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Abstract

Deformable objects have a plethora of applications: they can be used for enter-
tainment, advertisement, engineering or even medical purposes to cite but a few
examples. However it is precisely because they deform that such objects are dif-
ficult to design. Their creator must foresee and invert effects of external forces on
the behavior of the figure in order to take the proper design decisions. In this
thesis, we investigate approaches based on physics-based simulation and inverse
optimization techniques which alleviate these difficulties and we propose a com-
plete framework to design custom deformable objects by automating some of the
most tedious aspects of the design process. This framework is tailored to various
applications in which optimization of diverse variables comprising rest shape,
materials and actuation system is alternately considered. Validation of our method
is performed by fabricating representative sets of physical prototypes designed
with our method and compared to the results predicted by simulation.

We start by introducing the basic concepts of physics-based simulation and op-
timization on which our inverse modeling component, central to our approach,
is built. We show how the optimization of the system’s degrees of freedom can
be cast as a constrained minimization problem combining strict enforcement of
physical consistency with target shape approximation.

A method to automatically design and easily fabricate rubber balloons of desired
inflated shapes is presented in the following part of the thesis. In that section we
precisely describe the different stages of the pipeline including material modeling
and fitting, rest shape optimization and physical fabrication.

We then extend our framework to address the problem of creating physical replicas
of two- and three-dimensional animated digital characters which can be actuated
using pins, strings or posed by hand. Our approach automatically computes a
sparse set of actuators as well as their locations on the surface and optimizes the
internal material distribution such that the resulting character exhibits the desired
deformation behavior.

Fully automatic systems are not always desirable. Aesthetics considerations, for
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example, are subjective aspects and are consequently difficult, not to say impos-
sible, to handle fully automatically. In the last part of this thesis we show how
optimization can be incorporated in an interactive design tool to help the designer
to create inflatable structures without hindering his creativity. The artistic task of
sketching the boundaries of the structure segments on the desired target inflated
shape is let to the user while a fast underlying optimizer automatically computes
the flat panels to assemble, thus allowing interactive exploration of the seam layout
space.

vi



Résumé

Les objets déformables ont un nombre innombrable d’applications, que ce soit
dans l’industrie du divertissement, de la publicité, en ingénierie ou encore en
médecine. Mais leur nature déformable est justement ce qui les rend si difficiles
à concevoir. Leur créateur doit prévoir et inverser les effets des forces externes
qui régissent leur comportement afin de prendre les bonnes décisions lors de
leur conception. Cette thèse propose l’étude d’approches basées sur la simulation
physique et la modélisation inverse qui permettent d’alléger ces difficultés et
présente un cadre complet pour concevoir des objets déformables personnalisés
grâce à l’automatisation de certains des aspects les plus fastidieux du processus
de création. Nous adaptons ce cadre à de multiples applications, pour lesquelles
l’optimisation de différentes variables telles que la forme initiale, les matériaux
mais aussi le système actionneur sont considérées tour à tour. Enfin, nous validons
notre méthode en fabriquant un nombre représentatif de prototypes physiques
conçus à l’aide de notre système et en les comparant aux résultats prédits par
simulation.

Nous commencerons par introduire les concepts fondamentaux de simulation
physique et d’optimisation sur lesquelles reposent notre composant de modélisa-
tion inverse, au cœur de notre approche. Nous montrerons également comment
l’optimisation des degrés de liberté du système peut se ramener à un problème de
minimisation sous contraintes combinant stricte garantie de la cohérence physique
de l’objet et bonne approximation de la forme souhaitée.

Nous présenterons ensuite une méthode pour concevoir et fabriquer aisément des
ballons de baudruche aux formes personnalisées. Dans cette section, nous décrirons
précisément les différentes étapes du processus comprenant la modélisation des
matériaux employés, l’optimisation de la forme initiale des ballons ainsi que leur
fabrication.

Nous étendrons ensuite le cadre développé au problème de la réplication physique
de personnages virtuels animés bi- et tridimensionnels, manipulés à l’aide de fils,
d’attaches rigides ou encore positionnés manuellement.
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Un système entièrement automatisé n’est pas toujours souhaitable. Les considéra-
tions esthétiques, par exemple, sont des aspects subjectifs qu’il est par conséquent
difficile, si ce n’est impossible, de traiter de manière entièrement automatique.
Dans la dernière partie de cette thèse, nous montrerons comment combiner op-
timisation et conception interactive au sein d’un outil permettant à l’utilisateur
de créer des structures gonflables tout en lui garantissant entière créativité. Pour
ce faire, nous laissons à l’utilisateur la tâche artistique d’esquisser les contours
des pièces du ballon directement sur la forme désirée, tandis que leur patron
est automatiquement calculé, lui permettant ainsi une exploration interactive de
l’ensemble des assemblages possibles.
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C H A P T E R 1
Introduction

Creating and animating digital characters are ones of the core topics of computer
graphics. Decades of research in related fields led to the development of myriads
of tools to process, edit, animate and render computer-generated or digitally
acquired models. However, while extremely convincing figures can be seen in
animation movies and video games, many applications also require their physical
embodiment in the real world. Shows and other attractions involving animatronics
imitating famous characters are very popular in theme parks, cartoons figurines are
always successful toys in the eyes of children, recognizable balloons are invariably
cheered by the public during parades...

But translating from digital to real is far from straightforward. The behaviour of
real objects in the real world is governed by complex physical laws. The models
are not simple animated shapes anymore but have a mass, are made of diverse
complex materials, deform under the action of real forces caused by real physical
phenomena. Countless parameters, potentially acting as just as many design
variables, may affect the final shape of the envisioned object, so well that its creator
needs to predict and revert their effects in order to take the proper design decisions.
Bringing to life specific characters with particular behaviours clearly becomes a
challenging task, and while existing softwares are often sufficient for traditional
applications of computer graphics, many artifices employed when generating
realistic virtual scenes in video games or animation movies can simply not be used
in this context, strengthening the need for dedicated tools.

This demand is not reserved for an expert few. In a society where one can already
personalize one’s car, one’s furniture, one’s clothing, people do not always want to
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1 Introduction

buy items imagined by others but create their own custom objects, as demonstrated
by the boom of arts and crafts stores and 3d printing services. Simple and intuitive
tools to easily bridge the gap between what users have in mind and what they will
hold in their hands are consequently more and more desirable.

In computer graphics, as in engineering and mechanics, physics-based simulation
techniques proved to be very efficient means to accurately compute the behaviour
of an object over time. Conversely, if the object states are known, inverse modeling
approaches can be employed to infer the system’s unknown variables. This is the
avenue that we pursue in this thesis to develop novel design tools allowing users
to conveniently create complex objects by focusing on the target shapes — possibly
making use of of the abundant models already available — rather than on the
tedious task of parameter tuning.

The use of inverse modeling methods for fabrication purposes is not new per se.
Such approaches have been successfully utilized to optimize static rigid structures,
with the aim of improving various criteria such as stability [Smith et al., 2002;
Whiting et al., 2012; Stava et al., 2012], appearance [Weyrich et al., 2009; Hasan et
al., 2010], arrangement of multiple pieces [Yu et al., 2011; Xin et al., 2011]. Some
recent works looked into articulation [Bächer et al., 2012; Calì et al., 2012] or even
actuation of mechanical structures [Zhu et al., 2012; Coros et al., 2013], but objects
exhibiting large deformations, although ubiquitous in our environment in a variety
of forms, received much less attention and their case has been little explored. In
this thesis, we focus on the latter and propose novel methods to design deformable
objects of different natures, shells but also solids, quasi-inextensible to largely
stretchable ones, made of one or multiple materials, static and animated ones. We
explore the challenges arising from this diversity via the study of concrete types of
deformable objects for which we developed tailored design systems allowing us to
fabricate real, physical prototypes.

We start by looking into the problem of large in-plane deformations, that we
address in the context of the design of rubber balloons. These balloons are thin
shells typically made of latex that largely expand under inflation. Cheap and
easy to fabricate, they are very popular as decorative items or for entertainment
purposes. However most of the balloons available in the stores have very simple
shapes. This lack of originality can be explained by the difficulty to infer the initial
rest shape of more complex figures. Rubber materials have indeed a particular
behaviour when they are subject to pressure forces that is very unintuitive and
incorrectly captured by most material models commonly used in physics-based
simulation. We present a process to accurately model and fit balloon materials
and automatically compute the uninflated shape of balloons of extremely diverse
target forms.

We then focus on the challenges posed by animated heterogeneous material struc-
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tures, widely used in the entertainment industry. From animatronics in theme
parks to monsters in feature films, such objects are typically made of rigid struc-
tures covered by a soft skin, thus combining different materials and are actuated
using pins, strings, rods or any other mean of applying forces at specific locations
on the surface. The complexity of actuated deformable characters and the difficulty
of designing them become obvious when one thinks of the immense size of the
design space — materials to combine, shapes of hidden components, actuation
system to use may all be degrees of freedom of the original design problem. The
animated nature of such figures leads to extra challenges as the design of the
actuation system itself is now part of the problem. We introduce a three-stage
process to create physical replicas of animated digital characters which, given
a deformable object and a set of target poses, automatically computes optimal
number and placement of a sparse set of actuators, as well as the internal material
distribution of the object in order to best approximate the desired deformation
behavior.

Finally, we consider the question of aesthetic control through the study of panel-
based structures. Indeed, planar pieces of fabric, paper, metal foils, bent and assem-
bled to form complex structures that can in some cases be inflated or stuffed are
omnipresent in our environment. While segmenting and flattening arbitrary mod-
els is already nontrivial from a geometric point of view, approximating freeform
shapes by deformable quasi-inextensible shells is even more challenging as one
must solve the paneling problem in the space of physically feasible structures.
Furthermore, the concept of optimality itself is here a fuzzy notion since panels
boundaries often appear as visible seams in the assembly, so much so that their
ideal locations may depend on subjective criteria. This reveals a fundamental limi-
tation of fully automatic approaches, namely the lack of control on the obtained
solution. Even when functional requirements or other measurable criteria can
be automatically fulfilled, the treatment of aesthetics or artistic aspects, if only to
specify them, often requires user intervention. However, a computational design
system does not and should not necessarily aim at replacing the user. It can also
simply assist him in his design task by taking over tedious or difficult aspects
while still leaving him command of what falls under subjectivity. Following that
direction, we propose a method to design inflatable structures which allows the
user to interactively explore various seams layouts by letting him directly draw
the boundaries of the panels on the inflated target shape while offloading the
computation of the corresponding flat patterns to the computer. Our approach is
based on a fast physics-based model for inflatable structures using tension field
theory and a dedicated constraint-optimization component for computing the 2D
patterns.
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1 Introduction

1.1 Contributions

This thesis makes the following main contributions:

• A complete framework for designing and fabricating free-form rubber bal-
loons, including parameter acquisition, accurate computational modeling,
rest shape optimization and physical fabrication. The result of our design
system is used to 3D-print custom positive molds for producing silicone
balloons of a large diversity of forms.

• A comprehensive process to create actuated deformable characters. Given
as input a set of target poses and a pair of base materials with different
properties, our method is able to optimize the actuation system — number
and locations of actuators — as well as the material distribution of the object
in order to best match the input poses. The output of the pipeline consists in
silicone-molded and 3D-printed physical prototypes that are animated using
pins, strings or simply posed by hand.

• A tailored design tool to create inflatable structures with possible internal
panels. By combining user-guided seam specifications on the target model
with fast and automatic pattern generation, our system allows interactive
exploration of various seam layouts. Our approach relies on an accurate
coarse-scale simulator for inflatable membranes using tension field theory
and on a specialized constrainted optimization method allowing adjustable
balance between expected shape approximation and seam quality.

1.2 Thesis Outline

The organization of this thesis is as follows:

• Chapter 2 reviews related work in the fields of simulation, material modeling
and fitting, control, shape and structural design optimization, and fabrication.
Existing work connected to more specific concepts will be presented in their
respective chapters.

• Chapter 3 introduces the basics of physics-based simulation and optimization
necessary to the understanding of the subsequent chapters. It also exposes
the generic scheme that we use for optimizing the various system variables
that we alternatively consider in the different parts of the thesis.

• Chapter 4 focuses on the design of custom rubber balloons. The different
stages of the full pipeline, i.e. the acquisition of rubber properties, the model-
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1.3 Publications

ing of latex and silicone, the optimization of the rest shape of the balloons
and their fabrication are successively described.

• Chapter 5 extends the proposed framework to the creation of actuated de-
formable characters. Additional variables such as actuator locations and dual
material distributions, as well as multiple target poses, are now considered.

• Chapter 6 presents an interactive design system that allows non-expert users
to quickly create inflatable structures. The optimization procedure previously
introduced is tailored to the problem of computing 2D flat patterns and is
combined to a sketching interface for drawing desired panel seams on a
target model.

• Chapter 7 concludes this thesis with a discussion on its main contributions
and provides directions for potential future work.

1.3 Publications

This thesis is based on the following peer-reviewed publications:

M. SKOURAS, B. THOMASZEWSKI, B. BICKEL, and M. GROSS. Computational
Design of Rubber Balloons, Proceedings of Eurographics (Cagliari, Italy, May
13-18, 2012), Computer Graphics Forum, vol. 31, no. 2, pp. 835–844, 2012.

M. SKOURAS, B. THOMASZEWSKI, S. COROS, B. BICKEL and M. GROSS. Com-
putational Design of Actuated Deformable Characters, Proceedings of ACM
SIGGRAPH (Anaheim, USA, July 21-25, 2013), ACM Transactions on Graphics,
vol. 32, no. 4, pp. 82:1–82:10, 2013.

M. SKOURAS, B. THOMASZEWSKI, B. BICKEL, P. KAUFMANN, A. GARG, E. GRIN-
SPUN and M. GROSS. Designing Inflatable Structures, Proceedings of ACM
SIGGRAPH (Vancouver, Canada, August 10-14, 2014), ACM Transactions on
Graphics, vol. 34, no. 4, 2014.

During the course of this thesis, the following peer-reviewed paper was also
published:

B. BICKEL, P. KAUFMANN, M. SKOURAS, B. THOMASZEWSKI, D. BRADLEY,
T. BEELER, P. JACKSON, S. MARSCHNER, W. MATUSIK and M. GROSS. Physi-
cal Face Cloning, Proceedings of ACM SIGGRAPH (Los Angeles, USA, August
5-9, 2012), ACM Transactions on Graphics, vol. 31, no. 4, pp. 118:1–118:10, 2012.
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C H A P T E R 2
Related Work

Computational design is a relatively new field in computer graphics, which is
rapidly gaining interest in our community. Nevertheless, being at a crossroads
between different disciplines — computer graphics, mechanics, engineering, math-
ematics — the related literature is particularly abundant. A typical fabrication-
oriented design system comprises various elements ranging from an acquisition
system for capturing material properties to modeling components, including sim-
ulation and optimization units. Each of these pieces has its own history. This
chapter reviews existing work related to these topics and most connected to our re-
search. It also provides a general background for the methods and ideas developed
throughout this thesis.

2.1 Simulation

In 1987, Terzopoulos et al. introduced the concept of physics-based simulation
to the computer graphics community [Terzopoulos et al., 1987]. The model that
they presented relied on Newtonian mechanics and elasticity theory [Landau
et al., 1986] to realistically animate deformable objects. After more than two
decades of active research in this field, myriads of methods for physically plau-
sible simulation abound. Approaches based on mass-springs systems, finite
element methods [Hughes, 2000] or particle models [Müller et al., 2004] have
been proposed to simulate a wide range of behaviours, ranging from elastic
deformation to collision and fracture [O’Brien and Hodgins, 1999], and were
successfully applied to the simulation of multiple kinds of media, e.g. solids
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2 Related Work

but also fluids [Bridson, 2008] and melting objects [Terzopoulos et al., 1989;
Carlson et al., 2002]. Reviewing all these models is out of the scope of this thesis
and we refer to Gibson and Mirtich [1997], and Nealen et al. [2006] for excellent
surveys on this topic.

The fantastic popularity of physics-based simulation techniques stem from their
ability to produce extremely convincing results at a relatively limited cost, if only
in terms of required user-interaction. However, different applications will impose
specific requirements. Animation movies and feature films will typically favor
high realism and easy control over the simulations, while video games will focus
on speed or low memory footprint. In the context of fabrication-oriented design,
accuracy is generally the major concern and continuum-based formulations [Bonet
and Wood, 1997] associated with finite element methods [Hughes, 2000] are largely
privileged.

This thesis focuses primarily on inflatable membranes (Chapter 4 and Chapter 6)
and solids (Chapter 5), that we simulate using a standard finite element approach
recapped in Chapter 3. While simulating the solids does not pose any particular
problem, correctly modeling the membranes appears to be particularly challenging.
The inflatable structures that we consider are of two kinds: balloons made of
rubber, usually latex, which stretch significantly during inflation and have curved
rest shapes, and inflatables consisting of assemblies of flat panels that typically
resist stretching but are pliant to bending. While both types of balloons are widely
used for entertainment and advertisement purposes, their different natures yield
different kinds of experiences. Rubber balloons are fascinating because they largely
expand. Inflatable panel-based structures are exciting because of their potentially
larger dimensions – think of parade balloons –, wider variety of shapes – creases
can be obtained –, richer visual aspect – panels of different colors or decorated
with ink can be used–, and more diverse functions – they can also be used as
furniture. Unsurprisingly, simulating such fundamentally different materials
requires specific techniques and raises different issues. Accurate modeling of the
nonlinear behaviour of silicone and latex materials is of primary importance when
simulating rubber balloons; efficient treatment of compressive stresses is crucial
when dealing with piecewise developable structures.

Membrane models have been largely used in computer graphics in the past, in
particular in the context of cloth simulation. Wu et al. [Wu et al., 2001] simulate
nonlinear membranes using finite elements. Volino et al. [Volino et al., 2009] use a
membrane model derived from continuum mechanics for simulating cloth material.
Grinspun et al. [Grinspun et al., 2003] describe a discrete model for simulating
thin shells. The mechanics of inflatable membranes have been studied extensively
in engineering [Bonet et al., 2000]. In computer vision, simplified balloon models
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based on active contour approaches [Kass et al., 1988] have been used for shape
recovery and tracking [Cohen, 1991; McInerney and Terzopoulos, 1993].

The wrinkling behaviour of inflatable structures made of developable patterns
resemble the one of cloth, that also buckles at the onset of compression. This
behavior leads to the characteristic folding patterns that define the typical appear-
ance of real textiles, but it is inherently difficult to treat numerically: compression
gives rise to negative eigenvalues in the force Jacobian and thus slows or even
breaks most linear solvers. Choi and Ko [2002] proposed a mass-spring model that
turns off force and Jacobian contribution from compressed springs and replaces
them with custom-tailored buckling springs. Another approach to combat indefi-
niteness was presented by Teran et al. [2005], who clamp negative eigenvalues of
elemental stiffness matrices. Instead of trying to avoid indefiniteness, the method
of Rohmer et al. [2010] exploits the compression field extracted from elemental
deformation tensors in order to add detailed wrinkles to a coarse simulation. As
for Wang and Tang [2007; 2010], they analyse directional tensile to optimize pat-
terns for compression garment. Inspired by tension field theory [Pipkin, 1986;
Steigmann, 1990], we propose in Chapter 6 a fast physics-based model that ad-
dresses the difficulty of wrinkling analysis based on a relaxed energy which fades
to zero before compressive stresses can occur. Such an approach was previously
employed by Baginski et al.[2008] to simulate high altitude scientific balloons and
to analyse formation of wrinkles on simple patterns.

2.2 Computational Materials

Fabrication-oriented design requires an accurate modeling of the materials to be
used for fabrication. The behaviour of these materials is generally described in
terms of stress-strain curves which relate applied loads to material deformations
and define their so-called constitutive model [Bonet and Wood, 1997]. Many
constitutive equations have been proposed to model deformable materials, starting
with the simple Hooke’s law for linear elastic materials to more sophisticated
Ogden [Ogden, 1972] and polynomial models, capable of capturing nonlinearities
in the material behaviour, in particular when dealing with large deformations. In
the context of this work, a Neo-Hookean model [Bonet and Wood, 1997] appeared
to be sufficient to adequately simulate solids (Chapter 5) and quasi-inextensible
shells (Chapter 6), whereas the exponential model of Hart-Smith [1966] proved to
be a good option in the case of inflatable rubbery structures (Chapter 4).

While choosing the proper material model is fundamental, selecting the right
model parameters is at least as crucial for precise simulation. To circumvent the
tedious task of tuning parameters by hand, a method of choice is to turn toward
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fitting methods and to automatically estimate the model’s unknowns from a set
of example force-deformation measurements. Such data-driven techniques have
been successfully applied to model and fit linear isotropic elastic materials [Becker
and Teschner, 2007], nonlinear viscoelastic materials [Kauer et al., 2001] , nonlinear
isotropic heterogeneous soft tissues [Bickel et al., 2009], nonlinear anisotropic cloth
materials [Wang et al., 2011; Miguel et al., 2012] and plastic materials [Kajberg and
Lindkvist, 2004]. A system to estimate material parameters in conjunction with
contact texture and sound response was also proposed by Pai et al. [2001]. Martin
et al. [2011] deduce a potential energy from a set of example shapes that allows
to incorporate complex example-based material behavior for dynamic physical
simulation. However, these materials might not be available to our fabrication
process or, even worse, might not have a real-world counterpart. In this thesis, we
follow the example-based modeling paradigm but, like Bickel et al. [2010], we stick
to provided base materials – that we still fit to real data– and we play on different
variables, i.e. the rest shape of the object and the arrangement of the base materials,
to obtain a desired deformation behaviour.

2.3 Control

Deformation is the response of an object to the action of external forces. In other
words, without external forces, a solid will not move from its rest configuration.
This naturally raises the question of where forces need to be applied, and with
which intensity, to trigger and steer desired deformations. The answer clearly
depends on the target application and distinguishes between means, whatever
they are, to create plausible animations, and physically-feasible control.

The first category is dominated by methods based on control forces which guide the
simulation towards user-defined target poses or high level goals. The pioneering
work on space-time constraints presented by Witkin and Kass [1988] more than
two decades ago was followed by a number of techniques to art-direct simulation
of fluids [McNamara et al., 2004; Thürey et al., 2006], shells [Bergou et al., 2007] and
solids [Popović et al., 2000; Kondo et al., 2005; Barbič et al., 2009]. To counteract
potential issues due to non-conservative compensation forces, Martin et al. [2011]
build an example manifold that attracts the simulation, and Coros et al. [2012] use
forces stemming from the changes in the rest shape of the object. However, while
such approaches proved to be powerful to generate realistic animation, fictive forces
cannot be applied to control real deformations.

Realistic control, on the other hand, mainly focuses on the animation of artic-
ulated characters. In particular, physically-based controllers for locomotion of
humanoids or animals have been proposed by numerous researchers. Their ap-
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proaches address walking and running simulation [Girard and Maciejewski, 1985;
Raibert and Hodgins, 1991; Yin et al., 2007; Coros et al., 2010] but also flying [Wu
and Popović, 2003] and swimming control [Tan et al., 2011]. For such skeleton-
based characters, the question often lies in optimizing joint torques to replicate
some desired behavior. In the context of biomechanics, activation of internal
forces mimicking the action of muscles was also considered [Sifakis et al., 2005;
Lee and Terzopoulos, 2006; Sueda et al., 2008]. All these techniques rely on an
existing actuation system – based on the articulation of bones, the contraction of
muscles at known locations, etc. – inspired by anatomical mechanisms and cannot
be easily adapted to the control of actual deformable characters with no obvious
skeletal structure such as fantasy creatures, cartoony figures or animatronics. Yet,
several applications require a very different kind of actuation system. Deformable
puppets used for special effects are typically actuated by external strings. The
synthetic skin of robotic characters is generally animated thanks to movable rigid
links. Bickel et al. [2012] optimize for the trajectories of actuators attached to the
silicon face of an animatronic figure but they had no freedom for modifying the
actuation device itself and their results were limited by the motion range of the
input actuators. In Chapter 5, we integrate the design of the actuation system to
the optimization problem and automatically compute the number and locations of
such actuators.

2.4 Shape Optimization

Shape optimization is a highly relevant problem in various areas. The literature
related to this topic and connected to our work can be divided into two main
categories that we will review alternatively. First, shape optimization techniques
can be used to revert the effects of forces acting on deformed objects and thus
infer their rest geometries. Second, shape optimization is involved in the task of
approximating given shapes by surfaces satisfying specific criteria such as devel-
opability, which has been largely investigated in the context of mesh segmentation
and parametrization.

2.4.1 Taking physics into account

Physics-based simulation is a forward process in which forces are virtually applied
to an object whose initial geometry, or rest pose, is known, in order to estimate its
deformation. However, in many applications, we only have a deformed version
of the object at hand, whether because the shape of the figure is captured from
real data or because it is simply easier to model in such a state. Running the
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forward process requires solving the backward problem of computing the rest
shape first. Such problems have been studied in various contexts and for different
kinds of forces. In biomechanics, the compensation of the effect of gravity and
the deformations induced by the scanning process has been investigated by Path-
manathan et al. [2009]. In computer animation, artists create geometry already
accounting for the effect of gravity. Derouet-Jourdan et al. [2010] proposed a new
technique to fit the parameters of a 2D dynamic rod model in order to match the
shape of a given sketched curve. In the same spirit, Twigg and Kačić-Alesić [2011]
presented an approach for optimizing the spring lengths of mass spring systems
to obtain sag-free simulations. In Chapter 4 and Chapter 6, we optimize for the
rest shape of inflatable membranes subject to pressure forces. While our approach
also aim at matching a provided target shape, our application exhibits significantly
larger deformations and involves forces which depend on the deformed geometry,
making the optimization problem particularly challenging.

Resistance to loads is addressed in structural design optimization. In engineering,
design of elastic structures with minimal compliance gathered particular atten-
tion [Rozvany, 2001]. In a shape optimization problem [Haslinger and Mäkinen,
2003], the goal is to find an optimal shape defined by a prescribed domain. While
sizing optimization adapts the thickness of components of a model to meet, for
instance, structural stability thresholds without modifying the topology of the
structure, topology optimization [Bendsoe and Sigmund, 2004] involves additional
features such as the number and location of holes and allow changes in the connec-
tivity of the domain. In computer graphics, realistic structural models with which
it is possible to interact are important for convincing physical simulations. In this
context, Smith et al. [2002] optimize the geometry and the mass of truss struc-
tures for designing bridges, towers and roof supports, while Whiting et al. [2009;
2012] focuses on soundness of masonry constructions. Structural optimization has
also been applied to the modeling of trees by Hart et al. [2003], who proposed
a tool using static analysis to balance the weight of branches and create realistic
plant structures. In Chapter 5, we draw inspiration from topology optimization
techniques to infer the number and the shapes of stiff insets to embed in a model.
However, we do not optimize for structural stability but instead automatically
design a structure that matches given example poses under large deformations.

2.4.2 Developable Approximation

In Chapter 6 we extend our framework to the design of inflatables. Such structures
are typically made of flat panels connected to each other. Designing an inflatable
involves two steps: (i) a segmentation stage in which the panel layout is defined;
(ii) a panel optimization stage in which the shape of the panels is computed. Such a
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workflow is similar to the one commonly used in mesh parametrization, for which
many techniques have been developed over the years. We refer to the review by
Hormann et al. [2007] for an exhaustive description of the existing approaches and
will focus on the ones directly related to our work.

Most popular parametrization approaches minimize a distortion energy between
the three-dimensional input shapes and the corresponding developable patterns.
Typical distortion metrics capture differences in edge lengths, face internal angles
and other intrinsic geometric properties.The quality of the final mapping depends
on the segmentation of the initial mesh, the more segments are used, the lower the
energy typically is. One common requirement in most applications is to keep the
number of segments, and cuts in general, as small as possible since seams between
adjacent pieces create discontinuities in the parametrization and often translate
into visual artefacts. Because of this close relationship between mesh distortion
and seam length, some flattening methods deal with cutting and parametrization
simultaneously. Sorkine et al. [2002], for example, propose and iterative proce-
dure based on patch growing which automatically partitions the mesh to meet
a parametrization quality threshold. Julius et al. [2005] segments models into
almost developable patches, which can then be flattened using ABF++ [Sheffer
et al., 2005] to create approximately conformal parametrizations. Their approach
extends the Lloyd algorithm employed by Sander et al. [2003] and Cohen-Steiner
et al. [2004] for approximating a mesh using planar pieces. Shatz et al. [2006] also
use a greedy approach but they start with a seed per face and progressively merge
segments into larger clusters approximating planes and cones. All these techniques
employ local information to flatten the mesh and do not provide explicit control
on the location of the seams nor the shapes of the generated patterns. Yet, higher
level considerations like symmetry preservation or semantics-aware segmentation,
particularly difficult to handle automatically, are important for the visual appeal
of the final result in many applications. This is why we lay aside fully automated
approaches in favor of an interactive, optimization-in-the-loop methodology.

A related issue when flattening multiple panels independently is the generation of
patterns with incompatible seam lengths, requiring alterations such as pleats or
cuts that complicate fabrication and impose a very particular visual appearance.
To address this point, Wang [2008] flattens the boundary of the segments first
using length-preserving optimization and maps interior regions using intrinsic
parametrization [Desbrun et al., 2002]. This approach is well adapted to flatten
nearly developable segments but can produce patterns with high distortion in the
general case. The method that we introduce in Chapter 6 integrates the fabrication
constraint related to the compatible seam lengths into the distortion minimization
problem, treating both aspects simultaneously.

Deformable surfaces are largely used in the sheet metal industry and for the

13



2 Related Work

design of free form structures in architecture [Pottmann et al., 2007]. For such
applications which require the modeling of perfectly developable surfaces, strip-
and quad-based representations are commonly consider. As a subset of ruled-
surfaces, developable surfaces can be defined by sweeping out a line along a given
directrix curve [do Carmo, 1976]. This representation has been used by Massarwi
et al. [2007] and Rose et al. [2007] to construct developable patterns from their
boundaries. Mitani and Suzuki [2004] defines the ruled surfaces by approximating
a given mesh by a set of triangle strips, which can then be unfolded to produce
papercraft objects. The modeling of creases and other singularities in the interior
of the developable surface has been addressed by Frey et al. [2004] and Kilian et
al.[2008], while Solomon et al. [2012] describe an interactive design system to model
discrete developable surfaces consisting of a finite number of rulings. Although
these methods work well for designing physically-realizable surfaces made out of
paper, developability does not guarantee that the object’s surface is in equilibrium
under pressure. In our case, we are optimizing for developable (flat) patches,
that, when stitched together and then inflated, resemble a 3D shape at a desired
equilibrium. However, our fast physics-based simulation approach does not
necessarily compute an inflated surface with zero Gaussian curvature and therefore
does not guarantee a piecewise developable surface. Conversely, developability
does not mean stability under pressure – perfectly developable meshes such as
cylinders, cubes and double cones, which are trivially flattened (after a cut) with
no distortion, are not stable shapes. The metric to use to approximate inflatables
must therefore account for the physics of inflation and include effects of pressure
forces.

2.5 Fabrication-Oriented Design

The development of tools to facilitate the design of physical objects with desired
behaviour recently gained attention in computer graphics. Many concepts, tradi-
tionally investigated by the computer graphics community, can indeed be applied
to the fabrication of actual artifacts. Research in this field focuses on various as-
pects ranging from appearance to motion and deformation, including stability and
durability.

Manufacture of objects with custom reflectance properties was studied in a number
of recent works. A good overview of the different existing approaches can be
found in the survey by Hullin et al. [2013]. While Weyrich et al. [2009] optimized
surface microgeometry to mill objects exhibiting user-specified appearance, Levin
et al. [2013] lately relied on wave optics and a photolithography process to increase
the spacial resolution of the constructed BRDFs. The printing of documents with
spatially varying reflectance properties using suitable inks and foils was studied
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by Matusik et al. [2009]. Frameworks for physical reproduction of printed layered
figures [Hasan et al., 2010; Dong et al., 2010] and soft homogeneous materials
[Papas et al., 2013] with desired subsurface scattering were also proposed.

Structural soundness is a fundamental requirement of fabricated models for being
functional. Stava et al. [2012] proposed an algorithm to improve the strength of
a 3D-printed object by automatically detecting weak areas and hollowing, thick-
ening, and inserting struts in the structure, while Umetani and Schmidt [2013]
exploited cross-sectional stress analysis to optimize the printing direction. Stability
issues were addressed by Prévost et al. [2013] who proposed an interactive system
for turning existing models into balanced designs. Physical validity was also
investigated in the context of furniture design by Lau et al. [2011] and Umetani et
al. [2012].

Motion of 3D-printed characters is another facet which was recently considered.
Bächer et al. [2012] and Cali et al. [2012] presented systems for creating functional
3D-printable articulated characters. They used mechanical friction joints to allow
their models to hold various poses. Kinematics of more complex mechanisms was
later investigated by Zhu et al. [2012], Coros et al. [2013] and Ceylan et al. [2013]
who proposed methods to synthesize mechanical automata given the motion of
their features as input. Common to all these approaches is that they generate mod-
els consisting of static geometry or piecewise rigid parts. In contract, we address in
Chapter 5 the problem of computing actuated deformable characters. Fabrication
of deformable objects has been investigated by Bickel et al. in the context of repli-
cating material with desired deformation behavior [2010] and creating synthetic
skin for animatronic figures [2012]. The framework presented in this thesis shares
some of these goals but is based on a significantly different approach. Like in
the first of these works, we also optimize for multiple materials. However, our
method relies on a relaxed formulation which allows us to use efficient continuous
optimization techniques and is not limited to stacked materials. Moreover, contrary
to the previous methods, optimization of the number of actuators, their locations
and the forces that they apply is an integral part of our system, providing a much
wider design space.

The frameworks for 3D-printing mentioned above address different instances of
the more general problem of translating functional requirements to object material
descriptions. Chen et al. [2013] proposed an abstraction mechanism to ease the de-
velopment of new goal-based methods and the reuse of existing algorithms. Their
solution combines a reducer tree which parametrizes the space of material assign-
ments with a tuner network which describes and controls the optimization process.
While the output of such a system typically consists in per-voxel material com-
position, input of most 3D-printing softwares is currently limited to per-material
surface meshes. In order to fully exploit multi-material printers’ capabilities at
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high resolution, Vidimče et al. [2013] introduced a fabrication-specific language
and a programming pipeline for procedural synthesis of the final material voxels.

Fabrication-oriented design is not limited to the creation of 3D-printed objects. As
mentioned above, several pieces of literature on this topic are dedicated to the
design of objects made of developable patterns such as paper craft objects [Mitani
and Suzuki, 2004; Li et al., 2011], clothing [Okabe et al., 1992; Umetani et al., 2011]
and stuffed animals. Mori and Igarashi [2007], in particular, proposed a system,
Plushie, to interactively model plush toys while satisfying physics constraints.
Their framework relied on a simple mass-spring simulation model which was
later extended to discrete Kirchhoff triangular elements by Furuta et al. [2010].
The tool we present in Chapter 6 deals with similar inflatable structures but we
address the problem from a very different perspective. Whereas Plushie projects
begin with a blank canvas and helps the user to focus on the modeling task, our
projects begin with a given target shape and let the user concentrates on seam
placements and panel shapes, essential for obtaining compelling designs. In this
sense, the workflow of our system resembles Pillow’s [Igarashi and Igarashi, 2008].
However, Pillow employs flattening that does not include an inflation-based metric
and produces suboptimal results. In contrast, our algorithm optimizes the flat
panels using optimization-friendly physics and warrants satisfaction of fabrication
requirements. Our inverse modeling approach also shares some similarities with
the work of Wang and Tang [2007; 2010] related to the design of medical braces
and compression garment. However, their system aims at producing clothing with
prescribed strains and normal pressures when our tool focuses on matching an
inflated shape while adhering to user-provided seam constraints.
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C H A P T E R 3
Physics-based Optimization

This chapter introduces the fundamental concepts of physics-based simulation
and optimization necessary to the understanding of this thesis. We start by re-
viewing the basics of the mechanics of deformable objects (Section 3.1), from its
continuum formulation (Section 3.1.1) to its discretization (Section 3.1.2). We also
derive in Section 3.1.4 the related equations for the case of membranes, that we
will use to represent some of the objects that we intend to design. In the second
part of this chapter, we present our approach to optimize the system’s degrees of
freedom while warranting strict satisfaction of physical constraints (Section 3.2).
The method that we propose will be tailored to several applications in the next
chapters of the thesis. After exposing the generic formulation of our problem (Sec-
tion 3.2.1), we discuss several techniques that can be used to solve it numerically
(Section 3.2.2). Finally, we conclude this chapter with a summary of the presented
material (Section 3.3).

3.1 Modeling Deformable Objects

Designing deformable objects requires a solid understanding of the objects’ me-
chanical behaviour. Since our final goal is their fabrication, accurate modeling and
simulation of the items that we plan to manufacture is of primary importance. In
this context, elasticity theory provides a sound framework to faithfully describe
the relations which affect a deformable object’s state. We will focus in what fol-
lows on its aspects directly related to our work. For a comprehensive exposition
of the theory and its numerical treatment we refer to the excellent textbooks by
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Bathe [1995], Hughes [2000], and Bonet and Wood [1997]. After introducing the
relevant concepts in the idealized view of continuum mechanics in Section 3.1.1,
we will address the practical aspects of the computation of the deformable object’s
shape in Sections 3.1.2 and 3.1.3. The mechanics of membranes will be eventually
treated in Section 3.1.4.

3.1.1 Continuum Mechanics

Deformation

The geometry of a deformable object in its undeformed configuration, or rest
pose, is typically described by the mapping x̄ : Ω→Ωx̄ ⊂R3 with Ω denoting the
object’s material domain. When it is subject to external forces, the object deforms.
Its deformed shape, in turn, is defined by the mapping x : Ω → Ωx ⊂ R3. In
continuum mechanics, it is assumed that Ω is continuous and that the mappings x̄
and x are invertible and differentiable as many times as desired on Ω.

Let x̂ : x̄ 7→ x denote the mapping between x̄ and x. The mapping between the rest
configuration dx̄ and the deformed configuration dx of an infinitesimally small line
element of Ω is described by the so-called deformation gradient F = ∂x̂

∂x̄ , such that

dx = Fdx̄ (3.1)

The deformation gradient F is used to build the right Cauchy Green tensor C defined
as

C = FtF . (3.2)

Using C, the squared length of the linear element in the deformed configuration is
given by

||dx||2 = dxt · dx = dx̄t · FtFdx̄ = dx̄t ·Cdx̄ (3.3)

Therefore, the tensor C can be used to measure how much the material stretches
during the deformation, i.e how much the length of the linear element changes.

The difference between the squared lengths of the element in its deformed and
undeformed configurations,

||dx||2 − ||dx̄||2 = dxt · dx− dx̄t · dx̄ = dx̄t · (C− I)dx̄ , (3.4)

allows us to introduce the Green strain tensor

E =
1
2
(C− I) . (3.5)
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Figure 3.1: Mapping between the undeformed and deformed configurations of two in-
finitesimally small line elements.

The tensors C and E also allows to infer how much the material shears, i.e. how
much the angle between two line elements located at the same material position
and pointing towards arbitrary directions changes. This can be deduce from the
dot product between the deformed states, dx1 and dx2, of the two line elements,

dxt
1 · dx2 = dx̄t

1 ·Cdx̄2 , (3.6)

and its difference with the dot product of the undeformed states of the two ele-
ments,

dxt
1 · dx2 − dx̄t

1 · dx̄2 = dx̄t
1 · (C− I)dx̄2 = dx̄t

1 · (2E)dx̄2 . (3.7)

It is worthwhile to note that C, and therefore also E, are symmetric and independent
to global rotations. This becomes evident when decomposing F in its polar form as

F = RU (3.8)

where R is a rotation matrix and U a positive semi-definite matrix, which allows
us to write C as

C = FtF = UtRtRU = UtU . (3.9)

Constitutive Model

The deformation behaviour of an elastic material is typically described by a consti-
tutive equation, i.e. the relation between the material deformation and the internal
forces acting to restore the material to its undeformed state. In the case of hyper-
elastic materials, such as the ones that we consider in this thesis, these forces do
not depend on the deformation path and can therefore be derived from an energy
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potential Wint which depends only on the deformation gradient F. This energy
potential is generally defined using an energy density Ψ which is integrated over
the reference domain Ωx̄ as

Wint =
∫

Ωx̄
Ψ(F)dΩx̄ . (3.10)

When the material is additionally isotropic, the deformation energy density Ψ can
be defined using the right Cauchy Green tensor C as a function of its invariants,

I1 = tr(C) = λ2
1 + λ2

2 + λ2
3 ,

I2 = 1
2(tr(C)2 − tr(CtC)) = λ2

1λ2
2 + λ2

2λ2
3 + λ2

3λ2
1 ,

I3 = det(C) = λ2
1λ2

2λ2
3 ,

(3.11)

where λ1, λ2 and λ3 are the eigenvalues of F.

Furthermore, many materials such as rubbers are also characterized by their strong
resistance to volume changes. Such materials are often approximated by perfectly
incompressible materials for which I3 = 1. This requirement is generally integrated
into the formulation of the deformation energy density which then depends only
on I1 and I2.

Equilibrium

When a deformable body is subject to external loads, its resulting deformation
generates internal forces which counteract these external forces. For a hyperelastic
body, these forces are conservative and are obtained from the derivatives of the
energy potential Wint as

fint(x) = −∂Wint(x)
∂x

. (3.12)

The object reaches a static equilibrium state when point-wise balance of internal and
external forces is achieved for all points of the body. By letting fext(x) denote the
sum of all the external forces exerted at position x, this condition can be written as

fext(x) = −fint(x) ,x ∈Ωx . (3.13)

Note that this state corresponds to a configuration which locally minimizes the
energy of the system. When the external forces are also conservative, as it is the
case, e.g., with gravitational forces or pressure forces, the external forces derive
from a energy potential Wext which can be added to Wint. Solving for the balance
of forces (3.13) is then equivalent to minimizing the total energy W defined as

W = Wint + Wext. (3.14)

Solving this problem numerically requires a spatial discretization scheme, which is
described next.
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3.1.2 Discretization

We have considered so far the deformation of an object in the continuous setting, in
which the object’s deformed state was characterized by the equilibrium condition
(3.13). This relation defines a system of partial differential equations (PDEs) whose
unknowns form a continuous vector field. Solving this type of equations exactly is
only possible for very simple problems, for which an analytical formulation of the
solution exists. In the much more general case, one generally seeks to obtain an
approximation of the true solution instead by discretizing the spatial domain and
assuming a certain form of the solution that can be parametrized by a finite number
of variables. This constitutes the essence of the Finite Element Method (FEM). We
will now derive the discrete version of (3.13) arising from the application of the
method to our specific problem.

As a starting point, we approximate the geometry of the object with a tetrahedron
mesh with n vertices whose deformed and undeformed positions we denote by xi,
respectively x̄i, for 1≤ i ≤ n. Let x̄e

j and xe
j , 0≤ j ≤ 3, denote the vertex positions

pertaining to a given element e and define corresponding edge vectors ēk = x̄e
k − x̄e

0
and ek = xe

k − xe
0, 1≤ k ≤ 3. We will assume that the deformation is constant across

each tetrahedron so that the geometry of a given deformed element is described by
a single linear mapping Fe ∈R3×3, the deformation gradient. In this setting, the
element’s deformed geometry can be expressed in terms of its undeformed state as

[e1 e2 e3] = Fe [ē1 ē2 ē3] , (3.15)

from which we obtain the deformation gradient as

Fe = [e1 e2 e3] [ē1 ē2 ē3]
−1 . (3.16)

From the deformation gradient Fe we write the discrete Cauchy Green tensor as

Ce = (Fe)tFe . (3.17)

Following the Total-Lagrangian finite element formulation [Bathe, 1995], we com-
pute the elastic energy of a deformed element by integrating Ψ over the unde-
formed domain. Since Fe is constant, we simply have

We(Fe) =
∫

V̄e
Ψ(Fe) dV = Ψ(Fe) · V̄e , (3.18)

where V̄e is the volume of the undeformed element. The total elastic energy of the
object is obtained by summing up elemental contributions as

Wint = ∑
e

We . (3.19)
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Nodal internal forces are then obtained by deriving the internal energy such that

fint
i = −∂Wint

∂xi
∈R3 , 1≤ i ≤ n . (3.20)

In the discrete setting, the applied loads are lumped to the vertices of the mesh.
The static equilibrium of the object is then characterized by nodal force balance as

fext
i = −fint

i , 1≤ i ≤ n , (3.21)

where fext
i denote the sum of all external forces applied to the vertex located at

position xi.

3.1.3 Numerics

We solve for the deformed vertex positions satisfying Equation (3.21) using a
Newton-Raphson procedure [Nocedal and Wright, 2000] that we describe below.
In this section, we assume that x ∈R3n denote the vector of concatenated vertex
positions xi, 1 ≤ i ≤ n and fext ∈ R3n, respectively fint ∈ R3n, the concatenated
vector of external, respectively internal, nodal forces. We define as f = fext + fint

the total nodal forces.

Starting from an initial guess x0 for the solution of Equation (3.21), e.g. the rest
pose of the object, the Newton-Raphson scheme iteratively correct the current root
estimation xk by computing a new vector xk+1 that approximately solve the system

f(xk+1) = 0. (3.22)

Using a first order Taylor series, f can be expanded around xk as

f(xk+1) ≈ f(xk) +
∂f(xk)

∂x
(xk+1 − xk) . (3.23)

Approximating Equation (3.22) by

f(xk) +
∂f(xk)

∂x
(xk+1 − xk) = 0 , (3.24)

allows us to obtain a new estimate

xk+1 = xk +

[
∂f(xk)

∂x

]−1

f(xk) . (3.25)

This procedure is repeated until the norm of f corresponding to the current estimate
falls beyond a given threshold.
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3.1 Modeling Deformable Objects

In practice, we do not compute the inverse of the matrix ∂f(xk)
∂x . Instead, we directly

solve the linear system
∂f(xk)

∂x
dx = −f(xk) , (3.26)

and update the new iterate as

xk+1 = xk + αdx . (3.27)

The stepsize 0≤ α ≤ 1 is determined using a backtracking approach [Nocedal and
Wright, 2000] so as to guarantee a decrease in the total potential energy of the

system. Note that when the matrix ∂f(xk)
∂x is not positive definite, dx might be an

ascent direction. In that case, the matrix is regularized by adding to it a multiple of
the identify matrix βI, where β > 0 is progressively increased until a valid direction
is found.

3.1.4 Membranes

Continuum Formulation

When the thickness of the object is negligible compared to its other dimensions,
the quantities introduced above can be obtained from a reduced formulation in a
two-dimensional space using a surface-centered representation. To this end, we
focus on the deformation of the thin shell’s middle surface and let the mappings
x̄ : Ω ⊂R2→R3 and x : Ω ⊂R2→R3 describe the surface in its undeformed and
deformed configurations.

Typical thin shell materials undergo both stretching and bending deformation.
However, the thin shell structures that we consider in this thesis either exhibit ex-
tremely large deformation (Chapter 4) or are made of quasi-inextensible materials
that largely resist stretching but are compliant to bending (Chapter 6). In both cases,
we assume that the resulting in-plane forces overrule all bending contributions.
Hence, the curvature of the surface is not important and only the stretching, i.e.,
the membrane deformation needs to be quantified.

Let (u, v) ∈ Ω denote the material coordinates of a given point of the middle
surface. We start by introducing tangent vectors on the undeformed surface

āu =
∂x̄
∂u

, and āv =
∂x̄
∂v

, (3.28)

and analogously define tangents au and av on the deformed surface

au =
∂x
∂u

, and av =
∂x
∂v

. (3.29)
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Figure 3.2: Thin shell represented by its middle surface in its undeformed (left) and
deformed (right) configurations and material domain (bottom).

The inner products of the tangents give rise to the 2× 2 metric tensors C̄ and C̃
whose components are defined as

C̄uv = āT
u āv , respectively C̃uv = aT

u av . (3.30)

For simplicity, we will assume that the parametrization for the undeformed config-
uration is isometric such that āu and āv are orthonormal and C̄ is the 2× 2 identity
matrix, C̃ = I. This allows us to recover the 2× 2 Green strain

E = 1
2(C̃− I) ,

which describes the surface deformation. Although this measure does not explicitly
account for deformations in the thickness direction, we can infer this information by
introducing two kinematic assumptions [Bonet et al., 2000]: First, the surface should
not exhibit transverse shearing, and second, the deformation should be volume-
preserving. The first requirement is part of the Kirchhoff-Love assumptions for
thin shell models, while the second one accounts for the incompressible nature of
rubber materials. Based on these assumptions, we construct the 3× 3 right Cauchy
Green tensor as

C =

 C̃uu C̃uv 0
C̃vu C̃vv 0

0 0 J−1

 , (3.31)

where J = det C̃ is the determinant of the two-dimensional Cauchy Green tensor C̃.

Discretization

We will now proceed to the spatial discretization. The derivations closely follow
the general case described in Section 3.1.2 and we will use similar notations.
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3.1 Modeling Deformable Objects

In accordance with the assumptions of plane stress and negligible bending forces,
we settle for a finite element discretization centered around membrane elements.
Similar to the general case, we assume constant deformation throughout each
element and use linear triangular elements, so called constant strain triangles
[Bathe, 1995]. We assume all elements have a constant thickness h and represent
the geometry of the object’s middle surface by a triangle mesh with n vertices. We
denote by xi, respectively x̄i, 1≤ i≤ n, the positions of the vertices in the deformed,
respectively undeformed, configurations. Let x̄e

j and xe
j , 0≤ j≤ 2, denote the vertex

positions of a given element e and define corresponding edge vectors ēk = x̄e
k − x̄e

0
and ek = xe

k − xe
0. We endow the undeformed configuration with an orthonormal

material frame T̄ = [ū v̄ d̄] ∈R3×3, where

ū =
ē1

‖ē1‖
, d̄ =

ū× ē2

‖ū× ē2‖
, v̄ = d̄× ū , (3.32)

such that ū and v̄ span the plane of the element and d̄, the director, is its unit-length
normal vector. Note that when using isotropic materials as in our case, the choice
of the frame ū, v̄ is not important and that frames do not have to be consistently
oriented across elements. Consequently, there is no need for constructing (and
tracking) a parametrization of the rest shape.

We can conveniently integrate the kinematic assumptions of no transverse shear
and incompressibility into the definition of Fe by constraining the deformed direc-
tor d as

d =
e1 × e2

‖e1 × e2‖2 . (3.33)

This requires the deformed director to be normal to the deformed element (no
transverse shear) and to be stretched such as to balance the change in area (incom-
pressibility). The mapping between the undeformed and deformed elements is
then given by

[e1 e2 d] = FeT̄−1 [ē1 ē2 d̄
]

, (3.34)

which allows us to write the deformation gradient as

Fe = [e1 e2 d]
[
ē1 ē2 d̄

]−1 T̄ . (3.35)

See Figure 3.3 for an illustration of these transformations. Note that the multiplica-
tion by T̄ aligns the material frame of the element such that the first two columns
of Fe describe in-plane deformation while the third column corresponds to the
thickness direction.

Similar to (3.17), the Cauchy Green tensor is directly obtained by Ce = (Fe)TFe.
Note that, by construction, Ce has the same special structure as its continuous
counterpart in (3.31).
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3 Physics-based Optimization

Figure 3.3: Transformations between deformed (left), undeformed (right) and material
(middle) domains for a membrane element.

Lastly, we obtain the elastic energy of the deformed element as

We(Ce) =
∫

V̄e
Ψ(Ce) dV = Ψ(Ce) · hĀe , (3.36)

where Āe is the area of the undeformed element.

Computation of the equilibrium position of the deformed membrane is performed
as described in Section 3.1.3.

3.2 Generic Optimization Scheme

The first part of this chapter focused on the computation of an object’s deformed
shape when its undeformed state, material behaviour and applied forces were
known parameters. This is commonly called the forward problem. Solving the
forward problem is the concern of typical physics-aware modeling tools that allow
the user to modify some system parameters – usually at interactive rates – to
explore the space of feasible deformations. While these design tools offer great
capabilities to create novel models, tuning forces or material variables can be
extremely tedious when the ultimate goal consist in recovering a very precise
shape. The design systems that we propose in the thesis rely on the opposite
approach: our objective is to let the user play with the envisioned deformed shapes,
possibly in a preprocessing stage and regardless of any physics consideration,
and to automatically infer the values of the parameters which lead to the target
deformations. In short, we focus on the inverse problem. With this aim in mind, we
will explain in this section our strategy for computing optimal deformed shapes
that match provided target shapes, which we cast as a nonlinear constrained
optimization problem. We start by formalizing the problem (Section 3.2.1), then
discuss the possible techniques to proceed to its solution via constrained nonlinear
optimization (Section 3.2.2).
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3.2 Generic Optimization Scheme

3.2.1 Problem Formulation

We assume that we want to design a deformable object whose desired behaviour
is described by a set of np target shapes. To this end, we are free to modify some
system variables that affect the object’s deformed poses. These variables can be
of any sort – base materials, applied loads, rest shape, etc. – and we will discuss
several options in the following chapters of this thesis. For the sake of generality,
we simply assume here that they have been clearly defined and parametrized and
let p denote the vector of generic parameters to optimize. Our goal is now to
find the values of the parameters p that lead to deformed states approximating
the target shapes as closely as possible. As it is generally not possible to exactly
match the target poses, we ask that the distance of each deformed pose xi to its
corresponding target pose ti be minimized. We quantify closeness using a distance
energy function that measures differences in positions on the model’s boundary
between deformed xi and target poses ti as

Ed = ∑
i

Ei
d(t

i,xi) . (3.37)

Note that the distance energy is not a physical energy – we cannot simply add it to
the energy of the system since this would lead to minima that do not correspond
to force equilibrium configurations. Instead, we seek to find the physical solutions,
i.e, configurations in force equilibrium, which are closest to the target shapes, i.e.,
minimize the distance energy. This can be formulated as a constrained optimization
problem,

min
xi ,p

np

∑
i

Ei
d(t

i,xi)

s.t fi
int(x

i,p) = −fi
ext(x

i,p) ∀i ∈ 1 . . . np ,
(3.38)

where fi
int, respectively fi

ext, denote the internal, respectively external, forces cor-
responding to pose i. The objective function prefers deformed poses xi that are
close to their target counterparts, whereas the constraints require that each of the
xi is a physically-feasible solution, i.e., represents an equilibrium state in which the
internal forces fi

int are in balance with the externally applied forces fi
ext.

Letting x ∈Rnv·np denote the concatenation of the np deformed position vectors xi

and f(x,p) = fint(x,p) + fext(x,p), the sum of the concatenated force vectors, the
minimization problem (3.38) can be more compactly rewritten as

min
x,p

Ed(x) (3.39)

s.t f(x,p) = 0 .

We describe in the next section how this problem can be solved numerically.

27



3 Physics-based Optimization

3.2.2 Nonlinear Constrained Minimization

The minimization problem described by (3.39) has a large number of degrees of
freedom as well as numerous nonlinear constraints which have to be satisfied
exactly. The most widely used approaches to solve such kinds of problems in-
clude the quadratic penalty method, sequential quadratic programming and the
augmented Lagrangian method [Nocedal and Wright, 2000]. We will review and
discuss below these different techniques.

Quadratic Penalty Method

The quadratic penalty method enjoy widespread popularity in many domains,
largely because of its simplicity. In this method, the constraints are directly added
to the initial objective to form an augmented objective function of the form

Q(x,p) = Ed(x) +
µ

2
||f(x,p)||2 , µ > 0 . (3.40)

The function (3.40) is then minimized for increasing values of µ using standard
techniques for unconstrained optimization such as the Newton’s method described
in Section (3.1.3).

Although this technique is appealing at first, it actually suffers from major draw-
backs. Indeed, it is worthwhile to note that a minimum of (3.40) coincide with a
solution of the original problem (3.39) only when the satisfaction of the constraints
does not conflict with a decrease in the original objective. In the opposite – and
much more general – case, the amount of constraint violation depends on the
penalty parameter µ, a feasible minimizer corresponding to an infinite value for µ.
For want of getting a perfectly valid solution, one might be tempted to use large
values of µ so as to decrease constraint violations. Unfortunately this also increase
the ill-conditioning of the Hessian of Q leading to severe numerical issues when
solving attendant linear systems and eventually results in poor convergence of
most minimization algorithms. We will see later in this section that this fundamen-
tal issue can be largely reduced with very little computation and implementation
overheads by adding an extra term to the augmented objective function (3.40).

Sequential Quadratic Programming

Sequential quadratic programming (SQP) is probably one of the most effective
methods to solve constrained minimization problems, especially when the con-
straints exhibit significant nonlinearities. The core idea of SQP consists in generat-
ing a sequence of steps by solving successive quadratic programs that approximate
the original problem.
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3.2 Generic Optimization Scheme

We start by introducing the Lagrangian function L corresponding to our specific
problem (3.39) as

L(x,p, λ) = Ed(x)− λtf(x,p) , (3.41)

where λ ∈ R3nv is a vector of additional variables named Lagrange multipliers.
It is well-known from optimization theory [Nocedal and Wright, 2000] that the
minimizers y∗ = (x∗,p∗) of (3.39) should satisfy the so-called Karush-Kuhn-Tucker
(KKT) conditions

∇yL(y∗, λ∗) = 0
f(y∗) = 0

, (3.42)

where λ∗ are the Lagrange multipliers corresponding to the solution y∗. The
application of the Newton’s method to the root finding of the system of equations
(3.42) allows us to compute iterates of the form(

yk+1

λk+1

)
=

(
yk

λk

)
+ α

(
dy
dλ

)
, 0≤ α ≤ 1 , (3.43)

where each Newton step solves the KKT system[
H(yk) −Jt(yk)
J(yk) 0

](
dy
dλ

)
= −

(
g(yk)− Jt(yk)λk

f(yk)

)
, (3.44)

with H =∇2
yyL the Hessian of the Lagrangian, J the Jacobian of f and g =∇yEd

the gradient of the objective. If J has full rank and the matrix H is positive definite
on the tangent space of the constraints, i.e

dtHd > 0, ∀d s.t. Jd = 0 , (3.45)

the KKT system (3.44) has a unique solution. In this case, the Newton step gener-
ated by (3.44) actually corresponds to the solution of the minimization problem

min
dy

Ed(yk) + g(yk)tdy + 1
2 dytH(yk, λk)dy

s.t J(yk)dy + f(yk) = 0 ,
(3.46)

which locally models the original problem (3.39) by a quadratic program. Hence
the name of the method.

As with unconstrained optimization, proper regularization of the matrix H and
careful control of the stepsize α are crucial to guarantee global convergence of the
iteration scheme (3.43). Since reduction of the objective function might increase
the violation of the constraints, and vice versa, many line search strategies seek
to decrease a merit function which combines both objective and constraints. A
popular merit function, that we will use in this work, is

m(y) = Ed(y) + µ‖f(y)‖1 , µ > 0 . (3.47)
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It can be shown that when the conditions (3.45) hold the merit function (3.47) can –
after a proper update of µ – always be decreased. When yk is not close enough to
the final solution, this might not be the case and H needs to be modified. Checking
for the conditions (3.45) may be difficult without factoring the constraint Jacobian J
and the Lagrangian Hessian H. However, regularizing the matrix H whenever it is
not positive definite may unnecessarily hinder progress towards the solution. Byrd
et al. recently tackled this problem and proposed an effective scheme to efficiently
solve minimization problems with nonconvex objective and/or nonconvex con-
straints [2010]. The essence of the method consists in monitoring, at every iteration,
the reduction of a local approximation of the merit function, defined as

mk(dy;µ) = Ed(yk) + g(yk)tdy + µk

∥∥∥f(yk) + J(yk)dy
∥∥∥

1
, (3.48)

in order to arbitrate between accepting the step, updating the merit function
or correcting the Hessian. For each minimization step, the algorithm evaluates
the convexity of the problem by estimating the norms – without computing the
decomposition itself – of the tangential component t and the normal component n
of the generated step direction dy satisfying

dy = n + t , Jt = 0, , t · n = 0 , (3.49)

and by checking the condition

1
2

dytH(yk)dy≥ θγk , νk =
‖Jdy‖2

‖J‖2 , γk = ‖dy‖2 − νk , (3.50)

where θ > 0 is a small constant and νk, resp. γk, is a lower bound, resp. upper
bound, for the squared norm of n, resp. t. If the problem is found to be sufficiently
convex, i.e. if the condition (3.50) is satisfied, or if the step is sufficiently normal,
i.e. if νk is significant, then µk is updated by requiring that

µk ≥ τ
g(yk)tdy + max

{
1
2 dytH(yk)dy , θγk

}
‖f(yk)‖ −

∥∥f(yk) + J(yk)dy
∥∥ , τ > 1 , (3.51)

so as to guarantee a decrease in the merit function. In the opposite case, the problem
is considered to be insufficiently convex and H is progressively regularized until
one of the two conditions above is satisfied. The stepsize α is then computed
thanks to a standard backtracking approach using the merit function (3.48).

Note that when employing SQP, in Chapter 6, we used Pardiso [Schenk and Gärtner,
2006], a direct solver based on fast pivoting to solve the KKT system but that the
approach presented by Byrd et al. can cope with significant residual errors when
solving the linear system and is therefore compatible with the use of iterative
solvers based on Krylov subspace methods .
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Augmented Lagrangian Method

We have seen that solving the constrained minimization problem with SQP breaks
down to finding roots of the gradient of (3.39) using Newton’s method. This
promises accurate constraint satisfaction but also leads to large indefinite systems
of equations which are costly to solve. The quadratic penalty method, by contrast,
does not increase the dimension of the system but strict constraint satisfaction,
mandatory in our case, leads to ill-conditioned systems and thus numerical prob-
lems. As a hybrid between SQP and penalty methods, augmented Lagrangian
methods (ALMs) strive to combine the advantages of both: they offer accurate
constraint satisfaction without ill-conditioning (unlike the penalty method) but do
not entail an increase in dimension (unlike SQP). ALMs are obtained by augmenting
the Lagrangian of the constrained minimization problem (3.39) by an additional
penalty term similar to the one used in quadratic penalty methods. For our specific
optimization problem, the augmented objective function has the following form,

L(x,p;µ) = Ed(x)− λtf(x,p) +
µ

2
||f(x,p)||2 . (3.52)

This new objective function is minimized iteratively by alternating between un-
constrained minimization and multiplier update steps . In the first step of a given
iteration, the Lagrange multipliers are kept fixed and L is minimized with respect
to the free variables x and p using, e.g, the standard Newton-Raphson method
with line search described in Section (3.1.3). After each minimization step, the
Lagrange multipliers are updated according to

λk = λk − µkfk , (3.53)

provided that the decrease in the constraints is sufficient. Otherwise, the weight
of the penalty term µk is increased while keeping the multipliers unchanged. The
procedure stops when both the gradients of L and of the constraints f are smaller
than given thresholds. It can be proven that when mu is sufficiently large, the
Lagrange multipliers λk obtained from the update scheme (3.53) converges to λ∗,
the Lagrange multipliers satisfying the KKT conditions, without needing to further
increase the penalty parameter [Nocedal and Wright, 2000]. This largely alleviates
the problem of ill-conditioned Hessians of the quadratic penalty method presented
above without introducing any additional adverse effects.

Dealing with Bound Constraints: The Gradient Projection Method

Many constrained minimization problems, like the one that we will treat in Chapter
5 additionally require that some of the parameters to optimize lie in a certain range.
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These bound constraints can be easily integrated into the ALM procedure described
above. In this case, the optimization problem that we consider is of the form

min
y
L(y)

s.t l≤ y≤ u ,
(3.54)

where l, resp. u, is the vector of lower bounds, resp. upper bounds, whose
components may be set to −∞, resp. +∞.

A simple, yet efficient, method to solve the problem (3.54) is the so-called gradient
projection method. The procedure allows for rapid changes in the set of working
variables, and is consequently very well suited for large-scale problems. Each
iteration of the gradient projection method consists of two steps. First, the set of
active constraints A(yk) is estimated by computing the minimum of a quadratic
approximation q of the Lagrangian along the steepest descent direction from
the current iterate yk. This direction is projected onto the bound constraint box
beforehand so as to obtain a feasible point yc, the so-called Cauchy point. In a second
stage, the face of the feasible box on which the Cauchy point lies is explored by
fixing the active constraints at their values at the Cauchy point and approximately
solving the quadratic subproblem

min
y

q(y)

s.t yi = yc
i , i ∈ A(yk),

li ≤ yi ≤ ui , i /∈ A(yk).

(3.55)

Global convergence of the method is guaranteed as long as the function value
corresponding to the new iterate is no worse than the one of the Cauchy point
[Nocedal and Wright, 2000].

Discussion

Both SQP and ALM have their own advantages and drawbacks and appeared to
be complementary in the applications that we tackled in this thesis. In practice,
we found ALM to be particularly robust. Solving the resulting linear systems was
usually possible with most common solvers, well known regularization methods
could be employed in case of indefinite matrices and building the merit function
was straight forward since using the augmented objective function was a natural
and very efficient choice. Also, redundant constraints do not seem to be very
problematic with this method, as Lagrange multipliers are not explicitly treated
as degrees of freedom and ill-ranked constraint Jacobians are naturally “regular-
ized” by the Jacobian of the objective function. On the other side, ALM handles
constraints by looking at their norm only, which is an issue when these constraints
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are largely nonconvex. In such cases, SQP proved to be much more effective than
ALM, which typically did not converged.

3.3 Conclusion

In this chapter, we have seen how the deformed state of a soft object, be it a solid or
a membrane, could be accurately computed using a finite element method relying
on principles of nonlinear elasticity and an efficient discretization scheme. We
then showed how the simulation pipeline could be reversed in order to deduce the
optimal values of the physical system’s unknowns from a set of given deformed
poses. This allowed us to introduce a generic optimization framework to design
physically valid custom objects that will serve as a base for the applications treated
in the next chapters. Finally, we reviewed different methods for efficiently solving
the constrained minimization problem that we previously introduced.

In what follows, we will tailor the optimization procedure to different instances of
the general problem of designing deformable objects. We will start by playing with
the object’s undeformed shape in the context of rubber balloon design (Chapter
4). Then we will address the question of optimal force locations and base material
distribution arising when creating actuated deformable characters (Chapter 5).
Finally we will combine our optimization component with an interactive tool
in order to account for aesthetic aspects when fabricating panel-based inflatable
structures (Chapter 6).
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C H A P T E R 4
Designing Custom Rubber Balloons

Deformable objects come in a variety of forms and materials. This richness allows
for a large diversity of applications, in particular in the entertainment industry. In
this chapter, we focus on the design of custom shaped balloons, which presents
various advantages. First, balloons are relatively simple to fabricate, which make
them suitable to experiments. Second, the only external forces exerted on them
are gravity and pressure forces, that can be controlled by a single parameter, the
amount of injected air. This allows us to isolate and explore the influence of
rest shape optimization without having to deal with extra unknowns related to
actuation. Finally, this example demonstrate the capabilities of our system to
accurately predict and control the shape of largely deformed objects.

4.1 Introduction

Inflatable balloons are fascinating objects that attract the attention of both children
and adults —or, in the words of A.A. Milne’s character Winnie the Pooh, ‘nobody
can be uncheered with a balloon’. Especially rubber balloons enjoy a high popularity,
be it for advertisement and decoration or simply as toys. A primary reason for
their cross-cultural ubiquity lies in the ease of manufacturing: the balloon mold,
similar in shape to the inflated balloon, is briefly dipped into liquid rubber, e.g.,
latex. The rubber is then cured, removed from the mold—and the balloon is ready
to deploy. This process is simple, efficient, and inexpensive, making it ideal for
commercial production. But although more complex shaped molds could be used
to obtain a wider range of balloon shapes, manually designing a mold that yields a
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complex inflated shape is a formidable task. For this reason, we mostly see rubber
balloons of simple shapes such as ellipsoids, wavy tubes, or coarse approximations
of hearts and bunnies. Foil balloons, on this other side, can be produced with
complex shapes such as those seen in Macy’s annual Thanks Giving parade. Their
design present different —but just as much interesting— challenges than the ones
arising when designing rubber balloons and we will address their case in Chapter 6.
However, foil balloons do not stretch noticeably during inflation. Rubber balloons,
by contract, largely deform, which makes the experience of inflating them so
unique.

Our goal in this chapter is to develop a method for designing balloons that, once
fabricated, can be inflated into as complex shapes as foil balloons but are as
deformable and as easy to manufacture as conventional rubber balloons. There are
essentially two options for controlling the inflated shape of a balloon: varying its
material properties locally and modifying its rest shape. Arbitrarily varying the
material properties in a single production cycle seems very difficult but, although
technically challenging, one could imagine a multi-layer fabrication process. A
simpler way of locally controlling the material stiffness is to vary the thickness
of a homogeneous material. But although intriguing at first, we found through
experiments that this technique alone cannot provide sufficient shape variation.
Furthermore, varying the thickness will most likely require a closed mold, which
significantly complicates the fabrication process compared to the dip-molding
used for conventional rubber balloons. Modifying the rest shape, on the contrary,
enables us to approximate a wide range of target shapes with homogeneous
(constant thickness) material and is compatible with dip molding fabrication. This
is therefore, we believe, the enabling technology for mass fabrication of custom-
shaped rubber balloons.

4.2 Overview

This chapter presents a process for automatic design and easy fabrication of bal-
loons that can be inflated into desired shapes that are given as inputs to our system.
The pipeline of the system, illustrated in Figure 4.1 is divided into three steps. We
start by capturing and fitting the material properties of the material that we intend
to use for the actual balloons, silicone in practice. We then run an optimization
component which computes the optimal rest shapes of the balloons according
to the scheme introduced in Chapter 3. This component is based on accurate
simulation of the balloon behaviour under inflation. Finally, we use the rest shapes
to 3D print the molds which will be employed to fabricate the real balloons. While
the uninflated balloons produced by our method resemble their target shapes to
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Fabrication 
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Material 
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Target Mesh Rest shape optimization 
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Figure 4.1: Pipeline overview: Given a target shape, we use experimentally-acquired
material properties to compute and fabricate an optimal balloon shape.

some extent (see, e.g., Figure 4.6), they are not mere down-scaled versions of the
target shapes and are very difficult to design manually.

Our main contributions in this chapter can be summarized as follows:

• We describe a complete process for designing and fabricating custom-shaped
rubber balloons, including parameter acquisition, computational modeling,
shape optimization and physical fabrication.

• We cast balloon shape optimization as a constrained minimization problem,
combining strict enforcement of physical consistency with optimal shape
approximation.

• We validate our method on a set of test cases and demonstrate its capabilities
on a number of challenging balloon shapes.

The remainder of this chapter is organized as follows. We describe the mechanics
of rubber balloons, present our computational model and motivate our choice of
material model in Section 4.3. Section 4.4 describes the rest shape optimization,
including the formulation of the problem as well as its numerical solution. We
provide details on the fabrication process in Section 4.5 and present results in
Section 4.6. This chapter concludes with a discussion of limitations and directions
for future work.
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4.3 Rubber Balloon Model

Our goal is to fabricate rubber balloons that, when inflated, assume a given target
shape. To this end, we modify the rest shape of the balloons and use physical
simulation to predict the resulting inflated shapes. This requires an adequate
computational model, which is described in this section.

4.3.1 Mechanics

Elastic membrane

Rubber balloons can be inflated to several times their initial volume and still
return to their original rest shape upon deflation. This observation suggests an
elastic material model and, due to the large deformations that are observed during
inflation, we turn to nonlinear continuum mechanics.

The geometry of balloons, which are essentially thin layers of rubber, motivates
a surface-centered representation. Using the same notations as in Section 3.1.4,
we describe the middle surface of the balloon in its undeformed and deformed
configurations by the mappings x̄ : Ω ⊂ R2→ R3, respectively x : Ω→ R3 with
Ω ⊂ R2 denoting the surface’s parametric domain with coordinates (u, v). For
the sake of simplicity, we will assume in what follows that x̄ is an isometric
parametrization.

During inflation, balloons undergo both stretching and bending deformation. But
unlike typical thin shell materials the in-plane deformation largely dominates the
bending contributions, that we will therefore neglect. Focusing only on the stretch-
ing of the membrane, we follow the derivations of Section 3.1.4 and introduce the
tangent vectors au = ∂x

∂u and av =
∂x
∂v on the deformed surface. Assuming that the

deformation is volume-preserving and exhibit no transverse shearing, we use the
tangent vectors to define the 2× 2 metric tensors C̃, with components C̃uv = aT

u av,
from which we can construct the 3× 3 right Cauchy Green tensor

C =

[
C̃ 0
0 (detC̃)−1

]
. (4.1)

This canonical strain representation is amenable to standard elastic material models,
which are often described in terms of the first three invariants of C,

I1 = tr(C) , I2 =
1
2

[
I2
1 − tr(CTC)

]
, I3 = det C . (4.2)
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Assuming incompressibility, we have I3 = 1 and can write the balloon’s strain
energy density Ψ due to a given deformation C as

Ψ(C) = Ψ(I1, I2) . (4.3)

A discrete expression for the energy function (4.3) can be obtained as described
in Section 3.1.4. We approximate the geometry of a balloon with n vertices and
assume constant deformation throughout each triangle element. This allows us to
define the membrane energy for each deformed triangle and eventually to compute
the total elastic energy Wmem by summing up all elemental contributions.

Pressure

The forces due to an enclosed pressurized gas tend to increase the volume of its
container. Since the pressure is constant throughout the container, the resulting
normal force density is the same everywhere on its surface.

In the continuous setting, the pressure can be defined via the total forces fA acting
on a surface element dA with normal n as

p = lim
dA→0

dfA · n
dA

. (4.4)

This expression allows us to derive discrete nodal pressure forces as

fp
i = ∑

j∈Ti

wij · p · Ajnj , (4.5)

where Ti is the set of triangles incident to vertex i, nj and Aj are the area and
normal of triangle j and wij are weights. We use constant weights of wij = 1/3,
which is equivalent to computing the pressure forces from area-weighted normals.

As an aside, we note that the process of inflating a balloon is not a simple increase in
pressure, but rather an increase in the number of gas molecules inside the balloon.
The difference becomes clear when writing the ideal gas equation as

pV = NRT , (4.6)

where N is the amount of gas contained in volume V, T is the temperature and
R is the gas constant. Clearly, increasing the amount of gas (through pumping)
increases the product of pressure and volume but, as we will see in Section 4.3.2,
neither of them has to increase monotonically.
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Equilibrium Configuration

As part of our shape optimization (Section 4.4) and parameter fitting (Section 4.3.2)
methods, we have to compute the deformed shape that a balloon assumes under a
given inflation pressure. Neglecting gravity, static equilibrium implies that elastic
and pressure force densities cancel out in every point on the surface. In the discrete
setting, this boils down to require nodal force balance, i.e.,

fmem
k + fp

k = 0 0≤ k ≤ n , (4.7)

where fmem
k = −∇xkW

mem are the elastic membrane forces and fp
k denote the pres-

sure forces as defined in (4.5).

Provided a set of position constraints (for the nozzle), the nonlinear equations (4.7)
can be solved iteratively with the standard Newton-Raphson procedure described
in Section 3.1.3. In order to improve robustness and convergence we employ line
search and incremental loading on the pressure term. As for the expressions for the
membrane forces and their Jacobian (tangent stiffness matrix), they are generated
automatically using a computer algebra package.

Having established a computational model for simulating balloons, we can now
address the modeling of their material behavior.

4.3.2 Material

Rubbers generally show a nonlinear stress-strain response. However, the extreme
deformations observed during balloon inflation lead to a particularly complex be-
havior which, as shown below, most conventional material models cannot properly
reflect. But whatever the material model, it is crucial to determine its parameters
experimentally in order to obtain accurate agreement with physical reality. For
this purpose, we use an experimental measurement setup that is close to our target
application.

Measurements

Similar to the system described by Treloar [Treloar, 1944], we fix a rubber membrane
to the supporting plane of a base apparatus using a clamp with a circular opening
of 6 cm diameter (see Figure 4.2 ). Two holes on the back of the supporting plane
allow us to connect a valve and an off-the-shelf pump for inflation as well as
a digital manometer. The measurement process for a given sample membrane
consists of at least 10 loading steps in each of which we inject an additional amount
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Figure 4.2: Our measurement setup allows for capturing deformed shapes of silicone
membranes subject to adjustable inflation pressures.

of air, record the resulting pressure and capture the deformed geometry using a
standard laser scanner. We then determine the spatially averaged extension ratio
ρ

avg
i for step i from the area of the reconstructed geometry Ai as

ρ
avg
i =

√
Ai/A0 , (4.8)

where A0 is the initial area of the membrane.

We performed tests for silicone membranes with four different thicknesses (0.25, 0.5,
0.75 and 1.0mm), using three samples per thickness value to account for fabrication
tolerance. Figure 4.3 shows the measured data (blue spades) for a thickness
of 0.5mm averaged over the three samples. Our method is not restricted to a
particular type of rubber, but for practical reasons (see Section 4.5), we exclusively
used silicone for fabrication. However, in order to put these data in perspective,
we also performed measurements on a latex membrane with 0.25 mm thickness
(see Section 4.6).

Fitting

With this set of measurements, we determine the material coefficients of our com-
putational model by minimizing the difference between simulated and captured
shapes using the optimization algorithm described in Section 4.4. Since we do not
have any information regarding local displacements, but only the global shape

41



4 Designing Custom Rubber Balloons

of the deformed membrane, we choose a distance metric based on a smooth in-
terpolation of the reconstructed geometry using radial basis functions (RBF). We
define the distance energy between each captured sample ti and the corresponding
simulated membrane xi as

Ei
d(t

i,xi) =
1
2

n

∑
k=1

d2
RBF(t

i,xi
k) , (4.9)

where xi
k , 1≤ k≤ n, denote the individual positions of the vertices of the simulated

mesh and dRBF is the function whose zero-level set defines the smooth RBF-surface,
constructed using triharmonic kernel functions (see Carr et al. [Carr et al., 2001]).
Minimizing the distance for all the pressure-geometry pairs simultaneously allows
us to obtain material coefficients that provide the best average match for the entire
deformation range of the experiment.

Evaluation

As can be seen from Figure 4.3, the measurements reveal an unusual deformation
behavior. The average extension ratio first increases almost linear with respect to
the pressure. At a certain point, however, there is a clear inflection in the curve
indicating a second deformation regime of the material. In a third regime, the
material stiffness increases again.

Inflated balloons will in general exhibit inhomogeneous deformations, most likely
covering all three regimes. If good approximations are to be obtained, then this
particular behavior must be reproduced by the material model. This is a challeng-
ing setting for a material model and we will investigate some candidates in the
following. In order to facilitate comparison, we provide stress-strain curves for
all materials considered in Figure 4.3. The energy functions of these models are
provided in Appendix A.

The membrane formulation described in Section 3.1.4 guarantees volume preserva-
tion through geometric assumptions (thickness stretch compensates change in area)
and thus avoids the numerical problems typically associated with incompressible
elasticity. In this setting, the simplest nonlinear material model is the Neo-Hookean
solid, which describes the strain energy as a linear function of the first invariant
I1. However, as can be seen in Figure 4.3, this model fails dramatically to ap-
proximate the deformation behavior of real rubber. The reason for this is that the
Neo-Hookean material has a pressure peak at a rather small extension ratio beyond
which the pressure drops with increasing deformation. Visually speaking, the
peak value has to be high enough to match the pressure values for larger extension
ratios from the experimental data. But as a result, the overall deformation behavior
deviates wildly from the experiment.
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Figure 4.3: Experimental data for the pressure-extension behavior of a silicone membrane
and approximations with different material models.

The second model that we considered is the St.Venant-Kirchhoff solid [Bonet and
Wood, 1997] which, despite shortcomings [Irving et al., 2004], is widely used in
graphics. But while the approximation is significantly better than for the Neo-
Hookean material, it cannot reproduce the three characteristic deformation regimes
of the experimental data. A similar behavior is observed for the Mooney-Rivlin
material, which is a generalization of the Neo-Hookean solid that also considers
the second invariant I2. One option to improve the approximation quality is to
include higher powers of the invariants or resort to Ogden-type models, which
describe the energy in terms of powers of the principal stretches. However, each
additional term entails an additional material constant, which increases the model
complexity and thus complicates the process of parameter fitting.

The experimental observations by Treloar [1944] suggest that, for large strains,
rubber material exhibits an energy growth which is an exponential rather than a
polynomial function of the invariants. The empirical model of Hart-Smith [1966]
takes this behavior directly into account, describing an exponential strain energy
function through its derivatives as

∂W
∂I1

= G · ek1(I1−3)2
,

∂W
∂I2

= G · k2

I2
, (4.10)

where k1, k2 and G are material constants. Visually, the deformation behavior
for small to moderate stretches is determined by G and k2, while k1 decides how
quickly the exponential growth manifests. Despite the small set of material co-
efficients, the Hart-Smith material is capable of accurately reproducing the three
deformation regimes observed in the experimental data.
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The elastic forces for the Hart-Smith model can be computed directly from (4.10) as

fmem = −∂W
∂x

= −∂W
∂I1

∂I1

∂x
− ∂W

∂I2

∂I2

∂x
. (4.11)

The derivatives of the two invariants can be calculated by hand when using (4.1)
in (4.2) and deriving component-wise. But since the involved expressions are
rather lengthy and thus prone to error, we opt for a computer algebra software
to compute first and second derivatives of W with respect to current as well as
undeformed positions.

This completes our computational balloon model and we can now turn towards
shape optimization.

4.4 Shape Optimization

This section explains our strategy for computing optimal rest shapes for rubber
balloons, which we cast as a nonlinear constrained optimization problem. We start
by formalizing the problem, then address some technical aspects.

4.4.1 Problem Setting

Our goal is to find a rest shape that, upon inflation, approximates the target shape
as closely as possible. We measure closeness in terms of a distance energy Edist(t,x)
depending on the geometries of the inflated balloon, x, and the target shape, t.
The distance measure should capture differences in first (stretching) and second
(bending) fundamentals forms between the inflated balloon and the target shape.
We use a variant of the discrete shell energy by Grinspun et al. [Grinspun et al.,
2003] for this purpose and, using x and t as current respectively rest state, define

Ed = ∑
e

[
kl(1−

le
l0
e
)2 + kb(θe − θ0

e )
2
]

l0
e , (4.12)

where le and θe (l0
e and θ0

e ) denote the deformed (undeformed) length and dihedral
angle of edge e as illustrated in Figure 4.4, and kl, kb are stretching and bending
coefficients. In comparison to simpler measures based on pairwise vertex distance,
this metric has the advantage that the error caused by local deviations in shape
remains local and does not propagate over the model.

With this distance metric established, we seek to find the physical solution, i.e.,
a configuration in force equilibrium, which is closest to the target shape, i.e.,
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Figure 4.4: Left and Middle: Edge length and dihedral angle on the target mesh and
simulation mesh respectively. Right: Forces acting on a vertex of the simulation mesh.

minimizes (4.12). As explained in Chapter 3, these requirements can be formulated
as a constrained optimization problem with an objective function

L(x, x̄, λ) = Ed(t,x)− λtf(x, x̄) , (4.13)

where f is the vector of constraints, each of which measures the deviation from
force equilibrium for a given degree of freedom, i.e.,

fj(x, x̄) = fmem
j + fp

j , 1≤ j ≤ 3n . (4.14)

Note that the system is in equilibrium only if f(x, x̄) = 0.

4.4.2 Numerical Solution

Solving the constrained minimization problem described by (4.13) requires some
care. Since the force balance condition (4.14) is a fundamental requirement to
obtain a physically valid result, we turn toward a method which guarantee strict
constraint satisfaction and use the augmented Lagrangian method exposed in
Section 3.2.2.

Regularization

The problem described by (4.13) is nonlinear as well as nonconvex and will there-
fore exhibit local minima. In particular, any region on the rest shape enclosed by
a planar curve can be mirrored without altering the inflated shape. In order to
obtain a well-posed problem, we favor convex shapes by asking for the solution
with maximum volume.

Moreover, a numerical problem arises in regions with coplanar elements, for
which the hessian of the membrane energy exhibits a null-space in the normal
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direction. We solve this issue with an additional energy term based on the bending
component of (4.12), thus penalizing curvature deviations from the initial rest
shape.

Inflation Pressure

The optimization process starts with a downscaled version of the target shape.
For practical reasons, we do not directly prescribe an extension ratio between
uninflated and inflated balloons but determine an inflation pressure which achieves
the desired increase in volume. To this end, we first increase the inflation pressure
in a sequence of static equilibrium solves, until the volume of the inflated shape
matches the volume of the target shape. We then use this pressure to compute the
optimal balloon shape.

Rest Shape Intersections

If not explicitly prevented, the optimization process is likely to introduce inter-
sections in the rest shapes. We use a collision handling strategy based on penalty
forces to avoid such unphysical settings. In each iteration of the optimization, we
first detect all pairs of vertices that are closer than a given threshold εc. In order
to improve runtime performance, we use a kD-tree and cull vertex-pairs whose
(approximate) geodesic distance is smaller than a threshold value εgd. For each
vertex pair (x̄i, x̄j) returned by the detection step, we introduce a penalty potential
as

Wp(x̄i, x̄j) = (|x̄i − x̄j| − εc)
3 , (4.15)

which is active for |x̄i − x̄j| − εc < 0 and set to zero otherwise. Note that the cubic
power of the potential ensures continuity of its second derivatives. The potentials
for all points are then added to (4.13) such that, upon convergence, all vertex-vertex
constraints are satisfied. Although this simple approach cannot resolve all intricate
collisions in general, we found it to be sufficient for all our examples.

Nozzle Attachment

We are primarily interested in approximating the target shape when design-
ing/optimizing the rest shape for a balloon, but we also have to include the
nozzle attachment in this process. The nozzle is particular in that it does not
noticeably deform during inflation, i.e., it has the same size in the undeformed and
inflated configuration. However, this same size covers different regions in the two
configurations such that simply attaching it to the two geometries will interfere
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with the triangle correspondence. We solve this problems by attaching the nozzle
in the inflated configuration (in fact, we ask the user to do so) resulting in a set
Ni of vertices (on the target surface) that are constrained to remain at positions pi
in both configurations. While the target shape trivially satisfies these constraints,
further action is required to obtain a high-quality rest shape mesh which accounts
for the nozzle constraints and has the same topology as the target mesh. We use a
nonlinear variant of Laplacian mesh smoothing (see, e.g., [Nealen et al., 2006]) for
this purpose in which we impose the nozzle vertices as hard position constraints
and require all other vertices to remain on the original surface. For the latter, we
construct an implicit representation of the surface using radial basis functions, sim-
ilar to the one that we used for the material fitting (see Section 4.3.2) and compute
the smoothed mesh positions as the minimizer of

Es(x̄) = Ec(x̄) + Erb f (x̄) s.t. x̄i = pi, i ∈ N . (4.16)

The first term Ec measures the distance of a given vertex to the centroid of its
one-ring neighborhood,

Ec(x̄) = x̄i −
1
Ni

∑
j∈Ti

x̄j (4.17)

with Ni denoting the valence of vertex i and Ti its set of one-ring neighbours. The
second term penalizes deviations from the original (RBF-) surface and has the same
form as in (4.9).

4.5 Fabrication

This section briefly outlines our process for fabricating custom-shaped balloons.

4.5.1 Mold Design

The optimization method returns a triangle mesh for the balloon’s rest shape. We
complete the balloon mold by attaching a cylindrical tube to the previously defined
nozzle vertices (see Section 4.4) as well as some additional geometry for fixing the
mold to a support as illustrated in Figure 4.5. The mold can then be fabricated
using, e.g., a 3D printer. Even though the silicone balloon can be stretched during
unmolding, this process can be quite cumbersome for complex shapes such as the
bunny. Fortunately, this problem can be avoided when using a printer supporting
soft materials such as our Objet Connex.

47



4 Designing Custom Rubber Balloons

Figure 4.5: Left: Balloon Mold. Right: Silicone balloon.

4.5.2 Balloon Fabrication

Industrial balloon fabrication usually relies on latex due to its durability and
low material costs. For manual fabrication, however, we found silicone more
convenient to handle: unlike latex, it is not sensitive to temperature, cures without
volume loss and can be evacuated to remove air inclusions. The silicone has to be
mixed with an activator and be processed rapidly. Since remains cannot be stored,
a dip-molding process is not attractive and we simply brush the rubber onto the
mold. We then put the coated mold in a vacuum chamber to remove air inclusions.
We found that this also leads to smoother coatings.

The coating thickness obtained by this process is in the range of 0.25mm-0.3mm. In
order to increase the durability of the balloons we add another another layer using
the same process. Finally, the balloon needs to cure for one day before removing it
from the mold and an additional 5 to 7 days to obtain its final material properties.
Figure 4.5 shows one of our silicone balloons after removal from the mold.

4.6 Results

In order to explore the capabilities of our method we experimented with a variety
of different target shapes. For each example, we computed an optimized rest
shape, printed corresponding molds and fabricated the balloons using silicone. For
comparison, we also fabricated balloons corresponding to the downscaled target
shapes. Figure 4.6 shows all results in a compact overview.
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Figure 4.6: Results obtained with our method. The columns (from left to right) show
target shapes, optimized balloons, simulated inflated balloons, fabricated optimized bal-
loons, simulated inflated balloons corresponding to downscaled targets and corresponding
fabricated balloons.
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The last column clearly indicates that the downscaled targets do not lead to ac-
ceptable approximations. Indeed, the original shape is indiscernible in most cases.
By contrast, the simulated shapes of the optimized balloons (column 3) as well
as the fabricated counterparts (column 4) are in good agreement with the targets
for the majority of the examples and most of the characteristic features are clearly
discernible.

Comparing the target shapes against the simulated inflated balloons, several
observations can be made. First, it is impossible to accurately reproduce flat
regions as the pressure forces tend to push them outwards. This effect is clearly
visible for the faces of the cube (row 2) but can also be identified on the legs of
the elephant (row 5) and the arms of the armadillo (row 6). Furthermore, sharp
transitions such as the borders around the bumps on the sphere (row 1) or the
edges of the cube (row 2) remain visible but are smoothed out. However, isolated
sharp features such as the corners of the cube can be reproduced with fair accuracy
since they do not have to stretch during inflation and can thus be built into the
undeformed shape. Finally, high frequency detail such as the fur of the bunny is
lost. This is partly due to the limited accuracy of the fabrication process, but also
owed to the fact balloons cannot have local concave features since these would be
popped out by the pressure forces. This observation also explains why the snout of
the armadillo and the ears of the bunny (row 4) are rather roundish.

As a side note, it can be seen from the cube and the sphere example that our method
preserves the overall symmetry of optimized shapes for symmetric targets, even
for non-symmetric (irregular) meshes.

The inflated real balloons (columns 4 and 6) are in good agreement with their
simulated counterparts, only the armadillo and the hand (row 7) examples show
significant deviations. This can be attributed to inaccuracies in the fabrication
process combined with the complexity of the shapes: the highly viscous silicone
tends to accumulate in the troughs of the mold, leading to significant thickness
variations. This effect could be reduced by using thinned rubber and a higher
number of layers, albeit at the expense of increased fabrication times.

Larger Inflations

The average extension ratio for the inflated balloons stays below 2.5 in all our
examples, whereas values around 5 are often observed for latex balloons. The
reason for this difference is that latex is far more durable than silicone, which in our
experiments allowed only a stretching of 2.5 before rupture. But while this limits
the increase in volume for silicone balloons, this limitation is not inherent to our
approach: we simulate the teddy example with a latex material whose parameters
we determined in the same way as for silicone. Using latex, we can attain extension
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Figure 4.7: Left: measured data for a latex membrane and the Hart-Smith model fit.
Right: optimized and inflated shape for a teddy bear balloon with an average stretch of ≈5.

ratios larger than 5 with a pressure of 7kPa (Figure 4.7, left). This in turn allows
us to simulate balloons which dramatically increases in volume during inflation,
while still providing good approximation to the target shape (Figure 4.7, right).

Performance

We provide computation times for all examples shown in this chapter in Table 4.1.
It can be seen that for most balloons, our method takes less than 15 minutes to
compute optimized shapes. With slightly less than 90 minutes, the bunny example
takes by far the longest time to finish, which is mostly due to the large number of
intersections that slow down convergence.

Model #vertices tstat [ms] tnwtn[ms] ttot [s] #its

Armadillo 6027 24494 5897 569 81
Bumpsphere 3265 20359 2993 201 55
Bunny 4975 61138 7212 5000 879
Cube 5153 39094 6543 243 20
Elephant 3818 26317 3031 3060 131
Gingerbread 2238 5329 1776 66 29
Hand 2253 24403 2696 3229 1137
Mouse 2633 22277 3200 627 180
Squirrel 5995 151447 7744 105 103
Teddy 3527 85936 3492 484 106

Table 4.1: Computation times breakdown: static equilibrium (tstat), a single Newton step
(tnwtn), total computation time (ttot) and number of ALM iterations (#its).
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Figure 4.8: Approximation error for the bunny with green/red indicating lowest/highest
error (middle). Red/blue color indicates positive/negative mean curvature (right).

Accuracy & Validation

In order to quantify the accuracy of our optimization method, we measured the
difference between input target shapes and simulated optimized shapes. Figure
4.8 shows an error plot for the bunny example using the distance metric of (4.12).
For easier interpretation, we measured for each vertex of the inflated shape the
distance to the closest point on the target surface, leading to an average/maximum
error of 0.23/0.89cm (the inflated balloon has a maximum inter-vertex distance of
14.6cm). As expected, the regions of highest error coincide with those of minimal
mean curvature.

To estimate the impact of the inaccuracies in the fabrication process, we applied
random thickness perturbations of different magnitudes to the bunny model and
investigated the impact on the inflated shape using again the vertex-based distance
measure. A variation of 10% led to an average deviation of 0.22cm, whereas 20% of
variation already results in 0.52cm average error. This agrees with our observations:
small thickness variations have only little effect while larger variations such as as
those seen in the armadillo and the hand example can lead to significant shape
deviations.

We furthermore verified the importance of the material model experimentally.
In a simple test, we compared the inflated shape of a real bunny balloon to the
results produced by simulations using the Mooney-Rivlin and the Hart-Smith
material. The bunny result in Figure 4.6 shows that the Hart-Smith material results
in good approximation with clearly visible ears, whereas these features were not
discernible for the Mooney-Rivlin material, which led to an almost spherical shape.

Finally, we analyzed the stability of the numerical solutions computed by our
method. Using the bear example, we let our algorithm run on a perturbed version
of the optimized rest shape and compared the result to the original solution. For
an average vertex displacement of 0.25cm, the difference was below 10−4cm. This
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indicates that minima are well separated and we found this to be true for all
examples considered.

4.7 Discussion and Outlook

In this chapter, we presented a method for computational design of rubber balloons
with desired inflated shapes. Our approach drastically increases the space of
possible balloon shapes as demonstrated with a set of challenging examples.

Although our method is able to produce a large variety of shapes, certain fea-
tures are difficult or even impossible to reproduce, in particular flat parts, locally-
bounded concave regions, and sharp edges. These limitations do, however, apply
to inflatable structures in general and are not specific to our method. By adding
internal connections one could overcome some of these limitations and we will
explore this direction in Chapter 6 when studying foil balloons.

There are evidently shapes that can be well-approximated by our method while
others are difficult to reproduce with satisfying quality. However, many of these
difficult shapes can be changed into models that lend themselves well to balloon
fabrication—see, e.g., the elephant. Currently, we rely on artists to design geomet-
rically similar but feasible target shapes. An interesting direction for future work
would be to develop a method for automating this shape abstraction process.

Shape optimization is very powerful in the context of balloon design. However,
this involves only a limited subset of all the possible design parameters that affect
the final shape of a deformable body. External forces and materials, in particular,
also have a large influence on the deformation. In the next chapter, we will turn
toward a very different class of objects and investigate the question of optimal
placement of pin- and string-actuators, as well as best material distribution, when
designing custom animated characters.
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C H A P T E R 5
Creating Actuated Deformable
Characters

In this chapter, we focus on actuated deformable characters whose design presents
particularly interesting challenges. First, these characters are deformed using
actuators that apply forces at localized positions on the surface. This naturally
raises the question of where and how much force needs to be applied in order to
yield a desired deformation. Second, actuated characters are typically made of
several materials, which allows us to tackle the problem of finding the optimal
material distribution when two base materials are available.

5.1 Introduction

Character design is a vital part of animated movie production, game development
and other applications of computer graphics. Many virtual characters are rigidly
articulated, others are very deformable, and most of them show properties between
these two extremes ranging from humanoid virtual actors with bulging muscles,
to invertebrate figures like jelly monsters and stylized background characters such
as plants, buildings and other man-made objects. Digital characters are typically
created solely for the virtual worlds they live in. However, many other applications
such as theme park attractions, exhibitions, artistic installations or next-generation
games require real, physical embodiments of these figures. While there is an exten-
sive set of tools for digital character design and animation, translating animated
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characters to the real world is an extremely difficult task. This problem is made
even more evident by the quickly growing availability of rapid manufacturing
devices and services that might soon lead to a switch from mass fabrication to
personalized design of characters such as action figures.

Realizing this technological trend, recent work by Bächer et al. [2012] and Calì et
al. [2012] proposed solutions for transforming articulated digital characters into
3D-printed figures that can be posed in various ways. While this is a significant
advancement in fabrication-oriented character design, these methods are restricted
to rigidly articulated characters and, more importantly, do not address the problem
of how to animate the resulting figures.

Motivated by these observations, we propose a method for fabrication-oriented
design of deformable characters that can be actuated using pins, strings, or posed
by hand. Given a digital representation of an animated (or animatable) character
as input, we seek to find a system of external actuators as well as an internal
material distribution that allow us to fabricate a physical prototype whose range
of deformation and movements closely approximate the input. Our solution to
this problem is a dedicated algorithm that combines finite-element analysis, sparse
regularization, and constrained optimization. We demonstrate our method on a set
of two- and three-dimensional example characters. We present results in simulation
as well as physically-fabricated prototypes with different types of actuators and
materials.

5.2 Overview

In this chapter, we present a method for fabrication-oriented design of actuated
deformable characters that allows a user to automatically create physical replicas
of digitally designed characters using rapid manufacturing technologies. The
input of our system is a mesh describing a deformable character in its neutral
state as well as a set of target shapes that represent desired deformations. We then
optimize for the actuation parameters (number, placement, and forces) and an
internal material distribution that allow us to fabricate a physical character whose
range of deformation closely approximates the target shapes. As summarized in
Figure 5.1, our pipeline for deformable character design consists of three main
stages that we briefly introduce below.

Initial Actuation The first stage determines an estimate of how many actuators
should be used and in which regions they should be placed. We consider two
variants: by default, we let the user select actuation points on the model. This is
convenient when the user wants to have a particular number of actuators and/or
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Figure 5.1: An overview of our optimization scheme: the user provides an input character
and target shapes, the number of actuators and their initial locations are determined, the
positions of the actuators are optimized, and an internal material distribution is computed.
Finally, the physical prototype is fabricated.

knows roughly where they should be placed. In other cases, in particular for
characters without apparent articulation structure, it can be difficult for the user to
make a suggestion. In this case, we automatically suggest a number of actuators
and their locations using sparse regularization.

Actuator Locations Given the number of actuators and an initial estimate for
their locations, we next adjust their placement such as to minimize the overall
distance of the model to the individual target poses. The problem is solved using
constrained optimization.

Material Optimization With the actuator positions fixed on the model, the third
stage computes an internal material distribution that further optimizes the match-
ing for the individual target poses. We assume that there are two materials avail-
able and initially allow each element of the model to assume an arbitrary convex
combination of the base materials. As the optimization progresses, we drive the
elements’ materials toward one of the base materials, which eventually results in a
discrete material layout that is ready for fabrication.

Finally, we use the optimized actuator locations and material distribution to fab-
ricate a physical prototype of the deformable character using rapid prototyping
technology.

Each of the stages of the pipeline raises specific challenges that we address using
novel techniques. In particular, and to summarize the contributions of this chapter,

• We automatically infer the number of external actuators needed to replicate
a target animation using sparse regularization. Starting with a dense set
of actuators on the boundary of the model, we discard unnecessary pins
or strings by penalizing the L1-norm of the forces that they exert on the
object. The result of the proposed optimization procedure also provides an
approximation of the actuators optimal locations.
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5 Creating Actuated Deformable Characters

• We refine actuators positions by decoupling actuators’ attachment point
locations and object’s discrete representation. The technique we present
improves the matching quality between the actuated simulated poses and
the target deformed shapes by allowing the actuators to slide on the surface
of the model, which is defined using a distance field.

• We introduce a goal-based method for automatically computing rigid struc-
tures to be embedded in multi-material actuated deformable objects. We
address the problem from a material distribution perspective but instead of
solving the discrete problem directly, we opt for a relax formulation which
allows us to use continuous optimization techniques.

The outline of the remaining part of this chapter is the following. After introducing
the model that we use to simulate our actuated deformable characters in Section
5.3, we expose the approach that we take to optimize the actuation system and
the material distribution of the object in Section 5.4. Results are presented and
discussed in Section 5.6. Finally, Section 5.7 concludes this chapter and provides
directions for potential future work.

5.3 Simulation

Our system aims at automating the design of actuated deformable characters
whose deformed poses approximate as closely as possible a set of provided target
shapes. We assume that the type of actuators is known, and that the object is made
of two base materials, a soft one and a stiff one. The optimization of the actuation
system and the material distribution of the figures requires proper simulation of
the object deformations. In this section, we describe the elastic model that we use
for this purpose as well as the types of actuation forces that we consider.

5.3.1 Elastic Model

The computation of the deformed shape of a body subject to external forces was
addressed in Chapter 3. In what follows, we quickly recap the basic concepts and
the main steps of the procedure.

We assume that a deformable character in its neutral pose is given as input to the
system. We distinguish between objects with an arbitrary rest shapes, represented
by tetrahedron meshes, and objects with a constant thickness that we model using
2D triangle meshes. We let nv denote the number of vertices in the mesh and use
x̄ ∈Rdim·nv to refer to the vector of undeformed positions, where dim denotes the

58



5.3 Simulation

number of dimensions. Likewise, we let x ∈Rdim·nv denote the position vectors in
the deformed configuration.

We start by constructing an elastic model of the input shape using finite elements.
Since the characters that we consider exhibit large deformations, we use a nonlinear
deformation measure but retain linear elements for the sake of efficiency. For
simplicity, we first focus on the three-dimensional case. Let x̄e ∈R12, resp. xe ∈R12,
denote the vectors of concatenated undeformed, resp. deformed, nodal positions
x̄e

i , 0≤ i ≤ 3, resp. xe
i , 0≤ i ≤ 3 of a single tetrahedral element e. We first compute

the deformation gradient Fe(x̄e,xe) = dD−1 where d is the 3×3 matrix whose
columns hold the edge vectors di = xe

i − xe
0. Analogously, the edge vector matrix D

is defined through Di = x̄e
i − x̄e

0. We define the elastic energy density of the element
using a Neo-Hookean material model,

Ψe(Fe) = µ(tr(Ce)− 3) +
κ

2
(det(Fe)− 1)2 , (5.1)

where µ and κ are material parameters and C = (Fe)tFe is the right Cauchy-Green
tensor. The elastic energy of the deformed element is then obtained by integrating
(5.1) over its domain. Since we use linear finite elements, the deformation gradient
is constant across the element such that we have We = ΨeVe, where Ve denotes the
volume of the tetrahedron. The global deformation energy Wint(x̄,x) between the
rest state x̄ and an arbitrary deformed state x is obtained by summing up elemental
contributions as Wint(x̄,x) = ∑e We(x̄e,xe). The elastic energy gives rise to internal
forces fint ∈Rdim·nv as

fint = −∂Wint(x̄,x)
∂x

. (5.2)

Finally, letting fext denote the vector of external nodal forces acting on the dis-
cretized body, the deformed pose of the object is obtained as a solution of the
partial differential equations

fint = −fext , (5.3)

which we solve using a Newton-Raphson procedure as described in Section 3.1.3.

For the two-dimensional case, we use linear triangle elements, and the derivation
of the elastic energy is largely similar. As detailed in Section 3.1.4 we expand
the two-dimensional Cauchy-Green tensor to three dimensions by inferring the
thickness stretch from the assumption of volume-preserving deformations. This
allows us to also use (5.1) for the two-dimensional case.

We can now have a closer look at the external forces acting on the physical system.
Besides gravity forces, which are trivially incorporated to fext after lumping the
mass of the object to the vertices of the mesh, these external forces include the
forces exerted by the actuators.
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5 Creating Actuated Deformable Characters

5.3.2 Actuation forces

Our design framework supports three kinds of actuators: pin-type actuators, string-
type actuators and clamp-type actuators. As we detail below, the handling of the
external actuation forces is different for each of these variants.

Pin-based actuators

Pin-based actuators exert traction forces on the surface of the object which act
on very small areas, that we equate with points. For simplicity, we will assume
here that these points coincide with vertices of the simulation mesh. The forces
due to pins can be arbitrary, and are different from one pose to the other, but they
act at the same location on the boundary for all the poses of the object. Letting
na be the number of actuators, we will denote by Q = (l,q1, . . . ,qnp) the actuator
system where l ∈Rdim·na holds the locations of the actuators in the rest state and
each vector qi ∈Rdim·na holds the actuation forces for a given pose xi. We account
for the forces due to pin-based actuators in a given state xi by simply adding the
coordinates of the vector qi to the corresponding entries of the vector of external
forces fext.

String-based actuators

𝐚j 

𝐪j
i 

𝐱j
i 

A string actuator is defined through an attachment point aj
located on an external support structure as well as another
attachment point on the surface of the character (see figure
on the right). Like a pin actuator, it acts on a fixed isolated
point on the boundary of the object, the string attachment
point, that remains the same throughout the deformation.
However, there are two major differences. First, the direction
of the force due to a string matches the direction of the string
at all time. Second, the string can only pull and not push.
These requirements can be enforced by modeling the actuation force corresponding
to the string as

qi
j = ki

j

(aj − xi
j)

||aj − xi
j||

, (5.4)

where ki
j > 0 corresponds to the tension of the string and xi

j is the actuator’s location
on the deformed surface.Using the formulation described above, the deformed
pose of the object can be found by treating the tensions ki

j as additional degrees of
freedom.
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5.4 Design Optimization

Clamp-based actuators

Clamp-based actuators prescribe the positions for sets of vertices, thus emulating
the process of posing characters by hand. In our discrete settings, these hard

constraints are easily enforced by modifying the force Jacobian J = ∂f(xi)
∂x and the

vector of total forces f = fint + fext before solving the linear system corresponding
to the Newton step (3.26) such that for all constrained degrees of freedom xi

c, we
have

fc = 0
Jcc = 1,
Jcj = Jjc = 0 , j 6= c

(5.5)

Having introduced the different physical quantities needed to compute the
deformed state of an actuated figure, we address the optimization of the system’s
design variables in the next section.

5.4 Design Optimization

5.4.1 Basic Formulation

Our goal is to compute the internal material structure of the deformable model
and the sets of actuation forces that, when applied to the model, lead to deformed
states, xi, 1 ≤ i ≤ np, that are as close as possible to np target states, denoted by
ti, 1 ≤ i ≤ np. Letting p denote the vector of generic parameters that we want
to optimize for, we have seen in Chapter 3 that this objective could be cast as a
constrained minimization problem

min
xi ,p

np

∑
i

Ei
d(t

i,xi) (5.6)

s.t fint(xi,p) = −fext(xi,p) ∀i ∈ 1 . . . np ,

where Ei
d(t

i,xi) penalizes the deviation of each deformed pose xi from its corre-
sponding target pose ti. For this application, we found sufficient to use a distance
energy function that measures the Euclidean distance between the positions of the
model’s boundary vertices in the deformed configuration and the target configura-
tion as

Ei
d(t

i,xi) = ∑
j∈B
||xi

j − ti
j||2 , (5.7)
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5 Creating Actuated Deformable Characters

where B denotes the set of boundary vertices. Since some of our design parameters
p are subject to additional bound constraints, we solve the minimization problem
(5.6) with the Gradient Projection Method detailed in Section 3.2.2.

We will now explain how we apply this formulation to the optimization of number
and locations of actuators and object’s material distribution.

5.4.2 Initial Actuation

Given a deformable character and its desired range of deformation, we first have
to determine a number of actuators and an initial estimate for their locations. In
some cases, the structure of a character will largely imply the number of actuators.
In other cases, the user can have a specific idea of how many actuators should
be used and where they should be placed. Yet, for many characters, in particular
those without apparent skeletal structure, the answer to this question is far from
obvious.

In order to treat both of these cases, we support two variants of actuator layout in
our system: the user can hand-select a desired number of points on the undeformed
model, in which case we directly proceed to the next stage of our pipeline. Other-
wise, we ask the user to specify an admissible range for the number of actuators
(e.g. 5-10) and automatically compute a suggestion as described subsequently.

The underlying reasoning of our approach is that it is generally desirable to have
the smallest number of actuators that yield a sufficiently good approximation
of the target poses. Indeed, the mechanical complexity of real-world actuation
systems typically imposes strict bounds on the number of actuators, as is the case
for our string-based setup (see Figure 5.4) and animatronic figures in general (see,
e.g., [Bickel et al., 2012]). Finding the optimal number of actuators is an inherently
discrete problem that does not directly lend itself to continuous optimization.
Instead of turning toward specialized optimization methods such as mixed-integer
programming, we draw inspiration from sparse regularization techniques used in,
e.g., machine learning and image processing. Starting with a dense set of actuators
on the boundary of the model, we introduce a regularizer that prefers sparse
solutions, i.e., a small number of actuators.

A widely used approach for sparse regularization is to penalize the L1-norm of
the design variables, i.e., the sum of absolute values. In our case, the design
variables are force vectors comprising two or three components. Since all of these
components have to be zero simultaneously in order to obtain a zero net force, we
introduce a regularizer that penalizes the sum of force magnitudes. Considering
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0.001 0.01 0.03 1.0

Figure 5.2: Sparse regularization demonstrated on the TourEiffel example. The number
of actuators (black arrows) is effectively controlled by the coefficient ksparse (indicated below
the figures).

only a single target pose i for the moment, we define a sparse regularizer as

Rsparse(qi) = ksparse

nv

∑
j

(
dim

∑
k
(qi

j)
2
k

)1/α

, (5.8)

where ksparse is a scaling parameter and α > 2 generalizes the L1-norm to more
strongly penalize small values. In order to incorporate multiple target poses, we
ask that a given actuator should have a zero value only if its force vectors vanish
for all target poses. This requirement can be modeled as

Rsparse(q1, . . . ,qnp) = ksparse

nv

∑
j

( np

∑
i

dim

∑
k
(qi

j)
2
k

)1/α

. (5.9)

We add this regularizer to the basic optimization problem (5.6) with p =
(q1, . . . ,qnp) and, depending on the value of ksparse, obtain solutions with different
numbers of actuators (see Figure 5.2). Since it is not possible to choose ksparse a
priori in order to obtain a desired number of actuators na, we solve a sequence
of problems with different values of ksparse until we find a solution within the
admissible range specified by the user.

5.4.3 Actuator Locations

The initial actuation step provides us with a number of actuators and their initial
locations. Next, we improve the matching quality, i.e., the correspondence between
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5 Creating Actuated Deformable Characters

deformed poses xi and target poses ti, by allowing the actuators to slide along
the boundary of the character. In order to ensure that actuators can move freely
along the surface but not in their normal directions, we introduce a penalty term
that attracts the actuators to the zero-levelset of a local distance field Φ around the
surface.

𝐥j 

𝐱 k 

𝐧k 

Using the implicit moving least squares (IMLS) method of
Öztireli et al. [2009], the distance field is defined as

Φ(x) = ∑k nk · (x− x̄k)φk(x)
∑k φk(x)

, (5.10)

where φk(x) =
(

1− ||x−x̄k||22
h2

)4
are locally-supported kernel

functions that vanish beyond their support radius h. Using
this formulation, we define a penalty energy

EIMLS = ∑
i

Φ(li)
2 (5.11)

that attracts the actuator locations li to the surface. In order to ensure that the actu-
ation forces vary smoothly as the actuators move along the surface, we distribute
them to a local neighborhood of vertices using the IMLS-kernels

fi
k =

qi
jφk(lj)

∑l∈Sj
φl(lj)

. (5.12)

Here, k, l ∈ Sj where Sj denotes the set of vertices whose kernel functions are
nonzero at lj (see also the figure above). In addition to this penalty term, we also
want to prevent actuators from moving too close together as coinciding actuators
would lead to a null-space during optimization. To this end, we define a C2

continuous repulsion term

Erep(lj, lk) = krep(εrep − ||lj − lk||)3 , (5.13)

which is activated whenever the distance between actuators is smaller than a
threshold value εrep.

String-Based Actuation

The formulation above assumes that the actuators can apply forces qi in arbitrary
directions. In the case of strings, this is no longer true (see Section 5.3.2) and
a few adaptations have to be made. First, instead of optimizing for the vectors
qi

j directly, we optimize for the string tensions ki
j and the string attachment points
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aj, in addition to the actuator’s location lj on the rest state of the object. We enforce
the condition that aj be on the support structure using a formulation similar to
(5.11). Assuming a circular support, we formulate the penalty energy as

Ej
string(aj) = (||aj − c|| − r)2 , (5.14)

where r is the radius of the support and c denotes its center.

Second, in order to limit the likelihood of strings intersecting with the model or
tangling up during animation, we privilege string directions that are close to the
boundary normals at the attachment point. We express this preference with a
further penalty term

Edir = kdir

np

∑
i

na

∑
j

(
1−

qi
j

||qi
j||
· ni(lj)

)2

, (5.15)

where ni(lj) =
∑k ni

kφk(lj)

∑k φk(lj)
denotes the interpolated normal at the string location lj in

pose i.

5.5 Material Optimization

Even with the location optimization described in the previous section, characters
can have poses that are difficult to achieve. Such difficult poses arise, e.g., from
conventional articulation such as the sharp bending of an arm. Approximating such
poses with a homogeneous material would require a large number of actuators.
We address this problem by allowing the material properties to vary spatially, thus
building preferences for deformation directly into the model.

As a basis for material optimization, we will assume that there is a library of
non-miscible base materials (such as silicone and printable plastics) described
by energy density functions W i. For simplicity, we restrict considerations to two
material types per character, typically a soft and a stiff one. We allow the material
properties to vary among the elements but assume that each element consists
of a homogeneous material. If we directly constrain each element to take on
only material properties from the library, we arrive at a discrete optimization
problem and its associated difficulties. In order to avoid the need for more complex
optimization methods, we convert the discrete problem into a continuous one by
allowing the per-element materials to be interpolations of the base materials. We
start the optimization by allowing arbitrary (convex) combinations of the base
materials and then progressively drive the interpolation weights to the boundary
of the intervals, thus enforcing a discrete material distribution. On a technical level,
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5 Creating Actuated Deformable Characters

we do not interpolate material descriptions but the elastic energies that would
result from the different base materials. The effective deformation energy of a
given element e is defined as

W(Fe, ρe) = ρe W1(Fe) + (1− ρe) W2(Fe) , (5.16)

where ρe are interpolation weights. Adopting this interpolated material model
and adding the interpolation weights per element as free variables to the op-
timization problem, we can solve for a material distribution that leads to an
optimal approximation of the target poses by optimizing for the parameters
p = (q1, . . . ,qnp , ρe1 , . . . , ρen). However, in order to obtain a physically meaningful
solution, we have to drive the interpolation weights to 0 or 1. We achieve this with
a penalty energy of the form

Rmat = kmat ∑
e

ρe(1− ρe) , (5.17)

where kmat is a scaling parameter that is progressively increased until a solution
is found that satisfies ρe(1 − ρe) < ε, where ε denotes a small threshold value.
While the penalty term Rmat will eventually ensure that all interpolation weights
are either 0 or 1, they can potentially assume values out of this range in earlier
iterations. We therefore have to explicitly enforce the bounds on the interpolation
variables since we could otherwise encounter non-physical material combinations
that would hinder convergence.

The material optimization scheme computes material distributions that are optimal
in the sense of approximating the target poses. However, multiple solutions can
lead to equivalent approximations of the target poses. In our approach, we aim
to find macroscopic material distributions rather than micro-level structures. We
therefore favor larger material clusters rather than small, isolated islands by adding
the regularizer,

Rsmooth = ksmooth ∑
j
(ρj − 1

nj
∑

k∈Tj

ρk)2 , (5.18)

where Tj denotes the set of nj elements adjacent to element j. Finally, since our
focus is on deformable characters, we also prefer soft materials over stiff ones in
regions where the difference in approximation quality is small. We model this
preference with a second regularization term,

Rsoft = ksoft

ne

∑
i
(ρe)2 , (5.19)

assuming that the soft material corresponds to ρ = 0.
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5.6 Results

Figure 5.3: A straight bar is deformed into four different question mark shapes by
imposing position constraints on its end caps. The first row shows the target shapes, the
second row the result without material optimization and the third our results after material
optimization (stiff/soft material shown in grey/blue color).

5.6 Results

We evaluated our method by designing and fabricating six characters with dif-
ferent types of actuators and materials. For fabrication, we used an Objet Con-
nex350 multi-material printer with two base materials of significantly different
stiffnesses. We chose VeroClear, a rigid and transparent material, and TangoBlack+,
a black material with properties similar to soft rubber. Three of the characters
were printed directly (“Palmy3D”, “Questionmark”, “Grampolo”), whereas the
remaining three were fabricated using silicone injection molding with 3D-printed
rigid parts (“TourEiffel”, “Palmy2D”, “WormEye”). We simulated the material
behavior during the design process using measured data for silicone [Bickel et al.,
2012] and data provided by Objet for the 3D-printed materials. In the following
paragraphs, we discuss our results and highlight the roles played by the individual
stages of our design pipeline.
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Figure 5.4: “TourEiffel” model. From a given animation, we extracted several key frames
and automatically optimized the actuator locations. The top row shows the resulting
deformations in simulation. The bottom rows shows the corresponding poses when using
the fabricated model.

(a) (b) (c) (d) (e)

Figure 5.5: “Palmy2D.” Given 3 target poses (a), we use sparse regularization to find
an initial location of 4 actuation points (b). We then refine the location of the actuation
points by allowing them to slide on the surface (c) and optimize for an internal material
distribution that allows us to better approximate the target poses (d). Columns (b-d) show
the resulting simulated deformations of each optimization stage. Column (e) shows the
fabricated character that we posed using pins.
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Figure 5.6: “WormEye.” Top row: Frames from an animation of two WormEye characters.
Bottom row: Optimized material distribution and actuator locations for reproducing poses
present in the animation (left) and real fabricated deformed character (right).

Figure 5.7: “Palmy3D.” From left to right: Rest pose with optimized material distribution
(black/stiff, blue/soft), simulated poses (blue) overlaid with input target poses (red), 3D
printed character.

Figure 5.8: Right: A straight bar with uniform (left) and optimized (right) material
distribution is bent into a question mark shape by applying force only on its end caps. The
small orange icon shows the target shape. Left: ”Grampolo”. Top row: Illustration of the
rest pose with optimized material distribution (black/stiff, blue/soft) on the left and the
simulated deformed mesh (blue) overlayed with the input target pose (red). Bottom row:
Fabricated character actuated by hand.
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Model Pose1 Pose2 Pose3 Pose4 Pose 5 Size

TourEiffel (1) 4.8/0.5 3.0/0.4 2.8/0.5 6.4/0.8 4.4/0.6 202
TourEiffel (2) 3.6/0.5 2.0/0.4 3.6/0.5 5.2/0.6 3.8/0.6 202
Palmy2D (1) 7.1/0.7 11.0/0.9 5.7/0.4 - - 100
Palmy2D (2) 7.6/0.4 7.4/0.5 4.8/0.2 - - 100
Palmy2D (3) 5.1/0.5 5.1/0.3 2.6/0.1 - - 100
Questionmark (2) 8.3/0.4 - - - - 80
Questionmark (3) 3.1/0.2 - - - - 80
Grampolo (1) 17.1/3.7 - - - - 102
Grampolo (2) 13.6/2.6 - - - - 102
Grampolo (3) 2.7/0.4 - - - - 102

Table 5.1: Error statistics. Max/mean Euclidean distance (in mm) between vertices of the
simulated poses and vertices of the input poses after initial actuation (1), optimization of
actuation locations (2), and optimization of material distribution (3). The size corresponds
to the maximum length of the character’s bounding box.

Actuator Optimization

For all examples shown in this chapter, we employed the sparse regularization
approach for computing an appropriate number of actuators. We observed that,
especially for characters that do not have an obvious internal structure, manually
selecting the number of actuators and their placement proved to be difficult. Our
automatic approach significantly simplified this design task.

Figure 5.4 shows an example of string-based actuation. We extracted five key
frames from an artist-generated input animation and used the sparse regularization
method to automatically determine the number of actuators as well as their initial
locations. We fabricated the model with silicone and attached five strings driven
by servo motors to playback the animation. The strings are routed through pulleys
at a ring around the model, whose locations are optimized as well.

The “QuestionMark” example (Figure 5.8, left) is posed using clamp-type actuators
that fix both the position and orientation of the end caps of the model. The
remaining examples were designed using pin-type actuators. We pose the planar
characters by attaching small pins at the actuators locations. These pins are then
plugged into precision-drilled holes in an acrylic plate to reproduce the target
poses. The 3D characters, “Palmy3D” and “Grampolo”, were designed using the
same framework as for the 2D examples, but for simplicity, we pose and animate
these models by hand.

The first stage of our pipeline provides an initial guess for the actuator locations
and already leads to fair approximation quality in some cases. As can be seen
from Table 5.1, however, the subsequent actuator location optimization is able to
significantly reduce the error for all examples.
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Model #Elem. #Actuation Computation Weights
Points Time

TourEiffel 525 5 20min02s 1/-/-
Palmy2D 2745 4 5h26min 0.01/10−5/0.01
Palmy3D 8362 4 7h17min 0.1/10−7/0.01
WormEye 808 8 3h10min 1.5 10−4/10−6/0.1
Questionmark 4536 caps fixed 1h09min -/10−7/1
Grampolo 17709 7 4h44min 500/10−3/1

Table 5.2: Example statistics. From left to right: Number of elements, number of actuation
points, total computation time, weights used for the regularization terms Rsparse, Rsoft
and Rsmooth.

Material Optimization

Allowing material properties to vary spatially further improves the visual and
quantitative error of all characters. A particularly striking example can be seen
in Figure 5.3, where material optimization allowed us to create very different
deformation styles with only two actuators. Note that our scheme leads to intuitive
solutions if the character exhibits mostly rigid articulation, as is the case, e.g., for
“Palmy2D” (Figure 5.5) and “Grampolo” (Figure 5.8, right). Although we used only
one example pose for the “Grampolo” character, the optimization scheme was able
to infer a meaningful material distribution, putting soft material at joint locations
and rigid material at limbs. For characters with more complex deformations,
however, the material distribution can be significantly more complex as shown in
Figure 5.6 and Figure 5.3.

Weight Selection

Our method uses a number of different penalty terms to enforce soft constraints
or drive the solution toward a preferred subspace. The weights that we used for
the different examples are listed in Table 5.2. For most of the weights, determining
an appropriate value posed no difficulty, since the corresponding penalty terms
were not directly competing with other objectives. However, the weights of the
regularization terms (5.18) and (5.19) have a significant impact on the final material
distribution. We set these weights by first selecting a value for (5.19) which,
together with the target poses, determines the overall material structure. We use a
default value for (5.18) and, if necessary, adjust it with 1-2 iterations to suppress
small material islands without changing the boundary of larger structures too
much.
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5 Creating Actuated Deformable Characters

Accuracy, Robustness and Performance

Our fabricated prototypes show good agreement with the simulation. Figure 5.5
illustrates the progressive improvement during each step of our pipeline including
the final fabricated character.

A variation in the position of the actuators affects the resulting material distri-
butions. However, in practice we observed that a small variation leads to a so-
lution with similar quality. We also investigated whether multiple iterations of
our pipeline would lead to improved results but did not observe any significant
improvement after the first cycle in our experiments.

Statistics for each example including the number of elements, number of actuation
points and computation times can be found in Table 5.2. The largest fraction of the
computation time is spent on material optimization. This is mostly due to the fact
that the optimization scheme uses several outer iterations to increase the parameter
kmat that eventually enforces each element to assume one of the base materials.

5.7 Discussion and Outlook

This chapter described a method for creating physically fabricated prototypes
of animated digital characters. Our approach automatically finds a sparse set of
actuation locations on the surface and optimizes the internal material distribution
such that the resulting character exhibits the desired deformation behavior. We
demonstrated our method on a set of simulated as well as physically-fabricated
characters with different types of actuators and materials.

We optimize for sets of actuation forces corresponding to equilibrium states that
are as close as possible to the target poses. However, knowing the forces at the
deformed state does not imply that there is a unique way of getting to that state
from the undeformed configuration as there can be bifurcation points (buckling)
along the way. While we did not encounter this sort of problems in our examples,
further treatment might be necessary in order to ensure robust tracking of the input
animation in between target poses.

One possible direction for future work could be to explore the possibility of using
a larger number or range of materials, e.g., by printing micro-level structures. An
interesting related problem is also the design of more elaborate actuation systems
that would enable us to animate more complex characters in an automated way.

With the applications considered so far, we demonstrated that automatic com-
putation of rest shapes, material distributions and actuation parameters was not
only possible but also effective in order to design physically valid objects with
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desired deformation behaviour. In the next chapter we will furthermore show that
automation does not necessarily means no room for the designer to express his
creativity and that user-input and optimization can be combined in order to guide
the resulting designs towards aesthetically pleasing solutions.
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C H A P T E R 6
Conceiving Inflatable Structures

This chapter investigates inflatables and presents a dedicated tool combining au-
tomatic pattern generation and an intuitive user interface to design this type of
structures. The design of inflatable balloons was already explored in Chapter 4.
However, the latter focused on rubber balloons which present notable differences
with the structures that interest us in the chapter. In particular, rubber balloons
stretch significantly during inflation and have 3D rest shapes. By contrast, in-
flatables have great membrane stiffness and negligible stretching strain, and are
manufactured by assembly of piecewise flat rest shapes. These two characteristics
largely affects the simulation and the final appearance of the structure – seams
between adjacent panels are generally visible – and must be taken into account
when developing a proper design tool. In this chapter, we present our solution to
address these specific challenges.

6.1 Introduction

Inflatables are structures made of flat membrane elements that assume complex
curved shapes when pressurized. Thanks to their lightweight nature, rapid de-
ployment, and cost efficiency, they enjoy widespread popularity in entertainment,
advertisement, engineering, and architecture. Made of planar panels, they are easy
to maintain and repair, allow for large physical dimensions and permit decoration
with paint, ink, or other appliques using standard printing methods. Moreover,
they can be quite stiff when inflated, expanding the potential functionality be-
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6 Conceiving Inflatable Structures

yond the realm of purely decorative: inflatable furniture and portable architectural
structures stand alongside foil balloons and parade floats.

Designing inflatable structures requires solving a complicated patterning problem:
what is the shape of the flat panels that we must cut, and how must we interconnect
the panels, such that the final assembly inflates to the desired curved shape? This
task is extremely challenging since the designer must anticipate, and invert, the
effects of pressure on the shape of the structure, while simultaneously taking
into account the aesthetics of seams. The combination of functional and aesthetic
requirements make patterning the most difficult aspect of current manual design
processes.

Our goal in this chapter is to provide a tool to help the designer to make plans
for an inflatable structure that corresponds to a given target shape. Our approach
ensures that the designer retains full control over aesthetic considerations by
discarding fully automated processes in favor of an interactive, optimization-
in-the-loop methodology. As the designer sketches the proposed placement of
seams, the underlying optimizer alleviates the iterative and error-prone tasks of
reverse-engineering the physics of inflation, proposing a set of panels that best
accommodate the desired seams and target shape.

6.2 Overview

We propose an interactive system to easily design inflatable structures that corre-
spond to desired shapes. The workflow of this system is the following: We assume
that the designer already has a certain target shape at hand, perhaps acquired from
real world data, designed via modeling software, or provided as a specification by
a client. After loading the shape in the tool, the user draws a network of seams
defining desired segment boundaries in 3D. As the user creates new segments or
modifies existing seams, an underlying optimization component automatically
generates flat panels for the segments such that the inflated structure is as close as
possible to the target while satisfying the desired seam positions. Once the user is
satisfied with the result, the generated panels can be used to fabricate a physical
prototype. We demonstrate the suitability of our tool on a varied set of simulation
examples, some of which we have fabricated, demonstrating excellent agreement
with the design intent.

Our main contributions in this chapter can be summarized as follows:

• We describe a tool to design custom inflatable structures that allows interac-
tive exploration of different seam layouts, including internal connections and
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Figure 6.1: Pipeline Overview: Given a target shape (left), the user sketches seams
defining desired segment boundaries on the target mesh (second from left). The system
automatically flattens and optimizes the segments such that the inflated structure (middle)
is as close as possible to the target. The generated flat segments (second from right) can
then be used to fabricate a physical prototype (right).

their effects on the inflated shape. Our tool does not require any modeling
expertise since the seams are directly specified on the target mesh.

• We propose a fast physics-based pattern optimizer with integrated remeshing
which supports quasi-inextensible materials. Our optimizer relies on accurate
coarse-scale simulation of wrinkling inflatable membranes motivated by
tension field theory and on a dedicated constrained optimization method
that allows adjustable balance between expected shape approximation and
seam quality.

• We demonstrate the capabilities of our method by designing a representative
set of inflatable structures with complex shapes and elaborate seam layouts
and we validate the feasibility of our designs on three physical prototypes.

The remainder of this chapter is organized as follows. After precisely defining
the notion of inflatable structure in Section 6.3, we describe the interface of our
design tool in Section 6.4. Section 6.5 presents our model for simulating inflatable
membranes and clarifies its connection with tension field theory. Section 6.6
describes our pattern optimizer and provides information on technical details. Our
results are discussed in Section 6.7. and are followed by final remarks in Section
6.8.
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6 Conceiving Inflatable Structures

Figure 6.2: Internal connections (left) allow the designer to realize shapes with sharp
creases and concave features (middle) that would be poorly approximated without internal
structures (right).

6.3 Anatomy of Inflatable Structures

Inflatable structures are made from flat panels, i.e., thin layers of metallic foil, vinyl,
or textile. While our approach does not exclude stretchy materials such as rubber
per se, we target structures that show little stretch but large bending deformations.
We therefore focus on quasi-inextensible materials that exhibit a high resistance to
stretching, but are compliant to bending.

A connection between two panels is called a seam. Depending on the type of
material, seams are created through gluing, heat sealing, or stitching. As an
important design constraints, the segments forming the seam should have the same
length on both panels. Otherwise, the design must be altered during manufacturing
using cuts or pleats.

The shape of inflatable structures is governed by the requirement that they have to
be stable under pressure: the pressure forces must be balanced by membrane forces
in every point on the surface. This equilibrium constraint puts limits on what kind
of shapes can be obtained with a structure that consists of single closed surface.
However, the space of possible designs can be significantly enlarged by allowing
for internal connections (see Figure 6.2). Such internal connections can be used to
attach parts of the surface to each other that would otherwise be pushed apart by
the pressure forces. They can also be used to create creased feature curves.

Having defined an inflatable structure, we now focus on the different features of
our design tool.
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6.4 Design Tool Interface

6.4 Design Tool Interface

This section presents the design system from a user perspective. We start by describ-
ing the different windows of the interface (Section 6.4.1) then explain how seams
can be drawn on the surface of the mesh (Section 6.4.2) and possibly connected to
create internal panels (Section 6.4.3).

6.4.1 Views

The design interface consists of three views: the inflate view, target view, and
pattern view (see Figure 6.3). Each new design session starts by loading a closed
triangle mesh that represents the 3D target shape. The user works in the target
view where he incrementally builds a seam layout that partitions the target mesh
into a set of segments. Once a seam layout or edit is committed, our system flattens
the corresponding segments and begins pattern optimization in the background.
The inflate view immediately shows a preliminary shape for the resulting inflated
structure, obtained by inflating the model with the current patterns, that are shown
in the pattern view. Both views are continuously updated while the optimization
proceeds in the background.

Additionally, three different display modes are available in the inflate view: the seg-
ments mode, the compression field mode and the internal panels mode. The segments
mode allows to easily identify the different pieces of the inflatable structure and
to match them with the corresponding flat patterns. In the compression field mode,
compressed areas are overlaid in red, thus providing the user with an indication of
the location and amplitude of the expected wrinkles (see Figure 6.6). Finally, the
internal panels mode serves to visualize the shape of the internal structures in the
simulation (see Figure 6.4) .

6.4.2 Seam Design

The user draws seams directly on the target model using a spline tool that imple-
ments a geodesics metaphor, i.e., connects seam points by taking an approximately
shortest path on the surface. We represent seam curves using cubic Hermite splines
that are defined through a coarse set of 3D control points. For segmentation, we
simply project the spline curve onto the surface mesh.The seam tool supports
snap-on functionality in order to link new seams to existing ones. In addition, the
user can also edit existing seams by simply dragging control points, as well as
delete selected seams.
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6 Conceiving Inflatable Structures

Figure 6.3: Our design interface, showing the inflated view (top left), target view (top
right), and pattern view (bottom).

Generally, some of the seams will have aesthetic purposes or requirements, while
others simply subdivide a larger region in order to increase the shape approxi-
mation quality. For each of the seams, the user can therefore specify a weight
that indicates how important it is for the seam to remain in its original location
with respect to the target shape. These conditions are then enforced through
corresponding objectives during pattern optimization.

6.4.3 Internal Connections

As a necessary condition for a given shape to be a feasible balloon, it has to be
stable under pressure. Clearly, this requirement limits the space of shapes that can
be realized as balloons. However, the design space can be significantly enlarged
by allowing for internal connections, i.e., panels that are not visible from the
outside and serve a purely functional purpose. Internal connections are created by
connecting existing seams on the surface as indicated by the user (see Figure 6.4).
Technically, internal connections are no different from the other, visible patches.
However, paired with our optimization, internal connections provide a powerful
tool for creating complex shapes with distinct features (see Figure 6.2).

In the next section, we describe our approach to accurately simulate the inflated
mesh from a technical point of view.
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Figure 6.4: Internal panels, visible in the inflate view (left) can be easily created by
selecting sets of seams in the target view (right).

6.5 Simulation

As a core component of our design system, we must be able to rapidly compute the
deformed shape of inflatable structures. Like many other thin structures, inflatables
exhibit a strong resistance to stretching but will wrinkle at the onset of compression.
This behavior poses challenges that our simulation must confront efficiently. This
section explains the strategy that we employ to address these difficulties. We start
by investigating the cause of compressive deformations in inflatable structures
(Section 6.5.1), then present our solution based on tension field theory that allows
us to approximate wrinkling regions by a smooth surface (Section 6.5.2). Our
method relies on a modified membrane energy formulation that is used in our
discrete treatment of the membrane mechanics as described in Section 3.1.2.

6.5.1 Origins of Compression

As a didactic example, consider the simple foil balloon depicted in Figure 6.5,
assembled from two disc-shaped panels. When inflating the balloon, we expect
that (i) the distance between the centers of the two panels increases due to pressure;
(ii) the seam remains on its original plane due to symmetry; (iii) each radial line,
extending from the center to the seam, will remain unstretched due to inextensibility.
To meet these requirements the diameter must decrease during inflation. Corre-
spondingly, the circumference must shrink, implying a compressive deformation
on the seam that is resolved through the typical wrinkles observed in foil balloons
(Figure 6.5, right).

Wrinkling is a characteristic trait of thin surface structures, but a major struggle
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Figure 6.5: Compression-induced wrinkling in a simple foil balloon.

for simulation codes. First, compressions give rise to negative eigenvalues in the
energy Hessian, thus breaking the fundamental assumption of most fast linear
solvers, i.e., a positive-definite matrix. Second, since the location of wrinkles can
usually not be predicted, a simulation mesh with uniformly high resolution is
required. Clearly, both these properties are highly detrimental to efficiency.

The problem of compressions in thin surfaces is not new to graphics. For example,
Choi and Ko [2002] proposed a modified mass-spring system that allows for stable
animations of buckling cloth. Both the original work and its extension to triangle
meshes [Choi and Ko, 2003] handle compressions along buckling springs that
connect pairs of particles that are at topological distance two. However, in order to
provide accurate results even for coarse simulation meshes, we would like a model
that is able to handle compressions along arbitrary directions, irrespective of mesh
structure.

6.5.2 Tension Field Theory

The wrinkling of membranes has been intensively studied in mathematical and
physical sciences [Pipkin, 1986; Steigmann, 1990]. The difficulty of wrinkling
analysis stems from the fact that the elastic energy density is not convex in the
presence of compressions, jeopardizing the uniqueness and existence of solutions.
Tension field theory offers a solution to this problem by postulating a relaxed
energy density that reflects the average energy value in wrinkled regions and
gracefully fades to zero before compressive stresses can occur. The underlying
reasoning is that while wrinkled regions can carry longitudinal loads (so called
tension trajectories), they do not exhibit resistance to transverse deformations. This
formulation enables a macroscopic treatment of wrinkling that accurately captures
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Figure 6.6: Wrinkling analysis using the full model (left), compressive deformations from
the tension field model (middle), real-world prototype (right). Colors indicate compressed
elements with deformations ranging from λ2 = 0.5 to λ2 = 1.

the deformation behavior on the coarse level but abstracts away geometric detail.
There are two important advantages of this approach, both of which translate
directly into computational efficiency: it requires fewer elements and it removes
the problems due to indefiniteness. We will make this concept precise below.

Although the tension field approach does not directly provide geometric informa-
tion on the wrinkles, the compression field does give strong indications on the
locations and the directions of the expected wrinkles. We found these regions to
be in very good correspondence with both the locations predicted by a high-res
simulation of the full model and our actual, fabricated prototypes (see Figure 6.6).

Relaxed Energy Density

As detailed in Section 3.1.4, the deformation around a given point on the surface
can be measured by a 2× 2 matrix, the right Cauchy Green tensor C̃, as defined by
(3.30). The spectral decomposition of C̃ allows us to write the right Cauchy Green
tensor in terms of its principal stretches λ1, λ2 and corresponding eigenvectors N1,
N2 as

C̃ = λ1N1Nt
1 + λ2N2Nt

2 . (6.1)

Without loss of generality, we assume that λ1 ≥ λ2. Assuming that the material is
incompressible and does not exhibit transverse shearing, we can expand C to the
3× 3 tensor

C =

[
C̃ 0
0 J−1

]
, (6.2)
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where J = λ1λ2 is the determinant of C̃. This deformation measure is amenable to
standard material models and we opt for a Neo-Hookean material, whose strain
energy density is defined in terms of the principal stretches as

ψ = κ (tr(C)− 3) = κ

(
λ1 + λ2 +

1
λ1λ2

− 3
)

, (6.3)

where κ is the stiffness coefficient. As described above, the essence of tension field
theory can be condensed into a relaxed strain energy density

ψ̃(λ1, λ2) =


ψ̃sl(λ1, λ2) = 0 λ1 < 1, λ2 < 1
ψ̃tf(λ1, λ2) = ψ(λ1, λ̃2(λ1)) λ1 ≥ 1, λ2 < λ̃2(λ1)

ψ̃fm(λ1, λ2) = ψ(λ1, λ2) λ1 ≥ 1, λ2 ≥ λ̃2(λ1)

(6.4)

where λ̃2 is the energetic minimum of λ2,

λ̃2(λ1) = argmin
λ2

ψ(λ1, λ2) =
1√
λ1

. (6.5)

This relaxed energy density can then be explicitly written as

ψ̃(λ1, λ2) =


ψ̃sl(λ1, λ2) = 0 λ1 < 1, λ2 < 1

ψ̃tf(λ1, λ2) = κ
(

λ1 +
2√
λ1
− 3
)

λ1 ≥ 1, λ2 <
1√
λ1

ψ̃fm(λ1, λ2) = κ
(

λ1 + λ2 +
1

λ1λ2
− 3
)

λ1 ≥ 1, λ2 ≥ 1√
λ1

. (6.6)

The three cases listed in (6.4) are illustrated in the inset figure.
For the first case (a), the surface is assumed to be slack,
i.e., both stretches are negative and the energy is set to
zero. The second case (b) corresponds to wrinkling and
the original model is applied with the compressive stretch
replaced by its energetically optimal value. The third case
(c) corresponds to a taught surface with both stretches
positive for which the original model can be applied with-
out modifications. Since the first and second cases are
energetically optimal with respect to compressive stretch,
the material model will never give rise to compressive
stresses.

It is worth noting that the modified energy density ψ̃ is
convex but only C1 continuous. The discontinuities in
the relaxed energy’s second derivatives are clearly visible
in Figure 6.7. Although we did not notice any adverse
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Figure 6.7: Landscape of the relaxed energy derivatives. Before smoothing (top), disconti-
nuity lines (red) are clearly visible at the transition between the different regimes. After
smoothing (bottom), the discontinuities have been replaced by interpolating transition
zones (red) based on quadratic functions.

effects when solving for equilibrium states, the discon-
tinuous force derivatives pose a significant problem for optimization since the
formulation of the constraints directly depends on these forces (see Section 6.6).
Instead of turning toward sophisticated methods for nonsmooth optimization, we
preferred to smooth the transitions between the different regimes using quadratic
interpolation. Our approach is presented below.
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Figure 6.8: Illustration for the construction of a transition function h interpolating the
two scalar functions g1 and g2 of Equation (6.7) and their first derivatives.

Smoothing the Relaxed Energy Density Derivatives

We start by considering the simple one-dimensional problem depicted in Figure 6.8,
where c is a constant, ε > 0 and g1 and g2 are two scalar functions defined by

g1 : x 7→ 0 and g2 : x 7→ cx . (6.7)

Our goal is to define a quadratic transition function h over [−ε,+ε] that interpolates
g1 and g2 and their first derivatives such that

g1(−ε) = h(−ε) ,
g′1(−ε) = h′(−ε) ,
g2(ε) = h(ε) ,
g′2(ε) = h′(ε) .

(6.8)

This function is defined by

h : x 7→ c
4ε

x2 +
c
2

x +
cε

4
, x ∈ [−ε, ε]. (6.9)

This result can be applied with little modification to the slightly more general case
where g1 and g2 are defined by

g1 : x 7→ a and g2 : x 7→ cx + d , (6.10)

with a, b and c 6= 0 given constant parameters.

Letting xI =
a−d

c denote the abscissa of the intersection between the graphs of
g1 and g2, we can define the transition function h over [xI − ε, xI + ε] which
interpolates g1 and g2 at {xI − ε} and {xI + ε} by

h : x 7→ c
4ε

t2 +
c
2

t +
cε

4
+ a, t = x− xI , x ∈ [xI − ε, xI + ε]. (6.11)
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Figure 6.9: Illustration for the construction of a transition function h smoothing the first
derivative of the univariate function ψ̃λ2 .

We can now focus on our original problem, i.e. the smoothing of the derivatives
of the relaxed energy ψ̃. The discontinuities in its second derivatives appears
between ∂ψ̃sl

∂λ1
and ∂ψ̃tf

∂λ1
, ∂ψ̃tf

∂λ1
and ∂ψ̃fm

∂λ1
, and ∂ψ̃tf

∂λ2
and ∂ψ̃fm

∂λ2
. In what follows, we detail

the construction of the transition function between ∂ψ̃sl
∂λ1

and ∂ψ̃tf
∂λ1

. The approach can
be directly adapted to smooth out the two other discontinuity lines.

For every λ2, we keep λ2 fixed and smooth the first derivative of the univariate
function ψ̃λ2 : λ1 7→ ψ̃(λ1, λ2). In order to make the size of the transition interval
converge to 0 as λ1 and λ2 converge to (1,1), we first define its upperbound u by

u = 1 + δ(1− λ2) , (6.12)

where δ is a given parameter.

We then define the function interpolating ψ̃λ2 using the previous result (equa-
tion (6.11)) with

a = ∂ψ̃sl
∂λ1

(1, λ2) ,

c = ∂2ψ̃sl
∂λ2

1
(u, λ2) ,

ε = 1
c

∂ψ̃tf
∂λ1

(u, λ2) ,

xI = u− ε ,

(6.13)

as illustrated on Figure 6.9.
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6.5.3 Discretization

We proceed to the discretization of the relaxed energy function and its derivatives
using Constant Strain Triangles as described in Section 3.1.4.

We let m denote the number of external and internal panels of the inflatable
structure. The geometry of each panel in its undeformed state is described by a
triangle mesh Pi. The deformed mesh, comprising all panels, is denoted byM.
Furthermore, we let x ∈ R3n denote the vector of deformed positions for the n
nodes of the surface. Likewise, x̄ ∈R2N holds the positions of the N undeformed
panel vertices in their two-dimensional domain. Note that N > n since, for each
deformed vertex on a panel boundary inM, there are at least two corresponding
undeformed vertices from boundaries of different panels.

The internal forces fint
i at each node are obtained as

fint
i = − ∑

e∈Fi

∂ψ̃e

∂xi
Ve = − ∑

e∈Fi

(
∂ψ̃e

∂λe
1

∂λe
i

∂xi
+

∂ψ̃e

∂λe
2

∂λe
2

∂xi

)
hAe

where Fi denotes the set of triangle elements incident to the vertex i, Ae is the
initial area of element e, h is the thickness of the panels and Ve = hAe is the volume
of e. It is evident from this expression that the gradient and Hessian of (6.4)
require the first and second derivatives of the principal stretches. We provide the
corresponding derivations in Appendix B.

We assume that the inflatable is made of a light-weight material and that the
pressure inside the structure is much higher than external pressure. Under these
assumptions, we can safely ignore effects due to self weight and only consider
pressure forces, which we define directly in the discrete setting as

fp
i = p

∂V
∂xi

= ∑
e∈Fi

1
3

pAene , (6.14)

where p is the pressure value and ne and Ae are the outward normal and the area
of element e. The shape of the inflated structure can then be computed by solving
the static equilibrium problem

fint
i (x, x̄) + fp

i (x) = 0, 1≤ i ≤ n . (6.15)

6.6 Automatic Pattern Generation

Our system combines user-guided seam design with automatic pattern generation.
During seam design, the user will repeatedly invoke the pattern optimization
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scheme in order to explore the effect of a given layout or edit on the inflated
structure.

Formally, given a target mesh T and a set of seam lines segmenting the mesh into
m parts, we seek to find optimal panel shapes x̄ for each part such that the distance
between the inflated meshM and the target mesh T is as small as possible. We
cast this goal into the form of a constrained minimization problem,

min
x,x̄

E(x, x̄) s.t. f(x, x̄) = 0 , (6.16)

where the constraints f(x, x̄) = 0 require force equilibrium in every node and
E(x, x̄) summarizes various objective terms, which we detail in the next section.
We solve this optimization problem using the Sequential Quadratic Programming
(SQP) method presented by Byrd et al. [2010] and summarized in Chapter 3, that
guarantees progress even in non-convex regions.

6.6.1 Objectives

Distance to Target

In order to quantify the distance between the inflated meshM and the target mesh
T , we construct a distance field on T using implicit moving least squares [Öztireli
et al., 2009]. The distance penalty is defined as

Etarget(x) = ∑
i

∑k nk · (xi − ck)φk(x)
∑k φk(x)

, (6.17)

where φk(x) =
(

1− ||x−Xk||22
h2

)4
are locally-supported kernel functions that vanish

beyond their support radius h, that we set to twice the average length of the
target mesh edges, while ck and nk denote the vertex positions and normals of T ,
respectively. This measure allows the vertices ofM to slide freely over T , whereas
a simpler pair-wise vertex distance would lead to bias and thus unnecessarily
restrict approximation quality.

Seam Locations

Seams are critical to the aesthetics of inflatable structures. Our interface provides
tools that allow the user to rapidly create seam layouts on the target surface. Some
of these seams simply split larger areas into smaller parts, in which case their exact
location is not critical. Our optimization can leverage such freedom for better
shape approximation. Others, however, serve an important aesthetic role that the
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final inflatable structure has to respect by adhering to the shape and location of
the seams. We therefore let the user specify the importance of a given seam Si by
assigning a weight σi to it that determines how strongly the corresponding seam
vertices onM are attracted to their target locations on Si. We define the penalty
function based on vertex-wise L2-distance as

Ei
seam(x) = σi ∑

j∈Sj

||xj − sj||22 , (6.18)

where sj denotes the target position for xj on the seam. It is worth noting that the
seam vertices are not restricted to be a subset of the vertices ofM—seams can run
freely across the target surface.

Fabrication Constraints

In order for two panels Pj and Pk to join in a seam, the corresponding boundary
segments must have the same length on both panels. Otherwise, discrepancies
have to be corrected a posteriori using cuts or pleats, which increases fabrication
time and degrades the visual quality of the product. We enforce this equal-length
requirement per seam as

Elength(x̄) =
se

∑
i=1

(Li
j(x̄)− Li

k(x̄))
2 , (6.19)

where se is the number of seam edges in M and Li
j and Li

k are the lengths of
corresponding edge vectors on the boundaries of Pj and Pk. While the lengths of
the boundary segments have to be the same, they can, and generally will, exhibit
different curvatures. Nevertheless, boundaries should still remain smooth, which
we encourage with a corresponding penalty term,

Esmooth(x̄) =
m

∑
i=1

bi

∑
j=1
||q̄i

l − 2q̄i
j + q̄i

r||22 , (6.20)

where bi is the number of non-corner boundary vertices q̄i of panel Pi, whereas q̄i
l

and q̄i
r denote the left and right neighbors of boundary vertex q̄i

j.

Regularization

The distance energy (6.17) allows the vertices x to slide on the target surface, but
this freedom comes at the price of a nullspace: for any displacement of a given
internal panel vertex x̄i, there is a corresponding world-space displacement xi such
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6.6 Automatic Pattern Generation

that neither objectives nor constraints change. In order to obtain a well-posed
problem, we use a Laplacian regularizer that asks for a smooth distribution of
internal panel vertices as

Elaplace(x̄) =
m

∑
i=1

ni

∑
j=1
L(x̄j) , (6.21)

where L(x̄j) is the Tutte Laplacian [Tutte, 1963]. As a desirable side effect, this
regularizer also promotes well-shaped elements.

6.6.2 Initial Flattening

The final shape of the patterns is obtained by solving the constrained minimization
problem (6.16). However, a good initial guess is crucial for rapid convergence. In
principle, any mesh parametrization method can be used to create an initial guess.
A particular aspect of our setting is, however, that the shape of the panels is entirely
defined by their boundary vertices—the shape of interior elements is, to a large
extent, an afterthought. Among the many existing methods, we therefore took
inspiration in one that preserves the lengths of the segment boundaries [Wang,
2008].

We start by converting the user-provided seams, represented by smooth spline
curves, into sets of edge vectors, defining a segmentation of the target mesh T . For
each segment, we first flatten its boundary qi by minimizing an objective function
that penalizes squared differences in edge lengths and internal angles as

Efl(q̄i) =
bi

∑
j=1

1
lij
(l̄ij(q̄i)− lij)2 + lj(θ̄j(q̄i)− θj)

2 , (6.22)

where l̄ij are the lengths of the boundary edges of panel Pi and lij are the corre-
sponding lengths in T . Moreover, θ̄j is the sum of internal angles around q̄i

j, θj
is the corresponding quantity on T , and lj is the average length of the two edges
incident to qi

j. The resulting nonlinear problem is solved with a few iterations
of Newton’s method. Keeping the boundary vertices fixed, the positions of the
internal vertices are then computed by minimizing a Laplacian energy analogous
to (6.21), which amounts to a single linear solve.

We note that, although a good initial guess helps speed convergence, our optimiza-
tion scheme is not very sensitive to this choice. The example shown in Figure 6.10
puts this robustness to a test, using D-Charts and ABF++ (see [Julius et al., 2005])
as initial guess for the three panels of a spherical balloon. Here, the lengths of the
panel boundaries are very different from the corresponding lengths on the target
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6 Conceiving Inflatable Structures

Figure 6.10: Pattern optimization for a spherical balloon. The balloon (left) and its
patterns (right) are shown for the initial guess (top), and after optimization (bottom).

shape. Nevertheless, our method is able to find panel shapes that allow for a close
approximation of the target. It is also worth noting that, since the seams were not
restricted to stay in place, the final patterns are very different from the initial guess,
revealing a surprisingly symmetric and elegant solution.

6.6.3 Remeshing

Figure 6.10 exemplifies the potential difference between initial and final patterns.
In order to robustly handle such extreme changes in size and shape, we integrate
the optimization with a remeshing method that maintains well-shaped elements
at all times. A number of works in graphics have explored the integration of
remeshing and simulation, either globally [O’Brien and Hodgins, 1999; Bargteil et
al., 2007; Wojtan and Turk, 2008] or in a locally adaptive manner [Wicke et al., 2010;
Narain et al., 2012]. Since our mesh sizes are comparatively small, we opt for a
global remeshing scheme that builds on Triangle [Shewchuk, 1996]. Remeshing is
invoked whenever the aspect ratio of an element falls below a given threshold. We
first resample the boundaries of the patches to satisfy a minimum- and maximum-
length criteria on the edges, maintaining correspondence between adjacent patches.
We then invoke Triangle to remesh the interior of each patch and carbon-copy all
changes to the inflated mesh as well as the target mesh.
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6.7 Results

We used our design system to create a diverse set of inflatable structures, seven of
which we present and discuss in this section. Information regarding the number
of elements and the number of panels of these models is provided in Table 6.2.
For validation, we also created physical prototypes for three of these examples.
The design interface and the results are demonstrated in Figures 6.12 and 6.13.
The fabricated models are made out of PVC plastic sheets. The optimized patches
generated by our system were cut with a computer-controlled cutting machine
and then manually hot sealed. In the following section, we validate some of our
design decisions and discuss our results in more detail.

Simulation

We compared our relaxed energy density based on tension field theory to a full
simulation using the strain energy density of an incompressible Neo-Hookean
material as stated in (6.3). The full simulation for the Teddy model shown in
Figure 6.11 with ≈59k elements took more than two hours, whereas our relaxed
energy density is computationally more efficient because it requires fewer elements
and avoids problems due to indefiniteness. We tested our simulation approach
with several different resolutions, ranging from ≈3k elements to ≈59k elements,
and report the approximation error in Figure 6.11. The computation for the three
meshes of≈3k, ≈15k and≈59k elements took 4.5, 77 and 157 seconds, respectively.
In practice, we observed that already with a coarse mesh we are able to obtain
satisfactory accuracy and therefore choose for all our models a low mesh resolution
while still resembling the shape of the original object.

Performance of Optimization

To evaluate the performance of our optimization, we start from a given seam layout
and measure the required time for convergence when no later edit is performed.
This comprises the initial flattening, initialization of all data structures, remeshing
operations and subsequent data structure updates, as well as optimization. The
optimization is the most expensive step of the process but the evaluation of the
different involved quantities largely dominates the linear solves.. All computations
were done on a standard desktop computer with 3.20 GHz and 12 cores. Our
research prototype is written in C++ and, except of solving the system of equations,
not yet parallelized, leaving room for significant speed-ups. As a stopping criterion,
we require the infinity-norm of the gradient of the Lagrangian corresponding to
(6.16) to be smaller than tol = 10−3, whereas a tighter tolerance of tol = 10−5
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6 Conceiving Inflatable Structures

Figure 6.11: Comparison of simulations with relaxed energy model on meshes with
resolutions of 3k, 15k, and 59k elements to a reference simulation using the original energy
on the 59k mesh. Colors indicate per-vertex difference for a unit size model.

Model #Remeshing #Iterations / Time[s] #Iterations / Time[s]
steps preview full convergence

Sphere 5 8 4 128 21
Teddy 2 23 17 193 258

Fox 4 11 35 398 420
Twisty 2 15 33 247 430

Flower (bottom) 3 51 60 298 546
Flower (top) 3 47 69 197 506

Tentacle 2 9 23 175 131
Elephant 3 30 137 401 1768

Table 6.1: Processing time for our results. Timings are given for preview quality (relative
error between displayed mesh and final result < 5% of the size of the model) and full
convergence (gradient of objective < 1.e−3 and forces < 1.e−5)

is used for the forces. We use the same thresholds for all models presented in
this chapter. Table 6.1 lists detailed performance numbers of our algorithm for
all examples, the number of required remeshing steps, and the number of SQP
iterations. In practice, we observed that already after a few iterations the result is
close to the final solution. We therefore opted to visualize the incremental steps of
the optimization to the user, providing fast visual feedback and intuition about
the quality of the seam placement. As shown in Table 6.1, after less than a minute,
the relative error measured between the starting point of the optimization and the
final converged result is below 5%, and therefore provides sufficient accuracy for a
pre-visualization.
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Seam Placement

The approximation quality, i.e., how well a given inflatable structure matches its
target shape, depends on the number of patches as well as the seam layout. In
our experiments we observed that there is a tradeoff between shape approxima-
tion and aesthetic requirements. As illustrated in Figure 6.10, seams can slide
significantly during the optimization on the target surface. We allow the user to
intuitively control the admissible amount of sliding by adjusting the weight of the
corresponding penalty term (6.18). If seams are assigned a small weight, they can
move such as to optimize the overall shape approximation. If seams are assigned a
high weight, they stay close to their target location in 3D. As the location of the
seams is generally very important for the aesthetics of the inflatable structure, we
used relatively high weights for all models, except for the “Sphere”. This approach
proved particularly important and effective for modeling the “Fox” (Figure 6.12),
for which characteristic features such as the eyes, and eyelids were delineated by
corresponding seams.

Our interface allows non-expert users to efficiently add, edit, and replace seams
and explore the impact of these operations on the inflated shape in an interactive
manner. On average, designing a foil balloon took between 8 minutes for simple
models (“Teddy”) and less than half an hour for sophisticated models with internal
connections (“Fox”).

Internal Connections

Several of our models (“Fox”, “Elephant”, “Flower”, “Twisty”) rely on internal
connections, which are created by connecting existing seams on the surface as
indicated by the user. As shown in Figure 6.2, internal connections can be used,
for example, to create sharp concave creases—a salient feature for many models.
Figures 6.12 and 6.13 visualize the internal patches generated by our method and
demonstrate that the resulting inflated shapes are in very good agreement with
the desired behavior.

6.8 Discussion and Outlook

In this chapter, we presented a design system for creating inflatable structures made
from flat panels. The enabling technology of our system is an automatic physics-
based pattern generation method, combining fast simulation based on tension field
theory and robust constraint optimization. Bound to an intuitive user interface,
even non-expert users are able to design and explore intricate structures by simply
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6 Conceiving Inflatable Structures

drawing and editing seams on an input model. As demonstrated by our results,
our system also supports internal connections, thus significantly broadening the
range of shapes that can be designed.

The shape of the flat panels is automatically computed by the system. However,
input meshes that flatten to exceedingly thin panels pose challenges for subsequent
remeshing and optimization. It would be helpful to automatically update the
segments’ connectivity during the optimization and merge thin panels to adjacent
panels automatically. Also, we make no attempt at inferring the location of internal
connections in an automatic way nor automatically consider geometric properties
of our input model such as ridges, symmetries or curvature. Future work could
include higher-level tools that exploit this information for supporting the seam
placement or for auto-completion of partially drawn seams.

Finally, even with internal connections, there is a limit on what kind of shapes
can be obtained with an inflatable structure. For example, planar regions and
sharp convex edges (as shown in the “Twisty” example, Figure 6.13) are inherently
difficult to reproduce. For future work, it would be interesting to indicate at
the beginning of the design process infeasible regions and limits on achievable
approximations.
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Figure 6.12: Overview of our results (from left to right): input model, input model with
seam layout, nonoptimized inflated shape, optimized result with seams, optimized result,
fabricated prototype. The rows show (from top to bottom) the Sphere, Teddy, and Fox
examples.

Model #Elements #Total Panels #Internal Panels

Sphere 692 3 0
Teddy 2974 17 0

Fox 7544 22 3
Twisty 6084 34 3

Flower (bottom) 6069 12 1
Flower (top) 7888 23 0

Tentacle 4458 21 0
Elephant 14436 40 2

Table 6.2: Model Statistics.
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6 Conceiving Inflatable Structures

Figure 6.13: Overview of results (from left to right): input model, input model with seam
layout, nonoptimized inflated shape, optimized result with seams, optimized result without
seams. The rows show (from top to bottom) the Tentacle, Flower, Elephant, and Twisty
examples.
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C H A P T E R 7
Conclusion

This chapter concludes the thesis by summarizing and discussing its principal
contributions and by suggesting directions for potential future work.

7.1 Discussion

This thesis addressed a general problem which can be succinctly formulated: if we
want to fabricate an object whose behaviour can be described by a set of deformed
poses, what are the best values for the parameters that we are free to modify to
best approximate the target shapes? Although the question is concise, the solution
is not. It is hard, not to say impossible to come up with a black box which simply
takes the inputs and automatically computes the outputs without specialized
implementations. What degrees of freedom should we actually consider? How
should we parametrize the design space? How to best measure optimality? What
optimization scheme should we use? All these aspects are closely related to the
specific instance of the problem which is considered and affect the capabilities of
the final design system.

In this context, contributions of this work are two-fold. First, we demonstrated
that for the three applications that we investigated, the design space in which
we worked, as well as the proposed design workflow, allow sufficient freedom
to fabricate objects of a large variety of shapes with limited user input. Second,
we presented effective solutions to simulate and optimize the associated physical
systems.
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More specifically, in the context of custom rubber balloon design, we showed that
a Hart-Smith material model with experimentally fitted parameters accurately cap-
tured the behaviour of silicone and latex; we demonstrated that complex inflated
balloon shapes could be matched by automatically optimizing the balloons’ rest
shapes and that the resulting meshes could be used to 3D-print balloon positive
molds for actual balloon fabrication.

We then presented a comprehensive process to create actuated deformable charac-
ters actuated by pins, strings or posed by hand. Our approach, centered around
a three-stage optimization component, allows automatic computation of the ac-
tuation system and the material distribution of a figure expected to physically
replicate some target animation. We first estimate the number of needed strings
or pins by considering a dense set of actuators on the boundary of the model
and discarding unnecessary ones using sparse regularization. We then refine the
locations of the resulting actuators by letting them slide on the surface which is
defined by an implicit distance field. We complete our approach by eventually
computing rigid structures to embed in the object in order to further improve the
final matching quality. This last problem is addressed from a material distribution
perspective but instead of solving the discrete problem directly, we opted for a
relaxed formulation which allows us to use continuous optimization techniques.

Finally, in the last part of the thesis, we focused on the design of inflatable structures
made of flat panels and introduced an accurate coarse-scale simulator for inflatable
membranes using tension field theory. We combined it with a physics-based pattern
optimizer with integrated remeshing to compute optimally-shaped panels, such
that the inflated structure matches a provided target shape with panels boundaries
being at manually sketched locations. By letting the user interactively update the
desired seam positions on the target shape, our tool warrant easy exploration of
different seam layouts with limited effort and expertise.

This last application allowed us to tackle the tricky question of the amount a control
required by a design tool. In the case of panel-based inflatable structures, seam
placement is crucial both for aesthetics, and for structural design, it was therefore
a strong candidate for an iterative interactive approach. However, properly bal-
ancing between user input and automation is generally delicate. The solution is
not unique and depends on the familiarity of the targeted users with the problem.
While computer-aided systems are unanimously welcomed, experts tend to expect
fine tuning tools whereas novice users typically prefer high level control or fully
automated systems.
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7.2 Future Directions

This thesis proposed novel tools and algorithms to design and fabricate diverse
types of custom objects. While we looked at the design problem from various an-
gles, several aspects were not covered in this work. Also, many applications, with
their associated challenges, remain unexplored, offering many exciting avenues
for future research.

The design framework that we propose is based on concepts stemming from vari-
ous disciplines, belonging themselves to active research fields. Any progress in
related areas would automatically benefit to our system. In particular, many of
the optimization problems that we derived involve non linear objectives with non
linear constraints, most of them being non convex. Exploration of novel optimiza-
tion techniques and alternative formulations would be consequently worthwhile.
Likewise, our physics based optimization component relies on accurate simulation
of the behaviour of the object to design. Although the approach that we take,
based on standard finite element techniques, performed effectively, it would be
valuable to analyse the behaviour of the physics-based optimization unit when
novel simulation methods such as recent point-based schemes [Müller et al., 2004;
Martin et al., 2010] are employed.

Combinatorial problems, known to be NP hard, naturally arise in many applica-
tions but techniques to approach specific instances exist. In this thesis, we looked
into some problems of this class and proposed novel formulations allowing to
use efficient continuous optimization methods. For example, in Chapter 5, we
solved for a discrete material distribution problem by turning towards a relaxation
technique. Similarly, we optimized for actuators locations by incorporating sparse
regularization to our objective function. However, in many cases, combinatorial
problems still remain challenging to solve. In Chapter 6, we increased the number
of feasible inflatables’ designs by allowing for internal connections between exist-
ing panels. Automatic creation and placement of such structures is not trivial and
we let the user solve the combinatorial task of selecting the pieces to be connected.
In general, because of their intrinsic difficulties, many combinatorial problems
remain open and would deserve proper investigation.

In this thesis, we focused on the design of deformable solids and inflatable shells
but the framework that we presented could be extended in many ways. First,
control of other physical systems could be investigated. Exploration of cloth design,
in particular, would be an exiting direction for future work. Handling of additional
types of materials, such as anisotropic fabrics, would be thus very useful. In the
context of solids’ design, heterogeneous structures were investigated in Chapter 5,
but our study was limited to two-material objects. Generalizing the method to an
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arbitrary number of materials, or translating the approach to a micro-structure level
would enlarge the range of emulated material behaviours and certainly increase the
number of design possibilities. The effects of additional types of forces could also
be investigated. In this thesis, we studied the actions of — possibly moving — fixed
attachment points, but torque was not considered. Impulses, friction, contact forces
due to collisions in general, were also discarded in this work. Mordatch et al. [2012]
lately introduced a method to synthesize complex human behaviour involving
manipulation of the environment. By introducing auxiliary decision variables,
they simultaneously optimize for contacts and character motions. Their contact-
invariant optimization scheme is an interesting option to cope with the challenges
related to collision handling. Further exploration of such approaches would be
helpful for the design of mutually interacting deformable systems. Finally, effects
of external forces could be incorporated to the optimization objective function as
desirable properties of the object to manufacture: the user could specify whether
an inflatable should float, fly, support a certain weight, or if a character should
walk, jump, dance, etc. Taking such general characteristics into account will most
likely increase the dimensionality of the design solution. How to best analyse and
explore the resulting Pareto front are interesting related research questions.

Designing dynamic systems remains a challenging task. We broached this topic in
Chapter 5 by extracting key frames from an input animation and by optimizing
the system variables for all the target deformed poses simultaneously, assuming
quasi-static deformations. However, while this appeared to be sufficient for ani-
mations with limited secondary motion, physical replication of highly dynamic
sequences would most likely require a better suited approach. Simulation of such
systems typically implies solving an initial value problem, arising from the spacial
discretization of the equations of motion in time. Moreover, the level of accuracy
required in the context of fabrication-oriented design means using an implicit
integration scheme, and thus involves nonlinearly coupled variables. Although
it would be possible to adapt the feasibility conditions of our physics-based opti-
mizer and take into account velocity unknowns for all the time steps, the size of
the system to solve would quickly become prohibitive. A promising approach is
to work in a lower dimensional space to decrease the problem complexity. While
such a methodology has successfully been applied to the control of key-frame
based animations [Barbič et al., 2009], finding the most adapted reduced space
for physical replication of dynamic systems is still an open — but very exciting —
problem.

The tools we developed in this work require very little knowledge and expertise
in shape modeling and can be used by a large range of users. By relying on
data-driven approaches, we reduced the design process to the import of geometry
and to the specification of high level features. However, any target mesh is not
necessarily a feasible shape from the physics perspective. Design optimality in
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such case is not a well defined concept. Analysis and correction, when necessary,
of the provided inputs, automatically or using physics-aware editing tools, are
complementary and still challenging tasks, conducive to future research.
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A P P E N D I X A
Energy Functions for Material Models

This appendix lists the constitutive equations of the hyperelastic materials that we
used in this work, either for modeling or comparison.

As in the main part of this thesis, we let F denote the deformation gradient, C = FtF,
the right Cauchy Green tensor and I1, I2 and I3, the three invariants of C defined as

I1 = tr(C) = λ2
1 + λ2

2 + λ2
3 ,

I2 = 1
2(tr(C)2 − tr(CtC)) = λ2

1λ2
2 + λ2

2λ2
3 + λ2

3λ2
1 ,

I3 = det(C) = λ2
1λ2

2λ2
3 ,

(A.1)

where λ1, λ2 and λ3 are the eigenvalues of F.

Many models use distinct terms to distinguish between the change in shape and
the change in volume of a material’s infinitesimal element. To this end, the material
energy function is often described in terms of the new invariants

J =
√

I3 ,
Ī1 = J−

2
3 I1 ,

Ī2 = J−
4
3 I2 .

(A.2)

In what follows, we formulate the equations for the compressible versions of the
material models. When the change in volume is very small, it is convenient to
assume that the material is perfectly incompressible. This requirement can be
directly integrated into the formulas below by setting J to 1. In this case, we also
have Ī1 = I1 and Ī2 = I2.
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Saint Venant-Kirchhoff

The energy density of a Saint Venant-Kirchhoff material, which extends linear
elastic materials to nonlinear regimes, has the form

Ψ =
λ

2
[tr(E)]2 + µtr(E2) , E =

1
2
(C− I) , (A.3)

where λ and µ are material constants, the so-called Lamé’s parameters.

Neo-Hookean

When dealing with relatively large deformations, another popular choice is the
Neo-Hookean material model, capable of reproducing nonlinear stress-strain be-
haviours. Its energy density is given by

Ψ =
µ

2
( Ī1 − 3) +

κ

2
(J − 1)2 , (A.4)

where µ and κ are the material parameters.

Mooney-Rivlin

The Neo-Hookean model is actually a special case of the more general Mooney-
Rivlin model, which uses the tree invariants Ī1, Ī2 and J as

Ψ =
µ1

2
( Ī1 − 3) +

µ2

2
( Ī2 − 3) +

κ

2
(J − 1)2 , (A.5)

with µ1, µ2 and κ, the material constants.

Ogden

For complex hyperelastic materials, the material behaviour can be accurately
described using an Ogden model, that is defined in terms of the eigenvalues of F as

Ψ =
N

∑
j=1

2µj

α2
j
(λ̄

αj
1 + λ̄

αj
2 + λ̄

αj
3 − 3) +

κ

2
(J − 1)2 , (A.6)

where λ̄i = J−
1
3 λi, 1≤ i ≤ 3, and µj, αj and κ are material parameters.
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Hart-Smith

For large strains, rubber materials typically exhibit an energy growth which is
an exponential rather than a polynomial function of the invariants. The empiri-
cal model of Hart-Smith takes this behavior directly into account, describing an
exponential strain energy function through its derivatives as

∂W
∂I1

= G · ek1(I1−3)2
,

∂W
∂I2

= G · k2

I2
, (A.7)

where k1, k2 and G are material constants.
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A P P E N D I X B
Derivatives of Principal Stretches

In this appendix, we derive the expressions for the derivatives of the principles
stretches with respect to the coordinates of the mesh vertices in the deformed
configuration.

Again, we let C denote the right Cauchy-Green tensor C = FtF, where F is the
deformation gradient. Here we restrict considerations to the two-dimensional
setting, noting that an extension to three dimensions is straightforward through
kinematic assumptions 1. We express C in terms of principal stretches (eigenvalues)
λi and corresponding principal directions (eigenvectors) Ni as

C = ∑
i

λiNiNt
i , where λi = Nt

iCNi . (B.1)

Without loss of generality, we assume that N1 corresponds to the direction of
maximum stretch λ1. In our two-dimensional setting, the unit-length vector N1
can be parametrized by a single scalar α as

N1(α) = (cos(α), sin(α))t (B.2)

The second eigenvector N2 of C is orthogonal to N1

N2(α) = (−sin(α), cos(α))t . (B.3)

We note that
N2 =

∂N1

∂α
and N1 = −

∂N2

∂α
. (B.4)

1the stretch in the thickness direction is inferred from in-plane stretches assuming constant volume,
i.e., det(C) = 1.
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B Derivatives of Principal Stretches

For computing the derivatives of the principal stretches, we will focus on λ1 for
the sake of conciseness. Analogous expressions hold for λ2. The first derivative of
the maximum stretch is determined as

∂λ1

∂x
=

∂

∂x
(Nt

1CN1) (B.5)

=
∂Nt

1
∂x

CN1 + Nt
1

∂C
∂x

N1 + Nt
1C

∂N1

∂x
(B.6)

=

(
∂N1

∂α

∂α

∂x

)t
CN1 + Nt

1
∂C
∂x

N1 + Nt
1C
(

∂N1

∂α

∂α

∂x

)
(B.7)

=
∂α

∂x

t
Nt

2CN1 + Nt
1

∂C
∂x

N1 + Nt
1CN2

∂α

∂x
(B.8)

= Nt
1

∂C
∂x

N1 , (B.9)

where the last transformation follows from the fact that CN1 = λ1N1 and Nt
2N1 = 0.

It is evident from these expressions that the only derivatives required are those of
C, which are easily computed2.

The second derivative follows as

∂2λ1

∂x2 =
∂

∂x
(Nt

1
∂C
∂x

N1) (B.10)

=
∂Nt

1
∂x

∂C
∂x

N1 + Nt
1

∂2C
∂x2 N1 + Nt

1
∂C
∂x

∂Nt
1

∂x
(B.11)

=

(
∂N1

∂α

∂α

∂x

)t ∂C
∂x

N1 + Nt
1

∂2C
∂x2 N1 + Nt

1
∂C
∂x

(
∂N1

∂α

∂α

∂x

)
(B.12)

=
∂α

∂x

t
N2

∂C
∂x

N1 + Nt
1

∂2C
∂x2 N1 + Nt

1
∂C
∂x

N2
∂α

∂x
. (B.13)

The first and last term of (B.13) can be further simplified. Using the fact that
Nt

1CN2 = 0 we have

∂

∂x
(Nt

2CN1) = Nt
2

∂C
∂x

N1 +
∂N2

∂x

t
CN1 + Nt

2C
∂N1

∂x
= 0 , (B.14)

and therefore

Nt
2

∂C
∂x

N1 = −
(

∂N2

∂α

∂α

∂x

)t
CN1 −Nt

2C
(

∂N1

∂α

∂α

∂x

)
(B.15)

=
∂α

∂x

t
N1CN1 −Nt

2CN2
∂α

∂x
(B.16)

= (λ1 − λ2)
∂α

∂x

t
. (B.17)

2Using Constant Strain Triangles for discretization, the deformation gradient F is a linear function
of x such that C is quadratic in positions.
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Using (B.17) in (B.13), we have

∂2λ1

∂x2 = 2(λ1 − λ2)
∂α

∂x
∂α

∂x

t
+ Nt

1
∂2C
∂x2 N1 . (B.18)

Finally, by using (B.17) in (B.15) we obtain

∂α

∂x

t
=

1
λ1 − λ2

Nt
2

∂C
∂x

N1 (B.19)

and can thus compute the second derivative of λ1.

It should be noted that (B.17) and (B.19) are not well-defined when λ1 = λ2, in
which case the eigendecomposition of C becomes non-unique anyways. For the
application described in Chapter 6, however, this problem does not arise since the
case of λ1 = λ2 is handled by the original energy density

ψ(λ1, λ2) = κ

(
λ1 + λ2 +

1
λ1λ2

− 3
)
= κ

(
tr(C) +

1
detC

− 3
)

, (B.20)

which does not require eigenvalues.
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[Twigg and Kačić-Alesić, 2011] Christopher D. Twigg and Zoran Kačić-Alesić. Op-
timization for sag-free simulations. In Proceedings of Symposium on Computer
Animation, pages 225–236, 2011.

[Umetani and Schmidt, 2013] Nobuyuki Umetani and Ryan Schmidt. Cross-
sectional structural analysis for 3d printing optimization. In SIGGRAPH Asia
2013 Technical Briefs, pages 5:1–5:4, 2013.

[Umetani et al., 2011] Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi,
and Eitan Grinspun. Sensitive couture for interactive garment modeling and
editing. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 30(4):90:1–
90:12, 2011.

[Umetani et al., 2012] Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra.
Guided exploration of physically valid shapes for furniture design. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH), 31(4):86:1–86:11, 2012.
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