
Diss. ETH No. 25193

Data-driven Processing of
Point-sampled Geometry

A dissertation submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

Riccardo Roveri
MSc in Computer Science, ETH Zurich, Switzerland

Born on 09.10.1989

Citizen of Switzerland

accepted on the recommendation of

Prof. Dr. Markus Gross, examiner

Prof. Dr. Mario Botsch, co-examiner

Dr. Cengiz Öztireli, co-examiner

2018

ii

Abstract

Point samples are an important representation for 3D geometry. Their common
acquisition with the always more available scanners, as well as the generality
of their meshless nature make them a natural choice for representing real world
structures in Computer Graphics. Sets of points (point clouds) can, at the same
time, model patterns of elements (such as the distribution of trees in a forest),
or approximate the underlying surface of more continuous structures (such as a
human face). A main challenge in using point clouds in practice is the accurate
processing of very complex patterns and surfaces, due to the existing noise and
sparseness in the data as well as to the lack of proper methods designed to handle
and preserve details in geometry. In this thesis, we approach analysis and synthesis
of point clouds in a data-driven fashion, in order to learn priors from existing
data that can lead to processing of more detailed and complex geometry. First,
we exploit the repetitions existing in many real world complex structures and
patterns to propose example-based sampling methods, where the input sample
data is reproduced in the output domain in a natural looking and statistical sound
manner. Then, in order to process more general structures which are not necessarily
repetitive, we resort to larger datasets of point clouds composed of numerous
examples, and develop corresponding deep learning architectures. We apply the
latter to the problems of point cloud consolidation and classification.

More in details, we start by proposing an example-based synthesis method for
repetitive structures represented with point samples. The algorithm relies on ex-
pressing the input example and the synthesized output with continuous functions,
and performing the synthesis through the smooth minimization of a patch-based
similarity matching measure. The novel continuous formulation allows us to pro-
duce proper sampling, and to generally handle complex sets of discrete elements,
continuous structures and their mixtures within the same framework.

Subsequently, we extend the synthesis method to rely on multiple input exam-
ples instead of a single one, thus handling more advanced patterns with varying
arrangements of the points (correlations). We therefore introduce the concept of
adaptive correlations, with a framework for analysis and synthesis of elaborated
patterns based on point processes statistics.

From synthesizing new point clouds, we then focus on improving (consolidating)

iii

a given one. We achieve proper preservation of geometric details in general
structures by building large datasets composed of patches of points similar to the
processed ones, and by designing a novel patch-based neural network architecture
to learn accurate priors from the data and output consolidated patches. The
architecture is based on a key projection component which transforms the 3D
points into 2D images, allowing us to exploit the strengths of deep learning on 2D
rasterized data.

Finally, some applications require point clouds to be processed in a global fashion.
We thus extend our novel neural network projection component to handle more
complex global point clouds, instead of simpler local patches, and apply it to
the problem of point cloud classification. Our method automatically generates
detailed 2D images representing the full point clouds and recognizes to which
class of objects they belong to.

iv

Sommario

Le nuvole di punti sono una rappresentazione importante per geometria in 3D.
La loro frequente acquisizione con i sempre più accessibili scanner, come anche la
generalità dovuta alla loro natura senza connettività li rendono una scelta logica
per rappresentare strutture del mondo reale con la grafica virtuale. Insiemi di punti
possono, allo stesso tempo, modellare distribuzioni di elementi (come gli alberi
in una foresta), o approssimare la superficie sottostante di strutture più continue
(come una faccia umana). Un’importante sfida nell’uso delle nuvole di punti è
poter processare distribuzioni e superfici molto complesse, date le imperfezioni e
la sparsità dei dati e la mancanza di metodi sviluppati apposta per sintetizzare e
analizzare complesse strutture del genere. In questa tesi, approcciamo l’analisi e
la sintesi di nuvole di punti con metodi basati sui dati, con lo scopo di sfruttare e
imparare informazioni dai dati esistenti per poi processare meglio la geometria
dettagliata. Innanzitutto, sfruttiamo le ripetizioni esistenti in molte strutture e dis-
tribuzioni del mondo reale per proporre metodi per la generazione di punti basati
su un esempio, dove i dati di input sono riprodotti nel campo dell’output in modo
naturale. Poi, per processare strutture che non sono necessariamente ripetitive, ci
appoggiamo a insiemi di nuvole di punti più grandi composti da numerosi esempi,
e sviluppiamo metodi di intelligenza artificiale (apprendimento profondo) basati
su di essi. In particolare, presentiamo architetture di apprendimento profondo per
la consolidazione e classificazione di nuvole di punti.

Più in dettaglio, iniziamo proponendo un metodo basato su un esempio per la
sintesi di strutture ripetitive generali, rappresentate da punti. L’algoritmo dipende
dall’espressione dell’esempio di input e dell’output sintetizzato con funzioni con-
tinue, e dall’eseguire la sintesi attraverso la minimizzazione “liscia” (smooth) di
una misura di similarità di coppia. La nuova formulazione continua ci permette di
produrre un numero di punti appropriato, e di gestire insiemi di elementi discreti,
strutture continue cosı̀ come delle combinazioni dei due, usando lo stesso metodo.

Successivamente, estendiamo il nostro metodo di sintesi per funzionare con mol-
teplici esempi di input, al posto che un singolo esempio, in modo da gestire
distribuzioni più complesse con una disposizione (correlazione) dei punti variabile.
Introduciamo il concetto di correlazioni adattabili, con un metodo per l’analisi e la
sintesi di distribuzioni di punti basato sulla statistica dei processi di punti (point
processes).

v

Dal sintetizzare nuove nuvole di punti, ci concentriamo poi sul migliorare (consoli-
dare) una data nuvola di punti. Otteniamo una propria preservazione dei dettagli
geometrici costruendo dei grandi insiemi di dati composti da gruppi di punti
simili a quelli processati, e sviluppando una nuova architettura di apprendimento
profondo basata su piccole vicinanze di punti, per imparare informazioni accurate
dai dati. L’architettura dipende un componente chiave di proiezione, che trasforma
i punti 3D in immagini 2D.

Per finire, estendiamo la nostra nuova architettura di apprendimento profondo per
gestire nuvole di punti globali, invece che piccole vicinanze locali. La applichiamo
al problema della classificazione di nuvole di punti, generando automaticamente
immagini 2D che rappresentano le nuvole di punti intere e riconoscendo a quale
classe di oggetti appartengono.

vi

Acknowledgments

First of all, I would like to express my deep gratitude to my advisor Prof. Markus
Gross, who allowed me to pursue a Ph.D. at the Computer Graphics Laboratory.
His expertise, vision and excitement for the topic were fundamental in motivating
myself along this journey. In addition to directly guiding my research paths, he
made sure to provide help through an optimal atmosphere in the laboratory and
the involvement of excellent supervisors.

I will always be grateful to Dr. Cengiz Öztireli, who believed in me since my
Master Thesis and guided me through my Ph.D. He has been an amazing source
of inspiration in terms of learning the scientific approach to problems and han-
dling the management of projects, while constantly showing great humanity and
kindness. I will always be happy to work with him in the future.

I am also very thankful to Prof. Mario Botsch, who accepted to be a member of my
examination committee.

In addition, I want to warmly thank all my other collaborators: Dr. Sebastian
Martin, Dr. Barbara Solenthaler, Dr. Tobias Günther, Ioana Pandele and Lukas
Rahmann. The obtained results would have not be possible without their help, and
I consider myself lucky to have been able to learn something from each of them.

A big thank you goes to all my colleagues at CGL, CVG, IGL and Disney Research,
who I am lucky to call friends. It has been amazing to spend these years with
them in the lab, sharing curiosity, creativity and, especially, a lot of fun. A special
mention goes to Vittorio, Fabio and Endri, what a ride it has been!

Last but not least, I am mostly grateful to my family and friends outside the lab
who supported me during this journey. My parents and my brothers, who always
inspired me with their example to become a better person, inside and outside the
office. They never failed to share their enthusiasm towards my choices, which was
crucial for succeeding in pursuing them. And of course you, Yanina, for always
supporting me with your unlimited love, for sharing great ideas, for making my
life so much fun and for your dimples.

vii

viii

Contents

Abstract iii

Sommario v

Acknowledgements vii

Contents ix

Introduction 1
1.1 Contributions . 5
1.2 Publications . 6

Related Work 7
2.1 Geometry Synthesis . 7
2.2 Point Patterns . 9
2.3 Geometry in Deep Learning . 11
2.4 Geometry Consolidation . 13
2.5 Geometry Classification . 15

Example Based Repetitive Structure Synthesis 17
3.1 Introduction . 18
3.2 Overview . 20
3.3 Measuring Structure Similarity . 21

3.3.1 Geometry Representation . 21
3.3.2 Continuous Similarity Measure 21
3.3.3 Discrete Similarity Measure 22
3.3.4 Discussion . 25

3.4 Structure Synthesis . 28
3.4.1 Multi-scale Local-Global Solver 28
3.4.2 Discussion . 31

3.5 Controlling Structures . 33
3.5.1 Structure Representations . 33
3.5.2 Large-scale Control . 34

3.6 Results . 37
3.6.1 Implementation and Parameters 37

ix

Contents

3.6.2 Analysis and Comparisons 37
3.6.3 Synthesis Examples . 39
3.6.4 Limitations . 41

3.7 Discussion . 44

General Point Sampling with Adaptive Density and Correlations 45
4.1 Introduction . 46
4.2 Analysis of General Sampling Patterns 48

4.2.1 Stochastic Point Processes . 48
4.2.2 Locally Stationary Processes 49
4.2.3 Spatially Varying Correlations 50
4.2.4 The Analysis Framework . 52

4.3 Synthesis of General Sampling Patterns 54
4.3.1 The Synthesis Algorithm . 54
4.3.2 Extension of the Discrete Texture Synthesis Algorithm . . . 57

4.4 Results . 59
4.4.1 Analysis and Synthesis of Complex Distributions 59
4.4.2 Image Sampling and Reconstruction 61
4.4.3 Image and Video Stippling 61
4.4.4 Geometry Sampling . 63
4.4.5 Performance . 65
4.4.6 Limitations . 67

4.5 Discussion . 67

Consolidation of Point Clouds with Convolutional Neural Networks 69
5.1 Introduction . 70
5.2 Algorithm Overview and Training Data Generation 72

5.2.1 Overview . 72
5.2.2 Training Data Generation . 73

5.3 Network Architecture . 74
5.3.1 Heightmap Generation Network 75
5.3.2 Heightmap Denoising Network 76
5.3.3 Training Procedure and Analysis 77
5.3.4 Processing Point Clouds at Testing Time 78
5.3.5 Extension for Point Normals 80

5.4 Results . 81
5.4.1 Network Implementation and Parameters 81
5.4.2 Pipeline For Surface Reconstruction 81
5.4.3 Datasets . 82
5.4.4 Comparisons . 83
5.4.5 Experiments . 84

5.5 Discussion . 92

x

Contents

A Network Architecture for Point Cloud Classification via Automatic
Depth Images Generation 93
6.1 Introduction . 93
6.2 Network Architecture . 95

6.2.1 Overview . 95
6.2.2 View Prediction . 96
6.2.3 Depth Image Generation . 97
6.2.4 Image Based Classification 100

6.3 Results . 101
6.3.1 Implementation, Parameters and Timing 101
6.3.2 Point Cloud Classification . 101
6.3.3 Comparisons to Simpler Alternatives 104
6.3.4 View Selection and Visualization 105

6.4 Discussion . 108

Conclusion 109
7.1 Extensions of Our Techniques . 111
A.1 Discrete Similarity Measure . 113

A.1.1 Deriving the Discrete Similarity Measure 113
A.1.2 Computing the Gradients . 114

A.2 Analysis of General Sampling Patterns 116
A.2.1 Campbell’s theorem . 116
A.2.2 Estimating Product Densities 116

A.3 Analysis and Synthesis with Local Anisotropy 121
A.3.1 Analysis . 121
A.3.2 Synthesis . 121

A.4 View Selection, Comparisons and Gradients 122
A.4.1 View Selection for Our 2 Views Architecture 122
A.4.2 Comparison with PCA . 122
A.4.3 Failure Cases and Comparison with Meshes 123
A.4.4 Comparison with Random Views Alternative 124
A.4.5 Gradients for Depth Image Generation 126

References 129

xi

C H A P T E R 1
Introduction

A fundamental problem in Computer Graphics is to model the structures
found in the real world with geometry representations. Real world elements
vary greatly in shapes, characteristics and level of details. For example, the
hill in Figure 1.1 (left) resembles a single smooth structure, contrary to the
multiple stones elements in Figure 1.1 (center), and presents significant less
details than the face in Figure 1.1 (right). Geometry representations should
approximate as best as possible the shape of any real structure, while being
computationally inexpensive in order to allow for fast processing.

A powerful and general model used in Computer Graphics is point-sampled
geometry. The structures are approximated solely with unordered sets of
points (point clouds), with no connectivity information. The generality of this
meshless approach allows to efficiently model structures with different char-
acteristics: for discrete elements, like a pile of stones, each point describes one
individual element and the set represents their pattern, while for continuous
structures, like a face, multiple points approximate a surface fitted to them
(which can finally be obtained by performing surface reconstruction on the
set of points).

Point clouds are synthesized or acquired by scanners (the Microsoft Kinect be-
ing one of the most common ones), and often present problems such as noise,
sparsity, redundancy and missing parts. Motivated by their utility for many
applications, and with the goal of proposing solutions to these obstacles,
many researchers have worked on processing point clouds. New proposed
methods and available scanners have lead to an increasing number of exist-

1

Introduction

Figure 1.1: Various real world structures. A smooth hill (left), multiple stones elements
(center) and a more detailed face (right).1

ing point-sampled geometries and more accessible point clouds generation
procedures. Both these effects drove our efforts towards approaching point
cloud processing in a data-driven fashion, inspired by the successful results
obtained with rasterized images in example-based synthesis and processing
with machine learning. In particular, example-based methods have been well
researched in Computer Graphics and have proven to be powerful tools for
user-controlled artistic generation, while, with the recent interest in neural
networks and the creation of massive datasets, deep learning architectures
have started to show promising and inspiring results in many processing
operations for graphical data. In this thesis, we present our novel contribu-
tions in analyzing and synthesizing point clouds, exploiting information and
statistics extrapolated from single data examples or large datasets.

Specifically, we designed data-driven methods for sampling, consolidation
and classification of point clouds. Sampling means synthesizing (often after
analyzing an input example) an optimal configuration of points, either to
represent a surface or a pattern. It is desired to avoid sparsity and redun-
dancy in the synthesized result. Similar to sampling, consolidating means
synthesizing a new, dense point cloud in order to improve a given input point
cloud. Challenges are the sparsity, noise and missing parts existing in the
input. Finally, classifying a point cloud means analyzing it and determining
to which class of objects it belongs. All these fundamental problems can be
considered as preprocessing steps for different important applications, such
as point cloud reconstruction and visualization. For example, in order to
successfully reconstruct a surface from an input point cloud, the latter should
be first consolidated in order to improve the quality of the data, an optimal
sampling can be computed in order to avoid redundancy and thus improve

1From left to right: ‘Silbury Hill’ by Andy Wright available at https://flic.kr/p/57SzG4, ‘Stone
wall’ by Keita Kuroki available at https://flic.kr/p/gGWo1j, ‘Face’ by Tim Green available
at https://flic.kr/p/7dAJqB. All under a Creative Commons Attribution 2.0. Full terms at
http://creativecommons.org/licenses/by/2.0.

2

reconstruction efficiency without altering the surface, and information about
the object class could be exploited to define priors in the reconstruction. Like-
wise, proper sampling and consolidation allow to better visualize the point
clouds, and information about the class of the represented objects could pro-
vide, for example, additional insights on the best view directions for optimal
visualization.

We start by describing an example-based point sampling method to synthe-
size general repetitive structures (Chapter 3), motivated by the observation
that repetitions are a common phenomena in nature and, in general, in the
real world. Natural elements such as waves in the ocean or trees on a moun-
tain, as well as human-made objects like a wall of stones are composed of
very similar structures which repeat themselves on a larger scale. When
dealing with repetitive structures, example-based approaches are a logical
choice, where the user provides a small structure as input and a larger, similar
looking output is produced. Most of the previous methods in the field ras-
terize the repetitions into regularly sampled grids (pixels or voxels) and use
neighborhood matching in a texture synthesis manner. This makes it possible
to produce continuous looking repetitive structures (e.g., the waves of the
ocean), but not to generate patterns of discrete elements (e.g., the stones in
the wall), as the individual elements are not preserved but rather merged
together. Other existing methods allow to synthesize patterns of discrete ele-
ments based on an example, but, in turn, cannot handle continuous structures.
Our proposed sampling method exploits the generality of point samples, in-
troducing a unified framework for structures and patterns which consist of
mixtures of discrete and continuous elements. We achieve this by converting
the points belonging to the input example and the ones synthesized in the
output domain into continuous functional representations, and formulating
the patch-based texture synthesis problem as a smooth minimization. Our
robust minimization comes with a better neighborhood matching metric and
allows us to include precise sampling control, which is crucial to obtain an
optimal sampling. In addition, the meshless nature of our method makes it
efficient and suitable for interactive synthesis.

A limitation of the proposed example-based method is that only a single
pattern can be synthesized in the output, which is the pattern represented
by the input example (e.g., a blue noise pattern or a regular grid pattern).
The same drawback is shared by the previous methods in point sampling,
which propose techniques built on statistics to synthesize point distributions
that can have varying density, but always present the same arrangement of
points (namely the correlation) as in the input pattern. In the real world, on
the other hand, patterns with varying correlations can be often observed,
as, for example, the configuration of trees in a forest that can change from a

3

Introduction

uniform distribution to a clustered distribution, depending on the spreading
of resources. In order to being able to represent such structures, we extend our
previously explained sampling method to handle multiple input examples,
and interpolate them when synthesizing the output patches. More generally,
we introduce a framework based on the theory of stochastic point process,
which leads to analysis and synthesis methods for interpolating statistics in
the space and time, and, in particular, to the notion of adaptive correlations
(Chapter 4). The framework revolves on locally interpolating, in the output
domain, a statistical measure, the pair correlation function, which is the joint
probability of having pairs of point samples at particular locations, using
a dictionary of pair correlation functions extracted from the multiple input
examples. In addition to synthesizing natural distributions with varying
patterns, we show results in several applications such as surface sampling,
image stippling and image reconstruction.

Although our described synthesis method allows us to learn and create
sampling from multiple given examples, there exist operations that deal
with data which is not repetitive and is too varied to be processed only
with a small set of examples. Point cloud consolidation belongs to such
operations, where the goal is to generate a new point set that accurately
samples the underlying surface, starting from an input point cloud with
highly varying local structures, noise and missing parts. A typical example
is the consolidation of a point cloud acquired by scanning a human face
with a consumer device. Most of the previous methods tackling point cloud
consolidation rely on local priors such as locally piece-wise smooth surfaces
with sharp features, which cannot preserve very detailed geometric features.
In order to handle general structures and recover elaborate features, we
propose a data driven solution making use of deep learning and a large
dataset of geometric patches (Chapter 5), instead of limiting us to a small
dictionary of example patches like in our previously described example-
based methods. We propose a generative convolutional neural network
architecture that inputs and outputs patches of point clouds, by learning
their local parametrization and the locally fitted surfaces of their geometric
features. The most important component is a network module that projects
the unordered 3D points of the patches to 2D heightmaps, which can then be
easily and efficiently processed. We present obtained results of consolidations
and following reconstructions of structures with vary levels of details, such
as detailed sculptures and smooth flags.

Finally, point clouds can be processed as global structures as well, besides
patch-by-patch. Point cloud classification is an important operation that
benefits from handling point clouds globally, as the spatial relationships
between parts of the structure add important information about the class the

4

1.1 Contributions

object belongs to. While deep learning has proven to produce state of the art
results in point cloud classification, most of the existing methods rasterize
the point samples into regular 3D voxel grids in order to utilize common
grid-based network architectures. Due to the sparse nature of the voxel
grids, these methods are not memory efficient and limit the resolution of the
point clouds. We propose an extension of our described projection-based
convolutional neural network architecture for unordered points processing,
adapted to consume full point clouds and not only patches (Chapter 6). A
series of 2D depth images representing the input point cloud from optimal
view points are generated within the network by the projection module, and
classified with common image classification pipelines. The large amount
of existing 2D image data allows us to effectively train our classifier and
obtain results competitive to the state of the art. Moreover, the intrinsically
generated, optimal depth images represent a useful resource for other point
clouds operations, such as their visualization.

1.1 Contributions

In this thesis we propose the following main contributions:

• An example-based method for synthesizing general repeated geome-
tries represented by point samples, treating continuous and discrete
structures within the same framework. The approach allows for inter-
active synthesis on general domains, and includes a point sampling
strategy for initialization independent, optimal sampling.

• The notion of adaptive correlations, and an analysis and synthesis
framework for general point patterns with adaptive density and cor-
relations, offering full control over the distributional characteristics.
Mulitple input example distributions can be merged on Euclidean
domains and surfaces.

• The first deep learning method for local point cloud processing with
a fully differentiable architecture, featuring a projection layer for
converting patches of unordered points to regularly sampled height
maps. We show how its application to point clouds consolidation
leads to more accurate surface representations compared to the previ-
ous methods.

• An extension of our point cloud processing neural network to handle
point clouds representing full objects and not only patches, and a
novel architecture for point cloud classification that achieves results

5

Introduction

competitive with the state of the art. Our architecture produces a set
of informative depth images of the point cloud, by predicting mean-
ingful view directions, which can be used for further applications.

1.2 Publications

During this thesis, the following peer-reviewed publications were made:

R. ROVERI, A. C. ÖZTIRELI, S. MARTIN, B. SOLENTHALER and M. GROSS. Exam-
ple Based Repetitive Structure Synthesis, Proceedings of Eurographics Sympo-
sium on Geometry Processing (Graz, Austria, July 6-8, 2015), Computer Graphics
Forum, vol. 34, no. 5, 2015, pp. 39–52.

R. ROVERI, A. C. ÖZTIRELI and M. GROSS. General Point Sampling with Adap-
tive Density and Correlations, Proceedings of Eurographics (Lyon, France, April
24-28, 2017), Computer Graphics Forum, vol. 36, no. 2, pp. 107-117.

R. ROVERI, A. C. ÖZTIRELI, I. PANDELE and M. GROSS. PointProNets: Consol-
idation of Point Clouds with Convolutional Neural Networks, Proceedings
of Eurographics (Delft, The Netherlands, April 16-20, 2018), Computer Graphics
Forum.

R. ROVERI, L. RAHMANN, A. C. ÖZTIRELI and M. GROSS. A Network Architec-
ture for Point Cloud Classification via Automatic Depth Images Generation,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (Salt Lake City, USA, June 18-22, 2018).

6

C H A P T E R 2

Related Work

In this chapter, we describe related works in the fields of analysis and syn-
thesis of geometry structures. In order to provide a general view of the
state of the art, we review related methods for point sampled geometry as
well as for other representations like rasterized geometry and meshes. In
particular, we first study general geometry synthesis methods (Section 2.1),
classifying them in approaches for generating sets of discrete elements or
continuous structures, mostly in an example-based fashion. We then give
a deeper insight on point distributions, where the represented structure is
the pattern of the points itself (Section 2.2). More precisely, we review al-
gorithms for analyzing and synthesizing point patterns, introducing works
based on stochastic point processes. Successively, we provide an overview of
deep learning architectures that have been designed for processing 3D point
clouds and other sparse geometry representations (Section 2.3), exploiting
large datasets. The unordered nature of point clouds made it non-trivial to
adapt image-based network architectures to the case. Finally, we describe
related works for the applications of point cloud consolidation and point
cloud classification (Sections 2.4 and 2.5, respectively).

2.1 Geometry Synthesis

Geometry synthesis algorithms have been designed to generate continuous
structures (by extending 2D texture synthesis to 3D volumes or by work-
ing with meshes and models), or to synthesize sets of discrete elements (by

7

Related Work

matching neighborhoods of individual elements or their aggregated statis-
tics). Contrary to the previous approaches, in Chapter 3 we present an
example-based method to synthesize repetitive structures represented by
point samples, which can synthesize continuous structures, discrete elements
and their mixtures.

Raster-based Texture Synthesis A classical approach to synthesizing repet-
itive structures based on given examples is to rasterize the example and
the output, usually referred to as texture synthesis. The structures are
thus represented as continuous values stored at regularly distributed sam-
ple points. For synthesis, the stored values in the output image are al-
tered while keeping the point locations fixed. A texture image of arbi-
trary size can be synthesized from a given example image that contains
a patch of the repetition using this technique [Paget and Longsta, 1995;
Efros and Leung, 1999]. Most texture synthesis methods work by matching
local neighborhoods such that for each neighborhood in the output, there is a
similar neighborhood in the example [Wei et al., 2009]. This idea has also been
extended to colors on meshes and 3D volumes [Turk, 2001; Kopf et al., 2007;
Wei et al., 2009]. However, if the pattern consists of discrete elements, the
integrity of individual elements can be lost with this method since they are
rasterized [Ma et al., 2011]. Furthermore, the points are assumed to stay fixed
on a regular structure, and most commonly on a 2D image. These limit the
application of raster-based texture synthesis to general structures.

Geometric Texture Synthesis Instead of rasterizing discrete structures, they
can be directly represented with discrete elements. The goal is then to synthe-
size a distribution of these elements that resembles a given example [Barla
et al., 2006; Ijiri et al., 2008; Hurtut et al., 2009; Alves dos Passos et al., 2010;
Ma et al., 2011; Ma et al., 2013; AlMeraj et al., 2013; Landes et al., 2013;
Du et al., 2013; Huang et al., 2014]. The methods mainly differ in the rep-
resentation of the structures and the definition and matching of element
neighborhoods. For simpler example patterns, it is sufficient to match ag-
gregated neighborhood statistics for all elements [Öztireli and Gross, 2012;
Zhou et al., 2012; Heck et al., 2013], on which we focus in Section 2.2. How-
ever, for more complex examples, individual neighborhoods of elements need
to be matched [Ma et al., 2011; AlMeraj et al., 2013], unless more elaborate
distance metrics based on element shapes are utilized [Landes et al., 2013].

Most of these methods are designed for particular applications and hence
operate under certain assumptions on the space, shapes, and arrangements
of the elements. A notable exception is the work by Ma et al. [2011] that
can synthesize element distributions in 2D, 3D, or on surfaces with vari-
able element shapes arranged in arbitrary configurations, thanks to their

8

2.2 Point Patterns

point-based representation of element shapes. Our general synthesis method
also works with point samples for arbitrary domains and shapes of discrete
elements. However, unlike geometric texture synthesis methods, it can syn-
thesize continuous, as well as mixtures of discrete and continuous structures
interactively. This is due to a new formulation of the neighborhood matching
problem in a meshless framework that allows careful sampling control and
better convergence behavior.

Most general geometric texture synthesis methods are originally designed
for off-line texturing of defined regions. Recent efforts utilize and extend
texture synthesis methods for generating repeated patterns in paintings [Kazi
et al., 2012a; Lu et al., 2013; Lukáč et al., 2013; Kazi et al., 2014; Lu et al., 2014;
Xing et al., 2014]. However, these techniques are designed for particular
interaction scenarios and output. In contrast, our progressive synthesis
method can be used to generate general structures interactively.

Continuous Geometry Synthesis Since the previously mentioned methods
cannot be used to synthesize continuous structures when the domain is not a
2D or 3D volume, several other methods have been developed to synthesize
continuous geometry for terrains [Zhou et al., 2007], mesh-based geome-
try [Zhou et al., 2006; Lai et al., 2005] or 3D models [Merrell and Manocha,
2008]. In addition, structured 2D pattern synthesis along curves has been
recently proposed in [Lu et al., 2014] and [Zhou et al., 2013], and later made
suitable for fabrication in [Zhou et al., 2014]. The continuity assumption
comes at the expense of the possibility of losing shapes of individual ele-
ments, similar to raster-based texture synthesis methods. Furthermore, the
structures should have application specific representations for these methods
to work. Our method can handle continuous synthesis in general domains
in combination with discrete elements, and for all structure representations
once they are converted into point samples.

2.2 Point Patterns

In Chapter 4, we introduce a framework for analysis and synthesis of general
point distributions with adaptive density and correlations, developed with
the theory of stochastic point processes. While several previous methods
can handle point patterns with adaptive density, they all assume a constant
correlation.

Analysis of point patterns. Determining characteristics of point patterns is
essential for many applications in computer graphics such as stippling and
halftoning [Schmaltz et al., 2010; Fattal, 2011], anti-aliasing [Mitchell, 1987;

9

Related Work

Lagae and Dutré, 2008; Heck et al., 2013], object placement [Wei, 2010], in-
tegration [Pharr and Humphreys, 2010; Subr and Kautz, 2013; Pilleboue
et al., 2015], or geometry sampling [Öztireli et al., 2010]. A widely used
analysis tool is the power spectrum, a 2D diagram computed by averaging
the periodograms of point distributions that are instances of a certain point
pattern. When the point pattern is translation invariant, many important
characteristics such as anti-aliasing properties or anisotropy of the generated
distributions can be inferred from the power spectrum [Lagae and Dutré, 2008;
Ulichney, 1988]. Other analysis methods rely on spatial measures such
as minimum distance between points [Lagae and Dutré, 2008], discrep-
ancy [Shirley, 1991], distributions of difference vectors [Wei and Wang, 2011],
or distances [Öztireli and Gross, 2012; Heck et al., 2013] between sample point
locations. These methods can also be extended to non-Euclidean domains
or point patterns with adaptive density or anisotropy [Bowers et al., 2010;
Li et al., 2010; Wei and Wang, 2011]. For all cases, the underlying correlation
model is assumed to be constant and translation invariant, and the adaptiv-
ity in density or space the points reside on is buried into the difference or
distance measures used to compute the statistics. In contrast, we present a
general analysis method that can handle point patterns with adaptive density
and correlations. We prove that the proposed measures converge to provably
discriminative statistics from stochastic point processes.

Synthesis of point patterns. Synthesis methods can generate point distri-
butions with certain characteristics controlled by the construction of the
synthesis algorithm or via explicitly provided statistics. Most techniques
in computer graphics focus on blue noise distributions, where there is a
minimum distance between pairs of points, and they are distributed ran-
domly otherwise [Ulichney, 1988; Heck et al., 2013]. Variations can be gen-
erated by altering the distances between points and introducing random-
ness via adding, removing, or moving the sampling points [Lloyd, 1982;
McCool and Fiume, 1992; Balzer et al., 2009; Fattal, 2011; de Goes et al., 2012;
Jiang et al., 2015], or tiling [Ostromoukhov, 2007] methods. Such distribu-
tions are very important for their anti-aliasing properties [Ulichney, 1988;
Heck et al., 2013], and can be combined with adaptive density methods [Li et
al., 2010; de Goes et al., 2012; Chen et al., 2013], or generated on surfaces [Jiang
et al., 2015] for further applications. However, they cannot be utilized to
model more complex patterns where this correlation model does not hold.
To synthesize more general patterns with controlled characteristics, recent
techniques rely on matching the statistics of output distributions with given
target statistics [Zhou et al., 2012; Öztireli and Gross, 2012; Wachtel et al., 2014;
Ahmed et al., 2015]. These methods can also handle adaptive density, but
are not trivial to extend to non-Euclidean domains such as surfaces [Jiang

10

2.3 Geometry in Deep Learning

et al., 2015]. Paralleling analysis methods, all synthesis algorithms so far
assume a given constant pair-wise correlation model, and locally alter the
density or anisotropy of points distributions. A notable exception is the
work by Ju et al. [2010], which, however, only models group motions and
crowd behaviour based on a qualitative analysis. We present the first tech-
nique that can synthesize general point distributions with adaptive pair-wise
correlations and density. It has been observed in rendering [Durand, 2011;
Subr and Kautz, 2013; Subr et al., 2014] that adapting both simultaneously can
reduce the error in numerical integration. Utilizing our synthesis method, we
show that such adaptivity can also significantly improve image and geometry
sampling. Our algorithm offers full control over the spectrum of points on
surfaces, in contrast to the previous surface sampling methods.

Stochastic point processes. The discipline of stochastic point pro-
cesses [Møller and Waagepetersen, 2004; Illian et al., 2008] provides a
principled mathematical treatment of general point patterns by character-
izing generating processes that underlie point distributions. Hence, each
distribution is considered a realization of a stochastic point process. A point
process can be defined by setting a random variable at each point in space,
and analyzing the correlations among these random variables. Equivalently,
we can consider correlations among point locations over different realizations
of a point process. Intuitively, first order correlations describe density, and
second order pair-wise correlations determine the arrangement of points.
Recent works in computer graphics explore utilizing statistics from point
processes to analyze and synthesize point distributions [Wei and Wang, 2011;
Öztireli and Gross, 2012; Heck et al., 2013]. The main assumption of these
works is that the underlying point process is stationary, i.e. the generated
distributions are translation invariant up to density differences. Adaptive
density can then be obtained by altering the distance or difference metric
utilized. However, many important distributions from classical jittering
patterns [Mitchell, 1996] to complex distributions found in nature [Illian et al.,
2008] cannot be modelled with these assumptions. In Chapter 4, we abandon
the assumption of an underlying stationary correlation model, propose a
comprehensive analysis framework for understanding a more general set of
point processes, and develop the associated synthesis algorithms.

2.3 Geometry in Deep Learning

In Chapter 5, we introduce a novel neural network architecture for processing
unordered pointsets, based on a differentiable projection component that
creates 2D heightmaps from the 3D points within the network. We utilize the

11

Related Work

network by inputting patches of points, and show results in the application
of point cloud consolidation. In Chapter 6, we extend the architecture to
produce proper depth images of full point clouds and classify them. In
this section, we present the existing architectures designed for processing
geometry and especially unordered point clounds in deep learning. We also
list the related works that transform the 3D data to 2D images in network
architectures. For a review of related deep learning methods specific to the
applications of consolidation and classification, we refer to Section 2.4 and
Section 2.5, respectively.

Architectures for Point Clouds and Sparse Representations for Geome-
try There are several ideas in the deep learning literature to handle 3D
geometries efficiently via exploiting the sparsity of the data, for exam-
ple by applying convolutional neural networks to images depicting mul-
tiple views of a 3D object [Su et al., 2015; Qi et al., 2016b], extracting fea-
tures in a pre-processing step [Fang et al., 2015; Guo et al., 2015; Dibra et
al., 2017], or representing shapes in a spectral domain [Bruna et al., 2013;
Masci et al., 2015]. The most common architectures for geometry, though,
require the input geometry to be transformed to a rasterized grid. Accord-
ingly, even for point clouds the most straightforward approach is to convert
the points to a uniform voxel grid and use CNN based methods for vol-
umetric representations, as it is done in the methods presented in [Qi et
al., 2016b; Wu et al., 2015b; Maturana and Scherer, 2015; Brock et al., 2016;
Wu et al., 2016]. While transforming the point cloud to a voxel grid allows
to feed regularly structured data to the network, the main disadvantage of
these techniques is that they are computationally expensive, limiting the
resolution of the point cloud. Some attempts have been proposed in or-
der to overcome the voxel grid resolution issue and handle 3D geometries
efficiently, for example by using an octree structure [Riegler et al., 2017;
Wang et al., 2017], employing field probing filters [Li et al., 2016], or ex-
ploiting the sparseness of the problem via voting schemes [Wang and
Posner, 2015] or with sparse convolutions [Graham, 2014; Graham, 2015;
Engelcke et al., 2017]. However, the low resolution nature of voxel grids still
constraints the size of the processed point cloud.

Instead of converting the point cloud to a voxel grid, some more recent works
have presented methods to directly process unordered pointsets, usually
showing results in descriptive tasks such as classification and segmentation.
The authors of PointNet [Qi et al., 2016a] propose a network architecture to
respect properties such as invariance to permutations and tranformations
of the input points. In the recently published work [Simonovsky and Ko-

12

2.4 Geometry Consolidation

modakis, 2017], CNNs are generalized from grids to general graphs using
edge-dependant filters. Similarly, two concurrent works to our publications
in the field propose special architectures for unordered pointsets: in Kd-
Networks [Klokov and Lempitsky, 2017] kd-trees are used as underlying
graphs to simulate CNNs, and PointNet++ [Qi et al., 2017b] improves the
original PointNet by applying the network recursively on a nested parti-
tioning of the input point set. Like these last set of approaches, our neural
network architectures take an unordered point cloud as input, which can also
be of high resolution.

Rendering Depth Images In Neural Networks Rendering 2D images from
3D geometry within a neural network is an interesting task that could have
impact in many computer vision applications. Spatial Transformer Net-
works [Jaderberg et al., 2015] presents a differentiable module for applying
transformations to a feature map. By applying a 3D affine matrix and flat-
tening the result, their method can produce a 2D projection of the 3D voxel
grid input. In [Qi et al., 2016b], the authors also propose a differentiable
module based on anisotropic kernels to generate 2D images using voxel grids
as input. In OpenDR [Loper and Black, 2014], a differentiable renderer for
triangle-based geometry is presented. While the simple 3D to 2D projection
of Spatial Transformer Networks [Jaderberg et al., 2015] does not deal with
rendering, [Qi et al., 2016b] requires a convertion from point clouds to a low
resolution representation and OpenDR [Loper and Black, 2014] works on
triangles, in our architectures we aim at generating heigthmaps and depth
images from unordered point clouds.

2.4 Geometry Consolidation

Consolidation typically involves denoising, resampling, and surface normal
estimation, as well as outlier removal and missing data completion. This
is then followed by surface reconstruction to get the final surface. Many
reconstruction methods can also be used for resampling, and methods that
output dense point sets render the reconstruction problem trivial. Hence, our
consolidation technique described in Chapter 5 is related to both classes of
methods. We review the most relevant techniques below.

Consolidation with Smoothness Priors Consolidation and the subse-
quent task of reconstruction are ill-posed problems and hence further assump-
tions are required to generate reconstructed surfaces. A very versatile assump-

13

Related Work

tion is local smoothness [Alexa et al., 2003]. Smooth reconstructions or resam-
pled point sets can be obtained with radial basis functions [Carr et al., 2001],
solving a Poisson equation in 3D [Kazhdan et al., 2006], parametrization-free
projections [Lipman et al., 2007; Huang et al., 2009; Preiner et al., 2014],
or moving least squares based local approximations [Alexa et al., 2003;
Shen et al., 2004; Guennebaud and Gross, 2007]. The smoothness as-
sumption breaks, however, for certain classes of real-world surfaces that
contain sharp features. Many other methods thus focus on preserving
such features by utilizing sparsity inducing norms [Avron et al., 2010;
Sun et al., 2015], dictionary learning [Xiong et al., 2014], positional con-
straints [Kazhdan and Hoppe, 2013], dedicated sampling of edges [Huang et
al., 2013], or robust statistics [Öztireli et al., 2009; Öztireli et al., 2010], lead-
ing to significant improvements especially for man-made objects. All these
techniques rely on an input point set only, and hence cannot resolve surface
shapes if the input point cloud contains a prohibitive amount of imperfection
that makes inferring the underlying surface infeasible. In our technique, we
solve this problem by guiding local fits with priors extracted from existing
point cloud data of geometries with similar local structures. This learning
based approach resolves ambiguities and steers the reconstructions towards
accurate local structures.

Data-driven Geometry Completion and Reconstruction When large
portions of geometry are missing, several methods use data-driven priors to
complete and reconstruct surfaces from point clouds. This can be achieved by
retrieving models [Shao et al., 2012; Kim et al., 2013; Li et al., 2015] or model
parts [Gal et al., 2007; Shen et al., 2012; Sung et al., 2015] from a database
that can also be deformed to match the input point clouds [Pauly et al., 2005;
Nan et al., 2012; Kim et al., 2012]. Although such methods excel at global
shape completion, resolving geometric features and details can be challenging
due to the limited range of compatible objects or parts in the database, wrong
matches, and misalignments [Han et al., 2017]. In contrast, in our consolida-
tion technique we do not require close matches or alignments between train-
ing and test geometries, and focus on learning to recover geometric details.
Other data-driven methods regress to parameters of a constructed model,
which is typically used for e.g. human body shapes [Anguelov et al., 2005;
Weise et al., 2011]. However, such parametric models lack the geometric
details we target, and are only designed for when the test geometries belong
to the specific parametric model constructed.

14

2.5 Geometry Classification

Geometry Generation and Completion with Deep Learning We propose
a new neural network based deep architecture for the consolidation problem.
The exceptional performance of deep neural networks on image denoising
and inpainting tasks has led to various previous efforts on extending their
power to 3D surfaces. Several approaches extend the 2D grids used for image
processing to 3D voxels grids for geometry generation [Wu et al., 2015b;
Sharma et al., 2016; Varley et al., 2016]. This allows a direct extension of
many successful architectures to 3D. However, as covered in Section 2.3,
these only work for relatively low resolution of grids (typically up to 323)
due to the increased memory and computational requirements in 3D. Even
with the state-of-the-art approaches that fuse global and local patches [Han
et al., 2017], or utilize octrees [Riegler et al., 2017], the resolution is limited to
2563. It has thus been so far not possible to directly recover geometric details
with the current deep learning architectures [Dai et al., 2017]. We specifically
target such geometric features and details and propose a new dedicated deep
architecture for the consolidation problem.

While we do not aim at recovering large missing parts of point clouds, the
concurrent work to our publication by Han et al. [Han et al., 2017] targets
completion of 3D shapes. In addition to a global structure inference network,
their deep learning architecture includes a patch-based local geometry refine-
ment network. The latter is built with voxel grids and 3D CNN-s, while we
propose a network component to project unordered points to 2D heightmaps.
This makes our method memory efficient and suitable to preserve fine details.
Even if the general application is different, we leave the comparison with the
local geometry refinement network of [Han et al., 2017] for future work.

2.5 Geometry Classification

We review geometry classification works related to our point cloud classifica-
tion method described in Chapter 6. In our technique, we extract and classify
a set of informative depth images representing the point cloud. Therefore,
we briefly introduce approaches which exploit multiple views of 3D data, as
well as CNN architectures for 2D image classification.

Classification of Point Clouds with Deep Learning Most of the deep
learning methods designed for unordered point clouds reviewed in Sec-
tion 2.3 tackle the classification problem [Qi et al., 2016a; Simonovsky and
Komodakis, 2017; Klokov and Lempitsky, 2017; Qi et al., 2017b], achieving
state of the art results comparable to methods which classify volumetric

15

Related Work

objects [Maturana and Scherer, 2015; Wu et al., 2015b; Qi et al., 2016b] and
meshes [Kazhdan et al., 2003]. Like those set of approaches, our method
takes an unordered point cloud as input, and, contrary to them, instead of
tackling classification directly on the point cloud, we first extract a set of 2D
depth images, and then exploit well studied CNN based image classification
methods to classify point clouds.

Exploiting Multiple Views on 3D Data Many deep learning methods uti-
lize multiple 2D views of 3D data in order to learn more complex features.
For example, in [Dibra et al., 2017] and [Dibra et al., 2016] the authors show
how adding additional views of the human body produces better results
in estimating their shape. In MVCNN [Su et al., 2015], a 3D shape model
is rendered with different virtual cameras from fixed view points, and the
resulting images are combined with a view pooling operation and classified
with a CNN based architecture. In the recent [Kalogerakis et al., 2017], views
of 3D meshes are rendered from selected viewpoints in an initial step, and fed
to a network architecture which segments the meshes using projective CNNs
to project images onto the shape surface representation. These approaches
require a preprocessing step where the input meshes are rendered from a
set of views, using standard mesh rendering pipelines. Contrary to these
works, we introduce a differentiable module for rendering point cloud data
from different views on-the-fly from the input, which allows the network to
automatically learn the most useful view directions.

Image recognition using CNNs Our method is related to image based
CNN architectures, as we classify point clouds by first automatically ex-
tracting 2D images. CNNs have produced state of the art results in image
recognition and related tasks e.g. [Cimpoi et al., 2014; Donahue et al., 2014;
Girshick et al., 2014; He et al., 2015]. In particular, large image datasets avail-
able [Deng et al., 2009] allow CNNs to learn features that are general and
suitable for different operations. For 3D data, such large datasets are not
available and harder to obtain, which lies behind our idea of extracting 2D
features from 3D data. In our proposed technique, we classify our extracted
2D views with ResNet [He et al., 2015], and utilize ImageNet [Deng et al.,
2009] as a dataset for pre-training.

16

C H A P T E R 3

Example Based Repetitive Structure
Synthesis

In this chapter, we present an example based geometry synthesis approach
for generating general repetitive structures. Our model is based on a mesh-
less representation, unifying and extending previous synthesis methods.
Structures in the example and output are converted into a functional repre-
sentation, where the functions are defined by point locations and attributes.
We then formulate synthesis as a minimization problem where patches from
the output function are matched to those of the example. As compared to
existing repetitive structure synthesis methods, the new algorithm offers
several advantages. It handles general discrete and continuous structures,
and their mixtures in the same framework, as shown in Figure 3.1. The
smooth formulation leads to employing robust optimization procedures in
the algorithm. Equipped with an accurate patch similarity measure and dedi-
cated sampling control, the algorithm preserves local structures accurately,
regardless of the initial distribution of output points. It can also progressively
synthesize output structures in given subspaces, allowing users to interac-
tively control and guide the synthesis in real-time. We present various results
for continuous/discrete structures and their mixtures, residing on curves,
submanifolds, volumes, and general subspaces, some of which are generated
interactively.

Part of this chapter is based on the work presented in [Roveri, 2014].

17

Example Based Repetitive Structure Synthesis

Figure 3.1: Our example-based structure synthesis method can be used to generate struc-
tures with discrete elements (left), continuous geometries (middle), and their
mixtures (right); on different domains such as surfaces, bounding volumes,
or curves.

3.1 Introduction

Repetition is an integral part of nature. Modeling repetitive structures is
thus essential but also challenging. A common approach is controlling the
large scale structure of an object by direct modeling, and letting an algorithm
automatically add the details based on an example from the repetitive struc-
tures [Ma et al., 2011]. This has led to many algorithms tailored to particular
applications with certain assumptions on the structures to be synthesized.
Each of these algorithms thus come with application dependent constraints,
which has been hindering content creation with general repetitive structures.

A classical approach for synthesizing repetitions is rasterizing them into
regularly sampled images and using neighborhood matching based tex-
ture synthesis methods [Wei et al., 2009] to compute colors for each output
pixel/voxel. This idea has also been extended to geometry synthesis for
certain geometry representations [Zhou et al., 2006]. However, this raster
based representation can only model a limited set of structures. Indeed,
many repetitions in nature consist of individual elements, which should
be kept intact. This has led to using geometric texture synthesis meth-
ods with discrete element textures, where individual elements and their
interactions are utilized to describe the repetitive structure [Ma et al., 2011;
Landes et al., 2013]. The discrete elements also allow resolution independent
synthesis with object instancing.

However, there remain important challenges for discrete element based tex-
ture synthesis. 1) Preservation of element shapes comes at the expense
of losing the ability of synthesizing continuous structures. With the cur-
rent techniques, it is not possible to handle mixtures of continuous and
discrete structures in general domains. 2) Representing textures with points
makes the distinction between structure and sampling ambiguous, un-

18

3.1 Introduction

like raster based textures. This translates into critical dependence on ini-
tial distribution of point samples, and non-trivial neighborhood definition
and matching methods, which can result in unsatisfactory synthesis espe-
cially when continuous structures are desired. 3) Content creation with
repetitive structures remains to be a challenge since the current methods
are designed for off-line texture synthesis and do not support interactive
artistic control for general domains [Ma et al., 2011; Landes et al., 2013;
Xing et al., 2014].

We address these challenges by proposing a new method for progressive
synthesis of general repetitive structures, unifying and extending previous
texture synthesis techniques. The structures can consist of mixtures of discrete
and continuous elements with arbitrary distributions and attributes, and
reside in general domains including curved submanifolds. This allows us
to extend the space of synthesizable structures, and robustly handle many
structures in a unified framework. The synthesis can be intuitively and
interactively guided by orientation and scaling fields defined along curves,
surfaces, or volumes in 2D or 3D. The output is then synthesized on the
fly automatically, allowing interactive texture brushing of general repetitive
structures.

This is made possible by adopting a meshless, point-based representation and
optimization framework, inspired by similar general approaches in geometry
reconstruction [Alexa et al., 2001] and physically-based simulation [Martin et
al., 2010]. The structures in the example and the output are first converted
into a functional representation. The functions are represented by point
samples with attributes extracted from the structures. The texture synthesis
problem is then formulated as a smooth minimization that matches patches
from the output function to those of the example function.

The generality of the meshless method allows us to seamlessly handle general
structures. The functional representation results in a better neighborhood
matching metric that correlates well with the visual quality of the synthesized
structures. The smoothness of the optimization problem leads to robust
minimization procedures with precise sampling control, which are essential
to avoid bad configurations leading to incomplete or distorted structures.
We show a variety of examples that range from classical texture synthesis to
mixtures of continuous and discrete elements synthesized on user controlled
curved domains, to illustrate the utility of our method in practice.

19

Example Based Repetitive Structure Synthesis

3.2 Overview

Our method is based on geometries represented by point samples with as-
sociated attributes (Section 3.3.1). In order to robustly compare the input
exemplar and the synthesized structure, point data is converted into a func-
tional representation encoding both the spatial configuration and attributes in
the form of a sum of Gaussians (Section 3.3.3). A similarity measure between
two smooth functions is then constructed (Sections 3.3.2 and 3.3.3). As in
previous neighborhood-based texture synthesis approaches, our optimiza-
tion alternates a matching step for local neighborhoods, and a merging step
where point locations and attributes are updated according to the matching
(Section 3.4.1). Our smooth formulation allows the computation of analytic
gradients, thus robust methods such as the gradient descent can be applied. A
multi-scale approach is used to optimize first large scale structures and then
fine details, and a dynamic sampling control strategy based on the presented
similarity measure guarantees the generation of a proper number of output
samples (Section 3.4.1). Several large-scale control possibilities are presented
in Section 3.5.1.

Our geometry representation based on points and attributes allows to model
different kinds of structures in the same framework. Continuous structures
(Figure 3.1 center, Figure 3.13) can be generated by storing a scalar or vector
as attribute at each point location (for example, the surface normal vector).
Discrete elements can be synthesized by either representing them with multi-
ple points or with single samples (Figure 3.1 left). With the same optimization
procedure, point data representing mixtures of discrete elements and contin-
uous structures can be processed (Figure 3.1 right, Figure 3.18).

20

3.3 Measuring Structure Similarity

3.3 Measuring Structure Similarity

In this section we first present a flexible and powerful geometric representa-
tion that allows us to define a robust similarity measure between the gener-
ated and the example geometries that serves as the basis for synthesis. We
strive to design a measure that accurately describes general structures and
their similarities, accepts an adaptive and efficient discrete representation,
and is smooth for utilizing robust and efficient optimization procedures.

3.3.1 Geometry Representation

In order to derive a general method for synthesizing new geometry from a set
of examples, we need a general way of representing arbitrary geometries. We
allow that they can have different dimensionality (1D/2D/3D) with possibly
non-manifold connections. One obvious option would be to choose simplicial
complexes (line segments, triangles, tetrahedra) as the underlying discrete
representation [Landes et al., 2013; Zhu et al., 2014]. However as we do not
want to deal with explicit connectivity between vertices, we choose to follow
the general point-based representation of Ma et al.[2011] and treat material
connectivity implicitly. That is, we represent all geometries by a set of tuples

{(xi, ai), i = 1..n} (3.1)

where xi 2 Rd are the point locations and ai 2 Rd0 is a vector of associated
continuous attributes and encode additional geometric or appearance infor-
mation. Choosing such a general representation allows us to cover a large
variety of different applications as we will see later.

However, unlike Ma et al. [2011], we do not use the point samples themselves
as the representation for the neighborhoods. Instead, we construct auxiliary
smooth functions defined in terms of these samples, and compute a matching
measure based on these functions, as we explain next.

3.3.2 Continuous Similarity Measure

In order to construct a robust similarity measure for our point-based geometry
representation, we first study the problem of measuring similarity between
two continuous functions and will then show how to perform a meshless
discretization in order to derive the actual numerical scheme.

Similarity Error Density Let us first consider the problem of measuring
local similarity between an output function f(x) and the example function

21

Example Based Repetitive Structure Synthesis

e(x). For this purpose, we define a window function w(.) to delimit a local
neighborhood (Figure 3.2, a) and a discontinuous mapping function m(x) that
matches the output domain point x to a matching point within the example
function. Using these definitions, we can define the similarity error density for
the location x and a current matching m(x) as

S(f(x), e(m(x))) =
Z

Rn
|f(x + s)� e(m(x) + s)|2 w(s)ds. (3.2)

The size and shape of the window function w characterize the actual matching.
Large support sizes demand for large scale structures to match well, while
smaller sizes only require small scale details to match.

Similarity Error The total similarity error is then given as

T =
Z

W
S(f(x), e(m(x)))dx, (3.3)

where W is a subspace in the output. The idea is now to minimize this total
error alternatively for m(x) by finding the best matching neighborhoods for
the current solution f(x), and the output function f(x) by finding the most
similar output to the example, given the matching. Hence, we follow the
common idea of neighborhood matching based texture synthesis methods,
but reformulate it in a general way to handle different types of structures
in the same framework. Once the structures in the example and output are
converted into their smooth functional representations, the measure T gives
a robust two-way matching.

3.3.3 Discrete Similarity Measure

Similarity Error Density In order to turn this continuous minimization prob-
lem into a numerically treatable form, we need to discretize the functions
as well as the integrals involved. We achieve this by a general geometry
representation, and a combination of analytic and numerical integration with
meshless methods. Both output and example geometries, {(xi, ai), i = 1..n}
and {(ei, bi), i = 1..m} respectively, are transformed into corresponding
continuous functions as

f(x) = Â
i

aig(x� xi, s)

e(x) = Â
i

big(x� ei, s), (3.4)

that is, we place Gaussians g(x, s) = e�|x|2/s2 at all point locations that
‘smear’ the point attributes into their neighborhood (Figure 3.2, b). Switching

22

3.3 Measuring Structure Similarity

(a)

(b)

(c)

(d)

w w

fe

e f

fe

f

m(x) m(x) + s x x + s

x1 x2 x3 x4e1 e2 e3

m1 m2 m3 q1 q2 q3

x1 x2 x3 x4

Input example Output

Figure 3.2: (a) The example and output functions, (b) their discrete representation as a
sum of Gaussians, (c) the quadrature points qk and their matching points
mk, (d) the final matched output function, which now has the same shape as
the example function e in the region defined by the window function w.

23

Example Based Repetitive Structure Synthesis

to a sum-of-Gaussians representation for the point data allows us to encode
both their spatial configuration and attributes into the shape of continuous
functions and to use the presented similarity measures for continuous func-
tions. As shown in Appendix A.1, the similarity error density (3.2) can be
analytically evaluated by representing the window function w with a Gaus-
sian or a box function. If the latter is chosen, the evaluation results in the
discrete error density measure

S(f(x), e(m(x))) =
Âij(ai · aj)g(xi � xj,

p
2s)

�2 Âij(ai · bj)g((xi � x)� (ej �m(x)),
p

2s)

+Âij(bi · bj)g(ei � ej,
p

2s), (3.5)

where the points ei and xi are in the neighborhood defined by the window
function, for the example and output domains, respectively, and the equal-
ity is up to a constant. Hence, the functions f and e are replaced by their
representations with the sets of point locations and attributes. The resulting
discrete similarity measure for the case when a Gaussian of width d is chosen
for representing the window function, i.e., w(s) = g(s, d), is shown in Ap-
pendix A.1. For numerical efficiency, we usually truncate Gaussians below
a given threshold value, making similarity density measure local. Thus, we
only consider the points that are 3d distance apart from x in the output, and
m(x) in the input example.

Similarity Error This discrete similarity density can now be used to measure
the total similarity T between a synthesized point set and the example point
set as defined in Equation 3.3. This requires computing another integral
over all points in the output domain. Note that the first and last terms
in Equation 3.5 do not depend on x. However, the second term involves
the mapping function m(x) that assigns each point x 2 W to the point in
the input example domain with the matching neighborhood. This makes
it impossible to take the final integral analytically. Hence, we resort to a
numerical scheme where the output domain W is sampled with a regular
grid. Since the integrand is a sum of shifted Gaussians of standard deviation
s, it has a fixed effective bandwidth, allowing us to use an optimal spacing
between the grid points.

Let qk denote the background integration points, all having a constant inte-
gration domain associated (Figure 3.2, c, right). Furthermore, let mk = m(qk)
the associated best matching location for the quadrature points in the ex-
ample domain (Figure 3.2, c, left). This then leads to the discrete similarity

24

3.3 Measuring Structure Similarity

error
T = Â

k
S(f(qk), e(mk)), (3.6)

which compares the geometric neighborhood structure in the output around
each quadrature point qk to the best matching corresponding neighborhood
in the example set.

3.3.4 Discussion

The proposed similarity error T measures how well each neighborhood in the
output matches to its neighborhood in the input example. Thus, it follows
the patch based texture synthesis approaches that rely on a Markov Random
Field model [Kwatra et al., 2005]. Similar to these raster based approaches, it
conceptually compares functions defined in the whole domain. However, the
free parameters are no longer only the functional values, but also the point
locations themselves. Similar to meshless surface reconstruction methods, the
functions are adaptively represented such that only relevant structures are
sampled. Representing structures with point samples gives us full flexibility
in handling structures of different kinds and their combinations. This is
contrast with methods that rely on certain assumptions on what the point
samples represent and design the matching metrics accordingly [Landes et
al., 2013; Lu et al., 2014; Xing et al., 2014].

Neighborhood matching metric We thus share the generality of point sam-
pling based discrete element texture synthesis methods [Ma et al., 2011;
Ma et al., 2013]. In contrast to these methods, however, we do not directly
match difference vectors in the neighborhoods. Defining matching met-
rics directly on points is challenging, as the matching scores critically de-
pend on the sampling in that case. Indeed, previous works [Ma et al., 2011;
Ma et al., 2013] have a one-way matching score, where each vector xj � xi
for xj in the neighborhood of xi in the output is matched to the most similar
vector in the input example. This implies that for output point sets where
the points do not completely represent the desired structures, the matching
energy will still be low, as illustrated in Figure 3.3. In contrast, our energy
utilizes a two-way matching, leading to lower energy values only when the
neighborhoods in the output and input are structurally similar (Figure 3.3).

The sampling dependency of previous methods [Ma et al., 2011; Ma et al.,
2013] also means that the neighborhoods of only sample points are matched.
Thus, depending on the sampling, some neighborhoods might be left un-
matched, if they are covered with less samples. In contrast, we separate the

25

Example Based Repetitive Structure Synthesis

Example Output 1 Output 2

Figure 3.3: We show two different outputs for each input example. For both outputs
1 and 2, the neighborhood matching energy defined by Ma et al. [2011;
2013] stays the same due to the one-way matching the pairs difference vectors
from the output to those in the input example. In contrast, our method has 2
times higher energy for the wrong output 1 for each example.

structure representation (sample points xi and ei), and neighborhood match-
ing (quadrature points qk), enforcing that all neighborhoods are matched
equally well, regardless of the sampling. With the previous methods, the qk
and mk are constrained to be among xi and ei, respectively. We will see in
Section 3.6 that this results in better preservation of local structures, which is
very important especially when continuous structures in general domains
are to be synthesized.

Attributes The representation of output and example functions in Equa-
tion 3.4 is different from previous attribute representations, where they are
treated as additional point locations. Treating attributes as scaling factors
for the Gaussians significantly reduces the dimensionality of the matching
problem, especially when the attributed ai live in high dimensional spaces.
Since we regularly sample the output domain, this is an important considera-
tion. Furthermore, we do not need to consider relative scaling between the
spatial domain and the attributes, as in the previous works [Ma et al., 2011;
Ma et al., 2013]. If the attributes are discrete, we snap to the closest discrete
value after each optimization step, as described in Section 3.4. Equation 3.4 im-
plies that putting two points at the sample location, or doubling an attribute

26

3.3 Measuring Structure Similarity

(assuming it is scalar) at that location results in the same representation. As
we elaborate in the next section, we avoid such cases by carefully controlling
the density of the points, and optimizing for the attributes and the point
location separately.

Smooth approximation The smooth representation with sums of Gaussians
(Equation 3.4) allows us to compute analytic integrals and derivatives, which
are essential for efficient and accurate synthesis via well-established opti-
mization methods, as we will illustrate in the next sections.

27

Example Based Repetitive Structure Synthesis

3.4 Structure Synthesis

The smooth representation of the structures allows us to formulate a robust
optimization procedure with standard optimization methods. Our optimiza-
tion follows the same basic iterative steps of previous neighborhood-based
texture synthesis methods: a matching step for the neighborhoods, and a
merging step that computes the positions of the sample points based on the
matched neighborhoods. However, unlike previous methods, the matching
measure is decoupled from the sampling points that represent the structures,
i.e., we have the quadrature points qk to measure how well the neighbor-
hoods match. This distinction allows us to robustly handle the matching step,
regardless of how the structures are sampled or represented.

Algorithm 1: Multi-scale Local-Global Solver
1 initialize xi
2 initialize window size d
3 loop multiScalelIterations times
4 loop samplingControlIterations times
5 loop localGlobalIterations times
6 matching: {mi} arg min{mi} T
7 merging: {xi}, {ai} arg min{xi},{ai} T
8 end
9 sampling control: add/remove xi based on P(·)

10 end
11 d a · d where a 2 [0, 1]
12 end

3.4.1 Multi-scale Local-Global Solver

To synthesize the output point set, we minimize the total error T defined
in Equation 3.6 with respect to the point locations xi and attributes ai. We
perform this optimization with an alternating approach as outlined in Al-
gorithm 1, where each step is guaranteed to decrease the similarity error
T.

Local Step: Matching We first compute the best match for each quadrature
point neighborhood by finding the matching mk for each quadrature point
qk. A notable property of this approach is that the matching point mk for
a given qk can be optimized independently of the other quadrature points
since ∂T/∂mk = ∂S/∂mk. This makes this local step of the problem highly

28

3.4 Structure Synthesis

[Ma et al. 2011] Ours [Ma et al. 2011] Ours

ExampleExample

Initialization Initialization

Figure 3.4: Different initializations computed by copying patches of different sizes from
the example to the output are used for each synthesis result. For all initializa-
tions, our method can generate accurate discrete (left) as well as continuous
(right) structures. The previous methods require copying of considerably
larger patches to initialize the synthesis, resulting in less randomness and a
patchy look as illustrated in the left-topmost synthesis result. When continu-
ous structures are present (right), even such large patches are not sufficient
to generate accurate structures.

parallelizable. We employ a simple gradient descent procedure to find the
best matching locations. The necessary gradients ∂S/∂mk are given in Ap-
pendix A.1. This optimization is prone to get stuck in a local minimum and
not finding the best match. Therefore we run this optimization with five differ-
ent random initial positions for mk and choose the best match. The repetitive
pattern of the input exemplar guarantees the existence of many good local
minima, thus we found five seeds to be sufficient for the optimization to
succeed.

Global Step: Merging After having found best matches for all quadrature
points, we adapt the output point set structure to be as similar as possible
to these local neighborhoods as demanded by the similarity metric, i.e., we
minimize T for all output points xi and attributes ai. This is a globally cou-
pled nonlinear optimization problem. We again employ a gradient descent
procedure where we sequentially optimize the points and attributes, one after
the other, in a Gauss-Seidel manner. Optimizing first for points xi, combined
with a sampling control stage as explained below, prevents points from clus-
tering to compensate for the difference in attributes. The required gradients
∂T/∂xi and ∂T/∂ai are provided in Appendix A.1.

Choosing such a simple optimization scheme allows us to parallelize this step

29

Example Based Repetitive Structure Synthesis

due to the local support of the window function w, and to have a consistent
decrease in the energy at each step. The non-convexity of our similarity
error function leads to the presence of multiple local minima. For the goal
of geometry synthesis this is expected, as there are multiple configurations
exhibiting the desired structures. It is in fact an advantage: having different
regions ending up in different local minima increases the diversity among
generated configurations.

Multi-scale Optimization Once the optimization converges sufficiently for
a given window size, the best concense has been found for this feature size.
However, this compromise can result in geometries where local features are
not close to example features. In order to fix the smaller scale structures,
we apply a multi-scale optimization where we decrease the window size
starting from the initially provided window size, such that the algorithm can
continue the descent to improve the local small scale details. By going from
larger to smaller scales, we make sure that the larger structures, which are
harder to reproduce, are matched first. The optimization then continues with
refinements in smaller scales.

Sampling Control So far we assumed that the regions in the output domain
always contain the optimal amount of points regarding the similarity measure,
i.e., that there is no mismatch in the number of points and that errors only

Input example

[Ma et al. 2011] Ours

Figure 3.5: Given the input example with points and normals (top), outputs point sets
are synthesized (second row) and reconstructed (third and fourth row) using
moving least squares surfaces [Öztireli et al., 2009]. Our representation and
synthesis algorithm accurately handles such continuous structures.

30

3.4 Structure Synthesis

occur from non-optimal point locations and attributes. However, too many
or too few points in a region impair our similarity measure, as for all point
sample based texture synthesis methods. If there are not enough points,
the structures in the example will be partially reproduced. Conversely, too
many points will result in excess points that force the optimization to destroy
structures to accommodate the extra points. In order to prevent this, we
employ a sampling control strategy during the optimization, based on the
same principle of our similarity error density measure.

In order to detect the deviation in the sampling density around a quadrature
point we define a sampling error density function

P(x, m(x)) =
Z

(f (x + s)� e(m(x) + s))w(s)ds (3.7)

that measures the signed difference between the output and example functions.
However, here f (·) and e(·) are special instances of the two functions where
ai = bi = 1 such that solely point locations are taken into account. If
P(x, m(x)) < 0 for a given point x, the function e in the example domain is
on average larger than the output f , implying removal of points. Similarly,
P(x, m(x)) > 0 calls for adding a point to match the functions f and e. For
robustness, we introduce a threshold e = 10�6 and add a new point in
vicinity of the quadrature point if P < �e, or remove an unnecessary point if
P > e. Once a new random point is added, we optimize for its location and
attribute, and decide to keep the optimized point or not by checking whether
the energy increases or decreases. The same check is performed for the case
of removing a point.

3.4.2 Discussion

Robustness to initialization Our two-way neighborhood matching, as dis-
cussed in Section 3.3.4, combined with the optimization algorithm presented
in the last section makes our method robust to initializations, as compared
to the previous methods that critically depend on the initial distribution of
points in the output [Ma et al., 2011; Ma et al., 2013]. We illustrate the robust-
ness to initialization in Figure 3.4. It is especially important for synthesizing
continuous structures (Figure 3.4, right), where even a single neighborhood
mismatch can lead to visually disturbing reconstructions (Figure 3.5).

Control sampling Dynamically controlling the sampling by adding and re-
moving points in the optimization is a key component for interactive synthe-
sis, where the user continuously extends the region he wants to texture by
brushing (Section 3.5.2). This is in contrast with the previous offline discrete

31

Example Based Repetitive Structure Synthesis

element texture synthesis methods. Adding/removing points for interactive
synthesis has recently been explored for 2D drawing applications [Xing et
al., 2014], and proposed as an optimization method for shape processes via
MCMC [Landes et al., 2013]. In contrast to these approaches, our technique
offers a general unified adding/removing strategy that is interleaved with
the optimization steps that move the points for accurate placement. Such
accurate placement takes considerably more time to obtain by merely adding
entities [Landes et al., 2013].

32

3.5 Controlling Structures

3.5 Controlling Structures

We control the synthesized structures in a two-scale approach, where the
small scale geometry is given by the example, and the large scale behavior
is controlled by the user, similar to the existing methods [Ma et al., 2011;
Ma et al., 2013]. The main strength of our structure definition and synthesis
method is that we can accurately handle arbitrary structures represented in
various forms. This turns our method into a powerful tool for users to create
complex general output structures interactively, in contrast to the previous
methods offline [Ma et al., 2011; Ma et al., 2013], or interactive [Kazi et al.,
2012a; Xing et al., 2014] methods. In this section, we first show how the
generic definition can be leveraged to generate and control various types
of output representations by simply changing what the point locations and
attributes represent. We then show how orientation and scaling fields can
be used to steer the structure synthesis by specifying geometries of different
dimensions.

3.5.1 Structure Representations

Our point samples can represent a variety of structures sparsely, ranging
from discrete to continuous. This allows us to handle different structures,
and their mixtures, in the same framework.

Continuous Structures Continuous geometry can be achieved by storing
scalar and/or vectorial point attributes. A scalar value, such as a point color
or radius, can be assigned and used for texturing and rendering, i.e., to extract
an isosurface. Equipping each particle with a vector-valued surface normal
attribute further allows to employ recent meshless surface reconstruction
techniques [Öztireli et al., 2009] within our framework to synthesize high-
quality surfaces.

Discrete Elements A discrete element can be represented by one or more
samples in our framework. Representation with a single sample works
well for cases where collisions are not a problem, such as the leaves in Fig-
ure 3.1. However, for more complex structures, we should have a sufficient
sampling [Ma et al., 2011; Landes et al., 2013]. We represent such discrete
elements with multiple points, often sampled on the surface of the element,
and sometimes equipped with normals. Points belonging to a single element
are added, removed, and moved together in the optimization, by treating
them as a single point, i.e. by setting xi = x0 for all points xi in the discrete
structure, and optimizing with respect to x0. Note that the optimization
procedure stays exactly the same as for the continuous structures.

33

Example Based Repetitive Structure Synthesis

Mixtures of Structures The common definition for continuous and discrete
structures allows us to handle their mixtures seamlessly, since both are repre-
sented and optimized in the same way. An example synthesis results with
structure mixtures containing discrete elements such as the organic structure
and the discrete gems is illustrated in Figure 3.17. We can also use mixtures
of discrete and continuous attributes if the structures require such a repre-
sentation. As an example, we used a grouping attribute for the points to
synthesize the structure in Figure 3.12, such that each bean is assigned a dif-
ferent grouping number. Note that this does not prevent the beans to exhibit
random variations, as they are still represented as continuous structures with
surface points and normals.

3.5.2 Large-scale Control

The large scale geometry is intuitively controlled by the user as orientation
and scaling fields are defined along curves, triangular surfaces, or bounded
volumes. We first discuss how our system can be extended to handle rotation
and scale, and then explain how these guiding geometries are defined.

Rotation and Scale We extend the optimization to account for orientation
and scale of the output geometry by adding a rotation R(x) and scaling factor
s(x) to the similarity error density shown in Equation 3.2, resulting in

S =
Z

|f(x + s)� e(s(x)R(x)(m(x) + s))|2 w(s)ds. (3.8)

Note that since R and s define fixed fields independent of the synthesized
function f, no modification to the derivatives and hence the optimization
procedure is required. As implied by the expression, in practice, we imple-
ment this optimization by rotating and scaling the example e for each point x.
Note that in the discretized energy, x is represented by the quadrature points,
and hence these fields are also stored at the quadrature points. Once they are
stored, we can then run the same optimization. The fields R and s depend
on the design metaphor utilized as discussed next. For scaling, the standard
deviation s of the Gaussians used to define the input and output functions in
Equation 3.4 needs to be adapted according to the scaling function s as well.

Brush strokes With our system we can generate new geometries by drawing
lines in 3D space. Quadrature points are automatically generated along and
near the drawn lines. The drawing direction can be exploited to automatically
set the rotation R of each quadrature point, such that the direction of the input
example is aligned with the stroke tangent. The scaling factor s is manually
set by the user as she/he draws the strokes. The user can also control the

34

3.5 Controlling Structures

Control Structure
C

ur
ve

S

ur
fa

ce

Vo
lu

m
e

Synthesized

Figure 3.6: The guiding fields can be defined along curves, surfaces, or volumes to control
the large-scale geometry.

brush size, which determines the region to be textured. Examples of this type
of control is given in Figures 3.6 and top, 3.7. The brush direction defines the
orientation, and the varying scaling factors smoothly change the pitch.

Triangular surfaces The guiding fields can also be defined on surfaces. As
an example, we used the principle curvature directions as an orientation field
in Figure 3.6, middle. Hence, we can add fine-scale details to existing surface
geometries with our technique, as we further illustrate in the next section.

Volumetric synthesis This naturally extends to 2D and 3D volumes, where
the fields are defined throughout the ambient space. The user can also utilize
a 3D surface to shape the output structure as shown in Figure 3.6, bottom, and

35

Example Based Repetitive Structure Synthesis

Figure 3.7: The structures grow in real-time as the user interactively brushes (orange
circle indicate brushing region).

the chair example in Figure 3.1. The quadrature points are sampled inside
the provided volume to avoid unnecessary computations.

36

3.6 Results

3.6 Results

3.6.1 Implementation and Parameters

For our representation, s gives the standard deviation of the Gaussians used
in defining the functions f. The parameter s determines the smoothness of the
matched functions, which in turn depends on the sampling of the structures.
If the structures are sampled densely in the input example, we can set it to
lower values to capture smaller scale details. Thus, in our implementation, it
is set to the average spacing between the points ei in the example. Once s is
set, the optimum spacing of the quadrature points qk in the output can be
analytically determined as the Gaussians are band-limited. The parameter d
determines the spatial extent of the window function w. The neighborhood
size and hence the d is provided by the user based on the expected scale of
repetitions.

In the synthesis algorithm (Algorithm 1), the optimization by gradient descent
is run till the average movement of the points xi is below a threshold e = 10�6

or the maximum number of iterations (we used 30) is reached. The step size
for the gradient descent is set to 0.03. After this optimization, each quadrature
point is checked for the condition on P as defined in Section 3.4.1, and a
point is removed or added accordingly. These steps are repeated for a new
shrunken neighborhood size by setting a = 0.9. Once the new neighborhood
size is half of the original size, the algorithm is stopped. We use a kd-tree to
speed up neighborhood queries.

3.6.2 Analysis and Comparisons

Our new matching metric combined with the synthesis algorithm with sam-
pling control leads to accurate reproduction of repeated patterns, independent
of the initializations and complexity of the structures (please see Sections 3.3.4
and 3.4.2 for discussions on these properties). We illustrate robustness to
initial conditions in Figures 3.4 and 3.5. As illustrated in Figure 3.4, top
row, utilizing the initialization strategy proposed by Ma et al. [2011] leads
to preservation of structures when continuity is not essential, although the
resulting synthesized point sets look quite similar to the initializations with
visible patches from the input example. However, continuous structures
cannot be accurately synthesized with this technique [Ma et al., 2011], as
shown in Figure 3.4, top row, right. Furthermore, even small changes in the
initial point sets can lead to convergence to bad local minima, resulting in
distorted structures with the method of Ma et al. [2011] (Figure 3.4, second

37

Example Based Repetitive Structure Synthesis

Example #input
points

#output
points

Run time
Us

Run time
Ma et al.

helix 600 100 4 s 12 s
sand 1600 7200 2 min 9 min
chair 1100 23000 6 min 40 min

Table 3.1: Run times for three different results.

and third rows). In contrast, our algorithm is not affected by the initialization.
This property is especially important if the resulting point sets are used for
reconstructing smooth surfaces, as shown in Figure 3.5.

Contrary to Ma et al. [2011], our smooth formulation does not require solving
a linear system at each iteration. We can thus achieve better performance
which also allows for interactive results, and use input examples with a large
number of points (usually more than 1000), which is essential for representing
continuous structures. Figure 3.8 shows the convergence behavior for a point
set of 1000 points for the input examples shown in Figure 3.7, top (2D),
and Figure 3.18, bottom (3D). Table 3.1 shows the run time for the results in
Figures 3.7 (bottom), 3.18 (bottom) and 3.1 (center), achieved with our method
and with the technique of Ma et al. [2011]. An interactive brush was used
for the helix example in Figure 3.7, thus the presented run time refers to the
points within the brush (around 100). We run our method until convergence,
and the one by Ma et al. [2011] for 10 iterations, as in the mentioned work.
The neighborhood size in these three examples was about one fourth of the
size of the input. Moreover, in Figure 3.9 we present the time required to run
one iteration for the two methods, with different input and output sizes. One
can notice that our method scales better with respect to the input and output
size, due to our simpler gradient descent based optimization. The results
were tested on a PC with an Intel i7-3770K CPU.

The neighborhood size, provided by the user, offers control over the scale of
expected repetitions in the input and output. We illustrate its effect on the
synthesis results in Figure 3.10. A bigger size can be used to preserve large
scale structures, while a smaller size leaves room for more randomness.

Our technique allows for interactive brushing in general domains, and synthe-
sizing mixtures of continuous and discrete structures. We provide examples
of such results in the next sections.

38

3.6 Results

50 100 150 200 25030 60 90D
is

c.
 s

im
ila

rit
y

er
ro

r T

#iterations #iterations

Figure 3.8: Discrete similarity error T as a function of the number of iterations for the
optimization of 1000 points in the output. On the left, the 2D grid input
in Figure 3.7, on the right, the 3D beach input in Figure 3.18, bottom is
analyzed.

6 6.5 7
log output size

lo
g

tim
e

5 6 7
log input size

ln
(ti

m
e)

Figure 3.9: Run time for one iteration for our method (blue) and Ma et al. [2011] (red).
On the left image, the input exemplar contains 100 points, and the output
structure varies from 300 to 3000 points. On the right, the output structure
contains 1000 points, and the input exemplar varies from 100 to 1000.

3.6.3 Synthesis Examples

We applied the technique to synthesize various structures ranging from
discrete to continuous in different domains including curves, surfaces, and
volumes. Some of the controlling domains are sketched interactively. For all
the continuous structures in 3D, except for the one in Figure 3.13, we used
points with normals sampled on the surface in the examples, synthesized
the output point cloud with normals, and reconstructed the results with a
moving least squares based surface reconstruction method [Öztireli et al.,
2009]. For the example shown in Figure 3.13, we reconstructed the isosurface
by placing a metaball (blob) at each point location. Locations and sizes of

39

Example Based Repetitive Structure Synthesis

(a) (b)

Figure 3.10: Influence of the neighborhood size in the input example (top, red circle) on
the synthesized result (bottom).

the metaball are optimized according to the input. For discrete structures in
3D, we simply kept the original geometry representation, e.g. if the points
are vertices of a mesh in the input example, the same mesh also appears in
the output. For some of the results, we also included colors as attributes, as
depicted in the corresponding figures.

In Figure 3.1, models of wooden sticks (discrete elements) have been placed
on the hut surface shown in red.

The output structures representing the intertwined helix in Figure 3.11 and
the chain in Figure 3.12 have been interactively generated along curves. The
user draws a curve and specifies orientation and scaling fields along it, and
the points are then synthesized accordingly. For smaller input examples (less
than about 500 points), the output can be synthesized in real-time with a
brushing interface, as in Figure 3.7 for the 2D grid and the 3D helix. The con-
tinuous surfaces have been reconstructed offline using moving least squares.
Synthesizing continuous surfaces onto a triangular surface is shown in Fig-
ure 3.14. The input surface, shown on the left in red, defines the global shape
of the structure, i.e., the deep-water waves. With our method we can synthe-

40

3.6 Results

size small-scale capillary waves onto the surface, improving the realism of
the water surface. In the same way, bumps have been generated on the stone
structure in Figure 3.15. An example of using bounded volumes is presented
in Figure 3.1. A 3D model of a chair is included, as shown on the right in red,
defining the global shape. The chair is sampled by quadrature points during
initialization, and then the volume is synthesized by an organic structure.
In a post-processing step, the borders of the reconstructed output structure
are cut using the same model of the chair. The structure in Figure 3.13 has
been generated using metaballs of different sizes. Branches at the extremities
are thinner, thus generated from smaller metaballs than the ones close to the
main branch. Like in the case for moving least squares, our control sampling
strategy is essential to reconstruct continuous, connected structures from the
point clouds.

As our method generalizes previous approaches, we can simply combine
discrete and continuous attributes. We present several examples to illustrate
such mixed structures. The ivy example presented in Figure 3.1 shows a
continuous ivy structure that is synthesized along a curve, similarly to the
intertwined helix (Figure 3.11). The leaves and flowers are discrete elements
represented as proxy samples in the input point set. Other examples using
mixed structures are shown for a stone wall, a decorative object with gems,
and a beach with shells in Figures 3.16, 3.17 and 3.18, respectively. For the
first two, around 20 points have been sampled on the surface of each discrete
element.

3.6.4 Limitations

The structure representation and thus the synthesis algorithm depends on
a smooth approximation with Gaussians. As described in Section 3.6.1, we
determine a global standard deviation given by s for the Gaussians based
on point spacing, to accurately capture the structures. This was sufficient for
reproducing a variety of structures as presented. However, an adaptive s can
further improve the results, especially when there are far apart tight clusters
of points in the input example.

Similar to the previous methods, we utilize a neighborhood size to capture
the repetitions in the input examples. As shown in Figure 3.10, this size is
an example-dependent parameter and thus should be provided by the user
for artistic control, reflecting his/her view of the scale of repetitions in the
example. However, if there are repetitions of different scales in the same
example, setting a single size can be detrimental for the preservation of the
repetitive structures at the other scales. In particular, we encountered this

41

Example Based Repetitive Structure Synthesis

Figure 3.11: The spiral is synthesized by
specifying orientation and
scaling fields along a curve.

Figure 3.12: The chain is synthesized
with surface normals as at-
tributes, and reconstructed.

Figure 3.13: Metaballs of different sizes
are used to reconstruct a
continuous surface along a
curve.

Figure 3.14: Capillary waves synthe-
sized onto coarse mesh
defining the deep water
waves.

problem only in some of the discrete-continuous mixtures we experimented
with, where samples representing discrete elements have a considerably
larger scale of repetitions than the ones composing continuous structures.
As illustrated in Figure 3.18, top, the arrangement of the sea shells (each of
which is regarded as a discrete element) is not fully preserved, since the scale
of the repetition of that pattern is much larger than that of the continuous
background. On the other hand, purely continuous or discrete exemplars are
not affected by this limitation, as these structures usually exhibit repetitions
of similar scales, allowing us to use our approach for further applications,
such as painting [Kazi et al., 2012b].

Moreover, like in the other neighborhood-based texture synthesis methods,
our exemplars are required to have a repetitive enough pattern. This allows
our matching optimization with multiple initial positions to avoid bad local
minima, which would distort the synthesized structures.

42

3.6 Results

Figure 3.15: Another example of syn-
thesizing continuous struc-
tures (bumps) on a large
scale surface.

Figure 3.16: The synthesized mixture of
discrete elements of stones
of lighter color and continu-
ous background wall.

Figure 3.17: Another example of synthe-
sizing mixtures of discrete
elements (gems) with con-
tinuous structures.

Figure 3.18: A mixture of discrete el-
ements (shells) are placed
on a continuous structure
(sand).

43

Example Based Repetitive Structure Synthesis

3.7 Discussion

We presented a new point-based method for synthesizing general repeated
structures given by an input example. In contrast to previous geometric
texture synthesis methods, our technique offers treating continuous and
discrete structures residing on general domains in the same framework,
exhibits better and initialization independent preservation of structures, and
allows for interactive repetitive synthesis of general structures.

Future work

We presented only a few applications of our method. It can be utilized
in all applications where repetitive structures are utilized for synthesizing
missing or augmenting existing structures. Some immediate applications are
surface and image reconstruction, completion, consolidation, inpainting, or
superresolution. The technique can be combined with physical or fabrication
constraints for simulations or fabrication oriented design. By adding a time
dimension, similar to previous methods [Ma et al., 2013], it can also be used
for animation generation, and in combination with physical simulations.

The technique is well-suited for interactive authoring of such difficult struc-
tures. We utilized a simple stroke drawing interface for real-time results. It
can be extended with more sophisticated and possibly application dependent
metaphors for interactive synthesis.

44

C H A P T E R 4
General Point Sampling with Adaptive

Density and Correlations

As observed in Chapter 3, many geometry structures are composed by dis-
crete elements and represented by their patterns. Common examples are the
distribution of trees in a forest or stones in a wall. Analyzing and generat-
ing sampling patterns are fundamental problems for many applications in
computer graphics. Ideally, point patterns should conform to the problem
at hand with spatially adaptive density and correlations. Although there
exist algorithms that can generate point distributions with spatially adap-
tive density or anisotropy, including our method in Chapter 3, the pair-wise
correlation model, blue noise being the most common, is assumed to be con-
stant throughout the space. Analogously, by relying on possibly modulated
pair-wise difference vectors, the analysis methods are designed to study only
such spatially constant correlations. In this chapter, we present the first tech-
niques to analyze and synthesize point patterns with adaptive density and
correlations. This provides a comprehensive framework for understanding
and utilizing general point sampling. Starting from fundamental measures
from stochastic point processes, we propose an analysis framework for gen-
eral distributions, and a novel synthesis algorithm that can generate point
distributions with spatio-temporally adaptive density and correlations based
on a locally stationary point process model. In addition to a more general
synthesis method matching neighborhood statistics, we extend our discrete
texture synthesis algorithm presented in Chapter 3 to handle distributions
with adaptive correlations, by providing multiple input example distribu-

45

General Point Sampling with Adaptive Density and Correlations

Sparser

B
lu

e
to

 g
re

en
 n

oi
se

1

2

PCF 1 PCF 2 Weight Map

Figure 4.1: Understanding natural or synthetic complex distributions such as the natural
distribution of trees based on the altitude on the left is a difficult problem
if the arrangement of the entities, resulting from pair-wise interactions, is
spatially-adaptive, as shown for a canonical example in the middle. Our
analysis technique provides an informative and comprehensive summary of
such distributions. The correlations in our framework are represented with
a set of extracted basis pair correlation functions (PCF 1 and 2, from local
patches 1 and 2 in the example in the middle), and the corresponding weight
maps illustrating how they are interpolated in space. Our synthesis algorithm
utilizes these measures to synthesize distributions with adaptive density and
correlations on Euclidean domains (right) or surfaces (left).

tions instead of a single one. Our techniques also adapt to general metric
spaces. We illustrate the utility of the new techniques on the analysis and
synthesis of real-world distributions, image reconstruction, spatio-temporal
stippling, and geometry sampling.

4.1 Introduction

Sampling patterns lie at the heart of many important applications in computer
graphics such as representing and integrating functions, anti-aliasing, image
and geometry sampling, physically-based simulation, non-photorealistic
rendering, object and texture placement, and modeling natural distributions.
It is thus essential to understand and control characteristics of sampling
patterns.

Point distributions are generally characterized by the density and the ar-
rangement of the sampling points given by the pair-wise correlations among
point locations, as higher order correlations are not needed to study most
patterns [Illian et al., 2008; Öztireli and Gross, 2012]. The most studied corre-
lation model is based on variations of blue noise patterns where the points

46

4.1 Introduction

are randomly distributed with a minimum distance between pairs [Ulich-
ney, 1988]. Adaptive density, locally anisotropic distributions, or patterns
on surfaces can be obtained by adapting the metrics used accordingly, while
keeping the correlation model fixed [Li et al., 2010; de Goes et al., 2012;
Jiang et al., 2015]. Recent works further explore matching a given target corre-
lation model [Zhou et al., 2012; Öztireli and Gross, 2012; Wachtel et al., 2014;
Ahmed et al., 2015], resulting in an explicitly controlled arrangement of
points. Another class of methods [Ma et al., 2011], among them our approach
in Chapter 3, is not based on matching an example statistics but rather individ-
ual neighborhoods of elements in the example. However, for all the synthesis
methods, the correlation model is assumed to be constant throughout the
space, resulting in translation invariant patterns up to local density variations.
The analysis methods are thus also designed for studying such translation
invariant correlations via statistics based on distributions of modulated dif-
ference vectors or distances between pairs of points and associated spectral
measures [Bowers et al., 2010; Wei and Wang, 2011; Öztireli and Gross, 2012;
Heck et al., 2013]. Hence, point patterns where the correlations are spatially
varying cannot be handled with the current common analysis and synthe-
sis techniques. In Figure 4.1, we show an example point distribution with
spatially-adaptive correlations, where the pattern transitions from blue to
green noise from left to right. Utilizing such patterns can lead to significantly
improved results for many applications in computer graphics.

In this chapter, we present novel analysis and synthesis techniques for point
patterns with adaptive density and adaptive correlations. Starting from the
theory of stochastic point processes, we propose a novel analysis method for
general point patterns, and a novel, general synthesis algorithm capable of
generating distributions with spatially adaptive density and correlations. The
presented statistics converge to provably discriminative measures from point
processes, and provide a comprehensive framework for point patterns. Addi-
tionally, we extend our discrete texture synthesis approach from Chapter 3 to
produce distributions with adaptive correlations which match our proposed
statistics. We illustrate how such patterns can improve image and geometry
sampling with various examples. In summary, our main contributions in this
chapter are the following:

• The notion of adaptive correlations, and a comprehensive analysis
framework for general point patterns. The proposed measures are
based on well-known statistics form stochastic point processes, and
reduce to previous analysis tools for the special case of translation
invariant patterns.

• Synthesis algorithms for point patterns with adaptive density and

47

General Point Sampling with Adaptive Density and Correlations

correlations on general domains. We apply the algorithm to generate
distributions on Euclidean domains 4.1 (right) as well as surfaces 4.1
(left). In contrast to the previous works, the algorithm offers full
control over the distributional characteristics.

4.2 Analysis of General Sampling Patterns

In this section, we introduce a theoretical framework to study general point
patterns, and a set of tools and diagrams that allow for qualitative and quan-
titative understanding of point distributions exhibiting spatially adaptive
density and correlations. We will illustrate that applying existing analysis
techniques does not yield meaningful statistics for this general case. We
start with the most general case where first and second order correlations are
considered, and move on to a locally stationary model that describes a wide
range of natural and synthetic point patterns.

4.2.1 Stochastic Point Processes

The field of stochastic point processes provides a general mathematical frame-
work to study point patterns. Intuitively, a point process is a generating
algorithm or mechanism for a set of distributions that share common charac-
teristics. We utilize this theory as a basis to understand and analyze general
point patterns with adaptive correlations. We present a brief introduction
to point processes, we refer the readers to the excellent books [Møller and
Waagepetersen, 2004; Illian et al., 2008] for a more in-depth discussion.

The main construct to define a point process is assigning a random variable
X(B) to every Borel set B 2 D for a given domain D. Hence, a point process
is described by infinitely many random variables. If we fix some sets Bi,
we can stack all random variables for these sets to have the random vector
X = [X(B1), · · · , X(Bn)]T. The point process can then be fully defined by the
joint probability P(X(B1) b1, · · · , X(Bn) bn) of the random variables at
Bi for all n and all different sets Bi. A familiar example of such a random
variable is the random number of points N(B) in B. We can then study the
joint probability of the random variables N(B1), · · · , N(Bn) to characterize
a point process. For the simplicity of the exposition, we will consider point
processes with D 2 Rd in the discussion below, but the concepts also extend
to general measure spaces.

General Gaussian processes. Gaussian processes cover almost all types
of point processes encountered in applications [Illian et al., 2008]. These

48

4.2 Analysis of General Sampling Patterns

processes are characterized by having a Gaussian distribution for the random
vectors X. Hence, the mean and covariance of the vectors are sufficient to
describe Gaussian processes. The importance of such processes is highlighted
by the term second order dogma in physics [Illian et al., 2008], as they very
accurately model all distributions found in nature. For these processes, the
first and second order moment measures and the associated product densities
are sufficient for a complete specification.

Product densities. All Gaussian processes can be described by the first
and second order product densities. The first order product density l(x)
is called the intensity of the point process, and intuitively measures the
average density of points at x over different distributions generated by the
point process. It is proportional to the probability of finding a point in an
infinitesimal volume dx around x such that l(x) = p(x)dx. The expected
number of points in a set B is given by the integral EXN(B) =

R
B l(x),

where the expectation is over different distributions X = [xi, · · ·], xi 2 D
generated by the point process. The second order product density $(x, y)
is proportional to the joint probability of finding a pair of points in dx and
dy, $(x, y)dxdy = p(x, y). This statistic determines the pair-wise correlation
model, which can be spatially varying for general point processes.

Stationary and isotropic point processes. Stationarity and isotropy are com-
mon intrinsic assumptions in the literature. For stationary point processes,
the generated distributions are translation invariant. Hence, l(x) is a con-
stant, and $(x, y) turns into $(x � y), a function of the difference vector
between two points in space. If we further assume rotation invariance,
then $(kx� yk) is a 1D function. For stationary distributions, the second
order product density is often expressed in terms of the normalized pair
correlation function (PCF) g(h) = $(h)/l2, where we defined h = x � y.
Estimators of PCF are used for analysis and synthesis of stationary distri-
butions in recent works [Wei and Wang, 2011; Öztireli and Gross, 2012;
Heck et al., 2013]. It is also closely related to the more commonly used
periodograms with a Fourier transform [Heck et al., 2013]. Utilizing this sim-
plified form of pair-wise correlations lies at the heart of the main limitation of
previous analysis and synthesis methods. Instead, we will utilize the general
$, and a model with local stationarity for our techniques.

4.2.2 Locally Stationary Processes

Analysis with general first and second order statistics is in general difficult as
the resulting measures are not intuitive, and hard to estimate unless many

49

General Point Sampling with Adaptive Density and Correlations

instances of the same pattern are available, due to the expectations EX in-
volved (we present a formal derivation of the estimators of product densities,
and related measures in Appendix A.2). For many cases, however, it can be
assumed that these measures exhibit a certain degree of smoothness in space.
We can then decompose the pattern into locally stationary patterns around
each point in space.

Within the neighborhood Nx of a point x, the pattern is then fully described
by a constant intensity lx, and a PCF gx(h). For a stationary distribution,
there can only be a global anisotropy due to the translation invariance of the
generated point distributions [Illian et al., 2008], such that the PCF can also be
written as gx(khk) once the neighborhood is reshaped with a matrix Mx by
applying it to all hij = xi � xj for xi, xj 2 Nx to cancel this global anisotropy
(we elaborate on how Mx can be computed in Appendix A.3).

Given a distribution with the set of points {xi, · · · } generated by an un-
derlying point process, the local intensity lx and PCF gx can be estimated.
The intensity has a natural estimator as we derive in Appendix A.2 with
l̂x = Âxi2Nx k(x, xi) for a normalized kernel such as the Gaussian k(x, xi) =

e�||x�xi||2/s2/(
p

ps)d. The smoothness of the estimation controlled by s can
be set to reflect the assumed density variation in the distribution.

The estimated PCF can be computed by utilizing an existing smooth estimator
for isotropic processes [Illian et al., 2008; Öztireli and Gross, 2012]:

ĝx(khk) =
1

l̂2|∂Vd|khkd�1 Â
xi 6=xj2Nx

k(khk � khijk)
aPNx

(hij)
, (4.1)

where |∂Vd| is the volume of a unit sphere in d dimensions, aPNx
is the

autocorrelation function of the indicator function for Nx, i.e. PNx(y) = 1
for y 2 Nx and zero otherwise, and k is a 1D normalized kernel (we use the
Gaussian).

The intensity in the whole domain can be simply set as l̂(x) = l̂x. Similarly,
the tensor field given by Mx can be interpolated or visualized as part of the
analysis. However, setting a different PCF for each point in space adds many
degrees of freedom, and hence makes qualitative and quantitative analysis,
as well as synthesis difficult. Hence, we would like to compress the space of
PCF’s present in a given distribution.

4.2.3 Spatially Varying Correlations

It has been observed in previous works [Öztireli and Gross, 2012; Heck et
al., 2013] that the space of possible PCF’s is rather limited, as valid PCF’s lie

50

4.2 Analysis of General Sampling Patterns

PCF Space Distribution
Figure 4.2: A distribution with adaptive correlations (left), and the space of extracted

PCF’s (right) projected into a two dimensional subspace via PCA. Our algo-
rithm detects the two indicated PCF’s as the dominant ones, and represents
all others as linear combinations.

Our Analysis Differential Domain Periodogram

G
ro

un
d

Tr
ut

h
E

st
im

at
ed

PCF 1 PCF 2 Weight Map

Figure 4.3: An input distribution (left) and its analysis via our method, differential
domain analysis [Wei and Wang, 2011], and periodogram. The patches that
correspond to PCF 1 and 2 are marked on the point distribution. The weight
map shown is w1 for PCF 1. We do not show w2 as it is equal to 1�w1. This
is a synthetic example, with ground truth PCF’s and weight maps provided.
Our analysis successfully recovers the dominant PCF’s and weights. Since
the previous analysis methods mix different correlations, they cannot provide
an informative summary.

on a subspace of low dimensionality (effectively 2 or 3 dimension). Due to
this low dimensionality, all PCF’s can be represented as linear combinations
of a few basis PCF’s. Although Öztireli and Gross [2012] have shown that
the subspace of the PCF’s is approximately linear, our only assumption for
analysis is its low dimensionality such that PCF’s can be represented as linear
combinations of a few basis PCF’s (for synthesis, we will need the stronger
linearity assumption, as elaborated on how we do synthesis). We thus would
like to summarize the variability in Nx with a PCF dictionary, and express
the rest of the PCF’s as linear combinations of the dictionary elements.

In practice, we will have a finite number of neighborhoods Nx around certain
points ck in space. These points can be regarded as measurement points for

51

General Point Sampling with Adaptive Density and Correlations

the computed statistics. The corresponding PCF’s ĝk(khk) at ck’s are sampled
and stored as vectors gk.

Given these gk, we would like to compute L basis PCF vectors gl such that all
others can be represented as a linear combination of these PCF’s. Note that
we would like to have a compact representation with an as small as possible
L, while tolerating a certain error. The gl’s should also provide a meaning-
ful summary of the adaptive correlations. We thus do not utilize sparseness
based dictionary learning algorithms that generate an over-complete represen-
tation. Since there can be a variety of PCF’s appearing in a given distribution,
a simple clustering algorithm such as k-means clustering will also not give
meaningful summaries, as can be observed in Figure 4.2.

Instead, we adopt an approach that is motivated by the structure of the PCF
space. Öztireli and Gross [2012] have observed that the main variation in the
PCF space is due to the degree of irregularity in the generated distributions,
and most variance can be captured with a few components. We thus first
perform a PCA on the vectors gk and reduce the number of dimensions such
that we retain 99 percent of the variance. This typically results in three com-
ponents, the first capturing most of the variance. We then choose the PCF’s
that are at the two ends of the line segment formed by the first component as
shown in Figure 4.2. If these are already very close, we can conclude that the
distribution is stationary. The weights wkl are then computed as described
below such that gk = Âl wklgl + ek. If maxk kekk > eg for a threshold eg, the
PCF that is furthest away from the already added PCF’s is added. These
two steps are performed alternately till the maximum error becomes suffi-
ciently small. For each gk, the weights are computed by solving the following
optimization problem for wkl with quadratic programming:

min

�����gk �
L

Â
l=1

wklgl

�����

2 L

Â
l=1

wkl = 1, wkl � 0. (4.2)

We illustrate an example of the chosen PCF’s, corresponding patches, and
weight maps for those PCF’s in Figure 4.3. This is a synthetic example
generated by our synthesis method we describe in the next section and thus
comes with known ground truth PCF’s and weight maps. Our analysis
accurately figures out the two main PCF’s and their interpolation weights.

4.2.4 The Analysis Framework

Our framework thus estimates spatially adaptive density, the basis PCF’s
gl, and the corresponding interpolation weights in space. We plot some of

52

4.2 Analysis of General Sampling Patterns

1

2

PCF 1 PCF 2

1 2

Figure 4.4: (Top) From left to right: a real-world distribution of sheep, intensity map, and
weight maps for the two marked patches. (Bottom) Zoomed regions around
the marked patches.

these diagrams for synthetic examples in Figures 4.1 and 4.3, and for a real
example with distributions of locations of sheep acquired from a real scene
in Figure 4.4. Note that before computing the PCF’s, local anisotropy can
be canceled as explained in Appendix A.3, and the PCF’s gk are normalized
with respect to density (Equation 4.1). Thus, we get the same PCF regardless
of these degrees of freedom.

Discussion. The density estimate we compute is closely related to previous
works that utilize such local modulations of difference vectors or distances [Li
et al., 2010; Wei and Wang, 2011]. The mentioned methods compute these
directly from the spaces or functions to be estimated, e.g. replace Euclidean
distance with geodesic distances, or compute the anisotropy tensors from an
image to warp the difference vectors. After local normalization with density
and anisotropy, previous analysis methods compute global statistics such as
PCF’s or periodograms on the whole dataset, leading to blending of different
correlations, as discussed above and shown in Figure 4.3. In contrast to
these approaches, our analysis technique can separate the important compo-
nents of correlation models and density apart, and have spatially-adaptive
correlations explicitly built in for handling complex point distributions.

53

General Point Sampling with Adaptive Density and Correlations

Especially for clustering distributions, there is an inherent ambiguity on
whether the intensity or PCF is causing the fluctuations in the density of
points [Illian et al., 2008]. Hence, given a distribution such as in Figure 4.3, it
is hard to disentangle these two different statistics. Our strategy is letting the
user assume a certain degree of smoothness for intensity, such as the one we
show in Figure 4.4.

In practice, in this work we assume local isotropy, as we work with small
neighborhoods and we did not encounter locally strongly anisotropic distri-
butions in practical cases. In Appendix A.3, we describe how strong local
anisotropy can be handled with standard methods from point processes.

Parameters. For computing the PCF’s we use the same parameters as in a
previous work [Öztireli and Gross, 2012]. All parameters are relative to rmax,
the minimum distance between pairs of points for the maximum packing
of points in a domain [Lagae and Dutré, 2008]. We then set s = 0.25 for
the Gaussian kernel in Equation 4.1, the lower and upper limits for the PCF
to ra = 0.01s and rb = 2.5, respectively, and use a regular sampling of khk
with 100 samples to convert gk(khk) to the vectors gk. The smoothness of
the intensity l(x) is a user given parameter, to disambiguate the intensity-
correlation duality as described above.

4.3 Synthesis of General Sampling Patterns

We present a general synthesis algorithm following the same model of local
stationarity as elaborated on in the last section. We assume that the intensity
lk and PCF gk(r) = gk(khk) for each neighborhood Nk are provided or
estimated from one or more example distributions with the proposed analysis
framework. Then, the main idea of the synthesis algorithm is to generate a
new distribution with statistics matching these target statistics.

4.3.1 The Synthesis Algorithm

We assume that we are given a domain and n points to be distributed to
match the target characteristics. The intensity function l(x) can be scaled
with a constant factor such that its integral is equal to n over the domain. For
each neighborhood Nk, the fitting error can then be computed as:

Ek(Xk) =
Z rb

ra

⇣
gE

k (r)� gk(r)
⌘2

. (4.3)

54

4.3 Synthesis of General Sampling Patterns

Figure 4.5: Adaptive neighborhoods (right) can provide more accurate matching of target
sample statistics than isotropic ones (left).

Here, Xk denotes the set of sampling points within Nk, gE
k (r) is the estimated

PCF from these points with the estimator in Equation 4.1, and gk(r) is the
target PCF to be matched to. The gradient ∂

∂xi
Ek is then computed and

summed over all neighborhoods to get the final gradient D i = Âk
∂

∂xi
Ek for

point xi. We then perform a gradient descent xi = xi � lD i, where we choose
l with a line search at each iteration. Similar to the previous section, we
discretize the PCF’s such that the integral in Equation 4.3 turns into a sum
(we explain how this can be adapted to handle strong local anisotropy in
Appendix A.3).

Size and distribution of neighborhoods We assume that the domain is di-
vided into overlapping spherical neighborhoods Nk around center points ck.
The volume |Nk| of each neighborhood is computed such that there are the
same number of points in each Nk, by setting |Nk| = an/lk for a constant
factor a and the total number of points n. Since we assume that the point
process is locally stationary in Nk, the expected total number of points in
Nk is then given by [Illian et al., 2008]

R
|Nk| l(x) = |Nk|lk = an. Note that

by fixing the number of points in each neighborhood, we also fix the rmax
(Section 4.2.4, parameters) when estimating the PCF’s.

To get correctly blended characteristics, each neighborhood should also see
points belonging to the others. For a neighborhood of radius Rk, we thus
retrieve all sample points that fall into a hypersphere of radius Rk + rb when
computing the gradients ∂

∂xi
Ek for all xi 2 Nk. For constant Rk = R, the

neighborhood centers ck lie on a regular grid. The spacing of the grid is set as
T = R/2.

55

General Point Sampling with Adaptive Density and Correlations

Adaptive neighborhoods In the case of adaptive lk, the neighborhood size
and thus Rk changes. Decreasing the spacing, i.e. having neighborhoods such
that T R/2, does not alter the synthesized distributions, but degrades the
performance. Hence, we utilize a conservative greedy non-uniform sampling
of ck for efficiency. We start from a sparse grid such that T = mink Rk. Each
grid point ck is then subdivided, starting from ck with the largest lk, such
that for each one-ring neighbor T Rk/2.

Discontinuities in the density function violate our assumption of local smooth-
ness in isotropic neighborhoods. For these cases, it is important to have an
adaptive neighborhood that aligns itself along the discontinuity and thus
avoids it. Typical examples of such cases are stippling images when the inten-
sity changes abruptly, or geometry sampling when there are sharp features.
For such discontinuities, we utilize adaptive neighborhoods computed by
confining the neighborhood to one part of the discontinuity. For images, a
bilateral filter on intensities, and for geometry on surface normals is first
applied to cluster similar pixels/geometry points. Then, any neighborhood
that contains different clusters is subdivided along the discontinuity. An
example where we apply isotropic and adaptive neighborhoods for geometry
sampling with blue noise is shown in Figure 4.5.

Initialization We use a simple initialization strategy with random sampling.
Around a randomly chosen neighborhood center ck, we iteratively pick a
random point, and keep this point if all neighborhoods containing this point
have not reached the desired number of points. We then discard the ones that
already contain enough points, and continue with random sampling around
the remaining neighborhood centers.

Non-ergodic processes So far we have considered ergodic distributions
where the statistics of the underlying point process can be estimated by
observing a single distribution. There exist stationary point processes that
are non-ergodic [Illian et al., 2008]. An important example that we encounter
in practice is the locally regular distribution, where the points lie on a regular
grid with fixed orientation but random global translation. Such a distribution
is referred to as uniform or isotropic jittering in the literature [Ramamoorthi
et al., 2012; Öztireli, 2016]. The statistics for this case cannot be extracted or
matched to by considering just a single distribution, as it will have a constant
global translation. In other words, expected values computed over many
distributions are not equal to those over a single larger distribution. This is
problematic for our synthesis algorihm as the output statistics are extracted
and matched for a single distribution, the synthesized distribution. Thus,
for locally non-ergodic stationary processes, we need a different synthesis

56

4.3 Synthesis of General Sampling Patterns

PCF

Figure 4.6: A blue noise pattern [Balzer et al., 2009] (left) is used as the input for our
texture synthesis approach (center) and for our PCF based synthesis algorithm
(right).

approach. For these cases, we propose an extension of our discrete texture
synthesis algorithm from Chapter 3, as we elaborate in the next section.

4.3.2 Extension of the Discrete Texture Synthesis Algorithm

We propose to extend our discrete texture synthesis algorithm from Chapter 3.
For ergodic distributions, this method provides equivalent results to those
generated by the synthesis algorithm presented in Section 4.3.1, as the same
statistical measures are assumed for both cases. An example can be seen in
Figure 4.6. For all non-ergodic synthesis results in this chapter, i.e. where
locally regular distributions need to be generated, we employ this method.

Although our original discrete texture synthesis algorithm can synthesize
output point sets with general repeated patterns, these patterns are deter-
mined by a single example. Hence, it can be used to synthesize a stationary
distribution with fixed pair-wise correlations, while the density can vary in
the output space by scaling the example. Having an example distribution
with spatially-adaptive correlations will not generate adaptive correlations
in the output since the neighborhoods from the example are assumed to be
repeated throughout the output space. Hence, the main challenge of adaptive
synthesis is revising the technique to allow for multiple examples and their
combinations.

Adaptive Correlations In order to synthesize distributions with adaptive
correlations, we thus extend the similarity error density from Equation 3.2 to

57

General Point Sampling with Adaptive Density and Correlations

consider multiple input functions and weight their importance depending
on the location in the output domain. In this case, instead of having a single
example function e, we have multiple functions ep.

For an arbitrary point x in the output domain, there is a weight wp(x) that
describes how much the example ep is influencing that point. Our weighted
similarity error density then computes a weighted average of the local similari-
ties between the output function and multiple input functions, as

Sw(x) = Â
p

wp(x)S(f(x), ep(mp(x))) (4.4)

where S(f(x), ep(mp(x))) is the similarity between the output function f , and
the p-th input function ep, and mp is the matching function from the output
domain to the domain of ep.

In the general synthesis algorithm in Section 4.3.1, we define a PCF at each
point x as a linear combination of basis PCF’s. The example distributions
that define ep encode these basis PCF’s, and the weights wp correspond
to the computed or given weights for linearly combining the basis PCF’s.
Hence, instead of having a PCF at each point in the output domain as a linear
combination of the basis PCF’s, we have the corresponding basis example
distributions and their linear combinations given in Equation 4.4.

Adaptive Density and Orientation The original discrete synthesis method
accounts for adaptive density and orientation by introducing a scale factor
s(x) and a rotation matrix R(x) defined at every location in the output do-
main, which scale and rotate the example domain before matching. After
computing the sizes of the neighborhoods Nk according to the given local
density lk as described in this chapter, we adjust the scaling field s such that,
at each neighborhood, we have approximately the required number of points
an. The rotation for each neighborhood is used to rotate the corresponding
examples for that neighborhood before synthesis. We use the same scheme as
in Section 4.3.1 for placing the neighborhood center points ck.

Geometry Sampling and Local Anisotropy The original method allows to
define guiding fields in 3D to accordingly orientate the input example and
synthesize a distribution on a curved suface.

For small anisotropy factors, the original method allows to synthesize
anisotropic distribution by simply scaling the input example. For strong
anisotropy, the method can be extended to utilize anisotropic Gaussians.

Limitation The main limitation of this discrete texture synthesis based algo-
rithm results from using actual example distributions rather than extracted

58

4.4 Results

statistics as we do in Section 4.3.1. A well-known limitation of such neighbor-
hood based texture syntehsis approaches is that they cannot handle repeti-
tions at multiple scales, as observed in Chapter 3. For the case of synthesizing
point distributions, this means that clustered distributions, where the points
in each cluster follow a certain distribution, and the clusters themselves
follow another distribution, may not be reliably synthesized. In practice,
we have observed that we still get visually accurate results for these cases.
However, the statistics deviate from those of the examples slightly.

4.4 Results

We test our analysis and synthesis algorithms for a variety of distributions on
Euclidean domains and curved spaces, and illustrate a series of applications
for these generalized sets of distributions.

4.4.1 Analysis and Synthesis of Complex Distributions

We illustrate several examples with adaptive density and correlations in Fig-
ures 4.1, 4.3, 4.4. The distributions in Figures 4.1 and 4.3 are synthesized with
known characteristics, i.e. PCF’s and weight maps. Our analysis recovers
the ground truth parameters, and our synthesis reproduces local PCF’s very
accurately. Notice that, while linear transitions in PCF’s may not translate
into visually linear transitions of distributions, our algorithm synthesizes
new distributions with the same visual transitions of the given example
distribution. In Figure 4.4, the characteristics of a sheep distribution are
extracted from a real-world distribution. It can be observed that they form
more regular structures near the fences on the left. We then take these weights
and warp the one for PCF 1 to simulate a circular fence in Figure 4.7, and
synthesize a distribution. The result accurately reproduces the distributional
characteristics of the sheep in accordance with the environment.

A similar analysis and synthesis result is shown in Figure 4.7, second and
third rows, for the distribution of trees in a forest. Instead of extracting from
existing natural distributions, the characteristics can also be specified by
pre-determined rules. In Figure 4.1, the trees are forced to form more regular
distributions at lower altitudes, in accordance with real-world observations.

59

General Point Sampling with Adaptive Density and Correlations

PCF 1

PCF 1 - Extracted

PCF 1 – Input to Synthesis

Synthesized

Analyzed

Synthesized

1

Figure 4.7: (Top) The extracted PCF’s and weight maps from a real-world distribution of
sheep (Figure 4.4) are used to synthesize a new distribution with a new drawn
weight map for PCF 1. (Bottom) Distribution of trees in a forest is analyzed,
and a new forest with a custom weight map for PCF 1 is synthesized.

60

4.4 Results

4.4.2 Image Sampling and Reconstruction

Being able to control local characteristics of point distributions opens new
ways of improving irregular sampling for function reconstruction and rep-
resentation. We illustrate an example to image plane sampling and recon-
struction. Instead of using patterns with anti-aliasing properties such as blue
noise, or merely adjusting density or metrics based on image content, we
propose to steer both the density and correlations in order to obtain better
image reconstructions from irregular samplings.

The main idea is that by distributing sampling points regularly along main
image edges, and ensuring that we do not run into aliasing artifacts by a
smooth transition to blue noise, we can get sharper and artifact-free recon-
structions. We illustrate examples where we compare to a blue noise pattern
and the bilateral blue noise sampling of Chen et al. [Chen et al., 2013] in
Figure 4.8. We first distribute samples with different methods. For our syn-
thesis algorithm, we extract the edges in an image with Canny edge detector,
and smooth them to obtain the weighting map (Figure 4.8, left, insets) for
the regular distribution. This is used to interpolate between the regular and
blue noise distributions. We align the regular distributions with the edges by
computing the local orientation of the closest edge.

Each sample carries a color value. These samples are used to reconstruct an
image. For the reconstruction, we use isotropic Gaussian kernels (Figure 4.8,
top) and iterative bilateral filtering (Figure 4.8, bottom), when comparing
to blue noise and Chen et al. [Chen et al., 2013], respectively. Combination
of regular and blue noise sampling leads to significantly improved results,
especially around the edges, for both cases.

4.4.3 Image and Video Stippling

Such rules can also be defined for image stippling to generate alternative
stippling styles. In Figure 4.9, we illustrate how combinations of blue noise
and regular sampling can be utilized to generate stippled images with a novel
style. For these images, the intensity at a pixel determines the density of
the points as in previous works (e.g. [Fattal, 2011; Zhou et al., 2012]), and a
smoothed edge map is used as the weight map for interpolating between a
blue noise and regular distribution. Similarly to our image sampling results,
we first detect the main edges of the image, and set the weight associated with
the regular distribution for a neighborhood Nk to be inversely proportional to
the distance between ck and the closest edge, such that as we move away from
the edges, we get a more blue noise type distribution. The smooth transition

61

General Point Sampling with Adaptive Density and Correlations

Our Mixed Sampling Blue Noise Sampling Reconstruction Reconstruction

Bilateral Sampling Reconstruction Our Mixed Sampling Reconstruction

Figure 4.8: Input images (with extracted and smoothed edges used for determining the
weighting for regular sampling in our synthesis shown in the insets), sam-
pling results with blue noise, bilateral blue noise [Chen et al., 2013], and
our technique, and the corresponding recontructions with isotropic Gaussian
kernels (top) and iterative bilateral filtering (bottom).

between the two correlation models result in artifact-free distributions. This is
in contrast with distributions generated by simply defining separate regions
for blue noise and regular sampling as illustrated in Figure 4.9, middle. For
this case, additional structures appear around the edges, leading to visually
unpleasant results.

We can develop and extend other stippling styles as well thanks to the gen-
erality of the distributions we can handle. In Figure 4.10, we show a different
stippling style, which is closer to the one proposed by Kim et al. [Kim et
al., 2008]. In this style, we extract stylistic smooth edge maps [Kang et al.,
2007] (Figure 4.10 top, middle), and compute the weight map for regular
distribution (Figure 4.10 top, right) by dilating and smoothing them with a
Gaussian. To achieve a more regular looking style, we generate larger regular
regions compared to the previous results. We use the PCF of a blue noise
pattern [Balzer et al., 2009] as the second PCF, and blend between this and
the regular distribution using the computed weight map. The edge tangent
flow [Kang et al., 2007] (a smooth vector flow describing the salient edge tan-
gent direction in the image) is used to orient the regular distribution along the
extracted edges. The density is constant and the sizes of the dots are changed
depending on the intensity of the image, as in the work by Kim et al. [Kim
et al., 2008]. Finally, the extracted lines are shown together with the points.

Interpolating between oriented regular distribution close to the edges and
blue noise elsewhere allows us to avoid artifacts in regions were multiple

62

4.4 Results

Figure 4.9: From left to right: stippling with blue noise sampling, regular and blue noise
sampling with a sharp transition, and regular and blue noise sampling with
smooth transitions along the edges. The combination of blue noise and regular
sampling with smooth transitions avoid artifacts, while providing a novel
sharper stippling style, as illustrated in the insets below. This figure is best
viewed on a computer screen, please zoom-in to see the details clearly.

lines with different orientations intersect. Even though Kim et al. [Kim et al.,
2008] propose additional controls to handle such cases, their method, purely
based on regular distributions, can result in structured artifacts, as illustrated
in Figure 4.11, left. By placing blue noise at the intersections, our method
replaces these structures with blue noise instead (Figure 4.11, right).

Video stippling The neighborhoods in our synthesis algorithm can also be
extended in time to get spatio-temporally smooth sampling. For example,
in addition to blending a regular and a blue noise distribution, we set the
PCF of a neighborhood at frame t to be a combination of its PCF and that
of the same neighborhood in the previous frame. The weight assigned to
the previous frame determines the trade-off between temporal smoothness
and fidelity to the current frame. We found that a weighted average of PCF’s
where the PCF of the previous frame is given a weight of 0.25 works well in
practice, i.e. g = 0.25gt�1 + 0.75gt.

4.4.4 Geometry Sampling

Our synthesis algorithm extends to curved surfaces. Although recent
works [Jiang et al., 2015] explore adapting the spectrum of blue noise distri-

63

General Point Sampling with Adaptive Density and Correlations

Figure 4.10: Stippling with a different style. On the top row, we also show the extracted
edges, and the corresponding smoothed map for the regular distribution.

64

4.4 Results

Figure 4.11: Stippling a triangle using the method of Kim et al. [Kim et al., 2008] (left),
and our style (right).

butions on surfaces, to the best of our knowledge, there does not exist any
algorithm to generate distributions with general characteristics on curved
domains. We illustrate different noise patterns on surfaces in Figure 4.12. Sim-
ilar to the planar case, our technique allows to generate smooth transitions
between different patterns on surfaces as well, as shown for a combination of
blue and green noise in Figures 4.12 and 4.1. We use a simple approximation
of surface geodesics [Bowers et al., 2010] in the synthesis algorithm. For every
local patch, the distances are computed on the tangent plane of the surface,
and the points are projected back to the surface after being moved, similar to
previous techniques for blue noise sampling on surfaces [Öztireli et al., 2010].

4.4.5 Performance

Most of the shown 2D distributions contain about 5000 samples and were
generated with about 200 neighborhood centers ck. The stippling images with
adaptive density (zebra) contain about 25000 samples and were generated
with 10000 neighborhoods. The geometry sampling examples have up to
15000 samples and were generated with 2000 neighborhoods. To compute
the gradient of a sample, the PCF’s of all the neighborhoods in which the
sample is included are taken into consideration. Thus, the performance is
mostly influenced by the radii Rk and the spacing of neighborhood centers ck.
On average, 25 iterations were needed until convergence. Our unoptimized,
single core implementation takes up to one minute to complete one iteration
on a PC with an Intel i7-3770K CPU. The bottleneck of the algorithm is
the update of the PCF’s of all the neighborhoods containing a point, after
moving it, which could be optimized by computing some of the gaussians
only once to update multiple PCF’s. Furthermore, our synthesis algorithm
can be significantly speeded up by moving multiple samples simultaneously,
as they influence only their local neighborhood.

65

General Point Sampling with Adaptive Density and Correlations

Blue Green

Green Blue

Magenta Green & Blue

Green & Blue Magenta

Figure 4.12: Our synthesis algorithm can generate patterns with controllable character-
istics and transitions on surfaces.

66

4.5 Discussion

4.4.6 Limitations

Theoretically, it is possible that there exist point patterns that violate the local
stationarity assumption, with dense discontinuities of the first and second
order correlations throughout the space, although we have not encountered
such distributions in practice. As we elaborate in Appendix A.2, a more
general analysis is possible, but will lead to major difficulties since it requires
multiple instances of the same distribution.

When analyzing a given distribution, it is in general an ill-posed problem
to determine the intensity, anisotropy, and second order correlations without
certain assumptions. Our choices of a smooth intensity, a simple anisotropy
model, and interpolated PCF’s provide a set of such priors. Note, however,
that the forward problem of synthesis does not suffer from this limitation,
and we do not assume smooth density in that case.

Finally, our synthesis algorithm shares some of the limitations of previous
PCF based fitting algorithms [Öztireli and Gross, 2012], as it simplifies
to those for the case of a globally constant PCF. In particular, we cannot
guarantee a minimum distance between point locations when synthesizing
blue noise distributions, as the contribution of a pair of points can be blurred
out by many others in the PCF. This can lead to small fitting errors.

4.5 Discussion

We introduced novel analysis and synthesis techniques for point distributions
with adaptive density and correlations. The analysis framework provides an
informative view of complex distributions with extracted maps capturing
different distributional characteristics. Based on the same characteristics, the
synthesis algorithm combines adaptive density and correlations and extends
to general domains.

Sampling and anti-aliasing The proposed general framework offers new
possibilities for accurate representation or anti-aliasing of images, instead of
the generic patterns with blue noise properties. Exploiting the redundancy of
image patches, measures based on the local content such as edges, textures,
and other structures can be computed and utilized to steer the synthesis
algorithm for general images.

Rendering Rendering involves computing integrals of complex functions.
Traditionally, density adaptation of the samples via importance sampling
has been the norm to improve the rendering quality by reducing noise

67

General Point Sampling with Adaptive Density and Correlations

while avoiding artifacts due to aliasing. Recent works [Durand, 2011;
Ramamoorthi et al., 2012; Subr and Kautz, 2013; Subr et al., 2014] have shown
that adapting density and correlations simultaneously can significantly
improve the rendering results. However, the researchers have been limited
by the analysis techniques [Subr and Kautz, 2013] and pattern generation
algorithms. Our techniques can be instrumental in developing new sampling
methods and understanding existing patterns utilized in rendering such
as for distributed ray tracing. As an example, combining adaptive correla-
tions with the recent works that explore correlation models for rendering,
e.g. [Öztireli, 2016], can be an exciting future direction.

Understanding natural phenomena Distributions and patterns in nature
are inherently spatially adaptive due to environmental factors. We have
illustrated that (e.g. Figure 4.4), it might not be possible to explain natural
distributions by simply adaptive density. Our framework can be utilized to
understand a spectrum of distributions ranging from surface details [Yan
et al., 2014], facial features [Beeler et al., 2012], fluid particles [Öztireli and
Gross, 2012], to crowds [Ju et al., 2010].

Geometry reconstruction and remeshing Reconstruction of geometry from
point samples, and remeshing surfaces for rendering or simulations critically
depend on the quality of the sampling patterns, given by both the density
and the pair-wise correlations [Öztireli et al., 2010; Jiang et al., 2015]. Our
synthesis algorithm extends full correlation control to surfaces, unlocking
a significantly extended set of sampling patterns for geometry sampling.
Similarly to our image reconstruction application, sharp features in surface
reconstruction could be better preserved by aligning regular samples along
them. For remeshing, a regular sampling could be ideal to generate quads,
and a blue noise distribution could be adopted for transitions.

Marked and space-time processes We have illustrated a simple application
of spatio-temporal sampling for stippling videos with a trivial extension. A
more in-depth analysis with space-time processes can be used to principally
extend our techniques. Similarly, extensions of the framework to multi-class
sampling can be developed with the theory of marked processes [Illian et al.,
2008].

68

C H A P T E R 5

Consolidation of Point Clouds with
Convolutional Neural Networks

While the sampling applications shown in Chapter 3 and Chapter 4 consist of
generating new distinct point clouds to represent the geometry, consolidating
means improving an existing raw point cloud, in order to better represent
its underlying structure. With the widespread use of 3D acquisition devices,
there is an increasing need of consolidating captured noisy and sparse point
cloud data for accurate representation. There are numerous algorithms that
rely on a variety of assumptions such as local smoothness to tackle this ill-
posed problem. However, such priors lead to loss of important features and
geometric detail. Instead, in this chapter we propose a novel data-driven
approach for point cloud consolidation. Rather than relying on a small
set of examples to drive the generated sampling (as in the methods in the
previous chapters), we train a convolutional neural network based technique
on a large dataset of geometry patches, to adapt the output to the varying
structures in the input raw data. Our method takes a sparse and noisy point
cloud as input, and produces a dense point cloud accurately representing the
underlying surface by resolving ambiguities in geometry. The resulting point
set can then be used to reconstruct accurate manifold surfaces and estimate
surface properties. To achieve this, we propose a generative neural network
architecture that can input and output point clouds, unlocking a powerful
set of tools from the deep learning literature. We use this architecture to
apply convolutional neural networks to local patches of geometry for high
quality and efficient point cloud consolidation. This results in significantly

69

Consolidation of Point Clouds with Convolutional Neural Networks

Input

WLOP + RIMLS

POISSON

EAR + RIMLS

APSS

OURS + RIMLS

RIMLS

Ground Truth

Figure 5.1: Surface reconstruction from a noisy and sparse point cloud is an ill-posed
problem with infinitely many possible reconstructed surfaces. Our technique
consolidates an input point cloud by learning local maps from input to output
geometry patches to enhance reconstructions with accurate geometric features
and details. This leads to significant improvements for the resulting surfaces.

more accurate surfaces, as we illustrate with a diversity of examples and
comparisons to the state-of-the-art.

5.1 Introduction

Capturing 3D geometries is becoming commonplace thanks to the abundance
of affordable and lightweight sensors and advancing algorithms. The cap-
tured geometries can then be used for various applications ranging from 3D
printing to photography. A main challenge for 3D capture systems, however,
is that noise and sparseness in point cloud data typically obscure important
geometric features and details. Recovering those details can be very difficult
or impossible for many cases.

Given a noisy and sparse point cloud depicting an object boundary, i.e. sur-
face, it is an ill-posed problem to recover such geometric details: there can
be infinitely many different geometries that would result in the same sparse
and noisy set of sample points. To regularize the problem, we thus need

70

5.1 Introduction

prior beliefs on the global or local structure of the geometry to be recon-
structed [Berger et al., 2017]. For resolving fine features and details, most
methods rely on local priors such as locally piece-wise smooth surfaces with
sharp features [Öztireli et al., 2009; Huang et al., 2013]. This has led to many
successful consolidation, i.e. synthesizing a new point set that accurately
samples the underlying surface, and surface reconstruction algorithms.

Although these techniques generate plausible surfaces, they cannot recover
elaborate geometric features if the artifacts in point cloud data become sub-
stantial or the priors do not hold. It is in general a very challenging problem
to resolve geometric features and up-sample a point cloud especially when
only the raw point cloud without further attributes such as surface normals
are provided [Wu et al., 2015a].

In this chapter, we propose a data-driven approach to recover surface features
and details by building on the recent very successful class of convolutional
neural network (CNN) based deep learning methods. CNN-s have shown
exceptional performance for many image processing problems, and are more
and more used also for generative tasks where an input image is transformed
into a new image with desired properties [Xu et al., 2015; Isola et al., 2016; Yan
et al., 2016; Gharbi et al., 2017]. However, modern CNN based architectures
require a regular sampling of data, and thus extending these techniques to
unorganized point clouds is non-trivial [Qi et al., 2017a], and so far could
only be used for coarse shape completion on voxel grids of relatively low
resolution [Han et al., 2017].

We tackle this by exploiting the structure of our problem: the geometric
features we target are encoded in local regions, which can be individually
parametrized. Our method jointly learns local parametrizations and the
locally fitted surfaces. We achieve this by developing a new neural network
based generative architecture that can consume and output point clouds. This
architecture provides an end-to-end approach where an input raw point cloud
is used to generate a new very dense point cloud that accurately samples the
underlying surface. We show that this leads to substantial improvements in
terms of accuracy of the final surface representations (Figure 5.1). In summary,
in this chapter we have the following main contributions:

• The first deep learning method for local point cloud processing with
a fully differentiable architecture that we call PointProNets. A key
component in this architecture is a differentiable points projection
layer for converting unordered points to regularly sampled height
maps. Although we use the architecture for consolidation, it can also
be used for revising further point cloud processing tasks

71

Consolidation of Point Clouds with Convolutional Neural Networks

Frame
Estimator

Projector

Back-
projector

Heightmap Generation Network Heightmap Denoising Network

Convolution
Batch Norm.

ReLU

Figure 5.2: The network architecture. Each patch X of an input point cloud is processed
with this architecture to generate the consolidated point set stored in Y. Each
component is differentiable and hence allows for end-to-end training.

• An end-to-end data-driven algorithm for consolidation of unorga-
nized point clouds that leads to very accurate surface representations,
with significant quantitative and visual improvements over the previ-
ous methods.

5.2 Algorithm Overview and Training Data Generation

5.2.1 Overview

The main idea of our technique is to learn a local mapping that transforms
each set of points extracted from a local patch of the input point cloud to its
consolidated version, where the output points sample the underlying surface
very accurately and densely. The union of all such local output sets give us
the final output point cloud. We define a patch as the set of points included in
a local neighborhood. In particular, we represent a patch of geometry around
a point as an oriented 2D heightmap that stores distances to the sample
points in the neighborhood along a given direction. This 2D representation
of local patches makes it possible to exploit the strengths of deep learning
architectures for image denoising and super-resolution, and extend them to
the task of processing unstructured 3D points.

In order to learn the mapping from a noisy patch of points to its consolidated
version, we designed a new neural network architecture composed of fully
differentiable components, as shown in Figure 5.2. The first component,
Heightmap Generation Network (HGN) receives the matrix Xn⇥3 that stores the
x, y, z-coordinates of n input noisy points in the patch, and generates a noisy
heightmap image HN of resolution k⇥ k. In particular, it first learns a local co-
ordinate frame for projection, projects the points onto the correponding image
plane with a projection module, and resamples the resulting heightmap to
obtain the regularly sampled image HN. The second component, Heightmap

72

5.2 Algorithm Overview and Training Data Generation

X X YYHN HNHD HDHGT HGT

Figure 5.3: Given an input point cloud patch X stored as raw point locations in the
matrix X, our network projects and resamples the geometry to convert it into
the image HN, and processes this image to produce HD (here we also show
ground truth HGT’s for reference). This is finally back-projected to get the
consolidated point set Y .

Denoising Network (HDN), uses image convolutions to transform the noisy
heightmap HN into a denoised version HD. Finally, by transforming the
pixel coordinates of HD into point locations according to the learned image
plane parameters and the stored distance values, the consolidated patch is
generated and stored as a list of n0 point coordinates Yn0⇥3, n n0 k2. In
addition to learning the positions of the consolidated points, we propose a
simple extension of our network architecture that allows us to learn consoli-
dating their normals as well, if noisy normals of the input X are supplied or
pre-computed.

5.2.2 Training Data Generation

We start with a set of pairs of an input patch, and the corresponding ground
truth output patch. These are cut out from input and ground truth output
point clouds in spherical neighborhoods of radius r. For each pair, we thus
have a set X of noisy and sparse points, and the corresponding denser set
YGT of consolidated, i.e. denoised and up-sampled, points. We then extract
a ground truth heightmap HGT from YGT. At training time, the aim of the
network is to produce a denoised heightmap HD that is as similar as possible
to HGT, starting from the input set X .

Ground Truth Heightmap Generation The consolidated patch YGT is not
directly fed to the network, but transformed to a 2D representation: we aim at
extracting a ground truth heightmap HGT which best encodes, in a 2D image,
the 3D geometry. We thus want to find a normalized vector nGT of a proper
image plane positioned at an offset �rnGT (to avoid negative distances).

73

Consolidation of Point Clouds with Convolutional Neural Networks

Since a heightmap can represent only one layer of geometry, we would like
to have the least amount of points from different depth levels projected onto
the same image pixel and thus averaged. In practice, we set the vector nGT as
the average of the normals of the points in the consolidated set YGT. Due to
the high density of YGT, its uniform sampling, and lack of noise, we found
this average is robust for capturing local geometries for the patch sizes we
consider. Given the image frame defined by nGT, and an orthogonal vector
dGT, the consolidated points are projected onto the plane orthogonal to nGT,
and transformed into image coordinates. The distances between the original
points and the projected ones are interpolated with gaussians to produce
a resampled heightmap stored in HGT. The same heightmap generation
procedure is performed in a custom module within our network in the HGN
component. We thus refer to Section 5.3.1 for a more detailed explanation of
the operations.

Data Augmentation Note that the orientation of nGT is ambiguous: both
nGT and �nGT would produce a valid heightmap, even though the result-
ing images can be substantially different. We thus choose the sign of nGT
randomly for every patch, in order to ensure that we feed the network with
varied data. The vector dGT defines rotation of heightmaps on the image
plane. We choose a random dGT orthogonal to nGT to make the learned
representation invariant to this degree of freedom. When feeding data to the
network during training, pairs (X , YGT) are randomly extracted from the
training point clouds by positioning centers of the neighborhoods at random
points in input point clouds. We thus get a dense coverage of each geometry
in the database. Finally, we further augment the patch pairs dataset by ran-
dom resampling of the input point clouds, getting an arbitrary sampling rate
for each X . The number of points can then be matched to n by random down-
sampling or replication of points in X , as the network expects a fixed-size
input matrix X.

5.3 Network Architecture

Given the training data consisting of pairs (X , YGT) that are transformed into
(X, HGT) as described above, we would like to design an architecture that can
be trained with these pairs at training time, and produce consolidated output
points Y for an arbitrary X at testing time. In this section, we elaborate on
the main components of our network (Figure 5.2) in more detail, and explain
how the output of the network (used in a feed forward manner) serves to
produce the final consolidated point cloud.

74

5.3 Network Architecture

5.3.1 Heightmap Generation Network

The goal of our first component, Heightmap Generation Network (HGN) in
Figure 5.2, is to estimate an image plane orientation, and to produce a cor-
responding noisy heightmap by projecting the points stored in X. The com-
ponent is thus divided in two parts: first, a vector n and an orthogonal
direction d are estimated from the input points in X , then, the input points
are projected to the image plane, generating a noisy heightmap image HN.

Frame Estimator In order to estimate n, the component Frame Estimator
(Figure 5.2) needs to deal with the unordered structure of the input point set
given in X. To tackle this problem, we utilize the idea of using a symmetric
function with respect to ordering of points X with a single max pooling
layer from a very recent work [Qi et al., 2017a], and use it to predict n. In
the original work, the points are fed as input, points features are produced
with fully connected layers and aggregated by max pooling, and a final
fully connected layer produces a global descriptor, which is then used for
classification or segmentation. In our method, we adopt the same architecture
but modify the output of the final fully connected layers to produce the 3D
vector n. Additionally, it would be beneficial that the learned representation
is invariant to translations and rotations of X. We achieve this by centering
the points in X by subtracting the patch center, and by feeding patches with
random rotations at training time.

As elaborated on in Section 5.2.2, due to the ambiguity of the sign of nGT, our
dataset contains patches of either orientation. Even without this augmenta-
tion, we found out that there can be many similar patches with similar nGT
but with opposite signs. The frame estimator then typically learns to estimate
an average, which significantly distorts the learned n and thus heightmaps.
To avoid this averaging, at training time, we snap the orientation of n to that
of nGT by setting n n(nTnGT) and normalizing. This ensures that the
network is forced to learn the direction of n, and choose either of the two
orientations, and not their average. Note that this snapping component is not
present at testing time, where the orientation of n is irrelevant for generating
the final consolidated patch. Similarly, at training time, the direction vector
d, is kept as close as possible to dGT and orthogonal to n at each iteration by
setting d dGT � (dT

GTn)n and normalizing in the component, to ensure
rotations on the plane are not averaged. At testing, a random d orthogonal
to n is sufficient as the learned representation is invariant to rotations on the
plane.

75

Consolidation of Point Clouds with Convolutional Neural Networks

Projector The second part of HGN takes the vectors n, d, and the input
point set in the form of the matrix X, and renders a 2D heightmap HN regu-
larly sampled at pixel coordinates. The projector component first projects the
3D points onto the image plane given by the vectors n and d, and positioned
at an offset of �r, to avoid negative distances. Hence, for each point x 2 X
(i.e. each row of X), we define

p = x� (xTn + r)n, (5.1)

as the projected position of x. For each projected point p, we also store the
distance kx � pk. The projected points are then transformed into image
coordinates as

i =
k
2r

h
pTd + r pT(n⇥ d)/k(n⇥ d)k+ r

iT
, (5.2)

where HN is a k ⇥ k image. Notice that r is the same radius of the neigh-
borhood defined previously, and is added to avoid having negative values
in the image coordinates. We thus get the image coordinates i and the cor-
responding distance values D(i) = kx� pk. The heightmap image HN is
then generated by interpolating the distances D(i) on the image plane with
Gaussian interpolation at pixel centers.

We use a Gaussian with a cutoff such that for a given pixel center c in image
coordinates, only the points i given by N = {i | kc � ik < d} need to be
considered. The value at c is then given by

HN(c) =

(
1

W(c) Âi2N (c) g(c, i)D(i), N (c) 6= ∆

0, N (c) = ∆,
(5.3)

where W(c) = Âi2N (c) g(c, i), and g(c, i) = e�
kc�ik2

s2 . We show some ex-
amples of generated HN at testing time in Figure 5.3. All operations of
the projection module are differentiable with respect to the inputs, thus the
gradients can be back-propagated through the network.

5.3.2 Heightmap Denoising Network

Our second network component, Heightmap Denoising Network (HDN) in
Figure 5.2, takes the noisy heightmap HN as input, and generates a denoised
version HD as its output. As this is a mapping between regular images, many
previous methods from the image processing literature can be utilized. CNN-
based architectures have been successfully adopted for image denoising and

76

5.3 Network Architecture

Input PCA based
projection

HGN based
projection

Figure 5.4: Estimating consistent local directions for projection that are robust to noise
and result in heigtmaps that capture local structure well is difficult with
geometric methods such as PCA (shown in red), whereas our architecture
generates a robust and propoer direction for heightmap generation (green).
This is essential for HDN to generate accurate and consistent results as we
show for consolidated point sets with projections estimated by PCA and HGN
(middle and right).

super-resolution [Kim et al., 2015; Zhang et al., 2016], obtaining state-of-the-
art results. We thus also adopt a deep CNN for this step. HDN is inspired
by a recent network architecture [Kim et al., 2015], consisting of a sequence
of 10 convolutional layers with depth 64, and filters of size 7⇥ 7. After each
convolution, batch normalization and a rectified linear unit layer (RELU) are
applied.

Examples of noisy HN and corresponding denoised HD heightmaps obtained
at testing time are shown in Figure 5.3. The network learns a very accurate
mapping, leading to HD very close to the ground truth patch images.

5.3.3 Training Procedure and Analysis

Training and Loss We first train HDN by using the ground truth plane
parameters, thus by substituting n with nGT in HGN, and minimizing the
loss kHD � HGTk2. This allows us to train the convolutional layers of HDN
on patch pairs with perfect projection and resampling. Once the weights of
HDN are trained, we fix them and train HGN with the same loss as before.

77

Consolidation of Point Clouds with Convolutional Neural Networks

By imposing the same loss, we force HGN to learn the best projection such
that the projected heightmap, once denoised, becomes as similar as possible
to the ground truth image HGT.

Robustness to Noise and Sampling Adopting a learning based approach
to estimate projection and denoising simultaneously makes our local fits
robust to noise and sparse data, and consistent with the local geometric
features. This is very hard for purely geometric algorithms, such as fitting
local planes with PCA. Such methods result in parameters that are overfitted
to noise or biased with respect to the patch structure, depending on the size
of the neighborhood, noise level, and local geometry.

Figure 5.4 (top, left) shows an example for a noisy patch (blue circle), where
a PCA-based estimation of the normal vector at the patch center is given in
red, and the n estimated by our network in green. The former is obtained
by averaging the normals of the points in the patch, all estimated with a
small neigborhood size (one third of the patch size) with PCA. Our estimated
n generates a better heightmap that is consistent for noisy patches, as it
captures the underlying local geometry well. This is clear also in the final
consolidated point clouds, as we show for PCA-based projections followed
by HDN in Figure 5.4 (top, center), and our full architecture HGN + HDN
in Figure 5.4 (top, right). Utilizing our full architecture results in a much
smoother geometry while preserving important features.

Such local fits with geometric techniques are also problematic when the size
of neighborhood considered is large with respect to local geometric structures,
which is the case for all our patches, as we need to capture local structure
within our networks. In Figure 5.4 (bottom), the same comparison as in (top)
is shown for a sharp feature, but in this case the PCA normals are computed
with a size as large as that of the patch. The n estimated by our network
(green) allows HGN to generate a proper heightmap around the peak, which
can then be effectively denoised by HDN (bottom, right). PCA, on the other
hand, estimates a vector (red) that is perpendicular to n. This results in a
heightmap where distances of points are averaged, leading to artifacts in
output consolidated point sets (bottom, center).

5.3.4 Processing Point Clouds at Testing Time

Processing a Single Patch At testing time, given an input point cloud, a
spherical patch of radius r around a point is extracted. If the normals of the
input point cloud are provided or pre-computed, the patch can be further

78

5.3 Network Architecture

 Output, denseOutput, sparse

Figure 5.5: The output consolidated point cloud, obtained by evaluating only patches
around one quarter of the input noisy points (left), and around every input
noisy point (right).

refined by considering location-wise and normal-wise close points. The
patch is first resampled to obtain n points as in data generation for training
(Section 5.2.2), and centered at the origin. It is then fed to the Frame Estimator
component of HGN (Figure 5.2) to estimate the normal direction n for the
plane over which the heightmap HN is defined. A random direction vector d
orthogonal to n is then computed, and the noisy height map HN is generated
with Projector. The HN is then denoised by HDN to produce HD, which is
finally converted into a point cloud by Back-projector with the same frame
that Projector uses. Each pixel center with the corresponding depth given
by HD projects into a 3D point. Pixels with zero values are not projected, as
they do not represent geometry (the resulting positions fall out of the patch
sphere due to the offset we use as explained in Section 5.3.1), but are rather
placeholders for no geometry. The resulting consolidated set of points is then
translated to the original position of the input patch. We show examples of
consolidated sets Y in Figure 5.3. As compared to the input noisy and sparse
set X , we get a denoised and much denser output set Y .

Reprojection Density The above process is repeated independently for
patches around every point of the input point cloud. The generated point
sets are all retained in a final set representing the consolidated point cloud,
without any further processing such as averaging of point locations.

In order to introduce overlaps between patches and hence produce a dense
output, we evaluate a patch around each input noisy point. Less overlaps
can be introduced for efficiency, at the cost of quality due to sparseness of the

79

Consolidation of Point Clouds with Convolutional Neural Networks

output. An example of output point cloud with less overlapping is shown in
Figure 5.5 (left), where patches were extracted only around one quarter of the
input noisy points. Compared to the denser version in Figure 5.5 (right), it is
smoother and contains several small holes.

The number of new points n0 sampled on HD further defines the density of
the final consolidated point cloud. For example, reprojecting a single point
corresponding to the central pixel of HD would produce a denoised point
cloud with the same number of points as the input, thus possibly losing the
ability to preserve fine details. On the other hand, reprojecting a point for
every pixel of HD could lead to artifacts at the borders of the patch, nearby the
zero value pixels which are placeholders for no geometry. The convolutions,
indeed, may introduce smooth transitions between the zero values pixels and
the ones representing geometry. We found projecting the pixels in a central
part of HD for each patch produces best results. After HD is computed, we
thus reproject only the pixels that fall into a square of size m around the patch
center.

5.3.5 Extension for Point Normals

As we get a dense and denoised point set as the consolidated output, surface
normals at the output points can simply be computed with existing geometric
methods such as PCA. However, for cases where there are sharp features
to be preserved, we might still not get the exact expected sharpness for
normals as we are limited by the resolution of the intermediate image-based
representation HD. For such cases, we thus propose an additional network
component for denoising point normals. The idea is to denoise, instead of a
single-channel noisy heightmap HN as before, a three-channel noisy normal
map NN, generated from the input normals. The architecture is the same
as before with a few modifications. First, HDN processes images NN of
three channels, each representing a component of normal vectors. Second,
each channel j of the normal map NN is generated as in Equation 5.3, by
interpolating the jth component of the surface normals denoted by N(i, j) for
projected points i as

N(c, j) =
1

W(c) Â
i2N (c)

g(c, i)N(i, j). (5.4)

Here, N(c, j) is the jth component of the normal vector stored at the pixel
center c, expressed in image plane coordinates as before.

At testing time, given an input patch X , the maps HN and NN are generated
with respect to the estimated frame, and their denoised versions HD and ND

80

5.4 Results

 Input Output, dense Output, downsampled GT

Figure 5.6: From an input noisy point cloud (Input), our method produces a dense,
consolidated version (Output, dense). Prior to surface reconstruction, this
can be optionally adaptively downsampled (Output, downsampled) to speed
up reconstruction algorithms. The ground truth mesh (GT) is shown as
reference.

are obtained via two separate HDN’s. We can then obtain the point locations
from HD by back-projection as before, and normals from ND by changing the
coordinate system according to the same estimated frame.

5.4 Results

5.4.1 Network Implementation and Parameters

For all our experiments, we set the patch radius r to 5 times the average
spacing between the input points, and resample the patches to n = 100 points
(Section 5.2.2). We use images of size k = 48, and set s = 1/r for generating
HN, and s = 1/2r for generating the training dense heightmaps HGT, with
d = 2.5s. We back-project points from the heightmap image HG in a square
of size m = 24. The whole architecture is trained with the Adam Optimizer
with an initial learning rate of 0.0001 lowered by 10 times every 30k steps.
We feed the patches in batches of size 8. For the PointNet components [Qi et
al., 2017a], we use the default parameters and their basic code for handling
unordered point sets as input. The network was implemented in TensorFlow.

5.4.2 Pipeline For Surface Reconstruction

A key application of point cloud consolidation is to serve as a preprocessing
step to surface reconstruction algorithms. These algorithms are affected by

81

Consolidation of Point Clouds with Convolutional Neural Networks

noise and sparseness of the input data. Thus, providing a consolidated,
dense point cloud is critical for improving the reconstructed surfaces. We
start by applying our method to a noisy input point cloud and generating
a consolidated dense version. Since the resulting point cloud is very dense,
we can easily downsample it in an adaptive fashion, keeping a high density
of points in proximity of the features. This step considerably speeds up the
reconstructions without loosing quality. In particular, we use a simple and
efficient clustering algorithm [Pauly et al., 2002], where downsampling is
obtained by grouping points in local clusters. In order to keep a denser
sampling near the features, the size of the clusters is adapted to the local
variation of the point set. We use 30 as a maximum cluster size and 0.02 as
maximum surface variation (for the flags dataset, see below, 20 and 0.03).

Figure 5.6 illustrates an input point cloud (of about 50k points) from our
sculptures dataset (see below), our dense consolidated point cloud (about 1.6M
points), our subsampled point cloud (about 150k points), and the ground
truth mesh from which the noisy input was sampled. The generated dense
point cloud does not present noise and preserves detailed features such as
the nostril and the edges of the base. Those features are also preserved in the
downsampled point cloud, while reducing the overall sample count.

If not learned through our point normals network extension, we estimate
the point normals of the consolidated point cloud using PCA of local neigh-
borhoods and a Riemannian graph for their global orientation. Due to the
high density and quality of the output consolidated point cloud, this simple
approach already obtains high quality results. We compute point normals
with PCA on 50 nearest neighbor points.

Finally, we reconstruct the underlying surface by extracting the iso-surface
of the RIMLS [Öztireli et al., 2009] using the marching cubes algorithm. We
refer to our surface reconstruction results as OURS-R, and our output dense
point clouds as OURS. We use a spatial low pass filter of 7 to 10 times the
local spacing of output points for RIMLS. The RIMLS sharpness parameter
sn is set to 0.75.

5.4.3 Datasets

For our experiments, we built three datasets: two with synthetic data and
different levels of noise (sculptures and flags), and one with real-data from a
sensor (Kinect v2), each composed of objects with similar features and sepa-
rated in a training and a testing subset. For testing our point normals network
extension, we built an additional synthetic dataset containing multiple geo-

82

5.4 Results

metric sharp features (geometric shapes). The test point clouds only contain
point locations, without point normals or any additional attributes.

For training, we have three ground truth models for the sculptures, three
for flags, four for geometric shapes, and four for Kinect v2, from which many
training patches are generated. The ground truth point clouds of sculptures,
geometric shapes and the noisy and ground truth point clouds of Kinect v2
were extracted from the models also used in recent works [Wang et al., 2016].
For the Kinect models represented as meshes, we remove the connectivity
information and just retain the vertex locations. The meshes of the flags
dataset were generated by animating a waving flag mesh and randomly
selecting frames. While the flags dataset is very specialized (each model has
wrinkles of similar shapes and sizes), the other datasets are more general.
The ground truth models of our datasets are shown in Figure 5.7.

For each model in the training sets, ground truth point sets are twice as dense
as the input point sets, and are generated by Poisson disk sampling for equal
distribution of points. Synthetic Gaussian noise was dynamically added to
the input points at training time, as the training patches were generated. For
the sculptures dataset, three training sessions were performed, each with noise
of a different standard deviation (s1 = 0.037r, s2 = 0.075r and s3 = 0.15r),
while for the flags and the geometric shapes datasets, s = 0.075r.

Our testing sets contains six models for sculptures, ten for flags, two for
geometric shapes, and 14 scans of three models for Kinect v2. For each model,
an input noisy and sparse point cloud was sampled (except for Kinect v2,
where we already have noisy scans) from the ground truth model with the
same conditions as in the corresponding training dataset. The input point
clouds of the sculptures dataset consist of about 70k points on average, while
the other datasets come with around 15k points for testing models.

5.4.4 Comparisons

We compare numerically (reconstructions) and visually (point clouds and
reconstructions) to five common and state-of-the-art methods for point consol-
idation and surface reconstruction: Poisson Surface Reconstruction [Kazhdan
et al., 2006], APSS [Guennebaud and Gross, 2007], RIMLS [Öztireli et al.,
2009], WLOP [Huang et al., 2009], and EAR [Huang et al., 2013]. While
Poisson, APSS, and RIMLS directly produce an iso-surface, WLOP and EAR
generate a resampled point cloud. For comparing our surface reconstruction
results, we thus apply RIMLS to the output of WLOP and EAR, and utilize
marching cubes to extract the final surface for all methods. We refer to these
combinations as WLOP-R and EAR-R.

83

Consolidation of Point Clouds with Convolutional Neural Networks

Sculptures

Flags

Kinect v2

Geometric shapes

Figure 5.7: The ground truth meshes for our four training datasets.

In order to numerically compare the mesh reconstruction results, we adopt
the Hausdorff distance between the reconstructed meshes and the ground
truth ones. As we have models that are not closed, we used the one-sided
Hausdorff distance from a ground truth mesh to the reconstructed one, in
order to avoid including errors due to extra surface parts around the bound-
aries in the reconstructed mesh. The Hausdorff distance is normalized with
respect to the diagonal of the bounding box of the mesh, and multiplied by
104. For every dataset, we compute the average Hausdorff distance for all
testing models.

We exhaustively search for the best parameters for the other methods by
running an extensive test for each model. For APSS, RIMLS, WLOP-R and
EAR-R, the spatial low pass filter parameter is tuned separately for each
dataset and each method, by testing a set of values varying between three to
ten times the local point spacing, and choosing the best result. The RIMLS
sharpness parameter sn is set to 0.75 for all methods. For Poisson Surface
Reconstruction, an octree depth parameter of 14 is used. The WLOP and EAR
neighborhood radius parameter is set to 8 times the average spacing of the
input point set, and the EAR sharpness parameters to an angle of 30 with
edge sensitivity 0.05. For methods that require surface normals, we estimate
them with PCA again by using optimized values for each case.

5.4.5 Experiments

For all experiments, we observed a significant visual and numerical improve-
ment over the existing methods when using our technique. We show example
input and consolidated output point clouds using our technique as well as

84

5.4 Results

Input WLOP EAR OURS GT

Figure 5.8: Consolidated point clouds on the noisy input Nicolo (from the sculptures
dataset with s2), and on a model from the flags dataset. Our method captures
local structures of the ground truth (GT) model accurately.

others in Figure 5.8. While WLOP oversmoothes the details of the model
Nicolo and the wrinkles of the flag, the dense point clouds of EAR deform
the geometry by creating extra sharp edges that are not present in the orig-
inal models, e.g. at the border of the ear or at the peak of the flag wrinkle.
Our dense point clouds reproduce the ground truth local structures more
faithfully, e.g. we get a realistically rounded eyelid without turning it into a
sharp edge.

We show visual comparisons of reconstructions in Figures 5.1, 5.9, 5.10,
and 5.11. We observe that Poisson, APSS and WLOP-R tend to generate
oversmoothed surfaces, as can be seen for many surface features, e.g. for the
eyes of Nicolo in Figure 5.1, the ear and hair of Bimba in Figure 5.10, or the
flag in Figure 5.11. The oversmoothing effect is confirmed by the last row of
Figure 5.9, displaying the distances from the ground truth to the closest point
on the reconstructed meshes. In the detailed ear and hair regions, these meth-
ods have high errors. On the other hand, these methods can also produce

85

Consolidation of Point Clouds with Convolutional Neural Networks

Input POISSON APSS RIMLS WLOP-R EAR-R OURS-R GT

Figure 5.9: Surface reconstructions for the test models Eros (top) and Bimba (bottom)
from the sculptures dataset with s2, with ground truth meshes (GT) for
reference. For Bimba, the distances from the ground truth mesh to the recon-
structed meshes are also displayed (red encodes large values).

 Input POISSON APSS RIMLS WLOP-R EAR-R OURS-R GT

Figure 5.10: Close-ups of the reconstruction of Bimba, with two different levels of noise
s1 and s2. In both cases, our method (OURS-R) produces the most accurate
ear and hair features, while keeping the cheek smooth as in the ground truth
(GT).

noisy results depending on the input, as for the buste and neck of the Boy
model in Figure 5.11. Our technique produces faithful reconstructions for all
cases, avoiding over- or under-smoothing of local structures.

RIMLS and EAR are designed to preserve sharp features. Indeed, EAR-R
produces accurate results in geometric shapes with clear edges such as the
base of Eros in Figure 5.9. However, it fails to correctly preserve more organic,
detailed features such as the face of the same model or the ear and hair

86

5.4 Results

Input POISSON APSS RIMLS WLOP-R EAR-R OURS-R GT

Figure 5.11: Reconstructed surfaces for the testing models Boy (top) and a flag (bottom)
from the Kinect v2 and flags datasets, respectively. The distances from the
ground truth (GT) mesh to the reconstructed meshes are also plotted for the
flag.

of Bimba, as shown in Figure 5.10 and in the distance maps in Figure 5.9.
Similarly, RIMLS performs better on sharp features, but produces bumpy
results in smooth regions, such as the buste of Bimba, and overall cannot
capture delicate structures such as the eyes of Nicolo in Figure 5.1, or the
wrinkle profile in Figure 5.11. Instead of sharpening details, our method
outputs high quality structures that more faithfully reproduce the underlying
geometry, thanks to the learned representation.

These visual results are confirmed by quantitative comparisons in Table 5.1.
The best two results for every dataset are highlighted in bold. Our method
obtains the smallest Hausdorff distance for every dataset.

87

Consolidation of Point Clouds with Convolutional Neural Networks

Dataset APSS RIMLS WLOP-R EAR-R OURS-R
Scu. s1 2.85 2.62 2.99 3.6 2.57
Scu. s2 4.11 4.27 4.26 4.56 3.70
Scu. s3 6.28 7.37 6.54 6.74 6.14
Flags 5.69 6.03 5.69 5.93 5.55
Kin.v2 17.58 19.40 17.24 17.83 17.10

Table 5.1: The Hausdorff distances averaged over the testing models in each dataset for
each method. The best two performing methods are highlighted for each dataset.
Our method (OURS-R) outperforms the others in every dataset.

Cross-Training In Figure 5.12, we analyze the importance of training
datasets for accurate structure recovery. We show consolidated point clouds
of the Nicolo model by using the ground truth plane normal nGT and direc-
tion dGT for each patch, and varying the heightmap denoising procedure. In
particular, in the first column, the HD’s are generated by simply smoothing
the HN with Gaussian interpolation using a small s, in the second column
the same smoothing is applied but with a larger s, in the third column we use
HDN to generate the HD but using the weights trained on the flags dataset,
and in the fourth column we use the weights trained on the sculptures dataset.
The last column is the ground truth, and every column contains the generated
point cloud and four example HD’s. Simpler image denoising techniques
produce considerably worse results, and by specializing the training with
models of the same class as the testing models, we can obtain substantially
better results than with more general datasets.

Point Normals While our dense output point clouds allow for accurate es-
timation of surface normals with PCA, we found our extension for denoising
normals to be useful for preservation of sharp features for geometric objects,
as elaborated on in Section 5.3.5. In this case, the input normals to generate
NN were estimated from the noisy point clouds with PCA, and oriented with
a Riemannian graph. In Figure 5.13, we show reconstruction results on the
geometric shapes testing dataset (Fandisk and Icosahedron). The normals on
the consolidated point clouds, color-coded in this figure, are estimated with
PCA, or learned with the normal estimation network for comparison. The
close-ups of the point clouds (top), and the reconstructed surfaces (bottom)
illustrate that the learned normals better preserve the sharp features. In Fig-
ure 5.14, we further illustrate some noisy normal maps NN , denoised versions
ND, and the ground truth NGT for the Fandisk model. We can observe that
our ND contains very sharp edges.

88

5.4 Results

Gaussian 1 Gaussian 2 OURS, Flags OURS, Sculpt. GT

Figure 5.12: Different denoising variations. The noisy heightmaps HN of a noisy Nicolo
model are denoised with: Gaussian smoothing with a small s, Gaussian
smoothing with a large s, using our network trained on the flags dataset,
using our network trained on sculptures. The resulting consolidated point
clouds are shown (top) with four example denoised heightmaps (bottom).
The ground truth (GT) data is shown for reference.

Timing All trainings were performed for 200k steps, lasting on average 5
hours. The total time required to denoise an input patch is about 0.013 sec-
onds, out of which about 44% is for preprocessing the input, 15% for esti-
mating HN, 33% to denoise it to HD, and 7% to reproject the points. For the
bimba model (of about 60k points), the total processing time was about 90
seconds on a GTX 970 and a i5-3570 CPU, 3.40GHz. As each patch is local and
processed independently, our technique thus allows for real-time patch-wise
consolidation, and is trivially parallelizable.

Limitations In this chapter, we target the typical problems of noise and
sparse sampling in input point clouds. However, when the input point cloud
contains relatively large holes, our current scheme is not able to fill them with
a sampling as dense as in the other parts of the point cloud. This is because
there is less overlap of projected patches near the holes, since we generate
patches of consolidated point clouds only around existing input points. As
a consequence, the RIMLS reconstruction might lead to deformed surface
parts in those regions. This can be seen for the base of the Boy model in
Figure 5.11. This could be alleviated by having a denser sampling of patches
around the holes, starting from the boundaries and progressively closing
the holes, similar to texture synthesis. In case of missing parts considerably

89

Consolidation of Point Clouds with Convolutional Neural Networks

PCA 1 PCA 2 Learned Normals OURS-R
Input
GT

Figure 5.13: Consolidated point clouds with color-coded normals and RIMLS reconstruc-
tions of a noisy input Fandisk (above) and Icosahedron (below) from the
geometric shapes dataset. The normals are: estimated with PCA with a
small radius (PCA 1), PCA with a large radius (PCA 2), or learned with our
normal estimation network (Learned Normals). The latter better preserves
sharp edges.

larger than the patch size, a global filling approach would be required. Our
method is designed to capture local structures for manifold surfaces, as
many previous techniques including MLS based approaches. This allows
us to use local heightmaps as an intermediate representation. However,
such a representation comes with well-known limitations for non-manifold
structures and large surface parts that cannot be represented with such a
parametrization. Possible solutions are utilizing multi-depth maps and more
complex differentiable parametrizations that can be efficiently trained. A
typical example is when two surface sheets fall into the same patch, where
our current method would average their locations as shown in Figure 5.15
(left). If the input normals are provided, this problem can be solved by
extracting patches considering location-wise and normal-wise close points,

90

5.4 Results

NN ND NGT NN ND NGT

Figure 5.14: Example normal map denoising results from the Fandisk model. NN is the
input noisy, and ND is the denoised normal map. The ground truth normal
map NGT is shown for reference.

OURS OURS OURS-RGT

Figure 5.15: Limitations of our method. In case of two surface sheets falling into the same
patch (left, GT) , our method averages the positions of the points creating
a noisy result (left, OURS). Occasional frames can be badly estimated in
the presence of complex patches unseen during training, and thus some
bad points can be generated (right, OURS). Due to the high density of our
results, the final reconstructed surfaces are not affected (right, OURS-R).

as mentioned in Section 5.3.4. We generate a patch around each point in an
input point cloud at testing time. This means that for high levels of outliers,
we might end up with extra output points that are far away from the surface.
For these cases, a new training dataset and procedure need to be designed
to set all depths values of HD for an outlier to zero. Similarly, in cases of
patches very different from the ones in the training set (e.g., partial patches at
the borders), or badly performed training (e.g., too short training) occasional
badly estimated outlier frames may occur. A badly estimated frame would,
in most cases, produce a bad set of points, as can be seen in our output point
cloud in Figure 5.15 (right). Since our produced point cloud is very dense
and mainly made of consistent re-projections across patches, even in the
presence of few bad points the final reconstruction is not negatively affected,

91

Consolidation of Point Clouds with Convolutional Neural Networks

as shown in the reconstructed surface in Figure 5.15 (right). Finally, our HD
images are sometimes slightly smoother than HGT. This is a property of
the used convolutions, and the behaviour could be improved by utilizing
more advanced image network architectures such as Generative Adversarial
Networks [Goodfellow et al., 2014].

5.5 Discussion

In this chapter, we presented PointProNets, a fully differentiable, CNN based
deep learning architecture to process point clouds. The input unordered
points are internally converted to regularly sampled height maps, which are
suitable to be processed by modern and well-performing CNN architectures.
We demonstrated the potential of this architecture by developing an end-to-
end algorithm to consolidate raw point clouds, where local parametrizations
and fitted surfaces are learned jointly, to achieve superior reconstructions
where delicate features and details of surfaces are preserved.

Although we have focused on point cloud consolidation in the scope of this
work, the proposed architecture has the potential to be used for many other
points based geometry processing tasks. Moreover, as in our additional
component for point normals denoising, the architecture could be easily
extended to points with attributes, such as colors for joint depth-color data
processing.

92

C H A P T E R 6

A Network Architecture for Point Cloud
Classification via Automatic Depth
Images Generation

In this chapter, we show how our patch-based neural network architecture
from Chapter 5 can be extended for global operations where the full point
cloud is processed. In particular, we propose a novel neural network architec-
ture for point cloud classification. Our key idea is to automatically transform
the 3D unordered input data into a set of useful 2D depth images, and classify
them by exploiting well performing image classification CNNs. We present
new differentiable module designs to generate depth images from a point
cloud, by adapting the ones of Chapter 5. These modules can be combined
with any network architecture for processing point clouds. We utilize them
in combination with state-of-the-art classification networks, and get results
competitive with the state of the art in point cloud classification. Furthermore,
our architecture automatically produces informative images representing the
input point cloud, which could be used for further applications such as point
cloud visualization.

6.1 Introduction

After tackling local problems in the previous chapters, we now consider an
application where the point clouds are processed in a global fashion: point
cloud classification. Being able to automatically classify point clouds is a

93

A Network Architecture for Point Cloud Classification via Automatic Depth

Images Generation

Image Based Classification

Label
PredictionsPoint Cloud

View
Prediction

ResNet50

ResNet50

View
Pool

Depth Image
Generation

Figure 6.1: An overview of our network architecture. Given an input point cloud of a
chair, two informative views are predicted, the corresponding depth images
are generated and fed to the image classification module.

challenging task that can have impact in many other problems in Computer
Vision and Graphics, such as scene understanding and surface reconstruction.

Even though 3D scanners are becoming cheaper and more available, 2D
images still represent the majority of our graphical information. Thanks
to significantly large image datasets [Deng et al., 2009], and a growing in-
terest in the research community, Convolutional Neural Networks (CNNs)
for image classification have been well studied and achieved state of the
art results. Inspired by their high quality results, we build a novel neu-
ral network architecture which allows us to exploit the strengths of 2D
image based CNNs for classifying 3D point clouds. Unlike some very re-
cent deep learning methods [Qi et al., 2016a; Klokov and Lempitsky, 2017;
Simonovsky and Komodakis, 2017], which handle unordered 3D data by di-
rectly processing and classifying them, our idea is to design a set of trainable
network components that automatically transform the 3D input to infor-
mative 2D images, which are then input to image classification networks.
Contrary to previous works [Su et al., 2015] that classify 3D meshes by ex-
ploiting rendered images, in our method, the images are not generated in a
pre-processing step, but rather learned within the network.

In particular, our completely differentiable architecture first intrinsically pre-
dicts one or multiple views, which are informative about the shape and
features of the input point cloud. Secondly, another differentiable module
generates the corresponding depth images of the point cloud rendered from
those views. These depth images are produced by extending the work pre-
sented in Chapter 5 to handle point clouds with multiple layers of depth,
occlusions and overlapping structures. Finally, a third component combines
the images and uses an image classification CNN [He et al., 2015] to classify
them. Thanks to the generated depth images and high performance of CNNs
for image classification, we obtain competitive classification results to the
recent methods in the field. Furthermore, the views intrinsically generated

94

6.2 Network Architecture

by our network can be extracted as an additional output at testing time, and
used for point cloud visualization.

To summarize, the contributions presented in this chapter are the following:

• We propose a novel neural network architecture for point cloud clas-
sification that achieves results competitive with the state of the art.
The key idea is to automatically transform the unordered 3D points
to informative 2D images and exploit the well studied image based
classification network architectures (and their pre-trained weights on
large image datasets).

• Our architecture produces one or a set of informative depth images
of the point cloud, by predicting meaningful view directions. We
illustrate that the learned view directions and the corresponding
depth images can be used for other applications, such as point cloud
visualization.

• We propose a fully differentiable module for generating depth images
of point clouds representing full 3D objects with occluded points,
by integrating a point cloud culling strategy, extending the methods
described in Chapter 5. This module can be used in further tasks and
architectures that work with point clouds.

6.2 Network Architecture

6.2.1 Overview

Instead of directly classifying a point cloud, we designed a network architec-
ture which automatically transforms the 3D input into a set of informative
2D depth images, and then solves the problem of classifying them. The view
directions for generating the depth images are learned in an unsupervised
manner, thus predicted with the goal of maximizing the classification accu-
racy. The main advantage of this approach, compared to directly processing
the 3D points as in [Qi et al., 2016a], is that it allows us to exploit the well
studied deep learning architectures for image classification, which have been
proven to achieve state-of-the-art results. Moreover, in addition to outputting
a class label prediction for the input point cloud, our network intrinsically
learns to predict one or a set of informative view directions and generate the
corresponding 2D depth images, which could be used for other applications
e.g. for 3D object recognition or point cloud visualization.

95

A Network Architecture for Point Cloud Classification via Automatic Depth

Images Generation

Given an input point cloud P and a desired number of views K, our pipeline
is to first choose K views directions, generate the correspondent depth images
and then utilize them to classify the point cloud. Our network architecture
is thus composed of three modules: the first one takes the input point cloud
coordinates as input and predicts K direction vectors (Section 6.2.2); the sec-
ond module receives the input point cloud coordinates and the K directions
and generates the depth images accordingly (Section 6.2.3); finally, the third
module combines the K depth images and produces a vector representing the
prediction labels for classes (Section 6.2.4).

We train the three modules jointly within a single architecture, using a softmax
cross entropy loss on the class labels, provided as ground truth. Notice that
we do not include a loss on the view directions nor on the generated depth
images. Figure 6.1 shows an overview of the network architecture, for the
case where K = 2.

6.2.2 View Prediction

The first module of our architecture receives the point cloud P as input
and produces K view directions, where K is a parameter chosen by the
user. In particular, we want to estimate the K camera-pose matrices which
represent 3D rotations to transform the point cloud in order to perform an
orthogonal projection. Like in Chapter 5, we start from the recent method
PointNet [Qi et al., 2016a], which proposes a network architecture that allows
for processing unordered 3D point sets, like our input. The prediction of the
views should respect crucial properties such as invariance to permutations of
the input data and invariance under transformations. PointNet achieves input
permutations invariance through a max pooling layer that approximates a
symmetric function, and transformation invariance by predicting an affine
matrix applied to the input. Finally, a fully connected layer creates a global
descriptor used for classification.

In our approach, we utilize a separate PointNet architecture for each of our
K views, modifying the final fully connected layer to produce a 6D vector,
representing the camera view vector vk and the up-axis uk of the kth camera-
pose matrix. We build Ck, the camera-pose matrix for the kth view, by setting
wk = vk ⇥ uk and Ck =

⇥
wT

i ; uT
i ; vT

i
⇤
.

We finally multiply the input point cloud sequentially with every camera-
pose matrix, producing K rotated point clouds. After the transformation, the
px and py coordinates of a point p 2 P represent its image coordinates, and
the pz coordinate is its depth.

96

6.2 Network Architecture

Matrix
MultiplicationPoint Cloud

Rotation
Matrix

[C
i
]

Subsample PointNet

Figure 6.2: Our view prediction module. The camera-pose matrix parameters are esti-
mated from a downsampled version of the input, and the original points are
rotated accordingly.

Note that, due to memory limitations, we utilize a subsampled version of
the input point cloud (keeping 12.5% of the original points) to estimate the
camera-pose matrices. See Section 6.3.1 for more details on the implementa-
tion. Figure 6.2 shows a diagram of the view prediction module.

6.2.3 Depth Image Generation

In this network component, the goal is to generate a depth image for an
input point cloud using differentiable operations. In Chapter 5, we present
a differentiable layer to create a distance field image from a point cloud
by interpolating the depth values of the points on the image plane using
Gaussian interpolation. Since we project every point of the point cloud to the
image plane and interpolate their distances, the approach is mostly suitable
for generating depth images of small patches of points lying on a single
sheet without overlapping structures, but does not produce useful depth
images when the point cloud contains structures on different depth layers. In
that case, indeed, points with a large difference in the depth coordinate may
be projected to closeby pixels on the image, and their depth values will be
averaged together, leading to skewed geometry representations as shown in
Figure 6.3 (top).

In this chapter, we propose an extension that is suitable for point clouds
representing full objects, with points lying also on occluded multiple layers.
We thus aim at producing depth images which properly approximate a ren-
dering of a surface passing through the points, which can be more reliably

97

A Network Architecture for Point Cloud Classification via Automatic Depth

Images Generation

Figure 6.3: (Top) The Gaussian interpolation of Chapter 5, where all the points are
interpolated together. (Bottom) Our extended Gaussian interpolation, where
the red points are filtered out because their depth is too different than the
maxD values of the pixels. The green points are interpolated.

classified by our final image classification component. In particular, a depth
image should present clear edges where the depth changes abruptly, and
continuous values in smooth parts of the object.

The main idea of our depth image generation method is to apply a bilateral-
filering-like interpolation to obtain point cloud culling. In practice, instead of
considering all the points in the point cloud, we segment the points belonging
to the farthest surface layers from the image plane, and interpolate only their
depths. We get the final image f by first computing a maximum depth value
maxD for every pixel c, representing the maximum depth of the points p 2 P
which are close enough to c when projected on the image plane. We define
the subset P0(c) as all the points p 2 P close enough to c on the image plane,
given a threshold d1 :

P0(c) = {p 2 P| k(cx, cy)� (px, py)k < d1}. (6.1)

It follows that:

maxD(c) = max{pz| p 2 P0(c)}. (6.2)

If P0(c) is empty, no points will be projected closeby c, so we set the final value
f (c) for the pixel to zero. This step implicitly introduces a cutoff distance

98

6.2 Network Architecture

Figure 6.4: Depth images of a flower pot generated with different values for s.

of d1 to the final Gaussian interpolation of our image generation procedure,
allowing us to produce depth images with clear hard edges at the border of
the objects. In case P0(c) is not empty, in order to compute the final value
f (c) for a pixel, we consider only the points which have a depth value close
enough to maxD(c), and interpolate their depths (Figure 6.3, bottom). This
ensures that our generated image has hard edges where the depth changes
abruptly and smoother variations elsewhere. For a chosen threshold d2, we
define a new subset of points P00(c):

P00(c) = {p 2 P| |maxD(c)� pz| < d2}. (6.3)

For a pixel c, we apply Gaussian interpolation on the depth values of the
points in P00(c) as follows:

f (c) =
1

W Â
p2P00(c)

g((cx, cy), (px, py))pz, (6.4)

with a normalization term W:

W = Â
p2P00(c)

g((cx, cy), (px, py)), (6.5)

and a Gaussian function g:

g((x, y), (x0, y0)) = e
�(x�x0)2�(y�y0)2

2s2 , (6.6)

where s influences the smoothness of the generated depth images, as can be
seen in Figure 6.4.

We generate a depth image for each of the K point clouds passed from the
previous module. Notice that since we define maxD with the maximum

99

A Network Architecture for Point Cloud Classification via Automatic Depth

Images Generation

plant chair

Figure 6.5: Depth images of a flower pot and a chair from two different views each, gener-
ated using the simple projection and Gaussian interpolation from Chapter 5
(above) and using our new depth image generator (below).

depth, the resulting views will be rendered for a camera placed at [0, 0, 1] and
pointing at [0, 0, 0], assuming the point cloud lies in [�1, 1]3. This module was
implemented as a custom layer in TensorFlow and CUDA, see Section 6.3.1
for implementation details. The gradients of this custom module are shown
in Appendix A.4.

Figure 6.5 shows various depth images produced with our module and with
the simple projection and Gaussian interpolation from Chapter 5. The results
obtained with the extended interpolation better represent the depth of the
object, especially featuring sharper edges at discontinuities in the depth field.

6.2.4 Image Based Classification

Our final module takes the K depth images generated by the previous layer
and implements a classification network for images. In particular, we utilize
K ResNet50 [He et al., 2015] architectures that share variables. Similar to
MVCNN [Su et al., 2015], which deals with classifying images from differ-
ent fixed views for 3D objects, we include a max pooling operation before
regressing to a denser layer of classification logits. This allows the network
to share variables between the ResNet50 architectures and thus learn features
which require multiple images. We place the dense classification layer after
the max pooling operation. For the ResNet50 architectures, we make use of

100

6.3 Results

pre-trained weights as initialization, trained on ImageNet [Deng et al., 2009]
dataset.

6.3 Results

6.3.1 Implementation, Parameters and Timing

In the view prediction component, we subsample original point clouds con-
sisting of 2048 points to 256 points. All the batch normalization layers in
PointNet were trained using a batch normalization decay of 0.9. In the depth
image generation component, we set s = 2.0, d1 = 1.4s, and d2 = I/12,
where I is the image size and is 229. The depth image generation layer was
implemented as two native ops (gradient and forward pass) in TensorFlow
using the CUDA backend. For the image based classification component, we
used the preset values from the TensorFlow Slim library.

In order to train the network, we used the Adam optimizer with an initial
learning rate of 0.0001 lowered every 50000 steps by a percentage of 5% (if
the number of views K = 1), 10% (if K = 2), and 20% (if K = 4). The batch
size varied between the models (128 for one view, 64 for two views and 32
for four views), due to memory reasons.

In our implementation tested on a GeForce GTX 1080 Ti graphics card, the
forward-pass and backward-pass through the depth image generation layer
take around 2 seconds (1.323 seconds for the forward-pass, 0.752 seconds
for the backward-pass), using a batch size of 512, and projecting 2048 points
to images of 229x229 pixels. In the complete graph, this corresponds to
10% of the computation time for the forward pass and 7% for the backward
pass. The resulting training time of our single view architecture on randomly
rotated point clouds is comparable to PointNet (about 8 hours). The training
time increases with a sublinear dependency on the number of views, as the
convergence is faster with multiple views.

6.3.2 Point Cloud Classification

We evaluate both PointNet and our network variations on the Model-
Net40 [Wu et al., 2015b] benchmark for shape classification, composed of
CAD models labelled in 40 classes and separated between training (9843
models) and testing (2468). For our method, we generated the point clouds
from the shape dataset by uniformly sampling 2048 points on each model.
For PointNet [Qi et al., 2016a], we used the most recent version of the original

101

A Network Architecture for Point Cloud Classification via Automatic Depth

Images Generation

3D
overall

y-Axis
overall

3D
class

y-Axis
class

Ours, 1 View 0.854 0.873 0.815 0.828
Ours, 2 Views 0.869 0.884 0.829 0.851
Ours, 4 Views 0.872 0.885 0.830 0.856

PointNet 0.855 0.892 0.805 0.862

Table 6.1: Classification results of our architecture with 1, 2 and 4 views, and the Point-
Net [Qi et al., 2016a] method, on a dataset augmented with random rotations
(3D) and augmented only with random rotations around the vertical axis (y-
Axis). Both the instance-based accuracy (overall) and the class average (class)
are shown.

implementation by the authors with the default settings (1024 points), as
using 2048 points did not improve the results. Both for our method and
for PointNet, we augment the training and testing models in the dataset
by applying two different strategies: rotating the point clouds randomly in
every direction, and rotating the point clouds randomly only around the
vertical axis. Similarly to PointNet, in our training data we augment the point
clouds by adding random Gaussian of noise of s = 0.001. We let our method
train until convergence, and present the average of the testing results from 5
evaluations.

In Table 6.1, we show the results of our classification using 1, 2 and 4 views
and compare them to the state of the art PointNet [Qi et al., 2016a] point
cloud classifier, for both datasets augmented with random rotations in every
direction (3D) and the dataset augmented with random rotations only around
the vertical axis (y-Axis). Both the instance-based accuracy (overall) and the
class average accuracy (class) are presented. The best value for each column
is highlighted.

The first three rows show how our architecture profits from estimating mul-
tiple depth images, thanks to our image based classification network that
combines features from multiple views to optimize the outcome. Our best
results are obtained using 4 views, for both the datasets.

While our 4 views architecture obtains slightly worse results than PointNet
in the dataset with objects aligned along the vertical axis, our results vary
less between the two datasets. In particular, in the more difficult dataset with
randomly rotated objects, we outperform PointNet with our 2 and 4 views
architectures, and obtain comparable results with a single view. Our intuition
is that our generated depth images are more informative and result in less

102

6.3 Results

Learned PCA
1 View 0.854 0.844

2/3 Views (Learned/PCA) 0.869 0.850

Table 6.2: Instance-based classification results of our simpler PCA alternative with 1 and
3 views (PCA), compared to our original architecture results for 1 and 2 views
on the dataset augmented with random rotations (Learned).

source of confusion while learning. Image classification is a better studied
problem than 3D point cloud classification, thus utilizing state of the art image
classification networks (and their pre-trained weights on large datasets) on
properly estimated depth images allows us to obtain better results, starting
from the same raw input.

In our experiments, adding more views than 4 did not help improving the
results. We believe that this limit is due to the sparsity of the point clouds,
which do not contain very detailed features. Thus, our 4 views can already
include the majority of the structure of the object representations in the
dataset.

Note that all the recently proposed or concurrent techniques for classifying
3D points [Qi et al., 2016a; Qi et al., 2017b; Qi et al., 2016b; Simonovsky
and Komodakis, 2017; Klokov and Lempitsky, 2017] present results obtained
on the easier dataset, where the objects are aligned with the y-axis. The
concurrent work PointNet++ [Qi et al., 2017b] obtains better classification
results than the original PointNet by about 2%, while the volumetric variant
of the recent work [Qi et al., 2016b] obtains results comparable to PointNet.
As future work, it would be interesting to test if they generalize to the dataset
with random rotations. Finally, there exist works which use 3D meshes
instead of 3D point clouds and obtain better classification results. In [Su et al.,
2015], the best results are obtained by rendering 80 views of 3D shape models;
their views, though, are fixed and not learned, and their input 3D meshes
are more detailed than our point clouds. Generating meshes from our sparse
and noisy point clouds with triangulation or surface reconstruction methods
would lead to meshes of significantly lower quality, leading to inferior results
for mesh rendering based methods in this case. We refer to Appendix A.4 for
more results.

103

A Network Architecture for Point Cloud Classification via Automatic Depth

Images Generation

Figure 6.6: Examples of images generated by our network with PCA.

3D
Learned

y-Axis
Learned Random

1 View 0.854 0.873 0.849
2 Views 0.869 0.884 0.859
4 Views 0.872 0.885 0.868

Table 6.3: Instance-based classification results of our simpler random views alternative
(Random), compared to our original architecture results on the dataset aug-
mented with random rotations (3D, Learned) and the dataset augmented with
random rotations only around the y-Axis (y-Axis, Learned).

6.3.3 Comparisons to Simpler Alternatives

In order to quantitativaly evaluate the impact of our automatic view estima-
tion, we trained our architecture by substituting the view prediction module
with a selection based on the PCA axes. We performed this experiment with
a single view (projecting onto the plane spanned by the directions of the two
largest PCA components), and 3 views (projecting on each plane spanned by
the PCA directions). Notice that the obtained PCA views, thus the final ac-
curacy, are equivalent in both the dataset augmented with random rotations
and the dataset augmented with random rotations only around the y-Axis.
In Table 6.2 we compare the obtained instance-based accuracy results (PCA)
to the ones of our 1 and 2 views original architectures on the more difficult
dataset with random rotations (Learned). One can notice how, already in the
more difficult dataset, the PCA-based average accuracies are lower than our
original 1 and 2 views results. In Figure 6.6, we show examples of PCA views
of objects from different classes produced by the network, demonstrating
how they are often ambiguous. Important features of the objects can indeed
be hidden by their large surfaces, and, in case of isotropic point clouds, the
PCA views are equivalent to random views (see Appendix A.4 for more
examples).

Furthermore, we trained our architecture by substituting the view prediction

104

6.3 Results

Train. 87 104 173 163 149 64 124 197 240 88 231 138 167 680 124 475 128 200 149 392 200 200 90 103 106
± Acc. -0.03 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.05

w
ar

dr
ob

e

ra
di

o

be
nc

h

te
nt

la
pt

op

bo
w

l

st
ai

rs

ca
r

pl
an

t

pe
rs

on

pi
an

o

cu
rt

ai
n

co
ne

so
fa

la
m

p

va
se

si
nk

ni
gh

ts
ta

nd

flo
w

er
po

t

ta
bl

e

de
sk

dr
es

se
r

st
oo

l

xb
ox

ba
th

tu
b

Table 6.4: Difference of obtained accuracy between our original method and the random
views alternative (± Acc.) and number of training examples (# Train.), per
class.

module with a random view selection, for 1, 2 and 4 views. In Table 6.3, we
compare the obtained instance-based results (Random) with the ones of our
original architectures in both datasets (3D and y-Axis, Learned). Notice that
the results of the random views alternative are equivalent in both datasets,
as the views are randomly sampled in the 3D space. The results obtained by
our original architectures are better than the ones of random views for any
number of views, especially for the dataset augmented with rotations around
the y-Axis. For the more difficult dataset augmented with random rotations,
the improvement given by our learned views is smaller. We believe that
the gap could be larger if the ModelNet40 dataset would not present some
commonly known limitations [Su et al., 2015; Arvind et al., 2017] such as
ambiguities between pairs of classes (especially for low resolution inputs like
ours) and classes with little training examples. In Table 6.4, we present the
difference of obtained accuracy between our original method and the random
views alternative (± Acc.), averaged between the 1, 2 and 4 views results, for
the classes where the absolute difference was at least 1%. For each class, we
additionally show the number of training examples (# Train.). The classes
where the random views alternative performed better (i.e., where the values
are smaller than zero) are often the ambiguous ones such as plant (confused
with flower pot and vase), wardrobe (confused with bookshelf) and radio
(confused with regular objects such as glass box), and have in general small
number of training examples per class (on average 145, while the classes
where our original method works better have on average 273 examples). We
thus expect our method, based on learned views, to work best with a large
number of training examples per class. We refer to Appendix A.4 for the
individual accuracy results for 1, 2 and 4 views used for Table 6.4.

6.3.4 View Selection and Visualization

Our network outputs a set of views and corresponding depth images as ad-
ditional information. The depth images generated represent informative 2D
views of the 3D input, and can be utilized for applications such as visualizing

105

A Network Architecture for Point Cloud Classification via Automatic Depth

Images Generation

 airplane bookshelf bowl car chair stairs

Figure 6.7: Learned view density functions (top), depth images generated by our network
corresponding to the least likely learned view (center), and the most likely
learned view (bottom), for six testing point clouds.

a point cloud. In order to visually evaluate the quality of our learned views,
we feed a set of test point clouds to our single view architecture multiple
times, always with a different random rotation, and plot the distribution of
the learned views for each point cloud. Each point cloud is fed 10000 times
to the network, and the resulting learned views, with respect to the original
orientation of the point cloud, are sampled on a sphere.

In Figure 6.7 (top) the density of these learned views for six testing models
are presented (red: high, blue:low). The density functions contain peaks and
further regions with very low values. Hence, our views are optimized for
different objects, and not random or constant. For most objects, multiple
views can be considered appropriate for classification. Thus, we do not expect
our density functions to present only a single sharp peak, but rather smoother
regions of high values.

For each test point cloud, we sample the view corresponding to the highest
value of the views density (i.e. the most likely view estimated by our net-
work), and show the depth image generated by our network for that view in
Figure 6.7 (bottom). Similarly, Figure 6.7 (center) presents the depth images
corresponding to the view with the lowest probability. Our view estimation
procedure outputs depth images that clearly expose distinguishing features,
making the classes easily recognizable. For example, the legs of the chair, the

106

6.3 Results

Figure 6.8: Learned view density functions and the depth images corresponding to the
view with highest probability for two classes of objects (lamps and beds).

tail of the airplane, the internal structure of the bookshelf, and the borders of
the bowl are visible from the learned views, while hidden for a view with low
probability of selection. Similarly, the shapes of the stairs and the car are fully
visible for the view with high probability of selection by our architecture,
while only partially for a low probability view.

In Figure 6.8, further view density functions and depth images for the highest
probability views are presented, for two classes of objects (lamps and beds).
It is interesting to see how the learned views are similar for objects of the
same class, but different for objects of different classes. This shows that the
network specializes the views according to the classes.

We refer to Appendix A.4 for similar visualization results for the multiple
views case.

Figure 6.9 shows examples of depth images generated by our network with
two views, for different classes of objects. To generate these results, the test
point clouds were fed to the network 10 times with random rotations, and the
run which produced the highest single softmax prediction was considered.
In most cases, our network predicts two views which complement each other,
providing an even clearer overview of the point cloud compared to the views

107

A Network Architecture for Point Cloud Classification via Automatic Depth

Images Generation

table piano plant dresser monitor cone bookshelf chair bed

Figure 6.9: Examples of generated depth images from the two views architecture. The two
images (top and bottom) complement each other, providing a more informative
overview of the object, as compared to a single view.

given by our single view architecture. This is a consequence of the view
pooling operation in our network, which combines features from different
views. For example, the two depth images of the bed, piano, and bookshelf
are a side view and a top/down view, the images of the chair show its front
and back, and those of the cone contain the bottom hole and the pick at the
top.

6.4 Discussion

We propose a novel neural network architecture for point cloud classification,
which obtains results competitive with the state of the art for raw point clouds
as the input. Our key idea is to automatically transform the input point cloud
to one or more depth images, which can be combined and classified by a
CNN classification module. The high performance of image based CNNs,
and the large availability of data to train them, makes classification on our
images better than considering only the 3D data.

In the future, we would like to explore further applications of this view learn-
ing and depth images generation approach. First of all, more experiments on
point cloud visualization could be performed. Properly visualizing a point
cloud is not a trivial task due to occlusions, lack of detailed features and
sparse data, and we believe that our depth image generation method can
be a useful representation. Another possible interesting extension would be
to use our depth image generation layer as an autoencoder or for unsuper-
vised learning. Finally, it can be adapted to generative adversarial networks
(GANs) e.g. for point cloud segmentation.

108

C H A P T E R 7

Conclusion

In this thesis, we presented novel data-driven approaches for tackling various
tasks in point cloud processing. Namely, we worked on point cloud sampling
for the generation of new geometry structures (represented by patterns or
surfaces), on point cloud consolidation for the improvement of a given ge-
ometry, and on point cloud classification for analyzing the given geometry.
While the synthesis methods were based on local patches, the last analysis
classification problem considered global point clouds. We approached the
tasks by relying on existing data in two different fashions: for repetitive
structures, we designed the methods to exploit a matching between the ge-
ometry and one or a small set of input examples, while for more general
and varying structures we resorted to large datasets to learn flexible outputs.
The priors extracted from the utilized data allowed us to deal with more
complex geometries than the previous methods, for example the continuous
and discrete elements in Chapter 3, the patterns with adaptive correlations
in Chapter 4, the very detailed consolidated structures in Chapter 5 and the
multi-image representation for the geometries in Chapter 6.

First, in Chapter 3, we introduced an example-based sampling method to
synthesize real-world, general repetitive structures represented by point sam-
ples. Instead of defining matching neighborhoods measures on the points
themselves, we obtain smooth functions describing the input and output
sampling, and formulate the matching as a smooth optimization problem.
This permits us to produce an optimal sampling through an accurate control
of the generation of new samples, as well as to handle, within the same

109

Conclusion

framework, complex structures of different nature: patterns of discrete ele-
ments, continuous surfaces as well as their mixtures. In addition to allow to
synthesize general structures, the meshless representation makes our method
suitable for interactive synthesis. We believe that generality and interactivity
are two fundamental properties that make our approach suitable to the task
of designing complex geometric structures, for modeling or artistic purposes.

In order to be able to deal with a class of more complex, natural-looking
patterns, we extended the synthesis method to rely on multiple input ex-
amples, introducing the concept of adaptive correlation. We coupled our
sampling approach with a framework for analyzing and synthesizing point
distributions with locally varying correlations, which is based on the statistics
of point processes. With this work, we unlocked the processing of a class
of patterns that could not be handled by previous methods in the literature.
Several applications of adaptive correlations are shown in Chapter 4, and
we believe that they can serve as proofs of concept for the adoption of these
locally varying patterns in problems spanning different areas of Computer
Graphics, such as rendering and image compression.

In Chapter 5, we focused on the operation of consolidating a given input
point cloud. Contrary to the geometries processed in the previous chapters,
acquired geometry does not necessarily present repetitive structures, but
rather varying general structures. We thus approached the problem by relying
on large datasets composed of geometries with similar local neighborhoods,
and developing a novel convolutional neural network architecture for local
processing of point clouds. The key component of our deep learning method
is a fully differentiable projector, which transforms the input points into a 2D
image, allowing to exploit the strengths of CNNs for 2D image processing
problems, and extending them to 3D unordered point clouds. For this reason,
we believe that this component has potential to be adopted in many point
clouds operations besides consolidation.

A further application of our deep learning projection technique is shown
in Chapter 6. The module is extended to handle point clouds representing
full objects, instead of projecting only local patches of points. A set of in-
formative depth images of the input object is automatically generated, and
used to classify the point cloud. Analysis operations of point clouds, such as
their classification, are often to be performed in a global fashion, in order to
extrapolate high level informations that the single patches could individually
not provide. With this example application, we have shown that our deep
learning technique is extendable to different scales of geometric structures.

110

7.1 Extensions of Our Techniques

7.1 Extensions of Our Techniques

We tackled the described problems by processing either local patches of points
(Chapters 3, 4, and 5), or the global point clouds (Chapter 6). We believe
that all our techniques could benefit from a mixed approach, where patches
of different sizes are considered in combination. The larger patches would
allow us to exploit more global information about the geometry, while the
smaller ones would optimize for the details. In particular, our example-based
synthesis technique presented in Chapters 3 and 4 could be directly extended
to support two (or more) neighborhood sizes. The matching similarity be-
tween the output geometry and the input example would be expressed in
terms of both the neighborhood sizes, and a total energy accounting for both
the neighborhood sizes would be minimized. In this way, example struc-
tures with details of different scales of repetition (Figure 3.1, right) could
be better reproduced, by assigning the points belonging to the large scale
repetitions to the large neighborhood and the ones responsible for the small
scale repetitions to the smaller neighborhood. Correspondingly, our deep
learning architectures presented in Chapters 5 and 6 could be adapted to
multi-size patches, by producing multiple images of the geometry to pro-
cess details of different levels. The images representing the larger patches
would infer semantic information about the objects being processed, while
the images representing the smaller patches would process their details. For
consolidation, an input patch could be transformed by considering both a
large patch and a small one around it. The oriented heightmap resulting from
the large patch would allow to produce a coarse output defining the global
shape of the object (solving existing challenges such as covering holes), while
the heightmap resulting from the small patch would add the details to the
geometry. For classification of point clouds, in addition to learn a rotation
for every view, a learnable zooming factor could be introduced, to allow
the generation of depth images of details of the objects, which could help
classifying them.

Another possible future direction to explore is the processing of non-manifold
structures and other more complex geometries like multiple close-by sheets.
Many complex geometries from the real world and existing 3D data (like the
CAD models) include such patches, thus it would be beneficial to extend
our methods to handle these situations. While some of the results showed
in Chapter 3 present details with intersecting structures (such as the leaves
and the stem in Figure 3.1, right), and our classification network architecture
is designed to handle structures composed of multiple layers of depth, our
patch-based synthesis and consolidation approaches rely on the assumption
that the underlying large-scale geometry lay on manifolds. By first segment-

111

Conclusion

ing the points in a patch depending on which manifold structure they belong
to, and then processing each group of points separately (through minimiza-
tion of the similarity function or denoising of the generated heightmap), both
methods could be extended to handle patches with multiple intersecting or
close-by manifolds.

Finally, we believe that there are interesting potential improvements in the
way we rely on data in our techniques. Our example-based synthesis methods
have resulted to be logical approaches for dealing with repetitive structures,
by exploiting the repetitions existing in the input sample. It is not completely
clear, though, what output to expect in case the input sample does not con-
tain enough repetitions, as well as what the ideal size of the input is. We
believe that a necessary future step is to provide the users with methods
to design proper inputs, such as validation measures or the generation of
fast, interactive previews of the output corresponding to the given input. As
for our techniques based on deep learning, we regard the improvement and
tuning of the intrinsically generated 2D images representing the patches as a
main future research path. More detailed images of the geometry would cer-
tainly lead to better results in the tackled operations. A promising approach
could be the generation of more accurate consolidated heightmaps, and the
adoption of generative adversarial networks (GANs), which have demon-
strated the ability to produce better details-preserving images in many image
processing tasks. Their unsupervised training strategies are an additional
attractive property, which would ease the data collection process.

112

A.1 Discrete Similarity Measure

A.1 Discrete Similarity Measure

A.1.1 Deriving the Discrete Similarity Measure

For the derivations in this section, we denote dot product of two vectors with
xy, and the squared norm of a vector with x2 for brevity. If we substitute the
sums of Gaussians in Equation 3.2, we obtain:

S(f(x), e(m(x))) =

=
Z �����Âi

ai g(x + s� xi , s)�Â
i

bi g(m(x) + s� ei , s)

�����

2

g(s, d)ds (A.1)

=
Z

Â
ij
(aiaj)g(x + s� xi , s)g(x + s� xj , s)g(s, d)

� 2 Â
ij
(aibj)g(x + s� xi , s)g(m(x) + s� ej , s)g(s, d)

+ Â
ij
(bibj)g(m(x) + s� ei , s)g(m(x) + s� ej , s)g(s, d)ds

(A.2)

The products of Gaussians lead to the following form:

S(f(x), e(m(x))) =

=
Z

Â
ij
(aiaj) exp

�2� s

d
2

s2 s2 +
�4x + 2xi + 2xj

s2 s +
�2x2 � xi

2 � xj
2 + 2xxi + 2xxj

s2

!

� 2 Â
ij
(aibj) exp

�2� s

d
2

s2 s2 +
�2x� 2m(x) + 2xi + 2ej

s2 s +
�x2 �m(x)2 � xi

2 � ej
2 + 2xxi + 2xej

s2

!

+ Â
ij
(bibj) exp

�2� s

d
2

s2 s2 +
�4m(x) + 2ei + 2ej

s2 s +
�2m(x)2 � ei

2 � ej
2 + 2m(x)ei + 2m(x)ej

s2

!
ds

(A.3)

We now use the integral form of a Gaussian function:

Z
k exp(� f x2 + gx + h)dx = k

r
p

f
exp(

g2

4 f
+ h) (A.4)

Thus:

S(f(x), e(m(x))) =

=c00

Â
ij
(aiaj) exp

0

@�(xi � xj)
2 � (s

d)
2(x� xi)

2 � (s
d)

2(x� xj)
2

2s2 + s4
d2

1

A

� 2 Â
ij
(aibj) exp

0

@�((m(x)� ei)� (x� xj))
2 � (s

d)
2(m(x)� ei)

2 � (s
d)

2(x� xj)
2

2s2 + s4
d2

1

A

+ Â
ij
(bibj) exp

0

@�(ei � ej)
2 � (s

d)
2(m(x)� ei)

2 � (s
d)

2(m(x)� ej)
2

2s2 + s4
d2

1

A
�

(A.5)

113

Conclusion

where c00 =
r

ps2
2+(s

d)2

Finally, the following form is reached:

S(f(x), e(m(x))) =

=c0
✓

Â
ij
(aiaj)g(xi � xj , sc)g(x� xi , dc)g(x� xj , dc)

� 2 Â
ij
(aibj)g((m(x)� ei)� (x� xj), sc)g(m(x)� ei , dc)g(x� xj , dc)

+ Â
ij
(bibj)g(ei � ej , sc)g(m(x)� ei , dc)g(m(x)� ej , dc)

◆

(A.6)

where c =
q

2 + (s
d)

2 and c0 =
p

ps2
c .

Equation A.6 can be used as the similarity measure and its gradients can
be computed. In practice, we propose a slight adaptation which allows us
to formulate the discrete similarity measure in a more compact form, and
results in a negligible change in the similarity and, thus, does not influence
the results. Instead of using a Gaussian for the window function, one can use
a box function with size d. Then, Equation A.1 can be approximated with:

S(f(x), e(m(x))) =
Z �����Âi

ai g(x + s� xi , s)�Â
i

bi g(m(x) + s� ei , s)

�����

2

ds, (A.7)

where the contributions of some points are canceled: only the xi closer than
d to x and the ei closer than d to m(x) are considered. Following the steps
above, the following final form is reached:

S(f(x), e(m(x))) =

p
ps2

2

✓
Â
ij
(aiaj)g(xi � xj ,

p
2s)� 2 Â

ij
(aibj)g((m(x)� ei)� (x� xj),

p
2s) + Â

ij
(bibj)g(ei � ej ,

p
2s)

◆
(A.8)

Notice that the integral form of a Gaussian function can still be utilized to
reach the final form, as only the window function is transformed into a box
function, but not the Gaussian functions placed at the point locations.

A.1.2 Computing the Gradients

We show the gradients for the more compact variant which uses a box func-
tion.

∂T
∂mk

= �
p

2p

s Â
ij
(aibj)g((mk � ei)� (qk � xj),

p
2s)((mk � ei)� (qk � xj)) (A.9)

114

A.1 Discrete Similarity Measure

∂T
∂xi

=�
p

2p

s Â
k

✓
Â

j
(aibj)g((mk � ej)� (qk � xi),

p
2s)((mk � ej)� (qk � xi)) + Â

j
(aiaj)g(xj � xi ,

p
2s)(xj � xi)

◆
(A.10)

∂T
∂ai

=

p
ps2

2 Â
k

✓
Â

j
aj g(xi � xj ,

p
2s)� 2 Â

j
bj g((mk � ei)� (xk � xj),

p
2s)

◆
(A.11)

where only input points ei and output points xi close enough to mk and qk
for the current k are considered.

115

Conclusion

A.2 Analysis of General Sampling Patterns

In this appendix, we present a theory of general point distributions in terms
of the product densities of underlying point processes. We show how these
can be estimated from example distributions and interpreted. We establish
how this theory relates to and extends existing techniques that assume a
stationary point process, and propose a measure of stationarity.

A.2.1 Campbell’s theorem

Campbell’s theorem relates sums of values of functions at the point locations
generated by a point process, to the integrals of those functions and the
product densities. For our methods, the following two special cases of the
theorem will be important,

EX Â
xi2X

f (xi) =
Z

Rd
f (x)l(x)dx, (A.12)

EX

6=

Â
xi,xj2X

f (xi, xj) =
Z

Rd

Z

Rd
f (x, y)r(x, y)dxdy, (A.13)

for any positive function f , where Â 6=xi,xj2X considers only different positions.
We will start from these expressions to derive our estimators in the next
section. For brevity, we drop the integration domains where clear.

A.2.2 Estimating Product Densities

Our analysis relies on estimating the statistics l(x) and r(x, y) as defined
in the previous section. These two statistics define all point patterns under
the common assumption of Gaussianity. The density measure l(x) can be
easily estimated using standard techniques such as kernel density estimation.
The estimation of r(x, y) has so far not been considered except for the case of
stationary or isotropic correlation models. We derive a reliable estimator that
converges to r, and show that it can be interpreted as a density estimator in
the higher dimensional space of aggregated point coordinates.

Given multiple distributions generated by a point process, we would like
to design unbiased and low variance estimators for the product densities.
We start with deriving an estimator for the intensity based on the Camp-
bell’s theorem and show how it naturally extends to second order prod-
uct density r. We assume a monotonically decreasing positive kernel func-
tion k for the estimators. In this work, we assume a Gaussian kernel with

116

A.2 Analysis of General Sampling Patterns

ki(x) := k(x, xi) := 1
(
p

ps)d e�||x�xi||2/s2 . If we plug this into the expression
into Equation A.12, we get

EX Â
xi2X

k(x, xi) =
Z

k(x, y)l(y)dy. (A.14)

The convolution on the right-hand side converges to l(x) as s ! 0. The
left-hand side is the classical non-parametric density estimator. This estimator
will get better as we get more instances of the point pattern.

Utilizing Campbell’s theorem for higher order statistics, we can generalize
this result. Specifically, for any two distinct point locations xi and xj, if we
plug k(x, xi)k(y, xj) into Equation A.13, we obtain

EX

6=

Â
xi,xj2X

ki(x)kj(y) =
Z Z

k(x, z)k(y, t)r(z, t)dzdt. (A.15)

Analogous to the estimator for l(x), the right-hand side converges to r(x, y)
as s ! 0, and the left-hand side gives us the estimator for r. Hence, we
define the estimator for r as

r̂(x, y) =
6=

Â
xi,xj2X

ki(x)kj(y). (A.16)

This estimator can be computed for each x and y by averaging over different
distributions. Note that this is a 2d-dimensional statistic, to fully capture the
rich correlation structure of the underlying point process.

Interpretation as a density estimator Since we assume Gaussian kernels, we
can combine the two kernels in Equation A.16 to obtain a single Gaussian
that depends on the distance between the 2d-dimensional vectors [xTyT]T,
and [xT

i xT
j]

T. Hence, this estimator can be considered as a non-parametric
density estimator in the product space R ⇥R for the points generated by
aggregating all combinations of different points in the original point pattern.

Figure A.1 shows plots of r for different 1D distributions. For the regular
grid, we get a regular grid again since the density in the product space is
regular. For an infinite regular grid with random translation, we get lines
parallel to the x = y line as shown in Figure A.1 (b). This is due to the
correlated translation of sampling points, i.e. for each realization of this point
process, the point locations are x + t and y + t for a random translation t.
If this translation is independent for each sampling point, we get a jittered
distribution [Mitchell, 1996], and the lines start to become blurred due to

117

Conclusion

.

.

.

.

.

.

.

.

(a) (b)

(c) (d)

Figure A.1: Plot of r for different 1D distributions: regular grid (a), infinite regular grid
with random translation (b), jittered distribution (c), random distribution
(d).

the loss of correlations (Figure A.1 (c). Finally, for a completely random
distribution, we get a constant r (Figure A.1, d).

Relation to previous analysis techniques The r reduces to previously used
statistics for the special case of stationary distributions. For these distribu-
tions, r(x, y) = r(x � y) is constant for all x and y with y = x + h for a
constant h. Then, we can integrate over all such x and y pairs to get an

118

A.2 Analysis of General Sampling Patterns

estimator of r(h) for stationary distributions as follows

Z
EX

6=

Â
xi,xj2X

ki(x)kj(x + h)dxdy

=EX

6=

Â
xi,xj2X

Z
k(x� xi)k(x� xj + h)dxdy

=EX

6=

Â
xi,xj2X

k0(h� hij),

(A.17)

with hij = xi� xj and k0 is a Gaussian with standard deviation 2s. This results
in the estimator for stationary distributions proposed by Wei et al. [Wei and
Wang, 2011]. Similarly, if we integrate for constant ||h||, we can recover the
estimator for isotropic point processes in the work by Öztireli et al. [Öztireli
and Gross, 2012]. Since the r is related to periodogram with a Fourier trans-
form [Heck et al., 2013], spectral analysis can be similarly treated in the same
framework for stationary distributions. Note that for the distributions with
adaptive density, previous works alter the difference or distance metric used,
but still assume that the underlying correlation model is fixed by a single
translation invariant r. The only method that does not operate under the
invariance assumption is proposed by Subr and Kautz [Subr and Kautz, 2013],
where they utilize the Fourier spectrum instead of the phaseless power spec-
trum. However, spatially adaptive correlations can be mixed into different
frequencies in the spectral domain, and thus it is not clear how to interpret
and utilize the resulting diagrams for adaptive correlations.

A measure of stationarity The above observation can be utilized to devise
a test of stationarity for general distributions. To normalize with respect
to density, we work with the pair correlation function (PCF) g(x, y) :=
r(x, y)/l(x)l(y). We expect g(x, x + h) to be constant for a given h. Hence,
we can define the variance of g at this h as a measure of stationarity.

ŝ(h) =
1

|V|

Z

V
ĝ2(x, x + h)dx�

1

|V|

Z

V
ĝ(x, x + h)dx

�2
, (A.18)

for a given domain V and its volume |V|. In the product space, this means
that we are measuring variance of the values of g along lines parallel to the
x = y line. For stationary distributions such as the uniformly translated
grid in Figure A.1 (b) and random distribution in Figure A.1 (d), we get low
variance along these lines. We further plot variance graphs for some 2D
distributions in Figure A.2. As expected, stationary distributions result in
much less variance.

119

Conclusion

0.2

0.1

0.008

0.004

(a) (b) (c) (d)

Figure A.2: Variance graph for some 2D distributions: regular grid (a), infinite regular
grid with random translation (b), jittered distribution (c), random distribu-
tion (d).

120

A.3 Analysis and Synthesis with Local Anisotropy

A.3 Analysis and Synthesis with Local Anisotropy

A.3.1 Analysis

The matrix Mx is a measure of anisotropy. We utilize 2D anisotropy measures
from the spatial point processes literature [Illian et al., 2008] to compute Mx.
This method performs a simple density estimation on the difference vectors
hij. First, a radial histogram of the vectors hij is computed. Each bin thus
corresponds to a direction on the unit hypersphere and a distance from its
center. The dominant anisotropy is then extracted by picking the directions
with the smallest and largest bin sums. We then form a covariance matrix
Cx with two eigenvectors set as these directions, and the eigenvalues as the
corresponding bin values. Finally, the matrix Mx is set as the whitening
transform Mx = C�1/2

x such that the resulting difference vectors hij are
distributed isotropically. Note that when we apply the transform Mx, we
assume that the volume |Nx| also scales so as to keep the intensity at lx. This
step is designed for point distributions on two dimensional domains such
as the 2D plane or two-manifold surfaces in 3D, or with limited number of
anisotropy directions in higher dimensional domains.

A.3.2 Synthesis

Before feeding into the estimator, the difference vectors hij are first whitened
with Mkhij. The gradient ∂

∂xi
Ek is then computed, multiplied with M�1

k , and
summed over all neighborhoods to get the final gradient D i = Âk Mk

∂
∂xi

Ek
for point xi.

121

Conclusion

A.4 View Selection, Comparisons and Gradients

A.4.1 View Selection for Our 2 Views Architecture

Similar to Figure 6.7, we show in Figure A.3 (top) the density of the learned
views for six testing models, this time for the case of our 2 views architecture.
The first row is the density of the first view, and the second row the one of the
second view. Again, the density functions contain peaks and further regions
with very low values, optimized for different objects. Most interestingly, one
can also notice how the density functions of the two views are complementary
to each other: the regions of high values in the first view usually have low
values in the second view, and the other way around. This demonstrates
how our network chooses different view points to combine their features and
optimize the results.

For each test point cloud, we sample the views corresponding to the highest
value of the views densities (i.e. the most likely views estimated by our
network), and show the depth images generated by our network for those
views in Figure A.3 (bottom, first row for the first view and second row for
the second view). It is noticeable how the views complement each other, by
showing different features of the objects. For example, one can see the side of
the cone and its bottom part, the side of the cup and its inside, the top of the
bench and its bottom part.

Like in Figure 6.8, in Figure A.4 we show further view density functions and
depth images for the highest probability views, for a class of objects (lamps)
using our 2 views architecture. Again, the pairs of learned views are similar
for objects of the same class, demonstrating how our network specializes to
the different objects. It is also clear how the views are complementary to each
other. In particular, the first view tends to show the lamps from the side, and
the second view often adds a shifted view point.

All the view density functions are spheres rendered from a fixed arbitrary
point view.

A.4.2 Comparison with PCA

In Figure A.5 we show a comparison of our selected views to views selected
by exploiting the PCA components. The three objects are indistinguishable
from the PCA views, while easily recognizable with our method. Both the
generated depth images and the point clouds rendered from the view points
are shown.

122

A.4 View Selection, Comparisons and Gradients

bench bottle chair cone cup plant

Figure A.3: Learned view density functions (top, first row for the first view and second
row for the second view), depth images generated by our network correspond-
ing to the most likely learned views (bottom, first row for the first view and
second row for the second view), for our 2 views architecture.

A.4.3 Failure Cases and Comparison with Meshes

Due to the low resolution of the input point cloud and the ambiguity of
some models in the dataset, there exists a subset of classes which are hard
to classify. In Figure A.6, three objects from these classes are shown. Like
PointNet and the other most recent papers that handle point clouds, our
method fails to properly classify them, as the correspondent generated depth
images are ambiguous. The very detailed meshes used in MVCNN [Su et al.,
2015] include more features (because of their high resolution), and we believe
this is the reason for their higher accuracy numbers compared to point-based
methods. In Figure A.7, we compare the original high resolution meshes
of two models with the meshes obtained by reconstructing a point cloud
of the objects sampled with the same number of points that we use (2048),
using the commonly adopted Poisson reconstruction method with optimal
parameters. As one can see, the reconstructed meshes (on the right) contain
way less details (XBox), and, sometimes, the reconstruction even fails to

123

Conclusion

Figure A.4: Learned view density functions and the depth images corresponding to the
views with highest probability for a class of objects (lamps), for our 2 views
architecture. The first row of the density functions and of the depth images
corresponds to the first view, and the second row to the second view.

correctly represent the shape of the object (plant). This shows how generating
meshes from our sparse point clouds would not facilitate the problem.

A.4.4 Comparison with Random Views Alternative

In Table A.1, Table A.2, and Table A.3, we present the difference of obtained
accuracy between our original method and the random views alternative (±
Acc.), for 1, 2 and 4 views respectively, for the classes where the absolute
difference was at least 1%. The numbers from 5 evaluations were averaged for

± Acc. -0.06 -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.05

bo
w

l

ca
r

pe
rs

on

be
nc

h

ra
di

o

ra
ng

e
ho

od

la
pt

op

st
ai

rs

co
ne

si
nk

cu
p

cu
rt

ai
n

gl
as

s
bo

x

pi
an

o

va
se

to
ile

t

so
fa

bo
ok

sh
el

f

be
d

tv
st

an
d

la
m

p

de
sk

do
or

ta
bl

e

pl
an

t

ke
yb

oa
rd

ba
th

tu
b

dr
es

se
r

ni
gh

ts
ta

nd

st
oo

l

flo
w

er
po

t

Table A.1: Difference of obtained accuracy between our original method and the random
views alternative (± Acc.), for 1 view, per class.

124

A.4 View Selection, Comparisons and Gradients

Table Monitor Bathtub

Figure A.5: The views selected by PCA (top: point clouds), and by our method (middle:
point clouds, bottom: depth images).

glass box Xbox night stand

Figure A.6: Three classes where our generated views are ambiguous.

125

Conclusion

 plant XBox

Figure A.7: The original high resolution mesh (left) and the reconstructed mesh from a
point cloud of 2048 points (right), for two models (plant and XBox).

each case. The classes in bold are the ones which were always better classified
with the random alternative (bench and radio), or always better classified
with our original architecture (piano, vase, desk, table, baththub, dresser
and night stand). It is noticeable how our original architecture performs
consistently better in more classes than the random alternative, due to its
specialized learned views that adapt to classes. We believe that the random
alternative can sometimes perform better than our method due to hard,
ambiguous classes present in the dataset (e.g., radio that can be confused
with other regular objects).

A.4.5 Gradients for Depth Image Generation

In this section, we present the gradients of our custom module for depth
images generation.

We name the nominator and denominator of the function f (c) of Equation 6.4
as follows:

f (c) =
Âp2P00(c) g(c, p)pz

Âp2P00(c) g(c, p)
=

f 1
c (P)

f 2
c (P)

(A.19)

The gradients with respect to the position of a point p 2 P for f1 can be

± Acc. -0.05 -0.04 -0.04 -0.02 -0.01 -0.01 -0.01 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.06 0.07 0.07

w
ar

dr
ob

e

st
ai

rs

ra
di

o

la
pt

op

flo
w

er
po

t

ch
ai

r

pl
an

t

be
nc

h

gl
as

s
bo

x

be
d

m
an

te
l

pi
an

o

te
nt

ni
gh

ts
ta

nd

tv
st

an
d

dr
es

se
r

ra
ng

e
ho

od

va
se

so
fa

co
ne

do
or

pe
rs

on

cu
p

si
nk

bo
w

l

cu
rt

ai
n

ta
bl

e

st
oo

l

de
sk

xb
ox

ba
th

tu
b

Table A.2: Difference of obtained accuracy between our original method and the random
views alternative (± Acc.), for 2 views, per class.

126

A.4 View Selection, Comparisons and Gradients

± Acc. -0.06 -0.04 -0.03 -0.03 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.04

te
nt

w
ar

dr
ob

e

do
or

be
nc

h

pl
an

t

cu
p

tv
st

an
d

cu
rt

ai
n

ke
yb

oa
rd

be
d

bo
w

l

st
oo

l

gl
as

s
bo

x

bo
tt

le

m
on

ito
r

ra
di

o

ca
r

ta
bl

e

pi
an

o

de
sk

ch
ai

r

m
an

te
l

va
se

ni
gh

ts
ta

nd

co
ne

la
m

p

pe
rs

on

si
nk

st
ai

rs

flo
w

er
po

t

xb
ox

dr
es

se
r

ba
th

tu
b

Table A.3: Difference of obtained accuracy between our original method and the random
views alternative (± Acc.), for 4 views, per class.

defined as:

∂ f 1
c (P)
∂pz

=

⇢
0 i f p /2 P00(c)
g((cx, cy), (px, py)) otherwise (A.20)

∂ f 1
c (P)
∂py

=

(
0 i f p /2 P00(c)
(cy�py)

s2 g((cx, cy), (px, py))pz otherwise
(A.21)

The gradients for f2 are defined as follow:

∂ f 2
c (P)
∂pz

= 0 (A.22)

∂ f 2
c (P)
∂py

=

(
0 i f p /2 P00(c)
(cy�py)

s2 g((cx, cy), (px, py)) otherwise
(A.23)

Similarly, the gradients with respect to px can be computed.

The final derivative for f (c) is then defined by utilizing the product rule.

Notice that the presented derivatives assume that the subset P00 stays con-
stant for a pixel c. Hence, the dependence on the sample positions p 2 P
is neglected. In practice we found this approximation to not influence the
results, as the subset P00 generally changes smoothly for varying view direc-
tions. This is likely due to the high quality dataset, where the models are
made of continuous surfaces, are sampled uniformely and have no missing
parts. As a future work, it would be interesting to investigate the effect of this
approximation for more difficult cases that can be found in practice, where
the subset P00 could change abruptly.

127

Conclusion

128

References

[Ahmed et al., 2015] Abdalla G. M. Ahmed, Hui Huang, and Oliver Deussen. Aa
patterns for point sets with controlled spectral properties. ACM Trans. Graph.,
34(6):212:1–212:8, October 2015.

[Alexa et al., 2001] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleish-
man, David Levin, and Claudio T. Silva. Point set surfaces. In Proceedings of
Visualization, VIS ’01, pages 21–28, 2001.

[Alexa et al., 2003] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and
C. T. Silva. Computing and rendering point set surfaces. IEEE Transactions on
Visualization and Computer Graphics, 9(1):3–15, Jan 2003.

[AlMeraj et al., 2013] Zainab AlMeraj, Craig S. Kaplan, and Paul Asente. Patch-
based geometric texture synthesis. In Proceedings of the Symposium on Computa-
tional Aesthetics, CAE ’13, pages 15–19, 2013.

[Alves dos Passos et al., 2010] V. Alves dos Passos, M. Walter, and M.C. Sousa.
Sample-based synthesis of illustrative patterns. In Computer Graphics and Appli-
cations, PG ’10, pages 109–116, 2010.

[Anguelov et al., 2005] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller,
Sebastian Thrun, Jim Rodgers, and James Davis. Scape: Shape completion and
animation of people. ACM Trans. Graph., 24(3):408–416, July 2005.

[Arvind et al., 2017] Varun Arvind, Anthony Costa, Marcus Badgeley, Samuel Cho,
and Eric Oermann. Wide and deep volumetric residual networks for volumetric
image classification. CoRR, abs/1710.01217, 2017.

References

[Avron et al., 2010] Haim Avron, Andrei Sharf, Chen Greif, and Daniel Cohen-
Or. L1sparse reconstruction of sharp point set surfaces. ACM Trans. Graph.,
29(5):135:1–135:12, November 2010.

[Balzer et al., 2009] Michael Balzer, Thomas Schlömer, and Oliver Deussen.
Capacity-constrained point distributions: A variant of lloyd’s method. ACM
Trans. Graph., 28(3):86:1–86:8, July 2009.

[Barla et al., 2006] Pascal Barla, Simon Breslav, Joëlle Thollot, François Sillion, and
Lee Markosian. Stroke pattern analysis and synthesis. In Computer Graphics
Forum (Proc. Eurographics), volume 25, pages 663–671, 2006.

[Beeler et al., 2012] Thabo Beeler, Bernd Bickel, Gioacchino Noris, Steve
Marschner, Paul Beardsley, Robert W. Sumner, and Markus Gross. Coupled 3d
reconstruction of sparse facial hair and skin. ACM Trans. Graph., 31:117:1–117:10,
August 2012.

[Berger et al., 2017] Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre
Alliez, Gaël Guennebaud, Joshua A. Levine, Andrei Sharf, and Claudio T. Silva.
A survey of surface reconstruction from point clouds. Computer Graphics Forum,
36(1):301–329, 2017.

[Bowers et al., 2010] John Bowers, Rui Wang, Li-Yi Wei, and David Maletz. Parallel
poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph.,
29:166:1–166:10, December 2010.

[Brock et al., 2016] André Brock, Theodore Lim, James M. Ritchie, and Nick We-
ston. Generative and discriminative voxel modeling with convolutional neural
networks. CoRR, abs/1608.04236, 2016.

[Bruna et al., 2013] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral Net-
works and Locally Connected Networks on Graphs. ArXiv e-prints, December
2013.

[Carr et al., 2001] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright,
B. C. McCallum, and T. R. Evans. Reconstruction and representation of 3d
objects with radial basis functions. In Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pages 67–76, New
York, NY, USA, 2001. ACM.

[Chen et al., 2013] Jiating Chen, Xiaoyin Ge, Li-Yi Wei, Bin Wang, Yusu Wang,
Huamin Wang, Yun Fei, Kang-Lai Qian, Jun-Hai Yong, and Wenping Wang.
Bilateral blue noise sampling. ACM Trans. Graph., 32(6):216:1–216:11, November
2013.

130

References

[Cimpoi et al., 2014] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi.
Describing textures in the wild. In IEEE Conference on Computer Vision and Pattern
Recognition, 2014.

[Dai et al., 2017] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3d-encoder-predictor cnns and shape synthesis. Proc.
Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.

[de Goes et al., 2012] Fernando de Goes, Katherine Breeden, Victor Ostromoukhov,
and Mathieu Desbrun. Blue noise through optimal transport. ACM Trans. Graph.,
31(6):171:1–171:11, November 2012.

[Deng et al., 2009] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Ima-
geNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[Dibra et al., 2016] Endri Dibra, Himanshu Jain, A. Cengiz Öztireli, Remo Ziegler,
and Markus H. Gross. Hs-nets: Estimating human body shape from silhouettes
with convolutional neural networks. In Fourth International Conference on 3D
Vision, 3DV 2016, Stanford, CA, USA, October 25-28, 2016, pages 108–117, 2016.

[Dibra et al., 2017] Endri Dibra, Himanshu Jain, A. Cengiz Öztireli, Remo Ziegler,
and Markus H. Gross. Human shape from silhouettes using generative hks de-
scriptors and cross-modal neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, July 21-26,
2017, 2017.

[Donahue et al., 2014] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman,
Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep convolutional
activation feature for generic visual recognition. In International Conference in
Machine Learning (ICML), 2014.

[Du et al., 2013] Song-Pei Du, Shi-Min Hu, and Ralph R. Martin. Semiregular solid
texturing from 2d image exemplars. IEEE Trans. Vis. Comput. Graph., 19(3):460–
469, 2013.

[Durand, 2011] Fredo Durand. A frequency analysis of monte-carlo and other nu-
merical integration schemes. Technical Report MIT-CSAILTR-2011-052, CSAIL,
MIT,, MA, February 2011.

[Efros and Leung, 1999] Alexei A. Efros and Thomas K. Leung. Texture synthesis
by non-parametric sampling. In Proceedings of the International Conference on
Computer Vision, volume 2 of ICCV ’99, pages 1033–1038, 1999.

[Engelcke et al., 2017] Martin Engelcke, Dushyant Rao, Dominic Zeng Wang,
Chi Hay Tong, and Ingmar Posner. Vote3deep: Fast object detection in 3d

131

References

point clouds using efficient convolutional neural networks. In 2017 IEEE Inter-
national Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore,
May 29 - June 3, 2017, pages 1355–1361, 2017.

[Fang et al., 2015] Y. Fang, Jin Xie, Guoxian Dai, Meng Wang, Fan Zhu, Tiantian
Xu, and E. Wong. 3d deep shape descriptor. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2319–2328, June 2015.

[Fattal, 2011] Raanan Fattal. Blue-noise point sampling using kernel density model.
ACM Trans. Graph., 30(4):48:1–48:12, July 2011.

[Gal et al., 2007] Ran Gal, Ariel Shamir, Tal Hassner, Mark Pauly, and Daniel
Cohen-Or. Surface reconstruction using local shape priors. In Proceedings of the
Fifth Eurographics Symposium on Geometry Processing, SGP ’07, pages 253–262,
Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

[Gharbi et al., 2017] Michaël Gharbi, Jiawen Chen, Jonathan T. Barron, Samuel W.
Hasinoff, and Frédo Durand. Deep bilateral learning for real-time image en-
hancement. ACM Trans. Graph., 36(4):118:1–118:12, July 2017.

[Girshick et al., 2014] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’14, pages 580–587, Washington, DC, USA, 2014. IEEE
Computer Society.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Process-
ing Systems 27, pages 2672–2680. Curran Associates, Inc., 2014.

[Graham, 2014] B. Graham. Spatially-sparse convolutional neural networks. ArXiv
e-prints, September 2014.

[Graham, 2015] Ben Graham. Sparse 3d convolutional neural networks. In Proceed-
ings of the British Machine Vision Conference (BMVC), pages 150.1–150.9. BMVA
Press, September 2015.

[Guennebaud and Gross, 2007] Gaël Guennebaud and Markus Gross. Algebraic
point set surfaces. ACM Trans. Graph., 26(3), July 2007.

[Guo et al., 2015] Kan Guo, Dongqing Zou, and Xiaowu Chen. 3d mesh labeling
via deep convolutional neural networks. ACM Trans. Graph., 35(1):3:1–3:12,
December 2015.

132

References

[Han et al., 2017] X. Han, Z. Li, H. Huang, E. Kalogerakis, and Y. Yu. High-
resolution shape completion using deep neural networks for global structure
and local geometry inference. In IEEE International Conference on Computer Vision
(ICCV), October 2017.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385, 2015.

[Heck et al., 2013] Daniel Heck, Thomas Schlömer, and Oliver Deussen. Blue noise
sampling with controlled aliasing. ACM Transactions on Graphics, 32(3):25:1–
25:12, 2013.

[Huang et al., 2009] Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel
Cohen-Or. Consolidation of unorganized point clouds for surface reconstruction.
ACM Trans. Graph., 28(5):176:1–176:7, December 2009.

[Huang et al., 2013] Hui Huang, Shihao Wu, Minglun Gong, Daniel Cohen-Or, Uri
Ascher, and Hao (Richard) Zhang. Edge-aware point set resampling. ACM Trans.
Graph., 32(1):9:1–9:12, February 2013.

[Huang et al., 2014] Zhe Huang, Jiang Wang, Hongbo Fu, and Rynson W. H. Lau.
Structured mechanical collage. IEEE Trans. Vis. Comput. Graph., 20(7):1076–1082,
2014.

[Hurtut et al., 2009] T. Hurtut, P.-E. Landes, J. Thollot, Y. Gousseau, R. Drouillhet,
and J.-F. Coeurjolly. Appearance-guided synthesis of element arrangements by
example. In Proceedings of the Symposium on Non-Photorealistic Animation and
Rendering, NPAR ’09, pages 51–60, 2009.

[Ijiri et al., 2008] Takashi Ijiri, Radomı́r Mech, Takeo Igarashi, and Gavin S. P. Miller.
An example-based procedural system for element arrangement. Computer Graph-
ics Forum, 27(2):429–436, 2008.

[Illian et al., 2008] Janine Illian, Antti Penttinen, Helga Stoyan, and Dietrich
Stoyan, editors. Statistical Analysis and Modelling of Spatial Point Patterns. John
Wiley and Sons, Ltd., 2008.

[Isola et al., 2016] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial networks. arxiv, 2016.

[Jaderberg et al., 2015] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
koray kavukcuoglu. Spatial transformer networks. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 2017–2025. Curran Associates, Inc., 2015.

[Jiang et al., 2015] Min Jiang, Yahan Zhou, Rui Wang, Richard Southern, and

133

References

Jian Jun Zhang. Blue noise sampling using an sph-based method. ACM Trans.
Graph., 34(6):211:1–211:11, October 2015.

[Ju et al., 2010] Eunjung Ju, Myung Geol Choi, Minji Park, Jehee Lee, Kang Hoon
Lee, and Shigeo Takahashi. Morphable crowds. ACM Trans. Graph., 29(6):140:1–
140:10, December 2010.

[Kalogerakis et al., 2017] Evangelos Kalogerakis, Melinos Averkiou, Subhransu
Maji, and Siddhartha Chaudhuri. 3D shape segmentation with projective convo-
lutional networks. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR),
2017.

[Kang et al., 2007] Henry Kang, Seungyong Lee, and Charles K. Chui. Coherent
line drawing. In ACM Symposium on Non-Photorealistic Animation and Rendering
(NPAR), pages 43–50, August 2007.

[Kazhdan and Hoppe, 2013] Michael Kazhdan and Hugues Hoppe. Screened pois-
son surface reconstruction. ACM Trans. Graph., 32(3):29:1–29:13, July 2013.

[Kazhdan et al., 2003] Michael Kazhdan, Thomas Funkhouser, and Szymon
Rusinkiewicz. Rotation invariant spherical harmonic representation of 3d shape
descriptors. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH Sympo-
sium on Geometry Processing, SGP ’03, pages 156–164, Aire-la-Ville, Switzerland,
Switzerland, 2003. Eurographics Association.

[Kazhdan et al., 2006] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the Fourth Eurographics Sympo-
sium on Geometry Processing, SGP ’06, pages 61–70, Aire-la-Ville, Switzerland,
Switzerland, 2006. Eurographics Association.

[Kazi et al., 2012a] Rubaiat Habib Kazi, Takeo Igarashi, Shengdong Zhao, and
Richard Davis. Vignette: Interactive texture design and manipulation with
freeform gestures for pen-and-ink illustration. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’12, pages 1727–1736,
New York, NY, USA, 2012. ACM.

[Kazi et al., 2012b] Rubaiat Habib Kazi, Takeo Igarashi, Shengdong Zhao, and
Richard Davis. Vignette: Interactive texture design and manipulation with
freeform gestures for pen-and-ink illustration. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’12, pages 1727–1736,
New York, NY, USA, 2012. ACM.

[Kazi et al., 2014] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, Sheng-
dong Zhao, and George Fitzmaurice. Draco: Bringing life to illustrations with
kinetic textures. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’14, pages 351–360, New York, NY, USA, 2014. ACM.

134

References

[Kim et al., 2008] Dongyeon Kim, Minjung Son, Yunjin Lee, Henry Kang, and
Seungyong Lee. Feature-guided image stippling. Computer Graphics Forum,
27(4):1209–1216, 2008.

[Kim et al., 2012] Young Min Kim, Niloy J. Mitra, Dong-Ming Yan, and Leonidas
Guibas. Acquiring 3d indoor environments with variability and repetition. ACM
Trans. Graph., 31(6):138:1–138:11, November 2012.

[Kim et al., 2013] Young Min Kim, Niloy J. Mitra, Qi-Xing Huang, and Leonidas J.
Guibas. Guided real-time scanning of indoor objects. Comput. Graph. Forum,
32(7):177–186, 2013.

[Kim et al., 2015] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accu-
rate image super-resolution using very deep convolutional networks. CoRR,
abs/1511.04587, 2015.

[Klokov and Lempitsky, 2017] Roman Klokov and Victor Lempitsky. Escape from
cells: Deep kd-networks for the recognition of 3d point cloud models. In The
IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[Kopf et al., 2007] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen,
Dani Lischinski, and Tien-Tsin Wong. Solid texture synthesis from 2d exemplars.
ACM Transactions on Graphics (Proc. SIGGRAPH), 26(3):2:1–2:9, 2007.

[Kwatra et al., 2005] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra.
Texture optimization for example-based synthesis. ACM Trans. Graph., 24(3):795–
802, July 2005.

[Lagae and Dutré, 2008] Ares Lagae and Philip Dutré. A comparison of methods
for generating Poisson disk distributions. Comput. Graph. Forum, 27(1):114–129,
March 2008.

[Lai et al., 2005] Y.-K. Lai, S.-M. Hu, D. X. Gu, and R. R. Martin. Geometric texture
synthesis and transfer via geometry images. In Proceedings of the 2005 ACM
Symposium on Solid and Physical Modeling, SPM ’05, pages 15–26, New York, NY,
USA, 2005. ACM.

[Landes et al., 2013] Pierre-Edouard Landes, Bruno Galerne, and Thomas Hurtut.
A shape-aware model for discrete texture synthesis. Computer Graphics Forum,
32(4):67–76, 2013.

[Li et al., 2010] Hongwei Li, Li-Yi Wei, Pedro V. Sander, and Chi-Wing Fu.
Anisotropic blue noise sampling. ACM Trans. Graph., 29(6):167:1–167:12, Decem-
ber 2010.

[Li et al., 2015] Yangyan Li, Angela Dai, Leonidas Guibas, and Matthias Nießner.

135

References

Database-assisted object retrieval for real-time 3d reconstruction. Computer
Graphics Forum, 34(2), 2015.

[Li et al., 2016] Yangyan Li, Sören Pirk, Hao Su, Charles Ruizhongtai Qi, and
Leonidas J. Guibas. FPNN: field probing neural networks for 3d data. CoRR,
abs/1605.06240, 2016.

[Lipman et al., 2007] Yaron Lipman, Daniel Cohen-Or, David Levin, and Hillel
Tal-Ezer. Parameterization-free projection for geometry reconstruction. ACM
Trans. Graph., 26(3), July 2007.

[Lloyd, 1982] S. Lloyd. Least squares quantization in pcm. Information Theory,
IEEE Transactions on, 28(2):129–137, Mar 1982.

[Loper and Black, 2014] Matthew M. Loper and Michael J. Black. OpenDR: An
approximate differentiable renderer. In Computer Vision – ECCV 2014, volume
8695 of Lecture Notes in Computer Science, pages 154–169. Springer International
Publishing, September 2014.

[Lu et al., 2013] Jingwan Lu, Connelly Barnes, Stephen DiVerdi, and Adam Finkel-
stein. Realbrush: Painting with examples of physical media. ACM Trans. Graph.,
32(4):117:1–117:12, July 2013.

[Lu et al., 2014] Jingwan Lu, Connelly Barnes, Connie Wan, Paul Asente, Radomir
Mech, and Adam Finkelstein. DecoBrush: Drawing structured decorative
patterns by example. In ACM Transactions on Graphics (Proc. SIGGRAPH), August
2014.

[Lukáč et al., 2013] Michal Lukáč, Jakub Fišer, Jean-Charles Bazin, Ondřej
Jamriška, Alexander Sorkine-Hornung, and Daniel Sýkora. Painting by fea-
ture: Texture boundaries for example-based image creation. ACM Trans. Graph.,
32(4):116:1–116:8, July 2013.

[Ma et al., 2011] Chongyang Ma, Li-Yi Wei, and Xin Tong. Discrete element tex-
tures. In ACM Transactions on Graphics (Proc. SIGGRAPH), pages 62:1–62:10,
2011.

[Ma et al., 2013] Chongyang Ma, Li-Yi Wei, Sylvain Lefebvre, and Xin Tong. Dy-
namic element textures. ACM Transactions on Graphics, 32(4):90:1–90:10, 2013.

[Martin et al., 2010] Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grin-
spun, and Markus Gross. Unified simulation of elastic rods, shells, and solids.
ACM Transaction on Graphics (Proc. SIGGRAPH), 29(3):39:1–39:10, 2010.

[Masci et al., 2015] J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst.
Geodesic convolutional neural networks on riemannian manifolds. In 2015 IEEE

136

References

International Conference on Computer Vision Workshop (ICCVW), pages 832–840,
Dec 2015.

[Maturana and Scherer, 2015] Daniel Maturana and Sebastian Scherer. Voxnet: A
3d convolutional neural network for real-time object recognition. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, Pittsburgh, PA, September
2015.

[McCool and Fiume, 1992] Michael McCool and Eugene Fiume. Hierarchical pois-
son disk sampling distributions. In Proceedings of the Conference on Graphics
Interface ’92, pages 94–105, San Francisco, CA, USA, 1992. Morgan Kaufmann
Publishers Inc.

[Merrell and Manocha, 2008] Paul Merrell and Dinesh Manocha. Continuous
model synthesis. ACM Transaction on Graphics, 27(5), 2008.

[Mitchell, 1987] Don P. Mitchell. Generating antialiased images at low sampling
densities. SIGGRAPH Comput. Graph., 21(4):65–72, August 1987.

[Mitchell, 1996] Don P. Mitchell. Consequences of stratified sampling in graphics.
In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’96, pages 277–280, New York, NY, USA, 1996. ACM.

[Møller and Waagepetersen, 2004] Jesper Møller and Rasmus Plenge
Waagepetersen. Statistical inference and simulation for spatial point pro-
cesses. Chapman & Hall/CRC, 2003, Boca Raton (Fl.), London, New York,
2004.

[Nan et al., 2012] Liangliang Nan, Ke Xie, and Andrei Sharf. A search-classify ap-
proach for cluttered indoor scene understanding. ACM Trans. Graph., 31(6):137:1–
137:10, November 2012.

[Ostromoukhov, 2007] Victor Ostromoukhov. Sampling with polyominoes. ACM
Trans. Graph., 26(3), July 2007.

[Öztireli and Gross, 2012] A. Cengiz Öztireli and Markus Gross. Analysis and
synthesis of point distributions based on pair correlation. ACM Transaction on
Graphics, 31(6), 2012.

[Öztireli et al., 2009] A. C. Öztireli, G. Guennebaud, and M. Gross. Feature pre-
serving point set surfaces based on non-linear kernel regression. Computer
Graphics Forum, 28(2):493–501, 2009.

[Öztireli et al., 2010] A. Cengiz Öztireli, Marc Alexa, and Markus Gross. Spectral
sampling of manifolds. ACM Trans. Graph., 29(6):168:1–168:8, December 2010.

[Öztireli, 2016] A. Cengiz Öztireli. Integration with stochastic point processes.
ACM Trans. Graph., 35(5):160:1–160:16, August 2016.

137

References

[Paget and Longsta, 1995] Rupert Paget and Dennis Longsta. Texture synthesis via
a non-parametric markov random field. In Proceedings of Digital Image Computing:
Techniques and Applications, volume 1, pages pp. 547–552, 1995.

[Pauly et al., 2002] Mark Pauly, Markus Gross, and Leif P. Kobbelt. Efficient simpli-
fication of point-sampled surfaces. In Proceedings of the Conference on Visualization
’02, VIS ’02, pages 163–170, Washington, DC, USA, 2002. IEEE Computer Society.

[Pauly et al., 2005] Mark Pauly, Niloy J. Mitra, Joachim Giesen, Markus Gross,
and Leonidas J. Guibas. Example-based 3d scan completion. In Proceedings of
the Third Eurographics Symposium on Geometry Processing, SGP ’05, Aire-la-Ville,
Switzerland, Switzerland, 2005. Eurographics Association.

[Pharr and Humphreys, 2010] Matt Pharr and Greg Humphreys. Physically Based
Rendering, Second Edition: From Theory To Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2nd edition, 2010.

[Pilleboue et al., 2015] Adrien Pilleboue, Gurprit Singh, David Coeurjolly, Michael
Kazhdan, and Victor Ostromoukhov. Variance analysis for monte carlo integra-
tion. ACM Trans. Graph., 34(4):124:1–124:14, July 2015.

[Preiner et al., 2014] Reinhold Preiner, Oliver Mattausch, Murat Arikan, Renato
Pajarola, and Michael Wimmer. Continuous projection for fast l1 reconstruction.
ACM Trans. Graph., 33(4):47:1–47:13, July 2014.

[Qi et al., 2016a] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J.
Guibas. Pointnet: Deep learning on point sets for 3d classification and segmen-
tation. CoRR, abs/1612.00593, 2016.

[Qi et al., 2016b] Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai,
Mengyuan Yan, and Leonidas J. Guibas. Volumetric and multi-view cnns for
object classification on 3d data. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5648–5656, 2016.

[Qi et al., 2017a] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Point-
net: Deep learning on point sets for 3d classification and segmentation. Proc.
Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.

[Qi et al., 2017b] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas.
Pointnet++: Deep hierarchical feature learning on point sets in a metric space.
In NIPS, 2017.

[Ramamoorthi et al., 2012] Ravi Ramamoorthi, John Anderson, Mark Meyer, and
Derek Nowrouzezahrai. A theory of monte carlo visibility sampling. ACM Trans.
Graph., 31(5):121:1–121:16, September 2012.

138

References

[Riegler et al., 2017] Gernot Riegler, Osman Ulusoy, and Andreas Geiger. Octnet:
Learning deep 3d representations at high resolutions. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[Roveri, 2014] Riccardo Roveri. Example-based geometry brush. Master Thesis,
ETH, 2014.

[Schmaltz et al., 2010] Christian Schmaltz, Pascal Gwosdek, Andrés Bruhn, and
Joachim Weickert. Electrostatic halftoning. Comput. Graph. Forum, 29(8):2313–
2327, 2010.

[Shao et al., 2012] Tianjia Shao, Weiwei Xu, Kun Zhou, Jingdong Wang, Dongping
Li, and Baining Guo. An interactive approach to semantic modeling of indoor
scenes with an rgbd camera. ACM Trans. Graph., 31(6):136:1–136:11, November
2012.

[Sharma et al., 2016] Abhishek Sharma, Oliver Grau, and Mario Fritz. Vconv-
dae: Deep volumetric shape learning without object labels. Computer Vision –
ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016,
Proceedings, Part III, pages 236–250, 2016.

[Shen et al., 2004] Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk. Inter-
polating and approximating implicit surfaces from polygon soup. ACM Trans.
Graph., 23(3):896–904, August 2004.

[Shen et al., 2012] Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu. Struc-
ture recovery by part assembly. ACM Trans. Graph., 31(6):180:1–180:11, Novem-
ber 2012.

[Shirley, 1991] Peter Shirley. Discrepancy as a quality measure for sample dis-
tributions. In In Eurographics ’91, pages 183–194. Elsevier Science Publishers,
1991.

[Simonovsky and Komodakis, 2017] Martin Simonovsky and Nikos Komodakis.
Dynamic edge-conditioned filters in convolutional neural networks on graphs.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

[Su et al., 2015] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G.
Learned-Miller. Multi-view convolutional neural networks for 3d shape recog-
nition. In Proc. ICCV, 2015.

[Subr and Kautz, 2013] Kartic Subr and Jan Kautz. Fourier analysis of stochastic
sampling strategies for assessing bias and variance in integration. ACM Trans.
Graph., 32(4):128:1–128:12, July 2013.

139

References

[Subr et al., 2014] Kartic Subr, Derek Nowrouzezahrai, Wojciech Jarosz, Jan Kautz,
and Kenny Mitchell. Error analysis of estimators that use combinations of
stochastic sampling strategies for direct illumination. Comput. Graph. Forum,
33(4):93–102, 2014.

[Sun et al., 2015] Yujing Sun, Scott Schaefer, and Wenping Wang. Denoising point
sets via l 0 minimization. Comput. Aided Geom. Des., 35(C):2–15, May 2015.

[Sung et al., 2015] Minhyuk Sung, Vladimir G. Kim, Roland Angst, and Leonidas
Guibas. Data-driven structural priors for shape completion. ACM Trans. Graph.,
34(6), October 2015.

[Turk, 2001] Greg Turk. Texture synthesis on surfaces. In Proceedings of the Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pages
347–354, 2001.

[Ulichney, 1988] R.A. Ulichney. Dithering with blue noise. Proceedings of the IEEE,
76(1):56–79, Jan 1988.

[Varley et al., 2016] J. Varley, C. DeChant, A. Richardson, J. Ruales, and P. Allen.
Shape Completion Enabled Robotic Grasping. ArXiv e-prints, September 2016.

[Wachtel et al., 2014] Florent Wachtel, Adrien Pilleboue, David Coeurjolly, Kather-
ine Breeden, Gurprit Singh, Gaël Cathelin, Fernando de Goes, Mathieu Desbrun,
and Victor Ostromoukhov. Fast tile-based adaptive sampling with user-specified
fourier spectra. ACM Trans. Graph., 33(4):56:1–56:11, July 2014.

[Wang and Posner, 2015] Dominic Zeng Wang and Ingmar Posner. Voting for
voting in online point cloud object detection. In Proceedings of Robotics: Science
and Systems, Rome, Italy, July 2015.

[Wang et al., 2016] Peng-Shuai Wang, Yang Liu, and Xin Tong. Mesh denoising
via cascaded normal regression. ACM Transactions on Graphics (SIGGRAPH Asia),
35(6), 2016.

[Wang et al., 2017] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and
Xin Tong. O-cnn: Octree-based convolutional neural networks for 3d shape
analysis. ACM Trans. Graph., 36(4):72:1–72:11, July 2017.

[Wei and Wang, 2011] Li-Yi Wei and Rui Wang. Differential domain analysis for
non-uniform sampling. ACM Trans. Graph., 30(4):50:1–50:10, July 2011.

[Wei et al., 2009] Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. State
of the art in example-based texture synthesis. In Eurographics ’09 State of the Art
Reports (STARs), March 2009.

[Wei, 2010] Li-Yi Wei. Multi-class blue noise sampling. ACM Trans. Graph.,
29(4):79:1–79:8, July 2010.

140

References

[Weise et al., 2011] Thibaut Weise, Sofien Bouaziz, Hao Li, and Mark Pauly. Real-
time performance-based facial animation. ACM Trans. Graph., 30(4):77:1–77:10,
July 2011.

[Wu et al., 2015a] Shihao Wu, Hui Huang, Minglun Gong, Matthias Zwicker, and
Daniel Cohen-Or. Deep points consolidation. ACM Trans. Graph., 34(6):176:1–
176:13, October 2015.

[Wu et al., 2015b] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep representation
for volumetric shapes. In CVPR, pages 1912–1920. IEEE Computer Society, 2015.

[Wu et al., 2016] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and
Joshua B Tenenbaum. Learning a probabilistic latent space of object shapes via
3d generative-adversarial modeling. In Advances in Neural Information Processing
Systems, pages 82–90, 2016.

[Xing et al., 2014] Jun Xing, Hsiang-Ting Chen, and Li-Yi Wei. Autocomplete
painting repetitions. ACM Trans. Graph., 33(6):172:1–172:11, November 2014.

[Xiong et al., 2014] Shiyao Xiong, Juyong Zhang, Jianmin Zheng, Jianfei Cai, and
Ligang Liu. Robust surface reconstruction via dictionary learning. ACM Trans-
actions on Graphics (Proc. SIGGRAPH Aisa), 33, 2014.

[Xu et al., 2015] Li Xu, Jimmy S. J. Ren, Qiong Yan, Renjie Liao, and Jiaya Jia.
Deep edge-aware filters. In Proceedings of the 32Nd International Conference on
International Conference on Machine Learning - Volume 37, ICML’15, pages 1669–
1678. JMLR.org, 2015.

[Yan et al., 2014] Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve
Marschner, and Ravi Ramamoorthi. Rendering glints on high-resolution normal-
mapped specular surfaces. ACM Trans. Graph., 33(4):116:1–116:9, July 2014.

[Yan et al., 2016] Zhicheng Yan, Hao Zhang, Baoyuan Wang, Sylvain Paris, and
Yizhou Yu. Automatic photo adjustment using deep neural networks. ACM
Trans. Graph., 35(2):11:1–11:15, February 2016.

[Zhang et al., 2016] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang. Beyond a gaussian denoiser: Residual learning of deep CNN for
image denoising. CoRR, abs/1608.03981, 2016.

[Zhou et al., 2006] Kun Zhou, Xin Huang, Xi Wang, Yiying Tong, Mathieu Des-
brun, Baining Guo, and Heung-Yeung Shum. Mesh quilting for geometric
texture synthesis. ACM Trans. Graph., 25(3):690–697, 2006.

[Zhou et al., 2007] Howard Zhou, Jie Sun, Greg Turk, and James M. Rehg. Terrain

141

References

synthesis from digital elevation models. IEEE Transactions on Visualization and
Computer Graphics, 13(4):834–848, 2007.

[Zhou et al., 2012] Yahan Zhou, Haibin Huang, Li-Yi Wei, and Rui Wang. Point
sampling with general noise spectrum. ACM Transaction on Graphics, 31(4):76:1–
76:11, 2012.

[Zhou et al., 2013] Shizhe Zhou, Anass Lasram, and Sylvain Lefebvre. By-example
synthesis of curvilinear structured patterns. Comput. Graph. Forum, 32(2):355–360,
2013.

[Zhou et al., 2014] Shizhe Zhou, Changyun Jiang, and Sylvain Lefebvre. Topology-
constrained synthesis of vector patterns. ACM Trans. Graph., 33(6):215:1–215:11,
November 2014.

[Zhu et al., 2014] Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald
Fedkiw. Codimensional surface tension flow on simplicial complexes. ACM
Transaction on Graphics (Proc. SIGGRAPH), 33(4):111:1–111:11, 2014.

142

