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Abstract

Advances in manufacturing and processing techniques allow us to create objects
with ever increasing complexity. This complexity can be used to create not only
aesthetic forms, but also structured materials, whose geometries determine their
deformation behavior. Systematic control over the elastic properties is possible
with the right structures, but the relationship between structure and elastic prop-
erties is nontrivial.

This highlights the need for new computational design approaches that can lever-
age the geometric complexity provided by advanced fabrication techniques, ei-
ther by providing feedback about the deformation behavior throughout the de-
sign process, or by directly translating high-level functional targets into the ap-
propriate material structure. This thesis introduces a novel set of techniques to
characterize and create structured materials with various functional targets.

We first introduce a data-driven microstructure synthesis approach. After creat-
ing a database of small-scale structures that show a clearly defined macroscopic
deformation behavior when tiled, we use an interpolation method to create new
structures from this database and design objects with spatially varying elastic
properties.

We then propose a design method to create surfaces with decorative cutouts that
integrates aesthetics and stability into a single design process. We combine a dis-
crete element texture approach with a topology optimization method to automat-
ically optimizes the distribution of cutouts, creating a synergy of structure and
function.

Finally, we develop an approach to characterize the mechanical properties of
tessellation-based networks of rods. We create a compact representation of the
elastic behavior of such networks and explore the space of a specific type of tes-
sellation, isohedral tilings, to show that we can create a broad range of mechanical
behaviors from combinations of simple shapes. We present the resulting mechan-
ical characterization using an intuitive visual representation that lends itself to an
efficient exploration of the underlying space of structures.
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Zusammenfassung

Technische Fortschritte in der Herstellung und Verarbeitung erlauben es uns,
Objekte mit stetig steigender Komplexität herzustellen. Diese Komplexität kann
nicht nur für die Gestaltung von ästhetischen Formen verwendet werden, son-
dern auch zur Erzeugung von strukturierten Materialien, welche durch ihre Geo-
metrie das Deformationsverhalten des Materials bestimmen. Mit der richtigen
Struktur ist eine gezieltes Kontrolle der elastischen Eigenschaften möglich. Dieses
Verhältnis zwischen Struktur und Eigenschaften ist jedoch nicht offensichtlich.

Dies zeigt den Bedarf nach neuen computergestützten Entwurfsansätzen auf, wel-
che die geometrische Komplexität dieser neuen Herstellungsverfahren ausnützen
können, entweder durch das Bereitstellen von Rückmeldungen über das Defor-
mationsverhalten während des Entwurfsprozesses, oder direkt durch das Um-
wandeln von abstrakten funktionellen Vorgaben zu den entsprechenden Materi-
alstrukturen. Diese Doktorarbeit stellt eine Reihe neuer Methoden zur Charakte-
risierung und Erzeugung von strukturierten Materialien mit verschiedenen funk-
tionellen Zielen vor.

Wir führen zuerst einen datenbankgestützten Ansatz zur Synthese von Mi-
krostrukturen ein. Nach dem Erstellen einer Datenbank von kleinräumigen Struk-
turen, welche ein klar definiertes makroskopisches Verhalten aufzeigen, wenn
man sie aneinanderreiht, benutzen wir ein Interpolationsverfahren, um mit Hil-
fe dieser Datenbank neue Strukturen zu erzeugen und Objekte mit räumlich-
ändernden elastischen Eigenschaften auszufüllen.

Wir stellen anschliessend eine Entwurfsmethode zur Erstellung von Oberflächen
mit dekorativen Ausschnitten vor, welche Ästhetik und Stabilität in einem ein-
zelnen Prozess vereint. Wir kombinieren den Ansatz der Texturen aus diskreten
Elementen mit einer Methode der Topologieoptimierung zur automatischen Op-
timierung der Verteilung der Ausschnitte und kreieren damit eine Synergie von
Struktur und Funktion.

Schliesslich entwickeln wir einen Ansatz zur Charakterisierung der mechani-
schen Eigenschaften von Stab-Netzwerken, welche auf Parkettierungen basieren.
Wir erzeugen eine kompakte Repräsentation des elastischen Verhaltens solcher
Netzwerke und untersuchen den Raum einer spezifischen Parkettierung, der iso-
hedralen Parkettierung, um zu zeigen, dass wir durch Kombinationen von einfa-
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chen Formen eine breite Auswahl an mechanischen Verhalten erzeugen können.
Wir präsentieren die resultierende mechanische Charakterisierung mit Hilfe ei-
ner intuitiven visuellen Darstellung, welche sich für die effiziente Erkundung des
zugrundeliegenden Raums der Strukturen eignet.
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C H A P T E R 1

Introduction

Whether it be the sweeping eagle in his flight, or the open apple-blossom,
the toiling work-horse, the blithe swan, the branching oak, the winding
stream at its base, the drifting clouds, over all the coursing sun, form ever
follows function, and this is the law.

– Louis Sullivan [1896]

Form follows function: the design principle coined by American architect
Louis Sullivan states that, simply put, the shape of an object should origi-
nate from its purpose and function. He compared the principle to the multi-
tude of examples found in nature—the sweeping eagle or open apple-blossom—
where the shape of a part seems to be made for its function. Of course, rather
than this being a manual design process, it is the result of natural selection,
telling us that some forms are simply better than others at fulfilling a certain
function. But the fact that form and function are closely related goes even
deeper than the typical applications of this design principle. The form of
an object is not limited to its macroscopic shape, but encompasses all pos-
sible scales down to the microscopic and atomic structure. And in nature,
there are just as many examples for the importance of small-scale structures
as there are for large-scale ones: our bones are light, yet strong due to their
porous interior structure. Butterfly wings show an extraordinary range of
colors thanks to the interaction of light with their microstructure. And the
atomic structure is what distinguishes a diamond from a pencil. In this light,
maybe Sullivan’s contemporary, Frank Lloyd Wright, put it slightly better:
”Form and function are one” [Wright, 1953].



Introduction

The fact that we as designers—in the broadest sense—are not limited to con-
structing shapes that adhere to the tight connection between form and func-
tion makes this design principle even more important. Throughout history,
we have been learning about this connection, creating new materials with
different compositions and new forms that better fulfill their function. But
while structures at large scales have become easy to control, creating struc-
tured materials with specific properties derived from their small-scale geom-
etry has been a very difficult task. Often, stochastic processes can create
fascinating new materials like metal foams [Ashby et al., 2000], but the exact
geometry of their structure is hard to control. New and improved fabrica-
tion methods, especially from the field of additive manufacturing, promise
to change that: with the ability to create complex geometries, we can con-
trol material properties in a targeted way. These metamaterials—materials
that obtain their properties from an architected structure rather than just the
material from which they are made—promise a wealth of new design pos-
sibilities, where a variety of material properties can be tailored to specific
applications. This thesis focuses on mechanical metamaterials, and specifically
the deformation behavior of ideally elastic materials.

The effect of small-scale structures in a material has long been studied for
the analysis and modeling of existing materials [Gibson and Ashby, 1997].
The precise control of such structures opens new possibilities in engineer-
ing, where we can use the existing knowledge base on structured materi-
als to formulate design principles for tailored metamaterials. But besides
creating metamaterials based on existing structures, material properties
can also be architected in new ways, by introducing spatially varying pat-
terns, tailored instabilities that create application-specific responses [Florijn
et al., 2014], or mechanism-like structures that lend themselves to recon-
figuration [Overvelde et al., 2017]. The ability to create an architected
behavior also makes metamaterials ideal for pushing the boundaries of
material properties, for example through ultrastiff, ultralight metamateri-
als that show an extreme stiffness to weight ratio [Schaedler et al., 2011;
Zheng et al., 2014], materials with a negative Poisson’s ratio [Grima and
Evans, 2000], or materials with a negative thermal expansion coefficient [Qu
et al., 2017].

The expressiveness of mechanical metamaterials is also connected to the
length scales at which structures can be fabricated. Most widely available
additive manufacturing technologies target features at the millimeter scale
and above, and can not yet take full advantage of structured materials due
to this limitation in resolution. However, advanced lithography approaches
are able to create structures at the micrometer scale and below, which al-
lows us to control geometry over multiple length scales. The introduc-
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tion of structures at different length scale creates hierarchical metamaterials
that have been shown to have material characteristics that outperform non-
hierarchical metamaterials [Meza et al., 2015]. Structures at the micrometer
length scale are also crucial in biomechanical applications: localized material
properties, which can be tailored through structure, influence cell growth,
migration, and specification [Hahn et al., 2006]. Metamaterials, in combina-
tion with new fabrication capabilities, offer opportunities for improvements
in many fields, but require the right set of tools and design principles in
order to be useful.

And the same holds true also beyond the laboratory and industry setting.
Even though the fabrication technologies available for personal use are not
as sophisticated, cheaper devices and fabrication services offer an appealing
way for personal fabrication. These possibilities create a demand for design
tools that can integrate functional descriptions and adapt to complex targets,
and still be accessible to non-expert users.

1.1 Challenges

The increased complexity from new fabrication methods opens new possi-
bilities, but also challenges existing design approaches. While it might have
been feasible to design objects with large-scale structures using a traditional
iterative approach—a structure is fabricated or possibly simulated, and a de-
signer improves the shape based on the result—designing small-scale struc-
tures with a much larger complexity in the same way is simply infeasible.
Likewise, the precise fabrication processes that have become more readily
available to non-experts cannot be fully taken advantage of because the con-
nection between form and function is not intuitive, and traditional design
tools are not able to translate functional requirements into a geometric de-
scription.

Automated approaches, such as topology or shape optimization, that cre-
ate large-scale structures that best approximate a given functional specifi-
cation have been successful in augmenting traditional design approaches.
However, even such approaches often fail if they are naively applied to the
massive design space that modern fabrication approaches offer: we cannot
optimize or even simulate the complete structure of an object down to the
micrometer or nanometer scale in any meaningful way. Rather, we have to
find ways to create complex small-scale structures without the need for a
global high-resolution simulation and optimization. This also includes care-
fully selecting the material properties that we need to model: introducing

3
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complex nonlinear and anisotropic effects into a simulation or optimization
greatly increases the computational complexity of a problem, and should be
justified by tangible improvement in the results.

Further problems arise if we want to create structures that, besides func-
tional targets, also include aesthetic considerations: when the structure of
an object will be exposed, it often needs to fulfill visual criteria to be accept-
able. However, aesthetics is not a property that is easily quantifiable, and
generally requires informed user feedback. A carefully crafted design space
is crucial to provide an environment where such an informed feedback is
possible, and where even an automatic design optimization might be feasi-
ble.

1.2 Contributions

This thesis proposes three methods that tackle the control of the mechanical
behavior of objects through their structure. The goal of these methods is to
either create materials with specific elastic properties, or to prevent defor-
mations that would lead to failure while maintaining a visually appealing
appearance. It makes the following main contributions.

• A method to create microstructures with specific elastic properties and ef-
ficiently synthesize assemblies of spatially varying structures. We opti-
mize the time-intensive task of creating microstructures for a hetero-
geneous distribution of material properties by using a data-driven
approach to synthesize new structures on demand. We analyze the
influence of the spatial variation and propose a method to select the
optimal structure from a pool of candidates with similar elastic prop-
erties.

• A design approach to create structurally-sound surfaces with decorative
patterns. We integrate simulation and optimization into the design
process of surfaces with artistic cutouts, where the aesthetic target of
a design has to be balanced with its structural integrity in a synergis-
tic way. This integration allows for a visualization of critical regions
of the design, and together with a discrete element texture objective
that captures its visual aspect, can be used to automatically improve
the stability of the result. We propose a fast simulation approach
inspired by material interpolation schemes from topology optimiza-
tion to provide interactivity and user control.

• A method to characterize the mechanical properties of structured sheets ma-
terials. We introduce a homogenization method that captures the

4



1.3 Thesis Outline

salient membrane and bending properties of structures created from
tessellations of the plane. Such tessellations represent a large design
space that combines visually appealing geometry with interesting
mechanical properties, though the relation between these properties
is highly unintuitive. We distill the material properties of these struc-
tures into a compact visual representation that allows for an intuitive
exploration of the space of tilings.

1.3 Thesis Outline

Following the introduction in Chapter 1, this thesis is structured as follows:

Chapter 2 provides an overview of the current state of research in computa-
tional design, structural optimization, fabrication-oriented algorithms, elas-
ticity simulation, and homogenization, and explains how this thesis fits into
the related work.

Chapter 3 introduces the basics of elasticity theory and the simulation of
deformable objects. It provides a basis for the methods presented in this
thesis.

Chapter 4 introduces a novel method to create microstructures with spe-
cific elastic properties, and shows how a data-driven approach can be used
to efficiently create microstructures with spatially varying properties. This
chapter is based on [Schumacher et al., 2015].

Chapter 5 describes an interactive method to create and optimize
structurally-sound shell structures with artistic cutouts. This chapter is
based on [Schumacher et al., 2016].

Chapter 6 introduces a method to characterize the deformation behavior of
rod networks based on tessellations of the plane. This chapter is based on
[Schumacher et al., 2018].

Finally, Chapter 7 summarizes the thesis, and provides an outlook for future
research directions.

1.4 Publications

In the context of this thesis, the following peer-reviewed publications have
been accepted:
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• Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner,
Chiara Daraio, and Markus Gross. Microstructures to Con-
trol Elasticity in 3D Printing. ACM Transactions on Graphics,
34(4):136:1–136:13, 2015.

• Christian Schumacher, Bernhard Thomaszewski, and Markus Gross.
Stenciling: Designing Structurally-Sound Surfaces with Decorative
Patterns. Computer Graphics Forum, 35(5):101–110, 2016.

• Christian Schumacher, Steve Marschner, Markus Gross, and Bern-
hard Thomaszewski. Mechanical Characterization of Structured
Sheet Materials. ACM Transactions on Graphics, 37(4):148:1–148:15,
2018.

The contents of these papers are included in this thesis.
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C H A P T E R 2

Related Work

This chapter provides an overview of the research efforts in computational
design, structured materials, and related fields.

2.1 Physically-based Simulation of Deformable Objects

A central part of computational design methods is the prediction of how an
object behaves in the physical world. As such, physically-based simulations
play an important role in many of these methods. Especially in the context
of stability and elasticity, modeling the deformation behavior of a material
properly is crucial. Such deformable models have originally been introduced
to computer graphics in the context of animation [Nealen et al., 2006], where
the focus has been on realism and simplicity, but not necessarily accuracy.
With the stricter requirements in computational design approaches, the finite
element method (FEM) has become a popular approach for simulations. An
excellent introduction can be found in Sifakis and Barbič [2012].

2.1.1 Shells and Rods

Apart from volumetric simulations that can model arbitrary geometries, spe-
cialized models have been developed for shells and rods, whose thin fea-
tures would otherwise require a prohibitively high resolution of the un-
derlying mesh. The simulation of thin shells has been extensively used
in computer graphics to animate cloth, but has also started to find appli-
cations in computational design tools in recent years, where it is used to
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predict and optimize different types of surfaces. Grinspun et al. [2003] in-
troduced a widely used shell model with hinge-based bending elements,
which has been further investigated and extended [Gingold et al., 2004;
Garg et al., 2007]. We employ a modified version of this shell model in Chap-
ter 5.

Specialized rod simulation approaches have also become popular in the sim-
ulation of one-dimensional structures and networks of beams. Bergou et
al. [2008; 2010] introduced popular models with space-parallel and time-
parallel frames that have also been used as the basis to computational design
methods. We use rod simulations extensively in Chapter 6.

2.1.2 Extended Finite Element Method

An emerging simulation approach in computer graphics is the extended finite
elements method (XFEM), where a regular FEM simulation is augmented with
additional basis functions, creating enriched elements that can recreate more
complex deformations such as cracks. For shell simulations, Kaufmann et
al. [2009] introduced such an approach that uses enrichment textures to aug-
ment a coarse simulation with detailed cuts.

2.1.3 Homogenization

Inspired by the seminal work of Hashin and Shtrikman [1963], homogeniza-
tion theory was developed to efficiently simulate inhomogeneous materi-
als with fine structures, allowing for microscopic behavior to be averaged
into a coarser representation with equivalent behavior at the macroscopic
scale [Hassani and Hinton, 1998; Michel et al., 1999; Cioranescu and Donato,
1999; Miehe and Koch, 2002]. A similar idea has already been used in lam-
inates, where non-dominant dimensions are analytically contracted to cre-
ate a simpler model [Reddy, 2004]. For general shells, homogenization ap-
proaches use numeric simulation [Coenen et al., 2010], and similar methods
have also been applied to beam structures [Cartraud and Messager, 2006;
Buannic and Cartraud, 2001].

To improve the simulation of complex geometries in the context of com-
puter graphics, Nesme et al. [2009] encoded the material stiffness within
coarse elements using shape functions after a fine-level static analysis, and
Kharevych et al. [2009] turned the heterogeneous elastic properties repre-
sented by a fine mesh into anisotropic elastic properties of a coarse mesh
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that effectively captures the same physical behavior. Chen et al. [2018] in-
troduced a coarsening approach for complex inhomogeneous and nonlinear
materials by tailoring the shape functions of a coarse mesh.

Chen et al. used a database of material combinations to create a data-driven
finite element method [2015], and introduced a specialized homogenization
approach for dynamic simulations [2017]. Geers et al. [2007] described a
nonlinear homogenization approach for thin sheets that uses a full solid sim-
ulation to compute the material response on the microscopic level without
fitting a material model.

We apply homogenization approaches in Chapter 4 and Chapter 6 to de-
scribe the macroscopic elastic behavior of structured materials.

2.1.4 Analysis and Visualization of Material Models

While an abstract or numerical representation of a material model is suffi-
cient to simulate the elastic response of an object, it does not lend itself to the
analysis and visualization of the material behavior. To allow for a more intu-
itive understanding especially of anisotropic materials, Marmier et al. [2010]
and Gaillac et al. [2016] introduced simple visualization approaches that cre-
ate graphical representations of important material properties.

François et al. [2017] use directional Young’s modulus plots to visualize the
material properties of triangular lattices, based on a parameterized analyti-
cal model. We use such a visualization as the basis of our characterization
method presented in Chapter 6.

2.1.5 Material Modeling and Capture

As important as it is to use the appropriate simulation approach for a given
situation, it would be useless without the right material parameters. For the
purpose of animation, such material properties can be designed virtually
with the help of intuitive methods [Xu et al., 2015b; Li and Barbič, 2015].
However, for simulations that reproduce real objects, capturing and accu-
rately modeling their material properties is essential. Apart from using stan-
dardized tests to determine a set of material parameters, methods that can
capture deformation properties of complex nonlinear and anisotropic mate-
rials have become popular. Bickel et al. [2009] presented a data-driven mate-
rial model for soft tissue. Becker and Teschner [2007] introduced a method to
fit spatially-varying material parameters from measurements of real-world
objects. For the purpose of characterizing the properties of cloth, Wang et
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al. [2011] and Miguel et al. [2012] presented systems to capture deforma-
tions of different types of cloth in various configurations and determine the
corresponding material models.

2.2 Structured Materials

While computer graphics has only recently developed an interest in struc-
tured materials, the analysis of such structures has been an important topic
in mechanical engineering and materials science for a long time [Gibson and
Ashby, 1997]. Such structures, whether they are the result of stochastic pro-
cesses in naturally occurring materials or part of specifically designed mate-
rials, are often modeled as random or regular structures, such as foams, fiber
networks, or lattices [Ashby, 2005; Picu, 2011], or as mechanism-like structures
such as truss networks [Hutchinson and Fleck, 2006] that model the behavior
of more idealized materials and are used to explore the theoretical bound-
aries of material properties.

2.2.1 Mechanical Metamaterials

Metamaterials describe structured materials whose geometry has been
tailored to have desired material properties. Mechanical metamaterials
specifically create an architected deformation behavior through their
structure [Bertoldi et al., 2017]. Inspiration for such metamaterials can
come from structures found in nature [Wegst et al., 2015], or from the
analysis and modeling of structured materials [Gibson and Ashby, 1997;
Fleck et al., 2010]. But with in increased control over the geometry
of structures, new design approaches also look into other areas, with
origami- and kirigami-inspired designs [Xu et al., 2017], combinato-
rial assemblies of structures to tailor materials with spatially varying
material responses [Coulais et al., 2016], or structures that use me-
chanical instabilities for tailored material responses [Mullin et al., 2007;
Kochmann and Bertoldi, 2017].

Metamaterials can also explore the theoretical boundaries of specific mate-
rial properties, with the goal of creating unusual material behavior. Aux-
etic materials, which exhibit a negative Poisson’s ratio—expanding laterally
when stretched [Lakes, 1987]—have become a topic of interest due to their
beneficial behavior for, e.g., shock absorption, with designs often based on
mechanism-like structures [Grima and Evans, 2000; Rafsanjani and Pasini,
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2016]. Similarly, materials with negative thermal expansion have been de-
signed using embedded multi-material structures [Qu et al., 2017]. The
boundaries of metamaterials have also been pushed by the ability to 3D
print structures below the micrometer scale [Lee et al., 2012], which can be
leveraged to construct ultrastiff, ultralight materials [Schaedler et al., 2011;
Zheng et al., 2014]. This precision also allows for the creation of hierar-
chical metamaterials that incorporate structures at different length scales,
showing promising results for ultralight materials with unexpectedly high
resilience [Meza et al., 2015].

2.3 Computational Design

Computational Design has become an important approach for the next gen-
eration of design tools. With an increase in design complexity and pos-
sibilities in functional specifications, computational design can augment
or replace traditional geometry-based design approaches with fabrication-
oriented methods. As such, computational design approaches often com-
bine simulation and optimization methods with traditional user interaction.

In computer graphics, we are currently witnessing an increasing interest in
fabrication-oriented design for reproducing 3D physical artifacts from vir-
tual representations, tackling different problems: from controlling the ap-
pearance, elasticity, or stability of fabricated objects, to solving very specific
design problems tied to unique fabrication techniques. Chen et al. [2013]
presented an abstraction mechanism for translating functional specifications
to fabricable 3D prints, and Vidimče et al. [2013] introduced a programmable
pipeline for the procedural evaluation of geometric detail and material com-
position, allowing models to be specified easily and efficiently.

2.3.1 Mass Property Optimization

The mass distribution of an object is a simple property that is hard to intu-
itively control for a user, but relatively easy to compute. Prévost et al. [2013]
were the first to introduce a straightforward method to optimize the cen-
ter of mass of an object with the goal to make it stand, and later also in-
cluded movable masses to create reconfigurable mass properties [Prévost
et al., 2016]. Bächer et al. [2014] extended the computation of mass prop-
erties to the moment of inertia, allowing them to optimize the rotational
properties needed to create spinning tops with complex geometries. Musial-
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ski et al. [2015; 2016] introduced a novel discretization of the interior surface
to simplify the computation and optimization of mass properties.

2.3.2 Structural Optimization

Finding designs with good structural properties has long been a central
topic in mechanical engineering. Topology optimization [Bendsøe and Sig-
mund, 2003; Deaton and Grandhi, 2014] has been used to find structures that
provide minimal compliance, given a fixed amount of material. These ap-
proaches often use material interpolation schemes that allow them to trans-
form the discrete problem—where to put material—to a continuous one—
how much material is at a given point [Bendsøe and Sigmund, 1999]. Wu
et al. [2016] have recently shown that even high-resolution topology opti-
mization problems can be solved efficiently. Other approaches have applied
similar principles to the design of structural shells [Hassani et al., 2013].

In the computer graphics community, several papers have proposed efficient
methods to increase the stability of 3D printed objects. Stava et al. [2012] im-
proved the structural strength by automatic hollowing, thickening, and strut
insertion. Wang et al. [2013] proposed a method for computing skin-frame
structures for the purpose of reducing the material cost of the printed object.
Lu et al. [2014] optimize a distribution of internal voids for stability to create
honeycomb-like structures with an optimal strength-to-weight ratio. This
approach can be seen as an extension of traditional infill patterns common
in 3D printing [Livesu et al., 2017]. Topology optimization methods gener-
ally assume a fixed force distribution. To find forces that most likely lead to
failure, Zhou et al. [2013] presented a method that determines the worst-case
loads for fabricated models. Using a similar approach, Langlois et al. [2016]
presented a method that determines a stochastic measure of failure points
and can be used for inverse design approaches that increase the stability
based on this measure.

While pure structural optimization methods generally lack the ability to con-
trol the aesthetics of the result, methods that combine form and function
have been successful at bridging the gap between mechanical and aesthetic
objectives. Statics aware grid shells by Pietroni et al. [2015] are an example
of physics-based surface designs with an aesthetic component, though the
appearance is restricted to Voronoi patterns.

Creating a more direction combination of aesthetics and stability through
objects with decorative patterns, Dumas et al. [2015] used a voxel-based rep-
resentation to remove material from an object by projecting a binary texture
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onto a mesh. With a similar goal, Zehnder et al. [2016] introduced a method
to create ornamental curve networks using a rod-based parameterization
that avoids rasterization and provides a high degree of artistic control. Mar-
tinez et al. [2015] directly combine appearance and compliance objectives in
a unified optimization. Their approach is based on traditional topology op-
timization and tries to find an aesthetically-pleasing structure within a given
stability bound, using a fixed amount of material.

We present our own optimization of shells with decorative patterns, inspired
by topology optimization approaches, in Chapter 5.

2.3.3 Deformation Control

Designing objects to show specific deformations under a given load goes
one step further—we no longer want to maximize the structural strength,
but aim to change the behavior of an object such that it fulfills a functional
target. Skouras et al. [2013] introduced a method to create a two-material
distribution that best reproduces a series of example deformations of the ob-
ject. Pérez et al. [2015] presented an approach to create light-weight and
cost-effective rod meshes with a desired deformation behavior and later
combined two different material domains by printing rod structures directly
on a prestretched cloth to create curved surfaces [Pérez et al., 2017]. Gu-
seinov et al. [2017] use a similar approach—combining 3D-printed parts
with prestretched membranes—to create shells that bend in a desired way
and keep their shape. Connecting the advantages of silicone with the expres-
siveness of structured materials, Zehnder et al. [2017] introduced a material
design approach that uses inclusions embedded in silicone to create various
material behaviors.

Apart from these generally static targets, other methods have investigated
motion and dynamics of objects. Hiller et al. [2012] introduced an ap-
proach to achieve high-level functionality such a locomotion of soft robots.
Ma et al. [2017] use pneumatic actuation to deform objects and optimize the
individual chambers to match a target pose. Megaro et al. [2017] optimize
the behavior of compliant mechanisms for trajectories and robustness in or-
der to replace traditional rigidly-articulated mechanisms. Bern et al. [2017]
design plush toys with internal strings that can actuate the toy in a desired
way. And Chen et al. [2016] use a numerical coarsening approach to effi-
ciently optimize the dynamic behavior of objects.

In a purely virtual approach, Xu et al. [2015a] presented an interactive mate-
rial design tool which computes a spatial distribution of material properties
given user-provided displacements and forces at a set of mesh vertices.
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2.3.4 Microstructure Optimization and Inverse Homogenization

A typical inverse design problem for structured materials is to find a specific
small-scale structure or distribution of structures that show a desired macro-
scopic deformation behavior. While this often involves an inverse homoge-
nization, there are also more direct approaches. Bickel et al. [2010] presented
a data-driven process for designing and fabricating objects with a desired
deformation behavior, based on a combination of predetermined structures
whose properties have been measured in advance.

Classical inverse homogenization approaches generally avoid these mea-
surements, instead using analytical or numerical approaches to determine
the macroscopic elastic properties from a single unit cell—the smallest re-
peatable unit in the structure. The inverse design approach then looks for
suitable small-scale structures by optimizing the material distribution in this
unit cell. Researchers have proposed various parameterizations of the ma-
terial distribution, such as networks of bending beams [Hughes et al., 2010],
spherical shells patterned with an array of circular voids [Babaee et al., 2013],
or rigid units [Attard and Grima, 2012]. Alternatively, the domain of a base
cell can be discretized into small material voxels, and a discrete value prob-
lem has to be solved. Due to the combinatorial complexity, direct search
methods are prohibitively expensive, and the problem is usually solved us-
ing a relaxed formulation with continuous material density variables [Sig-
mund, 2009] or advanced search heuristics [Huang et al., 2011].

Rodrigues et al. [2002] and Coelho et al. [2008] suggest methods for hierar-
chical topology optimization, computing a continuous material distribution
on a coarse level and matching microstructures for each coarse cell. While
in their approach each microstructure cell can be optimized independently,
each of them still needs to be computed based on a costly optimization
scheme. For functionally graded materials with microstructures, Zhou et
al. [2008] guarantee the matching of boundaries either by prescribing con-
nectors or by incorporating a complete row of cells that form a gradient dur-
ing a single optimization.

Researchers in computer graphics have been especially interested in creat-
ing efficient inverse homogenization approaches that can create large tilings
of microstructures with spatially varying properties. Panetta et al. [2015]
introduced a microstructure optimization approach based on a truss-like
parameterization that can create a database of small-scale structures with
a large range of elastic properties. Later, they extended this approach to
include a stress-based worst-case objective that also minimizes the struc-
ture’s likelihood to break [Panetta et al., 2017]. Zhu et al. [2017] followed
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the more traditional voxel-based optimization approach, applying it to the
synthesis of dual-material microstructure, but also optimize for the macro-
scopic distribution of material parameters in a two-scale approach. Martinez
et al. [2016] employed an efficient stochastic approach to create isotropic
Voronoi foams and determined the mapping between structure parameter
and mechanical properties. They extended their foam-based approach to
orthotropic foams [Martı́nez et al., 2017], and also included fabrication con-
straints [Martı́nez et al., 2018]

We propose a data-driven microstructure optimization approach similar to
[Panetta et al., 2015], but using a voxel-based discretization, in Chapter 4.

2.3.5 Appearance Control

Recent work also investigated the reproduction of appearance through a
combination of material and structure, creating a macroscopic appearance
that is governed by microscopic details. These approaches include modulat-
ing the surface structure to achieve desired reflection properties [Weyrich et
al., 2009; Lan et al., 2013; Rouiller et al., 2013], interleaving different colored
materials on the surface [Reiner et al., 2014], or volumetric combination of
multiple materials [Hašan et al., 2010; Dong et al., 2010] to control subsurface
scattering behavior.

2.3.6 Surface Design

Several researchers have proposed approaches to design different forms of
physical surfaces. Skouras et al. [2012] optimize the shape of rubber balloons
to match a target shape once inflated, and later applied a similar approach
to the design of inflatable, non-stretchable structures [Skouras et al., 2014].
Other methods include design approaches for interlocking structures [Sk-
ouras et al., 2015], plush toys [Mori and Igarashi, 2007], bead-work [Igarashi
et al., 2012], wire-mesh models [Garg et al., 2014], and thermoformed sur-
faces with textures [Schüller et al., 2016].

2.4 Textures & Tilings

Computer graphics has a long history of creating decorative patterns on
digital surfaces. These patterns are often used to add additional detail on
otherwise simple geometries, or to create interesting geometric patterns on
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such surfaces. When we take the step from purely digital models to phys-
ical models, such patterns need to not only be visually appealing, but also
fulfill fabrication constraints, such as being structurally sound. At the same
time, geometric patterns also offer an extensive space of possible mechanical
properties that arise from their spatial configuration, as we will demonstrate
in Chapter 6.

2.4.1 Texture Synthesis

Example-based texture synthesis methods use a small input exemplar to cre-
ate a seamless output in a larger domain; see for instance Wei et al. [2009]. In
contrast to traditional pixel-based or voxel-based textures, discrete example-
based textures [Ijiri et al., 2008; Landes et al., 2013] offer more flexibility to
modify a texture without destroying its appearance, and are well suited for
applications in digital fabrication. Texture synthesis approaches that use
energy-based formulations to define their neighborhood matches, for exam-
ple the methods introduced by Ma et al. [2011] and Roveri et al. [2015], are
especially suited to be included in an optimization-based computational de-
sign approach.

We use discrete element textures [Ma et al., 2011] to quantify the aesthetics
of a distribution of cutouts on a shell in Chapter 5.

2.4.2 Polygonal Patterns and Other Tilings

Computer Graphics has traditionally been interested in procedural pattern
generation for decorating digital surfaces, both with texture and with geo-
metric structures. Besides architectural applications of meshing and tiling
methods [Tang et al., 2014; Jiang et al., 2015], some of these approaches take
inspirations from physical pattern creation in quilting [Zhou et al., 2006] or
weaving [Akleman et al., 2009]. Others use tilings to create efficient sam-
plings [Ostromoukhov, 2007]. In a combination of geometry and fabrication,
Konaković et al. [2016] used the unique properties of auxetic mechanical
materials to design surfaces that can be fabricated from a single flat piece of
material.

Space-filling tilings of the plane offer an interesting parameterization for
visually appealing structures, and have been studied extensively in the
mathematics community [Grünbaum and Shephard, 1986]. Kaplan and
Salesin [2000] used a special class of space-filling tilings, isohedral tilings
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with curved edges, and in subsequent work investigated the synthesis of Is-
lamic star patterns [Kaplan and Salesin, 2004]. We take inspiration from the
aesthetics and the continuous parameterization of these tilings, and investi-
gate the space of mechanical properties that they create in Chapter 6.

17



Related Work

18



C H A P T E R 3

Fundamentals

The simulation of deformable structures is at the core of all methods pre-
sented in this thesis. This chapter will give a brief introduction to the theory
of elasticity and the finite element method, and its application to the simu-
lation of deformable structures.

We will also present a short overview and derivation of the implicit function
theorem and the adjoint method, which provide the basis for many modern
computational design approaches, including two methods presented in this
thesis.

3.1 A Very Brief Introduction to Elasticity

The general principle that governs elasticity is the tendency of an elastic
object to return to a natural state, or rest state. This phenomenon can be in-
tuitively described in terms of energy: the rest state represents the state of
least energy, and any deformation away from this state introduces more en-
ergy into the object. This additional energy generates an elastic response—an
internal force that pulls the object to its rest state—and the interaction of
this response with external forces and constraints is what we simulate in a
deformable object.

Elasticity excludes any effects that change the rest state of an object, either
due to excessive stresses (plasticity) or creep (viscosity). While backed by a
wealth of theory of their own, these inelastic phenomena are often undesir-
able, and computational design approaches generally try to prevent inelastic
deformations.
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3.1.1 Deformations and Strains

Models in elasticity generally work with a notion of deformation—a change
in shape or size. While there are many ways to describe a deformation, a
description that is useful in the context of elasticity should capture one of its
central properties: elasticity is invariant to translations and rotations, or in
other words, rigid motions will not induce an elastic response. We generally
refer to such a measure of deformation as a strain.

We start with the definition of a strain by looking at how we can describe a
deformation. We consider the relationship between the position X of a point
of the object in its rest state, and its position x(X) in a deformed state. In or-
der to describe a deformation, we want to know how the points close to this
position change: if they experience a different displacement, a deformation
will be induced. We can quantify this with the derivative of the deformed
position, and for that reason define the deformation gradient as

F =
∂x
∂X

. (3.1)

This deformation gradient measures the local deformation, but while it is
invariant to translations, it will change when rotated. We can remove the
rotational part of the deformation gradient by multiplying it with itself, cre-
ating the right Cauchy-Green deformation tensor C = FTF.

We can now use the right Cauchy-Green deformation tensor to define a
strain measure, the Green strain, as

E =
1
2
(C− I). (3.2)

Based on this strain measure, we can now define constitutive equations for
the elastic response.

3.1.2 Elastic Energy

The behavior of elastic objects can conveniently be described through an
elastic energy. Such an energy is defined with respect to a given deformation,
and describes the amount of work needed to reach this deformation. The
elastic energy of an object is generally described through an elastic energy
density Ψ(E), a function of some strain measure E—in our case generally the
Green strain or the Cauchy strain for a linear material (see below)—which is
integrated over the whole object domain Ω to arrive at the elastic energy W:
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W =
∫

Ω
Ψ(E(x))dX (3.3)

The actual form of the elastic energy is material-dependent, and generally
parameterized by a set of material parameters. The St. Venant-Kirchhoff ma-
terial model is a simple material model that uses the Green strain in its defi-
nition. It uses two material parameters, µ and λ, and has the form

ΦStVK(E) =
µ

2
tr(EtE) + λtr(E)2. (3.4)

3.1.3 Stress

The tendency of an elastic object to return to its rest state gives rise to in-
ternal forces. The stress is a measure of these forces inside a continuum. As
such, it is related to the elastic energy—the internal forces push the object
towards a lower energy state. Just as there are different ways to measure
strain, there are also different ways to define a stress. For example, the second
Piola-Kirchhoff stress tensor P of an elastic energy is defined as the derivative
of the elastic energy with respect to the Green strain:

P =
∂W
∂E

. (3.5)

3.2 Linear Elasticity

We often use a linearized version of the elasticity equations for efficiency
reason. If we can keep the strain measure as well as the material model and
the quadrature rule linear, we can generally simplify the simulation of an
elastic object to the solution of a single system of linear equations. While
such a model only captures a subset of all deformation effects, namely only
effects that involve small deformations, it is often sufficient for applications
that only require an approximate solution.

The linearized version of the Green strain is called the Cauchy strain, and is
defined as

ε =
1
2
(F + FT)− I. (3.6)
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One effect of the linearization of the strain is that while it is still invariant to
translations, it is only invariant to the linearized rotations, which are gener-
ally not a good approximation of the full rotation. Nonetheless, the Cauchy
strain is a suitable strain measure for many applications.

In the linearized version of elasticity, the elastic energy can be written in a
general form as

W =
1
2
ε : C : ε. (3.7)

The rank-4 tensor C is commonly called the material stiffness tensor. Due
to the symmetry of the energy and the underlying physical principles, this
tensor has to be partially symmetric, with the minor symmetries Cijkl = Cjikl
and Cijkl = Cijlk, as well as the major symmetry Cijkl = Cklij. A quantity that
is connected to the material stiffness tensor is the material compliance tensor
S = C−1, which is its (symmetric) inverse. While we can define a material
model with either one of these, the compliance tensor will be important in
extracting different material properties from the material tensor.

Based on this energy formulation, we can now also define the linearized
version of the stress. The linear Cauchy stress σ, which is linearly dependent
on the strain, is defined as

σ = C : ε. (3.8)

Now we can also see other relationships emerge. For example, the linear
elastic energy can also be written as a product of stress and strain, W = 1

2ε :
σ. And the material compliance tensor S can be used to compute the strain
corresponding to a given stress, ε = S : σ.

3.3 Elasticity and the Finite Element Method

One of the most popular methods to simulate elastic objects is the finite el-
ement method (FEM), which discretizes the domain of the simulation with
vertices and elements—often triangles and tetrahedra in two and three di-
mensions, respectively—and allows us to approximate the energy integral
on a per-element basis. We will not go into the details of the method here,
but refer to [Bathe, 2006] for an in-depth introduction. We will, however,
quickly summarize the result of applying the finite element method to an
elasticity problem.
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The finite element method defines a basis function for each element that ap-
proximates the function that we want to reproduce—in our case the de-
formed configuration x of the elastic object. While this basis function can be
arbitrarily complex, we will limit this introduction to linear basis functions.
In the linear case, where the deformed position is linearly interpolated in-
side each element, the deformation gradient, and therefore also the strain, is
constant. This significantly simplifies the finite element formulation of the
energy, as we do not need to apply complex quadrature rules for the per-
element integration, but can simply use a single quadrature point. The finite
element approximation of Equation (3.3) then becomes

W = ∑
i

ViΨ(Ei), (3.9)

where we take the sum over the products of the energy density for the strain
Ei inside the i-th element, and the element volume Vi. In the case of linear
elasticity, we can replace the energy density by the linear energy formula-
tion, and arrive at

W = ∑
i

1
2

Viεi : C : εi. (3.10)

3.3.1 Simulation

The simulation of a deformable object involves finding the elastic response
to a set of external forces and boundary conditions. While there is also a pos-
sible dynamic component to the solution, we are only interested in the static
case in this thesis, and solve for the equilibrium of the object where all the net
forces are zero. There are multiple ways to approach this problem, and an
elegant solution is to formulate it as an energy minimization problem: we
balance the internal elastic energy against an external energy defined by the
potential of the applied external forces. In our case, these forces are gener-
ally defined per vertex—for each vertex i, we have a force fi. The combined
energy of the system is then given as

Wtotal = W −∑
i
(xi − Xi)

Tfi, (3.11)

where xi and Xi are the deformed and undeformed positions of vertex i, re-
spectively. We can now minimize this energy using, for example, a Newton-
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Raphson approach. A solution that minimizes the energy will, at vertex i,
fulfill the first-order optimality condition

∂Wtotal

∂xi
=

∂W
∂xi
− fi = 0. (3.12)

We see that for such a solution, the external forces match the derivative of the
elastic energy, ∂W

∂xi
= fi, which just happens to be the internal force generated

by the elastic energy. We have arrived at a force equilibrium. To include all
vertices in a single equation, we will often concatenate all vertex positions
and forces into single vectors, x =

[
xT

1 · · · xT
n
]T and f =

[
fT

1 · · · xT
n
]T, and

then formulate the problem as

∇xW(x) = f. (3.13)

3.3.2 Removing Rigid Body Motion

Since the elastic energy W(x) is invariant to translation and rotation, the so-
lution to Equation (3.13) is not unique. A common work-around to this is to
constrain enough degrees of freedom to get rid of this null space. However,
the choice of degrees of freedom might influence the solution in the pres-
ence of forces. Another approach to resolve the null space is to introduce
constraints on the moments of the object, as presented in Zhou et al. [2013].
These constraints take the form

c1(x) =
n

∑
i=1

(xi − Xi) = 0

c2(x) =
n

∑
i=1

((xi − Xi)× (xi − X)) = 0,
(3.14)

where Xi is the rest state position of vertex i, and X is the mean rest state po-
sition. For simplicity, we can combine these constraints into a single vector
c(x) = [c1(x)T c2(x)T]T. Intuitively, these constraints fix the mean transla-
tion and linearized rotation. For the special case of computing c2 for two-
dimensional elasticity, we treat positions as points on the z = 0 plane and
use the z-component of the cross product.

We can then combine Equation (3.13) and Equation (3.14) into a single equi-
librium problem:
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∇xW(x) = f s.t. c(x) = 0 (3.15)

In the case of linear elasticity, this problem can be expressed as a system of
linear equations and solved efficiently.

3.3.3 Periodic Boundary Conditions

The simulation of periodic structures, such as the ones presented in Chap-
ter 4 and Chapter 6, requires a slight modification of the regular simulation
approach. Such structures can be represented by a unit cell (UC) or represen-
tative volume element (RVE)—the smallest unit that can be tiled to build an
arbitrarily large structure. When we want to determine the elastic behav-
ior of such a tiling, we generally do not want to simulate such a complete
tiling. Rather, we want to simulate a single unit cell in a way that emulates
this tiling, and then reason about the tiling from this single unit cell. Such a
tiling can be emulated using periodic boundary conditions, a set of boundary
conditions that match the shape of boundaries, and effectively simulate a
version of the unit cell that is surrounded by virtual copies of itself.

We incorporate these periodic boundary conditions by imposing constraints
on vertices on opposite boundaries. These boundary conditions guarantee
that the patch behaves as if it were surrounded by identical copies of itself,
without having to fix the position of vertices, which would artificially stiffen
the structure. The relation of a unit cell to its virtual neighbors is given by
a simple translation. Since patches are connected at the boundary, we emu-
late a tiling by guaranteeing that opposite boundaries have the same shape,
without restricting the actual shape of the boundary. This requirement can
be formulated as a constraint on the difference between corresponding pairs
of vertices on opposite boundaries [Smit et al., 1998]. For any pair of vertices
(xi, xj) on opposite boundaries and a translation dij, we can express one of
the vertices trough the other as

xj = xi + dij. (3.16)

The translation dij describes the tileability of the patch, and is identical for
every pair of vertices on the same pair of boundaries (see Figure 3.1). We
keep this translation as a degree of freedom by choosing a reference vertex pair
xα and xβ on each boundary pair, and leave their positions unconstrained.
We then express the translation as dij = xβ − xα, which ensures that while
the distance between two opposite boundaries is free, it is the same for all
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xi

xj

xα

xβ
dij

Figure 3.1: Periodic boundary conditions link all pairs of vertices on opposite boundaries
by a translation dij.

boundary vertex pairs on corresponding boundaries. These boundary con-
ditions can be efficiently integrated into a simulation by removing the cor-
responding vertices from the degrees of freedom—we lose xj as a degree of
freedom, since its value is determined by xi, xα, and xβ.

We can also use the vertices xα and xβ, and their counterpart on the other
pairs of boundaries, to apply macroscopic strains to the structure. Specifi-
cally, if we fix the displacement between xα and xβ along a single direction,
we impose a uniaxial strain, and if we fix the full displacement, it will be a
full strain.

3.4 Implicit Function Theorem and the Adjoint Method

Computational design methods are often based on a forward problem—a
simulation of an elastic object, for example—and try to solve an inverse de-
sign problem with the assumption that this forward problem is adjusted as
the design changes. If we assume that the forward problem is the solution
of a static equilibrium elasticity simulation, and our inverse design problem
can be formulated as a minimization of a function g(p, x) of some parame-
ters p and the static equilibrium x, we can formulate a general computational
design problem as

min
p

g(p, x) subject to ∇xW(x, p) = f. (3.17)

The constraint ∇xW(x, p) = f ensures that the static equilibrium condition
is fulfilled (see Equation (3.13)). While we could solve such a problem with
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a constraint optimization approach, another option is to directly integrate
the constraint into the function g and then use the implicit function theorem to
compute the correct derivative. If we assume that the constraint is always
satisfied, then the variable x is implicitly dependent on the variable p, since
the equilibrium condition changes if the parameters change. If we want to
compute the derivative of g with respect to the parameters p, as we generally
do if we want to apply a gradient-based optimization approach, we then end
up with

dg(p, x)
dp

=
∂g(p, x)

∂p
+

∂g(p, x)
∂x

dx
dp

. (3.18)

The implicit function theorem states that we can compute the derivative dx
dp

from the constraint by differentiating it.

∂W(x, p)
∂x

= f

d
dp

(
∂W(x, p)

∂x

)
=

d
dp

f

∂2W(x, p)
∂x2

dx
dp

+
∂2W(x, p)

∂x ∂p
= 0

dx
dp

= −
(

∂2W(x, p)
∂x2

)−1
∂2W(x, p)

∂x ∂p
(3.19)

We see that ∂2W(x,p)
∂x2 is the Hessian of the elastic energy, and by factorizing it,

we could compute the derivative dx
dp by solving a series of systems of equa-

tion, one for every parameter in p. However, there is a more efficient way:
the adjoint method. We can insert Equation (3.19) into Equation (3.18), and get

dg(p, x)
dp

=
∂g(p, x)

∂p
− ∂g(p, x)

∂x

(
∂2W(x, p)

∂x2

)−1
∂2W(x, p)

∂x ∂p
. (3.20)

We can now see that we multiply the inverse matrix by a vector on the left
side and a matrix on the right side. Instead of solving a system of linear
equations for a number of right-hand side, we can instead solve a single
system of equations and arrive at the same result. We first solve

∂2W(x, p)
∂x2 y =

∂g(p, x)
∂x

T

(3.21)
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for y, and then compute the derivate as

dg(p, x)
dp

=
∂g(p, x)

∂p
− yT ∂2W(x, p)

∂x ∂p
. (3.22)
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C H A P T E R 4

Controlling Elasticity through
Microstructures

The functional design of objects often requires precise control over how
the object deforms under given loads, and consequently control of its spa-
tially varying elastic properties. However, even modern additive fabrication
methods offer a limited palette of materials, and many can only use a sin-
gle material at a time. Structured materials can alleviate this problem by
manipulating the elastic properties by means of geometry, creating a meta-
material—assemblies of small-scale microstructures that exist at a scale much
smaller than the object they fill.

While many manually-designed metamaterials have been proposed, creat-
ing a material with specific properties in an automatic fashion is still a dif-
ficult and time-intensive problem. Furthermore, creating spatially varying
elastic properties requires that we vary the microstructure throughout an
object using a large number of such structures with specific properties. We
face a complex inverse problem: to determine a discrete small-scale material
distribution at the resolution of the 3D printer that yields the desired macro-
scopic elastic behavior. Inverse problems of this type have been explored for
designing periodic structures that can be tiled to synthesize homogeneous
volumes, but the methods are computation-intensive and do not scale to de-
signing non-periodic structures for objects with spatially varying material
properties.

In this chapter, we propose a data-driven approach that efficiently assembles
models out of precomputed small-scale structures such that the result resem-
bles the desired local elasticity. We first build a database of tiled structures
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indexed by their elastic properties. We want these structures to cover a large
and ideally continuous region in the space of possible elastic behaviors. To
achieve this goal, we introduce an optimization method for sampling struc-
tures that exhibit a range of desired behaviors, but are also sufficiently simi-
lar to allow interpolation.

We then use this database of structures to synthesize microstructures with
specific elastic properties, and tile the interior of an objects to create a meta-
material. We take into account that the same elastic behavior can be repro-
duced by structures that differ significantly in shape. This might create mul-
tiple candidate structures with the same elastic properties, and we propose
an efficient global optimization algorithm that selects an optimized tiling for
spatially varying structures that takes into account the geometric compati-
bility between neighboring structures.

4.1 Overview

The goal of our system is to automatically convert an object with given spa-
tially varying elastic properties into a 3D printable representation that re-
quires only a single base material for fabrication, and mimics the desired
elastic behavior. In this chapter, we limit ourselves to small strains and
demonstrate our approach for both isotropic and anisotropic elastic materi-
als. As outlined in Figure 4.1, our system consists of two main stages: a pre-
processing step that constructs metamaterial structures covering the space of
reproducible material properties, and a synthesis stage that uses those struc-
tures to generate microstructures for a given object. We start the description
by defining the most important terms we use throughout the paper.

Metamaterial Space A metamaterial space is a specific organization of
metamaterials. We target reproducing elastic behavior using 3D printers
and represent their behavior using the n parameters of the underlying con-
stitutive model. For example, linear isotropic materials are represented by
n = 2 parameters, the Young’s modulus and Poisson’s ratio. In addition,
every metamaterial space has a mapping function, mapping the n parame-
ters to one or several microstructures. This mapping is one-to-many because
different microstructures might reproduce the same elastic behavior.

Metamaterial Space Construction Our first stage aims to define a func-
tion that efficiently maps a given elastic material to a small, tileable structure
with the same bulk behavior. Our process starts by systematically sampling
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pre-process: metamaterial family construction run-time: synthesis 

microstructure  
optimization 

material space 
sampling 

input material 
parameters 

microstructure 
synthesis 

tiling 
optimization 

output 
printable model 

database: metamaterial space 

Figure 4.1: An overview of our system. In a preprocessing step, we compute metama-
terial families. Each family consists of multiple related microstructures that
can be interpolated to smoothly vary the material properties. We store all
families in a database, representing our metamaterial space. Given as in-
put an object with specified material parameters, we synthesize locally mi-
crostructures that resemble the desired deformation behavior. As multiple,
topologically different structures can have the same bulk behavior, we poten-
tially have multiple candidates of microstructures for a single location. Us-
ing these candidates, we compute an optimized tiling, ensuring that neigh-
boring structures are properly connected. Finally, the physical prototype is
3D printed.

the material parameter space. Our strategy is to compute a sparse set of
representative structures that (i) cover a wide range in the space of elas-
tic material parameters and that (ii) allow the interpolation of neighboring
structures in parameter space. Via a weighted combination of these samples,
we then reconstruct a continuous mapping from elasticity parameters to mi-
crostructures. We call such a set of interpolatable structures a metamaterial
family. A metamaterial family defines a one-to-one mapping from material
properties to structure. In practice, a family usually only covers a partial
gamut of the material space. Therefore, we precompute several families un-
til we sufficiently cover a desired range of elastic behavior. All metamaterial
families together constitute our metamaterial space. Note that, as shown in
Figure 4.9, the gamut of these metamaterial families might be partially over-
lapping, yielding a one-to-many mapping from parameters to microstruc-
tures.

Synthesis To synthesize the microstructure for a given object, we tile its
interior. For each tile, we interpolate a microstructure from each precom-
puted family of structures. This provides us with a small set of candidate
structures for each cell, out of which we have to select exactly one. These
choices are not independent; they must be made consistently so that the
structures connect well with their neighboring tiles. We suggest a carefully
designed metric that quantifies the compatibility of structures and phrase
this selection as a combinatorial problem, which we solve efficiently using
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an optimization method based on message passing. Finally, we use the se-
lected structures to fabricate the object using rapid prototyping.

4.2 Background

In order to determine and optimize for the behavior of a microstructure, we
rely on a physical model. We use a standard linear elastic model (see Sec-
tion 3.2), which we will later extend with properties specific to microstruc-
ture simulation and topology optimization.

We want to reiterate here that the linear material stiffness tensor, C(p), is a
function of a small set of material parameters p that depend on the material
model. For example, an isotropic material has two parameters, the Young’s
modulus and the Poisson’s ratio. For more complex materials, additional pa-
rameters such as the shear modulus and direction-dependent Young’s mod-
uli and Poisson’s ratios are used.

4.2.1 Numerical Coarsening

Optimizing a microstructure is an inverse problem, corresponding to the for-
ward problem of determining the coarse-scale behavior from the microstruc-
ture. This forward problem can be defined using the idea of homogeniza-
tion: compute a material stiffness tensor for a homogeneous material whose
elastic behavior matches that of the tiled microstructure. We use the Numer-
ical Coarsening approach [Kharevych et al., 2009], which uses a set of load
cases to approximate the coarse elastic behavior of a given structure. Es-
sentially, given the deformations h that these load cases induce, which are
called harmonic displacements, the method computes a single material stiff-
ness tensor C(h) that describes the homogenized material behavior of a mi-
crostructure, which we will use to solve the inverse problem. We refer to
Appendix A.1.1 for a more detailed summary to the Numerical Coarsening
approach.

4.3 Microstructure Optimization

Our microstructure optimization method solves the inverse problem to the
Numerical Coarsening method mentioned in the previous section, solving
for a microstructure that coarsens to a given stiffness tensor.

32



4.3 Microstructure Optimization

Optimizing a microstructure requires a way to define and alter the mate-
rial distribution within a cell. A common approach in topology optimiza-
tion is to discretize the material distribution by subdividing the cell into
a grid of material voxels [Sigmund, 2009], where each voxel is associated
with a binary activation that describes whether the voxel is full (1) or void
(0). However, optimizing the microstructure using these binary variables
directly would be infeasible for moderately large grids. Instead, the prob-
lem is usually relaxed by allowing the activations to vary smoothly between
0 and 1 during the optimization, and only requiring them to converge to
a binary solution at the end of the optimization. For the continuous acti-
vations, a meaningful interpolation between void and full voxels has to be
defined such that the activation corresponds to a physical quantity in the
simulation. A simple way to define this is by interpolating between stiffness
tensors. For any voxel i (1 ≤ i ≤ m, with m being the number of voxels), an
individual material stiffness tensor Ci is defined as an interpolation between
the base material stiffness tensor Cbase and air, which is assumed to have a
zero material stiffness tensor:

Ci = αiCbase. (4.1)

To ensure numerical stability, the minimum of αi is set to αmin = 10−5. This
interpolation scheme follows the established solid isotropic material with pe-
nalization (SIMP) approach for an exponent of 1 [Sigmund, 2009]. Choosing
a different exponent would help to converge to a binary solution in topology
optimization problems with extremal objectives, where adding more mate-
rial improves the objective and the maximum amount of material is fixed by
a constraint. However, we do not have such an objective, and have to resort
to other means to reach a binary solution. As a consequence, the exponent
we choose does not influence the convergence.

The number of activations can be reduced by exploiting symmetries of the
goal material. For example, for a cubic material, the response along each
principal axis has to be identical, and we mirror the activations along all
axes and all diagonal planes accordingly.

4.3.1 Problem Formulation

We pose the problem of finding a microstructure that exhibits a large-scale
behavior identical to a homogeneous material with desired material param-
eters pgoal (see Section 4.2) as a least squares problem. From the parameters
pgoal, a stiffness tensor Cgoal = C(pgoal) can be computed. The optimization
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then modifies the vector of activations α = [α1 · · ·αm] such that the homog-
enized stiffness tensor C(h(α)), which is indirectly dependent on the activa-
tions through the harmonic displacements h(α), matches the goal stiffness
tensor as closely as possible:

min
α
‖Cgoal −C(h(α))‖2

F + R

s.t. αmin ≤ αi ≤ 1 1 ≤ i ≤ m.
(4.2)

Here, R is a combined regularization term that penalizes less desirable re-
sults. This formulation differs from most other microstructure optimiza-
tion approaches that typically try to find extremal properties for a specific
amount of material. It is related to the formulation in [Zhou and Li, 2008],
though it does not use a volume fraction constraint. Panetta et al. [2015] also
use a similar objective, but measure the error through the material compli-
ance tensor instead of the material stiffness tensor.

4.3.2 Regularization

While the optimization problem (4.2) could be solved without any regular-
ization, there is no guarantee that the result can be fabricated. In order to
enforce manufacturability, we add three different regularization terms Rb,
Rs and Rcb with corresponding weights wb, ws and wcb to the objective. The
combined regularization term R is defined as

R = wbRb + wsRs + wcbRcb. (4.3)

Figure 4.2 and 4.3 show the influence of the individual regularization terms.
In the following, we will elaborate on each term.

Enforcing Binary Values While the simulation allows the activations α

to vary freely between αmin and 1, these configurations do not correspond to
valid physical objects. For fabrication, the activations have to be binary (ex-
cluding the small offset αmin to ensure numerical stability). In order to reach
such a solution, the regularization term Rb acts as a penalty for activations
that are not equal to either αmin or 1:

Rb =
m

∑
i=1

(αi − αmin) (1−αi) . (4.4)
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wb = 7.49 wb = 11.33 wb = 87.38 wb = 3.2 · 1012

Figure 4.2: Optimization at different stages (with different penalty weights to force the
activations towards αmin or 1).

We gradually increase the weight wb during the optimization, transitioning
from a continuous to a discrete solution. For each value of the weight, a
full optimization is run until convergence is reached. If the solution is not
binary, the weight is increased and the optimization resumed. Figure 4.2
shows different stages of the optimization, with various weights wb.

Smoothness The size of a single microstructure cell in a fabricated object
is largely defined by two factors: the resolution of the 3D printer, and the
size of the smallest detail in the structure. Smaller cells provide a better
approximation of a continuous material, and since the printer resolution is
assumed to be fixed, structures without small details are generally preferred.

The regularization Rs views the activations as an approximation of a mate-
rial distribution field, and uses a second-order finite difference approach to
penalize deviations from smoothness. For this purpose, any component of
α is assumed to have two indices in 2D, such that αi,j corresponds to the
voxel (i, j). The regularization in 2D then has the form

Rs = ∑
i,j

(
αi−1,j +αi+1,j +αi,j−1 +αi,j+1 − 4αi,j

)2 . (4.5)

In 3D, we instead use six neighbors to compute the second-order finite dif-
ference approximation. Assuming each component of α is associated with
three indices, such that αi,j,k corresponds to the voxel (i, j, k), the regulariza-
tion has the form

Rs = ∑
i,j,k

(
αi−1,j,k +αi+1,j,k +αi,j−1,k

+αi,j+1,k +αi,j,k−1 +αi,j,k+1 − 6αi,j,k
)2

(4.6)
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Checkerboard Patterns An artifact that frequently appears in topology
optimization is elements that are connected by a single vertex, called checker-
board patterns [Sigmund and Petersson, 1998]. To avoid such structures, the
regularization Rcb penalizes configurations that contain checkerboard pat-
terns, as illustrated in Figure 4.3. In 2D, this regularization is based on 2× 2
patches of voxels and has the form

Rcb = ∑
i,j
(1−αi,j)(αi+1,j −αmin)(αi,j+1 −αmin)(1−αi+1,j+1)

+(αi,j −αmin)(1−αi+1,j)(1−αi,j+1)(αi+1,j+1 −αmin).
(4.7)

In the case of binary activations, Rcb is only non-zero if the structure contains
a checkerboard pattern. In the continuous case, the regularization also acts
as an additional regularizer that pushes the activations towards αmin or 1.

In 3D, the number of different local checkerboard patterns increases.
Checkerboard patterns now include structures that are connected by a single
vertex or a single edge. To cover these two cases, we will split the regular-
ization term in two components, Rcb,v and Rcb,e, respectively.

To check for structures connected by a single vertex, Rcb,v has to cover
patches of 2× 2× 2 voxels. For these patches, there are four configurations
that are undesirable and will not be covered by Rcb,e. These are the only con-
figurations for which a binary solution should lead to a regularization value
larger than 0. This condition can be formulated as

Rcb,e = ∑
i,j,k

(αi,j,k −αmin)(1−αi+1,j,k)(1−αi,j+1,k)(1−αi,j,k+1)

(1−αi+1,j+1,k)(1−αi+1,j,k+1)(1−αi,j+1,k+1)(αi+1,j+1,k+1 −αmin)

+(1−αi,j,k)(αi+1,j,k −αmin)(1−αi,j+1,k)(1−αi,j,k+1)

(1−αi+1,j+1,k)(1−αi+1,j,k+1)(αi,j+1,k+1 −αmin)(1−αi+1,j+1,k+1)

+(1−αi,j,k)(1−αi+1,j,k)(αi,j+1,k −αmin)(1−αi,j,k+1)

(1−αi+1,j+1,k)(αi+1,j,k+1 −αmin)(1−αi,j+1,k+1)(1−αi+1,j+1,k+1)

+(1−αi,j,k)(1−αi+1,j,k)(1−αi,j+1,k)(αi,j,k+1 −αmin)

(αi+1,j+1,k −αmin)(1−αi+1,j,k+1)(1−αi,j+1,k+1)(1−αi+1,j+1,k+1)
(4.8)

Structures that are connected by a single edge can be detected by looking at
patches of 2× 2× 1 voxels, similar to the regularization in 2D. Considering
all the orientations of this patch, this condition can be written as
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Rb Rb + Rcb Rb + Rcb + Rs

Figure 4.3: Influence of different regularizations: Optimization results where only bi-
nary values are enforced (left), with additional anti-checkerboard regular-
ization (middle) and with smoothness regularization (right). The objective
value for the last two results is similar, while the first result has a worse
objective value.

Rcb,v = ∑
i,j,k

(1−αi,j,k)(αi+1,j,k −αmin)(αi,j+1,k −αmin)(1−αi+1,j+1,k)

+(αi,j,k −αmin)(1−αi+1,j,k)(1−αi,j+1,k)(αi+1,j+1,k −αmin)

+(1−αi,j,k)(αi+1,j,k −αmin)(αi,j,k+1 −αmin)(1−αi+1,j,k+1)

+(αi,j,k −αmin)(1−αi+1,j,k)(1−αi,j,k+1)(αi+1,j,k+1 −αmin)

+(1−αi,j,k)(αi,j+1,k −αmin)(αi,j,k+1 −αmin)(1−αi,j+1,k+1)

+(αi,j,k −αmin)(1−αi,j+1,k)(1−αi,j,k+1)(αi,j+1,k+1 −αmin).

(4.9)

Regularization Weights The performance of our microstructure opti-
mization depends on the choice of weights, and how they are updated dur-
ing the optimization. We list here the initial values for these weights for
the 2D and 3D optimization, as well as the update that is applied once the
optimization converged for the current weights:

37



Controlling Elasticity through Microstructures

2D w0
b = 0 wt+1

b = 1.3wt
b + 0.1

w0
s = 2 wt+1

s = 1.1wt
s + 0.2

w0
cb = 0 wt+1

cb = 5wt+1
b

3D w0
b = 0 wt+1

b = 1.3wt
b + 0.5

w0
s = 5 wt+1

s = 1.1wt
s + 1

w0
cb = 0 wt+1

cb = 5wt+1
b

Connectivity An additional fabrication requirement is connectivity. The
optimization will generally not favor binary solutions in the absence of reg-
ularization term Rb. As the influence of this term grows with increasing
wb, the previously intermediate activations will be pushed to αmin or 1, and
the structure might become disconnected (see Figure 4.4). To prevent the
optimization from converging to such a solution, disconnected components
are detected after every iteration. To account for the continuous nature of
the activations, every activation below a threshold of 0.1 is considered inac-
tive during the detection. If a disconnected component has been found, we
compute the cost of connecting the component as the smallest change in ac-
tivations that builds a connection, assuming that we set the activations to a
value of 0.6. If this cost is smaller than the change in activations necessary to
remove the disconnected component, we create the connection, and remove
the disconnected component otherwise. The final result is then guaranteed
to be connected.

In 3D, an additional fabrication constraint is necessary. While 3D printing
can handle complex structures, most approaches rely on support material to
create overhanging structures. This support material has to be removed af-
ter printing. This means that every void voxel in the structure has to be
connected to the boundary of the cell. To this end, we use the same ap-
proach we used to connect components, but switch the role of void and full
voxels. In practice, we did not observe any convergence problems due to
these constraints.

4.3.3 Numerical Methods

The optimization problem (4.2) is solved with L-BFGS-B [Byrd et al., 1995],
which enforces the boundary constraints. Additionally, the indirect relation-
ship between the coarsened stiffness tensor C(h(α)) and the activations α
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(a) (b) (c) (d)

Figure 4.4: Influence of the connectivity enforcement: Without using any connectivity
enforcement during the optimization (a), the final structure might consist
of several disconnected components (b). Enforcing connectivity with our
scheme locally adjusts the activations (c) such that the final result is guar-
anteed to be fully connected (d).

through the harmonic displacements h(α) defined in Equation (A.1) has to
be taken into account when computing the derivatives of the microstruc-
ture optimization problem introduced in the paper. When the chain rule is
applied to this problem, the Jacobian of the harmonic displacements with
respect to the activations, dhab

dα , emerges. Since these quantities are implicitly
linked by the solution of an elasticity problem, given the boundary trac-
tions defined in (A.1), we use the implicit function theorem to compute the
Jacobian (see Section 3.4). For this, we take the derivatives of both the min-
imization condition ∇xUel = 0 and the constraints c = 0 with respect to
α:

∂2Uel
∂hab ∂α

+
∂2Uel

∂hab
2

dhab
dα

= 0

∂c
∂hab

dhab
dα

= 0.
(4.10)

Solving this system of equations for the desired Jacobian dhab
dα requires only

a single sparse matrix decomposition.

4.4 Metamaterial Spaces

The optimization method from the previous section is able to produce mi-
crostructures for a variety of material parameters, but may take a long time
to generate a desired structure. Moreover, if the desired object contains spa-
tially varying parameters, several optimizations need to be performed to
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generate the required microstructures, making this approach infeasible in
practice. To avoid this problem, we use a data-driven approach to assemble
a structure with a desired behavior by interpolation from a pre-computed
metamaterial family.

A metamaterial family is a collection of microstructures, each labeled with
its corresponding coarse-scale material parameters, which are a point in the
space of possible material properties (parameter space); we think of the mi-
crostructure as being “located at” that point. In this section, we first describe
how the structures are represented and how their locations in parameter
space are determined. We then propose a technique to interpolate between
these structures, providing a way to efficiently compute a corresponding mi-
crostructure for any point in the parameter space. Finally, we discuss how to
use the microstructure optimization approach described in the previous sec-
tion to create metamaterial families by computing sets of related microstruc-
tures that cover a wide range in parameter space.

In Section 4.5 we explain how several such continuous families (collectively,
a metamaterial space) are used together to assemble models spanning the
entire range of achievable material properties.

4.4.1 Microstructure Representation

Geometry While the voxel-based discretization we used during the mi-
crostructure optimization is useful in that context, it poses two problems for
the construction of a metamaterial space: (i) The changes to the structure
are all discrete in nature, so the resulting interpolation cannot be continu-
ous, and (ii) the resulting geometry can contain stair structures. These sharp
corners can lead to localized stresses under deformation and the structure
would fracture more easily.

Instead of using voxels, we use signed L2-distance fields in [0, 1]d to repre-
sent structures in a metamaterial space, which allows for a smooth interpo-
lation. Additionally, we perform a Gaussian smoothing step every time we
sample a microstructure from the metamaterial space, which removes un-
wanted discretization artifacts (Figure 4.5). To increase resolution, we scale
the grid resolution by a factor of 2 and 3 compared to the original voxeliza-
tion, in 2D and 3D, respectively.

Material Parameters Numerical Coarsening is used to compute a stiffness
tensor that describes the behavior of a particular microstructure. However,
for sampling and interpolation we would like to use a parameter space with

40



4.4 Metamaterial Spaces

σ = 0 σ = 0.005 σ = 0.02 σ = 0.05

Figure 4.5: Results of the smoothing pass for different Gaussian spread values σ.

fewer degrees of freedom than this tensor has (6 in two dimensions, 21 in
three dimensions). By considering only isotropic, cubic or orthotropic ma-
terials, the parameter space can be reduced to a subset of material tensors,
while still offering enough freedom to show a large variety of deformation
behaviors.

To approximate the parameters from a material stiffness tensor computed
by Numerical Coarsening, a simple constrained least-squares approach is
used. Assuming a material stiffness tensor Ĉ is given, the corresponding
parameters are computed by solving

min
p
‖C(p)− Ĉ‖2

F

s.t. pmin
i ≤ pi ≤ pmax

i .
(4.11)

The function C(p) is defined by the choice of the material model, and pmin
i

and pmax
i are the physics-based bounds on the parameters, such as the lower

limit of 0 for the Young’s modulus. We additionally apply a normalization to
the parameters that transforms all parameters with dimensions, such as the
Young’s modulus or the shear modulus, into dimensionless parameters by
dividing them by the corresponding parameter of the base material. Since
we use a linear material model, the resulting parameters describe the ratio of
the structure’s parameter to the base material’s parameter, which also allows
us to scale our results to materials with an arbitrary Young’s modulus or
shear modulus, assuming that the Poisson’s ratio stays the same. Addition-
ally, since we use this relative Young’s modulus and relative shear modulus
to store entries in parameter space, the distance between the parameters of
two microstructures is independent of the base material’s stiffness.
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w = 0.25 w = 0.50 w = 0.75

Figure 4.6: Top row: Results of the interpolation between the structures on the left and
right for different weights w. Bottom row: Corresponding signed distance
fields, illustrated as color plots (blue positive, red negative).

4.4.2 Interpolation

The microstructures in our database describe metamaterials with certain
properties; each gives a point sample of the mapping from material pa-
rameters to microstructures. Figure 4.11, 4.9, and 4.10 illustrate data points
for various metamaterial families. To generate a structure for an arbitrary
given set of parameters, we interpolate between points of a family, forming
a weighted average over a set of microstructures with similar elastic proper-
ties. We first compute weights based on the inverse distance between the in-
put parameters and the parameters of the metamaterial space samples, using
the Wendland function with compact support [Nealen, 2004]. We chose the
parameter of the Wendland function such that the weights vanish beyond a
given interpolation radius, which is set to 0.1 in normalized coordinates, or
the distance to the (M + 1)-nearest neighbor (M being the number of ma-
terial parameters), whichever is larger. Before we interpolate, we apply the
transformation f (x) = sgn(x) log(|x|+ δ) to transform the distance fields to
logarithmic space, and add a small constant δ = 10−3 to keep values near
the surface. In practice, we found that interpolation in logarithmic space re-
duces artifacts due to topology changes, e.g., holes appearing or disappear-
ing. Given the weights and transformed distance fields, we then compute
the interpolated structure by linearly interpolating the transformed distance
fields. Figure 4.6 illustrates the interpolation process.
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4.4 Metamaterial Spaces

4.4.3 Generating Metamaterial Families

Our metamaterial space consists of several, potentially overlapping, inde-
pendent metamaterial families. We start the construction of a metamaterial
family from a single microstructure, which we either model by hand based
on existing examples from the literature, or obtain from our microstructure
optimization (Section 4.3). We then add dilated and eroded versions of this
initial microstructure to achieve a large initial sampling of the metamate-
rial space with good interpolation properties. The dilation and erosion are
performed directly on the distance field of the structure.

The metamaterial family construction then continues to do two things: (i)
Generate new candidates by evolving existing structures, which allows us
to refine regions that are already covered by samples, but with insufficient
sampling density, and (ii) generate new candidates by optimizing for new mi-
crostructures outside of this space. We proceed by alternating between these
two stages until both stages do not generate new microstructures.

Evolving Existing Microstructures The first stage is a heuristic search
based on the existing samples in the metamaterial family. For the refinement,
we create the Delaunay triangulation of all parameter points, and collect all
the simplex centers. For every center, we check how well the parameters of
the interpolated structure match the desired parameters, and add the inter-
polated structure to the metamaterial space if the deviation from the desired
parameters is too large. For our experiments, we used a threshold of 0.1. In
3D, we additionally try to expand the metamaterial family in this stage. For
this, we first compute the convex hull of all parameter samples. For every
vertex on the convex hull, we then compute an offset point along the nor-
mal, which we use as the goal parameters for a microstructure optimization.
However, instead of running the optimization, we only compute the gradi-
ent of the objective and use it to change 2% of the activations in a discretized
version of the current sample, which we then add to the metamaterial family.

Optimizing for New Microstructures The second stage is based on the
microstructure optimization introduced in Section 4.3. For the refinement,
we again compute the Delaunay triangulation and check how well the in-
terpolation works at the simplex centers. If it is insufficient, we run a mi-
crostructure optimization for the parameters at the simplex center with an
initial guess computed from the weighted combination of all samples in the
neighborhood of the simplex center. Additionally, we introduce a similarity
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regularization, explained in more detail in the next paragraph. For the ex-
pansion, we again use the convex hull of all parameter samples and generate
new parameter points by sampling the convex hull and offsetting the points
along the normal. For each of these points, a microstructure optimization is
run, constructing the initial guess in the same way as for the refinement and
using the same additional regularization.

For any new microstructure optimization that is run for a given set of pa-
rameters, the result should be similar to the existing structure to improve
the interpolation. To lead the optimization into the desired direction, an
additional regularization is added to the optimization. This regularization
penalizes the amount of change between a new structure and the structure
of the N neighbors in parameter space closest to the goal parameters. To
allow for small changes, this penalty uses an exponential function:

Rsim =
N

∑
i=1

wi
sime

( 1
m ∑m

j=1|αj−α
i
j |

∆αi

)2

, (4.12)

where wi
sim = (N(1 + di))

−1 is the weight for neighbor i with distance di
to the desired parameters, αi

j is its j-th activation and ∆αi = 0.1 + 2di is a
threshold for the maximal desirable difference to this neighbor. Addition-
ally, the initial activations for the optimization are set to a weighted average
of the neighbors, after a smoothness step is applied. This reduces the risk of
ending up in a local minimum.

Figure 4.7: The first 5 microstructures generated for a parameter space without similar-
ity regularization (top) and with similarity regularization (bottom), starting
from an initial structure (left).
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Figure 4.8: Three potential configurations of two neighboring cells. Left: The individ-
ual structures closely match the desired parameters, but the boundaries are
incompatible. Middle: Opposite case. Right: Our optimization computes a
trade-off between the two extremes.

4.5 Structure Synthesis

Using the microstructure optimization and parameter space sampling meth-
ods, we can define several families of related structures that together span
the feasible range of bulk material parameters (Figure 4.9). Synthesizing
a homogeneous material volume at this stage becomes trivial: We select a
family that covers the desired material behavior, compute the correspond-
ing microstructure of the cell by interpolation as described in Section 4.4.2,
and then fill the volume by repeating this cell. Note that by construction this
cell is tileable. However, approximating spatially varying materials is more
challenging.

Simply synthesizing microstructures for cells independently at each point in
the model could lead to a mismatching boundary when multiple different
cells are tiled, as illustrated in Figure 4.8. Such boundary mismatches will
change the behavior of the cell, which was assumed to be in an infinite tiling
of identical structures when its coarsened material parameters were com-
puted. Therefore, both the geometry as well as the force profiles occurring
at the boundaries under deformation need to be taken into account.

We propose a strategy that takes advantage of the multiple candidate struc-
tures for each cell provided by the overlapping families in our metamaterial
space. To compute an optimal selection from these candidates, we propose
to minimize boundary dissimilarity between each pair of neighboring struc-
tures.

For a set of cells with desired parameters p1, . . . , pk and information about
the connectivity between cells, we interpolate one structure for each cell
from each of the l families, resulting in structures Si,1, . . . , Si,l for every pa-
rameter sample pi. Finding the optimal choice of structures can then be
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formulated as a labeling problem: assign a structure to each cell to minimize
a given cost function.

We propose a cost function that combines two types of costs. The labeling
cost TL

i,j = edi,j describes how well a given structure Si,j matches the desired
parameters, and is based on the distance di,j between pi and the material
parameters of the structure as computed by Numerical Coarsening.

The second cost TD
(i,j),(r,s) = eg(i,j),(r,s) is based on the dissimilarity g(i,j),(r,s) of

the boundaries of two neighboring structures Si,j and Sr,s. In most cases, it
is sufficient to use the percentage of the boundary on which the two struc-
tures agree about the presence or absence of material. But since the problem
of matching boundaries is linked to force discrepancies along the boundary
during deformation, this dissimilarity can be improved by also considering
the forces acting across the boundary. For this, we impose a unit strain on
the boundary of each cell, such that they are stretched perpendicular to the
boundary between the two cells. We then integrate the force magnitude as
well as the force difference magnitude over the boundary, and set the dis-
similarity g(i,j),(r,s) to the ratio of force difference magnitude to mean force
magnitude. We compare the two approaches to compute the boundary dis-
similarity in Section 4.6.2.

Finding the globally optimal solution to this optimization problem is NP-
hard. However, efficient algorithms exist that can find an approximate so-
lution. We employ an iterative method using message passing based on the
alternating direction method of multipliers (ADMM) as described in Derbinsky
et al. [2013].

For the resulting structures, the distance fields can then be combined. To
improve connectivity between cells, the smoothing pass is performed on the
combined distance field instead of each cell individually. The final structure
is reconstructed from the combined distance field using marching cubes.

Connectivity Our synthesis method does not guarantee connectivity.
While we did not encounter cases of disconnected cells in our result, they can
be detected easily and fixed by introducing additional connections between
disconnected structures, at the expense of the accuracy of the approximated
elastic properties.
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Figure 4.9: Top: Data points for five different metamaterial families for a cubic material
in 2D. The values for the shear modulus are omitted. Bottom: The individual
metamaterial families, including a visualization of some of the structures.
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4.6 Results

4.6.1 Metamaterial Space Construction

We tested our method on three different material classes. In 2D, we gener-
ated metamaterial spaces for cubic materials (3 parameters) and orthotropic
materials (4 parameters), using a resolution of 402 voxels for the microstruc-
ture optimization. Due to the inherently anisotropic nature of square and
cubic microstructures, we found that a cubic material space is better suited
even for cases where one is only interested in the Young’s modulus and Pois-
son’s ratio defining an isotropic material.

Figure 4.9 shows the Young’s modulus and Poisson’s ratio of multiple meta-
material families for a cubic material. While a single family may span a wide
range of parameters, this example shows that combining multiple families
can significantly expand this range. Figure 4.10 shows the orthotropic meta-
material families, projected into four different combinations of the parame-
ter axes.

We also used our method to compute a metamaterial space for cubic mate-
rials in 3D (Figure 4.11), using a 163 voxels for the microstructure optimiza-
tion.

Timings For the microstructure optimization in 2D with a resolution of
402, a single optimization step takes around 200 to 800 ms to compute. The
optimization usually converges in fewer than 500 iterations, resulting in a to-
tal computation time of several minutes per optimization. An optimization
in 3D with a resolution of 163 runs with 8 to 30 seconds per iteration, and
usually also converges in fewer than 500 iterations, for a total computation
time of around 2 hours per structure. Note that the metamaterial space con-
struction is a preprocessing step that is only run once to build the database,
and it can be easily parallelized.

For the structure synthesis, we tested the runtime of the optimization by
combining three metamaterial spaces for different numbers of cells. For 400
cells, the optimization takes about 0.5 seconds, for 2500 cells about 2 seconds
and for 10000 cells on the order of 40 seconds. Synthesizing the distance
fields and running the optimization took less than 10 seconds in all of our
examples.
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Figure 4.10: Data points for four different metamaterial families for an orthotropic mate-
rial in 2D. We show the relative Young’s moduli Ex and Ey the x-direction
and y-direction, the relative shear modulus and the Poisson’s ratio νyx that
describes the contraction in x-direction for an extension applied to the y-
direction.

4.6.2 Validation

Our method relies on the ability to compute the material behavior of a mi-
crostructure from its design. To validate the results obtained by Numerical
Coarsening, we tested several of our structures in a tensile test, and com-
pared the results to our prediction. Since we are dealing with linear elastic-
ity, the Numerical Coarsening and the optimization itself are independent
of the Young’s modulus of the base material. The result can be adapted to
any material with the same Poisson’s ratio by a simple scaling, meaning that
the ratio of the computed Young’s modulus of the microstructure and the
Young’s modulus of the base material is constant.

Our samples were fabricated by selective laser sintering of an elastic ther-
moplastic polyurethane (TPU 92A-1).
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Figure 4.11: Data points for three different metamaterial families for a cubic material in
3D. The values for the shear modulus are omitted. A set of six structures
for every family is visualized. The position of the structure is marked by
the corresponding number.

Test Setup and Method We used an Instron E3000 frame
with a 5 kN load cell for the material test. For the 2D struc-
tures, we performed tensile tests using a 10 cm pneumatic
grip (see inset). We first characterized the base material using
dog-bone shaped structures. To measure the tensile strength
of the microstructures, we created samples consisting of a
grid of 7× 15 unit cells (56 mm× 120 mm), to reduce bound-
ary effects. After clamping, the samples were slightly pre-
stretched (< 1 MPa) and tested with a constant displacement
rate of 50 mm/min. The three-dimensional structures were
tested in a compression test, using a displacement rate of
5 mm/min. The compressive properties of the base material
were measured on a cylindrical sample, and the microstruc-
ture samples used a grid of 7× 7× 6 cells (56 mm × 56 mm
× 48 mm, images in Table 4.1).

Tensile Test Results In Figure 4.12 we compare the measured tangent
modulus vs. strain for each generated structure with a measurement of the
base material scaled by the relative Young’s modulus predicted by simula-
tion. The results indicate a good fit for small strains, and for most structures
even for larger strains up to 0.1. The softest structure (9.9% of the base ma-
terial’s Young’s modulus) deviates slightly from the scaled base material for
larger strains, showing a nearly linear behavior as compared to the nonlin-
ear behavior of the base material. This difference is likely due to the more
pronounced rotations in sparse structures.
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Figure 4.12: Tensile test results for a number of microstructures. Top: Test results for
synthesized microstructures with a Young’s modulus of 9.9%, 24.6% and
50.1% of the base material. The scaled curve of the base material is shown
for reference. Bottom: Test results for interpolated microstructures with
orthotropic material behavior. The computed Young’s moduli were 20.5%
and 50.6% of the base material’s Young’s modulus.

Structure A Structure B Structure C
Simulation 19.0% 8.6% 12.8%

Measurement 21.5% 6.8% 12.2%

Table 4.1: The predicted and measured Young’s moduli for each of the three structures
measured in a compression test.

Compression Test Results We determined the Young’s modulus of the
base material and three generated structures by fitting a line to the linear
region of the stress–strain measurement during a loading phase. Table 4.1
shows that the predicted and measured relative Young’s modulus match rea-
sonably well. The stress–strain plots as well as the linear fits can be found in
Appendix A.1.2.

Material Gradient We tested our structure synthesis on a simple material
gradient example (Figure 4.13) to study how well the coarsened properties
match the goal for inhomogeneous cases. We specified the relative Young’s
modulus E and Poisson’s ratio ν for a 5 × 15 grid with a linear transition
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Figure 4.13: A material gradient with a greedy tiling (top left), showing several subop-
timal tile boundaries, and our optimized tiling (bottom left). Using only
one of five metamaterial spaces would result in a better tiling, but worse
approximation of the desired material parameters (right).

from E = 0.1 and ν = 0.6 to E = 0.9 and ν = 0.4, and ran our algorithm
with different settings and input. Using only structures from a single fam-
ily resulted in good matching of interfaces between cells, with an average
boundary dissimilarity below 5%. However, the average normalized dis-
tances between the simulated parameters of the generated structures and
the desired parameters were large, with values of 0.203, 0.075, 0.177, 0.228,
and 0.104 for the five metamaterial families we used for this test. By us-
ing these metamaterial families to get a set of candidate structures, we can
greedily choose the best structure for each cell to achieve an average normal-
ized distance of 0.051. However, there is no guarantee that these structures
fit together, and Figure 4.13 (orange) shows that the greedy synthesis gen-
erates poorly fitting transitions, with an average boundary dissimilarity of
15.3%. Using the method described in Section 4.5, we can optimize for pa-
rameter approximation and boundary similarity at the same time. While the
approximation of the desired parameters for the individual cells is slightly
worse than for the greedy solution, with an average normalized distance
of 0.065, the boundary dissimilarity in the resulting structure (Figure 4.13
(green)) was significantly better (4.2%).

Boundary Forces We presented two different approaches to represent the
boundary dissimilarity during the synthesis stage. Figure 4.14 shows a sit-
uation in which simply comparing the geometry of the boundary performs
worse than comparing the boundary forces under unit strain. We used nu-
merical coarsening to determine the material parameters of these structures,
as well as the parameters of a uniform mesh where each region is assigned
the coarsened material parameters of the corresponding cells in the struc-
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Figure 4.14: Two gradients computed for the same goal parameters, using geometry
(left) and boundary forces (right) to estimate the boundary dissimilarity
during synthesis. The actual material parameters for the right structure
deviate less from the predicted parameters (error of 0.0266, left, and 0.0137,
right).

ture. If only the geometries of the boundaries are compared, the distance
between the actual parameters of the structure and the predicted parame-
ters is 0.0266, while the error is only 0.0137 if the boundary forces are used
to predict the dissimilarity of the cell boundaries.

Effects of Heterogeneity We explored our method’s performance for
strongly heterogeneous goal parameters with two different tests, looking at
the influence of the spatial frequency and amplitude of parameter changes
on the prediction error. On a grid of 12 × 12 cells, we synthesized tar-
get Young’s moduli in a sinusoidal pattern. We tested frequencies from
a single period across the grid to 6 periods (i.e. a checkerboard), and am-
plitudes of parameter change ranging up to 45%, with a mean of 50% of
the base material, resulting in a maximum range of 5% to 95%. We com-
puted the difference between the homogenized material parameters of the
synthesized structure and the homogenized material parameters of a uni-
form mesh with local material parameters set to the goals for the individual
cells. Even though the assumption of infinite homogeneous tilings is vio-
lated, Figure 4.15 shows that for such heterogeneous tilings, the prediction
error is below 0.05 even for very drastic parameter changes, and only above
that in extreme cases where the change from maximal to minimal parame-
ters happens in a span of less than two cells, or the amplitude is larger than
0.35.

4.6.3 Application Examples

Gripper Inspired by the field of soft robotics, we designed a simple gripper
that can be actuated by air pressure (Figure 4.16). The gripper consists of two
hollow tubes 16cm in length, printed with a soft material. The tubes are de-
signed as a 2D structure with a stiff material on one half and an anisotropic
material—soft along the tube and stiff along the circumferential direction—
on the other half. A balloon is inserted into each tube, and increasing the
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Figure 4.15: The influence of a heterogeneous tiling on the approximation error, based
on a 12× 12 grid with a sinusoidal distribution of Young’s moduli. The
colors of the plot match the metamaterial families shown in Figure 4.9. We
also show the spatial distribution of the Young’s moduli at the top of the
plots (blue=soft, orange=stiff). Top: The error plotted for varying numbers
of periods for the parameter distribution, with an amplitude of 45% (solid
line) and 20% (dashed line). A frequency multiplier of 6 corresponds to a
checkerboard distribution. Bottom: The error plotted for different ampli-
tudes, with a frequency multiplier of 3 (solid line) and 2 (dashed line).

pressure inside the balloons causes the tubes to bend due to the difference
in stiffness. At the same time, the anisotropy of the structure prevents large
changes in diameter. While this is only a very simple actuator, we believe
that our method could be an important step towards a design tool for print-
able soft robots.

Bunny, Teddy, and Armadillo For the three-dimensional case, we tested
our pipeline on two models (Bunny, 13 cm high; Teddy, 15 cm) with spatially
varying Young’s moduli, created with an interactive material design tool [Xu
et al., 2015a]. The models were subdivided into cells with 8 mm side length,
and the Young’s moduli averaged for each cell. The metamaterial space used
to populate these cells contained a single family of 21 microstructures. For
synthesis, we chose the nearest neighbor in the database for each Young’s
modulus. To keep the shape of the models, the individual voxels of each
structure were set to void if they lay outside of the model. While this might
lead to disconnected components in the reconstruction, these can easily be
removed. We created a third model (Armadillo, 32 cm high) by manually
painting the desired Young’s modulus distribution into a volumetric mesh,
which was then used as an input to our method, using cells with 8 mm
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Figure 4.16: The optimized structure for the gripper (left), the generated model (middle).
The fabricated result (right) can be used to grab and lift small objects.

Figure 4.17: The target Young’s modulus distributions (colored), synthesized geometry
(green) and fabricated model of the Bunny, Teddy and Armadillo.

side length. We chose the parameter distribution such that the joints and
the belly of the Armadillo are soft, while all other parts of the model are
stiff. The structures of the cells were computed and tiled using our synthesis
algorithm with the metamaterial space shown in Figure 4.11. The fabricated
model can be easily actuated even though the base material is quite stiff (see
Figure 4.17).

4.7 Conclusion

We presented a complete framework for automatically converting a given
object with specified elastic material parameters into a fabricable representa-
tion that resembles the desired elastic deformation behavior. Our approach
efficiently generates small-scale structures that obtain their elastic bulk prop-
erties from the shape and arrangement of the structures, significantly ex-
panding the gamut of materials reproducible by 3D printers. Although our
approach relies on an extensive precomputation phase for generating fami-
lies of related structures that can be interpolated to smoothly vary the ma-
terial properties, this only needs to be done once. To create an object with
spatially varying elastic properties, our approach tiles the object’s interior
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with microstructures drawn from the database, using an efficient algorithm
to select compatible structures for neighboring cells.

Limitations and Future Work Our method targets output devices that can
3D print at high resolution, and that allow easy removal of support material.
In practice, we found selective laser sintering the most convenient process
because the part is surrounded by unsintered powder and therefore does
not require support structures. Removal of the unsintered powder from the
structures can be easily achieved with compressed air. Other technologies,
such as fused deposition modeling, allow printing overhangs without sup-
port structures only up to a certain angle. For future work, an interesting av-
enue could be incorporating these constraints into the optimization of mate-
rial structures, spanning a space of metamaterials that are printable without
support on these machines.

In our current work we focused on linear elasticity and small strain deforma-
tions. While this already allows us to create objects with tailored deforma-
tion properties, extensions into the nonlinear material behavior offer even
more expressiveness, and could also incorporate interesting structures with
buckling behavior.

Finally, we do not explicitly treat the boundaries of the object, and obtain
the boundary by simply intersecting the geometry of the structures with the
shape of the object. An interesting next step would be wrapping the object
with a surface for aesthetic reasons, but also taking the surface’s effect on the
deformation into account.
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C H A P T E R 5

Designing Structurally-Sound Surfaces
with Decorative Patterns

Shell structures exhibit a unique combination of form and function. Ranging
from curved pavilions to furniture and household items, their design very
directly integrates both aesthetics and stability. Apart from overall shape,
one particularly appealing way to impart style onto a shell structure is by
removing material in decorative patterns. However, uninformed or too ag-
gressive removal of material can easily degrade the structural performance
of the shell and lead to failure, making manual design of such structures dif-
ficult. Automatic methods to create structurally-sound objects, on the other
hand, rarely consider the aesthetic aspect of the design process, and the end
result is hard to control.

In this chapter, we try to bridge this discrepancy by proposing a design
tool that combines aesthetics and stability in a synergistic way. We intro-
duce the concept of stencils—parametrized masks that cut out material from
an underlying solid surface. Inspired by recent work on discrete element
distribution [Ma et al., 2011; Roveri et al., 2015], we propose an example-
based method for describing stencil patterns with custom shapes and ar-
rangements. We formulate pattern creation as an energy minimization prob-
lem, allowing us to simultaneously optimize with respect to both aesthetic
and structural goals. Using this approach, designers can quickly create
structurally-sound shells with a broad range of decorative patterns, ranging
from regular and homogeneous distributions to irregular and heterogeneous
patterns.

The technical core of our method is an optimization algorithm that automat-
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Figure 5.1: We show that our method can handle different types of textures. From left
to right: (1) A distribution of apples using only our packing objective. (2)
An exemplar with irregularly placed flowers creates a packing-like distri-
bution, and offers the possibility to fill in missing stencils. (3) Using an
exemplar with stencils placed in stripes, we can create a distribution with an
anisotropic appearance. (4) An exemplar with alternating, regularly placed
circles results in a highly structured output. (5) A heterogeneous exemplar
can be used to create a more diverse result.

ically determines stencil parameters in order to comply as much as possible
with both pattern and stability objectives. Evaluating the stability objective
and its derivatives requires solving for the equilibrium state of the corre-
sponding patterned shell, and computing its derivatives with respect to the
stencil parameters. When using meshes that conform to the boundaries of
the stencil, solving for static equilibrium can easily take several minutes. In
order to afford interactive design iterations, we lay aside computationally-
expensive approaches based on conforming discretizations and remeshing
operations. Inspired by material interpolation schemes in topology opti-
mization [Bendsøe and Sigmund, 1999], we instead perform all computa-
tions on the original surface mesh and scale the elastic energy of its (mem-
brane and bending) elements according to the extent to which they are cov-
ered by stencils. Though approximate, this approach allows us to use a com-
paratively coarse mesh with constant topology, which is essential for reduc-
ing the time spent on parameter optimization to an acceptable level during
design iterations. Once a satisfying design has been found, the user can ver-
ify its validity through simulation on a high-resolution conforming mesh.

The formulation that we propose in this work is general with respect to both
aesthetic and structural goals, and it provides manifold possibilities for the
user to guide the aesthetic appeal of the design.
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5.1 Overview

5.1 Overview

We propose a computational design tool for physical surfaces with deco-
rative cutouts, fulfilling both aesthetic and structural objectives. Starting
from a mesh representing the input surface, the user first creates a decora-
tive pattern that defines the aesthetic objective of the design (Section 5.2).
This decorative pattern consists of a collection of stencils that are distributed
across the surface according to a texture objective in the form of an energy
function. We explore two options in this work: a packing scheme that places
stencils on the surface according to a quasi-blue noise random distribution;
and an example-based distribution scheme based on the principle of discrete
element textures [2011]. We also provide a set of tools that allow the user
to further control the distributions in terms of local scaling and orientation
fields.

The user then defines a force distribution on the surface that is a conserva-
tive estimate of the expected loads. Furthermore, structural goals are de-
fined to either enforce a stability criterion in terms of a fixed threshold on
the maximum per-element energy density, or to minimize the compliance
of the structure for a fixed amount of material. The aesthetic and structural
goals provided by the user give rise to objectives that are jointly minimized
in order to obtain optimal stencil parameters (Section 5.3).

5.2 Stencil Patterns

We present decorative patterns on curved surfaces as collections of stencils.
In the following, we first lay down the representation of stencils, then pro-
ceed to texture objectives and additional art-direction mechanisms that al-
low users to create a variety of stencil distributions.

5.2.1 Stencil Representation & Projection

Representation Stencils are discrete elements that live on a 3D triangle
mesh M corresponding to the input surface. Each stencil is defined by a
2D mesh S̄i describing a reference shape that is transformed to its 3D coun-
terpart Si according to the stencil’s position qi, its normal ni, an orientation
vector ti, and a scaling parameter si. While all of these variables are required
to fully determine the stencil’s transformation, not all of them are actual de-
grees of freedom. In particular, the position qi of the stencil has to lie on
the triangle mesh of the input surface, which we achieve through projection.
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Furthermore, the normal ni is determined using Phong interpolation of the
vertex normal at the corresponding surface location qi. Finally, the orienta-
tion vector ti is obtained by rotating a vector from an underlying orientation
field (computed with libigl [Jacobson et al., 2016] using the approach de-
scribed in [Bommes et al., 2009]) around the normal ni. The effective degrees
of freedom pi of a stencil are thus defined by five parameters corresponding
to its position, scale, and scalar rotation value. We concatenate the parame-
ters of all stencils into a vector p.

Projection In order to compute the geometry of the stenciled mesh, we
have to project the transformed stencil meshes Si onto the underlying sur-
face meshM. For each stencil, we first orthogonally project the correspond-
ing region ofM onto the plane defined by its position and normal. We then
scale the distance between each vertex and the center such that Euclidean
distances are preserved, i.e., the projection is equidistant. Although less ac-
curate than geodesic distances, we found that the simpler Euclidean distance
yields high-quality distributions, provided that the underlying mesh is suf-
ficiently smooth and stencils are comparatively dense. Once projected into
a two-dimensional subspace, overlaps between Si andM as well as corre-
sponding cuts forM can be computed efficiently.

5.2.2 Pattern Objectives

We pursue a variational approach and cast pattern generation as an energy
minimization problem with pattern objectives P(p) that measures the qual-
ity of a given stencil distribution. Our method is flexible with respect to
pattern objectives and we consider two alternatives in the following.

Collision Objective In order for a distribution to be admissible, we require
that no pair of stencils may overlap. To this end, we introduce a simple
repulsive force model that resolves collisions between stencils, which we
detect using their bounding circles. If an interference between stencil i and j
is found, we set up an objective that penalizes overlap according to

Ocoll
ij = ((1 + s)(ri + rj)− dij)

2, (5.1)

where ri and rj are the bounding circle radii of the stencils, dij = ||qi − qj||
is the Euclidean distance between the stencils’ centers, and s is a safety fac-
tor enforcing a lower bound on inter-stencil distance such that the resulting
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structure can be fabricated without running into problems with minimum
feature sizes.

We use a similar approach to prevent stencils from moving off the mesh
when we use a model with open boundaries. If a stencil i collides with the
boundary, we introduce the objective

Obcoll
i = ((1 + s)ri − dik)

2, (5.2)

where dik is the distance between the stencil center and its nearest point on
the boundary.

Packing A simple yet visually-pleasing way of generating element distri-
butions is through random sampling. Our packing objective aims to create
uniform stencil distributions by maximizing the distance between neighbor-
ing stencils. For any pair i and j of stencils with a stencil center distance
dij smaller than a given neighborhood size ε, we add an objective term that
repels stencils according to

Orep
ij =

wij

d2
ij

, (5.3)

where wij = (ε
√

2π)−1e−d2
ij/(2ε2) is a weighting factor depending on the

inter-stencil distance dij. For our examples, we set ε to 25% of the length
of the object. In order to encourage dense distributions, we add a simple
growth objective

Ogrowth
i = −si. (5.4)

The packing objective is then defined as

Ppack = ∑
i,j

(
Orep

ij + Ocoll
ij

)
+ ∑

i
Ogrowth

i . (5.5)

Discrete Element Textures The packing objective can be used to create
visually pleasing distributions as shown, e.g., in Figure 5.1, (1). However,
while the user can control the shape of the stencil, the distribution is homo-
geneous and its structure cannot be controlled. In order to provide more
artistic control over the resulting distributions, we turn to an example-based
approach inspired by Discrete Element Textures (DET) [Ma et al., 2011]. DET
was developed to synthesize and improve the distribution of points with ar-
bitrary attributes. It works by matching points and their neighborhoods in
an output distribution to neighborhoods in a user-provided exemplar, and
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then computes updates that aim to improve the match between output and
input. In our case, we approximate each stencil as a single point, and en-
code the scale and type of the stencil as attributes. Letting N (i) denote the
neighborhood of stencil i, its corresponding energy is defined as

ODET
i = ∑

j∈N (i)
‖(qi − q̂j)− T(q′i − q′j)‖2 + ‖rj − r′j‖2 + ξ(1− δtjt′j

), (5.6)

where q̂j is the distance-preserving projection of the position of stencil j into
the tangent plane of stencil i, q′i and q′j are the positions matched in the
exemplar for both stencil, t is the transformation from the exemplar to the
tangent plane of stencil i, and rj and r′j are the scales associated with stencil
j and its match, respectively. Furthermore, tj and t′j are the types of stencil
j and its match, and δtjt′j

is the Kronecker delta indicating whether tj and t′j
are identical, such that the expression ξ(1− δtjt′j

) adds a penalty of ξ if the
stencil types do not match. Similar to the packing objective, we augment the
DET objective by a term that explicitly penalizes collisions.

As can be seen in Figure 5.1 (2–5), example-based stencil distributions allow
users to create a wide range of decorative patterns with distinct aesthetic
appeals.

5.2.3 Initialization

An adequate initial distribution of stencils is important to ensure that our
optimization approach (Section 5.3) will converge to a desirable solution. We
found that especially for the DET objective, a good initialization is crucial,
and moreover, copying patches from the input exemplar to the output, as
suggested in the original paper [Ma et al., 2011], rarely led to good results in
our examples.

We instead opted for an incremental initialization strategy similar to [Ijiri et
al., 2008]. We start by randomly selecting a point in the input exemplar, and
then copy the neighborhood patch around this point onto a random location
in the output domain. We then compute the DET matching from the output
domain to the input exemplar, with the constraint that we do not match any
patches in the input exemplar that are at the boundary of the domain. This is
a one-way matching that does not include a penalty for stencils in the input
neighborhood that are not matched to the output domain. However, we can
use the neighborhood in the exemplar to estimate which stencils we could
add to the output domain, by determining the stencils that are not matched.
Adding unmatched stencils into the output domains, given that the overlap
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Figure 5.2: Users can control the orientation field through sketching (left) and locally
adjust the size of the stencils using a brush tool (right).

with existing stencils is not significantly larger than our threshold, allows
us to expand the region covered by stencils. By iteratively applying this in-
sertion scheme, we grow an initial stencil distribution that ultimately covers
the whole model.

The nature of our packing objective simplifies the initialization in cases
where only this objective is activated. In such a case, we simply use a Pois-
son disk sampling strategy.

5.2.4 User Control

Apart from the shape of the stencils and their arrangement, we also provide
additional tools that allow the user to control the aesthetics of the resulting
pattern through sizing and orientation fields. In order to control the orien-
tation of the stencils, we augment the computation of the orientation field
by an objective that asks the resulting field to locally align with user-defined
sketch directions (see Figure 5.2, left).

Another way of stylizing the pattern is to prescribe an inhomogeneous scal-
ing field across the surface (see Figure 5.2, right). We provide a simple brush
tool that allows the user to paint the desired stencil sizes directly onto the
surface. For the DET objective, these sizing values are used to scale the ex-
emplar when computing the matching energy in Equation (5.6), whereas for
the packing objective, the scale of the stencil is simply set to the sizing value
at the corresponding location.
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5.3 Structural Optimization

Apart from aesthetic goals, a central requirement when designing functional
surfaces is to satisfy structural constraints, i.e., conditions relating to the sta-
bility of the design. While the criteria that can be used to quantify stability
are manifold, we focus on two common variants of structural optimization
based on energy-density constraints and compliance minimization. For both
of these approaches, we must compute a) the equilibrium state of the struc-
ture, b) the change in equilibrium state induced by a change in parameters,
and c) the parameter values that lead to a desired equilibrium state. We
explain these steps in the following.

5.3.1 Simulation

Following standard practice in graphics, we opt for a computational model
that combines constant strain triangles (CST) for in-plane deformations and
discrete shell elements for bending. Both types of elements rely on a discrete
surface representation in terms of a triangle mesh, comprising m faces Ti
and n vertices x = (x1, . . . , xn)T, with xj ∈ R3. For the membrane part, we
use a simple St. Venant-Kirchhoff material whose strain energy density Ψ is
defined as

Ψ =
µ

2
tr(EtE) + λtr(E)2 , (5.7)

where µ and λ are (thickness-dependent) material parameters, E = 1
2(F

tF−
I) is the 2× 2 Green strain tensor, and F ∈ R3×2 is the deformation gradient;
refer to, e.g., Skouras et al. [2012] and the textbook by Bonet and Wood [1997]
for details. Using CST elements for discretization, the strain energy density
is constant across the element and the membrane energy simply follows as
Wmemb

i =
∫

Ωi
Ψ = AiΨ, where Ωi is the parameter domain of element i and

Ai its undeformed area.

Complementing the CST elements for membrane deformations, bending el-
ements are formed by pairs of edge-adjacent triangles. The corresponding
energy is defined as

Wbend
ij = kb

(
θ(x)− θ̄

)2 Aij

hij
, (5.8)

where θ and θ̄ are the dihedral angles in the deformed and undeformed con-
figuration, respectively, hij is a geometry factor, and Aij =

1
3(Ai + Aj) (see

[Grinspun et al., 2003]). Note that kb is a dependent coefficient that is com-
puted from the material parameters λ and µ as well as the thickness of the
element according to [Garg et al., 2007].
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5.3.2 Extension to Stenciled Shells

Perhaps the most obvious way to apply this computational model to the
case of thin shells structured with decorative cutouts would be to use a tri-
angle meshes that conforms to the boundaries of the stencils. However, this
approach would require a high-resolution mesh that would drastically in-
crease the time needed to compute equilibrium state—and it would be pro-
hibitively expensive when used at the core of our optimization algorithm.
We therefore turn away from conforming meshes and instead maintain a
comparatively coarse mesh, each of whose triangles Ti we endow with an
additional fill-ratio variable αi corresponding to the degree to which the el-
ement is overlapped by stencils. In order to compute the overlap between
a given triangle and a stencil, we first project the triangle into the tangent
space of the stencil. We then compute the intersection polygon using the
Sutherland-Hodgman clipping algorithm [Sutherland and Hodgman, 1974].
The ratio between the area of the overlap and the area of the projected ele-
ment is then subtracted from the triangle’s fill ratio.

Given fill ratios for all triangles, we compute the strain energy for membrane
elements by integrating the density only over the part of the elements that
is not covered by stencils. As the deformation per CST element is constant,
computing the energy of a stenciled element amounts to a simple scaling
operation, i.e.,

Ŵmemb
ij (x, α) =

∫
Ω̂i

Ψ = αi AiWmemb
i (x) (5.9)

where Ω̂i is the parameter domain of the stenciled element and Âi =
∫

Ω̂i
1 =

αi Ai its area. With similar reasoning, we define the energy of a stenciled
bending element as the corresponding energy of the solid element scaled by
the geometric mean of its two triangles,

Ŵbend
ij (x) =

√
αiαjWbend

ij (x) . (5.10)

Using the geometric mean ensures that the energy vanishes if one of the tri-
angles is completely cut out. The total elastic energy of the stenciled surface
is obtained as the sum of element-wise energies, i.e.,

Ŵel = ∑
i

Ŵmemb
i + ∑

(i,j)∈H
Ŵbend

ij , (5.11)

where H is the set of edge-adjacent triangle pairs. We avoid ill-conditioned
elastic stiffness matrices by enforcing a minimum value of 10−4 for all fill
ratios αi.
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Finally, in order for the surface to be in equilibrium, the sum of internal
forces fel = − ∂Ŵel

x and externally-applied forces fext has to vanish in all
nodes, i.e.,

fi(x,α) = fel
i (x,α) + fext

i = 0 ∀i . (5.12)

5.3.3 Optimization

We assume that the structural goal of a design can be quantified in terms of
an objective function S(α, x(α)) with explicit dependence on both position
and material fill ratios. As detailed above, the latter depend explicitly on
the stencil distribution, i.e., α = α(p). In order to improve the structural
objective, we consider its gradient with respect to the stencil parameters,

dS(α, x(α))
dα

=
∂S(α, x(α))

∂α
+

∂S(α, x(α))
∂x

dx
dα

. (5.13)

It is clear from the above expression that computing the gradient requires the
map between positions x and material fill ratios α, which is given by Equa-
tion (5.12): a combination of material fill ratios and deformed positions is ad-
missible if and only if it corresponds to an equilibrium state, i.e., f(x,α) = 0.
Consequently, through the implicit function theorem (see Section 3.4), for an
admissible change in material fill ratios it must hold

df
dα

=
∂f
∂α

+
∂f
∂x

dx
dα

= 0 , (5.14)

and therefore
dx
dα

= − ∂f
∂x

−1 ∂f
∂α

. (5.15)

We can thus compute the derivative of x with respect to α by solving a sys-
tem of linear equations, whose matrix is given by the Hessian of the elastic
energy of the surface. Finally, since we ultimately solve for stencil parame-
ters, we compute dS

dp by applying the chain rule to Equation (5.13) and use

finite differences to numerically approximate the required derivatives ∂α
∂p .

The formulation presented above provides flexibility for different structural
objectives S and we consider three examples in the following.

Energy-Density Objective A natural structural goal for a design is to ask
that a given expected load should not lead to failure. Structural failure is
typically indicated by a stability criterion that, depending on the type of
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material, depends on deformation, stress, or energy density. We opt for a
criterion based on per-element energy density

Wi =
1
Âi

Ŵmemb
i + ∑

j

Âi

3Â2
ij

Ŵbend
ij , (5.16)

with Âij =
1
3(Âi + Âj), and define a corresponding structural goal as

Sstab(α, x(α)) =
1
m ∑

i

{
1
2(Wi(α, x(α))− β)2, ifWi > β

0, else,
(5.17)

where β is a threshold value indicating the energy density beyond which
structural failure is likely to occur.

In many cases, the materials used in a design will dictate specific threshold
values that must not be exceeded. However, another way of optimizing
the stability of a design is to minimize the maximum per-element energy
density. We implement this strategy as an iterative scheme, each of whose
steps update the current value of β to the average computed from the top
y% of the elements with the highest energy density, where y can be chosen
depending on the use case. See Sec. Section 5.4 for an example.

Compliance Objective Instead of adding material in order to push the sta-
bility criterion below a given threshold, an alternative approach is to seek a
distribution of a given amount of material in order to maximize the stiffness
of a structure or, equivalently, minimize its compliance with respect to given
loads. This conventional way of topology optimization typically aims to min-
imize the work done by externally-applied forces, but is often expressed by
an equivalent formulation based on the total internal energy of a given struc-
ture. We define a corresponding structural objective as

Scomp(α, x(α)) =
m

∑
i=0

AiWi(α, x(α)), (5.18)

which is complemented by an additional constraint Carea(α) = ∑i Ai −
∑i Âi(α) = const., requiring that the total area of all stencils be constant.
In order to incorporate this constraint into our optimization method, we
project the gradient of the combined (structural and aesthetic) objective onto
the space of admissible directions, i.e., orthogonal to the constraint gradient.
The constraint is enforced during every update of the stencil parameters.
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5.3.4 Numerical Solution

With both the stability and pattern objectives in place, we compute optimal
stencil parameters through minimization. Thanks to the equilibrium condi-
tions (Equation (5.12)), the positions x are implicit functions of the material
fill ratios α, which in turn are explicit functions of the stencil parameters p.
We thus define the joint objective as a function of the stencil parameters,

J(p) = wSS(x(p),α(p)) + wPP(p) , (5.19)

where wS and wP are scaling parameters.

In order to minimize J, we use L-BFGS-B [Byrd et al., 1995], a Quasi-Newton
method that combines analytically-computed gradients with a limited-
memory BFGS approximation of the Hessian and bound constraints. We
additionally employ line search in order to ensure monotonic decrease in
the objective. This approach allows us to optimize for all continuous stencil
parameters at the same time. For the stencil type, which is the only dis-
crete stencil parameter, we use the update scheme proposed in [Ma et al.,
2011] that selects the stencil type based on a majority vote among the sten-
cil’s neighbors. Note that in order to use line search correctly, we need to
ensure that our simulation is always in equilibrium, i.e., we need to update
the simulation for any change in stencil parameters.

5.4 Results

5.4.1 Validation

Simulation with Scaled Energy Densities Our elastic simulation using
scaled energy densities is inspired by simulation approaches from topology
optimization [Bendsøe and Sigmund, 1999], where the scaling of the energy
density of each element is a function of its fill ratio. We check the valid-
ity of our simulation, which extends this approach to hinge elements that
include two fill ratios, by ascertaining that for increasing mesh resolutions,
the simulation converges to a regular simulation using a conforming mesh.
Figure 5.3 shows that this convergence can indeed be observed, and more-
over, that even for coarse resolutions, our approach provides an adequate
approximation of a simulation on a conforming mesh.

Physical Validation We validate that our optimization improves the sta-
bility of an object by performing a load test on a stenciled plate, shown in
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Figure 5.3: The convergence of elastic energy for simulations with our scaled energy den-
sity approach and simulations with a conforming mesh, for different mesh
resolutions, specified by the maximum area of a mesh element. The simula-
tion is performed on a thin, square, horizontally oriented, unit-sized sheet
with a single circular stencil, with fixed outer boundaries and deformed by
self-weight. Left: The elastic energy of both simulations. Right: The ratio
between the elastic energies.

Figure 5.4. For the design and experiment, we fix one end of the plates,
and apply a load on the center of the other end. The plate with the
pattern-optimized stencil distribution shows the largest deflection, and the
energy- and compliance-optimized stencil distributions show improved per-
formance. The compliance-optimized distribution uses a fixed material con-
straint in this experiment, and the limited amount of material redistribution
possible without any stencils overlapping explains the slightly better perfor-
mance of the energy-optimized distribution.

Coarse Simulation vs. High-resolution Simulation For all our results
that we fabricated, we compare our coarse simulation to a high-resolution
conforming mesh. Figures 5.5, 5.8, 5.7, and 5.6 show that we capture the
global energy density distribution well, while small local stress peaks along
the boundaries of stencils might exceed the maximum energy density com-
puted by our simulation.

5.4.2 Physical Results

We designed a number of results for different applications, which were 3D
printed using selective laser sintering with a polyamide material (PA12). We
show both the pattern-optimized results, which only use the pattern objective
for the optimization, as well as the stability-optimized results that use both
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Figure 5.4: Comparison of the deflection of plates with circular stencils, before and after
running the stability optimization. The plates were fixed on one side, and a
weight was attached to the opposite side.

pattern and stability objectives. For all stability-optimized examples, we set
the energy density threshold β to a fraction of the maximum energy density
Wmax of the non-stenciled mesh to ensure that we create a meaningful sce-
nario for our optimization. We show the statistics and performance of our
examples in Table 5.1, and parameters in Table 5.2.

Model Objective #s #v #vsim t [s]

Chair
Pattern-only

436 1927 520
4.1

Energy density 12.1

Table
Pattern-only

462 1418 581
2.0

Energy density 21.2

Bowl
Pattern-only

185 1529 772
0.8

Energy density 16.6

Pavilion

Pattern-only

310 937 381

4.2
Energy density 43.4
Energy density (adaptive) 150.8
Compliance 5.1

Table 5.1: Performance statistics. The table shows the number of stencils, the number
of vertices for the underlying mesh and the simulation mesh, and the run-
time t for all our fabricated examples. The runtime is measured from initial
distribution to convergence (for the pattern-only objective) or from a pattern-
optimized solution to a stability-optimized solution (for all other objectives).

Chair and Table The chair example in Figure 5.5 and the table example in
Figure 5.6 we both designed by fixing the bottom vertices of the model, and
then applying a load on the seat and back rest for the chair, and on the table
top for the table.
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Model wS wP β s rN

Chair 103 1 0.7Wmax 0.2 0.3
Table 104 1 0.5Wmax 0 0.3
Bowl 200 1 0.8Wmax 0.1 0.3
Pavilion 500 1 0.2Wmax 0.2 0.3

Table 5.2: Parameters used for our examples: Scaling parameters wS and wP, energy
density threshold β as a function of the maximum energy densityWmax, colli-
sion safety factor s, and the neighborhood radius rN relative to the dimensions
of the input exemplar.

Figure 5.5: Comparison of energy densities between our coarse simulation mesh (second
and fourth picture) and a high-resolution conforming mesh (third and fifth
picture) for the texture-optimized chair (left pair) and the stability-optimized
chair (right pair). Energy densities around the threshold β are shown in
green, with higher densities in red and lower densities in blue. The pattern
exemplar and load case are given on the left. The stability-optimized chair
has been 3D printed (right).

Figure 5.6: Comparison of energy densities between our coarse simulation mesh (center
left) and a high-resolution conforming mesh (center right) for the pattern-
optimized table (top) and the stability-optimized chair (bottom). Energy den-
sities around the threshold β are shown in green, with higher densities in red
and lower densities in blue. The pattern exemplar and load case are given on
the left. The stability-optimized table holds a billiard ball (right).
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Fruit Bowl We also tested our method on alternative boundary conditions.
The fruit bowl in Figure 5.7 has been designed to hang by a wire attached to
its top, and the load case is a force pulling on the bottom of the bowl.

Figure 5.7: The pattern exemplar and load case of the bowl example (left), and the final
fabricated result (right). We compare the energy densities of our coarse sim-
ulation mesh (center left) with a high-resolution simulation on a conforming
mesh (center right) for the pattern-optimized (top) and stability-optimized
bowl (bottom). Energy densities around the threshold β are shown in green,
with higher densities in red and lower densities in blue.

Pavilion Figure 5.8 show the result of applying our method to an object
under self-weight. In this case, the stencil distribution not only locally influ-
ences the stiffness, but also changes the load, and can have a global effect on
the stability. Since the optimization considers the interplay between stencil
parameters and the physical simulation, it automatically removes material
from the top part of the pavilion in order to lighten the load on the base of
the structure.

For this case of an object under self-weight, our approach of setting a fixed
threshold for the energy density might be too restrictive. Rather, we would
like to perform a minimization instead of a thresholding, with the assump-
tion that any reduction in energy density will be beneficial. As an exercise,
we performed an adaptive optimization: At the beginning of an optimiza-
tion, we set the threshold to the median energy density. Whenever we reach
an optimal solution, we check whether the median energy density changed.
If so, we continue the optimization with the new threshold. Figure 5.8 also
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shows the result of this adaptive optimization, which leads to more extreme
changes to the stencils than the regular optimization.

Figure 5.8: Top: The base shape and pattern exemplar for the pavilion model (left) and
the final optimized result (center, right). Bottom: Comparison of energy
densities for the pavilion model. The top row shows our coarse simulation
mesh, the bottom row a high-resolution simulation on a conforming mesh.
We show four different scenarios: The pattern-optimized pavilion (left), the
energy density-optimized pavilion with a single energy density threshold
(center left) and an adaptive energy density threshold (center right), and
the compliance-optimized pavilion with a fixed material constraint (right).
Energy densities around the threshold β are shown in green, with higher
densities in red and lower densities in blue.

5.5 Conclusion

We introduced a novel method to design stenciled surfaces that combines
aesthetics and stability. We have shown that we can efficiently predict re-
gions of failure and automatically optimize a stencil distribution to create
stable objects with high visual fidelity.

5.5.1 Limitations and Future Work

While we can predict regions of failure, we cannot guarantee that our best
solution will be able to avoid these, as either the load case or the texture
objective could prevent a feasible solution. In such cases, we can provide
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feedback to the user that would ideally lead to adjustments in the load case
or texture objective parameters, though including more sophisticated ways
to decouple the appearance and stability objectives is an interesting direction
for future work.

Our fill ratio-based simulation approach allows us to efficiently approximate
the deformation behavior of a stenciled model. While we have shown that
with increasing resolution, the simulation result converges to the solution
obtained from a conforming mesh, for practical resolutions, our approach
might not able to capture any highly anisotropic deformation behavior intro-
duced by stencils with very thin features. XFEM [Kaufmann et al., 2009] or
a homogenization method [Kharevych et al., 2009] could be used to achieve
a better approximation in these cases, at the cost of computational efficiency.

All computations of positions and distances of stencils are performed in Eu-
clidean space, and while this has not led to any problems in the examples we
showed, our projection approach cannot guarantee injectivity, which might
lead to unsatisfactory results in the case of folded meshes. Incorporating
geodesic distances could prevent artifacts in such situations, though a suffi-
ciently fast and accurate computation of geodesic distances is necessary to
preserve our current level of efficiency.

Our current stencil representation is sufficient to generate a variety of in-
teresting appearances. However, the stencils are not required to be rigid
objects, and incorporating advanced methods to modify the stencils would
increase the expressiveness of our method.

Finally, our general optimization-based approach allows us to easily inte-
grate additional pattern and stability objectives, e.g., considering geometric
features for the stencil distributions or minimizing displacement instead of
energy density.
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C H A P T E R 6

Mechanical Characterization of
Structured Sheet Materials

From simple shapes, tessellations can create structures of fascinating com-
plexity and aesthetic appeal. But the diversity created by these patterns
is not limited to appearance. Mechanical complexity can arise from sim-
ple shapes just as well as geometric complexity. Indeed, physical represen-
tations of these patterns—which we call structured sheet materials—exhibit
a wide range of macromechanical properties mediated only by geometry
and topology. Unlike appearance, however, the mechanical properties of
structured sheet materials are often far from obvious. Exploring and un-
derstanding the connection between the geometry and mechanics of struc-
tured sheet materials is the main objective of this work. Unlike previous
work that has so far focused on volumetric materials [Bickel et al., 2010;
Schumacher et al., 2015; Panetta et al., 2015; Martı́nez et al., 2016], these
structured sheets are planar networks of thin elastic rods that can stretch
and bend.

In this chapter, we present a mechanical characterization approach that cap-
tures the macromechanical properties of these structures in a concise and
intuitive way so as to allow for an informed exploration of the design space.
To this end, we propose a homogenization approach that maps the mechan-
ical behavior of a meso-scale network of elastic rods to a macro-scale thin
plate model, making deliberate choices about which properties to capture
and communicate. We compute a large set of deformations for each rod net-
work and optimize for the tensors describing the anisotropic stretching and
bending behavior of the sheet such that the thin plate model best approx-
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Figure 6.1: Two-dimensional linear materials can be classified into four symmetry
groups: anisotropic, orthotropic, tetragonal, and isotropic. The various ma-
terial symmetries lead to characteristic Young’s modulus profiles and can be
related to the structural symmetries of the underlying tiling.

imates the large-scale properties of the rod network. The rather extensive
material data of the thin plate model is then distilled into a compact vi-
sual representation in terms of directional Young’s moduli, Poisson’s ratios,
bending stiffnesses, and corresponding measures of nonlinearity.

We focus on isohedral tilings, a particular class of polygonal periodic pat-
terns in which all tiles are congruent to a single polygon. We show that
this geometrically rich space of patterns offers an equally varied range of
mechanical properties, characterized by strong anisotropy and nonlinear-
ity for both stretching and bending deformations. The space of isohedral
tilings is partitioned into a set of distinct families, each of which admits cer-
tain tileability-preserving transformations on the tile shape. Parameterizing
these shapes within a given family yields a continuous sub-space of aesthet-
ically pleasing patterns of the same topology but potentially vastly different
mechanical properties.

6.1 Structured Sheet Mechanics

Structured sheets offer a rich space of heterogeneous materials with
direction-dependent and nonlinear resistance to membrane and bending
deformations. Our goal is to establish a formal but intuitive language for
describing the mechanical properties of these materials, and to provide
insight in the connection between their structure and mechanics.

76



6.1 Structured Sheet Mechanics

In order for this analysis to be meaningful, we must be able to predict the
deformation of structured sheets under imposed loads or boundary condi-
tions using simulation (Section 6.1.2). To investigate their macromechanical
behavior, we turn to numerical homogenization (Section 6.1.4) and condense
the mechanics of the heterogeneous networks, simulated at their native
mesoscopic level, into the familiar framework of linear elasticity. This pro-
cess gives rise to elasticity tensors that characterize the direction-dependent
stress-strain behavior around a given state of deformation. Since this rep-
resentation does not readily lend itself to interpretation, we convert these
elasticity tensors into radial plots of Young’s modulus, Poisson’s ratio, and
bending stiffness (Section 6.1.5).

6.1.1 Phenomenology

In order to make an informed decision on the computational models to use
in our analysis, we must first determine the salient characteristics that gov-
ern the deformation behavior of structured sheet materials. We are partic-
ularly interested in how deformations at the native, mesoscopic scale (from
1–5mm) of the material give rise to macroscopic deformation effects (from 5–
10cm). To this end, we experimentally investigated the behavior of network
structures subjected to different boundary conditions that create in-plane
and out-of-plane deformations. We briefly summarize the central qualita-
tive findings here and provide extensive, quantitative analysis in Section 6.3
and Appendix A.2.5.

Membrane Structured sheet materials are networks of interconnected
rods. When imposing an external deformation onto the network, the in-
dividual rods will either stretch, bend, or twist—rods do not compress but
buckle out of plane instead. For a given imposed deformation, the ratio be-
tween bent and stretched rods is an indicator of the stiffness of the network
for that specific deformation. Since the resistance to bending is much smaller
than the resistance to stretching, bending-dominated networks will be softer
than stretching-dominated networks. For a given structure, this property, and
therefore the overall stiffness, depends on the direction of the imposed de-
formation.

Beyond a certain maximum deformation, however, all rods will eventually
be stretched and the structure will transition into a stiff regime. These two
observations indicate that structured sheet materials are characterized by
anisotropic and nonlinear in-plane stiffness.
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Bending Similar to their in-plane deformation behavior, the stiffness re-
sponse of structured sheets to bending is strongly anisotropic, but nonlin-
earities are generally less pronounced. It is insightful to draw the analogy to
the simpler case of thin sheets made of homogeneous material, whose bend-
ing resistance depends only on their thickness and the mechanical proper-
ties of the bulk material. But unlike sheets made of homogeneous material,
and due to the heterogeneity of structured sheets, the correlation between
membrane and bending stiffness is only weak, making it necessary to treat
bending separately from stretching to capture a complete picture of the me-
chanical properties.

With their salient characteristics spelled out, we can now proceed to the
question of which computational models to use for structured sheets at the
mesoscopic and macroscopic scales, respectively.

6.1.2 Mesoscopic Model

To accurately model the mechanics of our networks at their native meso-
scopic scale, their structure needs to be captured in sufficient geometric
detail. As a good compromise between accuracy and efficiency, we opt to
model structured sheets as networks of thin Kirchhoff rods.

Our implementation is based on the discrete elastic rod model [Bergou et
al., 2010; Kaldor et al., 2010]. We use the extension to networks described
by Zehnder et al. [2016] to model connections with more than two rod seg-
ments: we place a rigid body frame at each such connection, and define the
bending and twisting energies at the connection not between two neighbor-
ing segments, but between a segment and the rigid body frame. The frame
is added to the simulation variables, and will rotate to minimize the energy.
The discrete rod model can be applied almost directly to our case, except for
one important modification: due to the complex structure of the networks,
stretching the material in a given direction will also induce compressions in
some rods. In physical reality, these compressions immediately resolve into
out-of-plane buckling, but under the perfectly planar and symmetric condi-
tions in simulation, compressions will persist and give rise to unstable equi-
librium configurations. Besides the associated numerical difficulties, persis-
tent compressions lead to an overall much stiffer deformation response than
what is observed in reality. To avoid such parasitic stiffening, we use a full
three-dimensional model even for deformations that are, on the macroscopic
level, in-plane, and slightly perturb the initial state into the normal direction,
forcing compressions to resolve into bending. Thanks to this modification,
the rod model shows very good agreement with physical experiments, both
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in terms of force-deformation behavior and local deformations observed in
the structures; see Section 6.3.1.

6.1.3 Macroscopic Model

On the macroscopic level, the most salient characteristic of structured sheets
is arguably their direction-dependent stiffness response to stretching and
bending deformation. Together with their thin nature and planar rest state,
this deformation behavior suggests a macromechanical model based on the
theory of anisotropic Kirchhoff plates (see, e.g., [Hwu, 2010, Section 1.4]),
which postulates a strain energy density of the form

W(ε,κ) =
1
2
ε : C : ε+

1
2
κ : B : κ = WM + WB , (6.1)

where ε, κ are membrane and bending strains, respectively, and C, B are
corresponding material stiffness tensors. The strains and stresses are rank-
2 tensors that can be represented as symmetric 2x2-matrices; C and B are
symmetric rank-4 tensors with 16 entries. Due to their symmetry, only 6 en-
tries can be independent, even in the case of complete anisotropy. We can
see that this model is an extension of the two-dimensional linear model (see
Section 3.2), with an additional term for bending deformations. Differentiat-
ing the energy density with respect to membrane and bending strains gives
rise to membrane and bending stresses,

σ = C : ε
M = B : κ .

(6.2)

The above expressions underline the linear nature of this material model—
we will describe extensions to account for nonlinearities in Section 6.1.4—
and the decoupling of the membrane and bending energies. While this
model only approximates the full nonlinear material behavior, it is sufficient
to capture the salient material properties that we are interested in.

With the mesoscopic and macromechanical models defined, we can now
proceed to the mapping between the two via homogenization.

6.1.4 Homogenization

The essential idea of homogenization is to subject a tileable unit cell of ma-
terial to various boundary conditions that create different states of deforma-
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Figure 6.2: Periodic boundary conditions for in-plane deformations emulate a flat tiling
of patches (left). For curved configurations, the tiling is mapped to a cylinder,
where adjacent patches are related through a rotation and translation (right).
Additional details can be found in Section 3.3.3 and Appendix A.2.1.

tion. These boundary conditions have to preserve tileability on the meso-
scopic scale while at the same time leading to deformations that are easily
quantified on the macroscopic scale. Figure 6.2 shows the general concept
of these boundary conditions: for flat configurations, they emulate a tiling
of a single patch of the structure in the plane, while curved configurations
are possible if we introduce a rotational component to the tiling. We refer
to Section 3.3.3 for the periodic in-plane boundary conditions. They follow
the same principle as the boundary conditions used in Chapter 4, but while
we prescribed a specific stress to the microstructures, we apply a uniaxial
strain in this case. For the curved periodic boundary conditions, we refer to
Appendix A.2.1 for a detailed description.

When using these periodic boundary conditions, special care has to be taken
to ensure that the simulated structure is not too small to capture all defor-
mation properties of the full structure. Specifically, the buckling modes of a
structure can often extend over two of the smallest tileable unit cells. To cap-
ture these buckling modes properly, we always apply our homogenization
on a 2 × 2 patch of the smallest tileable unit cells.

While classic plate theories generally establish a shared set of parameters
that connect the membrane and bending behavior—both are fully described
by a single Young’s modulus and Poisson’s ratio in the case of a homoge-
neous isotropic plate—this connection has been found to disappear in struc-
tured materials [O’Donnell and Langer, 1962]. Having confirmed these find-
ings in our own physical experiments, we perform homogenization inde-
pendently for membrane and bending properties.
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Membrane Material Tensor Fitting Given a structured sheet material, we
seek to find elasticity parameters for the macroscopic model that best ap-
proximate the true stress-strain behavior of the mesoscopic model. To this
end, we must first determine a set of test deformations and corresponding
boundary conditions that will be used to probe the material in simulation.
For the membrane part, a natural choice are uniaxial tension states, for which
the strain in a specific direction is prescribed while the perpendicular direc-
tion is only subject to periodic boundary conditions (see Figure 6.3). Uniaxial
deformations generally describe the material behavior sufficiently well, but
we found that some structures require more information to fit a macroscopic
material tensor. Whenever such a case is detected (from the rank deficiency
of the fitting matrix), we augment the test set with an additional biaxial de-
formation that prescribes a uniform stretch in all directions.

Once the set of test deformations is defined, we perform meso-scale simula-
tions and compute the macroscopic strains and stresses using the approach
described in Appendix A.2.2. The resulting set of N stress-strain pairs are
then used to fit a homogenized compliance tensor in a least squares sense,

SH = argmin
S

N

∑
i=1

1
‖εi‖2

F
‖S : σi − εi‖2

F, (6.3)

where εi and σi are the strain and stress of the i-th test deformation, respec-
tively, and ‖ · ‖F is the Frobenius norm. The solution to Equation (6.3) is
a homogenized material compliance tensor SH, and the corresponding ho-
mogenized material stiffness tensor can be computed through the symmetric
inverse, CH = (SH)−1. One could also fit the homogenized material stiffness
tensor CH directly; however, we found that since the significant anisotropy
of certain structures leads to extreme stresses, measuring the error in strain
space is more robust.

Bending Material Tensor Fitting The bending behavior of a material is
characterized by its bending moment response to applied curvatures. Sim-
ilar to the in-plane stiffness, we design a set of test deformations that fully
describe this behavior. Cylindrical bending is a natural choice for this pur-
pose, since this type of deformation does not induce Gaussian curvature
and hence minimizes interference with membrane deformations. Cylindri-
cal bending alone, however, is not sufficient to uniquely determine the bend-
ing stiffness tensor, as is apparent by the rank deficiency of the fitting matrix.
We therefore account for the missing data by augmenting the cylindrical test
deformations by a single deformation with spherical curvature. For each of
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Figure 6.3: Example deformations obtained by applying different loads to the boundary
of a periodic patch of a structure. Left: membrane deformations correspond-
ing to uniaxial stretching. Right: bending deformations corresponding to
uniaxial (or cylindrical) curvature.

the M boundary conditions in the resulting test set, we then perform meso-
scale simulations to obtain the corresponding deformed network.

While the direct analogy to the membrane case would be to compute macro-
scopic bending moments for the deformed networks, the curved patch
boundaries complicate the direct computation of moments. We therefore
use the energy density of the deformed patch in order to fit the homoge-
nized bending stiffness

BH = argmin
B

M

∑
i=1

(
1
2
κi : B : κi −Wi

)2

, (6.4)

where κi and Wi are the prescribed curvature tensor and energy density for
the i-th test deformation, respectively.

Determining the Test Set The set of deformations that are used to fit the
stiffness tensors influence the quality of the result. While a set of only three
deformations is sufficient to fit the tensor for infinitesimal strains, the non-
linearities that appear for finite strains require that we choose a suitable set
of deformations that captures the material properties in sufficient detail and
will reproduce the global deformation behavior in the fitted material tensor.
We found that for most structures, a small number of up to 20 deforma-
tions is sufficient for a robust fitting to a linear material tensor. For highly
anisotropic and nonlinear materials, however, a larger number of deforma-
tions generally leads to improved fitting results. To this end, we use a cross-
validation scheme that adaptively determines the number of test deforma-
tions needed to obtain robust homogenization results. From a given set of
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N test deformations, we use multiple sets of 80% as training data to fit a
stiffness tensor, then measure its performance on the remaining 20% of the
test set. If the error on the test data is larger than on the training data, we
increase the number of test deformations to 2N and repeat the process.

Nonlinearities The homogenized stiffness tensors provide a linearized de-
scription of a material’s direction-dependent stress response. For a given
structure, the result of the fitting process is influenced by two factors: the
reference state of deformation for which the tensor is computed, and the
magnitude of the imposed deformation away from the reference state. The
choice of reference state, not to be confused with the rest state, is impor-
tant when there is nonlinear coupling between deformation modes. In prin-
ciple, a comprehensive description of the nonlinear material behavior can
be obtained by densely sampling the deformation space. However, besides
the computational complexity of such an approach, the massive amount of
high-dimensional data points generated in this way would simply be over-
whelming for the user. We argue that, for the purpose of understanding
and navigating the space of materials, conciseness is far more important
than completeness. In order to convey a compact description of a mate-
rial’s direction-dependent nonlinearity, we simply create multiple test sets
with uni- and biaxial deformations of varying magnitude (0.1% and 10.0%)
and curvature (0.1m-1 and 5m-1) around the rest state. Taken together, the
corresponding stiffness tensors fitted to these different test sets can then be
condensed into a concise and intuitive description of nonlinear, direction-
dependent material behavior as described next.

6.1.5 Representing Direction-Dependent Elasticity

Although the stiffness tensors provide a full picture of the material behavior
around a given state of deformation, their entries are rarely used to describe
a material: they are hard to correlate to quantities that can be measured di-
rectly and, consequently, provide little intuition about the material behavior.
In the following, we describe how to distill these stiffness tensors into rep-
resentations that lend themselves more readily to interpretation. We will
briefly introduce the formulas to extract these representations from the stiff-
ness tensors, but refer to Appendix A.2.3 for a more in-depth explanation.

Membrane An intuitive set of measures for the membrane behavior are the
Young’s modulus E, describing the force per area required to stretch the mate-
rial to one unit of deformation, and the Poisson’s ratio ν, which is the amount
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of transverse contraction for a unit extensional deformation. Taken together,
Young’s modulus and Poisson’s ratio completely characterize the behavior
of linear isotropic materials. By allowing E and ν to vary depending on the
direction d, they can also be used to describe anisotropic materials.

In order to derive direction-dependent expressions for E and ν, we use the
compliance tensor S = C−1. This tensor allows us to compute the deforma-
tion induced by the uniaxial unit stress σd = ddT, which is the configuration
in which the two material properties are measured. The directional Young’s
modulus can then be computed as

E(d) =
1

(ddT) : S : (ddT)
. (6.5)

Similarly, we compute the directional Poisson’s ratio, describing the rela-
tive compression of the material along the direction n perpendicular to the
stretch direction d, as

ν(d) = − (ddT) : S : (nnT)

(ddT) : S : (ddT)
. (6.6)

Bending We can follow a similar approach for the characterization of the
bending behavior of a structured sheet material. However, we found that the
Young’s modulus equivalent of the bending stiffness matrix, which is mea-
sured by applying a uniaxial bending moment to the structure, describes a
state that is hard to reproduce in a real application, since it will automati-
cally cause in-plane deformations that generally dominate the deformation
mode. Instead, we characterize the bending behavior of the material using
a natural low energy state of purely cylindrical curvature, or zero Gaussian
curvature. Given a direction d, we compute the directional bending moment
generated by a unit curvature,

b(d) = (ddT) : B : (ddT). (6.7)

6.2 Tilings and Symmetries

Apart from periodicity constraints, the machinery introduced so far makes
no assumptions on the nature of the patterns. To investigate the interplay
between structure and mechanics, we will from now on focus on the class
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Figure 6.4: The translational unit (blue) of an isohedral tiling creates an infinite periodic
tiling of the plane using only translations (red). The translation vectors
define the minimal tileable unit cell (yellow) necessary for a simulation with
periodic boundary conditions.

of isohedral tilings, which we briefly introduce below. We pay special at-
tention to the symmetry properties of the patterns and how they relate to
symmetries in the material behavior.

6.2.1 Isohedral Tilings

Non-periodic

Periodic

Isohedral tilings are a special class of monohedral
tilings—tessellations built from a single base tile—
in which only tiles transformed under the symmetry
group of the tiling are allowed. In practical terms, this
means that an isohedral tiling has translational period-
icity (see inset figure).

From a combinatorial point of view, 93 different fami-
lies of isohedral tilings can be identified [Kaplan, 2009],
referred to individually as IH01 to IH93. Each family
has a polygonal base tile ranging from a triangle to a
hexagon, with a parameterization having zero to six de-
grees of freedom. Up to 12 base tiles then form a transla-
tional unit, the smallest structure of a family that can be
tiled infinitely by only applying translations (see Figure 6.4). For our struc-
tures, we create a consistent scale between families by normalizing the area
of the translational unit.

Symmetries Isohedral tilings exhibit a high degree of visual regularity
that can be quantified in terms of symmetries. Intuitively, the individual
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translational units of an isohedral tiling span a hexagonal or parallelogram-
matic grid. Such a grid, and therefore the tiling, may have twofold, three-
fold, fourfold or sixfold rotational symmetry. Similarly, isohedral tilings can
have glide reflection symmetries—a combination of reflection and transla-
tion along the reflection axis—along one, two, three, four, or six reflection
axes. We can observe all of these rotational symmetries in our isohedral
tilings, and, as it turns out, these are also the only rotational and reflectional
symmetries that isohedral tilings can have [Grünbaum and Shephard, 1986].

Besides their visual impact, geometric symmetries in the tiling also induce
symmetries in the material behavior. In order to investigate the nature of
this relation, we first review material symmetries below.

6.2.2 Material Symmetries

The mechanical properties of a material can exhibit various symmetries. For
example, any two-dimensional material rotated by 180◦ will still show the
same material properties. Additional symmetries allow us to define differ-
ent symmetry classes for materials that characterize their qualitative behavior.
For a two-dimensional linear material model, there are four distinct symme-
try classes: isotropic, tetragonal, orthotropic, and (fully) anisotropic materi-
als. 1 See Figure 6.1 for example structures from these categories and their
corresponding Young’s modulus profiles. Rather than determining the sym-
metry class through visual inspection of the Young’s modulus profiles, it can
be identified from a set of five invariants of the material stiffness tensor C

that measure the various rotation-invariant non-symmetries of the tensor [de
Saxcé and Vallée, 2013].

Anisotropic materials are the most general symmetry class and do not possess
any additional symmetries.

Orthotropic materials have distinct material properties along two orthogonal
directions, which introduces a reflection symmetry along these two axes.
This symmetry is apparent in the directional Young’s modulus plot of a ma-
terial, where two axes that show a local maximum or minimum are perpen-
dicular to each other.

Tetragonal materials are special types of orthotropic materials whose mate-
rial properties along any pair of orthogonal directions are identical, making

1Unless specifically noted, we use the name of a symmetry class to refer to patterns that have
that symmetry but not any greater symmetry; for example orthotropic means the material is
orthotropic but not tetragonal or isotropic.
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them invariant to rotations of 90◦, and giving them a total of four equally-
spaced axes of reflection. Due to the rotational symmetry, tetragonal materi-
als are easily identifiable from their Young’s modulus plot.

Isotropic materials are the most constrained type of elastic material. They
show a direction-independent material behavior, and are therefore invari-
ant under any rotation or reflection. On a Young’s modulus plot, isotropic
materials can be easily identified as circles.

6.2.3 Shared Symmetries

We can now investigate the connection between the symmetries of the mate-
rial properties and the geometric symmetries of our structured sheet mate-
rials, and we summarize the mapping between the symmetries in Table 6.5.
Note that this mapping is one-way—while the geometry of the structure dic-
tates the necessary material symmetries, a specific material symmetry does
not require any geometric symmetry. Figure 6.10 shows an example of a
structure that is isotropic, but does not possess the geometric symmetries
that imply this material symmetry.

The most important factor when comparing geometric symmetries to mate-
rial symmetries is the inherent rotational symmetry of the material proper-
ties: every material property is invariant to rotations of 180◦. Tilings with
a twofold rotational symmetry will therefore not add any new symmetries
to the material properties, and in general, the material symmetry will be a
combination of the geometric symmetry and a 180◦ rotation. A special case
are structures with threefold and sixfold geometric symmetries, and three-
axis and six-axis geometric glide reflection symmetries, which all show the
same material response along at least three axes, or six directions. In the case
of a linear material, these responses provide a complete basis of the under-
lying space, and since all responses are rotationally symmetric, every other
response must also be rotationally symmetric, making the material isotropic.

6.3 Results

We used our method to characterize a large number of structures from the
space of isohedral tilings and present our findings in this section. We first
start with general observations, then highlight specific properties on selected
examples. Finally, we present extensions to (inverse) material design to cre-
ate tilings with a desired deformation behavior.
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Geometric symmetry Material symmetry

Twofold rotation =⇒

Anisotropic

One-axis reflection

=⇒
Orthotropic

Two-axis reflection

Fourfold rotation

=⇒
Tetragonal

Four-axis reflection

Threefold rotation

=⇒
Isotropic

Sixfold rotation

Three-axis reflection

Six-axis reflection

Figure 6.5: The different symmetry classes for isohedral tilings (left) and the correspond-
ing material symmetries that they induce (right).
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Figure 6.6: The structures used in the experimental validation and for the characteri-
zation in Figure 6.9, covering a wide range of visual styles and mechanical
properties. Structures 1 to 3 are part of the IH07 family, structure 4 is from
IH21, structures 5 and 6 from IH29, and structures 7 and 8 are part of IH02.

But first, we will show a validation of the rod model introduced for the
mesoscopic simulation in Section 6.1.2.

6.3.1 Mechanical Testing

We validated our simulation model on a
set of tension and bending tests, using the
structures shown in Figure 6.6. The struc-
tures were printed as patches of 100mm
× 100mm × 1.2mm on an Ultimaker 2
printer with a Flex3Drive extruder, using
the rubber-like NinjaFlex material. The ten-
sile testing setup, shown in the inset fig-
ure, uses a linear actuator and a load cell
to perform uniaxial tension tests, automati-
cally capturing reaction forces of samples under tensile loads. We measured
the Young’s modulus of the base material to be 15.5 MPa, based on a tensile
test of a dogbone (tensile specimen), and determined a Poisson’s ratio of 0.48
based on standard values for TPU materials [Qi and Boyce, 2005]. Using
these values in simulation leads to results consistent with the experimental
data for a large range of structures (see Figure 6.7).

Since the bending stiffness of structured sheets is significantly lower than its
in-plane stiffness, the self-weight of the material needs to be accounted for
during measurements. We therefore opted to follow Pabst et al. [2008] and
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Tensile strength experiments Bending strength experiments

° ° ° ° ° ° ° ° ° ° ° °

Figure 6.7: The tensile stiffnesses (left) and bending stiffnesses (right) measured in our
experiments (blue), compared to our simulation results (red), at 10% strain
and 20m-1 curvature, respectively. The full measurements can be found in
Appendix A.2.5.

Miguel et al. [2013], measuring the curvature-
moment curves of our samples using the gravity-
assisted method of Clapp et al. [1990], which uses
visual data and polynomial fitting to extract ma-
terial parameters from a specimen (see inset). We
use this method on both the printed and simulated
structures. Figure 6.7 shows an overview of the
resulting bending stiffnesses for small curvatures.
As can be seen from the data, the deviation be-
tween measurements and simulations is larger for
the bending tests than for the tensile tests. We spec-
ulate that this difference is largely due to the inac-
curacies of the visual capture approach and the in-
creased uncertainty of the fabrication process along the height dimension.

The full results for both the tensile and bending tests can be found in Ap-
pendix A.2.5.

6.3.2 Space of Structures

Applying our mechanical characterization approach to many structures
from the space of isohedral tilings reveals the gamut of mechanical prop-
erties that they cover. The visualization of this gamut is, however, not a
trivial task. Figure 6.8 shows a plot of the minimal and maximal directional
Young’s moduli of all isohedral tiling families, using a regular sampling of
the tiling parameters in the interval [−1, 2] resulting in around 5500 valid
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Extremal Young’s modulus distribution

Figure 6.8: The gamut of directional Young’s moduli covered by isohedral tilings, plotted
as the minimal and maximal directional Young’s modulus of each structure
of our sampling. The colors of the data points represent the isohedral tiling
family the structure belongs to.

structures. We used the material parameters presented in Section 6.3.1 on
patches with an area of 16 cm2, a rod diameter of 1.5 mm2, and a maximum
segment length of 2.5 mm2. The data shows that our sampling covers a di-
rectional Young’s modulus range of roughly five orders of magnitude, with
the minimal directional Young’s modulus of a structure covering four or-
ders of magnitude, and the maximal directional Young’s modulus covering
three orders of magnitude. The bending stiffness shows a smaller variation,
covering a range of two orders of magnitude. While this visualization is use-
ful to determine the practical boundaries of Young’s moduli we can expect
from these structures, it does not lend itself to exploration, and only shows
a limited view of the mechanical properties.

We found that a proper exploration of the mechanical properties of such a
space is best done interactively. We organized our dataset into an interactive
material browser that offers visualization of various mechanical properties
for the whole dataset or individual families, as well as a detailed mechanical
characterization and visualization of individual structures. In such a way,
a user can easily narrow down the number of structures based on their re-
quirements, and then interactively explore the combined aesthetic and me-
chanical properties of the rest.

91



Mechanical Characterization of Structured Sheet Materials

Change of Rod Parameters and Dimensions The results of the mechan-
ical characterization of isohedral tilings are specific to the rod parameters
that we determined in Section 6.3.1. While the differences in geometry of the
individual structures allow us to navigate within the gamut of mechanical
properties, these rod parameters allow us to modify the gamut itself. The
underlying mesoscopic simulation model directly specifies the parameters
that influence the characterization, and therefore this gamut: the Young’s
modulus and Poisson’s ratio of the base material, the cross sectional area of
the rods, and the size of a single patch of the tiling.

The Young’s modulus appears as a linear factor in the formulation of the rod
energy, and allows us to linearly scale the mechanical properties connected
to the stiffness, i.e., Young’s modulus and bending stiffness.

The Poisson’s ratio of the base material is only used in the twisting energy of
the mesoscopic simulation. Since twisting has a negligible effect on the me-
chanical in-plane behavior in the structures we investigated, the membrane
characterization is largely independent of the Poisson’s ratio. The bending
behavior, on the other hand, can show significant twisting of rods. Since
a rod’s resistance to twisting will increase with lower Poisson’s ratio, the
whole gamut of macroscopic bending stiffness will shift towards higher val-
ues if we decrease this parameter.

Finally, the cross sectional area and patch area are linked quantities. If we
keep their ratio, but scale them, the material properties will scale by the
same amount. Interesting effects emerge when this ratio changes, and we
can investigate this effect by keeping the patch size fixed and increasing the
rod diameter: the mesoscopic simulation model tells us that the stretch en-
ergy term of the rod model will scale linearly with the cross sectional area,
while the bending and twisting energy terms scale quadratically. The change
in elastic response of a structure then lies within these bounds, and the
actual scaling depends on whether the structure is bending-dominated or
stretching-dominated: for bending-dominated structures, it will be close to
quadratic, while for stretching-dominated structures, it will be close to lin-
ear.

Since stretching-dominated structures create the stiffest elastic response, and
bending-dominated structures are generally softer, this scaling effectively
shrinks the gamut of properties if we increase the rod cross section. Addi-
tionally, the difference in scaling leads to a decrease in buckling and out-
of-plane bending in the structures. Accordingly, a decrease in cross section
has the opposite effect: it increases the gamut of material properties, and
encourages more buckling and out-of-plane bending.
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6.3.3 Analysis of Individual Structures

We now highlight a number of interesting properties on individual struc-
tures. In Figure 6.9, we present an extensive analysis of the eight structures
already used in the validation of the simulation, shown in Figure 6.6. We
chose structures from four different families (IH02, IH07, IH21, and IH29),
showing the potential differences in material properties between structures
from the same family and across different families. For each structure, we
plot the directional Young’s modulus, Poisson’s ratio, and bending stiffness
computed from the homogenized stiffness tensors, at two different strain
magnitudes (0.1% and 10%) or curvatures (0.1m-1 and 5m-1) to show the non-
linearity of the material properties. Besides these homogenized values, we
also show the ground truth simulation data, i.e., the values extracted from
the same type of uniaxial or cylindrical simulation used in the homogeniza-
tion. We extract the Young’s modulus E and Poisson’s ratio ν along a direc-
tion d from the simulation with uniaxial stretch along d as E(d) = dTσmacrod
and ν(d) = nTεmacron, where we use the macroscopic strain εmacro and stress
σmacro described in Appendix A.2.2, and the direction n normal to d. The di-
rectional bending stiffness is computed as the energy density divided by the
squared curvature.

Isotropy & Anisotropy Structures 1 to 4 in Figure 6.9 show a very good fit
for an isotropic material behavior for small strains, predicted by their three-
fold rotational symmetry (see Section 6.2.2). The variations in Young’s mod-
uli between the structures are large, and especially structures 1 to 3 demon-
strate that even for a single family, we can expect significant variations in
the elastic responses.

The remaining structures display different types of anisotropic material be-
havior. Structures 5 and 6, which belong to the same family, show or-
thotropic material properties. The directional Young’s moduli of structure
6 vary by an order of magnitude depending on the direction, and its Pois-
son’s ratio switches from positive to negative for stretching along the main
axes.

Structures 7 and 8, which also belong to the same family, show a transition
from a tetragonal material to an orthotropic material whose Young’s modu-
lus along the horizontal direction is two orders of magnitude smaller than
along the vertical direction. This change can be explained by the structure
transitioning from a bending-dominated elastic response to a stretching-
dominated elastic response along the vertical axis, creating a stiffer mechan-
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Structure Young’s modulus [Nm-1] Poisson’s ratio [-] Bending stiffness [Nm]
0.1% strain 10% strain 0.1% strain 10% strain 0.1m-1 curvature 5m-1 curvature

1

2

3

4

5

6

7

8

Figure 6.9: Simulation results for all structures listed in Figure 6.6. We show the di-
rectional Young’s modulus and Poisson’s ratio at 0.1% and 10% strain, vi-
sualizing the homogenized result (solid line) as well as the simulated value
(dashed line). The last two columns show the directional bending stiffness for
a curvature of 0.1m-1 and 5m-1. Only for larger strains is there a difference
between the homogenized result and the full simulation.
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ical response. Conversely, the response along the horizontal axis becomes
more bending-dominated for structure 8, making it softer.

The bending-dominated or stretching-dominated nature of the elastic re-
sponse plays an important role in the mechanical properties of these struc-
tures. For example, structure 1 and 5 are visually similar, but the directional
Young’s modulus of structure 5 is up to three times higher. This stems purely
from the fact that the geometry of structure 5 contains straighter paths, cre-
ating a more stretching-dominated response along these directions.

Nonlinearity The transition from a bending-dominated deformation to
a stretching-dominated deformation can not only be observed when we
change the geometry of a structure, but also if we increase the strain on a
structure. Indeed, most nonlinear effects we can observe in the structures
are due to this transition. For example, when the zigzag pattern in structure
8 in Figure 6.9 unfolds, the induced stretch creates a significantly stiffer elas-
tic response. An analogy can be drawn to the stiffness percolation in random
materials (see, e.g., [Wilhelm and Frey, 2003]), i.e., the point at which a mate-
rial forms a path that is aligned with a deformation, significantly increasing
its stiffness.

Structures 1, 2 and 4 all exhibit stiffness percolation, shown by the increase
in stiffness for larger strains. Additionally, while they show an isotropic
behavior for small strains, they develop an increasingly anisotropic mate-
rial response for larger strains, indicated by the six bumps in the direc-
tional Young’s modulus that align with the symmetry directions of the struc-
ture. While the linear approximation cannot capture this anisotropy, it still
achieves a good fit for the average Young’s modulus.

A different type of nonlinear effect can be observed in structure 3. While it
shows the same transition to an anisotropic material response as structures
1, 2 and 4, the average stiffness decreases slightly for larger strains. This de-
crease can be attributed to the out-of-plane deformations that the structure
experiences, allowing it to avoid stiffness percolation for the applied strains.

Bending The bending response of our structures shows less pronounced
anisotropic behavior than their membrane resistance. Even for structure 8,
whose Young’s moduli span two orders of magnitude, the ratio between the
stiffest and softest bending direction is around 5. Additionally, the bend-
ing does not exhibit any stiffness percolation, making the bending response
more linear, with little change in stiffness between different curvatures.
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Initial structure Optimized structure
Geometry Young’s modulus [Nm-1] Geometry Young’s modulus [Nm-1]

Figure 6.10: Starting from a structure from IH09 (left) with an orthotropic material be-
havior (blue), and a desired isotropic target material behavior (orange), our
structure optimization is able to find a similar structure with the desired
material behavior (right).

6.3.4 Structure Optimization

So far, we have set structure parameters and observed the mechanical be-
havior that they induce. A natural extension to this forward exploration is
to search for structure parameters that lead to desired mechanical properties.
As a proof-of-concept for such an inverse design approach, we optimize for
the directional Young’s modulus of a structure.

Objective We define an objective based on Equation (6.5) by measuring the
difference in the directional Young’s modulus of our structure and a target
function. The directional Young’s modulus E(d) is sampled along a set of
n directions d(φi) with equidistant angles φi between 0 and π. Using the
structure parameters p and an additional rotation parameter α as variables,
the optimization objective then becomes

O(p, α) =
1

2n

n

∑
i=1

(
E(d(φi); p, α)

Egoal(d(φi))
− 1
)2

. (6.8)

Optimization A simple gradient-based optimization approach is already
sufficient to create structures with desired elasticity profiles. We opt for a
gradient descent approach with basic backtracking line search. While the
derivative of a homogenized material stiffness tensor with respect to the
structure parameters can be computed from a series of chain rules, the small
number of structure parameters (up to six) allows for an efficient computa-
tion of the derivative through finite differences.
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Figure 6.11: The results of a structure optimization in the family IH06 for an orthotropic
Young’s modulus target. The Young’s modulus for each initial (left) and op-
timized structure (right) are shown in blue, along with the target in orange.

Figure 6.10 shows the result of optimizing for the isotropy of a structure.
Given an initial pattern and a target Young’s modulus, the optimization
finds a similar structure with isotropic material behavior, even though the
isotropy cannot be inferred from the geometric symmetries.

We improve our inverse design approach by running multiple optimizations
with different starting points, chosen from our dataset with around 5500
structures. This allows us to discard undesired local minima, and gives us
the possibility to provide several results with similar behavior but (poten-
tially) different aesthetics for the user to choose from; see examples shown
in Figure 6.11.

Target Specification While our optimization approach handles arbitrary
Young’s modulus targets, defining a physically meaningful Young’s modu-
lus distribution without any feedback is a difficult task. We help users by
letting them draw a set of points onto the Young’s modulus profile and then
fit a material compliance tensor Sgoal to those points. The fitting uses a linear
least squares approach based on Eq. (6.5):

Sgoal = argmin
S

∑
i

(
Ei((didT

i ) : S : (didT
i ))− 1

)2
(6.9)

for a set of goal directions di and directional Young’s moduli Ei.

Optimization Results Figure 6.11 shows an optimization result for a
target Young’s modulus profile corresponding to an orthotropic material.
While the initial structures selected from the dataset already match the target
fairly well, the optimization can significantly improve on this initial match.
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Figure 6.12: The results of a structure optimization in the family IH04 for an anisotropic
Young’s modulus target. The Young’s modulus for each initial (left) and op-
timized structure (right) are shown in blue, along with the target in orange.

Figure 6.12 shows results for an anisotropic target profile. Here, the initial
structures are much further from an optimal result. Nonetheless, our opti-
mization finds structures with the desired mechanical properties by signifi-
cantly altering, and rotating, the initial structures.

6.4 Conclusions

We presented a method to characterize the mechanical properties of struc-
tured sheet materials, providing an intuitive approach to analyze and ex-
plore their deformation behavior. Using numerical homogenization, we
condense the complex deformation behavior of structured sheets, simulated
at their native level, into a macromechanical Kirchhoff plate model. Our
method thus captures the salient mechanical properties of structured sheet
materials, including anisotropic stretching and bending resistance as well as
nonlinearities for larger strains.

We applied our mechanical characterization method to isohedral tilings,
which provide an extensive space of visually pleasing structures with inter-
esting mechanical properties. We investigated the connection between me-
chanical and geometric symmetries, and determined the conditions which
lead to orthotropic, tetragonal, or isotropic materials.

Our method offers an intuitive approach to explore materials, suitable for
applications that require a joint design approach that combines aesthetics
and material properties.
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6.4.1 Limitations and Future Work

Our current approach characterizes flat structures, but especially for applica-
tions in architecture, structured materials with curved rest shapes are of in-
terest. Investigating the influence of rest curvature on the mechanical prop-
erties of the structure might offer insights on how to create optimal synergies
between shape and structure.

The linear material model we use for the characterization offers an intu-
itive way to visualize material properties. However, even though it can
also characterize nonlinear material behavior, the model is not accurate for
larger strains, and it does not model the interaction between bending and
stretching. We consider this trade-off between complexity and conciseness
suitable for material characterization, but applications that would use the
macromechanical model for simulation and (shape) optimization might re-
quire a more accurate and extensive material description.

Many applications of structured materials can benefit from the potential to
create spatially-varying or aperiodic structures, be it for mechanical or purely
aesthetic purposes. The required irregular tiling can be created by choosing
a specific type of pattern or by relaxing the geometric constraints on isohe-
dral tilings. However, the mechanical characterization of such a tiling is not
trivial, and offers many possibilities for future work.
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Conclusion

In this thesis, we have addressed three design problems through the use of
computational design methods.

We have shown that we can use a data-driven approach to efficiently syn-
thesize microstructures with desired elastic properties. Such an approach
requires an appropriate set of precomputed data points, and we have intro-
duced metamaterial families that allow us to interpolate between structures
and material properties. Equally important as selecting the right microstruc-
ture is how to create spatially varying material properties through a tiling of
different microstructures. Such an assembly of structures introduces an error
in the material behavior that depends on the compatibility of neighboring
structures. We have investigated the effect of such a spatially-varying tiling,
and shown that unless there is a very abrupt change in material properties,
the transition between different material properties will likely not induce a
large error.

We proposed a synergistic design approach for shell structures with deco-
rative cutouts that combines structural and aesthetic objectives. With such
an approach, a designer who wants to create visually appealing structures
can get feedback about the structural properties of the design, and choose
to automatically optimize the pattern for structural objectives, reducing the
time spent on checking the stability after the design phase and thus having
to iterate on the design without proper feedback. While we showed that dis-
crete element textures are a suitable description for the aesthetic objective,
our approach is universal in that it can support any objective that translates
aesthetics into an energy-based formulation.



Conclusion

We explored the mechanical properties of space-filling tilings built from sim-
ple geometric shapes, and discovered that they can exhibit a diverse set of
interesting elastic properties that match their visual appeal. To communicate
mechanical properties in an intuitive way that is suitable for the exploration
of this large space of structures, we introduced a homogenization approach
that captures the salient features of networks of rods that are built from these
tilings. We also showed that such a mechanical characterization of a space of
structures with a compact parameterization is suitable for an inverse design
of structured sheet materials, where structure parameters are automatically
optimized to reach desired mechanical properties.

While these three approaches only scratched the surface of the possibilities
of structured materials, they present clear directions and building blocks for
any computational design approach of such materials.

In the presence of a large design space, splitting this space into a hierarchy
through the use of microstructures and homogenization allows for more ef-
ficient solutions to computational design problems, and makes large prob-
lems manageable. It also facilitates data-driven methods that use large sets
of precomputed structures to synthesize the desired properties. For such
methods, we have seen that the use of structure families instead of individual
structures improves the results of interpolations and the tiling of spatially
varying structures by ensuring that structures with similar properties will
have similar geometries. We have also seen that we can leverage the gen-
eral ambiguity in the design space—different structures can have the same
mechanical properties—to automatically create optimized tilings, where we
choose the right structures from a set of candidates, or we can expose the
ambiguity to the user and present multiple results to choose from.

Apart from using hierarchical approaches to tackle a complex design space,
we can simplify the space by choosing the appropriate parameterization. The
microstructure optimization approach in Chapter 4 showed us that, while
the voxel-based parameterization offers a very general description of spatial
structures and allows for various types of solutions, we have to make sure
that these solutions fulfill manufacturing constraints, and it is easy to arrive
at undesirable solutions due to all the regularization that is part of the opti-
mization. Likewise, the simulation of such a general solution space requires
a substantial amount of processing power. When compared to the method
presented in Chapter 6, we see that even if we have very compact represen-
tation of a space of structures, we can still cover a broad range of mechani-
cal properties simply because we can remove many undesirable or infeasible
solutions by choosing the right parameterization. This can not only make
the simulation of such structures much easier—we can use specialized ap-
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proaches like rod simulations—the smaller number of design variables also
helps with solving the inverse design problem.

We have also seen that, when aesthetics and functionality are both impor-
tant parts of the design of an object, a computational design approach that
offers interactive feedback and allows some level of user control greatly im-
proves the design process. For such an approach, simulation methods that
can quickly create such feedback are crucial, and we are required to find the
right balance between speed and accuracy. As we have seen in Chapter 5,
even a relatively coarse simulation can provide valuable feedback during
the design process, even though it would not pass the requirements of a full
structural analysis.

7.1 Future Work

Structured materials offer a wealth of possibilities for future work. While
we have presented a useful set of methods to leverage the control over the
geometry of objects and structures that new manufacturing techniques pro-
vide us, we have just scratched the surface of all the possibilities that this
manufacturing advance gives us, and is likely to give us in the future.

The material models that we use to simulate structured material are often
tailored to the application, and simplified to the point where we achieve the
best trade-off between accuracy and efficiency. Even in the realm of elastic-
ity, if we want to control more complex material behavior such as instabili-
ties, wave propagation properties, or just highly nonlinear deformations, the
material models will have to grow with this complexity, making the inverse
design of such structures all the more difficult. And especially when we pass
into the realm of discontinuous properties such as buckling, we have to find
more advanced optimization approaches or simulation methods that allow
us to optimize structures for these properties.

Besides elasticity, there is a host of other material properties that can be
tuned through structures. While some of them have a similar complexity
as elasticity, for example thermal conductivity, properties like the airflow
through a structure require complex simulation methods for a prediction.
Many of these additional properties have been explored through manual
design, but computational design approaches promise more control over the
material properties, and allow for an easier translation from functional de-
scriptions to material structures, even for non-expert users.

In practical terms, using a sufficiently restricted subset of structures with
a suitable parameterization, such as the one presented in Chapter 6 or in
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[Panetta et al., 2015], often helps to efficiently find structures with the de-
sired material properties. Especially as fabrication processes become more
precise and provide higher resolutions, the design space grows to sizes
where we can no longer subdivide it into blocks and solve complex inverse
design problems for every one of them. Application-specific structures and
parameterizations can have a large benefit in such cases, though finding the
right subset of structures and their parameterization is not trivial. Ideally,
this subspace could also encode fabrication constraints that would guaran-
tee that every instance of it will always be a valid result.

Finally, we presented only one method that has a full pipeline where a user
can go from a functional description to a final result, and two methods that
can create structured materials with specific mechanical properties. While
this allowed us to focus all progress on this part, it is useless without the
full pipeline. And while there are methods that compute distributions of
elastic properties, translating a functional description of an object into such
a distribution that is suitable for microstructures is still an open problem.
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Appendix

A.1 Microstructure Optimization

A.1.1 Numerical Coarsening

We use a homogenization method to describe the coarse-scale behavior of
a microstructure, and as the basis of our microstructure optimization. Such
a method computes material parameters for a homogeneous material that
approximates a structure. In the following, we summarize the Numerical
Coarsening approach [Kharevych et al., 2009] and highlight differences due
to its application to microstructures.

Harmonic Displacements To describe the deformation behavior of the
microstructure, a set of representative displacements have to be computed
for different load cases. These harmonic displacements hab (see Figure A.1 for
an illustration) are defined as the solution to the following boundary value
problem:

∇ · σ(hab) = 0 inside Ω

σ(hab) · n = 1
2(eaeT

b + ebeT
a ) · n on ∂Ω.

(A.1)

Here, ea is the unit vector along the a-th coordinate direction, 1
2(eaeT

b + ebeT
a )

describes the tractions on the surface ∂Ω of the object domain Ω, and n is
the surface normal. For tiled structures, this surface is the boundary of the
cell.



Appendix

Considering symmetries, there are 3 and 6 distinct harmonic displacements
in 2D and 3D, respectively. From these displacements, a 4-th order deforma-
tion tensor G can be defined per element:

Gklab = (ε (hab))kl . (A.2)

This tensor contains the Cauchy strain for every displacement, and by con-
sidering the elasticity equation W = ε : C : ε as a bilinear equation, the term
GT : C : G describes the energy density for any pair of harmonic displace-
ments.

Coarsening The homogenized material stiffness tensor can then be com-
puted from the deformation behavior of the microstructure. The deforma-
tion is first transferred from the harmonic displacements of the microstruc-
ture to a coarse mesh consisting of only a single voxel of the size of the cell.
For the case where the corners of the cell correspond to vertices of the fine
mesh, this simply means transferring the displacements at the corner. For
the general case, the displacement is transferred by computing a distance-
weighted interpolation of a set of nearest neighbors in the fine mesh, while
adhering to the periodic boundary conditions. After the deformation has
been transferred to the coarse mesh, a single coarse-scale deformation ten-
sor G can be defined in a manner similar to Equation (A.2). The coarsened
material stiffness tensor for the coarse mesh is then obtained analytically as

C = G−T :

(
k

∑
i=1

Vi

V
GT

i : Ci : Gi

)
: G−1, (A.3)

hxx hyy hxy

Figure A.1: Harmonic displacements of a microstructure cell in 2D.
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where in the 2D (3D) case Vi is the area (volume) of element i in the fine
mesh, and V is the area (volume) of the entire cell. This approach differs
slightly from Kharevych et al. [2009], where a coarsened material stiffness
tensor is computed for every element in a coarse tetrahedral mesh. Due to
the periodic boundary condition for microstructures, the strain in the coarse
mesh is uniform, and a single material stiffness tensor can be computed for
the whole cell. Note that we use the Voigt compressed matrix representation
to express all tensors. This is especially important when computing G−1,
which can be computed as a simple matrix inverse instead of a more com-
plex symmetric tensor inverse.

A.1.2 Compression Test Data
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Figure A.2: The stress–strain measurements for the base material and the three struc-
tures tested in the compression test. The tangents of the linear part of the
curve describes the Young’s modulus of the structure.

Figure A.2 shows the data from the compression tests of the base material
and three synthesized structure. We determined the Young’s modulus of the
structures by fitting a linear polynomial to the linear part of the stress–strain
curve.
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xi

xj

dij

Rij

Figure A.3: For periodic boundaries in curved configurations, we split the periodic
boundary vertex relationship for planar configuration into a translation dij
and rotation Rij.

A.2 Structured Sheet Materials

A.2.1 Curved Periodic Boundary Conditions

We incorporate the tileability of a structure patch by defining a set of periodic
boundary conditions that impose constraints on vertices on opposite bound-
aries. These boundary conditions guarantee that the patch behaves as if it
were surrounded by identical copies of itself, without having to fix the po-
sition of vertices, which would artificially stiffen the structure. For planar
configurations, we refer to Section 3.3.3. Here, we extend this formulation
for curved deformations (see Figure A.3).

We introduce an additional rotation Rij to the regular relationship between
periodic boundary vertices (see Equation (3.16)). We then describe the rela-
tionship for any vertex pair (xi, xj) on opposite boundaries as

xj = Rijxi + dij (A.4)

The rotation Rij has to be chosen such that the macroscopic curvature of the
patch matches the target curvature. For cylindrical curvature configurations
with cylinder direction v and curvature κC, we use the difference in rest
state positions, ∆Xij = Xj − Xi, to determine the rotational and translational
component: Rij is a rotation of κC‖∆Xij − vvT∆Xij‖ around v, and dij =

vvT∆Xij.

In the case of the spherical curvature κS, we only use rotations to define the
relationship between the vertices, and set dij = 0. The rotation Rij is then
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defined as the rotation of κS‖∆Xij‖ around the rotation axis aligned with
(Xi + (0, 0, 1/κS)

T)× ∆Xij, which puts the macroscopic deformation onto a
sphere with the desired curvature, but violates the strict tileability of the
structure.

A.2.2 Computing the Macroscopic In-Plane Strain and Stress

Xi

Xj

Xk

Xl

Undeformed

Deformed

xi

xj

xk

xl f0f1
n0n1

The macroscopic strain and stress of a simu-
lation with periodic boundary conditions can
conveniently be extracted from the deforma-
tions and forces at the boundaries.

In particular, we can consider two pairs of ver-
tices (xi, xj) and (xk, xl) on different opposing
boundaries (see inset). The deformations of
these vertices relative to each other directly de-
scribe the deformation of the boundary, and
with that the macroscopic deformation. In
terms of the macroscopic deformation gradi-
ent, this relationship is given by xi − xj =
Fmacro(Xi−Xj), where Xi is the undeformed po-
sition of xi. By using the two pairs of vertices,
we can set up a system of equations whose so-
lution is the macroscopic deformation gradient:

Fmacro =
[
xi − xj xk − xl

] [
Xi − Xj Xk − Xl

]−1 (A.5)

From this expression, we then compute the macroscopic Cauchy strain ten-
sor as εmacro =

1
2(Fmacro + FT

macro)− I.

Similarly, we can compute the macroscopic stress by looking at the forces
at the boundary of the simulation domain. For two non-opposing bound-
aries, we compute the forces per unit length f0 and f1. Then, using the
boundary normals n0 and n1, which are perpendicular to xl − xk and xj− xi,
respectively, we derive a system of equations based on the stress equation
f = σmacron, and obtain

σmacro =
[
f0 f1

] [
n0 n1

]−1 . (A.6)

A.2.3 Direction-Dependent Elasticity Measures

We use three elasticity parameters, the Young’s modulus, Poisson’s ratio,
and bending stiffness, as a way to visualize the direction-dependent mate-
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rial behavior of structured sheet materials in an intuitive way. While the
formulas to compute these properties from the stiffness tensors are well-
known [Böhlke and Brüggemann, 2001], we think that a more thorough ex-
planation of their derivation is important for the understanding of direction-
dependent material behavior.

A.2.4 Membrane

We characterize the membrane behavior of a material using the Young’s
modulus and Poisson’s ratio. Intuitively, these properties describe how
much the material resists stretch along a direction, and how much the ma-
terial contracts perpendicular to this direction. Both of these properties are
measured in a uniaxial stress configuration, where the material is stretched
along a given direction, and any stress perpendicular to this direction is re-
solved by deformation.

While the in-plane material behavior is most often described using the stiff-
ness tensor C, which maps strains to stresses, the case of uniaxial stress is
more easily covered by the compliance tensor S = C−1, its symmetric inverse,
mapping stresses to strains.

Young’s modulus We can define a uniaxial unit stress along a given direc-
tion d using a simple outer product, σd = ddT. Applying this stress to the
compliance tensor results in the strain εd = S : σd that is induced by this
unit stress. From this strain tensor, we want to extract the deformation along
the direction d, which we get by again applying the tensor ddT to the strain,
resulting in the expression (ddT) : εd. The ratio between the applied stress
and the induced deformation then defines the Young’s modulus, and since
we used the unit stress, we arrive at the formula

E(d) =
1

(ddT) : S : (ddT)
. (A.7)

Poisson’s ratio The computation of the Poisson’s ratio is based on the
same strain response εd to the uniaxial unit stress σd, but we now compare
two different deformations instead of a deformation and stress. Additionally
to the deformation along the direction d, we therefore also need to extract
the deformation along the direction n that is perpendicular to d, which we
get by applying the tensor nnT to εd. The negative ratio between these two
deformations defines the Poisson’s ratio, resulting in the expression
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ν(d) = − (ddT) : S : (nnT)

(ddT) : S : (ddT)
. (A.8)

Bending

We compute the bending properties based on a simpler approach. Instead of
applying a uniaxial unit moment, we measure the bending stiffness on a de-
formation with purely cylindrical curvature directly on the bending stiffness
tensor B. Given a direction d, we apply the unit curvature tensor κd = ddT

to B, which results in the bending moment Md = B : κd. From this bending
moment, we can, similar to the membrane case, extract the directional bend-
ing moment by again applying the tensor ddT to it. This then gives us the
formula to compute the bending stiffness as

b(d) = (ddT) : B : (ddT). (A.9)

A.2.5 Test Results

Tensile Tests

We present the full plots of our tensile test results in Figure A.4. For the
anisotropic structures 5, 6, 7, and 8, we performed additional measure-
ments on a rotated sample to capture the direction dependence of the tensile
strength.

Bending Tests

We present the full plots of our bending test results in Figure A.5. For struc-
ture 7 and 8, we performed additional measurements on a rotated sample to
investigate their anisotropy.
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Stress–strain curves
Structure 1 Structure 2 Structure 3

Structure 4 Structure 5 Structure 5 (45◦ rotation)

Structure 6 Structure 6 (45◦ rotation) Structure 7

Structure 7 (45◦ rotation) Structure 8 Structure 8 (90◦ rotation)

Figure A.4: Tensile test results and comparison to our simulation.
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Curvature–bending moment curves
Structure 1 Structure 2 Structure 3

Structure 4 Structure 5 Structure 6

Structure 7 Structure 7 (45◦ rotation) Structure 8

Structure 8 (90◦ rotation)

Figure A.5: Bending test results and comparison to our simulation.
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representation of the generalized Hooke’s law. Technische Mechanik, 21(2):145–
158, 2001.

[Bommes et al., 2009] David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-
integer Quadrangulation. ACM Trans. Graph., 28(3):77:1–77:10, 2009.

[Bonet and Wood, 1997] Javier Bonet and Richard D. Wood. Nonlinear Continuum
Mechanics for Finite Element Analysis. Cambridge Univ. Press, 1997.

[Buannic and Cartraud, 2001] Natacha Buannic and Patrice Cartraud. Higher-
order effective modeling of periodic heterogeneous beams. i. asymptotic ex-

116



References

pansion method. International Journal of Solids and Structures, 38(40):7139–7161,
2001.

[Byrd et al., 1995] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu.
A Limited Memory Algorithm for Bound Constrained Optimization. SIAM
Journal on Scientific Computing, 16(5):1190–1208, 1995.

[Cartraud and Messager, 2006] Patrice Cartraud and Tanguy Messager. Compu-
tational homogenization of periodic beam-like structures. International Journal
of Solids and Structures, 43(3):686–696, 2006.

[Chen et al., 2013] Desai Chen, David I. W. Levin, Piotr Didyk, Pitchaya Sitthi-
Amorn, and Wojciech Matusik. Spec2Fab: A Reducer-tuner Model for Trans-
lating Specifications to 3D Prints. ACM Trans. Graph., 32(4):135:1–135:10, 2013.

[Chen et al., 2015] Desai Chen, David I. W. Levin, Shinjiro Sueda, and Wojciech
Matusik. Data-driven Finite Elements for Geometry and Material Design. ACM
Trans. Graph., 34(4):74:1–74:10, 2015.

[Chen et al., 2016] Weikai Chen, Xialong Zhang, Shiqing Xin, Yang Xia, Sylvain
Lefebvre, and Wenping Wang. Synthesis of Filigrees for Digital Fabrication.
ACM Trans. Graph., 35(4), 2016.

[Chen et al., 2017] Desai Chen, David I. W. Levin, Wojciech Matusik, and
Danny M. Kaufman. Dynamics-aware Numerical Coarsening for Fabrication
Design. ACM Trans. Graph., 36(4):84:1–84:15, 2017.

[Chen et al., 2018] Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, and
Jin Huang. Numerical Coarsening using Discontinuous Shape Functions .
ACM Trans. Graph., 37(4), 2018.

[Cioranescu and Donato, 1999] Doina Cioranescu and Patrizia Donato. An Intro-
duction to Homogenization. Oxford lecture series in mathematics and its applica-
tions. Oxford University Press, 1999.

[Clapp et al., 1990] Timothy G. Clapp, Hong Peng, Tushar K. Ghosh, and Jef-
frey W. Eischen. Indirect measurement of the moment-curvature relationship
for fabrics. Textile Research Journal, 60(9):525–533, 1990.

[Coelho et al., 2008] Pedro G. Coelho, Paulo R. Fernandes, Jose M. Guedes, and
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for High-Resolution Topology Optimization. IEEE Trans. on Visualization and
Computer Graphics, 22(3):1195–1208, 2016.

[Xu et al., 2015a] Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbič. Interactive
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