.

Observations The inclusion of a continuous depth plane (CDP) linking
two targets provided a statistically significant 14.31% reduction in response
time required to change attention. If we exclude depth changes to the zero
parallax plane (Z-Z, N-Z and F-Z) and the F-N condition (because it was not
statistically significant), we observe an 18.10% reduction in time to change
visual attention. A simple change in scene composition can have a signifi-
cant influence on the viewer’s ability to attend to elements within the scene.
Viewers are able to change their spatial attention faster when a continuous
depth plane is present.

Another observation from analyzing the data is the direction dependence on
transitions in depth. Attention transitions from either near or far locations
to zero parallax take approximately the same time. However, the other two
outward changes take longer than the other two inward changes. This obser-
vation appears consistent with a simple biological model of the eye accom-
modation.
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Figure 3.6: Comparison of the average response time per depth change. Continuous
depth improves the outward depth change most. F: Far, N: Near, Z:
Zero Parallax.

The lens of the eye changes shape to accommodate as represented in Fig-
ure 3.7. This is accomplished by contracting or relaxing internal ciliary mus-
cle, which adjusts tension on the zonula fibers that radiate from the lens.
Since the ciliary is an annulus muscle, contraction decreases the diameter of
the muscle resulting in releasing tension and increasing convexity of the lens.
When the ciliary muscle tightens, the eye accommodates to a nearer point.
Relaxation of the ciliary muscle increases tension on the zonula fibers result-
ing in far focus. Since contraction of a muscle is always faster than relaxation,
we expect to see an asymmetry in the time to change accommodation. This
effect agrees with our data: changes of accommodation from far-to-near are
faster than near-to-far.

Since vergence can drive accommodation [Nguyen et al., 2008; Howard,
2002], we could reason about the demanding process of changing visual
attention in stereoscopic images. When the visual system changes eye-
vergence, a natural response causes an initial reaction to adjust accommo-
dation to the new fixation point. However, that adjustment will result in
focus deteriorating because all visual information is fixed at the zero paral-
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Ciliary muscle Zonular
Fibers

Near Focus, lens is globular

Far Focus, lens is �atter

Figure 3.7: Top: Ciliary muscle contracts, relaxing zonula fibers. The lens thickens
to facilitate accommodation of near objects on retina. Bottom: Ciliary
muscle relaxes, placing tension on zonula fibers. The lens stretches and
becomes more flat to facilitate accommodation of far objects on retina.

lax plane. The visual system then begins the counter-intuitive response of
decoupling eye-vergence and accommodation.

We hypothesize that the continuous depth plane provides additional eye-
vergence cues to assist the visual system in compensating for the decoupling
with accommodation. In the case of our stimuli, the visual system may sac-
cade via the continuous depth plane to the new target. Without this addi-
tional information, the visual system may invoke larger or more time con-
suming accommodative changes.

3.4.2 Measuring Fatigue

The second question posed in our study was whether fatigue observed by
performance measures correlates with self-assessed questionnaire data. This
requires an analysis of not only response time, but also response accuracy
and the change in questionnaire data throughout the experiment.

There remains one main effect that we did not discuss in the previous anal-
ysis of the influence of continuous depth on depth change. That main effect
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Figure 3.8: Comparison of response time and of different depth changes across dif-
ferent blocks with and without continuous depth. F: Far, N: Near, Z:
Zero Parallax.

is the Block. Our experiment task consisted of six blocks: each block encom-
passed all permutations of depth changes as well as two conditions: with and
without a continuous depth plane (CDP), which are isolated in sub-blocks.
Each block consisted of 380 depth discrimination trials. In total, each sub-
ject evaluated 2,280 trials. In addition to these blocks, we administered three
questionnaires at three points during this task: before, at the mid-point (e.g.
Between blocks 3 and 4), and at the end, immediately after block 6, as sum-
marized in Figure 3.5.

Main Effect: Block The main effect of the Block factor has a significant
influence on response time (F(5,55) = 6.509, MSE = 8.57 ∗ 106, p < .001). Fig-
ure 3.8 presents a trend in the data for the response rate to decrease from an
average of 1500 ms in Block 1 to minimum at around Block 5 and a small in-
crease in Block 6. Subjects tend to become faster throughout the experiment.
We interpret this in two ways: First, there seems to be a learning effect in
the first 1-3 blocks. Second, subject accuracy declines and the time to achieve
fusion increases in the sixth block in exactly those depth changes that are the
most difficult to perform and that often require the longest time to complete
(e.g. N-F, N-Z, Z-F, F-Z, N-N).

Analysis of accuracy rate also reveals a significant main effect of Block
(F(5,55) =10.355, MSE = 51.67, p < .001). Closer analysis reveals that more
errors are made in Block 6 than Blocks 1, 2, 3, and 4 (p < .05).

We observed a trend for slower attention transitions for the difficult depth
changes and an increase in the error rate. This behavior is expected when
subjects experience performance fatigue. Next, we seek to relate these ob-
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servations with subjective self-assessment data provided by the experiment
questionnaire.

Questionnaire We break the questionnaire analysis into 3 Survey Blocks.
Survey Block 1 is in the beginning. The second is at the midpoint, which oc-
curs 15-36 minutes into the experiment. The final block is at the end, which
occurs after 30-70 minutes, depending on the participant’s response rate
throughout the experiment. Note that the substantial difference in elapsed
time is indicative of the performance variance observed among test subjects.

Analysis of the general eye fatigue question as well as the 6 KAB questions
resulted in a significant main effect of Survey Block (F(2,22) = 13.221, MSE
= 10.111, p < .001) The results are as follows: assessment of eye fatigue
showed a significant increase between the three questionnaire phases of the
experiment (p < .001). We observed two other general phenomena. Some
assessments increased in the 2nd block, but did not significantly change in
the 3rd Survey Block. Those assessments include the subject feeling more
queasy (p < .05). The following assessments were significant between the
first and third Survey Block, which we interpret as a more gradual increase:
Subject feels more relaxed, feels more miserable, and more nervous (p < .05).
Assessment of fatigue and blurry vision had a tendency to increase, but were
not statistically significant.

The remaining questions are from the Simulator Sickness Questionnaire
(SSQ). We first used the three factor analysis defined by Kennedy, et al. [1993]
to determine that factors pertaining to oculomotor were most influenced by
our test. The results presented in Figure 3.9 were expected because we did
not present moving images that create a conflict between vestibular and vi-
sual motion that would influence the other 2 factors: nausea and disorienta-
tion.

ANOVA was then conducted on only the 7 questions pertaining to oculomo-
tor factor of the SSQ. The main effect of Survey Block had a significant effect
on those 7 questions (F=(2,22) = 14.098, MSE=5.671, p < .001). From those
questions, General Discomfort gradually increases from Survey Block 1 to 3
(p < .05). Eyestrain and Difficulty Concentrating both increased between
Survey Blocks 1 and 2 (p < .052), but did not change significantly between
Survey Blocks 2 and 3. It is likely that these symptoms are perceived as ini-
tially worsening before plateauing at a general level of discomfort as stereo-
scopic viewing continues. General Fatigue and Blurry Vision had a tendency
to become stronger, but they were not significant. Headache did not increase
during the experiment.
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Figure 3.9: SSQ Assessment: The Oculomotor factor is most influenced during the
expeirment.

The survey data indicates that symptoms such as eye fatigue and general
discomfort tend to increase during the stereoscopic activity. Other symptoms
may appear when beginning the task, but not worsen through the experiment
duration.

Additional Subject Pool Observations We used a screening procedure to
verify that all subjects had normal binocular spatial vision. However, among
our sample set (psychology and computer science graduate students) we
were surprised by an extremely wide variance among the subjects. Some
subjects require up to three times longer than others to achieve fusion. Ap-
proximately 30% of our potential subjects were unable to achieve fusion for
targets with absolute disparities that were within about 10% of parallel view-
ing. This variance implies that if stereoscopic 3D is to be successful, a conser-
vative approach should be taken in order to establish safe boundaries on the
dynamic range of depth within a scene.
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3 Attention Transitions in Stereoscopic Depth

3.5 Conclusion

We have shown that changes in scene composition have a significant influ-
ence on the viewer’s ability to change visual attention among spatially dis-
tinct scene elements. We also observe that self-assessment of eye fatigue and
general discomfort increase before a decrease in visual performance is ob-
served. For 3D cinema and interactive media to remain as a viable entertain-
ment genre, additional studies of this type may ensure that content will reach
the widest possible audience.

The important message is that scene composition, framing and montage can
significantly influence visual performance in terms of time to change visual
attention. Visually important, or salient, scene elements can be viewed more
quickly when connected by visual information that continuously varies in
stereoscopic depth.
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C H A P T E R 4

Stereoscopic Window Violations

This chapter presents exploration of a visual disturbance that occurs when
the depth cue occlusion is in conflict with stereopsis.

4.1 Introduction

This chapter presents a significant problematic stereoscopic artifact influenc-
ing S3D quality: the stereoscopic window violation. A full description of
the phenomenon is provided in Section 4.2. Stereoscopic window violations
occur when a scene element perceived to be in front of the stereoscopic win-
dow collides with the window border. The border appears to occlude the
object in front of it creating a disturbing visual conflict. Fortunately, window
violations are not always problematic. Making that assessment and com-
pensating, if necessary, requires time consuming expert input. We present a
computational model that identifies when a window violation is problematic
and system to automatically correct it.

Our main contributions are the following:

w Subjective measurement of disturbing window violations as a function
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of luminance contrast magnitude, spatial frequency, orientation, and
disparity,

w A perceptual model based on these measurements and metric to predict
detection of problematic window violations,

w An experimental procedure to calibrate and validate the perceptual
model,

w Applications to assist stereo content creators in the detection of prob-
lematic window violations and in the automatic application of floating
windows.

4.2 Background

This section provides background information about the stereoscopic win-
dow as well as related work in visual processing methods.

4.2.1 Stereoscopic Window

The stereoscopic window represents the virtual window through which
stereoscopic depth is perceived. Its importance has been recognized since
stereoscopic pictures were first made [Spottiswoode and Spottiswoode,
1953]. The stereo window is defined by the parallax of the lateral edges of
the two images projected on the screen as represented in line segment p1p2
of Figure 4.1-a. At zero parallax, the window is perceived to be at the plane
of the screen.

Stereoscopic window violations occur when a scene element meets two con-
ditions: (1) it must be presented with disparity nearer than the stereo win-
dow, and (2) it must collide with the lateral image border as shown in Fig-
ure 4.1-a. In the real-world, this problem would never exist. An object in
front of the window is visible to both eyes (Figure 4.1-b). Stereoscopic im-
ages constrain the visible space for presenting objects in front of the screen
(Figure 4.1-a). When objects in front of the stereo window are only visible
to one eye, the viewer perceives the image border to be occluding the miss-
ing information. Two depth cues are in conflict: disparity provided by the
visible stereo features and the depth ordering from occlusion. Humans are
most sensitive to occlusion in identifying proper depth order [Cutting and
Vishton, 1995], therefore violating it has the potential to produce a disturbing
visual conflict.
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Figure 4.1: Stereoscopic viewing scenario (a) results in window violation. Features
from Object B are occluded by the screen edge p2 behind it. In a real
world viewing scenario (b), features from Object B are visible to both
eyes. The window edge, w2, is occluded by Object B. Note: Object
occlusions are omitted.

Window violations are difficult to avoid. The range of stereoscopic depth
that is comfortable to view is limited to a region both in front of and behind
the screen [Shibata et al., 2011]. Maximizing this zone of comfort requires
placing scene elements in front of the screen (negative parallax), increasing
the likelihood that a window violation will occur.

Floating Windows are a common solution to remove stereoscopic window
violations. It is produced by applying an asymmetric mask to the left and
right eye images. Figure 4.2 provides an example scene with and without
floating windows applied. Floating windows remove features that should
be visible in the two eyes. The black border to the left of the image appears
to float in front of the vase. This preserves the expected depth ordering of
occluding elements.

Floating windows have been applied in feature cinematic films as a tool to
utilize a larger depth volume, regain artistic control and remove the viola-
tion artifacts that distract attention from the story [Neuman, 2009]. Digital
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4 Stereoscopic Window Violations

(a) Window Violation (b) Floating Windows

Figure 4.2: (a) Stereoscopic image with window violation. (b) Window violation
removed with floating windows. Note the asymmetric mask on the left.

cinematography makes it easier to vary floating windows between shots, an-
imate them within shots, and place them to correct only the problematic vio-
lations. However, these are all time consuming tasks requiring expert input
that can be especially difficult to apply in real-time applications. Our research
provides a computational model to assist and automate these operations.

There are other solutions for removing window violations. One strategy is to
simply translate the images to globally push the depth back behind the im-
age plane. This method risks exceeding the comfort zone behind the screen
plane. Local disparity warping methods could be applied to move only a con-
flicting object behind the image plane, as demonstrated by Lang et al. [2010].
Less frequently used solutions include blur near the image border reducing
visibility of the violation [Lipton, 1982]. Many of these solutions, including
floating windows, are currently applied in an empirical, ad-hoc manner. We
aim to formalize this through a computational model of perception.

In the next section we will first discuss some relevant topics in 2D perception,
and next we introduce additional considerations for modelling binocular 3D
perception.

4.2.2 Perceptual Modeling

Contrast Sensitivity Human vision is better at distinguishing two objects
when their relative difference in color or luminance is large. This differ-
ence can be expressed in terms of contrast [Barten, 1999]. The inverse value
of the minimum contrast required for detection is called contrast sensitivity.
The change in contrast sensitivity is a function of spatial frequency and is
modeled by the well-known contrast sensitivity function. Through our exper-
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iments, we found that spatial frequency is a key component that also affects
our perception of window violations.

Image Quality Metrics Our method is similar to image quality assessment
metrics with the difference being our interest in assessing window violations
rather than detecting visible differences. Perceived contrast distortion met-
rics, such as the visible difference predictor (VDP) [Daly, 1992], are designed for
detecting near threshold differences. The update of the metric HDR-VDP-
2 [Mantiuk et al., 2011] extends the VDP for high dynamic range applica-
tions, and it is capable of expressing suprathreshold difference in JND (just
noticeable difference) units. These types of models are based on low-level
representations of the human visual system (HVS) including contrast sensi-
tivity and visual masking [Watson and Solomon, 1997].

Another approach to modeling perceived image quality is the use of struc-
tural similarity index metric (SSIM) [Wang et al., 2004], which exploits the struc-
tural information from a scene. Higher level visual equivalence models pro-
vide metrics to determine when perceived image changes do not result in
a perceived change in image quality [Ramanarayanan et al., 2007; Krivánek
et al., 2010]. Similar to our method, these can be considered suprathreshold
models because they do not predict the probability of detection, but rather
if the change is significantly visibile. These considerations are very impor-
tant and influence the performance of an image quality metric, as shown by
Cadik, et al [2012].

4.2.3 Stereoscopic Visual Processing

Stereopsis also has a contrast sensitivity correlate. Frisby and Mayhew’s
demonstrated a correlation between stereopsis sensitivity and contrast de-
tection sensitivity as a function of spatial frequency [1978]. Their findings
show that the shape of contrast detection and stereopsis are similar, although
with a shift representing a decrease in stereopsis sensitivity. It is possible to
perceive the disparate features, but not achieve stereopsis. The CSF correla-
tion with stereopsis has lead to models of perceived depth of frequency and
magnitude changes in disparity [Didyk et al., 2011]. In contrast, our work is
focused on detecting disturbing window violations.

To evaluate stereoscopic window violations, we are less concerned about
computing the JNDs of disparity, but are more interested in assessing if the
visual system can find a viable depth interpretation when point correspon-
dences do not exist. Marr and Poggio [1976] developed a cooperative algo-
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Figure 4.3: Pipeline of our computational model. A luminance image is decom-
posed into band-limited contrast and contrast orientation channels. We
then apply our predictive model and additional disparity scaling. Re-
sults are combined using winner-take-all producing the final probabil-
ity map.

rithm for extracting disparity information. They suggest that perceiving the
disparity of an object involves finding a continuous and smooth matching of
point correspondences.

Mitchison and McKee [1985; 1988] later observed that strong edges can cause
a stable, yet incorrect correspondence match of stereoscopic stimuli. The vi-
sual system favors strong edges at the expense of misinterpreting the fine
texture detail. This is a significant finding. For stereoscopic window viola-
tions, the image border can provide a strong edge biasing the interpretation
of scene elements to be perceived as if they are behind the stereoscopic win-
dow, and free of violation.

4.3 Problem Statement

Our goal is to create a computational model for the perception of stereoscopic
window violations to produce a binary classification of a window violation
being disturbing or not. We are guided by two key concepts: (1) Stereopsis
sensitivity has a CSF-like behavior, and (2) strong edges of the image borders
can influence the depth interpretation of a window violation. We hypothe-
size that a scene element in window violation will be problematic when it is
represented by strongly visible contrast.

We isolate four dominant variables to develop our perceptual model: contrast
magnitude, spatial frequency, orientation, and disparity. To build our model
as shown in Figure 4.3, we take an experimental approach as described in
the following sections. The approach is visualized by Figure 4.4. Section 4.4
reports our subjective experiments to evaluate the influence of the different
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Define Model 
• Conduct experiments to validate hypothesis 
• Experiment data drives model 

Ground-truth 
labeled data 
• Experiment data 

Apply Model 

 Stereo 
Test Scenes 

Check 
Accuracy 

Figure 4.4: Workflow applied to develop computational system to analyze stereo-
scopic window violations. The bottom portion of the flow diagram rep-
resents the construction of model by careful creation of window viola-
tion stimuli and application of that model to real image content. The up-
per portion of the flow represents the development of ground truth user
labeled data, which provides labels of where window violations occur.
This is used to evaluate model performance and involves an iterative
process of refining model experiments and the computational system.

variables on perception of window violations. We then describe the com-
putational model in Section 4.5, which represents the bottom portion of the
flow diagram of Figure 4.4. Section 4.6 presents how we calibrate and vali-
date the model with complex stereoscopic images. This requires the creation
of ground truth labeled data as as represented in the upper portion of the
flow diagram in Figure 4.4. We discuss our results in Section 4.7 and finally
describe applications in Section 4.8.

4.4 Model Experiments

We now present the details regarding perceptual experiments required to cre-
ate the computational model in Figure 4.3.
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4 Stereoscopic Window Violations

4.4.1 Stimuli

Our experiments require the ability to change the contrast magnitude, spatial
frequency, orientation, and disparity of the stimuli. We conducted our initial
experiments with stimuli consisting of sinusoidal gratings with Perlin noise
[Perlin and Hoffert, 1989] that resulted in textures similar to the ones used by
Ferwerda et al. [1997]. However, we found that the sinusoid gratings resulted
in periodic ambiguity and the Perlin noise added additional spatial frequen-
cies outside of the considered range. We overcame this problem through the
use of random dot stereograms. The random dot stereograms used in our
experiments were filtered in order to confine them within specific ranges of
contrast magnitude, orientation and frequency.

We presented 15 combinations of spatial frequency and contrast. Five spatial
frequency levels were investigated spanning the range from 0.14 cpd to 18.6
cpd. The levels of contrast were 0.21, 0.63 and 1.35. An example trial of our
experiment is shown in Figure 4.5. Trials were balanced for presentation at
the top and bottom of the stimulus. When orientation-specific stimuli was re-
quired, we utilized the fan filter as implemented by Watson [1987]. Disparity
was controlled by translating the stimuli.

In order to create the stimuli used at each trial, the generated textures were
uniformly applied to two planes. The max pixel disparity in our stimuli was
-50px, corresponding to an angular disparity of -0.8◦. Under these condi-
tions, window violations were created for both planes. The height of each
plane was 350px (angular height of 5.9◦) and their width was 1920px (angu-
lar width of 30.75◦). Further details about the stimuli are provided below
when describing specific experiments.

4.4.2 Procedure

The experiments were implemented as a two-alternative forced choice
(2AFC) procedures. Human subjects were paid and naive to the experiment.
Subjects were first introduced to the concept of window violations. Then they
were asked to compare the two planes in the stimuli image (e.g. Figure 4.5)
and choose which of the two looked less disturbing or annoying. They were
instructed to base their assessment on the regions of the display close to the
image borders, where window violations are expected to occur. The stimuli
was shown on a 50” Panasonic 3D plasma TV (TX-P50VT20E) in a darkened
room. Subjects were seated two meters away from the display wearing active
shutter stereoscopic glasses. All subjects had normal or corrected-to-normal
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Figure 4.5: Example stimuli presented in the main model experiments. Both stim-
uli represent the All Pass condition with no orientation filtering. The
top stimulus is spatial frequency condition level three (SF3) at 1.16
cpd, and the bottom stimulus is SF4 at 4.65 cpd. Example provided in
anaglyph. The black border is provided by the black border of the HDTV
display device in a darkened room.

visual acuity and stereo acuity. The duration of each session was approxi-
mately 40 minutes.

Our main experiment produced the primary model look-up table (LUT). It
was performed with six subjects each of which evaluated the balanced com-
binations of five spatial frequency levels and three contrast levels resulting in
225 trials per experiment. Each subject performed three experiments, one for
each orientation condition. The orientation condition for this experiment was
produced using a broadly tuned, four segment fan filter (45◦ per segment) to
achieve the following orientation conditions: all-pass (no orientation filter-
ing), horizontal and diagonal orientation. The horizontal and diagonal ori-
entation conditions were produced by centering one segment of the fan filter
on the respective axis of interest. Only max, -50 pixel disparity condition was
used.

Orientation mixing experiment was additionally conducted by mixing stim-
uli orientations as shown in Figure 4.6. This experiment was conducted with
six new subjects who had not participated in the main experiments. The max
contrast and disparity condition levels were held constant. Spatial frequency
and orientation was balanced resulting in 400 trials per experiment. A nar-
row orientation filter was used (one 22.5◦ segment from an eight segment fan
filter) to produce the following orientation conditions: all-pass (no orienta-
tion filtering), horizontal, diagonal and vertical orientations.
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Figure 4.6: Example stimuli presented in the orientation mixing experiment. The
top stimuli is the All Pass (AP) condition. The bottom stimuli is the
Horizontal (H) condition. Both stimuli are spatial frequency condition
SF3 (1.16 cod). Example provided in anaglyph. The black border is
provided by the black border of the HDTV display device in a darkened
room.

Disparity mixing experiment was conducted through a balanced presenta-
tion varying the disparity and spatial frequency conditions while holding
contrast and orientation constant. The max constant level was used. There
was no orientation filtering (only All Pass condition). Four levels of nega-
tive disparity were compared within the experiment: 6, 12, 25 and 50 pixels
(ranging from -0.1◦ to -0.8◦ angular disparity). The experiment involved 400
trials per experiment.

4.4.3 Results

The responses collected from each session of our main experiment are stored in
a single matrix, with 15 entries in total: one for each combination of spatial
frequency and contrast condition level. The values were normalized result-
ing in a matrix describing the probability for each combination to be pre-
ferred.

We performed Two-factor Analysis of Variance (ANOVA) with repeated mea-
sures to analyze the influence of orientation, spatial frequency and contrast
on viewer preference. The between-subjects main effect of orientation did
not have a significant influence on stimuli preference (p = .391). We believe
this is due to the broad orientation filter width. There was, however, strong
statistical significance for within-subjects main effects of contrast (F(2, 30) =
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367.32, p < .001) and spatial frequency (F(1.32, 19.89) = 100.43, p < .001)
using Greenhouse-Geisser adjusted degrees of freedom.

The lack of a broad orientation effect motivated the use of only the All Pass
orientation condition as data for our primary model LUT. We also analyzed
the Bonferroni-adjusted pairwise comparison between the levels of each con-
dition [Sheskin, 2007]. For the All Pass orientation, we observed a statistically
significant difference in preference between all contrast levels (p < .01) and
nearly all spatial frequency levels.

Figure 4.7 provides a visualization of data used to produce the model LUT.
The plot describes the inverse of the users’ response, meaning that the high-
est combinations were least preferred. It is based on the assumption that the
least preferred combinations are also the most disturbing or annoying. The
plot exhibits a monotonic preference response for each individual spatial fre-
quency in terms of contrast. Window violations with higher contrast are less
preferred. The plot also shows similar behavior to the familiar contrast sen-
sitivity function for luminance. This result supports the assumption that a
disturbing window violation is significantly influenced by contrast magni-
tude and frequency.

The first experiment motivated further exploration of orientations in nar-
rower bands. We suspected that the insignificance of orientations in the main
experiment was due to the broad orientation tuning. The narrower tuning
used in the orientation mixing experiment enabled us to directly observe a
significant orientation effect (F(3, 15) = 14.29, p < .001) in addition to repro-
ducing a significant spatial frequency effect (F(4, 20) = 4.06, p < .05). The
horizontal condition was the only condition to show an insignificant influ-
ence (p = .125) on spatial frequency. The spatial frequency preference curve
was much flatter, nearly not resembling the CSF curve. Pairwise compari-
son reveal no significant preference between spatial frequency levels for the
horizontal condition.

All Pass, Diagonal and Vertical stimuli orientation conditions had similar
mean preference scores. However, the horizontal condition was significantly
preferred more than the All Pass and Diagonal orientations (p<.05) and a
trend for preference over vertical (p = .066). The mean preference for the hor-
izontal condition was 30% higher than all conditions and 32% higher than All
Pass. This experiment motivated us to construct two model LUTs: one rep-
resenting All Pass except horizontal (AP - H) and the other horizontal only
(H). The horizontal LUT is modulated by a coefficient representing the mean
preference ratio of horizontal to the other conditions.

The disparity mixing experiment produced expected results showing a sig-
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nificant effect from varying the disparity condition (F(3, 15) = 58.35, p < .001).
Pairwise comparison revealed a significant preference between disparity lev-
els for all except the the two smallest (p = .058). There was also a signifi-
cant interaction between disparity and spatial frequency (F(2.77, 13.83) = 8.52,
p < .001). Smaller disparities showed a flatter CSF-like preference. However,
we also observed that changes in texture alignment with the window viola-
tion caused some differences in per disparity spatial frequency preference
curves. For this reason, we omitted the shift in spatial frequency preference
from our model. We include the significant preference for smaller dispar-
ities, which fit a log-linear scaling of preference as a function of disparity.
The linear fit of the data is pd = 0.1603 log d + 0.0992 with a goodness of fit,
R2 = 0.9959. pd is the mean probability that the disparity condition, d, is
disturbing.

For application purposes, a clear threshold between disturbing and non-
disturbing window violations is beneficial. We present an experiment and
method to find such a threshold in Section 4.6 after discussing the computa-
tional model.
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Figure 4.7: The mean probability for each combination of contrast and spatial fre-
quency to be perceived as disturbing. Contrasts C1, C2 and C3 cor-
respond to .21, 0.63 and 1.35 respectively. Error bars are standard
deviation.

4.5 Computational Model

We now utilize our experimental data to produce the computational model,
depicted in Figure 4.3.
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Based on the assumption that luminance is the main factor guiding stereop-
sis, we convert the stereoscopic RGB pair to individual luminance images.
Viewing conditions in terms of luminance depend on the spectral emission
properties of the display being used. To create a luminance image the dis-
play was characterized using a Photo Research PR-730 spectroradiometer.
The obtained spectral emission curves for the three channels were used to-
gether with the color matching function of the XYZ colorspace [Ohno, 2000]
to obtain the luminance image described by the Y component. The resulting
image will describe the amount of cd

m2 emitted by the display in a per-pixel
basis.

In order to extract contrast and spatial frequency information out of a com-
plex luminance image we use a similar approach as the one presented by
Peli [1990]. We decompose the image in band-limited versions by applying
cosine-log filters as in the original paper. A cosine-log filter centered at 2i

cycles/picture is defined as:

Gi(u, v) = Gi(r) =
1
2
(1 + cos(πlog2r− πi)), (4.1)

where u and v are the horizontal and vertical spatial frequency coordinates
respectively and r is one of the polar spatial frequency coordinates defined
as r =

√
u2 + v2.

The contrast of the ith band is computed as:

ci(x, y) =
|ai(x, y)|

L′
, (4.2)

where ci is the ith contrast image, ai is the band-limited luminance image and
L′ is the mean luminance of the luminance image. L′ is motivated by its use
in VDP-related metrics [Daly, 1992].

We apply our model to each contrast image using the LUT constructed with
data from Figure 4.7. Bilinear interpolation is used between sample points.
This results in one probability map for each spatial frequency band. Bands
are combined together using a winner-take-all approach, such that for each
pixel we use the maximum probability value across all probability maps.
This approach is motivated by the independent-channel hypothesis in which
disparity discrimination is influenced by the largest active spatial frequency
channel [Marr and Poggio, 1979].

The LUT is further modulated by scaling coefficients to reflect the effect of
orientation and disparity. The orientation scaling factor is only applied to
the LUT for the horizontal component of our pipeline. In this case, a scaling
factor, so = 0.7, is applied to the LUT.
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The disparity scaling, sd, is computed by shifting the linear fit from the dis-
parity experiment such that our max disparity tested, 50 pixels, is represented
by sd = 1. Our primary LUT already represents the probability disturbing
for 50 pixel disparities. The result is the following disparity scaling function:
sd = 0.1603 log dmax + 0.3598. Since disparity is undefined in window viola-
tion regions, we set dmax equal to the max window violation size for all pixels
of the given row.

Since we are only interested in the regions that actually are in window viola-
tions, we prune the probability map using a disparity map of the stereoscopic
pair removing regions that are not in contact with the borders or do not have
negative disparities. This gives a window violation detection mask as shown
in the Disparity Scaling component in Figure 4.3 as well as in results Fig-
ure 4.10.

The probability map per orientation channel, k, is expressed as follows:

Pk(x, y) = max(Pk
0 (x, y), ..., Pk

N(x, y)) sk
o sd, (4.3)

where the max per frequency band, PN, is modulated by orientation and dis-
parity scaling coefficients. We then apply the max between orientation chan-
nels, H and AP-H, to produce a final per pixel probability map:

P(x, y) = max(Pk(x, y)). (4.4)

4.6 Validation Experiments

We conducted a subjective study using real-world and computer-generated
images to validate our model and obtain a measure regarding its perfor-
mance. Since our goal is to predict whether a window violation will be per-
ceived as disturbing, we asked subjects to look at stereoscopic images and
indicate where a window violation was disturbing.

4.6.1 Stimuli

Stimuli consisted of 95 stereoscopic images: screen captures taken from
stereoscopic movies (including live action and computer-generated imagery)
and in-house produced computer-generated imagery. The stereoscopic im-
ages presented window violations as large as 50 pixels in width. The images
created in-house described a similar scene, but with varying object texture,
position properties, and camera configurations.
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4.6.2 Procedure

The experiments used the same setup as the modelling experiments (see sec-
tion 4.4) with an additional computer monitor for user input (Figure 4.8-b).
There were 11 subjects, each had normal or corrected-to-normal vision.

Our subjective methodology was similar to the one presented by Aydin et al.
[2010] to evaluate HDR video tone mapping. Subjects were instructed to look
at the stereoscopic image in the 3D TV and localize the regions on the lateral
borders perceived as disturbing or annoying. An additional 2D computer
monitor showed the left half of the left image together with the right half
of the right image overlayed with a grid. Each cell had a size of 25 pixels
and users were asked to label cells containing disturbing window violations.
Figure 4.8 shows an example trial.

(a) Stereoscopic image (b) 2D image with grid overlay

Figure 4.8: Validation and Calibration Experiment. (a) Stereoscopic Image (pre-
sented here as anaglyph). (b) The user interface for grid-based selection
of problematic window violations.

4.6.3 Evaluation

The collected data was stored as binary images representing selected cells.
These images were averaged per stereoscopic image across all 11 subjects.
The resulting grayscale image contained the mean subjective response per
cell, and it provided our ground truth labeled data.

To measure the performance of our model we computed 7-fold cross-
validation between the subjects’ response and our prediction. The cross-
validation finds a threshold value for our model that minimizes the abso-
lute difference between the true positive ratio (TPR) and true negative ratio
(TNR).
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We compared our model with the ground truth labeled data at a cell resolu-
tion of 50 pixels by quantizing both the ground truth and the model. Since
the ground truth is subject to human labeling error and inconsistencies, we
defined sensitivity for the ground truth. We labeled a cell as disturbing (pos-
itive) if 60% of subjects selected the same cell. This gave us in average a TPR:
71% and TNR: 72%.

As mentioned before, the cross-validation was set to find a balance between
the TPR and TNR. If true positives or true negatives are not equally impor-
tant, we could set the cross-validation to find a threshold value which favors
true positives or true negatives instead. Figure 4.9 illustrates the performance
when matching 60% percent of the ground truth labels while varying the im-
portance of true positives over true negatives. For instance, if we set the true
positives to be twice as important as the true negatives we could get a TPR:
89% and TNR: 47%.

Sensitivity of the system can be tuned to different applications (Section 4.8).
An automatic floating window generator might be optimized for high TPR,
in order not to miss to many disturbing violations, at the cost of correcting
some of those that are not disturbing. A quality assistance system might be
optimized more towards TNR, predicting for the user when it is not neces-
sary to intervene with high reliability.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0.1 1 10
TPR / TNR Weight Factor 

TPR

TNR

Figure 4.9: Resulting TPR and TNR after varying their respective importance.

4.7 Results

Figure 4.10 illustrates our results by providing anaglyph image as well as vi-
sualization of the ground truth and model prediction. The middle column
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(Raw data) uses the JET colormap to represent the level of subject agreement
in labelling window violations. Dark red shows greater agreement. The same
colormap is used to represent the model prediction of a disturbing window
violation. Dark red shows a higher probability disturbing. The right column
shows the comparison of the thresholded ground truth data and thresholded
model prediction. The threshold for the ground truth is set to 60% agreement,
while the threshold used for the model is set to the value obtained from the
cross-validation: 0.4394. The regions in red represent positives and blue neg-
atives.

Our model captures most of the problematic areas without labelling those
that are not. Figure 4.10-a shows how our model correctly labeled the hang-
ing lampshade to be disturbing, however, it incorrectly labeled a portion of
the desk as problematic. Figure 4.10-b is correctly predicted to not be prob-
lematic. This was accomplished by reducing texture detail in both the lamp-
shade and desk. Similarly, Figure 4.10-c and 4.10-d show how disturbing
window violations can be removed using depth-of-field. Contrast is reduced
in the regions farther from the focal point. Both the thresholded ground
truth and model prediction data agree the disturbing window violation is
removed.

4.7.1 Limitations

Perceptual models by their nature are limited to certain number of factors.
One of the factors that we didn’t include was “feature proximity". This hap-
pens when strong stereoscopic features (visible to both eyes) meet two con-
ditions: (1) they are spatially near the violation and (2) they have negative
disparity similar to the window violation region. These strong features can
dominate the stereo matching process increasing the likelihood a disturbing
window violation is perceived. Luminance of the image border is also not
handled by our model. Our experimental data does not explore the effect
of matching the luminance of both the window violation and image border.
Our model also does not consider the influence of disparity frequency.

4.8 Applications

We present two applications of our model: visualization of where disturbing
window violations occur and the automatic removal of disturbing window
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4 Stereoscopic Window Violations

violations using floating windows. The stereo-matching algorithm devel-
oped by Werlberger [2010] is used to identify regions of undefined disparity
near the lateral borders.

4.8.1 Visualization

Our visualization application is intended to support stereoscopic content
producers in the detection of disturbing window violations. We adopt a tech-
nique commonly used in camera systems called zebra patterning. It is used
to represent regions of an image that are overexposed. A threshold value is
set by the user to choose how close to overexposure a region is before the
zebra pattern is made visible.

Visualization is provided in two modes. First, it identifies images containing
disturbing window violations. Second, it provides a visual representation of
the disturbing region by displaying an animated zebra pattern as shown in
Figure 4.11. A user parameter is available to adjust sensitivity to disturbing
window violations.

Figure 4.11: Disturbing window violations are visualized by a zebra pattern.

This visualization could be included in a computational stereoscopic camera
system [Heinzle et al., 2011] or stereoscopic analyzers [Zilly et al., 2010; Cel-
Soft, 2012] to provide real-time detection of disturbing window violations. It
could also be applied in software rendering tools or as a quality assurance
step before releasing stereoscopic content.
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4.8.2 Automatic Floating Window Generation

Floating windows (see section 4.2) provide a good solution to resolve win-
dow violations. However, it can be difficult to determine how to apply them,
especially during live-capture. Our prediction can help reduce the uncer-
tainty. Figure 4.12 shows two results of our automatic floating window gen-
erator: one requires the use of floating windows and the other does not. Be-
cause our system can localize regions that are disturbing, we can also au-
tomate more elaborate crops, such as slanted floating windows, to preserve
pixels not in window violation.

Figure 4.12: Automatic floating windows. (a) The woman’s hair and sweater are
predicted to be disturbing and corrected with a floating window. (b)
Depth of focus blur reduces the conflict and it not predicted to be prob-
lematic. No floating windows are applied.
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4 Stereoscopic Window Violations

4.9 Conclusion

We have demonstrated the development and application of a computational
model for the perception of stereoscopic window violations. We presented a
method of measuring window violation preference as a function of contrast
and spatial frequency. Our data fits the expectation of a CSF-like sensitivity
function for stereopsis. The model was calibrated and validated using viewer
input from real stereoscopic images. It can successfully detect user-labeled
disturbing window violations. We present two important applications of the
model: visualization and automatic floating window correction of disturbing
window violations.
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Figure 4.10: Illustration of results: anaglyph image, ground truth and model
prediction. Raw data column uses JET colormap to represent level
of agreement (Ground Truth) or probability disturbing (Prediction).
Thresholded data represent result of binary threshold: Red is positive
(disturbing) and blue is negative (not disturbing).
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C H A P T E R 5

Multimodal Stereoscopic Saliency

Since reasoning about depth interpretation is dependent on eye fixation, it
is important to have a means to predict eye fixation locations. This chapter
presents research combining multiple saliency modalities to produce a pre-
diction of stereoscopically significant salient objects.

5.1 Introduction

The visual saliency estimation problem has been extensively studied by a
multitude of disciplines including neurosciences, vision science and com-
puter vision. The seminal work of Koch and Ullman [Koch and Ullman,
1985] asserted that a saliency map can be generated by combining a num-
ber of elementary, pre-attentive visual features (such as color, orientation,
movement and disparity) in a winner-take-all network. This purely theoreti-
cal framework was later implemented by Itti and Koch [Itti and Koch, 2001]
who proposed computing center-surround differences of pre-attentive fea-
tures. Their system consisting of stimuli-driven, bottom-up mechanisms accu-
rately described how attention is deployed within the first few hundreds of
milliseconds after the presentation of a new scene. However, for longer spans
of attention they admit that more sophisticated models with top-down mecha-
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FT HC

RCSF

LC SR

RCC

OUR
METHOD

ST PQFT

Figure 5.1: Our method accurately estimates salient objects even in visually clut-
tered scenes by utilizing motion and disparity, as well as high-level fea-
tures and low level spatial distribution cues. A comparison to SF [Per-
azzi et al., 2012], FT [Adams et al., 2010], RC [Cheng et al., 2011],
LC [Zhai and Shah, 2006], ST [Seo and Milanfar, 2009], HC [Cheng
et al., 2011], RCC [Cheng et al., 2011], SR [Hou and Zhang, 2007] and
PQFT [Guo et al., 2008] shows that our method successfully singles out
the motorbike as the salient object where other methods fail. Note also
the high edge-accuracy of our result near the salient object.

nisms accounting for volitional biasing are required. Since then, their formu-
lation of complementary bottom-up and top-down mechanisms as well as the
center-surround differences have been widely adopted by other researchers.

Depending on the application, saliency estimation techniques have different
goals. Some approaches try to predict the most probable fixation points of
a human observer in the scene. This line of research helps us to understand
how short term visual attention is deployed, and the fixation point predic-
tions can be used for globally applied image operators [Ancuti et al., 2011],
or to reduce the search space for computer vision algorithms. Alternately,
many image processing applications such as retargeting, collages [Goferman
et al., 2010], classification, and object of interest localization [Gao et al., 2009],
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require saliency masks that mark specific objects as important, rather than
fixation points. We present a multi-modal fusion technique that combines to-
gether different information sources into a final, edge aligned and temporally
consistent stereoscopic saliency estimation.

Working on stereoscopic video presents a number of challenges and oppor-
tunities. Additional modalities such as motion and stereo disparity contain
valuable saliency cues that can be exploited for more accurate prediction.
However, each new modality significantly increases the problem complexity,
requiring extensions to computational saliency models. For example, when
considering videos rather than images, temporal stability becomes impor-
tant. Applications such as video retargeting [Krähenbühl et al., 2009], video
summarization [Lee et al., 2012], activity recognition [Vig et al., 2012] and
perceptual video coding [Lee and Ebrahimi, 2012] all stand to directly ben-
efit from a temporally consistent spatiotemporal saliency estimation. Simi-
larly, accurate saliency estimation for stereoscopic content is a crucial part of
automatic content creation for stereoscopic displays [Stefanoski et al., 2013],
video retargeting [Basha et al., 2011], and disparity editing [Koppal et al.,
2011; Lang et al., 2010]. We extend recent image-based state-of-the art prac-
tices to consider spatiotemporal information and stereoscopic disparity, at
the same time adding top-down saliency cues as well. As a component of
our saliency framework we also discuss a novel approach to computing mo-
tion saliency. Our approach fuses together these modalities and leverages a
recent edge-aware spatiotemporal video volume filtering approach to gener-
ate temporally stable, edge aligned results.

Quantitative evaluation of stereoscopic video is a significant challenge due to
the difficulty of obtaining ground-truth data sets. As a second main contri-
bution, we have created and made available for public use, a diverse ground-
truth data set of eye track data of stereoscopic video. We use this data set to
perform a quantitative evaluation of our method, and compare the results to
other existing image saliency approaches. Finally, we demonstrate applica-
tions of our method to automatic view synthesis.

5.2 Related Work

Numerous saliency estimation methods have been proposed for monoscopic
images. Among them, some bottom-up models are partially influenced by
the mechanisms of the human visual system [Itti et al., 1998; Itti and Koch,
2001; Murray et al., 2011]. Other methods use statistics about color or patch
distributions in the image to determine significant regions [Goferman et al.,
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2010]. Similarly, Perazzi et al. [2012] utilizes two global measures, unique-
ness and distribution for estimating saliency. Other researchers have shown
that fixation points can also be predicted by top-down models utilizing high-
level features such as distance and dissimilarity between image patches and
a center bias [Duan et al., 2011]. Our method considers additional modalities
of information, such as spatiotemporal cues and stereoscopic disparity.

Including temporal information for video saliency has been proposed by
prior work as well. Lang et al. [2012b] computes saliency for each frame
of the input video and later applies a spatiotemporal filter to achieve tempo-
ral consistency. However, this approach does not take into account the spa-
tiotemporal and disparity related aspects of saliency. Itti and Dhavale [2003]
proposed a complete spatiotemporal framework by extending earlier work
on image saliency [1998] with additional center-surround mechanisms for
flicker and motion. Since then, more methods have been proposed that ei-
ther only compute motion saliency [Cui et al., 2009; Belardinelli et al., 2009]
or spatiotemporal saliency [Rapantzikos et al., 2009; Mahadevan and Vascon-
celos, 2010]. We present a novel method for motion saliency estimation. In
addition to the aforementioned methods, we utilize stereoscopic information
and perform an evaluation in comparison to ground truth eye track video
data.

Recent findings on stereoscopic saliency suggest accounting for disparity is
crucial for saliency estimation in stereoscopic images [Niu et al., 2012]. Sim-
ilarly, stereoscopic information has been included to spatial saliency maps
by several works [Lang et al., 2010, 2012a]. In Section 5.4.2 we show that
accounting for motion and disparity modalities significantly improves the
saliency estimation for stereoscopic videos. Furthermore, while some pre-
vious work describing human visual system motivated saliency models has
mentioned the significance of spatiotemporal stereoscopic cues for saliency
estimation [Jeong et al., 2008; Fernandez-Caballero et al., 2008], they lack
quantitative evaluation and the edge-accurate results required by many ap-
plications. Such quantitative evaluation is a challenging task due to a lack
of available ground-truth data sets. While multiple fixation data sets have
been used for validation on images [Borji et al., 2012], there are fewer sets for
monoscopic videos [Dorr et al., 2010], and to our knowledge none for stereo-
scopic video. We create such a ground-truth fixation data set for stereoscopic
video sequences, and use it to validate our method (Section 5.4).
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5.3 Saliency Estimation

In this section we discuss the spatial (Section 5.3.1), motion (Section 5.3.2),
stereoscopic (Section 2.3.1) and high-level components (Section 5.3.4) of our
method. The final saliency estimation is a spatiotemporally filtered weighted
average of each component’s outcome (Section 5.3.5). The computation of
each of these components presents a significant challenge. To that end we
take advantage of prior art and utilize concepts that have been shown to
work well, such as distribution and uniqueness [Perazzi et al., 2012], and
the “comfort zone” and “popping out” rules for disparity saliency [Niu et al.,
2012].

Our method takes the left and right views of a stereoscopic video as input,
although we utilize only the right view V in all computational steps except
disparity estimation. As such, all presented saliency estimations are aligned
with the right view. The data flow of our method is illustrated in Figure 5.2.
For ease of reference we also provide a list of symbols in Table 5.1. In the next
section we discuss the spatial saliency computation.

5.3.1 Spatial Saliency

Our spatial saliency component is a weighted combination of the distribu-
tion and uniqueness measures proposed by Perazzi et al. [2012]. We start by
computing â = 500 superpixels for each frame Vt of the input video using
the SLIC algorithm [Achanta et al., 2010] with the modifications by Perazzi
et al. [2012]. Next, a three dimensional vector St,i = [Lt,i at,i bt,i] is extracted
from each superpixel i at frame t, that contains the mean values of the lumi-
nance and chroma channels. The uniqueness of superpixel St,i is defined as
follows:

Ut,i =
â

∑
j=1
‖St,i − St,j‖2 · w(pi, pj), (5.1)

where w is a local Gaussian weighting function, pi and pj are positions of the
superpixels i and j. The distribution measure is expressed in a similar form:

Dt,i =
â

∑
j=1
‖pj − µi‖2 · w(St,i, St,j), (5.2)

where w(St,i, St,j) represents the similarity of the vectors St,i and St,j, and
µi = ∑ |St|j=1 w(St,i, St,j) pj is the weighted mean position of St,i in the
color space. Similar to the original method, both the element uniqueness
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Figure 5.2: The data flow of our method. See text for details.

and distribution measures are efficiently computed using permutohedral lat-
tices [Adams et al., 2010]. The spatiotemporal saliency of each superpixel St,i

is obtained by combining the two measures:

Ψt,i
st = Ut,i · exp

(
−b̂ · Dt,i

)
, (5.3)

where the model parameter b̂ = 6 adjusts the significance of the distribution
measure with respect to the uniqueness measure. Unlike the original method
that applies a bilateral filter to the outcome of equation 5.3, we do not per-
form any additional processing after this point. Instead, a spatiotemporal
filtering is performed as the final step after we combine all saliency compo-
nents (Section 5.3.5).
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5.3.2 Motion Saliency

Motion has a strong influence on saliency in videos. We start by comput-
ing the optical flow estimate of V computed using the method by Lang et
al. [2012b]. Our novel motion saliency estimation relies on the application of
the uniqueness and distribution concepts to optical flow vectors. To that end
we recompute equations 5.1 and 5.2 with the two dimensional optical flow
vectors at each pixel rather than the average color coordinates at superpixels.
We also similarly combine the two measures using equation 5.3 with the same
b̂ parameter as in the spatial case. Figure 5.3 shows an example of the steps
of our motion saliency computation. Note how our final motion saliency es-
timation (d) estimates the motorbike’s motion as salient and isolates it from
the camera motion in the background (a).

(a) (b)

(c) (d)

Figure 5.3: An example optical flow estimation visualized using Middlebury color
coding (a), and the corresponding distribution (b) and uniqueness (c)
that leads to our final motion saliency estimation (d).

5.3.3 Disparity Saliency

Stereoscopic disparity is another source of visual information that can help
estimating saliency. Our method utilizes the disparity contrast measure from
Niu et al. [2012] that takes the abruptness of disparity change over image
regions into account. To that end we consider the previously computed su-
perpixels (Section 5.3.1) as image regions instead of utilizing a graph-based
segmentation proposed in the original method. Given the disparity φt,x at
pixel x of frame t, the disparity contrast between any pair of superpixels is

93



5 Multimodal Stereoscopic Saliency

defined as follows:

δ(St,i, St,j) =
1

nt,i nt,j

nt,i

∑
p=1

nt,j

∑
q=1

f (p, q), and

f (p, q) = w (p, q) ·
∣∣φt,p − φt,q∣∣ .

(5.4)

The Gaussian weight function w(p, q) is defined as exp(−‖p− q‖2/d̂) on nor-
malized image coordinates p and q. The variance of the weighting function ĉ
is set to the default value 0.4.

Niu et al. [2012] proposes the two saliency rules obtained from domain
knowledge on stereoscopic perception, both of which can be implemented
given the disparity contrast δ. The first rule states that objects with small dis-
parity magnitudes tend to be salient. In practice this rule assigns higher weight
to objects well within the stereoscopic comfort zone, and is expressed with
the following formula:

Rt,i
1 =

{ (
δt

max − δt,i) /δt
max if δt,i ≥ 0,(

δt
min − δt,i) /δt

min if δt,i < 0,
(5.5)

where the δt
max and δt

min denote the maximum and minimum disparity con-
trast values at frame t, and δt,i denotes the mean disparity contrast of super-
pixel i at frame t. The second rule states that objects that pop out of the screen
tend to be salient, and is computed as follows:

Rt,i
2 =

δt
max − δt,i

δt
max − δt

min
. (5.6)

Our disparity saliency estimation is a weighted combination of these two
rules:

Ψt,i
d = (1− λ) · Rt,i

1 + λ · Rt,i
2 , (5.7)

where λ = γ + (1− γ) · nt
neg/nt, such that nt

neg denotes the number of pixels
with negative disparity, and nt is the total number of pixels of frame t.

5.3.4 High-Level Features

Previous research on top-down visual saliency has shown the importance
of high-level visual features in saliency estimation. To that end we utilize a
saliency measure for faces (Ψt

f ), that consists of an outcome of a face detector
for each frame. Each face region of frame t is marked with 1 in Ψt

f , whereas
all remaining regions are marked with 0. Similarly, subjective studies have
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Intermediate features

Vt Frame t of the
St,i 3D vector representing

input video’s left view superpixel t, i

φt,i Stereoscopic disparity
δt,i Mean disparity contrast

at pixel t, i of the superpixel t, i

nt Size of frame t in pixels nt,i Size of superpixel t, i

Ut,i Uniqueness of St,i Dt,i Distribution of St,i

Rt
1

"Comfort zone" rule
Rt,i

2
"Popping out" rule

factor for superpixel t, i factor for superpixel t, i

Parameters

â Superpixel number per frame b̂ Significance of D w.r.t. U

ĉ Disparity contrast parameter ws|m|d| f Saliency weights

Saliency maps

Ψs|m|d| f |c Spatial, motion, disparity and face saliency maps and the center bias

Table 5.1: Summary of symbols used.

shown that people are more likely to perceive scene elements as being salient
if they are located near the center of the video frame rather than the periph-
ery [Judd et al., 2009].

We model this center-bias by applying a weighting function that resembles
the mesa filter [Watson, 1987]. The mesa filter consists of a flat pass-band
starting form the center until the 2/3 of the video frame, followed by a tran-
sition region characterized by the Hanning window, and a flat stop-band re-
gion near the corners:

Ψt
c =


1 if ρ < 2

3 ,

0 if ρ > 4
3 ,

1
2

(
1 + cos(π

(3
2 ρ− 1

))
otherwise,

(5.8)

where ρ =
√

x2 + y2, and x, y ∈ {−1, 1} denote the normalized image coor-
dinates such that the origin lies at the center of the video frame (Figure 5.2 -
high-level features).

5.3.5 Multimodal Saliency Fusion

While intuitively it is clear that all the spatial, motion, disparity and high-
level cues we discussed in this section have some effect on the final saliency
estimation, it is challenging to formulate the exact relationship among the in-
dividual saliency components. To that end we make use of a diverse ground-
truth data set consisting of eye tracking data for stereoscopic videos. Details
on the data set and our experimental procedure are discussed later in Sec-
tion 5.4.
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We assume that the final saliency estimation is a weighted linear combina-
tion of all saliency components. Given the spatial, motion, disparity and face
saliency maps for a video sequence, along with a binary eye-tracking map
where recorded gaze points are marked at each frame, we build a linear sys-
tem Ax = b. The n× 4 matrix A comprises spatial, motion, disparity and face
saliencies for all the n pixels in all frames of the input video. The n× 1 vector
b contains binary ground-truth eye-tracking information. The value of b is
equal to 1 at the recorded gaze coordinates, and is 0 otherwise. We obtain the
final weights ws, wm, wd, w f for the saliency components by solving the linear
system for x for each video sequence and then averaging the intermediate
weights. The fused multimodal saliency estimation is generated by combin-
ing saliency components, multiplying each frame of the outcome with the
center-bias Ψt

c (Equation 5.8), normalizing the fused saliency estimation, and
finally applying an edge-aware spatiotemporal diffusion process proposed
by Lang et al. [2012b].

5.3.6 Results

The results presented in Figure 5.4 demonstrate the interplay between dif-
ferent components of our saliency estimation1. A significant feature of our
method its capability of generating edge-precise and temporally coherent re-
sults even in visually cluttered scenes. We first will perform a qualitative
comparison given in Figure 5.4 (as well as in supplemental video). In the
next section, we describe a quantitative comparison for our data set. The
Street scene starts with the gray car moving forward (1), while the dark red
car is waiting to make a left turn (2). Consequently the gray car is detected as
salient in the first frame due to its motion. The dark red car becomes salient
as soon as it starts making the left turn (3). The final frame shows another
car passing through and being detected as salient (4). Note that in all the
frames, the no-parking sign is also detected as a weakly salient object due to
the strong color contrast.

Similarly, the first two frames of the Dino scene also show the spatial and mo-
tion components working together. However, in the last frame where the ball
rolls towards the camera (4) the disparity component significantly increases
the saliency of the ball, making it the most salient object in the scene.

Saliency estimation for the Balloons scene is challenging due to the many
salient objects competing for the viewer’s attention. The last two frames in
this set where the actor’s face becomes visible (3, 4) show the effect of the

1The entire set of results are presented in supplemental video.
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face saliency component. The results of these frames show that even in such
cluttered scenes the face saliency dominates the final saliency estimation.

In addition to the results we presented, we also generated a ground-truth
data set and evaluated the performance of our method, which is discussed in
the following section.

5.4 Subjective Evaluation

A diverse ground-truth data set is essential for making any predictions on a
highly complex task such as stereoscopic video saliency. In the absence of a
ground-truth data set for stereoscopic video saliency, we performed an eye
tracking experiment and collected fixation data for a diverse set of stereo-
scopic videos (Section 5.4.1). We used this data set to evaluate the perfor-
mance of our method (Section 5.4.2), and make it available for future research
and validation.

5.4.1 Experiment Setup and Execution

Stimuli: we prepared a diverse test set of 15 video clips that comprises both
real-world and computer generated scenes. The resolution of the video clips
in our test set varies from 960× 768 to full HD, and their frame rate varies
between 24 and 30. The total number of frames in our test set is more than
30002. The video sequences have both human and non-human salient scene
elements at various disparity ranges, with various types of movements, lo-
cated both in dark and bright scene regions as well as near or far away from
the center of the video frame. We also made an effort to include videos with
various levels of saliency prediction difficulties: ranging from simpler scenes
with a single, clear-cut salient object to more difficult scenes with numerous
salient objects.

2See supplemental material for detailed statistics.
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Figure 5.5: A picture of our eye tracking experiment setup.

Setup: we performed an experiment where we obtained eye tracking data for
all the video sequences in our test set. Our experiment setup consisted of an
EyeLink II head mounted eye tracker (SR Research) and a 55′′ row interleaved
stereo display. The subjects were placed at 2.05 meters away from the display.
Figure 5.5 shows a picture of our setup during one of the trials.

Procedure: all subjects were asked to do nothing but watch the video se-
quences that were presented in random order. Each subject performed 30
trials where each video sequence was viewed twice. There were no time lim-
itations, and the subjects were free to wait as long as they wanted before
proceeding to the next trial. On average, each subject required an hour to
finish the study. The experiment was performed on 10 paid subjects, 3 males
and 7 females within the age range of 22 to 29. Subjects were confirmed to
have good stereo acuity prior to taking part in the study.

As the result of this experiment we obtained horizontal and vertical coordi-
nates of each viewer’s gaze points for our entire data set. The gaze points
were used as the ground-truth for the performance evaluation of our method
as discussed in the next section.

5.4.2 Performance Evaluation

For performance evaluation, we computed the ROC curves of our method
for the entire ground-truth set discussed in Section 5.4.1. We treated the gaze
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points and their 8 immediate neighbors as the positive data, and computed
true positives and false positives accordingly using 100 threshold values uni-
formly sampled from the range of saliency values. In order to separate the
test and training data we utilized leave-one-out cross-validation. The result-
ing ROC curves are shown in Figure 5.6-top, along with the results of prior
art for comparison. We generated the results of other authors’ methods using
publicly available code.

As our performance measure we compute the commonly used AUC
score [Borji et al., 2012] for all the frames in our data set and present the
results in Figure 5.6-bottom. Our method achieves the median AUC score
of 0.84 using linear fusion, which is significantly better than the closest per-
formers RC and FT at 0.78. The spatial component of our method (S) alone
achieves 0.74, which suggests that the additional performance of our method
is due to the combined use of additional modalities with the spatial compo-
nent. In addition to the quantitative evaluation, Figure 5.4 demonstrates
the visual quality of our saliency maps. As Figure 5.1 shows, our method
is significantly better in producing edge-accurate maps of salient objects
compared to prior art.
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Figure 5.6: The ROC curves (top) and AUC measures (bottom) of our method with
linear (Lin) and SVM fusion compared to RC [Cheng et al., 2011],
ST [Seo and Milanfar, 2009], our method’s spatial component (S),
PQFT [Guo et al., 2008], SR [Hou and Zhang, 2007], FT [Adams et al.,
2010], HC [Cheng et al., 2011], LC [Zhai and Shah, 2006]. The plot
shows results for the entire evaluation set consisting of 15 videos and
nearly 3000 frames. In the box plot, red lines are median values, blue
boxes show the variance and the red crosses denote outlier AUC scores.

5.5 Applications

Our multi-modal stereoscopic saliency method labels specific objects or re-
gions as important. This information can support applications that reason
about the location of important objects. Our results are spatial-temporally
smooth following objects as they are salient during a sequence.

100



5.5 Applications

(a) (b) (c)

Figure 5.7: Improving automatic view synthesis. The visualization (c) shows the
differences (in red color) between the same view generated with our
saliency result (b) and the saliency from the original method (a). The
actual views are presented in the supplemental video.

Saliency is a fundamental problem of visual computing and as such has many
applications. As we discussed in the introduction a better saliency estima-
tion directly improves results of applications such as video retargeting, video
summarization, activity recognition, and video coding. Furthermore, a pre-
cise saliency estimation for stereoscopic content enables several practical ap-
plications. Disparity editing [Koppal et al., 2011; Lang et al., 2010], includ-
ing reconvergence and remapping of stereoscopic depth, can be guided by
knowledge of where important objects are composed within a scene. It has
been stated that a stereoscopic saliency would be highly beneficial for spa-
tial retargeting of stereoscopic content [Basha et al., 2011]. Also for stereo-
scopic comfort analysis, an important consideration is where the viewer will
fixate [Shibata et al., 2011]. Finally, automatic content creation for autostereo-
scopic displays is another application. In the following paragraph, we show
an example application for automatic view synthesis.

Automatic View Synethesis: We provide an example application that im-
proves the generation of synthetic views from stereoscopic video. This ap-
proach is used to process traditional stereoscopic content for presentation on
multi-view autostereoscopic displays. Since our method is automatic, we ex-
tended an automatic view synthesis method of Stefanoski, et al. [Stefanoski
et al., 2013] to improve view synthesis in regions lacking sufficient image fea-
ture matches. Their method utilizes saliency as a stiffness constraint in com-
puting the optimization of generating interpolated or extrapolated stereo-
scopic views. Their spatio-temporal saliency was computed using phase
spectrum of quaternion Fourier transform [Guo et al., 2008], referred to as
PQFT, which they combined with a traditional edge map. We replace the
original saliency, PQFT, with our own, but keep the edge map to preserve the
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constraint on image edges. As can be seen in Figure 5.7, our saliency method
labels the entire elephant as salient and reduces the warping-based image
distortion in the elephant’s face.

5.6 Limitations

While our method accounts for a number of visual saliency components, our
linear model of how they affect the final saliency estimate is the main limi-
tation of our method. An example of where such a model fails is shown in
Figure 5.8. Given the input frame (a), the output of our face saliency compo-
nent (b) shows the faces of the audience. Even though the saliency of these
faces at the positive disparity region are somewhat reduced by our dispar-
ity saliency component, they are still estimated as salient regions in the final
result (c). While the assumption that human faces are highly salient is true
in most cases, in this example where the fighters are clearly the center of at-
tention, it leads to erroneous saliency estimations (eye tracking data shown
as red dots). Such complex interactions are beyond the capabilities of our
method, but we hope to stimulate further research on the topic by making
the ground-truth data set public.

(a) (b) (c)

Figure 5.8: Despite the common-sense notion, human faces are not always the most
salient objects. See text for the discussion.

5.7 Conclusion

We presented a novel multimodal saliency estimation method for stereo-
scopic video that utilizes spatial, motion, and disparity cues as well as face
detection and a center prior. The major contributions of this work are (i) a
diverse ground-truth data set of gaze points for stereoscopic video, and (ii) a
method for computing temporally coherent and edge-precise saliency maps,

102
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that is trained using this data and comprises state-of-the-art methods along
with a novel motion saliency estimation. We presented both qualitative and
quantitative comparisons to prior art and showed that our method achieves
better performance compared to other saliency methods. As an example ap-
plication, we demonstrated that automatic multi-view synthesis can notably
benefit from using our saliency method.

The exploration of more sophisticated models of the complex interactions
between the saliency components is an interesting future direction of this
work. We also believe that the performance of our method can be further
improved by more accurate optical flow and disparity estimations, as well as
better face detection.
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DINO

BALLOONS

(2) moves 
     into the
     baloon

(3) face 
     pops out

(4) moves to 
     the right 

STREET

(1) moves
    forward

(2) waits
     for the other
     car to pass

(4) moves
     forward

(1) moves 
    into the 
    balloon

(1) stats
     jumping
     move

(3) lands on the
     ground

(2) ball bounces
     from the flag

(4) rolls closer
      towards the 
      camera

(3) makes a 
     left turn

Figure 5.4: Saliency predictions (bottom rows) for selected representative frames of
the Street, Dino and Balloons scenes (top rows) computed using the
linear fusion. Higher gray values of the saliency map indicate higher
saliency. Each video frame is annotated with the significant events that
affect saliency computation. See text for further discussion of the re-
sults.
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C H A P T E R 6

Conclusion

The evaluation and visualization of stereoscopic content is an important and
challenging goal. This thesis presents an exploration of computational mod-
eling as it relates to the perception of stereoscopic image viewing. The find-
ings represent an integration of existing computational models and creation
of new theories, representations and implementations of stereoscopic percep-
tion. Several contributions are summarized below.

6.1 Key Results

The high level goal of the thesis is to explore the complexity involved in mod-
eling topics related to stereoscopic perception. There is a need to develop
technologies to facilitate understanding of how stereoscopic images are per-
ceived. This thesis presents a combination of perceptual models based on
existing research and novel experimental methods. The key results support
this challenge to develop models of stereoscopic image quality.

Existing perceptual models have been utilized to understand the space of
limitations influencing both the presentation and perception of stereoscopic
images. This is represented in the structured overview of relevant topics and
significant research in the modeling of perception of stereoscopic images.

105



6 Conclusion

We have experimentally observed that changes to scene composition can im-
prove visual performance viewing stereoscopic images. Specifically, the ap-
plication of continuous stereoscopic depth can reduce the time to change vi-
sual attention.

We have demonstrated how a stereoscopic window violation, caused by a
conflict between the occlusion and stereopsis depth cues, is not always prob-
lematic. And we have demonstrated that is possible to predict such situa-
tions, providing useful input to stereoscopic content creators.

Finally, we combine the fusion of multiple saliency modalities with edge-
aware, spatio-temporally smooth saliency representations to produce better
results than other state of the art methods. This is useful for a variety of
stereoscopic editing applications.

6.2 Summary of Technical Results

Modeling Topics in Stereoscopic Imaging provides a structured
overview of relevant topics, significant research and computational mod-
els. Details of these models are provided to describe how they are imple-
mented to support computational analysis of stereoscopic perception. The
overview is grouped to represent topics of depth interpretation and stereop-
sis. Vergence, accommodation and visual comfort is then discussed as it is a
dominant factor influencing depth interpretation and visual comfort. Several
important stereoscopic distortions are presented followed by a discussion
of visual attention. These models have been applied in various forms dur-
ing the thesis, for example, guiding the capture and display of stereoscopic
content for experiments as well as the production of stereoscopic movies.

Attention Transitions in Stereoscopic Depth represents research in de-
veloping a computational theory about the influence of stereoscopic scene
composition on the speed of visual attention transitions. We have demon-
strated how a change in scene composition to provide depth continuity sig-
nificantly influences a viewer’s ability to change visual attention among spa-
tially distinct scene elements. We made several significant observations.
First, visual attention transitions to the zero parallax plane are not signifi-
cantly improved by depth continuity. This is explained by the assumption
that the transition target is not presenting the vergence-accommodation con-
flict. Second, lateral attention transitions (N-N and F-F) excluding the zero
parallax plane are significantly improved by continuous depth. Lastly, the
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inward (Z-N) and outward (Z-F and N-F) attention transitions were signifi-
cantly improved by the continuous depth plane. The outward depth changes,
Z-F and N-F, resulted in 18% and 20% reductions in response time and pro-
vided an approximately 300ms improvement. Finally, we also observed that
self-assessment of eye fatigue and general discomfort increase before a de-
crease before a decrease in visual performance is observed. The findings pro-
vide a significant example of how stereoscopic 3D content creators may learn
scene composition, framing and montage from visual psychophysics.

Stereoscopic Window Violations induce visual discomfort due to the
conflict between two cues to depth: stereopsis and occlusion. We have iso-
lated the following four dominant factors that influence the detection of dis-
turbing window violations: contrast magnitude, spatial frequency, orienta-
tion and disparity. We conducted subjective experiments to evaluate the in-
fluence of different variables on the perception of disturbing window viola-
tions. Window violations with increasing contrast magnitude cause a mono-
tonically increasing perception of a disturbing window violation. The spa-
tial frequency factor resembles the well-known contrast sensitivity function.
Spatial frequencies closer to the peak sensitivity of human vision are more
disturbing. Horizontally oriented information was observed to be less dis-
turbing than other orientations. Increasing disparity magnitude of a window
violation was also observed to increase the likelihood of being disturbing.

A perceptual model based on the subjective measurements was developed
to predict the detection of problematic window violations. The model is
developed by constructing a look-up table, representing the preference ob-
served through pairwise comparison of the contrast magnitude and spatial
frequency conditions. Applying the independent channel hypothesis [Marr
and Poggio, 1979], we selected the contrast and frequency combination that
is rated as most problematic. The value is scaled by the orientation and max-
imum window violation size (disparity) for each row of pixels.

We demonstrate a method for defining a threshold between disturbing and
non-disturbing window violations. A validation experiment was conducted
using 95 stereoscopic images, many containing window violations. Human
subjects labeled regions of disturbing window violations for each image. We
apply our model and vary the model threshold predicting a disturbing win-
dow violation. Using cross correlation between the model and labeled data,
we find that threshold that provides best agreement.

Our model demonstrates how specific types of window violations are not
problematic. We have constructed detectors to automate this assessment.
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This enables stereoscopic content creators to maximize the range of comfort-
able stereoscopic depth while avoiding or resolving only problematic win-
dow violations. We describe two applications of the model. One is to visu-
alize the thresholded prediction of disturbing window violations. Another is
to automatically remove problematic window violations using floating win-
dows.

Multimodal Stereoscopic Saliency contributions demonstrate how the
fusion of multiple modalities generates better saliency results compared to
other state of the art methods. To make this claim, we constructed a stereo-
scopic data set including both animated and live-action content. We then
collected eye track data from observations of the data set, which is used to
perform a quantitative evaluation of our multimodal saliency method, specif-
ically to define how best to combine the saliency modalities.

We combine four saliency modalities: spatial, motion, disparity and face
detection. Our motion saliency is produced by extending the existing spa-
tial modality to compute the uniqueness and distribution of motion fea-
tures. The disparity modality is based on an existing method combining
disparity contrast with domain specific knowledge about depth preferences.
Our face saliency modality combines an off-the-shelf face detector with a
spatio-temporal diffusion strategy to produce saliency labels covering the
faces within the scene. The final combined result is also spatio-temporally
smoothed providing an edge-aware and temporally smooth saliency. We
demonstrate the better performance of our method using the area under the
ROC curve metric.

Our saliencies are edge-aware and temporally smooth to enable many useful
forms of stereoscopic image analysis and manipulation, such as the remap-
ping of stereoscopic depth. In such cases, it is beneficial to isolate specific
salient objects to manipulate those salient objects. Our saliency metric can
also be used to guide the automatic reconstruction of synthetic views, for ex-
ample to convert stereoscopic images to multi-view image content. Saliency
can be used as a stiffness constraint to reduce distortions in salient image
contents.

6.3 Future Work

The results and limitations of this thesis lead to two general paths of future
work. First, each of the contributions can be expanded. Second, each of the
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contributions can be combined in the context of visual saliency. Below, we
outline future work grouped by the main contributions of the thesis and then
discuss their combination.

Future work of Attention Transitions in Stereoscopic Depth can proceed in sev-
eral ways. One could vary the magnitude of the vergence-accommodation
decoupling by evaluating different target depth magnitudes (e.g. reducing
the positive disparity) and also by varying the viewing distance while main-
taining the same perceived target size. One could explore alternative forms
of disparity connectivity. And one could also utilize our methodology of tar-
get discrimination and perhaps utilize eye track data to model the time to
change visual attention. It would be beneficial to represent such a model as
a function of vergence-accommodation conflict as well as depth and screen
space separation. Such a contribution would require additional modeling
and validation on real image content.

Stereoscopic Window Violations can be improved through future work explor-
ing the influence of additional factors. We currently prepare to conduct new
experiments to evaluate the influence of luminance magnitude in addition
to contrast magnitude near the border. This may further account for interac-
tions between image content and the perceived stereoscopic window. After
enhancing this model, we intend to validate the benefits of using our model
to automatically remove window violations using stereoscopic floating win-
dows.

Future work of Multimodal Stereoscopic Saliency can proceed in several ways.
More accurate estimation of optical flow and disparity will help improve the
results. Exploration of additional modalities as well as more sophisticated
models of the complex interactions between saliency components is an inter-
esting future direction.

The second general path of future work is the combination of each contri-
bution in the context of visual saliency. An additional saliency modality
could be provided by the spatial and temporal connectivity of image con-
tents. Two salient objects that have connectivity may each be more salient
than two objects lacking connectivity. This could provide additional stereo
saliency metrics to be applied within a given sequence as well as between
sequence transitions. Connectivity could be defined in terms of on screen
location, disparity and strength of vergence-accommodation conflict. An ad-
ditional saliency modality could be the influence of disturbing stereoscopic
artifacts, such as window violations or stereoscopic ghosting. Do these arti-
facts attract or repel visual attention and potentially distract the viewer from
the intended story?
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6 Conclusion

In summary, this thesis has incorporated many concepts inspired by neuro-
physiological and psychological observations of binocular perception. The
contributions of this thesis represent the integration of additional computa-
tional theories to support a better understanding of stereoscopic image per-
ception.
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