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Abstract

This thesis presents new methods for artists to have direct control on the vi-
sual style of computer animations, in order to let more of their creative energy
penetrate the production pipeline to the final result.

A focus is put on the development of a comprehensive system for the authoring
and rendering of painterly 3D character animation. We build on the concept of
stroke based rendering and contribute to the field in various aspects. We show
how the brush stamping method for brush stroke rendering can be adapted to
3D stroke based rendering. The classic form of this method is used in many 2D
digital painting applications, but the deformations and perspective properties
and the rendering requirements in stroke based rendering call for extensions of
the original algorithm. A persistent challenge in 3D stroke based rendering is
to reconcile the depth order of paint strokes with the order in which they were
painted. We present two new approaches to this problem, one of which guaran-
tees temporal and spatial coherence to produce high-quality images, while the
other is well suited for hardware acceleration and achieves interactive rendering
performance.

Strokes painted in a 2D viewport window must be embedded in 3D space in
a way that gives creative freedom to the artist while maintaining a high level
of controllability. We address this challenge with a three-dimensional canvas
defined implicitly by a scalar field. The artist shapes the implicit canvas with
3D proxy geometry and subsequent sculpting operations. An optimization pro-
cedure is then used to embed paint strokes in space by minimizing different
objective criteria. This functionality allows us to implement tools for painting
along level set surfaces or across different level sets of the scalar field.

We show how 3D stroke-based paintings can be deformed using standard rig-
ging tools and propose a configuration-space keyframing algorithm for author-
ing stroke effects that depend on scene variables such as character pose or light
position. Our system supports temporal keyframing for one-off effects during
an animation. In order to ensure smooth keyframe interpolation in a high-
dimensional configuration space, we develop a novel interpolation algorithm
that avoids undesired stuttering artifacts when multiple keyframes are used.

Finally, we experiment the depiction of motion as a first-class entity in a tradi-
tional 3D rendering process. We extend the concept of a surface shader, which
is evaluated on an infinitesimal portion of an object’s surface at one instant in
time, to that of a programmable motion effect, which is evaluated with global
knowledge about all portions of an object’s surface that pass in front of a pixel
during an arbitrary long sequence of time. With this added information, our
programmable motion effects can decide to color pixels long after (or long be-
fore) an object has passed in front of them. In order to compute the input
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required by the motion effects, we propose a 4D data structure that aggregates
an object’s movement into a single geometric representation by sampling an
object’s position at different time instances and connecting corresponding edges
in two adjacent samples with a bilinear patch.
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Zusammenfassung

In dieser Arbeit werden neue Methoden für die direkte artistische Kontrolle
über den visuellen Stil von Computeranimationen präsentiert. Das Ziel ist es,
zu ermöglichen, dass mehr von der kreative Energie in Konzeptmalereien den
Weg durch die Produktions-Pipeline zum schlussendlichen Resultat finden kann.

Der Fokus der Arbeit liegt auf der Entwicklung eines umfassenden Systems
für die Ausarbeitung und Darstellung von zeichnerischen 3D-Animationen für
Figuren. Das System baut auf der Technik des zeichenstrich-basierten Render-
ings auf, welche in dieser Arbeit in zentralen Punkten weiterentwickelt wird.
Wir zeigen, wie die Stempel-Methode für das Malstrich-Rendering an die An-
forderungen der Gegebenheiten im dreidimensionalen Raum angepasst werden
kann. Die klassische Ausführung dieser Methode wird in vielen digitalen 2D-
Malprogrammen verwendet. Im Rahmen des zeichenstrich-basierten Rendering
werden Aufgrund der Deformationen und perspektivischen Eigenschaften sowie
der Darstellungstechnik jedoch gewisse Erweiterungen notwendig. Ein bekan-
ntes Problem im zeichenstrich-basierten 3D-Rendering ist die Konkurrenz von
zwei Kriterien für die Darstellungsreihenfolge der Malstriche: Die Zeichnungsrei-
henfolge und die dreidimensionale Sichtbarkeitsreihenfolge. Wir führen zwei
neue Lösungsansätze zu diesem Problem ein, von welchen der eine temporale
und räumliche Glattheit garantiert und dadurch hochqualitative Bilder gener-
iert, während der andere dank guter Kompatibilität mit Grafikbeschleunigern
interaktive Darstellungsraten ermöglicht.

Digitale Malstriche, die mit einem zweidimensionalen Eingabegerät appliziert
werden, müssen für die Verwendung in 3D-Animationen im dreidimensionalen
Raum eingebettet werden. Unsere Anforderung an diesen Einbettungsvorgang
ist, dass er dem Anwender einen hohen Grad an künstlerischer Freiheit bietet
und trotzdem gut kontrollierbar bleibt. Unser Lösungsansatz zu diesem Prob-
lem ist eine dreidimensionale “Leinwand”, welche implizit durch ein Skalarfeld
definiert ist. Das Skalarfeld wird als Distanzfeld zu einfachen 3D-Modellen
initialisiert und kann anschliessend mit formgebenden Hilfsmitteln bearbeitet
werden. Malstriche werden in diesem Skalarfeld durch ein mathematisches Op-
timierungsverfahren eingebettet, in welchem verschiedene Kriterien gegeneinan-
der abgewogen werden können. Dadurch können auf einfache Art verschiedene
Einbettungsmethoden realisiert werden.

Für die Animation von solchen 3D-Gemälden werden zwei sich ergänzende Tech-
niken erläutert: Mittels einer Rigging-Methode können die Malstriche gemäss
der Animation des dem Skalarfeld zugrundeliegenden 3D-Modells deformiert
werden. Detailierte Effekte, die über die Animation der 3D-Modelle hinaus-
gehen, können mittels Schlüsselbildanimation in Bezug auf den Konfigura-
tionsraum der Animation erreicht werden. Für die Gewährleistung der glatten
Schlüsselbild-Interpolation im hochdimensionalen Konfigurationsraum wurde
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eine neuartige Interpolationsmethode entwickelt, die unerwünschte Stotter-
Artefakte bei mehreren kolinearen Schlüsselbildpositionen verhindert.

Zuletzt wird eine neuartige Rendering-Technik zur Darstellung von Bewegung
in Einzelbildern präsentiert. Das Konzept von programmierbaren Oberflächen-
schattierern, mit welchen das Aussehen eines einzelnen Ortes zu einem bes-
timmten Zeitpunkt berechnet werden kann, wird um die Zeitdimension zu
“Bewegungseffektprogrammen” erweitert, welche das Aussehen eines auf der
Bildfläche liegenden Punktes mittels dem Wissen um sämtliche geometrische
Örter, welche innerhalb eines beliebigen Zeitbereichs durch den Bildpunkt sicht-
bar waren, berechnen. Dank dieser zusätzlichen Informationen können Bewe-
gungseffektprogramme den Bildpunkt anhand von vergangenen oder zukünfti-
gen Ereignissen einfärben, und dadurch traditionelle Bewegunseffekte wie Be-
wegungslinien und Bewegungsunschärfe reproduzieren. Die benötigten Infor-
mationen werden mittels einer neuartige 4D-Datenstruktur berechnet, welche
die Bewegung eines Objekts auf geometrische Art und Weise aggregiert, in-
dem Kopien des Objekts zu unterschiedlichen Zeitpunkten zusammengefügt und
deren Kanten mit bilinearen Interpolationsflächen verbunden werden.
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C H A P T E R 1
Introduction

From its early days on, the main source of inspiration in computer graphics re-
search has been the real world and how we perceive it. It starts with geometric
models as an approximation of the shape of real objects, and continues over
the visual description of materials (textures, lighting and shading models) and
their faithful reproduction (rendering of illumination and shadows) to the sim-
ulation of how objects move and deform (skeleton models, physical simulation,
high-level motion controllers). As a consequence, computer graphics techniques
have evolved to a point where many real-world phenomena can be modeled and
rendered in a quality that makes them indistinguishable from reality to our eyes.

In practical applications of computer graphics, however, photorealistic render-
ing and lifelike animation is not always the desired goal. Seen in a broader
context, visual arts in general often does not strive for utmost realism, but
instead embraces stylization to better convey impressions, emotions, and infor-
mation. Stylization can be desirable both for artistic and for practical reasons.
It can serve to focus the viewer’s attention, to remove unnecessary information,
or simply to make the image more appealing. Against this background, it is not
surprising that computer graphics also experiences a strong demand for styl-
ized depiction. Some categories of applications for stylized computer graphics
evolved from their traditional counterparts: 3D cartoons, information visual-
ization, scientific illustration, etc. Other applications, such as computer games,
are endemic to computer graphics and yet have developed a need for stylization.
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1 Introduction

a) c) e)

b) d) f)

Figure 1.1: A comparison of images from various recent 3D animation films,
showing how close they all are in visual style. For example, while
the shapes of the faces vary considerably, the visual appearance is
very similar in all samples. The same argument can be made for
hair and clothing. Images taken from a) Monsters vs. Aliens (©
DreamWorks Animation), b) Cloudy with a Chance of Meatballs (©
Sony Pictures Animation), c) Ratatouille (Pixar), d) Up (Pixar), e)
Tangled (Walt Disney Animation Studios), f) Bolt (Walt Disney
Animation Studios). Images c)–f) © Disney Enterprises, Inc.

An example of the demand for stylization in computer graphics can be found in
3D animated feature film production. Such films have been increasingly popular
in the past decade, with more than 10 films being released each year recently.
However, a common criticism that has come up is that most of these films have
a very similar visual style. In particular, they all exhibit a certain synthetic
look that has become representative for 3D animation. They employ a varying
amount and flavor of abstraction for shape, motion, and lighting, but not for
shading and rendering. Figure 1.1 illustrates this argument with a number of
screen captures of major recent 3D movies. The lack of visual diversity has been
identified years ago, and production studios have since made significant efforts
to alleviate it by broadening the spectrum of visual styles seen on screen. But
it has proven to be difficult to produce a 3D animated movie that exhibits a
substantially different style, is pleasant to watch for the length of a feature film,
and can be realized with a reasonable amount of work with the technologies
available today.
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1.1 Objective

1.1 Objective

The quest of bringing artistic stylization into computer animation bridges over
the disciplines of art and technology. From an artistic point of view, a major
challenge is to define how visual stylizations should look when animated. There
is an enormous amount of inspiration and knowledge to be found in traditional
visual arts, but it is often unclear how these exemplars can be brought to life
through motion in a visually pleasing way. Once there is a clear artistic vision
of a stylized animation, the next challenge lies in the practical realization of
this vision. Due to the amount of work and precision required for the manual
creation of animations, technology is often the enabling factor in doing so. But
technological research is not limited to a reactive role in the design of new
animation styles. Experimentation with new technologies can be very fruitful in
the development of artistic features. As John Lasseter puts is, “the art challenges
the technology, and the technology inspires the art.”

Concept Modelling

Rigging Animation

Look 
development

Lighting

Rendering

Figure 1.2: An illustration of the conventional workflow, or “pipeline”, used in
the production of 3D animation movies. Asset production in com-
puter games also follows these steps closely. Each stage typically
applies a number canonical mathematical models and data repre-
sentations, which limits the fidelity to which the artwork from the
concept stage can be reflected in the final result.

The primary concern of this thesis is to enable and facilitate new visual styles in
3D animation with the development of new technologies and tools. The biggest
challenge therein lies in the rigidity of the canonical techniques used to produce
3D animations. Figure 1.2 depicts a workflow that is used to create animations
both in film and in games. Painterly styles are often seen in the Concept stage,
but have shown to be inherently difficult to achieve as the final result with a
standard 3D animation pipeline. Each step in the pipeline involves mathemat-
ical models and algorithms to tackle the various problem at hand. Originally,
these models were typically developed to imitate phenomena of reality. In order
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1 Introduction

Figure 1.3: The image to the left shows a concept art piece for the Disney/Pixar
movie “Ratatouille” and the image to the left an actual frame from
that movie. Producing a movie in the visual style shown in the
concept piece would be very difficult with the canonical 3D anima-
tion pipeline and the current state-of-art in research. © Disney
Enterprises, Inc.

to make production as efficient as possible, they are designed intelligently to
take as much workload off the user as possible. But such automatism often
comes at the cost of limiting the flexibility of the result. The models used in
standard 3D animation pipelines usually do not explicitly cater to the needs of
artistic stylization and can be very rigid to deal with when trying to achieve new
styles. We believe that this rigidity is the main reason why animation studios
with established 3D animation pipelines have found it difficult to break away
from certain design attributes that are prevalent in existing productions, such
as the aforementioned synthetic look (Figure 1.3).

Interestingly, this problem also existed (and continues to exist) in 2D animation.
Figure 1.4 illustrates an anecdote according to which Walt Disney picked up a
concept painting made by Joe Grant, one of the pivotal Disney artists, and
wanted to use its visual style for animation [Thomas and Johnston, 1981]. But,
the production pipeline for 2D animations at this time could not capture and
reproduce the kind of style shown in Joe’s painting in an efficient manner.

1.2 Overview

In this thesis, we present technologies that either extend or replace elements of
the conventional 3D animation pipeline to allow more artistic control and ex-
pressiveness in the process. Chapters 2–4 combine to a system that is intended
to partially replace the Modeling, Rigging, Look dev, and Rendering steps with
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1.2 Overview

Walt Disney: “Yeah…yeah! Look
at this, guys, isn’t that better?
Why don’t we draw it like that?”
 
However, there was no way an 
animator could duplicate in 
line what had been captured 
with a slight smudge of chalk.

From The Illusion of Life: Disney Animation
by O. Johnston, F. Thomas

Figure 1.4: Even in 2D animation, technical limitations of the production
pipeline continue to impose limitations on the visual style attain-
able in the end result. © Disney Enterprises, Inc.

the goal of allowing more of the artistic freedom of the Concept stage to per-
meate through the pipeline to the end result. Our system empowers its users to
produce painterly-looking animations while making use of some of the powerful
instruments for animation in 3D. We build upon the core concepts introduced by
Deep Canvas [Katanics and Lappas, 2003]: the usage of paint strokes that are
drawn onto proxy 3D geometry by the user as the central rendering primitive.
We extend those concepts in Chapters 2–4 to provide greater artistic flexibility
and the capability of animation.

Chapter 2 revolves around the painterly rendering of brush strokes located in
space. We adapt the brush “stamping” technique that is used in many 2D
digital painting applications (including Adobe Photoshop) for use in 3D anima-
tion. This technique renders brush strokes by repeatedly “stamping” a (typically
square or circular) brush texture along the stroke path with close spacing, thus
creating the impression of a continuous stroke. While such an approach is trivial
in 2D, the notion of depth and temporal coherence requires additional consid-
eration in the context of 3D animation, which is addressed in this chapter. In
addition, we present novel solutions to the problem of respecting the paint order
of brush strokes on 3D surfaces. This problem arises when paint strokes on a
surface should be draw in the order that they were painted to respect the artist’s
intent, while paint strokes on different surfaces should be drawn according to
their depth order to respect the scene’s three-dimensional structure.

In Chapter 3, we address the problem of placing brush strokes in 3D space
with a 2D input device (such as a mouse or a graphic tablet). The lack of
depth information with these input devices leaves one degree of freedom open
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1 Introduction

when transforming the positions from 2D to 3D. We deal with this ambiguity
by requiring proxy geometry in the form of a 3D mesh to be provided for each
object that is to be painted. These proxies are used to roughly describe how
space is occupied by objects and guide the embedding of paint strokes into space
accordingly. Our system allows the exact nature of the interaction between
the proxy geometry and embedded paint strokes to be defined flexibly in a
mathematical optimization framework and made accessible to the user through
encapsulation in different embedding tools. For example, one such embedding
tool could place brush strokes at a certain distance to the proxy geometry,
while another one could allow the user to paint perpendicular to the surface.
Our results demonstrate how these simple tools allow artists to evoke certain
visual characteristics in 3D paintings that would have been difficult to achieve
with traditional methods.

Chapter 4 presents methods for authoring animations with the 3D painting
system established in Chapters 2 and 3, with a focus on character animation.
Continuing the spirit of using proxy geometry from Chapter 3, we assume that
the gross motion and deformation of objects is already given for the proxy
geometry, and that our system has access to the deformed vertex positions for
any desired pose. Naturally, the user expects paint strokes to automatically
be transformed according to the underlying proxy geometry. We propose to
achieve this goal with a linear blend skinning approach. Skinning deformation
method lets the 3D painting reflect the gross motion of the object, but does
not provide the user with immediate control over the movement and properties
of paint strokes. The need for such control arises when the result of skinning
deformation is not satisfactory, or when the user wants to author motion that
is not reflected in the proxy geometry, for example because it exceeds the detail
level that is captured by the proxy geometry. We propose a configuration-
space keyframing algorithm for authoring pose-dependent stroke effects. This
mechanism allows stroke opacity or movement to be keyframed to positions in
a configuration space which includes character pose parameters and other scene
variables such as light positions. Our system also allows the same quantities
to be key-framed in time, which enables one-off effects and tuning during the
animation.

Finally, Chapter 5 presents an extension to the traditional Rendering stage that
simplifies the art direction of the depiction of motion within a single image or a
single frame of an animation. We extend the concept of a surface shader, which
is evaluated on an infinitesimal portion of an object’s surface at one instant in
time, to that of a programmable motion effect, which is evaluated with global
knowledge about all portions of an object’s surface that pass in front of a pixel
during an arbitrary long sequence of time. We present a data structure and
algorithms to generate the necessary information and pass it to a motion effect
program. This novel shader concept can decide to color pixels long after (or long
before) an object has passed in front of them, enabling to obtain effects such as
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speed lines, stroboscopic copies, streaking, and stylized blurring. By rendering
different portions of an object at different times, our motion effect programs are
also able to achieve perceived stretching and bending of objects.

1.3 Background

In his invitation to discuss computer depiction, Durand [Durand, 2002] high-
lights the difference between primary space (the 3D world in which objects
live) and secondary space (the 2D canvas on which depictions of those objects
are created), illustrated in Figure 1.5. This distinction, originally introduced
to analyze the historical use of representation systems in engineering drawings
[Booker, 1963] and fine art [Willats, 1997], provides a lens through which to
explore the development of expressive depiction in computer graphics.

Secondary Space Primary Space
Figure 1.5: Primary space refers to the 3D world in which objects live, while

secondary space denotes the 2D canvas on which depictions of those
objects are created [Durand, 2002]. Our work blurs the distinction
between these two spaces by upgrading strokes to the primary space
and downgrading traditional 3D objects to serve only as helpers in
defining an implicit canvas.

The field of non-photorealistic rendering (NPR) has developed a rich col-
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1 Introduction

lection of expressive depiction methods. Although traditional photorealistic
rendering research focuses on the primary space (e.g., scene representation,
visibility determination, global illumination), the NPR community first ap-
proached the problem from the opposite direction by focusing entirely on the
secondary space of the 2D canvas. Haeberli’s interactive “Paint By Numbers”
system [Haeberli, 1990] fills a 2D canvas with brush strokes whose attributes
are controlled by information contained in a photograph. This concept led to an
entire sub-field of research on stroke-based rendering [Hertzmann, 2003] that en-
compases improved brush models [Hertzmann, 1998], image segmentation and
parsing [Gooch et al., 2002, Zeng et al., 2009, Zhao and Zhu, 2010], video pro-
cessing [Litwinowicz, 1997, Hertzmann and Perlin, 2000, Hays and Essa, 2004,
Winnemöller et al., 2006, Lu et al., 2010, Lin et al., 2010], user-guided pen-
and-ink illustration [Salisbury et al., 1997], user interaction metaphors
[Schwarz et al., 2007], as well as many other advancements. Other secondary-
space approaches focus on simulating the physical properties of traditional
brushes and paint media such as watercolor [Curtis et al., 1997], oil paint-
ing [Baxter et al., 2001, Baxter et al., 2004, Chu et al., 2010], and pencil
[Sousa and Buchanan, 2000]. Image analogies [Hertzmann et al., 2001] offer
a way for automated stylization of 2D imagery on the basis of an exemplar
image. All of these methods share a common focus on computation performed
in the secondary space of the 2D canvas without explicit representation of the
3D world.

Inspiring secondary-space results naturally led researchers to extend expressive
depiction to the primary space of 3D objects, leading to a diverse collection
of non-photorealistic rendering algorithms. One topic that has received a lot
of attention is the the creation of line drawings from 3D models. A sparse
set of lines to describe the shape of a model can be found in silhouettes
[Hertzmann and Zorin, 2000], suggestive contours [DeCarlo et al., 2003], and
apparent ridges [Judd et al., 2007]. More detailed line-art illustration of sur-
faces can be obtained using stroke textures [Winkenbach and Salesin, 1994]
and hatching [Saito and Takahashi, 1990, Winkenbach and Salesin, 1996,
Hertzmann and Zorin, 2000, Praun et al., 2001, Kalogerakis et al., 2012].
Kowalski and colleagues demonstrate the procedural use of small line art ele-
ments to create stylized depictions of fur, grass, and trees [Kowalski et al., 1999].
Recently, a programmable system for the creation of line drawings from 3D
scenes has been presented [Grabli et al., 2010].

Moving away from line art, but often used in conjunction with it, toon shad-
ing [Decaudin, 1996, Lake et al., 2000, Barla et al., 2006] provides a popular
method to give 3D objects a cartoony appearance using a thresholded shad-
ing strategy. A more radical stylization in this direction can be obtained
using the 2.5 cartoon model by Rivers and colleagues [Rivers et al., 2010].
The lit sphere [Sloan et al., 2001] allows objects to be shaded according to a
painted example (hemi-)sphere. Vanderhaeghe and colleagues have recently
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presented a shading primitive that is designed specifically for the stylized de-
piction of 3D objects [Vanderhaeghe et al., 2011]. 3D surfaces can also be
stylized using art maps [Klein et al., 2000], 2D patterns [Breslav et al., 2007],
solid textures [Bénard et al., 2009], and methods based on coherent noise
[Kass and Pesare, 2011].

The common focus of the techniques listed in the last two paragraphs is an al-
gorithmic mapping from primary space to secondary space that implements dif-
ferent expressive styles. Among these methods, Meier’s painterly rendering sys-
tem [Meier, 1996] marks the inception of a line of research closely related to our
own. Particles attached to an object’s primary-space surface are used to render
secondary-space brush strokes so that the strokes stick to the object as the cam-
era moves. This simple, though groundbreaking, concept ultimately led to the
development of Disney’s Deep Canvas technology [Katanics and Lappas, 2003],
which replaces Meier’s procedurally generated particles with an artist-driven
painting system. Painted strokes are projected on the object’s surface and
stored along with all data associated with the painting system. A new view
is rendered by “repainting,” or playing back all recorded painting operations,
using the camera’s new view transformation. Concurrent with the development
of Deep Canvas, Teece [Teece, 2000] proposed a related painting concept with
a focus on interactivity. The WYSIWYG NPR system of Kalnins and col-
leagues [Kalnins et al., 2002] expands upon this line of work by showing how
algorithmic rendering techniques such as silhouette stylization or hatching can
be controlled directly by the artist via a painting interface. Our work draws
heavily from these ideas and advances them in the areas of rendering, stroke
placement, and animation.

1.4 Contributions

In this thesis, we make the following scientific contributions:

w We show how the brush stamping technique for brush stroke rendering
can be adapted to the conditions of 3D stroke based rendering, along
with some advanced features like brush parameter jittering and canvas
texturing.

w We formalize the problem of combining paint order with depth order in 3D
stroke based rendering. We also present two new solutions to this problem,
one of which is tailored towards real-time applications and the other is
suitable for high-quality rendering due to its unconditional smoothness.

w We introduce the concept of an implicit 3D canvas, which allows the full
3D space to be treated as a canvas for painting in the presence of proxy
geometry.

9
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w We present a method for flexible and customizable embedding of 2D input
strokes in 3D space using a mathematical optimization framework. As an
example, we implement three different embedding tools with this method.

w We present a system and workflow for authoring character animations
in the context of stroke based rendering. On a high level, our system
consists of two components: paint stroke skinning and configuration-space
interpolation. Both components are designed to cooperate well with the
painting input metaphor.

w For configuration-space interpolation, we introduce a novel high-
dimensional scattered data interpolation scheme, which is particularly
suited for keyframe interpolation in animation.

w We demonstrate how depictions of motion in 3D animation can be au-
thored in a flexible, programmable fashion in a single step in the rendering
process. To this end, we present a data structure that captures the motion
of objects in a form which can easily be communicated to the renderer,
along with an algorithm that processes this global motion data into per-
pixel motion information. We show how the resulting information can be
flexibly processed into depictions of motion effects on the basis of several
examples.

1.5 Publications

This thesis is based on three publications that were accepted to ACM Trans-
actions on Graphics and presented at the SIGGRAPH and SIGGRAPH Asia
conferences:

w Schmid, J., Sumner, R. W., Bowles, H., and Gross, M. 2010. Pro-
grammable motion effects. In ACM Transactions on Graphics, 29(4),
57:1–57:9.

w Schmid, J., Senn, M. S., Gross, M., and Sumner, R. W. 2011. OverCoat:
an implicit canvas for 3D painting. In ACM Transactions on Graphics,
30(4), 28:1–28:10.

w Baran, I., Schmid, J., Siegrist, T., Gross, M., and Sumner, R. W. 2011.
Mixed-order compositing for 3D paintings. In ACM Transactions on
Graphics, 30(6), 132:1–132:6.

Another publication concerned with the research presented in Chapter 4 of this
thesis has been conditionally accepted to the ACM Transactions on Graphics
and is currently in revision.
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C H A P T E R 2
Stroke Based Rendering

In this section, we present various improvements to stroke-based rendering, with
a focus on scenarios where strokes have at least a partial representation in pri-
mary space (3D). In a loose definition, stroke-based rendering encompasses all
image generation techniques where paint strokes are used as rendering primi-
tives, in contrast to rendering geometric surfaces, for example. This concept
has been successfully applied in image and video stylization, where a sequence
of input images (photographs, video frames, rendered images) is processed to
create a painterly depiction of the images. Such methods, some of which are
reviewed in Section 1.3, typically work exclusively in the secondary space (as
described in Section 1.3) and do not require or incorporate any primary space
information like scene geometry or 3D position.

In this thesis, however, we focus on stroke-based rendering for the direct styl-
ized depiction of three-dimensional virtual scenes. In our setting, paint strokes
possess an abstract representation in the virtual 3D scene that consists of at
least positional information of the stroke, which is transformed to the screen
before rendering. The advantage of this approach is that manipulation in the
primary space, such as camera motion or shape deformation, leads to a direct
and unambiguous result in the secondary space representation. In more loose
terms, the image can automatically be “re-painted” given the knowledge of the
new configuration of the virtual scene.

Even though the position and movement of a stroke is governed by its pri-
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2 Stroke Based Rendering

mary space representation, we would like rendering to be a mostly two dimen-
sional, secondary-space process in order to generate images that look as if they
were painted in 2D. We propose to achieve a painterly appearance by ignor-
ing much of the primary space information when creating the secondary space
image. This feature is the most salient distinction between stroke based render-
ing and other 3D painting techniques, such as texture painting or Maya Paint
Effects [Paint Effects, 2011].

Certain properties of the primary space may need to be incorporated in order to
be able to convey the scene layout in a convincing and understandable way. For
example, we use depth information to scale the brush width with the size of an
object (Section 2.3.3) and to establish the visibility order of surfaces in the scene
(Section 2.2). On the other hand, we consciously refrain from using information
about the orientation of brush strokes and underlying proxy geometry, and we
do not use 3D to 2D projection for anything but the centerline of a stroke. This
decision is largely a stylistic choice based on our goal to create images that look
as close to digital 2D painting as possible. If one is willing to relax on this ideal,
however, there is a wealth of primary space data that could be used to create
interesting and useful stroke effects, such as the orientation of the brush stroke
with respect to the viewer or even the velocity of strokes in an animated setting.

2.1 Brush Stamping for 3D Paint Strokes

A stroke-based rendering system requires a brush model that defines how
paint strokes are rendered. This model can be as simple as a single elon-
gated and oriented brush texture per stroke [Meier, 1996, Litwinowicz, 1997,
Hays and Essa, 2004, Lu et al., 2010]. However, for methods which aim to
render paint strokes that are significantly longer than they are wide, the
better choice is to represent strokes with a geometric curve that repre-
sents the path, or “centerline”, of the paint stroke, and a method to
generate the depiction of a brush stroke along that path. In the re-
search community, the predominant method to render brush strokes from a
curve is to create a geometric skeleton around the curve and render this
“ribbon” with a texture or a procedural shader that creates the appear-
ance of a brush stroke [Hsu and Lee, 1994, Northrup and Markosian, 2000,
Kalnins et al., 2002, Katanics and Lappas, 2003]. This process is illustrated in
Figure 2.1.

In commercial 2D digital painting packages, on the other hand, the “brush
stamping” approach is by far the most commonly used brush model. In this
method, which was pioneered by Alvy Ray Smith [Smith, 1982], a paint stroke
is rendered by repeatedly blending a brush texture into the image along the
stroke’s curve (Figure 2.2). This process is conceptually simple and thus easily
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2.1 Brush Stamping for 3D Paint Strokes

Figure 2.1: In stroke based rendering, a popular way to draw brush strokes is to
create a geometric skeleton (or “ribbon”) around the stroke centerline
(top image) and fill it with a procedural shader or texture (bottom
image).

understandable and customizable by non-technical users, yet at the same time
it trivially handles paint strokes of arbitrary length and shape, which can be
difficult to achieve with ribbon-based models. On the other hand, the stamping
method faces issues with respect to temporal coherency when the shape and
length of paint strokes change over time. This issue may not be of concern for
2D digital painting, but it readily arises in stroke-based rendering of animations.

In this section, we present a simple method for rendering tree-dimensional paint
strokes with 2D brush stamping, and various extensions to improve the vari-
ability and flexibility of the resulting paint strokes.

2.1.1 Definitions

Let a paint stroke S be defined by a tuple

S = 〈P , T , c, ρ, σ, s〉, (2.1)

where P is a sequence of points that defines the stroke path, T is a brush stamp
texture, ρ is the desired screen space width of the brush in pixels, σ is the desired
density of brush stamps along the stroke path as a fraction of the brush stamp
size, and the stroke number s is an integer that establishes an ordered sequence
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2 Stroke Based Rendering

Figure 2.2: In the brush stamping approach, a roughly circular brush texture
is blended into the image repeatedly along the stroke path (top
image). If the stamps are placed densely enough, the appearance of
a coherent brush stroke is created (bottom image).

among all strokes in a painting. Each stroke point Pi ∈ P with i ∈ [1, N ] is
defined by another tuple

Pi = 〈pi, ri〉, (2.2)

in which pi signifies the stroke point’s location in 3D and ri represents the pro-
jection of the brush width ρ into world space at position pi (which is discussed
in detail in Section 2.3.3). We use the notation p̂i to designate the screen space
position of pi in the current view.

The curve that represents the path of paint stroke S is defined by the stroke
point positions pi in the sense that the curve passes through each stroke point
in sequence. In all cases, we model the curve as a polyline: the curve is defined
by the linear segments connecting adjacent stroke points in P . However, we
do not see any limitation that would prohibit the usage of a higher-order curve
representation, such as an interpolating B-spline.

The brush texture T is a raster graphic of arbitrary size, typically of roughly
square format. In our implementation, the color of a paint stroke is exclusively
defined by the stroke color c, thus the only purpose of T is to define an opacity
value for each pixel in the texture.

Some notes on terminology:

w We use the words “stamp” and “splat” almost interchangeably in this the-
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2.1 Brush Stamping for 3D Paint Strokes

sis. While “stamp” is used mainly in the abstract context of stamping,
with “splat” we mean an actual textured quad that is rendered on screen.

w The word “fragment” is used with its usual meaning in computer graphics.
It is a portion of a rendering primitive that falls into one pixel as computed
by the rasterizer. Fragments can inherit any of the information about their
corresponding strokes and splats, such as stroke number and splat depth.

2.1.2 Stamp Placement

The canonical method for brush stroke rendering with stamping in 2D is to
sample the curve of a stroke at uniformly spaced intervals with respect to arc
length, and at each sample location composite T on top of the existing image
buffer with alpha blending (for example using the over -operator). If the color
along a stroke is constant, the order in which the individual samples are pro-
cessed is irrelevant, since the alpha compositing is commutative if (and only if)
the colors to be composited are equal. The width of the rendered brush stroke
is determined by the size of the brush texture that is composited into the image.
Therefore, T is scaled such that its diameter matches the desired stroke width,
ρ.

The arc-length distance between two samples, which we will refer to as the spac-
ing of the brush, is a freely selectable parameter of the stroke that has great
influence on the appearance of a stroke. It is the density with which the brush
texture is reproduced along the stroke curve, and, due to the alpha composit-
ing, it directly affects the opacity of the stroke. Typically, it is desired that the
color density is distributed evenly along the stroke, and thus it follows that the
sampling should be performed at uniform intervals.

A simple algorithm that satisfies these requirements is outlined in Algorithm 1.
In this algorithm, spacing is assumed to be constant and defined in screen space
length units (pixels). We will argue later that for more complex stroke based
rendering applications, it is better to define spacing with respect to the brush
width.

This algorithm suffers from two deficiencies when used to render brush strokes
whose original representation lies in 3D space: brush width scaling and end
point coherence.

Brush width scaling

In a typical 2D digital painting application, the user chooses a constant width
in pixel units for the brush strokes he or she is about to paint. This width may
be modulated by pen pressure or jittered along the stroke, but the base value
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Algorithm 1 Uniformly spaced brush stamping
t← 0, tend ← 0
draw T at p̂0

for all Pi ∈ P \ {PN} do
tend ← tend + dist(p̂i, p̂i+1)
while t+ spacing < tend do
t← t+ spacing
draw T at curve position t scaled to ρ

end while
end for

never changes. In a 3D painting system, we would like to mimic this behavior by
defining the brush width in screen space in the current view as the user paints
a stroke. This user-selected paint-time brush width is reflected by the scalar ρ
in Equation 2.1.

However, as the view on the 3D painting is changed, brush strokes are expected
to scale with respect to their distance from the viewer if a perspective projection
is used. A simple example is a straight brush stroke that is moved away from the
viewer. As the distance increases, the projection of the brush stroke gets shorter,
and to maintain a uniform appearance, its width has to decrease accordingly.
This effect can also vary along a stroke: suppose that the straight stroke was
painted on a plane that was originally perpendicular to the viewer. If the plane
and the stroke on it get tilted with respect to the viewer, one end of the stroke
will be closer to the viewer than the other, and thus the width of the stroke
should vary accordingly. Both effects are illustrated in Figure 2.3.

In addition, the 3D embedded representation of a brush stroke should not be
restricted to be co-planar to the view plane at paint time. As a consequence,
the projection of the brush width ρ to the embedded 3D positions must be
allowed to vary along the stroke. We therefore compute a world space radius
for each stroke point, which is reflected by the ri in Equation 2.2. These radii are
computed after a brush stroke has been applied on the canvas and transformed
to 3D: for each stroke point, a line segment that has a length of ρ (the screen
space brush width) and originates at the screen space location the stroke point is
projected into world space. The length of the projected line segment represents
the world space radius of the stroke at that point and is stored in ri. When
rendering the brush stroke from an arbitrary view, ri can be projected back to
screen space in similar fashion and used to determine the adjusted brush width.
Since the sampled brush stamp positions in general do not coincide with the
stroke points, we propose to use linear interpolation to compute the brush width
at any location along the stroke.

As mentioned earlier, the reason for the uniform sampling intervals in Algo-
rithm 1 is found in the desire of a constant density along the stroke. The
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density, however, is defined by the relative amount of overlap between two con-
secutive splats. To keep density constant, the spacing should therefore scale
proportionally with the radius of the splats along the stroke. Instead of defin-
ing spacing absolutely in terms of pixels (as in Algorithm 1), we define our
spacing value σ as a fraction of the brush width. An absolute spacing value is
obtained by multiplying σ with the current brush width. Since the projected
brush width is not constant over a stroke, neither is the resulting spacing, and
thus the sampling intervals during brush stamping are not uniform. Algorithm 2
implements adaptive sampling that takes the varying width into account.

Algorithm 2 Perspectively scaled brush stamping
tnext ← 0, tend ← 0
for all Pi ∈ P \ {PN} do
tend ← tend + dist(p̂i, p̂i+1)
while tnext < tend do
γ ← tend−tnext

dist(p̂i,p̂i+1)

rsplat ← γ · transformToScreen(ri) + (1− γ) · transformToScreen(ri+1)
draw T at curve position tnext scaled to rsplat
tnext ← tnext + σrsplat

end while
end for

End point coherence

The brush stamping technique described so far suffers from severe temporal
coherence problems in animations: if the brush strokes undergo 3D transforma-
tions, their projections to the screen plane will change in length, and thus the
number of splats generated by Algorithm 2 may change from frame to frame.
By construction, the algorithm will always place a splat at P1 (the start of the
stroke), but in general it will not hit PN (the end of the stroke) exactly. As the
projection of a brush stroke changes in length, splats will suddenly appear or
disappear around PN , which is perceived as a popping or flickering artifact.

We have found a simple fix to this problem that hides this aliasing problem
from the viewer. To ensure that the rendering algorithm always covers the
entire length of a stroke, the brush stamping algorithm is extended to always
draw a last splat at PN . In addition, the opacity of the second last splat (i.e.
the last splat generated by Algorithm 2) is scaled with the proximity to PN ,
such that it vanishes completely if it coincides with PN . Figure 2.4 illustrates
this process.
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Original view

Constant width Perspectively scaled width

a)

b)

c)

Figure 2.3: The width of a paint brush needs to be scaled according to the per-
spective transformation. Row a) shows the original view on a single
brush stroke. In row b), the brush stroke was moved away from the
viewer. If the width of the brush stroke is not scaled (left image),
the proportions of the brush stroke change, as does its relative size
with respect to the underlying object. Row c) shows that the width
needs to be scaled at a sub-stroke resolution, otherwise long strokes
exhibit distortions when viewed from steep angles as shown in c).
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Figure 2.4: The stamp placement algorithms described in Section 2.3.3 do not
ensure that the end point of a brush stroke is covered with a stamp
(left hand side). This causes the end of the stroke to jump or flicker
if the length of the stroke changes during an animation. A simple
remedy is to always place a stamp at the last point of a stroke and
to scale the opacity of the second last splat to maintain the expected
color density (right hand side).
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2.1.3 Stroke Transparency

The ability to change the transparency of a brush stroke is an important feature
of 2D digital painting and should also be available in 3D painting. With brush
stamping, there are two different approaches to controlling transparency:

1. Scale the α-value of each individual stamp before compositing.

2. Scale the α-value that results after compositing all stamps of a stroke.

Since the over -operator is not linear in α, the results of the two methods are
not equivalent. The difference is shown in Figure 2.5. In Adobe Photoshop, the
first property is called flow, while the second property is called opacity.

Figure 2.5: In the upper stroke, the α-channel of each stamp is multiplied with
0.5 before compositing. In the lower stroke, compositing is done
before the resulting α-channel is multiplied by 0.5.

Adjustable flow is trivial to implement, since a constant scaling factor for the
α-value of each primitive is typically supported by rendering architectures. Per-
stroke opacity is much harder to obtain, because it requires a modification of
the α-value after compositing all stamps of a stroke. This effect cannot be
achieved by a constant α-factor for individual splats. Depending on the stamp
spacing and the brush texture, the user can approximate opacity by picking the
right flow factor. However, this factor can not be estimated automatically in a
reliable fashion, because it depends both on the spacing and on the alpha values
within the brush texture.

The obvious solution to obtain true per-stroke opacity is to composite each
stroke into a separate buffer before scaling its α-value and blending it into the
framebuffer. Unfortunately, when used in the context of 3D painting, this pre-
buffering of strokes poses a number of challenges, which will be presented in
detail in the discussion of future work (Section 2.3.3).
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2.1.4 Pressure Dynamics and Parameter Jittering

In addition to the pen position, graphic tablets also record the pressure that is
exerted on the tablet. This pressure value can be used to modulate brush pa-
rameters, typically brush width and flow, in 2D digital painting. Since our brush
stamping routine (Algorithm 2) already supports brushes of non-constant width
and flow, these effects are trivial to implement in our brush model. We simply
store the pressure value at each stroke point along with the other information
in Equation 2.2 and interpolate it linearly to the splat locations.

A simple method to roughen up the appearance of brushes is to randomly jitter
the brush parameters along the stroke. In addition to brush width and flow,
it is effective to randomly rotate the brush stamps around their center point,
as is illustrated in Figure 2.6. These features are widely available in 2D digital
painting. In order to obtain the same effects with temporal coherence in stroke-
based rendering, we store a random number seed for each stroke along with
the other information in Equation 2.1. The bigger challenge, however, lies in
the fact that since the brush stamping routine operates in screen space, an
individual splat is not tied to a particular location on the stroke. As the screen
space length of a brush stroke changes, the splats “slide” over the brush stroke,
which is essentially the same issue that leads to temporal coherence problems
at the end of a stroke discussed in Section 2.3.3. As long as each splat has
the same appearance, the sliding effect is not noticeable except at the end of
a stroke. Unfortunately, it becomes very apparent when brush parameters are
jittered. The only temporally coherent solution we have found to this problem
is to fix the splat locations in 3D for brush strokes with jittering effects. This
solution comes at the cost of forgoing the constant color density along the stroke,
however, so it presents the user with a stylistic trade-off.

No
jittering

Rotation
jittering

Flow
jittering

Brush width
jittering

Combined

Figure 2.6: The parameters of the individual brush splats can be jittered to
create more interesting brushes. The rightmost example combines
rotation, flow, and brush width jittering.
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2.1.5 Canvas Texture

Another brush feature that enjoys considerable popularity in 2D digital painting
is canvas texturing. An arbitrary alpha texture, often resembling the texture
of paper, is aligned with the canvas and used as an additional alpha modulator
when compositing elements (such as brush stamps) onto the canvas. While the
brush texture T is always co-located with each splat, the canvas texture remains
fixed with respect to the canvas origin. When compositing a fragment of a splat
into the canvas, the corresponding alpha values of T , the canvas texture, and
the user-chosen flow value are multiplied to compute the alpha value of the
fragment.

When this technique is applied to moving brush strokes, the so-called “shower
door” effect is perceived: since the brush strokes are moving while the canvas
texture remains static, the brush strokes appear to be seen through a distortion
layer, like a rippled shower door. This effect is usually disturbing to the viewer
and therefore undesirable. Instead, the viewer expects the canvas texture to
move along with the stroke to maintain the consistent appearance of a roughened
brush stroke.

In the setting of 3D painting, the 2D projection of brush strokes may undergo
complex transformations when the view is changed or the brush strokes are
animated. It is a design choice to what extent these transformations should
be reflected in the canvas texture of a brush stroke, as it mainly influences the
visual style of the resulting animations. A common approach found in previous
work is to use texture advection methods to account for arbitrary motion and
deformation of objects [Bousseau et al., 2007]. Such methods compute the tex-
ture transformations incrementally based on the previous and/or future frames
in the animation, which is problematic in an interactive system where there is
no meaningful history let alone future of an animation.

In our situation, a method where the transformations only depend on the cur-
rent state of the scene and possibly a designated rest state is preferred. We
also do not want the canvas texture to become arbitrarily distorted because
we would like to maintain the original visual qualities of the texture. Breslav
and colleagues faced a similar challenge when placing and advecting 2D pat-
terns along with an underlying 3D object [Breslav et al., 2007]. Inspired by
Horn [Horn, 1987], they propose computing a similarity transformation consist-
ing of rotation, translation, and uniform scaling that best maps a set of sample
points from one frame to the next and applying this transformation to the pat-
tern. We have found that this method is an ideal basis for the problem of per-
stroke canvas texture transformation. In their implementation, transformations
are computed on a frame-by-frame basis, but their method is also applicable
when the transformation of the sample points is computed with respect to a
rest state, as is depicted in Figure 2.7.
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Figure 2.7: This figure illustrates the transformation the canvas texture under-
goes from its rest state (left) to the current configuration (right).
To avoid distortion, we compute a translation, rotation, and uni-
form scale that best maps the stroke points from the rest position
to the current position.

In our case, each stroke represents a separate geometric entity, and therefore
a separate canvas texture transformation is computed for each stroke indepen-
dently. When a brush stroke is drawn, we store the original screen space coor-
dinates of each stroke point as reference position r̂i along with the other data
in Equation 2.2. These reference positions are directly used as canvas texture
coordinates, so the behavior of the canvas texture in the original paint view is
exactly the same as described for the pure 2D case at the beginning of this sec-
tion. For any other view, a similarity transformation (consisting of translation,
rotation, and isotropic scaling) is computed that maps the current screen space
stroke points p̂i to the reference positions r̂i as well as possible. This transfor-
mation is then used to transform the corners of the brush splats (generated in
the current view) into the canvas texture space.

A 2D rotation together with an isotropic scaling around the origin can con-
veniently be expressed as a multiplication of two complex numbers. To this
end, we use the notation of a 2D position (x, y) interchangeably with that of a
complex number x + yi. The search for an optimal canvas texture transforma-
tion can thus be expressed as an optimization for a complex number z which
minimizes the sum of squared distances between zp̂i and r̂i. Horn shows that
the corresponding optimal translation is obtained if the origin is moved to the
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centroid of the data points [Horn, 1987]. This gives us the energy function

E =
∑
i

‖z(p̂i − p)− (r̂i − r)‖2

with p = 1
N

∑
i p̂i and r = 1

N

∑
i r̂i.

We take the partial derivatives of E with respect to the two components of z
and set them equal to zero. Solving the resulting equations for z gives us the
least-squares optimal solution

z =
1∑

i

‖(p̂i − p)‖2

(∑
i

(p̂i − p) · (r̂i − r),
∑
i

(p̂i − p)× (r̂i − r)

)
.

Here, “×” denotes the two-dimensional cross product a× b = axby − aybx.

Given z, the canvas texture coordinates for any screen space location x̂ of a
stroke can be computed directly:

(u, v) = z(x̂− p) + r.

So far, our method for canvas texturing closely follows the technique described
by Breslav and colleagues. We have obtained good results with it as long as
brush strokes do not take on a direction that is roughly parallel to the view
direction, a situation that happens, for example, when a brush stroke on a
surface passes around the silhouette when it is roughly perpendicular to the
silhouette. In this case, two problems occur:

w As the stroke roughly lines up with the view direction, all stroke points
will be projected to a small region on screen, thus causing a large scale
factor in the texture transformation.

w The orientation of the stroke with respect to the viewer will change, which
causes the texture coordinates to undergo a full 180◦ rotation.

We avoid both effects by fading to a differently transformed texture as the stroke
becomes perpendicular to the view direction. Since paint strokes are not planar
in general, we compute a dominant direction for each stroke and compare it to
the view direction:

δ = dominant stroke direction · view direction.

As long as paint strokes do not contain any sharp kinks and are not overly long,
it is sufficient to use pN − p0 as the dominant direction. We have found this
choice to be sufficient for our experiments, but some applications may require
the use of a more sophisticated method, such as PCA.
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2.1 Brush Stamping for 3D Paint Strokes

To avoid excessive scaling, an alternative texture scaling factor is computed from
the ratio between the original brush width and the average projected world space
radius of the stroke points:

s =
1

N

∑
i

ri
ρ
.

The texture transformation is modified to reflect a scaling of s when δ is close to
1. If δ is within a certain user-chosen transition range [δ0, δ1] with δ0, δ1 ∈ [0, 1]
and δ0 < δ1, the scaling factor is linearly interpolated between the original
scaling |z| and s:

z′ = f(δ)z,

f(δ) =


1 if δ ≤ δ0

1− δ−δ0
δ1−δ0

(
1− s

|z|

)
if δ0 < δ < δ1

s
|z| if δ ≥ δ1.

The 180◦ rotation of the texture is necessary to represent the change of orien-
tation of the stroke, but it tends to take place within only a few degrees of the
angle between the dominant stroke direction and the view direction, and there-
fore it happens very abruptly in an animation. We avoid this unattractive effect
by using a texture transformation that consists only of scaling and translation
when δ is close to 1:

z′′ = |z′| (+ 0i).

In the fragment shader, the canvas texture is looked up both at the location
computed with z′ and with z′′ to retrieve αz′ and αz′′ , respectively. If δ is within
another user-chosen transition range [γ0, γ1] with γ0, γ1 ∈ [0, 1] and γ0 < γ1, the
two results are blended linearly. Otherwise, only αz′ or αz′′ is used, depending
on whether δ is close to 0 or 1:

α(δ) =


αz′ if δ ≤ γ0(

1− δ−γ0
γ1−γ0

)
αz′ +

δ−γ0
γ1−γ0αz′′ if γ0 < δ < γ1

αz′′ if δ ≥ γ1.

In our experiments, we have achieved good results with δ0 = 0.7, δ1 = 0.9, γ0 =
0.85, and γ1 = 0.95. The result of α(δ) can used to modulate the opacity value
of a stroke to achieve a canvas texturing effect that behaves convincingly under
view changes. Unfortunately, as discussed in Sections 2.1.3 and 2.3.3, stroke
opacity modulation is not trivial for the brush model used in this thesis. The
examples shown in Figure 2.8 were obtained using simple stroke pre-buffering,
which is prone to exhibit artifacts with more complex scenes.
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2 Stroke Based Rendering

Figure 2.8: The salient texture on the brushes seen in this 3D painting were
achieved with our canvas texturing method. Thanks to the view-
dependent interpolation of different texture transformations, the re-
sulting animations exhibit strong temporal coherence.
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2.2 Paint Order vs. Depth Order

2.2 Paint Order vs. Depth Order

So far, the focus of this chapter has been on how to render a single stroke. Ren-
dering multiple 3D paint strokes exposes a technical dilemma about the order
in which the strokes should be composited. In the 2D painting metaphor, when
the artist places a new paint stroke, it obscures all previous paint strokes that
it overlaps. Such behavior is achieved by compositing in paint order. From a
3D point of view, however, strokes that are closer to the viewer should obscure
those that are farther away, which amounts to compositing in depth order. Com-
positing purely in paint order negates much of the benefit of 3D painting, as the
sense of tangible objects is lost when the view is changed. Compositing purely
in depth order, on the other hand, precludes the artist from reliably painting
over existing strokes, and thus ignores an important part of the 2D painting
metaphor. The conflict is illustrated in Figure 2.9.

The inventors of Deep Canvas [Katanics and Lappas, 2003] first articulated the
desire for mixed-order compositing: fragments that, in the artist’s mind, belong
on the same surface should be composited in paint order, while those that
belong on different surfaces should be composited in depth order. Unfortunately,
assigning each fragment to a specific surface is often impossible: the stroke that
generated the fragment may span several surfaces, may self-occlude, or may not
even conform to a surface at all. The guideline Deep Canvas adopts is therefore
to choose the appropriate ordering based on a depth tolerance d: fragments
whose depths are within d of each other are assumed to lie on the same surface
and are composited in paint order, but fragments that are farther apart are
composited in depth order. The biggest challenge in realizing this concept is to
ensure that the transitions between paint order and depth order composition
do not result in spatial or temporal incoherences.

Conflicting orders of compositing have recently been considered by Bruckner
et al. [Bruckner et al., 2010] for illustrating 3D layers. Their goal is, in some
sense, a transpose of ours: we aim to composite fragments close together in paint
order and fragments far apart in depth order, while they composite user-specified
adjacent layers in depth order and the results in layer order. Their method works
well for illustrative rendering and shares some technical similarity with ours.
The problem they are solving is more restricted than ours: in their setting, the
user specifies which layers are composited in which order and this order cannot
change continuously, while our method needs to smoothly transition between
compositing in depth order and in paint order.
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2 Stroke Based Rendering

(a) Spatial arrangement (b) Desired result

(c) Strict depth order (d) Strict stroke order

Figure 2.9: The compositing order conflict illustrated on a simple example. The
sequence in which the strokes were painted is: yellow, red, purple,
blue. (a) illustrates the spatial arrangement of the paint strokes
(the surfaces are only shown for visualization). (b) is the desired
compositing result. (c) was composited in strict depth order, which
ignores the paint order and leads to a kind of z-fighting among brush
splats at similar depths. (d) was composited in strict paint order,
which leads to an incorrect depiction of the scene arrangement (the
A-plane should be shown on top of the B-plane).
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2.2 Paint Order vs. Depth Order

2.2.1 Compositing Background

Digital compositing with the alpha channel was invented by Catmull and
Smith [Smith, 1995]. Wallace [Wallace, 1981] wrote down the equation
for the over operator, while Porter and Duff [Porter and Duff, 1984] intro-
duced premultiplied alpha and described the algebra of compositing. Be-
cause the over operator is not commutative, the order in which fragments
are composited matters, leading to sorting algorithms for real-time render-
ing [Mammen, 1989] and techniques for allowing the user explicit control over
the order [McCann and Pollard, 2009].

In the presence of a well-defined ordering, fragments or layers are typically
composited using the over operator. The formula for the over operator depends
on how color and transparency are represented. Given two fragments whose
colors and opacities are (h1, α1) and (h2, α2), the over operator (denoted by ⊕)
is:

(h1, α1)⊕ (h2, α2) =

=

(
h1α1 + h2(1− α1)α2

α1 + (1− α1)α2

, α1 + (1− α1)α2

)
.

It is common to use the premultiplied-alpha representation, storing c = hα
instead of h. This simplifies the over operator to

(c1, α1)⊕ (c2, α2) = (c1 + (1− α1)c2, α1 + (1− α1)α2) .

In this exposition, we will work with the premultiplied-alpha representation,
treating c as a 3-vector. In our implementation, we actually store β = 1 − α
instead of α, which further simplifies the over operator to:

(c1, β1)⊕ (c2, β2) = (c1 + β1c2, β1β2) .

From the above expression, it is easy to see that ⊕ is associative, but not
commutative.

2.2.2 Problem Analysis

To analyze the problem systematically, consider a pixel to which n fragments
are rasterized. Each fragment has a color ci, opacity αi, depth zi, and stroke
number si, and we write fi to denote the entire fragment (ci, αi, zi, si). The
fragments are given in depth order, starting with the closest to the viewer, so
zi ≤ zi+1. We also assume that the stroke numbers si range between 1 and n
and that no two fragments in a pixel have the same stroke number.

We now describe the properties a function C(f1, f2, . . . , fn) needs to satisfy to be
a good compositing function for our application. These properties express our
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high-level goals: fragments close in depth should be composited in paint order
while fragments further apart should be composited in depth order, and spatial
and temporal coherence should be maintained. In expressing them mathemat-
ically, we strive to balance generality and the ease with which we can reason
about them, but we do not attempt to formulate an exhaustive set of properties
for the problem.

Because we treat fragments at the same depth as being on the same surface, we
would like to composite fragments at the same depth in paint order:

Property 1. If two fragments i and i+1 have the same depth and are adjacent
in paint order, i.e., zi = zi+1 and si = si+1 + 1, replacing them with their
composite in paint order should not change the final output for the pixel:

C(f1, f2, . . . , fn) = C(f1, . . . , fi−1, fi ⊕ fi+1, fi+2, . . . , fn).

We treat fragments separated in depth as being on different surfaces and would
like to composite them in depth order. Suppose that the user specifies a distance
d such that fragments farther than d apart in depth are considered to be on
different surfaces. Then, compositing them in depth order should not change
the result:

Property 2. If for some i, zi+1 ≥ zi + d, then:

C(f1, f2, . . . , fn) = C(f1, . . . , fi)⊕ C(fi+1, . . . , fn).

A stroke whose alpha smoothly fades to zero towards its borders can never-
theless cause sharp visible edges when composited with other strokes (see e.g.,
Figure 2.15, bottom left). To avoid these edges, we require that a fully trans-
parent fragment have no effect:

Property 3. If for some i, αi = 0, then:

C(f1, f2, . . . , fn) = C(f1, . . . , fi−1, fi+1, . . . , fn).

So far, we can construct a function that satisfies all of the above properties
simply by sorting the fragments in lexicographical order by depth and then by
stroke number. However, during animation, α’s, depths, and colors may change,
and popping must be avoided to obtain a nice rendering:

Property 4. The mixed-order compositing function C must be continuous in
all of the ci’s, αi’s, and zi’s.
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2.2 Paint Order vs. Depth Order

2.2.3 Existing Techniques

Not every function C that satisfies these properties is necessarily a good com-
positing function. For instance, C may exhibit undesirable behavior when all
zi − zi−1 approach d/2 because this configuration is sufficiently far from the
premises of Properties 1 and 2. Nevertheless, we have found in our experiments
that in natural candidates for C, artifacts can be explained in terms of violations
of these properties.

Meier [Meier, 1996] simply composites the strokes in depth order, which vio-
lates Properties 1 and 4. Luft and Deussen [Luft and Deussen, 2006] propose
a blurred depth test for smooth compositing. Their goals differ from ours in
that they only aim for improving temporal coherence but do not need to deal
with conflicting compositing orders. Property 1 therefore does not apply. They
also do not support user-specified alpha transparency, so Property 2 is triv-
ially satisfied and Property 3 does not apply. The use of depth-dependent
compositing in that method leads to a violation of Property 4, resulting in pop-
ping artifacts in their animations. For depth order, the method of Bruckner et
al. [Bruckner et al., 2010] satisfies Properties 2–4, but it also is not designed to
take paint order into account.

Deep Canvas clusters the fragments by z and composites each cluster separately
using a combination of depth and paint order [Daniels et al., 2001]. As we
understand it, this method satisfies Property 2, but the clustering is sensitive
to z and can be changed by a zero-α fragment, violating Properties 3 and
4. We experimented with other methods that use clustering (including soft
clustering to maintain continuity) to determine distinct surfaces, but we could
not simultaneously satisfy Properties 1, 3, and 4.

In Sections 2.2.4 and 2.2.5 we present two new methods to reconcile paint and
depth order in 3D painting and discuss them with respect to the desired prop-
erties.

2.2.4 Depth Offset Method

Our first compositing strategy is inspired by the layering of color in reality.
Since a layer of paint has a physical thickness, subsequent layers that cover it
up will have a slightly increased distance from the base surface. If all layers
are composited in increasing order of this distance, the proper paint order is
reproduced.

This effect can be transferred to our 3D painting setting: for each fragment to
be composited for a given pixel, a modified depth value z′i is computed according
to

z′i = zi + c · si · diri. (2.3)
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The fragments are then sorted according to z′i and composited in that order.
Loosely speaking, this method translates the paint order into a depth offset.
A constant rendering parameter c scales the magnitude of the depth offset-
ting. The offset must be large enough to encompass the largest depth difference
between fragments of the same surface. The scalar diri represents the scalar
projection of the desired offset direction in space to the view ray of the current
pixel. To mimic the effect of physical layers of paint, this direction should be
the normal of the fragment’s underlying surface (if such a surface exists). In
practice, however, we have experienced the best result when simply shifting the
fragments into the direction of the viewer with diri = 1. Figure 2.10 illustrates
the effect of depth offsetting.

View direction

Figure 2.10: The goal of the depth offset method is to turn the paint order on a
surface into a difference in depth. In the example shown here, the
stroke that is represented by the yellow splats was painted after
the blue one. The yellow splats therefore receive a larger depth
offset and will be visible on top of the blue ones in the modified
depth order. Note that the offset depth is only used for computing
the order of rendering, the actual position of the splats is never
modified.

Since we assume that all fragments of a splat are at the same depth zi, the
depth offset can be computed once per splat and a global rendering order for
all splats can be established. Note that the offset depth value z′i is only used for
computing the rendering order, not for the location of the splat (which is still
at the original depth zi). This approach maps very well to current GPUs and
yields a minimal impact on performance, since it does not require any custom
per-pixel processing. Unfortunately, however, the method is not free of artifacts,
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as it does not satisfy all desirable properties. Since the depth offset depends on
the stroke number si, this method does not satisfy Property 2: large differences
in si will lead to fragments of distant surfaces poking through closer ones. Due
to the discrete compositing order, Property 4 is also violated.

2.2.5 Mixed-Order Compositing

While the depth offset method is simple and efficient, it violates some of the
desired properties presented in Section 2.2.2, which is occasionally revealed in
unpleasant artifacts in the output. Our second solution to the problem is a true
per-pixel compositing method that satisfies all desired properties and generates
smoothly varying colors in all situations. The core idea of our mixed-order
compositing algorithm is to replace the color of each of the fragments with the
result of compositing nearby fragments in paint order, and then composite the
fragments with replaced colors in depth order. While this idea is conceptually
simple, its implementation requires careful attention to ensure continuity and
good performance.

The user specifies a global constant, d, so that fragments farther than d apart
only composite in depth order. We therefore define the function S(z) =
(Sc(z), Sα(z)) that is the result of compositing all fragments with depths strictly
between z − d/2 and z + d/2 in paint order. When there are no fragments be-
tween z − d/2 and z + d/2, we define S to be the identity color, (0, 0). S is a
piecewise-constant function with discontinuities at zi + d/2 and zi − d/2. If we
assign a new color to each fragment using S(zi), we would not have continuity
with respect to zi’s. Instead, we smooth S(z) in depth by convolving it with a
box filter of width γd, where γ, with 0 < γ ≤ 1, specifies how much smoothing
is performed. We compute the colors and alphas as:

(c′i, α
′
i) =

1

γd

∫ zi+γd/2

zi−γd/2
S(z) dz.

Note that because the colors are premultiplied with alphas, this integral is
correctly weighted by alpha. We replace the fragment colors, while keeping their
original alpha values, setting c′′i = c′iαi/α

′
i. Furthermore, because Sα(z) ≥ αi

over the range of integration, we have αi ≤ α′i, and the division is well-behaved
for nearly-transparent fragments. The final output is C(f1, . . . , fn) = (c′′1, α1)⊕
· · · ⊕ (c′′n, αn). Although the final output is composited in depth order, C does
not exhibit discontinuities when the depth order changes because two fragments
at the same depth will have the same replacement color.
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Proofs

In this section, we show that the mixed-order compositing function C satisfies
the desired properties presented in Section 2.2.2.

1. Stroke order: If fragments i and i + 1 have the same depth, then composit-
ing them in stroke order leaves S(z) unchanged. Therefore, the replace-
ment colors c′′ for all other fragments remain the same. Let (cx, αx) =
(ci, αi) ⊕ (ci+1, αi+1) be the result of compositing these fragment in stroke
order. Because replacement colors are only a function of depth, we have
(c′x, α

′
x) = (c′i, α

′
i) = (c′i+1, α

′
i+1). Since the replacement colors are the same,

up to the premultiplied alpha factor, (c′′x, αx) = (c′′i , αi) ⊕ (c′′i+1, αi+1), and
therefore the final composite result is unchanged.

2. Depth order: If zi+1 > zi + d, then for z ≤ zi + d/2, S(z) only depends on
fragments up to i and for z > zi +d/2, S(z) only depends on fragments i+ 1
and after. Because γ ≤ 1, the replacement color for all fragments up to i does
not depend on S(z) for any z > zi + d/2. Similarly, the replacement color
for fragments i+ 1 and after does not depend on S(z) for any z ≤ zi + d/2.
So replacement colors for fragments up to i only depend on the parameters
of fragments up to i, and similarly for fragments i + 1 and after. Therefore
these two groups can be mixed-order composited separately and composited
in depth order without affecting the outcome.

3. Zero alpha: A fragment with αi = 0 has no effect on S(z) and does not
contribute to the final composite and may therefore be removed without
changing the result.

4. Continuity: The continuity of C in colors and alphas is clear: the over
operator is continuous in color and α and which fragments are composited
in what order only depends on the depths. With respect to the depths, we
prove that if zi changes by a small ε, while all other z’s are held constant,
then the change in the value of C is bounded by a function that approaches
zero as ε→ 0 and that does not depend on other variables. This is sufficient
to prove that C is continuous in all depths simultaneously. The argument is
technical, but the idea is simple: we bound the change in each step of the
computation of C individually.

Without loss of generality, we analyze what changes when zi changes to
ẑi = zi + ε, where ε > 0. Also assume that ε2/3 < γd/4 and ε < 1. First of
all, S(z) 6= Ŝ(z) only at z ∈ [zi−d/2, zi+ ε−d/2]∪ [zi+d/2, zi+ ε+d/2], so
1
γd

∫∞
−∞ |S(z)− Ŝ(z)|∞ ≤ 2ε

γd
. Therefore, for j 6= i, |(c′j, α′j)− (ĉ′j, α̂

′
j)|∞ ≤ 2ε

γd
.
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For fragment i,

|(c′i, α′i)− (ĉ′i, α̂
′
i)|∞ =

=
1

γd

∣∣∣∣∣
∫ zi+γd/2

zi−γd/2
S(z) dz −

∫ ẑi+γd/2

ẑi−γd/2
Ŝ(z) dz

∣∣∣∣∣
∞

≤

≤ 1

γd

∣∣∣∣∣
∫ zi+γd/2

zi−γd/2
S(z) dz −

∫ ẑi+γd/2

ẑi−γd/2
S(z) dz

∣∣∣∣∣
∞

+

+
1

γd

∣∣∣∣∣
∫ ẑi+γd/2

ẑi−γd/2
S(z) dz −

∫ ẑi+γd/2

ẑi−γd/2
Ŝ(z) dz

∣∣∣∣∣
∞

≤

≤ 1

γd

∣∣∣∣∣
∫ ẑi+γd/2

zi+γd/2

S(z) dz −
∫ ẑi−γd/2

zi−γd/2
S(z) dz

∣∣∣∣∣
∞

+
2ε

γd
≤ 4ε

γd

For each fragment, we have bounded the change of (c′, α′) by 4ε
γd
, but we need

a bound on |c′′ − ĉ′′|∞. For fragment j ∈ {1, . . . , n}, we split our analysis
into two cases, depending on its alpha: if αj > 2ε1/3, then:

∣∣c′′j − ĉ′′j ∣∣∞ =

∣∣∣∣c′jαjα′j
−
ĉ′jαj

α̂′j

∣∣∣∣
∞
≤
∣∣∣∣c′jαjα′j

−
ĉ′jαj

α′j

∣∣∣∣
∞

+

∣∣∣∣ ĉ′jαjα′j
−
ĉ′jαj

α̂′j

∣∣∣∣
∞
≤

≤ 4ε

γd
+ ĉ′jαj

∣∣∣∣ 1

α′j
− 1

α̂′j

∣∣∣∣ =
4ε

γd
+ ĉ′jαj

∣∣∣∣ α̂′j − α′jα̂′jα
′
j

∣∣∣∣ ≤
≤ 4ε

γd
+

∣∣∣∣ α̂′j − α′j
(2ε1/3 − 4ε/γd)2ε1/3

∣∣∣∣ ≤
≤ 4ε

γd
+

2ε

γdε2/3
≤ 4ε+ 2ε1/3

γd
≤ 6ε1/3

γd
,

where at the end we have used the fact that ε2/3 < γd/4 and ε < 1. If
αj ≤ 2ε1/3, then |c′′j |∞ ≤ 2ε1/3 and |ĉ′′j |∞ ≤ 2ε1/3 because premultiplied-alpha
color components cannot be greater than the α. Therefore |c′′j− ĉ′′j |∞ ≤ 4ε1/3.
In either case, we have just shown that |c′′j − ĉ′′j |∞ ≤ 4ε1/3 + 6ε1/3

γd
. The over

operator with premultiplied alpha returns a linear combination of colors with
each coefficient less than or equal to one. Therefore:

|(c′′1, α1)⊕ · · · ⊕ (c′′n, αn)− (ĉ′′1, α1)⊕ · · · ⊕ (ĉ′′n, αn)|∞ ≤ 4nε1/3 +
6nε1/3

γd

The remaining concern is that the depth order may have changed. This is not
a problem because fragments close in depth have similar replacement colors.
Note that because all elements of S(z) are between 0 and 1, its convolution
with a box of width γd is Lipschitz with constant 1

γd
. Let us bound the

35



2 Stroke Based Rendering

change from swapping the order in which two fragments are composited in
the final stage:

|(ĉ′′i , αi)⊕ (ĉ′′i+1, αi+1)− (ĉ′′i+1, αi+1)⊕ (ĉ′′i , αi)|∞ =

=
∣∣(ĉ′′i + (1− αi)ĉ′′i+1 − ĉ′′i+1 − (1− αi+1)ĉ

′′
i , 0)

∣∣
∞ =

=
∣∣ĉ′′iαi+1 − ĉ′′i+1αi

∣∣
∞ =

=

∣∣∣∣αiαi+1

(
ĉ′i
α̂′i
−
ĉ′i+1

α̂′i+1

)∣∣∣∣
∞

=

=
αiαi+1

α̂′iα̂
′
i+1

∣∣ĉ′iα̂′i+1 − ĉ′i+1α̂
′
i

∣∣
∞ ≤

≤
∣∣(ĉ′i − ĉ′i+1)α̂

′
i+1 + ĉ′i+1(α̂

′
i+1 − α̂′i)

∣∣
∞ ≤

≤
∣∣ĉ′i − ĉ′i+1

∣∣
∞ +

∣∣α̂′i+1 − α̂′i
∣∣ ≤ 2

γd
|ẑi − ẑi+1|,

where the last inequality follows from the Lipschitz condition on the con-
volution of S with the box. Therefore, swapping the order in which final
fragments are composited over a distance of at most ε changes the result by
at most 2ε

γd
. Overall, using the triangle inequality, changing from zi to ẑi

changes the final result in the L∞ norm by at most 4nε1/3 + 6nε1/3+2ε
γd

. This
is not tight, of course: we conjecture that C is actually Lipschitz in each
variable with a constant that does not depend on n.

Algorithm

We now describe an algorithm to compute the function C efficiently inO(n log n)
time and using O(n) memory. The high-level procedure is to explicitly compute
S(z) in O(n log n) time and then define the replacement colors in linear time.
Naïve algorithms for both of these tasks run in quadratic time because each
distinct value of S can depend on all n fragments and each replacement color
can depend on all Ω(n) distinct values of S. Our algorithm instead sweeps
across depth and exploits the problem structure to compute values of S and
replacement colors (c′, α′) incrementally.

We start by using a sort to assign fragments distinct stroke numbers from 1 to
n. As previously noted, S(z) only changes at zi+d/2 and zi−d/2, and therefore
it only needs to be computed at these locations. At zi − d/2, S is modified to
include the new fragment zi, and at zi + d/2, S changes to no longer include zi.
To accommodate these events, we need a data structure that maintains a subset
of the fragments and can add or remove a fragment from the subset efficiently.
It also needs to be able to report the composite of this subset in paint order. We
use a complete binary tree with n leaves, each node of which stores a color and
alpha, initially (0, 0). Leaf si of the tree stores either (0, 0) or (ci, αi), and each
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2.2 Paint Order vs. Depth Order

internal node stores the composite of its children in reverse order (because later
strokes go on top). The root therefore stores the composite of all of the leaves
of the tree in paint order. Inserting or deleting a fragment can be achieved by
changing the appropriate leaf from (0, 0) to (ci, αi) or vice versa and updating
all of the nodes on the path to the root (Figure 2.11). These updates therefore
run in O(log n) time.

t1

t2 t3

t4 t5 t6 t7

(0, 0) (c3, α3) (c1, α1) (0, 0)

t5 ⊕ t4 t7 ⊕ t6

t3 ⊕ t2

Figure 2.11: The binary tree used to compute S(z). The leaves correspond to
four fragments in this pixel. At the time instant shown, fragments
1 and 3 (with s1 = 3 and s3 = 2) are in the window. Suppose
fragment 2 enters the window and s2 = 4. This change requires an
update of the nodes t7, t3, and t1 for the root to have the correct
new S(z).

Now that S(z) is known, we compute its integral over a window of size γd around
each fragment (Figure 2.12). Consider the union of the set of discontinuities of S
and the points zi±γd/2. This union partitions the interval [z1−γd/2, zn+γd/2]
into at most 4n subintervals. Within such a subinterval I, S(z) is constant
by construction. The set of fragments within γd/2 of z is also constant and
contiguous, consisting of all fragments from zj to zj+k, for some j and k. The
contribution of I to each fragment in this set is S(I)/γd times the length of I.
Because k may be as large as n, adding this contribution to all fragments is too
expensive. However, if we maintain the integrals as differences between adjacent
fragments, (∆c′i,∆α

′
i) = (c′i − c′i−1, α′i − α′i−1), we can add the contribution to

(∆c′j,∆α
′
j) and subtract it from (∆c′j+k+1,∆α

′
j+k+1) in O(1) time. We process

all 4n subintervals by sweeping over the discontinuities of S and the points zi±
γd/2 and incrementally maintaining j and k. Before doing the final composite,
we compute (c′i, α

′
i) from the deltas by computing the prefix sum.
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z1

z1 − d/2

z2

z

S(z)

z3
z3 + γd/2

I

Figure 2.12: This figure illustrates the algorithm for determining the replace-
ment colors. Three fragments are shown with their compositing
windows (±d) and box filter windows (±γd). The paint order is
z1, z3, z2. During the integration, the contribution of the inter-
val I is added to the replacement colors of fragments z2 and z3.
The vertical separation is used only to make the illustration less
cluttered.

Parameters and Temporal Coherence

Mixed-order compositing has two adjustable parameters: the paint order win-
dow size d and smoothing width γ. The paint order window size d is crucial for
an accurate reproduction of a 3D painting and needs to be chosen according to
the dimensions of the scene and the nature of the brushes used. It should be
large enough to ensure that strokes on a single surface are composited in stroke
order, but no larger to prevent excessive blending in depth. Figure 2.13 shows
a comparison of different d values.

Temporal coherence is achieved by blending different compositing orders. While
this blending eliminates popping artifacts, it is not always artistically desirable.
Our examples are painted in a style that works well with blending, but one can
imagine 3D paintings whose artistic style would be compromised by it. The
smoothing width γ allows the user to trade temporal coherence for reduced
intermediate blending: a lower γ can minimize the frames with undesirable
blending, while preventing hard “pops.” We used γ = 0.5 for most of our
examples. The effect of γ is shown in Figure 2.14.

In some cases it may be useful to vary d with depth. For example, wide brush
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d = 0.3 d = 2 d = 3

Figure 2.13: Comparison of different values for the paint order window size d. If
the window is too small (left), the compositing algorithm is unable
to resolve the paint order on a surface properly. If the window is
too large (right), surfaces which are close in depth start to become
blended in stroke order.

strokes may need to be composited in stroke order over a larger window than
thin brush strokes. Our method could be extended to support a variable window
size d(z) as long as it satisfies the Lipschitz condition |d(z1)− d(z2)| ≤ |z1− z2|.
This condition guarantees that no window completely contains another and
allows the efficient computation of replacement colors.

2.3 Discussion

2.3.1 Implementation

The brush stamping algorithm described in Section 2.1 combined with either
one of the methods for resolving the paint order on surfaces from Section 2.2
form a complete system for rendering 3D paintings with stroke based rendering.
Our implementation is based on C++ and OpenGL with GLSL. The splat
generation (stroke sampling) is performed entirely on the CPU. The generated
splats are then processed by either the depth offset renderer or the mixed-order
compositing renderer.

The depth offset renderer sorts the list of all splats according to the rule given
in Section 2.2.4 and then uses conventional OpenGL with alpha blending en-
abled to render them in the resulting order. Since the visibility of the splats is
predetermined by the rendering order, z-buffering is disabled.
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Figure 2.14: Comparison of different values for the smoothing width parameter
γ. A smaller value decreases the amount of blending in the image
by increasing the speed of transitions between different visibility
configurations.
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We have implemented to versions of mixed-order compositing: a purely CPU
based implementation that does software rasterization, and a GPU implemen-
tation based on OpenGL and GLSL. Mixed-order compositing requires a per-
sistent list of all fragments per pixel (also called “a-buffer”), which on the
GPU has become practicable only in recent hardware architectures (NVIDIA
GeForce 400 series and AMD Radeon 5000 series or newer). We use the
EXT_shader_image_load_store OpenGL extension to store all fragments gen-
erated by brush splats into a buffer using a fragment shader. The order in
which the splats are rasterized is irrelevant in this case. After all brush splats
are rendered and stored in the a-buffer, the mixed-order composite is computed
with another fragment shader and written into the framebuffer. Due to the
number of splats and thus fragments in our scenes (see Table 2.1), the memory
requirement of the a-buffer usually exceeds the RAM available to the GPU. We
solve this problem by dividing up the desired target resolution into a number
of tiles that are rendered sequentially.

2.3.2 Results

The example 3D paintings in this sections were all created using the paint
stroke embedding discussed in the following chapter, and all results shown in
Chapters 3 and 4 were rendered with the techniques presented in this chapter.
In Figures 2.15 and 2.16, different methods for the depth order versus paint
order problem discussed in Section 2.2 are compared. Figure 2.17 shows two
more 3D paintings rendered with out method.

Table 2.1 contains statistics and performance timings for the example renderings
shown in this section. All performance data was measured using a single core
of an Intel Core i7 2.8 GHz based computer with 12GB of RAM and a NVIDIA
GeForce GTX 480 graphics card with 1.5 GB of video RAM, rendering an image
of 960x720 pixels. The column “Portrait” shows the statistics of the painting
and view seen in Figure 2.16, “Dog” and “Bee” in Figure 2.17, and “Captain” in
the lower row of Figure 2.15.

2.3.3 Limitations, Extensions, and Future Work

The brush model and rendering methods we present form a usable basis for
artists to create expressive and appealing paintings, as is demonstrated by the
results in this chapter and the following chapters. However, modern 2D digital
painting applications have a much richer set tools, some of which would also
be of great value in the context of 3D painting. We highlight a few areas here,
but since the goal of stroke based rendering is to produce images that look like
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Depth offset Mixed-order compositing

Clustering [Daniels et al. 2001] Mixed-order compositing

Figure 2.15: A comparison between different methods to resolve the paint order
on surfaces. The optimal parameters have been manually chosen
for each algorithm. The left column shows artifacts on the bee’s
limbs and abdomen and on the captain’s neck, mouth, and nose
regions. These artifacts are time-varying and are especially notice-
able during animations.

42



2.3 Discussion

Depth offset method Mixed-order compositing

Difference image

Figure 2.16: This figure shows the same painting rendered with the depth off-
setting method (top left) and with mixed-order compositing (top
right). The differences are most apparent on the shirt, the beard
on the chin, and the right eye, where the depth offset method does
an inadequate job of resolving the paint order. But, differences ex-
ist throughout the painting as the difference image at the bottom
shows.
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Figure 2.17: Two more examples of 3D paintings rendered with our stroke based
rendering technique. In both cases, mixed-order compositing was
used.
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Portrait Dog Captain Bee
Strokes 14k 29k 1.8k 20k
Splats 246k 340k 23k 362k
Fragments 19M 64M 31M 118M
Max Fragments/Pixel 662 1245 643 5002

Depth offset Total time 0.25s 0.32s 0.05s 0.30s
Mixed-order Total time 17s 61s 26s 162s
Software Compositing 10s 43s 18s 104s

Mixed-order Total time 1.1s 3.9s 1.52s 9.8s
Hardware Compositing 0.8s 3.2s 1.45s 9.4s

Table 2.1: Scene statistics and timings for our brush stroke rendering implemen-
tations for an output image of 960x720 pixels.

paintings, any tools found in these applications is of potential benefit to 3D
painting.

Arguably, the most basic issue is the lack of support for true brush stroke trans-
parency, as discussed in Section 2.1.3. When using mixed-order compositing,
true transparency could potentially be achieved by analyzing which fragments
of a pixel belong to the same stroke and computing an appropriate scale factor
for the α-value of each fragment based on that. The biggest challenge in this
approach is to keep the impact on computational complexity low, since mixed-
order compositing already tends to dominate the rendering costs. A second
option would be to use the layer blending technique that will be described in
Chapter 4.4.1. But, since that technique increases the rendering complexity by
a factor of the number of different transparency values present in the scene, its
cost is most likely prohibitive to be used for the transparency of individual paint
strokes.

Stroke pre-buffering

Finally, the transparency problem could also be solved using the stroke pre-
buffering method mentioned at the end in Section 2.1.3. This method comes
with its own set of outstanding issues, however. To recap, the idea behind
stroke pre-buffering is to render each brush stroke into a separate buffer before
compositing the resulting pixels into the final image. It has two core advantages:

w After a brush stroke has been rendered into a separate buffer, effects that
should affect the stroke appearance as a whole, such as transparency or
canvas texture modulation, can be applied easily.
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2 Stroke Based Rendering

w By compositing all the splats of a stroke with simple alpha blending first,
the number of fragments that need to be processed by the more complex
mixed-order compositing methods is reduced drastically, leading to better
overall performance.

The biggest problems with stroke pre-buffering is the depth complexity of brush
strokes: since brush strokes are curves in 3D in our application, their 2D pro-
jection may have regions where different parts of a stroke overlap. In order to
resolve the visibility in paint and depth order properly, however, a composited
color value needs a unique depth value that is a close approximation of all the
fragments it represents. The depth complexity of the strokes therefore has to
be maintained in some way.

This goal could be obtained using intelligent compositing that separates frag-
ments of different stroke parts into layers of a deep color and depth buffer,
though care would have to be taken to maintain temporal coherence when frag-
ments change layers over time. Also, current GPUs are not particularly designed
for these kinds of operations, which could negate the performance advantage
gained by having less fragments in the final compositing stage.

Another option to maintain the depth complexity of brush strokes is to auto-
matically split strokes into multiple parts that are rendered separately in such
a way that no individual part has self-overlapping regions. Since the proper
splits would be view-dependent, this approach also raises the issue of temporal
coherence.

In general, stroke pre-buffering would be directly usable when the paint vs.
depth order resolution is performed on a per-fragment basis, such as in mixed-
order compositing. In the depth offsetting method, on the other hand, the
rendering order of the splats of different brush strokes is interleaved, and there-
fore stroke pre-buffering is not trivially possible. It is questionable whether the
rendering order needs to be established on a per-splat basis or if a per-stroke
(or perhaps part of a stroke) rendering order would be sufficient. We have not
conducted experiments in this direction.

Different compositing modes and brush models

For all of our experiments, we have exclusively used the over -operator in alpha
compositing, which is the natural choice in many cases. It would be interesting
to analyze how other commonly used compositing methods (such as darken,
lighten, color dodge, color burn, etc.) could be integrated in our brush model
and used in the context of stroke based rendering.

At the same time, the stamping-based brush model we build upon on is just
one option among many. Its main strength lies in its versatility, but for specific
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tasks a different brush model may be better suited. For example, the simulation
of real-world painting techniques such as watercolor, oil, pencil, and crayon
has been the target of numerous successful research efforts, some of which are
discussed in Section 1.3. Such methods may be adaptable for use in 3D painting,
allowing for painterly animations that mimic a specific style.

Another reason for using a different brush model can be found in rendering
efficiency. While the brush stamping model is simple in concept and implemen-
tation, the number of primitives that must be rendered quickly rises into the
hundreds of thousands, as becomes evident in Table 2.1. For brush strokes with
little curvature and a uniform appearance along the stroke, using a ribbon-based
brush model (as discussed at the beginning of Section 2.1) may lead to much
better rendering performance. The two models could also co-exist, which would
allow the appropriate model to be picked manually or automatically.

Level of detail and aliasing

Scaling the width of brushes as described in Section together with the 3D to
2D projection is a simple solution to the problem of making a painted object
appear larger or smaller on screen, but it has several shortcomings.

Purely technical problems arise when the brush width is scaled down to sub-
pixel size. In this case, a standard rasterizer misses individual splats, causing
strokes to become too transparent, exhibit aliasing artifacts, and eventually
vanish almost entirely. A possible remedy to this problem is to define a lower
bound for the width of brushes.

A more fundamental issue, however, is level of detail. A stroke based 3D painting
is best rendered roughly in the size it was painted. If it is rendered much
larger, individual paint strokes become bulky and the painting may lack of
detail. If it is rendered much smaller, details in the painting become too fine
to represent and end up blurred or sketchy. In 2D painting, an artist would
never use the same brush strokes to paint an object at different scales, but
instead find the ideal level of abstraction and detail for each scale individually.
Stroke based rendering therefore requires a method to handle different levels
of detail smoothly in situations where an object transitions through multiple
scales in size. A possible solution would be to let the user paint the object at
different scales and transition between the representations, which is similar to
mipmapping.

Mixed-order compositing

For large scenes, where d is much smaller than the depth range, the running
time of mixed-order compositing can be improved to O(n logm) (assuming frag-
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ments are given in depth order), where m is the maximum number of fragments
in an interval of length d. The bottleneck is the computation of S(z), which can
be sped up by maintaining the fragments to be composited in stroke order in a
dynamic binary tree, such as a red-black tree or a splay tree instead of our static
binary tree. We did not implement this version of the algorithm because we ex-
pect that, for our scenes, the higher hidden constants of the dynamic binary tree
would eclipse the potential improvement. In terms of memory, all of our steps
stream over depth, so by interleaving the stages of our algorithm, memory usage
can be improved to O(m). Practical avenues for further optimization include
compositing nearby fragments in stroke order (with bounds on the maximum
incurred error) and discarding fragments obscured by other fragments closer to
the viewer.

Our method assumes that fragments close together in depth are on the same
surface and should thus be composited in stroke order. This assumption works
well the vast majority of the time, but it may lead to unintuitive results in cases
where the artist has interleaved drawing on different surfaces, or if surfaces
pass through each other. Although surfaces cannot be reliably identified in
general, an interesting extension of our work would be to smoothly incorporate
information about distinct surfaces when it is available.

For some applications, the stroke order is irrelevant and only a temporally-
coherent depth-order compositing that satisfies Properties 2–4 is needed. For
such a case, we can redefine

S(z) =
∑

{i|z−d/2<zi<z+d/2}

(ci, αi)

and leave the rest of the algorithm unchanged. Together with the box filter, the
effect is that the replacement color is the average of the original fragment colors
weighted by a trapezoid. This method is similar to the soft depth compositing of
Bruckner and colleagues [Bruckner et al., 2010], but can be computed in O(n)
time (because the tree is not necessary for sums) if the fragments are given in
depth order.
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C H A P T E R 3
Paint Stroke Embedding

An empty canvas represents the work space in which a painter realizes his or
her creative vision. Working directly with brushes and paint to fill the canvas
gives the artist full creative freedom of expression, evidenced by the huge vari-
ety of styles that have been explored through art’s rich history. Modern digital
painting software emulates the traditional painting metaphor while further em-
powering the user with control over layering, compositing, filtering, and other
effects. As a result, digital artists have an extremely powerful, flexible, and
expressive tool set for creating 2D digital paintings.

The same is not true for 3D digital painting. Most attempts to bring digital
painting into the third dimension focus on texture painting or methods that
project stroke centerlines onto an object’s surface. The strokes must precisely
conform to the object’s surface, and the mathematical nature of these algorithms
can betray the underlying 3D structure of the scene, leading to a “gift-wrapped”
appearance. Stylistic effects that require off-surface brush strokes cannot easily
be realized. Indistinct structures such as fur, hair, or smoke must be addressed
using special-purpose modeling software without the direct control afforded by
painting. These limitations ultimately restrict the variety of styles possible with
3D digital painting and may hinder the artist’s ability to realize their creative
vision.

In this chapter, we present an alternate way to define the 3D painter’s workspace
that targets existing limitations. We elevate the 2D painting metaphor to 3D
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Figure 3.1: We propose embedding brush strokes painted with a two-
dimensional input device in a 3D canvas that is defined using a 3D
scalar function. The scalar function is depicted by multiple shells
around the object in this illustration, and it forms the basis of a cus-
tomizable optimization procedure which defines the exact location
along the view ray of each point on the paint stroke.

with a generalization that allows the artist to treat the full 3D space as a
canvas. With this new 3D canvas, painting no longer focuses on how to paint
on an object, but rather how to paint in space.

Strokes painted in the 2D viewport window must be embedded in 3D space in
a way that gives creative freedom to the artist while maintaining an acceptable
level of control. We address this challenge by proposing a canvas concept defined
implicitly by a 3D scalar function (Figure 3.1). The artist shapes the implicit
canvas by creating approximate 3D proxy geometry that defines a scalar dis-
tance field. An optimization procedure is used to embed painted strokes into 3D
space by satisfying criteria defined on the scalar field and implemented as dif-
ferent objective terms. For example, one objective term ensures that strokes are
embedded on a particular level set of the scalar field. Since any level set value
can be chosen, the artist is not restricted to painting on any particular surface.
Other objective criteria allow the artist to paint across level sets, allowing fur,
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hair, whiskers, or other effects to be created. By formulating the optimization
problem on the strokes themselves, the full scalar field need never be created
and stored explicitly, leading to an efficient stroke embedding algorithm. The
need for fine-scale control over the implicit canvas presents a second challenge,
which we address by a unified painting/sculpting metaphor. A sculpting brush
uses the same optimization procedure discussed above but creates a local change
in the scalar field, resulting in outward or inward protrusions along the field’s
gradient. Using this sculpting tool, artists can shape the canvas before painting
into it, or move strokes that have already been embedded to fine-tune the result.

3.1 Background

We analyze previous work with respect to the concept of primary
and secondary space as illustrated in Figure 1.5. Existing meth-
ods such as Meier’s painterly rendering system [Meier, 1996], Disney’s
Deep Canvas [Katanics and Lappas, 2003], the WYSIWYG NPR sys-
tem [Kalnins et al., 2002], and Paint Effects of Autodesk Maya all embed
strokes directly on the surface of an object or along object features such as
silhouettes. Although the artist has a great deal of freedom when painting input
strokes in secondary space, the strokes must conform to the surfaces of their
associated primary-space objects. In this way, the functionality of these systems
is intimately tied to and restricted by traditional surface representations such
as polygon meshes and NURBS surfaces. The exacting nature of these surface
representations may be at odds with an artist’s particular style, hindering their
ability to realize their artistic vision.

Other researchers have approached the problem of placing color directly in 3D
with the use of specialized input devices. The CavePainting system of Keefe
and colleagues [Keefe et al., 2001] uses motion capture in a virtual-reality cave
to allow the artist to directly author scenes composed of ribbons, tubes, and
other primitives using hand gestures. Schkolne and colleagues’ Surface Draw-
ing work [Schkolne et al., 2001] enables organic shapes to be modeled using
hand gestures in a semi-immersive VR setup. Because controllability is an issue
with gesture-based systems, Keefe and colleagues [Keefe et al., 2007] propose a
method that uses a haptic device and 6-DOF trackers to draw lines in space in
a more precise fashion. This body of work makes important advancements in
human-computer interaction for ab initio design using advanced hardware de-
vices. Our contribution is distinguished from these direct 3D painting systems
in two primary ways: OverCoat extends the tablet-based 2D digital painting
metaphor to 3D without the need of special hardware, thus making it more
accessible and familiar to work with for artists. In addition, OverCoat’s em-
bedding procedure, brush model, and rendering algorithm merge 2D and 3D
concepts to enable paintings that retain their 2D expressiveness when viewed
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from any angle. Since existing direct 3D painting systems create scenes com-
posed of 3D primitives such as ribbons, tubes, and surfaces, they cannot easily
accommodate the expressive aesthetic of traditional digital painting.

Commercial modeling packages like Maya and Mudbox from Autodesk
and Pixologic’s ZBrush complement our work by providing tools to cre-
ate 3D proxy geometry. Sketch-based modeling tools [Igarashi et al., 1999,
Nealen et al., 2007], especially those that use an implicit surface represen-
tation [Karpenko et al., 2002, Schmidt et al., 2005, Bernhardt et al., 2008],
are well suited since the proxy geometry need only provide a rough guide
to control the implicit canvas, but is never rendered directly. Other re-
lated work [Cohen et al., 2000, Bourguignon et al., 2001, Tolba et al., 2001,
Rivers et al., 2010] explores interesting concepts concerning 3D drawing, but
does not address detailed 3D painting and cannot easily accommodate the
expressive aesthetic we target with OverCoat.

3.2 Concept

In order to provide a controllable and effective system for 3D painting, OverCoat
employs a 3D canvas based on scalar fields that are used to embed paint strokes
in space. The artist sculpts proxy objects with any modeling package and
imports them into the scene as triangle meshes. The objects define the overall
3D layout of the scene but need not exhibit fine geometric details since they only
serve as a guide for stroke embedding and are not rendered in the final painting.
Each proxy object implicitly defines a signed distance field that, conceptually,
represents the object’s 3D canvas.

OverCoat provides the user with a set of tools to embed paint strokes into the
3D canvas. The user first selects a proxy object and then paints into the canvas
using a familiar 2D painting interface. The way in which paint strokes are
embedded is determined by the semantics of the embedding tools. To obtain
a maximum of flexibility and extensibility in the creation of these tools, we
formulate the embedding process as a mathematical optimization problem that
assigns a depth value to each point of the input paint stroke. Objective terms
and constraints are used in varying combinations to obtain different embedding
behaviors. These combinations are encapsulated and presented to the user as
a set of different embedding tools, such as a tool to paint at a certain distance
to the object, or to paint strokes that are perpendicular to the proxy surface.
The embedding tools can use the scalar field magnitude, sign, and gradient in
their objective terms to establish criteria that relate any position in space to
the proxy object.

Another advantage of embedding paint strokes using an optimization instead of
specialized heuristics (such as direct projection) is that it allows our system to

52



3.2 Concept

gracefully handle cases where a tool’s primary goal cannot be met. For example,
by incorporating a regularizing smoothness term, our level set painting tool
can easily handle the case where painted strokes extend beyond the level set’s
silhouette. A method based on direct projection would require special heuristics
since, in this case, there is no surface on which to project.

An additional sculpting tool allows the user to make localized modifications to
the scalar field using the same embedding procedure. In this way, the painting
interface can be used both for coloring the canvas and for manipulating the
shapes.

3.2.1 Canvas Representation

OverCoat represents a 3D canvas as a scalar field f : R3 → R. A point x
with f(x) = l is said to lie on level l. The corresponding implicit surface at
level l, also called an isosurface or level set, is the set of all points x ∈ R3 such
that f(x) = l. The scalar field relates the points in space to the surface of the
corresponding proxy object.

In OverCoat, a proxy object is defined by a triangle meshM that forms a closed
manifold solid. The scalar field is initially defined by the signed Euclidean
distance to M . Let d(x,M) be the shortest Euclidean distance from a point
x ∈ R3 to the mesh M , then

|fproxy(x)| = d(x,M).

Since M is a triangle mesh, d(x,M) is the minimal shortest Euclidean distance
between x and any of the triangles T of the mesh:

d(x,M) = inf
c∈M
‖c− x‖ = inf

T∈M

(
inf
c∈T
‖c− x‖

)
.

To determine whether a point is inside or outside a proxy object, we require
fproxy(x) to be the signed distance to M , such that

fproxy(x)


> 0 if x is outside the object
= 0 if x is on the object surface
< 0 if x is inside the object.

(3.1)

The scalar field fproxy(x) described so far is simply the signed distance field to
M . However, the sculpting system described in Section 3.4 can inflict direct,
localized changes to the field values of f(x) so that they no longer represent
distances. In either case, the scalar field is only C0 continuous. This property
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has no negative influence on the stroke embedding with the objective terms
and tools presented in this paper. Problems could arise if objective terms were
introduced which are more sensitive to the scalar field smoothness. In this case,
a scalar field formulation with higher order continuity, such as the one described
by Peng and colleagues [Peng et al., 2004], might be preferable.

We define all operations on the scalar field in a form that does not require explicit
storage of the field values. Thus, we avoid the memory and computational costs
of a voxel decomposition or the algorithmic complexity of more sophisticated
distance-field representation methods [Frisken et al., 2000].

3.3 Stroke Embedding

The artist paints in a particular 2D view of the 3D canvas, generating an or-
dered sequence of n stroke points p̂i ∈ R2. The goal of stroke embedding is to
find 3D positions pi∈ R3 for these points in a way that is meaningful and use-
ful to the artist. To target an embedding algorithm that meets these workflow
considerations in a flexible and extendable way, we cast the embedding of the
stroke points as an optimization problem. This framework allows us to imple-
ment objective function terms that accomplish different embedding behaviors,
such as painting on a level set of the 3D canvas’s scalar field, or across the scalar
field between two chosen level sets. Combinations of these terms are exposed
to the user as different embedding tools.

To ensure that the embedded strokes match the artist’s intent, it is crucial that
the stroke points pi project back to their original screen space locations p̂i in
the view from which they were painted. We enforce this property strictly by
parameterizing the stroke points by their view ray: pi = o + tidi, where o is
the camera position, di the view vector that passes through p̂i on the screen
plane, and ti the ray parameter (see Figure 3.2 for an illustration). The ti are
thus the unknown variables of the optimization.

3.3.1 Objective Terms

We propose three objective terms that provide the ingredients necessary to
build OverCoat’s embedding tools. The level distance term is minimized when
all stroke points are at a particular distance from the proxy geometry. The angle
term minimizes the curvature of the stroke and thus smoothes its embedding.
The arc length term favors straight embeddings by minimizing the total length
of a stroke.
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Figure 3.2: To ensure that embedded points project back to their original posi-
tions on screen, stroke points are parameterized along the view ray
that passes through the input points on screen for embedding.

Level distance OverCoat allows the user to select a specific level l, and hence
a specific isosurface f(x) = l, on which to apply strokes. The corresponding
objective term should ensure that all stroke points are embedded as closely as
possible to the selected isosurface. The level distance objective term sums the
difference between the actual field value f(x) evaluated at all point locations pi
and the desired level l:

Elevel =
N∑
i=1

(f(pi)− l)2 . (3.2)

Angle The angle objective term aims to minimize the directional deviation
of consecutive line segments along a stroke. This deviation is measured by the
dot product between the normalized line segments, which equals 1 when the
segments are co-linear:

Eangle =
N−2∑
i=1

(
1− pi+2 − pi+1

‖pi+2 − pi+1‖
· pi+1 − pi
‖pi+1 − pi‖

)2

. (3.3)

Arc length The arc length objective term penalizes the collective length of all
segments:

Elength =
N−1∑
i=1

‖pi+1 − pi‖2. (3.4)
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0
-1

-2

1
 l = 2

3
4

p1

p2
p3

p4

Figure 3.3: The level distance objective term is the sum of the differences be-
tween a chosen value l and the scalar field value at each stroke point.
In this 2D example, the scalar field is simply the signed distance field
to the thick blue line. Under this condition, the level distance term
becomes the sum of distances between the stroke points and the
chosen l-isoline marked in red. The thin blue lines are other isolines
of the distance field.

α1

α2

α2

p1

p2

p3

p4

p5

Figure 3.4: Conceptually, the angle objective term is the sum of 180◦−αi for the
αi shown in this figure. In our actual implementation, we don’t com-
pute the angles explicitly, but use the dot product between neigh-
boring segments instead (Equation 3.3).
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3.3.2 Optimization

The goal for an embedding tool is to find ray parameter values ti and thus 3D
locations for all stroke points that minimize the weighted sum of all objective
terms:

E = wlevelElevel + wangleEangle + wlengthElength.

Individual embedding tools, described in the next section, achieve different be-
haviors by setting different values for the weights wlevel, wangle, and wlength. Since
the only unknowns to the optimization are the depth values ti, the optimiza-
tion does not change the shape of a stroke in the view in which the stroke was
painted.

In our implementation, we use the quasi-Newton L-BFGS method to solve this
non-linear optimization problem. Like steepest descent methods, Quasi-Newton
methods require only the value and the gradient of the objective function to be
provided at each iteration. Successive gradient vectors are analyzed to ap-
proximate second derivatives that are used to compute a descent direction,
leading to an improved convergence performance over steepest descent meth-
ods [Nocedal and Wright, 2006].

The gradient of the objective function is a vector of the function’s partial deriva-
tives with respect to the unknown variables ti:

∇E =

[
∂E

∂t1
, . . .

∂E

∂ti
, . . .

∂E

∂tn

]T
.

Due to the linearity of differentiation, each individual partial derivative of E can
simply be expressed as the weighted sum of the corresponding partial derivatives
of the objective terms:

∂E

∂ti
= wlevel

∂Elevel
∂ti

+ wangle
∂Eangle
∂ti

+ wspan
∂Espan
∂ti

+ wlength
∂Elength
∂ti

.

The partial derivatives of the objective terms can be derived from the equations
given in Section 3.3.1.

Level distance term derivative Since the positions of stroke points are pa-
rameterized by pi = o+tidi, their derivatives with respect to the ray parameter
ti is equal to the viewing vector di. According to the chain rule, the derivative
of the canvas scalar field f(pi) with respect to ti is therefore

∂f(pi)

∂ti
= ∇f(pi) · di, (3.5)
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which, as expected, is equivalent to the directional derivative of f(pi) in the
viewing direction di.

When Equation 3.2 is differentiated with respect to ti, the only non-zero term
in the sum on the right-hand side is the one involving pi, and thus another
application of the chain rule leads to

∂Elevel
∂ti

= 2 (f(pi)− li) (∇f(pi) · di) .

Angle term derivative To simplify the differentiation of the angle term pre-
sented in Equation 3.3, we define

ak = pk+1 − pk,

bk = pk+2 − pk+1,

Dk =
ak
‖ak‖

· bk
‖bk‖

= (ak · bk)‖ak‖−1‖bk‖−1,

so that the angle objective term becomes

Eangle =
n−2∑
i=1

(1−Di)
2 . (3.6)

For any i ∈ [2, N − 2], there are exactly three D’s that depend on ti: Di, Di−1,
and Di−2. The partial derivative of Equation 3.6 with respect to ti can therefore
be written as

∂Eangle
∂ti

= −2
2∑
j=0

(1−Di−j)
∂Di−j

∂ti
. (3.7)

For the differentiation of Di−j, the application of the product rule yields

∂Di−j

∂ti
=
∂(ai−j · bi−j)

∂ti
‖ai−j‖−1‖bi−j‖−1+

+ (ai−j · bi−j)
∂‖ai−j‖−1

∂ti
‖bi−j‖−1+

+ (ai−j · bi−j)‖ai−j‖−1
∂‖bi−j‖−1

∂ti
.

The partial derivatives in this equation depends on the value of j. We show the
differentiation with j = −1; for the other j, the differentiation is analogous, but
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some terms vanish because they do not depend on ti:

∂(ai−1 · bi−1)
∂i

=
∂ai−1
∂i
· bi−1 + ai−1 ·

∂bi−1
∂i

=
∂(pi − pi−1)

∂i
· (pi+1 − pi) + (pi − pi−1) ·

∂(pi+1 − pi)

∂i
= di · (pi+1 − pi)− (pi − pi−1) · di
= di · (pi+1 − 2pi + pi−1),

∂‖ai−1‖−1

∂ti
=
∂‖ai−1‖−1

∂‖ai−1‖
· ∂‖ai−1‖
∂ai−1

· ∂ai−1
∂ti

= −‖pi − pi−1‖−2 · ‖pi − pi−1‖−1(pi − pi−1) ·
∂(pi − pi−1)

∂ti
= −‖pi − pi−1‖−3(pi − pi−1) · di,

∂‖bi−1‖−1

∂ti
=
∂‖bi−1‖−1

∂‖bi−1‖
· ∂‖bi−1‖
∂bi−1

· ∂bi−1
∂ti

= −‖pi+1 − pi‖−2 · ‖pi+1 − pi‖−1(pi+1 − pi) ·
∂(pi+1 − pi)

∂ti
= −‖pi+1 − pi‖−3(pi+1 − pi) · di.

Arc length term derivative When differentiating Equation 3.4 with respect
to ti, exactly two elements of the sum are non-zero:

∂Elength

∂ti
=
∂‖pi − pi−1‖2

∂ti
+
∂‖pi+1 − pi‖2

∂ti
= 2di · (pi − pi−1)− 2di · (pi+1 − pi)

= 2di · (2pi − pi−1 − pi+1).
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3.3.3 Embedding Tools

The objective terms presented in the previous sections provide the ingredients
necessary for the embedding mechanisms shown in this thesis. To hide the
complicated and technical optimization details, we encapsulate the choice of
objective term weights and expose them to the user in the form of three powerful
embedding tools (Figure 3.5). All examples in the thesis were painted using
these three tools.

(a) Level set tool (b) Hair tool (c) Feather tool

Figure 3.5: The three embedding tools implemented by OverCoat.

Level set tool

The level set tool embeds all stroke points as closely as possible onto a selected
level set surface. This goal is achieved by giving a dominant weight to the level
distance term Elevel. By itself, this term has the same effect as direct projection
for paint strokes within the silhouette boundaries of the level set. When a stroke
extends outside the silhouette, the closest distance solution will be roughly
perpendicular to the surface in the region where the silhouette is crossed, thus
creating a sharp corner along the embedded stroke. We incorporate the angle
term Eangle to achieve a smoother transition in this case. The weights wlevel = 1,
wangle = 0.1, and wlength = 0 were used for level set tool in all of our examples.
If a fuzzy embedding is desired, the target level can be displaced by a random
amount for each stroke, or even for each individual stroke point.

Hair and feather tool

Another set of tools allows the user to paint across level sets. The user selects
a target level for both the start and the end of the stroke. The first and last
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points of a painted stroke are constrained to lie on these prescribed levels using
wlevel = 1. The remaining stroke points, however, are optimized with wlevel = 0.
In the absence of a target surface, the angle objective term ensures a smooth
transition between the two ends with wangle = 1. With this term alone, the
resulting embedding will be smooth, but may be extended undesirably in order
to meet the angle criteria optimally, resulting in strokes that overshoot the
prescribed target level set. We used the arc length term with wlength = 0.05 to
regularize this behavior and cause a straighter embedding in space.

The resulting cross-level embedding can be controlled more explicitly with ad-
ditional constraints. For example, the initial direction of the stroke can be
prescribed by temporarily pre-pending an artificial stroke point. This point
stays fixed during the optimization of the stroke, but affects the embedding
solution through the angle objective term. Depending on its relative position
to the first actual stroke point p1, it will cause the embedded stroke to leave
the surface in a particular direction. For the “hair” tool, the temporary point is
placed along the negative gradient direction at p1, causing the initial direction
of the stroke to be perpendicular to the level set. The “feather” tool was realized
by placing the temporary point in the direction that is tangential to the scalar
field at p1 and has the largest angle to the straight line connecting p1 and pN .
Figure 3.6 illustrates the embedding process of hair and feather strokes.

3.3.4 Distance, Derivative, and Gradient Computations

In the process of embedding strokes in space as described above, the optimiza-
tion procedure must repeatedly evaluate a canvas’s scalar field to calculate the
field’s magnitude f(x), the gradient ∇f , and the derivative of the scalar field
with respect to the ray parameter ∂f(pi)/∂ti = ∇f · di. In the absence of
sculpting operations, f(x) is defined to be the signed smallest distance to the
proxy geometry. The absolute distance value is computed by finding the clos-
est point c within any primitive of the proxy geometry mesh as described in
Section 3.2.1. The sign of fproxy(x) can be found by comparing the vector
connecting c and x with the outward oriented surface normal the normal at
c [Bærentzen and Aanæs, 2005]:

fproxy(x) = sign((c− x) · n)‖x− c‖

The normal n is either the normal of the triangle itself if c lies within the
triangle, or the angle-weighted normal at the vertex or edge on which c is
located otherwise. This computation assumes that M is an orientable manifold
and that all normals point outward.

The gradient is generally defined by the normalized vector between the query
point x and its closest point on the surface. This definition can become numer-
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(a) Hair tool embedding process

(b) Feather tool embedding process

Figure 3.6: The hair (a) and feather (b) tools embed the first and the last points
of a paint stroke on chosen level set values lstart and lend. Between
the end points, the optimization finds a smooth embedding using
the angle objective term. The angle with which the paint stroke
leaves the start isosurface is controlled by temporarily pre-prending
a static stroke point.
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ically unstable or even invalid if x lies very close to or exactly on the surface.
In that situation, the angle-weighted normal of the closest primitive should be
used instead:

∇f(x) =

n if ‖x− c‖ < δ
(x− c)

‖x− c‖
otherwise.

All scalar field evaluations are computed on the fly, so that OverCoat never
needs to store the field in a discretized form. An oriented bounding box
tree [Gottschalk et al., 1996] is used to accelerate the closest primitive look-ups,
which allows the embedding to be performed interactively.

3.3.5 Initialization

There are several reasons that speak in the favor of providing the optimization
procedure with a good initial solution. First, it avoids issues where certain
objective terms may be badly behaved at artificial initial solutions such as ti = 1.
In our angle term, for example, the derivatives become very large if the distances
between the stroke points pi are small. Second, our problem formulation in
general does not expose a clear global minimum, and is therefore prone to
converge to undesired local minima. Finally, a good initial guess drastically
reduces the number of iterations required for the optimization to converge. We
therefore propose using a simple heuristic for each tool to initialize the unknown
values to a configuration that is likely to be close to the optimal solution.

For the level set tool, our system uses Sphere Tracing, a ray marching tech-
nique described by Hart [Hart, 1994], to move the initial positions of the stroke
points to the first intersection with the target level set. Stroke points that do
not fall within the silhouette of the target level set are marked and handled
separately: they are joined up into connected sequences of off-surface points.
If such a sequence is adjacent to a successfully initialized stroke point on one
end, the t-value of that stroke point is copied to the entire sequence. If both
ends are adjacent to initialized stroke points, the bordering t-values are linearly
interpolated over the sequence. Finally, if the sequence spans the entire stroke,
meaning that the stroke was painted completely outside of the silhouette of the
target level set, the smallest t-value encountered during ray marching on any
stroke point is copied to the entire sequence/stroke.

For the hair and feather tools, only the first and the last stroke points are
initialized to their respective target levels (or the closest approximation thereof),
while the remaining unknowns are initialized with a linear interpolation between
the two end points.
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3.3.6 Stroke Refinement

If a target surface or parts of it are at a considerable angle to the screen plane,
the sampling of points along the stroke from the input device may not be suffi-
cient for the stroke to be embedded nicely in the scalar field. For example, the
level objective term can only be faithful to the chosen isosurface if the stroke
sampling is fine enough for the level of detail of the surface. Likewise, the angle
term can only provide an effective smoothing if the sampling is appropriate.
Our system therefore refines input strokes painted with the level set tool during
their initialization. If the Euclidean distance between two consecutive stroke
points after initialization is larger than a given threshold, a new stroke point
is inserted between the existing stroke points in 2D and immediately projected
according to the initialization method described above. This step is repeated
until all stroke segments are at most twice as long as the shortest segment in
the stroke, thus guaranteeing a roughly uniform sampling along the stroke (Fig-
ure 3.7). The position of new stroke points in 2D can be chosen according to an
arbitrary subdivision scheme. We have obtained good results with the 4-point
interpolatory curve subdivision method [Dubuc, 1986, Dyn et al., 1987].

Inner silhouettes The refinement process has the added benefit of detecting
strokes that cross occluding contours. Painting across occluding contours can
result in stroke segments bridging two parts of an isosurface that are potentially
far apart in 3D. Attempting to refine such a segment causes an infinite recursion
within a segment that cannot become any shorter. The end points of this
segment eventually converge to two distinct 3D points that both project to
the same point in 2D (Figure 3.8). This 2D point is the location where the
paint stroke crosses the inner silhouette on screen. OverCoat detects this case
by comparing the original segment length with the lengths of the two new
segments. If the ratio is below a given threshold, the paint stroke is split into
two at the location of convergence. We found that a value of 0.1 works well for
the threshold ratio.
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(a) (b)

(c) (d)

Figure 3.7: The middle segment of the original stroke in Figure (a) is subdi-
vided by inserting a new stroke point in 2D between the segment’s
end points and initializing its 3D position using the initialization
heuristic of the current tool (b). The right sub-segment is further
subdivided in (c) and (d).

Figure 3.8: This illustration shows three consecutive refinement steps of a paint
stroke crossing an occluding contour of a target isosurface. In each
step, the ratio between the original segment and the smaller sub-
segment increases, which provides an indication for a contour cross-
ing.
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3.4 Canvas Sculpting

In the same way that paint strokes are embedded to add color to the canvas, our
sculpting tool embeds sculpting strokes that alter the shape of the canvas itself.
Sculpting strokes act as direct modifiers to the canvas’s scalar field and thus have
an influence on the embedding of subsequent strokes. A sculpting stroke defines
a contribution function C(r, R), where r is the smallest distance from x to any of
the line segments of the sculpting stroke, and R is a user-defined radius of influ-
ence. OverCoat uses a cubic polynomial with local support [Wyvill et al., 1986]
for C(r, R):

C(r, R) =

{
2 r3

R3 − 3 r2

R2 + 1, if r < R

0, otherwise.

The scalar field is modified by adding the contributions of all sculpting strokes
to the field function:

f(x) = fproxy(x)−
∑
j

KjC(rj, Rj), (3.8)

where j enumerates all sculpting strokes with a non-zero contribution at x, and
Kj determines the magnitude of each sculpting operation. A positive value of
K causes an outward deformation of the surface, while a negative value causes
an inward deformation.

Adding such contribution functions locally compresses and expands the scalar
field as illustrated in Figure 3.9. The amount by which a surface is shifted by a
sculpting operation therefore depends both on K and previous sculpting oper-
ations in the region. OverCoat keeps the magnitude of the surface deformation
approximately constant by computing K based on the scalar field value at a
user-chosen distance in the gradient direction from the stroke centerline. For
each point pi on the sculpting stroke j with a normalized gradient vector ni, a
local magnitude value Kj,i is computed:

Kj,i = sj
|f(pi + sjdjRjni)|

C(djRj, Rj)
, sj =

{
1 for outward deformation
−1 for inward deformation.

where dj ∈ ]0, 1[ is a user-specified parameter that defines the magnitude of
deformation for each sculpting stroke. The Kj used in Equation 3.8 is found by
linearly interpolating the Kj,i to the closest point to x on the sculpting stroke.

3.4.1 Impact on Stroke Embedding

Once a sculpting stroke has been embedded, it is incorporated into the eval-
uation of the canvas scalar field. As a consequence, the scalar field values no
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Figure 3.9: This figure shows the scalar field resulting from a flat surface with
one sculpting contribution. The surface (zero level set) is between
the yellow and the cyan band. The sculpting contribution locally
changes the magnitude of the gradient, which is visible in the com-
pression and expansion of the spaces between the isolines.

longer represent the distance to the zero level set. The gradient of the scalar
field is augmented by the sculpting contribution functions:

∇f(x) = ∇fproxy(x)−
∑
j

Kj∇C(rj, Rj),

∇C(r, R) =

{
6 r2

R3
∂r
∂x
− 6 r

R2
∂r
∂x
, if r < R

0, otherwise.

The ray marching procedure used to find an initial embedding solution (Sec-
tion 3.3.5) requires a lower bound of the Euclidean distance to the target level
set l to determine its step size. If the query point x is not within the influence
region of any sculpting strokes, a practical lower distance bound is the minimum
between the distance to the closest sculpting stroke and fproxy(x)−l. Otherwise,
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OverCoat uses a distance bound derived according to Hart [Hart, 1994]:

d(x, S) >=
f(x)− l

1 +
∑
j

|Kj|
3

2Rj

,

where the lower part of the fraction is the Lipschitz constant of the signed
distance field of the proxy geometry (which is equal to 1) plus the Lipschitz
constant of the sum of all contributions of the sculpting strokes.

To provide immediate feedback of the sculpting operations to the user, OverCoat
deforms a copy of the proxy geometry by moving affected vertices along their
normal to the new zero level set. If necessary, the mesh is refined to account for
geometric complexity added by the sculpting tool. This copy is used for display
only, while future scalar field computations use the original proxy geometry
together with the sculpting stroke influence functions directly (Equation 3.8).

3.5 Results

In this section we show five complete 3D paintings created by three different
artists using our prototype OverCoat software. For these paintings, the artists
modeled approximate proxy geometry in Autodesk Maya, Pixologic ZBrush,
or Maxon Cinema4D and imported it into OverCoat for painting. The proxy
geometry does not include fine details. Instead, the artists achieved detailed
results by painting strokes with the level set, hair, and feather tools, or sculpting
additional details with the sculpting tool. The accompanying video contains an
overview with live screen captures that show the different tools in action, a video
of an artist using the system, and turntable animations of all five paintings.

The “Cat and Mouse” painting is shown in Figure 3.10 from three different
viewpoints. As the close-up in Figure 3.11 shows, the cat’s tail is depicted with
strokes that do not conform to the proxy geometry’s surface. By painting off
surface, the artist gave the tail its rough, comic look. The whiskers on the cat
and mouse demonstrate strokes painted in space using the hair tool. Figure 3.12
depicts an “Autumn Tree” from front and top views. In the bottom row of the
figure, a rendering of the stroke centerlines is blended with the proxy geometry.
It shows that the leaves are painted in the space surrounding the rough canopy
geometry. “Captain Mattis” is shown in Figure 3.16. The sculpting tool was used
to sculpt the Captain’s beard and eyebrows. The bottom row of Figure 3.16
visualizes the original, unsculpted head, the sculpting strokes, and the final
painted result. The “Angry Bumble Bee” in Figure 3.13 shows how the hair and
feather tools can be used to create a fluffy appearance. The “Wizard vs. Genie”
painting shown in Figure 3.15 is our most complex example. Facial features and

68



3.6 Limitations and Future Work

Example Triangles Strokes Splats
Autumn Tree 29k 21k 138k
Captain Mattis 6.6k 5k 40k
Cat and Mouse 7.5k 5k 130k
Angry Bumble Bee 6.3k 20k 304k
Wizard vs. Genie 30k 24k 452k

Table 3.1: Statistics about the number of triangles in the proxy geometry, the
number of paint strokes, and the number of splats generated in a
typical view by the stamping algorithm described in Chapter 2.

cloth wrinkles were sculpted using OverCoat’s sculpting tool, and the smoke was
given a fuzzy appearance by using the random offset feature of the level set tool.

Figure 3.17 demonstrates the advantage of OverCoat over more traditional
methods that restrict 3D paintings to conform tightly to the surface of scene
objects. The left column in this figure shows the 3D painting as created by the
artist. To create the right column, we reprojected all paint strokes onto the zero
level set so that they lie exactly on the proxy geometry. In the reprojection,
the silhouette of the captain’s arm becomes a precise line without stylization,
revealing the smooth nature of the underlying 3D geometry. Likewise, the bee’s
fuzzy body and hairstyle lose their expressive quality.

3.6 Limitations and Future Work

While the objective terms and embedding tools we presented were successfully
used to create all the 3D paintings in this thesis, they are by no means intended
to be conclusive. We believe that our system is flexible enough to allow for
other embedding semantics to be implemented easily and thus presents a good
basis for creative development.

In our system, the artist must paint all lighting and texture information by
hand. While giving the artist the utmost level of freedom of expression, this
approach requires more manual work, especially in the context of dynamic light-
ing. Future work could incorporate ideas from Meier’s painterly rendering sys-
tem [Meier, 1996] or WYSIWYG NPR [Kalnins et al., 2002] to transfer scene
lighting and shading information to painted strokes.

Stylized 2D paintings often exhibit view-dependent shape changes. Our system
cannot support such changes, since the 3D canvas’s structure is independent of
camera view. Future work could incorporate ideas from view-dependent geom-
etry [Rademacher, 1999] into the 3D canvas authoring process.
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The users of our software were successful in using Maya and ZBrush for
modeling in conjunction with OverCoat. However, the system could be
improved by integrating sketch-based modeling and deformation concepts
[Igarashi et al., 1999, Nealen et al., 2007] directly into OverCoat.

Finally, the system discussed so far accommodates only static objects. In the
next chapter, we present a concept and method to extend the system to support
expressive animated characters.

Figure 3.10: “Cat and Mouse”: The fuzziness of the cat’s fur was achieved with
paint strokes that come off the surface. The whiskers were painted
using the hair tool.

Paint stroke centerlines Paint and geometry overlay

Figure 3.11: A close-up view of the cat’s tail that shows how the characteristic
look was achieved with paint strokes outside of the proxy geometry
silhouettes.
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Figure 3.12: “Autumn Tree”: Leaves are individually painted strokes on offset
levels of rough geometry representing canopies.
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Figure 3.13: “Angry Bumble Bee”: OverCoat allows painting hair and fur, as
well as other structure that may not be easily represented using
textured meshes.

Figure 3.14: This figure shows the proxy geometry used for the “Angry Bumble
Bee,” “Cat and Mouse” and “Wizard vs. Genie” examples.
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Figure 3.15: “Wizard vs. Genie”: Since OverCoat has a unified representation
for both surface and space, it is easy to depict clouds and other
volumetric effects, by painting on offset surfaces. Effects such as
the clouds in these images would be difficult to achieve with texture
painting techniques. The beard of the wizard, most apparent in the
image on the bottom right, shows an exemplary use of the feather
tool.
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Proxy geometry Final painting

Original
proxy geometry

Proxy geometry
w/ sculpting strokes Final painting

Figure 3.16: “Captain Mattis”: Top row: Finished painting, paint strokes, and
proxy geometry. Bottom row: original proxy geometry, geometry
with sculpting strokes, and final painting.
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Figure 3.17: The left column shows excerpts of the original paintings. In the
right column, all strokes were projected onto the zero level set in
order to highlight the benefit of our embedding method
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C H A P T E R 4
Animating 3D Paintings

In the two previous chapters, we have established methods that allow an artist
to paint in three-dimensional space and render the resulting brush strokes in
a fashion that resembles a traditional painting from any point of view. The
missing piece to achieving our research goals formulated in the introduction is
the ability to use these methods for animated protagonist characters. This goal
is addressed in the current chapter, building on the existing system and guiding
principles.

First, we show how to associate the movement of painted strokes with the move-
ment of a character’s proxy geometry so that 3D paintings can be deformed
using standard rigging tools, regardless of the particular rigging algorithm em-
ployed. Next, we propose a configuration-space keyframing algorithm for au-
thoring pose-dependent stroke effects. This mechanism allows stroke opacity or
movement to be keyframed to positions in a configuration space that includes
animation variables such as character pose parameters. With this mechanism,
artists can create pose-dependent touch-ups to fine tune the look of a character,
or larger-scale effects such as an animated facial expression. By including not
only character pose but also camera and light position in the configuration space,
our algorithm offers the opportunity to handle level-of-detail, view-dependent
effects, and painted lighting changes with the same system. Finally, during
animation, our system supports stroke-based temporal keyframing for one-off
effects. Together, these tools subsume some of the work typically handled by
traditional pipeline tools: a character’s proxy geometry and rigging controls
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can be approximate and simple, since our painterly authoring system allows the
details of appearance and deformation to be painted directly by the artist.

Our primary scientific contribution in this chapter is a system for painterly char-
acter authoring and animation that provides direct control over expressive, ani-
mated character appearance. In realizing this system, we make several technical
contributions, including a stroke-skinning algorithm, stroke-based deformation
tools, a configuration-space stroke-keyframing method, a configuration-space
interpolation algorithm, and a stroke-based temporal keyframing function. We
demonstrate several characters authored with our system that exhibit painted
effects difficult to achieve with traditional animation tools.

4.1 Background

The articulated animation of 3D paint strokes has not been an active topic
for research thus far. The authors of WYSYWYG NPR [Kalnins et al., 2002]
demonstrate one example of an animated character where paint strokes are
deformed along with the surface to which they adhere. We adopt the same
concept in our stroke-skinning system in a flexible way that does not restrict
strokes to adhere to the proxy surface.

The configuration-space interpolation technique we propose was heavily inspired
by pose-space deformation [Lewis et al., 2000], a method that adds and inter-
polates pose-specific sculpted shapes on top of meshes deformed using skeletal
subspace deformation. Our contribution in this respect is a novel interpolation
method that reduces the amount of awareness the user needs to have about
the interpolation process, which is critical for our goal of providing an intuitive
character authoring workflow that is based on the painting input metaphor.

4.2 Workflow Considerations

In our work, we focus on character animation authoring, which is the most
challenging matter in the area of articulated animation. Character authoring
traditionally includes modeling, rigging, and texturing a character, while ani-
mation involves setting the values of its rig parameters over time in order to
create movement. We leverage the traditional character animation pipeline and
show how to enhance it with stroke-based painting.

Authoring During the authoring phase, the artist creates a proxy model and
rig for the character using traditional techniques. Since much of the character’s
detail will ultimately come from painting, the character’s proxy geometry and
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rig need only be an approximate representation. The artist then shapes the
overall appearance of the character by painting it in a 3D painting system, such
as the one we described in the two previous chapters. Our skinning deformation
algorithm (Section 4.3) can automatically move the painted strokes together
with the proxy geometry as the character is posed, allowing the artist to see the
character in any configuration.

The artist shapes the overall appearance in this way, but may desire more
fine-scale changes to take place at the stroke level when a particular pose is
achieved. For example, when activating a facial blend shape, the artist may wish
to include painted changes in the character’s facial expression, as demonstrated
in Figure 4.1. Our configuration-space keyframing system (Section 4.4) supports
this functionality. The character’s rig parameters, together with other scene
variables such as light position, define the scene’s configuration space. The artist
can keyframe the opacity or position of any stroke to the current configuration-
space variables. Our configuration-space interpolation algorithm (Section 4.4.3)
ensures that the keyframes are smoothly interpolated.

Proxy geometry Skinning only Skinning and
keyframing

Figure 4.1: A comparison of proxy geometry (left), a result after skinning
deformation (middle), and after skinning and configuration-space
keyframing (right). Configuration-space keyframing allows the artist
to add stroke animation for features that are not present in the ge-
ometry or rig, such as the eyebrows, the cheeks, the pointed hairs,
and the eye motion of this dog.

Animation In the authoring phase, the artist has created a parametric model
that defines paint stroke positions and properties for any point in the high-
dimensional configuration space. The goal in the animation phase is to define
the temporal sequence of actions of all assets in the scene, which, in technical
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terms, is achieved by creating a map from time to a point in the configura-
tion space. This map can be created with any traditional animation software.
During playback, our system deforms the painted strokes and interpolates any
configuration-space keyframes on stroke movement or opacity that were created
in the authoring phase. Our system supports an additional keyframing mecha-
nism that allows stroke opacity or position to be keyed to the animation timeline
(Section 4.5) independent of the configuration space. This functionality permits
one-off effects relevant to the particular context of the animation.

4.3 Skinning Deformation

Skinning deformation connects the movement of strokes to the deforma-
tion of the proxy object, allowing 3D paintings to be deformed by tradi-
tional character rigs. We employ an algorithm based on linear-blend skin-
ning [Magnenat-Thalmann et al., 1988] which is similar to the free-form defor-
mation technique proposed by Singh and Kokkevis [Singh and Kokkevis, 2000]
to accomplish this task. While linear-blend skinning is traditionally used in
the context of a skeleton, we blend skinning transformations computed for each
vertex of the proxy geometry. These transformations capture the space defor-
mation in a local neighborhood around the vertices from a designated rest pose
to the target pose. For a given vertex vi and its one-ring V 1

i , our algorithm
solves an orthogonal Procrustes problem to find a least-squares optimal rigid
motion M that aligns all vertices in V 1

i from the rest pose to the target pose.

For the actual skinning deformation, paint strokes are transformed from the rest
pose by a convex combination of Mi, where each point on a paint stroke has its
own set of weights:

M =
∑
i

wiMi. (4.1)

Although computing good skinning weights is difficult in some applications, in
our case paint strokes are typically located relatively close to the proxy geom-
etry’s surface. As a result, associating each stroke with the closest geometric
primitive of the mesh is effective. If the closest point on the surface lies within
a triangle, the barycentric coordinates of the closest point are used as weights
wi. When the closest point lies exactly on an edge or vertex, the barycentric
coordinates of any shared triangle delivers the correct weights. Figure 4.2 shows
a simple result of this skinning deformation method.

Newly applied paint strokes will typically be painted with respect to the cur-
rently active pose. Storing the stroke positions in the active pose would require
storing the position of V 1 for all associated vertices and recomputing the trans-
formations Mi whenever the the pose changes. We avoid this computation by
storing the positions of all paint strokes in the rest pose, regardless of the pose
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Figure 4.2: This figure shows a simple result of our skinning deformation algo-
rithm. The red strokes are embedded on the surface, while the blue
stroke is embedded above it. Since we compute skinning transfor-
mations as rotations around the centroids of mesh primitives, they
naturally extend to the space surrounding the object.

in which they were painted. We compute the skinning weights in the active
pose, and then apply M−1 to each stroke point to find its position in the rest
pose.

4.4 Configuration-Space Keyframing

The skinning deformation described in the previous section allows control over
the gross movement of strokes. However, a core advantage of 3D painting is
that it gives the artist the power to directly paint details and subtle expressive
elements that are not present in the proxy geometry and difficult to realize
through modeling operations. Since animating such elements with traditional
rigs may be cumbersome or impossible, we give artists detailed stroke-level
control using a configuration-space stroke keyframing system.
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4 Animating 3D Paintings

The configuration space is a high-dimensional space defined by the character’s
rigging controls (joint angles, blend-shape variables, etc.) and other scene pa-
rameters such as light positions. A keyframe is a point in this space together
with desired stroke information at that point. Our system allows stroke opacity
and stroke position to be keyframed. We choose this set based on the needs en-
countered during the creation of our example results. However, other quantities
such as color or stroke width could also be keyframed in the same manner.

Since a 3D painting may consist of thousands of paint strokes, we encourage the
artist to partition the painting into layers that have a semantic meaning with
respect to animation. For example, if an eyebrow is to be animated, all strokes
belonging to the eyebrow should be placed in a separate layer. Keyframes
are always set with respect to an entire layer. For example, a stroke position
keyframe captures the positions of all paint strokes in a layer.

4.4.1 Opacity Keyframing

Opacity keyframing is conceptually simple: it involves a single opacity measure
that can be set to any value between 0 and 1 at any given point in the config-
uration space. The opacity value should modulate the opacity of all strokes in
the layer, allowing a whole group of paint strokes to fade in or out during the
animation. The difficulty lies in rendering: as described in Section 2.1.3, it is
impossible to achieve a uniform opacity attenuation when compositing multiple
primitives without treating every pixel and fragment separately.

We resort to a simple multi-pass strategy independent of the specifics of the
rendering method. The core observation is that the blend between two images
where one layer was omitted in one of the images produces a semi-transparent
appearance of that layer. To express this concept more formally, assume that a
scene S consists of N layers, S = {L1, ...,LN}, and I(S) is the image generated
by rendering this scene without considering layer opacities. If layer L should
appear with opacity α and all other layers fully opaque, then the desired image
I can be computed as a linear interpolation between I(S) and I(S \ {Lk}):

I = αI(S) + (1− α)I(S \ {Lk}).

For the more general case where each layer has an arbitrary opacity αi ∈ [0, 1],
we sort the layers such that αi ≤ αj if i < j. Setting α0 = 0, the desired image
can be expressed as

I =
N∑
i=1

(αi − αi−1)I({Lj : j ≥ i}). (4.2)
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In the notation used above, the product of a scalar with an image corresponds
to the component-wise product of each image element with the scalar, and the
addition or summation of images corresponds to the component-wise addition
of the respective image elements.

Computing I this way requires N render passes. In most cases, this number can
be reduced by grouping layers with equal opacity values, which is equivalent to
dropping all terms in Equation 4.2 where αi = αi−1. However, the complexity of
rendering with layer opacities is still linear in the number of unique layer opacity
values, which results in a significantly reduced rendering time if the opacity of
many layers is keyframed.

4.4.2 Stroke Position Keyframing

Since keyframes are set per layer, a positional keyframe sets a value for all stroke
points of all strokes in a layer. Setting these point positions manually would be
cumbersome, and therefore we provide the artist with two tools to deform paint
strokes: smudging and expansion. Both tools share a common input metaphor
with the painting process: they operate on stroke paths embedded in space using
the 3D painting system. Smudging moves paint stroke points along the direction
of the embedded stroke, while expansion moves stroke points along the normal
defined by the implicit canvas. Both tools only affect stroke points within a
certain radius around the embedded path. The magnitude of the displacement
can optionally be modulated by an arbitrary falloff function. We have found the
cubic step function 2r3 − 3r2 + 1, where r is the distance to the stroke divided
by the tool radius, to produce nice results in most cases. Figure 4.3 illustrates
the operations of these shaping tools.
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Figure 4.3: This figure shows the result of applying the stroke smudging tool
to three paint strokes that were originally straight (top row), and
of applying the stroke expansion tool to a grid of strokes that was
originally painted on the sphere’s surface (bottom row).
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4.4.3 Keyframe Interpolation

Given a set of keyframes in configuration space, our system needs to be able
interpolate them to all other points in configuration space. Several factors make
this problem challenging:

1. The configuration space can be high dimensional, precluding geometric ap-
proaches like natural-neighbor coordinates [Sibson, 1981], finite element
thin-plate spline approaches [Hegland et al., 1997], and bounded bihar-
monic weights [Jacobson et al., 2011].

2. The interpolant should be continuous both as a function of the interpo-
lated configuration-space point and as a function of the keyframe locations.

3. The interpolant should not depend on parameters orthogonal to the keyed
subspace: if the user specifies keyframes for an elbow, the configuration of
other joints should not affect the results. This requirement precludes most
radial basis functions (RBFs), including those based on thin-plate splines,
Shepard interpolation [Shepard, 1968], and Gaussian process techniques
(with the notable exception when the RBF is a Gaussian).

4. Outside the region bounded by the keyframes, the interpolant should level
off to the value at the closest keyframe. Extrapolation requires large
negative weights, which tend to amplify defects in strokes, so we found it
best to avoid it.

Prior methods for pose-space interpolation used radial basis func-
tions [Lewis et al., 2000, Igarashi et al., 2005] or even linear interpola-
tion [Baran et al., 2009]. The latter approach cannot guarantee interpolation
and Igarashi and colleagues’ RBFs do not separate by dimension, violating
requirement 3. Lewis and colleagues use Gaussian RBFs, which have the draw-
back that the covariance matrices Σ need to be specified. Kernels that are too
small lead to abrupt transitions, while kernels that are too large lead to poor
conditioning and overshooting. As Figure 4.4 shows, when keyframes are not
uniformly distributed, it may be impossible to find Σ’s that yield good results.

We therefore propose a different scheme for interpolation developed on the ba-
sis of Franke’s ideas [Franke, 1977]. Let (xi, yi) be n keyframes, with xi the
locations in configuration space and yi the values (e.g., layer opacities or stroke
positions) and let x̂ be the point in pose space at which we would like to com-
pute the interpolant. Like RBFs and several other schemes, our interpolant is
linear in yi, but not in xi or x̂. This property implies that, for a particular
x̂, we only need to find weights wi such that ŷ =

∑n
i=1wiyi and then we can

interpolate many different functions efficiently. At a high level, we start by
defining n smooth “bumps” φi(x) over the configuration space, each centered
at a keyframe, so φi(xj) = δij. If we just used these bumps as weights, the
interpolant derivative at every keyframe with respect to x̂ would be zero (see
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Figure 4.5, and also [Lewis et al., 2000]), which leads to stuttering motions. We
therefore locally estimate the gradient at each keyframe and use the bumps to
blend the resulting linear functions.

The bumps φi(x) are defined using a smooth step function. A Hermite cubic
step could be used, but we have found the quadratic-linear-quadratic step for
γ = 0.2 to produce better results because its maximal derivative is smaller,
which causes the interpolation to look smoother:

Sγ(t) =



0 if t ≤ 0

1 if t ≥ 1
t2

2γ−γ2 if 0 < t ≤ γ

1− (1−t)2
2γ−γ2 if 1− γ < t < 1

0.5 + t−0.5
1−γ if γ < t ≤ 1− γ.

(4.3)

To compute the bump φi, we project x̂ onto the line connecting xj to xi for
each j 6= i and evaluate S for the the resulting line parameter value, so that the
result is 1 if the projection is at or past xi and 0 if it is at or past xj. We then
take the product of the smooth steps toward each keyframe

φ′i(x̂) =
∏
j 6=i

S

(
(x̂− xj) · (xi − xj)

‖xi − xj‖2

)
(4.4)

and normalize the result: φi(x̂) = φ′i(x̂)/
∑

j φ
′
j(x̂). These bumps have several

useful properties: they vary between 0 and 1, they are as smooth as S, they are
constant in directions orthogonal to the affine subspace spanned by xi’s, and
φi(x̂) > 0 precisely when (x̂ + xi)/2 is in the Voronoi region of xi. However,
because they are smooth and reach their extreme values at the keyframes, the
gradient of φi at each xj is zero, and if we use ŷ =

∑
i φi(x̂)yi, we will get the

stepping artifacts discussed above.

The stepping artifacts can be avoided by estimating the gradient gi from the
keyframe values yi and using it as the interpolant close to keyframes:

ŷ =
n∑
i=1

φi(x̂) (yi + gi · (x̂− xi)) . (4.5)

We estimate gi by minimizing a least-squares energy based on the distance and
direction of neighboring keyframes:

E(gi) =
∑
j 6=i

a2j
‖xj − xi‖2

(gi · (xj − xi)− bj(yj − yi))2 , (4.6)

where aj quantifies how much we trust the jth neighbor and bj is used for forcing
the gradient at extreme keyframes to zero to avoid overshooting. We use the
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bumps to evaluate aj = φi(αxi + (1− α)xj) with α = 0.5. To set the gradient
to zero at extreme points, we determine whether there are keyframes on both
sides of xi in the xj direction:

bj = S

(
−β ·min

k 6=i

(xk − xi) · (xj − xi)

‖xk − xi‖‖xj − xi‖

)
(4.7)

with β = 5. The problem of minimizing the energy E is typically under con-
strained, as no information is available in directions orthogonal to the affine
subspace of the keyframes. To satisfy requirement 3, the gradient needs to be
zero in these directions. This condition is achieved by adding the Tikhonov reg-
ularization term ε‖gi‖2 to the energy function with ε = 0.2. We then minimize
E using singular value decomposition.

As discussed earlier, this interpolation method only depends linearly on the yi’s.
Example basis functions generated with this scheme are shown in Figure 4.6.
Because configuration space is hard to visualize, we show an application of our
interpolation to spatial keyframing [Choi et al., 2008] in Figure 4.7. Although
the presented method has parameters α, β, γ, and ε, they are independent of the
domain of x, unlike the Σ’s in RBF interpolation. We used the same parameter
values for all of the results shown in this chapter (α = 0.5, β = 5, γ = 0.2, ε =
0.2). Another concern is that, like prior methods, our scheme does not always
satisfy requirement 4: the gradients at extreme keyframes may not end up zero
and overshooting can occur. Although it is not hard to construct synthetic
examples where this happens, we did not run into this issue when producing
our animated characters.
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Figure 4.4: A comparison of our method (blue) and Gaussian radial basis func-
tions with kernel radii 1, 2, 3, 4, 5 (green and red). The RBF inter-
polant with kernel radius 2 is shown in red. This radius is both
large enough to cause an overshoot after the point at x = 2 and
small enough to have a step around x = 12, demonstrating that
picking a good kernel radius can be an impossible task.
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Figure 4.5: A comparison of our method (blue), Shepard interpolation with the
1/d2 kernel (green), and using our φ’s directly (red). The task is to
interpolate five regularly spaced points on a line. The steps produced
by the other two methods manifest themselves as stuttering during
animation playback.
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Figure 4.6: Basis functions w generated by our interpolation scheme in 2D.
The “keyframes” are at (0.2, 0.2), (0.8, 0.8), (0.2, 0.8), (0.8, 0.2), and
(0.3, 0.4).

Figure 4.7: A painted smiley face has been keyframed to show various expres-
sions. The configuration space is defined by the 2D position of the
face. The left figure shows all keyframes at their respective 2D po-
sitions. The right figure shows interpolated faces superimposed on
the keyframes.
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4.5 Temporal Keyframing

The configuration-space keyframing system described above focuses on character
authoring, and is used to incorporate stroke-based effects that are common to
certain character poses or other repeated scene conditions. When a particular
animation is created, the artist may wish to add one-off effects specific to one
point in the animation’s timeline. We enable this kind of edit by allowing stroke
opacity and position to be keyed to the animation timeline.

Since animation takes place after authoring, temporal keyframes should override
any existing configuration-space keys. To bound the regions where temporal
keyframes are in effect, we employ the concept of “sentinel keys.” In contrast
to “normal” temporal keys, sentinel keys do not carry any scene parameter data
(such as stroke positions or opacity values). Let the current animation time
be designated by t. If t is between two normal temporal keyframes, the result
of applying temporal keyframing should be the interpolation between the two
keyframe values. Since we have a simple one-dimensional interpolation problem
in this case, any interpolation suitable for normal keyframing can be used. For
the sake of simplicity, we used the method described in the previous sections
with good results. If t is between two sentinel keys (or between a sentinel key
and the beginning/end of the animation), temporal keyframing is inactive. In
this case, the keyframed value is determined entirely by the configuration-space
keyframes.

To avoid discontinuities around a range in time where temporal keyframes exist,
there needs to be a smooth transition between the value determined by the
configuration-space keyframes and by the temporal keyframes. Therefore, if
t is between a sentinel key and a temporal keyframe, the keyframed value is
interpolated between the result of configuration-space keyframing and the value
of the neighboring temporal keyframe. Figure 4.8 illustrates the transitions
around a region of temporal keyframing.

4.6 Results

We authored and animated several example characters to demonstrate our skin-
ning deformation system and the range of applications for our configuration-
space and temporal keyframing methods. All characters are purely stroke-based
paintings created with the stroke embedding technique described in the last
chapter and rendered using mixed-order compositing.

The dog example (Figure 4.1) demonstrates both skinning and configuration
space keyframing. In the rig’s blend shape, only the snout, ears, and jaw move.
We use stroke position keyframing to make the hair stand up, create eyebrows,
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Configuration-space
keyframing result

Temporal
keyframing result

t

t

Sentinel
key

Sentinel
key

Temporal keyframes

Figure 4.8: Temporal keyframes override the result of configuration-space
keyframing. Sentinel keys are used to bound the regions where tem-
poral keyframing is active. In this figure, the upper arrow repre-
sents the parameter values that result from evaluating the temporal
keyframes, while the lower arrow represents the parameter values
resulting from the configuration-space keyframes. Between the sen-
tinel keys and their neighboring temporal keyframes, the results of
temporal keyframing and configuration-space keyframing are inter-
polated to ensure a smooth transition.

animate the pupils, and pull the cheeks out. Opacity keyframing is used to add
highlights and shadows around the cheeks and eyebrows.

Lighting is a crucial element in many animations. Figure 4.9 shows a painted
lighting example in which a light source’s position is included in the configura-
tion space. Keyframes for stroke positions and opacities are added for different
positions of the light source to create the illusion of a moving highlight, shadow,
and shading. In this example, no actual lighting calculations are made. Every-
thing is accomplished with configuration-space keyframing.

The blowfish animation (Figure 4.10) makes use of all aspects of our animation
system. The mesh animation was created with blend shapes and skeletal rigging
and exhibits the overall deformation of the body and the movement of the fins.
The eyes, however, are fixed in the original animation and were animated by
smudging and keyframing the pupils to a two-dimensional eye target position in
the configuration space. The spikes were folded out with the smudging tool and
keyframed to the blend-shape weight that corresponds to the blown-up shape of
the fish. Spike-stretching is avoided by constraining all points along one spike
to a single point on the surface. The blend-shape weight parameter also causes
the cheeks and lips to turn red via opacity keyframing. As the fish inflates, the
distances between paint strokes increase, leading to gaps in the surface. We
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Figure 4.9: Painted lighting effects such as the highlight, shading, and shadow
of this apple can be achieved by including the light’s position in the
configuration space and setting stroke position and stroke opacity
keyframes to the light’s position.

filled these gaps with additional paint strokes that are keyframed to appear
only as the body expands. The difference is visible in the blowfish comparison
segment in the video. The blinking eyes were realized by keying opacity to a
separate parameter in the configuration space. Figure 4.11 shows three frames
of the blowfish animation with and without the configuration-space effects.

Finally, the ballerina character, shown in Figure 4.12, has a detailed rig that
allows the animated painting to rely heavily on stroke skinning. However, the
input animation exhibits a number of rigging artifacts, including the leg pro-
truding through the skirt and collapsing deformation in the shoulders. Such
artifacts can easily be remedied with our configuration-space keyframing sys-
tem, as is illustrated in Figure 4.13. In the particular case of the shoulders, we
modified the behavior of the problematic strokes by keying new stroke positions
to the angles of the shoulder joints using 10 keyframes to fix both shoulders.
The leg protrusion was fixed with three pose keyframes to move the skirt up-
ward. Apart from alleviating issues in the input animation, we also embellished
the animation with an effect that causes the ballerina’s tutu to twist in reaction
to her pirouette. This effect was achieved with three temporal keyframe during
her spin that marks the maximum deformation of the fabric.

4.7 Discussion

In this chapter, we have presented a system for authoring and animating
painterly characters that incorporates much of the expressive freedom of 2D
concept painting into the character animation pipeline. In essence, our work
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Figure 4.10: A blowfish gets a shock when catching sight of a fishing hook.

upgrades painting from its restricted role in concept design and texturing to be-
come an integrated piece of expressive depiction that impacts modeling, rigging,
posing, lighting, and rendering. We show how painted strokes can be deformed
together with the character’s surface. Our configuration-space and temporal
keyframing system allows artists to fine-tune the movement of strokes in order
to accomplish stroke-level effects that are difficult or impossible to achieve using
more traditional modeling and animation tools. We have demonstrated results
for facial animation, animated lighting, and full body animation ranging in style
from comical and cartoony to fine-art impressionism.

An animated painting brings together two seemingly incompatible worlds since
three-dimensional movement must be conveyed using a medium that has been
static for thousands of years. Our system attempts to give the animator explicit
control over this movement. Discovering the boundaries of this control and how
to move past them to create effects and styles we have not yet dreamed is a
future direction of research that relies on art just as much as it relies on science.

Although our system gives the artist new control over painterly animation, it
also comes with many limitations that offer exciting opportunities for future
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Figure 4.11: An illustration of the different authoring steps for the blowfish
example. The top row shows the animated proxy geometry, the
middle row shows the painted result with skinning deformation
only, and the bottom row shows the result with configuration-space
keyframing. The middle row lacks the blinking and spike anima-
tions, and shows holes in the blown-up pose because the original
paint strokes have moved too far apart.
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Figure 4.12: Poses of a painterly ballerina authored and animated with our sys-
tem.

work. The freedom to shape the depiction of painted strokes in different poses,
under different lighting conditions, and at different times can mean that char-
acter authoring becomes more laborious. The extra time required for painting
is somewhat balanced by the need for a simpler geometric model and rigging
deformations. Nonetheless, an interesting area of future work lies in exploring
methods to fill a character with strokes without having to paint each and every
one individually. Such a system must strike an effective balance between its
automatic nature and the level of artistic control. Lighting represents a chal-
lenge in and of itself. Our current system allows painted lighting effects, such
as the moving shadow, highlight, and shading on the apple in Figure 4.9. This
example is somewhat simplistic, and the amount of work involved in creating
extremely complex lighting effects can make authoring them impractical. In-
corporating automatic lighting into our animation system is thus an important
area of future work. As mentioned above, the key challenge involves automating
the process without stealing the artists expressive control. Image-space effects,
such as silhouettes, are not easily accomplished by our system. Incorporating
the WYSIWYG annotation system [Kalnins et al., 2002] for silhouettes, creases,
and hatching is thus an interesting future work direction. On the technical side,
our configuration-space keyframe interpolation algorithm avoids stuttering when
interpolating multiple keyframes, but does not provide precise control over the
interpolation procedure. Generalizing the spline control typically found in ani-
mation packages to higher dimensions in an efficient way is a challenging area
of future work.

The painterly animation and rendering system presented thus far enlivens
painterly depictions of objects and characters with motion. An additional di-
mension of stylization can be found in the depiction of motion itself with the
use of transient “annotations” in a still image or the individual frames of an
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Figure 4.13: In the ballerina example, we used configuration-space keyframing
(right column) to fix issues that arose from the proxy geometry
animation (left and middle columns), such as the skinning artifacts
in the shoulder regions and the leg protruding through the skirt.

animation. We have investigated this topic in the context of more traditional
rendering and present a system for stylized rendering of motion in the next
chapter.
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C H A P T E R 5
Stylized Rendering of Motion

A huge variety of animation techniques, ranging from keyframing to dynamic
simulation to motion capture, populates the animation toolbox and can be
used to create dynamic and compelling worlds full of action and life. During
the rendering process, production-quality renderers employ motion blur as a
form of temporal anti-aliasing. While motion blur effectively removes aliasing
artifacts such as strobing, it does so at the cost of image clarity. Fast-moving
objects may be blurred beyond recognition in order to properly remove high-
frequency signal content. Although correct from a signal-processing point of
view, this blurring may conflict with the animator’s concept of how motion
should be treated based on his or her creative vision for the scene. Since the
appreciation of motion is a perceptual issue, the animator may wish to stylize
its depiction in order to stimulate the brain in a certain manner, in analogy to
the way an impressionist painter may stylize a painting in order to elicit some
aesthetic response. To this end, comic book artists, whose entire medium of
expression is based on summarizing action in still drawings, have pioneered a
variety of techniques for depicting motion. Similar methods are employed in 2D
hand-drawn animation to emphasize, accent, and exaggerate the motion of fast-
moving objects, including speed lines, multiple stroboscopic copies, streaking,
stretching, and stylized blurring. Figure 5.1 shows some examples of motion
effects in comics and cartoons. Although these effects have played an important
role in traditional illustration and animation for the past century, computer-
graphics animation cannot accommodate them in a general and flexible manner
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because production renderers are hard-wired to deliver realistic motion blur. As
such, stylized motion effects are relegated to one-off treatment and infrequently
used.

Figure 5.1: Motion effects were pioneered by comic and cartoon artists. For
example, the upper two images from Marvel’s X-Men use speed lines
to illustrate the dynamic action in the scenes. The images in the
lower row are frames from the cartoons “Donald Duck - Golden Eggs”
and “Aladdin.” Although the motion effects may not be clearly
visible in the fraction of a second that they are displayed when
played back as a movie, they contribute to the perception of the
motion of objects. All images are © Disney Enterprises, Inc.

In this chapter, we experiment with motion effects as first-class entities within
the rendering process. Rather than attempting to reproduce any particular
style, we aim at creating a general-purpose rendering mechanism that can ac-
commodate a variety of visualization styles, analogous to the way surface shaders
can implement different surface appearances. Many effects from traditional
mediums are directly related to an object’s movement through a region of space
and take the form of transient, ephemeral visuals left behind. This observation
motivates a simple yet powerful change in the rendering process. We extend
the concept of a surface shader, which is evaluated on an infinitesimal portion
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of an object’s surface at one instant in time, to that of a programmable mo-
tion effect, which is evaluated with global knowledge about all portions of an
object’s surface that pass in front of a pixel during an arbitrary long sequence
of time. Figure 5.2 illustrates the process. With the added motion information,
our programmable motion effects can decide to color pixels long after (or long
before) an object has passed in front of them, enabling speed lines, stroboscopic
copies, streaking, and stylized blurring. By rendering different portions of an
object at different times, our effects also encompass stretching and bending.
Other effects that extend beyond the object’s position in space, such as clouds
of dust or smoke, flashes of color that fill the frame, and textual annotations
(e.g., “BANG” or “POW”) are not addressed by our framework. Traditional
motion blur is a special case within our system, implemented as a motion ef-
fect program that averages the relevant surface contributions during a specified
shutter time. In general, however, our method dissolves the classic notion of a
scene-wide shutter time and allows each motion effect program to independently
specify its operating time range, so that a single rendered frame may compose
information from different periods of time.

Global Motion 

Information 

Motion Effect 

Program 

Animated 

Motion Effect 

P 

Figure 5.2: Our system computes precise information about which part of an
object has passed under a given pixel within a certain time period.
This motion data can be processed by a user-supplied motion ef-
fect program into a pixel color that is representative of the desired
depiction of motion.

From a technical standpoint, the most challenging aspect of our system is ef-
ficiently computing global information about an object’s movement. We make
this computation in the context of a ray tracer, where a single ray cast is modi-
fied to find every part of an object that has moved past a given pixel throughout
an arbitrary long time range. Since the motion of an object may be complex,
an analytical solution to the problem is not feasible. Instead, we construct a
new geometric object called a time aggregate object (TAO) that aggregates an
object’s movement into a single geometric representation. This representation
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is augmented with additional information that enables the reconstruction of a
set of points representing the path along the surface of the object that is visible
to the pixel as the object moves through the scene, along with the associated
times. Using this global information, one can develop shading algorithms that
utilize information about an object’s movement through an arbitrarily large
window of time.

Our primary contribution is an approach to motion depiction for three-
dimensional computer animation that fits naturally into current rendering
paradigms and offers the same generality and flexibility as programmable surface
shading. We also make the technical contribution of the TAO data structure
and present several examples of programmable motion effects.

5.1 Background

James Cutting [Cutting, 2002] presents a detailed treatise about motion de-
piction in static images that examines parallels in art, science, and popular
culture. He identifies five categories that encompass the vast majority of mo-
tion depiction techniques used to-date: photographic blur, speed lines, multiple
stroboscopic images, shearing, and dynamic balance.

Of these categories, photographic blur has received by far the most attention
within computer graphics, as an answer to temporal aliasing problems in com-
puter animation. Since a rendered animation represents a sampled view of
continuous movement, disturbing aliasing artifacts such as strobing can occur if
the temporal signal is sampled naively [Potmesil and Chakravarty, 1983]. Con-
sequentially, temporal anti-aliasing is a core component of all production-quality
renderers, and the research community has developed many sophisticated algo-
rithms for this purpose. These methods can be seen as convolution with a
low-pass filter to remove high-frequency details, yielding a blurry image. Or, in
analogy to traditional photographic processes, they can be interpreted as open-
ing a virtual shutter for a finite period of time during which fast-moving objects
distribute their luminance over regions of the film, creating blurred motion.

Sung, Pearce, and Wang [Sung et al., 2002] present a taxonomy of motion blur
approaches, with associated references, and reformulated these published meth-
ods in a consistent mathematical framework. Two features of this framework
help distinguish existing motion-blur algorithms from our presented work. First,
existing methods can be interpreted as scene-wide integration over a fixed shut-
ter time. In our work, we abandon the notion of a fixed shutter time and
empower individual motion effect programs to determine the time range over
which to operate. In this way, a single rendered image may combine informa-
tion from a variety of different time ranges. This added flexibility incurs a more
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complicated compositing situation (Section 5.3.6) when multiple motion effects
overlap in depth. Second, existing methods employ a spatio-temporal recon-
struction filter responsible for averaging contributions from different times. In
our method, we generalize this filtering concept to an arbitrary program that
allows a variety of different looks to be expressed. The averaging operation used
in traditional motion blur becomes a special case within this framework.

The value of stylized motion depiction is evident from its treatment in tradi-
tional artistic mediums, including the “Futurism” art movement of the 1900’s
[Hulten, 1986] and techniques taught as tools-of-the-trade to comic book artists
[McCloud, 1993] and animators [Goldberg, 2008, Whitaker and Halas, 2002].
Perceptual studies even provide direct evidence that speed lines influence low-
level motion processing in the human visual system [Burr and Ross, 2002]. Due
to the importance of stylized motion depiction, many researchers have ex-
plored ways to incorporate it into computer-generated imagery, animation, pho-
tographs, and video.

Masuch and colleagues [Masuch et al., 1999] describe the use of speed lines,
stroboscopic copies, and arrows in 3D graphics as a post-processing operation,
Lake and colleagues [Lake et al., 2000] present a similar method for speed line
generation, and Haller and colleagues [Haller et al., 2004] present a system for
generating these effects in computer games. These methods are specialized for
the targeted effects and may not generalize easily to different visual styles. A
framework for generating visual cues based on object motion is introduced by
Nienhaus and Döllner [Nienhaus and Döllner, 2005]. This method allows one
to define rules for the depiction of certain events or sequences based on a scene
graph representation of geometry and a behavior graph representation of anima-
tion. The authors do not address the issue of how to implement the depictions
in a generalized fashion. Researchers also present algorithms to add styl-
ized motion cues to 2D animation [Hsu and Lee, 1994, Kawagishi et al., 2003]
and video [Bennett and McMillan, 2007, Collomosse et al., 2005], to filter
motion in images [Liu et al., 2005] or 3D animation [Wang et al., 2006,
Noble and Tang, 2007, Chenney et al., 2002] in order to create a mag-
nified or cartoony effect, to create stylized storyboards from video
[Goldman et al., 2006], and to summarize the action in motion-capture data
[Assa et al., 2005, Bouvier-Zappa et al., 2007] or sequences of photographs
[Agarwala et al., 2004].

Taken all together, these methods cover the five categories of motion depic-
tion techniques that Cutting [Cutting, 2002] proposes. However, existing al-
gorithms target specific looks and must explicitly parameterize stylistic devia-
tions (e.g., Haller and colleagues’ system [Haller et al., 2004] represents speed
lines as connected linear segments with a parameter to control line thickness
over time). The central thrust and distinguishing characteristic of our con-
tribution is an open-ended system for authoring motion effects as part of the
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rendering process. We extend the concept of programmable surface shading
[Hanrahan and Lawson, 1990] to take the temporal domain into account for
pixel coloring. While our motion effect programs define how this extra dimen-
sion should be treated for a certain effect, they can still call upon conventional
surface shaders for the computation of surface luminance at a given instant in
time. We show examples in four of the five categories proposed by Cutting (styl-
ized blurring, speed lines, multiple stroboscopic images, and shearing). And,
notably, within these categories, different styles can be achieved with the same
flexibility afforded by programmable surface shaders.

5.2 Method Principles

Many stylized motion effects from traditional mediums summarize an object’s
movement over a continuous range of time with transient, ephemeral visuals
that are left behind. Motivated by this observation, we propose an alternative
rendering strategy that operates on the scene configuration during an arbitrar-
ily long time range T . In this section, we introduce the concept of motion
effect programs, our time aggregate object data structure, and the renderer’s
compositing system. Section 5.3 discusses more specific implementation details.

5.2.1 Motion Effect Programs

In analogy to a state-of-the-art renderer that relies on surface shaders to de-
termine the color contributions of visible objects to each pixel, we delegate
the computation of a moving object’s color contribution within the time range
T to motion effect programs. A motion effect program needs to know which
portions of all surfaces have been “seen” through a pixel during T . In gen-
eral, this area is the intersection of the pyramid extending from the eye location
through the pixel corners with the objects in the scene over time. Although Cat-
mull [Catmull, 1978] presents an analytic solution to this pixel coverage problem
for static scenes, extending it to the spatio-temporal domain is non-trivial. As
such, we follow the approach of Korein and Badler [Korein and Badler, 1983]
and collapse the pyramid to a single line through the pixel center before com-
puting analytic coverage. The surface area seen by the pixel for a particular
object then becomes a line along the surface, which we call a trace.

A motion effect program calculates a trace’s contribution to the final pixel color.
In doing so, it utilizes both positional information (the location of a trace on
the object’s surface) and temporal information (the time a given position was
seen) associated with the trace. It can evaluate the object’s surface shaders as
needed and draw upon additional scene information, such as the object’s mesh
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data (vertex positions, normals, texture coordinates, etc.), auxiliary textures,
the camera view vector, and vertex velocity vectors.

5.2.2 Time Aggregate Objects

Computing a trace is a four-dimensional problem in space and time, where in-
tersecting the 4D representation of a moving object with the plane or surface
defined by the view ray yields the exact trace. Unfortunately, since the influence
of the underlying animation mechanics on an object’s geometry can be arbitrar-
ily complex, a closed-form analytic solution is infeasible. Monte Carlo sampling
[Cook et al., 1984] could be considered as an alternative, since it is used by
prominent production renderers [Sung et al., 2002] to produce high-quality mo-
tion blur. However, it is also not effective in the present scenario since the time
period associated with a trace may be very short in comparison to the time
range over which the motion effect is active. For example, a ball may shoot
past a pixel in a fraction of a second but leave a trailing effect that persists
for several seconds. A huge number of samples distributed in time would be
required in order to effectively sample the short moment during which the ball
passes.

Consequentially, we propose a new geometric data structure that allows our
system to reconstruct a linear approximation of the full trace from a single ray
cast. Our data structure is inspired by the 4D polyhedra used in Grant’s tem-
poral anti-aliasing method [Grant, 1985] and aggregates an object’s geometry
sampled at a set of times ti (Figure 5.3) into a single geometric primitive. In
addition, corresponding edges of adjacent samples are connected by a bilinear
patch, which is the surface ruled by the edge as its vertices are interpolated
linearly between ti and ti+1. We call the union of the sampled object geometry
and swept edges a time aggregate object (TAO).

The intersection of a view ray with a bilinear patch of the TAO represents a
time and location where the ray, and thus also a trace, has crossed an edge
of the mesh. By computing all such intersections (not just the closest one)
and connecting the associated edge crossings with line segments, we obtain a
linear approximation of the trace. Intersections with the sampled geometry
represent additional time and space coordinates, which can be used to improve
the accuracy of the trace approximation. The accuracy of the approximated
traces thus depends on the number of TAO intersections, which scales with
both the geometric complexity of the object’s geometry and the number of
samples used for aggregation. In practice, we can use finely sampled TAOs
without a prohibitive computation time, since the complexity of ray-intersection
tests scales sub-linearly with the number of primitives when appropriate spatial
acceleration structures are used [Fóris et al., 1996].
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(a) (b) (c)

(d) (e)

t1

t2

t3

t4

Figure 5.3: The time aggregate object (TAO) data structure encodes the motion
of an object (a) using copies of the object sampled at different times
t1 . . . t4 (b) and bilinear patches that connect corresponding edges in
adjacent samples edges. These patches are shown in (c) for one edge
and in (d) for the whole mesh. This data structure is not just the
convex hull of the moving object, but has a complex inner structure,
as seen in the cutaway image (e).
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5.2.3 Compositing

A motion effect program acts on a trace as a whole, which may span a
range of depths and times. If objects and contributions from their associ-
ated programmable motion effects are well separated in depth, our renderer
can composite each effect’s total contribution to the image independently ac-
cording to depth ordering. The compositing algorithm used can be defined
by the effect itself, drawing upon standard techniques described by Porter and
Duff [Porter and Duff, 1984]. Compositing becomes more complex when multi-
ple traces overlap, since there may be no unequivocal ordering in depth or time.
Additionally, different motion effect programs may operate over different, but
overlapping, time domains since a single scene-wide shutter time is not enforced.

We resolve this ambiguity by introducing additional structure to the way in
which motion effects operate. All traces are resampled at a fixed scene-wide
resolution. Each motion effect program processes its traces’ samples individu-
ally, and outputs a color and coverage value if that sample should contribute
luminance to the rendered pixel. Our compositing system processes the out-
put samples in front-to-back order, accumulating pixel color according to the
coverage values until 100% coverage is reached.

5.3 Implementation

We have implemented our method as a plug-in to Autodesk Maya. Our system
is divided into two parts: a module to create and encapsulate TAOs from an-
imated 3D objects, and a new rendering engine, which generates images with
motion effects. The rendering engine computes a color for each pixel indepen-
dently by computing all intersections of the pixel’s view ray with the TAOs, and
connecting them to form a set of traces. Then, it calls the motion effect pro-
grams for each object, which compute that object’s and effect’s contribution to
the pixel color using the object’s traces. Finally, a compositing step computes
the resulting pixel color.

5.3.1 TAO Creation

We implement the TAO concept as a custom data structure within Maya. We
assume that animated objects are represented by triangle meshes with static
topology. Our system builds a TAO by sampling an object’s per-vertex time
dependent data (e.g., vertex positions, normals, and texture coordinates) at
a set of times ti, aggregating those samples into a single geometric primitive,
and connecting adjacent edges with bilinear patches (Figure 5.3). For a mesh
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with NE edges and NF triangles, Nt object samples yield a TAO with Nt · NF

triangles and (Nt − 1) ·NE bilinear patches.

Figure 5.4: Undersampled (left) versus properly sampled (right) motion. The
trace sampling rate is 10 times larger in the right image.

The density and placement of the object sample times ti determine how well
the motion of an object is approximated by our TAO data structure. Since
the approximation is linear by nature, it perfectly captures linear motion. For
rotation and non-rigid deformation, however, proper sampling of the motion
is necessary (Figure 5.4). Our systems supports both a uniform sampling and
an adaptive sampling strategy that starts with a uniform temporal sampling
and repeatedly inserts or deletes sample positions based on the maximum non-
linearity αi between the vertex positions of adjacent samples:

αi = max
j
angle(vj(ti−1),vj(ti),vj(ti+1)), (5.1)

where angle(A,B,C) is the angle between the line segments AB and BC and
vj(ti) is the position of vertex j in object sample i. First, the adaptive sampling
strategy iteratively removes sample times whenever αi is smaller than a given
coarsening threshold. In a second step, it inserts two new samples at ti−ti−1

2

and ti+1−ti
2

if αi exceeds a refinement threshold. In order to keep the maximum
number of object samples under control, the refinement criterion is applied
iteratively on the sample with the largest αi until the maximum number of
samples is reached. In practice, we assume a certain amount of coherence in
the motion of nearby vertices, and our system approximates the optimal sample
placement by considering only a subset of the mesh vertices in Equation 5.1.
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5.3.2 TAO Intersection

Our renderer generates a view ray for each pixel according to the camera trans-
form. Each ray is intersected with the primitives of the TAO (mesh faces and
bilinear patches) to compute all intersections along the ray, not just the one
which is closest to the camera. Normals, texture coordinates, and other surface
properties are interpolated linearly over the primitives to the intersection point
and stored.

For the intersection with bilinear patches, we use the algorithm described by
Ramsey and colleagues [Ramsey et al., 2004]. If an edge connects vj and vk,
then for each 0 < i < Ni − 1 a bilinear patch is defined as

pijk(r, s) = (1− r)(1− s) · vj(ti) + (1− r) · s · vk(ti)
+ r · (1− s) · vj(ti+1) + r · s · vk(ti+1).

(5.2)

Solving for a ray intersection yields a set of patch parameters (r, s) that corre-
sponds to the intersection point. With parameter r, we can compute the time
at which the ray has crossed the edge:

t = ti + r · (ti+1 − ti). (5.3)

The parameter s represents the position along the edge at which the crossing
has happened. It can be used to interpolate surface properties stored at the
vertices to the intersection point, and to compute the position of the intersec-
tion point in a reference configuration of the object. Mesh face primitives in
the TAO are intersected according to standard intersection algorithms. A para-
metric representation of the intersection points with respect to the primitives is
necessary for interpolating the surface properties.

To accelerate the intersection computation, we partition the image plane into
tiles and create a list of all primitives for which the bounding box intersects a
given tile. Each view ray only needs to be intersected with the primitive list of
the tile containing the ray.

5.3.3 Trace Generation

The set of all intersection points of a ray with the TAO can be used to recon-
struct the locus of points traced by the ray on the moving object. Consider
the interpretation of the ray-TAO intersection points on the input mesh. As
an individual triangle passes fully by the ray, the ray crosses the edges of the
triangle an even number of times, assuming that the ray was not intersecting
at the beginning or at the end of the observed time. Each edge crossing cor-
responds to an intersection of the ray with a bilinear patch of the TAO, and
vice versa. Since our system is restricted to a piecewise linear approximation of
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motion, we assume that the trace forms a linear segment in between two edge
crossings. The task of constructing the trace is thus equivalent to connecting
the intersection points in the proper order.

To facilitate this discussion, we refer to the volume covered by a triangle swept
between two object samples within the TAO as a Time Volume Element (TVE).
This volume is delimited by two corresponding triangles that belong to adja-
cent object samples and the three bilinear patches formed by the triangle’s
swept edges (Figure 5.5). Since there is an unambiguous notion of inside and
outside, a ray originating outside of a TVE will always intersect the TVE an
even number of times, unless it exactly hits the TVE’s boundary. A pair of
consecutive entry and exit points corresponds to a segment of the trace on the
triangle. Therefore, by sorting all ray-TVE intersection points according to
their distance from the viewer and pairing them sequentially, we can construct
all trace segments that cross the corresponding triangle within the time range
spanned by that individual TVE.

Next, we consider trace connectivity. TVEs that share a common TAO primitive
(triangle or bilinear patch) are adjacent in space. If the shared primitive is a
triangle, the TVEs were formed by the same triangle of the input mesh in
adjacent object samples. If it is a bilinear patch, the triangles that formed
the TVEs are adjacent to one another on the input mesh, separated by the
edge that formed the patch. This combined adjacency information determines
the connectivity of trace segments associated with neighboring TVEs. Our
system processes TVEs in turn to reconstruct the individual trace segments, and
then uses this connectivity information to connect them together into different
connected components.

5.3.4 Trace Resampling

At this point, we have the traces that the current pixel’s view ray leaves on
moving objects in the form of connected sequences of intersections with the
TAO. Each intersection point corresponds to an animation time and a position
on an object, and, in conjunction with the trace segments that connect to it,
we can determine and interpolate surface properties such as attached shaders,
normals, and texture coordinates.

In order to facilitate compositing, our system imposes a consistent temporal
sampling on all traces by dividing them into individual trace fragments of fixed
spacing in time. This resampling should be dense enough so that depth conflicts
among different traces can be resolved adequately. The visibility of individual
trace fragments during each sampling interval is also determined at this stage.
Our system does not delete occluded or back facing trace fragments, however.

110



5.3 Implementation

A

A

B

B

C

C

D

D

t1

t2

t3

Figure 5.5: This figure shows two triangles at 3 consecutive object samples, t1,
t2, and t3, that results in four Time Volume Elements (TVEs). A
ray intersects the TVEs four times. At intersection A, the ray enters
the blue triangle though an edge. Point B is an intersection with a
sampled mesh triangle, indicating that the ray moves from one time
sample to the next. In C, the ray leaves the blue and enters the
green triangle, which it finally exits at D. The reconstructed trace
visualized on the two triangles is shown in the inset figure.

111



5 Stylized Rendering of Motion

Instead, it is left up to the motion effect program to decide whether obstructed
segments should contribute to pixel coverage.

5.3.5 Motion Effect Programming

A motion effect program operates on the resampled representation of a trace.
It is called once per object and processes all trace fragments associated with
that object. The motion effect program has two options when processing an
individual trace fragment. It can simply discard the fragment, in which case
no contribution to the final pixel color will be made. Or, it can assign a color,
depth, and pixel coverage value and output the fragment for compositing. The
coverage value determines the amount of influence a fragment has on the final
pixel color in the compositing step. When making this decision, the motion
effect program can query an object’s surface shader, evaluate auxiliary textures
(e.g., noise textures, painted texture maps, etc.), or use interpolated object
information.

The effect program can also subdivide the trace even further if the effect requires
a denser sampling of the object’s surface. For example, further subdivision could
be the needed if the effect must integrate a surface texture of high frequency.
Decreasing the trace resampling distance (Section 5.3.4) has a similar effect,
although it affects all motion effects in the scene.

5.3.6 Compositing

By emitting trace fragments, each motion effect program specifies its desired
contribution to the pixel color. The compositing engine combines all of the
emitted fragments to determine the final pixel color by processing fragments
in depth order (front to back) using a clamped additive model based on the
coverage values. The coverage values of the fragments, which range between 0
and 1, are accumulated until a full coverage of 1 is reached or until all frag-
ments have been processed. If the coverage value exceeds 1, the last processed
fragment’s coverage is adjusted so that the limit is reached exactly. The final
pixel color is computed by summing the processed fragment colors weighted by
the corresponding coverage values. The accumulated coverage value is used as
the alpha value for the final pixel color.
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5.4 Results

In this section, we show a number of results obtained with our programmable
motion effect renderer and describe how the effect programs were set up to
achieve these results.

5.4.1 Motion Effects

To better explain the mechanism of programmable motion effects, we supply
pseudo-code algorithms for five basic effects used in our examples. These algo-
rithms show the framework of each effect using a common notation. A trace
segment ts consists of two end points, denoted ts.left and ts.right. Each of the
end points carries information about the animation time at which this surface
location has been intersected by the view ray and linearly interpolated surface
properties. They may be interpolated further with the Interpolate function,
which takes a trace segment and a time at which it should be interpolated
as parameters. By ts.center, we designate the interpolation of the end points’
properties to the center of the segment. The Shade function evaluates the
object’s surface shader with the given surface parameters and returns its color.
The animation time of the current frame being rendered is denoted as “current
time.” The output of a motion effect program is a number of fragments, each
with a color and coverage value, that represent the effect’s contribution to the
pixel color. Passing a fragment to the compositing engine is designated by the
keyword emit.

Instant Render The most basic program renders an object at a single instant
in time. The program loops through all trace segments and checks whether the
desired time lies within a segment. If so, it interpolates the surface parameters to
that point, evaluates the surface shader accordingly, and emits just one fragment
to the compositing stage with a coverage value of 1. Any surfaces behind that
fragment will be hidden, as is expected from an opaque surface.

Algorithm 3 Instant Render(time)
for all trace segments ts do

if ts.left.time <= time < ts.right.time then
eval_at := Interpolate(ts, time)
color := Shade(eval_at)
coverage := 1
emit fragment(color, coverage)

end if
end for
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Weighted Motion Blur Photorealistic motion blur integrates the surface lu-
minance within a given shutter time. We extend this process with an arbitrary
weighting function w(t) that can be used both for realistic and stylized blurring.
For photorealistic blur, the weighting function is the temporal sampling recon-
struction filter function. A flat curve corresponds to the commonly used box
filter. In general, the weighting function need not be normalized, which means
that luminance energy is not necessarily preserved. This flexibility increases the
possibilities for artistic stylization. For example, a flat curve with a spike at
t = 0 results in motion blur that has a clearly defined image of the object at
the current frame time.

Algorithm 4 Motion Blur(w(t))
for all trace segments ts do

if ts time interval overlaps with {t | w(t) > 0} then
clip ts against {t | w(t) > 0}
color := Shade(ts.center)
δt := ts.right.time - ts.left.time
coverage := δt · w(ts.center.time)
emit fragment(color, coverage)

end if
end for

The effect program in Algorithm 4 describes weighted motion blur in its most
basic form. A more advanced implementation could take more than one surface
shading sample within a segment and use a higher order method for integrating
the luminance. With the given effect program, however, the fidelity of the image
can be improved by increasing the global trace sampling rate (Section 5.3.4). A
comparison of motion blur from our implementation with that from production
renderers is shown in Figure 5.6.

114



5.4 Results

Test Scene

Ours (10 sec)

Mental Ray (10 sec)

Ours (44 sec)

Maya (10 sec)

Figure 5.6: A comparison of our motion blur implementation with production
renderers. The test scene, rendered without blur, consists of a trans-
lating checkerboard square with a stationary spotlight. The three
middle images were created with equal render time. The rightmost
image shows a high-quality render obtained with our system with a
denser trace sampling.

115



5 Stylized Rendering of Motion

Speed Lines Speed lines are produced by seed points on an object that leave
streaks in the space through which they travel. They can be distributed au-
tomatically or placed manually. The program computes the shortest distance
between trace segments and seed points. If the distance is smaller than a thresh-
old, the seed point has passed under or close to the pixel, and the pixel should
be shaded accordingly. A falloff function based on distance or time can be used
to give the speed line a soft edge.

Algorithm 5 Speed Lines(seed vertices, width, length)
for all trace segments ts do

for all seed vertices v do
if Distance(ts, v) < width
and current time − ts.center.time < length then
color := Shade(ts.center)
compute coverage using a falloff function
emit fragment(color, coverage)

end if
end for

end for

Time Shifting The time shifting program modulates the instantaneous time
selected from the trace. We use it in conjunction with the Instant Render so
that each pixel in the image may represent a different moment in time. If fast-
moving parts of an object are shifted back in time proportional to the magnitude
of their motion, these parts appear to be lagging behind. They “catch up” with
the rest of the object when it comes to a stop or changes direction. This effect
is only visible if an object’s motion is not uniform across the surface, as in the
case of rotation. In this algorithm, vmotion designates the motion vector of the
corresponding part of the surface.

Algorithm 6 Time Shift(ts, shift magnitude)
time shift := |ts.center.vmotion| · shift magnitude
shift time values in trace segment ts according to time shift
return ts

Stroboscopic Images This effect places multiple instant renders of the ob-
ject at previous locations. It imitates the appearance of a moving object pho-
tographed with stroboscopic light. The intensity of the stroboscopic images is
attenuated over time to make them appear as if they are washing away. We
keep the locations of the stroboscopic images fixed throughout the animation,
but they could also be made to move along with the object. The falloff function
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can be composed of factors considering the time of the stroboscopic image, ge-
ometric properties of the mesh (e.g., the angle between the motion vector and
the normal at a given point), or an auxiliary modulation texture to shape the
appearance of the stroboscopic images.

Algorithm 7 Stroboscopic Images(spacing, length)
for all trace segments ts do

if ts.left.time < current time − length then
t1_mod := ts.left.time modulo spacing
t2_mod := ts.right.time modulo spacing
if t1_mod <= 0 < t2_mod then
color := Shade(ts.center)
compute coverage using a falloff function
emit fragment(color, coverage)

end if
end if

end for

5.4.2 Examples

Translating and Spinning Ball The results in Figure 5.7 demonstrate speed
lines in different visual styles. The first two images use the Speed Lines effect
(Algorithm 5) with a falloff function that fades in linearly at both ends of the
speed lines and modulates the width of the speed line over time. For the last
image, the distance of the seed point to the current pixel is used to manipulate
the normal passed to the surface shader, giving a tubular appearance. In all
images, the Instant Render effect was used to render the solid appearance
of the ball.

Bouncing Ball The example in Figure 5.8 shows a bouncing toy ball, rendered
with a modified version of the Motion Blur effect (Algorithm 4). The effect
program computes a reference time for the input trace, and uses the difference
between this reference time and the current time to determine the amount of
blur, or the shutter opening time in conventional terms. As a result, the blur
increases toward the end of the trail.

Spinning Rod This result shows a rod spinning about an axis near its lower
end. Figure 5.9 (a) combines a Motion Blur effect (Algorithm 4) that uses
a slightly ramped weighting function with an Instant Render effect (Algo-
rithm 3) to render a crisp copy of the rod. Figure 5.9 (b) additionally uses

117



5 Stylized Rendering of Motion

Figure 5.7: Different speed-line styles.

the Time Shift function (Algorithm 6) with a negative shift magnitude so
that quickly moving surface parts lag behind. As shown in the accompanying
video, these parts “catch up” when the rod stops moving or changes direction.
In Figure 5.9 (c), Motion Blur is replaced with a Stroboscopic Images
effect (Algorithm 7). The falloff function fades the stroboscopic images out as
time passes and additionally uses the angle between the motion vector and the
surface normal to make the rod fade toward its trailing edge.

Toy UFO In Figure 5.10, we have attached speed lines to a UFO model to
accentuate and increase the sensation of its speed. To keep the effect convinc-
ing when the camera is moving with the UFO, the length and opacity of the
speedlines are animated over time. An animated noise texture is sampled using
the texture coordinates from the seed point of each speed line, which gives the
attenuation value for that speed line.

Pinocchio’s Peckish Pest The last set of examples shows our results on a
production-quality scene. Figure 5.11 uses a combination of speed lines and
weighted motion blur. The motion blur’s weighting curve has a spike around
the current time, so that Pinocchio is shown clearly in every frame, even when
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Figure 5.8: A bouncing ball rendered with non-uniform blur.

he is moving quickly. In Figure 5.12 a comparison between conventional motion
blur (also rendered by our system) and our weighted motion blur is made.

Statistics about all examples are shown in Table 5.1. The values are taken
from a representative frame of each animation, where the full TAO is within
the visible screen area. Render time depends greatly on the motion and the
amount of screen space covered by the objects. The numbers shown result from
rendering an image with 1280x720 pixels on an 8-core 2.8 GHz machine.

5.5 Conclusion

In this paper, we have presented a novel approach to depict motion in
computer-generated animation. Our method fits naturally into current render-
ing paradigms and offers the same generality and flexibility as programmable
surface shading. Our results demonstrate that it is a powerful platform for
experimenting with different depiction styles.

Limitations of our work motivate a number of rich future research possibilities.
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Weighted motion blur Weighted motion blur
+ time shift

Stroboscopic images
+ time shift

Figure 5.9: A spinning rod showing weighted motion blur (with and without
time shift) and stroboscopic images with time shift.
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Figure 5.10: Speed lines applied to a flying UFO animation.
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Figure 5.11: Results from applying speed line and motion blur effects (bottom),
and the stroboscopic image effect (top) to an animation of Pinoc-
chio and a woodpecker.
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Figure 5.12: A comparison of conventional motion blur (left) with our weighted
motion blur including speed lines (right).

In our current implementation, the screen-space region of the motion effect
is limited to the convex hull of the object’s motion, since the motion effect
programs operate only on pixels that intersect the TAO. One future research
avenue would be to consider installing the motion depiction framework further
upstream in the rendering process as a geometry shader, allowing new geometry
to be created and expanding the range of possible depiction styles.

We experiment with the core idea of programmable motion effects and pro-
vide a proof-of-concept that they can be used to express a variety of motion
depiction styles. However, our renderer implements only the most basic func-
tionality. Most importantly, by analyzing only one ray for each pixel, we ignore
the problem of spatial aliasing. In the example renderings shown in this thesis,
spatial aliasing was mitigated with simple spatial supersampling. This approach
causes a large performance overhead, which could potentially be improved by
exploring coherence between neighboring rays or by solving a more complex
TAO intersection problem. Also, our renderer does not consider global illu-
mination, reflection, refraction, caustics, participating media, or other effects
that are standard in production renderers. One immediate avenue of future
work is applying the core principle of recursive ray tracing to our framework
by casting secondary rays for shadowing, reflection, and refraction. Naturally,
computation time may become an issue if many secondary rays are used.

The performance of our system is reasonable for the examples shown, with
most frames requiring only a few minutes to render. The slowest aspect of the
system lies in the way it interfaces with Maya. Creating the TAO structure
requires sampling the animation system at tens or hundreds of sample positions
to cache time varying mesh data. Additionally, many of our motion effect
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Example # Triangles TAO Trace Memory Time
Spinning Ball 1200 160 0.1 12 2.6
Rod 80 100 0.1 0.5 0.25
UFO (shot 2) 3400 20 0.5 4.5 2
Pinocchio (shot 2) 37k 60 0.005 130 4.3
Pinocchio (shot 3) 122k 60 0.005 300 65

Table 5.1: Example statistics for a representative frame. The values shown in
the columns are (from left to right): number of source mesh triangles,
number of object samples (Section 5.3.1), trace sampling distance
(Section 5.3.4), memory required to store the TAO in MiB, render
time in minutes.

programs evaluate an object’s surface shader or other auxiliary textures. If the
parameters of these shaders and textures are themselves animated, then each
and every evaluation must call back to the animation software in order to work
in the proper temporal context. Due to Maya’s system design and assumptions
about the distinct separation of animation and rendering, such out-of-context
shader network evaluations are prohibitively expensive. This observation speaks
to a future animation and rendering design that does not draw a hard line
between the two, but rather couples both as tightly as possible.

Our current TAO data structure requires the mesh connectivity to be constant
throughout the animation. This limitation prohibits the use of our system in
scenarios where the connectivity changes, such as in the presence of level of
detail or certain physical simulation techniques. A related issue comes with
the requirement for the motion to be sampled consistently within one TAO,
even if some parts of the input object move with a different complexity than
other parts. Sampling each primitive’s motion at its optimal rate would improve
performance and flexibility.

The implementation presented in this paper uses a ray tracing approach for
rendering, but we believe that the general concept can be adapted to other ren-
dering paradigms. It would be interesting to investigate how programmable
motion effects can be implemented on GPUs and in the Reyes architec-
ture [Cook et al., 1987]. An alternative approach would be to replace the TAO
data structure with an image sequence that stores additional per pixel data such
as face correspondence and surface parameters. Motion effect programs could
combine a number of these images to create one frame. This approach can be
seen as an extension of deferred shading for motion depiction.
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C H A P T E R 6
Conclusion

To conclude this thesis, we review the key contributions of our work in Sec-
tion 6.1, we list the main limitations of our methods along with ideas on how
to mitigate them in Section 6.2, and we finish with some broader insights that
could facilitate future research in the area in Section 6.3.

6.1 Summary of Contributions

In this thesis, we have presented various advancements in the realm of artistic
stylization for 3D animation. In the first part, we have developed a comprehen-
sive system for the animation of characters and objects that uses 3D animation
techniques for motion but mimics the appearance and input metaphor of 2D dig-
ital painting packages. Several scientific contributions were necessary to achieve
this goal:

w We have adapted the brush stamping technique for use in stroke-based
rendering. This brush model is popular in 2D digital painting due to
its flexibility and simplicity, and its power is proven by a rich body of
quality 2D paintings created with it. However, the traditional method is
suitable only for brush strokes that are applied once and never re-rendered
in different shapes. It does not take into account the changes in length and
the influence of perspective that are present in 3D painting. We show how
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the rendering algorithm can be adapted to support these requirements in
the presence of various brush stroke effects, such as canvas texturing.

w We have presented new solutions to the problem of rendering brush strokes
in the presence of conflicting paint and depth orders. This problem has
been present in all past work on 3D-based brush stroke rendering, and
we have shown that none of the existing solutions perform satisfactory
in our application. Our first suggested solution of depth offsetting is not
devoid of artifacts, but it can be implemented very efficiently on current
graphics acceleration hardware and is therefore suitable for approximate
preview rendering in an interactive stroke-based rendering system. Our
second solution, mixed-order compositing, fulfills all conditions we have
found to be necessary for artifact-free brush stroke rendering and therefore
presents an excellent solution for high-quality rendering. The algorithm
has a good asymptotic run-time performance of O(N log n), but due to its
requirement of storing and processing all fragments for each pixel sepa-
rately, it does not adapt well to current GPU architectures and thus does
not deliver interactive refresh rates on practical scenes.

w 3D painting with 2D input devices was effectively limited to projection
onto the surface of 3D objects so far. We have presented a method that
allows the artist to treat the full 3D space as a canvas while still using the
successful concept of proxy geometry as a general guide. The problem of
embedding a 2D paint stroke in 3D space is ambiguous and the desired
solution depends on the artist’s intentions. Therefore, we approach the
problem with a flexible optimization framework that can accommodate
various criteria for the embedding. As a proof of concept, we define an
example set of such criteria and show how they can be exposed to the user
in an intuitive way.

w We have presented a system and workflow to author the animation of
stroke-based 3D painted characters. To this end, we have adapted several
techniques from related fields to our usage scenario: skinning deformation,
sketch-based free-form deformation, and configuration-space and temporal
keyframing. We have shown how these techniques can be arranged in a
workflow that is intuitive and familiar to artists. The system was designed
to meet the needs of character animation, which is one of the most difficult
disciplines in animation, but it is also applicable to many other animation
tasks where articulated motion dominates.

w We have developed a novel interpolation method that is tailored for
configuration-space keyframing. Such an interpolation method has to be
able to handle a high-dimensional domain while exhibiting some qualities
that are specifically required for keyframe animation, such as exact inter-
polation, overall smoothness, and insensitivity to irrelevant dimensions.
We have found that traditional methods do not satisfy these qualities suf-
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ficiently. Our new interpolation method was designed with these qualities
in mind, and we have shown how it can be used for configuration-space
keyframing in the context of animating 3D paintings.

In addition to our efforts in the field of stroke-based rendering and animation,
we have also investigated the depiction of motion in a more general 3D anima-
tion environment. We have presented a framework that extends the traditional
rendering approach to treat the scene not only at a single instant of time, but
over a certain period in time. With this extension, we have enabled the ren-
derer to display the motion of objects in a single image. To allow for flexible
customization and stylization of how motion is depicted, we have presented a
programmable interface that continues the spirit of programmable surface shad-
ing. The data required at the interface is generated using a novel data structure
and algorithms to capture the motion of objects over time in a piece-wise linear
approximation.

6.2 Limitations

While the limitations of our methods have been discussed in detail at the end
of the individual chapters, we summarize the most important ones here and
discuss some additional ideas for future research.

The brush model we have chosen for our 3D painting system has some distinctive
qualities: its flexibility, simplicity, and familiarity. But there are many potential
alternatives that offer other qualities. For example, there have been excellent
research projects in the realistic simulation of traditional paint media (water-
color, oil, pencil, etc). Adapting such technologies to 3D-based stroke rendering
could greatly broaden the range of visual styles achievable in 3D painting. On
the other hand, the search for new styles can also lead away from the aim of
achieving traditional 2D looks and focus on more three-dimensional represen-
tations of brush strokes, such as volumetric ones. We expect that some of the
problems addressed in this thesis will also apply to other brush models and, at
the same time, each model will likely come with its own challenges.

In our 3D painting system, we have used layers of brush strokes mainly to make
keyframe animation tractable and in addition as a means to introduce a logical
structure to the paintings. However, we believe that the layering system has the
potential of becoming much more powerful by attaching additional semantics
to it. One example is the notion of compositing modes known from Photoshop
and other similar programs. The interaction of 3D brush stroke layers under
different compositing modes is a promising topic for future research. Layers
could also be used to provide additional information for resolving the conflict
between depth and paint order in a more controlled fashion.
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While the animation tools we present in Chapter 4 closely resemble traditional
methods for 3D animation, they stand out as rather technical in an environ-
ment where most interaction is based on the 2D painting input metaphor. The
usability of our system could be improved with further abstractions of the ani-
mation mechanics from the user, such as sketch-based posing and deformation
and high-level semantic controls for keyframing.

A similar argument also applies to programmable motion effects as described
in Chapter 5. The programming interface ensures that a maximum amount of
flexibility is provided for the design of motion depictions. But, since stylization
is an artistic process, a more artist-friendly interface could greatly enhance the
usability of our concepts. One could envision an example-based system where
the user sketches a prototype of the desired motion effect into the image that is
automatically propagated over time and space by novel algorithms.

Finally, our animation system was primarily designed to handle articulated mo-
tion, which is the dominant aspect when animating characters. Some types of
motion, however, cannot easily be captured with this paradigm. Many visual
effects, such as liquids, fire, and other turbulent gaseous media, do not exhibit
enough structural coherence to be well approximated by the proxy geometry
concept we use. While physically-based simulation could be used to animate
brush strokes in such cases, the stylized visual nature of brush strokes calls for
matching stylization in the animation, which is typically hard to achieve with
physically-based simulation. An alternative could perhaps be found in pro-
cedural and example-based animation. There are also many situations where
structural coherence is given, but the motion is very complex and detailed,
making it impractical to produce with our system. Examples of such scenarios
include the animation of hair or vegetation (trees, grass, etc.). We conjecture
that such situations could be handled with a combination of large-scale articu-
lated animation along the lines of what we described in this thesis, and a system
for secondary motion that could be based on physical simulation or procedural
animation.

6.3 Outlook

Stylized rendering and animation remains to be one of the major challenges in
computer graphics. While the research community has already come up with
an impressive range of solutions, only very few of them have found regular
use in tools and productions outside of academia. The reasons for this lack of
adoption are somewhat diffuse, but there are a two factors that we believe are
of key importance for future research in the area.

Coming up with a “new visual style” is first and foremost an artistic process.
Therefore, it is very important that technological research goes hand in hand
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with evaluation and inspiration from artists. Artists often have very specific
requirements both on the usage and the output of a technology. Since these re-
quirements can be of fundamental nature, the dialog between technological and
artistic research should take place from the first conceptual stage throughout
the project. For example, it may be better to design a technology around the
artist’s need for controllability rather than to build a control mechanism around
an existing technology.

What we ideally seek is not a single new look, but the tools and knowledge
that enable us to create a diversity of new looks. Such a diversity is most likely
not achievable with a single piece of technology. On the one hand, this factor
is a motivation to keep research broad and to investigate into completely new
directions. On the other hand, there should also be an effort to bring things back
together. We believe that there is great potential in the careful combination
of existing techniques, for example if line art is combined with 3D painting.
Such a combination of different techniques, each with its own strengths and
weaknesses, may succeed where no single technique was successful.

We believe that there is much to be done in this area of research that provides
the exciting opportunity to bridge the worlds of art and technology. Following
up on those opportunities should lead to some fundamentally new visual styles
for animation.
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