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Abstract
Vector fields play an important role in many areas in research and engineering.
This thesis originated in the context of a project with two industry partners active
in turbo-machinery and is hence oriented toward this area. Nevertheless, its first
part addresses generic fluid flows whereas its second part is even more universal:
its subject are vector fields in general.

Design of turbo-machinery looks back on a long history. Although high effi-
ciency is already achieved in many areas, there is still high effort in pushing ef-
ficiency some percent further. Although this seems to be a worthless undertaking
at first sight, it can substantially account into the return of these machines. Espe-
cially in the field of hydropower plants, it pays off due to their typically very long
operation duration. The operation of turbines depends on various factors, many
of which address to the field of fluid dynamics. For the design, there is a clear
trend from experiments toward computational fluid dynamics simulations. This
is especially true for these decades since computing power and simulation tech-
niques are coming to a level where experiments are almost dispensable. This leads
to the situation that reliable numerical data are easily available but often hard to
interpret because of their size and intricacy. This makes computational flow visu-
alization and analysis increasingly important. The main objective of this thesis is
to push computational flow visualization further toward the needs and possibilities
of modern turbo-machinery design.

This thesis focuses on two fields in computational flow visualization: vortices
and global structure of flows. Although vortices are beneficial in many areas of na-
ture, from the birth of solar systems over the flight of dragonflies to the physics of
our metabolism, they tend to affect technology. Although there are fields in tech-
nology that benefit from vortices such as chemical production, they lower perfor-
mance and lifetime in many others, especially where relatively high velocities are
involved, such as automotive engineering and energy conversion. Two approaches
are presented in this thesis for the analysis of vortex creation and vortex dynamics
in general. The first one bases solely on the instantaneous structure of the curl
of the velocity field, the so-called vorticity, whereas the second one examines its
transport over time by advection and diffusion. This can help both, the production
and avoidance of vortices as well as their control in each sense, depending on the
requirements and possibilities.

Understanding the global and semi-global structure of flows, or vector fields
in general, gives deeper insight into many mechanisms such as transport, mixing,
and residence time and therefore allows for more control and hence more focused
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research and engineering. This thesis addresses this field in two sub-categories:
vector field topology and Lagrangian coherent structures. As an introduction, it
is shown how the visualization of flow features can benefit from topologically
seeded streamlines and stream surfaces. A special vortex type, the so-called ring
vortex, is the subject in the remaining research in the field of vector field topology:
methods are presented for the visualization and analysis of such flow phenomena.
Lagrangian coherent structures represent an alternative to vector field topology
which is, in contrast, also easily applicable and interpretable for time-dependent
vector fields. First, a method based on adaptive mesh refinement for ridge extrac-
tion is presented for the efficient extraction of single time frames of Lagrangian
coherent structures. Finally, a method based on the advection of computational
grids is presented, which exploits temporal coherence for the extraction of time
series of Lagrangian coherent structures.
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Kurzfassung
Vektorfelder spielen eine wichtige Rolle in vielen Bereichen der Forschung und
Entwicklung. Diese Arbeit entstand im Kontext eines Projekts mit zwei Indus-
triepartnern, welche im Bereich des Turbomaschinenbaus aktiv sind und ist des-
halb auf dieses Gebiet ausgerichtet. Nichtsdestotrotz behandelt ihr erster Teil all-
gemeine Strömungen von Fluiden während ihr zweiter Teil noch universeller ist:
er hat Vektorfelder im Allgemeinen zum Thema.

Das Design von Turbomaschinen blickt auf eine lange Geschichte zurück. Ob-
wohl ein hohes Mass an Effizienz bereits in vielen Bereichen erreicht wurde,
wird immer noch viel Aufwand betrieben, die Effizienz einige Prozent weiter zu
steigern. Obwohl dies auf den ersten Blick ein wertloses Unterfangen zu sein
scheint, kann es sich substanziell auf den Ertrag dieser Maschinen auswirken. Es
zahlt sich insbesondere im Gebiet der Wasserkraftwerke aufgrund ihrer langen
Betriebszeiten aus. Der Betrieb von Turbinen hängt von vielen Faktoren ab, viele
davon zählen zum Bereich der Fluiddynamik. Hinsichtlich des Designs erkennt
man einen klaren Trend weg von Experimenten hin zu Strömungssimulationen.
Dies gilt besonders für diese Jahrzehnte, da Rechenleistung und Simulations-
methoden eine Güte erreichen, welche Experimente fast überflüssig machen.
Dies führt zu der Situation, dass zuverlässige numerische Daten einfach ver-
fügbar aber aufgrund ihrer Grösse und Komplexität oft schwer interpretierbar
sind. Dies lässt die Bedeutung der numerischen Strömungsvisualisierung und
Analyse stetig wachsen. Das Hauptaugenmerk dieser Arbeit ist das Vorwärtsbrin-
gen der numerischen Strömungsvisualisierung hinsichtlich der Bedürfnisse und
Möglichkeiten des modernen Designs von Turbomaschinen.

Diese Arbeit konzentriert sich auf zwei Gebiete der numerischen Strömungsvi-
sualisierung: Wirbel und die globale Struktur von Strömungen. Obwohl Wirbel
in vielen Bereichen der Natur nützlich sind, von der Entstehung von Sonnensys-
temen über den Flug von Libellen zu der Physik unseres Stoffwechsels, neigen
sie dazu den Einsatz von Technologie zu beeinträchtigen. Obwohl es in der Tech-
nik Bereiche gibt, welche von Wirbeln profitieren, wie zum Beispiel die chemi-
sche Produktion, verringern sie die Leistung und Lebensdauer in vielen anderen,
insbesondere wenn vergleichsweise hohe Geschwindigkeiten im Spiel sind, wie
in der Fahrzeugtechnik und Energiewandlung. In dieser Arbeit werden zwei An-
sätze für die Analyse von Wirbelentwicklung und Wirbeldynamik im Allgemeinen
vorgestellt. Der erste basiert ausschliesslich auf der instantanen Struktur der Rota-
tion des Geschwindigkeitsfeldes, der sogenannten Vortizität, während der zweite
deren zeitlichen Transport mittels Advektion und Diffusion untersucht. Dies kann
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Kurzfassung

bei beidem, der Erzeugung wie auch der Verhinderung von Wirbeln sowie deren
Kontrolle in beider Hinsicht helfen, abhängig von den Anforderungen und Mög-
lichkeiten.

Ein Verständnis der globalen und semi-globalen Struktur von Strömungen,
oder Vektorfeldern im Allgemeinen, erlaubt ein tieferes Verständnis vieler Me-
chanismen wie zum Beispiel Transport, Mischung und Verweildauer und erlaubt
deshalb ein höheres Mass an Kontrolle und somit gezieltere Forschung und Ent-
wicklung. Diese Arbeit behandelt dieses Gebiet in zwei Unterkategorien: Vek-
torfeld-Topologie und Lagrange’sche kohärente Strukturen. Als Einführung wird
gezeigt, wie die Strömungsvisualisierung durch topologiebasierte Auswahl von
Stromlinien und Stromflächen profitieren kann. Ein spezieller Wirbeltyp, der
sogennannte Ringwirbel, ist das Forschungsthema der restlichen Forschung im
Bereich der Vektorfeld-Topologie: wir stellen Methoden zur Visualisierung und
Analyse solcher Strömungsphänomene vor. Lagrange’sche kohärente Strukturen
stellen eine Alternative zur Vektorfeld-Topologie dar, welche, im Gegensatz, auch
auf zeitabhängige Vektorfelder einfach anzuwenden und zu interpretieren ist.
Zuerst stellen wir eine Methode zur effizienten Extraktion von Lagrange’schen
kohärenten Strukturen in isolierten Zeitfenstern vor, welche auf adaptiver Ver-
feinerung von Gittern zur Extraktion von Graten basiert. Schlussendlich stellen
wir eine Methode für die Extraktion von Zeitserien von Lagrange’schen ko-
härenten Strukturen vor, welche die zeitliche Kohärenz ausnutzt, indem sie das
Rechengitter advektiert.
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Chapter 1

Introduction
This chapter gives an overview of the overall motivation of the thesis and states
the resulting contributions to the field of computational flow visualization. It also
gives an overview of its topics and the organization. Although the methods pre-
sented in this thesis originated in the context of turbo-machinery, they are applica-
ble to a much wider field. Those contained in the first part of the thesis are appli-
cable to general fluid flows, whereas those in its second part address the analysis
of vector fields in general.

Turbo-machinery engineering tends to adhere to well-established but often sim-
ple computational flow visualization techniques such as color-coded cross sec-
tions of quantities of interest, streamlines, and path lines. Reasons for this cir-
cumstance are that these techniques are easy to implement and therefore widely
available, easy to apply, robust, and allow easy and long-time approved interpreta-
tions. However, due to the increasing complexity of computational fluid dynamics
(CFD) results and the involved phenomena, this is often tedious and delivers only
a restricted view which has to be often virtually integrated by the mind of the
investigator.

One aim of this thesis is therefore to give engineers tools at hand that enable
them to solve their tasks more efficiently and even inspire new questions and new
ideas. We also hope that this will encourage engineers to be more interested in the
field of computational flow visualization research.

1.1 Motivation
The definition, detection, and quantification of vortices and related processes has
a long scientific history. Surprisingly, no satisfactory definition of what a vortex
exactly is has been come up with until today. Still there exists a multitude of
definitions, or criteria, none of which unfortunately turned out to be appropriate
in all cases of vortical flow. Moreover, many of these criteria not only disagree
on their existence, but also exhibit mutually inconsistent results. One of the most
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Chapter 1 Introduction

old-established and still widely accepted quantities involved in the research on
vortical flow is vorticity. The first part of this thesis focuses on the visualization of
vorticity with the goal to improve the understanding of the mechanisms involved
in vortex creation and vortex dynamics in general.

Vector field topology, on the other hand, also looks back on a long tradition
in the context of dynamical systems theory and vector fields in general. It mainly
consists in the identification of special streamlines and among others, it allows one
to partition the domain into regions of qualitatively different behavior. Introduced
to the visualization community two decades ago, it has proven useful in many
applications and is still subject to research. Probably the main deficiency of this
concept is, however, that it is based on streamlines, or trajectories in autonomous
dynamical systems, meaning that it does not allow for an in-depth analysis of
time-dependent vector fields; these have to be analyzed at isolated “frozen” times.
It has therefore been the aim for a long time to come up with a variant of vector
field topology that accounts for time-dependence in vector fields. To some extent
such an alternative has been found in the concept of Lagrangian coherent struc-
tures (LCS), present as ridges in the finite-time Lyapunov exponent (FTLE). A
major drawback with this approach is, however, its almost prohibitive computa-
tional cost: the spatiotemporal domain needs to be sampled by a dense set of path
lines at high resolution. The second part of this thesis focuses firstly on visualiza-
tion methods utilizing vector field topology with the goal to conveniently obtain
expressive visualizations in general and also in the special case of the so-called
vortex ring phenomenon. Secondly, it addresses the extraction of Lagrangian co-
herent structures with the main goal of accelerating their computation.

1.2 Contributions
Research on vortex analysis on the one hand, and research on the structure of vec-
tor fields in the sense of vector field topology both are established and ongoing.
Although the former mostly belongs to the field of fluid dynamics and the lat-
ter also to mathematics, both are object of research in the field of visualization
too. The focus of this thesis was the development of methods for both better un-
derstanding of vortical flow and improved analysis of the global and semi-global
space-time structure of vector fields, resulting in the following contributions:

Vorticity field line placement (Chapter 3, [120]): A large part of the research
of vortical flow is based on vorticity. However, vorticity is present in both real vor-
tices and non-vortical shear flow. An important concern with many vortex criteria
is therefore to disambiguate this property. Therefore, vorticity is usually looked at
separately at these two extremes. Visualizing the complete vorticity field by field
lines similar to those used for magnetic fields shows interrelations of these two

2



1.2 Contributions

phenomena and can also serve as supporting information if scalar vortex criteria
are mapped to the field lines by color.

Vorticity transport analysis (Chapter 4, [121]): The above approach of visual-
izing vorticity field lines has one major drawback: because vorticity is an instan-
taneous quantity, the resulting visualization fails to visualize temporal processes
such as the advection of vorticity in time-dependent flow and makes it even hard
to interpret it in steady flow. Furthermore, there are other mechanisms involved
such as diffusion of vorticity which cannot be adequately visualized by the former
method. Therefore, a method is presented that allows to inspect regions of vor-
tical flow in terms of the origination of vorticity and the involved physics on its
way to the vortical region as well as inside the vortical region itself. This allows
for a deeper understanding and analysis of vortex dynamics regarding a particular
region, and in the focus of this thesis, it, e.g., allows the researcher to develop
procedures for vortex control.

Visualization of vortex rings (Chapter 5, Chapter 6, [104–106]): It was the
vortex breakdown phenomenon that guided us to the concept of Lagrangian co-
herent structures and in this chapter we present different algorithms for the visu-
alization of vortex breakdown bubbles. They allow for an automatic extraction of
these features and hence for a quick analysis of the large-scale behavior of vector
fields in that context, e.g., reduced throughput due to their blocking nature. In the
smaller scale, we provide techniques that reveal the organization of breakdown
bubbles, which allows for distinguished examination, and can serve as a basis for
their qualitative and quantitative analysis.

Filtered AMR Ridge extraction (Chapter 7, [118]): A contribution for acceler-
ated ridge surface extraction is presented in this chapter: a ridge surface extrac-
tion technique that constrains sampling to regions containing ridges by adaptive
mesh refinement. This way, when applied for the computation of FTLE ridges, the
computationally very expensive procedure of FTLE evaluation can be substan-
tially accelerated and hence making FTLE analysis more applicable in everyday
research.

Extraction of Lagrangian coherent structures (Chapter 8, [118, 119]): Here
we explain the concept of FTLE and LCS, apply and evaluate the filtered AMR
ridge extraction in that domain, propose an approach for the computation of the
FSLE, a concept related to FTLE, and propose another variant going one step
further in making the concept parameter-free, i.e., avoiding the prescription of a
time scope for the analysis.

Grid advection for Lagrangian quantities (Chapter 9, [122]): Since LCS
change over time in time-dependent vector fields, it is often necessary to investi-
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gate time series, i.e., animations, of FTLE ridges. To lower the computational cost
of this process and hence making it better applicable in research and development,
we present a method that exploits temporal coherence by advection of the FTLE
sampling grid.

1.3 Organization
This thesis covers two different areas of research: the visualization of physics of
steady and unsteady flows, covered by the first part, and visualization of topology
of steady and unsteady vector fields, addressed by the second part.

In the first part, we concentrate on the physical properties of flows, an aspect of-
ten neglected in computational flow visualization. There arise some implications
and issues in this field. One example is the need for additional variables such as
wall distance and viscosity. It is also often important to know how the fluid was
modeled, more precisely, which simulation method and which turbulence model
have been used, possibly leading to additional variables such as eddy viscosity and
modified pressure. Interpolation functions and residual errors of the CFD simula-
tion also have to be often taken into account.

The second part is more generic: it builds on velocity alone. Therefore these
methods are applicable to any vector field, e.g., arising from dynamical systems.

1.4 Notation
Most emphasized terms together with many other are listed in the index and are
represented as hyperlinks. There, bold page numbers indicate the location where
they are introduced. Please use this mechanism as a replacement for references.

1.5 Publications
This thesis is based on the following publications in peer-reviewed conference
proceedings and journals:

Sadlo, F., Rigazzi, A., and Peikert, R. Time-Dependent Visualization of La-
grangian Coherent Structures by Grid Advection. In Topological Methods in Data
Analysis and Visualization (Proceedings of Topology-Based Methods in Visual-
ization 2009), to appear. Springer, 2011.

Peikert, R. and Sadlo, F. Topologically Relevant Stream Surfaces for Flow Vi-
sualization. In Proceedings of Spring Conference on Computer Graphics, pages
43–50, 2009.
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Peikert, R. and Sadlo, F. Height Ridge Computation and Filtering for Visualiza-
tion. In Proceedings of IEEE VGTC Pacific Visualization Symposium 2008, pages
119–126, 2008.

Peikert, R. and Sadlo, F. Visualization Methods for Vortex Rings and Vortex
Breakdown Bubbles. In Proceedings of EuroVis 2007, pages 23–25, 2007.

Peikert, R. and Sadlo, F. Flow Topology Beyond Skeletons: Visualization of
Features in Recirculating Flow. In Topology-Based Methods in Visualization II
(Proceedings of Topology-Based Methods in Visualization 2007), pages 145–160.
Springer, 2008.

Sadlo, F. and Peikert, R. Visualizing Lagrangian Coherent Structures and Com-
parison to Vector Field Topology. In Topology-Based Methods in Visualization II
(Proceedings of Topology-Based Methods in Visualization 2007), pages 15–30.
Springer, 2008.

Sadlo, F. and Peikert, R. Efficient Visualization of Lagrangian Coherent Struc-
tures by Filtered AMR Ridge Extraction. IEEE Transactions on Visualization and
Computer Graphics, 13(5):1456–1463, 2007.

Sadlo, F., Peikert, R., and Sick, M. Visualization Tools for Vorticity Transport
Analysis in Incompressible Flow. IEEE Transactions on Visualization and Com-
puter Graphics, 12(5):949–956, 2006.

Peikert, R. and Sadlo, F. Topology-guided Visualization of Constrained Vector
Fields. In Topology-Based Methods in Visualization (Proceedings of Topology-
Based Methods in Visualization 2005), pages 21–34. Springer, 2007.

Sadlo, F., Peikert, R., and Parkinson, E. Vorticity Based Flow Analysis and Visu-
alization for Pelton Turbine Design Optimization. In Proceedings of IEEE Visual-
ization, pages 179–186, 2004.

Related publications:

Fuchs, R., Peikert, R., Sadlo, F., Alsallakh, B., and Gröller, M. E. Delocalized Un-
steady Vortex Region Detectors. In Proceedings VMV 2008, pages 81–90, 2008.

Fuchs, R., Peikert, R., Hauser, H., Sadlo, F., and Muigg, P. Parallel Vectors Criteria
for Unsteady Flow Vertices. IEEE Transactions on Visualization and Computer
Graphics, 14(3):615–626, 2008.

Thürey, N., Sadlo, F., Schirm, S., Müller-Fischer, M., and Gross, M. H. Real-time
simulations of bubbles and foam within a shallow water framework. In Symposium
on Computer Animation, pages 191–198, 2007.

Mallo, O., Peikert, R., Sigg, C., and Sadlo, F. Illuminated Lines Revisited. In Pro-
ceedings of IEEE Visualization, pages 19–26, 2005.

5



Chapter 1 Introduction

6



Chapter 2

Fundamentals and State
of the Art

There has been a considerable development in the field of computational flow vi-
sualization in the last decades. Many flow aspects have been addressed and many
new techniques have been developed that do not only allow researchers and engi-
neers to produce results that could be achieved in real flow visualization experi-
ments, but also such that could not, or not easily, be achieved in reality.

2.1 Basics
Computational flow visualization is often based solely on the vector field, i.e.,
on velocity. In this case it typically generalizes to the wider field of vector field
visualization. Sometimes however, intrinsic properties of fluids come into account,
such as zero divergence in case of incompressible fluids or vanishing curl. Other
physical mechanisms in fluids are often reflected by respective laws, which in
turn may involve additional constants. One important example in the field of fluid
dynamics is viscosity, reducing velocity gradients and responsible for dissipative
effects, such as the transformation of turbulence into heat. The first part of this
thesis concentrates on the analysis and visualization of vortices. First, we will
have a structural look at vorticity. This can be achieved by taking velocity alone
into account. Later, we will analyze the dynamics of vorticity. This, in contrast,
can only be achieved for many simulated flows if the used turbulence model is
taken into account.
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2.1.1 Vector Fields
A vector field is a vector-valued function defined on a domain D⊂Rn. In general,
it assigns to each position x = xi = (x1,x2, . . .)

> a vector u = ui = (u1,u2, . . .)
>:

u(x) =

 u1(x1,x2, . . .)
u2(x1,x2, . . .)

...


or

u(x) = ui(x)

using Einstein notation. In case of 3-dimensional vector fields, this is often written
as u(x) = (u(x,y,z),v(x,y,z),w(x,y,z))>. There are steady-state (static, station-
ary) vector fields of the form

u(x)

and unsteady (time-dependent, transient) vector fields

u(x, t)

where the domain includes time t. The dimensions of u and x are equal, often 2
or 3. However, vector fields can also be defined on manifolds such as curves x(i)
and surfaces x(i, j). In this case the vector field is a function of these parameters
and, potentially, time:

u(i, j, t) = u(x(i, j), t).

For simplicity of notation, we often use u instead of u(x) and assume Carte-
sian coordinates. Unless mentioned explicitly, we additionally assume at least Lip-
schitz continuity in space and time, i.e., ∃C > 0 such that ||u(x, t)−u(x0, t0)|| ≤
C||(x>, t)− (x0

>, t0)|| for all (x>, t) inside a neighborhood around (x0
>, t0). Lip-

schitz continuity is stronger than C0 continuity but weaker than C1 continuity
(continuously differentiable). In case of discrete data, addressed next, Lipschitz
continuity is satisfied in the case of linear tensor product interpolation, such as
cell-wise bilinear and trilinear interpolation.

2.1.2 Representations
The field concept implies that vector fields are continua, i.e., a value is defined for
any point inside the domain, possibly except for isolated point sets. Although this
property is naturally fulfilled in many analytic considerations, it requires design
choices in many numerical approaches. Analytic representations can be compu-
tationally handled, as in the case of software for algebraic computations, but this
approach is often expensive, and more importantly, many data are only given in
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numerical form. One reason for this circumstance is that it is often simpler to pro-
duce numeric results, as in the case of differential equations. Additionally, there
are nonlinear problems, such as finding solutions for the Navier-Stokes equations
describing the dynamics of fluids, where it is up to now not even clear if closed-
form solutions exist in general.

There are different possibilities for the representation of the solution fields.
Probably the simplest is to provide a set of positions with corresponding values.
This representation is called mesh-less, scattered, or point-based. To render these
data functional, a technique has to be chosen for representing the field between the
sampled positions. One approach is to place an appropriate basis function at each
sample position such that several basis functions cover each position between the
samples and contribute to the value at each of these positions, interpolating the
field. Another approach is to perform meshing, or triangulation, for defining a
topological structure of the sampling and to apply methods described next.

A common approach however is to partition the domain during simulation (out-
put) into small regions, the so-called cells. The data can then be given at the centers
of these cells, or, as a dual approach, at the corners of the cells called nodes, lead-
ing to cell-based or node-based representation. One example for a kind of interme-
diate representation is the so-called higher-order representation: here an analytic
representation is given inside each of the cells, e.g., by polynomials. Nowadays
this approach is increasingly applied for solving problems in mechanics, in the
form of the so-called Discontinuous Galerkin method. Also applied in CFD, this
approach allows to partition the domain into fewer (larger) cells without loss of
accuracy at the expense of increased analytical complexity of the representation.
Thereby, the cell sizes as well as the analytical complexity can be chosen adap-
tively, depending on the degree of variation in the result.

Nevertheless, still most data in the field of CFD are given numerically in a dis-
crete manner: values are given at distinguished positions, namely the cell centers
or the nodes. Since many considerations and techniques build on the continuum
property of fields, interpolation techniques (or reconstruction techniques) have to
be applied. Nowadays, linear tensor product interpolation is by far most often uti-
lized in scientific visualization, i.e., linear interpolation in 1D domains, bilinear
in 2D, and trilinear in 3D. Often also interpolation schemes of higher order are
used, such as cubic or even Taylor series, radial basis functions, or related splines
approaches. There is however a caveat: the choice of the reconstruction method is
in many cases predetermined by the model/phenomenon that produced the data.
In this sense discrete field results are only complete if they are accompanied by
the appropriate reconstruction method. In this case these data can typically be in-
terpreted as the aforementioned higher-order representation. Unfortunately, this
requirement is nowadays still widely violated; visualization is carried out without
knowledge about the correct interpolation scheme. Many researchers and engi-
neers prefer in this case linear tensor-product interpolation because it can be seen
as the best trade-off between continuity and conservativeness, meaning that it does
not unnecessarily introduce variation, e.g., due to ringing.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1: Grid types. (a) Scattered representation (samples without topology). (b) Carte-
sian grid (isometric). (c) Uniform grid (not isometric). (d) Rectilinear grid. (e)
Curvilinear grid (structured grid). (f) Irregular grid (structured grid). (g) Unstruc-
tured grid. (h) Hybrid grid (consisting of a quadrilateral and a triangular part).

The collection of cells and nodes is called a grid. Grids can be categorized into
two major classes: structured grids with regular topology and unstructured grids
where grid topology has to be defined explicitly. In this sense scattered data can be
classified as a structured grid type (Figure 2.1 (a)). Other structured grid types in-
clude Cartesian, uniform, rectilinear, curvilinear, and irregular (Figures 2.1 (b)-
2.1 (f)). An example for an unstructured grid is shown in Figure 2.1 (g) and
a combination of a structured and an unstructured grid, called hybrid, in Fig-
ure 2.1 (h). Besides 2-dimensional cells, unstructured grids nowadays typically
consist of tetrahedra, pyramids, prisms, and hexahedra although higher order poly-
hedra are being increasingly used.

Unstructured grids are widely used in engineering because they provide high
flexibility regarding resolution and orientation, i.e., smaller cells can be easily
used in regions with detailed phenomena. The cells can even be oriented appropri-
ately, e.g., boundary cells can be constructed consistently with arbitrarily shaped
boundaries. In CFD, and in particular in the context of turbo-machinery, this has
the advantage that the accuracy of simulation results generally profits from cell
alignment with flow direction. There are two further widely used approaches for
addressing variable scale in simulations: multigrid and adaptive mesh refinement
(AMR). The multigrid approach simply uses additional meshes of finer resolution
at regions of interest inside the coarser grid (Figure 2.2 (a)). Often these meshes
are nested, i.e., regions of interest may be covered by several meshes of increas-
ing resolution. The AMR approach follows the same idea but maintains a single
grid. Typically the grid is obtained by repeated subdivision of selected cells. A
severe problem of AMR grids are however the so-called hanging, or T-, nodes
(Figure 2.2 (b)) which may lead to, e.g., inconsistencies (discontinuities) of in-
terpolated values at cell edges because different nodes contribute to the values at
both sides of an edge.
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(a) (b)

Figure 2.2: Grid types. (a) Multigrid with three different layers (white, light gray, dark
gray). (b) AMR grid with hanging nodes (gray).

To conclude, all mesh-based grids allow for the definition of a computa-
tional and a physical space. Whereas the physical space represents the native
parametrization of the domain which is, e.g., used for defining the positions of
the grid nodes, the computational space is typically a parametrization of each
cell separately by [0,1]n with (c1,c2, . . .) , ci ∈ {0,1} representing the nodes of
the cell. Examples for this parametrization are linear tensor-product interpolation
inside quadrilaterals and barycentric interpolation inside triangles. 3D elements
exhibiting trilateral as well as quadrilateral faces, such as prisms, are typically
parametrized by combination of quadrilateral and barycentric parametrization.
Whereas obtaining the physical coordinates of a point given in computational co-
ordinates is straightforward and finding the computational coordinates in uniform
and rectilinear grids is simple, it requires point location strategies in curvilinear,
irregular, and unstructured grids. Computational coordinates are used in many
fields such as interpolation, contour extraction, and integral curve extraction.

2.1.3 Flow Physics
The probably most basic quantity in fluid dynamics is velocity. One derived quan-
tity is the velocity gradient (or Jacobian of velocity)

∇u =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

= ∂ui/∂x j.

Using also the time derivative of velocity, the material derivative (or substantial
derivative) of velocity represents the acceleration:

∂u
∂t

+u ·∇u,

often abbreviated by
Du
Dt

.
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The velocity gradient tensor can be decomposed into its symmetric part called
rate of strain tensor

S =
∇u+(∇u)>

2
and its antisymmetric part called vorticity tensor

ΩΩΩ =
∇u− (∇u)>

2
.

The vorticity tensor is closely related to vorticity. Vorticity is the curl of velocity:

ωωω = (ω1,ω2,ω3)
> =∇×u =

(
∂w
∂y
− ∂v

∂z
,
∂u
∂z
− ∂w

∂x
,
∂v
∂x
− ∂u

∂y

)>
and represents a right-handed local rotation around an axis aligned with the vortic-
ity vector and with absolute angular velocity related to vorticity magnitude ||ωωω||.
However, it is worth noticing that the absolute angular velocity of a particle at
infinitesimal distance from the reference point of ΩΩΩ is only 1/2||ωωω|| or in other
words, vorticity magnitude is twice the absolute angular velocity. The vorticity
tensor ΩΩΩ is related to vorticity ωωω as follows:

ΩΩΩ =

 0 (∂u
∂y − ∂v

∂x)/2 (∂u
∂z − ∂w

∂x )/2
(∂v

∂x − ∂u
∂y )/2 0 (∂v

∂z − ∂w
∂y )/2

(∂w
∂x − ∂u

∂z )/2 (∂w
∂y − ∂v

∂z )/2 0


=

1
2

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 ,

which can be also written as Ωi j =−εi jkωk/2 using the permutation symbol εi jk.
In Chapter 3, we will present methods for the visualization of the instantaneous

vorticity field structure inspired by common visualizations of magnetic fields. Al-
though this first approach also already gives some insight to vortex dynamics, we
present a dedicated method in Chapter 4 for the visualization of vorticity trans-
port in steady and unsteady flow. This second approach can be seen as a com-
plementary technique: whereas the first method mainly visualizes the structure of
vorticity, the second method focuses on its advection and diffusion aspects.

We conclude this short overview with a look at some further quantities common
in fluid dynamics. We start the tour with a look at the Navier-Stokes momentum
equations modeling the dynamics of fluid flows:

Du
Dt

=−∇p
ρ

+ν∇2u. (2.1)

The balance of acceleration on the left hand side and the pressure gradient ∇p
divided by the density ρ of the fluid on the right hand side is the main mechanism
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governing dynamics in typical situations of this model. The second term on the
right hand side models the diffusion of momentum according to the kinematic
viscosity ν related to the dynamic viscosity µ by ν = µ

ρ
. Viscosity models the

internal friction inside fluids and is hence an important cause for the reduction of
the velocity gradient across flow direction.

There are many more derived quantities, many of them with a particular mean-
ing and field of application. Some of them are dimensionless and referred as num-
bers. One important property of flows is their complexity with respect to turbu-
lence. This can be expressed by the Reynolds number defined as

Re =
ρuL

µ
. (2.2)

It is, too, a dimensionless quantity, describing the “complexity” of the flow, i.e.,
low numbers indicate laminar flow (flow in parallel layers) whereas high values
indicate turbulent flow. The Reynolds number reflects the interesting fact that fluid
phenomena typically cannot by simply scaled, e.g., a change of the spatial scale
L necessitates also an adaptation of speed u, viscosity µ, or density ρ. This is of-
ten not easily achieved and a reason why physical special effects in entertainment
industry used to lack in plausibility in the days before computer-generated im-
agery (CGI). Another implication is that wind channels used for flow experiments
sometimes require cooling and pressurizing to get into the desired flow regime.

This leads us to the last topic discussed here in the context of flow physics:
the Kolmogorov cascade. Turbulence typically becomes manifest in a large scale-
range of vortices and large vortices contain more turbulent energy than small ones.
Kolmogorov identified an energy cascade between these vortices, i.e., a transfer
of energy from larger to smaller vortices. Depending on fluid properties, there is
a vortex scale at which dissipative effects come into play, i.e., vortical energy is
transformed into heat by molecular friction. This scale is called the Kolmogorov
length microscale and represents the smallest spatial flow scale in this model.
There are also corresponding Kolmogorov scales with respect to time and veloc-
ity. Because the length scale is typically comparably small, e.g., in the order of
a millimeter, a direct numerical simulation (DNS) is likely to be out of reach for
the next centuries for most practical applications. Therefore, it is nowadays prac-
tice to discretize the simulation domains at much lower resolution and to involve
turbulence models to model the influence of small-scale vortical motion.

2.1.4 Vortices
Flow quality mostly determines the operation of turbo-machinery and, generally,
it is crucial for many processes in industry and nature. From the rich field of flow
physics, we focus on vortex phenomena in the first part of this thesis because vor-
tices tend to affect the operation of turbo-machinery, e.g., by reduced throughput,
abrasion, dangerous resonances, and even cavitation (abrupt evaporation due to
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r

uθ

R0

u0

r

||ωωω||

R0

(a) (b)

Figure 2.3: Rankine vortex model and vortex core (hatched). (a) Rigid body vortical be-
havior for r ≤ R and free vortex for r > R. The vortex core line (vortex axis) is at
r = 0. (b) Vorticity exhibits discontinuity at r = R.

sudden pressure drop) [11]. On the other hand, vortices can also be beneficial,
such as in the case of mixing processes in combustion and production. Either way,
in order to diminish or even avoid the creation and intensification of vortices, or
to generate beneficial vortices, it is necessary to understand and to identify the
processes and mechanisms involved in their creation and dynamics.

A well known difficulty in the discussion of vortices is the lack of a formal
definition. Robinson extended Lugt’s working definition of a region of closed or
spiraling streamlines by the requirement that the observer must move with the
average velocity measured at the vortex core [89, 114]. By its implicit nature, this
definition is difficult to apply, and its room for interpretation led to a variety of
vortex criteria, even if the scope is narrowed to strictly physical ones. We give an
overview in this chapter, and discuss direct visualization of the vorticity field.

An ideal vortex in an inviscid fluid is called a free vortex or irrotational vor-
tex and exhibits no vorticity at all, except for the singularity at its center where
velocity goes to infinity. Its tangential velocity is

uθ(r) =
Γ

2πr

with circulation Γ and radius r. For real, viscous flows there exists the simple
Rankine vortex model. Additionally to the free vortex, it contains a forced vortex
or rotational vortex region at its center. This region represents the vortex core
and contains all the vorticity, which in this case is constant due to the rigid body
rotational behavior (Figure 2.3). Its tangential velocity is

uθ =

{
u0r
R , (r ≤ R)

u0R
r , (r > R)

with maximum velocity at the peak u0, radius r, and radius of the vortex core R.
Although there is no precise definition for vortex cores in many real flows, it can

be considered a region inside the vortex that exhibits substantial vortical motion,
e.g., where vorticity magnitude dominates the shear strain rate in some sense, as
in the case of the vortex criterion Q [62] (see Section 2.1.6).
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A first and well established step in the analysis of vortices is often the detec-
tion of vortex core lines. This can be achieved by the methods described in Sec-
tion 2.6.2. However, due to the local and geometric nature of these methods, they
they do not give much insight into the dynamics of vortices, subject of Chapter 4.

The extraction of vortices from steady flow data has been investigated by many
researchers over the last decades. In a large part of recent literature, vortices are
approached via the shape of streamline bundles. The shape of vortices has been
described in topological [52] or geometrical terms [80, 145] or by templates [29].
Shape-based methods have been used successfully for various types of, mostly
longitudinal, vortices. However, the shape of a streamline pattern is not Galilean
invariant, but depends on the frame of reference. Therefore, these methods tend
to fail on vortices that need to be observed in a moving frame of reference, i.e.,
vortices with substantial time dependency. Classical examples are hairpin vor-
tices occurring in boundary and mixing layers, and von Kármán vortex streets.
Methods for their detection should therefore be formulated in a Galilean invariant
manner, e.g., not relying on velocity directly. Reportedly [27], the method giv-
ing the sharpest extraction results for this type of vortices is the λ2 method [62]
described in Section 2.1.6.

Depending on the dominant flow direction through a vortical region, one can
classify the corresponding vortex as longitudinal with substantial flow along the
core line and transversal, also called tumble vortex, where the dominant direction
is perpendicular to it. Vortex rings can be seen as a special case of tumble vortices
and are the subject of Chapter 6. Basically, these can be understood as vortices
that are closed, i.e., that exhibit a closed vortex core line. One prominent example
is the so-called smoke ring. They are also closely related to the vortex breakdown
phenomenon examined in Chapter 6.

2.1.5 Background on Vortices and Vorticity
The methods to be presented in the first part of the thesis focus on vorticity. Vor-
ticity relates to the orientation and angular velocity of local rotation and therefore
offers a generic and powerful approach for the analysis of the mechanisms in-
volved in vortical motion. Sometimes, it is even used directly as a criterion for the
existence of vortices. Depending on the application, the study of vortices can be
accomplished by finding regions of high vorticity magnitude. For example, Sil-
ver and Wang [137] identified vortices by connected isosurface components of
vorticity magnitude and developed an algorithm for tracking them over time. Ad-
ditionally to vorticity-based methods, there are also vortex core detection methods
that are not explicitly based on vorticity, e.g., the λ2 method by Jeong and Hus-
sain [62], described in Section 2.1.6. However, many of these methods are based
on the velocity gradient and hence make implicit use of vorticity. A different ex-
ample is the method presented by Laramee et al. [78]. They use a texture advection
method for exploring the relationship between velocity and vorticity.
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(a) (b)

Figure 2.4: Shear flow and vorticity. (a) Sher flow in frame of reference of solid boundary
(hatched). (b) Same flow, in frame of reference moving with average flow speed.
Differential rotation is apparent.

However, there is a fundamental problem: although vorticity is present in any
real vortex in a viscous fluid, it is also present in shear flow which does not ex-
hibit swirling motion at all. One example is a uniformly oriented flow with a non-
vanishing velocity gradient (Figure 2.4 (a)). Although it exhibits straight stream-
lines, it can contain an arbitrary amount of vorticity. This can be seen by subtract-
ing its global average of velocity (Figure 2.4 (b)), an operation not affecting vor-
ticity which is based on spatial derivatives only. In this case, vorticity is oriented
into the plane of projection, i.e., perpendicular to velocity, a property indicating
shear flow. Especially in ducted viscous flows, most of the overall vorticity is typ-
ically contained in the boundary shear layer. This is due to the no-slip condition
on the boundary that forces the adjacent fluid to adhere. A classical example is the
Hagen-Poiseuille flow through a cylindrical pipe. It has a quadratic velocity pro-
file and therefore vorticity magnitude increases linearly toward the wall. In more
complex flow fields, such as those often encountered in fluid machines, shear flow
can separate from the boundary, this way transporting vorticity into the interior of
the flow, and possibly developing into a vortex. When a vortex develops from the
boundary layer, this can be described by transport and transformation of vorticity.
For a better understanding of a flow it is therefore of interest to examine vorticity
in all of its different roles. The goal of the first part of this thesis is not primarily
the visualization of vortices but of vorticity distribution, orientation and dynamics,
and in particular its role in vortex phenomena.

Vorticity has strong analogy with magnetic fields. Because it is divergence-free
and exhibits field lines that are closed or of infinite length (or reach the domain
boundaries), it can be visualized by vortex lines such that their geometric den-
sity is proportional to the field magnitude. Therefore we came up with a method
that visualizes vorticity using field lines (possibly rendered using the illuminated
lines method presented in [93]) where line density represents vorticity magnitude,
as commonly used for the visualization of magnetic fields. This approach is de-
scribed in Chapter 3. As a continuation of this approach, we developed a method
for visualizing the transport and transformation of vorticity, presented in Chap-
ter 4. This allows to understand the mechanisms involved in vortex generation and
vortex dynamics in general.
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2.1.6 Vortex Criteria
A number of well known criteria for the presence of a vortex or, more generally,
a swirling flow, are derived immediately from the Navier-Stokes equations. For
incompressible flow, the Navier-Stokes equations are

Du
Dt

=−∇p
ρ

+ν∇2u (2.3)

where the left hand side is the material derivative of velocity, i.e., the acceleration,
ρ the constant density, p is pressure and ν is the constant kinematic viscosity.

Some of the criteria discussed in this section relate to eigenvalues and the tensor
invariants of the velocity gradient ∇u. In 3-dimensional vector fields, the eigen-
values λ1, λ2, and λ3, satisfy the characteristic equation

λ
3−Pλ

2 +Qλ−R = 0 (2.4)

with the tensor invariants P = trace∇u = ∇·u, Q = 1
2(trace2∇u− trace(∇u)2),

and R = det∇u.
It is worth noticing that the divergence, curl, and gradient operators, when ap-

plied to Eq. 2.3, all yield equations which are relevant for the detection and visu-
alization of vortices.

• The divergence of Eq. 2.3 is the scalar equation

∇· (Du
Dt

) =−1
ρ
∇2 p (2.5)

having made use of the (incompressible) continuity equation ∇·u = 0. A
positive Laplacian of pressure is a well-known vortex indicator [27]. The
pressure Laplacian is up to a constant factor identical to the second invariant
Q of the velocity gradient tensor∇u which is the basis of Hunt’s vortex cri-
terion [57]. Q represents the local balance between the shear strain rate and
vorticity magnitude and using the Frobenius norm ||A||F =

√
trace(A>A)

it can be formulated as follows:

Q = 1
2(||ΩΩΩ||2F −||S||2F)

with the vorticity tensor ΩΩΩ and the rate of strain tensor S being the antisym-
metric and symmetric parts of the velocity gradient ∇u. It is also known
as the elliptic version of the Okubo-Weiss criterion by Okubo [102] and
Weiss [176]. It has to be noted that it requires the additional condition that
pressure needs to be lower than the ambient value. Hunt defines an “eddy”
as the region where Q is positive. In the case of the Rankine vortex, the
zero-isosurface of Q separates the vortex core from the outer region. Eq. 2.5
gives yet another, and quite intuitive, formulation: instead of looking for
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low pressure regions, we can equivalently look for regions of high conver-
gence of the acceleration field. This can also be interpreted as regions of
high centrifugal force and hence vortical motion. Furthermore, this relates
to a very common vortex criterion: the identification of vortices by reduced
pressure [99]. Here, the pressure gradient balances the centrifugal force.

• The curl of Eq. 2.3 leads to the well-known vorticity equation

Dωωω

Dt
= ωωω ·∇u+ν∇2

ωωω. (2.6)

It describes vorticity transport, i.e., the rate of change of a particle’s vor-
ticity by vortex stretching, vortex tilting, and by diffusion of vorticity. The
fact that pressure has disappeared makes Eq. 2.6 an attractive alternative
to Eq. 2.3 for flow simulations and has led to the so-called vortex meth-
ods [20]. In visualization, this equation allows to separately visualize vortex
stretching, vortex tilting, and vorticity diffusion, as described in Chapter 4.

• The gradient of Eq. 2.3 is the matrix equation

∇Du
Dt

=−1
ρ
∇∇p+ν∇∇2u. (2.7)

It is the basis for the λ2 vortex criterion [62] by Jeong and Hussain, which
is derived as follows. The starting point for the λ2 method is again the aim
to locate regions of reduced pressure. However, since true local pressure
minima can be affected by unsteady straining and viscous effects, leading
to inconsistence with vortices, the idea is to discard these two influences. As
detailed in the context of height ridges (Section 7.1), the pressure Hessian
contains the information about local pressure and hence minima, and so this
method aims at deriving the Hessian of a “corrected” pressure, liberated
from the mentioned influences. The antisymmetric part of Eq. 2.7 is again
the vorticity equation Eq. 2.6. In this case it can be discarded because the
Hessian is a symmetric matrix. Therefore it suffices to take the symmetric
part of Eq. 2.7:

DS
Dt
−ν∇∇2S+S2 +ΩΩΩ

2 =−1
ρ
∇∇p

where S is the symmetric and ΩΩΩ the antisymmetric part of∇u. After remov-
ing terms one (unsteady irrotational straining) and two (viscous effects), the
remaining part of the pressure Hessian is, up to a constant factor, the sym-
metric matrix S2 +ΩΩΩ

2. If its three eigenvalues are ordered as λ1 ≥ λ2 ≥ λ3,
the criterion for λ2 is λ2 < 0 which means that the pressure function graph
has positive curvature in at least two orthogonal directions, consistent with
Eberly’s criterion for codimension 2 ridges (Section 7.1). In the case of the
Rankine vortex, the zero-isosurface of λ2 exactly extracts the vortex core.
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True local minima would additionally require a zero gradient of the “cor-
rected” pressure. But on the one hand this would restrict the resulting re-
gion to the very center of the vortex, i.e., its core line, and on the other hand
this additional requirement is often impossible to impose because S2 +ΩΩΩ

2

does not fulfill the properties of a Hessian in general: it is only a symmetric
matrix and therefore it is usually not possible to derive a consistent gradient
or even the “corrected” pressure itself, e.g., by integration. A drawback is
however the often encountered inability of separating individual vortices by
means of λ2.

Another vortex criterion called ∆ [57] is based on the Q criterion and addition-
ally uses the third tensor invariant called R. It can be expressed as

∆ = (1
3Q)3 +(1

2R)2.

Again, it indicates a vortex region if ∆ > 0. The extension of Hua et al. [55] of
considering acceleration terms, which includes temporal derivatives and expresses
the feature extraction process from the Lagrangian perspective, is another variant
related to Q.

One of the most prominent vortex criteria which is not Galilean invariant is he-
licity, the dot product of velocity and vorticity. Normalized helicity (also called
helicity density) is an often used variant obtained by normalizing velocity and
vorticity prior to multiplication. Under this aspect, the shear flow sketched in Fig-
ure 2.4 exhibits zero helicity and hence a vortex-free region.

There exist several further vortex criteria which are Galilean invariant. A typ-
ically required property for a vortex is the presence of complex eigenvalues of
the velocity gradient tensor ∇u [18, 46], often referred to as vortex strength and
formulated as the modulus of the imaginary part of ∇u. Again, this is in practice
often not sufficient for isolating distinguished vortices. Other proposed criteria are
high vorticity [143], low pressure [99], and the combination of low pressure and
high vorticity [6].

One of the recent vortex criteria is the Mz criterion by Haller [50]. This criterion
is not only Galilean invariant, it is even objective. This means that it is invariant
under any kind of accelerated translation and even accelerated rotation of frame
of reference. The invariance to rotation makes it especially appealing for vortex
detection in turbo-machinery, where flow often exhibits rotational behavior, e.g.,
due to a turbine, but does not exhibit vortical motion in a co-rotating frame of
reference. Although it might resemble a philosophical question if there is a vortex
in such a case, since it depends to some extent on the frame of reference and the
questions that the investigator wants to have answered, a vortex criterion that can
discriminate between typical vortices and approximate rigid body rotations would
be beneficial in some cases. Haller has shown that Mz does this job at least for
analytical vortex examples. Simply spoken, Mz measures the deviation of the flow
from the behavior suggested by the rate of strain. Haller first computes a scalar
field and then measures the time a trajectory spends in certain values of that field.
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This results in a variant of hyperbolicity time and this Lagrangian measure is used
to discriminate between hyperbolic (non-vortex) regions and regions that represent
vortices. The reader is referred to the cited work for details and to Section 2.6.2
for the extraction of vortex core lines.

2.2 Volumetric Approaches
One of the probably simplest ways to visualize vector fields is by extraction of
contours for 2-dimensional data or isosurfaces in the case of 3-dimensional vec-
tor fields. These visualizations can be obtained using methods from the family of
marching cubes [86] algorithms. Similarly, one can use volume rendering to visu-
alize these data [96]. Since these methods typically take scalar quantities as input,
one needs to derive such from the vector field or use scalar quantities directly
available from CFD results. Popular quantities derived from vector fields include
velocity magnitude ||u||, vorticity magnitude ||ωωω||, and the vortex criterion λ2 (see
Section 2.1.6). Quantities directly available from CFD solvers and often used for
visualization include pressure, temperature, and turbulent kinetic energy (TKE).
A common approach is also to extract, e.g., isosurfaces from one quantity and to
color-code another quantity on the resulting surfaces. There are also approaches
for volume rendering of non-scalar quantities such as that for tensors by Kindl-
mann et al. [69]. Please also see the integration-based approaches in Section 2.4.8.

2.3 Glyphs
Glyphs, also called icons, are geometric primitives used for visualizing multi-
ple quantities by means of their orientation, size, shape, and material properties.
They are applied in both, information visualization and scientific visualization.
One early example for the former are Chernoff faces [17] and for the latter the
glyphs proposed by Globus et al. [40] for the characterization of critical points
in vector fields. A basic overview regarding feature visualization is presented by
Post et al. [113].

2.3.1 Vector Glyphs
One of the most primitive methods is glyph-based flow visualization. A widely
used variant is to plot arrows in the domain of the vector field, called hedge-
hog fields (Figure 2.5). Although the generation and interpretation of this type
of visualization is simple, it often suffers from clutter and occlusion, especially
if performed on 3D domains. One remedy to these problems is to perform glyph
placement, a strategy to place glyphs such that clutter is reduced and at the same
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(a) (b)

Figure 2.5: Arrow glyphs visualizing a vector field exhibiting saddle behavior. (a) Normal-
ized field pronounces direction but does not convey magnitude. (b) Arrow sizes
scaled by speed show both direction and magnitude. The cosine-shaped velocity
profile (in x- and y-direction) is apparent.

time glyphs get positioned at positions with higher informational value. See the
taxonomy by Ward [170] for further details concerning glyph placement.

2.3.2 Tensor Glyphs
Tensor fields are also often visualized using glyphs. A simple example is shown
in Figure 2.7 (a). Tensor fields often arise as velocity gradients and from dif-
fusion tensor MRI. De Leeuw et al. [22] presented glyphs for the visualization
of velocity gradients. Haber presented tensor glyphs or ellipsoids for tensor vi-
sualization [44, 45]. Kindlmann presented regularly placed superquadric tensor
glyphs [71] for the visualization of 3-dimensional diffusion tensor MRI data. More
recently, Kindlmann et al. presented a glyph placement technique called adaptive
glyph packing [72].

2.4 Integral Curves
If one interprets the values of a vector field as velocity u = ẋ, vector fields can be
understood as ordinary differential equations (ODE) (and vice versa):

ẋ(t) = u(x(t), t). (2.8)

2.4.1 Path Lines
Together with an initial condition x(t0) = x0 Eq. 2.8 leads to an initial value prob-
lem (IVP). The solution to this problem is the integral curve

x(t) = x0 +
∫ t

t0
u(x(τ),τ)dτ.
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(a) (b)

(c) (d)

Figure 2.6: Vector field from Figure 2.5. (a) Streamlines. (b) Path lines, as field translates
from left to right (pale arrows visualize saddle at start). (c) Time lines in same
time-varying field but over shorter time interval. (d) Streak lines in field from (b).

Since this curve describes a trajectory (path of a mass-less particle inside a time-
dependent flow field), it is called a path line (Figure 2.6 (b)). In a physical ex-
periment, a path line can be obtained by photographic long-time exposure of a
marker advected by a flow. In Chapter 4 we present a method for the visualization
of vorticity transport based on path lines.

2.4.2 Streamlines
Steady vector fields correspond to autonomous ODEs:

ẋ(t) = u(x(t))

and the corresponding integral curve

x(t) = x0 +
∫ t

t0
u(x(τ))dτ (2.9)

is a streamline (for velocity fields) or a field line (other fields), shown in Fig-
ure 2.6 (a). Streamlines (or field lines) can also be computed from unsteady vector
fields by taking a “snapshot” at a given time ti:

uti(x) = u(x(ti)).
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With reasonable assumptions on the vector field (Lipschitz continuity, assumed
throughout this thesis unless explicitly noted), solutions to Eq. 2.9 always exist
and cannot cross each other, they are unique. Although for unsteady vector fields
streamlines are often of lower significance than path lines because they do not
describe a true trajectory (it is hard to obtain them in physical flow experiments),
they can be appropriate for derived quantities of unsteady vector fields. One ex-
ample are integral curves of vorticity ωωω, called vortex lines, which can be used for
the analysis of vortices (Chapter 3 and Chapter 4) and for conservation laws, such
as Helmholtz’s theorems [77].

2.4.3 Streak Lines
Another concept is that of streak lines. Streak lines are generated by continuously
releasing particles at a fixed position and taking a snapshot of the generated pat-
tern. One example in physical flow visualization is the release of smoke at distinct
points in, e.g., a wind tunnel, see also Figure 2.6 (d). Streak lines starting at posi-
tion y and captured at time tn can be generated algorithmically as follows:

1. For each time sample t0, t1, ..., tn solve the IVP

ẋi(t) = u(xi(t), t) , xi(ti) = y.

2. Extract from each integral curve xi(t) the point xi(tn).

3. Connect these points.

Numerically, the temporal interval between the time samples must be adaptively
refined to avoid successive particles diverging too much. Recently, a generalized
version of streak lines has been proposed by Wiebel et al. [178]. They abandon the
requirement that the source y releasing the particles has to be fixed. Interestingly,
in the limit case of infinite velocity of the seeding point, generalized streak lines
are equivalent to time lines, discussed next.

2.4.4 Time Lines
Finally, time lines are obtained by releasing particles placed on a seed curve at
distinct times and taking a snapshot of the generated pattern at some time (Fig-
ure 2.6 (c)). They can be obtained in physical experiments by placing a thin wire
into a fluid and applying current pulses. Each pulse produces fine bubbles by elec-
trolysis which are then advected with the flow. Time lines starting at seeds yi on
the curve and captured at time t j can be generated algorithmically as follows:

1. For each point sample y0, y1, ..., yn on the seed curve solve the IVP

ẋi(t) = u(xi(t), t) , xi(t0) = yi.
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(a) (b)

dw

dt

(c) (d)

Figure 2.7: 2D tensor field visualization. (a) Simple glyphs for generic tensors (major
filled, minor outlined, positive red, and negative blue). (b) Eigenvector field lines
(major red and minor blue) seeded on regular grid convey more information but
suffer from visual clutter. (c) Line placement by Turk and Banks [164], adapted
for tensor fields. (d) Additionally degenerate points of type trisector and wedge
(green), with corresponding separatrices (bold red and blue).

2. Extract from the integral curve xi(t) the point xi(t j).

3. Connect these points.

The resulting curve is a time line for time t j. Similarly to the generation of streak
lines, the spatial interval must be adaptively refined to avoid neighboring particles
diverging too much.

2.4.5 Eigenvector Field Lines
Another example for (instantaneous) field lines from possibly unsteady vector or
tensor fields, similar to the vortex lines from Section 2.4.2, are eigenvector field
lines (Figure 2.7 (b)–(d)). These are integral curves following one of the eigenvec-
tors (minor, medium, major) of a tensor. Unfortunately there is some confusion of
meaning of the term tensor line. In some research areas this term is used for inte-
gral curves of eigenvector fields whereas in others the definition due to Weinstein
et al. [175] is used, where during integration an artificial inertia is modeled to
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pass regions of low linear anisotropy. There is, however, the problem that eigen-
vectors are indistinguishable if the corresponding eigenvalues are equal, leading
to infinitely many possible directions. The loci where this can happen are called
degenerate points, a counterpart to critical points (Section 2.5.1), and are subject
to tensor field topology analysis (Section 2.5.6). In general, eigenvector field lines
stop at these points.

Delmarcelle et al. [24] propose two variants of hyperstreamlines: hyperstream-
line tube, generated by an ellipse sweeping along one of the eigenvector field lines
and deforming on its way according to the other eigenvectors and eigenvalues, and
hyperstreamline helices produced by a cross sweeping along a eigenvector field
line and changing according to the other eigenvectors and eigenvalues. Another
approach to the visualization of tensor fields is that by Zhang et al. [185] using
stream tubes and stream surfaces.

2.4.6 Properties and Issues
As a consequence, computing streak lines and time lines is more expensive than
solving a single IVP. Another interesting fact is that streamlines, path lines, and
streak lines are identical for steady vector fields. There are several issues when
computing streamlines, path lines, or derived curves such as streak lines and time
lines. Appropriate integration depends on a correct choice or adaptive control
of the step size, the choice of the integration scheme, an efficient point location
method (global and local), and the right interpolation scheme. In this thesis, we
use fourth-order Runge-Kutta integration scheme and tensor product linear in-
terpolation unless explicitly noted. Due to the overall simplicity of computation,
handling, and interpretation of streamlines and path lines, they are widely used
in science and engineering and are available in many visualization packages. All
four types of lines also give rise to integral surfaces discussed in Section 2.4.8.

2.4.7 Placement of Integral Curves
Similarly to the case of glyphs, visualizations using multiple streamlines, such
as streamlines seeded on regular grids, can also suffer from clutter and occlu-
sion, especially in 3-dimensional vector fields. One way of handling this problem
is to perform streamline placement, which tries to place streamlines in a signif-
icant manner. The original work by Turk and Banks [164] addresses the place-
ment of streamlines in 2-dimensional vector fields by an iterative image-space
method maintaining a density field to achieve a controlled spacing (Figure 3.3,
Figure 2.7 (c) and (d), and Figure 2.8). Later single-pass approaches like those
by Jobard et al. [64], Fuhrmann et al. [34], Verma et al. [168], and Mattausch
et al. [95] and Schlemmer et al. [131] address 2-dimensional vector fields, 3-
dimensional vector fields, utilize vector field topology (see also the work by Ye
et al. [183]), and allow variable line density, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.8: Fold bifurcation. Before bifurcation (left column) and after (right column). (a)
and (b): arrow glyphs scaled by vector magnitude. (c) and (d): normalized arrow
glyphs pronounce orientation but lose speed. (e) and (f): regularly seeded stream-
lines of normalized field suffer from visual clutter. (g) and (h): streamline place-
ment by Turk and Banks [164]. Separatrices still not apparent (cf. Figure 2.12).
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The placement of path lines is less popular, probably because neighboring path
lines can represent particle positions at differing times, and possibly more com-
plicated because a path line not only depends on the location but also on the time
where it is seeded. One example for path line placement is in the context of path
line predicates [126]. To our notion, there is no work concerned with the place-
ment of streak lines. One reason may be that streak lines tend to undergo exten-
sive folding after some time of advection, and therefore, they may be interesting
only for short advection times. Therefore, significant visualizations using sets of
streak lines can often be achieved by, e.g., seeding them regularly on a predefined
curve. Finally, the placement of time lines can be controlled by the location and
shape of the seeding curve, and by the temporal release interval. Again, we are
not aware of techniques addressing this problem. We refer the reader to the sur-
vey by McLoughlin et al. [97] for a further overview. In Chapter 3 we present a
method for the placement of vortex lines with line density proportional to vorticity
magnitude, resulting in a visualization technique for vortical flow, inspired by the
common approach to visualize magnetic fields.

2.4.8 Integral Surfaces
One of the most basic but still not widely applied techniques for the visualiza-
tion of 3D vector fields is that of stream surface integration. Stream surfaces
and streamlines play an important role in vector field topology where they can
represent invariant manifolds. Stream surfaces are manifolds that can be created
by seeding streamlines along a curve and connecting neighboring streamlines by
strips of meshes, resulting in mesh surfaces. Made popular in visualization by
Hultquist [56], the reason why it is still not present in many visualization (also
called post-processing) packages, is that it can fail in some flow configurations,
i.e., requires robust algorithms, in particular in the vicinity of critical points (Sec-
tion 2.5.1).

In the classical stream surface algorithm by Hultquist the stream surface is gen-
erated by triangulation between a set of discretized streamlines. Triangle shape is
optimized by choosing the shorter of the two possible edges in the process of trian-
gulating between two adjacent streamlines. Triangle size is controlled by seeding
new streamlines between existing streamlines or by stopping streamlines. This ba-
sic algorithm can be implemented with a depth-first strategy. However, to evaluate
the criteria for adding or stopping a streamline, it is more convenient to used a
breadth-first strategy where a current “front” is used. Garth et al. [38] addressed
some of these problems, e.g., by proposing a refinement criterion based on the an-
gle between adjacent segments of the front, and so did we [108], but there are still
few commercial packages that implement these methods. Theisel et al. [150] re-
marked that Hultquist’s algorithm fails if the tangents of the front are almost in the
direction of the vector field, a situation which can arise, e.g., near critical points
or periodic orbits. They use as an initial front a line perpendicular to the vector
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field. This way, even tightly spiraling streamlines can be handled. However, the
choice of the line is critical to avoid cracks or multiple coverings. Also, this ap-
proach produces spurious internal boundaries which have to be post-processed for
the result to be manifold.

The mentioned techniques can also be based on path lines instead of stream-
lines, resulting in path surfaces that allow a time-dependent view on the vector
field. One has to note however, that path surfaces can intersect and can be hard to
interpret because they span a time interval. There are also the concepts of streak
surfaces and time surfaces [97] that suffer from similar construction problems
and therefore can be addressed by methods inspired by those just mentioned or
more advanced ones as that by Krishnan et al. [76]. Sometimes these concepts are
visualized without the use of surfaces by simply advecting particles, which how-
ever often requires using animations or even stereo rendering in order to reduce
visual clutter. A related but static approach is point-based construction of these
manifolds, proposed by Schafhitzel et al. [128].

As their constituting curves, stream, streak, and time surfaces are quite simple
to interpret. In physical experiments, streak surfaces are often obtained by placing
a thin wire into a fluid and applying a voltage to it. This way small bubbles of
gases like hydrogen can be generated by electrolysis that advect with the flow.
Time surfaces are, however, more difficult to produce in real experiments because
placing a fine mesh tends to influence flow behavior.

If only two integral curves are used and kept at constant distance, the result-
ing surface strips are called (stream) ribbons. If, on the other hand, one starts
the integral curves on closed seeding curves, one obtains stream tubes (made of
streamlines) and vortex tubes (made of vortex lines), for mentioning those that are
most prominent in fluid dynamics due to their relation to conservation principles
(see, e.g., the Helmholtz theorems).

In some cases, such as the extraction of separation surfaces and attachment
surfaces, the often demanding procedure of stream surface integration can be
replaced by the extraction of Lagrangian coherent structures by means of ridge
surface extraction from FTLE fields (see Section 2.5.7 and Chapter 8), however
usually at higher computational cost. The concept of implicit stream surfaces by
van Wijk [166] is to some extent a related approach based on implicit surfaces
of scalar fields computed from the flow. The flow volumes approach by Xue et
al. [182] renders a closely related field by volume rendering and texture advection
techniques. Another related concept is that by Westermann et al. [177] measur-
ing “flow time” and allowing to extract time surfaces by level sets in that field. All
three methods in some sense represent a further step in the sequence of streamlines
to stream surfaces, i.e., they represent some kind of integral volumes. Finally, in
the field of vortex detection, the hyperbolicity time and Mz concepts by Haller [50]
(Section 2.1.6) and the delocalized flow criteria by Fuchs et al. [33] are related ex-
amples in that field.
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2.5 Vector Field Topology
Here we give an introduction to selected topics and concepts in the field of vector
field topology. Vector field topology reflects the analogy between vector fields,
differential equations, and dynamical systems in general, as discussed in Sec-
tion 2.4. In particular, trajectories represent solutions of initial value problems
and are called orbits in this field. In the dynamical systems view, the domain is
spanned by parameters describing the state of the system, i.e., the domain repre-
sents its degrees of freedom.

Hence, each point represents a parametrization, i.e., a possible state of the sys-
tem, and the domain is called phase space. In physics, the phase space is often
spanned by velocity and momentum. In our applications, the space represents true
Euclidean space and the notion of state is reflected by the vector field, describ-
ing the transition from one state (position) to another. In this context vector fields
represent the extended phase space. Traditionally, mostly steady vector fields, i.e.,
autonomous dynamical systems, are examined. Time-dependent setups are often
addressed by holding the respective parameter (time) fixed and analyzing the re-
sulting steady vector field. If that parameter is varied, there exist distinguished val-
ues where the corresponding topology undergoes substantial qualitative changes.
One example is the annihilation or generation of pairs of critical points and cor-
responding separatrices. These instances are called bifurcations and reflect the
inherent principle of index invariance. The Poincaré-Hopf index of a 2D criti-
cal point is the count of counterclockwise field rotations as one travels around
it in counterclockwise direction. Hence, nodes, foci, and centers have index +1
whereas saddles have −1. One consequence is that critical points of type saddle
and focus can annihilate/originate (Figure 2.12), satisfying the invariance of the
total sum of indices.

Vector field topology deals with special types of streamlines and is therefore
only capable of giving an instantaneous view to unsteady vector fields. It aims
at visualizing the overall structure of vector fields, leading to a condensed rep-
resentation of the vector field. The current popularity of vector field topology in
visualization is to a large extent due to its capability of automatically segmenting
2-dimensional vector fields into regions of qualitatively different flow behavior.
Many interesting applications in fluid mechanics can be found in the work by
Perry et al. [109]. Vector field topology was introduced to the visualization com-
munity by Helman and Hesselink [52] in the context of 2D and 3D [53] flow
fields and can be summarized as the use of concepts from the theory of continu-
ous dynamical systems (see, e.g., [43]) in scientific visualization. We give a short
overview here, additional information can be found in Chapter 5 and Chapter 6,
in the work by Globus et al. [40] and Asimov [3], and more generally, in the book
by Abraham and Shaw [2].
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2.5.1 Critical Points
If a streamline is started at position x0 with u(x0) = 0 and consequently x(t) ≡
x0 , (t ∈ R), the streamline degenerates to a single point. These points are called
stationary points or constant orbits. A stationary point is called isolated if it is not
adjacent to other stationary points. Furthermore, it is called a critical point if the
velocity gradient at this point is regular, i.e., has non-zero determinant. Here, we
restrict the scope to first-order critical points, i.e., those amenable to analysis by
means of linearization. Visualization of higher-order critical points are addressed,
e.g., by Scheuermann et al. [129], Tricoche et al. [160], and Weinkauf et al. [173].

A vector field can be linearized around a critical point xc:

u(xc +x) = (∇u)x+O(x2).

Critical points are isolated and the vector field in the vicinity of a critical point
takes all possible directions. Critical points can be classified by the eigenvalues of
the velocity gradient at that point, more precisely, by the signs of their real parts.

A critical point is called hyperbolic if all eigenvalues of the velocity gradient
have non-zero real parts. The main implication of the hyperbolicity of a critical
point is that it is locally structurally stable, i.e., it is stable against small per-
turbations of the vector field. This means that applying a perturbation does not
change the topology of the vector field, or in other words, it does not change the
topology of nearby streamlines. For 2-dimensional vector fields, hyperbolic criti-
cal points can be classified according to Table 2.1 and Figure 2.9. Conversely, crit-
ical points that are locally structurally stable must be hyperbolic. One exception to
this rule are critical points with zero real parts (purely imaginary eigenvalues) in
2D divergence-free vector fields. The corresponding flow pattern is called a cen-
ter and is the limit case between a focus sink and a focus source critical point.
Although not hyperbolic and not structurally stable in general (they transform to
focus sources or focus sinks if a perturbation is applied in general vector fields),
these critical points are structurally stable against perturbations in divergence-free
fields. Stationary points that are hyperbolic are necessarily isolated. Throughout
this thesis, we assume critical points to be hyperbolic, unless stated explicitly.

For 3-dimensional vector fields, hyperbolic critical points can be classified ac-
cording to Table 2.2 and Figure 2.10. It has been shown by Theisel et al. [149]
that tracking of critical points over time in unsteady vector fields can be achieved
by solving for integral curves in their so-called feature flow field, a vector field
with an additional dimension representing time. For a given time step, the respec-
tive critical points are simply obtained by intersecting the resulting curves with
a hyperplane at constant time. Other approaches for tracking critical points have
been presented by Tricoche et al. [163] and by Theisel et al. [152]. The reader is
referred to the survey by Post et al. [112] on feature tracking in general.

A first generation of topology-based visualization methods locates, classifies,
and displays critical points of the given vector field as point icons. Even if the full
set of critical points is used without any type analysis, this strategy was shown to
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two real eigenvalues type
both positive node source (2 out)
both negative node sink (2 in)
opposite signs saddle (1 in, 1 out)

two conjugate complex eigenvalues type
positive real parts focus source (2 out)
negative real parts focus sink (2 in)

Table 2.1: Critical point classification in 2-dimensional vector fields, see also Figure 2.9.

(a) (b) (c) (d)

Figure 2.9: Critical points in 2D vector fields. Eigenvectors corresponding to positive (red)
and negative (blue) eigenvalues. (a) Isotropic source. (b) Node source. (c) Saddle
(stable (blue) and unstable (red) manifolds). (d) Focus source. Remaining cases
can be obtained by field reversal.

yield effective visualizations by Weinkauf et al. [172]. Alternatively, a visualiza-
tion of the local topological and geometric flow behavior near critical points can
be obtained by displaying icons showing the linearized flow defined by the criti-
cal point type and by the eigenvectors of the Jacobian of the vector field [40]. The
same information can be used to seed short streamlines near critical points [82,83],
giving a slightly more global picture of the flow, possibly rendered as illuminated
streamlines [140] for improved perception.

It is interesting to notice that most work done so far in topology-based visual-
ization falls in one of two categories, either giving a global picture of the entire
domain or a local picture of neighborhoods of critical points. While global effects
are an interesting part of dynamical systems and chaos theory, it can be argued
that for flow visualization, they are often less relevant because of issues such as
domain boundaries, simulation accuracy, or time-dependence. But also the other
extreme, independent visualization of critical points, can be regarded as unsatis-
factory, since much of the topological information is left unused. We believe that
vector field topology has much to offer for flow structures which fall in between
the two extremes. One such structure is the vortex ring, topic of Chapter 6.
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three real eigenvalues type
all positive source (3 out)
two positive, one negative 1-saddle (1 in, 2 out)
one positive, two negative 2-saddle (2 in, 1 out)
all negative sink (3 in)

one real and two complex eigenvalues type
positive real eigenvalue, positive real parts spiral source (3 out)
positive real eigenvalue, negative real parts 2-spiral saddle (2 in, 1 out)
negative real eigenvalue, positive real parts 1-spiral saddle (1 in, 2 out)
negative real eigenvalue, negative real parts spiral sink (3 in)

Table 2.2: Critical point classification in 3-dimensional vector fields, see also Figure 2.10.

(a) (b)

(c) (d)

Figure 2.10: 3D critical points. The colored arrows represent eigenvectors with length pro-
portional to corresponding positive (red) and negative (blue) eigenvalue. In case
of complex eigenpairs, the corresponding eigenplane is represented by a disk, red
for positive and blue for negative real parts. (a) Source. (b) Saddle (blue line: 1D
stable manifold, red surface: 2D unstable manifold). (c) Spiral source. (d) Spiral
saddle (blue line: 1D stable manifold, red surface: 2D unstable manifold). Remain-
ing cases can be obtained by field reversal. See a digital version of the document
for the 3D interactive models.
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2.5.2 Periodic Orbits and Poincaré Maps
Another type of special streamlines, unless the vector field is irrotational, are pe-
riodic orbits or closed orbits. These are streamlines that pass a point x0 more
than once, in other words: u(x0) 6= 0 and x(t + k∆t) = x0 , (∆t ∈ R , k ∈ Z). Wis-
chgoll et al. [179, 180] presented methods for detecting periodic orbits and Tric-
oche et al. [162] presented a method for tracking them over time. Periodic orbits
in 3-dimensional vector fields are usually analyzed and classified by means of
Poincaré maps, which is a non-linear method as opposed to linear methods such
as the eigenanalysis of the Jacobian at critical points. Although usually applied to
3-dimensional vector fields, it can also be applied to 2-dimensional vector fields.
In this case the Poincaré map is 1D instead of 2D. Another use of Poincaré maps
is to include them into 3D visualizations for a better understanding of the flow
near the periodic orbit [84, 85].

A Poincaré map f is obtained by intersecting the periodic orbit with a plane, lo-
cated anywhere on the periodic orbit. More precisely, the plane has to be oriented
such that the vector field is nowhere tangent to it, should be disk-shaped with its
center x0 on the periodic orbit, and with radius d small enough not to intersect
the periodic orbit at other locations, see Figure 2.11. Such a disk is also called
a local section or Poincaré section. The map is sampled on that disk by starting
streamlines on it and detecting the location where they intersect the disk after one
revolution, this is the reason why Poincaré maps are also called first recurrence
maps or first return maps of the periodic orbit. The position of the resulting in-
tersection point y is stored in the map at the position x where the streamline was
started, defining a mapping from the starting point to the intersection point on the
disk D of radius d:

f : x 7→ y.

Because some streamlines started on the disk may diverge too far to intersect the
disk after one revolution, and because of the assumed uniqueness of streamlines
(Lipschitz continuity of the vector field), a radius d0 < d can always be determined
such that all streamlines started inside disk D0 with radius d0 intersect the disk at
first recurrence inside radius d:

f : D0 7→ D.

Poincaré maps can be analyzed by methods similar to those used for the analysis
of critical points because they exhibit a fixed point at x0: they can be linearized
around the point x0:

x0 +x 7→ x0 +(∇x0 f )x+O(x2),

∇x0 f being the Jacobian of the map at position x0. One interesting fact is that
the analysis by means of Poincaré maps is independent of the selection of x0 on
the periodic orbit, their orientation, and even the coordinate system of the disks as
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well as their radii d and d0, meaning that all these Poincaré maps are topologically
equivalent, or in other words, the eigenvalues of the resulting∇x0 f are identical.

A periodic orbit is hyperbolic if all eigenvalues, the so-called Floquet multipli-
ers, lie off the complex unit circle. As in the case of hyperbolic critical points, this
means that small perturbations near hyperbolic periodic orbits will lead to topo-
logically equivalent vector fields. And again conversely, any periodic orbit that
is locally structurally stable must be hyperbolic. For 3-dimensional vector fields,
hyperbolic periodic orbits can be classified according to Table 2.3.

two real eigenvalues type
|λ1|> 1 and |λ2|> 1 source periodic orbit
|λ1|< 1 and |λ2|< 1 sink periodic orbit
λ1 > 1 and 0 < λ2 < 1 saddle periodic orbit
λ1 <−1 and −1 < λ2 < 0 twisted saddle periodic orbit

two conjugate complex eigenvalues type
λ1 and λ2 outside the unit circle spiral source periodic orbit
λ1 and λ2 inside the unit circle spiral sink periodic orbit

Table 2.3: Classification of hyperbolic periodic orbits in 3-dimensional vector fields ac-
cording to the eigenvalues λ1 and λ2 (numbering is of no significance) of the
gradient of the Poincaré map on the periodic orbit. See also Figure 2.11.

The reader is referred to Section 5.1 for further details and to the notes of Asi-
mov [3] for the classification of periodic orbits in 2-dimensional vector fields and
many other topics in vector field topology. Furthermore, Chapter 6 addresses vor-
tex ring phenomena that include periodic orbits, and their analysis by means of
Poincaré maps.

Those streamlines that are neither critical points nor periodic orbits are called
regular streamlines. Regular streamlines can converge toward stationary points or
periodic orbits, but they cannot contain them due to their uniqueness. From a topo-
logical view, every point on a regular streamline is surrounded by a neighborhood
filled up by streamlines the same way parallel lines do.

2.5.3 Separatrices and Manifolds
The additional descriptions in Table 2.1 describe the orientation of the vector field
along the corresponding eigenvector directions. For example, (1 in, 1 out) means
that the streamlines of the saddle-type flow are converging toward the critical point
along one eigenvector from both sides, and diverging from the critical point along
the other eigenvector to both sides. In contrast, for the example of (2 in), stream-
lines converge to the critical point not only along both eigenvectors, but all stream-
lines in the vicinity of the critical point are converging to it. Consequently, saddle-
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(a) (b)

(c) (d)

Figure 2.11: Poincaré map (gray disk) of periodic orbit (green). (a) Source periodic orbit.
(b) Saddle periodic orbit: one stable (blue) and one unstable (red) 2D manifold.
(c) Spiral source periodic orbit. (d) Twisted saddle periodic orbit with 180 degree
twist: two Möbius strips representing one stable (blue) and one unstable (red) 2D
manifold. As in (b), the stable and unstable manifolds intersect along the periodic
orbit. Remaining cases can be obtained by reversing the vector field. See a digital
version of the document for the 3D interactive models.
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cc

cs

(a) (b)

Figure 2.12: Fold bifurcation. (a) Before bifurcation, no critical points. (b) After bifurca-
tion, a saddle (cs) and a center (cc) with corresponding stable (blue) and unstable
(red) manifolds. Please also see Figure 2.8.

type critical points play an important role because they are, in contrast, related to
distinguished streamlines.

In 2-dimensional vector fields, streamlines that converge to a saddle-type criti-
cal point in positive time (or in negative time meaning that they diverge from it)
are called separatrices of the vector field because they separate regions of quali-
tatively different behavior of the vector field (e.g., Figure 2.12 (b)). The unity of
all critical points, and separatrices is called topological skeleton. However, unless
the vector field is irrotational, there may also exist periodic orbits that behave like
sources or sinks. If this is the case, the topological skeleton computed this way is
incomplete. Only if the set of (isolated) periodic orbits is added to the skeleton,
the full segmentation is obtained. For irrotational vector fields, the topological
skeleton can alternatively be obtained by extraction of all watersheds of the cor-
responding potential field.

In 2-dimensional and 3-dimensional vector fields, the set of all streamlines that
converge to a given critical point or periodic orbit of any type in positive or nega-
tive time is called an invariant manifold. Stable manifolds consist of the stream-
lines that converge to a given critical point or periodic orbit in positive time and
unstable manifold consist of those converging in negative time. In other words,
the stable manifold of a point P is the set W s(P) of points from where a streamline
converges to P with time t→∞. The unstable manifold W u(P) is defined likewise
but with t→−∞.

Taking (2 in, 1 out) as an example from Table 2.2 for 3-dimensional vector
fields, “2 in” means that the flow is approaching the saddle-type critical point
along two eigenvectors, again, as in the case of a 2D sink, a whole manifold of
streamlines is converging to the critical point in this direction, not only the stream-
lines along the two eigenvectors. More precisely, this manifold of streamlines is
planar in the vicinity of the critical point and there it is spanned by the two corre-
sponding eigenvectors, or their real and imaginary parts if they are complex. This
is the reason, why it is called a 2D stable manifold of the critical point. The “1 out”
in this example means that streamlines converge to the critical point in negative
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time only along the corresponding eigenvector, as in the case of the 2D saddle,
representing a 1D unstable manifold. So all in all, even 3D saddles are related to
distinguished streamlines: a 1D manifold and a 2D manifold. In the case of swirl
and consequently complex eigenvalues and eigenvectors, the 2D manifold can be
determined as the eigenplane of the corresponding eigenvalues.

For 3-dimensional vector fields there additionally exist manifolds of periodic
orbits of type saddle (Figure 2.11 (b)) and twisted-saddle (Figure 2.11 (d)). In this
case, both manifolds are 2-dimensional. Again, as in the case of 2-dimensional
vector fields, the unity of all manifolds respective to critical points and periodic
orbits is called the topological skeleton. However, 1D manifolds are obviously not
very useful for obtaining a segmentation of a 3-dimensional domain. Neverthe-
less, in the case of spiral saddles, they have some relevance, as they are sometimes
understood as topological vortex core lines [40]. The 2D manifolds theoretically
provide a segmentation, but in practical flows, this has not yet proved very success-
ful, except perhaps for irrotational vector fields. One reason for this is of course
the occlusion problem which forbids to display dozens of stream surfaces. This is
the motivation for the saddle connectors proposed by Theisel et al. [150]. These
are the intersection curves of all 2D manifolds with small remaining bands of
the manifolds along the intersection curves, similar to Figure 2.11 (b). This dra-
matically reduces occlusion but still conveys a large amount of the topological
information of the vector field. The intersection curves alone are known from dy-
namical systems theory as heteroclinic and homoclinic orbits, the former connect
two different critical points whereas the latter connect to the same critical point.
Due to the assumed uniqueness of streamlines, saddle connectors, i.e., intersec-
tions of stream surfaces, are streamlines, or in dynamical systems terminology,
orbits. It is also known in this field that homoclinic orbits can give rise to intricate
flow, e.g., to Shilnikov chaos, examined in Chapter 6.

Invariant tori represent another case of special streamlines. These are stream
surfaces seeded at special closed curves with the property that they pass the
seed curve more than once and hence represent invariant manifold, see also Sec-
tion 5.1.2 and Chapter 6. Regarding the streamlines that constitute the invariant
torus, they may exhibit periodic behavior on the torus, meaning that they are
closed, or be quasi-periodic, meaning that they never pass a point twice (Fig-
ure 2.13). Periodic orbits in divergence-free vector fields can be enclosed by
nested invariant tori and can, in this case, be seen themselves as the limit case of
the innermost invariant torus with radius zero.

2.5.4 Limit Sets and Limit Cycles
The omega-limit set ω(x) of a streamline x(t) is the set of points of the domain
that the streamline converges to if t approaches infinity. For example, if a stream-
line is spiraling closer and closer around a periodic orbit, the periodic orbit is its
omega-limit set (Figure 2.14 (a)). The alpha-limit set α(x) is the counterpart: it
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(a) (b)

Figure 2.13: Torus around a spiral source periodic orbit (thick green tube). (a) Ratio of
revolution (around small and large radius of the torus) of a periodic orbit (thin
green tube) on the torus is 2

3 . An orbit (orange) diverging from the spiral source
orbit is converging toward this periodic orbit and another orbit is converging from
outside (cyan). The periodic orbit on the torus may be isolated (and hence a sink
periodic orbit or a saddle periodic orbit), or non-isolated. (b) If the ratio of rev-
olution is irrational, here π

2
9 , the orbit on the torus is not closed, i.e., the orbit is

quasi-periodic. In this case the torus is a limit torus representing the omega limit
set for both orbits converging from outside and inside (Section 2.5.4). As in the
2D case of Figure 2.14 combinations of omega and alpha sets are possible. Please
see a digital version of the document for the interactive 3D models.

is the omega-limit set of the reversed streamline x(−t) (Figure 2.14 (b)). See also
Figure 2.13 (b) for the 3D example of a limit torus. If a streamline remains inside
a compact region for all t ≥ t0 then the following statements must hold:

• ω(x) is non-empty,

• ω(x) is closed,

• ω(x) is invariant by the flow (it is a union of streamlines),

• ω(x) is connected.

A limit cycle is a periodic orbit that is contained in α(x) or ω(x) of some trajec-
tory other than the periodic orbit itself (Figure 2.14). Limit cycles are also insen-
sitive to small perturbations. An interesting theorem concerned with limit sets is
that by Poincaré and Bendixson. It states that if ω(x) is non-empty, compact, and
contains no stationary points, it must be a periodic orbit.

2.5.5 Applications of Vector Field Topology
The striking property of the previously mentioned direct topological methods is
that they are fully automatic and to a large degree free of tuning parameters. A
practical limitation is however that for many kinds of vector field data the topology
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(a) (b)

Figure 2.14: Limit cycle (green). (a) Representing the omega limit set of trajectories both
converging from inside and outside. (b) Representing the omega limit set for tra-
jectories converging from inside and the alpha limit set for those converging from
outside in reverse time.

is far too rich to be displayed in full detail. This led to concepts such as topological
simplification [79, 157, 161].

When considering the use of vector field topology for visualizing CFD data,
it has to be kept in mind that topological features are often not the final result
an engineer or scientist wants to see. The topological analysis can, however, be a
valuable first step to be followed by other visualization techniques. One possible
strategy is to use topology for segmenting a vector field into regions of similar
flow. This is particularly successful in 2D, while in 3D the notion of segmentation
must often be somehow relaxed to a more local property [91].

2.5.6 Tensor Field Topology
Tensor field topology was introduced to the visualization community by Delmar-
celle et al. [24]. There, tensor field topology was visualized by means of hyper-
streamlines (Section 2.4.5).

While vector field topology builds on critical points, tensor field topology builds
on so-called degenerate points. Degenerate points are the loci where the tensor ex-
hibits two or more identical eigenvalues. Again, this represents indefinitely many
possible directions, and degenerate points can be classified using the gradient of
the field, this time tensor gradients. In 2-dimensional tensor fields, there exist two
types of degenerate points: wedges and trisectors (Figure 2.7). Because tensor
field topology is not addressed in this thesis, the reader is referred to [23,25], [54],
[132], and [186, 187] for details regarding tensor field topology of 2-dimensional
and 3-dimensional tensor fields.
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2.5.7 Lagrangian Coherent Structures
Vector field topology has proved useful in the analysis of vector fields in many ar-
eas and many applications. However, since it builds on streamlines instead of path
lines, it is only able to give an instantaneous view, i.e., it is directly interpretable
only for stationary vector fields or isolated time steps. Although it may give some
hint about the processes in vector fields with low time dependence [109], it is
surely not satisfactory to use it for the analysis of this kind of fields. Shadden et
al. [134] demonstrated with their simple 2-dimensional “double gyre” example
that the separatrix can be clearly dislocated from the actual flow separation. The
concept of Lagrangian coherent structures (LCS), on the other hand, represents an
appropriate alternative to vector field topology for unsteady vector fields. Haller
defined LCS as ridges in the finite-time Lyapunov exponent (FTLE) field [48]. The
FTLE is computed from path lines and hence it is able to give an appropriate view
at the topology of this kind of data with respect to true advection processes.

Chapter 8 gives a detailed introduction and description of the computation of
several variants of the FTLE. Here, we would like to introduce the concept in a
more informal manner. The Lyapunov exponent was introduced for quantifying
the growth of perturbations under the action of time-dependent vector fields, non-
autonomous differential equations, or respective dynamical systems. Whereas low
values indicate predictable regions of a system or phase-space, high values indi-
cate chaotic evolution. In a simplified manner, the FTLE can be obtained by mea-
suring the growth factor of the distance between two points as they are advected
with the flow (Figure 2.15 (a)). The FTLE can be computed from both forward and
reverse advection. Under the forward-time influence of the flow, the distance δ2
grows to ∆2 and the FTLE can be computed from ∆2

δ2
(Figure 2.15 (b)). The reverse

case is illustrated by the growth of δ1. One can see that the ridges in the forward
FTLE field tend to be consistent with the stable manifolds. According to Haller’s
terminology, ridges in the forward-time FTLE typically represent repelling ma-
terial lines (or surfaces) because a perturbation perpendicular to these manifolds
tends to grow exponentially with time, i.e., a particle will move away from such a
manifold. Paradoxically, these repelling material lines are the counterpart to sta-
ble manifolds (those that flow toward a critical point in the terminology of vector
field topology). Conversely, attracting material lines (or surfaces) are ridges in the
reverse-time FTLE and tend to be consistent with unstable manifolds. Please note
that therefore in Figure 2.15 we use coloring inverse to that in Figure 2.12 (b).
Increasing the advection time T for FTLE computation typically leads to growth
of the respective ridges (Figure 2.15 (c) and (d)).

Besides using FTLE as a measure for predictability and as a time-dependent
variant of vector field topology it has been used for other purposes so far. One
example is to use it for controlling the seeding of particles, as proposed by Garth
et al. [36] and used in the context of the anchor lines proposed by Bürger et al. [16].
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Figure 2.15: Vector field topology manifolds, LCS, and FTLE computation, illustrated on
vector field from Figure 2.12 (b). (a) FTLE represents growth of perturbations in
forward flow (δ2→ ∆2, (b), and (c)) or reverse flow (δ1→ ∆1 and (d)). Increasing
the advection time T typically leads to growth of FTLE ridges, i.e., the LCS.
Please see text for details on relation to the manifolds (red and blue bold curves).
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2.6 Feature-Based Methods
Many constructs and properties can be denoted as features. In this thesis we tend
to use this term for geometric representations of distinguished sets of loci. Ex-
amples include creases, the axes of vortices, as well as lines of flow separation.
An introduction and overview in the field of feature visualization, extraction, and
tracking can be found in the surveys by Post et al. [111–113].

2.6.1 Ridges, Valleys, and Watersheds
Ridges play an important role in many fields such as computer vision, image pro-
cessing, and visualization. Commonly used in topography to describe an eleva-
tional crest, the term has been widened to general n-dimensional scalar data. A
ridge is a “generalized local maximum”. Instead of requiring the point (or set of
points) to be a local maximum in all possible directions, this is required only for
selected directions. For the example of a 2-dimensional scalar field, requiring a lo-
cal maximum in both coordinate directions leads to true local maxima, or points.
If this property is required only in one direction, we obtain lines in general. If this
direction is kept constant, one obtains profile ridges. However, this approach can
lead to deviations from the naturally expected shape of a ridge. If, on the other
hand, one can manage that this direction is always oriented perpendicularly to the
desired ridge, one obtains a height ridge [28]. Although this sounds like a “Hen
and Egg” problem, it is possible to obtain these directions from the eigenbasis of
the corresponding Hessian matrix of the scalar field. Valleys can be obtained by
solving for ridges of the negated scalar field (see below).

The generalization of the concept to higher dimensions is straightforward. For
example, in the 3D case 1D (codimension 2) ridges and 2D (codimension 1) ridges
are possible. Furst et al. [35] presented a cell-based algorithm for 2D ridges in 3D
fields, inspired by the marching cubes algorithm. Alternatively, it is also possi-
ble to obtain height ridges by streamline integration in a so-called feature flow
field [149]. A further alternative based on integral curves is the concept of water-
sheds and their counterpart, the watercourses. Watersheds are slope lines (stream-
lines) of the gradient field, starting at saddle-type critical points in that field, in
this sense they are part of the field of scalar field topology. All in all, many differ-
ent definitions for ridges have been given so far in the last centuries, but there are
typically only minor differences (see also the work by Shadden et al. [134]). One
of the earliest respective work in modern science was that by de Saint-Venant [8]
and Breton de Champ [15].

Haralick [51], Eberly [28], and Lindeberg [81] proposed closely related defi-
nitions for d-dimensional height ridges in n-space. A further concept are second
derivative ridges by Majer et al. [92]. The work by Serrat et al. [133] provides a
classification of several definitions. There have been disputes on whether water-
sheds or height ridges are the “correct” ridges. Koenderink and van Doorn used
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an example, which they called the “curved gutter” [74], as an argument against
height ridges. However, as we show in [107] similar examples can be given that
favor height ridges over watersheds instead. Another aspect of these methods is lo-
cality. Whereas obtaining watersheds is a global operation and perturbations have
remote effects, height ridges are defined locally and hence errors have no remote
influence. On the other hand, global methods tend to be superior in smoothness
compared to local ones. Furthermore, typically not the entire slope line represents
a watershed and there is in general no slope line that is characterized by special
properties on its entire length [65] and hence only segments can be attributed to a
ridge or a valley. A similar situation is met in the extraction of vortex core lines,
there are approaches based on streamline integration such as the topological vortex
core lines as opposed to local approaches (see Section 2.6.2).

Besides geomorphology [141], ridges have become popular in flow visualiza-
tion, including the field of vortex core line extraction as ridges in vorticity mag-
nitude [143] and valley lines of pressure [99], and flow separation [134]. More
recently, also 2-dimensional ridges, i.e., ridge surfaces, in volumetric data were
used by Kindlmann et al. [70] for visualization of diffusion tensor MRI data, by
Sahner et al. [125] for visualization of vorticity and strain, and by us for the extrac-
tion of Lagrangian coherent structures [119]. Please refer to Chapter 7 for more
information on height ridges and ridge extraction in general.

Except for scalar fields, the concept of ridges also exists for surfaces in
space. A well known example for this type of ridges are the maximum curvature
ridges [110], used, e.g., in the field of non-photorealistic rendering for enhancing
salient features of a surface [12, 60]. Although both concepts seem to be identical
at first glance, a fundamental difference is the invariance of these ridges with
respect to rotation, in contrast to ridges in height fields which instead are invariant
under height scaling.

2.6.2 Vortex Core Lines
A concept related to the formulation of ridges, in particular with respect to its
parallel vectors formulation (see below), are vortex core lines. Vortex core lines
can be understood as the “axes” of vortices, similar to center lines and medial
axes [19]. As vortices are not straight in practical flows, vortex core lines are also
curved in general. There are several approaches for the extraction of vortex core
lines. They often produce results that differ in the existence, location, and shape
of the core lines. The fact that until now there exists no precise definition of what
a vortex is (see Section 2.1.4) also reflects in today’s handling of the different
methods. It is common practice to apply the different methods and to choose the
one that fits best the aim of the investigator, supported by interactive investigation,
e.g., by streamlines and isosurfaces of λ2.

Vortex cores are inherent properties of the velocity field and do, in general, not
depend on parameter choices as would be the case for isosurfaces. The strength
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of vortex core line algorithms lies in their ability to isolate nearby vortices. Their
weakness is that the obtained information is often strictly local. Hence, further
steps are often needed to get information such as the spatial extent of a vortex or
the relative importance of nearby vortices. Importance can be defined in terms of
kinetic energy, of occupied space or other criteria, depending on the aim and the
application.

In 1995 Sujudi and Haimes [145] proposed a method that builds on vector field
topology. They search for critical points with one real and a pair of complex-
conjugate eigenvalues of their so called “reduced velocity”. The reduced velocity
results from subtracting the velocity component parallel to the real eigenvector of
the velocity gradient from the velocities. In the same year, Banks and Singer [7]
proposed a predictor-corrector method based on vorticity and pressure. They pre-
dict the direction of the core line segment based on vorticity and correct it by
forcing it to a pressure minimum on a plane perpendicular to vorticity at the pre-
dicted position, hence strongly related to valley lines of pressure. This method has
been adapted by Stegmaier et al. [142] in 2005 by replacing the pressure field by
the λ2 field. This makes the method more appropriate for many flows, such as low
Reynolds number flows, and avoids the need for pressure information, a quantity
often not available in given datasets. The results from this method are closely re-
lated to the approach be Sahner et al. [124], where vortex core lines are extracted
as extremum lines of quantities such as ∆, Q, or λ2. In this case, the valley or ridge
lines are not extracted by the approach due to Eberly described in Section 7.1,
but by extracting integral curves in a feature flow field [149]. Finally there is one
more related method, the method proposed by Schafhitzel et al. [127]. There, vor-
tex core lines are extracted from λ2 using skeletonization of λ2 isovolumes. The
obtained skeletons are forced to local minima of λ2 on planes perpendicular to the
skeleton. This way, the obtained core lines are topologically consistent with the
isosurfaces of λ2.

Miura and Kida [99] extract vortex core lines as valley lines of pressure in 1997
and in 1998 Strawn et al. [143] extracted them as ridge lines of vorticity magni-
tude. In the same year Roth and Peikert [116] presented a higher-order method
for the extraction of vortex core lines. While the method by Sujudi and Haimes
locally requires zero curvature of the core lines, the approach by Roth and Peikert
relaxes the requirement to zero torsion. This condition was formulated by paral-
lelism (or anti-parallelism) of two vectors, a concept thoroughly examined and
applied to many different features including the extraction of vortex core lines,
ridge and valley lines, as well as separation and attachment lines in the parallel
vectors framework of Peikert and Roth [103] in 1999. Levy et al. [80] define a vor-
tex core as a region where normalized helicity is close to -1 or +1. It was shown by
Peikert and Roth in the same paper that from this definition of a core region a core
line criterion can be derived. Theisel et al. [149] have shown that the parallel vec-
tors approach can generally be transformed into an initial value problem inside the
feature flow field. This allows to extract vortex core lines by solving for integral
curves in that field. One of the benefits of this approach is the increased smooth-
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(a) (b)

Figure 2.16: 2D flow separation (a) and attachment (b) represent half saddles in terms of
2D vector field topology (Figure 2.9 (c)). The critical points represent separation
(a) and attachment (b) points and the separatrices the respective manifolds. For
this illustration, we assume slip boundaries (hatched) or wall shear stress thereon.

ness of the resulting curves due to interpolation during integration. A drawback of
this approach, however, are remote effects, i.e., error accumulation.

In 2002 Bauer and Peikert [10] based the extraction and the tracking of vortex
core lines over time on the scale space, exploiting temporal coherence. The scale
space concept was introduced by Iijima in 1959 [59,171] in Japan and made popu-
lar by Witkin [181] and Koenderink [73]. Another approach for tracking core lines
in unsteady flow fields is the “parallel surface” approach by Theisel et al. [148],
again basing on the feature flow field.

Finally, we would like to mention three more recent alternatives for vortex core
line extraction. Jankun-Kelly et al. [61] presented a method building on additional
scalar fields in 2006. They extract core lines again based on the approach by Banks
and Singer but use scalar fields other than pressure or λ2 for the correction step.
For the detection of the local maximum on the search plane, they use function fit-
ting to avoid the numerical problems in the computation of derivatives. They also
cluster candidate cells by k-means clustering in order to segment merging vor-
tices. In 2007 Weinkauf et al. [174] presented a method inspired by the method of
Sujudi and Haimes [145], but this time basing on path lines instead of streamlines.
As in the case of feature flow fields, they approach the problem by extending the
3-dimensional vector field by treating time as an additional dimension, leading to
4-dimensional vector fields. Vortex core lines are then extracted by an extension of
the “parallel vectors” approach, leading to the coplanar vectors operator. A very
similar approach was developed by us at the same time [32], also basing on path
lines and the parallel vectors operator, but leading to a different definition for the
core lines. A comparison of the two approaches can be found in [130]. It has to be
mentioned however, that the definition by Weinkauf et al. is Galilean invariant as
opposed to ours.

2.6.3 Manifolds of Attachment and Separation
A feature closely related to vector field topology are attachment lines and separa-
tion lines in 3D vector fields (Figure 2.17), and attachment points and separation
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(a) (b)

Figure 2.17: 3D flow separation and flow attachment. (a) Separation, streamlines on the
solid boundary (red) converge toward the separation line (yellow). (b) Attachment,
streamlines on boundary diverge from attachment line (turquoise). See a digital
version of the document for the interactive 3D models.

points, their counterpart in 2D vector fields (Figure 2.16). These constructs rep-
resent the loci along which flow attaches to or separates from boundary walls. A
common approach for their analysis is to compute the manifolds originating at
these locations, the manifolds of separation and attachment, present as separatri-
ces in the aforementioned analogy. Indeed, Helman and Hesselink [53] already in-
cluded separation and attachment manifolds in their flow topology. In the 3D case,
they propose to extract the flow topology on solid boundaries first, resulting in a
2D topology analysis on the boundaries, i.e., critical points and separatrices (sep-
aration lines). Then they propose to generate manifolds from these constructs into
the interior of the flow, resulting in 3D cases corresponding to the 2D case illus-
trated in Figure 2.16, see also Figure 2.17. We show in Chapter 9 that these mani-
folds can be alternatively obtained by extraction of Lagrangian coherent structures
in the case of steady-state vector fields. Furthermore, since Lagrangian coherent
structures appropriately depict time-dependent phenomena, this approach is also
well suited for the study of time-dependent flow separation and attachment.

Separation lines are classified in this context into two categories: open sepa-
ration and closed separation. Closed separation lines can be obtained by means
of vector field topology, i.e., by streamline integration along the boundaries from
critical points, whereas open separation does not exhibit involved critical points.
While the former is amenable by means of vector field topology, the latter is not.
However, in 1999 Kenwright presented a method [68] for the extraction of at-
tachment and separation lines. This concept is defined locally and hence able to
extract both cases. A drawback of this technique is, however, that its solutions tend
to deviate if the feature lines are curved [115]. Flow separation is an undesirable
process in many areas, notably in aviation in the context of flow around an airfoil,
known as stall. It is also often a major cause for vortex generation when boundary
shear flow separates from the wall and develops into a vortex (Chapter 4).
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Chapter 3

Instantaneous Vorticity
The first part of this thesis starts with an investigation on vortical flow, in particu-
lar, its vorticity. We title this chapter instantaneous vorticity to contrast it from the
next chapter about vortex dynamics, where the focus is not on the instantaneous
structure of vorticity but on phenomena involving time, such as its advection and
diffusion. As detailed in Section 2.1.5, vorticity is a valuable quantity for mod-
eling the creation of vortices and their interrelation with shear flow, but fails to
disambiguate between the two. However, instead of seeing this as a drawback,
this chapter focuses on the overall organization of the vorticity field with the aim
of revealing interrelations between vortices and also between vortices and shear
flow, in particular, boundary shear flow where vorticity typically originates.

This chapter’s underlying industrial case is a design optimization for a Pelton
water turbine. An important industrial objective is to improve the quality of the
water jets driving the runner. In particular, jet quality is dominantly affected by
vortices originating upstream in the distributor ring. For a better understanding of
this interrelation, it is crucial to concentrate on the mechanisms of their creation.

We start with two simple tools as an introduction to the topic. The first, de-
scribed in Section 3.1, allows for the analysis of the flow field in vortical regions
whereas the second, detailed in Section 3.2, represents a method for obtaining
a special kind of isosurfaces tailored at the extraction of vorticity magnitude in
ducted flow. These tools were mainly designed for usage in the Cykloop virtual
environment [169] installed at VA Tech Hydro’s site, therefore we aimed at mostly
automatic methods with little user input other than picking. Then, in Section 3.3,
we proceed to the main contribution of this chapter, a method for obtaining visu-
alizations of the field lines of vorticity, called vortex lines, similar to the common
visualization of magnetic field lines, this is, field lines with line density propor-
tional to the field magnitude. We show that this can be achieved by a modification
of the seminal work by Turk and Banks [164] on streamline placement. For this
purpose, the algorithm is changed from an image-guided 2D approach to a data-
guided one in 3-dimensional unstructured grids.
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3.1 Analysis of Vortex Cores
Vortices are important and revealing features in flow fields, especially in turbo-
machinery, where flow quality is often closely related to vortical motion. There-
fore, a good first step to approach a new CFD dataset consists in the extraction
of vortex core lines. The methods used for core line extraction in this chapter are
those by Levy et al. [80] and by Sujudi and Haimes [145]. Whereas the former
builds on the orientation of vorticity, i.e., identifies sets of points where it is paral-
lel to velocity and hence relates to helicity, the latter makes implicit use of vorticity
by requiring a non-vanishing imaginary part of a velocity gradient’s eigenvalue.
False positives and weak vortices are suppressed as described in [103].

There exist automatic methods for reducing the number of obtained features
based on clustering [79,157], or on scale-space analysis [10]. For a more thorough
analysis of groups of vortex cores, we developed a simple tool which proved to
be useful. The tool allows the user to pick a core line which he or she wants to
analyze. A circle of seed points is centered at the selected location such that its
axis is aligned with the velocity vector. From this circle, a stream tube according
to Hultquist’s algorithm [56], or a set of streamlines, is generated in one or both
directions along the vector field. The radius of the seed circle can be adjusted
manually. Figure 3.1 (a) shows the streamline seeding tool in the study of the
main separation vortex at the bifurcation to the first injector of the Pelton turbine.

This semi-automatic analysis step resembles the verification techniques in [63]
and [38]. It is important to note that any such verification technique is subject to
interpretation. The reason is that it cannot be expected that a stream tube follows
the vortex core line over an extended time. Even if a streamline coincides with the
core line for a while, it may later start to wind around it, and a different streamline
takes over the role of best matching the core line. This situation, sketched in Fig-
ure 3.1 (b), is often met in practice. Consequently, this is a case where topological
vortex core lines [40] may not be appropriate. Surprisingly, vortex core lines ob-
tained by the common definitions can neither be expected to be consistent with a
vorticity field line. An example is the vortex ring phenomenon subject to research
in Chapter 6. It exhibits two vortex core lines, one along the main axis and one
along the center of the ring, but the vorticity field exhibits helical field lines in this
flow configuration.

3.2 Analysis of Vorticity Magnitude
The simplest model of a laminar viscous flow through a circular pipe (of radius R
and length L) is the so-called Hagen-Poiseuille flow, in cylindrical coordinates:

u =− p0− p1

4νρL
(R2− r2) v = w = 0. (3.1)
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(a) (b)

Figure 3.1: (a) Vortex core lines (black), seeding circle (white), and streamlines (colored)
at the separation vortex. Main flow direction is from right to left, part of the flow
is split at the bifurcation toward the injector at the top. (b) Sketch of vortex core
approximately followed by successive streamlines.

Its vorticity field has magnitude

ω =
p0− p1

2νρL
r (3.2)

which is increasing linearly toward the boundary. In practical flow fields the same
behavior can be observed in the boundary layer. Often the highest vorticity mag-
nitudes can be found near no-slip boundaries rather than within vortices.

Isosurfaces of vorticity magnitude are often used for the visualization of vor-
tices [137]. However, it is often not the absolute values of vorticity magnitude
which are of interest but rather their deviation from the “expected” behavior. This
explains why they often give poor results for vortex detection in ducted flows, i.e.,
they suffer from massive occlusion. On the other hand, isosurfacing is a conve-
nient tool for interactive data visualization. A simple way out of this dilemma is
to apply constraints to isosurfaces. Such constraints can be any inequalities for ad-
ditional quantities, such as the requirement for a minimum helicity or a minimum
(or maximum) distance from solid boundaries.

A seeming disadvantage of such a “conditional isosurface” is that it is no more
a closed surface. This can however be fixed by taking pairs of such surfaces:

{x| f (x) = f0∧g(x)≥ g0}∪{x|g(x) = g0∧ f (x)≥ f0}. (3.3)

Any combination of inequality signs is of course possible.
The “conditional isosurfaces” proved useful for isolating interesting regions of

high vorticity. We observed that features obtained by specifying a minimum vor-
ticity magnitude and a minimum wall distance tend to be similar to those obtained
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(a) (b)

Figure 3.2: (a) Vorticity isosurface, wall distance d > 5 mm. (blue = 0 mm, red = 50 mm).
(b) Vortex core lines near first injector, λ2 isosurface.

by the λ2 vortex criterion (see Figure 3.2 (a) and Figure 3.2 (b)). However, λ2 tends
to be too accepting, i.e., poor in separating vortices if isosurfaces at isolevel zero
are used. For that reason, the level of the λ2 isosurfaces is commonly set to some
value well below zero. However in a strict sense, this is subject to interpretation
as the level motivated by the derivation of λ2 is zero.

For the further analysis of such regions of high vorticity, we adapted the stream-
line seeding tool of Section 3.1. From the point picked on a given isosurface,
a planar intersection curve is computed through the isosurface. The normal of
the intersection plane automatically adjusts to the average velocity direction. The
seeding curve is restricted to a single connected component. This seeding tool can
be used to generate stream tubes and vorticity tubes as shown in Figure 3.4 (a).

3.3 Vorticity Field Line Placement
The visualization of vortical flow by means of isosurfaces of vorticity magnitude
already gives some insight. However, the direction of vorticity is an important
property for the identification and interpretation of vortices, present in the defini-
tion of helicity and detailed in Section 2.1.5, but not conveyed by this technique.
Another motivation for the method presented here is the fact that a vortex typ-
ically has no sharp boundary, i.e., identifying the extent of a vortex by its core
or its vortex hull is not appropriate in many aspects. Therefore, we propose the
visualization of the vorticity field by field lines of vorticity, i.e., its vortex lines
as a complementary method. This allows for both, to account for the fuzziness of
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(a) (b)

(c) (d)

Figure 3.3: 2D streamline placement by Turk and Banks [164]. (a) Initial placement with
corresponding density image (c). (b) Final placement after energy minimization
with corresponding density image (d).

vortices as well as visualizing the role of vorticity in both vortices and shear flow
as well as in the states in between.

Because of the analogy between vorticity fields and magnetic fields, i.e., field
lines are closed, terminated by a domain boundary or of infinite length, we de-
cided to use a corresponding visualization technique for the vorticity field. Mag-
netic fields are usually visualized by field lines of maximum length with line den-
sity proportional to the magnitude of the field. This familiar property of magnetic
fields holds for all divergence-free vector fields and thus for vorticity. The rea-
son is that by Gauss’ theorem the total flux through a closed surface is zero for
a divergence-free field. Hence for an arbitrary vortex tube segment along the vor-
ticity field, the fluxes through the two cross sections are equal which implies that
average magnitudes are inversely proportional to projected surface and therefore
proportional to the field line density.

From an algorithmic point of view, a set of field lines with this density property
can be achieved by using a modification of the streamline placement algorithm of
Turk and Banks [164] (see Figures 2.8 and 3.3 for resulting vector field visualiza-
tions and Figure 2.7 for an example where the method was adapted for visualizing
eigenvector field lines). To support the interpretation of the 3D flow, we color the
vorticity field lines by scalar quantities as shown in Section 3.4.2.
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Visualization of vorticity fields by field lines with line density proportional to
vorticity magnitude can be achieved by an extension of that iterative streamline
placement algorithm to 3-dimensional unstructured grids with some additional
modifications. We have not chosen to use a single-pass method like [34,64,95,168]
but to build on the mentioned iterative method because the requirement of a pre-
scribed spatially varying line density is achieved progressively in this case, pro-
viding preview results and more precise results on convergence. First, we describe
the original method and later on, the necessary modifications.

The algorithm by Turk and Banks maintains a low-pass filtered version of the
streamline image for representing line density, as shown in Figure 3.3. The place-
ment of the streamlines is steered by minimization of an energy function that is
defined as the sum of the squared error between the low-pass image and the target
line density. Minimization is done by random descent using a set of operations
that only take effect if energy is reduced:

• Insert: generate a streamline and try to add it.

• Remove: try to remove a streamline.

• Move: try to move a streamline.

• Lengthen, shorten, combine: try to lengthen or shorten a streamline, or to
combine two streamlines to a single one if their ends are sufficiently close.

The optimization process is accelerated by an oracle that tells which operation
on which streamline is supposed to reduce energy most. For the extension to 3-
dimensional unstructured grids, only few modifications have to be applied:

First, one has to switch from image-guided placement to data-guided placement
because we want the lines to be distributed view-independently and to be guided
by an additional field, in our case vorticity magnitude. In the 2D algorithm by
Turk and Banks, the low-pass image is generated from the streamlines without
accessing any field data, therefore the algorithm is not bound to any grid geometry
or topology. We use a 3-dimensional unstructured low-pass field with geometry
and topology identical to the vorticity field to avoid sampling issues and because
line density has to be steered by vorticity magnitude.

The low-pass filter must also be extended to three dimensions. In the 2D al-
gorithm, evaluation of the radially symmetric filter contribution is simplified by
rotating the streamline segments around the filter origin to become parallel to the
y-axis. Following this idea, we first rotate the 3D line segments onto the xy-plane
(Figure 3.4 (b)) and give that as input to the filter look-up of the original 2D al-
gorithm. This way, a radially symmetric 3D filter is applied implicitly. Due to the
unstructured grid geometry, we decided not to adapt the energy function as in the
work by Mao et al. [94] but to use this filter in physical space. As a consequence,
an efficient point location algorithm is required to find the grid nodes that a line
segment can contribute to when it is low-pass filtered.
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(a) (b)

Figure 3.4: (a) Isosurface of vorticity, clipped at 20 mm distance from solid boundaries.
Picked point (red), planar curve (white), and streamlines. (b) Filter look-up for the
3D line segment PQ by rotating the triangle OPQ onto the xy-plane.

The above two modifications yield a 3D version of the streamline placement
algorithm. If the interest is however to visualize divergence-free fields, the vector
magnitude can be used as target density for the placement of the field lines. Pos-
sible applications include vorticity fields, velocity fields of incompressible flow,
and magnetic fields. It has the advantage that field lines of maximal length can
be used, resulting in a more consistent visualization and obviating the need for
lengthening, shortening, and combine operations. Another advantage is the reduc-
tion of occlusion, since the user will usually scale the target density field so that
there will be almost no lines in regions of little interest.

For the control of line density by another field, the following modification has
been chosen. The algorithm by Turk and Banks is mainly designed for stream-
line placement with constant density. It uses a target gray level, constant over
the image, that has to be approximated by the low-pass image. Line density can
be controlled by variation of the filter radius using an image that defines a filter
radius for every point. Because we want to approximate line density given by a
field, we have chosen to use a constant filter radius and to use the given field as
target low-pass level instead. Overall line density can be adjusted by scaling of the
density field.

3.4 Results
Now we exemplify the presented tools in the context of a design study of a Pelton
water turbine. The underlying simulations were carried out by our industry partner
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(a) (b) (c)

Figure 3.5: (a) A photograph of a Pelton turbine with five injectors. (b) Pelton turbine
simulation: distributing manifold, 6 injectors with torpedoes (blue), water jets,
and the runner with 20 buckets. (c) Detail of jet colored by kinetic energy.

VA Tech Hydro using the CFX-TASCflow solver. The flow inside a Pelton turbine
can be partitioned into three main parts (Figure 3.5), the distributing manifold,
also called distributor ring, which guides the flow toward the runner and generates
the jets by the so-called injectors, the jets themselves, and the flow inside the
buckets of the runner. Whereas the flow inside the manifold is modeled as steady-
state, time-dependent two-phase simulations represent the jets and the flow inside
the buckets. All these simulations were conducted for several different operating
points. For the manifold and for the runner, symmetry planes were assumed and
used as boundary conditions. In the following, we focus on the vortices occurring
at the bifurcations of the manifold in front of the injectors, which are being studied
with highest priority due to their role in vortex generation.

As known from experience [30], the characteristics of the water jets have a di-
rect impact on the efficiency of the hydraulic turbine. Indeed, the jet does not nec-
essarily follow the injector’s geometrical axis, can show a non-cylindrical shape
and has a dispersed mixed air / water zone on its boundary. These hydrodynamic
patterns are mostly consequences of the flow characteristics in the injector, which
itself results from the main pipe flow after the bifurcation where the flow is devi-
ated toward the injector. This flow deviation, together with the bend in the main
pipe, induces complex vortex structures in the injectors.

The characteristics of these vortices in size, intensity, and spatial configuration
appear to be key control parameters of the jet “quality”. Consequently, a strong
interest lies in the identification and detection of these vortices. Their energetic in-
tensity classification is also an important factor as it helps in identifying the “key”
vortices with respect to the jet quality, and thus the related design optimization
approaches that could be investigated to minimize or even eliminate their negative
effects.
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(a) (b)

Figure 3.6: (a) Local “verification” of three vortex cores by stream tubes. (b) Forward and
backward stream tubes reveal one separation vortex and one vortex sheet roll-up.

3.4.1 Vortex Analysis
In the performed study, it turns out that the strongest vortices present in the dis-
tributing manifold are separation vortices at the bifurcations. Although there is
one such vortex per bifurcation, they differ significantly in shape and especially in
their interaction with other vortical structures.

At the first bifurcation, the vortex core line extraction yields a set of three lines
running almost parallel at some point (Figure 3.2 (b)). Possible interpretations in-
clude (a) separate vortices, (b) one main vortex and other vortices either joining
or leaving it, and (c) one vortex with noisy core region. Interpretation (c) is often
the correct one, as can be verified by a scale-space analysis. Vorticity magnitude,
when combined with minimal wall distance, is only able to indicate the interest-
ing region, but fails to isolate vortices (Figure 3.2 (a)). Isosurfaces of λ2, giving
a sharper picture, do not indicate separate vortices, regardless of the chosen level
(Figure 3.2 (b)). The hypothesis of separate vortices can be verified by integrating
stream tubes seeded on a small circle around each core line (Figure 3.6 (a)). The
streamlines of each tube clearly wind around the core line. Such an analysis is
however too localized and does not account for the radial extent of vortices. By
backward integrating from a seed circle of an appropriate experimentally found
radius, we obtain a very thin stream tube hitting the wall and spreading to a wide
opening angle of streamlines running along the wall (Figure 3.6 (b)). The most
plausible interpretation is therefore that of two separate vortices, namely the ex-
pected strong separation vortex plus a minor vortex apparently generated by a
vortex sheet rolling up from boundary shear flow.
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(a) (b)

Figure 3.7: (a) Top view of vorticity field lines colored with distance to boundary (in me-
ters). (b) Closer look at the first two injectors.

3.4.2 Vorticity Field Lines
Although the methods used in the previous section already conveyed important
mechanisms of the flow inside the distributing manifold, they nevertheless con-
centrated on individual vortices, i.e., they did neither reveal the interaction of vor-
tices nor their interrelation with boundary shear flow. In this sense, we will now
have a complementary look on these mechanisms, i.e., in terms of field lines of
the vorticity field. Hereby, the field lines are placed using the method from Sec-
tion 3.3. For better visualization and to support their interpretation, the field lines
are colored with scalar quantities, for example:

• For the visualization of vortices, the field lines are colored with vortex indi-
cators like helicity, λ2, or pressure.

• For the discrimination between field lines of the boundary shear flow and
field lines of the inner flow, the lines are colored with Euclidean distance to
the boundary. This also shows where field lines detach from the boundary.

• For studies of the vorticity field and its role in vortex phenomena, the field
lines are colored with vorticity magnitude.

All images of this section show vorticity field lines with line density propor-
tional to vorticity magnitude. As already mentioned, simulation was done only for
the lower symmetry half of the turbine. Accordingly, boundaries and field lines
are visualized only inside this region. The boundary is rendered in gray and the
torpedoes inside the injectors were omitted for better visibility.
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(a) (b)

Figure 3.8: (a) Closer look at the first two injectors, field lines again colored with distance
to boundary. In the circled region, field lines detach roughly in direction of the
streamlines (white tubes). (b) Close look at the first injector. Some field lines fol-
low the flow inside the injector while others connect from the boundary of the
manifold to the boundary of the torpedo.

In Figures 3.7 (a) to 3.8 (b), the field lines are colored with distance to the
boundary to support the distinction between boundary flow and inner flow. Fig-
ure 3.7 (a) provides a quick impression of the flow regarding vorticity and hence
vortical flow: field lines near the boundary are colored blue whereas the usu-
ally more important field lines reaching the inner flow get different colors. Fig-
ure 3.7 (b) shows different flow features:

• In accordance with the analysis in Section 3.4.1, we identify the large sepa-
ration vortex and the smaller vortex caused by vortex sheet roll-up, passing
over the separation vortex. Both exhibit bundles of red field lines, meaning
that these have detached far away from the wall.

• At the second injector, vorticity lines smoothly detach from the boundary
of the manifold ring and join into the right part of the injector. In front of
the right part of the injector, we also identify a back-flow region indicated
by vorticity lines reaching the symmetry plane (refer to Figure 3.8 (a) for a
verification using streamlines). Figure 3.8 (a) also shows that the field lines
detach roughly in direction of velocity (toward the injector). This indicates
high helicity and hence a vortical region. Such a configuration between ve-
locity and vorticity is likely to exhibit the vortex stretching phenomenon
which is subject to research in the next chapter.

Figure 3.8 (b) shows a close view at the first injector. We see that the field
lines of the separation vortex follow the flow inside the injector, whereas the field
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(a) (b)

Figure 3.9: (a) Top view of vorticity field lines colored with absolute value of normalized
helicity. (b) Closer look at the first two injectors.

lines of the vortex sheet roll-up connect to the boundary layer of the distributing
manifold on one side and to the boundary layer of the torpedo on the other. A
possible interpretation is that this vortex gets its rotational energy from boundary
shear flow on both of its ends.

Figures 3.9 (a) and (b) show the same views, but this time the field lines are
colored with the modulus of normalized helicity to help the distinction between
vortices (mainly red) and shear flow (mainly blue). This again allows to identify
vortices together with the related vortex lines of the boundary shear flow. As a last
example, Figures 3.10 (a) and (b) show once more the same views, but this time
the field lines are colored with vorticity magnitude. This type of visualization
gives a more quantitative view of the vorticity field. It reflects the circumstance
that although vorticity magnitude is typically highest inside the boundary layer,
regions that deviate from the “regular” behavior are often of higher interest.

Table 3.1 contains some statistics of the line placement procedure. It has to be
mentioned that, compared to the original algorithm by Turk and Banks, it took
more time to adjust the parameters (scaling of the vorticity magnitude field, filter
radius, random move radius) to obtain pleasant results. Because many contribu-
tions of a given field line contribute to the same node of the low-pass field (due to
several field line integration steps per grid cell and due to filter kernel size), mul-
tiple contributions to the same low-pass node are combined first. For our dataset
and algorithm settings, this resulted in a reduction of memory usage by one order
of magnitude. The table shows counts of the already combined contributions.
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(a) (b)

Figure 3.10: (a) Top view of vorticity field lines colored with vorticity magnitude. (b)
Closer look at the first two injectors.

3.5 Discussion
In this chapter we first presented two visualization tools for the explorative anal-
ysis of velocity and vorticity fields. Based on extracted vortex core lines, the user
can generate initially orthogonal circular stream tubes, by just a radius selection
and a picking operation. Similarly, stream tubes can be generated from closed
regions defined by one or two isosurfaces. This allowed for a interactive investi-
gation of individual vortices.

For a more thorough analysis of the vorticity field, we then presented a field line
placement algorithm for generating sets of field lines where line density is propor-
tional to the field magnitude. We found that the proposed visualization method is a
useful tool for the investigation of vortical flow. In our belief, it visualizes vortic-
ity and vortices in an appropriate manner, revealing interrelations and additional
details both with respect to vortices and boundary shear flow. However, this ap-
proach mainly gives an instantaneous structural view on vorticity, i.e., its transport
processes are not captured adequately. This is the goal of the method presented in
the next chapter.
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Run 1 2 3
Nn = number of grid nodes 789132
vorticity magnitude scale 0.003 0.005 0.005

iterations 10000 10000 40000
filter radius [m] 0.02 0.02 0.02

random move radius [m] 0.005 0.005 0.005
Nl = number of lines 1139 1541 2709

Nv/Nl = vertices per line 217.472 220.099 194.882
Nc/Nl = contributions per line 6404.75 6179.37 5668.7

initial energy 4.45526e+08 1.23757e+09 1.23757e+09
final energy 4.0472e+08 1.15074e+09 1.0707e+09

computation time [sec] 2460.43 2274.35 9673.02

Table 3.1: Statistics for the field line placement. Memory usage of the low-pass field is Nn
and memory used by the field lines is 3Nv +Nc.
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Vorticity Transport
The methods from the previous chapter reveal many interesting aspects, especially
the interrelation of vorticity inside the boundary shear flow with the vortices in the
interior flow. However, the vorticity field alone gives only an instantaneous view
and does not sufficiently allow for interpretations of involved transport mecha-
nisms. Furthermore, it is strictly appropriate only for steady flows: an interpreta-
tion of time-dependent mechanisms in unsteady flow is difficult. This is similar
to the case of vector field topology, which has to be applied to isolated time steps
of a transient simulation, making it difficult to come up with an appropriate time-
dependent interpretation.

Therefore, we decided to do a further step and to develop a visualization method
for the analysis of vorticity and its dynamics in unsteady flow. We first planned
to come up with a visualization method that exploits Helmholtz’s theorems. There
are different formulations of the three theorems, we repeat the following version
that is appropriate in our context:

• The strength of a vortex tube stays constant over time. The strength rep-
resents here the flux of vorticity through any cross-section of the tube or
the circulation along any closed curve around the tube, according to Stoke’s
theorem.

• Vortex lines advect with the flow, i.e., they are frozen into the fluid. Also,
vortex lines and vortex tubes are of infinite length, closed, or start/end at
boundaries of the domain. This second property was exploited in Chapter 3.

• Fluid elements cannot obtain vorticity.

An important caveat with these theorems is that they hold only if viscous forces
are negligible, i.e., there is no diffusion nor generation of vorticity due to viscous
effects. In that context, buoyant effects, another major source of vorticity, have
also to be negligible. However, since many flow problems need nowadays to be
modeled using viscous fluids, these theorems are substantially violated in typical
applications. We therefore base our approach on another finding by Helmholtz
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that takes into account viscosity: the vorticity equation. Helmholtz started with
the Navier-Stokes equations

∂u
∂t

+u ·∇u =−∇p
ρ

+ν∇2u, (4.1)

and derived from it the vorticity equation

∂ωωω

∂t
+u ·∇ωωω = ωωω ·∇u+ν∇2

ωωω, (4.2)

where u is the velocity and ωωω =∇×u is vorticity. This formulation describes the
time-dependent mechanisms of vorticity transport, also sometimes called vortex
dynamics. The first term on the right hand side of Eq. 4.2 can be decomposed into
two components, one parallel to the vorticity vector, and one perpendicular. The
first one is called vortex stretching and the second one is called vortex tilting. We
decided to leave out vortex tilting from the analysis because it cannot change the
magnitude of vorticity. This allows us to formulate vorticity transport with respect
to vorticity magnitude. The scalar property of this approach allowed us to come up
with a visualization method that represents the involved quantities and processes
by color coding and radii of tubes [121]. Figure 4.3 shows an example.

We find that this approach allows to analyze most vortex phenomena such as
the roll-up of vortex sheets from boundary shear to vortices, the involved intensi-
fication of vortices due to vortex stretching, and the loss of vortex strength due to
diffusion. To our knowledge vorticity has always been visualized as a whole. But
we believe that a deeper understanding of the different mechanisms involved in
the dynamics of vorticity can be obtained only by visualizing the individual terms
of the vorticity equation.

The methods in this chapter aim at analyzing the transport of vorticity inside
incompressible flow. The analysis is based on the vorticity equation and is per-
formed along path lines which are typically started in upstream direction from
vortex regions to visualize the mechanisms that relate to the given vortex at the
given time. Different methods for the quantitative and explorative analysis of vor-
ticity transport are presented and applied to CFD simulations of water turbines in
Section 4.3. Simulation quality as well as numerical errors involved in the analysis
are accounted for by including the errors of meshing, convergence, and gradient
estimation into analysis and visualization. The obtained results are discussed and
interpretations with respect to engineering questions are given.

The main contribution of this chapter is a set of tools for the exploration of
vorticity distribution and vorticity transport. The latter is described by the vorticity
equation containing several terms that can be separated by their physical meaning.
Additional terms occur if the viscosity is not uniform, e.g., because a two-equation
turbulence model is used. For the interactive study of such multimodal data it is
beneficial to have multiple linked views available [26], combining techniques from
scientific and information visualization.
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Section 4.1 gives some background on vorticity transport and the derivation
of the vorticity equation in the case of non-uniform viscosity, e.g., due to two-
equation turbulence models. Methods for the visual analysis of vorticity transport
in incompressible flow are developed in Section 4.2. Finally, in Section 4.3 these
methods are applied to industrial CFD simulations in hydro-mechanical projects
and interpretations of the results are given.

4.1 Theory
In this section two versions of the vorticity equation are described. The first ver-
sion is applicable to CFD simulations with known uniform viscosity, or in a re-
duced manner to simulations with unknown viscosity. The second version is appli-
cable to simulations where a spatially varying viscosity is given and known. This
is often the case because turbulence models nowadays typically lead to spatially
varying (modified) viscosity even for fluids with uniform viscosity.

Scalar quantities which will be used for the analysis by the methods presented
in Section 4.2 are derived for both versions of the vorticity equation.

4.1.1 Vorticity Equation for Uniformly Viscous
Flow
The flow simulations to be visualized are based on the Navier-Stokes momentum
equations for divergence-free flow with uniform density and viscosity:

∂u
∂t

+u ·∇u =−∇p
ρ

+ν∇2u, (4.3)

with pressure p, density ρ, kinematic viscosity ν, and Laplacian∇2.
Taking the curl of Eq. 4.3 and applying several vector identities leads to the

vorticity equation (the reader is referred to, e.g., [9] for a full derivation):

∂ωωω

∂t
+u ·∇ωωω = ωωω ·∇u+ν∇2

ωωω. (4.4)

The first term on the right hand side can be decomposed into vortex stretching and
vortex tilting by computing its components parallel and perpendicular to vorticity:

∂ωωω

∂t
+u ·∇ωωω = (ωωω ·∇u)‖ωωω︸ ︷︷ ︸

stretching

+ (ωωω ·∇u)⊥ωωω︸ ︷︷ ︸
tilting

+ ν∇2
ωωω︸ ︷︷ ︸

diffusion

. (4.5)
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The stretching term represents the rate of stretching of vorticity. Positive stretching
in direction of the vorticity vector increases its magnitude because of conservation
of the angular momentum of the fluid element. A well-known example for this
phenomenon is a pirouetting skater contracting his arms to increase his angular
velocity. The tilting term represents the rate of rotation (tilting) of the vorticity
vector and hence does not change its magnitude. The diffusion term, too, can be
decomposed in a component parallel to vorticity and a component orthogonal to
it. Again, only the parallel component changes the magnitude of vorticity and
therefore the perpendicular component is omitted from the quantitative analysis
described in Section 4.2. This leads to the following equation used for analysis:

(
∂ωωω

∂t
+u ·∇ωωω)‖ωωω

= (ωωω ·∇u)‖ωωω
+ (ν∇2

ωωω)‖ωωω

= σ+δ, (4.6)

with stretching σ and diffusion δ, both parallel to vorticity. Eq. 4.6 contains third-
order derivatives because vorticity already incorporates partial derivatives. Com-
puting these quantities from CFD results typically introduces numerical error. In
practice, it is usually possible to get first derivatives of velocity directly as addi-
tional output from the solver. But even then, second derivatives have to be com-
puted numerically. Theoretically, this can be avoided by computing the diffusion
term simply as the difference of the left hand side and the stretching term σ. How-
ever, this would require that Eq. 4.6 holds exactly for the given data. This is not
the case if, e.g., a two-equation turbulence model has been used to compute them.
Turbulence models introduce modifications to Eq. 4.3 which obviously lead to
modifications in Eq. 4.6. In the following section, the modifications are studied
for a special class of turbulence models.

Other reasons why Eq. 4.6 often cannot be assumed to hold exactly are residual
errors in the simulation and also errors in gradient estimation. From a numerical
point of view often only moderate simulation accuracy is needed for answering
questions in engineering. Because CFD simulations have a high computational
cost, mesh refinement is often limited and the simulation is often not given the time
to fully converge. Additionally, for steady simulations, it is often not possible to
achieve fully-converged solutions because the problem would require to be solved
using a time-dependent model.

Therefore, unless information on the residuals or on the viscosity is available,
only two of the three terms of Eq. 4.6 are available for visualization: the left hand
side describes the change of vorticity magnitude for a particle at a given location
and time, while σ gives the portion of this change due to vortex stretching.

If the available information allows to compute the third term δ, as is often the
case because the modeled fluid is known and because solvers typically output
viscosity information, the discrepancy ∆ is computed as the absolute difference
between the two sides of Eq. 4.6 and is used as a measure of uncertainty. In this
case vortex stretching σ, vorticity diffusion δ, and discrepancy ∆ are available for
visualization.
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4.1.2 Vorticity Equation for Non-Uniformly
Viscous Flow
Turbulence models were introduced in CFD to obtain good results with a realistic
level of spatial discretization (refinement level of the mesh) as discussed in the
context of DNS. Two-equation turbulence models (see, e.g., [1]) such as the k−ε,
k−ω, and the SST models [98] are based on turbulent viscosity. These models
are incorporated into the Navier-Stokes equations Eq. 4.3 by a modified pressure
and a modified viscosity:

p′ = p+
2
3

ρk, νe =
µ+µt

ρ
,

where k is the turbulent kinetic energy, µ is the dynamic viscosity, and µt is the
turbulent (eddy) viscosity .

The modified Navier-Stokes equations then become:

∂u
∂t

+u ·∇u =−∇p′

ρ
+νe∇2u+(∇u+(∇u)T ) ·∇νe. (4.7)

The last term of Eq. 4.7 accounts for the fact that turbulent viscosity is in general
not uniform, even though the medium is homogeneous. This makes our method
also applicable to fluid that exhibit inhomogeneous viscosity despite of used tur-
bulence models. Eq. 4.7 can be simplified using the rate of strain tensor S:

∂u
∂t

+u ·∇u =−∇p′

ρ
+νe∇2u+2S ·∇νe. (4.8)

Taking the curl of Eq. 4.8, applying the same vector identities as for Eq. 4.5, and
applying to the right hand side the additional vector identity ∇× ( f v) = f ∇×
v+∇ f ×v leads to the modified vorticity equation:

∂ωωω

∂t
+u ·∇ωωω = (ωωω ·∇u)‖ωωω︸ ︷︷ ︸

stretching

+ (ωωω ·∇u)⊥ωωω︸ ︷︷ ︸
tilting

+νe∇2
ωωω+∇νe×∇2u+∇× (2S ·∇νe)︸ ︷︷ ︸

diffusion

. (4.9)

Again, Eq. 4.9 is now restricted to the direction parallel to ωωω, giving

(
∂ωωω

∂t
+u ·∇ωωω)‖ωωω

= (ωωω ·∇u)‖ωωω

+ (νe∇2
ωωω+∇νe×∇2u+∇× (2S ·∇νe))‖ωωω

= σ+δ. (4.10)

Having simulation data which solve Eq. 4.7 (up to residual errors), there are
again two ways to compute the diffusion part, either by computing its sub-terms
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as δ = (νe∇2ωωω+∇νe×∇2u+∇× (2S · ∇νe))‖ωωω
or by subtracting σ from the

left hand side as δ′ = (∂ωωω/∂t +u ·∇ωωω)‖ωωω
−σ. The discrepancy ∆ = |δ− δ′| can

again be taken as a measure for the uncertainty of the obtained result. It is equal
to the discrepancy between the two sides of Eq. 4.10.

Here, in contrast to Section 4.1.1 without additional information, vortex stretch-
ing σ, vorticity diffusion δ, and the discrepancy ∆ are available for visualization.

4.2 Vorticity Transport Analysis Tools
Our analysis of vorticity transport is based on path lines because the left hand sides
of Eq. 4.5 and Eq. 4.9 are convective derivatives of vorticity with respect to ve-
locity. This way, a path line can be used to visualize the vorticity transport effects
that a fluid element undergoes on its way through the flow. Visualizing differential
quantities on path lines avoids the need of integration along the transport paths and
hence error accumulation due to integration errors and numerical discrepancy in
the data. This is an important design decision for our method since practical CFD
simulations tend to suffer from residual errors. Computing path lines upstream
or downstream from points of interest allows the researcher to analyze the flow
behavior with respect to that region and time.

The quantities of interest are sampled along the path line and plotted as de-
scribed in Section 4.2.2. Selected quantities are also visualized directly on the path
line as described in Section 4.2.3 and Section 4.2.4. Vorticity magnitude is mapped
to the thickness of the path lines together with parallel projection rendering. Vor-
ticity orientation is visualized by adding vorticity streamlets to the path lines.
Where appropriate, wall distance can be visualized using “support columns”. The
quantities used for visualization could be computed during line integration. For
the presented results, it was, however, decided to precompute them, in order to
achieve short response times for the interactive analysis. All line integrations are
performed with fourth-order Runge-Kutta integration.

4.2.1 Quantities
The quantities selected for the basic analysis described in Section 4.1.1 include
vorticity magnitude, its rate of change along the path line, the stretching term σ,
and the distance to the boundary. As already mentioned, the focus of the quantita-
tive analysis is on the magnitude of vorticity, not its orientation and hence, vortex
tilting is omitted in the visualization.

If the extended analysis is possible, the diffusion term δ and the discrepancy ∆

are used as additional quantities, and derived from them also the relative error

ε =
|δ−δ′|
|σ|+ |δ| . (4.11)
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Figure 4.1: Plot along a single path line, corresponding to Figure 4.2.

If available, the residuals as a further data channel can be included in the visu-
alization. Also the Courant number giving indications on possible convergence
problems of the simulation can be taken for comparative visualization.

According to Eq. 4.6, σ and δ represent a decomposition of the rate of change of
vorticity magnitude into the two mechanisms vortex stretching and vorticity diffu-
sion. The visualization methods should account for this decomposition property.

4.2.2 Path Line Plots
As a first type of visualization, a 2D plot is generated for the path line in question.
The abscissa of the plot represents either time or arc length along the path line
while the quantities are mapped to the ordinate. The purpose of having this basic
type of visualization available in our toolkit is to have an undistorted view of the
path line and at the same time being able to see more different quantities than
would be possible with a condensed 3D representation.

The quantities σ and δ are plotted relative to the plot of vorticity magnitude in
order to meet their decomposition property. If positive, they are plotted as area
above the plot of vorticity magnitude, otherwise they are plotted as area below it.
Stretching forms the inner band while diffusion forms the outer. Figure 4.1 shows
an example result. The discrepancy ∆ is added as another band below the existing
plot. This visualization shows the proportion of the two terms as well as their total
effect on vorticity magnitude. Because σ, δ, and ∆ are of unit s−2 in contrast to
vorticity which is of unit s−1, the values of σ, δ, and ∆ can be freely scaled by a
user-defined factor for obtaining significant plots. The sum of the unscaled σ and
δ corresponds to the slope of the vorticity magnitude plot, up to discrepancy ∆.

69



Chapter 4 Vorticity Transport

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.2: Striped path line modes using color scheme of Figure 4.1. Evenly-timed seg-
ment lengths indicating velocity (a), evenly-spaced segment lengths (b), same as
(b) but with error stripes (c), with additional normalization of the stripes (d), scal-
ing instead of normalization (e), same as (b) but with additional striped slices (f),
and additional error stripes (g). Tube radius represents vorticity magnitude.

4.2.3 Striped Path Lines
Striped path lines are introduced to show several of the computed quantities at
their physical location along the path lines. The idea is to provide a condensed
visualization on an interactively seeded set of path lines. Any of the path lines can
then be selected for closer inspection by a path line plot as a linked view.

A tube is generated along each path line, with radius representing vorticity mag-
nitude, similar to the iconic stream tube [165]. The path line is divided into seg-
ments of constant user-defined length (or time for also visualizing velocity) and
the corresponding segments of the tube are used for visualization. The quantities
for visualization are sampled at the midpoint of the path line segments. Three
quantities are visualized by color stripes on the tube segments: stretching σ and
diffusion of vorticity δ, as well as the error ε.

Data Stripes: The coloring strategy for the data stripes is chosen according to
the path line plots of Section 4.2.2. A color pattern proportional to σ and δ can
be obtained by looking at a column of the plot area band that represents them.
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The idea is to map this proportional pattern to the segment of the tube using color
stripes. Transverse stripes are chosen for better readability. Since stretching comes
first (is the inner band) in the plots, it is used for the first stripe and diffusion is
used for the second stripe. This coding also indicates flow direction. For normal-
ized visualization of the proportion only, the two-color pattern is scaled to fit the
complete length of the segment. If also the absolute value of stretching and dif-
fusion is to be visualized, a third stripe is used as a filler and colored white. The
scaling is determined in this case from max(|σ|+ |δ|) over the path line or set of
path lines. Because of data peaks along the path line, this scaling can lead to unsat-
isfactory visualization and therefore the user is allowed to scale the stripe width.
This will lead to clipping at the peaks and allows the user to inspect the region
of interest. Clipping is indicated by a black stripe of predefined width. Figure 4.2
shows some examples.

Error Stripes: According to the role of error, the error stripes are chosen or-
thogonal to the data stripes, resulting in longitudinal stripes along the tube. The
width of the error stripes is proportional to ε (Eq. 4.11). At full error (ε ≥ 1) the
complete tube segment is covered by error stripes leaving no data stripes visible.
At zero error no error stripe is visible and all is covered by data stripes. More than
one error stripe is generated to avoid its occlusion but the number is kept low to
preserve resolution. Figure 4.2 shows some examples.

4.2.4 Complementary Visualization Techniques
While the two techniques of path line plots and striped path lines already convey a
multitude of information, these are all local data, and combining them with some
contextual visualization would allow for a more profound analysis. Since we are
concerned mainly with data exploration rather than presentation, complementary
visualizations can be easily added or removed during inspection of the data. We
describe in the following a few techniques that turned out to play well together
with the proposed basic technique.

Slices: Until now, the visualization was confined to the path lines. A single path
line visualizes the advective aspects of vorticity well but does not allow to inspect
the local neighborhood of the path line. However, if there is, e.g., gain of vorticity
by diffusion on the path line, one would like to know where it diffuses from. This
can be analyzed by generating other path lines nearby, but only in the case that the
path lines pass the region in question at the same time.

An alternative and more systematic method is to generate perpendicular slices
on the path line, sample the quantities on the slices, and to apply the same color
coding as for the striped path lines. All modes of the path line stripes are im-
plemented for the slices, too. The circular slices are divided into sectors and this
time the data stripes are radial and the error stripes are circumferential. This gives
a continuous visualization with increasing radius and contrasts well to the trans-
verse data stripes on the tube. Figure 4.2 shows examples.
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Figure 4.3: Separation Vortex. Vorticity transport visualized by a set of striped path lines,
backward integrated from a seed circle at the downstream end of the vortex core
line (black). Visualization is augmented by vorticity streamlets (white).

Vorticity Streamlets: So far, only the magnitude of vorticity transport is visual-
ized. This is sufficient for the quantitative analysis, but it does not produce a com-
plete image, i.e., it does not convey the structure of vorticity. Therefore, streamlets
of vorticity are added to the path line visualization. The length of the streamlets
is defined by a user-defined time interval. This plays well together with the tube
radius since the tube radius is visualizing vorticity magnitude. Vorticity streamlets
disappearing inside the tube due to partial alignment with the tube indicate high
normalized helicity which by Levy’s criterion is associated with swirling flow and
hence indicate vortices. Two streamlets are computed at each seed, one in positive
and one in negative vorticity direction. Due to the analogy between vorticity and
magnetism, it is natural to interpret the streamlets as a kind of compass-needles
with possibly bent ends that follow the field. Furthermore, this technique also vi-
sualizes vortex tilting. Figure 4.3 shows an example.

Wall Distance Indicators: Wall distance plays an important role in the analysis
of vortical motion because of the vorticity present in boundary shear flow and
possibly transforming into vortices. Another reason for keeping an eye on wall
distance is that the quality of simulation as well as the quality of the derivatives
is often low close to the wall. Wall distance could be visualized, e.g., by color
coding of the vorticity streamlets. But this would add another type of colored
stripes and therefore would interfere with the visualization by striped path lines.
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Figure 4.4: (a) Selected path line from Figure 4.3 with wall distance indicators (colored
cylinders). (b) Corresponding path line plot.

Therefore “support columns” are introduced. These are tubes that indicate the
distance from the path line to the wall. The tubes have a top face that is located
at the path line and follow to the wall. Instead of using straight tubes visualizing
the shortest distance to the wall, we generate them by streamline integration along
the negative gradient of wall distance until the boundary is reached. However,
without additional information, it would not be possible to tell the length of such a
tube because of the projection in the resulting rendering. Therefore, the tubes are
continuously colored by distance to the boundary. This allows the user to see the
value of wall distance. At the same time, long tubes represent a color legend when
seen from the side. If the tube radius is large enough, the top faces of the tubes are
well visible even when looked from the top, even together with the path line tube.
In this case the color of the top face visualizes wall distance. Figure 4.4 (a) shows
an example.

Velocity-Vorticity Line Rakes: So far, the described vorticity streamlets are
usually chosen shorter than the path line along which they are seeded, because they
only add supporting information. However, there are applications where opposite
roles are fruitful. This leads to a special case of rakes, where a single integral curve
is generated interactively and other integral curves are started from that curve in
evenly-spaced or evenly-timed distribution. Doing this for the same field would
not deliver additional information. But velocity and vorticity are particularly suit-
able, e.g., because they are sufficiently close to perpendicular in shear flow. The
rake with a velocity streamline as primary line and vortex lines starting from it
(denoted here as (u,ω) rakes) can be used for the visualization of boundary shear
flow. The rake with a vortex line as primary line and integral curves of velocity
starting from it (denoted here as (ω,u) rakes) can be used for visualizing sepa-
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ration of boundary shear flow. Figure 4.9 (a) and Figure 4.9 (b) show examples
where both types of rakes are used. The described type of rakes has some advan-
tages compared to conventional rakes: the user is freed from the tedious process
of rake orientation, a single selection operation already defines the rake. Another
advantage is that it can generate curved rakes, e.g., following the boundary, also
by a single selection operation. Visualizations by (u,ω) rakes represent an alter-
native to vortex line placement investigated in Chapter 3. They too are only able to
visualize the instantaneous structure of vorticity. Extending the concept of (u,ω)
rakes to time-dependent integral curves of velocity does not seem to be useful due
to interpretation difficulties. The extension of (ω,u) rakes to time-dependent inte-
gral curves of velocity, i.e., path lines, makes sense and can be used as shown in
Section 4.3.4 and Figure 4.9 (b).

4.2.5 Methodology
For the analysis of vortical regions in terms of vortex dynamics, the striped path
lines are typically seeded interactively at significant vortex core lines, on tubes
around the core lines, or on isosurfaces of vorticity magnitude or λ2 (at time of
interest in the transient case) and integrated in upstream direction. This allows
for the analysis of the mechanisms that are involved in the development of the
given vortex. In our case, vortex core lines are either computed according to Levy
et al. [80] or Sujudi and Haimes [145]. Another possibility is to seed the path
lines at regions on the boundary where vorticity is advected away and to compute
the path lines in downstream direction. This conveys how and where vorticity is
transported.

Although the path lines are typically computed in upstream direction to analyze
involved mechanisms, it has to be noted that the striped path line visualization has
to be interpreted always in downstream direction because σ and δ are computed in
positive time direction. The different modes presented in Section 4.2.3 and Sec-
tion 4.2.4 are selected interactively until satisfactory visualization is achieved.

Slices, streamlets, and wall distance indicators (Section 4.2.4) are placed ei-
ther at evenly timed or evenly spaced positions along the path line. When using
wall distance indicators and vorticity streamlets at the same time, it is preferable
that the vorticity streamlets get placed at the same position as the wall distance
indicators. This improves the perception of streamlet orientation because either
both positive and negative parts of the streamlet tend to be visible and hence in
the plane of the top face of the tube, or one disappears inside the tube. Another
benefit is that the top faces of the support tubes tend to have the same orientation
as the wall. This facilitates inspection of vorticity in boundary shear flow because
vorticity is parallel to the wall as well in the general boundary shear flow case.
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4.3 Results
In this section, the proposed methods for vorticity transport analysis are applied
to several CFD simulations from industry. The first example is the flow inside the
distributor ring of a Pelton water turbine from Chapter 3. The second example is
a free-surface simulation of the basin of a river power plant. Finally, the methods
are applied to the simulation of a vortex rope in a draft tube of a Francis turbine.
The former two are steady-state simulations while the latter is unsteady. Different
flow phenomena are examined using the described methods.

4.3.1 Separation Vortex
The first region of inspection in the Pelton dataset is the large separation vortex
at the entrance of the first injector. Figure 4.3 shows a set of path lines started in
upstream direction from the downstream end of its core line. Figure 4.4 (a) shows
a selected path line from this set and Figure 4.4 (b) shows the corresponding path
line plot. The images show a part of the distributor ring of the Pelton water turbine.
The flow comes from the bottom left and follows the distributor ring to the upper
right corner. Part of the flow branches off into the injector at the upper left corner
of the image.

We start the visual examination at the upstream end of the path line and fol-
low it downstream (Figure 4.4). From the plot or from the distance indicators we
know that the path line is close to the wall in the beginning. There is high vor-
ticity magnitude and this indicates together with the perpendicular orientation of
the vorticity streamlets that the path line is part of the boundary shear flow there.
There is a large discrepancy at the beginning. This can be explained by the fact
that simulation accuracy and quality of the computed derivatives are low close to
the wall. However, it can be seen from the plot, that the error reduces quickly to a
practical level as the path line gains distance to the wall. It can also be seen that
vorticity is diffusing away (blue stripes), i.e., from the boundary shear flow in this
region. This exemplifies the common fact that in the beginning, vorticity is typi-
cally diffusing away from boundary shear flow and only later on it is transported
by advection. The advection process can be identified by the subsequent path line
region of comparably constant radius and thin data stripes.

Next, the path line starts to deviate into the injector and aligns more and more
with the vorticity field, which can be again interpreted as vortex tilting. It can be
seen that this is near the upstream end of the separation vortex core line structure,
and that the path line swirls around the core line of that vortex for the rest of its
way. Here we observe the typical situation that vorticity is mostly concentrated
by stretching in the region of vortices with simultaneous loss by diffusion. The
positive stretching of vorticity is often observed in vortices that are located at
regions of increasing velocity, e.g., the outlets. The velocity component parallel
to vorticity typically increases downstream in these regions due to the pressure
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Figure 4.5: Recirculation region. Path lines computed in upstream direction from a circle
at downstream end of vortex core line. Vorticity streamlets allow to identify a
recirculation zone (left, vertical streamlets) and a vortex region (right, horizontal
streamlets).

gradient, leading to stretching of the fluid and hence its vorticity. The loss by
diffusion of vorticity is explained by the locally high vorticity magnitude typically
found in the core region of a vortex, also due to concentration by vortex stretching.

4.3.2 Recirculation and Vortex
The entrance of the second injector of the Pelton distributor ring shows a quite
different flow pattern. Instead of a clear separation vortex, a short vortex connected
to a large recirculation region is observed. Figure 4.5 shows a set of path lines
seeded at the downstream end of the vortex, Figure 4.6 (a) a selected path line,
and Figure 4.6 (b) the corresponding path line plot. Again, the flow comes from
the lower left corner of the image and part of it is branching off into the injector.

Generally, recirculation zones are often directly related to the boundary layer:
they often occur when the boundary shear layer separates from the wall. Again,
the upstream parts of the path lines are very close to the boundary. Observing the
almost constant tube width and thin data stripes, almost pure advection of vorticity
from the boundary shear flow can be identified.

The upstream parts of the path lines belong to the recirculation zone, identi-
fied by vertical vorticity streamlets. Some of the path lines follow a loop through
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Figure 4.6: (a) Selected path line from Figure 4.5 with slices showing asymmetrical dis-
tribution of the quantities in the neighborhood of the path line. (b) Corresponding
path line plot.

the recirculation zone before they reach the vortex. Part of this loop exhibits ver-
tical vorticity streamlets which are consistent with the recirculation zone. In the
other part of the loop, vorticity orientation is consistent with the vortex. The dom-
inant mechanisms in this example are therefore the advection of vorticity from
the boundary shear, followed by vortex tilting in the recirculation zone, and fi-
nally again positive vortex stretching plus loss of vorticity by diffusion inside the
vortical region, as in the case of Section 4.3.1.

4.3.3 Vortex at Bifurcation
In this section a vortex near the sickle of the fourth Pelton injector is analyzed. The
sickle is a plate at each bifurcation of a Pelton distributor ring which is inserted for
mechanical reasons. Figure 4.7 shows a set of upstream path lines, started from
the downstream end of the core line. Figure 4.8 (a) shows the plot corresponding
to the selected path line. Following the path lines in downstream direction, part of
them gets very close to the sickle where vorticity is obtained from the boundary
shear flow and then advected into the vortex. Again, vorticity is concentrated by
stretching with simultaneous loss by diffusion in the vortex region. Some of the
regions where the path lines are close to the wall show high discrepancy ∆, visible
as gray peak in the plot. The visualization of the Courant number in Figure 4.8 (b)
confirms that there are possible problems with simulation numerics in this region,
comprised in the outermost layer of grid cells. This is a case where the computed
diffusion may not be reliable close to the wall and hence is an example where the
basic method (Section 4.1.1) could be appropriate.

77



Chapter 4 Vorticity Transport

Figure 4.7: Set of upstream path lines, started on a circle at the downstream end of the core
line (black). Vorticity increases rapidly as path lines pass the sickle in downstream
direction.

4.3.4 Vorticity Stretching at Boundary Layer
Separation
Now we examine a region in the river power plant dataset near a free-surface
vortex (see Figure 4.9 (a)). The flow comes from the bottom of the image and
passes around the housing of the generator, visible at the right side of the image. A
streamline is generated interactively close to the bottom of the basin and used for
generating a (u,ω) rake of vortex lines for the visualization of the boundary shear
flow, as described in Section 4.2.4. Some of the vortex lines detach in the region
of the vortex and cover it. In order to analyze the flow in the region of flow detach-
ment, a (ω,u) rake is interactively generated close to the wall inside the vortex re-
gion. It can be seen that its primary vortex line keeps well inside the vortex region,
due to the orientation of near-wall vorticity inside the vortex region. The comple-
mentary rake is built using striped path lines as shown in Figure 4.9 (b). This time,
evenly-spaced tube segments are used instead of evenly-timed segments.

The main feature in this region is the vorticity gain by vortex stretching after
the path lines have left the boundary shear flow. Stretching is due to the increasing
velocity component perpendicular to the wall which is roughly the direction of
vorticity, visualized by vorticity streamlets in Figure 4.9 (b).
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Figure 4.8: (a) Cropped path line plot of sickle vortex corresponding to selected path line
in Figure 4.7. (b) Visualization of the Courant number. Comparison with Fig-
ure 4.7 shows that the error on the striped path lines correlates with high Courant
number.

4.3.5 Transient Vortex Rope
Finally, we examine a transient simulation of a vortex rope in the draft tube of a
water turbine by means of the presented method. The inlet boundary condition for
the simulation was determined empirically from measured data on a slice through
an already developed vortex rope. To study the vorticity transport into the vortex,
its vortex core line is determined for the last time step of the simulation and used
for seeding path lines in upstream direction as shown in Figure 4.10 (a). Addition-
ally, the vorticity transport in the boundary layer is visualized by six path lines
seeded on a circle at the inlet and computed in downstream direction.

The path lines that lead into the vortex exhibit strong alternating gain and loss of
vorticity by stretching. It can be seen from Figure 4.10 (b) that most of the vortic-
ity that is first gained by stretching is lost on the way again by negative stretching,
but after all, most of the vorticity at the inlet boundary condition reaches the vortex
core line of the last time step. The path line that is seeded at the lower end of the
core line shows that vorticity magnitude is low around the vortex. It can be sum-
marized that the vorticity concentrated in the center region of the inlet boundary
condition is responsible for the development of the vortex rope.

The six path lines of the boundary layer first show gain of vorticity by diffusion
and later loss of vorticity by diffusion. In between, vorticity is also increased by
stretching. This can be identified as development of the boundary shear flow of
the draft tube, i.e., the path lines enter the boundary shear flow as its front grows
from the wall by diffusion. The asymmetry of the boundary shear flow (the path

79



Chapter 4 Vorticity Transport

(a) (b)

Figure 4.9: (a) Separation at large free-surface vortex. Core line of vortex is black. Vortex
lines of the boundary shear flow are colored by distance to the boundary. The
vortex lines of the boundary shear flow detach at the vortex and cover it. A vortex
line has been generated close to the wall inside the vortex region (white tube). (b)
Close-up view of vortex region showing a rake of striped path lines computed in
downstream direction, started from the vortex line.

line at the back of the tube has larger radius) originates from the helical and hence
asymmetric structure of the vortex rope.

4.4 Discussion
Different methods for the visualization of vorticity transport in unsteady flow have
been presented. Integrating various tools based on scientific and information vi-
sualization techniques enables both qualitative and quantitative analysis by com-
bining them flexibly in an interactive environment. The visualization toolkit gave
deeper insight into the vortex dynamics of the examined cases, revealing how vor-
ticity and vortices are reinforced or weakened by the main flow field. As discussed
at the various examples, this method has the potential to support a more thorough
understanding of complex flow patterns and might become beneficial in the devel-
opment and application of turbulence models.

The strength of this method is the fact that a complex flow field can be visu-
alized in a compact way without the need of switching back and forth between
different representations, even for time-dependent fields. As a limitation of the
system, one can say that the visualization is quite complex and that it requires
some familiarity with the method and the underlying physics.
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Figure 4.10: (a) Transient vortex rope simulation. Path lines computed in upstream direc-
tion from vortex core line of last time step (black tube). Six path lines computed
in downstream direction visualize vorticity transport in the boundary shear flow.
(b) Plot of selected path line.
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Flow Topology
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Chapter 5

Invariant Manifolds in
Flow Fields

The second part of this thesis presents research in the field of vector field topology.
We start with a short and simple investigation of flow simulation data by means
of streamlines and stream surfaces based on vector field topology, i.e., 1D and,
in particular, 2D manifolds of saddle-type critical points and saddle-type periodic
orbits. Thereby, we address the special case of divergence-free vector fields which
is often met in simulations of incompressible fluids, such as water, and extend the
topological analysis to no-slip boundaries by treating 3D velocity and 2D wall
shear stress in a unified way.

Compared to arbitrarily chosen stream surfaces, such 2D manifolds can be more
expressive and in many cases also of a simpler shape. In particular, recirculation
zones and separation surfaces are well suited for this type of visualization. The
underlying idea of visualizing topologically meaningful stream surfaces and their
relationship to topological features has previously been used by Garth et al. [38]
in their visualization of a vortex breakdown in the flow over a delta wing, a phe-
nomenon which is subject of research in Chapter 6.

The concept of vector field topology requires at least Lipschitz continuous 2D or
3D vector fields to assure unique streamlines. However, to allow for the common
classification approach by the gradient of velocity, differentiable vector fields are
required. Usually, no further preconditions are required for its application. This
is appropriate in the context of dynamical systems [43], which was the original
application of vector field topology. Vector fields arising in physics, however, often
exhibit additional properties, i.e., they may be divergence-free or irrotational or
both. In Section 5.1 we will explore some of the implications of zero divergence
to vector field topology and its application to the visualization of flow structures.
Another property often met in CFD simulations are no-slip boundary conditions
imposed on the fluid, i.e., forcing the fluid to adhere to the boundary. Extending
vector field topology to fluids with no-slip boundaries is the topic of Section 5.2.
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5.1 Topology of Divergence-Free Vector
Fields
Divergence-free vector fields, also called solenoidal, are encountered in many dis-
ciplines, and in particular in fluid dynamics. Examples include fields in hydrody-
namics, magnetism, and also derived fields such as the vorticity field, exploited in
Chapter 3. Additionally, if a vector field does not exhibit neither sources nor sinks,
it can be turned into a divergence-free field by multiplication with an appropriate
scalar field. This is based on the fact that multiplication with a nonvanishing scalar
field cannot change its topology. As an example, the momentum field exhibits the
same topology as the underlying velocity field, because they are identical up to
a nonvanishing scaling factor, the density. If, for example, the velocity field is a
steady-state solution of the compressible continuity equation ∂ρ/∂t+∇·(ρu)= 0,
then the corresponding momentum field is divergence-free.

The special case of divergence-free vector fields has implications on the anal-
ysis of critical points. Asimov [3] mentions that in 2D and 3D divergence-free
vector fields, sources and sinks are not possible, but any types of saddles are. And
in the 2D case, there is a new structurally stable type of critical points, namely
the center. The center is said to have constrained structural stability, and has the
property that in a neighborhood, all streamlines are closed.

A similar analysis as for critical points can be done for periodic orbits in
divergence-free 3D vector fields. Periodic orbits are of interest as they can indi-
cate recirculation zones. As described in Section 2.5.2, many properties of the
periodic orbit can be studied in two dimensions by means of the Poincaré map.

The Poincaré map P has a fixed point where it is intersected by the periodic
orbit. For the eigenvalue analysis, P is linearized in a neighborhood of a fixed
point. This linearized map P takes an infinitesimal circle centered at the fixed
point to an ellipse with the same center. If the velocity field is divergence-free
and thus volume preserving, the fluxes through the circle and the ellipse are equal.
The flux is the integral of the normal velocity over the area enclosed by the circle
or ellipse. The normal velocity can be linearized as well, and due to symmetry,
replaced by its average. It follows that P is area conserving, i.e., has a determinant
of one. The sign is positive because a Poincaré map always conserves orientation.

5.1.1 Saddle and Twisted Saddle Periodic Orbits
It can be readily seen that periodic orbits of type source or sink are not possible
for a divergence-free vector field. In the case of a source (either node source or
spiral source), both eigenvalues lie outside of the complex unit circle. Hence, the
determinant of P has modulus greater than one, meaning that the area of an in-
finitesimal circle is not conserved under P . The same can be concluded for sinks.
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In contrast, periodic orbits of type saddle and twisted saddle are possible in
divergence-free vector fields. Such periodic orbits are particularly suitable for vi-
sualization because they have a stable and an unstable manifold which are stream
surfaces converging to the periodic orbit in positive or negative time. The nice
property of these manifolds is that they “return to themselves” when following
the periodic orbit for a full turn. This means, if a streamline is seeded on the in-
tersection of the manifold with a Poincaré section and sufficiently close to the
periodic orbit, it will return to the same intersection curve. If the seed curve is
reduced to an infinitesimal line segment, its behavior is given by the eigenvalues
of P. As detailed in Section 2.5.2, if both eigenvalues are positive, the generated
stream surface band returns untwisted to the Poincaré section or may have done an
integer number of full (360 degrees) so-called extrinsic twists. And it can shrink
or stretch, depending on the eigenvalue associated to the eigenvector aligned with
the seed line. If both eigenvalues are negative, the stream surface band does an
additional half twist. In our case of divergence-free vector fields the product of
the two eigenvalues equals one because of the above-mentioned conservation of
area. Because of their property to return to the seed curve, (un-)stable manifolds
are ideal stream surfaces to depict the local behavior near the periodic orbit.

5.1.2 Center Periodic Orbits
If the Poincaré map of a periodic orbit in a divergence-free vector field exhibits
complex eigenvalues its type can be neither spiral source nor spiral sink. It must
be the in-between case with eigenvalues on the complex unit circle. Although
the periodic orbit is not hyperbolic in this case, it exhibits constrained structural
stability similar to that of center critical points in 2D divergence-free fields. By
analogy, we call it a center periodic orbit.

The linearized Poincaré map P of such a periodic orbit has complex eigenvalues
and a determinant of one. It can therefore be written as P = TRT−1 where R is a
pure rotation. It follows that T applied to an infinitesimal circle yields an ellipse
which is invariant under P. This means that a stream surface seeded at this ellipse
returns to the ellipse after following the periodic orbit for a full turn. The same
idea can be used for finding finite invariant tori. The goal is here to find a closed
seeding curve in the Poincaré section which is invariant under P . As an initial
guess a scaled version of the infinitesimal ellipse can be used. If starting from
this an invariant seeding curve can be found, the problem is solved. However, we
found that in practice this is a numerically challenging problem.

5.2 Topology near No-Slip Boundaries
As defined in Section 2.5.1, a critical point is an isolated zero of the vector field;
vector field topology does not treat extended singularities. However, these occur
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in practical flow fields having solid boundaries with associated no-slip boundary
conditions. Velocity u(x) vanishes on such a boundary, but using the unsigned
distance to the boundary, i.e., wall distance, s(x), it can be written as a product

u(x) = s(x)ũ(x), (5.1)

where the related vector field ũ(x) can be assumed to be well-defined also on the
boundary and to be nondegenerate there.

From the assumption of zero divergence it follows for points on the boundary:

0 =∇· (sũ) = (∇s) · ũ+ s(∇· ũ) = (∇s) · ũ (5.2)

which means that on the boundary the field ũ has no normal component. In terms
of vector field topology this means that no streamline of ũ can pass from the solid
boundary to the interior or vice versa.

If Eq. 5.2 holds, then on the boundary, ũ is related to the wall shear stress τw by
τw = µũ where µ is the dynamic viscosity of the fluid, assuming Newtonian fluids,
i.e., uniform viscosity. Because of this proportionality ũ on the boundary has the
same topology as τw. At interior points, s is nonzero and therefore ũ has the same
topology as u. Hence, the field ũ nicely combines the wall shear stress field with
the interior velocity field. However, this relies on the divergence-free property of
the vector field. In the general case the field ũ has a normal component on the solid
boundary and hence it cannot be used to produce the topology of both the velocity
field and the wall shear field in a generalized way. Of course the two vector fields
could be blended, but then the topology of u may not be conserved.

Returning to the case of a divergence-free field, we saw that no streamline of
ũ passes from the interior to the boundary. But there may be convergence toward
critical points on the solid boundary, which are 3D saddle points having two of
its eigendirections along the boundary surface. Also, convergence toward periodic
orbits on the boundary is possible.

The advantage of using the field ũ is that it is no more necessary to extract
both 2D and 3D critical points in different fields (with possible consistency is-
sues). Critical points on the boundary are now regular 3D critical points. In the
special case of u being divergence-free, sources and sinks can be excluded due to
structural stability and the fact that ũ has the same topology as u. Consequently,
such critical points must be saddles or spiral saddles. Furthermore, by Eq. 5.2 their
2-dimensional stable or unstable manifolds lie completely on the boundary. The
eigenvalue belonging to the remaining eigenvector is real-valued. Its sign deter-
mines whether the point is on a separation line (positive sign) or an attachment
line (negative sign).

In discrete data, dividing by s has the drawback that topology can change due
to interpolation inside the cells. A better strategy is to use the original field u
for computing and analyzing the critical points in all cells that are not adjacent
to no-slip boundaries. Only for computing the topology in the first layer of cells
at the boundary, the modified field ũ is actually needed. The following steps are
performed for cells adjacent to no-slip boundaries:
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Figure 5.1: Sketch of typical recirculation zone with two critical points of type spiral sad-
dle (C1,C2) and one periodic orbit (P1,P2) involved. 1D manifolds (red curves)
nearly meet. 2D manifolds (blue curves) have a strong spiraling component.

1. On their interior nodes: compute ũ by dividing u by the wall distance.

2. On their boundary nodes: interpolate u on two points on the boundary nor-
mal, compute ũ, and linearly extrapolate ũ to the boundary node.

3. Find critical points inside ũ on the cell faces on the no-slip boundary. Use a
2D algorithm to find the critical points, classify them as 3D critical points.

5.2.1 Critical Points on No-Slip Boundaries
Critical points on no-slip boundaries are important features for the study of flow
separation and flow attachment. By applying the 3D classification, we will now
concentrate on saddles and spiral saddles and ignore sinks and sources. These are
of minor interest for the study of these phenomena, and furthermore, they cannot
occur in divergence-free vector fields.

Under the given preconditions the stable manifolds of 2-saddles and 2-spiral
saddles perfectly follow the boundary and their boundary curves are attachment
lines or domain boundaries. Similarly, the unstable manifolds of 1-saddles and 1-
spiral saddles are also following the boundary and are confined by separation lines
or the domain boundary.

A pattern we encountered often consists of a pair of spiral saddles, one of them
in the interior and one on a solid boundary (see Figure 5.1, points C1 and C2, re-
spectively). They are rotating in the same sense and mark a recirculation area. The
1D manifolds nearly meet, while the 2D manifold of C1 encloses the recirculation
zone. This stream surface is not closed, so recirculation is not perfect. Within the
recirculation zone there is a periodic orbit (P1 and P2). Finally, the points A and
B appearing as saddles in the planar section, indicate separation. However, these
points are topologically nothing special, they are just the points where a skin fric-
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(a) (b)

Figure 5.2: (a) Extracted interior (blue) and boundary (red) critical points. Periodic orbit
(magenta). (b) Streamlines seeded near the boundary critical point (black) and the
interior critical point (white).

tion line is intersected orthogonally by the planar section. Surana et al. in their
exact theory of flow separation [146] suggest as a criterion "strong hyperbolicity",
i.e., large absolute eigenvalues of the saddles in the orthogonal section. An alter-
native and purely topological definition would be to pick the boundary curve of the
unstable manifold of C2 (which lies entirely on the solid boundary). In general this
is composed of separatrices of nearby saddle points on the solid boundary (closed
separation). Of course, traditional explicit methods for detecting separation and
attachment lines can also be used, such as that by Kenwright et al. [68] which is
also able to detect open separation.

5.3 Results
We exemplify the described methods again on the Pelton turbine dataset. We again
inspect the region of the first injector (Figure 3.6 (b)), where the red stream surface
visualizes the separation vortex and the yellow one a smaller scale tornado-type
separation involved in a recirculation zone. Inspecting the nearby critical points
reveals that there is a pair of spiral saddles in this region, one of them is on the no-
slip boundary (upper right in Figure 5.2 (a)). A quick exploration by integrating a
streamline forward and backward from seed points near the critical points gives an
idea of the stable and unstable manifolds of the two spiral saddles (Figure 5.2 (b)).

Consistent with the situation sketched in Figure 5.1, the stable manifold of the
interior critical point encloses the recirculation zone (Figure 5.3 (a)). The recircu-
lation zone contains a single periodic orbit which is of twisted saddle type (Fig-
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(a) (b)

Figure 5.3: (a) The stable manifold of the interior critical point (yellow) and the unstable
manifold of the periodic orbit (blue). A nearby streamline (white) approaches the
periodic orbit along the red stream surface, leaves it along the blue stream surface,
approaches the critical point along the yellow stream surface and finally leaves it
along the 1D manifold opposite the black streamline. (b) Back view showing the
stable (red) and unstable (blue) manifolds of the periodic orbit and revealing their
Möbius strip topology.

ure 5.3 (b)). In this case, the stable and unstable manifolds of the periodic orbit
are classical Möbius strips with a half twist and no further extrinsic twisting.

Similar flow patterns as near the first injector also appear near the third and
fifth injector. In all cases, a periodic orbit of type twisted saddle can be observed.
However, in the case of the third injector, the eigenvalues are relatively close to -1,
which suggests that instead of the twisted saddle, the center type (with a rotation
angle close to 180 degrees) would be possible as well for slightly different data.

5.4 Discussion
We have seen flow features in real divergence-free CFD datasets which can be
nicely illustrated by 2D manifolds of 3D saddles. However, experience showed
that stream surface integration gets particularly challenging for these special cases
of stream surfaces. This gave rise to a “topologically aware” stream surface inte-
gration technique [108], which is, however, not described in detail in this thesis
because it does not fit its core topics. We now proceed to a phenomenon related to
periodic orbits: vortex rings and the phenomenon called vortex breakdown.
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Chapter 6

Vortex Rings
In the previous chapter we had a short topology-oriented look on a recirculation
region inside a Pelton turbine exhibiting two spiral-saddle critical points and a pe-
riodic orbit (Figure 5.1). In this chapter we present visualization methods for the
identification, extraction, and analysis of such phenomena. If the periodic orbit
is of type spiral source, spiral sink, or center, i.e., exhibits non-negligible swirl
around its core line, the vortex is called a vortex ring. In other words, vortex rings
are simply vortices that are closed, i.e., they exhibit a simply closed vortex core
line. The most prominent example of such vortices are smoke rings. It can eas-
ily be seen from experiments that smoke rings exhibit swirling motion in planes
perpendicular to the core line but negligible tangential velocities, i.e., rotation
around the principal axis. This is also one of the reasons why they can advance
at surprisingly high speeds and stay stable over long time periods. Such vortex
rings represent one of the simplest configurations of recirculating flow which is
not boundary-related, e.g., not related to flow separation, assuming that the vor-
tex rings are stationary or that they are looked at in a relative frame of reference.
The opposite extreme are periodic orbits of type source, sink, or the limit case
in between. There is no swirling motion around the core line in this case, only
tangential one. In this chapter we require non-vanishing swirl around the core
line, i.e., we constrain the analysis to vortex rings. Surprisingly, such flows still
can exhibit two fundamentally different topologies: the intuitively clear and sim-
ple configuration from Figure 6.1 (a) and an astonishingly rich one in the case of
so-called vortex breakdown bubbles exhibiting Shilnikov chaos (Figure 6.1 (b)).

Unperturbed vortex breakdown bubbles (the former case) are axisymmetric and
consist of nested invariant tori (depicted by the closed manifold around P1 and P2)
on which all streamlines have to lie. In the simplest topological case, the nested
tori are bounded on the inner side by a periodic orbit and on the outer side by a
sphere-like stream surface. If the tori are allowed to have non-circular cross sec-
tions, then such vortex models can be physically valid, i.e., be solutions of Navier-
Stokes equations. Examples are Hill’s vortex (see [123]) and Norbury’s vortex
rings [101]. If we further assume that the vortex ring has nonvanishing swirl, (ro-
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tational component around the principal axis of the tori), the whole structure has
only two critical points. They are of spiral saddle (saddle focus) type, and are lo-
cated where the axis intersects the outer boundary (C2, C3 in Figure 6.1 and C0, C1
in Figure 6.7 and Figure 6.6).

However, this ideal topology of a vortex ring is usually not found in practical
velocity fields [153,167]. The reason is that it requires the 2D unstable manifold of
the one critical point to exactly coincide with the stable manifold of the other, and
likewise for the pair of 1D manifolds, a configuration which is not structurally
stable. In a perturbed version of this ideal vortex ring, the 2D manifolds do not
exactly match, which means that the boundary is not “water-tight” or that the
recirculation is not perfect. The 1D manifolds do not coincide either, so that the
axis of the structure is no more well defined in a topological sense. As a side
remark, this is an example of a vortex whose core line is not a streamline.

If the vector field is divergence-free, e.g., because of an incompressible fluid, the
effect of a perturbation is even more dramatic. In divergence-free 3D vector fields
with sufficient swirl, any transversal intersection of the 2D (un-)stable manifolds
of two spiral saddles automatically implies the so-called Shilnikov chaos [136].
This is also illustrated in Figure 6.7, where C0 is a 1-spiral saddle and C1 is a 2-
spiral saddle. In general, the 2D (un-)stable manifolds of such critical points do not
coincide, but intersect transversally. In this case they intersect at an even number
of saddle connectors (heteroclinic orbits), usually a pair σ and σ′ of them. Be-
tween the windings of the saddle connectors, the manifolds form two “tubes” that
are wrapped around the structure. The tubes have constant flux (i.e., independent
of cross sections) because the 2D manifolds are stream surfaces, and the sum of
the two fluxes is zero because of the divergence-free condition. This implies that
near the critical points, where velocities approach zero, the tubes must either have
increasing cross section area or develop folds which extend into regions of higher
velocities. These folds, known as lobes, are typical of vortex breakdown bubbles
(see, e.g., [139]). Furthermore, this type of vortex rings typically contains regions
exhibiting chaotic dynamics with possible islands of stability and KAM tori (im-
permeable) or cantori (permeable) separating the regions (Figure 6.1 (b)), often
exhibiting fractal configurations. We refer the reader to the paper of Sotiropoulos
et al. [138] for details. While a vortex breakdown bubble and a smoke ring are two
different physical phenomena, from a topological point of view, they can both be
treated as vortex rings and are also denoted as such in the literature [75].

Vortex breakdown bubbles got their name from a phenomenon called vortex
breakdown [88]. Under certain flow configurations which will be looked at below,
a vortex can undergo a breakdown, meaning that the vortex abruptly changes its
structure and topology. From its common tubular shape, it develops an additional
vortex ring surrounding the main vortex core line, with non-negligible tangential
velocities along the closed core line. Vortex breakdown bubbles can persist over
long time periods and can be seen as a superposition of a vortex ring with a vortex
around the central axis of the ring. Accordingly, they exhibit helical vortex lines,
a superposition of the closed vortex lines of the vortex ring and the straight vortex
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lines of the main vortex. Vortices typically exhibit a longitudinal velocity compo-
nent along their core line. Whenever we identify adjacent pairs of critical points
on a vortex core line, this indicates that the longitudinal flow direction is reversed
along that core line segment, which often necessitates the presence of a vortex
breakdown bubble. Due to the flow reversal, i.e., the recirculation, vortex rings
often act as an obstacle for the main flow, leading to, e.g., reduced throughput, as
detailed in the example of a Francis turbine simulation below.

Vortex breakdown bubbles are a subject which is of interest in many disciplines.
In aeronautics, they mostly cause problems because of the sudden change in flow
caused by a breakdown of a vortex. So-called delta wing airplanes often exhibit
very flat airfoils that produce comparably low lift per se. They profit from large
longitudinal vortices that are present on the top side of the wings, generating a
large part of the lift. Breakdown of these vortices leads to an abrupt loss of lift
and are feared during approach for a landing. Vortex rings that persist over longer
times can also lead to increased drag in locomotion and reduced throughput in
turbo-machinery. In chemical and physical production they are often beneficial
because they improve mixing. Examples where breakdown bubbles are generated
purposely are combustion processes and mixing in bio-reactors. As will be visu-
alized later in this chapter, vortex breakdown bubbles exhibit chaotic advection,
a process achieving high mixing performance. Furthermore, they feature fractal
flow patterns in space as well as in time, which additionally enhances mixing.

Vortex breakdown bubbles in CFD data have been observed and visualized by
Garth et al. [38, 39] using techniques based on stream surfaces, and by tracking
the pairs of critical points associated with this structure. Tricoche et al. [158] used
direct volume rendering for visualization and vector field topology in planar slices
for extracting periodic orbits. Rütten and Chong [117] developed a visualization
method based on tensor field color coding. The reader is referred to [88] for details
on the different types of vortex breakdown.

Here we present topological approaches for the detection and extraction of vor-
tex rings, which exploit the special topology of vortex rings and which are more
closely oriented at the underlying theory of continuous dynamical systems. A vor-
tex ring requires at least two saddle-type critical points, and in fact this minimum
number is observed in many synthetic or real-world examples. Based on this ob-
servation, we present a visualization technique utilizing a Poincaré section that
contains the pair of critical points. The Poincaré section by itself can be taken as
a visualization of the vortex ring, especially if streamlines are seeded on the sta-
ble and unstable manifolds of the critical points. It is also used for obtaining seed
curves for the integration of stream surfaces that convey the hull of the vortex
ring, i.e., the stable and unstable 2D manifolds of the two saddles. As discussed
at the end of Section 2.5.1, this is an example where constraining the size of the
manifolds to the region of interest reduces occlusion and hence improves the vi-
sualization. The alternative approach of extracting only the intersection curves of
the manifolds, i.e., the saddle connectors, does typically not give enough insight in
this case. Therefore, we visualize the manifolds but present a method to limit their
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(a) (b)

Figure 6.1: (a) Sketch of ideal (unperturbed) vortex breakdown bubble. Saddle-type crit-
ical points (C1,C2,C3), periodic orbit (P1,P2), and 1D manifolds (red) and 2D
manifolds (blue). (b) Sketch of real-world (perturbed) vortex breakdown bubble.
No intersection of the two 2D manifolds due to non-vanishing divergence.

sizes such that the overall complexity is reduced. This is an important aspect in
this context because the manifolds can be massively convoluted. This is typically
due to Shilnikov chaos.

The presented methods can robustly and automatically handle features such as
non-isolated periodic orbits within nested tori, periodic orbits of higher period-
icities, and stream surfaces with strong folding, which are difficult to treat with
general-purpose methods. For incompressible flow, they are able to visualize the
characteristic properties of vortex rings such as the boundary, the chaotic dynam-
ics, and possible invariant tori in islands of stability. The basic idea for the visu-
alization of invariant tori is to find invariant closed curves in the Poincaré plane,
which are then taken as seed curves for stream surfaces. For visualization the two
extremes of the set of nested tori are computed. This is on the inner side the pe-
riodic orbit toward which the tori converge, and on the outer side, a torus which
marks the boundary between ordered and chaotic flow, a distinction which is of
importance for the mixing properties of the flow.

For the purpose of testing, we developed a simple analytical model of a per-
turbed vortex ring based on Hill’s spherical vortex [123], which we also used in
the field of real-time simulation of bubbles [154]. Since some of the methods re-
quire very long streamlines, the effect of numerically introduced divergence has
to be considered. From an existing subdivision scheme, a method for divergence
conserving interpolation of cuboid cells is derived, and results are compared with
those from standard trilinear interpolation. Also a comparison of results obtained
with and without divergence cleaning is given. We apply the proposed visualiza-
tion methods to the synthetic vector field and to two CFD results.
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6.1 First Look by Streamline Sampling

Figure 6.2: Tornado-type separation and vortex in the draft tube dataset. Stream surface
(transparent blue) starts at saddle and goes upstream enclosing a vortex breakdown
bubble (blue streamline) containing a periodic orbit (red). Critical points (red) and
vortex core lines (green).

6.1 First Look by Streamline Sampling
We start with a simple investigation of a vortex breakdown bubble in the incom-
pressible CFD simulation of a Francis draft tube. The design of the draft tube
is such that in its lower part it is split into two channels (Figure 6.13 (a)). As
observed in the simulation data, the right channel exhibits significantly stronger
vortices. For topological interests, and because we observed surprisingly long res-
idence times of streamlines in this region, we picked one of the strong vortices
extending horizontally and almost orthogonally to the primary flow direction. The
transient simulation of this vortex consists of 3 interesting and comparably steady
phases: first, there is a vortex ring that exhibits a massively folded unstable 2D
manifold of a spiral saddle, enclosed in a simple stable 2D manifold of an other
spiral saddle (Figure 6.1 (b)). Then the vortex ring collapses and, in turn, the sta-
ble manifold develops folds around a new vortex ring. Finally this vortex ring
collapses too, leaving a common vortex. Interestingly, one of the manifolds ex-
hibits throughout the massive folding typical for vortex breakdown bubbles but
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the manifolds do not intersect, see below the discussion of this circumstance. We
have chosen a time step of the first phase where the vortex breakdown bubble is
relatively steady and hence the examination of its instantaneous topology should
reveal some of its dynamics. As reported by Spohn et al. [139], vortex breakdown
bubbles indeed often result in steady flow behavior.

Figure 6.2 gives a view from top on the flow going from left to right. It shows
(from bottom to top) a tornado-type separation with a critical point on the wall,
and a vortex core line that connects to that critical point and spans across the chan-
nel into the part where the two channels merge. There is the recirculation region
identified as a vortex breakdown bubble with a critical point at its bottom, with
its unstable 2D manifold visualized by a streamline, and a periodic orbit inside it.
Another critical point resides above the bubble where the detected core line is dis-
rupted. The stable 2D manifold of that saddle is visualized by an upstream surface
that encloses the vortex breakdown bubble and approaches the wall.

In our case, a vortex breakdown bubble containing a periodic orbit has been
identified (Figure 6.1 (b)). The stable 2D manifold of the upper saddle (transpar-
ent stream surface in Figure 6.2) marks the end of the time-dependent recirculation
region. However, Spohn et al. [139] report that vortex breakdown bubbles exhibit
permanent inflow and outflow at the downstream tail. According to our topologi-
cal analysis (Figure 6.1 (b)), the stable manifold of C3 and the unstable manifold
of C2 do not intersect. Hence, there is an inflow through the gap between those
two manifolds. By Gauss’ theorem, this indicates non-vanishing divergence in the
recirculation region. We interpret this circumstance that, although the simulation
modeled an incompressible fluid, i.e., water, the simulation did not achieve zero
residuals. Hence, we supply two approaches for handling non-vanishing diver-
gence explicitly: divergence cleaning and divergence-preserving interpolation.

We conclude this section by a simple technique for visualizing the observed
vortex breakdown bubble phenomenon. Computing the vortex breakdown bubble
as a stream surface seeded at the critical point seems impossible with Hultquist-
type algorithms due to the complex folding and also due to the quasi-periodicity of
the streamlines. Since a single streamline covers the manifold of the vortex break-
down bubble densely due to its quasi-periodic dynamics, it can be seeded near the
critical point and sampled on a voxel grid. The resulting field can then be visual-
ized by an isosurface. To reduce aliasing effects and enhance resolution, a voxel
value is not set in a binary manner when the streamline passes but accumulated
based on coverage. The initial sequence of integration steps was not sampled in
order to avoid an isolated spiral from the saddle point to the unstable manifold.

Figure 6.3 (a) shows a slice of the resulting voxel field after tracing the particle
for 109 time steps. Its resolution is 750×600×600 and it spans the complete bub-
ble. Figure 6.3 (b) shows a finer sampling of a subregion. This makes the massive
folding of the surface visible. One can interpret the reason for the massive folding
as follows: on its way from the critical point to the downstream end of the bubble,
the manifold starts to exhibit folds by so-called folding, i.e., the expanding effect
of the downstream saddle perpendicular to the manifold, amplifying perturbations
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6.2 Unsteadiness and Compressibility

(a) (b)

Figure 6.3: (a) Slice of the voxel field that sampled a single streamline. (b) Detail sampled
at higher voxel resolution.

to folds. Then these folds follow the tube-like region at the center of the break-
down bubble toward the upstream critical point and get compressed and elongated
by so-called thinning. This process repeats ad infinitum and therefore the mani-
fold consists of folds of folds of folds and so forth. The dynamics of thinning and
folding is present in many mixing processes, as kneading dough or stirring coffee.

Figure 6.4 shows an isosurface of the voxel field with the complete bubble. The
isolevel was chosen to be 5% instead of 50% in order to avoid unmanageably
many triangles in the fine folds. By adding a Gaussian smoothing step, we were
able to cut down the triangle count to about 20 million.

We applied isosurface extraction here although theoretically extracting a ridge
surface (Chapter 7) would be more appropriate for the extraction of the sampled
manifold. However, isosurface extraction exhibits two advantages in this context:
it does not require the estimation of higher derivatives and it allows a robust sur-
face extraction despite of the massive folding. An overall drawback of a regular
sampling of the streamline are aliasing artifacts apparent in the resulting visualiza-
tions, a trade-off for the simplified surface extraction compared to stream surfaces.

6.2 Unsteadiness and Compressibility
When concepts from vector field topology are applied to unsteady vector fields, it
is important to be aware of the consequences. If the unsteady vector field is quasi-
stationary, vector field topology might give an accurate view and allow straight-
forward interpretations. However, the more unsteady the underlying vector field
is, the harder it is to interpret the results in terms of transport mechanisms. This is
especially true for vortex rings, because they often contain relatively long trajecto-
ries, and therefore the view based on vector field topology and hence streamlines
may diverge substantially from that given by path lines. Haller [47] states that
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(a) (b)

(c) (d)

Figure 6.4: Unstable manifold of the spiral saddle at the bottom of the vortex breakdown
bubble in the Francis turbine dataset. (a) and (c): isosurface of the voxel-sampled
streamline (Figure 6.3). (b) and (d): same isosurface clipped for view to the inside.
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6.3 Analytical Vortex Ring Model

Figure 6.5: Photograph of vortex breakdown bubble in experiment. Image copied with per-
mission from [139].

structures such as chaotic tangles or KAM tori (i.e., invariant tori of a Hamiltonian
system) do not exist in finite-time turbulent datasets. Nevertheless we believe that
it is interesting to search for such structures, first of all in steady flow fields. It can
be demonstrated that these topological features exist in practical flow data, mean-
ing that the catalog of features to be studied in vector field topology must include
invariant tori, chaotic regions, intersecting stable and unstable manifolds and mul-
tiple saddle connectors. Fortunately, practical flow often exhibits small enough
time-dependence so that their visualization as steady flow is a good enough ap-
proximation in many respects. Vortex rings and, in particular, vortex breakdown
bubbles have been photographed in experiments [139] (see Figure 6.5) and their
shape has been shown to be consistent with the manifolds of critical points in a
steady vector field [138].

Much of dynamical systems theory deals with the special case of Hamiltonian
systems, because of their area-conserving maps which are mainly responsible for
chaotic behavior. Among the vector fields, the divergence-free ones play a simi-
lar role, and in fact they are related to Hamiltonian systems. In two dimensions,
divergence-free vector fields (written as ODEs) and Hamiltonian systems are even
the same, with the stream function Ψ (with ∂Ψ

∂x = −ẏ and ∂Ψ

∂y = ẋ) playing the
role of the Hamiltonian function. In 3D, a divergence-free vector field is volume
preserving, but does not necessarily have area-conserving Poincaré maps. Never-
theless, the Poincaré map is at least flux-conserving, which is the reason for the
above mentioned Shilnikov chaos to occur.

6.3 Analytical Vortex Ring Model
For testing our algorithms, we developed a simple analytic vortex ring model
based on Hill’s spherical vortex (see, e.g., [123]). An analytical vector field has the
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Figure 6.6: Hill’s spherical vortex (axial slice). C0, C1: critical points (spiral saddles), P:
periodic orbit.

advantage that artifacts due to discretization and interpolation can be excluded. A
second motivation was to demonstrate that a rich topology (e.g., Figure 6.9 (a)) is
possible even if the vector field has only two critical points and can be expressed
with only quadratic terms (Eq. 6.3).

An instance of Hill’s spherical vortex can be described by the two velocity fields

ui (x,y,z) =

 xz
yz
z2 +1−2r2

 (6.1)

for points inside the unit sphere r =
√

x2 + y2 + z2 <= 1 and

uo (x,y,z) =

 xzr−5

yzr−5

z2r−5− 1
3r−3− 2

3

 (6.2)

for points outside it (r >= 1). Figure 6.6 shows a sketch of this field. It is
divergence-free and it solves the Navier-Stokes equations together with a match-
ing pressure field. Furthermore, the field has zero vorticity outside the unit sphere.

By adding a swirl (ωy,−ωx,0) around the principal axis, a rotating vortex ring
model is obtained. This simple model does no more solve the Navier-Stokes equa-
tions but is capable of generating the topological phenomena that can be observed
in vortex rings. Physically correct variants of Hill’s vortex with swirl exist, but they
are more expensive to compute since Bessel functions have to be evaluated [123].
A different kind of generalization of Hill’s spherical vortex are the Norbury vortex
rings [101] where the vorticity is confined to toroidal regions instead of the sphere.

In order to obtain the chaotic behavior of a real vortex ring, the symmetry must
be broken. In our model we do this by tilting the x-axis, which is motivated by
experimental studies of vortex rings (see [153]). By substituting z′ = z+ εx for z
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A B

P

(a) (b)

Figure 6.7: Unstable manifold (blue) and stable manifold (red) of spiral saddles C0 and C1,
respectively, intersecting in a pair of saddle connectors σ and σ′. (a) In a Poincaré
plane through C0 and C1, the seed curve for integration is chosen between two
successive intersection points s0 and s1 of σ. (b) The boundary surface is obtained
by joining the manifolds at P, resulting in a turnstile between A and B.

and w′ = w+ εu for w in Eq. 6.1, and by adding the swirl, we get the velocity
fields

ui
εω (x,y,z) =

 ωy
−ωx

0

+

 xz′

yz′

zz′+1−2r′2

 (6.3)

for points inside the distorted unit sphere r′ =
√

x2 + y2 + z′2 <= 1 and

uo
εω (x,y,z) =

 ωy
−ωx

0

+

 xz′r′−5

yz′r′−5

zz′r′−5− 1
3r′−3− 2

3

 (6.4)

for points outside of it. This modified field is still divergence-free. It can be shown
that the only critical points are two spiral saddles at (0,0,−1) and (0,0,1).

Figure 6.9 (a) shows a x = 0 slice of the unstable manifold of the critical point
at (0,0,1), computed by seeding 200000 streamlines near the critical point and
allowing for a maximum of 200000 intersections with the plane. The coloring of
intersection points represents time, expressed in number of intersections with the
plane. A rainbow color map is used, starting with violet and ending with red for
intersection number 1000 and above. The system of three ODEs was solved with
the 4th order Runge-Kutta-Fehlberg routine from the Netlib library. If an even
simpler model is needed, it is also possible to use just the inner part ui

εω for the
entire domain, see Figure 6.9 (b).

103



Chapter 6 Vortex Rings

(a) (b)

Figure 6.8: (a) Planar section of 2D manifolds of a synthetic vortex breakdown bubble.
(b) Manifolds at longer integration time.

6.4 Detection of Vortex Rings
Our strategy for finding vortex rings is to look for pairs of critical points, one
of them being a 1-spiral saddle and one a 2-spiral saddle. The number of such
candidate pairs can be reduced by imposing a maximum distance. Additionally, it
can be demanded that they lie on a common vortex core line. Another approach
would be to extract the set of saddle connectors which gives the correct pairs
directly. Each candidate pair of critical points is then checked for defining a vortex
ring. For this purpose, a Poincaré section is taken by using a plane passing through
the two points and oriented around this axis by fitting it to the real eigenvector
directions of the two spiral saddles. The 2D (un-)stable manifold of the spiral
saddle is now computed based on a discrete set of seed points and the intersections
of the manifold with the Poincaré section are stored as a (texture) image. The
extent of the grid is chosen based on the distance d between the two critical points.
We found a square with edge length 2d to be sufficient in most cases.

Seed points for the manifold of, say, C0 are generated as follows (see Fig-
ure 6.7 (a)). A first seed s0 is chosen at a small offset from C0 on the Poincaré plane
where it intersects the plane spanned by the two complex eigenvectors. From s0 a
streamline is integrated in the time direction where the distance from C0 increases.
Its next iterate (i.e., intersection with the Poincaré plane) is denoted by s1. Further
seed points are now generated on the straight line segment between s0 and s1 by
logarithmically interpolating the distance of the seed points to C0. Logarithmic
interpolation is appropriate because streamlines of the linearized vector field at C0
are logarithmic spirals, and the error introduced by interpolating along a straight
line falls off with the streamlines converging to the 2D manifold.

The resulting image (Figure 6.8 (a) is an example) then shows a section of the
manifold with its folds, also called lobes, extending toward the second critical
point. In the image plane, it is easily possible to check for an intersection of the
two curves. If an intersection is detected, the vortex ring is verified.
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(a) (b)

Figure 6.9: (a) Hill’s spherical vortex with swirl (ω = 2π) and tilt (ε = 0.313). Slice of
the stable manifold of the critical point at (0,0,1). (b) Inner part ui

εω of Hill’s
spherical vortex with swirl (ω = 2π) and tilt (ε = 0.442).

One way of visualizing the vortex ring is to increase the integration time until
the inner structure becomes visible on the Poincaré section, as is depicted in Fig-
ure 6.8 (b) and Figure 6.14. The resulting image shows the chaotic region formed
by the inward folding lobes, and it typically shows a hierarchy of islands of stabil-
ity. The islands of stability are toroidal regions around a periodic orbit of minimal
period. The inner part of stability islands is typically filled with nested invariant
tori with no flux across them (stream surfaces, known as KAM tori in the case of
Hamiltonian systems). Farther out, chains of secondary islands can often be seen.
These can possibly be separated from the primary island by first regions of chaos.
When the chaotic region is reached, so-called cantori [90] can appear. These are
porous tori of measure zero, which in some cases (if rotation number is a “noble”
irrational number) exhibit negligible cross-flux, and hence act as partial barriers.

Islands of stability can be visualized by showing their outer boundary and/or
their center periodic orbit. The periodic orbit can be located as usual using the
method by Wischgoll and Scheuermann [179] or by searching for fixed points
in the Poincaré map. A faster algorithm exploiting the given structure of nested
tori in islands of stability is presented in Section 6.6 where also a method for
computing the approximate boundary of the islands is described. These points
and curves in the Poincaré section can further be used as integration seeds, giving
a 3D visualization of the periodic orbits and invariant tori, respectively.
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(b)

(a) (c)

Figure 6.10: (a) Section of the manifolds of the vortex ring in the Francis draft tube. (b)
Close-up. (c) Manifolds after trimming at selected intersection point, minimizing
the maximal size of the lobes.

6.5 Boundary Surface
A practically useful result for pairs of spiral saddles is that the recirculation zone
defined by such a pair can be visualized by a boundary surface constructed from
the 2D (un-)stable manifolds. The boundary is made up of two stream surfaces
and can be closed by adding a so-called turnstile [90] which is usually small and
which is the only place where flux through the surface can occur.

In Figure 6.7 (b) it is shown how a boundary of a (perturbed) vortex ring is
obtained. First, the intersection of the 2D manifolds W u(C0) and W s(C1) with a
Poincaré section are computed (shown as red and blue curves). Then an intersec-
tion point P is found at which the two curves are trimmed and joined into one.

The criterion for the choice of P is to minimize the total arc length of the curve
C0−P−C1. For an approximate solution we use the following greedy algorithm:
starting with the curve segment between the seeds s0 and s1 (Figure 6.7 (a)), com-
pute successive iterates of the segment and add it to the curve. The obtained seg-
ments have the same frequency as the lobes (corresponding to a cycle of hues in
Figure 6.10 (a)), with a possible phase shift. This process of extending a curve is
continued in an interleaved way with both curves, such that the arc lengths of the
two next segments are compared and the shorter is used.

Having now a seed curve, a stream surface is integrated backward and forward
until the Poincaré section is intersected again. Under these “half turn” (π-period)
Poincaré maps the curve C0−P−C1 is mapped to C0−A−C1 and C0−B−C1,
respectively. The two curves coincide with the exception of their parts between A
and B. Therefore the stream surface is closed, up to the figure eight shaped open-
ing lying in the Poincaré section plane between the points A and B. This opening,
the turnstile, consists of an inflow and an outflow having equal absolute flux if
the field is divergence-free. The influx (or outflux) can be easily computed and it
tells what fraction of the enclosed fluid is exchanged per time unit. In practical
cases, the turnstile is often very small. Figure 6.10 (a) and Figure 6.10 (b) show
the two manifolds for the application example of Section 6.8.1 and Figure 6.10 (c)
shows the resulting seed curve. When starting from here, stream surface integra-
tion yields the boundary of the vortex ring shown in Figure 6.11.
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(a) (b)

Figure 6.11: (a) Unstable manifold (blue) and stable manifold (red) rendered as stream
surfaces. Streamlines entering (white) and leaving (black) the recirculation region.
(b) Close-up.

6.6 Islands of Stability
From the previous step the Poincaré sections of W u(C0) and W s(C1) are now given
as scalar fields on a regular 2-dimensional grid where the data values store the
integration time for cells that were intersected. The goal is now to segment in the
overlay of the two images the islands of stability. First, to clean the boundaries, a
morphological closure operation is performed. This is followed by a component
labeling step. Any component that does not extend to the image boundary is now
checked for being an island of stability. A problem here is to distinguish islands
of stability from holes that are formed by inward folding lobes. It can be observed
that the latter are reached after much shorter integration time, hence when the
average data value on their boundary is computed, this value is small compared to
that of stability islands (see Figures 6.9 (a), 6.9 (b), 6.14, 6.16 (b)).

The obtained candidates for islands of stability are now processed in order of
decreasing size. First, a streamline is seeded at the center of the island’s bounding
rectangle and whenever the Poincaré plane is intersected, the labeled component
of the intersection point is marked as being part of the same island. If the stream-
line intersects the Poincaré section at a point outside of a component with a valid
label, the test has failed.

Given now an island of stability, we want to visualize its internal structure which
is a periodic orbit surrounded by nested invariant tori, with possible island chains
interspersed in the outer part. For the Hill’s vortex example, the primary and sec-
ondary islands are shown in Figure 6.12 (a).
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(a) (b)

Figure 6.12: (a) Internal structure of primary and secondary island of Figure 6.9 (a). (b)
Primary (yellow) and secondary (red) islands rendered as stream surfaces.

We will visualize as two characteristic features the periodic orbit in the center
and the outermost torus. The streamline seeded at the center of the island’s bound-
ing rectangle is integrated for a few “rounds” (detectable by increasing/decreasing
x and y coordinates in the Poincaré plane). This should produce a set of points ly-
ing densely on a closed curve, otherwise it has to be retried from a slightly offset
seed point. If a closed curve is obtained, the center of its bounding rectangle can
be used for the next iteration of the process until a fixed point is found.

This algorithm exploits the special structure of nested tori and is significantly
faster than the general approach of looking for fixed points of the Poincaré map,
especially since in the case of secondary islands no fixed points are found and
successive powers of the Poincaré map must be computed and searched for fixed
points, too.

For finding the boundary of the island of stability, an iterative search is started
with a seed curve consisting of the outermost zero pixels. At pixels which are
mapped to a pixel outside the boundary, the seed curve is corrected inward by a
pixel. This is repeated until all pixels of the seed curve are mapped to pixels inside
the island. Finally, on these pixels the map is iterated a few times in order to reach a
fixed curve. The obtained curve can be used as a seed curve for a simplified stream
surface algorithm which requires only integration until the same component of the
Poincaré plane is intersected again. Figure 6.12 (b) shows a pair of stream surfaces
obtained this way.
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6.7 Divergence in Vortex Rings
From a topological aspect, the divergence-free case is particularly interesting, as
already mentioned in the introduction. However, when discrete data are used, di-
vergence can be artificially introduced by the interpolation method. Furthermore,
the data may exhibit divergence due to time-dependency in incompressible sim-
ulations or non-zero residuals during simulation (Section 6.2). And, finally, they
may be divergence-free only with respect to the dual grid, as is the case for finite
volumes solutions. We mention now two techniques that can be applied to cope
with these issues.

One approach is to modify the data by so-called divergence cleaning. For a
divergence-free field, the total flux through the boundary of a volume element is
zero by Gauss’ theorem. However, if the dataset is a finite volumes solution, this
holds for the control volumes, but not necessarily for the grid cells if standard
multilinear interpolation is assumed. The control volumes are in general more
complex polyhedra than hexahedra or tetrahedra, so it is usually not an option to
use the control volumes as the visualization grid. Instead, we keep the original
grid, or resample it to a rectilinear (possibly nonuniform) grid if necessary.

Divergence cleaning methods [5] were developed mostly within the field of
magnetohydrodynamics. One of them is the Hodge projection [14, 155] which re-
moves divergence based on the decomposition u= u0+∇s of u into a divergence-
free part u0 and an irrotational part∇s. It follows∇·u=∇·∇s which is a Poisson
equation for s. Effectively, the flux of each cell is distributed to its neighbor cells
by making small changes to the vector data at the grid nodes. These changes can
be minimized either in the absolute or relative sense.

Another approach is to perform divergence-conserving interpolation. We found
[105] that Tóth and Roe’s technique [156] can be modified to generate instead
of a subdivision a tetrahedral decomposition with the property that the piecewise
linear interpolant is exactly divergence conserving. However, we show only some
results in this thesis and point the reader to that work for details.

6.8 Results
We now show some results for the proposed techniques. The underlying cases are
two time-dependent CFD simulations both exhibiting vortex breakdown bubbles.
The first one is in a simulation of the flow in the draft tube of a Francis turbine
and was already used in Section 6.1 and Section 6.5. The second vortex break-
down bubble is present in a recirculation region of the free surface simulation
in the intake of a river power plant. We already had a look at this simulation in
Section 4.3.4 in the context of vortex lines and vorticity transport.
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(a) (b)

Figure 6.13: (a) Overview of the flow in the Francis draft tube with Poincaré section (blue
rectangle), streamlines (yellow), and vortex core lines (red). Flow comes from
the turbine at the upper left and is temporarily split on its way to the right. (b)
Overview of the flow in the river power plant with Poincaré section (blue rectan-
gle) and colored streamlines. The flow comes from the top and is guided to the
turbine at the bottom.

6.8.1 Francis Draft Tube
Figure 6.13 (a) gives an overview of the flow under investigation. After passing the
bend and the divider, the flow forms a large spanwise vortex in the right channel
of the draft tube. The recirculation region under examination exhibits a temporally
quite stable behavior. Its lifespan extends over 116 of total 301 time steps. At time
step 90, a split event occurs where the shape transforms into a figure eight shape
(in the section plane) and breaks apart, i.e., a double critical point is created which
then separates into two single ones. At time step 94, the smaller of the two struc-
tures collapses, and at time step 115 the larger collapses, too. A vortex ring was
identified in a selected time step in the phase according to the technique described
in Section 6.4. The respective Poincaré section is visible in Figure 6.13 (a) and the
resulting direct visualizations of the Poincaré map are shown in Figure 6.14.

We already have shown the boundary of the vortex ring, extracted according to
the technique from Section 6.5 (Figure 6.10 and Figure 6.11). Finally, we compare
the effect of divergence cleaning and of two choices of the interpolation function.
For the numerical integration, the fourth-fifth-order Runge-Kutta-Fehlberg proce-
dure from the Netlib library was used in all cases. In Figure 6.15 (a), the manifolds
of the original data (white) and the divergence-cleaned data (colored) are shown.
In both cases, standard trilinear interpolation was used. Figure 6.15 (b) shows the
same manifolds, but computed using divergence conserving interpolation. It can
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Figure 6.14: Stable (left) and unstable (right) manifolds of vortex ring in draft tube dataset
exhibiting two primary islands of stability The abrupt changes of colors near the
islands of stability corresponds to jumps in integration time and indicates cantori.

be observed, that the choice of the interpolation scheme has little impact for short
integration times. The two white curves are identical up to pixel resolution, and
also the outer boundary of the colored manifolds coincide. However, the long-time
behavior of the manifold is affected by the interpolation method. With trilinear in-
terpolation, one of the two islands of stability is filled up with streamlines being
attracted to a periodic orbit in its center. More important than the interpolation
scheme is the use of divergence cleaning. Even though the CFD data represent
an incompressible fluid (see also discussion in Section 6.2), without a divergence
cleaning as a preprocessing, the vector field has strong enough attracting and re-
pelling behavior to let most of the chaotic structure disappear (Section 6.1).

6.8.2 Intake of River Power Plant
The last example in this chapter is the flow in the intake of a river power plant
(Figure 6.13 (b)). The flow exhibits two large recirculation zones, or vertical vor-
tices reaching the free surface. We selected the left one for examination, and chose
a Poincaré section in the vertical plane through the two critical points. The result
is shown in Figure 6.16 (b). This example, however, exhibits a topologically more
complex vortex ring. It extends to the (free slip) water surface where one of the
two spiral saddles (C1 in Figure 6.16 (a)) is located. The unstable manifold of the
latter coincides with the stable manifold of a periodic orbit P of saddle type which
is also located at the water surface. In order to prevent streamlines from leaving
the domain, the vertical velocity component at the water surface had to be set
to exactly zero, i.e., residual z-velocities from the simulation had to be removed.
Then, because W u(C1) converges to a periodic orbit, the criterion of intersecting
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(a) (b)

Figure 6.15: (a) Unstable manifold computed in trilinearly interpolated field. Compari-
son of original data (white) and divergence-cleaned data (colored). (b) Unstable
manifold computed in divergence-conservingly interpolated field. Comparison of
original data (white) and divergence-cleaned data (colored).

2D manifolds is not fulfilled, resulting in a failure of the automatic detection from
Section 6.4. We circumvented this problem by giving the seed curve a small down-
ward offset. For a systematic approach, one could in such a case proceed with the
unstable manifold of the periodic orbit W u(P), which means, however, to examine
two cases, since in general the unstable manifold extends in two directions. The
apparent join of pairs of lobes below C0 is an artifact of the planar section. If a
non-planar section following the curved center line of the structure was taken, a
picture looking more like Figure 6.8 (b) would have resulted.

6.9 Discussion
We presented different methods for detecting and visualizing vortex rings and
vortex breakdown bubbles in vector fields. The assumptions made are that the re-
circulation region is characterized by a pair of critical points of spiral saddle type,
and that these are connected by saddle connectors which have a sufficient amount
of spiraling. When applied to hydrodynamics CFD results, where such a configu-
ration is likely to produce chaotic dynamics, this is revealed by our method. Once
a vortex ring has been detected, a boundary surface is computed by combining
parts of the 2D (un-)stable manifolds of the two critical points. The position of
the turnstile on the boundary surface is chosen by minimizing the size of its lobes.
We also presented methods for obtaining seed curves for stream surfaces that vi-
sualize nested invariant tori, i.e., islands of stability as well as a fast method for
extracting periodic orbits located inside these tori. Since part of the underlying
theory requires divergence-free vector fields, we also analyzed the effect of di-
vergence cleaning and/or a new divergence-conserving interpolation scheme on
vortex-rings in industrial CFD data.
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(a) (b)

Figure 6.16: (a) Both manifolds of vortex in river power plant. (b) Left: Stable manifold of
spiral saddle C0 in river power plant dataset. Right: unstable manifold of periodic
orbit P, approximated by seeding just below spiral saddle C1, close-up on primary
island of stability.
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Chapter 7

Filtered AMR Ridge
Extraction

There are many applications in science and industry where visualization by isosur-
faces is not feasible, e.g., because the feature of interest is superimposed by a field
that decays along its desired isosurface. Other examples include situations where
structures are sampled by a scalar field, as in Section 6.1, where a streamline has
been sampled inside a regular grid. We extracted the desired surface, i.e., the man-
ifold of a critical point, as an isosurface using the marching cubes algorithm in this
case. This way we circumvent the demanding explicit stream surface extraction,
similar to van Wijk’s implicit stream surface approach [166]. However, this way
we obtained two surfaces enclosing the desired manifold and hence resulting in an
inefficient and inaccurate representation. Many of these cases are better addressed
by ridge extraction instead. In short, ridges are lower-dimensional (elongated) re-
gions of relatively high values (see Section 2.6.1 for an introduction and our work
on ridge extraction [107] for further details).

The extraction of 1-dimensional ridges in n-space is easily accomplished by
the parallel vectors operator [103]. One of the advantages of this method is that
explicit computation of eigenvectors is avoided and therefore the computational
costs of the extraction are alleviated [107, 115]. However, the extraction of d-
dimensional ridges with d > 1 cannot be directly addressed by parallel vectors.
These are cases where the marching ridges method [35] can be appropriate. Ex-
tracting ridges by integral curves of the feature flow field as done in [124] is an
alternative approach but is a global operation and hence not pursued here.

We will present a method based on marching ridges that is applicable in situ-
ations where the underlying scalar field can be sampled during ridge extraction.
Its strength shows up especially in cases where finely resolved ridges are desired,
large regions do not exhibit ridges, or where the sampling of the scalar field is
expensive. This is in particular the case when extracting Lagrangian coherent
structures (LCS) from the finite-time Lyapunov exponent (FTLE) field and we
developed this method in the context of this application (see Chapter 8).
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7.1 Height Ridges
Height ridges can be seen as the most natural ridge concept in most applications
and therefore it is widely used such as in the case of parallel vectors and march-
ing ridges. This, together with its local definition, is also the cause why it has
been chosen for the filtered AMR ridge extraction in this work and used in the
context of Lagrangian coherent structures (Chapter 8). An inherent drawback of
this definition is, however, that it cannot represent branching ridges [21], a situ-
ation sometimes encountered in FTLE fields. As a basis, we now detail Eberly’s
definition [28] of height ridges.

Height ridges can be seen as local maxima in a relaxed sense. They reside at
locations where the scalar field s exhibits a maximum in at least one direction.
Generally, height ridges are d-dimensional manifolds in n-dimensional space with
n > d ≥ 0. The constituent criteria can be formulated using the gradient and the
Hessian of s. By definition, the eigenvectors εεεi corresponding to the d largest
eigenvalues λi (i = 1, . . . ,d) of the Hessian point along the intended ridge whereas
the eigenvectors εεε j corresponding to the (n− d) smallest eigenvalues λ j ( j =
d+1, . . . ,n) are perpendicular to it. According to the local maximum property, one
necessary condition for a ridge is that the directional derivatives in εεε j directions
are zero for j = d +1, . . . ,n, formulated as

εεε j ·∇s = 0. (7.1)

The second condition for a local maximum and hence a height ridge is that the
second directional derivatives in εεε j directions are negative for j = d + 1, . . . ,n,
formulated as

λ j < 0. (7.2)

The same concept can be used to compute valley lines which is the opposite of
height ridges. They can be obtained by extracting height ridges of the field −s.

7.1.1 Ridges in Discrete Data
As already mentioned, 1-dimensional ridges are preferably extracted from discrete
data using the parallel vectors method, whereas d-dimensional ridges with d > 1
are preferably extracted using the marching ridges algorithm. Marching ridges is
similar to the family of marching cubes [86] algorithms. Marching cubes is a cell-
wise algorithm for generating isosurfaces, it generates a set of triangles for each
cell of the grid. The so-called edge intersections are the positions on the edges of
the cell where the scalar field has the desired value. The triangles are generated
according to the edge intersections using a look-up table for signs of the values
at the nodes. Criterion Eq. 7.1 is suited for being addressed by marching cubes.
However, the fact that eigenvectors lack an orientation impedes a direct applica-
tion, meaning that the evaluated directional derivatives can not be assumed to be
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consistent. Marching ridges (and the presented algorithm) solves the problem by
making the eigenvectors of a cell consistent using principal component analysis
(PCA). Once the orientations are made consistent, criterion Eq. 7.2 can be ap-
plied. If an edge intersection violates it, we do not generate the corresponding
triangles. Another issue is the orientation of the resulting triangles. Kindlmann
et al. [70] orient the triangles in a post-processing pass. However, we experienced
non-orientable manifolds in some cases. This problem is addressed by appropriate
rendering techniques such as two-sided normals.

7.1.2 Ridge Filtering
Here some filtering criteria for ridges are recapitulated, and discussed in the con-
text of adaptive ridge extraction, that we have presented in [119] for ridge extrac-
tion in uniformly sampled FTLE fields. Although we did not apply them here, we
would also point the reader to additional filtering criteria we presented in [107].

Because ridges are extracted according to Eberly’s definition in this work, i.e.,
using the Hessian of the scalar field, noise amplification can become an issue
due to estimation of higher derivatives. A common way to handle this, is to apply
smoothing prior to the evaluation of derivatives. One has to keep in mind however,
that smoothing can deform the ridges. In our case, the gradient at a given node
(of the possibly unstructured sampling grid) is computed by fitting a linear field
to its neighboring nodes in a least squares sense. This allows for incorporating
the smoothing into gradient computation by simply increasing the neighborhood
range by a user-defined integer value. A value of 2 was used for the results in
Section 9.3, which increased perceptibility and only led to negligible deviations.

Even with smoothing, the marching ridges method from Section 7.1.1 often
yields more ridge regions than desired. This can be addressed by feature filtering.
One natural criterion for filtering ridge regions is to prescribe a minimum height
of the ridge:

s≥ smin. (7.3)

In the case of finite-time Lyapunov exponent ridges, this equals to the prescription
of a minimum separation and is therefore a straightforward choice (see Figure 7.1).
This way, ridges with low separation property are suppressed, leading to signif-
icant, consistent, and reliable visualizations. It is therefore our preferred method
for filtering finite-time Lyapunov exponent ridges. The reader is referred to [119]
for further details on the influence of this filtering criterion.

Another natural criterion for filtering ridge regions is to prescribe a maximum
for the second derivative λn across the ridge, which results in suppressing regions
with too “flat” ridge property:

λn ≤ λmax. (7.4)

In the case of finite-time Lyapunov exponent ridges, this is not as meaningful as
criterion Eq. 7.3). Furthermore, it depends on the sampling of the scalar field,
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(a) (b) (c)

Figure 7.1: Ridge filtering at 3D saddle in Francis draft tube. Positive-time FTLE height
ridges (blue) and reverse FTLE height ridges (red). (a) No filtering. (b) Minimum
FTLE 3.5 (positive-time) and 4.0 (negative-time). (c) Additionally to (b) suppress-
ing components smaller than 1000 (positive-time) and 4000 triangles (reverse).

making it less suitable for guiding the subdivision of Section 7.2, but useful for
post-processing, e.g., for further reducing ridges and hence occlusion.

Since ridge extraction often delivers small ridges which might be regarded as
noise as long as the other filtering criteria did not disrupt the ridges due to low
tolerance, another criterion is to prescribe a minimum size of the connected com-
ponents of the resulting mesh. However, because this is a global criterion, it can
not be used for the subdivision of Section 7.2, only for post-processing, mainly
for reducing occlusion (Figure 7.1).

Finally, for the case of scalar fields derived from trajectories, such as Lyapunov
exponents, another filtering criterion is to prescribe a minimum integration time
for the trajectories that lead to a given ridge region. This allows to suppress ridge
parts that are generated due to trajectories reaching the domain boundary. How-
ever, it was not needed for the results in Section 9.3.

The point-wise filtering conditions of this section are tested at the vertices of
each generated triangle and it is rejected if at least one of the conditions is violated
for at least one of its vertices. Triangle trimming was not implemented but would
be a way to reduce zigzag ridge borders.

7.2 Filtered AMR Extraction of Ridges
Sampling a scalar field at a given resolution uniformly, generating ridge elements
from that field, and rejecting many of these elements in the end by filtering wastes
a lot of computation time and space, especially if there are large regions that would
exhibit no ridges at all even if no filtering was applied. One would like to sample
the scalar field only in regions that exhibit ridges in the end, especially if the
sampling of the scalar field is as costly as in the case of Lyapunov exponent com-
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putation. This would allow to end up with finer resolved ridges in the regions of
interest at the same computational cost or even at lower cost. This constitutes the
main motivation for incorporating adaptive mesh refinement (AMR) of the scalar
field into the ridge extraction procedure.

The main goal of this method and a requirement for successful application in
engineering is to obtain results that are identical to those obtained from uniform
sampling at the prescribed finest subdivision resolution. This is especially valid
for the finite-time Lyapunov exponent since it depends on the sampling resolution
(section 2.3 of [48] and Section 7.2.2 of this work). Although complete ridges
may get missed in the presented method (because of too coarse initial sampling,
because Eq. 7.4 was used instead of Eq. 7.3, or due to reasons mentioned in Sec-
tion 7.2.2), the obtained ones are identical to those from uniform sampling due
to the “ridge growing” procedure starting at line 18 in Algorithm 1. This is the
reason why no measurements of accuracy are presented although they have been
performed extensively during testing, where ridges were rarely missed. Part of the
problem is solved by the “look ahead” procedure presented in the next section.
After the algorithm has terminated and the result is obtained, it is possible to con-
tinue with the look ahead as a background process to guarantee that all ridges are
captured.

Assuming sufficiently fine initial grids, a ridge does not move substantially dur-
ing refinement, therefore we can start with a relatively coarse mesh and use the
ridges therein for the refinement process. The refinement is performed in an iter-
ative manner. At each iteration, all cells that contain, are expected to contain, or
adjoin to ridges are subdivided, but not more than to the current subdivision level.
The current subdivision level starts with 1 and is increased with each iteration.
This procedure makes sure that all cells in the neighborhood of ridges are subdi-
vided to the same level. This has the advantage that the resulting grid has uniform
subdivision level in ridge regions and therefore the marching ridges algorithm can
be applied without the risk of producing cracks in the meshes, which would usu-
ally occur if a ridge extends over regions of different subdivision levels [31]. The
next section describes the algorithm in more detail.

7.2.1 Algorithm
The following functions will be used in our ridge extraction algorithm, given in
pseudo-code below as Algorithm 1:

• detectRidgeCells(candidateCells, filter): Gradient, Hes-
sian, and the eigenvalues and eigenvectors of the Hessian are computed at
the nodes of the candidate cells. Then the intersected edges of candi-
dateCells are determined in the sense of marching ridges, according
to the height ridge criteria Eq. 7.1 and Eq. 7.2. If filter is true, the
point-wise filtering criteria from Section 7.1.2 are also applied to the edge
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intersections. A cell is a ridge cell and returned in the set of ridge cells if at
least one of the edges of the cell remains intersected1 after filtering.

• getNeighboringCells(cells, range, level): This function
returns the neighboring cells that lie at least partially within the node-
connected2 range around cells, whereas range is measured at subdi-
vision level. Cells with lower subdivision level σ contribute a range of
2(level−σ).

• cellsForLevelDiff1(cells): This function returns cells that need
to get subdivided additionally to cells so that neighboring cells differ at
most in one subdivision level.

• subdivideCells(cells): This function subdivides cells, adapts
their subdivision level σ, and returns newly generated nodes and newly gen-
erated cells.

The explanations for Algorithm 1 are as follows:
i) iterations (Line 1): The total number of subdivision levels to be performed

by the loop at line 12.
ii) range (Line 2): The neighborhood range around the ridge cells. Please refer

to the discussions of (v) and (vi) below for further details.
iii) laCellCnt (Line 3): See look ahead step (viii) explained below.
iv) laCriterion() (Line 4): One of the point-wise filtering criteria of Sec-

tion 7.1.2 has to be chosen for the look ahead procedure (viii). This method
returns the value of the quantity tested by the corresponding criterion. If the ridge
height criterion Eq. 7.3 is chosen, it returns the maximum of the scalar values at
the nodes of the cell. If the second derivative criterion Eq. 7.4 is chosen, it returns
the negative of the minimum λn at the edge intersections of the cell.

v) Add ridge cell neighbors (Line 15): This maintains a uniformly subdivided
band of width range around the filtered ridge cells which is needed for gradient
and Hessian computation that is not affected by AMR (neighboring cells with
lower subdivision level). See also Figure 7.2 (a). For results that are identical to
those based on a uniformly subdivided grid, range has to be set to 2 times the
gradient fitting neighborhood range of Section 7.1.2. However, experience has
shown that it can often be set to much smaller values, leading to negligible de-
viations. This allows for a more efficient but approximate ridge extraction be-
cause it reduces the number of performed field evaluations. If the scalar field itself
requires gradient computation, the corresponding gradient fitting neighborhood
range should also be added to range (see Section 7.2.2 for details).

1 Defining a ridge cell by the presence of a generated triangle is not feasible because no triangles
are generated if an edge intersection violates, e.g., Eq. 7.2 which is often the case at the fronts of
the current ridges, and this would not allow the ridges to grow during the refinement process.

2It has been chosen to use node-connected neighborhoods instead of face-connected neighborhoods
because it is a better approximation of the support radius of second derivatives (Hessian) even for
a range of 1.
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Algorithm 1 Filtered AMR Ridge Extraction
1: iterations: number of subdivision iterations to perform
2: range: user-defined integer neighborhood range
3: laCellCnt: number of cell-subdivisions to look ahead
4: laCriterion(): filter criterion used for look ahead
5:
6: Initialization: A coarse sampling grid is supplied by the user and the scalar field is sampled on this grid.
7: for all cells c of sampling grid do
8: σc← 0 // σc: subdivision level of cell c
9: end for

10: R← detectRidgeCells(allCells, true)
11:
12: // iterate over subdivision levels
13: for it = 0 to iterations−1 do
14: S ←R
15: S ←S ∪getNeighboringCells(R,range, it +1)
16: R←∅
17:
18: // subdivide / let ridges grow
19: subIter← 0
20: while S 6= ∅∨ subIter = 0 do
21: S ←S ∪cellsForLevelDiff1(S )
22: N ,C ← subdivideCells(S )
23: S ←∅
24: sample scalar field at new nodes N
25:
26: // add lower-level neighbors of ridge cells
27: P ← detectRidgeCells(C , true)
28: T ← cells with σ = it +1
29: Q← detectRidgeCells(T \C , true)
30: M ← getNeighboringCells(P ∪Q,range, it +1)
31: S ←S ∪ cells in M with σ < it +1
32: R←R∪ cells in (P ∪Q) with σ = it +1
33:
34: // test lower-level cells
35: T ← cells with σ < it +1
36: S ←S ∪detectRidgeCells(T , true)
37:
38: // look ahead
39: if laCellCnt > 0∧ (P 6= ∅∨ subIter = 0) then
40: T ← cells with σ < it +1
41: P ← detectRidgeCells(T , false)
42: R← sort cells in P by laCriterion()
43: S ←S ∪ laCellCnt highest cells in R
44: end if
45: subIter← subIter+1
46: end while
47: end for
48:
49: generate ridge triangles from R according to Section 7.1
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(a) (b) (c)

Figure 7.2: Refinement iteration. (a) 3 ridge cells (dark gray) and their 12 neighbors (light
gray) scheduled for subdivision. (b) 8 ridge cells (dark gray) and their 6 lower-
level neighbors scheduled for subdivision (light gray). (c) 4 new ridge cells. No
new lower-level neighbors, iteration proceeds to next subdivision level (left fig-
ure). Ridge is not computed during refinement, only drawn for illustration of edge
intersections. Neighborhood range is 2.

vi) Add lower-level neighbors (Line 26): Schedules lower subdivision-level
neighbors of ridge cells for subdivision (see also Figure 7.2 (b)). This maintains
the band of uniform subdivision level around the ridges as in (v) above and also
allows the ridges to grow. The fact that not only neighbors of the new ridge cells
P are tested but also neighbors of already existing ridge cells at finest subdivi-
sion level Q, accounts for the case where range has been chosen smaller than
required for exact results. In this case subdivided cells may get ridge cells only
after subdivision of nearby cells.

vii) Test lower-level cells (Line 34): This tests cells that may have become ridge
cells because of subdivision of nearby cells.

viii) Look ahead (Line 38): We look ahead for the cases where ridge com-
ponents would get missed completely because they are too small or too faint, or
because the initial sampling grid was chosen too coarse.3 This can happen if no
cell of a ridge satisfies the point-wise filtering criteria of Section 7.1.2 at a low
subdivision level, but would satisfy them after further subdivision(s). The param-
eter laCellCnt prescribes the number of unfiltered ridge cells with maximum value
of laCriterion() that are subdivided (looked ahead) at each iteration even if they
do not satisfy the filtering criteria. The parameter laCellCnt can be set to 0 if the
user is only interested in the most prominent ridges.

3In theory a minimum of one trajectory per region of different behavior is required, although small
regions are often detected during subdivision due to the subdivision band around detected ridges.
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7.2.2 Implications for Fields Based on Local
Operators
Some issues arise if filtered AMR ridge extraction is applied to scalar fields that
can not be evaluated in a strictly point-wise manner. One class of such fields are
finite-range Lyapunov exponents where the computation is based on gradients of a
map (see Section 8.1.1). A natural approach to the computation of such fields is to
sample the underlying field (the map) at a grid that is identical to that of the scalar
field. In that case, there are several implications. One aspect is that the support
radius of that gradient has to be added to the range parameter of Section 7.2.1 for
obtaining exact results as in the discussion of (v) in Section 7.2.1.

Another issue is that the scalar value may depend on the sampling, because,
e.g., gradients of non-linear fields vary with sampling resolution. It is therefore
not possible to estimate the value at a finer resolution from the values at a lower
resolution without any assumptions on the field. In the case of finite-time (or finite-
size) Lyapunov exponents, no satisfying assumption can be made. The variation of
the value during refinement has implications on the ridge height criterion Eq. 7.3.
There are two approaches to handle the problem: either using a lower threshold
and applying the desired threshold as post-processing, or increasing laCellCnt. In
the worst case complete ridges may get missed, but thanks to the “ridge growing”
procedure (line 18 in Algorithm 1), the obtained ridges will be identical to those
from a uniform sampling at finest subdivision level.

A further issue is that there might be nodes in the grid that are invalid. In the
case of the map, this can be because the positions are outside the domain. At such
nodes no gradient is computed and furthermore they are not used for gradient
computation at neighboring nodes. It might also happen that there are not enough
neighbors for computing gradients due to the restriction of the node neighborhood.
This case has also to be handled appropriately. If the gradient can not be computed
at a node for the mentioned reasons, the node of the scalar field is marked ac-
cordingly. During application of the filtered AMR ridge extraction method, cells
containing such nodes are rejected from the ridge extraction process because they
can not be handled by the marching cubes look-up table.

7.3 Discussion
We presented filtered AMR ridge extraction as a means of efficient ridge extraction
in situations where the underlying scalar field exhibits only few relevant ridges
or can be sampled during ridge extraction. Although rarely some ridges may be
missed, a drawback typical to many AMR approaches, the obtained ridges are
identical to those from a uniform sampling at finest resolution level because a
uniformly sampled band of cells is maintained in the neighborhood of the ridges.
Chapter 8 presents results in the context of different Lyapunov exponent variants.
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Chapter 8

Lagrangian Coherent
Structures

The contribution presented in this chapter is twofold: after an introduction to the
field of Lagrangian coherent structures (complementary to the informal introduc-
tion in Section 2.5.7), we present an approach for computing the finite-size Lya-
punov exponent, and propose a new variant, the finite-time Lyapunov exponent
maximum. Finally this section also presents examples of these concepts by means
of the filtered AMR ridge extraction presented in Chapter 7.

The concept of Lagrangian coherent structures (LCS) is widely and increas-
ingly used in fluid dynamics and in the analysis of the phase space of dynamical
systems. There is no consensus what is meant by coherent structures, which is
manifested in different definitions. Some are restricted to vorticity such as that by
Hussain [58], others are more general such as the one by Robinson [114] where
coherent motion is defined as “a region over which at least one fundamental flow
variable exhibits significant correlation with itself or with another variable over
a range of space and/or time that is significantly larger than the smallest local
scales”. These definitions are referring to 3-dimensional regions. According to
Haller [48], attracting and repelling Lagrangian coherent structures in (transient)
vector fields are of lower dimension and tend to be the equivalent to unstable
and stable manifolds (separatrices) in vector field topology [3, 52]: they separate
regions of qualitatively different behavior and are also involved in mixing pro-
cesses. Opposed to Newtonian coherent criteria such as the Q-criterion [57], the
∆-criterion [18], and the λ2-criterion [62], which are derived from the velocity gra-
dient and therefore Galilean invariant, Lagrangian coherent structures are based
on trajectories and even invariant under rotation of the frame of reference (they
are objective). Because of their foundation on trajectories, LCS are insensitive
to short-term perturbations or anomalies. In 2001 Haller has shown [42, 48, 49]
that LCS can be obtained as ridges in the largest finite-time Lyapunov exponent
(FTLE), also called largest direct Lyapunov exponent (DLE). FTLE was defined
by Lorenz in 1965 [87] and, e.g., by Goldhirsch et al. in 1987 [41] for measur-
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ing predictability, see Yoden et al. [184] for details. For steady vector fields LCS
is comparable to vector field topology [48], although it tends to convey more
information [119]. However, LCS is still well defined and interpretable for un-
steady vector fields due to its Lagrangian definition, whereas classical vector field
topology is only able to give an instantaneous view, except for the approaches
by Theisel et al. [151] and Shi et al. [135] based on path lines. LCS move and
deform over time as the starting time of their trajectories is modified. They be-
have approximately as material surfaces that get advected with the flow in a fluid
dynamics view. LCS have played only a minor role in the field of scientific visu-
alization until this work was presented. Two examples are direct visualization of
2-dimensional FTLE by Garth et al. [37] and the visualization of height ridges in
3-dimensional FTLE by us [119].

8.1 Lyapunov Exponent
The Lyapunov exponent (LE), also called Lyapunov characteristic exponent, mea-
sures the exponential growth of an infinitesimal perturbation. It is often used to
analyze the predictability of continuous dynamical systems or their sensitivity to
initial conditions. An n-dimensional system, or vector field, has n Lyapunov expo-
nents and the largest Lyapunov exponent σ1(x) measures the maximum possible
divergence of two nearby trajectories, starting in the neighborhood of x. If it is
positive, the trajectory is part of the unpredictable (chaotic) regime of the system,
otherwise it belongs to a predictable region.

The largest Lyapunov exponent at position x and time t0 is defined as

σ1(x) = lim
T→∞

lim
‖δδδ(t0)‖→0

1
|T | ln

‖δδδ(t0 +T )‖
‖δδδ(t0)‖

(8.1)

where δδδ(t) is the perturbation at time t (illustrated in Figure 2.15). The initial
perturbation at x and time t0 has to be oriented in direction of maximum expansion.

The subsequent sections describe finite-range LE variants with implications
regarding filtered AMR ridge extraction, additional to those mentioned in Sec-
tion 7.2.2. Section 8.1.1 describes the FTLE variant and its computation accord-
ing to Haller [48]. In Section 8.1.2 the FSLE variant is described and a method
for computing it is presented that builds on the one used for FTLE. Finally, Sec-
tion 8.1.3 proposes a new variant called FTLE Maximum and describes its com-
putation.

8.1.1 Finite-Time Lyapunov Exponent
Eq. 8.1 is an asymptotic measure in time and therefore a global quantity. However,
there are several reasons for the need of a more local measure. One reason is that
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many vector fields have domain boundaries and therefore do not allow for infinite
advection time. Besides computability another reason is that the LE is constant
along a trajectory even if the local expansion rate varies along it.

According to Nese [100] the local divergence rate at time ti and for time step ∆t
can be expressed as

1
|∆t| ln

‖δδδ(ti +∆t)‖
‖δδδ(ti)‖

, (8.2)

and the time average of Eq. 8.2 is the largest Lyapunov exponent

σ1(x) = lim
∆t→0

lim
n→∞

1
n

n

∑
k=0

1
|∆t| ln

‖δδδ(t0 +(k+1)∆t)‖
‖δδδ(t0 + k∆t)‖ , (8.3)

provided that δδδ(t0) is oriented in direction of maximum expansion. The local di-
vergence rate Eq. 8.2 represents the largest finite-time Lyapunov exponent (FTLE)
for i = 0 and ∆t = T . Nese was concerned with the information theory aspect and
therefore used log2 instead of ln. He also mentioned that in practice, renormaliza-
tion [13] has to be performed frequently along the trajectories. This addresses the
fact that one has to make sure that the trajectories do not separate too much, oth-
erwise they can not measure the expansion rates around either of the trajectories.
In the case of renormalization, Eq. 8.3 follows only one of the two trajectories.
This is numerically achieved by regular renormalization of the perturbation δδδ(ti)
to the length ‖δδδ(t0)‖ but preserving its orientation. Kasten et al. [66] presented
a related approach where the velocity gradient is evaluated along a single trajec-
tory. Haller [48] addresses the renormalization issue by stating that only finite-
time phenomena are measured and hence requiring a dense enough sampling grid
solves the problem. However, there are cases where even arbitrarily fine sampling
is not able to produce the same results as with renormalization, e.g., in a flow
that splits without shear. On the other hand, the objective of this work is coherent
structures and not predictability, and even coarse samplings are able to capture the
large-scale behavior of a vector field.

Haller [48] proposed to base FTLE computation on the flow map. The flow map
φφφ

t0+T
t0 (x) maps a sample point x to its advected position and is obtained by defining

a sampling grid, seeding a particle at each node of the grid at time t0, advecting
the particles for time T , and storing the resulting positions at the nodes of the grid.
We stop the integration of a trajectory if it reaches a domain boundary. One could
determine the direction of maximum expansion as the eigenvector belonging to
the largest eigenvalue of the right Cauchy-Green deformation tensor

∆
T
t0(x) = (∇φφφ

t0+T
t0 (x))> ·∇φφφ

t0+T
t0 (x).

According to Haller [48] the maximum stretching factor can be obtained as the
spectral norm, i.e., matrix norm induced by the Euclidean norm, of ∇φφφ

t0+T
t0 (x),

defined as the square root of the largest eigenvalue of ∆T
t0(x): (λmax(∆

T
t0(x)))

1/2

and the largest FTLE is computed therefrom as follows:

σ
T
to(x) =

1
|T | ln

√
λmax(∆T

t0(x)). (8.4)
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The reader is referred to [48] for further information on LCS and FTLE.
Some additional issues arise if the filtered AMR ridge extraction technique from

Section 7.2 is to be used for ridge extraction in finite-range LE variants of un-
steady vector fields. Because the subdivision procedure is based on the values of
these fields, the complete (incremental) procedure of their evaluation has to be
performed for all nodes at a given subdivision (and ridge-growth) iteration before
being able to proceed to the next level. One implication is that this makes a path
line integration method necessary, that is even efficient for depth-first integration
of path lines. Instead of loading complete time steps, we reorganize the vector field
data in a preprocessing step. A single file is generated that stores for each node
the vectors of its time steps consecutively. The access to the data is performed
by mmap(): the file is mapped to an address space of equal size and the paging
subsystem makes sure that for each memory access the corresponding memory
page is loaded, with possible read-ahead. This exploits temporal coherence be-
cause a trajectory usually traverses multiple time steps before having passed a
complete cell, and because several trajectories are likely to pass a given cell at
different times when computing flow maps. If the file size exceeds the available
address space in case of 32-bit systems, several files are generated instead, each
storing only a fixed number of time steps. In this case, the high-level access rou-
tine used for integration has to make sure that the file containing the necessary
time is mapped before accessing the data. This is easily accomplished and the
overall performance does not noticeably degrade compared to the single-file ap-
proach because the corresponding file parts are cached by the soft disk cache of
the operating system.

8.1.2 Finite-Size Lyapunov Exponent
Introduced by Aurell et al. [4], the finite-size Lyapunov exponent (FSLE) measures
the shortest necessary time it takes for two infinitesimally close particles to sepa-
rate by a given factor s. The motivation was to make the measure independent of
the advection time T because different regions of a system often require different
choices of T . Aurell et al. computed the FSLE by advection of differently oriented
particle pairs.

Here a formulation of the FSLE σs
to(x) is presented that is based on the FTLE

formulation of Haller Eq. 8.4:

σ
s
to(x) =

1
|Ts|

lns,

with minimal |Ts| such that√
λmax(∆

Ts
t0 (x)) = s. (8.5)

As with the formulation Eq. 8.4 for FTLE, this has the advantages that trajectories
have to be integrated only for each node of the grid, and that the computed quanti-
ties do not substantially depend on the orientation of the seeding of the trajectories.
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However, in practice there is often no simple analytic solution to determine the Ts
that is necessary to achieve separation s, because ∆

Ts
t0 (x) is based on trajectories

computed from discrete fields. Therefore it was chosen to compute FSLE in an
incremental manner. This is achieved by increasing Ts from 0 to a user-defined
upper limit Tmax by n time steps ∆t = Tmax/n, and each time computing the left-
hand side of Eq. 8.5. The trajectories are computed incrementally. If the value
gets larger than s, the corresponding advection time Ts, with linear interpolation
in the last time step, is used for FSLE computation. The corresponding trajecto-
ries are not stopped however, because they are likely to be needed for the gradient
computation at nearby trajectories later on.

Computation of the trajectories is the most expensive part in the computation
of the left-hand side of Eq. 8.5. The computation of the flow map gradient, the
eigenvalues, and the square root is much less expensive. Therefore one can afford
a sufficiently high number of steps n and hence perform these operations n times.

Another issue shows up if filtered AMR ridge extraction is applied to finite-
range LE variants that are computed incrementally such as FSLE and FTLEM
(see section below). These variants are based on the incremental computation of
the flow map and its gradient. As already mentioned at the end of Section 8.1.1,
the procedure has to be repeated for each subdivision (and ridge-growth) iteration.
For each step in the incremental computation, the flow map consists of intermedi-
ate positions of trajectories computed at previous subdivision levels, and the end
points of the newly computed trajectories. Therefore all trajectories and not just
the flow map have to be stored during filtered AMR ridge extraction.

8.1.3 Finite-Time Lyapunov Exponent Maximum
To further reduce the dependency on parameters, we propose a new variant of
FTLE, the finite-time Lyapunov exponent maximum (FTLEM):

σ̂
T,n
t0 (x) = max

k=1,...,n

1
|k∆t| ln

‖δδδ(t0 + k∆t)‖
‖δδδ(t0)‖

(8.6)

with ∆t = T/n, computed in an incremental way, similarly to the FSLE computa-
tion of Section 8.1.2. The FTLE σk∆t

t0 (x) is computed at each of the n time steps
according to Eq. 8.4 and its maximum is taken. The motivation for doing so is
to avoid parameters that may require different choices for different regions of the
vector field (which is to some extent still the case for FSLE), and to capture high
expansions along the trajectory instead of only analyzing the final flow map. Tak-
ing the maximum of the largest FTLE is a quite straightforward decision: it still
measures the maximum expansion. This FTLE variant comes in two flavors: with
or without normalization. Equation Eq. 8.6 is the case with normalization and
represents the true maximum of the FTLE along the trajectory. If the normaliza-
tion 1/|k∆t| is omitted, it measures the (logarithm of) maximum stretching factor
along the trajectory, which avoids high values of Eq. 8.6 at the beginning (due to
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small |k∆t|) to dominate the result. However, since the logarithm is a monotonic
function, ridges in the FTLEM without this normalization may differ from those
in FTLE only if the constituting trajectories converge at some point.

8.1.4 Separation and Attachment Lines
Separation lines and attachment lines (Section 2.6.3) can be extracted locally as
proposed by Kenwright et al. [68] but also globally using methods from vector
field topology. However, both methods are only able to give an instantaneous view
to flow separation and attachment processes. Furthermore, both are constricted to
near-wall flow. One common way to inspect the interrelations with the interior
flow is to seed stream surfaces from the separation lines or lines of attachment.

Due to their analogy to vector field topology, Lagrangian coherent structures
based on ridges in finite-range Lyapunov exponent variants are suited to visualize
both separation and attachment phenomena, and their interrelations with the inter-
nal flow in a time-dependent way. Attachment lines can be indicated by the curves
where ridges of finite-range positive-time Lyapunov exponents attach to a bound-
ary. Separation lines can be obtained the same way using finite-range negative-
time Lyapunov exponents. If such a situation is observed, the ridges in question
convey information about the process of attachment or separation.

8.2 Results
This section presents some results obtained by filtered AMR ridge extraction from
finite-range Lyapunov exponent variants. Several datasets are examined and the
different finite-range LE variants are compared. The steady CFD simulation inside
the distributor ring of a Pelton water turbine already used in the first part of the
thesis is examined and used for the comparison of the finite-range LE variants in
Section 8.2.1. An unsteady CFD simulation of the intake of a hydropower plant is
the target in Section 8.2.2, and the unsteady CFD simulation inside the diffusor of
a Francis water turbine from Chapter 6 is examined in Section 8.2.3. We verified
by also doing the non-adaptive ridge extraction that no filtered ridges were missed
in the present examples, even without using the “look ahead” mechanism. The
obtained ridges deviate only slightly from those of uniform sampling because a
range parameter of 2 was used instead of 5 (see discussion of choice of range in
Section 7.2).

8.2.1 Pelton Turbine
Filtered AMR ridge extraction was applied to the different finite-range LE vari-
ants of the steady flow inside the distributor ring of a Pelton water turbine. The
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(a) (b)

Figure 8.1: Pelton dataset at second injector of distributor ring. (a) Geometry. (b) Filtered
AMR ridge extraction from FTLE (red, same as Figure 8.2 (c)) with some trajec-
tories (colored lines). Seeding points of trajectories visualized by white spheres.

inspected region is in front of one of the constructs called sickle that bifurcate the
flow into the injectors. The injectors produce the water jets that impel the runner
of the turbine. Figure 8.1 (a) shows the geometry at the second injector and Fig-
ure 8.1 (b) shows the ridge resulting from the FTLE with some trajectories. The
flow comes from the bottom left and continues to the upper right while part of
it is bifurcated to the upper left. Figure 8.2 compares the results of the different
positive-time finite-range LE variants and Table 8.1 gives some extraction details.

FTLE FSLE FSLE FTLEM
initial grid (nodes) 7x7x5 7x7x5 7x7x5 7x7x5
final grid (nodes) 157204 239551 215491 244651

integration time [s] 0.1 0.1 0.1 0.1
sep. factor s – 1.5 4 –

1/|T | yes yes yes yes
min. scalar smin 23 50 14 22
gradient range 2 2 2 2
ridge range 2 2 2 2

iterations 4 4 4 4
Hess. λmax 0 -150000 -30000 -50000

min. triangle cnt. 2000 2000 2000 2000
Figure 8.2 (c) 8.2 (d) 8.2 (e) 8.2 (f)

Table 8.1: Extraction details for Pelton example. The parameters below the second hori-
zontal line were not used for mesh refinement, only for post-processing.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.2: Pelton dataset at second injector. Filtered AMR ridge extraction from differ-
ent finite-range LE variants. See Table 8.1 for extraction details. (a) FTLE ridge
without post-processing. (b) same as (a) with adaptive mesh. (c) FTLE ridge with
post-processing. (d) FSLE with separation factor 1.5. (e) FSLE with separation
factor 4. (f) FTLEM (similar to (d) and (e)).
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(a) (b)

Figure 8.3: Pelton dataset at first injector, see Table 8.2 for performance details. (a) Filtered
AMR ridge extraction for FTLE. The ripples are due to high FTLE values along
the ridge and its approximate alignment with the sampling grid. This is an inherent
problem with discretized FTLE computation. (b) Together with adaptive mesh.

Figure 8.2 (a) shows ridges of FTLE without post-processing and Figure 8.2 (b)
shows additionally the corresponding mesh (the cells have been shrunk for vi-
sualization). The result has been post-processed by suppressing ridges that were
smaller than 2000 triangles, visualized in Figure 8.2 (c). The FTLE ridges visu-
alize the bifurcation at the sickle and the recirculation zone at the top (see also
Figure 8.1 (b)). Regarding FSLE (Figure 8.2 (d)–(e)), one can see that the results
depend on the choice of the prescribed separation factor (compare also Table 8.1).
The ridges of the low-separation FSLE in Figure 8.2 (d) visualize the near-wall
flow whereas the ridges of the high-separation FSLE in Figure 8.2 (e) mainly show
the bifurcation at the sickle. The recirculation region is captured by both FSLE ex-
amples, but not as well as by the FTLE example of Figure 8.2 (c). Figure 8.2 (f)

direct adaptive
initial grid 193x193x97 (3613153 nodes) 13x13x7 (1183 nodes)
final grid 193x193x97 (3613153 nodes) 298964 nodes

flow map [s] 19953.51 2350.21
FTLE [s] 10.73 30.73

ridge extr. [s] 278.46 2337.16
total [s] 20242.74 4930.72

Table 8.2: Performance analysis for Pelton dataset at first injector. Four iterations of filtered
AMR ridge extraction from FTLE compared to direct computation on correspond-
ing uniform grid. Achieved speed-up factor is > 4. See also Figure 8.3.
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(a) (b)

Figure 8.4: (a) Hydropower plant intake. Water enters the region from the bottom and flows
to the intake of the power plant visible as hole in the back wall. Air enters the
region at the top front and leaves the region at the top. Water/air interface by
isosurface (transparent blue). (b) Draft tube of Francis turbine in front of divider.
The flow is bifurcated at the divider into the two channels.

shows the advantage of FTLEM over FSLE: it is capable of visualizing both the
phenomena of Figure 8.2 (d) and Figure 8.2 (e) without the need for finding ap-
propriate FSLE separation factors.

The efficiency gain of filtered AMR ridge extraction over direct ridge extraction
from a uniformly sampled field at corresponding resolution was only about 1.4 for
the FTLE in the inspected region. This is because the result contains a lot of ridge
regions in the region of interest. However, many applications do not exhibit that
dense Lagrangian coherent structures. In order to show the efficiency gain, we ex-
amined a region in front of the first injector of the distributor ring (see Figure 8.3
and Table 8.2). There is only a single filtered ridge in this region and therefore the
efficiency gain is > 4 at the fourth subdivision level. The efficiency gain would
further increase with an increase of the number of subdivision iterations or with
longer advection times (this test was not performed because the FTLE computa-
tion on the uniform grid already took a considerable amount of time).

8.2.2 Hydropower Plant Intake
The underlying data of this section is an unsteady CFD simulation in the intake
of a hydropower plant [144] (Figure 8.4 (a)). Filtered AMR ridge extraction was
applied to negative-time FTLE in a region of interest. Ridge regions with FTLE
< 0.02 or Hessian λn > −10 were suppressed and small ridge components were
rejected, see Figure 8.5. One can see FTLE ridges that wind around the vortex
core lines, both in water and in the air. Another FTLE ridge is consistent with the
water/air interface.
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Figure 8.5: Hydropower plant intake. FTLE ridges (red) with some upstream trajectories
(colored lines) and vortex core lines (white). Seeding points of trajectories visual-
ized by spheres (white), and water/air interface by isosurface (transparent blue).

8.2.3 Francis Turbine
This section examines the flow of an unsteady CFD simulation in the draft tube of
a Francis water turbine. More precisely, the region in front of a construct named
divider, that bifurcates the flow into the two channels (Figure 8.4 (b)). Filtered
AMR ridge extraction of positive-time FTLE resulted in several ridges, some of
them interacting with the vortices over time. Ridge regions with FTLE < 10 were
rejected and only the large ridge components were used for visualization (Fig-
ure 8.6). One FTLE ridge winds around the vortex. This is consistent with the
notion that vortices are coherent structures. The same ridge also visualizes the
bifurcation at the top of the divider.

8.3 Discussion
Lagrangian coherent structures present as ridges in the FTLE are a powerful con-
cept for the analysis of time-dependent vector fields. In this chapter we mainly
exemplified the filtered AMR ridge extraction method from Chapter 7 in the con-
text of the FTLE. Furthermore, we have shown how the FSLE can be efficiently
computed from Haller’s FTLE formulation and proposed a new FTLE variant,
the FTLEM, further liberating the concept from parameters and making it more
flexible with respect to domain regions exhibiting different behavior.
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Figure 8.6: Filtered AMR ridge extraction from FTLE (red) in draft tube of Francis tur-
bine, some trajectories (colored lines), their seeds (white spheres), and vortex core
lines (white tubes). One of the ridges winds around vortex in front of the divider.

136



Chapter 9

Grid Advection for
Efficient FTLE
Computation

Lagrangian coherent structures feature two temporal degrees of freedom: the mo-
ment of seeding t0 and the advection time T (Section 8.1.1). Once the spatial
region of interest and the time scope are chosen, it is often desired to vary the
seeding time t0 to obtain a full picture of time-dependent flows. This way, one
obtains time series, or animations, of FTLE. While we presented a method for ac-
celerated computation of FTLE at a given seeding time t0 in Chapter 7, we present
here an approach for accelerated computation of time series of FTLE. The main
idea is to reuse part of trajectories by means of advection of the sampling grid.
A focus of this work is the analysis of LCS related to predefined regions such as
boundaries, in particular, flow attachment and separation.

The method maintains a sampling grid that grows and shrinks with the ridges
that it contains and that is advected with the flow between the steps of the time se-
ries. This is consistent with the fact that ideal LCS, i.e., those derived from FTLE
based on sufficiently long trajectories, are material surfaces [48] and hence advect
with the flow. The grid is initialized by the user in a region of interest. By initial-
izing the grid near a solid boundary, flow separation and attachment surfaces are
obtained. An advantage of this visualization method is that it does not rely mainly
on the data next to the boundary, and in particular does not need the computation
of derivatives in cells adjacent to the boundary.

As detailed in Section 2.6.3, the topology of the flow on solid boundaries or of
the wall shear stress can be used for the analysis of steady separation and attach-
ment. By combining it with the topology of the velocity field in the interior, Surana
et al. were able to give exact definitions of separation and attachment surfaces, and
they showed that for Navier-Stokes flows, the separation slope and angle formulas
depend on on-wall quantities only [147].
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(a) (b)

Figure 9.1: (a) Flow separation and flow attachment. The unstable manifold (blue) attracts
the fluid along the boundary and guides it into the interior of the domain whereas
the stable manifold (red) guides the fluid in opposite direction. (b) Intake dataset.
Comparison of ridge from advected grid (red) and uniform grid (blue) together
with ridge from advected grid color-coded by distance to ridge from uniform grid.

9.1 Motivation

The adaptation of the uniform sampling grid to the regions containing ridges is
motivated by our approach from Chapter 7. The goal is to optimize the com-
putation of time series of FTLE ridges to make the method more applicable in
every-day applications in research and engineering. The increase in efficiency is
achieved by restricting the computation to regions that contain the LCS of interest,
and, in particular, by exploiting the temporal coherence of unsteady vector fields
for the computation of time series of FTLE by advection of the sampling grid.

One of the application goals is to offer a method for the analysis of unsteady
flow separation and attachment. Separation phenomena are the cause of many un-
desired effects in engineering, such as development of recirculation zones, re-
duced throughput, reduced lift, vortex generation, lowered mixing, and reduced
flow control in general. Flow separation exhibits diverging trajectories in back-
ward time and flow attachment exhibits diverging trajectories in forward time (see
Figure 9.1 (a)). This fact is the reason why separation and attachment lines (or
points) are usually accompanied by corresponding LCS and why these processes
are amenable to an analysis by FTLE ridges. Shadden et al. [134] have already
demonstrated the utility of those ridges for the analysis of unsteady flow sepa-
ration in their example of flow separation over an airfoil. We also believe that
an analysis based on LCS provides a deeper and more precise insight into these
unsteady phenomena compared to standard techniques such as stream surface in-
tegration or particle tracing.
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9.2 Method
The proposed method can be subdivided into two parts: one that constrains the
sampling grid to filtered ridges of interest at a given time step (or the only time
step in case of steady vector fields), described in Section 9.2.1 and Section 9.2.2,
and one that exploits temporal coherence to speed up the computation of time
series of quantities computed from trajectories, such as the FTLE, in the case of
unsteady vector fields (Section 9.2.3). The time series are obtained by variation of
the t0 parameter of the FTLE.

Algorithm 2 describes the methods presented in Section 9.2.1 to Section 9.2.3
for the case of FTLE ridge extraction. However, it also can be applied for the
extraction of ridges of other quantities based on trajectories and could be eas-
ily modified for the scalar quantity itself instead of its ridges. If the quantity is
not computed using local operators such as gradients, larger distortions may be
acceptable and hence longer advection times could be used, leading to a further
increase in speedup.

9.2.1 Grid Initialization
In the filtered AMR ridge extraction method (Chapter 7) the complete domain
(or region of interest) is sampled at low resolution and the sampling is adaptively
refined in regions containing filtered ridges. Although this results in a speedup
compared to a uniform sampling at the finest subdivision level, the method suffers
from several drawbacks when applied to quantities that can not be evaluated in a
point-wise manner but are computed using local operators, such as gradients in
the case of FTLE ridges. The main problem here is that the value is inherently
sampling dependent because the gradient can be underestimated if the sampling is
coarse. Together with a restrictive threshold for the ridge filtering this can result in
missed ridges in the adaptive approach, if they are not detected in the coarse sam-
pling and hence the corresponding regions are not refined which would capture
them later on. The remedy is either to use a finer initial sampling, a lower thresh-
old for filtering, or to increase the look-ahead count (Section 7.2), all leading to an
increased number of samples and hence lowered speedup. See also Section 7.2.2
for further information on the implications for quantities based on local operators.

In the present approach one typically avoids sampling the whole domain (or re-
gion of interest). Instead, we require initial sampling regions that already capture
part of the ridges (cf. Figure 9.2 (a) and Figure 9.3 (a)) and adapt the sampling
regions to the present ridges (Figure 9.2 (b) and Figure 9.3 (b)). This allows one
to use initial samplings of sufficient resolution and avoids the need for lowered fil-
tering thresholds. In the case of FTLE analysis of flow separation and attachment,
possible ways for choosing the initial regions include:
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(a) (b)

(c) (d)

Figure 9.2: Grid advection for flow separation. (a) Initial sampling grid. Ridge cells (dark
gray) and their neighboring cells (light gray). Cell edge intersected by negative-
time FTLE ridge (blue point). Neighborhood range is 1 for illustration purposes.
(b) After grid adaptation. (c) After one step of grid advection. (d) After grid adap-
tation of advected grid.

• Definition from special regions of the simulation mesh, e.g., the complete
boundary of the domain, or a subset thereof such as the blades of a turbine.
These regions are often explicitly available from the simulation file formats.

• Automatic definition by quantities such as “surface divergence” or its local
maxima as presented by Tricoche et al. [159].

• Automatic definition by features. A possibility is to extract separation and
attachment lines according to Kenwright [67] or Tricoche et al. [159] and to
place initial sampling regions around (part of) those.

• Manual identification and definition by preceding interactive exploration us-
ing standard techniques such as path line integration or (AMR) ridge extrac-
tion (Chapter 7) of the FTLE in regions of interest. It might seem cumber-
some to extract FTLE ridges in a first step with a standard technique, but this
can be afforded if the goal is to compute time series of FTLE (Section 9.2.3).

We require the initial sampling regions and resampled regions (Section 9.2.3) to
be parts of a virtual uniform grid that covers the complete domain. This makes
sure that separated grids are consistently sampled and hence can merge (even after
advection) when cells are added by the procedure described in Section 9.2.2.
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Algorithm 2 Grid Advection for FTLE Ridges
1: steps: number of steps for the FTLE ridge time series
2: range: topological neighborhood range around ridges
3: tolerance: tolerance for RMS of FTLE
4:
5: place initial sampling grid
6: compute all trajectories and compute FTLE
7: R← detect ridge cells from FTLE
8: N ← cells in range around R // N may contain existing cells and cells to add
9:

10: // compute frames of FTLE time series
11: r← 2 // number of advection steps
12: lastResampleStep← 0
13: for step=1 to steps do
14: // grid growing
15: while first iteration at step or grid changed do
16: // add cells in neighborhood range around R
17: for all cells c ∈N and not yet in sampling grid do
18: add c directly if grid regular, or by advection or meshing
19: end for
20: compute (or reuse) trajectories and compute FTLE
21: R← detect ridge cells from FTLE
22: N ← cells in range around R
23: end while
24:
25: // grid shrinking
26: for all cells c of sampling grid do
27: if c outside domain or c /∈ (R ∪N ) then
28: remove c
29: end if
30: end for
31:
32: // grid advection
33: if step < steps then
34: advect grid nodes to next time step
35: compute (or reuse) trajectories and compute FTLE
36: // resampling
37: if step − lastResampleStep > r then
38: resample uniformly, recompute all trajectories and compute new FTLE
39: RMS← measure RMS between old FTLE and FTLE on resampled grid
40: r← max(1, br∗ tolerance / RMSc)
41: lastResampleStep← step
42: end if
43: R← detect ridge cells from FTLE
44: N ← cells in range around R
45: end if
46: end for
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(a) (b) (c) (d)

Figure 9.3: Grid advection for flow attachment. (a) Initial sampling grid. Ridge cells (dark
gray) and their neighboring cells (light gray). Cell edge intersected by positive-
time FTLE ridge (red point). Neighborhood range is 1 for illustration purposes. (b)
After grid adaptation. (c) After one step of grid advection. (d) After grid adaptation
of advected grid.

9.2.2 Grid Adaptation
We now describe how the initial sampling grid from Section 9.2.1 is adapted to the
filtered ridges (cf. Figure 9.2 (b), Figure 9.2 (d), Figure 9.3 (b), and Figure 9.3 (d)).
To prevent long extraction times in cases where the ridges extend into regions that
are of no interest, a region of interest can be defined which restricts the adaptation,
possibly leading to truncated ridges.

Grid Growing The first adaptation step is to add new cells to the boundary of the
sampling grid where necessary. As defined in Section 7.2.1, a ridge cell is a cell
that has an edge intersected by a filtered ridge according to (Eq. 7.3) or (Eq. 7.4).
Because we aim at results that are identical to those from a uniform sampling as
in Chapter 7, the support range of the Hessian, which is needed for the height
ridge extraction, has to be taken into account. If the underlying scalar quantity is
computed using a local operator (as in the case of FTLE), its support radius has to
be added to that of the Hessian as well. Having the total support range, one needs
to add all cells to the grid that are within that topological neighborhood of any
ridge cell.

In cases of steady vector fields, where the grid advection from Section 9.2.3
does not apply, the sampling grid is uniform and adding cells is a trivial procedure.
However, if the grid is advected, adding cells is a challenging problem due to the
distortion of the grid. Nevertheless, the initial grid is uniform and the grid gets
uniformly resampled from time to time. If we need to add a cell to the distorted
grid, we simply go back to the last time step where the grid was uniform, add the
nodes of the corresponding cell there and advect the added nodes to the actual time
step. This makes the cell fit to the desired position. Additionally, the computed
trajectories for the advection of the nodes can be reused for computing the quantity
(FTLE), resulting in little overhead.
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However, if a node of the cell in the uniform grid is located outside of the
domain, there is no vector field that could be used to advect it to the desired time
step and position. In this case the cell can be constructed by extrapolation of the
grid or any standard meshing technique. The grid growing procedure is iterated
until convergence, meaning that each added cell and its neighbors are tested for
being a ridge cell and if this is the case, it is attempted to add the cells inside the
neighborhood range. This way, the sampling grid grows to the necessary extent,
similar to the AMR approach from Chapter 7.

Grid Shrinking The next step is to remove unnecessary cells from the grid.
These are cells that are neither ridge cells nor in the relevant neighborhood of
any ridge cell, or cells where one or more nodes are outside of the domain.

9.2.3 Grid Advection
Lagrangian coherent structures are material lines or material surfaces [48], in other
words, they advect with the flow, similarly to streak lines (surfaces) and time lines
(surfaces). This would allow for exploiting temporal coherence for the generation
of time series of FTLE ridges by advection of the extracted ridges. One could com-
pute the FTLE and its ridges only after every n time steps and advect them with the
flow in between. However, this would not account for changes in the FTLE during
advection. New ridges can originate and existing ones can grow, shrink, or disap-
pear, especially if the ridges are filtered as in our case (Section 7.1.2). Therefore
we propose a different approach: the advection of the sampling grid itself during
the advection intervals. This results in a generic method for quantities based on
trajectories, not only FTLE.

During advection, a short trajectory has to be computed for each node of the
sampling grid to advance it to the next position. The striking advantage is that
these short trajectories can be appended to the existing trajectories needed for the
computation of the FTLE, making it possible to reuse large parts of the trajectories
and hence improving efficiency, see Figure 9.2 (c) and Figure 9.3 (c).

As already mentioned, advection of the sampling grid tends to distort its cells
and this in turn tends to affect the computation of derivatives, which are needed for
FTLE computation and ridge extraction. Additionally, compared to other quan-
tities, the FTLE tends to be particularly sampling dependent, especially if not
computed using renormalization (Section 8.1.1). All in all, this generally leads to
artifacts in the extracted FTLE ridges such as deformation, false negatives, and
false positives.

To restrict the artifacts to an appropriate level, the FTLE is periodically resam-
pled on a subset of the virtual uniform grid spanning the whole domain: only those
cells of the grid are generated (and the corresponding trajectories are computed)
which overlap with the advected grid or which are contained in the region of the
initial sampling. An additional strategy is to place the sampling grid outside re-
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gions producing high distortion such as wakes and vortices. Although this looks
like a compromise, it is often a natural choice to analyze LCS away from disturb-
ing phenomena since they would also distort them, even when uniformly sampled,
and hence complicate interpretation.

Because the flow map is computed by integrating trajectories in discrete vector
fields, and because of the intricacy of gradient computation on unstructured grids,
it is generally not possible to provide error bounds with respect of the distortion
of the grid. Garth et al. [36] measure the error for their subdivision scheme in the
flow map, not based on FTLE or its ridges. Similarly, we propose to measure the
error based on the FTLE, not its ridges, and to use it for triggering the resampling.

The grid is uniformly resampled (recomputing the trajectories and the FTLE)
after every r advection steps with an initial value of r = 2. After the FTLE has
been computed on the resampled grid, the FTLE of the advected grid is interpo-
lated at the node positions of the new grid and the root mean square (RMS) of
the difference over all nodes is computed. The RMS is then tested against a user-
defined tolerance, and a new r is estimated from the RMS and from the tolerance
by linearization of the RMS over the advection steps (line 40 of the algorithm).
The algorithm then proceeds to the next advection phase. However, the lineariza-
tion of the error can be inappropriate in the sense that r is chosen too large such
that after the next r advection steps the RMS exceeds the prescribed tolerance.
One solution to this problem is to enforce the tolerance by reducing r (and hence
undoing advection steps) until the RMS tolerance is fulfilled. However, our ex-
periments have shown that it is usually sufficient not to enforce the tolerance and
instead to prescribe a reduced tolerance, e.g., by 15 percent, to achieve the in-
tended precision.

To support the user in an appropriate choice of the RMS tolerance and the sam-
pling region, we provide visualization of both sets of ridges, those before and
after resampling, or color-coding the former ones by their distance to the latter as
shown in Figure 9.1 (b), serving as uncertainty information. Another approach is
to judge the popping artifacts visually when moving from a time step based on an
advected grid to a subsequent time step that has been derived using a uniformly
resampled computation grid.

Note that for the analysis of flow separation, time series of FTLE ridges have to
get generated by advecting the grid in positive time direction (Figure 9.2), whereas
for attachment the grid has to get advected in negative-time direction (Figure 9.3).
This is necessary since the ridges are captured at the regions of interest (e.g., at
the boundaries) and FTLE ridges visualizing attachment approach the boundary in
positive time. Hence it is necessary to start with the last time step and to compute
them in negative time direction in order to capture all of them at the boundary,
even those that separate from the boundary later on. So finally, all LCS that come
in contact with the boundary (or other regions of interest) at any time get captured.
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(a) (b) (c)

Figure 9.4: Flow around a cuboid. (a) Geometry. (b) Sampling grid adapted to ridge region
and advected. (c) Resulting FTLE ridge with some upstream trajectories (colored)
from uniform grid, and their seeds (white spheres).

9.3 Results
In this section the presented method is applied to two unsteady CFD simulations.
The first one examines the flow around a cuboid, exhibiting flow similar to a von
Kármán vortex street, but in this case the vortices become tilted soon after they
detach from the cube. This leads to flow separation behavior that differs from the
standard von Kármán vortex street. Secondly, the method is applied to a simulation
of an intake of a river power plant. The scope there is a construct that prevents
salmon from getting into the runner of the turbine.

9.3.1 Flow around a Cuboid
This example produces a kind of a von Kármán vortex street. The unsteady flow
comes from the right back and follows to the left front (Figure 9.4 (a)). The main
difference to a common von Kármán vortex street is that there is also flow over the
top face of the cuboid. The flow separation at the cuboid is the subject of analysis
in this case. The resulting FTLE ridge (Figure 9.4 (c)) shows that flow separation
is in progress on both sides as well as the top of the cuboid. It can be seen that
the FTLE ridge separates the vortex street region from the outer flow. However,
further downstream the FTLE ridge does not exhibit this property anymore: it
crosses the vortices. Time series of FTLE ridges reveal that the separation zones
are oscillating consistently with the von Kármán vortex street.

Table 9.1 shows some performance details for this example. The achieved
speedup in this case is only about 2.3. This is due to the relatively short trajecto-
ries (Figure 9.4 (c)). The prescribed RMS tolerance was 15.0 and at step 33 this
was exceeded by 0.88 percent. There have been 12 advection phases, each per-
formed 5 advection steps in average. Because of the shape of the FTLE ridge and
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uniform grid
advection

grid [nodes] 16399 14220
(step 33)

flow map [s] 13704.87 2944.88
total [s] 13707.92 5800.31
speedup 1 2.36
Figure 9.4 (b)

Table 9.1: Performance analysis for the
cuboid dataset. 60 steps of grid
advection compared to 61 direct
evaluations on uniform grid.
See also Figure 9.4 (b).

uniform direct on grid
adapted grid advection

grid [nodes] 8800 5007 3913
(step 39)

flow map [s] 15369.17 9062.73 355.62
total [s] 15374.22 9489.96 1026.81
speedup 1 1.62 14.97
Figure 9.5 (a) 9.5 (b)

Table 9.2: Performance analysis for the turbine
intake dataset. 100 steps of grid advec-
tion compared to 101 direct evaluations
(on uniform grid and adapted grid). See
also Figure 9.5 (a) and Figure 9.5 (b).

because the initial sampling grid is already well adapted to the FTLE ridge, the
expected speedup from grid adaptation is small and was therefore not measured.

9.3.2 Intake of a Power Plant
The underlying data of this section is an existing run-of-river plant in the US. All
devices shown are installed in the intake of the plant in order to protect juvenile
salmon from passing through the runner. The water flow of the unsteady CFD
simulation comes from the right back and follows to the left front where it enters
the turbine (Figure 9.5).

The horizontal rods at the right hand side of the image lead the salmon into
the vertical channels at the top in the installation. However, these rods produce
a noticeable wake in the upper part of the main channel (see path lines in Fig-
ure 9.5 (a)). Additionally, the back-flow from the salmon channel (the opening at
the top downstream from the rods) also is involved in a recirculation zone at the
top wall, located above the sampling grid of Figure 9.5 (a). On the one hand, an
FTLE ridge was extracted using a regular grid at the confluence of the three main
channels (Figure 9.5 (a)), on the other it was extracted using the presented grid
advection method (Figure 9.5 (b) and Figure 9.5 (c)). The obtained FTLE ridge
separates well the fast flow at the bottom of the channel from the slower flow in
the upper half of the channel.

Table 9.2 shows some performance measurements of the presented case. The
speedup from grid adaptation is quite low (1.62) because of the relatively low res-
olution of the sampling grid and because the sampling region was already quite
well adapted to the ridge. The speedup from including grid advection is signifi-
cantly higher (about 15) and would further increase with increasing the integration
time for the trajectories. The RMS tolerance was set to 0.012 and at step 39 this
was exceeded by 14.2 percent, which was the maximum during the 13 advection
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(a) (b) (c)

Figure 9.5: Intake of a water turbine. (a) Uniform grid with some of the upstream trajec-
tories (colored) used for FTLE computation, and their seeds (white spheres). (b)
Sampling grid adapted to ridge region and advected. (c) Resulting FTLE ridge.

phases. Figure 9.1 (b) shows the corresponding distance error of the ridge. In av-
erage, 7.7 advection steps were performed per advection phase.

9.4 Discussion
We presented a generic method for accelerating the computation of time series
of quantities based on trajectories, such as FTLE. On the one hand the efficiency
is improved by restricting the sampling grid to the phenomena of interest, on the
other hand and more important, the computation is accelerated by reusing part of
the trajectories, which is made possible by advection of the sampling grid. In the
case of gradient-based visualizations, such as FTLE ridges, the quality tends to
suffer if the distortion caused by the advection of the grid is high. Therefore, the
obtained quality is inferior to evaluations on regular grids or that from Chapter 7
in terms of quality, but superior in terms of speed if time series are computed. All
in all, we propose to use the method at least as a fast preview technique and to use
low RMS error thresholds (leading to low acceleration) or even exact methods,
such as direct computation on uniform grids or that by Garth et al. [36] or ours
from Chapter 7, if exact time series are required.

147



Chapter 9 Grid Advection for Efficient FTLE Computation

148



Chapter 10

Conclusion
This chapter gives an overview of the methods presented in this thesis, together
with a discussion and possible related future work.

10.1 Overview of Contributions
The following contributions to the field of visualization of physics and topology
in unsteady flow resulted in the context of this thesis:

• A method for the placement and augmentation of vorticity field lines has
been presented, providing a more holistic analysis of vortices, i.e., the over-
all structure of the vorticity field is conveyed. This not only visualizes vorti-
cal flow, but also the interrelation with shear flow, an important aspect since
vortices typically originate from shear flow. However, although many as-
pects of vortical flow are amenable to an analysis by this technique, only
limited capability is offered for the analysis of transport of vorticity. Hence,
as a complementary approach, this is the focus of the next contribution.

• A technique for the analysis of vorticity transport in transient flow has been
introduced. Several scalar quantities are derived from the vorticity equation
and mapped together with additional values on path lines. This allows to
investigate the physical phenomena that lead to a given vortex at a given
time. We were able to provide insight into vortex generation to our industry
partners in turbo-machinery applications, e.g., we identified vortex stretch-
ing and vortex tilting to be major mechanisms of vortex generation in many
configurations.

• The vortex breakdown bubble phenomenon represents the link from the first
part of the thesis dealing with vortices, to the second part investigating the
overall structure of vector fields in terms of topology. Several techniques
have been presented for the analysis of the phenomenon, from automatic
extraction, to techniques that reveal the internal organization.
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• Filtered AMR ridge extraction has been presented as a means for efficient
ridge surface extraction. The method is based on adaptive refinement of
the sampling grid and allows for high speed-up especially if the underlying
scalar field is sampled during ridge extraction. This is the case for the com-
putationally expensive finite-time Lyapunov exponent (FTLE), our primary
application, where densely seeded sets of trajectories have to be computed.
Nevertheless, the presented technique offers acceleration also on discretized
data. Although a drawback is the risk of missing complete ridges, the ob-
tained ridges are exact, i.e., identical to those derived by straightforward
ridge extraction.

• An algorithm for the computation of a variant of the FTLE, the finite-size
Lyapunov exponent (FSLE) has been presented together with a new variant
of FTLE, the FTLE maximum (FTLEM). FSLE was introduced by Aurell et
al. in an attempt to make the concept less dependent on the scope parameter,
and so has been the FTLEM. We compare the different approaches using the
filtered AMR ridge extraction method.

• Whereas the filtered AMR ridge extraction represents an acceleration tech-
nique for computing FTLE variants at particular points in time, it does not
exploit temporal coherence if several points in time, i.e., time series, are to
be analyzed. Therefore a method based on the advection of the computa-
tional grid has been presented. Since the grid advects along path lines, large
portions of trajectories can be reused, leading to a substantial speed-up. A
drawback is, however, that the computational grid tends to distort over time,
affecting numerics. Therefore, resampling is triggered by a user-defined er-
ror threshold.

Although the two parts of this thesis may seem distinct, there are several links
between them. First of all, the axes of vortices, the vortex core lines, are related
to the vector field topology in appropriate projections of the flow, and, as shown,
vortex breakdown bubbles can directly be analyzed by techniques from 3D vector
field topology. Second, vortices also represent coherent structures. One of the first
definitions of coherent structures by Robinson even was in terms of vortices, and
they are also amenable to an analysis by FTLE. Further, recirculation zones, a
common case of vortical motion, and flow separation in general can be analyzed in
terms of separation and attachment lines both also related to vector field topology.
To some extent, this thesis also reflects and supports the transition trend from
steady to transient data and from Eulerian to Lagrangian analysis in visualization.

10.2 Discussion
The analysis and understanding of vortical phenomena has a long history but is
by far not finished yet. Progresses are made regularly in that field. In the first part
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of this thesis methods have been presented that focus on the physics of flows, in
particular, the understanding of vortex generation and vortex dynamics in general.
These allow a deeper understanding of how and why vortices originate and enable
in wide parts of research and engineering a more detailed investigation and more
focused design. A possible direction for further research is the analysis of vorticity
transport due to diffusion. The presented technique allows for quantitative analysis
of that mechanism but the qualitative, i.e., the directional transport by diffusion,
is addressed in an indirect manner by neighboring path lines and neighborhood
disks. A method that explicitly visualizes the transport due to diffusion could give
additional insight since diffusion is often the only cause why vorticity transport
deviates from pure advection, i.e., is not “frozen into the flow”.

In the second part of this thesis we have focused on approaches in the field
of vector field topology. We enabled efficient and effective visualization of vor-
tex ring phenomena, in particular those known as vortex breakdown bubbles. This
phenomenon is present in many fields in industry and nature, sometimes generated
by purpose, e.g., for mixing, and sometimes unwanted, as in the case of aviation.
Our techniques not only reveal the complex structure and allow for a simplified
examination of real-world data with respect to dynamical systems theory, they also
allow for their automatic detection and extraction, which is important in many in-
vestigations. The development of further techniques for the qualitative and quan-
titative analysis of the flow inside these features with respect to mixing as well as
their throughput could be fruitful. A special concern in this context is accuracy,
due to the exponential growth of error inside the chaotic regime.

We then proceeded to the topology of time-dependent vector fields. We intro-
duced the concept of the finite-time Lyapunov exponent, popular in the field of
fluid mechanics in the last decade, to the visualization community. Its ridges, the
Lagrangian coherent structures, represent a time-dependent counterpart to sep-
aratrices in vector field topology and hence represent indeed a solution in the
search for a time-dependent vector field topology, a quest ongoing in the visual-
ization community for more than two decades. Lagrangian coherent structures are
a promising approach for the analysis but they suffer from very high computa-
tional cost, often substantially inhibiting research and development. We proposed
two approaches for lowering that cost and hence making the method better appli-
cable in everyday life. One accelerates the computation of the FTLE computation
at selected times whereas the other allows for efficient computation of time series
of FTLE. However, since both approaches are based on adaptive refinement, one
only in space and the other also in time, they suffer from a drawback typical in that
field: they can miss features. Furthermore, the latter is typically affected by dis-
tortion of the sampling grid, which can nevertheless be controlled by a prescribed
error tolerance. A possible research direction could investigate other approaches
that are less vulnerable to numerical issues due to advection of the sample points.
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Appendix A

Notation
Throughout this thesis, all scalar variables or functions are set in italics, while
vector-valued expressions and functions, including matrices, are set in bold face.
Symbols are also defined where they first appear.

Operators
· dot product
× cross product
∇ gradient

u̇, ü first and second time derivative: u̇ = ∂u
∂t , ü = ∂

2u
∂t2

∇· divergence
∇× curl
∇2 Laplacian =∇·∇
∇∇ Hessian
‖ · ‖ Euclidean norm
| · | modulus
det determinant
·> matrix transpose

Physics
u velocity [m · s−1]
ωωω vorticity [s−1]
p pressure [kg ·m−1 · s−2]
ρ density [kg ·m−3]
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ν kinematic viscosity [m2 · s−1]
µ dynamic viscosity [kg ·m−1 · s−1]
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