
Diss. ETH No. 23223

Large scale simulation of cloth and
hair with contact

A dissertation submitted to

ETH Zurich

for the Degree of

Doctor of Sciences

presented by

Rasmus Tamstorf
M.Sc. Electrical Engineering, Technical University of Denmark
born June 19, 1972
citizen of Denmark

accepted on the recommendation of

Prof. Dr. Markus Gross, examiner
Prof. Dr. Peter Schröder, co-examiner
Prof. Dr. Eitan Grinspun, co-examiner

2016

ii

Abstract

The goal of this thesis is to develop new methods for robust and scalable simula-
tion of thin objects with contact. This work is motivated by applications in cloth
and hair simulation in feature film production, but the results are also applicable
in other domains such as in the garment industry, in biology, and in mechanical
engineering.

The contributions focus primarily on physically correct contact response and ef-
ficient implementation thereof. While collision detection has been studied exten-
sively, collision response remains a challenging problem. This is due in part to the
fact that contact constraints are both nonlinear, non-convex, and non-smooth. Fur-
thermore, the response is inherently coupled to the underlying dynamics, which
is often neglected in existing methods.

We first develop the necessary details for implementation of the dynamics of or-
thotropic thin shells undergoing large deformations. This derivation is based on
fundamental invariants and symmetry considerations from continuum mechan-
ics and leads to a simple and efficient extension of existing membrane models. We
also show how the analytical derivatives for the discrete shell bending model can
be computed efficiently to facilitate implicit integration.

The next part of the thesis is based on the observation that nonlinear compliance
is critical for collision response involving thin objects. This is illustrated with rods
(hair), which exhibit the same fundamental problem as shells, but are cheaper to
simulate. Taking the nonlinearity into account, we show that simulations can be
run with time steps that are 2� 3 orders of magnitude larger than with existing
methods. Based on this observation, we construct a solver that locally adapts the
nonlinear treatment based on the current configuration to ensure stable simula-
tions. We then validate our approach by running simulations with thousands of
hairs and millions of contacts.

Hair simulation is generally simpler than cloth because the rods can be partitioned
into contact groups that can each be handled separately. For shells, all degrees of
freedom are inherently coupled, which leads to much larger systems of equations
that have to be solved. In pursuit of solving these larger systems of equations,
the last part of the thesis investigates the use of algebraic multigrid methods. The
first key observation here is that standard multigrid methods (both geometric and

iii

algebraic) fail to perform well for thin shell equations even in the absence of con-
tact. To address this difficulty, we introduce the smoothed aggregation method to
cloth simulation. This is an algebraic multigrid method designed specifically for
vector valued problems. Used as a preconditioner for CG, smoothed aggregation
provides substantial speedups for medium and large size problems compared to a
diagonally preconditioned CG method. Compared to geometric multigrid meth-
ods, it provides both better convergence rates and increased flexibility. Due to the
algebraic nature of the method, it can be used for irregular meshes as well as with
adaptive tessellations, which is not practical with geometric multigrid methods.

iv

Zusammenfassung

Das Ziel dieser Dissertation ist die Entwicklung robuster und skalierbarer Me-
thoden zur Simulation von dünnen Objekten mit Kontakten wie beispielsweise
Haare und Kleider. Motiviert wurde die Arbeit durch die Filmindustrie, die Re-
sultate können aber zum Beispiel auch in der Biologie oder im Maschinenbau
angewendet werden.

Der primäre Beitrag dieser Dissertation ist die physikalisch korrekte Kollisionsbe-
handlung und deren effiziente Implementierung. Während das Problem der Kolli-
sionserkennung verbreitet erforscht wurde, ist die korrekte Kollisionsbehandlung
ein schwieriges Problem, weil die Kontaktbedingungen nicht-linear, nicht-konvex
und nicht glatt sind. Ausserdem vernachlässigen existierende Methoden oft die
Abhängigkeit der Kollisionsantwort von den unterliegenden Dynamiken.

Wir leiten zuerst die nötigen Gleichungen zur Implementierung der Dynamiken
von orthotropen dünne Schalen, die deformiert werden, her. Diese Herleitung ba-
siert auf Invarianz- und Symmetrieannahmen aus der Kontinuumsmechanik und
liefert eine einfache und effiziente Erweiterung von existierenden Membranmo-
dellen. Wir zeigen auch, wie die analytischen Ableitungen für diskrete Schalen-
modelle effizient berechnet werden können.

Der nächste Teil der Arbeit basiert auf der Beobachtung, dass die nicht-lineare
Übereinstimmung für die Kollisionsantwort essentiell ist. Wir illustrieren diese
Beobachtung mit Kurvenmodellen, welche die gleichen fundamentalen Probleme
wie Schalenmodelle zeigen, jedoch einfacher zu simulieren sind. Unter Beach-
tung der Nichtlinearität zeigen wir, dass unsere Simulationen mit 100-1000 Mal
grösseren Zeitschritten funktionieren als existierende Methoden. Wir konstruie-
ren einen Solver, der die Behandlung der Nichtlinearität lokal anpasst, um die
Stabilität der Simulation zu garantieren. Wir validieren unsere Methode mit Si-
mulationen von tausenden von Haaren und Millionen von Kontakten.

Die Simulation von Haar ist im Allgemeinen einfacher als die Simulation von
Kleidern, weil Kurvenmodelle in Kontaktgruppen aufgeteilt und separat behan-
delt werden können. Bei Flächenmodellen sind alle Freiheitsgrade voneinander
abhängig, was zu viel grösseren Gleichungssystemen führt. Der letzte Teil die-
ser Arbeit befasst sich mit algebraischen Mehrgitterverfahren zur Lösung sol-
cher Systeme. Existierende algebraische und geometrische Mehrgitterverfahren

v

funktionieren für Flächenmodelle jedoch schlecht. Diese Arbeit führt deshalb eine
glättende Aggregationsmethode zur Kleidersimulation ein. Es handelt sich dabei
um ein Mehrgitterverfahren, welches speziell für vektorwertige Probleme konzi-
piert ist. Das Verfahren konvergiert schneller als geometrische Mehrgitterverfah-
ren und bietet eine höhere Flexibilität. Da es sich um eine algebraische Methode
handelt, kann diese auch für irreguläre Netze und adaptive Triangulierungen ver-
wendet werden.

vi

Acknowledgments

First of all, I’d like to thank Joe Marks for suggesting that I pursue a PhD and for
making it possible for me to do it as part of my work at Walt Disney Animation
Studios. Thanks also to my advisor, Markus Gross, for taking on an external stu-
dent despite all the challenges it brings. Throughout the process, Eitan Grinspun
has been a great collaborator, always a source of good advice, and a wonderful
host for my sometimes extended stays at Columbia University. Along with Ei-
tan, Peter Schröder has kindly agreed to be on my committee, which is greatly
appreciated.

Much of what I know today about multigrid methods is entirely thanks to Stephen
McCormick and Toby Jones. Steve deserves much gratitude for including me in
his extended multigrid family and so willingly sharing his wisdom. In a serendip-
itous sequence of events, this project has gotten Toby his dream job, but in the
process I have also gotten a great colleague and someone who has been willing
to check my math, find my bugs, and discuss ideas that have occasionally been
less than half baked. Many others have helped including my other co-authors,
Danny Kaufman, Breannan Smith, and Jean-Marie Aubry along with the numer-
ous artists at Disney who have lent their talents towards the creation of some of
the figures in this thesis. Finally, I’d like to thank Alicia Jones for all the encour-
agement along the way.

vii

viii

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

Contents ix

List of Figures xiii

List of Algorithms xviii

List of Tables xix

List of Symbols and Notation xx

Introduction 1
1.1 Outline . 2
1.2 Contributions . 4
1.3 Publications . 4

Related Work 7
2.1 Cloth models . 7
2.2 Time integration . 10
2.3 Multigrid methods . 11
2.4 Contact handling . 13

Continuum mechanics 15
3.1 Basics of continuum mechanics . 15
3.2 The elasticity tensor . 18
3.3 Strong ellipticity . 19
3.4 Invariants . 21
3.5 Symmetry . 23
3.6 Anisotropy . 25
3.7 Orthotropy . 25

ix

Contents

3.8 Derivatives of invariants . 26
3.9 Summary . 27

St. Venant-Kirchho↵ membranes 29
4.1 Bases for symmetric matrices . 30
4.2 Isotropic St. Venant-Kirchhoff material 32
4.3 Orthotropic St. Venant-Kirchhoff material 34
4.4 Natural orthotropic invariants . 37
4.5 Constant strain discretization . 40

4.5.1 Representation of the strain tensor 40
4.5.2 Evaluation of St. Venant-Kirchhoff energy 42
4.5.3 Evaluation of other orthotropic energy functions 45
4.5.4 Membrane force evaluation 45
4.5.5 Membrane force Jacobians . 47

4.6 Animated rest state . 49

Discrete shells 53
5.1 Background and overview . 54
5.2 Orthotropy . 55
5.3 Bending energy . 55
5.4 Hinge-angle gradient and Hessian 57
5.5 Refactoring the bending energy Hessian 58

5.5.1 Exploiting two levels of symmetry in y

0Hess(q) 59
5.5.2 Computing y

00rq

Trq . 61
5.6 Implementation of a thin shell code testbed 62
5.7 Method in brief . 65
5.8 Evaluation . 66

5.8.1 Test cases . 67
5.8.2 Numerical accuracy . 68
5.8.3 Performance . 69

5.9 Limitations . 72

Unconstrained dynamics 73
6.1 Euler-Lagrange equations . 73
6.2 Time discretization . 75
6.3 Root finding . 76
6.4 Incremental potential . 78
6.5 Integrating a 3D hinge . 80
6.6 Ill-conditioning . 83
6.7 Non-convex optimization . 84
6.8 Summary . 87

x

Contents

Contact modeling 89
7.1 Motivation . 89
7.2 Stiffness and compliance . 93
7.3 Constraint functions . 93
7.4 Constrained integration . 94
7.5 Inequality constraints . 97
7.6 Nonlinear collision constraints . 98
7.7 Linearized collision constraints . 100
7.8 Non-penetration model . 103
7.9 Restitution . 105
7.10 Friction model . 106
7.11 Contact force coupling . 109

Contact solver 111
8.1 Nonlinear staggered projections . 111
8.2 QP formulation of non-penetration 112
8.3 QP formulation of friction forces . 113
8.4 Dual formulation of contact forces 114
8.5 Coupled QPs for contact and friction 116
8.6 Iterative contact solver (ADONIS) 117
8.7 Contact groups . 119
8.8 Application of the compliance matrix 120
8.9 Termination . 121
8.10 A localized modified-Newton strategy 122
8.11 Collision detection . 122
8.12 Choice of unconstrained guess . 123
8.13 Summary . 123

Evaluation of contact solver 125
9.1 Case Study 1: Single Rod Collisions 126
9.2 Case Study 2: Hair Balls . 127

9.2.1 Timing breakdown and scaling 129
9.2.2 Sufficient nonlinearity . 129
9.2.3 Turning the contact numbers knob 131
9.2.4 Stability in rod assemblies . 133

9.3 Case study 3: Combing, Flinging and Tangling 134
9.3.1 Comb out . 134
9.3.2 Debris fling . 135
9.3.3 Rod catch . 136

9.4 Limitations . 136
9.5 Summary . 137

xi

Contents

Multigrid methods 139
10.1 Multigrid basics . 140
10.2 Smoothing . 142
10.3 Coarse-grid correction . 145
10.4 Convergence analysis . 148
10.5 Designing MG algorithms . 151
10.6 Nodal vs. unknown-based coarsening 153
10.7 Designing problems for multigrid 154
10.8 Summary . 156

Smoothed Aggregation 159
11.1 Challenges for multigrid . 161
11.2 Smoothed Aggregation . 163
11.3 Null space . 168
11.4 Smoothing . 169
11.5 Prefiltering of equality constraints 171
11.6 Implementation . 174
11.7 Examples . 175
11.8 Evaluation . 176

11.8.1 Convergence rates . 178
11.8.2 Setup time . 179
11.8.3 Time to solution . 180

11.9 Limitations . 182
11.10Summary . 184

Conclusion 185

Multigrid preconditioners 189

References 193

xii

List of Figures

4.1 The labeling scheme used for vertices, edges, and interior angles of
a single triangle. 41

4.2 The original simulation of Baymax from Disney’s Big Hero 6 on the
left shows more wrinkles than was artistically desirable. On the
right the same simulation has been run with an animated rest state.
© Disney . 50

5.1 Vertices, edges, normals, and angles around the edge shared by two
triangles. The two rightmost schematics show the in-plane edge
normals and the associated altitudes from one edge to the opposing
vertex. All of these quantities are straightforward to compute given
the edge vectors. 55

5.2 Refactoring the assembly: (a) Every hinge is split into two half-hinges.
(b) Each triangle associates with up to three half-hinges. (c) The
Hessian is assembled by iterating a simple template over mesh
triangles. In each iteration, the local indices of the template are
mapped to corresponding global indices, and care is taken to ac-
count for mismatch in local/global edge orientation. 59

5.3 Simple construction to compute the trigonometric functions for q

2
based on one of the right angled triangles. Note that each of the
normal vectors have unit length. 64

5.4 A piece of cloth draping over a sphere. This simulation is run at 36
different resolutions. 67

5.5 Five different beams of varying thickness. The beams will be re-
ferred to by number with the one in front being number 1 and the
one farthest away being number 5. 68

5.6 The distribution of normwise relative errors when comparing the
proposed method to an existing symbolic derivation and an imple-
mentation using automatic differentiation. 69

5.7 The cost of evaluating bending forces and force gradients as well as
assembling the associated stiffness matrix. Each of the three meth-
ods considered exhibit close to O(n) complexity in the number of
vertices. For comparison the cost of the linear solve is also shown.
The estimated complexity for this phase is O(n1.3). 70

xiii

List of Figures

6.1 A simple (nonconvex) energy function (top), the corresponding
force function (middle), and the norm squared of the nonlinear
residual function (bottom). 80

6.2 The initial configuration of a simple hinge consisting of two trian-
gles. The positions of the vertices are given in centimeters such that
the combined area of the hinge is 1 cm2. In the corresponding flat
rest configuration the position of x2 is (0, 0, 2). 81

6.3 The norm of the residual when using the FindRoot function for
three different time steps (top) compared to the incremental po-
tential deviation from the optimal value when using the FindMini-
mum function (bottom). 82

6.4 The norm of the nonlinear residual when using the CG DESCENT
function for three different time steps. 86

7.1 A simple three-node rod hitting a wedge. 90
7.2 Left to right in time. Top: a collision resolved by first-order–

modeled response remains physics-oblivious; the resulting correc-
tion generates a large, localized, non-physical deformation leading
to instability. Bottom: adaptive nonlinear response obtains a stable,
global response. 90

7.3 We plot the magnitude of rod/mass-spring stretching forces mod-
eled by respectively first-, second-, and third-order force approx-
imations for expansions about a straight (left) and a bent (mid-
dle) configuration, compared against the ground truth stretching
force evaluation. In both cases, we observe that first-order model-
ing with respect to normal displacement d underestimates the force
while, in the case of straight configurations (left), any expansion
less than third-order entirely ignores normal displacement. On the
other hand, by plotting the relative error of these approximations
with respect to the ground truth force evaluation at a fixed d = 1

2 ,
we see that, as bending increases, lower-order models give a corre-
spondingly better approximation (right). 92

9.1 Whip-it stability test. To test the relative stability of response meth-
ods we rotate a scripted handle connected to a rod so that it repeat-
edly whips the rod against the edge of a thin wall obstacle. At a
time step size of 3 ms this results in, from left to right, a smoothly
varying collision response from the proposed adaptive nonlinear
algorithm, while the linearly compliant and impulse methods both
obtain large, localized, non-physical deformations. 126

xiv

List of Figures

9.2 To understand the overall stability behavior of these algorithms, we
plot their respective stability regions as we vary time step (x-axis)
in log-scale from 5 µs to 100 ms and rotational whipping speeds (y-
axis). For each successful simulation, we plot a corresponding grey
marker for the adaptive nonlinear method; transparent blue for lin-
early compliant response; and red for impulse response. Here, we
observe a generally two orders of magnitude gain in maximum sta-
ble time step size for ADONIS. 127

9.3 In this example, we simulate a “hairball” consisting of 16K rods
affixed to a sphere scripted through a series of rapid rotations. . . . 128

9.4 All hair ball examples are scripted through a set of rotations around
the three main axes, as shown here where w represents the angular
velocity around the specified axis. 128

9.5 Left: Initial conditions for the hair ball examples (8K rods). Mid-
dle: CPU breakdown statistics across all hair ball simulations as we
increase the number of rods/seeding density. Right: CPU break-
down statistics by time step for the 64K rod smooth (top) and 16K
rod tangled (bottom) simulations. 129

9.6 Contact solver scaling statistics. Here, we plot the time required
to solve a contact group, as a function of the number of contacts,
across all groups encountered in the smooth (top) and tangled (bot-
tom) simulation sequences. Linear scaling is plotted for reference. . 130

9.7 Sufficient nonlinearity. To understand the potential cost of the re-
sulting additional Newton iterations, we plot the average number
of constrained Newton iterations applied by ADONIS, weighted
by contact problem size per time step for smooth (top) and tangled
(middle) simulations. Spikes in iteration counts correspond to in-
stants in time when the scripting (bottom) exhibits discontinuities
either by initiating new rotations or abruptly coming to a halt. . . . 131

9.8 The distribution of Newton iterations per contact group size and
corresponding average solve times, over all hair ball simulation se-
quences. Disc areas indicate numbers of occurrences of problems
at each group size and iteration count; grey circles on the right
demonstrate the scaling between disc size and number. The color
of all plotted discs shows the average solve time on a logarithmic
scale, from which we note that the vast majority of problems are
small and inexpensive to solve. 132

9.9 Increasing the number of hair strands has a relatively predictable
effect on the overall appearance of the simulations. 132

xv

List of Figures

9.10 Left: The number of contacts grows superlinearly in the number
of rods/seeding density. Right: A summary of maximum memory
utilization and CPU scaling across hair ball simulations. 133

9.11 Differing contact numbers and resulting simulated behaviors are
obtained by changing the proximity radii we use in rod-rod colli-
sion detection from 25 µm (left) to 2.5 µm (right). Visually, this has
quite a dramatic effect. 133

9.12 A comparison of stable time step sizes and runtimes for response
methods on the hair ball example. As we scale to larger seeding
densities we see a stability gain for ADONIS of one to two orders
of magnitude. Entries in the table give either the runtime to com-
pletion or an x to indicate a failed simulation. These simulations
were all run on an Intel Xeon X5650 @ 2.67GHz (4 core Westmere-
EP, 1 socket). 134

9.13 Collisions and tangling, as in this combing stress test, exercise the
strongly nonlinear collision response of rods. 135

9.14 Debris is entrained and thrown by rotating bristles. 135
9.15 Thin rods are caught and pulled into two separate hanks by stiff,

rotating elastic bristles. The rods are wound about each other so
that when pulled out they are braided together. 136

11.1 The smoothed aggregation based method combined with prefilter-
ing as presented in this chapter provides an 8⇥ speedup for a walk
cycle animation of this character and 6⇥ for a run cycle animation.
These numbers are compared to a block diagonally preconditioned
CG method. The garments consist of a combined 371, 064 vertices.
© Disney . 160

11.2 Visualization of the strength of connection within a matrix for each
of the three variables, (x, y, z), at two frames of a simulation. Strong
negative off-diagonal connections between vertices are shown in
UV space as blue lines. The two red lines in the middle of the top
row image indicate strong positive off-diagonal connections. For
clarity, ”weak” connections are omitted. In the undeformed state
(top row), the x and z components are each anisotropic but in dif-
ferent directions. In the deformed state (bottom row), different di-
rections of anisotropy appear even within a single variable. 161

xvi

List of Figures

11.3 To form the kernel for a coarse level, we start with the kernel for the
fine level (far left), where the rows have been tagged according to
which aggregate the corresponding node belongs to. All the rows
with identical tags are then combined to form the local kernels (mid-
dle), and a thin QR decomposition is applied to each local kernel.
The resulting Q matrices form the building blocks for the tentative
interpolation operator, P̂, while the resulting R matrices form the
building blocks for the coarse-level kernel (far right). P̂ is obtained
by replacing each Ki matrix with the corresponding Qi matrix and
then permuting back to the original row ordering (second from the
left). 166

11.4 The five examples shown here represent problems of increasing dif-
ficulty that we use for benchmarking. They are generated procedu-
rally, with the vertex count ranging from 1, 000 to 1, 000, 000. The
ones shown here have 40, 000 vertices. 176

11.5 The average convergence rate over the length of the entire anima-
tion for each of our examples. The orange curves are for Diag-PCG
while the blue curves are for SA+PPCG. 178

11.6 The average time for prefiltering and setup as a percentage of the
total solve time. The combined preprocessing time is the sum of the
two. Setup is shown in blue while prefiltering is shown in orange.
The corresponding total solve time is shown in Fig. 11.7. 179

11.7 Average time for one linear solve using Diag-PCG (orange),
SA+PPCG (blue), and PARDISO (pink). The graphs are shown
for four examples : pinned (square markers), drooping (circle
markers), re-entrant (diamond markers), and verticalDrop (trian-
gle markers)1. 180

11.8 Average time for one linear solve in our horizontal drop example.
Note that the fastest time is always obtained using prefiltering. . . 181

11.9 Time for each linear solve in our production example using a walk-
cycle animation. 182

xvii

List of Algorithms

1 ComputeForcesAndGradients . 65
2 Preprocessing . 66

3 ADONIS . 119
4 AssembleCompliance . 121
5 CollisionDetection . 123
6 ADONIS for hair/rods . 124

7 Multigrid V(0,1)-cycle : MV

h �
v

h; f

h� 147

8 Form aggregates, pass 1 . 165
9 Form aggregates, pass 2 . 166
10 Form a coarse level in the SA hierarchy 168

xviii

List of Tables

5.1 The fraction of the total simulation time spent on bending force
evaluation and the associated stiffness matrix assembly. These
numbers are minimums and maximums over all the examples in
each group. 70

5.2 The results of the parameter estimation process for ln f (x) =
k ln x + ln a, where x is the number of vertices, and f (x) is the run-
time. The subscript “N” is used to denote the new method, “S”
is used for the existing symbolic method, and “A” is used for the
autodifferentiation method. 71

11.1 The speedup factors of SA+PPCG relative to Diag-PCG (first col-
umn for each example) and PARDISO (second column for each ex-
ample). Shaded cells indicate speedups greater than 1. Diag-PCG
is on average 11% faster with the irregular tessellation, while PAR-
DISO on average is 7% slower and SA+PPCG is 8% faster. 183

xix

List of Symbols

Generic symbols

A Generic 2nd order tensor
B Generic 2nd order tensor
I Identity matrix/tensor (rank 2)
I Identity tensor (rank 4)
O Big O notation

Positions, velocities, and configurations

x Position of a deformable point or vertex
x̄ Position of point in reference configuration
q Generalized coordinates of system
p Generalized momentum of system
q f Configuration of free (or deformable) vertices
qs Configuration of scripted (or kinematic) vertices
p

a Position of colliding point on object A
p

b Position of colliding point on object B
g

a Barycentric coordinates for colliding point on object A
g

b Barycentric coordinates for colliding point on object B
g Generalized barycentric coordinates for collision point
v Velocity
u Relative (contact) velocity

Continuum mechanics

y Energy density
f Deformation function
F Deformation gradient
P First Piola-Kirchhoff stress tensor
S Second Piola-Kirchhoff stress tensor
� Cauchy stress tensor

xx

List of Tables

b Body force density
E Green-Lagrange strain tensor
✏ Engineering (linear) strain tensor
C Right Cauchy-Green deformation tensor
R Rotation tensor
U Stretch tensor
C Elasticity tensor
â Direction of orthotropy
A Structural tensor for orthotropy
Q Orthogonal tensor
G Symmetry group
J Main invariants
I Principal invariants
L Natural orthotropic invariants

Energy related quantities

Winc Incremental potential
Wkin Kinetic energy
Wpot Potential energy
Hpot Hessian of potential energy
H Hessian
Welastic Elastic energy
Wbend Bend energy
Wstretch Stretch energy (1D)
Wmem Membrane energy (2D)
Wgravity Gravitational potential energy

Material parameters

Y Young’s modulus
n Poisson’s ratio
G Shear modulus
D Flexural rigidity
l First Lamé parameter
µ Second Lamé parameter (shear modulus)
a First orthotropic material parameter
b Second orthotropic material parameter
r Mass density

xxi

List of Tables

M Mass matrix
µ Friction coefficient
h Shell thickness

Geometric quantities

e Edge vector
n Face normal
m In-plane edge normal
l Deformed edge length
l̄ Undeformed edge length
s Edge based strain
s Edge based strain vector
q Bend angle
a Interior angle in triangle
h Height of triangle
A Area of triangle
w Scalar weight (not a mass)
Minus the Levi-Civita permutation tensor

Contacts and constraints

C Scalar constraint function
C Vector valued constraint function
C Set of contacts or collisions
S Collision stencil
n̂ Normalized contact normal
d̂ Normalized contact tangent vector
F Orthonormal contact basis
n Generalized contact normal
N Matrix of generalized contact normals
T Matrix of generalized contact tangents
G Matrix of generalized contact basis
E Selection matrix for linearized friction cone
d Separation distance
g Gap vector
s Constraint offset due to scripted objects
R Set of valid collision responses

xxii

List of Tables

Forces

f Force
r Collision response force
rn Contact force
rt Friction force
r Generalized collision response force
rn Generalized contact force
rt Generalized friction force

Optimization

L Lagrangian
a Lagrange multiplier for contact force
b Lagrange multiplier for friction force
l Lagrange multiplier for all constraints
f Quadratic objective function
c Indicator function

Dynamics

t Time
t Time step size
y State vector
j The flow function for a dynamic system
f Nonlinear residual function
K Generalized stiffness matrix
D Discrete compliance matrix
d Configuration update

Throughout the text, the following conventions are used :

• Scalars are denoted by lower case regular letters.

• Vectors are denoted by lower case bold letters.

• Matrices are denoted by upper case bold letters.

• Second-order tensors are denoted by upper case sans serif bold letters.

• Fourth-order tensors are denoted by upper case letters in blackboard font.

xxiii

List of Tables

• Generalized vectors are denoted by lower case sans serif bold letters.

• Generalized matrices are denoted by upper case sans serif bold letters.

• Sets are denoted by caligraphic letters.

A hat over a vector denotes a normalized vector. A bar over a quantity indicates
that the quantity refers to the undeformed configuration. A dot over a quantity
indicates differentiation with respect to time.

The gradient of a scalar multivariate function f : Rn ! R is denoted by
r f 2 R1⇥n and is considered to be a row vector. The Jacobian of a vector val-
ued multivariate function f : Rn ! Rm is also denoted by r f 2 Rm⇥n, but is
now a matrix.

When specifying tensors in coordinate form, we will use a Cartesian basis, which
means that the covariant and contravariant form of the tensor have the same com-
ponents.

xxiv

C H A P T E R 1
Introduction

Cloth and hair simulations are key elements in animated feature films. Not
only do they contribute significant aspects of the overall design and appeal
of the characters; sometimes they even make up an integral part of the story.
One such example is Rapunzel’s hair in Disney’s animated feature film Tan-
gled, and despite having a less prominent role in the story, Elsa’s dress in
Disney’s Frozen has been a favorite with little girls since the movie came
out. By increasing the fidelity and reliability of these simulations, filmmak-
ers can expand the range of costumes and outfits that can be used success-
fully as part of their story telling.

Accurate cloth simulation is also a topic that is being explored extensively
for the fashion and retail industry. If successful, this technology is expected
to increase online retail of real garments as well as being able to provide cus-
tomized tailoring over the internet. Worldwide, more than a trillion dollars
is spent annually on apparel, but, as of 2015, it’s still only a small percentage
of those purchases that are being made online. Thus, there is plenty of room
to grow and given the size of the overall market, even a small improvement
in the online shopping experience is likely to provide significant business
opportunities.

In engineering, cloth simulation is used for testing of body armor, for con-
struction of fiber reinforced composites, and for simulation of airbags and
parachutes to name just a few. Thin-walled structures with large deforma-
tions also show up in other domains like medicine and biology where they
can be used to simulate arteries, various cell structures, and leaf-like fea-

1

Introduction

tures. Beyond these domains, classical applications include simulation of
airplane fuselages, architectural structures, and car bodies. Accurate simu-
lation of contact is essential here in order to do crash simulations to evaluate
safety features.

1.1 Outline

We begin this thesis by reviewing some related work in Chapter 2. Given
the immense amount of related work, this chapter is by no means intended
to be exhaustive, but rather just a sampling of some of the prior work that
has inspired this thesis.

In Chapter 3, a number of basic concepts from continuum mechanics are in-
troduced. The goal is to establish the fundamental principles that govern
the construction of hyperelastic constitutive models. Based on these prin-
ciples, we construct an orthotropic St. Venant-Kirchhoff membrane model.
Using a discretization based on constant strain triangles (CST), we further-
more present an efficient way to compute both the associated nodal forces
and their derivatives necessary for implicit time integration (Chapter 4).

A thin shell model consists of both a membrane part and a bending part.
For bending we use the discrete shells model by Grinspun et al. [2003].
The derivation of the energy Hessian for this model is quite tedious and
error prone, but as well shall show, a careful hand derivation can leverage
several symmetries in the expressions and achieve more than 3⇥ speedup
over a derivation that doesn’t leverage these symmetries, and more than
7⇥ speedup over an implementation using automatic differentiation (Chap-
ter 5).

Given the established shell model, Chapter 6 focuses on the unconstrained
dynamics for thin shells. We illustrate with the simplest possible example
why it is advantageous to phrase time integration as an optimization prob-
lem by way of an incremental potential as originally suggested by Radovitzky
and Ortiz [1999] and later Kharevych et al. [2006]. However, we also show
that the resulting non-convex optimization problem can be difficult to solve
due to ill-conditioning; especially in finite precision arithmetic.

In Chapter 7, we add an essential component for this thesis : contact han-
dling. In particular, we focus on how to formulate non-penetration and fric-
tion constraints for the previously established optimization problem. The
formulation provided here is generic as it applies to both hair and cloth sim-
ulation and it effectively couples the contact handling with the update of the
dynamics equations.

2

1.1 Outline

The generic formulation can be expensive to solve. In Chapter 8, we make
the key observation that thin objects like hair and cloth in some cases have
no resistance (up to third order) to impacts perpendicular to their extent.
While linear compliance as introduced by Otaduy et al. [2009] does couple
dynamics and contact handling, the first-order model may therefore be in-
sufficient. In particular, we show that high speed impact with a linear com-
pliance model can lead to excessive deformation, which in turn often leads to
instability. By accommodating an adaptively nonlinear compliance model,
we show stable hair simulations with time steps that are 2� 3 orders of mag-
nitude larger than otherwise possible.

Extending these results from hair to cloth is nontrivial because the shell
equations are inherently much more tightly coupled than the rod equations.
This means that we have to solve a single large coupled system instead of
multiple smaller problems. In order to solve large problems, it is often ben-
eficial to use multigrid methods, which is the focus of the last part of the
thesis. Ultimately, we need to solve large non-convex and non-smooth op-
timization problems with inequality constraints. However, they can be re-
cast into a sequence of convex quadratic programs (QPs) with inequality
constraints. Using an active set strategy the QPs in turn can be solved as
a sequence of quadratic problems equality constraints. This latter class of
problems will be our focus in the last part of the thesis.

In Chapter 10, we present the basic principles of multigrid theory and, in
Chapter 11, we apply this theory to cloth simulation. The first key obser-
vation here is that the standard multigrid methods (both geometric and al-
gebraic) fail to perform well for thin shell equations even in the absence of
contact. To address this difficulty we introduce the smoothed aggregation
method to cloth simulation. This is an algebraic multigrid method designed
specifically for vector valued problems. Used as a preconditioner for CG,
smoothed aggregation provides substantial speedups for medium and large
size problems compared to a diagonally preconditioned CG method. Com-
pared to geometric multigrid methods, it provides both better convergence
rates and increased flexibility. Due to the algebraic nature of the method, it
can be used for irregular meshes as well as adaptive tessellations, which is
not practical with geometric multigrid methods.

The extension to non-convex problems and/or inequality constraints is left
as future work.

3

Introduction

1.2 Contributions

• A practical method for implementing a geometrically nonlinear
St. Venant-Kirchhoff material model for orthotropic materials with
large displacements and large strains using a constant strain triangle
discretization.

• An efficient way of computing analytical derivatives for bending
models involving the dihedral angle between two triangles.

• An adaptive method for handling the nonlinearity inherent to colli-
sion response for thin objects.

• A prefiltering method for handling equality constraints in a block-
sparse linear system without changing block size.

• An algebraic multigrid method for solving large linear systems of
equations from cloth simulations including basic collision response.

1.3 Publications

This thesis is based on the following peer-reviewed publications :

Rasmus Tamstorf and Eitan Grinspun. Discrete bending forces and
their Jacobians. Graphical Models, 75(6):362–370, November 2013.
doi:10.1016/j.gmod.2013.07.001

Danny Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry,
and Eitan Grinspun. Adaptive Nonlinearity for Collisions in
Complex Rod Assemblies. ACM Trans. Graph, 33(4), July 2014.
doi:10.1145/2601097.2601100

Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. Smoothed Ag-
gregation Multigrid for Cloth Simulation. ACM Trans. Graph., 34(6),
November 2015. ISSN 0730-0301. doi:10.1145/2816795.2818081

The first of these papers was selected for ACM’s Computing Reviews’ Best
of 2013 list1.

The material in chapters 2 and 3 is a summary of known material by other
authors, while the material in Chapter 4 is unpublished. Chapter 5 follows
the first paper closely, [Tamstorf and Grinspun, 2013]. Chapter 6 is mostly
known material but with motivating examples showing the applicability for

1http://computingreviews.com/recommend/bestof/notableitems_2013.cfm

4

http://dx.doi.org/10.1016/j.gmod.2013.07.001
http://dx.doi.org/10.1145/2601097.2601100
http://dx.doi.org/10.1145/2816795.2818081
http://computingreviews.com/recommend/bestof/notableitems_2013.cfm

1.3 Publications

this thesis. Also, it adds a critical observation that ill-conditioning in the sys-
tems that have to be solved is unavoidable when taking large time steps and
is independent of any problems stemming from the thickness of cloth or the
choice of discretization. The presentation in Chapter 7 extends the material
in the second paper, [Kaufman et al., 2014], to clarify the presentation and
to make the connection to [Kaufman et al., 2008] more clear. The remainder
of the second paper, [Kaufman et al., 2014], is covered in Chapter 8. The
remaining chapters follow the third paper closely, [Tamstorf et al., 2015].

During the course of the PhD program, the following peer-reviewed papers
were also published :

David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Ei-
tan Grinspun. Asynchronous contact mechanics. In ACM SIGGRAPH
2009 papers, SIGGRAPH ’09, pages 87:1–87:12, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-726-4. doi:10.1145/1576246.1531393

Iman Sadeghi, Heather Pritchett, Henrik Wann Jensen, and Rasmus Tam-
storf. An Artist Friendly Hair Shading System. ACM Trans. Graph., 29
(3):56:1–10, 2010. doi:10.1145/1833349.1778793

Etienne Vouga, David Harmon, Rasmus Tamstorf, and Eitan Grin-
spun. Asynchronous variational contact mechanics. Computer Meth-
ods in Applied Mechanics and Engineering, 200(25–28):2181–2194, 2011.
doi:10.1016/j.cma.2011.03.010

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tam-
storf, Joseph Teran, and Eftychios Sifakis. Efficient Elasticity for Char-
acter Skinning with Contact and Collisions. ACM Trans. Graph., 30(4):
37:1–37:12, July 2011. ISSN 0730-0301. doi:10.1145/2010324.1964932

Jeroen van Baar, Steven Poulakos, Wojciech Jarosz, Derek Nowrouzezahrai,
Rasmus Tamstorf, and Markus Gross. Perceptually-Based Compensa-
tion of Light Pollution in Display Systems. In Symposium on Applied
Perception in Graphics and Visualization, 2011

David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Ei-
tan Grinspun. Asynchronous contact mechanics. Commun. ACM, 55(4):
102–109, April 2012. ISSN 0001-0782. doi:10.1145/2133806.2133828

Breannan Smith, Danny M. Kaufman, Etienne Vouga, Rasmus Tam-
storf, and Eitan Grinspun. Reflections on simultaneous impact.
ACM Trans. Graph., 31(4):106:1–106:12, July 2012. ISSN 0730-0301.
doi:10.1145/2185520.2185602

5

http://dx.doi.org/10.1145/1576246.1531393
http://dx.doi.org/10.1145/1833349.1778793
http://dx.doi.org/10.1016/j.cma.2011.03.010
http://dx.doi.org/10.1145/2010324.1964932
http://dx.doi.org/10.1145/2133806.2133828
http://dx.doi.org/10.1145/2185520.2185602

Introduction

Samantha Ainsley, Etienne Vouga, Eitan Grinspun, and Rasmus Tam-
storf. Speculative parallel asynchronous contact mechanics. ACM
Trans. Graph., 31(6):151:1–151:8, November 2012. ISSN 0730-0301.
doi:10.1145/2366145.2366170

Eder Miguel, Rasmus Tamstorf, Derek Bradley, Sara C. Schvartzman, Bern-
hard Thomaszewski, Bernd Bickel, Wojciech Matusik, Steve Marschner,
and Miguel A. Otaduy. Modeling and Estimation of Internal Friction
in Cloth. ACM Trans. Graph., 32(6):212:1–212:10, November 2013. ISSN
0730-0301. doi:10.1145/2508363.2508389

Xiang Ni, Laxmikant Kale, and Rasmus Tamstorf. Scalable Asynchronous
Contact Mechanics using Charm++. In IEEE 29th International Par-
allel and Distributed Processing Symposium (IPDPS 2015), May 2015.
doi:10.1109/IPDPS.2015.45

Carlos Aliaga, Carol O’Sullivan, Diego Gutierrez, and Rasmus Tamstorf.
Sackcloth or Silk ? The Impact of Appearance vs Dynamics on the Per-
ception of Animated Cloth. In ACM Symposium on Applied Perception
(SAP ’15), September 2015. doi:10.1145/2804408.2804412

6

http://dx.doi.org/10.1145/2366145.2366170
http://dx.doi.org/10.1145/2508363.2508389
http://dx.doi.org/10.1109/IPDPS.2015.45
http://dx.doi.org/10.1145/2804408.2804412

C H A P T E R 2
Related Work

Cloth simulation has been an active area of research in computer graphics for
many years. Some of the most popular methods for cloth simulation in com-
puter graphics have been published by [Baraff and Witkin, 1998] and [Brid-
son et al., 2002]. Numerous improvements to those methods have been pro-
posed, but the fundamental ideas remain largely unchanged. A few excep-
tions include the work presented by [Harmon et al., 2009] on asynchronous
contact mechanics, and the notion of simulating cloth at the yarn level pro-
posed by [Kaldor et al., 2008] and also explored by [Cirio et al., 2014].

The key bottlenecks in the standard methods are collision detection on the
one hand, and computation of dynamics and contact response on the other
hand. In the following, we primarily focus on dynamics and contact re-
sponse and briefly review some of the related work.

2.1 Cloth models

To simulate cloth, an appropriate model must first be chosen. A very sim-
ple model used in graphics is a mass-spring model based on linear springs.
The popularity of this model is due to its simplicity and the fact that it can
capture a basic range of behaviors. Sometimes, linear springs are replaced
with biphasic springs to account for crimp in real fabrics. However, springs
lack the ability to model bending in a satisfactory fashion and they cannot
capture the anisotropic behavior of cloth.

7

Related Work

Given these limitations, we instead assume that cloth can be modeled as
a thin shell using an appropriate constitutive model from continuum me-
chanics and discretized using a finite element based approach (or some ap-
proximation thereof). This is essentially what was originally proposed by
Terzopoulos et al. [1987].

While the approach conceptually is simple, the derivation of the partial dif-
ferential equations (PDEs) for thin shells undergoing large displacements
with large deformations is quite involved. Historically, the first attempt at
modeling thin plates and shells was made by Leonhard Euler around 1760
while trying to calculate the sound made by drums (plates), [Euler, 1766b],
and church bells (shells), [Euler, 1766a]. Interestingly, in trying to come up
with the equations for the vibrations of the membrane, Euler made the anal-
ogy between a membrane and a piece of cloth. In fact, he wrote in [Euler,
1766b, §2] :

Quo igitur huiusmodi superficiei motum, ac potissimum tensionem, in calcu-
lum facilius inducere possimus, ad eius generationem, textura filorum secun-
dum longitudinem et latitudinem expansorum ortam respici conueniet, cum
hac ratione lintea reuera efficiantur, in membranis autem filorum numerum
quasi infinitum concipere liceat.

A translation of this is provided by Truesdell in [Euler, 1960, p. 331] :

It is appropriate to regard a stretched cloth or membrane as composed of
threads along its length and breadth, as is really the case for a cloth, while
in a membrane the number of threads is to be regarded as infinite.

It turns out that the analogy to threads (strings) was flawed and didn’t quite
work out, but it remains notable that Euler literally started by thinking about
cloth ! Other people came after him to try to fix the PDE (most notably Jakob
II Bernoulli who also got it wrong while using a grid of beams, [Bernoulli,
1789]), but it took another 50 years before Sophie Germain finally got the
thin plate equations right with some help from Joseph-Louis Lagrange. The
work by Bernoulli and Germain was largely inspired by the (now classi-
cal) experiments presented by Chladni [1787] on resonance patterns of thin
plates, and in another twist of history, these experiments illustrate exactly
what the near kernel components are for the thin plate equation. As we shall
see later, these components are of utmost importance in multigrid theory.

A somewhat gentle and modern introduction to the many difficulties of thin
plates and shells is presented by Audoly and Pomeau [2010], while a more
classic book is the one by Timoshenko and Woinowsky-Krieger [1959]. Much
of the exposition by Audoly and Pomeau [2010] is based on the Föppl-von

8

2.1 Cloth models

Kármán equations, which were originally proposed in 1910. However, some
of the implicit assumptions for these equations are questionable, [Ciarlet,
1980].

One complication in much of shell theory is the justification for the transition
from 3D elasticity to a simplified 2D theory. Another complication is the
fact that shells are inherently best described in curvilinear coordinates, and
there is a delicate interplay between differential geometry and physics that is
required for a correct formulation of the equations. This interplay has been
carefully presented by Ciarlet [2000].

In order to arrive at tractable equations, many assumptions and approxi-
mations have to be made. Among the resulting models, Koiter’s thin shell
model, [Koiter, 1966], has proven to be surprisingly versatile despite be-
ing relatively simple. Unlike the Föppl-von Kármán equations, it has also
been confirmed to be a proper 2D limit model of 3D nonlinear elasticity,
[Steigmann, 2013].

Koiter’s model is based on the Kirchhoff-Love assumptions, which do not al-
low for shear stresses across the thickness of the shell nor for changes in the
thickness of the shell. A less restrictive set of assumptions is known as the
Reissner-Mindlin plate theory, but for our purposes the Kirchhoff-Love as-
sumptions will suffice. A more problematic assumption in Koiter’s original
model is that all strains are assumed to be small. For cloth simulation, this is
generally not the case; neither for bending nor for shearing within the sur-
face of the shell. This deficiency has recently been addressed by Steigmann
[2012].

In Koiter’s model, the energy can be written as a the sum of two terms : a
membrane energy and a bend energy. The membrane energy is a function
of the change of strain (first fundamental form) while the bend energy is
a function of the change of curvature of the surface (second fundamental
form). This basic setup has motivated much work in the graphics commu-
nity, where the two contributions are typically modeled separately without
too much concern about consistency between the two.

As an example, Grinspun et al. [2003] and Bridson et al. [2003] intro-
duced bending models to improve upon mass-spring systems. Separately
Delingette [2008] showed how a constant strain triangle discretization of an
isotropic (continuum) membrane model can be thought of as a combination
of tensile and angular springs such that the overall system still appears to be
a mass-spring system.

In order to capture the anisotropic behavior of fabric, Etzmuß et al. [2003]
was the first in graphics to consider an orthotropic constitutive model for the

9

Related Work

membrane part of the cloth model. However, this was limited to co-rotated
linear elasticity. Orthotropy for fabric was simultaneously considered in the
textile literature by Wu et al. [2003] but only in the context of explicit inte-
gration. Volino et al. [2009] later considered a simplified orthotropic model
that captures the independent stiffnesses in the warp and weft directions of
a fabric, but assumes that Poisson’s ratio is zero. Unlike previous papers,
however, they did consider both implicit integration and the geometrically
nonlinear Green-Lagrange strain.

In mechanical engineering, the models used for deformation of fabric tend
to be more sophisticated. The interest in that community focuses on carbon-
fiber reinforcement for lightweight structures and body armor, but much
of the work is directly applicable for cloth simulation, [King, 2006; Williams,
2010]. Most engineering models are still based on orthotropic thin shells, but
some have observed that the interaction between the threads in the cloth un-
der shearing causes an additional stress field that is not accounted for by the
standard orthotropic model, (see Zhang and Fu [2000, 2001]). Finally, there
is much experimental data to suggest that the material response for fabric
is highly nonlinear. An orthotropic model that can fit such data has been
proposed by Itskov [2001]; Itskov and Aksel [2004] but it does not appear
to have been applied specifically to fabric. (It was developed for biological
tissue, specifically arteries.)

Given the continuous equations, there are many different ways to form a
corresponding set of discrete equations. This particular problem is not the
primary focus of this work. However, it should be noted that one especially
challenging problem related to the discretization of thin shells is membrane
locking. This can cause the shell to exhibit excessive stiffness, which leads
to unrealistic simulations. For linearized elasticity (i.e., small deformations)
the problem can be addressed with high-order mixed finite element meth-
ods. However, for nonlinear elasticity, no conclusive results exist. In the
finite element community, there is a strong belief that quadrilateral elements
are superior to triangular elements when it comes to locking and general
convergence properties, but quadrilateral elements introduce complications
with respect to collision detection, so most methods in graphics focus on
triangular elements. English and Bridson [2008] proposed to deal with the
problem by using a non-conforming discretization.

2.2 Time integration

Regardless of the constitutive model and the spatial discretization, the re-
sulting ODEs must be integrated in time. The choice of implicit vs. ex-

10

2.3 Multigrid methods

plicit integration methods has been the topic of much research. An implicit
method needs to solve a global problem, which is typically in the form of a
large set of nonlinear equations. An explicit method does not require such
a solve and is therefore much faster in terms of computing the update for a
single timestep. However, due to the CFL condition, the timesteps in explicit
methods usually have to be very small in order to maintain stability, so, in
the end, implicit methods can be more desirable. The implicit method has
the added advantage that it can resolve all collisions simultaneously such
that the response to one collision can factor into responses made to other
collisions. In this work, we focus on implicit solvers along the lines of what
was introduced by Baraff and Witkin [1998], and refer to Harmon et al. [2009]
and the follow-up work in Ainsley et al. [2012] and Ni et al. [2015] for recent
ideas about how to leverage explicit integration methods to provide simula-
tions with correctness and termination guarantees.

For implicit integration, one has to solve a set of nonlinear equations for
each time step. In the work by Baraff and Witkin [1998], this is crudely ap-
proximated by simply solving the corresponding linearized set of equations.
In the graphics literature, a lot of the focus has been on using the conjugate
gradient (CG) method for this and, as a consequence, various researchers
have investigated methods for coming up with good preconditioners for
CG-based cloth solvers (e.g., [Boxerman and Ascher, 2004] and [Hauth et al.,
2003]). However, the results have been mixed and, in practice, CG does not
scale well with the size of the problem. As a consequence, some authors
have considered using a direct solver like PARDISO, [Goldenthal et al., 2007;
English and Bridson, 2008].

2.3 Multigrid methods

An alternative for preconditioning or even for solving the entire system of
equations for time integration is to use multigrid methods. These methods
are known to have O(n) complexity for the kind of problems for which they
are applicable, which is substantially better than a standard CG algorithm
or even CG with a simple preconditioner.

Some of the earliest work on multigrid for thin shells appears in [Fish et al.,
1996] where they investigated an unstructured multigrid method for thin
shells. This effectively amounted to an extension of geometric multigrid that
coarsened with knowledge of the problem. However, they acknowledge
that their method has limitations in that it does not address higher-order
interpolation and it was never tested on large-scale problems.

11

Related Work

More recently, [Gee, 2004; Gee et al., 2005] addressed more complicated
shell models for problems in statics using a finite element discretization.
They used an aggregation-based approach that has many similarities to an
smoothed aggregation (SA) hierarchy. However, for their method, they treat
the shell as a (thin) 3D solid, unlike the typical 2D manifold approach used
for cloth. To avoid severe ill-conditioning and to obtain convergence rates
independent of conditioning, they apply “scaled director preconditioning”.
This also allows them to model varying thickness across the shell. In their
follow-up work, [Gee and Tuminaro, 2006], the focus is on using a nonlinear
solver, and adaptive SA is used to precondition the linearizations. However,
adaptive SA is currently too expensive for typical cloth problems, although
this may change in the future with improvements in the adaptive algorithm
and demands for much more computationally intense simulations.

Related research within the graphics community has been focused primar-
ily on applying various types of geometric multigrid (GMG) to cloth simu-
lation. Oh et al. [2008] implemented a GMG method that uses CG for the
smoother on each level, with a focus on preserving energy and mass at all
levels of the hierarchy. Linear interpolation is used between levels, and the
level hierarchy is attained through regular subdivision, while constraints are
only treated on the fine grid. This approach produced a significant speedup
for their simulations but failed to show linear scaling in the size of the prob-
lem, and the performance deteriorated in the presence of constraints. Lee
et al. [2010] used a multi-resolution approach that focused on using adaptive
meshing to only place subdivisions where needed to provide acceleration, as
opposed to a GMG method that uses regular subdivision. It is not clear how
to use this approach in a multilevel fashion, nor how it addresses the difficul-
ties arising from the PDE and collisions. Jeon et al. [2013] extended the work
in [Oh et al., 2008] to handle “hard” constraints, as presented in [Baraff and
Witkin, 1998], by converting them to soft constraints to avoid the challenges
of coarsening them. They use GMG as a direct solver, with preconditioned
conjugate gradients (PCG) as their smoother for restriction and GS as their
smoother for prolongation, but require an expensive V(5,10) cycle.

One of the exceptions to the use of geometric multigrid in the graphics liter-
ature is an AMG-like algorithm developed by Krishnan et al. [2013]. Their
focus is on discrete Poisson equations written in terms of M-matrices, which
(among other properties) have only nonpositive off-diagonal entries. Ba-
sically, their approach is to modify the original matrix by first selecting un-
knowns that represent the coarse grid and then eliminating interconnections
between the remaining fine-grid-only unknowns. This elimination is accom-
plished in a sparsification/compensation process that is analogous to AMG’s
so-called stencil collapsing procedure. The difference is that, while AMG

12

2.4 Contact handling

eliminates these connections to determine interpolation, their goal is to pro-
duce a modified matrix (to be used as a preconditioner) that naturally pre-
serves M-matrix character on coarser levels. Their method is shown to be
superior to two algebraic multigrid techniques that were modified to simi-
larly preserve M-matrix character, so it is no doubt important in some appli-
cations. However, their results show a loss of efficiency compared to more
standard algebraic multigrid methods. Our aim here is to develop an AMG
approach that is not restricted to M-matrix discretizations.

2.4 Contact handling

Adding contact and friction to the dynamics equations complicate the com-
putations significantly. Here and in the following, the term “contact” is used
to refer to non-penetration constraints and is relatively speaking easier than
handling friction. Many existing implicit cloth solvers are based on the mod-
ified conjugate gradient (MCG) algorithm described by Baraff and Witkin
[1998]. This method can incorporate equality constraints, but only for con-
tact between cloth vertices and faces of collision objects. Unfortunately, this
is somewhat limiting since it allows small collision-faces to completely pen-
etrate through a coarse cloth mesh. Such a scenario occurs frequently when,
for example, fingers interact with clothing.

The MCG algorithm by itself falls in the category of generalized conjugate
direction methods. A number of authors prior to Baraff and Witkin [1998]
considered how to use these methods to solve linear systems subject to gen-
eral equality constraints (see Dennis and Turner [1987]; Shariff [1995]; Gould
et al. [2001] among others). While this prior work should be suitable for
including edge-edge and face-vertex constraints this has not actually been
done for cloth simulations. Also, it should be emphasized that this would
still be limited to equality constraints.

It should be noted that one of the reasons the MCG method is so popular
is that it can accommodate the ever changing structure of the equations as
constraints from collisions are added and removed. Direct solvers by com-
parison typically have to do a symbolic factorization, which depends on the
sparsity pattern of the system, and since this factorization is expensive to
perform, these methods can be less advantageous when the sparsity pattern
constantly changes.

An alternative to incorporating the constraints directly into the solver was
presented by Bridson et al. [2002]. In that method, an update due to inter-
nal dynamics is first computed, and contacts are then resolved by applying

13

Related Work

impulses in Gauss-Seidel or Jacobi fashion until all constraints are satisfied.
However, there is no guarantee that all constraints will be satisfied, so, to
ensure termination, the paper also introduces a failsafe. Furthermore, the de-
coupling between the dynamics and collision response can lead to artifacts
unless very small timesteps are used.

Another approach that has been proposed is to use the volume of overlap be-
tween thickened elements to create penalty forces (e.g. [Heidelberger et al.,
2003; Faure et al., 2008]). However, this is somewhat problematic for im-
plicit integration methods because the second derivative of the the overlap
volume with respect to positions is zero. To see this, note that the over-
lap volume is linear in the separation distance, which means that the first
derivative wrt. positions is constant, so the second derivative is zero. The
force Jacobian needed for an implicit integration scheme is based on this
second derivative.

In a more general setting, the contact problem can be stated as a comple-
mentarity problem. The complementarity ensures that there is either is a
gap between two objects or there is a contact force. This formulation leads
to inequality constraints, which are more challenging to handle, but avoids
“sticking artifacts” associated with equality constraints. In practice, the com-
plementarity problem is often linearized to obtain an LCP (linear comple-
mentarity problem). However, as shown by Smith et al. [2012], even linear
LCPs in general suffer from sticking artifacts for anything but inelastic colli-
sions. In practice, this may not be a big limitation for cloth, since most cloth
collisions are fairly inelastic.

In the context of cloth simulation, Otaduy et al. [2009] used an LCP to solve
for cloth dynamics and contact simultaneously. By combining the LCP for-
mulation with linear compliance, the collision response produced by this
method is aware of the underlying dynamics, which was shown to reduce
“jitter” artifacts. However, as we will show, the method still has problems
handling high speed impacts due to the linearization.

Adding friction makes all of the above more complicated. Partly because
our understanding of friction phenomena (tribology) is still far from com-
plete, but partly also because even a simple friction model interacts with
the non-penetration constraints in subtle but critical ways. An overview
of some of the problems with contact and friction can be found in Stewart
[2000]. Recently, it was shown by Anitescu and Tasora [2010] that the com-
bined contact and friction problem for rigid bodies can be approximated as
a “cone complementarity problem” (CCP). This has successfully been ap-
plied to rigid body simulation by Mazhar et al. [2015], but not to thin elastic
objects.

14

C H A P T E R 3
Continuum mechanics

In this chapter, we introduce some of the basics of continuum mechanics
needed in subsequent chapters. In particular, we focus on the theory of
invariants and develop the foundation for constitutive models for 2D or-
thotropic membranes. Much of the existing literature is written for 3D solids,
so the contribution here is to extract out the key concepts from the general
theory and apply them in the 2D setting.

In the next chapter, we apply this theory to derive an orthotrophic St.
Venant-Kirchhoff constitutive model for membranes. The St. Venant-
Kirchhoff constitutive model is an extension of the linear elastic model to
handle large deformations through the use of Green’s strain tensor. How-
ever, as in the linear elastic model, the elasticity tensor is assumed to be
constant.

3.1 Basics of continuum mechanics

Elastic materials are generally those that return to their original shape after
being deformed. For any material point within an elastic material, the stress
is only a function of the local state of deformation. This is unlike fluids,
which also depend on the velocity field.

The deformation is given through the deformation function, f, which maps
a point, x̄, in the undeformed material space, W, to the corresponding point,
x, in the deformed space. For a thin plate (or membrane), the material space

15

Continuum mechanics

is inherently two dimensional since the rest configuration is flat, but the
plate is typically embedded in three-dimensional space, so we usually have
f : W = R2 ! R3. It should be noted that the material space can also be
embedded in a higher-dimensional space, but all the information about the
actual deformation in that case is contained in a two-dimensional subspace.

Since we assume that the medium can be treated as a continuum, the local
state of deformation can be characterized by the deformation gradient :

F = rf

In our setting, we end up with F 2 R3⇥2.

In the following we focus on the subset of all elastic materials known as
hyperelastic, for which the existence of an energy-density, y, is assumed or
postulated. The existence of such an energy-density implies that these mate-
rials are conservative, unlike the more general Cauchy-elastic materials, for
which the only restriction is that the stress is a function of F .

Assuming that the material is conservative rules out any dissipation, which
means that damping and hysteresis cannot be taken into account. These
phenomena are important for cloth simulation, but can be added back in
later.

A fundamental principle in elasticity is the notion of “material frame indif-
ference”, [Truesdell and Noll, 1965]. This is sometimes also referred to as
“objectivity”1 and basically states that the behavior of the system should not
depend on the choice of the reference (coordinate) frame. It can be shown
that a consequence of material frame indifference is that y must be a function
of the (right) Cauchy-Green deformation tensor, C = F TF . This is important
because it implies that if a proposed energy density cannot be written as a
function of C, then the model depends on the choice of coordinate system.
Another consequence of this principle is that the energy must be invariant
under rotations and translations, which we use later.

The equivalent of Newton’s second law for a continuum is Cauchy’s first
law of motion :

r · �+ rb = rv̇

where � is the Cauchy stress, r is the mass density, and b is a vector field of
body forces (typically gravity). For solid elasticity, these equations amount

1There has been much debate about the equivalence between “material frame indifference” and
“objectivity” or lack thereof, see e.g. [Liu, 2005; Noll, 2005]. However, in this context, it appears
safe to treat them as equivalent.

16

3.1 Basics of continuum mechanics

to three coupled second order PDEs. The thin shells equations derive from
these equations, but are more complicated.

In Newtonian mechanics, it is well known that the the rate of change of the
angular momentum equals torque. In continuum mechanics, the equiva-
lent statement is known as the balance of moment of momentum. Unlike
in Newtonian mechanics, it is an independent hypothesis in continuum me-
chanics. Combined with Cauchy’s first law of motion, it leads to the conclu-
sion that the Cauchy stress and (consequently) the second Piola-Kirchhoff
stress must be symmetric [Marsden and Hughes, 1983, Theorem 2.10]. This
statement is also referred to as Cauchy’s second law of motion.

We rely on the symmetry of the stress tensor in the following and also on the
symmetry of the Green-Lagrange strain. The Green-Lagrange strain is given
by

E =
1
2
(C � I)

which is clearly symmetric. By definition, the strain tensor is a mapping
of two vectors from the tangent space of the domain for the deformation
function into the reals. The Green-Lagrange strain specifically maps two
vectors in material space to their dot product in the deformed space. Other
strain tensors can be defined based on the principal stretches given by the
polar decomposition of F , see e.g. [Ogden, 1984, Sec. 2.2.7].

In classical mechanics, energy equals force times displacement, from which
it follows that force is the derivative of energy wrt. displacement. The force
and the displacements are also said to be energy-conjugate. This notion of
energy-conjugate variables can be generalized and, in continuum mechanics
stress and strain is an example of such a pair of energy conjugate variables.
For a hyperelastic material, this leads to2

P =
∂y

∂F
, S =

∂y

∂E

where P and S are the first and second Piola-Kirchhoff stress tensors. The
second Piola-Kirchhoff stress and the Cauchy stress are related by

� =
1
J
FSF T

where J = detF . Given the choice of strain measure and energy density,
the stress is given by the above expressions. Alternatively, the constitutive
model can be given by way of the stress-strain relationship, from which the

2The derivatives here require a fairly sophisticated mathematical machinery to be defined in a
rigorous fashion. We refer to Marsden and Hughes [1983] for details.

17

Continuum mechanics

energy density is then derived using the tensor (double contraction) prod-
uct :

y = P : F = S : E

The double contraction between two second-order tensors A and B is de-
fined as A : B = tr(ATB) = tr(ABT) = ÂAijBij. The two methods for spec-
ifying the constitutive model are equivalent. However, it should be noted
that the stress and strain measures must be energy-conjugate.

3.2 The elasticity tensor

Doing a Taylor expansion of the strain energy density, y(E) = S : E, around
the undeformed configuration gives

y(E) = y0 + S
ij
0Eij + CijklEijEkl

Here, Sij
0 is the (second Piola-Kirchhoff) stress in the undeformed configu-

ration, which is usually assumed to be zero, and if we set the energy of the
undeformed configuration to zero, it follows that y0 = 0. This leads to :

y(E) = CijklEijEkl

where

Cijkl =
∂S

∂E
=

∂

2
y(E)

∂Eij∂Ekl
= 4

∂

2
y(C)

∂Cij∂Ckl

is referred to as the elasticity tensor. In 3 dimensions, Cijkl has 34 = 81
components, while it has 24 = 16 components in 2 dimensions. However,
due to the symmetry of the stress tensor, Cijkl is symmetric in its first pair of
indices :

Cijkl = Cjikl

Similarly, the symmetry of the strain tensors results in symmetry of the sec-
ond pair of indices :

Cijkl = Cijlk

These are called minor symmetries. Since the order of differentiation with
respect to Eij and Ekl doesn’t matter, it also follows that

Cijkl = Cklij

which is called the major symmetry. This symmetry is a consequence of the
existence of a (hyperelastic) energy density. Given these symmetries, it is
relatively easy to show using the definition of the double contraction that

18

3.3 Strong ellipticity

CA : B = A : CB for all symmetric matrices A and B. In He and Zheng
[1996], a tensor, C, with this property is referred to as a hyperelastic tensor.
By contrast, an elastic tensor represents a “Cauchy-elastic” material and need
not possess major symmetry. In the following, we only consider hyperelastic
materials, and will refer to C simply as the elasticity tensor.

To illustrate the symmetry, we write the two dimensional elasticity tensor
explicitly as a matrix of matrices. The small matrices are indexed by (i, j),
while the big matrix is indexed by (k, l). Letters indicate unique values and
the full index is given under each element :

Cijkl =

✓

Cij00 Cij01

Cij10 Cij11

◆

=

0

B

B

B

B

B

B

B

B

@

0

B

@

a
0000

c
0100

c
1000

b
1100

1

C

A

0

B

@

c
0001

f
0101

f
1001

e
1101

1

C

A

0

B

@

c
0010

f
0110

f
1010

e
1110

1

C

A

0

B

@

b
0011

e
0111

e
1011

d
1111

1

C

A

1

C

C

C

C

C

C

C

C

A

As can be seen, there are only 6 unique entries. In general, a symmetric
second-order tensor has 1

2 n(n + 1) unique elements, so since C is a linear
map between two symmetric second order tensors, it follows that it can have
at most 1

4 n2(n + 1)2 unique elements. This accounts for the minor symme-
tries. Adding the major symmetry reduces the number further, and in 3d it
ends up being 21. This number as well as the one in 2d is reduced as various
material symmetries are introduced and, for a completely isotropic material,
only two parameters are necessary to fully specify C.

As stated above, we can also write C = ∂S/∂E, which explains why C is
sometimes also referred to as the tangent modulus. It is the tangent slope of
the stress-strain “curve”. For linear elasticity, C is constant, while in general
it depends on E for nonlinear materials.

The tangent modulus is conceptually very similar to the force gradient, since
they are both second derivatives of the energy. However, it should be noted
that the force gradient is a derivative with respect to positions, while the
tangent modulus is a derivative with respect to the strain. Obviously, the
two are related through the chain rule, but not in a particularly simple way.

3.3 Strong ellipticity

The only restriction stated on y in the previous sections is that it must be a
function of C. However, to model physics in a plausible fashion, the system

19

Continuum mechanics

as a whole should (ideally) satisfy a number of additional conditions. In
particular, [Antman, 2005, Sec. 13.2] lists the following desiderata :

1. An increase in a component of strain should be accompanied by an
increase in the corresponding component of stress.

2. Extreme strains (those for which an eigenvalue ofC is 0 or •) should
be maintained by infinite stresses. (In an extreme strain, |C| = • or
detC = 0.)

3. The equations of motion should admit solutions with wave-like be-
havior.

4. Well-set initial-boundary-value problems for the equations of mo-
tion should have solutions.

5. For appropriate data, the equilibrium equations should admit mul-
tiple solutions, so that buckling can be described.

6. Solutions should have an appropriate level of regularity.

The first of these criteria is also known as Hill’s stability criterion, [Hill,
1958], or occasionally as Drucker’s stability postulate, Drucker [1957]3.

Unfortunately, it is not obvious how to achieve all of the above criteria. One
restriction that would address the first desideratum would be to require that
y is strictly convex. However, as pointed out in Hill [1957], this would pre-
clude the possibility of buckling due to the non-uniqueness of such solu-
tions. Thus, we must conclude that it is not physically plausible to require
strict convexity of y.

A less restrictive class of functions are characterized by quasiconvexity, and
it was shown by Morrey [1952], that subject to certain restrictions, quasicon-
vexity can guarantee existence for some boundary value problems related to
nonlinear elasticity.

If a function is both quasiconvex and twice continuously differentiable, then
it is said to be “strongly elliptic” and satisfy the Strong Legendre-Hadamard
Condition of the Calculus of Variations. Throughout the literature, strong el-
lipticity and the Legendre-Hadamard condition are often used almost inter-
changeably, but strong ellipticity can also apply to non-differentiable func-
tions. We refer to [Antman, 2005, Sec. 13.3] for the details.

Conceptually, the important aspect is that this condition ensures that “the
ab-component of the first Piola-Kirchhoff stress tensor is an increasing func-
tion of the corresponding component of F”. Here, a and b are arbitrary

3The work by Drucker might precede that of Hill, but it was classified by the US Navy until 1977.

20

3.4 Invariants

vectors, and the ab-component of P is a

TPb. Note that P maps a direction
(a normal of a surface element) in the undeformed configuration to a force in
the deformed configuration (normalized by surface area in the undeformed
configuration to give a stress). Thus, f = Pb gives the force associated with
the direction b in the undeformed configuration. Consequently, a

TPb is the
component of f in the a direction in the deformed space. Similarly, a

TFb

computes the deformation gradient associated with direction b in material
space and the component along the direction a in the deformed space. In
other words, if the deformation gradient for a given pair of directions is in-
creasing, then the associated stress (force) should also be increasing.

An alternative interpretation of strong ellipticity is given by Rivlin [1992]
(also available in [Rivlin, 1997]), who shows that strong ellipticity is a neces-
sary and sufficient condition for material stability. Here, an elastic material is
said to be “stable at some specified value of the deformation gradient F (6= I)
if and only if a body of the material can be held stably in this state of homo-
geneous deformation with no applied body forces and the boundary held
fixed.”

Strong ellipticity on its own in not quite sufficient to guarantee existence
of solutions to nonlinear elasticity as pointed out in the seminal paper by
Ball [1976]. To that end, one must also add coercivity conditions as outlined
in [Antman, 2005, Sec. 13.4]. Ball [1976] showed that one can achieve all
of the necessary conditions by requiring that y be polyconvex, and this has
led to a significant amount of work related to constitutive modeling using
polyconvex functions.

We do not delve into this any further. The key point to make note of here
is that y cannot in general be expected to be convex and, as a consequence,
the associated energy Hessian cannot in general be expected to be positive
definite. However, we should expect y to be strongly elliptic, and there is a
nice physical interpretation of what that means. Strong ellipticity also relates
to the ellipticity of the PDE we ultimately would like to solve, which facili-
tates the application of multigrid later in the thesis. The connection between
strong ellipticity and PDEs is covered in Yan [1999].

3.4 Invariants

Another desideratum for the hyperelastic energy is given by Neumann’s
principle, [Neumann, 1885]. This states that “the symmetry group of a con-
sidered material must be included in the symmetry group of any tensor function of
the constitutive laws of the material”. Hence, if the material is described by a

21

Continuum mechanics

symmetry group, G, then it must be true that

y(F) = y(QFQT), 8Q 2 G (3.1)

Note, however, that the implication only goes one way. The constitutive law
may possess additional symmetries that are not directly associated with the
material. Another way of stating this is that two materials with different
symmetries may be indistinguishable from a mechanical point of view. An
example of this is a piece of plywood with 6 layers oriented with a 6-fold
rotation symmetry. Mechanically, this is indistinguishable from an isotropic
material, [He and Zheng, 1996, Sec. 4.2].

If we assume that the energy density can be written as a polynomial of the
components of the tensors upon which it depends, then Neumann’s prin-
ciple implies that the energy density can be written in terms of an integrity
basis. The notion of an integrity basis is rooted in “The first main theorem of
invariant theory” by Hilbert, but can be stated as follows : “an integrity basis
is a set of polynomials, each invariant under the group of transformations, such that
any polynomial function invariant under the group is expressible as a polynomial
in elements of the integrity basis” (quote from Betten [1982]).

The number of elements in the integrity basis depends on the symmetry
(i.e., the group of invariant transformations) as well as the type of function
in question (scalar, vector, or tensor valued). It is in general desirable to
find an irreducible basis to allow the constitutive parameters to be uniquely
identified.

Establishing an irreducible integrity basis for a given transformation group
is non-trivial, but has fortunately already been done for all the transfor-
mation groups we care about here. In particular, Zheng [1993b] lists irre-
ducible sets of bases for all the functions of two-dimensional tensor needed
for shells. As with any other basis, it should be noted that, although a basis
may be irreducible, it is usually not unique. We shall see an example of that
later in Section 4.4.

The assumption about the energy density being a polynomial function of
the tensor components can be lifted by considering arbitrary functions of
the integrity basis (see Wineman and Pipkin [1964]). In this case, however,
a minimal integrity basis is not guaranteed to lead to a minimal functional
basis, but it will remain a basis, which makes it convenient to focus on irre-
ducible integrity bases for constitutive modeling.

For isotropic scalar functions of 3-dimensional second-order tensors, there
are two different bases that are commonly used. The main invariants are
denoted by J and the principal invariants by I. These are given by

22

3.5 Symmetry

Main invariants in 3D Principal invariants in 3D

J1 = tr(C) = I1

J2 = tr(C2)= I2
1 � 2I2

J3 = tr(C3)= I3
1 � 3I1 I2 + 3I3

I1 = tr(C) = J1

I2 = tr(Cof(C)) = 1
2(J2

1 � J2)

I3 = detC = 1
3

⇣

J3 � 3
2 J1 J2 +

1
2 J3

1

⌘

Here, Cof(C) is used to denote the cofactor matrix for C. The derivation of
the relationship between the main invariants and the principal invariants is
outlined in Schröder [2010]. For two-dimensional problems, the invariants
are given by the first two lines in the table above, but I2 may conveniently
also be written in terms of the determinant :

Main invariants in 2D Principal invariants in 2D

J1 = tr(C) = I1

J2 = tr(C2)= I2
1 � 2I2

I1 = tr(C) = J1

I2 = det(C) = 1
2(J2

1 � J2)

In the table above, the invariants are expressed in terms of C since y, as ex-
plained above, has to be a function of C to ensure objectivity. However, since
E is a (non-singular) linear function of C, it follows that y can be equally well
be written in terms of E, and the integrity basis is valid for any symmetric
second order tensor. This means that we can trivially construct additional
sets of invariants by replacing C by E in the above expressions.

In particular, this means that tr(E) and tr(E2) form another basis in two
dimensions. In the following, we state the main invariants in terms of E
rather than C.

3.5 Symmetry

To develop anisotropic constitutive models, we briefly recap a few relevant
facts about symmetry groups in this section.

It is well known from crystallography that there are 230 symmetry groups
in 3D (space groups) and 17 such groups in 2D (plane symmetry groups).
The latter are also known as “wallpaper groups” because they represent all
the patterns you can put on wallpaper and have it repeat infinitely in two
directions. Both space groups and wallpaper groups are generated by an
underlying point group along with a translation lattice. There are 10 different

23

Continuum mechanics

point groups in 2D and five different lattice types. Together, they combine
to generate the 17 unique wallpaper groups.

The point group essentially specifies the symmetry of an elementary cell
(fundamental domain) of the pattern, while the translation lattice specifies
all translations that leave the overall pattern invariant. Another way of stat-
ing this is that if G is a wallpaper group and T is the translation lattice, then
the associated point group is the quotient group G/T . An excellent and
more in-depth discussion of the group structure of wallpaper patterns can
be found in Morandi [2007].

For continuous and homogenous media, there is no underlying translation
lattice, so the only thing that really matters is the point group. More specif-
ically, Zheng [1994] states the “Principle of symmetry of continuum” : Com-
pact point groups describe and classify all kind of real or ideal material symmetry
and physical symmetry, while the description of the symmetry of a continuous media
or its any physical property by a non-compact point group is an unreality.

While there are 10 finite point symmetry groups in 2D, there are also two
infinite symmetry groups corresponding to continuous rotations, SO(n) and
O(n). However, for a continuous and homogeneous medium in 2D, some
of these are indistinguishable. In particular, every material symmetry group
includes the inversion, [Zheng and Boehler, 1994]. This immediately reduces
the number of symmetries to 6, [Zheng, 1994, Eq. 3.22], but He and Zheng
[1996] show that, for linear elasticity, there are actually only 4 independent
hyperelastic symmetry groups in 2D. These correspond to fully anisotropic,
orthotropic, square-symmetric, and isotropic.

The point groups are often labeled using Schoenflies notation, but there are
other notations like Hermann-Mauguin’s notation, which can also be used.
Since the Hermann-Mauguin notation can incorporate translational symme-
try elements, it is more general than Schoenflies notation and is usually pre-
ferred in crystallography. More recently, the so-called “orbifold” notation
has also been introduced, and there are others. However, in the following,
we use Schoenflies notation since that seems to be most common in elasticity.

All point groups are subgroups of the orthogonal group. In 2D, they can be
further subdivided into two sets of groups : The cyclic groups, Cn, consist-
ing of rotations through 360�/n, and the dihedral groups, Dn. In 3D, Dn is
made up of an n-fold rotation axis (like Cn) and an additional two-fold ro-
tation axis in the plane perpendicular to the n-fold rotation axis. In 2D, this
additional two-fold rotation axis effectively amounts to “flipping the object
over”, which is the same as a reflection as long as you don’t keep track of the
front-side vs. the back-side of the object. Thus, in 2D, the dihedral groups

24

3.6 Anisotropy

contain rotations and reflections. However, in 3D, there is a distinction be-
tween reflecting and flipping over. In both 2D and 3D, Cn is a subgroup of
Dn.

In 3D, the notation Cnv is used to denote Cn with an additional n mirror
planes containing the rotation axis. The letter “v” in this notation is short
for “vertical”, which stems from the fact that the additional mirror planes
contain the rotation axis and the rotation axis is assumed to be vertical (by
convention). In 2D, Cnv is the same as Dn, and the two notations are some-
times used interchangeably. However, it should be noted that, in 3D, Cnv
and Dn are different groups.

3.6 Anisotropy

Anisotropic materials are often characterized by their symmetry and, as
stated earlier by Neumann’s principle, any material symmetry must be re-
flected in the corresponding energy density function, y. More specifically
this can be expressed through the “Principle of isotropy of space” as origi-
nally introduced by Noll [1954] and paraphrased by Zheng [1994] as : The
tensorfunctions in the physical and constitutive laws of an anisotropic material are
expressible as isotropic tensor functions with the structural tensors as additional
agencies.

In this context, G is said to be the symmetry group of a tensor function, y,
if y(C) = y(QCQT) for all Q 2 G. If the function has multiple arguments,
the transformation is applied to all arguments. Given this definition, a tensor
function is said to be isotropic if its symmetry group, G, is the full orthogonal
group.

A structural tensor is characterized by being invariant under all operations in
a specified group. As such, it is easily seen that an energy density written
as a function of structural tensors satisfies Neumann’s principle. The goal of
the following section is to identify the proper material symmetry groups for
orthotropic material, the associated structural tensor, and the integrity bases
for functions of this structural tensor.

3.7 Orthotropy

In the context of cloth simulation, we primarily focus on orthotropy, which is
characterized in the rest configuration (in 2D) by two orthogonal directions

25

Continuum mechanics

that do not have a notion of orientation. I.e., the material has two orthog-
onal reflection lines and a 2-fold rotation symmetry around the origin. The
point symmetry group is therefore D2 or, equivalently, C2v. In 3D, there are
multiple point symmetry groups that are all considered to correspond to or-
thotropic materials (D2h, C2v, and D2). See [Zheng, 1994, Section 6].

Given a symmetry group, the question remains of how to find the struc-
tural tensors for that group. We omit the details here, but simply refer to
Zheng [1993a], which provides a derivation and lists the relevant results for
2D. In particular, he shows that, for a scalar valued function, y, of one sym-
metric second-order tensor, E, any orthotropic function can be written as an
isotropic function of the following three arguments :

J1 = tr(E), J2 = tr(E2), J3 = tr(AE)

where A = â ⌦ â is the structural tensor and â is a normalized vector in
one of the directions of orthotropy. Given the definition of A, it is obvious
that it is idempotent, so since the trace operator is invariant under cyclic
permutation of the matrices, it follows that

J3 = tr(AE) = tr(A2E) = tr(AEA)

This formulation later turns out to be more convenient since it preserves the
symmetry of the argument to the trace operator. The tensor AEA represents
the strain in the direction of â since A takes any vector and projects it onto â.

3.8 Derivatives of invariants

When computing the stress and elasticity tensor associated with a given en-
ergy, we need the derivatives of the invariants wrt. E. Some care has to
be taken here since E is a symmetric second-order tensor. However, using
Einstein notation, it can be shown that we get

∂J1
∂E

=
∂

∂E
tr(E) = I

∂J2
∂E

=
∂

∂E
tr(E2) = 2E

∂J3
∂E

=
∂

∂E
tr(AEA) = A2 = A = â⌦ â

26

3.9 Summary

3.9 Summary

In summary this chapter established some of the basic requirements for hy-
perelastic energy functions. As a consequence, we have seen that the hy-
perelastic energy function for any orthotropic 2D material can be written in
terms of the following three invariants :

J1 = tr(E), J2 = tr(E2), J3 = tr(AEA)

where E is the Green-Lagrange strain tensor and A is a tensor which projects
any vector in material space onto one of the two orthogonal directions. Im-
portantly, these results are valid for arbitrarily large deformations. In the fol-
lowing, we use this to establish the expressions for an orthotropic St. Venant-
Kirchhoff material, but more sophisticated constitutive models also have to
be functions of these same three invariants (or an equivalent set).

27

Continuum mechanics

28

C H A P T E R 4
St. Venant-Kirchhoff membranes

In this chapter, we start by considering the St. Venant-Kirchhoff constitutive
model for isotropic and orthotropic materials in the continuum setting. This
model is characterized by a constant elasticity tensor similar to linear elas-
ticity, but is based on the nonlinear Green-Lagrange strain, which makes it
suitable for handling large displacements.

It should be noted that no material that is modeled with a constant elas-
ticity tensor can satisfy the strong ellipticity conditions globally, [Böhlke
and Bertram, 2002]; even if one considers other stress and strain measures.
Hence, this is a known limitation of the chosen model.

After establishing the model, we derive the expressions necessary for effi-
cient implementation of these models for a constant strain triangle (CST)
discretization. Occasionally, constant strain triangles are also referred to as
“Turner” triangles because they were introduced by M. J. Turner, Turner
et al. [1956]. Constant strain triangles are covered extensively in many finite
element texts, but usually only in 2D. In the following, we consider the more
general situation where the triangle is embedded in 3D. In particular, we de-
rive the details necessary for force computations and the computation of the
force Jacobians.

Our approach follows the ideas in Gingold et al. [2004] for discretizing the
strain tensor and ends with results similar to those presented in Delingette
[2008]. This approach computes the strain tensor directly from the edges of
the triangle, and computes the forces and force Jacobians by direct differen-
tiation of the energy with respect to the vertex positions.

29

St. Venant-Kirchhoff membranes

The method presented in this chapter extends the work in Gingold et al.
[2004] and Delingette [2008] to handle orthotropy and, unlike the work in
Volino et al. [2009], we do not rely on any approximations.

4.1 Bases for symmetric matrices

We start with some basic linear algebra development related to symmetric
matrices. This is convenient for representing tensors in matrix form using
Voigt notation1, and for later expressing the strain tensor directly in terms of
the edge vectors in a triangle mesh.

Let Sn be the set of symmetric matrices in Rn⇥n. Any A 2 Sn can be written
in terms of the canonical basis :

A =

2

6

6

6

4

a11 a12 . . . a1n
a12 a22 . . . a2n
...

...
a1n a2n . . . ann

3

7

7

7

5

= a11

2

6

6

6

4

1 0 . . . 0
0 0 . . . 0
...

...
0 0 . . . 0

3

7

7

7

5

+ a12

2

6

6

6

4

0 1 . . . 0
1 0 . . . 0
...

...
0 0 . . . 0

3

7

7

7

5

+ . . .

⌘ a11A11 + a12A12 + . . . + annAnn

where the matrices Aij are the basis matrices for 1 i j n. However,
there are many other natural choices. Here, we focus on two such choices.
First, let us consider the basis that is the foundation for the Voigt notation,
[Moakher, 2008, Sec. 2.4].

Lemma 1. Let {ei}1in be an orthonormal basis for Rn and let dij be Kro-
necker’s delta. Then the symmetric matrices

⇢

2�
1
2 (1+dij)

�

ei ⌦ ej + ej ⌦ ei
�

�

1ijn

form an orthonormal basis of Sn with respect to the standard inner product
for matrices, hA,Bi = tr(ATB).

As an example, for n = 2, this basis becomes

{ m̃1, m̃2, m̃3} =

⇢

1 0
0 0

�

,

0 0
0 1

�

,
1p
2

0 1
1 0

��

1So named after Woldemar Voigt.

30

4.1 Bases for symmetric matrices

For the next proof we need the following lemma :

Lemma 2. Let a, b 2 Rn \ {0} be two linearly independent vectors. Then
aa⌦ a + bb⌦ b = 0 if and only if a = b = 0.

Proof. The lemma is clearly true if a = b = 0. To show the “only if” part,
suppose that aaa

T + bbb

T = 0. Then right multiply by a to obtain

aaa

T
a + bbb

T
a = 0

Since a is not a null vector, it follows that ã = aa

T
a 6= 0, while b̃ = b

T
a

may or may not be zero. However, due to the linear independence of a and
b, it follows that ã = b̃ = 0 and, therefore, that a = 0. By right multiplying
aaa

T + bbb

T = 0 with b, we can similarly conclude that b = 0.

Based on this result we now show that another basis for symmetric matrices
is given by the following :

Lemma 3. Let xi 2 Rn, 0 i n, be a set of n + 1 points that form a non-
degenerate n-simplex in Rn. Furthermore, let eij = xi � xj, 0 i < j n,
be the edges of this simplex. Any symmetric matrix, A 2 Sn can then be
written as

A = Â
i<j

wij(eij ⌦ eij)

Proof. It is obvious that eij ⌦ eij 2 Sn, so we clearly have Âi<j wij(eij ⌦ eij) 2
Sn. Next, we show that the set of matrices eij⌦ eij, 0 i < j n, are linearly
independent by showing that the only solution of

Â
i<j

wij(eij ⌦ eij) = 0 (4.1)

is wij = 0. To this end, pick a vector ni that is perpendicular to the face
opposite xi. If we right-multiply both sides of Eq. (4.1) by ni, then we get
zero for all the terms involving the edges incident to the face. The remaining
n edges are linearly independent (since the simplex is non-degenerate), so,
by the above lemma, it follows that the corresponding wij coefficients must
all be zero. However, by repeating this argument for all i, we conclude that
all wij must be zero. Hence, the matrices must be linearly independent.

Next, consider a transformation of the edge vectors by a skew-symmetric
matrix. For skew-symmetric matrices, we have B = �BT, from which we
deduce that

x

TBx = (x

TBx)T = x

TBT
x = �x

TBx = 0, 8x 2 Rn

31

St. Venant-Kirchhoff membranes

If we define e

0
ij = Beij, it therefore follows that eij and e

0
ij are orthogonal,

which turns out to be convenient in subsequent derivations (because many
terms drop out). IfB is non-singular then it also follows that they must form
a simplex, since B simply represents a basis change. Thus, we can apply
lemma 3 to the transformed set of points. This only works when n is even,
because, for n odd, it can be shown that all skew-symmetric matrices are
singular. However, for n = 2 where the simplex is simply a triangle, we can
choose

B =

0 �1
1 0

�

This matrix is non-singular and represents a 90 degree inplane rotation.
Thus, mi = Bei represents the inplane edge normals for the triangle. From
this result and the above lemma, it follows that any symmetric matrixA 2 S2

can be written as
A = Â

i
wi(mi ⌦mi).

4.2 Isotropic St. Venant-Kirchhoff material

The simplest nonlinear hyperelastic material model is the St. Venant-
Kirchhoff model, which states that the strain energy density is given by

ym =
l

2
tr2(E) + µ tr(E2),

where l and µ are the Lamé coefficients. Note that Delingette [2008] uses
an unconventional variation of the above expression, where µ is divided by
2 (equation (6) in that paper). This is the same energy function as for linear
elasticity except that linear elasticity uses the engineering strain rather than
the Green-Lagrange strain. In terms of invariants the St. Venant-Kirchhoff
model can be written as

ym =
l

2
J2
1 + µJ2.

The second Piola-Kirchhoff stress tensor follows from

S =
∂ym
∂E

= l tr(E)I + 2µE.

For infinitesimally small deformations, we expect the model to be consistent
with linear elasticity. In the following, we use this to identify the parame-
ters in terms of the engineering elastic constants (Young’s modulus and the
Poisson ratio). The elasticity tensor can be computed by differentiation :

C =
∂S

∂E
= lI ⌦ I + 2µI(s),

32

4.2 Isotropic St. Venant-Kirchhoff material

where I(s) is the fourth order symmetric identity tensor. We note that this
expression does not depend on E but is in fact constant. The only nonlinear-
ity in the St. Venant-Kirchhoff model is therefore the one introduced by the
strain measure.

The (non-symmetric) identity tensor maps its argument (in this case a second
order tensor) onto itself. Given an orthonormal basis, this can be written as
I = dikdjlei ⌦ ej ⌦ ek ⌦ el, or

Iijkl =

0

B

B

B

B

B

B

B

B

@

0

B

@

1
0000

0
0100

0
1000

0
1100

1

C

A

0

B

@

0
0001

1
0101

0
1001

0
1101

1

C

A

0

B

@

0
0010

0
0110

1
1010

0
1110

1

C

A

0

B

@

0
0011

0
0111

0
1011

1
1111

1

C

A

1

C

C

C

C

C

C

C

C

A

.

The transpose of the identity tensor maps its argument to its transpose,
which gives IT = djkdilei ⌦ ej ⌦ ek ⌦ el. By combining the two, we get the
symmetric identity tensor, which maps its (potentially non-symmetric) ar-
gument to its symmetric part, i.e., I(s) = 1

2(I + IT).

In component form, this gives

Cijkl =

0

B

B

B

B

B

B

B

B

@

0

B

@

2µ + l

0000
0

0100
0

1000
l

1100

1

C

A

0

B

@

0
0001

µ

0101
µ

1001
0

1101

1

C

A

0

B

@

0
0010

µ

0110
µ

1010
0

1110

1

C

A

0

B

@

l

0011
0

0111
0

1011
2µ + l

1111

1

C

A

1

C

C

C

C

C

C

C

C

A

In Voigt-notation, this becomes

C̃ =

0

@

2µ + l l 0
l 2µ + l 0
0 0 2µ

1

A .

Alternatively, we could have observed that the second Piola-Kirchhoff stress
and the Cauchy stress are related by

� =
1
J
FSF T,

where J = detF . For small deformations, F ⇡ I and J ⇡ 1, so � ⇡ S.
Furthermore, ✏ ⇡ E, which then gives

� = l tr(✏)I + 2µ✏.

33

St. Venant-Kirchhoff membranes

In agreement with the result above, this immediately leads to
2

4

�xx
�yy
�xy

3

5 =

2

4

2µ + l l 0
l 2µ + l 0
0 0 2µ

3

5

2

4

✏xx
✏yy
✏xy

3

5

In the case of plane stress and small deformations, we can also write the
stress-strain relationship in terms of Young’s modulus and the Poisson ratio
(using the compliance matrix), which gives

2

4

✏xx
✏yy
✏xy

3

5 =
1
Y

2

4

1 �n 0
�n 1 0
0 0 1 + n

3

5

2

4

�xx
�yy
�xy

3

5

Simple inversion then gives
2

4

�xx
�yy
�xy

3

5 =
Y

1� n

2

2

4

1 n 0
n 1 0
0 0 1� n

3

5

2

4

✏xx
✏yy
✏xy

3

5

At this point, we see that

l =
Yn

1� n

2 , 2µ =
Y(1� n)

1� n

2 =
Y

1 + n

(4.2)

It is important to note that these are not the relationships that are usually
tabulated for the conversion between (l, µ) and (Y, n), because this is for 2D
plane stress as opposed to 3D.

4.3 Orthotropic St. Venant-Kirchhoff material

In order to extend the St. Venant-Kirchhoff constitutive model to an or-
thotropic material, we follow Bonet and Burton [1998]. We know that the
orthotropic energy can be written as a function of the two main invariants
plus the mixed invariant :

ym = ym(J1, J2, J3)

Without loss of generality we can split ym into isotropic orthotropic compo-
nents :

ym = yiso(J1, J2) + yortho(J1, J2, J3) =
l

2
J2
1 + µJ2 + yortho(J1, J2, J3)

34

4.3 Orthotropic St. Venant-Kirchhoff material

The St. Venant-Kirchhoff model is characterized by being quadratic in the
strain, but based on a nonlinear strain function. To extend it to the or-
thotropic case, we require that the energy remains quadratic in the strain
and stress free in the undeformed configuration.

The only combinations of the invariants that yield a quadratic energy are
J2
1 , J2, J2

3 , and J1 J3. The first two of these are already accounted for in the
isotropic part of the energy, so it follows that we must have

yortho(J1, J2, J3) = (aJ1 + bJ3) J3.

The associated contribution to the stress tensor follows by differentiation :

Sortho = a(J1A+ J3I) + 2bJ3A

In the undeformed configuration, we have J1 = J2 = J3 = E = 0, so we
easily see that the stress is zero in this case. From this we conclude that the
energy cannot contain any elements that are linear in the strain. Although
this would still keep the energy quadratic, it would cause the stress in the
undeformed configuration to be non-zero.

Another round of differentiation yields the elasticity tensor for the or-
thotropic component :

Cortho =
∂Sortho

∂E
= a(I ⌦A+A⌦ I) + 2bA⌦A

To arrive at this, we use that :

∂

∂E
J1A =

∂

∂E
J3I =

1
2 a(I ⌦A+A⌦ I),

which is based on the (major) symmetry of C.

In order to identify the parameters (l, µ, a, b) in the above model with the
more common engineering moduli we will consider the special case where
the preferred direction is aligned with the y-axis. In this case we have â =
(0, 1). It therefore follows that

A = â⌦ â =

✓

0
1

◆

�

0 1
�

=

✓

0 0
0 1

◆

and

I ⌦A =

✓

A 0
0 A

◆

, A⌦ I =
✓

0 0
0 I

◆

, A⌦A =

✓

0 0
0 A

◆

35

St. Venant-Kirchhoff membranes

From this we get :

Cortho = a

✓✓

A 0
0 A

◆

+

✓

0 0
0 I

◆◆

+ 2b

✓

0 0
0 A

◆

=

✓

aA 0
0 (a + 2b)A+ aI

◆

Based on this we can write the full elasticity tensor as follows :

Cijkl =

0

B

B

B

B

B

B

B

B

@

0

B

@

2µ + l

0000
0

0100
0

1000
l + a

1100

1

C

A

0

B

@

0
0001

µ

0101
µ

1001
0

1101

1

C

A

0

B

@

0
0010

µ

0110
µ

1010
0

1110

1

C

A

0

B

@

l + a

0011
0

0111
0

1011
2µ + l + 2a + 2b

1111

1

C

A

1

C

C

C

C

C

C

C

C

A

In Voigt notation this becomes :

C̃ =

0

@

2µ + l l + a 0
l + a 2µ + l + 2a + 2b 0

0 0 2µ

1

A

The compliance matrix written in terms of the engineering moduli has the
following form :

D̃ =

0

@

1/Yx �nyx/Yy 0
�nxy/Yx 1/Yy 0

0 0 1/G

1

A

Here, Yx and Yy are Young’s modulus along the two orthogonal directions
and G is the shear modulus. nxy and nyx are the Poisson ratios (nxy is the
Poisson’s ratio that corresponds to a contraction in direction y when an ex-
tension is applied in direction x). Due to symmetry, the Poisson ratios are
constrained such that nxy/Yx = nyx/Yy.

If we let Y = Yx, n = nxy and h = Yy/Yx then it follows that we have :

h =
Yy

Yx
=

nyx

nxy
=

Yy

Y
=

nyx

n

and we can then write

D̃ =

0

@

1/Y �n/Y 0
�n/Y 1/(hY) 0

0 0 1/G

1

A

36

4.4 Natural orthotropic invariants

If we invert this matrix we get :

C̃ =

0

B

B

@

Y
1�hn

2
hnY

1�hn

2 0
hnY

1�hn

2
hY

1�hn

2 0

0 0 G

1

C

C

A

(4.3)

Equating each of the non-zero elements in C̃ and solving for l, µ, a and b

gives :

l =
Y

1� hn

2 � G

µ = 1
2 G

a =
hn� 1
1� hn

2 Y + G

b =
1 + h � 2hn

2(1� hn

2)
Y� G

(4.4)

For an isotropic material we have h = 1 and G = 2µ = Y
1+n

and if we insert
this above we do in fact recover the expressions for l and µ from Eq. (4.2) as
well as a = b = 0.

Using the result from Wu et al. [2003] we can write the effective stiffness for
an arbitrary direction relative to the preferred directions. Let q denote the
angle relative to the x-axis. The stiffness is then given by :

1
Y

q

=
1

Yx
cos4

q +

✓

1
G
� 2n

Yx

◆

cos2
q sin2

q +
1

Yy
sin4

q

It should be noted however that unlike in Wu et al. [2003] the orthotropic
model derived here only has four parameters (plus the implied choice of
preferred direction which is common in both). Based on the careful analy-
sis in He and Zheng [1996] of symmetry groups and the associated classes
of hyperelastic tensors we know that there can only be four independent pa-
rameters (plus a direction) for a 2D orthotropic material. Any additional
parameters must necessarily be conflated with existing parameters.

4.4 Natural orthotropic invariants

Başar et al. [2000] also develops an orthotropic St. Venant-Kirchhoff model,
but they write the energy in terms of two oriented strain tensors. Their formu-
lation is for 3D materials, but is easily simplified to 2D materials. Ultimately
this formulation is equivalent to the one presented above, but provides a

37

St. Venant-Kirchhoff membranes

more natural interpretation of the material parameters. It also leads to a nice
generalization as shown in Itskov [2001]. In this section we will show that
the models are in fact identical, which is not immediately obvious.

As a foundation they start out with two structural tensors (in 2D) :

L1 = â1 ⌦ â1, L2 = â2 ⌦ â2

where â1 and â2 are normalized vectors in the two orthogonal directions of
orthotropy. Let now the directional strain tensors be defined as

E1 ⌘ EL1, E2 ⌘ EL2

Based on this they consider the following invariants

L1 = tr(E1), L2 = tr(E2), L3 = tr(E1E2)

Using these invariants, Başar et al. [2000] and Itskov [2001] write the energy
density for a St. Venant-Kirchhoff material in a nicely symmetric way :

ym = 1
2 Â

1i,j2
aijLiLj + G12L3 (4.5)

where a11, a22, a12 = a21, and G12 are the material parameters. By compari-
son in Section 4.3 we wrote the energy density as :

ym =
l

2
J2
1 + µJ2 + aJ1 J3 + bJ2

3

To show that the two formulations are equivalent, we will show that J2
1 , J2,

J1 J3, and J2
3 can all be expressed in terms of L1, L2 and L3. To this end let us

define the following orthogonal matrix :

R ⌘ ⇥â1 â2
⇤ 2 R2⇥2

It’s then easy to show that

L1 = R

1 0
0 0

�

RT, L2 = R

0 0
0 1

�

RT

If we define the rotated strain tensor as Ẽ ⌘ RTER then it follows that
E = RẼRT. Since the two are related by a similarity transformation, then it
also follows that their eigenvalues are identical and therefore they have the
same trace. Inserting these definitions we get :

L1 = tr(E1) = tr(EL1) = tr
✓

RẼRTR

1 0
0 0

�

RT
◆

= ẽ11

38

4.4 Natural orthotropic invariants

where ẽij represents the (i, j) component of Ẽ. The identity L2 = ẽ22 follows
in an identical fashion. To evaluate L3 we note that :

â

T
1E â2 = â

T
1RẼR

T
â2 = â

T
1
⇥

â1 â2
⇤

Ẽ

â

T
1

â

T
2

�

â2 =
⇥

1 0
⇤

Ẽ

0
1

�

= ẽ12

From this it follows that :
L3 = tr(E1E2)

= tr(E â1â

T
1E â2â

T
2)

= ẽ12 tr(E â1â

T
2)

= ẽ12 tr(â

T
2E â1)

= ẽ2
12

Using the definitions from Section 3.7 we now see that

J2
1 = tr2(E) = tr2(Ẽ) = (L1 + L2)

2

J2 = tr(E2) = tr(Ẽ2) = L2
1 + L2

2 + 2L3

J2
3 = tr2(EL1) = L2

1

J1 J3 = tr(E) tr(EL1) = (L1 + L2)L1

As intermediate variables let :

L̃1 ⌘ L2
1, L̃2 ⌘ L2

2, L̃3 ⌘ L3, L̃4 ⌘ L1L2,

We can then write the above results as :
J2
1 = L̃1 + L̃2 + 2L̃4

J2 = L̃1 + L̃2 + 2L̃3

J2
3 = L̃1

J1 J3 = L̃1 + L̃4

Since

ym =
l

2
J2
1 + µJ2 + aJ1 J3 + bJ2

3

=
l

2
(L̃1 + L̃2 + 2L̃4) + µ(L̃1 + L̃2 + 2L̃3) + a(L̃1 + L̃4) + bL̃1

= (1
2 l + µ + a + b)L̃1 + (1

2 l + µ)L̃2 + 2µL̃3 + (l + a)L̃4

= 1
2 a11 L̃1 +

1
2 a22 L̃2 + a12 L̃4 + G12 L̃3

it follows that the model established in the previous section and the model
in Eq. (4.5) are identical if :

1
2 l + µ + a + b = 1

2 a11
1
2 l + µ = 1

2 a22

l + a = a12

2µ = G12

39

St. Venant-Kirchhoff membranes

By inserting the values from Eq. (4.4) and simplifying we get

a11 =
hY

1� hn

2

a22 =
Y

1� hn

2

a12 =
hnY

1� hn

2

G12 = G

Notably these are exactly the values in Eq. (4.3). If we define " ⌘
(L2, L1,

p
L3)T, then we can therefore write Eq. (4.5) as :

ym = 1
2"

T

0

@

a22 a12 0
a12 a11 0
0 0 G12

1

A " = 1
2"

TC̃"

This is exactly the same expression as for linear elasticity except that ✏ has
been replaced by ". Thus " compactly encodes all the information about
the geometric nonlinearity in the system. It can be argued that this way of
writing the orthotropic St. Venant-Kirchhoff model in some sense provides
a more natural parameterization of the model because it literally uses the
same coefficients as linear elasticity.

The fundamental difference in the derivation of this model is the choice of
invariants which is different than the choice used in Section 4.3. However,
this just goes to show that even a minimal integrity basis is not unique. In
the following we will do our computations based on J1, J2, and J3 since this
is computationally convenient, but at this point it should be clear that this is
equivalent to using the model by Başar et al. [2000].

4.5 Constant strain discretization

Given the constitutive model for an orthotropic St. Venant-Kirchhoff mate-
rial this section will focus on how to compute the corresponding forces and
force Jacobians using a constant strain triangle discretization.

4.5.1 Representation of the strain tensor

As stated earlier the Green-Lagrange strain tensor is given by E = 1
2(F

TF �
I) where F is the deformation gradient. Since the material space is inher-
ently two dimensional it follows that E can be represented by a symmetric

40

4.5 Constant strain discretization

2⇥ 2 tensor. I.e. it has three degrees of freedom. These may be embedded
inside a much larger tensor, but the additional entries in the tensor represent
a null space. In the following we shall take advantage of that because we
would like to use the edges of a triangle in 3D to compute the strain within
the plane of the triangle.

x0

x1 x2e0

e2 e1
α1 α2

α0

Figure 4.1: The labeling scheme used for vertices, edges, and interior angles of a single triangle.

In the following we will use the numbering convention shown in Fig. 4.1.
Let li be the deformed length of edge i, l̄i the undeformed length, and si =
1
2(l

2
i � l̄2

i). By definition we have

si = ē

T
i E ēi (4.6)

where ēi is the undeformed edge in the material domain. Since E is sym-
metric we can write it as E = Âi wimi ⌦mi, where mi is the inplane normal
for edge ēi (see Section 4.1). Note that mi refers to the undeformed config-
uration and it only serves to define a basis for the strain tensor, while all
the information about the actual deformation is encoded in wi. Note also
that the construction holds even if the undeformed triangle is embedded in
a larger space like R3. In this case, the outer product will project away any
component that is not in the tangent space of the deformation function (i.e.
in the plane of the undeformed triangle).

Using the convention that (i, j, k) is a cyclic permutations of (0, 1, 2) it follows
that

si = wj(ēi · mj)
2 + wk(ēi · mk)

2

and since mi is an 90 degree inplane rotation of ēi we have that ēi · mj =
kēi ⇥ ējk = 2A where A is the area of the triangle. As we gather everything
up, we therefore get :

2

4

s0
s1
s2

3

5 = 4A2

2

4

0 1 1
1 0 1
1 1 0

3

5

2

4

w0
w1
w2

3

5

Solving these equations wrt. wi gives :

wi =
1

8A2 (sj + sk � si)

41

St. Venant-Kirchhoff membranes

and therefore
E =

1
8A2 Â

i
(sj + sk � si)(mi ⌦mi)

Using that mi + mj + mk = 0 we can rewrite this as

E =
1

8A2 Â
i
(sj + sk � si)(mi ⌦ (�mj �mk))

=
1

8A2 Â
i
(�sj � sk + si)(mi ⌦mj) + (�sj � sk + si)(mi ⌦mk)

=
1

8A2 Â
i
(�sk � si + sj)(mj ⌦mk) + (�si � sj + sk)(mk ⌦mj)

= � 1
8A2 Â

i
si(mj ⌦mk + mk ⌦mj)� (sj � sk)(mj ⌦mk �mk ⌦mj)

The third equality is based on the fact that we are summing over all i, so we
can permute the indices cyclically. To simplify the last expression further, let
dij = mi ⌦mj �mj ⌦mi. It then follows that

dij � dki = mi ⌦mj �mj ⌦mi �mk ⌦mi + mi ⌦mk

= mi ⌦ (mj + mk)� (mj + mk)⌦mi

= �mi ⌦mi + mi ⌦mi

= 0

As a consequence we have

Â
i
(sj � sk)djk = (s1 � s2)d12 + (s2 � s0)d20 + (s0 � s1)d01

= s0(d01 � d20) + s1(d12 � d01) + s2(d20 � d12)

= 0

and therefore

E = � 1
8A2 Â

i
si(mj ⌦mk + mk ⌦mj)

4.5.2 Evaluation of St. Venant-Kirchhoff energy

To compute an explicit representation for the membrane energy we need
to compute tr2(E), tr(E2) and tr(AEA). For these computations it will be
convenient to introduce (l, m, n) as another cyclic permutation of (1, 2, 3).
With this we get :

tr(E) = � 1
4A2 Â

i
si(mj · mk)

42

4.5 Constant strain discretization

and therefore

tr2(E) =
1

16A4 Â
i,l

sisl(mj · mk)(mm · mn)

Using the notation S(A) = A+ AT for the symmetric part of a matrix, we
furthermore get :

E2 =
1

64A4 Â
i,l

sislS(mj ⌦mk)S(mm ⌦mn)

Since

(mj ⌦mk)(mm ⌦mn) = mjm
T
k mmm

T
n = (mk · mm)(mj ⌦mn)

it follows that

S(mj ⌦mk)S(mm ⌦mn) =(mk · mm)(mj ⌦mn) + (mj · mm)(mk ⌦mn)

+(mk · mn)(mj ⌦mm) + (mj · mn)(mk ⌦mm)

and therefore

tr
�

S(mj ⌦mk)S(mm ⌦mn)
�

=(mk · mm)(mj · mn) + (mj · mm)(mk · mn)

+(mk · mn)(mj · mm) + (mj · mn)(mk · mm)

=2(mk · mm)(mj · mn) + 2(mk · mn)(mj · mm)

Consequently we have

tr(E2) =
1

32A4 Â
i,l

sisl((mk · mm)(mj · mn) + (mk · mn)(mj · mm))

For the orthotropic component we have :

AEA = � 1
8A2 Â

i
si ââ

TS(mj ⌦mk)ââ

T

= � 1
8A2 Â

i
si ââ

T(mjm
T
k + mkm

T
j)ââ

T

= � 2
8A2 Â

i
si â(â · mj)(mk · â)â

T

= � 2
8A2 Â

i
si(â · mj)(â · mk)â⌦ â

and since tr(A) = â · â = 1 it follows that :

tr(AEA) = � 1
4A2 Â

i
si(â · mj)(â · mk)

43

St. Venant-Kirchhoff membranes

It should be noted here that â is a vector in one of the two preferred direc-
tions within the plane of the triangle. As such it is now a 3 dimensional vector
which means that the dot products make sense. Using the above result we
get :

tr2(AEA) =
1

16A4 Â
i,l

sisl(â · mj)(â · mk)(â · mm)(â · mn)

In order to evaluate J1 J3 we also need :

tr(E) tr(AEA) =
1

16A4 Â
i,l

sisl(mj · mk)(â · mm)(â · mn)

Since J1 J3 is a scalar we have J1 J3 = (J1 J3)T, so we can symmetrize this
expression :

tr(E) tr(AEA) =
1

32A4 Â
i,l

sisl
�

(mj · mk)(â · mm)(â · mn)

+ (mm · mn)(â · mj)(â · mk)
�

Let us now define a vector s = [s0, s1, s2]T as well as four symmetric matrices
T(q) :

T(1)
il = (mj · mk)(mm · mn)

T(2)
il = (mk · mm)(mj · mn) + (mk · mn)(mj · mm)

T(3)
il = (â · mj)(â · mk)(â · mm)(â · mn)

T(4)
il = (mj · mk)(â · mm)(â · mn) + (mm · mn)(â · mj)(â · mk)

(4.7)

The results can then be written succintly as

J2
1 = tr2(E) =

1
16A4 Â

i,l
sislT

(1)
il =

1
16A4 s

TT(1)
s

J2 = tr(E2) =
1

32A4 Â
i,l

sislT
(2)
il =

1
32A4 s

TT(2)
s

J2
3 = tr2(AEA) =

1
16A4 Â

i,l
sislT

(3)
il =

1
16A4 s

TT(3)
s

J1 J3 = tr(E) tr(AEA) =
1

32A4 Â
i,l

sislT
(4)
il =

1
32A4 s

TT(4)
s

Since mi is just an inplane rotation of ei it is easy to see that mi · ml = ei · el,
so none of the edge normals are actually required for the isotropic case. For

44

4.5 Constant strain discretization

the orthotropic case we have mi · â = ei · â? where â? = n⇥ â is a 90 degree
inplane rotation of â. Whether we use n⇥ â or â⇥ n = �n⇥ â is immaterial
since we always have a product of an even number of terms with â.

It should be noted that mi and â refer to the undeformed configuration (ma-
terial space), so all the T matrices can be precomputed. A also refers to the
area of the triangle in the rest configuration. However, T(q) are only matrices
and not tensors since they do not transform as tensors.

By making all of the above transformations we now have a simple quadratic
expression for the energy density as a function of the edge elongations. To
get the total energy per element we integrate the density across the element.
Since the strain is assumed to be constant across the element, the energy
density will also be constant, so the integration amounts to multiplication
by the volume, which is Ah, where h is the thickness of the membrane :

Wmem = Ahym =
h

32A3 s

T
⇣

lT(1) + µT(2) + 2bT(3) + aT(4)
⌘

s (4.8)

For the isotropic case where a = b = 0 this simplifies to :

Wmem =
1

32A3
Yh

(1� n

2)
s

T
⇣

nT(1) + 1
2(1� n)T(2)

⌘

s

For convenience in subsequent computations we gather all the constant
terms in a single matrix and write this as :

Wmem = s

TTs = s

T

2

4

p0 q2 q1
q2 p1 q0
q1 q0 p2

3

5

s = Â
i

pis2
i + 2 Â

i
qisjsk

4.5.3 Evaluation of other orthotropic energy functions

It should be noted that all isotropic and orthotropic hyperelastic energies
must be functions of the invariants derived in Section 3.7. For a constant
strain triangle discretization all such energies can therefore be evaluated us-
ing the results in the previous section. Not all of them will lead to sim-
ple quadratic forms, but they can all be computed as functions of the edge
lengths.

4.5.4 Membrane force evaluation

The membrane force are given by �rWmem where the gradient is with re-
spect to the vertex positions. To compute it directly for the St. Venant-

45

St. Venant-Kirchhoff membranes

Kirchhoff membrane directly we introduce :

[#ij] =

2

4

0 �1 1
1 0 �1
�1 1 0

3

5

Note that for k 6= i 6= j we have that #ij is 1 if (i, j, k) is an odd permutation of
(0, 1, 2) while it is �1 if (i, j, k) is an even permutation. This is opposite the
usual convention for the (Levi-Civita) permutation tensor, so we could flip
the sign to be consistent with that convention. However, this will introduce
a lot of extra minus signs to keep track of, so we will use the definition stated
above. With this convention we can write :

ei = Â
l

#ilxl

and thus
∂ei
∂xm

= #imI

where ei is a deformed edge vector. Since si =
1
2(l

2
i � L2

i) it follows that :

∂si
∂xm

= li
∂li

∂xm
= li

∂

p
ei · ei

∂xm

= li
1

2
p

ei · ei
(eT

i rxm ei + e

T
i rxm ei)

= li
1

2li
2e

T
i #imI

= #ime

T
i

and therefore

∂s2
i

∂xm
= 2#imsie

T
i

From this it furthermore follows that
∂

∂xm
Â

i
pis2

i = 2 Â
i

#im pisie
T
i

which gives us :

∂

∂xm
Â

i
pis2

i = 2pnsne

T
n � 2plsle

T
l

For the second term of the energy we get

∂

∂xm
(qisjsk) = qi

✓

sj
∂sk
∂xm

+ sk
∂sj

∂xm

◆

= qi

⇣

#kmsje
T
k + # jmske

T
j

⌘

46

4.5 Constant strain discretization

and thus

∂

∂xm

Â
i

qisjsk

!

=Â
i

qi

⇣

#kmsje
T
k + # jmske

T
j

⌘

=Â
i
(qjsk + qksj)#ime

T
i

=� (qmsn + qnsm)e
T
l + (qlsm + qmsl)e

T
n

where the second equality follows by cyclic rotation of the indices. Combin-
ing all the results we get

∂Wmem
∂xm

= 2pnsne

T
n � 2plsle

T
l + 2((qlsm + qmsl)e

T
n � (qmsn + qnsm)e

T
l)

= 2(pnsn + qlsm + qmsl)e
T
n � 2(plsl + qmsn + qnsm)e

T
l

To write this more succintly, let :

rl = 2(plsl + qmsn + qnsm)

We can then write the stretch forces as :

fm = �
✓

∂Wmem
∂xm

◆T

= rlel � rnen

= rl(xn � xm)� rn(xm � xl)

= rlxn + rnxl � (rl + rn)xm

4.5.5 Membrane force Jacobians

For the second order derivatives and any i, m, and n, we get :

∂

2s2
i

∂xnxm
=

∂

∂xn

∂s2
i

∂xm

!T

=
∂

∂xn

⇣

2#imsie
T
i

⌘T

= 2#im

✓

si
∂ei
∂xn

+ ei
∂si
∂xn

◆

= 2#im

⇣

si#inI + ei#ine

T
i

⌘

= 2#im#in (siI + ei ⌦ ei)

47

St. Venant-Kirchhoff membranes

For m = n we have #im#in = 1� dim and for m 6= n we see that #im#in is only
non-zero (and in fact �1) for i 6= m 6= n so this leads to :

∂

2

∂xnxm

Â
i

pis2
i

!

=

(

�2pl (slI + el ⌦ el) , l 6= m 6= n
2 Âi 6=m,n pi (siI + ei ⌦ ei) , m = n

For the other term we get for any (i, j, k), m, and n :

∂

2qisjsk

∂xnxm
= qi

∂

∂xn

✓

∂sjsk

∂xm

◆T

= qi
∂

∂xn

⇣

#kmsje
T
k + # jmske

T
j

⌘T

= qi#km

✓

sj
∂ek
∂xn

+ ek# jne

T
j

◆

+ qi# jm

✓

sk
∂ej

∂xn
+ ej#kne

T
k

◆

= qi#km

⇣

sj#knI + ek# jne

T
j

⌘

+ qi# jm

⇣

sk# jnI + ej#kne

T
k

⌘

= qi(#km#knsj + # jm# jnsk)I + qi
�

#km# jnek ⌦ ej + # jm#knej ⌦ ek
�

and thus

∂

2

∂xnxm

Â
i

qisjsk

!

=Â
i

qi(#km#knsj + # jm# jnsk)I+

Â
i

qi
�

#km# jnek ⌦ ej + # jm#knej ⌦ ek
�

(4.9)

To reduce this we can rotate the indices cyclically to obtain :

Â
i

qi(#km#knsj + # jm# jnsk) =Â
i
(qisk + qksi)# jm# jn

Using the same arguments as above, the right hand side of this equality can
further simplify to :

Â
i
(qisk + qksi)# jm# jn =

(

�qnsm � qmsn, m 6= n
Âi 6=m qisk + qksi, m = n

Simplifying the second term in Eq. (4.9) is more complicated. However, for
l 6= m 6= n we can consider all the possible permutations of 1, 2, and 3 for l,
m, and n (not necessarily cyclic). Expanding the sum for each permutation
and evaluating all the # terms then shows that regardless of the permutation
we get :

Â
i

qi
�

#km# jnek ⌦ ej + # jm#knej ⌦ ek
�

=

qn(el ⌦ em) + qm(en ⌦ el)� ql(en ⌦ em), l 6= m 6= n

48

4.6 Animated rest state

When we combine all these results we get for l 6= m 6= n :

∂

2Wmem
∂xnxm

=
∂

2

∂xnxm

Â
i

pis2
i + 2 Â

i
qisjsk

!

= � 2pl (slI + el ⌦ el)� 2(qnsm + qmsn)I+

2(qn(el ⌦ em) + qm(en ⌦ el)� ql(en ⌦ em))

= 2(qn(el ⌦ em) + qm(en ⌦ el)� ql(en ⌦ em)� pl(el ⌦ el))

� 2(plsl + qnsm + qmsn)I

or

�∂

2Wmem
∂xnxm

= rlI � 2(qn(el ⌦ em) + qm(en ⌦ el)� ql(en ⌦ em)� pl(el ⌦ el))

This result is in agreement with equation (16) in Delingette [2008] modulo a
little bit of translation. As in Delingette [2008] the easiest way to compute the
second derivative for m = n is to use the fact (due to translation invariance)
that :

Â
i

∂

2Wmem
∂xixm

= 0

For implementation purposes we define the following shorthand notations :

Hmn = r
xn(rxmWmem)

T

Qi = 2qi(ej ⌦ ek)

Pi = 2pi(ei ⌦ ei)

The membrane force Jacobians can then be assembled from the following
blocks :

H01 = r2I �Q1 �Q0 + QT
2 + P2

H02 = r1I �QT
2 �QT

0 + Q1 + P1

H23 = r0I �Q2 �Q1 + QT
0 + P0

H00 = �H01 � H02

H11 = �HT
01 � H12

H22 = �HT
02 � HT

12

4.6 Animated rest state

In the world of animation, physical correctness is not always the goal. In
fact it can sometimes be useful to locally grow or shrink the cloth during

49

St. Venant-Kirchhoff membranes

a simulation. As an example this can be used to avoid wrinkles in regions
where wrinkles are not desired (for artistic reasons) by changing the rest
state to follow a simple skinned surface underneath the cloth. As the surface
stretches the amount of cloth grows so it doesn’t induce shear buckling from
the stretch, and as the surface shrinks the amount of cloth is reduced so it
doesn’t buckle due to compression. An example of this is shown in Fig. 4.2
where the inflatable vinyl is simulated as a thin shell.

Figure 4.2: The original simulation of Baymax from Disney’s Big Hero 6 on the left shows more
wrinkles than was artistically desirable. On the right the same simulation has been
run with an animated rest state. © Disney

Simply changing the rest state to be exactly what’s given by the kinematic
object, however, will simply replicate the kinematic object, which defeats
the purpose of doing any simulation. Thus, it is desirable to be able to blend
between the behavior given by the kinematic object and the behavior given
by the original rest state.

Furthermore, it should ideally be possible to vary the relative weighting spa-
tially (in one region you might want the kinematic behavior while you want
the cloth behavior in another region). However, you cannot arbitrarily grow
and shrink a piece of geometry in various places and still expect to have a
single contiguous piece of geometry. You therefore cannot expect to simply
be able to model or sculpt a new rest state for the geometry to achieve the
desired effect.

To overcome these obstacles we represent the rest shape(s) by the corre-
sponding set of edge lengths. The edge lengths represent an intrinsic mea-
sure of the surface because they can be measured without knowledge of the

50

4.6 Animated rest state

embedding of the surface. This is contrary to the vertex positions whose
position must be given with respect to the embedding space.

Given the intrinsic representation, we can interpolate between the edge
lengths of the two rest shapes and use the result to define a new rest shape.
Since the kinematically driven rest shape is typically animated, this is also
referred to as “animated rest length” or “animated rest state”.

This operation is different than simple interpolation between the vertices
for two reasons. Most obvious is the fact that each edge length is a nonlin-
ear function of the vertex positions. However, more importantly the “rest
shape” given by the kinematic deformation is typically far from the true rest
configuration, so linear interpolation between this shape and the true rest
shape of the cloth is unlikely to produce a reasonable looking shape. By
encoding everything intrinsically the actual configuration of the shape no
longer matters.

In order for this idea to work it must be possible to express the constitutive
model in terms of edge lengths rather than vertex positions. Looking back
at Eq. (4.7) and Eq. (4.8), this requires that all the dot products in Eq. (4.7)
can be computed and that the area of the triangle in Eq. (4.8) can also be
computed.

The area is easy to compute since Heron’s formula states that :

A = 1
4

q

(ke0k2 + ke1k2 + ke2k2)2 � 2(ke0k4 + ke1k4 + ke2k4).

To compute the dot products we refer to Fig. 4.1 and note from the standard
relation between the dot product and the angle between two vectors that :

ej · ek = �kejkkekk cos ai

From the law of cosines we have :

keik2 = kejk2 + kekk2 � 2kejkkekk cos ai

Combining the two we get :

keik2 = kejk2 + kekk2 + 2ej · ek

or
ej · ek =

1
2(keik2 � kejk2 � kekk2) (4.10)

For the orthotropic component we assume that the orthotropic direction, â,
is given with respect to the true rest configuration of the cloth. Given this

51

St. Venant-Kirchhoff membranes

orientation we solve for two scalar coefficients such that â? = w0e0 + w1e1.
At this point we then have

â? · e0 = w0ke0k2 + w1(e1 · e0)

â? · e1 = w0(e0 · e1) + w1ke1k2

â? · e2 = w0(e0 · e2) + w1(e1 · e2)

This can be evaluated given edge lengths by using Eq. (4.10).

52

C H A P T E R 5
Discrete shells

Having covered the membrane model in the two preceding chapters, the fo-
cus in this chapter is on efficient evaluation of the Hessians of the bending
energy for the discrete shells bending model. This model was first presented
in [Grinspun et al., 2003], while an equivalent formulation appeared in si-
multaneously in [Bridson et al., 2003]. The material model used earlier by
Baraff and Witkin [1998] is essentially an approximation of the discrete shell
model.

The discrete shell bending energy is based on the dihedral angle between
two adjacent triangles (see Fig. 5.1). Unlike many of the commonly used
models in shell analysis it is well suited for large deformations which are
typical in cloth simulations. Models based on linear elasticity are insufficient
for this, and we note that models based on co-rotational linear elasticity (see
e.g. [Thomaszewski et al., 2006; Kaufmann et al., 2009]) are also insufficient
since they assume that the strain is small everywhere (even if the displace-
ments are large).

The dihedral angle is straightforward to compute given the vertex positions,
and its gradient with respect to vertex positions (required for the forces) is
easily found in the literature. However, the Hessian of the bend angle, which
is required to compute the associated force Jacobians, has not been docu-
mented in the literature prior to our contribution in [Tamstorf and Grinspun,
2013].

Readily available computations of the force Jacobians, such as those pro-
duced by symbolic algebra systems, or by autodifferentiation codes, are ex-

53

Discrete shells

pensive to compute, and therefore less useful. In this chapter, we present
compact, easily reproducible, closed form expressions for the Hessian of the
bend angle. Compared to automatic differentiation, we measure up to 7⇥
speedup for the evaluation of the bending forces and their Jacobians.

In addition to the application for cloth and thin shell simulation, the hinge
angle is being used for the

• deformation energy for example-driven deformations [Fröhlich and
Botsch, 2011]

• Willmore energy used in mesh smoothing [Wardetzky et al., 2007],
and

• dissipative potential of viscous liquid sheets [Batty et al., 2012].

These applications therefore also stand to benefit from the work presented
in this chapter.

5.1 Background and overview

Part of the motivation for this work has been our experience that analytical
derivatives are exceedingly tedious to derive by hand, with compact formu-
lations sometimes consuming weeks of manual derivation. This process is
error prone, often leading to analytic expressions that disagree with numer-
ical validation. The process can be suboptimal, missing opportunities for
gathering like terms, thus leading to longer source code and more expensive
computation. These liabilities are detrimental to the adoption of efficient
numerical methods for hinge-based energies, as evidenced in the literature:

• Bridson et al. [2003] avoided Hessians by treating bending forces
explicitly; similarly, Fröhlich and Botsch [2011] avoided Hessians by
using Gauss-Newton’s method;

• Baraff and Witkin [1998] introduced approximating assumptions
(e.g., inextensible cloth, undergoing only small deformations, with
flat rest shape) treating normals and edge lengths as constants;

• Bergou et al. [2006] and Wardetzky et al. [2007] derived a simplified
Hessian formula for the special case energy sin2 (q/2), using a tech-
nique that does not accommodate the general case; and

• Grinspun et al. [2003] computed the Hessian using automatic differ-
entiation, which dominated the computational cost of the method.

54

5.2 Orthotropy

Contributions. In light of these observations, this chapter seeks to facili-
tate adoption, code legibility, and computational efficiency of hinge-based
bending energies.

• We present a compact and efficient formulation of the Hessian for
the general case of a hinge-based bending energy.

• By taking advantage of several symmetries in the expressions (some
less obvious than others), we observe that many terms can be reused
when assembling the Hessian for an entire mesh, further reducing
the cost of computation.

• We present the results of experiments documenting up to 7⇥
speedup of the formulation compared to autodifferentiation and up
to 4⇥ speedup compared to an existing (but unpublished) symbolic
derivation.

5.2 Orthotropy

The extension of the discrete shell bending model to orthotropic materials
was presented by Garg et al. [2007]. The underlying assumption in that pa-
per is that the elasticity tensor is constant as in the St. Venant-Kirchhoff
model. Given that assumption, the orthotropic model amounts to a scaling
of the stiffness associated with each edge. As such, the work presented here
is immediately applicable in their framework too.

5.3 Bending energy

x2

x3

x0

x1 e0

e1

e1

e2

e2

T

T

α1

α0

α0

α1

α2
α2

e2

e1 e1

e2

e0

x0

x2

x3

x1

n

π−θ

x0 x3

x1, x2n

θ

nn

x0

x1 x2e0

e2 e1

m2 m1

m0

h2h1

h0

x1 x2

e0

e2 e1

x3

m2 m1

m0

h1 h2

h0

~

~

~

~

~ ~
~ ~

~
~

~

~~

~
~ ~

~~

Figure 5.1: Vertices, edges, normals, and angles around the edge shared by two triangles. The
two rightmost schematics show the in-plane edge normals and the associated altitudes
from one edge to the opposing vertex. All of these quantities are straightforward to
compute given the edge vectors.

55

Discrete shells

Notation. Figure 5.1 presents the labels and indices for a single hinge sten-
cil, consisting of four vertices xi, five edges ei and ẽi, two normals n and ñ,
bend angle q, interior angles ai and ãi, and heights hi and h̃i. Typically, the
index i takes on values 0, 1 and 2. Arithmetic on all indices is performed
modulo 3. Observe that edges (and all related quantities) are generally la-
beled the same as the opposing vertices. The tilde decoration is used to dis-
tinguish corresponding quantities on the upper and lower triangles T and T̃,
respectively. Triangle and edge normals are all assumed to be normalized.

Energy. For a given triangle mesh, consider an arbitrary energy given by
a summation over all the interior edges (indexed by i), or “hinges,” of a
triangle mesh,

Wbend(x) = Â
i

yi(qi) , (5.1)

The “bend angle” q here is the angle between the normals of the two trian-
gles incident to the hinge, and y : R ! R is an application-specific transfor-
mation of the bend angle. Drawing from the literature, examples for yi(qi)
include

ai(qi � bi)
2 Discrete shells [Grinspun et al., 2003]

ai(sin(qi/2))2 Discrete Willmore energy [Wardetzky et al., 2007]

ai(cos(qi/2)� biqi) Simulation of clothing [Bridson et al., 2003]

where ai and bi are application-specific scalar coefficients. These typically
depend on the local geometry of the mesh and, in physical simulations, the
material constitutive properties.

Bridson et al. [2003] presented a force, not an energy; above we have inte-
grated the (conservative) force to obtain the corresponding energy. By focus-
ing on the conservative setting, we can roughly halve the computation time,
since the conservative force Jacobian is the negated energy Hessian, which
is symmetric by definition.

In Chapter 3, we used y to refer to an continuous energy density. Here, yi
effectively refers to a discretized (bend) energy associated with one hinge.

Bending forces and Hessians. Let the set of all vertex positions be denoted
by q = (x0, . . . , x3). We then differentiate the energy, Eq. (5.1), with respect
to q to obtain the bending forces and the energy Hessian :

f (x) = �Â
i
ryi and H(x) = Â

i
Hess(yi) .

56

5.4 Hinge-angle gradient and Hessian

For one particular hinge i, dropping the implied subscript from yi and qi,
the chain rule gives

ry = y

0rq , (5.2)

Hess(y) = y

0Hess(q) + y

00rq

Trq , (5.3)

using the prime to differentiate a univariate function with respect to its
scalar argument, e.g., y

0 = dy/ dq.

Observe that the Hessian of the energy is a weighted sum of Hess(q) and
the outer product rq

Trq, with the same weighting function y

0 appearing
in both ry and Hess(y).

5.4 Hinge-angle gradient and Hessian

The expression for rq has been previously documented in the literature in
several forms equivalent to

r
x1q =

cos a2
h1

n

T +
cos ã2

h̃1
ñ

T, r
x0q = � 1

h0
n

T,

(5.4)

r
x2q =

cos a1
h2

n

T +
cos ã1

h̃2
ñ

T, r
x3q = � 1

h̃0
ñ

T .

By contrast, the expressions for the hinge angle Hessian are not (to our
knowledge) recorded in the literature. Like others, we found the deriva-
tion to be extended and error-prone, and have therefore archived a complete
derivation in a technical report [Tamstorf, 2013]. The final expressions for
Hq ⌘ Hess(q) are conveniently expressed in terms of the building blocks :

S(·) = (·) + (·)T ,

wij = 1/(hihj) , w̃ij = 1/(h̃i h̃j) ,

Mi = nm

T
i , M̃i = ñm̃

T
i ,

Ni = Mi/keik2 , Ñi = M̃i/kẽik2 , (5.5)

Pij = wij cos ai M
T
j , P̃ij = w̃ij cos ãi M̃

T
j ,

Qj = w0jMj , Q̃j = w0jM̃j .

57

Discrete shells

The 3⇥ 3 subblocks, Hq

ij, of Hq are then

Hq

00 =� S(Q0)

Hq

33 = �S(Q̃0)

Hq

11 =S(P11)� N0 +S(P̃11)� Ñ0

Hq

22 =S(P22)� N0 +S(P̃22)� Ñ0

(5.6)

Hq

10 =P10 �Q1

Hq

20 =P20 �Q2

Hq

13 = P̃10 � Q̃1

Hq

23 = P̃20 � Q̃2

Hq

12 =P12 + (P21)
T + N0 +P̃12 + (P̃21)

T + Ñ0

Hq

03 =0 .

| {z }

contribution of upper triangle
| {z }

contribution of lower triangle

The remaining blocks are obtained by symmetry of the Hessian, Hq

ij =

(Hq

ji)
T.

Exploiting symmetry. We have taken special care in laying out the expres-
sions above, and in assigning the labels in Fig. 5.1. Observe that every con-
tributing term depends on quantities from the hinge’s upper triangle T, or
lower triangle T̃, but not both. We write terms depending on T on the left
column, and terms depending on T̃ on the right column. Comparing the two
columns, we observe that the two triangles contribute to the Hessian symmetri-
cally.

We now exploit this symmetry to derive a novel refactorization of the Hes-
sian expressions, yielding a simpler, and more efficient, implementation.

5.5 Refactoring the bending energy Hessian

Assembling the Hessian for an entire mesh. Recall from Eq. (5.3) that the
bending energy Hessian, H(x), is the weighted sum of the hinge-angle Hes-
sian, y

0Hess(q), and the outer product of the hinge angle gradient with it-
self, y

00rq

Trq. Therefore, it is natural to split the computation of the energy

58

5.5 Refactoring the bending energy Hessian

Hessian into two parts, iterating over triangles to compute Â y

0
i Hess(qi),

and iterating over interior edges to compute Â y

00
i rq

T
i rqi; we examine these

two parts in Section 5.5.1 and Section 5.5.2, respectively.

5.5.1 Exploiting two levels of symmetry in y

0Hess(q)

The half-hinge. As is evident from the two columns of Eq. (5.6), the two
triangles of a hinge contribute to the hinge angle Hessian symmetrically. We
exploit this symmetry by thinking of each hinge as a pair of half-hinges (see
Fig. 5.2a).

x2

x3

x1 x2

x0

x1 x2

x3

x1 x2

x0

x1 x2

x0

x1

(a) (b) (c)

21

3

54

7

6

x2

x0

x1

x2

x0

x1

x2

x0

x1

Figure 5.2: Refactoring the assembly: (a) Every hinge is split into two half-hinges. (b) Each
triangle associates with up to three half-hinges. (c) The Hessian is assembled by iter-
ating a simple template over mesh triangles. In each iteration, the local indices of the
template are mapped to corresponding global indices, and care is taken to account for
mismatch in local/global edge orientation.

The contributions of each half-hinge can each be computed using only the
left column of Eq. (5.6), making the code compact, if care is taken to correct
for the orientation of hinge edge e0.

To understand the needed correction, recall that the left and right columns
of Eq. (5.6) are expressed with indices into the upper and lower triangles of
Fig. 5.1, respectively. Hinge edge e0 flows counterclockwise versus clockwise
along the upper and lower triangles, respectively. This disagreement in the
assumed orientation of e0 is the only difference in the expressions derived
for the left and right columns. In particular, if the lower half-hinge’s contri-
bution is computed using the expressions originally derived for the upper
half-hinge, we must account for the reversal of e0.

59

Discrete shells

To understand what is affected, we can rederive Eq. (5.6) with a revised
Fig. 5.1 in which e0 is reversed. It turns out that the reversal affects only the
computation of H12, where N0 and Ñ0 are now transposed. Since N0 + Ñ0
is symmetric, transposing both does not alter the result, which is reassuring,
since the Hessian should not depend on the (arbitrary choice of) orientation
of e0 in the diagram. However, when we split the Hessian computation into
a pair of half-hinges, both reusing the left column of Eq. (5.6), this amounts
to reversing the orientation in Fig. 5.1 only for the lower half-hinge: the pair
of half-hinges are now computed with inconsistent versions of Fig. 5.1, an
error we must correct: we must transpose N0 for exactly one of the two half-hinge
applications of the left column of Eq. (5.6). This is reflected below in our final
computation.

The three half-hinges of a triangle. A second level of symmetry is uncov-
ered by observing that each triangle participates in up to three half-hinges
(see Fig. 5.2b). Because these half-hinges involve the same triangle, their
contributions to the bending energy Hessian all depend on the same set of
local quantities. It therefore becomes natural to compute the bending energy
Hessian by examining one triangle at a time.

Local triangle energy Hessian. The complete matrix Â y

0
i Hess(qi) is as-

sembled in the usual style of finite element stiffness matrix assembly, by
visiting each triangle and computing a local Hessian H4.

Consider the contribution of one triangle. If the triangle lies in the mesh in-
terior, it participates in three half-hinges, but if it is incident to a boundary, it
may participate in fewer hinges. To account for the boundary cases without
specialized formulae, we introduce the indicator function

ci =

⇢

1 edge i lies in interior ,
0 edge i lies on boundary .

We instantiate the left column of Eq. (5.6) three times, with labels permuted
in correspondence to each of the three half-hinges. Per Eq. (5.3), we scale
each half-hinge Hessian contribution by y

0
i , and sum the scaled contribu-

tions to arrive at the local triangle Hessian. The use of the indicator function,
and the summation over three potentially participating half-hinges, exposes
the second level of symmetry— a three-fold symmetry over the edges, ver-
tices, and indeed all labels on the triangle. This allows for a surprisingly
compact representation of the 3⇥ 3 subblocks of H4 as

H4ij = wij

⇣

di M
T
j + djMi

⌘

+

⇢ �Ri+1 � Ri+2 i = j ,
Ri+2

† i 6= j ,

60

5.5 Refactoring the bending energy Hessian

where

ci = ciy
0
i(qi) ,

di = ci�1 cos ai+1 + ci+1 cos ai�1 � ci , (5.7)
Ri = ciNi .

These expressions are valid for i 2 {0, 1, 2}, j 2 {i, i + 1}, with the remaining
subblocks being determined by H4ij = (H4ji)

T.

The conditional transpose operator (†). The above expressions employ
the conditional transpose operator denoted by a dagger: R

†
i transposes Ri if

and only if the orientation of mesh edge ei is counterclockwise with respect
to the triangle of interest. The choice of global orientation is immaterial so
long as, it is held fixed throughout the assembly of the complete Hessian.
Indeed, the precise definition of † is also immaterial, so long as for every
interior edge, it transposes for exactly one of the two incident triangles.

Operation count. To assemble the local Hessian for one triangle, we first
compute three cosine expressions needed for di, and three outer products
Mi assembled in 12 linear combinations. This is more compact than a naı̈ve
computation of the Hessian for each hinge. The Hessian for a single full
hinge requires six different outer products, 20 scaled versions of these, and
18 matrix additions. For a regular mesh, there are twice as many edges as
faces, so the total (relative) cost for the entire mesh becomes 12 outer prod-
ucts, 40 scale operations, and 36 additions vs. 3, 12, and 15 operations re-
spectively. Assuming that the computation is compute bound, we should
therefore expect roughly a 3⇥ speedup. However, the locality of the above
computation also improves cache-coherency, in practice leading to an addi-
tional speedup.

5.5.2 Computing y

00rq

Trq

All but two of the subblocks in the outer product contain mixed terms, i.e.,
terms involving data from both of incident triangles. Therefore, the outer
product does not decompose in the way of the hinge angle Hessian; it is
more naturally computed per edge.

However, while it is conceptually most naturally computed per edge, in
practice it is still advantageous to include it in the same loop as the hinge-
angle Hessian. We do this by assigning each edge to one of its two incident

61

Discrete shells

triangles similar to how the conditional transpose operator only transposes
for one of the two triangles. The advantage of using this approach is pri-
marily that the calls to the assembly function for the global stiffness matrix
can be consolidated. Assume that each call to the assembly function adds
one subblock of the Hessian. If the two loops are kept separate, then a total
of 6F + 10E calls to the assembly function are needed (where F denotes the
number of faces and E denotes the number of edges). In a regular mesh,
this is approximately equal to 13E. By comparison, the combined loop only
requires 6F + 4E ⇡ 7E calls to the assembly function (the naı̈ve computation
of the Hessian requires 10E calls to the assembly function).

5.6 Implementation of a thin shell code testbed

Our motivation to derive the hinge energy Hessian in this thesis stems from
the need to implement an implicit time stepper for cloth simulation. To ob-
tain a complete implementation for a cloth simulation, several additional
observations are useful. We present these in this section, and then use this
framework for the performance comparisons in the next section.

Tan-based energy. Discrete Shells [Grinspun et al., 2003] employ the hinge
bending energy

yi(qi)
| {z }

Discrete Shells

= k
3kēik2

Āi
(qi � q̄i)

2 ,

where k is a bending stiffness and Āi is the sum of the areas of the two tri-
angles incident to the hinge. A bar indicates that the quantity refers to the
undeformed configuration.

More generally, one could consider some discrete approximation of the lo-
cally integrated mean curvature, j(qi), and then express the hinge bending
energy as

yi(qi)
| {z }

Generalized

= k ai
�

j(qi)� j(q̄i)
�2 , (5.8)

where ai is a scaling coefficient that accounts for the local discrete hinge ge-
ometry. This is similar to the formulation by Gingold et al. [2004].

We found j(q) = 2 tan(q

2) to be useful in our application. This expression
was used by Bobenko and Suris [1999], Hoffmann [2000], and Gingold et al.

62

5.6 Implementation of a thin shell code testbed

[2004] to estimate the sum of the principal curvatures. The tan-based energy
is convenient in practice because it leads to monotonically increasing forces
as the bend angle increases. For this particular choice of j(q), the scaling
coefficient remains ai = 3kēik2/Āi.

Physical materials do not interpenetrate, so we require

q 2]� p, p[, (5.9)
q̄ 2]� p, p[. (5.10)

The tan-based energy enforces Eq. (5.9), since the restoring force becomes
unbounded as q ! ±p; the condition Eq. (5.10) is enforced at initialization.

We also considered whether to employ j(q � q̄) in Eq. (5.8) in place of
j(q) � j(q̄). We choose the latter because the non-penetration condi-
tion Eq. (5.9) examines q, not q � q̄. Some earlier papers, perhaps less fo-
cused on enforcement of non-penetration in the elastic model, do employ
j(q � q̄) [Garg et al., 2007; Wardetzky et al., 2008]. For small (infinitesimal)
bend-angles, all of these methods are equivalent (the curvature approaches
zero as the bend-angles approaches zero). However, for large (finite) bend-
angles, the distinction becomes important.

Bending sti↵ness. For actual simulations, the bending stiffness, k, must be
chosen. By considering the energy of a thin plate under small deflections,
[Audoly and Pomeau, 2010, Sec. 6.6], we note that it can be identified with
half the flexural rigidity, D. While we consider shells here rather than plates,
the model must be consistent with the plate model for a flat rest state. Hence,

k =
D
2

=
Yh3

24(1� n

2)
, (5.11)

where Y denotes Young’s modulus, n is Poisson’s ratio, and h is the thickness
of the shell.

Trigonometric functions of signed hinge angle. To be able to determine
which way a shell is bending, the bend-angle q 2]� p, p[has to be treated
as a signed quantity. We use the same convention as Bridson et al. [2003],
where q has the same sign as (n1 ⇥ n2) · e0 = det[n1, n2, e0], i.e., positive
when the two normals point away from each other.

Referring to Fig. 5.3, the needed trigonometric functions for q

2 are

sin
⇣

q

2

⌘

=
kn1 � n2k

2
, cos

⇣

q

2

⌘

=
kn1 + n2k

2
,

63

Discrete shells

n1
n2

θ

n1

-n2 n1+n2

n1-n2
θ/2

Figure 5.3: Simple construction to compute the trigonometric functions for q

2 based on one of the
right angled triangles. Note that each of the normal vectors have unit length.

for q 2 [0, p]. For values of q outside the specified interval, the usual identi-
ties for trigonometric functions can be used. In particular, this gives

tan
⇣

q

2

⌘

= sgn(det[n1, n2, e0])
kn1 � n2k
kn1 + n2k , (5.12)

for q 2] � p, p[. For q = 0, the determinant becomes zero and the sign
function is undefined. However, in this case, we have n1 � n2 = 0 so, as
long as any finite value is chosen for the sign function, the result is correct.
It should be noted that we never have to differentiate the right hand side
of Eq. (5.12). Instead, we differentiate tan(q/2) using the chain rule. This
avoids the trouble of the non-differentiability of the sign function at zero.

E�cient computation of viscous forces. The discrete Rayleigh analogy im-
plementation of viscous damping introduces an incremental dissipative poten-
tial,

Ev(x) =
kd
t

Â
i

ai
�

j(qi)� j(q̂i)
�2 ,

where q̂i is the value of qi at the end of the previous time step and t is the size
of the time step, [Bergou et al., 2010]. In this model, viscosity is modeled as
an elastic-type energy that binds the end-of-step position to its start-of-step
counterpart. The parameter kd is the damping coefficient, which is concep-
tually similar to k in the elastic energy.

The combined elastic and viscous energy for a time step is then given by

yi(q)
| {z }

viscoelastic

= kai
�

j(qi)� j(q̄i)
�2

+
kd
t

ai
�

j(qi)� j(q̂i)
�2 ,

64

5.7 Method in brief

and the expressions for the force and Hessian follow as before. In particular,
per Eq. (5.3), the expensive hinge angle gradient, rq, and Hessian, Hess(q),
are computed just once (not twice), and the independent elastic and viscous
contributions appear only in the scalars y

0 and y

00. Compared to a separate
evaluation of elastic and viscous forces, this provides a 2⇥ speedup since
none of the vector or matrix computations are duplicated.

5.7 Method in brief

For convenience, we collect all the equations into pseudocode in Algorithm 1
and 2.

Algorithm 1: ComputeForcesAndGradients

Input: Deformed mesh
1: for all edges, ei do
2: Compute inverse edge lengths, 1/li = 1/keik.
3: Compute unit edge, êi = ei/li.
4: Compute j(qi) (Eq. 5.12).
5: Compute y

0 and y

00.
6: end for
7: for all triangles, T do
8: Compute area, A, of triangle.
9: Compute cosines, cos ai = êj · êk.

10: Compute inverse altitudes, 1/hi = li/2A.
11: Compute edge normals, mi = êi ⇥ n.
12: Compute di, wij, Mi, Ni, Ri (Eqs. 5.5 and 5.7).
13: Compute contributions to the Hessian, H4ij .

14: Assemble rfij = H4ij .
15: for all non-boundary CCW edges in T do
16: Compute bend gradient, rq (Eq. 5.4).
17: Compute bending forces (Eq. 5.2).
18: Compute y

00rq

Trq.
19: Update rf = rf + y

00rq

Trq.
20: end for
21: end for

65

Discrete shells

Algorithm 2: Preprocessing

Input: Undeformed mesh
1: for all edges, ei do
2: Compute j(q̄i) using Eq. (5.12).
3: Compute ai = 3kēik2/Āi.
4: Compute k using Eq. (5.11).
5: end for

The computation of k may need to be done in different places depending
on whether the material parameters are spatially and/or temporally vary-
ing. Note that, on current microprocessors, it can be advantageous in Algo-
rithm 1 to compute and store the inverse of the edge lengths and triangle
altitudes. That way the subsequent number of divisions is reduced signifi-
cantly.

5.8 Evaluation

To illustrate the practical benefits of the results presented in the preceding
sections, we compare the performance and accuracy of our implementation
to two existing alternatives. In particular, we compare against the following
methods:

• Automatic differentiation. Originally, Grinspun et al. [2003] proposed
to evaluate the force Jacobians using automatic differentiation. This
method is characterized by providing accurate results without hav-
ing to perform a lot of manual algebra.

• Symbolic derivation. The results presented in a number of papers,
[Bergou et al., 2006; Wardetzky et al., 2007; Garg et al., 2007; Batty
et al., 2012], are based on an unpublished symbolic derivation of
the bending forces and their gradients, but this derivation does not
leverage all the available symmetry.

For each of these methods, our comparison is based on the original source
code provided by the authors, but ported into our testbed for a fair compar-
ison. The comparison focuses on the computation of rq and Hess(q), so all
other computations are kept the same among all the implementations.

66

5.8 Evaluation

5.8.1 Test cases

We consider a number of different cloth simulations for our evaluations. One
set of these has a square piece of cloth falling onto and draping over a (static)
sphere (see Figure 5.4). This simulation is run at 36 different cloth resolutions
(ranging from 121 vertices up to 6561 vertices). The goal of this test is to
evaluate the behavior of the methods in the presence of large bend angles.
No explicit damping is included in this example.

Figure 5.4: A piece of cloth draping over a sphere. This simulation is run at 36 different resolu-
tions.

Another set of simulations, shown in Figure 5.5, have a horizontal “beam” of
varying thickness, where one end is fully constrained while the remainder
of the beam is allowed to bend under gravity. The goal of these simulations
is to evaluate the behavior for a range of different materials from soft cloth
to relatively stiff thin shells. These simulations have been damped to reach
an equilibrium relatively quickly. In practice, 5 different materials are con-
sidered and each one is run at three different resolutions (366, 787, and 1372
vertices).

All benchmarks were run on an Intel Core i7-2640 at 2.80 GHz. Since this
work is not focused on parallelization, everything is run in a single thread
for easier comparisons. However, both the assembly of the Hessian and the
solution of the resulting linear systems can obviously be parallelized.

67

Discrete shells

Figure 5.5: Five different beams of varying thickness. The beams will be referred to by number
with the one in front being number 1 and the one farthest away being number 5.

5.8.2 Numerical accuracy

All of the methods considered for comparison should compute identical re-
sults in exact arithmetic. In floating point arithmetic slight differences are to
be expected due to rounding operations of intermediate results. To confirm
the correctness of the new method and to evaluate its accuracy compared
to the existing methods, we computed the normwise relative error of the
Hessian at each time step of all the cloth-sphere simulations.

Let Hnew denote the Hessian of the bending energy using the method pre-
sented in this paper, and let Hold denote the Hessian based on one of the
existing methods. The normwise relative error is then given by

h =
kHnew � Holdk
kHnewk .

For our computations, we used the Frobenius norm in the above expression.
The distribution of the resulting errors is shown in Figure 5.6. As can be
seen from this figure, the difference between the various implementations is
typically on the order of 1� 2 ulp (unit in last place). The maximum error
observed was 4.9 ulps, so the results agree up to small differences which may
affect the last dlog2(4.9)e = 3 bits. These numbers are all based on double
precision, where one ulp is 2�53. This is all consistent with our expecta-

68

5.8 Evaluation

 0

 0.05

 0.1

 0.15

 0.2

 1 1.5 2 2.5 3

F
r
e

q
u

e
n

c
y

Normwise relative error [ulps]

Symbolic

Autodifferentiation

Figure 5.6: The distribution of normwise relative errors when comparing the proposed method to
an existing symbolic derivation and an implementation using automatic differentia-
tion.

tion that the results should be identical except for differences due to round-
ing. One thing worth noting is that the implementation based on automatic
differentiation consistently has a higher error than the symbolic derivation.
However, the difference is small enough that it is unlikely to be of practical
significance.

5.8.3 Performance

Fundamentally, the flow of execution for the method proposed here is not
dependent on the mesh configuration. We therefore expect that the perfor-
mance gains are consistent across all the examples considered. Furthermore,
we expect the cost to be proportional to the number of hinges. To verify this,
we first consider the runtime for the cloth-sphere example as a function of
the number of vertices. The results are shown in Figure 5.7. Each of the
three implementations considered show near perfect linear scaling. How-
ever, other parts of the cloth simulation do not scale linearly with the number
of vertices. Most notable is the linear solver, which in this case is PARDISO
from Intel’s MKL v. 11.0. With an estimated complexity of O(n1.3), it is doing
fairly well from a complexity point of view, but ultimately this is still bound
to dominate any gain in the evaluation of the bending Hessian.

69

Discrete shells

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000

R
u

n
t
i
m

e

Number of vertices

New method

Existing symbolic method

Automatic differentiation

Linear solve

Figure 5.7: The cost of evaluating bending forces and force gradients as well as assembling the
associated stiffness matrix. Each of the three methods considered exhibit close to O(n)
complexity in the number of vertices. For comparison the cost of the linear solve is
also shown. The estimated complexity for this phase is O(n1.3).

In addition to the linear solve, there are other costs, like collision detection
and response, which depend on the particular simulation. Still, the fraction
of the total time spent on bending force evaluation and stiffness matrix as-
sembly can be significant as shown in Table 5.1.

Method Cloth-sphere Beams

Presented method 4–6% 9–12%
Existing symbolic 9–15% 17–23%
Autodifferentiation 14–22% 26–33%

Table 5.1: The fraction of the total simulation time spent on bending force evaluation and the
associated stiffness matrix assembly. These numbers are minimums and maximums
over all the examples in each group.

To get an accurate estimate of the speedup of the Hessian evaluation by it-
self, we model the runtime cost as a function of the number of vertices by
f (x) = axk. We then estimate the two parameters, a and k, by linear regres-
sion of the associated function g(ln x) ⌘ ln f (x) = k ln x + ln a. Based on
an initial data analysis, we observed that, for each example the estimated
exponent is the same for all the methods to within the statistical error of

70

5.8 Evaluation

the estimate. Hence, we have re-estimated ln a under the assumption that
the value for k is the same for each method. Given the estimated values,
the speedup is given as the ratio between the values of a for the different
methods. The results are shown in Table 5.2.

Experiment k ln aN ln aS ln aA
Speedup over

symbolic
Speedup over

autodiff

Cloth-sphere 1.062 �5.175 �4.129 �3.632 2.85 4.68
Beam 1 1.079 �2.629 �1.829 �1.287 2.22 3.83
Beam 2 1.075 �3.305 �2.505 �1.963 2.23 3.83
Beam 3 1.079 �4.711 �3.909 �3.370 2.23 3.82
Beam 4 1.081 �6.467 �5.674 �5.134 2.21 3.79
Beam 5 1.079 �7.056 �6.261 �5.715 2.21 3.82

Table 5.2: The results of the parameter estimation process for ln f (x) = k ln x + ln a, where x is
the number of vertices, and f (x) is the runtime. The subscript “N” is used to denote
the new method, “S” is used for the existing symbolic method, and “A” is used for the
autodifferentiation method.

It should be noted that, counter to expectation, there is a slight (but statis-
tically significant) nonlinearity. This nonlinearity appears to be due to the
sparse matrix data structure used for the assembly of the stiffness matrix.

What is measured and modeled above is the speedup for the combined eval-
uation of forces and force Jacobians plus the assembly of the stiffness matrix.
The cost of the assembly operation is difficult to measure on its own in our
codebase, but by using Intel’s VTune, we estimated the assembly cost to be
roughly 49% of the runtime for the new method, 25% for the existing sym-
bolic method, and also 25% for the automatic differentiation method. Factor-
ing this in, the speedup for the computation of the bending forces and their
Jacobians on their own is 1.5⇥ the numbers shown in Table 5.2. This gives
a speedup between 3⇥ and 4⇥ relative to the existing symbolic method,
which is remarkably close to the rough estimate provided at the end of Sec-
tion 5.5.1. Compared to the automatic differentiation method the speedup
can exceed 7⇥.

In addition to the comparisons above, we made a less extensive compari-
son to the approximate method employed by Baraff and Witkin [1998]. This
comparison suggests that computing the exact derivatives using our method
is no more expensive than computing the approximate derivates using their
method.

71

Discrete shells

5.9 Limitations

Hinge-based energies have a number of limitations that should be kept in
mind in any implementation. These are not specific to the derivations in this
paper, but rather inherent to the use of the hinge angle.

Degeneracies. The geometry depicted in Fig. 5.1 could degenerate (to first
order) in two ways: edge collapses, where the hinge edge degenerates, and
altitude collapses, where one of the vertices opposite the hinge edge becomes
colinear with the hinge edge.

Either degeneracy causes at least one hinge altitude to vanish, leading to di-
vision by zero in the bend energy gradient and Hessian. In the case of an
edge collapse, it is possible to show that all the relevant terms have well-
defined limit values as the edge length decreases, so the division by zero
can be handled by a numerically stable special case. By contrast, we do
not know of a remedy for the altitude collapse. In practice, the membrane
(stretch) energy of a shell should prevent any element from degenerating,
but for constitutive models like Saint-Venant Kirchhoff which allow inver-
sion, a collapse remains possible. However, neither type of degeneracy has
occured in any of our experiments.

Indefiniteness of the hinge angle Hessian. In many situations, it is desir-
able for a matrix to be positive definite. In particular, this is a requirement
for being able to use the conjugate gradient method or a Cholesky based di-
rect method to solve the corresponding set of linear equations. However, for
general mesh positions, the Hessian of the hinge angle is indefinite.

The fact that it is not positive definite is not at all surprising. As discussed
in Chapter 3, strict convexity implies uniqueness of all solutions, which pre-
cludes bifurcation phenomena such as buckling [Hill, 1957; Ball, 1976].

72

C H A P T E R 6
Unconstrained dynamics

In the previous chapters, we derived the hyperelastic energy functions to
approximate the behavior of cloth and provided a spatial discretization. The
focus of this chapter is the dynamic evolution in the absence of contacts.
In the next chapter, we then augment this treatment by introducing contact
and friction forces. The primary contribution here is to quantify the benefit
of using an incremental potential for time integration and to provide some
intuition as to why it is beneficial. We also point out some of the challenges
when attempting to take large time steps.

6.1 Euler-Lagrange equations

To describe the dynamics of our system, we use Lagrangian mechanics as
this facilitates the introduction of constraints later on. We therefore consider
a system with a generalized coordinate representation given by q 2 Rn, and
a corresponding generalized velocity, q̇. The world-space position of a point
x 2 R3 is assumed to be given by a function x(q), and the point velocity is
obtained through the chain rule as ẋ = (rqx)q̇.

We refer to q as a configuration, which in our case typically consists of the
positions of all the vertices stacked together. However, it extends relatively
easily to rigid body dynamics by letting the generalized coordinates for a
single rigid body consist of the location of the center of mass and its current
rotation around the center of mass (the latter typically being represented by
a quaternion). See Witkin and Baraff [1997] for details.

73

Unconstrained dynamics

Associated with the generalized coordinates is a set of generalized (or con-
jugate) momenta, which we will denote by p. For deformable objects such
a cloth and hair, which are discretized by a finite element method we have
p = Mq̇, where M is the mass matrix associated with the discretization. For
a rigid body, the generalized momentum includes the linear and angular
momentum, and the (generalized) mass matrix consists of the mass of the
object and its inertia tensor.

The configuration in general consists of both deformable and kinematic vari-
ables. At times, it will be convenient to distinguish between these two, in
which case we partition q =

⇥

(q f)T (qs)T⇤T into n f free (deformable) and
ns scripted (kinematic) variables. Other quantities may be partitioned in a
similar way and denoted with superscripts f and s.

Based on the above definitions, we can compute the Lagrangian, L =
Wkin �Wpot, where Wkin is the kinetic energy of the system and Wpot is the
potential energy of the system. In practice, a dissipation potential is usually
also needed to account for non-conservative forces in the system. Not all
dissipative forces can be written as a potential, but viscous damping can rel-
atively easily be included. However, for brevity, we omit further discussion
of that here. In our case we therefore have :

Wkin = 1
2 q̇

T
Mq̇ ,

Wpot = Welastic(q) + Wgravity(q) .

Defining the action as the integral of L over time, Hamilton’s principle of sta-
tionary action implicitly defines the evolution of the dynamic system. Ap-
plying the Euler-Lagrange equations from variational calculus to the action
leads to the Lagrangian equations for unconstrained motion :

d
dt

✓

∂L
∂q̇i

◆

� ∂L
∂qi

= 0, 1 i n f .

With the above definition of L, this is equivalent to the following equation,
which amounts to Newton’s second law :

Mq̈+rWpot = 0 (EL)

Using the generalized momenta and assuming a constant mass matrix1, we
get the corresponding Hamiltonian form of the equations :

Mq̇ = p ,
ṗ = �rWpot .

1This is generally not the case for rigid body dynamics, where the inertia terms change over time.

74

6.2 Time discretization

The above derivation gets more complicated for rigid bodies because the
representation of the rotation as a quaternion has to be accompanied by a
constraint to ensure unit length of the quaternion, [Betsch and Siebert, 2009].
Since the focus here is on deformable objects, we won’t go into the details of
this derivation, but just mention that rigid bodies fit within this framework.

6.2 Time discretization

Given the equations for the dynamics, we need to integrate them in time to
obtain the temporal evolution of the system. There are a plethora of meth-
ods available for doing this with a variety of properties. For an extensive
discussion of many of these, we refer to [Hairer et al., 2004; Hairer and Wan-
ner, 2004; Hairer et al., 2006]. In this thesis, we use the backward Euler
scheme for all our examples. This is the simplest example of the Runge-
Kutta implicit schemes, which can also be interpreted as a member of the
Adams–Moulton family of methods or alternatively as a backward differen-
tiation scheme. In the latter case, it is known as the BDF-1 method. It is a
popular scheme in graphics applications because it is unconditionally stable
for linear problems and tends to be stable for nonlinear problems (although
no formal guarantee for this exists). However, it suffers from significant
amounts of numerical dissipation. While this is not ideal, damped behavior
is frequently desired, so this is often acceptable.

One reason for using such a simple scheme is that we need to handle colli-
sions. Higher-order schemes, which are typically much more accurate, re-
quire the functions being integrated to be smooth. However, with collisions
in the system, we know that such smoothness won’t exist. As we discuss
in Section 7.9, the backward Euler scheme also has the benefit of effectively
modeling all collisions as being inelastic, which is a reasonable approxima-
tion for cloth and hair.

Based on the discussion in the previous section, we introduce the state vector,
y ⌘ (qT,pT)T, and denote the corresponding flow function that describes the
evolution of the dynamic system by j(t, y). We then have

ẏ = j(t, y) =

M

�1p
�rWpot(q)

�

The backward Euler scheme approximates the solution of this by

yk+1 = yk + tj(tk+1, yk+1), 8k � 0 , (BE)

75

Unconstrained dynamics

where y0 is a given initial state, subscripts indicate the discrete time step,
and t is the size of a time step.

Expanding y and j gives

qk+1
pk+1

�

=

qk
pk

�

+ t

M

�1pk+1
�rWpot(qk+1)

�

Let the update to the configuration for one time step be defined as

d ⌘ qk+1 � qk = tM

�1pk+1.

Substituting the first of these equations into the second then gives

pk+1 = pk � trWpot(qk + d) .

Premultiplication on both sides by t transforms it into

Md = tpk � t

2rWpot(qk + d)

or, equivalently

Md = tMq̇k � t

2rWpot(qk + d) (DEL)

We refer to this equation as the Discrete Euler-Lagrange equation or DEL for
short, and the solution to this equation is denoted by du, where ’u’ is for
“unconstrained”.

6.3 Root finding

The discrete equations obtained from the backward Euler scheme are in gen-
eral nonlinear since Wpot is a nonlinear function of q. There are a number of
potential methods for solving such nonlinear equations. Many of them are
based on variations of Newton’s method using the norm of the residual as
the merit function, [Nocedal and Wright, 2006, Chapter 11] and [Press et al.,
2007, Chapter 9]. However, nonlinear root-finding for multivariate functions
is notoriously a difficult problem. As an approximation, many papers in the
graphics literature only consider a single iteration in Newton’s method. This
includes Baraff and Witkin [1998].

When writing the equations for Newton’s method, one can start with
Eq. (BE) and treat the entire state vector, y, as the unknown. In this case,
an initial guess has to be provided for both the position (configuration) and
the velocity (momentum). This is the approach taken by Baraff and Witkin

76

6.3 Root finding

[1998], where the initial guess amounts to no change in position and no
change in velocity. One can argue that this is only a reasonable guess if the
object is at rest, which is often not the case. However, in practice, it works
surprisingly well.

An alternative approach is to apply Newton’s method to the DEL equations
and treat d as the unknown. In this case, an initial guess is only required for
d, which indirectly establishes an initial guess for the velocity. More specif-
ically, from Eq. (DEL), define the multivariate and nonlinear residual func-
tion, f , for which we want to find the roots :

f (d) ⌘ Md� tMq̇k + t

2rWpot(qk + d)

Newton’s method gives the i’th increment to the d as

r f
⇣

d

(i)
⌘

dd

(i) = � f
⇣

d

(i)
⌘

, (6.1)

where superscripts in parentheses indicate iterates and dd

(i) ⌘ d

(i+1) � d

(i).
Concretely, this means that

⇣

M + t

2Hpot(qk + d

(i))
⌘

dd

(i) =

�Md

(i) + tMq̇k � t

2rWpot

⇣

qk + d

(i)
⌘ , (6.2)

where Hpot is the Hessian of the potential energy. For a zero initial guess,
d

(0) = 0, and only one iteration, this gives the linearly implicit Euler method2 :
⇣

M + t

2Hpot(qk)
⌘

d = tMq̇k � t

2rWpot (qk) (LIE)

While this is akin to the linearization done by Baraff and Witkin [1998], it
should be emphasized that it is not the same linearization due to the differ-
ence in the initial guess.

It should be noted that since Wpot in general is non-convex (as discussed in
previous chapters), it follows that Hpot may be indefinite. As such, the stan-
dard Newton method described here has no convergence guarantee. One
way to address this is to add either a line search, a trust region, or a similar
technique. We discuss this further in Section 6.7.

2This is sometimes also referred to as the semi-implicit Euler method, but this term is also being
used for the symplectic Euler method, so we avoid this terminology to avoid confusion.

77

Unconstrained dynamics

6.4 Incremental potential

As an alternative to solving a set of nonlinear equations, we first restate
Eq. (DEL) directly in terms of qk+1 :

M(qk+1 � qk) = tMq̇k � t

2rWpot(qk+1)

Notice then that it can formally be integrated with respect to qk+1, leading
to the incremental potential :

Winc(q) =
1
2q

T
Mq� qT

M(qk + tq̇k) + t

2Wpot(q)

Given this definition, the discrete Euler-Lagrange equations can simply be
recovered as

rWinc(qk+1) = 0

Thus, the solution to DEL is given by the stationary points of the incremental
potential, which means that the root finding problem can be turned into a
minimization problem :

qk+1 = argmin
q

Winc(q)

The incremental potential was introduced by Radovitzky and Ortiz [1999]
and later in graphics by Kharevych et al. [2006]. More recently, it is essen-
tially also the idea being used in [Gast and Schroeder, 2014].

It is widely stated that minimization problems are easier than root finding
problems, but the reason for this is often omitted. One exception is [Press
et al., 2007, Section 9.6] where they start by stating “There are no good,
general methods for solving systems of more than one nonlinear equation”.
Further, they explain that what makes optimization easier is that the com-
ponents of a gradient vector are not independent functions, but related by
integrability conditions that are highly restrictive. Thus, while you can al-
ways find a minimum by sliding downhill on a single surface, there is no
analogous conceptual procedure for finding a multidimensional root.

Still, both problems are nonlinear, and both problems are typically solved by
some variation of Newton’s method. In practice, the implementations even
end up looking very similar with some kind of line search or trust region
strategy (one such example is the method proposed in [Press et al., 2007,
Section 9.7]). They differ, however, by the choice of merit function used to
evaluate progress, which is crucial.

78

6.4 Incremental potential

For the minimization problem the merit function is simply Winc(qk + d),
while for the root finding problem, it is typically the norm of the nonlin-
ear residual, k f (d)k2. The problem is that a reduction of one does not imply
a reduction of the other, and vice versa.

It should be noted that Newton’s method applied to the incremental poten-
tial leads to the same equation as in Eq. (6.1), so the exact solution for the
Newton step in the minimization problem is the same as for the root finding
approach. When the linear system is solved exactly, and a full step is taken,
there is therefore no difference between the two approaches. The difference
shows up when we are no longer considering the exact system and/or tak-
ing a full step. In particular, this comes up with modified Newton methods
needed for non-convex problems, (i.e., when r f is indefinite). For these
methods the resulting search directions have to be evaluated based on the
merit function.

To illustrate why this can be problematic, consider a simple 1D example3

where the elastic energy is given by W(x) = x4 � 6x2 � 72x as shown in
Fig. 6.1. The corresponding elastic force is �rW(x) = �4x3 + 6x � 72,
which is zero for x = 3 corresponding to a minimum in W(x). In this case
the “residual” is simply the magnitude of the force function, so root finding
will use krW(x)k2 to judge the quality of a given step. If we start with an
initial guess of x = 0 and a proposed search direction Dx = 1 then this will
represent a descent direction for W(x), but it is not a descent direction for
krW(x)k2. In fact, no step length in that direction will give a reduction in
the residual. On the other hand, Dx = �1 will represent a descent direction
for krW(x)k2 but not for W(x).

Even whenr f is positive definite, minimization is often still advantageous;
especially when Newton’s method is combined with iterative linear solvers.
Most Newton-Krylov solvers, for example, are based on inexact Newton meth-
ods, [Dembo et al., 1982], but these methods require an evaluation of whether
the current (approximate) search direction is a good (enough) direction or
not. In the context of inexact Newton methods, Nash and Sofer [1990] noted
that evaluating the search direction based on the norm of the residual can be
arbitrarily bad in terms of reducing the true objective function. By compari-
son, when performing a minimization, it is straight forward to evaluate if a
given search direction reduces the objective function or not.

On top of this, it should be noted that since the differential operator, r,
amplifies high frequencies, it follows that krWinck in general will be much
more oscillatory than Winc. Thus, it will have more local minima compared

3This example is courtesy of Andy Milne, Walt Disney Animation Studios.

79

Unconstrained dynamics

-2 -1 1 2 3 4
x

-200

-150

-100

-50

50

100

150
Energy

-2 -1 1 2 3 4
x

-100

-50

50

Force

-2 -1 1 2 3 4
x

2000

4000

6000

8000

10000

12000

Residual norm squared

Figure 6.1: A simple (nonconvex) energy function (top), the corresponding force function (mid-
dle), and the norm squared of the nonlinear residual function (bottom).

to Winc, which means that trust regions will have to be smaller and line
searches will have to take smaller steps.

6.5 Integrating a 3D hinge

To illustrate the difference between using root-finding and the incremen-
tal potential for performing one unconstrained time step, consider the sim-
ple example of a single hinge based on an isotropic St. Venant-Kirchhoff
membrane energy (see Chapter 4) and the discrete shell bending energy (see
Chapter 5). The hinge consists of two adjacent triangles with a flat rest con-

80

6.5 Integrating a 3D hinge

x1=(0,0,1)

x0=(1,0,1)

x3=(0,0,0)

x2=(0,1,1)

Figure 6.2: The initial configuration of a simple hinge consisting of two triangles. The positions
of the vertices are given in centimeters such that the combined area of the hinge is 1
cm2. In the corresponding flat rest configuration the position of x2 is (0, 0, 2).

figuration and an initially deformed configuration, where the hinge is bent
90 degrees (see Fig. 6.2). The material parameters for this experiment are :

• Thickness : 1 mm

• Young’s modulus : 100 MPa

• Poisson’s ratio : 0

• Mass density : 0.1 kg/m2

These values are somewhat representative of typical cloth, although the ex-
act values do vary quite a bit between different types of cloth.

Given the above setup, we proceed to compute the updated configuration af-
ter one time step based on both the root finding approach and the incremen-
tal potential. To ensure equal levels of sophistication in the two methods,
both are implemented in Mathematica using the built-in functions for root
finding (FindRoot) and function minimization (FindMinimum). FindRoot is
being provided an analytically derived Jacobian of f , while FindMinimum
is being provided an analytically derived gradient and the Hessian of Winc.
Since the gradient of Winc is exactly f by construction, the two functions
effectively have the same amount of information to work with.

For each setup, the dynamics is being solved for three different time steps :
t 2 { 1s

240 , 5s
240 , 10s

240}. The largest of these corresponds to a full animation frame
at current frame rates.

The convergence behavior for the two setups is shown in Fig. 6.3. Qualita-
tively, they are similar in that they have an early phase of fast convergence,
followed by a phase of stagnation, before finally converging to numerical

81

Unconstrained dynamics

� ��� ��� ��� ���
����������

��-�

��-�

����

�
���� �� ��������� ��������

� �� ��� ���
����������

��-�

��-�

����

�
���� �� ��������� ��������

Figure 6.3: The norm of the residual when using the FindRoot function for three different time
steps (top) compared to the incremental potential deviation from the optimal value
when using the FindMinimum function (bottom).

precision. The graph for the root finding approach is smooth because it
works directly with the norm of the nonlinear residual. The graph for the
minimization approach, on the other hand, works with the incremental po-
tential, so there is no guarantee that the nonlinear residual will behave in a
monotonic way as is obvious here. Both graphs show the nonlinear residual
to make comparisons easy.

Aside from smoothness, the most notable difference is that the optimization
based approach requires 2 � 5⇥ fewer iterations than the approach based
on root finding. This difference is largest for the largest time step, which
suggests that large time steps are especially problematic for the root finding
approach. Given that the cost of each iteration should be roughly equal in
the two approaches, the differences translate into a significant saving when

82

6.6 Ill-conditioning

using the incremental potential. A similar saving is obtained if the system is
only solved to the first “knee” in the convergence curves, which is likely to
be more typical of what would be done in an animation system.

What is not immediately obvious from the graphs is that the FindRoot func-
tion is numerically less stable. To produce the above graph, it was necessary
to increase the internal working precision used by Mathematica for Find-
Root above the default IEEE double precision. In practice, 50 digits were
used, but this number quickly had to be increased for larger time steps or
lower masses. However, for the time steps shown here, a similar increase in
the working precision was not necessary for FindMinimum.

6.6 Ill-conditioning

The example introduced in the previous section is deceptively difficult be-
cause the matrix Hpot is singular by construction. In particular, since the
elastic energy and forces are invariant under translations, it follows thatHpot
has three eigenvalues that are zero.4

In practice, we have to solve problems with M + t

2Hpot(qk), so the mass
matrix acts a regularizer, which helps. However, as the size of the time step
increases, the relative contribution from the mass matrix decreases, and the
resulting matrix becomes increasingly ill-conditioned until it is singular in
the limit of solving a quasi-static problem. It is this near-null space that is
responsible for the “knee” in the curves in Fig. 6.3. The change prior to the
knee corresponds (roughly) to a deformation to get back to a flat rest state,
while the change after the knee ensures that the inertial component of the
motion is correct. Both of these are in fact important for a correct solution,
so while it is tempting to stop when the solver stagnates, this will technically
yield an incorrect solution.

In the presence of boundary conditions, the null-space of the system
changes, which can help, but for cloth simulation it is quite common to have
systems where the only boundary conditions are those provided indirectly
through collision constraints. For hair simulations on the other hand, the
root of the hair is typically constrained to the scalp, which eliminates the
singularity of Hpot.

It should be noted that the ill-conditioning is primarily a function of the
time step size. In fact while changing the thickness of the cloth changes the

4Note that while the energy is also invariant under rotations, the forces are not since they rotate.
Rotations are therefore in the near null-space rather than in the true null-space.

83

Unconstrained dynamics

magnitude of the smallest non-zero eigenvalue of Hpot, it does not change
the fact that Hpot is singular. The same can be said about the choice of the
constitutive parameters. The problem, however, is more pronounced for
cloth and hair simulations than say for solid elasticity simply because the
objects involved typically have less mass.

In summary, we note that, for large time steps, we will always be dealing
with a nearly singular system at every Newton step, including at the solu-
tion. We also note that this problem is inherent to any elastic energy with
translational invariance. In other words, it is not specific to any particular
choice of constitutive model.

As a consequence, we are forced either to take smaller time steps or to de-
sign a method that can handle nearly singular systems gracefully. As shown
by Griewank and Osborne [1983], the standard Newton method is at best
linearly convergent near a singular solution, which suggests that more so-
phisticated methods are required.

One class of methods that has been shown to work well for ill-conditioned
systems is so-called tensor methods, where the quadratic approximation
used in Newton’s method is replaced by a quartic model, [Schnabel and
Chow, 1991; Bouaricha, 1997; Bader and Schnabel, 2007].

Another class of methods is based on cubic regularization as first proposed
by Nesterov and Polyak [2006], and later developed further by [Cartis et al.,
2011a,b; Gould et al., 2012]. However, while these methods have favorable
theoretical guarantees in terms of the worst case number of function evalua-
tions, it is not clear that they are competitive with other methods in practice.

6.7 Non-convex optimization

As previously mentioned, the elastic energy is in general non-convex. Inde-
pendent of the ill-conditioning discussed above, a robust solver must there-
fore also be able to handle non-convex problems. However, writing a generic
robust solver for a non-convex optimization problem is a non-trivial task;
even in the unconstrained case. In this section, we discuss some explorations
and observations related to this problem, but ultimately there is still room
for additional work.

A common way in graphics of dealing with the non-convexity is by modify-
ingHpot at the time of construction to ensure that it is always positive (semi)-
definite. Unfortunately, such modifications make it difficult to construct the

84

6.7 Non-convex optimization

incremental potential since there are no guarantees that the modified Hes-
sian corresponds to an energy. Furthermore, since those modifications are
typically made to preserve translational invariance, the resulting systems
remain ill-conditioned for large time steps.

As an alternative to modifying the Hessian of each element when assem-
bling the stiffness matrix, we can consider more general methods for non-
convex optimization. This typically involves adding either a line search or
a trust-region to Newton’s method. However, line search methods can be
problematic due to the fact that we also have a nearly singular problem.
In particular, the nearly singular matrix can generate search directions with
very large magnitudes. When this happens, a tiny step may be required
along the search direction. Unfortunately, this easily leads to catastrophic
cancellation in the numerical computations. In particular, we encountered
this when implementing Newton’s method with a basic back-tracking line
search. It is also a problem for the widely used (and more sophisticated) line
search method proposed by Moré and Thuente [1994] (used in Mathematica
among many other applications). In fact we conjecture that this is one of the
reasons we had to increase the internal precision in order to generate Fig. 6.3.

To address this cancellation problem Hager and Zhang [2005] proposed a
different line search method that effectively replaces the problematic sub-
traction by an evaluation of the derivative along the line search direction.
Unfortunately, their paper is incomplete in the sense that a number of subtle
details necessary for implementing the method are missing. However, the
method is implemented as part of the CG DESCENT algorithm, [Hager and
Zhang, 2006], for which the authors provide source code. The CG DESCENT
method is fundamentally a nonlinear conjugate gradient method, which is
expected to have slower convergence than Newton’s method close to a local
(non-degenerate) minimum, but it has the advantage that only function and
gradient evaluations (of the incremental potential) are necessary.

To evaluate the method, the implementation by the authors was incorpo-
rated into a plug-in for Mathematica for this thesis. This allowed it to be
used in the same way as Mathematica’s built-in function FindMinimum.
Given the source code, it was also possible to look specifically at the line
search, but it was clear that there were numerous changes compared to the
original paper, and it was not entirely clear exactly what the logic was. In
the end, CG DESCENT was therefore just evaluated as a black box.

The result of applying CG DESCENT to the hinge problem in Section 6.5 is
shown in Fig. 6.4. For this specific plot, the tolerance for the gradient of the
objective function (i.e., the gradient of the incremental potential, which is
f) was set to 10�8. However, the solver seems to get stuck with a residual

85

Unconstrained dynamics

around 10�6 and, given the erratic behavior, it seems likely that it is encoun-
tering some other problems due to floating point arithmetic. It is possible
that a deeper understanding of the CG DESCENT code could unravel the
source of this problem, but this has not been done.

� �� ��� ��� ��� ���
����������

��-�

��-�

����

�
���� �� ��������� ��������

Figure 6.4: The norm of the nonlinear residual when using the CG DESCENT function for three
different time steps.

Another method considered for the problem at hand is the “Inertia Con-
trolling Modified Conjugate Gradient” (ICMCG) method proposed by Zhou
et al. [2009]. As the name implies, it is also a nonlinear conjugate gradi-
ent method, but with some modifications. In particular, it evaluates the full
Hessian to ensure optimal convergence rate, then modifies it (if necessary)
to guarantee that a good search direction is obtained, and finally combines
it with a line-search to get global convergence. The modification effectively
introduces an implicit trust-region, so this method is really a hybrid between
conjugate gradient and Newton’s method on one hand, and line-search vs.
trust-region on the other hand.

Similar to CG DESCENT, the paper leaves out some subtle implementation
details. In particular, since it has the flavor of an inexact Newton method,
[Dembo et al., 1982], it requires a forcing sequence, but the choice of this
sequence is not spelled out in the paper. For implementation purposes, we
used the one discussed by An et al. [2007]. Regardless of this choice, the
method as presented suffers from floating point problems when evaluating
the stopping criterion near the solution due to cancellation. However, the
bigger problem is that the conjugate gradient method suffers from floating
point precision issues for very ill-conditioned systems, Meurant [2006]; even
if they are otherwise positive definite. In particular, after constructing the
Krylov space corresponding to the eigenvalues that are not close to zero, the

86

6.8 Summary

construction of subsequent search directions can easily fail to be conjugate to
previous search directions. This in turn leads many of the invariants in the
CG method to fail at which point the behavior is unpredictable. At this point
this method can therefore not be said to be robust. However, this failure has
more to do with the ill-conditioning of the problem than non-convexity.

6.8 Summary

Originally the work in Chapter 4 and Chapter 5 was motivated by problems
observed when trying to take large time steps in cloth simulations. This lead
to a suspicion that something in the underlying cloth model was leading to
instabilities when subjected to large deformations. At the time there were
multiple potential problems. These included the fact that existing models
would assume small deformations and flat rest configurations, they would
approximate the force gradients, and most of them would introduce modifi-
cations to ensure symmetric positive definite matrices.

In the preceding chapters we have addressed all those concerns such that
the model considered at this point is well suited for large deformation and
given the choice of discretization, the force gradients are exact and consistent
with the non-convexities of the underlying hyperelastic energy functions.
Yet, the problem largely remains, so we must conclude that the fundamental
problem most likely stems from none of these issues. Rather the real problem
is that the nonlinear problem we are trying to solve when taking large time
steps is inherently ill-conditioned. The non-convexity is certainly something
that needs to be taken into account, but it is the ill-conditioning that has
ultimately broken all the attempted solvers.

Many papers talk about thin shell problems being ill-conditioned due to the
small thickness of the shell relative to the lateral extent. However, it is im-
portant to realize that this is not the problem here. Nor does it have to do
with badly shaped elements in the discretization. Instead it is the fact that
the energy and forces are translationally invariant in the absence of any con-
straints that causes problems.

In addition to this key observation we have also seen concretely how much
can be gained from a variational treatment using the incremental potential
compared to a more standard rootfinding approach. Moreover, it has be-
come clear that the optimization routines tend to be numerically much more
resilient in the presence of ill-conditioning than the corresponding root find-
ing algorithms.

87

Unconstrained dynamics

The design and application of a truly robust method for handling non-
convex and ill-conditioned problems remains future work, but we feel that
the insights gained here constitute an important step in the right direction.
For the remainder of this thesis, however, we note that all the problems dis-
cussed in this chapter obviously can be avoided by taking small(er) time
steps.

88

C H A P T E R 7
Contact modeling

Having dealt with unconstrained dynamics in the previous chapter, we now
turn to constrained dynamics. There are many ways of handling collision re-
sponse, but not all of them are numerically stable. A nice concise overview
of different methods for addressing contact in graphics can be found in
[Bertails-Descoubes et al., 2011]. Here, we focus on implicit constraint-based
methods in maximal coordinates.

As we saw in the previous chapter, the singularity of the hyperelastic energy
Hessian effectively poses a limitation on the size of stable time steps in an
unconstrained simulation. In this chapter, we start with a didactic example
to show that collision response can pose an even more severe limitation if
not handled correctly. We then proceed to establish the model we use for
handling contact between two objects in the following chapters. This in-
cludes contact forces to avoid interpenetration and friction forces to model
both static and dynamic Coulomb friction.

7.1 Motivation

Consider the collision of a discretized three-node rod or piece of cloth in 2D
as it hits a wedge (see Fig. 7.1). The standard approach to prevent intersec-
tions is to apply a position-based correction that enforces zero-displacement
along a collision normal [Baraff, 1989; Mirtich and Canny, 1995; Bridson
et al., 2002]. However, by resolving collisions in this way, we ignore changes
in internal energy, effectively applying an instantaneous impulse response,

89

Contact modeling

t

Figure 7.1: A simple three-node rod hitting a wedge.

t

First order response:

Proposed nonlinear response:

Blow up!

Figure 7.2: Left to right in time. Top: a collision resolved by first-order–modeled response remains
physics-oblivious; the resulting correction generates a large, localized, non-physical
deformation leading to instability. Bottom: adaptive nonlinear response obtains a
stable, global response.

[Moreau, 1988]. As a consequence large, highly localized, non-physical de-
formations are generated.

In fact, notice that stretching is dominant in thin materials. As we have seen
in previous chapters, the stretch stiffness scales linearly with the thickness
of the object, h, while the bend stiffness scales with h3. Given the thickness
of cloth (< 1mm) and hair (⇡ 0.1mm), the stretch stiffness is therefore many
orders of magnitude greater than the bending stiffness. While we expect
these thin materials to potentially bend a great deal, we clearly do not wish
to exercise their stretching modes unintentionally. Yet, this is exactly what
the standard approaches do.

To build this missing “physical awareness” into collision response, first-
order models have been developed. Linearly compliant collision response
methods as in [Baraff and Witkin, 1998; Duriez et al., 2004, 2006; Kaufman
et al., 2008; Otaduy et al., 2009; Allard et al., 2010; Zheng and James, 2011;
Bertails-Descoubes et al., 2011; Daviet et al., 2011] apply compliance (inverse
stiffness) to inexpensively communicate collision-induced strain across force
stencils, effectively filtering collision response to obtain smoother post-
collision configurations. Linearly compliant methods thus can balance be-
tween the difficult tradeoffs of stability and computational efficiency.

Unfortunately, when the unknowns in the discretization are the positions of
the vertices (i.e., when using maximal coordinates), we face a severe limita-

90

7.1 Motivation

tion. This is one of the key insights in this thesis : first-order models are not
sufficient to capture the physical response for thin elastic materials in maximal co-
ordinates. In particular, the collision response of thin materials such as hair
and cloth is strongly nonlinear, which means that first-order collision mod-
eling can generate the same problematic localized collision response as an
impulsive model.

Consider the simple case of two adjacent elements, with little or no initial
bending, colliding with an edge as in Fig. 7.2. In these configurations, when
we apply a first-order, linearly compliant collision method, the resulting ini-
tial collision response varies little (to not at all) from the standard physics-
oblivious method.

δ
l

l

}

To understand why this occurs, reconsider the collision of
our three-node rod in a straight, unstretched configura-
tion with edge lengths l̄ and l at undeformed and current
configurations respectively. We now impose a normal dis-
placement of d due to a collision. Our first observation is
that such displacements in the normal direction are entirely unaccounted for
by expansions of stretching force up to second-order in this configuration.
To see this, note that the Green-Lagrange strain for a one-dimensional rod1

is quadratic in normal displacement :

E = 1
2(l

2/l̄2 � 1) = 1
2 d

2/l̄2

The stretching energy as a function of the normal displacement is therefore
a quartic monomial :

Wstretch = 1
2 kE2 = 1

4 kd

4/l̄4.

It follows that the stretch force is a cubic monomial in d, so a second-order
approximation will be exactly zero.

Alternately, consider the stretching energy used in rod and mass-spring
models, [Spillmann and Teschner, 2007; Bergou et al., 2008, 2010] :

Wstretch = 1
2 k(l/l̄ � 1)2 = 1

2 k(
p

d

2 + l̄2/l̄ � 1)2

Although the stretching energy is no longer a quartic monomial in d, at an
unstretched configuration, the force remains oblivious to normal displace-
ments up to second-order (see Fig. 7.3, left).

1 Let F = RU be the polar decomposition of the deformation gradient, where R is a proper
orthogonal tensor and U is the right stretch tensor. It then follows that E = 1

2 (U
2 � I). In the

2D example here, the stretch factor is simply l/l̄.

91

Contact modeling

Π

8
Π

4
3 Π
8

Π

2

"0.4

"0.2

0.0

0.2

0.4

0.6

0.8

1.0

Θ: Bendangle

R
el

at
iv

e
er

ro
ri

n
fo

rc
e

0.0 0.2 0.4 0.6 0.8 1.0

0

0.1

0.2

∆: Normal displacement!restlength

Fo
rc

e
m

ag
ni

tu
de
!stiffn

es
s

0.0 0.2 0.4 0.6 0.8 1.0

0

0.1

0.2

∆: Normal displacement!restlength

Fo
rc

e
m

ag
ni

tu
de
!stiffn

es
s

Θ: bend angle δ: Normal displacement/restlength δ: Normal displacement/restlength

l
δ
l l

δ
l

θ

1st, 2nd order

Exa
ct

3r
d

or
de

r Exa
ct

3r
d

or
de

r

2nd order

1st order

1st order

2nd order

Exact

3rd order

Fo
rc

e
m

ag
ni

tu
de

 /
st

iff
ne

ss

Fo
rc

e
m

ag
ni

tu
de

 /
st

iff
ne

ss

R
el

at
iv

e
er

ro
r i

n
fo

rc
e

Figure 7.3: We plot the magnitude of rod/mass-spring stretching forces modeled by respectively
first-, second-, and third-order force approximations for expansions about a straight
(left) and a bent (middle) configuration, compared against the ground truth stretching
force evaluation. In both cases, we observe that first-order modeling with respect to
normal displacement d underestimates the force while, in the case of straight config-
urations (left), any expansion less than third-order entirely ignores normal displace-
ment. On the other hand, by plotting the relative error of these approximations with
respect to the ground truth force evaluation at a fixed d = 1

2 , we see that, as bending
increases, lower-order models give a correspondingly better approximation (right).

This problem is not restricted to collision forces; frictional forces also lead
to the same behavior. This follows from rotating our perspective to see that
the same geometry we considered above for collisions holds for friction as
well: friction forces are applied along a contact’s tangent plane so that cross-
wise frictional forces impose normal displacements for a hair and inplane
displacements for a piece of cloth.

The problem in both cases is not isolated to straight configurations. Even
as the rod or surface bends, corresponding first- and second-order force ap-
proximations continue to significantly underestimate the collision response
of stretching modes (see Fig. 7.3, middle) and thus permit too much strain.

In summary, we observe that collision response methods using lower-order
approximations are effectively physics-oblivious for small-bend collisions.
On the other hand, as bending increases, first-order modeling gives a corre-
spondingly better approximation (see Fig. 7.3, right).

From the above, we conclude that, while a full-blown nonlinear solution
may be overkill, there are many situations where nonlinearity is absolutely
essential. As a consequence, the remainder of this chapter focuses on how
to establish a fully nonlinear collision response model. In the next chapter,
we then focus on a simple algorithm that can flexibly adjust the amount of
nonlinearity through an adaptive approach. The goal of that algorithm is
to retain the cost of the standard linearly compliant methods when a first-
order model is sufficient, while introducing only a minimum of additional

92

7.2 Stiffness and compliance

overhead to obtain just enough nonlinearity when higher-order modeling is
required.

7.2 Stiffness and compliance

The combination of the mass matrix and the energy Hessian, which first
appeared in Eq. (6.2), is used repeatedly in the following. For convenience,
we refer to this as the stiffness matrix and define

K(q) ⌘ M + t

2Hpot(q) .

It is not uncommon to refer to the energy Hessian by itself as the stiffness
matrix, but, in this thesis, we use the above definition.

The notion of compliance is also essential for our handling of contact. As
mentioned above, compliance is the inverse of stiffness, so we define the
discrete compliance matrix as

D(q) ⌘ (K(q))�1 .

Associated with the stiffness and the compliance matrices, we introduce the
abbreviated notation

K

(i) ⌘ K

⇣

qk + d

(i)
⌘

and
D

(i) ⌘ D

⇣

qk + d

(i)
⌘

.

For convenience, we also use

f (i) ⌘ f
⇣

d

(i)
⌘

7.3 Constraint functions

In this section, we start by defining some basic notation for constraint func-
tions.

Following Harmon et al. [2008], let C(q) be a real-valued constraint function
for a single contact, with C(q) < 0 whenever q is inadmissible. This function
is sometimes also referred to as the gap function because it typically computes
the gap between two features.2

2The sign convention in the literature for the gap function is often chosen opposite the one here
such that a positive gap corresponds to an interpenetration.

93

Contact modeling

When m simultaneous contacts are present, we denote the set of these con-
tacts by C, with m = |C|. The corresponding set of constraint functions
are then C1 through Cm. These functions are conveniently combined into a
vector-valued function C(q) = [C1(q), . . . , Cm(q)]T 2 Rm. The set in config-
uration space given by C(q) = 0 is sometimes referred to as the constraint
manifold. For inequality constraints, this set partitions the configuration
space into admissible and inadmissible configuration, whereas for equality
constraints, the constraint manifold is the set of admissible configurations.

For the special case of holonomic constraints, which can be written as
C(q) = 0, it follows by differentiation that rCq̇ = 0 (if this didn’t hold, the
system would be drifting off of the constraint manifold). This is sometimes
referred to as a hidden constraint. Baraff and Witkin [1998] only consider
holonomic constraints and Harmon et al. [2008] only consider the associated
hidden constraint rCq̇ = 0. However, we are interested in both equality
and inequality constraints.

Independent of whether the constraint is holonomic or not, if the constraint
depends on scripted variables, which are time varying then it is referred to
as a rheonomic constraint. Otherwise, it is scleronomic. In hair and cloth sim-
ulation, where the scripted objects are typically animated characters, most
of the constraints with collision objects are rheonomic. When considering
energy conservation, this distinction is important because rheonomic con-
straints effectively can introduce arbitrary amounts of energy into a system.

7.4 Constrained integration

Using the d’Alembert–Lagrange principle, we can easily introduce equality
constraints into the equations of motion through a set of Lagrange multipli-
ers :

d
dt

✓

∂L
∂q̇i

◆

� ∂L
∂qi

=
m

Â
j=1

∂Cj

∂qi
lj, 8i

From this, it follows that the forces exerted by the constraints are

fconstraint = rC

T
l .

Note that this force is always aligned with the gradient of the constraint
function. Checking the units of this equation, we see that l must have units
of energy. Nonetheless, it is often being referred to as an impulse.

Applying the backward Euler time discretization to the constrained equa-
tion of motion leads to

Md = tMq̇k � t

2rWpot(qk + d) + t

2 (rC(qk + d))T
l . (7.1)

94

7.4 Constrained integration

Let C(d) be a shorthand notation for C(qk + d) In practice, we are then pri-
marily concerned with the case C(d) = GT

d, where G is a constant matrix.
For convenience, we also absorb t

2 into the Lagrange multipliers to get the
“discrete Lagrange multipliers” (with units of mass times displacement).
This way, the last term in Eq. (7.1) simplifies to Gl such that the discretized
constrained Euler-Lagrange equations become

Md = tMq̇k � t

2rWpot(qk + d) + Gl (CDEL)

Just as Eq. (DEL) was a set of nonlinear equations, so is Eq. (CDEL), but now
l is an additional unknown. As before, we can use the incremental potential,
but now it is subject to the specified constraints. In this case, Eq. (CDEL) is
the Lagrangian (in the optimization sense of the word) of the constrained
minimization problem.

Using the root finding approach, we alternatively define the function fc for
which we want to find the roots :

fc(d, l) ⌘ f (d)� Gl .

Here, f (d) is the corresponding function for Eq. (DEL) defined earlier. We
can then write one step in Newton’s method for this function as

r fc

⇣

d

(i), l

(i)
⌘

dd

(i)

dl

(i)

�

= � fc

⇣

d

(i), l

(i)
⌘

.

Expanding this out gives

⇥

K

(i) �G⇤

dd

(i)

dl

(i)

�

= � f (i) + Gl

(i) . (7.2)

This system has more unknowns than equations, but we also need to enforce
that the solution is feasible. I.e., that the constraints are satisfied. For equal-
ity constraints, we should therefore enforce C(d(i+1)) = GT

d

(i+1) = 0. Given
that d

(i+1) = d

(i) + dd

(i), it follows that

GTdd

(i) = �GT
d

(i) .

For each iteration, we therefore get the following saddle point problem :

K

(i) �G
�GT 0

�

dd

(i)

dl

(i)

�

=

� f (i) + Gl

(i)

GT
d

(i)

�

. (7.3)

These equations are exactly the KKT conditions for the minimization of
the incremental potential subject to equality constraints. In fact, Newton’s

95

Contact modeling

method in this case amounts to sequential quadratic programming (SQP) for
solving a nonlinear optimization problem with equality constraints, [No-
cedal and Wright, 2006, Chapter 18.1]. This method is convergent if GK

(i)GT

is positive definite for all i. In other words, K

(i) has to be positive definite on
the constraint null space. Otherwise, the method has to be augmented by a
line search or a trust region to guarantee convergence. Even if K

(i) is always
positive definite, the reduced system may not be, so SQP methods generally
require line searches or trust regions to converge just as Newton’s method
does. However, to simplify our exposition here, we ignore this issue.

To motivate our approach for solving more complicated systems with in-
equality constraints, we won’t solve Eq. (7.3) directly. Instead, we first note
that the unconstrained increment for the i’th iteration obtained by ignoring
contact forces is given by

dd

(i)
u ⌘ �D

(i) f (i) . (7.4)

Thus, from Eq. (7.2), it follows that

dd

(i) = dd

(i)
u + D

(i)Gl

(i+1)

or, equivalently,

d

(i+1) = d

(i) + dd

(i)
u + D

(i)Gl

(i+1) . (7.5)

In the remainder of our derivations, the quantity d

(i) + dd

(i)
u appears often,

so we define the unconstrained update

d

(i+1)
u ⌘ d

(i) + dd

(i)
u (7.6)

Using this, we can write the constraint satisfaction at the end of the time step
as

C(d(i+1)) = C(d(i+1)
u + D

(i)Gl

(i+1)) = 0 (7.7)

Assuming that d

(i+1)
u has been computed based on Eq. (7.6) and Eq. (7.4),

then the only unknown in Eq. (7.7) is l

(i+1). For the equality constraints
considered so far, we have C(q) = GTq, so inserting this into Eq. (7.7) shows
that finding l

(i+1) amounts to solving

GT
D

(i)Gl

(i+1) = �GT
d

(i+1)
u . (7.8)

The matrix GT
D

(i)G on the left is sometimes referred to as the Delassus op-
erator based on work done by Etienne Delassus, [Delassus, 1917]. In the
graphics world, it is also known as the constraint anticipation matrix, Baraff
[1996], while in linear algebra it’s the Schur complement.

96

7.5 Inequality constraints

7.5 Inequality constraints

Introducing inequality constraints complicates matters greatly in terms of
the mathematical machinery required for a formal treatment. In particular,
the equations of motion now have to be written as variational inequalities,
which leads to differential inclusions instead of differential equations. The
solutions to differential inclusions are generally set valued and the analysis
is non-smooth. A simple example illustrating this for a single point mass is
shown in [Leine and Aeberhard, 2007]. A more comprehensive overview is
provided in [Moreau, 1999]. However, when all is said and done, it can still
be written as the incremental potential subject to a set of constraints, and
Newton’s equations remain the KKT conditions for this system. In other
words Eq. (7.2) plus the constraint equation(s).

To handle the set valued nature of the solutions, we define R(d) as the set of
collision responses, l, such that all constraints C(qk + d) are satisfied :3

R(d) ⌘ {l 2 Rm : C(qk + d(l)) � 0}
It should be noted that this is an implicit definition because d is a function of
l. Writing l 2 R(d) therefore involves some kind of a solve.

Using this notation, we can rewrite Eq. (7.7) as

l

(i+1) 2 R(d(i+1)
u + D

(i)Gl

(i+1)) (7.9)

Here, l

(i+1) is the only unknown and, in the case of equality constraints, the
solution to this inclusion equation is given by Eq. (7.8). With inequality con-
straints, the set R(d) is more complicated and it is much harder to compute
a valid response. For purposes of exposition in the following, we assume
that some kind of active set strategy is used for handling inequality con-
straints. At each step, this means that a set of constraints has been identified
that should be handled as equality constraints. These can then be treated as
outlined in the previous section.

Summarizing the process so far, it can be viewed as a type of predictor-
corrector method similar to the method in [Kaufman et al., 2008], but ex-
tended to the nonlinear setting. For each Newton iteration, we perform the
following three steps :

• Predict : Compute d

(i+1)
u = d

(i)�D

(i) f (i) to obtain the predicted con-
figuration update.

3In general, the full set of constraints may include both equality and inequality constraints. For
convenience, we only include the inequality constraints in the definition here. The extension is
obvious.

97

Contact modeling

• Correct : Solve l

(i+1) 2 R(d(i+1)
u + D

(i)Gl

(i+1)) to obtain the corre-
sponding contact forces.

• Combine : Compute d

(i+1) = d

(i+1)
u + D

(i)Gl

(i+1) to obtain the com-
bined update due to both dynamics and contacts.

We return to an example with inequality constraints in Section 7.8.

7.6 Nonlinear collision constraints

When detecting contact between two objects, there are generally two ap-
proaches. One looks at the configuration at the beginning of a time step and
determines if the two objects are within a given proximity of each other. The
other considers the trajectory of the two objects throughout the time step
and detects if they ever intersect. This is also referred to as continuous-time
collision detection or CCD for short.

Assuming that all of the objects are simplicial meshes (such as triangle
meshes or poly-line segments), the collision detection is typically broken
into collisions between the various primitives. In this context, the primitives
are vertices, edges and faces, and the corresponding types of collisions are
typically vertex-face (VF) and edge-edge (EE). If the primitives are assumed
to have some associated thickness, then additional pairs of primitives have
to be considered (e.g., vertex-vertex (VV)). There is an extensive literature
about how to perform collision detection efficiently. The reader may consult
e.g. Ericson [2004] or Teschner et al. [2005] for more details.

Generating constraint functions for all collisions in a system is known as
contact sampling. To construct a single constraint function, consider two
points p

a and p

b in R3 that are colliding, and let n̂ 2 R3 be the associated
normalized contact normal (oriented from p

b to p

a). Later, we also need
two orthonormal vectors, d̂1 and d̂2, spanning the tangent plane such that
F = (n̂, d̂1, d̂2) forms a complete basis for R3 around the point of contact.

If we prescribe that the two points must remain at least some distance d
(which may be zero) apart, then we get

C = n̂ · (p

a � p

b)� d

This function effectively computes the signed distance between p

a and p

b

and requires that it be at least d. In general, p

a, p

b, and n̂ are all functions of
the current configuration.

98

7.6 Nonlinear collision constraints

Each colliding point will typically either be at a vertex, on an edge, or on a
face. As such, we can write both of them as a linear combination of neighbor-
ing vertices using barycentric coordinates. This generalizes if the underlying
surface is a subdivision surface rather than a triangle mesh, since the collid-
ing point can still be written as a linear combination of a larger set of points.
In both cases, we have

p

a = Â
j2Spa

g

a
j xj, p

b = Â
j2Spb

g

b
j xj ,

where Spa and Spb are the sets of vertices defining the feature (vertex, edge
or face) on which p

a and p

b respectively reside. The set S = Spa [Spb is
called the stencil of the contact.

Let gj = g

a
j for j 2 Spa and gj = �g

b
j for j 2 Spb . If Spa and Spb are not

disjoint, then gj = g

a
j � g

b
j for j 2 Spa \ Spb . The gap vector, g, is then given

by

g ⌘ p

a � p

b = Â
j2S

gjxj .

Note that barycentric coordinates (and subdivision weights) form a partition
of unity, so we have

Â
j2Spa

g

a
j = Â

j2Spb

g

b
j = 1

and, therefore,
Â
j2S

gj = 0

The time at which the barycentric coordinates are evaluated differs with the
type of constraint. Baraff and Witkin [1998] evaluate these coordinates at
the beginning of the time step for proximity constraints. However, following
Harmon et al. [2008] and Otaduy et al. [2009], they are typically evaluated
at the time of collision for collision constraints. In the latter case, it should
be noted that the coordinates are functions of the (unknown) end positions.
This makes it complicated to compute the constraint gradient since a change
in the end positions may cause the collision to cease to exist. Computing the
gradient in this case is not a well-defined operation. In practice, the time of
collision is therefore often assumed to be fixed and typically evaluated based
on an initial unconstrained solution for the dynamics. The time of collision in
this context is the time at which C(q(tc)) = 0. If d = 0, then this typically
involves solving a cubic polynomial, [Provot, 1997], while it becomes a sixth

99

Contact modeling

order polynomial if d > 0. If there are multiple roots within a time step, then
the earliest is typically chosen and the others are ignored.

The time at which the contact normal is evaluated also differs. For cloth-
object collisions, Baraff and Witkin [1998] evaluate it at the end of the time
step to ensure that the cloth feature ends up outside the collision object.
However, for collisions between two deformable features, it is typically eval-
uated in the limit as t ! t�c , where t�c indicates that the limit is taken from
the left (i.e., going into the collision). The limit consideration is needed be-
cause the objects may be infinitely thin, so as they go through each other the
direction from one to the other will flip. It should be noted though that this
problem goes away if we consider each object to have some thickness (i.e., if
d > 0 in our constraint formulation).

7.7 Linearized collision constraints

The constraint function introduced in the previous section is highly non-
linear. In practice, we therefore consider the linearization of the constraint
function with respect to time. To this end, it is convenient to introduce the
relative deformation gradient, which is the gradient of the gap vector with re-
spect to the configuration variables :

G(q) ⌘ ⇥
G

f
G

s⇤ ⌘ rg .

We note that, for deformable objects like cloth and hair, if xj is the j’th vertex
in the configuration vector q, then we have

rxj = e

T
j ⌦ I3 ,

where ej is the j’th canonical basis vector in Rn and I3 is a 3 ⇥ 3 identity
matrix. I.e., G has a very simple structure with as many non-zero blocks
as there are vertices in the collision stencil, and each one of them is simply
a 3⇥ 3 identity matrix scaled by the corresponding weight for the contact
point. As noted above, Âj gj = 0 when summing over the full stencil, which
leads to a zero row-sum in G. However, if some of the vertices are scripted,
then the row-sum in G

f by itself is not zero.

We also note that the relative velocity of the two points in contact is given
by u = Gq̇, from which it follows that the normal velocity associated with the
contact is un = n̂

T
Gq̇. The tangential sliding velocity, ut 2 R2, can be found

in a similar way.

G

T can be thought of as a map from the local cordinates of a single contact to
generalized coordinates. We use this to define the generalized contact normal

100

7.7 Linearized collision constraints

as

n ⌘

n f

ns

�

⌘ G

T
n̂ .

When a constraint is active, then the part of the generalized contact normal
corresponding to deformable vertices, n f , represents a direction in configu-
ration space along which motion is disallowed for equality constraints and
only allowed in one direction for inequality constraints. Furthermore, any
valid constraint force or impulse must act along n f .

Generalized tangent vectors for a point of contact can be constructed in a
similar way, and we note that if y is an impulse applied to point p

a and an
equal but opposite impulse is applied to point p

b, then G

T
y is the resulting

generalized impulse.

Using the above definitions, we have

C(q) = n̂

T
g � d

rC = (rn̂)T
g + n̂

Trg

= (rn̂)T
g + n̂

T
G

= (rn̂)T
g + nT

Ċ = rCq̇

Assuming that the time of collision, tc, is given, the Taylor expansion of
C(t) = C(q(t)) around tc is therefore

C(t) = C(tc) + Ċ(tc)(t� tc) +O((t� tc)
2)

=
⇣⇣

(rn̂)T
g + nT

⌘

q̇
⌘

�

�

�

t=tc
(t� tc) +O((t� tc)

2)

In general, the contact normal can be written as n = u⇥ v, where u and v are
either two edges of a triangle face coming into contact or they are the two
unconnected edges coming into contact. The gradient of this normalized
cross product can be written as

rn̂ =
(u⇥ n̂)n̂Trv� (v⇥ n̂)n̂Tru

knk

At the time of contact, the gap vector, g, is either zero or parallel to n, so
since (u⇥ n) · n = (v⇥ n) · n = 0 for any vectors u and v, it follows that

⇣

(rn̂)T
g

⌘

�

�

�

t=tc
= 0 .

101

Contact modeling

Consequently, the Taylor expansion of C(t) simplifies to

C(t) =
⇣

nTq̇
⌘

�

�

�

t=t�c
(t� tc) +O((t� tc)

2) ,

which leads to the linearized constraint function for the position constraint :

CL(t) ⌘
⇣

nTq̇
⌘

�

�

�

t=t�c
(t� tc) � 0 (7.10)

Typically, we want to enforce the constraint at the end of a timestep to ensure
that the new configuration satisfies the constraint, [Goldenthal et al., 2007].
Let d = (d f , d

s) represent the change in q within one time step. In practice,
we assume piecewise linear trajectories, so it follows that q̇ is constant within
the time step such that q̇(t�c) = d/t, where t is the length of the time step.

Although equations in the following are stated in terms of d, it should be
noted that the combination of the linearization of the constraint function and
the fact that we always evaluate it at the end of a time step effectively turns it
into a velocity level constraint. Eq. (7.10) simply states that the post-impact
relative velocity of the two contacting points should be non-negative.

The constraint in Eq. (7.10) can be scaled arbitrarily, so, for convenience, we
scale it by t/(tend � tc) such that the linearized constraint evaluated at the
end of the time step can be written as

nT
d � 0 . (7.11)

In practice, this constraint is further scaled to ensure that n has unit length
as this improves the conditioning of subsequent linear systems. If there are
scripted vertices involved in the constraint, then we can use the partitioning
of the variables to re-write the above inequality as

(n f)T
d

f � �(ns)T
d

s .

It should be noted that the quantities on the right-hand side here are known
and can be represented by a single constant s ⌘ �(ns)T

d

s. This leads to the
constraint that is used by Kaufman et al. [2014] for a single contact point :

(n f)T
d

f � s � 0 (7.12)

However, since this is equivalent to Eq. (7.11), we use the former.

Technically, the above derivation is only valid when the contact normal is
evaluated at the time of collision, which means that it does not apply to the
scheme used by Baraff and Witkin [1998] where the contact normal is eval-
uated at the end of the time step. However, in practice, they only consider

102

7.8 Non-penetration model

cloth-vertex against object-face collisions, so the constraint function in this
case is linear in q f and we end up with the same expression as in Eq. (7.12),
albeit with the weights evaluated at the beginning of the time step and the
contact normal at the end of the time step.

Multiple constraints can easily be represented by letting

N =
⇥

n1 . . . nm
⇤

.

At this point, the combined set of constraints can be written as

NT
d � 0.

While this constraint is simple, it’s important to realize that it is based on a
number of approximations compared to the desired constraint. In particular,
we have assumed

• Fixed time of collision (and only one such time).

• Linear trajectories of all vertices.

• Linearized constraint function.

• Constraint only enforced at end of time step.

It should also be noted that the combination of the linearization of the con-
straint function and the assumption about linear trajectories effectively turns
the original position level constraint into a velocity level constraint.

If the constraint is not linearized (but the time of collision is still assumed to
be given), then Harmon [2010] showed that the constraint function is in gen-
eral not only nonlinear but also non-convex, which makes the subsequent
optimization problems substantially more difficult.

7.8 Non-penetration model

Associated with each collision constraint is a collision response force de-
noted by r 2 R3. This force is usually broken into two components : A
contact force, rn, to ensure non-penetration, and a friction force, rt, such that
r = rn + rt. The corresponding impulses for contact k is denoted by ak 2 R

and bk 2 R2, and the generalized forces is denoted by r, rn, and rt, respec-
tively.

Collectively, the contact impulses are denoted by a = (a1, . . . , am). Based
on the Signorini-Fischera conditions, [Kikuchi and Oden, 1988], the contact

103

Contact modeling

force is generally determined through a nonlinear complementarity prob-
lem :

0 a ? C(q(t, a)) � 0. (SFC)

Here, x ? y denotes the complementarity condition xiyi = 0 for all i 2
{1, . . . , m}. Since both vectors in the above case only have non-negative en-
tries this is equivalent to saying that x

T
y = 0 or simply that the vectors are

orthogonal.

What the equation states is basically that :

• the contact forces must be non-negative (no adhesion)

• the configuration must be admissible

• there cannot be a gap and a contact force at the same time.

We explicitly write C(q(t, a)) to emphasize the fact that the configuration at
a given point in time depends on the contact forces in the system.

In the following, we simplify the problem by using the contact constraint
derived in the previous section, which means that C(d) = NT

d. In other
words, the contact constraints have been linearized, but it is in general a
different linearization than the one we perform for the dynamics, and it is
assumed to be fixed.

With this simplification, the relation between the contact impulses and the
global contact forces is (c.f. Section 7.4)

rn = Na .

The complementarity condition on its own is not enough to determine the
contact impulses since it does not constrain the magnitude of the contact im-
pulses. To do so, we must include knowledge about the dynamics as in Sec-
tion 7.4. Since the dynamics itself is nonlinear, the resulting system remains
nonlinear, even though we linearized the constraints. Hence, we must solve
the system as in Section 7.4 with Newton’s method. However, given that we
now have inequality constraints, each step in Newton’s method corresponds
to solving a set of KKT equations.

In particular, the dynamics for a single iteration is given by Eq. (7.2) and, to
satisfy the constraints, we must have a

(i+1) 2 R(d(i+1)). Using Eq. (SFC) to
define the feasible set, we end up with a mixed linear complementarity problem
(MLCP) :

K

(i)dd

(i) = � f (i) +Na

(i+1) ,

0 a

(i+1) ? NT(d(i) + dd

(i)) � 0.
(7.13)

104

7.9 Restitution

Recalling from Eq. (7.4) that the unconstrained increment is given by

dd

(i)
u = �D

(i) f (i)

and that D = K

�1, we can rewrite the problem as

K

(i)
⇣

dd

(i) � dd

(i)
u

⌘

= Na

(i+1) ,

0 a

(i+1) ? NT(d(i) + dd

(i)) � 0.

If we furthermore define

Dd

(i) ⌘ dd

(i) � dd

(i)
u ,

then
d

(i) + dd

(i) = d

(i) + Dd

(i) + dd

(i)
u = d

(i+1)
u + Dd

(i)

and our problem above becomes

K

(i)
Dd

(i) = Na

(i+1) ,

0 a

(i+1) ? NT
Dd

(i) � �NT
d

(i+1)
u .

Starting with an initial guess of d

(0) = 0 and considering only the first New-
ton iteration, this effectively recovers the contact formulation in Otaduy et al.
[2009]. The only difference is due to the fact that the contact constraints in
that paper are linearized slightly differently. However, for what follows, the
important point is that the framework considered here is a natural general-
ization of the formulation used by Otaduy et al. [2009].

7.9 Restitution

A subtle “feature” of the LCP formulation for contact is that, for any active
constraint, the solution is such that the corresponding inequality is actually
satisfied as an equality. In practice, this means that the relative velocity for
all active constraints at the end of the time step is zero. I.e. two points of
contact at the end of a time step do not break apart. A different way of stat-
ing this is to say that all collisions are treated inelastically. See Smith et al.
[2012] for additional discussion. For cloth and hair, this is a reasonable ap-
proximation of reality, but for rigid body collisions it is often nice to be able
to include a coefficient of restitution. This can be added by introducing the
generalized reflection operator from Smith et al. [2012] at the cost of having
to solve a sequence of LCPs, but we do not discuss this any further here.

The fact that all collisions end up being treated inelastically is a consequence
of our choice of integration scheme. In fact, we have the following lemma :

105

Contact modeling

Lemma 4. A fully inelastic impact will only be obtained by one-step numeri-
cal integrators that satisfy an implicit-Euler–type velocity update of the form
q̇t+1 = ad, a 2 R.

Proof. Recall that we have qt+1 = qt + d and that imposing a linearized non-
negative displacement constraint requires 0 ak ? nT

k d � 0. Whenever
a contact force is applied, we have ak > 0 and thus nT

k d = 0. A fully in-
elastic impact is given by a response satisfying the velocity-level condition
nT

k q̇
t+1 = 0. By substitution this can only be satisfied by an implicit-Euler–

type update, where q̇t+1 is given by a scaling of d.

As concrete examples, consider that the implicit Euler and implicit mid-
point velocity updates are, respectively, q̇t+1

E = 1
t

d and q̇t+1
M = 2

t

d � q̇t.
Then, by substitution, we have a fully inelastic impact for implicit Euler
since nT

k q̇
t+1
E = 0 and, on the other hand, a fully elastic impact for implicit

midpoint, corresponding to a coefficient of restitution equal to one, since
nT

k q̇
t+1
M = �nT

k q̇
t.

7.10 Friction model

In addition to the forces preventing interpenetration, an important aspect
of contact handling is friction. Capturing both stick (static friction) and slip
(dynamic friction) is essential for reproducing many of the phenomena that
we see on a daily basis (e.g., clumping of hair). In the following, we focus
on the full Coulomb friction model for this purpose.

For a given contact point, k, in addition to the contact normal, n̂, let d̂1 and
d̂2 be two orthogonal vectors in the tangent plane of the contact. The gener-
alized tangent basis is then

Tk ⌘

T f

T s

�

⌘ ⇥
G

T
d̂1 G

T
d̂2
⇤ 2 Rn⇥2 .

The sliding velocity at the point of contact follows as ut = T T
k q̇ 2 R2.

The maximal dissipation principle introduced by Moreau [1970, 2011], and
later extended by Goyal et al. [1991], requires that the friction force satisfies
the following maximization :

max
rt

n

�r

T
t ut : krtk µkrnk

o

(7.14)

where rn 2 R is the normal component of the collision response (corre-
sponding to ak in the previous section) and rt 2 R2 is the tangential (fric-
tional) part of the collision response. Since the product of force and veloc-
ity is power, the expression chooses the direction of the friction force that

106

7.10 Friction model

maximizes the negative power applied by the force to the system (i.e., the
dissipation). For isotropic friction, this means that the friction force will be
oriented opposite the sliding velocity vector, but for anisotropic friction, the
friction force and the sliding velocity may not be co-linear.

This formulation is equivalent to other formulations of Coulomb’s law (see
e.g. Bertails-Descoubes et al. [2011] or Stewart [2011]). Effectively, we note
that the constraint in Eq. (7.14) amounts to a cone constraint for the com-
bined collision response.

We should note that the above expression does not distinguish between
static and dynamic friction in the sense that µ is assumed to be known apriori
and constant. In a more sophisticated model, one would have µ = µ(kutk).
To discretize Eq. (7.14), we introduce the discrete friction force bk =
(b1, b2)T

k 2 R2 and replace q̇ by the approximation given by our implicit
time discretization. I.e. q̇ ⇡ d/t. Combined, bk is therefore given by

bk = argmin
bk

n

1
t

b

T
k T

T
k d : kbkk µak

o

. (DMD)

Clearly, the factor 1/t does not affect the minimization and can therefore be
left out. However, it should be noted that the solution does depend on the
full configuration, including any scripted vertices in the collision stencil. We
refer to the above equation as the discrete maximal dissipation principle (DMD
for short).

The friction cone in Eq. (DMD) is sometimes approximated by a friction
pyramid, [Trinkle et al., 1997; Stewart, 2000; Otaduy et al., 2009] :

bk = argmin
bk

n

1
t

b

T
k T

T
k d : kbkk• µak

o

.

This effectively linearizes the constraint. When the dynamics is also lin-
earized, this means that the friction problem can be written as a linear com-
plementarity problem. The pyramid in Otaduy et al. [2009] is oriented such
that one of the sides is aligned with the best guess for the sliding direction.
In practice, this means that d̂1 should be aligned with this direction, while
d̂2 = n̂⇥ d̂1. The above formulation is for a four-sided pyramid, but the ap-
proximation can obviously be improved by adding more facets, although
this comes at the cost of additional constraints, [Stewart, 2000; Kaufman
et al., 2008].

When using kbkk• µak as the constraint, the friction cone is contained
within the pyramid, while the polygon suggested by Stewart [2000] is in-
scribed within the friction cone. In case of a four-sided pyramid, the latter is

107

Contact modeling

equivalent to kbkk1 µak. In either case, the constraint can be written as a
set of linear constraints.

Specifically, for kbkk• µak, we can write out all the constraints as

|b1,k| µak ,
|b2,k| µak

This is equivalent to

b1,k µak , b1,k � �µak ,
b2,k µak , b2,k � �µak .

or

b1,k µak , �b1,k µak ,
b2,k µak , �b2,k µak .

In matrix form, we can write it as
2

6

6

4

1 0
0 1
�1 0
0 �1

3

7

7

5

bk µak

2

6

6

4

1
1
1
1

3

7

7

5

.

Thus, we have the same number of friction force components (two), but we
have four constraints instead of one.

If instead we follow Stewart [2000] and write the linearized constraint for a
four-sided inscribed pyramid, then we first need to redefine

Tk ⌘
⇥

G

T
d̂1 G

T
d̂2 �G

T
d̂1 �G

T
d̂2
⇤ 2 Rn⇥4 .

At this point, the constraint then becomes

e

T
bk µak ,
bk � 0 ,

where bk now has four components and e = (1, 1, 1, 1)T. The advantage of
this formulation is that additional facets can be added to the pyramid by
adding more directions to the definition of Tk and corresponding compo-
nents to bk. With this formulation, we can write all the friction constraints
together as

ET
b diag(µ)a ,
b � 0 ,

108

7.11 Contact force coupling

where b =
⇥

b

T
1 . . . b

T
m
⇤T and E is a matrix where column k has ones in

the rows corresponding to the entries in b for contact k and zeros in all other
rows. This is the formulation used by Kaufman [2009].

We note that this formulation requires twice as many components in b and
five times as many constraints as the original quadratic formulation.

7.11 Contact force coupling

Thus far, we have tacitly ignored the fact that the solutions for a and b are
coupled in an intricate way because the friction depends on the contact force
and vice versa. While the two problems can be combined into a single mini-
mization problem, [Kaufman, 2009, Section 5.5.3], this problem corresponds
to a non-convex QP which in general is NP-hard to solve. Yet, as noted by
Kaufman et al. [2008], accurate coupling between friction impulses, contact
impulses, and deformation is extremely important when taking large time
steps since inaccurate handling of this can cause system instabilities. Devel-
oping a practical solution for this problem is the focus of the next chapter.

109

Contact modeling

110

C H A P T E R 8
Contact solver

In this chapter, we investigate how to write an efficient solver for constrained
dynamics with both contact constraints and friction. We start by considering
an extension of the staggered projections approach originally introduced by
Kaufman et al. [2008] and show what challenges that leads to for large-scale
nonlinear elasticity. Next, we introduce a different approach by handling all
the contacts in a Gauss-Seidel fashion while solving each individual contact
problem accurately with respect to the smooth friction cone. We build that
into a solver that Adapts the Degree Of Nonlinearity in the Impact Solve
(ADONIS) to arrive at an effective contact solver for thin rods and hair.

8.1 Nonlinear staggered projections

Kaufman et al. [2008] proposed to find contact and frictions forces using
a sequence of staggered projections. The essence of this approach is to solve
alternatingly for contact forces and friction forces, where each solve amounts
to a projection onto a convex set. The combination of the projections forms
a contractive mapping, which is therefore guaranteed to converge1.

The original algorithm presented in [Kaufman et al., 2008] does not deal
with nonlinear elasticity, and therefore does not include any Newton itera-
tions. However, the principal challenge for our problems lies in solving the
large-scale QPs associated with the projection operations. Also, the friction

1The convergence rate, however, depends on the specifics of the problem.

111

Contact solver

model considered by Kaufman et al. [2008] is based on a linearized friction
cone. Working with the smooth friction cone introduces another level of
complexity.

In the following, we start by showing how to write the contact forces and
friction forces within each Newton iteration as the solution of two coupled
QP problems. This is essentially the staggered projection formulation, but
with full compliance.

8.2 QP formulation of non-penetration

The mixed linear complementarity problem in Eq. (7.13) corresponds exactly
to the KKT conditions for a quadratic program (QP). As such, the solution
to Eq. (7.13) is equivalent to the solution of a QP. To see this, consider the
following generic QP :

x? = argmin
x

1
2x

T
Ax+ bTx ,

s.t. B(x+ d) 0
(8.1)

where A 2 Rn⇥n and B 2 Rm⇥n are matrices and x, b, and d are vectors in
Rn. The star superscript is used to denote the optimal value for an optimiza-
tion problem. Following [Boyd and Vandenberghe, 2004, Section 5.5.3], the
KKT conditions for the problem are :

Ax+ b+ B

T
l = 0
l � 0

B(x+ d) 0

l

T
B(x+ d) = 0

Letting
A = K

(i) , x = dd

(i) , b = f (i) ,

B = �NT , d = d

(i) , l = a

(i+1) ,
(8.2)

we then see that Eq. (7.13) is equivalent to the KKT conditions for the fol-
lowing QP :

dd

(i) = argmin
x

1
2x

T
K

(i)x+ xT f (i)

s.t. NT(x+ d

(i)) � 0
(8.3)

We note that this QP is not simply the incremental potential subject to the
desired constraints. Rather, it is the QP equivalent to one step of Newton’s
method for minimizing the incremental potential subject to the constraints.

112

8.3 QP formulation of friction forces

For this reason, it is sometimes also known as the local QP. Within this prob-
lem, the quadratic matrix, K

(i), is constant and can be readily computed,
which makes it feasible to solve this QP, although a large-scale QP with affine
constraints remains computationally expensive.

Once a solution to Eq. (8.3) has been found, it is straight forward to use
Eq. (7.13) to find the contact forces :

r(i+1)
n = Na

(i+1) = K

(i)dd

(i) + f (i) .

This does not immediately provide a

(i+1), but if N has full rank, then a

(i+1)

can be recovered using a least squares approach by premultiplying by NT

and solving for a

(i+1).

8.3 QP formulation of friction forces

In Section 7.10, the friction model for a single point of friction was estab-
lished. To handle multiple points of contact, we maximize the total dissipa-
tion, which is simply the sum of the dissipation at all of the contact points.
Let

T =
⇥

T1 . . . Tm
⇤

, b =
⇥

b

T
1 . . . b

T
m
⇤T .

The combined set of friction forces is then given by

b = argmin
b

n

b

TT T
d : kbkk µak, 1 k m

o

. (8.4)

where we have omitted the immaterial constant 1/t from the objective func-
tion. At this point, we can write the global friction force as

rt = T b

In general we therefore have that the combined collision response force is
given by :

r = rn + rt = Na + T b

From Section 7.4, we have :

d

(i+1) = d

(i+1)
u + D

(i)Gl

(i+1) ,

where Gl

(i+1) effectively is the collision response. Substituting the above
expression this leads to

d

(i+1) = d

(i+1)
u + D

(i)(Na

(i+1) + T b

(i+1)) , (8.5)

113

Contact solver

Assuming that the contact forces have already been computed as outlined in
the previous section, this expression can be inserted into Eq. (8.4) to get the
following optimization problem for the friction forces :

b

(i+1) = argmin
b

b

TT T
D

(i)T b + b

TT T
⇣

d

(i+1)
u + D

(i)Na

(i+1)
⌘

.

s.t. kbkk µak, 1 k m
(8.6)

This is the QP for friction forces. However, we note that, for the smooth
friction cone, the constraints are quadratic. In other words, it is a quadrat-
ically constrained QP (QCQP). By approximating the smooth friction cone
by a linearized friction pyramid as outlined in Section 7.10, the quadratic
constraints can be linearized, leading to a simpler QP.

Previously, when we derived the MLCP for contact in Eq. (7.13), we only
included the contact forces in the expression for the constraint forces. At
this point, we can use Eq. (8.5) to also include the friction forces. Effectively,
this means that the substitution in Eq. (8.2) for b has to be updated to b =
f (i) � T b

(i+1). As a result, we get the following QP for the displacement :

dd

(i) = argmin
x

1
2x

T
K

(i)x+ xT(f (i) � T b

(i+1)) .

s.t. NT(x+ d

(i)) � 0
(8.7)

8.4 Dual formulation of contact forces

The problem solved in Eq. (8.7) provides the change in configuration for a
time step, which we refer to as the primal problem. However, as part of the
constraints for the friction forces in Eq. (8.6), we need to know what the (dis-
crete) contact forces are. Since these are the Lagrange multipliers in the pri-
mal problem, and the primal problem is convex (under the assumption that
K

(i) is positive definite), they can be obtained by solving the corresponding
dual problem.

To derive the dual problem, we start with the generic QP problem in
Eq. (8.1). The procedure we follow is described in [Boyd and Vandenberghe,
2004, Section 5.1.6]. First, let the quadratic objective function in Eq. (8.1) be
denoted by

f(x) = 1
2x

T
Ax+ bTx

The Legendre transform (or convex conjugate) of f is then

f

⇤(y) = sup
x

⇣

yTx� f(x)
⌘

= 1
2(y� b)T

A

�1(y� b) .

114

8.4 Dual formulation of contact forces

Here and in the following, we use an asterisk superscript to denote a dual
quantity. The Lagrangian2 for Eq. (8.1) is

L(x, l) = f(x) + l

T
B(x+ d)

Note that the last term in this expression can be thought of as a penalty
function. Subject to the constraint that l � 0 when the original constraints
in Eq. (8.1) are not satisfied (i.e., B(x + d) > 0), this term is always non-
negative, and it is only zero if the constraints are satisfied.

From this Lagrangian, the dual objective function follows through a se-
quence of simple transformations, [Boyd and Vandenberghe, 2004, Equation
5.11] :

g(l) = inf
x
L(x, l)

= inf
x

⇣

f(x) + l

T
B(x+ d)

⌘

= l

T
Bd+ inf

x

⇣

f(x) + l

T
Bx
⌘

= l

T
Bd� sup

x

⇣

�f(x)� l

T
Bx
⌘

= l

T
Bd� f

⇤(�B

T
l)

= l

T
Bd� 1

2(�B

T
l� b)T

A

�1(�B

T
l� b)

= l

T
Bd� 1

2(B

T
l + b)T

A

�1(B

T
l + b)

= � 1
2 l

T
BA

�1
B

T
l� (bT

A

�1 � dT)B

T
l� 1

2b
T

A

�1b

The dual problem is obtained by maximizing g(l) subject to l � 0 or,
equivalently, by minimizing �g(l). When doing this, the last constant term
doesn’t matter, so the dual problem becomes

min
l

1
2 l

T
BA

�1
B

T
l + (A

�1b� d)T
B

T
l .

s.t. l � 0
(8.8)

Using the same substitutions as in Eq. (8.2), but with the update to include
the friction forces, we first note that

A

�1b� d = D

(i)
⇣

f (i) � T b

(i+1)
⌘

� d

(i)

= �
⇣

d

(i) � D

(i) f (i) + D

(i)T b

(i+1)
⌘

= �
⇣

d

(i) + dd

(i)
u + D

(i)T b

(i+1)
⌘

= �
⇣

d

(i+1)
u + D

(i)T b

(i+1)
⌘

.

2Not to be confused with the Lagrangian for our mechanical system.

115

Contact solver

Inserting this in Eq. (8.8) then gives us

a

(i+1) = argmin
a

1
2 a

TNT
D

(i)Na + a

TNT
⇣

d

(i+1)
u + D

(i)T b

(i+1)
⌘

.

s.t. a � 0
(8.9)

8.5 Coupled QPs for contact and friction

Summarizing the results so far, we have two coupled QPs, one for the con-
tact forces given by Eq. (8.9) and one for the friction forces given by Eq. (8.6).
Restating both of them here for easy comparison, we see that they are very
similar :

a

(i+1) = argmin
a

1
2 a

TNT
D

(i)Na + a

TNT
⇣

d

(i+1)
u + D

(i)T b

(i+1)
⌘

,

s.t. a � 0
(8.10)

b

(i+1) = argmin
b

b

TT T
D

(i)T b + b

TT T
⇣

d

(i+1)
u + D

(i)Na

(i+1)
⌘

.

s.t. kbkk µak, 1 k m
(8.11)

Both of these QPs can be interpreted as projections onto convex sets (given
by the feasible regions), and the staggered projection algorithm proceeds
by alternating between solving these two QPs. Due to the nonlinearity of
the global problem, the projections here are in compliance norm rather than
in the inverse mass norm as originally stated in [Kaufman et al., 2008], but
otherwise they are identical.

Each iteration provides a better estimate for a

(i+1) and b

(i+1). The process
starts by solving for a

(i+1) using either zero as an initial guess or the value
from the previous Newton iteration or even the previous time step.

Unfortunately, despite the elegance of this formulation, the actual imple-
mentation of a solver based on these equations is difficult for the problems
we are interested in. While the stiffness matrix is usually sparse, the same is
not true for the Delassus operators in Eq. (8.10) and Eq. (8.11) (i.e., NT

D

(i)N

and T T
D

(i)T). Simply forming the QPs can therefore be difficult.

In the original work by Kaufman et al. [2008], the largest example considered
had less than 2000 degrees of freedom, so there it was still feasible to form
D

(i) explicitly. Even if it was dense. For large scale cloth simulation, this is
no longer the case.

116

8.6 Iterative contact solver (ADONIS)

8.6 Iterative contact solver (ADONIS)

Rather than attempting to solve for all contact forces at once and then for all
friction forces at once, we propose a different approach here. In particular,
we focus on how to solve these systems within the popular framework of
iterative contact-collision methods, specifically Gauss-Seidel methods.

We extend the standard contact iteration approach by observing that we can
iterate through the full set of contacts in multiple Gauss-Seidel passes, while
updating the discrete compliance matrix until a convergence criterion is sat-
isfied. The key here is that the Gauss-Seidel passes happen inside the Newton
iterations rather than the other way around. This ensures fine-grained global
coupling between all the contacts, which is essential for a stable response.

To facilitate the discussion, we organize the components of the collision re-
sponse per contact, k, in

lk = (ak, b

T
k)

T 2 R3.

Similarly, we denote the full contact basis by

Gk =
⇥

Nk Tk
⇤ 2 Rn⇥3

Concatenating the total response in l 2 R3m and the response basis in G =
(G1, ...,Gm) 2 Rn⇥3m, the total discrete frictional contact force is Gl.

With the above discretizations, the combined satisfaction of Eq. (SFC) and
Eq. (DMD) per contact k is equivalently determined by seeking a lk satisfy-
ing the inclusion

lk 2 Rk(d) ,
(min

bk
{b

T
k T

T
k d : kbkk µkak},

0 ak ? nT
k d � 0.

Here, we use Rk to denote the solution set to the single-point frictional con-
tact problem.

In general, the stencils of contacts’ generalized friction and normal bases
overlap. Thus, we have to consider the globally coupled, joint satisfaction
of Eq. (SFC) and Eq. (DMD) over all contacts. This is denoted by a total
response l satisfying the inclusion

l 2 R(d) , lk 2 Rk(d) 8k 2 {1, . . . , m}, (8.12)

where R is the set of all response solutions globally satisfying the frictional
contact conditions, [Stewart, 2011].

117

Contact solver

For convenience, we designate Ḡk and l̄k, respectively, as the complement
matrix and vector formed by zeroing out the three columns in G and the
three entries in l corresponding to the frame basis vectors of contact k. We
then overload addition for complement pairs to ensure consistent block-
vector addition so that l = lk + l̄k.

To begin, we then first note from Eq. (7.5) and Eq. (7.6) that the displacement
at the next Newton iterate is given by

d

i+1 = d

i+1
u + D

i[Gkl

i+1
k + Ḡkl̄

i+1
k],

where d

i+1
u can be precomputed at the beginning of each Newton iteration.

To solve Eq. (8.12) at each Newton iteration i, we iterate in Gauss-Seidel fash-
ion per contact k, solving directly for l

i+1
k (and thus implicitly for d

i+1
k) by

solving

l

i+1
k 2 Rk(d

i+1
u + D

i[Gkl

i+1
k + Ḡkl̄

i+1
k]) (8.13)

and then setting l

i+1 l̄

i+1
k + l

i+1
k .

Each such iteration subproblem can most usefully be viewed as simply solv-
ing a single point frictional contact problem, where d

i+1
u + D

iḠkl̄

i+1
k is the

predicted displacement and l

i+1
k is the contact’s unknown response force.

As such, (8.13) can then be solved or approximated by a plethora of avail-
able numerical methods customized for the resolution of systems subject to
a single contact. Examples of such methods include those proposed by Alart
and Curnier [1991]; Stewart [2001]; Duriez et al. [2006]; Bonnefon and Daviet
[2011]; Bertails-Descoubes et al. [2011]; Stewart [2011]. In our implementa-
tion, we employ the robust hybrid solver of Daviet et al. [2011], for which
code has been publicly released.

Our approach effectively applies a simple extension of the standard contact
iteration by Jean and Moreau [1992] by observing that we can iterate through
the full contacting system in multiple Gauss-Seidel passes while updating
the discrete compliance matrix until convergence.

After each Gauss-Seidel solve, we update the displacement estimate :

d

i+1 d

i+1
u + D

iGl

i+1.

The convergence criterion for the Newton solver is then tested and, if too
large, we update the nonlinear terms and proceed to solve the next Newton
iteration by multiple Gauss-Seidel passes.

118

8.7 Contact groups

The resulting ADONIS method is summarized in Algorithm 3 below.

Algorithm 3: ADONIS

Input: qt, q̇t, t

1: d solve DEL(qt, q̇t, t) . Initial unconstrained solve
2: K CollisionDetection(d,qt)
3: while not converged do . Newton loop
4: D [M + t

2H(qt + d)]�1

5: du d� D[Md� tMq̇t + t

2rWpot(qt + d)]
6: gs itr 0
7: while contact err > contact tol& gs itr < gs max do . GS loop
8: for k in K do
9: lk solve: lk 2 Rk(du + D[Gklk + Ḡkl̄k]) . Single point contact solve

10: l l̄k + lk
11: end for
12: gs itr gs itr+ 1
13: end while
14: d du + DGl.
15: end while
16: q̇t+1 1

t

d

17: qt+1 qt + d

18: return (qt+1, q̇t+1)

To evaluate the algorithm, we start by considering a number of algorithmic
simplifications specific to hair. In particular, we focus on thin elastic rods
(hair) using the discrete elastic rod model, [Bergou et al., 2008, 2010]. In the
next chapter, we then show that the resulting algorithm is stable for substan-
tially larger time steps than existing algorithms, while capturing important
visual characteristics of hair due to the accurate handling of both contact and
friction. Ultimately, this leads to the important conclusion that it is essential
to deal with the nonlinearity inherent in collision response for thin objects
like both hair and cloth.

8.7 Contact groups

For hair simulation, each hair strand represents a separable domain in the
absence of contact. Thus, each strand can be integrated independently of
other hair strands. In the presence of contacts, at each time step, we de-
compose the contact graph formed by detected contacts into its connected
components. Each of these maximally connected subgraphs similarly forms
an independent system, a contact group, that we can integrate separately, in-
dependently, and (when computational resources allow) in parallel.

119

Contact solver

For clarity of presentation and the avoidance of further subscripting, we do
not include this detail in our pseudocode. However, the chief difference
is simply that each contact group (or “island”) independently follows the
pseudocode after collision detection and is computed in parallel.

In the following, the size of a contact group is measured as the number of
collisions that contribute to the group. In the preceding text, this has been
referred to by the variable m.

For cloth simulation, the contacts can still be partitioned into independent
groups, but since the cloth itself cannot easily be broken into many indepen-
dent regions, the benefit in this case is less significant.

8.8 Application of the compliance matrix

Step 4 in ADONIS requires computation of the compliance matrix, which
as noted before is generally dense. However, we only need the action of
the compliance matrix when applied to a vector. This can be implemented
reasonably efficiently as long as the set of such vectors is not too large.

For hair simulation, the situation is simplified by the fact that the Hessian
associated with each strand is banded (due to the 1D nature of a strand of
hair). Consequently, the LU decomposition of the Hessian is also banded,
[Golub and Loan, 1983], and can be stored at the same cost as the Hessian.
Specifically, for discrete elastic rods, the energy Hessian is a banded matrix
with a width of eleven. We can therefore employ a banded LU factorization
method dgbtrf3 for LU factorization of these Hessians. After this factor-
ization, the application of the compliance matrix to a vector amounts to a
forward and backward substitution.

This process comes into play in the Gauss-Seidel loop where we repeatedly
need to compute DGk for all k. However, none of these quantities change
between Gauss-Seidel iterations, so they can all be precomputed as shown
in Algorithm 4.

The potential issue in this context is that while Gk is sparse, DGk is dense.
Thus, even though we don’t have to store the dense compliance matrix ex-
plicitly, we do have to store the filtered contact basis vectors, and these vec-
tors are dense. This cost obviously scales linearly in the total number of
contacts, but it should also be noted that the dimension of the contact ba-
sis vectors scales with the size of the associated contact group. Thus large

3http://www.netlib.org/lapack/double/dgbtrf.f

120

http://www.netlib.org/lapack/double/dgbtrf.f

8.9 Termination

contact groups can require a substantial amount of memory for storing the
filtered contact basis vectors. We revisit this issue in Section 9.2.3.

Algorithm 4: AssembleCompliance
Input: K

1: for k in K do
2: {r, s} GetContactingObjectsIndices(k)
3: if r = s or s is a collision mesh then . Self collision or mesh collision
4: Pk BlockLUSolve(r, Lr, Ur,Gk)
5: else . Hair-hair collision
6: Pk BlockLUSolve(r, Lr, Ur,Gk)
7: Pk BlockLUSolve(s, Ls, Us,Pk)
8: end if
9: end for

10: return P = {P1, ...,Pm}

8.9 Termination

Motivated by our observations in Section 7.1, we use the geometric objective
of reducing non-physical stretch as our convergence criterion. For close to
inextensible materials such as hair, we judge whether “sufficient nonlinear-
ity” has been applied by considering axial strain. At iteration i, we compute
a geometric •-norm measure of the maximum stretch-factor over all edges
er,j belonging to rods indexed by r :

sf i = max
r,j

|ei
r,j|/|ēr,j|� 1,

where ē indicates edge rest length.

We adaptively stop each time step solve when a sufficient reduction in
stretch indicates that the collision response has been communicated across
the domain. Note that standard practice suggests sf i < 10�1, [Bridson et al.,
2002] . For stiff, but not close to inextensible materials, we could instead
apply a bound on a discrete strain-rate measure :

sri = max
j,k

(|ei
r,j|� |et

r,j|)/h.

For cloth, we generally expect the two orthotropic directions correspond-
ing to warp and weft to be near inextensible. This means that the direc-
tional strain in those two directions should be low while the shear strain
may potentially be large. A simple measure for cloth is therefore to look
at J2

3 = tr2(AEA) since tr(AEA) is the sum of the eigenvalues of AEA, i.e.,

121

Contact solver

the principal strains of the directional strain tensor. As we have seen in Sec-
tion 4.5.2, this is cheap to compute.

Within each Newton iteration, the Gauss-Seidel loop is terminated when-
ever the •-norm over all single point contact subproblem residuals is be-
low a chosen threshold. With our choice of using the method by Daviet
et al. [2011] for the single point contact solves, this residual is given by
the Fischer-Burmeister functional for the subproblem. In practice, we use
contact tol = 10�6.

8.10 A localized modified-Newton strategy

Consider now that each of the above Newton iterations is applied with the
specified goal of building a better distribution of contact responses to re-
duce stretch. At the start of each such Newton iteration, we thus restrict
our update of Hessian terms to rods within each contacting system whose
stretch is larger than the requested tolerance. All other Hessians are left
unchanged from the prior iteration. This localized modified-Newton step al-
lows us to focus computation on improving nonlinear terms of domains that
are poorly modeled while the following Gauss-Seidel iterations then redis-
tribute forces and displacements over the whole contacting system via the
improved model. This localization is effectively what allows us to Adapt
the Degree Of Nonlinearity in the Impact Solve. I.e., it is a one of the key
ingredients in ADONIS.

This approach could also be used with a different strategy for the contact
solve (e.g. staggered projections), but it depends critically on being able
to partition the system into independent subsystems. Thus, this particular
aspect of the algorithm does not extend easily to cloth.

8.11 Collision detection

The collision detection used for the evaluation in the next chapter is based
on either proximity detection at the beginning of the time step or continuous
time collision detection (CCD) as described in Section 7.6. For hair-mesh col-
lisions, we always use CCD. The corresponding collision constraints are also
built as described in Section 7.6. However, we have to take care to compute
the contribution from scripted objects correctly (see Eq. (7.12)).

Finally we note that broad-phase updates, narrow-phase collision detection

122

8.12 Choice of unconstrained guess

queries, and contact point processing to build constraints are all performed
in parallel.

Algorithm 5: CollisionDetection

Input: d,qt

1: if rod ccd then
2: K rod-rod CCD on the trajectory from qt to qt + d

3: else
4: K rod-rod proximity collision-detection at qt

5: end if
6: K K [rod-mesh CCD on the trajectory from qt to qt + d

7: return K

8.12 Choice of unconstrained guess

Finally, we should note that it would be cheaper to initialize each of our con-
tact solves with the inexpensive solution to Eq. (LIE) rather than the more
expensive, fully nonlinear guess we generate from solving Eq. (DEL). How-
ever, doing so introduces large jitters and popping to the simulation. These
are especially distracting as simulations try to come to a rest. Moreover, the
unconstrained solutions to Eq. (DEL) are not a bottleneck to compute for hair
simulation, as each strand can be solved independently in parallel. For cloth
simulation, the unconstrained solution is more expensive to solve since the
whole system is typically coupled.

In both cases, the discussion from Chapter 6 applies here.

8.13 Summary

Combining all the various components presented in the previous sections,
we end up with the pseudocode given in Algorithm 6 for applying ADONIS
to hair or rod simulations.

123

Contact solver

Algorithm 6: ADONIS for hair/rods

1: for r in {1, ..., `} do in parallel
2: dr solve DEL(qt

r, q̇t
r, t)

3: Hr Hr(qt
r + dr)

4: {Lr, Ur} LUFactorize
�

Mr+t

2Hr
�

5: end for
6: K CollisionDetection(d,qt)
7: {G, s} BuildConstraints(K, d,qt)
8: S K

9: l InitializeContactForce()
10: while S 6= ∆ do
11: P AssembleCompliance(S)
12: for x in {1, ..., `} do in parallel
13: br hMrq̇t

r � h2rVr(qt
r + dr) + h2Hrdr

14: dr LUSolve(Lr, Ur,br)
15: end for
16: gs itr 0
17: while (ContactError(l) > contact tol
18: & gs itr < gs max) do
19: for k in K do
20: c Âj2K 6=k Pjlj
21: lk solve: lk 2 Rk(d +Pklk + c)
22: end for
23: gs itr gs itr+ 1
24: end while
25: d d + Âj2K Pjlj
26: S ∆
27: for r in {1, ..., `} do in parallel
28: if Stretch(r) > stretch tol then
29: Hr Hr(qt

r + dr)
30: {Lr, Ur} LUFactorize

�

Mr + t

2Hr
�

31: S S [GetContactsForRod(r)
32: end if
33: end for
34: end while
35: q̇t+1 1

h d

36: qt+1 qt + d

37: return (qt+1, q̇t+1)

124

C H A P T E R 9
Evaluation of contact solver

To understand the performance and behavior of the proposed contact solver,
we ran a range of hair simulation examples over a variety of collision sce-
narios. The results are described in detail in this chapter. As part of this
effort we wish to understand how the behavior of ADONIS compares with
that of both standard zeroth-order, impulse response (obtained by setting
D

i = M

�1) and linearly compliant response. Thus, we consider these meth-
ods below as well.

We first consider and quantify stability gains obtained by adaptive nonlin-
earity (Section 9.1). This leads us to an analysis of the runtime performance
(Section 9.2.1), where we observe that contact solves, which scale in the num-
ber of contacts, dominate the cost of our simulations. Hence, we note that
our algorithm likewise scales in the number of contacts processed.

However, this is only the beginning of the story—the number of contacts
processed in each scene clearly affects the simulation output. In Section 9.2.3,
we explore the tradeoff between the final cost and visual quality of simu-
lations as a function of the number of contacts processed. We control the
latter by considering variations in both the seeding density of rooted rods
(rods/cm2) and the number of contacts sampled by collision detection.

In our experiments, we vary seeding density by increasing the number of
rods rooted over a fixed surface area. As we do so, we see that the num-
ber of contacts resolved grows in a superlinear fashion, suggesting that we
face a severe computational challenge as we scale towards contacting rod
assemblies at reported human hair densities.

125

Evaluation of contact solver

For a fixed seeding density, we can also increase the number of contacts sam-
pled at the cost of lengthening runtime. We investigate what the advantages
of doing this are, and observe that increased contact sampling leads to the
capture of more local features in our simulations.

9.1 Case Study 1: Single Rod Collisions

Scripting ADONIS Linear Impulse

Figure 9.1: Whip-it stability test. To test the relative stability of response methods we rotate a
scripted handle connected to a rod so that it repeatedly whips the rod against the edge
of a thin wall obstacle. At a time step size of 3 ms this results in, from left to right, a
smoothly varying collision response from the proposed adaptive nonlinear algorithm,
while the linearly compliant and impulse methods both obtain large, localized, non-
physical deformations.

We begin with a simple example to consider how the stability behavior of
an isolated colliding rod varies as we change the collision response method.
This example is designed specifically to exercise the worst-case scenario of
repeated small-bend collisions to better understand the extremity of nonlin-
ear collision response behavior. We rotate a scripted handle connected to
an elastic rod so that it repeatedly and vigorously whips the rod against the
edge of a thin wall obstacle. See Fig. 9.1 for set-up and simulation snapshots.
The physical parameters for the rod used in this example are: material den-
sity r = 1.3 g/cm3, elastic modulus Y = 1010 g/(cm · s2), shear modulus G
= 3.4⇥ 109 g/(cm · s2), and radius r = 60 µm. For a cloth simulation the
equivalent example would be a sharp object (like a finger) hitting the middle
of a piece of the cloth.

To understand stability gains, we plot the stability regions of all three re-
sponse algorithms over varying time step size and rotational whipping
speed. To determine, stability we stipulate success as a completed run over
a time-period of five seconds, during which axial extension does not exceed

126

9.2 Case Study 2: Hair Balls

0

20

40

60

80

100

-5
10

-4
10

-3
10

-2
10

-1
10

Time step size [s]

A
n
g
u
la

r
v
e
lc

o
it
y
 [
ra

d
ia

n
/s

] ADONIS

Impulse

Linear (transparent)

Figure 9.2: To understand the overall stability behavior of these algorithms, we plot their respec-
tive stability regions as we vary time step (x-axis) in log-scale from 5 µs to 100 ms and
rotational whipping speeds (y-axis). For each successful simulation, we plot a corre-
sponding grey marker for the adaptive nonlinear method; transparent blue for linearly
compliant response; and red for impulse response. Here, we observe a generally two
orders of magnitude gain in maximum stable time step size for ADONIS.

an unusually forgiving tolerance of 50% rest length (a typical tolerance for
simulation examples is 1% rest length). Fig. 9.2 depicts the stable regions.
Observe the gain of two orders of magnitude in maximum stable time step
size for ADONIS. The stability regions of the linear and impulse response
algorithms largely overlap, confirming that, in practice, for small-bend col-
lisions, linear compliance obtains the same effective response as that of an
unfiltered impulse.

9.2 Case Study 2: Hair Balls

We now shift our focus from a single to a dense assembly of rods. Starting
with a sphere of roughly human head proportions (18 cm diameter), we uni-
formly seed curly rods over 50% of the surface, and script the sphere through
a sequence of rotations about three orthogonal axes, alternating rotations
with rest phases. An example of this with 16K rods is shown in Fig. 9.3.
The scripting details are given in the bottom part of Fig. 9.4. This scenario
exercises the rod assembly through a full range of tossing, tumbling, and
spinning. Fast collisions are initiated at both the start and end of each rota-
tion phase, and the pauses in between are sufficient for settling into slower
contacting behavior.

We run our simulations in geometrically increasing sequences, ranging
from 1K up to 64K rods in our largest example. This corresponds to a

127

Evaluation of contact solver

Figure 9.3: In this example, we simulate a “hairball” consisting of 16K rods affixed to a sphere
scripted through a series of rapid rotations.

-2π

0

2π

0 2 4 6 8 10 12 14 16 18

ra
di

an
s/

s

Simultated time [s]

ωx
ωy
ωz

Figure 9.4: All hair ball examples are scripted through a set of rotations around the three main
axes, as shown here where w represents the angular velocity around the specified axis.

maximum seeding density of ⇠ 125 rods/cm2. In comparison, the av-
erage full head of human hair has 175 � 300 hairs/cm2, [Robbins, 2012].
We select reported human hair parameters for these experiments : mate-
rial density r = 1.32 g/cm3, viscosity µv = 5 ⇥ 107 g/(cm · s), gravity
g = 981 cm/s2, elastic modulus Y = 3.9⇥ 109 g/(cm · s2), shear modulus
G = 3.4⇥ 109 g/(cm · s2), rod-rod frictional coefficient µ = 0.2, rod-sphere
frictional coefficient µ = 0.1, and rod radius r = 37 µm.

In all the hair ball examples, each rod is discretized to 119 DoFs total, 30 ver-
tices and an additional 29 twist DoFs per rod. Except where otherwise noted,
we apply proximity based collision detection for rod-rod contact sampling
and employ a time step of t = 10 ms. To better understand the effects of in-
creased contact sampling, we applied two different proximity radii, 2.5 µm
and 25 µm, respectively. As we explore below, varying proximity radii has
some clear tradeoffs. In the following sections, based on the resulting be-
haviors we obtain, we distinguish between these two simulation types as
respectively smooth and tangled. For the smooth and tangled simulations,
we set gs max to 1050 and 150 respectively. Here and in the following, the
convergence criterion for ADONIS limits stretching to sf < 1%.

Statistics for the smooth and tangled simulations were obtained respectively
with Intel Xeon E5-4650 @ 2.7GHz (8 core Sandy Bridge-EP, 4 sockets) and
Intel Xeon E5-2680v2 @ 2.8GHz (10 core Ivy Bridge-EP, 2 sockets) systems,

128

9.2 Case Study 2: Hair Balls

with the exception of the 32K tangled simulation, which ran on an Intel Xeon
E5-2650 @ 2GHz (8 core Sandy Bridge-EP, 2 sockets).

9.2.1 Timing breakdown and scaling

0 %

20 %

40 %

60 %

80 %

100 %

1k 2k 4k 8k 16
k

32
k

64
k 1k 2k 4k 8k 16
k

32
k

C
PU

 ti
m

e

Number of rods

Prep
Collision detection

Unconstrained solve
Contact pre-process

Contact solve

10-1
100
101
102

C
PU

 ti
m

e
[s

]

Smooth 64k

10-1
100
101
102

 0 2 4 6 8 10 12 14 16 18
Simulated time [s]

Tangled 16k

Smooth Tangled

Initial conditions

Figure 9.5: Left: Initial conditions for the hair ball examples (8K rods). Middle: CPU breakdown
statistics across all hair ball simulations as we increase the number of rods/seeding
density. Right: CPU breakdown statistics by time step for the 64K rod smooth (top)
and 16K rod tangled (bottom) simulations.

First, we show the breakdown of CPU time for these simulations in Fig. 9.5,
middle. The cost of collision resolution becomes dominant as we move to-
wards increased contact sampling and higher rod densities. Indeed, for the
most complex scenarios, collision resolution is dominant at every time step
(see Fig. 9.5, right). Recall that, at each time step, we can have multiple
contact problems, each corresponding to the resolution of an independent
contact group. In turn, the total cost of contact resolution at each time step
depends on the number and size of these groups. In Fig. 9.6, we plot the time
required to solve individual contact groups as a function of the number of
contacts in the group, across all groups encountered in the smooth (top) and
tangled (bottom) simulation sequences, and observe close to linear scaling.

At each Newton iteration, we attempt to solve the contact problem in
Eq. (8.12). A solution for this optimization should be expected to scale non-
linearly in the number of contact variables. Initially, it is therefore surprising
that we observe linear scaling overall. However, recall that to solve Eq. (8.12)
we employ the Gauss-Seidel solver which regularly saturates at its upper it-
eration limit. We conjecture that this saturation is the source of the observed
linear scaling.

9.2.2 Sufficient nonlinearity

A key question to understand the algorithm’s overall performance is exactly
how much additional work is required when linear compliance is insuffi-

129

Evaluation of contact solver

10-4

10-2

100

102

104

100 101 102 103 104 105 106 107

C
o

n
ta

c
t

s
o

lv
e

r
ti
m

e
 [

s
]

Size of contact group

O(n)

Smooth

32k

8k

4k

2k

1k

16k

64k

10-4

10-2

100

102

104

100 101 102 103 104 105 106 107

C
o

n
ta

c
t

s
o

lv
e

r
ti
m

e
 [

s
]

Size of contact group

O(n)

Tangled

32k

8k

4k

2k

1k

16k

Figure 9.6: Contact solver scaling statistics. Here, we plot the time required to solve a contact
group, as a function of the number of contacts, across all groups encountered in the
smooth (top) and tangled (bottom) simulation sequences. Linear scaling is plotted for
reference.

cient. Across our simulations, we find that the average number of con-
strained Newton iterations, per contact solve, remains close to one. How-
ever, this does not offer a sufficiently detailed view of how our algorithm
adapts to nonlinearity over time. Nor does it help us understand the poten-
tial cost of the resulting additional Newton iterations. In Fig. 9.7, we instead
plot the average number of constrained Newton iterations required by our
algorithm per time step weighted by contact problem size. As we have seen
above, larger contact problems are more costly, which is why the weighting
is appropriate. We correspondingly observe here and in Fig. 9.8 that the vast

130

9.2 Case Study 2: Hair Balls

 1

 10

W
ei

gh
te

d
ite

ra
tio

ns

1k
2k
4k
8k

16k
32k
64k

Smooth

 1

 10

 100

W
ei

gh
te

d
ite

ra
tio

ns

1k
2k
4k
8k

16k
32k

Tangled

-2π

0

2π

0 2 4 6 8 10 12 14 16 18

ra
di

an
s/

s

Simultated time [s]

ωx
ωy
ωz

Figure 9.7: Sufficient nonlinearity. To understand the potential cost of the resulting additional
Newton iterations, we plot the average number of constrained Newton iterations ap-
plied by ADONIS, weighted by contact problem size per time step for smooth (top)
and tangled (middle) simulations. Spikes in iteration counts correspond to instants
in time when the scripting (bottom) exhibits discontinuities either by initiating new
rotations or abruptly coming to a halt.

majority of contact problems encountered require small numbers of itera-
tions.

9.2.3 Turning the contact numbers knob

When trying to describe the complexity of a hair simulation, it is tempting
simply to consider the number of hair strands. However, this can be very
misleading; both in terms of computational cost and in terms of qualitative
results. A more appropriate metric is the number of contacts processed. We
explore this by considering variations in seeding density and contact sam-
pling, and consider the tradeoffs between final runtime cost and the result-
ing visual characteristics.

Fig. 9.9 shows how the visual characteristics of the smooth hair ball exam-

131

Evaluation of contact solver

1
10
102

103

104

105

106

107

 1 10 100

Si
ze

 o
f c

on
ta

ct
 g

ro
up

Number of Newton iterations

10-10

10-5

100

105

1010

Av
er

ag
e

so
lv

e
tim

e
[s

]

100,000

1,000

10

1

Figure 9.8: The distribution of Newton iterations per contact group size and corresponding aver-
age solve times, over all hair ball simulation sequences. Disc areas indicate numbers
of occurrences of problems at each group size and iteration count; grey circles on the
right demonstrate the scaling between disc size and number. The color of all plotted
discs shows the average solve time on a logarithmic scale, from which we note that the
vast majority of problems are small and inexpensive to solve.

Figure 9.9: Increasing the number of hair strands has a relatively predictable effect on the overall
appearance of the simulations.

ples shifts as we vary the seeding density in the hair ball examples while
keeping seed area fixed. Correspondingly, in Fig. 9.10, left, we show that the
total number of contacts in the system grows superlinearly with the number
of rods.

As noted above, however, simply counting hairs is insufficient to determine
the number of contacts that must be processed. By itself, it also does not say
much about the visual quality of the resulting simulation. In practice, we
can vary the amount of contacts we detect by changing our rod discretiza-
tion, our collision detection method, or even parameters within our collision
detection method. Here, we consider the latter and look at the change in
behavior and contact numbers for the two applied proximity radii we use
in rod-rod collision detection. As we see in a side-by-side comparison in
Fig. 9.11, increased contact sampling leads to the capture of local features,
e.g., lock and ringlet-like structures. However, due to the extremely tight

132

9.2 Case Study 2: Hair Balls

 1

 10

 100

104 105 106

M
e

m
o

ry
 u

s
a

g
e

 [
G

B
]

Max number of contacts

O(n)

Tangled

Smooth

100

101

102

103

104

1
k

2
k

4
k

8
k
1
6
k
3
2
k
6
4
k

C
P

U
 h

o
u

rs

Number of rods

O(n)

O(n2)

Tangled

Smooth

103

104

105

106

107

1k 2k 4k 8k 16k 32k 64k

N
u

m
b

e
r

o
f
c
o

ll
is

io
n

s
 p

e
r

ti
m

e
 s

te
p

Number of rods

O(n)

O(n2)
Tangled Smooth

Avg

Max

Figure 9.10: Left: The number of contacts grows superlinearly in the number of rods/seeding
density. Right: A summary of maximum memory utilization and CPU scaling across
hair ball simulations.

confines of these twists, this comes at the cost of a 10-fold and greater in-
crease in the number of contacts we must process, which in turn leads to an
increase in the total run time and memory usage (see Fig. 9.10, right.)

Figure 9.11: Differing contact numbers and resulting simulated behaviors are obtained by chang-
ing the proximity radii we use in rod-rod collision detection from 25 µm (left) to
2.5 µm (right). Visually, this has quite a dramatic effect.

9.2.4 Stability in rod assemblies

We saw above in Section 9.1 that, when stressed by high-speed collisions,
ADONIS enables progress at stable time steps orders of magnitude larger
than existing methods. However, it is not obvious if this stability advan-
tage is maintained when we consider less violent motions in rod assemblies.
To investigate this we consider the scripted hair ball example, but instru-
mented to examine the stability behavior of all three resolution methods as
we vary both time step and seeding density. Since we wish to compare sta-

133

Evaluation of contact solver

bility and performance across time step sizes, we employ CCD for rod-rod
contact sampling. This ensures that larger time step simulations do not gain
the unfair advantage of smaller contact groups due to missed collisions, or
“tunneling.”

rods method 100ms 10ms 5ms 1ms 0.1ms
1K ADONIS x 3h42m 3h28m 4h09m 10h58m
1K Linear x x x 6h38m 11h09m
1K Impulse x x x x 13h27m
2K ADONIS x 6h29m 3h46m 5h11m 23h49m
2K Linear x x x 8h30m 23h35m
2K Impulse x x x x 28h51m
4K ADONIS x 43h55m 21h47m 19h40m 55h19m
4K Linear x x x x 55h37m
4K Impulse x x x x 76h34m

Figure 9.12: A comparison of stable time step sizes and runtimes for response methods on the
hair ball example. As we scale to larger seeding densities we see a stability gain for
ADONIS of one to two orders of magnitude. Entries in the table give either the
runtime to completion or an x to indicate a failed simulation. These simulations were
all run on an Intel Xeon X5650 @ 2.67GHz (4 core Westmere-EP, 1 socket).

We observe in Figure 9.12 that ADONIS is consistently stable at larger time
step sizes in these examples, at least an order of magnitude larger than linear
compliance and two orders of magnitude larger than impulsive response.
Furthermore, this increased stability does not impose additional cost. Rather, we
see that nonlinear adaptivity maintains the fastest runtimes across simula-
tions when allowed to take large, stable time steps.

9.3 Case study 3: Combing, Flinging and Tangling

In the hair ball tests, we mostly considered rod assemblies at slower speeds
(albeit with abrupt speed changes). Here, we start to stress ADONIS with
a trio of examples, where the simulation of combing, flinging, and tangling
behaviors are made possible by adaptive nonlinearity. In all of the following
examples, we once again employ rod-rod CCD. The goal here is to show that
the algorithm is robust even with quite challenging simulations and that the
simulation cost remains reasonable.

9.3.1 Comb out

The combing stress test shown in Fig. 9.13 subjects thin rods to collisions and
tangling that exercise the strongly nonlinear collision response of rods. We

134

9.3 Case study 3: Combing, Flinging and Tangling

Figure 9.13: Collisions and tangling, as in this combing stress test, exercise the strongly nonlinear
collision response of rods.

comb through rods as they are tightly rotated and coiled about two rotors.
Simulation details: t = 4 ms; 5,200 rods, 119 DoFs each; runtime: 24h28m
on a Xeon E7-8870.

9.3.2 Debris fling

Figure 9.14: Debris is entrained and thrown by rotating bristles.

In the test shown in Fig. 9.14, dropped debris is entrained and thrown by

135

Evaluation of contact solver

rapidly rotating stiff bristles. Simulation details: t = 8 ms; 1040 bristle rods,
399 DoFs each; 26 dropped rods, 79 DoFs each; runtime: 44m on a MacBook
Pro 2011, Intel Core i7 @ 2GHz.

9.3.3 Rod catch

Figure 9.15: Thin rods are caught and pulled into two separate hanks by stiff, rotating elastic
bristles. The rods are wound about each other so that when pulled out they are braided
together.

In the last example, thin rods are caught and pulled into two separate hanks
by stiff, rotating elastic bristles. The rods are then wound about each other so
that, when pulled back out of the rotating bristles, they are braided together.
See Fig. 9.15. Simulation details: t = 8 ms; 1040 bristle rods, 399 DoFs each;
1000 thin rods, 239 DoFs each; runtime: 30h14m on a Xeon E7-8870.

9.4 Limitations

The focus in this chapter has been on impact problems. Frictional contact
problems in general are often broken into problems dealing with impact
and those dealing with stable, persistent contact. For problems with persis-
tent or slow moving contacts, the results above show that ADONIS retains
comparable computational advantages of existing contact resolution meth-
ods. However, it also retains the same weaknesses : the Gauss-Seidel solver
typically does not converge. We conjecture that this lack of convergence is
responsible for a notable artifact. We observe that locks formed in our sim-
ulations may fall apart on their own, over time. As previously noted, the
simulation of stable frictional contact assemblies depends on the accurate
resolution of the underlying contact problem, [Kaufman et al., 2008]. We
therefore suspect that the unraveling we observe could be addressed in fu-
ture work by replacing the current Gauss-Seidel solver employed in steps
7-13 of ADONIS with a fully convergent solver for the contact and friction
forces.

136

9.5 Summary

Another limitation of ADONIS is that it utilizes a relatively large amount
of memory to resolve and store contact graphs during solves. The actual
amount of memory used grows linearly in the number of contacts and thus
superlinearly in seeding density. This issue was brought up in Section 8.8
and Fig. 9.10, right, shows that we do in fact observe this behavior. Depend-
ing on the available resources, this may or may not be a concern.

Finally, while the method proposed here generally offers robust stability for
low cost, and is able to run our simulations at large time steps relative to
existing methods, we have done nothing to address the problems outlined
in Section 6.6. Thus the unconstrained problem remains ill-conditioned for
large time steps, which ultimately limits the size of time steps in our simu-
lations.

9.5 Summary

Considering the geometry of thin body collisions, we started in Chapter 7 by
observing that the degree of nonlinearity in collision response for stretching
modes varies greatly with configuration. Noting that capturing this nonlin-
earity is essential for the stable progress of simulations at practical time step
sizes, we constructed a simple algorithm in Chapter 8 that applies first-order
modeling in most solves. When linearity is sufficient, this proposed method
incurs marginal cost over existing linearly compliant methods. In essence,
it identifies instances where a frugal application of additional computation
is most needed, which enables us to take time steps several orders of mag-
nitude larger than previously possible. Importantly, this does not mean that
every response is resolved with a small number of Newton iterations: as we
have seen above in Section 9.2, in a small but critical subset of collision events,
large numbers of iterations are necessary. Without these additional nonlin-
ear iterations, the time step restriction becomes severe. The crucial point is
that these instances are infrequent, and so when amortized across a simula-
tion, we incur minimal additional cost.

137

Evaluation of contact solver

138

C H A P T E R 10
Multigrid methods

Having established in the previous chapters that nonlinearity is essential for
solving contact problems with thin objects like hair and cloth, the next goal
is to extend the contact solver from hair to cloth. As already noted, this
presents a number of challenges.

The primary difficulty is that cloth problems do not allow us to easily par-
tition the contact problem as we did in Section 8.7. As a consequence, the
product of the compliance matrix, D, and the contact basis, G, forms a dense
matrix in Rn⇥3m, which can become prohibitive to store for systems with
many contacts. In practice, such a situation easily arises if one has multiple
layers of clothing (like a jacket on top of a shirt or a multilayer dress).

The secondary problem is that, without the partitioning, there is no easy
way to adapt on the nonlinearity locally. As such, every nonlinear iteration
must include the full system. Using Gauss-Seidel with its attendant slow
convergence therefore becomes less attractive.

One potential approach for overcoming this is to reconsider the staggered
projection algorithm presented in Chapter 8. The complication with that
approach is the need to solve several large QPs subject to affine or even
quadratic constraints.

There are multiple ways of solving large QPs, but many of them invariably
involve solving large linear systems. This includes methods based on se-
quential quadratic programming using active sets as well as interior point
methods. Thus, we are compelled to solve large linear systems efficiently.

139

Multigrid methods

One of the most appealing methods for solving such large linear systems is
the multigrid method because its computational complexity is often linear
in the number of unknowns. However, multigrid algorithms that obtain
full computational efficiency can be difficult to design for new applications,
especially when constraints are introduced.

In the remainder of this thesis, we focus on how to design such multi-
grid methods for cloth simulations. In particular, we develop the so-called
smoothed aggregation (SA) method, [Mı́ka and Vaněk, 1992], for cloth sim-
ulation. This is an algebraic multigrid (AMG) method, which eventually
represents the foundation for solving large contact QPs. While the extension
to QPs and the application to frictional contact problems remains outside
the scope of this thesis, we show that this method can provide significant
speedups for existing cloth simulation systems.

10.1 Multigrid basics

Conventional multigrid methods, whether geometric or algebraic, tend to
perform poorly for thin-shell applications. Geometric methods furthermore
require structured meshes, and existing multigrid approaches tend to have
difficulty with collisions. To understand the difficulties inherent in cloth
simulation and develop a more advanced algebraic multigrid method with
improved performance, we begin by carefully considering the basic multi-
grid principles. Many of these principles are available in the basic tutorial
presented in [Briggs et al., 2000], the additional material developed in [Trot-
tenberg et al., 2000], and the theory given in [McCormick, 1984] and [Vas-
silevski, 2008].

Although multigrid methods have much broader applicability (including in-
definite systems), our focus here is on the symmetric positive definite (SPD)
case because it allows for a simpler development and clarification of the ba-
sic principles underlying multigrid methodology.

Every multigrid method has two essential components : smoothing and coars-
ening. The smoother is responsible for removing oscillatory errors (to be
defined below) in the solution, while the coarsening strategy effectively pro-
vides a way to deal with smooth errors. However, in order for the multi-
grid scheme to work optimally, these two components must be carefully de-
signed to complement each other.

Geometric multigrid (GMG) methods rely on the ability to coarsen a grid ge-
ometrically and to (explicitly or implicitly) define discretizations on coarser
grids, as well as interpolation operators between the grids. Unfortunately,

140

10.1 Multigrid basics

geometric multigrid methods can be difficult to develop for problems with
unstructured grids, complex geometries, and widely varying coefficients
and anisotropies. As a convenient alternative to GMG methods, AMG and
its cousin SA were developed to provide automatic processes for coarsening
based solely on the target matrix. AMG coarsens a grid algebraically based on
the relative size of the entries of the matrix to determine strong connections,
thereby forming a hierarchy of grids from the finest, on which the original
problem is defined, down to the coarsest, which typically consists of just a
few degrees of freedom. The standard AMG coarsening process produces
coarse grids whose degrees of freedom are subsets of those on the fine grid
(represented by identity rows in the interpolation matrix). Thus, while AMG
is an algebraic approach, a geometric representation of coarse-grid nodes in
the continuum is still easily determined.

For linear finite element discretizations of Poisson’s equation on regular 2D
grids, the parameters for AMG can be selected to produce the usual geomet-
ric coarsening with linear interpolation. In this case, the coarse-grid matrix
is essentially what finite elements would produce by re-discretization on the
coarse grid. AMG and GMG solvers would then have similar interpolation,
restriction, and coarse-grid components. It is thus often safe to make as-
sumptions about the convergence of a standard GMG approach by looking
at the convergence of an AMG implementation. Yet AMG can automatically
produce effective coarse levels for many problems that do not lend them-
selves to geometric approaches.

Smoothed aggregation by contrast is an advanced aggregation-based
method founded on algebraic multigrid principles. When coarsening the
grid, these methods form agglomerates (by grouping fine-grid nodes) that
each become a node of the coarse grid. The points that go into agglom-
erates are also formed based on relative strength between elements of the
matrix. However, for standard SA, coarse nodes do not correspond to single
fine-grid nodes. So, for vertex-centered discretizations, it is generally not
possible to assign geometric meaning to the coarse grids that SA produces,
especially for systems of PDEs. Smoothed aggregation also tends to coarsen
more aggressively than AMG and GMG, so the coarse matrices and interpo-
lation operators generally must work harder to obtain efficiency comparable
to that of AMG and GMG.

To better understand the interplay between smoothing and coarsening, we
start by characterizing smoothers in Section 10.2. Assuming that coarse grids
and interpolation operators are given, we construct a basic multigrid scheme
in Section 10.3. In Section 10.4, we analyze the requirements for these multi-
grid schemes to achieve good convergence and, based on this convergence

141

Multigrid methods

analysis, we go back and determine how to actually design effective coarse
grids and interpolation operators in Section 10.5. Finally, in Section 10.7, we
discuss how the discretization of the underlying problem can also affect the
performance of multigrid methods.

10.2 Smoothing

Assume that the matrix A

h 2 Rn⇥n is SPD, where the generic “mesh” param-
eter h is used to indicate that it corresponds to our biggest or finest “grid”.
We use geometric terms here to simplify the discussion, although the con-
cepts carry over to the use of algebraic multigrid methods when geometry is
not necessarily assumed or even present. Given this terminology, our target
fine-grid matrix equation is simply

A

h
u

h = f

h, (10.1)

where f

h is a given source term, and u

h is the unknown. Such linear sys-
tems can be solved using any of a number of simple iterative methods like
Jacobi or Gauss-Seidel relaxation. For simplicity, we consider Richardson’s
iteration given by

v

h v

h � 1
kA

hk
⇣

A

h
v

h � f

h
⌘

, (10.2)

where k · k denotes the matrix norm induced by the Euclidean vector norm
k · k. (By virtue of our SPD assumption, kA

hk = max1in li, where the
li are the eigenvalues of A

h.) By the notation in (10.2), we mean that the
current approximation, v

h, to the solution, u

h, of (10.1) is replaced by the
expression to the right of the arrow. Unfortunately, Richardson’s iteration,
as well as most other relaxation methods like Jacobi, Gauss-Seidel, and even
conjugate gradients, usually stall well before they reach an acceptable ap-
proximation to the solution when applied to discretizations of partial differ-
ential equations. The cause of stalling comes from the residual’s inability to
see “smooth” error, by which we mean that the matrix applied to it yields
a residual that is small compared to the error itself. Correcting smooth er-
ror by a term that involves the residual, as these methods do, would there-
fore accomplish very little. Worse yet, while these methods may work well
for a couple of iterations when the initial error has oscillatory components,
this fast elimination of oscillatory error exposes the remaining smooth error
that works to stall all subsequent iterations. This limitation is a common
smoothing property of most conventional iterative methods applied to dis-
cretizations of partial differential equations. However, as we shall see, this

142

10.2 Smoothing

smoothing property provides the motivation and foundation for the coarse-
grid correction component of multigrid algorithms.

To clarify the source of this difficulty, we begin by studying the algebraic
error, e

h ⌘ v

h � u

h, in more detail and we introduce ways to measure its
(algebraic) smoothness. To this end, first consider the following simple rela-
tionship between the error and the residual :

A

h
e

h = A

h
⇣

v

h � u

h
⌘

= A

h
v

h � f

h.

If we use this relationship in (10.2) and subtract u

h from both sides of the
result, we end up with the error propagation expression

e

h G

h
e

h, (10.3)

where G

h = I � 1
kA

hkA

h. G

h, which is called the error propagation matrix
because it governs how the iteration transforms the error, facilitates our anal-
ysis of the relaxation process that follows. Letting h·, ·i denote the Euclidean
inner product, we note that Richardson iteration is convergent because, we
have that 0 < h 1

kA

hkA

h
e

h, e

hi heh, e

hi, from which it follows that kGhk < 1.

For a given error, e

h, two quantities are particularly useful for measuring its
algebraic smoothness :

Mw(e
h) =

hAh
e

h, e

hi
||Ah||heh, e

hi
and

Ms(e
h) =

hAh
e

h, A

h
e

hi
||Ah||hAh

e

h, e

hi .

The weak measure, Mw(eh), is just the Rayleigh quotient of e

h relative to
kA

hk, and the strong measure, Ms(eh), is the relative Rayleigh quotient of
�

A

h�
1
2

e

h. In either case, we call errors with a large measure algebraically
oscillatory (or simply oscillatory), while errors with small measure are called
algebraically smooth (smooth).

When A

h is symmetric, as we have assumed here, any error can be written as
a linear combination of the eigenvectors, {n1, . . . , nn}, of A

h : e

h = Ân
i=1 aini.

Smooth vectors are rich in eigenvectors associated with the low part of the
spectrum, while oscillatory vectors are rich in the high part. This is the basis
for using the terms smooth and oscillatory. For example, if the error is exactly
an eigenvector, so that e

h = ni associated with eigenvalue li, then Mw(eh)
= Ms(eh) = li

kA

hk . Since kA

hk = max1in li, then this measure assesses

143

Multigrid methods

how large li is relative to its largest possible value. For many applications,
this value can be very small at the lower end of the spectrum (e.g., O(h2) for
discrete elliptic operators). For general linear combinations of eigenvectors,
these measures judge how relatively small or large the coefficients, ai, are
for the opposite parts of the spectrum.

The weak and strong measures are important because they identify errors
that cannot be reduced by relaxation and therefore must be reduced by
coarse-grid correction. To begin to see this, note that relaxation reduces the
current error, e

h, in the Euclidean norm by the factor kGh
e

hk/kehk. Using
the definition of the matrix norm to conclude that

0 hAh
e

h, A

h
e

hi hAh
e

h, e

hikA

hk,

it then follows that

kGh
e

hk2

kehk2 = 1� 2
hAh

e

h, e

hi
kA

hkkehk2 +
hAh

e

h, A

h
e

hi
kA

hk2kehk2

= 1� (1 + x)Mw(e
h),

where x 2]0, 1]. This confirms that relaxation slows in the Euclidean norm if
and only if the weak measure is small. Let h·, ·i

A

h = hAh·, ·i and k · k
A

h ⌘
ph·, ·i

A

h denote the energy inner product and its induced norm, respec-
tively. Then an argument similar to the above shows that

kGh
e

hk2
A

h

kehk2
A

h

= 1� (1 + c)Ms(e
h),

where c 2]0, 1]. Thus, relaxation slows in the energy norm if and only if the
strong measure is small.

This correspondence between weak vs. strong measures and Euclidean
vs. energy norms carries over to the analysis of coarse-grid correction. As
shown in what follows, if the coarse grid adequately approximates errors
for which Ms(eh) is small, then the so-called multigrid V-cycles converge
well in the energy norm. For the so-called two-grid or W-cycles in the Eu-
clidean norm, it is enough to have the coarse grid adequately approximate
errors for which Mw(eh) is small. This latter requirement is weaker in
part because small Ms(eh) implies small Mw(eh) (which follows because
hAh

e

h, e

hi2 hAh
e

h, A

h
e

hiheh, e

hi), but the converse is not true. More im-
portantly, what we meant by adequate approximation for the strong mea-
sure, Ms(eh), involves the energy norm, which is a stronger requirement
than that for the Euclidean norm used with the weak measure.

144

10.3 Coarse-grid correction

10.3 Coarse-grid correction

The coarse-grid correction phase of multigrid enters as a way to exploit the
smoothing property of relaxation. The basic idea is that the fine-grid residual
equation, which defines the error, is approximated on coarse levels where
the error becomes oscillatory and is therefore easily handled by relaxation.
The error components thus computed on these coarse levels are then inter-
polated back to the fine grid to correct the approximation there.

To see this more clearly, we start by assuming that a coarse grid and an in-
terpolation operator have already been constructed. For example, if the fine
level, which we call grid h, is a uniform grid on the two-dimensional unit
square, then “grid 2h” might be constructed, in what is considered to be a
standard way, by choosing every other grid line in both coordinate direc-
tions. (Coarsening can divert substantially from this conventional multigrid
construction, even to the point that it does not involve any geometry at all,
as is often the case when algebraic multigrid methods are used.) Suppose
also that we have already determined an interpolation operator, denoted by
I

h
2h, from grid 2h to grid h. (I

h
2h can be constructed based on standard linear

interpolation, for example, but the following discussion does not assume
this.) Now consider the discrete energy functional given by

F(vh) ⌘ hAh
v

h, v

hi � 2hvh, f

hi.
Minimizing F(vh) is equivalent to solving (10.1), and a little algebra shows
that the best coarse-grid correction to a fixed approximation, v

h, in the sense
of minimizing F(vh � I

h
2hv

2h), is expressed by

v

h v

h � I

h
2h

✓

⇣

I

h
2h

⌘T
A

h
I

h
2h

◆�1
⇣

I

h
2h

⌘T ⇣
A

h
v

h � f

h
⌘

.

This is the form of the coarse-grid correction that we use here and it gives
rise to the following so-called variational conditions :

I

2h
h ⌘

⇣

I

h
2h

⌘T
and A

2h ⌘ I

2h
h A

h
I

h
2h,

where I

h
2h represents interpolation from a coarse grid to grid h, I

2h
h is the re-

striction (or transfer) operator from the fine to the coarse grid, and A

2h is the
coarse-grid matrix. (The first definition is called the Galerkin condition and it
generally is assumed to hold only up to a multiplicative constant.) The ba-
sic issue in designing a multigrid method is choosing I

h
2h, which amounts to

determining a coarse set of grid points and a method for interpolating func-
tions defined on those points to functions defined on the fine-grid points.

145

Multigrid methods

However, this energy-minimization formulation is convenient in that, once
this is done, the coarse-grid matrix and the restriction operator are then de-
termined automatically from the variational conditions.

With these constructions in hand, a two-grid version of multigrid, starting
with initial guess v

h, is as follows :

• Apply coarse-grid correction : v

h v

h� I

h
2h(A

2h)�1
I

2h
h
�

A

h
v

h � f

h� .

• Relax once on v

h : v

h v

h � 1
kA

hk
�

A

h
v

h � f

h� .

This version begins with coarse-grid correction because it simplifies the the-
ory, but multigrid can be constructed with these two phases reversed. The
reverse form may be more intuitive because one can then think of relaxation
as smoothing the error so that coarse-grid correction can then work effec-
tively, but both forms actually work equally well in that they have the same
convergence behavior. We have also included just one relaxation sweep for
simplicity, although two or sometimes more are more common in practice.
Note that the error propagation matrix for this scheme is given by

MG

h ⌘
✓

I � 1
kA

hkA

h
◆

T

h,

where
T

h ⌘ I � S

h

S

h ⌘ I

h
2h(A

2h)�1
I

2h
h A

h.
(10.4)

Two-grid versions are generally not enough to achieve the optimality af-
forded by multigrid equipped with a full set of coarse levels. The key to
the extension to a multilevel version is to notice that coarse-grid correction
involves the solution of

A

2h
w

2h = I

2h
h

⇣

A

h
v

h � f

h
⌘

(and then correction to the fine grid via v

h v

h � I

h
2hw

2h). We simply re-
place this step by a two-grid scheme that first improves the grid 2h approxi-
mation (namely, w

2h = 02h) by a correction from grid 4h and one relaxation
sweep on grid 2h. Continuing recursively, the algorithm actually begins on
a very coarse grid, grid H ⌘ 2mh say, solves the problem there, and then in-
terpolates the result to grid 2m�1h to form an initial guess for one relaxation
there, the result of which is in turn interpolated to the next finer grid, and
so on until the finest grid is reached and one relaxation sweep is performed.
This process is called a V(0, 1)-cycle because it starts from the fine grid and
drops down through the coarser grids to the coarsest without doing any re-
laxation (hence the 0), then proceeds back up to the finest grid, performing

146

10.3 Coarse-grid correction

one relaxation (hence the 1) on each grid along the way. We can represent
this V(0, 1)-cycle by the following expression :

v

h MV

h
⇣

v

h; f

h
⌘

, (10.5)

where the v

h on the right is a given grid h approximation and f

h is a given
source term. MV

h �
v

h; f

h� is defined recursively as shown in Algorithm 7.

Algorithm 7: Multigrid V(0,1)-cycle : MV

h �
v

h; f

h�

Input: h, v

h, f

h

1: if h = H then
2: Solve A

h
u

h = f

h

3: v

h u

h

4: else
5: f

2h I

2h
h

⇣

A

h
v

h � f

h
⌘

. Restrict residual to coarser grid

6: v

2h 0 . Initialize coarse grid solution
7: v

2h MV

2h
⇣

v

2h; f

2h
⌘

. Solve coarser problem

8: v

h v

h � I

h
2hv

2h . Interpolate correction from coarser grid

9: v

h v

h � 1
kA

hk
⇣

A

h
v

h � f

h
⌘

. Apply relaxation

10: end ifreturn v

h

Below is a list some basic properties of our constructs. These properties re-
sult from S

h and T

h being “energy”-orthogonal projections onto the range of
I

h
2h and the null space or kernel of I

2h
h A

h, respectively. Keep in mind that the
range of I

h
2h consists of vectors that can be exactly represented by interpola-

tion from the coarse grid, while the kernel of I

2h
h A

h consists of the vectors
that cannot be represented at all by the coarse grid. That is, S

h and T

h pro-
vide a decomposition into errors that can be eliminated by the coarse grid
and vectors that cannot (and must therefore be dealt with on the fine grid).
More specifically we have the following :

• Any grid h vector e

h can be expressed as e

h = s

h + t

h, where s

h 2
R(I

h
2h) , t

h 2 N(I

2h
h A

h), and hsh, t

hi
A

h = 0 (that is, s

h and t

h are
orthogonal in the energy inner product).

• T

h
s

h = 0, S

h
t

h = 0, T

h
t

h = t

h, S

h
s

h = s

h, T

h
e

h = t

h, S

h
e

h = s

h,
hTh

w

h, S

h
z

hi
A

h = 0 8w

h, z

h, and kShk
A

h = kThk
A

h = 1.

• kTh
e

hk
A

h = min
u

2h keh � Ih
2hu

2hk
A

h (that is, coarse-grid correction
minimizes the energy norm of the error over all possible corrections
in the range of interpolation).

We began this discussion by providing motivation for using relaxation on
coarse levels to improve the solver on the fine grid. We then showed how to

147

Multigrid methods

construct a multigrid solver based on this concept. Next, we discuss theoret-
ical properties that ensure that this construction leads to an efficient solver.

10.4 Convergence analysis

We first analyze the two-grid scheme, which has the error propagation ma-
trix MG

h = G

h
T

h. Each cycle converges uniformly in energy for any initial
guess if and only if

kGh
T

hk =
�

�

�

�

✓

I � 1
kA

hkA

h
◆

T

h
�

�

�

�

2

A

h
 g

for some fixed g 2 [0, 1[. A little algebra shows that this is the same as the
condition that the strong measure is not close to zero :

Ms(t
h) � d

for some fixed d > 0 (more precisely, d 2 [1�g

2 , 1 � g[) and for all t

h in
the range of T

h. To understand this two-grid condition a little better, we
make a (generally unrealistic) assumption that t

h is an eigenvector of A

h

with corresponding eigenvalue l. Then

Ms(t
h) =

hAh
t

h, A

h
t

hi
||Ah||hAh

t

h, t

hi =
l

2

lkA

hk =
l

kA

hk ,

so the two-grid condition requires that l be theoretically comparable (up to
d) to kA

hk, the largest eigenvalue of A

h. Of course, the practical quality of
convergence depends on d, and a value of d near zero means that g is near 1,
so it signals poor expected numerical performance. Generally, we want error
components that T

h cannot eliminate to lie primarily in the upper spectrum
of A

h.

Unfortunately, counterexamples (such as standard cell-centered coarsening
of discrete Poisson equations; c.f., Bramble et al. [1996]) show that this two-
grid condition does not suffice to establish uniform convergence of the mul-
tilevel version, MV

h. However, a condition that is sufficient, (c.f. [Vas-
silevski, 2008]), is the following property :
Definition 1. Strong Approximation Property (SAP) A coarse-grid correction
scheme satisfies the Strong Approximation Property if and only if

min
u

2h
keh � I

h
2hu

2hk2
A

h C
kA

hkhA
h
e

h, A

h
e

hi

for some fixed constant C < • and for all grid h vectors e

h.

148

10.4 Convergence analysis

Another way to write this condition is in terms of the multigrid correction
matrix and the strong measure :

kTh
e

hk2
A

h

kehk2
A

h

 CMs(e
h).

Note that this property reduces to the two-grid condition (with C = 1
d

) when
e

h is in the range of T

h, that is, e

h = t

h. (Remember that vectors in the range
of T

h are precisely those that the multigrid correction leaves untouched and
therefore undiminished.)
Theorem 1. (V-Cycle Convergence) The strong approximation property is a
sufficient condition for uniform convergence of the V(0, 1)-cycle in the en-
ergy norm :

kMV

hk2
A

h 1� 1
C

.

Proof. A little algebra shows that the SAP is equivalent to the following
smoothing property :

�

�

�

�

✓

I � 1
kA

hkA

h
◆

e

h
�

�

�

�

2

A

h
 kehk2

A

h � 1
kA

hkkA

h
e

hk2

 kshk2
A

h +

✓

1� 1
C

◆

kthk2
A

h .
(10.6)

Assume now for induction purposes that kMV

2hk2
A

2h 1� 1
C . Remember-

ing that e

h = T

h
e

h + S

h
e

h and that S

h
e

h is in the range of I

h
2h, then we can

write e

h = T

h
e

h + I

h
2he

2h for some grid 2h vector e

2h. Also, with some effort,
it can be shown that

MV

h =

✓

I � 1
kA

hkA

h
◆

⇣⇣

I

h
2hMV

2h(A

2h)�1
I

2h
h A

h
⌘

+ T

h
⌘

, (10.7)

so (10.6) and (10.7), together with the smoothing property and recursion as-
sumptions, combine to show that

kMV

h
e

hk2
A

h
✓

1� 1
C

◆

kTh
e

hk2
A

h + kI

h
2hMV

2h(A

2h)�1
I

2h
h A

h
I

h
2he

2hk2
A

h

=

✓

1� 1
C

◆

kTh
e

hk2
A

h + kMV

2h
e

2hk2
A

2h

✓

1� 1
C

◆

⇣

kTh
e

hk2
A

h + ke2hk2
A

2h

⌘

=

✓

1� 1
C

◆

kehk2
A

h .

This proves our assertion that kMV

hk2
A

h 1� 1
C .

149

Multigrid methods

The strong approximation property requires that vectors in the kernel of A

h

be exactly eliminated by coarse-grid correction. This follows from noting
that if e

h is in the kernel of A

h, then the right-hand side of the SAP vanishes,
and thus so too must the left-hand side. However, we are assuming that
A

h is SPD, so its kernel consists only of 0 and this requirement is, therefore,
trivially satisfied by setting u

2h = 0. On the other hand, the strong ap-
proximation property also clearly shows that any vector that is in the near
kernel (in the sense of yielding a relatively small residual, A

h
e

h) must be
nearly eliminated by coarse-grid correction. This again follows from noting
that if e

h is in the near kernel of A

h, then the right-hand side of the SAP
is small, and thus so too must the left-hand side be. It is this observation
that provides our motivation for constructing an interpolation operator that
adequately approximates near-kernel components. This focus on the near
kernel is generally sufficient because algebraically oscillatory vectors auto-
matically satisfy the SAP: by definition of algebraically oscillatory error e

h,
Ms(eh) � d for some d� 0, so it follows that

kTh
e

hk2
A

h

kehk2
A

h

 ke
hk2

A

h

kehk2
A

h

 CMs(e
h),

where C = 1
d

⌧ •. Finally, since the SAP involves the choice of coarse-
grid points and interpolation to the fine grid, it gives us a way to assess the
quality of the coarse-grid correction process.

As we have just seen, the strong measure is related to the strong approxima-
tion property in the energy inner product. We have a similar relationship for
the weak case in the Euclidean norm.
Definition 2. Weak Approximation Property (WAP) A coarse grid correction
scheme satisfies the Weak Approximation Property if and only if

min
u

2h
keh � Ih

2hu

2hk2 C
kA

hkhA
h
e

h, e

hi.

At this point, it should be no surprise that the WAP can be written in terms
of the weak measure :

kTh
e

hk2

kehk2 CMw(e
h).

By arguments similar to those for the strong approximation property, the
weak approximation property confirms uniform convergence of the two-
grid form of multigrid in the Euclidean norm. It can also confirm conver-
gence of other multigrid cycling schemes, like the so-called W-cycle and µ-
cycle, that are more aggressive than the V-cycle, provided the effort spent on
the coarse grids is commensurate with the size of C.

150

10.5 Designing MG algorithms

10.5 Designing MG algorithms

The preceding sections assumed that a coarse grid and an interpolation op-
erator were given. In this section, we seek to use the theoretical results that
were based on this assumption to go back and determine how to actually
design effective coarse grids and interpolation operators.

We first need to point out that, while V-cycle convergence is usually the de-
sired target in applications because of its superior efficiency, the global na-
ture of the energy norm that the SAP is based on makes it more difficult to
use as a design tool. The problem stems from the need to determine interpo-
lation in a local neighborhood (i. e., a small group of points interconnected by
the entries of A

h). Using the energy norm to measure how well interpolation
approximates local errors is problematic because A

h, which is present in that
norm, generally reaches to points outside of the neighborhood. This lack of
locality inhibits the ability to isolate the design of interpolation. For this rea-
son, it is more common in practice to develop interpolation schemes based
on the WAP because estimates involving the Euclidean norm can be wholly
restricted to individual neighborhoods. This locality provides the basis for
the classical development of Smoothed Aggregation (SA).

The practical importance of determining the coarsening process locally can-
not be overemphasized. Just as finite elements realized its true potential
when it transitioned from a global spectral approach to a local piecewise
polynomial methodology, so too is multigrid most effective when coarse-
grid corrections are constructed from local approximations of errors based
on their local character. The dimension of the space of smooth errors that
relaxation cannot effectively reduce is typically a significant fraction of the
dimension of the fine-level space. This is generally much too large to per-
mit computation of a global basis for that space. This reasoning is analo-
gous to saying that global spectral discretizations based on eigenvectors or
Fourier modes are generally impractical. So the approach taken by algebraic
multigrid methods is to attempt to approximate algebraically smooth errors
over small sets of points that are interconnected in the matrix by using a
significantly smaller number of degrees of freedom. The intent is that these
approximations can then be pieced together to provide adequate global ap-
proximation to all algebraically smooth errors.

In the following we are particularly interested in smoothed aggregation
(SA). At this point we will therefore focus on how the ideas discussed above
for coarsening and interpolation ends up motivating the construction of the
SA algorithm.

151

Multigrid methods

As noted before SA begins by partitioning the fine grid into groups or aggre-
gates of nodes. This is accomplished by aggregating several points that are
strongly interconnected in A

h =
⇣

ah
ij

⌘

. The basic idea is that |ah
ij| is used as

a measure to determine how dependent the values at points i and j of an al-
gebraically smooth error, e

h =
�

eh
i
�

, are on each other. The motivation here
is that, for scalar elliptic equations, a large value of |ah

ij| relative to
q

ah
iia

h
jj

implies that eh
i and eh

j are approximately equal. Once a full set of aggregates
have been determined, SA then uses basis functions defined in each aggre-
gate to form linear combinations that approximate fine-grid smooth error.
The coefficients in these linear combinations constitute the coarse-grid un-
knowns. Often, local analysis can be used to guarantee that the WAP holds
for a given proper choice of these basis functions, which would then guaran-
tee that the method as constructed would provide at least a good two-grid
solver and possibly an effective W-cycle solver (where the coarse grid equa-
tions are solved more aggressively than for V-cycle solvers). But this un-
smoothed version of SA is not likely to exhibit optimal V-cycle performance.
To achieve that, smoothing of the interpolation operator may be necessary.
The fundamental idea is to improve interpolation and the coarsening it is
based on by applying a smoother to I

h
2h, whence the moniker smoothed ag-

gregation. We’ll get back to this shortly.

To better understand how SA constructs interpolation based on the WAP,
assume that the fine grid has been partitioned into a set of agglomerates,
A = {a}. For each agglomerate, the aim now is to satisfy the local WAP:
there exists a constant C ⌧ • such that, for all fine-grid error e

h and every
agglomerate a 2 A, a coarse-grid representative, u

2h, exists that satisfies

keh � Ih
2hu

2hk2
a

C|a|
kA

hkhA
h
e

h, e

hi,

where k · ka denotes the local Euclidean inner norm and |a| is the relative
size of a (so that Âa2A |a| = 1). Note that the sum of this local WAP over all
a 2 A yields the global one.

Now, it would be impossible to test the WAP to see if it holds for all e

h,
so the idea is instead to choose a set of vectors that hopefully represents
all near-kernel components locally. (As we noted above, focusing on such
components is appropriate because those that are algebraically oscillatory
automatically satisfy the WAP, just as they do the SAP.) The local nature
of near-kernel components are known for many problems. As examples, for
scalar elliptic equations, they are approximately constant locally and, for lin-
ear elasticity, they look locally like rigid body modes (constant displacements
and rigid rotations). In such cases, we can take these few global vectors,

152

10.6 Nodal vs. unknown-based coarsening

normalize them in energy, and then restrict them to each agglomerate to
determine an effective basis there. This can be done by finding a minimal
local basis that adequately (according to the WAP) approximates all linear
combinations of these restricted near-kernel components. The actual com-
putation amounts to forming a local matrix, T , whose columns consist of
these restricted near-kernel components, solving the eigenproblem for T

T
T ,

and then letting the basis be the resulting eigenvectors whose eigenvalues
are less than C|a|

kAk . (Remember that the near-kernel components were nor-
malized in energy.) It is important to realize that SA computes a minimal
basis, which not only controls complexity, but also ensures that redundancy
does not creep into the coarse-grid problem. Any contamination by an exact
or near linear dependence of a local basis would lead to artificial singularity
or ill-conditioning of the coarse-grid matrix, making the development of the
solver on coarser levels very problematic.

As we noted above, to improve interpolation approximation properties, SA
applies a smoother to the interpolation operator, [Vaněk, 1992]. To under-
stand the role of the smoothing process in SA, consider the one-dimensional
example of a uniform grid of n points on the unit interval. If we consider
three neighboring interior points and the vector function that is 1 at these
points and 0 elsewhere, such a vector might make up a typical basis ele-
ment for the coarse level that has about n

3 points. That is, we can define
the coarse-level space as the set of coefficients of these piecewise-constant
basis elements. Piecewise-constant functions by themselves provide poor
discretization spaces for most elliptic equations, and so too do piecewise-
constant vectors provide for poor coarsening. But a simple averaging of the
basis elements given by the stencil (1

4
1
2

1
4) yields piecewise-linear basis ele-

ments, which provide higher-order approximation. Averaging of the ba-
sis elements is typically what a properly constructed smoother might do.
This reasoning provides the motive for smoothing I

h
2h in an attempt to im-

prove its approximation order. In other words, for the model 1D problem,
piecewise constants satisfy the WAP but not the SAP; yet, smoothing yields
piecewise linear functions that do satisfy the SAP; and so the motivation is
that smoothing the interpolation operator might provide the approximation
properties we need to confirm good V-cycle convergence for other problems.

10.6 Nodal vs. unknown-based coarsening

Even with the above requirements there are many ways to construct the in-
terpolation operator, P. Standard GMG and AMG are examples of so-called
unknown-based multigrid methods, where the degrees-of-freedom (DOF) are

153

Multigrid methods

coarsened and interpolated separately. To illustrate this approach, note that
a cloth simulation typically involves three displacement unknowns. The re-
sulting matrix, A, can therefore be written in the form

A =

2

4

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

3

5 , (10.8)

where each block is of size n ⇥ n, with n being the number of nodes used
in the discretization. When using an unknown-based method, interpolation
and coarsening are constructed based on the block diagonals to form the full
interpolation operator:

P =

2

4

P1,1 0 0
0 P2,2 0
0 0 P3,3

3

5 . (10.9)

The coarse-grid matrix is then formed using the Galerkin operator P

T
AP.

This works well when the PDE is dominated by the connections within the
unknowns. However, for problems like elasticity with strong off-diagonal
connections, unknown-based approaches can suffer poor convergence and
scaling.

Another choice for applying multigrid to systems of PDEs is the nodal ap-
proach, where the fine-grid matrix is structured in blocks of the same size as
the number of unknowns in the PDE at each grid point. This approach com-
plicates the determination of strength between nodes and, in turn, coarsen-
ing, but it provides a bridge to smoothed aggregation. Instead of coarsening
a grid by identifying a set of nodes that becomes the coarse grid, SA parti-
tions the grid into aggregates that are strongly interconnected. Akin to how
finite elements use local functions, SA then assigns each aggregate a basis of
local vectors that can be linearly combined with each other and bases of the
other aggregates to adequately (according to the WAP) approximate all fine-
grid smooth error. The coefficients in these linear combinations constitute
the coarse-grid unknowns, and the vectors themselves represent an approx-
imation of the near-kernel for the coarse problem. This form gives SA the
natural ability to interpolate across unknowns, and it has the added benefit
of being able to fit a much richer set of errors.

10.7 Designing problems for multigrid

As already noted earlier, there are similarities between multigrid methods
and finite element methods. These similarities extend further in the sense

154

10.7 Designing problems for multigrid

that, just as the appropriate choice of finite elements can improve conver-
gence of the discretization, so too does a good discretization help conver-
gence of the multigrid solver.

To be a little more specific, note that discretization can be viewed as
an attempt to approximate an infinite-dimensional continuum by a finite-
dimensional grid h space. This would only make sense if the target function
could be pinned down somehow, which most discretizations do by relying
on some sense of smoothness. For example, continuous piecewise-(bi)linear
finite element spaces target solutions of elliptic partial differential equations
by relying on boundedness of their second derivatives. This is a sensible
goal when the corresponding operator exhibits so-called “full regularity”
because it means that the second derivatives of the solution are bounded
by the source term. The success of discretization thus depends heavily on
the behavior of the differential operator, which in the standard elliptic case
amounts to full regularity. Operators that exhibit reduced regularity, such as
those with difficulties introduced by discontinuous coefficients or re-entrant
corners, can certainly be treated effectively by discretization schemes, but
they usually require special handling that carefully addresses these difficul-
ties. Otherwise convergence suffers.

So it is with multigrid. Effective coarse-grid correction depends heavily on
the behavior of the matrix : if it comes from standard discretization of a
fully regular elliptic differential operator, then standard coarse-grid correc-
tion schemes that mimic the discretization itself should be effective. In fact,
multigrid aims to approximate the grid h space by the grid 2h space. It does
this by pinning down the error using relaxation to obtain small relative resid-
uals. For the fully regular case, small residuals mean that these errors vary
slowly in any given neighborhood, that is, that the error is locally almost
constant. It is this “discrete regularity” property that enables use of stan-
dard coarse-grid correction schemes to be used to full effectiveness.

An important point here is that, while we expect good approximation by
standard discretization of fully regular differential operators, we can also
expect good overall performance of standard multigrid solvers applied to
them. Conversely, multigrid performance can degrade when applied to dis-
cretizations that are less accurate or operators with reduced regularity. Spe-
cial treatment in the multigrid approach may be necessary to handle these
difficulties. In many cases, it is often more effective to improve the dis-
cretization or operator formulation when this is possible.

The discussion here has focussed primarily on elliptic PDEs, specifically
linear second-order elliptic equations discretized by continuous piecewise
linear or bilinear finite elements (or other traditional discretization meth-

155

Multigrid methods

ods with similar approximation properties). It is well known that multigrid
methods have been very effective for solving problems in this model ellip-
tic class. When regular grids are used, a geometric multigrid method us-
ing standard components (linear interpolation, full weighting, and simple
relaxation schemes like Richardson iteration) is usually able to solve such
problems at a cost that is optimal in the sense that it is proportional to the
number of unknowns. When the problem begins to stray from the classical
elliptic regime (as in the presence of strong convection, strong anisotropies,
or jump-discontinuous coefficients) or when irregular grids are used, stan-
dard algebraic multigrid methods can usually be applied at optimal cost.

What is less well known is that the multigrid methodology has much broader
applicability than this model elliptic class. For example, multigrid has
been applied successfully to nonlinear problems since its practical origin
in Brandt’s seminal paper, [Brandt, 1977]. In fact, the so-called full multi-
grid approach is especially effective for nonlinear problems in that it often
needs the equivalent of only one or two multigrid cycles on the fine-grid
to solve the nonlinear problem. Moreover, the methodology has been ex-
tended well beyond the elliptic case and has been highly successful for solv-
ing Navier-Stokes equations and other systems in fluid flow, as well as many
problems in structural mechanics (c.f., Brandt and Livne [2011]). It has also
been successful in solving previously intractable problems that are beyond
the realm of differential equations (e.g., geodetic equations [Brandt et al.,
1982], quantum chromodynamics [Brannick et al., 2007], and Markov chains
[Sterck et al., 2008]). However, these applications require special multigrid
treatment that can lead to algorithms that are much more sophisticated than
the standard multigrid methods in more common use.

10.8 Summary

In summary, multigrid methodology involves two key components : First,
a coarse grid that can approximate the algebraically smooth errors that are
left behind by relaxation on the fine grid. Second, an interpolation operator
from the coarse grid to the fine grid that adequately represents these errors
in accordance with the WAP.

SA, in particular, approximates algebraically smooth errors by choosing ag-
gregates of nodes that are connected strongly enough to enable one or a few
basis elements to represent these errors locally, with the WAP guiding the
choice of the basis elements that properly approximate these smooth errors.

156

10.8 Summary

More generally, to achieve optimal multigrid performance, the following
properties are desirable :

• The relaxation process should effectively reduce oscillatory compo-
nents of the error. More precisely, the errors that relaxation cannot
quickly eliminate should provide a pattern that can be effectively
exploited in the local construction of interpolation.

• There should be some sense of locality, such as that afforded by the
WAP, since that is what makes it possible and practical to determine
an adequate representation of the near-kernel components.

• The coarse space should be constructed in neighborhoods of
strongly interconnected points and they should carefully avoid
(near) redundancy.

• The range of the interpolation operator (from the coarse grid to the
fine grid) should represent near-kernel components of the fine-grid
operator accurately according to the SAP.

• If the matrix arises from a PDE, the discretization that creates it
should be accurate enough to satisfy the continuum version of the
SAP.

157

Multigrid methods

158

C H A P T E R 11
Smoothed Aggregation

Given the theory presented in the previous chapter, the goal here is to de-
velop an efficient multigrid method for cloth simulation based on smoothed
aggregation (SA). We start by carefully considering the challenges posed by
the thin-shell equations, and then proceed to present the smoothed aggrega-
tion method in detail. Ultimately we use this method as a preconditioner for
a conjugate gradient solver.

The two key challenges are coupling between the variables and time vary-
ing anisotropy. SA is designed to handle both of these challenges and ends
up being superior to simple diagonally preconditioned conjugate gradients
even for relatively small problems. SA is also a purely algebraic method, so
it is agnostic to the choice of input meshes and relieves the user of explic-
itly generating hierarchies or choosing meshes such that they are amenable
to coarsening. In fact, SA works with completely irregular and potentially
even (time) adaptive meshes such as the one in [Narain et al., 2012]. More-
over, it works equally well with triangle and quad meshes.

While we do not solve the full contact model presented in previous chap-
ters, we do incorporate the resulting solver into a production quality cloth
solver based on [Baraff and Witkin, 1998]. To that end, we introduce a novel
way of handling the filtering step originally introduced by Baraff and Witkin
[1998]. The new method, called Prefiltered Preconditioned CG (PPCG), is de-
scribed in Section 11.5. For highly efficient preconditioners, like the ones
proposed here, prefiltering is essential, but, even for simple preconditioners,
prefiltering provides significant benefits in the presence of many constraints.

159

Smoothed Aggregation

Although this chapter focuses on the cloth model introduced by Baraff and
Witkin [1998], we expect most of the results to carry over directly to the cloth
models discussed earlier in this thesis or at least provide a clear pathway
for how to treat them. In fact, in most cases, the proposed method can be
incorporated into other simulators simply by replacing the innermost linear
solver.

Figure 11.1: The smoothed aggregation based method combined with prefiltering as presented in
this chapter provides an 8⇥ speedup for a walk cycle animation of this character and
6⇥ for a run cycle animation. These numbers are compared to a block diagonally
preconditioned CG method. The garments consist of a combined 371, 064 vertices. ©
Disney

At the end of this chapter, we present numerical tests of the new approach
based on a range of examples. This confirms 6 � 8⇥ speedups on a fully
dressed character with 371k vertices (see Fig. 11.1), and even larger speedups
on synthetic examples.

160

11.1 Challenges for multigrid

11.1 Challenges for multigrid

As mentioned in Chapter 2, the partial differential equations (PDEs) for
thin shell elasticity with large deformations are complicated. Still, most
cloth models are approximations of these equations, which means that these
are the equations that should guide the design of our multigrid methods.
However, even the highly simplified models of a planar elastic membrane
undergoing small deformations result in biharmonic equations. For most
methods, including multigrid, these equations are substantially more com-
plicated to find solutions for than Poisson-like problems, which is what is
often considered in the multigrid literature. It is therefore to be expected
that standard methods do not perform optimally.

Figure 11.2: Visualization of the strength of connection within a matrix for each of the three vari-
ables, (x, y, z), at two frames of a simulation. Strong negative off-diagonal connec-
tions between vertices are shown in UV space as blue lines. The two red lines in the
middle of the top row image indicate strong positive off-diagonal connections. For
clarity, ”weak” connections are omitted. In the undeformed state (top row), the x
and z components are each anisotropic but in different directions. In the deformed
state (bottom row), different directions of anisotropy appear even within a single
variable.

Two challenges that affect our work directly are anisotropy and strong
coupling between variables. Anisotropy is usually associated with consti-
tutive models and, as discussed earlier chapters, cloth is an example of
an anisotropic material. However, in the context of multigrid methods,

161

Smoothed Aggregation

anisotropy simply means that certain variables are connected more strongly
than others in the underlying matrix, and that there is a pattern to the di-
rectionality of these strong connections. The notion of a “strong connection”
here corresponds to a large off-diagonal value of the associated matrix el-
ement relative to the diagonal. What is important to note is that this type
of anisotropy occurs even with an isotropic homogeneous elastic material.
This behavior is due in part to the Poisson effect. As an illustration, consider
the simulation of an L-shaped piece of cloth, where the boundary along the
cut-out corner is held fixed while the rest falls under gravity. The corre-
sponding strength of connections in the associated stiffness matrix exhibit
not only distinct anisotropies, but also directions of anisotropy that vary in
space and time (see Fig. 11.2). Standard methods like semi-coarsening or
line relaxation used with geometric multigrid are thus ineffective for this
problem.

v0 v1

v2

f0

f1

f2

x

y

δx

The second challenge related to strong coupling be-
tween variables can easily be seen by considering the
simple 2D example shown in the inset figure to the
right. In this example, two edges are bent from their
rest configuration, which generates the set of bending
forces labeled f0, f1, and f2. If we apply a displace-
ment, dx, to the top vertex, v2, then all the bend forces
increase in magnitude. In particular, this means that a
change in the x coordinate of v2 leads to a change in
the x coordinate of f2, but it also leads to a change of the y coordinate of f1.
Because the two changes have the same magnitude, the x and y variables
are interpreted to be strongly coupled from a multigrid point of view. Nei-
ther geometric multigrid methods (GMG), [Brandt, 1977], nor algebraic multigrid
methods (AMG), [Brandt et al., 1985], when designed in a standard way, work
optimally when the variables are strongly coupled in this way.

The theory in Section 10.6 suggests that this strong cross-variable coupling
would lead to poor performance of standard AMG. We confirmed this nu-
merically by running several tests for the L-shaped problem mentioned
above. Let the number of vertices in a simulation be n. Standard AMG then
performed well for each of the three n⇥ n blocks associated with the indi-
vidual unknowns when the coupling between unknowns was deleted in the
matrix. However, for the full matrix, its convergence rate was poor even for
small problems, and degraded further as the problem sizes increased. Stan-
dard AMG simply was unable to provide a significant improvement over
diagonally preconditioned conjugate gradients (PCG).

In Section 10.6, it was pointed out that SA deals with coupled variables by

162

11.2 Smoothed Aggregation

using a nodal approach instead of an unknown-based approach. It also deals
with the anisotropy because its coarsening is based directly on the strength
of connection within the given matrix. As such, we expect SA to provide a
good foundation for our cloth problems.

11.2 Smoothed Aggregation

At this point, consider the details required for implementing an SA solver.
The construction in SA of a hierarchy of matrices and the corresponding
interpolation operators between successive levels proceeds in three stages:
selection of aggregates (Ai on level i = 1, 2, . . . , m from fine to coarse grids),
forming interpolation operators (Pi), and then forming coarse-grid opera-
tors (Ai+1 = P

T
i AiPi). Since SA is a nodal approach, on any given level

i of the hierarchy, Ai is assumed to have ni nodes, each corresponding to
bi ⇥ bi blocks. At the finest level, b1 is the number of unknowns in the orig-
inal PDE (i.e., 3 displacements in our case). The dimensions of Ai is block
ni ⇥ ni when considered nodally, and (ni · bi)⇥ (ni · bi) when all unknowns
are considered.

A key ingredient in smoothed aggregation is an initial set of near-kernel vec-
tors (see Section 10.5) which must be provided by the user. Let these vector
constitute the columns of a matrix, K. This near-kernel matrix is used be-
low to construct bases for the agglomerates. K must have the property that
any near-kernel component e must be adequately approximated (according
to the WAP) in each aggregate by a linear combination of the columns of K

restricted to that aggregate. For scalar Poisson equations, one near-kernel
component (typically the constant vector) is usually enough to obtain good
performance. For 2D linear elasticity, three components (typically a con-
stant for each of the two displacement unknowns and a rotation) are usually
needed. In Section 11.3, we return to the problem of choosing K.

The first step in aggregating nodes is to form a strength-of-connection (SOC)
matrix, S, which serves multiple purposes. Its primary function is to pro-
vide a structure where “strength” between any pair of nodes in the “grid”
is stored. This is used to decide which nodes are strongly interconnected so
that they can be grouped together into small local aggregates. Another pur-
pose of S is to treat a problem caused by anisotropy. The problem arises
because the interpolation should be in the direction of strength, but the
smoothing that is used to improve the interpolation operator can smear in
the direction of weakness. S can be used to identify the potential for this
smearing and filter smoothing by eliminating the weak connections in the
matrix.

163

Smoothed Aggregation

The SOC matrix is usually chosen with a sparsity pattern that is a subset of
the original nodal matrix. This can be advantageous in the implementation
because the size of the necessary memory allocation is known at the begin-
ning of the construction process. In general, S is not needed after setup, so
it can be discarded after that phase. Usually, the strength between nodes is
defined in a way that allows S to be symmetric, and the cost of assembling S

is reduced to constructing the upper (or lower) triangular part of the matrix.
Classically, the strength between nodes is defined as

sij =

8

>

>

<

>

>

:

1, i = j,
1, r

⇣

A

�1/2
ii Aij A

�1/2
jj

⌘

> q · ri,max,

0, otherwise,

where r(·) denotes the spectral radius of a matrix, q 2 (0, 1), and

ri,max = max
j 6=i

r

⇣

A

�1/2
ii Aij A

�1/2
jj

⌘

sij effectively determines strength relative to other off-diagonals in row i.
Also, Aij here refers to the block (of size b1 ⇥ b1) associated with a nonzero
in the matrix between nodes i and j.

Based on S, define the set S to be the special nodes, by which we mean those
that are not strongly connected to any other node or that correspond to a row
in the matrix that is very diagonally dominant. Relaxation leaves little to no
error at the special nodes, so they need not be interpolated to or from coarser
levels and are therefore gathered into one aggregate that is not affected by
interpolation from coarser levels.

Next, to facilitate description of the aggregation process, let the set of fine-
level nodes be represented by their indices, D1 = {1, 2, . . . , n1}. The next
phase then constructs a fine-level partition, {A1,A2, . . . ,An2}, of D1 \ S into
disjoint aggregates:

D1 \ S =
n2
[

i=1
Ai, Ai \Aj = ∆, 8i 6= j.

Each aggregate here forms a node on the coarse level. Given the set of spe-
cial nodes, this phase is accomplished by two passes through the nodes. In
the first pass, an initial set of aggregates is formed and, in the second, all
unaggregated nodes are assigned to existing aggregates.

164

11.2 Smoothed Aggregation

Algorithm 8: Form aggregates, pass 1

Input: Set of nodes, D, and SOC matrix, S.
1: R = D
2: k = 0
3: for i = 1, . . . , n1 do
4: Form Ni = {j : sij = 1, i 6= j}
5: if Ni \R = Ni then
6: Ak = Ni [{i}
7: k = k + 1
8: R = R \ (Ni [{i})
9: end if

10: end for
11: n2 = k
12: return Aggregates, A1, . . . ,An2 , and still un-aggregated nodes R.

The goal of the first pass is to create a set of aggregates from a maximally
independent set of strongly connected nodes. One way to do this is outlined
here. Each node is examined once in turn, in any logical order. If none of the
current node’s strongly connected neighbors are in an aggregate, then they
join the current node to form a new aggregate. Otherwise, the current node
is left alone and the next node is examined similarly. More specifically, let
R be the set of node indices that are not currently assigned to an aggregate.
Initially, R = D1 \ S . Let Ni = {j : sij = 1, i 6= j} be the set of points that
are strongly connected to point i. The first pass then proceeds as outlined in
Algorithm 8.
After the initial set of aggregates is formed, a subset of unaggregated nodes,
R̂, remains. The goal now is to assign the nodes in R̂ to aggregates in the list
A1, . . . ,An2 . This assignment can be done by looping over each aggregate
and assigning to it all nodes left in R̂ that are strongly connected to one of
its nodes. (An alternative is to loop over each node in R̂, assigning it to the
aggregate that it is most strongly connected to.) All non-special nodes are
strongly connected to at least one node, so this step ensures that they will all
be aggregated. Each aggregate is represented by a node on the coarse level,
so that level will have size n2. This step is outlined in Algorithm 9.

165

Smoothed Aggregation

K1

K2

K3

K4

Fine level kernel

n 1 f
in

e
le

ve
l n

od
es

n2 aggregates

R1

R2

R3

R4

Coarse level kernel

n 2
co

ar
se

 le
ve

l n
od

es

Q1

Q2

Q3

Q4

R1

R2

R3

R4

Figure 11.3: To form the kernel for a coarse level, we start with the kernel for the fine level (far left),
where the rows have been tagged according to which aggregate the corresponding
node belongs to. All the rows with identical tags are then combined to form the local
kernels (middle), and a thin QR decomposition is applied to each local kernel. The
resulting Q matrices form the building blocks for the tentative interpolation operator,
P̂, while the resulting R matrices form the building blocks for the coarse-level kernel
(far right). P̂ is obtained by replacing each Ki matrix with the corresponding Qi
matrix and then permuting back to the original row ordering (second from the left).

Algorithm 9: Form aggregates, pass 2

Input: Aggregates, A1, . . . ,An2 , and still un-aggregated nodes R.
1: for i = 1, . . . , n2 do
2: Let mi be the number of elements in Ai
3: for j = 1, . . . , mi do
4: Form Nj
5: Let Pj = Nj \ R̂
6: for k 2 Pj do
7: Ai = Ai [{k}
8: R̂ = R̂ \ {k}
9: end for

10: end for
11: end for
12: return An independent set containing all nodes, A1, . . . ,An2 .

Interpolation is constructed in two basic steps. The first involves choosing a
tentative interpolation operator, P̂, while the second step consists of smooth-
ing P̂. The tentative interpolation operator is chosen such that the set of
near-kernel components, K, is in the range of P̂, and P̂ does not connect
neighboring aggregates, so P̂

T
P̂ = I. The construction of P̂ is illustrated in

Figure 11.3. Conceptually, assume that the nodes are ordered so that they
are contiguous within each aggregate and in correspondence to the aggre-
gate ordering. (This ordering is not necessary in practice, but used here

166

11.2 Smoothed Aggregation

simply to facilitate the discussion.) The near kernel can then be decom-
posed into n2 blocks denoted by K1, K2, . . . , Kn2 and written in block form
as K =

⇥

K

T
1 K

T
2 · · · K

T
n2

⇤T. This representation means that the number
of rows of Ki equals the number of nodes in Ai times the nodal block size
for the current level, and the number of columns equals the number, k, of
near-kernel components.

A local QR of each block can now be formed: Ki = QiRi, Q

T
i Qi = I, which

yields the matrices Q1, . . . , Qn2 and R1, . . . , Rn2. The columns of Qi form a
local basis spanning the near kernel in Ai. Given this decomposition, the
tentative interpolation operator, P̂, is formed via

P̂ =

2

6

6

6

4

Q1 0 0 0
0 Q2 0 0
...
0 · · · 0 Qn2

3

7

7

7

5

, R =

2

6

6

6

4

R1
R2
...

Rn2

3

7

7

7

5

.

Here, P̂

T
P̂ = I by construction.

A coarse near kernel must be determined to allow for recursion to coarser
levels. But K = P̂R means that the fine-level near kernel can be exactly
represented on the coarse level by simply choosing Kc = R. Note then that,
with Ac = P̂

T
AP̂, we have AcKc = P̂

T
AP̂R ⇡ P̂

T0 = 0 since AK ⇡ 0.

As discussed in Section 10.5, this local non-overlapping use of the near ker-
nel may generally satisfy the weak approximation property, but not the
strong one needed to ensure optimal V-cycle performance. To improve ac-
curacy of the interpolation operator, we therefore smooth it by applying the
weighted Jacobi error propagation matrix: P =

�

I �wD

�1
A

�

P̂. The block
diagonal matrix, D, whose block diagonal agrees with that of A, is used
here because it does not change the sparsity pattern of P and it responds
better to the local nature of A. A typical choice for w is 4

3r(D

�1
A)

, with care

needed in estimating r(D

�1
A) as discussed in Section 11.3. Smoothed in-

terpolation, while generally causing overlap in the aggregate basis func-
tions so that P

T
P 6= I, often leads to an optimal V-cycle algorithm. Also,

the smoothed near kernel is exactly in the range of smoothed interpolation:
PKc = (I �wD

�1
A)P̂Kc = (I �wD

�1
A)K, which generally preserves and

even improves the near-kernel components in K. While the finest-level ma-
trix has nodes with b1 degrees of freedom each, all coarser levels have k de-
grees of freedom associated with each finer-level aggregate. The complexity
of the coarse level is thus dictated by the number of near-kernel components
and the aggressiveness of coarsening (that is, the size of the aggregates).
Both choices must be controlled so that the coarse-level matrix has substan-
tially fewer nonzero entries than the next finer-level matrix has.

167

Smoothed Aggregation

The above steps outline how a given matrix and near kernel pair A, K are
decomposed to form a coarse level, the operators between the two levels,
and the appropriate coarse matrix and near kernel. The combined process is
summarized in Algorithm 10. The coarsening routine is applied recursively
until there is a coarse matrix that can be easily inverted through iteration or
a direct solver. Because aggregation coarsens aggressively, the number of
levels is usually small, between three to six levels for all our tests.

Algorithm 10: Form a coarse level in the SA hierarchy

Input: The matrix and kernel for this level, A and K.
1: Precompute inverse D

�1 of block diagonal of A

2: Find spectral radius of D

�1
A

3: Smooth kernel K to match boundary conditions
4: Form a matrix S to determine strength
5: Use S to form aggregates from nodes in A

6: For each aggregate form local QR of K

7: Use the local Q blocks to form tentative interpolation, P̂

8: Smooth the tentative interpolation to get P

9: Use P to form Ac = P

T
AP

10: Use local R blocks to form coarse kernel Kc
11: return Interpolation and restriction operators, P, R as well as the coarse matrix and

kernel, A

c

, K

c

.

11.3 Null space

In the previous section, we tacitly assumed that the near kernel for the fine-
grid problem is known. While this is not always the case, near-kernel com-
ponents can be obtained for many problems by examining the underlying
PDE as mentioned briefly before. For example, for elasticity, if we ignore
boundary conditions, then it is well-known that a rigid-body mode (con-
stant displacement or rotation) has zero strain and, therefore, zero stress. So
rigid-body modes that are not prevented by boundary conditions from being
in the domain of the PDE operator are actually in its kernel. Fixed bound-
ary conditions prevent these modes from being admissible, so they cannot,
of course, be kernel components in any global sense. But any rigid-body
mode that is altered to satisfy typical conditions at the boundary becomes a
near-kernel component, and they can usually be used locally to represent all
near-kernel components.

To be more specific, displacements for linear elasticity are assumed to be
small, thereby simplifying computation of the strain tensor. In particu-
lar, the strain is given by ✏ = 1

2(ru +ru

T), where u is the displacement

168

11.4 Smoothing

field. In this case, it is easy to verify that the following vector functions
(which represent rotations around each of the three axes) all lead to zero
strain :u = (0,�z, y), u = (z, 0,�x), and u = (�y, x, 0). Here, (x, y, z) repre-
sents material (undeformed) coordinates. Similarly the following three (con-
stant) vector functions which represent translations along the three axes also
leas to zero strain : u = (1, 0, 0), u = (0, 1, 0), and u = (0, 0, 1). Since these
rigid-body modes are linear functions, they should be well approximated in
the interior of the domain by most finite element discretization methods. In-
deed, if the finite element space includes linear functions, then these modes
are exactly represented in the discretization except in the elements abutting
fixed boundaries. All that is needed in this case is to interpolate these rigid-
body modes at the nodes. In doing so, we make them admissible and retain
their near-kernel nature by forcing their values at the boundary nodes to sat-
isfy any fixed conditions that might be there. For further assurance that they
remain near-kernel components, a relaxation sweep may be applied, using
them as initial guesses to the solution of the homogeneous equation.

As noted above, this discussion assumes linear elasticity. However, our
limited experience suggests that the rigid-body modes that work for those
equations may be good candidates for the linearized equations of nonlinear
elasticity. We have not examined this issue in any depth, so it may benefit
from additional work. One thing to add is that just as relaxation sweeps
may improve nearness to the kernel for modes that are altered to satisfy the
boundary conditions and lie in the finite element space, so too may relax-
ation benefit the linear elasticity modes used for the nonlinear case.

To the extent that this approximation proves not to be good enough, then
there are adaptive SA methods that attempt to discover the near kernel as
part of the setup process, [Brezina et al., 2004; Brandt et al., 2011]. These
methods have computationally expensive setup costs, which for this prob-
lem would be on the order of three times what it is for SA, not counting the
need for an additional 10 cycles. To amortize this cost, convergence from
an adaptively found kernel would need to be near optimal. We did experi-
ment with an adaptive approach for this discretization, but, while increased
convergence rates were indeed attainable, the extra setup cost made time to
solution slower overall.

11.4 Smoothing

We use multigrid as a preconditioner for conjugate gradients (CG) rather
than as a stand-alone solver. As a consequence, the multigrid preconditioner

169

Smoothed Aggregation

that we use must be symmetric and positive definite. This requirement has
multiple implications. To ensure symmetry, the V-cycle that we use must be
energy-symmetric and, to ensure positive definiteness, it is critical that the
smoother be convergent in energy. (See Appendix A for theory that proves
this claim.) While these requirements are not surprising, it is important to
take the necessary steps to ensure that they are satisfied.

The basic relaxation scheme that we use is a Chebyshev smoother, which
amounts to running a fixed number of Chebyshev iterations at each level
based on D

�1
A, [Golub and Varga, 1961]. A nice introduction to this

smoother can be found in [Adams et al., 2003]. From a theoretical point of
view, it has good properties and, in practice, it also performs the best among
available smoothers as shown in [Adams et al., 2003; Baker et al., 2011]. Most
importantly, it has the property of being implementable with mat-vec oper-
ations and is thus relatively easy to parallelize compared to other smoothers
like Gauss-Seidel.

Chebyshev requires an upper bound for the spectral radius of D

�1
A and an

estimate of the smallest part of the spectrum that we wish to attenuate, the
same as needed for smoothing the interpolation operator by weighted Ja-
cobi. One approach to obtaining these estimates is to use the power method
for computing the largest eigenvalue of a matrix. Unfortunately, this does
not generally provide a rigorous bound on the largest eigenvalue, and the
convergence rate of the power method is limited by the ratio of the two
largest eigenvalues, [Golub and Loan, 1983]. In practice, these two eigen-
values are often very close, so that convergence is very slow, which leads to
a trade-off: too loose of an approximation to the spectral radius yields slow
Chebyshev smoothing rates, while tighter approximations can be costly.

Another possibility is to use Gerschgorin’s theorem to estimate the largest
eigenvalue, but this approximation is too loose for our requirements. A
potentially better alternative is to use Lanczos’s method, [Golub and Loan,
1983]. However, while its convergence rate is better, it is also more expensive
per iteration and may require careful numerical treatment to ensure conver-
gence (e. g., periodic re-orthogonalization of the Krylov basis).

In the end, we need an approximation to the spectral radius of D

�1
A, rather

than A. Since D

�1
A is not symmetric in the traditional sense we cannot ap-

ply the standard Lanczos algorithm. However, D

�1
A is symmetric in the

energy inner product defined by hu, vi
A

= hu, Avi. In fact, for any symmet-
ric positive definite preconditioner M, we have

hu, M

�1
Avi

A

= hu, AM

�1
Avi = hM�1

Au, Avi = hM�1
Au, vi

A

.

170

11.5 Prefiltering of equality constraints

M

�1
A is also positive definite in energy because

hu, M

�1
Aui

A

= hu, AM

�1
Aui > 0

for any u 6= 0. Its eigenvalues are therefore positive and real, so its spectral
radius can be computed by finding the largest l such that M

�1
Ax = lx, x 6=

0, which is clearly equivalent to the generalized eigenvalue problem Ax =
lMx, x 6= 0. We apply the generalized Lanczos algorithm, [van der Vorst,
1982], to this generalized eigenvalue problem to compute the spectral radius
of D

�1
A.

11.5 Prefiltering of equality constraints

A challenge for many of the existing multigrid methods developed for cloth
simulation is proper handling of constraints. As shown in [Boxerman and
Ascher, 2004], superior performance is achieved when the preconditioner
for CG is based not on the full system, but rather on the constraint null space,
by which we mean the null space of the constraint operator. In the context of
the original paper by Baraff and Witkin [1998] the constraints are all equal-
ity constraints. The method they propose constructs a pre-filtered matrix
restricted to the constraint null space, but it is neither symmetric nor easily
treated by our multigrid approach. A reduced set of equations can be con-
structed based on a null-space basis for the constraints, but this leads to a
system where the block size is no longer constant. While this may seem like
a minor inconvenience, it leads to either a substantial increase in code com-
plexity and a reduced ability generate highly optimized code or reduced
performance due to less coherent memory access patterns. In fact, with a
constant block size, we can use BSR (block sparse row) matrices, where the
innermost operations are effectively BLAS3 operations with high arithmetic
intensity. By comparison, to use standard libraries for matrices with vary-
ing block size, we would have to use CSR matrices with comparatively low
arithmetic intensity.

To obtain a system with a constant block size, we form a reduced system,
but replace all eliminated variables with dummy ones. This retains the
block structure while ensuring that our preconditioner operates on the con-
straint null space. We refer to this method as Pre-filtered Preconditioned CG
(PPCG).

To explain PPCG, the “modified” linear system solved by Baraff and Witkin

171

Smoothed Aggregation

[1998] can be written in the notation from [Ascher and Boxerman, 2003] as

min
x

kS(b� Ax)k
s.t. (I � S)x = (I � S)z,

(11.1)

where: A 2 Rn⇥n is the matrix for the full system; b is the corresponding
right-hand side; S, which represents the filtering operation in [Baraff and
Witkin, 1998], is the orthogonal projection matrix onto the constraint null
space (not to be confused with the SOC matrix in Section 11.2); and z is a
vector of the desired values for the constrained variables. It is assumed that
A is symmetric positive definite.

Due to the constraint, any feasible point must satisfy

x = Sx + (I � S)x = Sx + (I � S)z.

To incorporate this expression into the objective function, first note that

S(b� Ax) = Sb� SA(Sx + (I � S)z) = S(b� Az)� SAS(x� z).

By introducing c ⌘ b � Az and y ⌘ x � z, we can then rewrite the con-
strained minimization problem in Eq. (11.1) as

min
y

kSc� SASyk
s.t. (I � S)y = 0.

(11.2)

By construction, S is symmetric and, therefore, diagonalizable. Since it is
also orthogonal, it follows that the eigenvalues must be either 0 or 1. We can
thus compute another orthogonal matrix, Q, such that

S = Q

✓

Ir 0
0 0

◆

Q

T ⌘ QJQ

T, r = dim(range(S)).

If we now partition Q into V 2 Rn⇥r and W 2 Rn⇥n�r such that Q =
(V , W), then V is a basis for the constraint null space while W is a basis for
the constrained subspace. From this decomposition, it follows that S = VV

T

and I � S = WW

T.

Similarly, let

d ⌘
✓

d1
d2

◆

= Q

T
c, u ⌘

✓

u1
u2

◆

= Q

T
y.

Using the last definition, we have y = Vu1 + Wu2 and, therefore,

VV

T
y = Vu1 and WW

T
y = Wu2. (11.3)

172

11.5 Prefiltering of equality constraints

Combining the above definitions and substituting QJQ

T for S, we can
rewrite the objective function in Eq. (11.2) as follows :

f = kSc� SASyk
= kQJQ

T
c�QJQ

T
AQJQ

T
yk

= kJQ

T
c� JQ

T
AQJQ

T
yk

= kJd� JQ

T
AQJuk

=

�

�

�

�

✓

d1
0

◆

�
✓

V

T
AV 0
0 0

◆✓

u1
u2

◆

�

�

�

�

.

This system can clearly be reduced by eliminating u2 since any value of u2
produces the same value of f. However, eliminating u2 creates a smaller
system, which means that if A is block sparse with fixed block size, then the
reduced system will in general be block sparse with different block sizes.
To keep the original size of the system we could leave all the zero blocks
in place, but the resulting system would then be singular, thereby intro-
ducing other problems. On the other hand, we know from Eq. (11.2) that
(I � S)y = 0 and, since (I � S)y = WW

T
y = Wu2, it follows that u2 = 0.

Minimizing f subject to the desired constraint is therefore equivalent to solv-
ing the following linear system :

✓

V

T
AV 0
0 I

◆✓

u1
u2

◆

=

✓

d1
0

◆

. (11.4)

Rotating this back to our original coordinates yields

Q

✓

V

T
AV 0
0 I

◆

Q

T
Q

✓

u1
u2

◆

= Q

✓

d1
0

◆

or, equivalently,
⇣

VV

T
AVV

T + WW

T
⌘

y = Vd1 = VV

T
c.

Since S = VV

T and I � S = WW

T, we finally arrive at

(SAS + I � S) y = Sc. (11.5)

The importance of Eq. (11.5) is that we now have a symmetric positive definite
(in particular, full rank) system of the same dimensions as the original sys-
tem, but which correctly projects out all of the constraints. From this system,
the solution to Eq. (11.1) is easily recovered as x = y + z.

Furthermore, the condition number of the new system is no worse than that
of A, and may in fact be better. This conclusion is based on the assump-
tion that 1 is in the field of values of A, which is defined to be the real num-
bers inclusively between the smallest and largest eigenvalues of A. (This

173

Smoothed Aggregation

assumption often holds for PDEs; otherwise, we can simply multiply I � S

by a scalar that is in A’s field of values.) To prove this assertion, first note
that our assumption implies that the field of values of V

T
AV is the same

as that of the matrix in Eq. (11.4), which is in turn the same as that of the
matrix in Eq. (11.5) because they are related by a similarity transformation.
By Cauchy’s interlacing theorem, [Horn and Johnson, 1985], the field of val-
ues of V

T
AV is a subset of that of A, which immediately implies that the

condition number of V

T
AV is bounded by the condition number of A.

For the constraints considered by Baraff and Witkin [1998], S is block diag-
onal, so the computation of SAS amounts to simple blockwise row and col-
umn scaling of A, while the addition of I� S only affects the block diagonal.
It should be noted that, while the derivation required S to be diagonalized,
the final result does not. We refer to the system in Eq. (11.5) as the prefiltered
system, to which we apply a standard preconditioned CG algorithm.

The constraints considered by Baraff and Witkin [1998] are limited to (cloth)
vertices against (collision) objects. However, the above method easily gener-
alizes to any kind of equality constraint, including the face-vertex and edge-
edge constraints used in other collision response algorithms (e.g., [Harmon
et al., 2008; Otaduy et al., 2009]).

Finally, it should be noted that none of the derivations in this section de-
pend on multigrid methods: the results can be used with any type of linear
solver. However, by using Eq. (11.5) with smoothed aggregation, we have an
effective way of coarsening not just the dynamics, but also the constraints.

11.6 Implementation

In the remainder of this chapter, we evaluate our multigrid solver within the
context of a production quality cloth solver.

The simulator we use for our experiments is based on a combination of the
methods presented by Baraff and Witkin [1998] and Bridson et al. [2002]. In
particular, it uses the material model from [Baraff and Witkin, 1998], and the
basic contact handling is as described in section 6 of that paper (including
approximate handling of friction). Since that does not guarantee that the
simulation is free of continuous time collisions at the end of a time step, the
linear solve is followed by one or more loops of Bridson’s method [Bridson
et al., 2002, section 7.4]. If this still fails to resolve all collisions, then the fail-
safe in [Harmon et al., 2008] is applied. Only the contributions from Baraff
and Witkin’s paper actually affect what goes into the linear system that our

174

11.7 Examples

solver sees. This includes constraints for cloth/object collisions and repul-
sion forces for cloth/cloth collisions (the latter being akin to the repulsion
forces in section 7.2 of [Bridson et al., 2002] but included into the implicit
solve as originally suggested by Baraff and Witkin [1998]). While multigrid
methods can be used as stand-alone solvers, we found it more effective in
our system to use multigrid as a preconditioner within CG. The only change
we made to our system is therefore within the CG method. All other features
and limitations remain the same.

Our implementation of SA depends critically on Intel’s MKL v11.3 for highly
optimized implementations of most of the basic linear algebra operations
like sparse matrix-vector and matrix-matrix products as well as QR decom-
positions. To achieve good performance, many structures are pre-allocated
and re-used throughout the simulation, leading to slightly higher memory
consumption, but not excessively so. The code is somewhat parallelized,
but is generally limited by memory bandwidth rather than CPU resources.
Additional improvements are definitely possible.

One of the most expensive operations in any Galerkin multigrid algorithm is
forming the coarse-grid operator since it is based on a triple-matrix product.
Despite the symmetric nature of this product, it is currently most efficiently
implemented using two sparse mat-mat multiply operations. We use MKL
for this purpose, while others have explored doing it on a GPU [Dalton et al.,
2015]. Regardless of the implementation of the matrix products, care has
to be taken when constructing the interpolation matrix in the presence of
special nodes. The range of interpolation is the entire fine level and must
contain zeros for all special nodes. However, in a naive implementation, if
these zero entries in the interpolation matrix are not pruned, then the mat-
mat products will introduce structural fill-in that can significantly affect the
run time, especially after smoothing the interpolation operator.

11.7 Examples

To evaluate and compare our approach to existing methods, we consider
five procedurally generated examples at different resolutions, and a high-
resolution production example to show its practical applicability. The five
simple examples are shown in Fig. 11.4, while the production example is
shown in Fig. 11.1.

The first example is a fully pinned piece of cloth subjected to gravity. The
corresponding PDE is fully elliptic with a full Dirichlet boundary, meaning
in part that it is positive definite with an order 1 constant. The cloth that

175

Smoothed Aggregation

Figure 11.4: The five examples shown here represent problems of increasing difficulty that we use
for benchmarking. They are generated procedurally, with the vertex count ranging
from 1, 000 to 1, 000, 000. The ones shown here have 40, 000 vertices.

is pinned on two sides in the second example has a smaller constant and
thus provides a test to see how sensitive our methods are to variations in
the strength of ellipticity. The third example has a re-entrant corner, which
is more difficult yet because it does not possess full ellipticity, which means
that the standard approximation properties discussed above do not apply.
Standard discretization and solution methods have serious difficulties in the
presence of re-entrant corners, so they provide an especially challenging test
problem for our methodology. In the fourth example, the cloth falls flat on a
flat box with a hole in the middle. This generates many contact constraints
and thus illustrates the performance of our PPCG method well. Finally, in
the last example, we drop the cloth on the same box, but this time from
a vertical configuration. In this way, we observe plenty of buckling and
also lots of cloth-cloth collisions. The examples are referred to as pinned,
drooping, re-entrant, dropHorizontal, and dropVertical, respectively. Each of the
five simple examples were run with both regular and irregular tessellations.

11.8 Evaluation

All simulations were run on dual socket systems with Intel(R) Xeon(R) E5-
2698 v3 @ 2.30GHz processors, each processor with 16 cores and each system
configured with 64 GB DDR4 RAM. All simulations were run with a time
step of Dt = 2 ms. The stopping criterion used in the CG method is a small
relative residual error : krik

M

�1 /kr0k
M

�1 < e, where M is the chosen pre-
conditioner, k · k

M

�1 ⌘ kM

� 1
2 · k, ri is the residual after i iterations, and e is

a given tolerance, which we set to 10�5.

An important point to keep in mind is that the relative residual error used
to judge convergence gives an unfair advantage to poor preconditioners like
the block diagonal ones. This observation comes from first realizing that
the relative residual in practice is only as good as how tight it bounds the
relative energy norm of the error. Remembering that r = Ae, we have the

176

11.8 Evaluation

bound

keikA

ke0kA

=
kA

� 1
2
rik

kA

� 1
2
r0k

=
kA

� 1
2
M

1
2
M

� 1
2
rik

kA

� 1
2
M

1
2
M

� 1
2
r0k
 C
krik

M

�1

kr0k
M

�1
,

where C =
q

lmax
lmin

, with lmax and lmin the respective largest and smallest

eigenvalues of M

� 1
2
AM

� 1
2 or, equivalently, of M

�1
A. This bound means

that the practical error measure that we use is sharp only up to the square
root of spectral condition number of M

�1
A. If M is a reasonable approxi-

mation to A as it hopefully is for our multigrid scheme, then this bound is
pretty tight. If M is not a very accurate approximation to A, as when M is
its diagonal part, then we may believe that we have converged well before
the true relative energy norm of the error is sufficiently small. Said differ-
ently, diagonally preconditioned iteration has the smoothing property that
the residuals they produce are very small compared to the actual error. More
precisely, as we showed in Chapter 10, relaxation produces an error whose
relative energy norm is much larger than its relative residual norm. In other
words, the smooth error left after relaxation is hidden in the residual because
it consists mostly of low eigenmodes of A. SA tends much more to balance
the error among the eigenmodes, so a small relative residual for SA is much
more reflective of small relative energy error. This should be kept in mind in
the consideration of the results we present below.

The size of the cloth in all our examples is 1m⇥ 1m and the material param-
eters are the defaults used by our production solver, which approximates
cotton. We use q = 0.48, but have experimented with other values and
found the results to be fairly insensitive to the exact choice. If a subopti-
mal value is chosen, then the convergence rate still tends to be good, but
the time to solution suffers from excessive amounts of fill-in on the coarser
levels. For smoothing, we use a single sweep of Chebyshev with a second-
order polynomial. Higher-order polynomials improve the convergence rate
significantly, but at too high a computational price. For the spectral radius
estimation, we use 10 iterations of the generalized Lanczos method. Once
again, the convergence rate improves if this number is increased, but not in
a computationally cost-effective way. For the kernel, we picked six vectors,
one constant for each of the unknowns and the three rotations described in
section 5.

The benchmark numbers are averages over all the solves required for 10
frames of animation for the pinned, drooping, and re-entrant examples,
while we used 15 frames for dropHorizontal and 25 frames for dropVerti-
cal. These durations are chosen to capture most of the interesting behavior

177

Smoothed Aggregation

��

����

����

����

����

��

�� ���� ���� ���� ���� �����

��
��
��
��
��
��
��
��
��
��
��
��

�������������������������������

������
��������
���������

��������������
������������

Figure 11.5: The average convergence rate over the length of the entire animation for each of
our examples. The orange curves are for Diag-PCG while the blue curves are for
SA+PPCG.

for each of the examples. In the following, we refer to block diagonally pre-
conditioned conjugate gradients simply as Diag-PCG, while we refer to our
smoothed aggregation preconditioned conjugate gradient method with pre-
filtering as SA+PPCG.

11.8.1 Convergence rates

The expectation for a multigrid preconditioner is that it should improve the
convergence rate of the conjugate gradient method significantly and that the
convergence rate should be independent of (or only weakly dependent on)
the problem size. To investigate this, define the convergence rate at itera-
tion i by ri = krik

M

�1/kri�1k
M

�1 . The average convergence rate, r, within a
single solve is then the geometric mean of these values. For an entire anima-
tion, we refer to the average convergence rate as the simple average over all
solves of r.

Figure 11.5 shows average convergence rates of SA+PPCG and Diag-PCG
for each of our five examples. While Diag-PCG approaches a convergence
rate close to 1 very quickly, our method stays bounded away from 1 at sig-
nificantly lower values. Note that the pinned example converges faster than
the drooping example, which in turn converges faster than the re-entrant ex-
ample. This observation is in agreement with our expectations based on the

178

11.8 Evaluation

��

����

����

����

����

��

�� ��� ���� �����

��
��
��
��
���

��
��
��
���
��
���
��
��
���
��
���
��
�

�������������������������������

������
��������
���������

��������������
������������

Figure 11.6: The average time for prefiltering and setup as a percentage of the total solve time.
The combined preprocessing time is the sum of the two. Setup is shown in blue
while prefiltering is shown in orange. The corresponding total solve time is shown in
Fig. 11.7.

underlying PDEs. Note the irregularity of the curve for the re-entrant corner
example, due perhaps to the loss of ellipticity.

11.8.2 Setup time

To achieve the better convergence rates shown above, we need both setup
and prefiltering. The computational cost of both of these is illustrated in
Fig. 11.6. The setup cost for AMG-type methods is often dominated by the
cost of the triple-matrix product when forming the coarse matrices. In our
case, this is still a significant cost, but not the dominant one. The compu-
tation of the spectral radius estimates is currently expensive and the com-
putation of aggregates remains entirely serial. As such, there is room for
improvement of these numbers.

To reduce the setup time, it is possible to only update the preconditioner pe-
riodically or adaptively based on the observed convergence rate. We exper-
imented with only performing an update if the convergence rate after four
iterations was substantially less than in previous solve. However, we found
the cost of restarting the solver to outweigh the benefit. A more sophisti-
cated controller design might make adaptive setup more beneficial, but this
remains future work.

179

Smoothed Aggregation

������

�����

����

��

���

����

�� ��� ���� �����

��
��
��
��
��
��
��
���

��
��
�

�������������������������������

��������
�������
�������

Figure 11.7: Average time for one linear solve using Diag-PCG (orange), SA+PPCG (blue), and
PARDISO (pink). The graphs are shown for four examples : pinned (square markers),
drooping (circle markers), re-entrant (diamond markers), and verticalDrop (triangle
markers)1.

11.8.3 Time to solution

Ultimately, the most important metric is usually time to solution. However,
making fair comparisons is not entirely straightforward because different
solvers have different strengths. As an example, Diag-PCG is generally at-
tractive for systems that are highly diagonally dominant or when the re-
quired accuracy is very modest. For cloth simulations, diagonally dominant
systems generally occur with small timesteps, soft materials, and/or large
masses. At the other end of the spectrum, we compare our results to those
of Intel MKL’s highly optimized version of PARDISO. As a sparse direct
solver, it is attractive if very high accuracy is required or if the problem is
very ill-conditioned.

For our comparisons, we use a moderate accuracy (relative error less than
10�5). We note that our results do look better with stiffer materials and/or
larger time steps, but do not report on that here.

The results for four of the examples are shown in Fig. 11.7. As can be seen,
Diag-PCG is consistently best for small problems, but our method is supe-
rior for problems with roughly 25k vertices or more. Somewhat surpris-
ingly, PARDISO shows very good scaling behavior considering that it is a
direct solver, but it remains about twice as slow as SA+PPCG. The empirical

180

11.8 Evaluation

������

�����

����

��

���

����

�� ��� ���� �����

��
��
��
��
��
��
��
���

��
��
�

�������������������������������

��������
�������
�������

��
���������

Figure 11.8: Average time for one linear solve in our horizontal drop example. Note that the fastest
time is always obtained using prefiltering.

complexity of our method can be seen to be close to linear in the size of the
problem as expected.

The outlier in the above set of results is the dropVertical example. As already
seen in Fig. 11.5, the convergence rate for this problem is worse than for the
others, as is the time to solution. The reason for the different behavior in
this example is the large number of cloth repulsion springs added to handle
cloth-cloth collisions. While our method handles this without any special
cases, they do not stem from an underlying and well-behaved PDE, so we
lose some optimality. Most likely due to the fact that the near kernel based
on rigid body modes is not as good an approximation of the real near kernel
as it is in the other examples. However, we still see the same basic scaling
behavior as the problem size increases, and the method remains superior to
Diag-PCG for large problems.

In Fig. 11.8, we consider the solve time for our horizontal drop example,
including now two additional solvers. The first is smoothed aggregation
without our prefiltering method. The second is Diag-PCG with prefiltering
added. For low resolutions, we see that prefiltering further improves the
superior performance of Diag-PCG and, for all resolutions, we see that pre-
filtering is essential for the good performance of SA. In fact, without pre-
filtering, SA at large resolutions is no better than Diag-PCG and may in fact
be worse. However, with prefiltering, SA+PPCG continues to be the best so-
lution for large problems. The reason prefiltering turns out to be so critical
for SA is that SA is a very good preconditioner, so a single step without any

181

Smoothed Aggregation

��

���

����

����

����

����

�� ���� ����� ����� ����� ����� ����� ����� �����

��
��
��
���

��
��
�

������������

��������
�������

Figure 11.9: Time for each linear solve in our production example using a walk-cycle animation.

knowledge about the constraints can bring the solver far from the constraint
manifold, and the subsequent projection step is likely to undo much of the
progress just made by the solver.

Finally, we present a production example in Fig. 11.9. Overall, we observe
an average 8⇥ speedup for a walk-cycle animation and a 6⇥ speedup for
a run-cycle. However, as seen from the figure, the variation in the solve
time from frame to frame was substantially less with our method than with
Diag-PCG.

The speedups for all our examples are summarized in Table 11.1.

11.9 Limitations

One limitation of SA compared to Diag-PCG is its somewhat larger mem-
ory overhead. However, the overhead is generally less than 50 percent.
SA+PPCG also comes with a higher coding complexity than a simple Diag-
PCG, and an unoptimized implementation may often be slower.

The current algorithm is limited by memory bandwidth and, in practice,
we saw negligible speedups from parallelization after eight cores. But it
remains superior to Diag-PCG and, for our problems, was comparable to
the parallel efficiency of MKL’s PARDISO. Even so, we believe there is room
for improvement, either by exploring techniques such as those presented in
[Bell et al., 2012] for forming aggregates in parallel or by algorithmic changes

182

11.9 Limitations

Num. vertices Pinned Drooping Re-entrant DropHorizontal DropVertical
R

eg
ul

ar
te

ss
el

la
tio

n

961 0.39 0.76 0.58 0.72 0.55 0.72 0.57 0.61 0.53 0.61
1681 0.45 1.06 0.63 0.99 0.60 0.95 0.57 0.75 0.51 0.80
3721 0.40 1.31 0.50 1.18 0.54 1.17 0.62 0.96 0.35 0.94
6561 0.43 1.51 0.53 1.35 0.50 1.31 0.65 1.14 0.35 1.04

10201 0.54 1.78 0.66 1.57 0.72 1.53 0.77 1.37 0.40 1.06
22801 0.85 2.23 1.03 1.89 1.02 1.86 1.07 1.69 0.50 1.14
40401 1.07 2.29 1.35 2.03 1.36 2.01 1.40 1.89 0.60 1.18
90601 2.23 2.27 2.87 2.07 2.67 1.95 2.27 1.92 2.35 1.11

160801 3.89 2.14 5.01 1.95 4.87 1.92 3.64 1.84 1.14 0.77
361201 5.48 2.21 7.10 2.01 6.38 1.76 4.70 1.85 2.29 1.32
641601 7.12 2.26 9.28 2.10 8.84 1.96 6.09 1.89 3.46 1.53

1002001 9.20 2.40 11.64 2.20 10.89 2.04 7.53 2.13 3.01 1.80

Ir
re

gu
la

r
te

ss
el

la
tio

n

961 0.43 0.87 0.49 0.80 0.51 0.80 0.52 0.64 0.56 0.71
1681 0.46 1.17 0.52 1.12 0.62 1.04 0.60 0.94 0.54 1.01
3721 0.43 1.61 0.46 1.45 0.55 1.39 0.56 1.21 0.38 1.06
6561 0.46 1.86 0.50 1.65 0.56 1.72 0.69 1.44 0.44 1.32

10201 0.56 2.06 0.61 1.87 0.67 1.93 0.89 1.74 0.53 1.42
22801 0.81 2.49 0.87 2.11 0.97 2.20 1.13 2.13 0.57 1.43
40401 1.22 2.61 1.19 2.21 1.43 2.32 1.33 2.23 0.76 1.56
90601 2.32 2.54 2.51 2.21 2.36 2.33 2.20 2.19 1.29 1.39

160801 3.78 2.45 4.20 2.18 4.22 2.16 3.26 2.10 2.03 1.39
361201 5.32 2.49 5.98 2.22 6.13 2.21 4.63 2.13 2.63 1.57
641601 7.02 2.56 7.84 2.24 7.72 2.19 5.93 2.21 2.39 1.68

1002001 8.97 2.73 9.82 2.56 9.59 2.47 5.74 2.08 2.81 1.71

Table 11.1: The speedup factors of SA+PPCG relative to Diag-PCG (first column for each exam-
ple) and PARDISO (second column for each example). Shaded cells indicate speedups
greater than 1. Diag-PCG is on average 11% faster with the irregular tessellation,
while PARDISO on average is 7% slower and SA+PPCG is 8% faster.

with better parallel implications. Incremental setup along the lines of what
Hecht et al. [2012] did for Cholesky factorizations might be another way to
reduce the performance hit of time spent in setup.

While the results show near optimal behavior, they are not perfect. The con-
vergence rates degrade (slowly) as the problem sizes grow, leading to more
iterations while cycling, so time to solution is not quite scaling linearly. To
attain ideal convergence and subsequently linear scaling, further improve-
ments should be made to the construction of the kernel components to en-
sure that they match the discretization at all times. Also, a more accurate dis-
cretization of the underlying PDEs than that provided by Baraff and Witkin
[1998] might offer a better foundation for building multigrid methods. We
intend to investigate this in the future.

Finally, we note that in our evaluation here we have only considered linear

183

Smoothed Aggregation

problems, but a natural extension is to use the proposed solver in the in-
ner loop of an outer nonlinear iteration that involves a linearization strategy
such as Newton’s method.

11.10 Summary

This chapter presented a new preconditioner for linear systems formed in
implicit cloth simulations by developing an algebraic multigrid hierarchy
based on the underlying PDEs and discretization. The SA solver provides a
faster solution than existing methods for typical problems with 25, 000 ver-
tices or more. For problems that are stiffer, have smaller mass, or are sub-
jected to larger time steps, the advantages of the method increase and show
speedups for smaller problems as well.

To realize the full potential of the SA in cloth simulation and attain near
optimal scaling in the presence of collisions, it has to be paired with our new
PPCG method. SA+PPCG is attractive because no changes need to be made
to existing collision detection and response methods to handle the linear
solves.

184

C H A P T E R 12
Conclusion

Large scale simulation of cloth and hair with contact is a challenging prob-
lem for multiple reasons. Not only are these simulations characterized by
large strain deformations, but the contacts add substantial complications
due to their nonlinear, nonsmooth, and nonconvex nature.

In this thesis we started by establishing an orthotropic material model for
cloth which is suitable for large deformations in terms of both bending and
stretching. Even though cloth is embedded in 3D, the material space is only
two dimensional, so special care has to be taken to identify the correct sym-
metry groups and invariants for the constitutive model. From the funda-
mental invariants we have established the basic relationships between ma-
terial parameters like those in Eq. (4.2) and Eq. (4.4) and noted that they are
different in 2D compared to results typically presented for 3D.

The resulting cloth model can be used at little to no extra cost compared to
existing models. In fact in Section 4.5.2 we showed that the additional cost
of the orthotropic membrane model compared to an isotropic model boils
down to the addition of two extra 3⇥ 3 matrices per element. Similarly, in
Chapter 5 we showed a substantial speedup for the evaluation of the exact
Hessians of the bending energy, and we also noted that this exact evaluation
is actually faster than some existing approximate approaches.

An important insight presented here is the fact that cloth simulations are in-
herently ill-conditioned for sufficiently large time steps; even in the absence
of any constraints. This is not due to the fact that we are dealing with thin

185

Conclusion

shells, but simply because the elastic energy and forces are translationally in-
variant. For objects that are pinned down through boundary conditions this
problem goes away, but cloth is typically only held in place through collision
constraints. Thus, most cloth problems will suffer from this ill-conditioning.

Other authors have observed that it can be beneficial to use a variational
formulation based on the incremental potential for computing the dynamics
of a system. We have confirmed that the speedup from this approach can be
quite substantial, and we have made the additional observation that it tends
to be more robust in face of ill-conditioning.

Proper handling of frictional contact is notoriously difficult. In Chapter 7
we made the essential observation that for thin objects like cloth and hair
an additional complication is that it is critical to take the nonlinearity of the
materials into account when handling contact. We used that in Chapter 8 to
construct a new solver, ADONIS, for stably simulating frictional contact in
hair and rod assemblies. By using this solver we showed in Chapter 9 that
accommodating the nonlinearity in many cases can be done with almost no
overhead. In other cases it requires taking multiple (sometimes even many)
Newton iterations. However, doing so allows the simulations to run at time
steps that are orders of magnitude larger than what is possible with a sim-
ple linear treatment. In the end the cost incurred by the extra nonlinear it-
erations was therefore marginal compared to the savings realized by taking
much larger time steps. More importantly, this allowed us to run simula-
tions with unprecedented complexity, which highlights the importance of
capturing the frictional contact phenomena correctly.

As noted at the beginning of the thesis, the extension of these results from
hair to cloth is nontrivial. In fact it seems unlikely that one can easily find a
way to decouple the problem in the same way it is possible for hair. Since we
may therefore be forced to deal with large coupled systems, we have focused
on developing a multigrid technique suitable for cloth simulation. In doing
so we revisited some of fundamental ideas behind multigrid in Chapter 10.
In Chapter 11 we then observed that the equations for elasticity in general
leads to vector valued problems with strongly coupled variables. Further-
more we observed that the problems are highly anisotropic with both spa-
tially and temporally varying directions of anisotropy. As a consequence we
concluded that neither standard geometric nor algebraic multigrid methods
are likely to perform well for this problem. This is important as most existing
attempts in graphics at using multigrid for cloth have focused on geometri-
cally inspired methods.

To come up with an efficient multigrid method for cloth problems we ap-
plied the smoothed aggregation technique. We then went on to show its

186

efficacy as a preconditioner for conjugate gradient when applied within a
production quality cloth solver. There are many factors that influence the
exact speedup factors, but for a representative set of examples we saw up to
an order of magnitude speedup compared to a block diagonally precondi-
tioned conjugate gradient method.

Finally we noted, that in order to realize the full potential of the SA in cloth
simulations and attain near optimal scaling in the presence of collisions, the
preconditioner must be applied to the null space of the constraints. As a
last contribution we therefore introduced a new prefiltered preconditioned
conjugate gradient (PPCG) method. While the PPCG method is essential for
SA it is also beneficial for simple preconditioners and can easily be incorpo-
rated into existing solvers without adding the complexity of the smoothed
aggregation method.

The design and application of a truly robust method for handling non-
convex and ill-conditioned problems remains future work, but the insights
gained here constitute an important step in the right direction. As illustrated
by our results, this direction allows for more accurate models, and visually
more rich imagery by capturing features like clumping in hair due to fric-
tional contact and fine wrinkles in clothing. We therefore hope that this will
inspire future work to extend the nonlinearly compliant collision response
to cloth and develop multigrid methods capable of solving large QPs with
inequality constraints.

187

Conclusion

188

A P P E N D I X A
Multigrid preconditioners

Multigrid methods are often used as preconditioners for the conjugate gradi-
ent algorithm. However, to guarantee convergence all such preconditioners
must behave as SPD matrices. Here we therefore show that the approximate
inverse of A

h associated with a multigrid cycle is SPD under two assump-
tions. These assumptions are important because the conjugate gradient al-
gorithm not only can fail if they are not fullfilled, but in practice often will.

The first assumption is that the cycling scheme is symmetric in energy in the
sense that the relaxation scheme used in the descent through the coarser
grids and the relaxation scheme used in the ascent back through the finer
grids are stationary linear iterative methods with error propagation matri-
ces that are energy adjoints of each other. We denote the respective error
propagation matrices by (Gh)⇤ and G

h. The second assumption is that re-
laxation by itself is convergent in energy. i.e., that kGhk

A

h < 1.

Energy symmetry can easily be shown to hold whenever G

h can be written
as a polynomial in N

h = M

h
A

h, where M

h is any symmetric grid h matrix.
To see this, let n be a positive integer and note that the energy adjoint of

189

Multigrid preconditioners

(N

h)n is
⇣

(N

h)n

⌘⇤
= (A

h)�1
⇣

(N

h)n

⌘T
A

h

= (A

h)�1
⇣

(M

h
A

h)n

⌘T
A

h

= (A

h)�1
⇣

(M

h
A

h)T
⌘

n

A

h

= (A

h)�1(A

h
M

h)n

A

h

= (A

h)�1
A

h
M

h(A

h
M

h)n�1
A

h

= M

h(A

h
M

h)n�1
A

h

= (M

h
A

h)n

= (N

h)n.

It follows that many well-known relaxation schemes are energy symmet-
ric, including Richardson with M = wI, damped Jacobi with M = wD

�1,
and Chebyshev with any symmetric M. To ensure convergence, the step
size parameter, w, for Richardson must be in (0, 2/kA

hk), while the damp-
ing factor, w, for Jacobi must be in (0, 2/k(D

h)�1
A

hk). The parameters for
Chebyshev iterations must be chosen based on bounds for the largest and
smallest eigenvalues of M

h
A

h.

The theory also applies to Gauss-Seidel provided the orderings used in the
descent and ascent phases are the reverses of each other. The well-known
energy-convergence property of Gauss-Seidel can be easily seen by noting
that the kth step within an iteration minimizes the energy functional (and,
hence, the energy norm of the error) in the direction of the kth coordinate.

In the proof below, we are assuming a V(1, 1)-cycle, with the coarsest-grid
equations treated either by an exact solver or one iteration of the energy-
symmetric smoother (i. e., the dual iteration associated with error propaga-
tion matrix G

h(Gh)⇤). However, the extension of these results to a general
V(n, n)-cycle can be made simply by replacing G

h by (Gh)n. It should also be
clear that the theory applies to W-cycles as well as any other cycling scheme
that visits the levels in a symmetric way. By this we mean that the sequence
of levels that defines the cycle’s schedule is the same if the order is reversed.
The result excludes full multigrid cycles, although conjugate gradients can
be used for the inner V-cycles used on each level of the full multigrid cycle.
In any case, full multigrid is generally not meant as an iterative solver, but
rather a direct one that aims to obtain discretization-error accuracy in one
pass.
Theorem 2. (Preconditioning) An energy-symmetric multigrid cycle based
on an energy-convergent relaxation scheme is a stationary linear iterative

190

method with error propagation matrix of the form MV

h = I � B

h
A

h, where
B

h is SPD.

Proof. The proof uses induction on the number of V-cycle levels. We begin
by assuming that there is only one level, so that level h is both the finest
and the coarsest grid. For the case that the coarsest grid is treated by an
exact solver, then MV

h = 0 and, thus, B

h = (A

h)�1, which is SPD. The case
that the coarsest grid is treated by the energy-symmetric smoother requires
more effort. First note that (Gh)⇤(A

h)�1 = (A

h)�1(Gh)T. Solving for B

h in
MV

h = I � B

h
A

h thus yields

B

h = (A

h)�1 �G

h(Gh)⇤(A

h)�1 = (A

h)�1 �G

h(A

h)�1(Gh)T.

This clearly establishes symmetry, but it is also establishes positive definite-
ness. To see this, first note that

hvh, v

hi = hAh(A

h)�1
v

h, v

hi kA

hkh(A

h)�1
v

h, v

hi

for any vector v

h. Note also that kCC

Tk = kCTk2 = kCk2 for any square
matrix C. Note finally that

kGhk
A

h = max
v

h 6=0

kGh
v

hk
A

h

kvhk
A

h
= max

v

h 6=0

k(A

h)
1
2
G

h(A

h)� 1
2 (A

h)
1
2
v

hk
k(A

h)
1
2
v

hk
= kGh

Ak,

where G

h
A ⌘ (A

h)
1
2
G

h(A

h)� 1
2 . These observations lead to the following

bound:
D⇣

(A

h)�1 �G

h(A

h)�1(Gh)T
⌘

u

h, u

h
E

=
D

(A

h)�
1
2 (I � (A

h)
1
2
G

h(A

h)�1(Gh)T(A

h)
1
2)(A

h)�
1
2
u

h, u

h
E

=
D⇣

I � (A

h)
1
2
G

h(A

h)�1(Gh)T(A

h)
1
2

⌘

(A

h)�
1
2
u

h, (A

h)�
1
2
u

h
E

�
(1� kGh

A(G
h
A)

Tk)h(A

h)�
1
2
u

h, (A

h)�
1
2
u

hi � ghuh, u

hi

for any vector u

h, where

g ⌘ 1� kGh
Ak2

kA

hk > 0.

This establishes the lemma for the case that the V-cycle consists of one level.
We continue the induction proof to the case of two or more V-cycle levels.
Our aim is to show that B

h is SPD when B

2h = (A

2h)�1 �MV

2h(A

2h)�1 is.
We first note that the proof of Lemma 4.1 in McCormick [1984] develops a

191

Multigrid preconditioners

recursive expression for a V(1, 1)-cycle error propagation matrix that, when
modified for our purposes, becomes

MV

h = G

h
⇣

I

h
2hMV

2h(A

2h)�1
I

2h
h A

h + T

h
⌘

(Gh)⇤.

Remembering again that (Gh)⇤(A

h)�1 = (A

h)�1(Gh)T, we thus have that

B

h = (A

h)�1 �G

h
⇣

I

h
2hMV

2h(A

2h)�1
I

2h
h A

h + T

h
⌘

(Gh)⇤(A

h)�1

= (A

h)�1 �G

h
⇣

I

h
2hMV

2h(A

2h)�1
I

2h
h + T

h(A

h)�1
⌘

G

hT

= (A

h)�1 �G

h
⇣

I

h
2h

⇣

(A

2h)�1 � B

2h
⌘

I

2h
h + T

h(A

h)�1
⌘

(Gh)T

= G

h
I

h
2hB

2h
I

2h
h (Gh)T + (A

h)�1 �G

h
⇣

I

h
2h(A

2h)�1
I

2h
h + T

h(A

h)�1
⌘

(Gh)T.

Since I

2h
h = (I

h
2h)

T, then the first term is clearly symmetric. But it is also
nonnegative definite because

hGh
I

h
2hB

2h
I

2h
h (Gh)T

u

h, u

hi = hB2h
I

2h
h (Gh)T

u

h, I

2h
h (Gh)T

u

hi � 0

for any vector u

h. The remaining terms are what is obtained by setting B

2h =
0, that is, when no coarsening is used, so they must be SPD. To be more
precise, first remember that T

h = I � I

h
2h(A

2h)�1
I

2h
h A

h, so

I

h
2h(A

2h)�1
I

2h
h + T

h(A

h)�1 =
⇣

I

h
2h(A

2h)�1
I

2h
h A

h + I � I

h
2h(A

2h)�1
I

2h
h A

h
⌘

(A

h)�1 = (A

h)�1.

We thus have that

(A

h)�1�G

h
⇣

I

h
2h(A

2h)�1
I

2h
h + T

h(A

h)�1
⌘

(Gh)T = (A

h)�1�G

h(A

h)�1(Gh)T.

This is the same operator that we obtained above for the energy-symmetric
smoother applied to the grid h equations, so it too is symmetric and we can
conclude similarly that

D⇣

(A

h)�1 �G

h(A

h)�1(Gh)T
⌘

u

h, u

h
E

� ghuh, u

hi > 0.

We have thus shown that B

h is the sum of symmetric nonnegative and SPD
terms, so it must itself be SPD, thus proving the lemma.

192

References

[Adams et al., 2003] Mark Adams, Marian Brezina, Jonathan Hu, and Ray
Tuminaro. Parallel Multigrid Smoothing: Polynomial Versus Gauss–
Seidel. J. Comput. Phys., 188(2):593–610, July 2003. ISSN 0021-9991.
doi:10.1016/S0021-9991(03)00194-3.

[Ainsley et al., 2012] Samantha Ainsley, Etienne Vouga, Eitan Grinspun, and
Rasmus Tamstorf. Speculative parallel asynchronous contact mechan-
ics. ACM Trans. Graph., 31(6):151:1–151:8, November 2012. ISSN 0730-
0301. doi:10.1145/2366145.2366170.

[Alart and Curnier, 1991] P. Alart and A. Curnier. A mixed formulation for
frictional contact problems prone to Newton like solution methods.
Computer Methods in Applied Mechanics and Engineering, 92(3):353–375,
November 1991. ISSN 0045-7825. doi:10.1016/0045-7825(91)90022-X.

[Aliaga et al., 2015] Carlos Aliaga, Carol O’Sullivan, Diego Gutierrez, and
Rasmus Tamstorf. Sackcloth or Silk ? The Impact of Appearance vs Dy-
namics on the Perception of Animated Cloth. In ACM Symposium on Ap-
plied Perception (SAP ’15), September 2015. doi:10.1145/2804408.2804412.

[Allard et al., 2010] Jérémie Allard, François Faure, Hadrien Courtecuisse,
Florent Falipou, Christian Duriez, and Paul G. Kry. Volume Contact
Constraints at Arbitrary Resolution. ACM Trans. Graph., 29(4):82:1–
82:10, July 2010. ISSN 0730-0301. doi:10.1145/1778765.1778819.

[An et al., 2007] Heng-Bin An, Ze-Yao Mo, and Xing-Ping Liu. A choice
of forcing terms in inexact Newton method. Journal of Computa-

http://dx.doi.org/10.1016/S0021-9991(03)00194-3
http://dx.doi.org/10.1145/2366145.2366170
http://dx.doi.org/10.1016/0045-7825(91)90022-X
http://dx.doi.org/10.1145/2804408.2804412
http://dx.doi.org/10.1145/1778765.1778819

REFERENCES

tional and Applied Mathematics, 200(1):47–60, 2007. ISSN 0377-0427.
doi:10.1016/j.cam.2005.12.030.

[Anitescu and Tasora, 2010] Mihai Anitescu and Alessandro Tasora. An it-
erative approach for cone complementarity problems for nonsmooth
dynamics. Computational Optimization and Applications, 47:207–235, 2010.
ISSN 0926-6003. doi:10.1007/s10589-008-9223-4.

[Antman, 2005] Stuart S. Antman. Nonlinear Problems of Elasticity. Ap-
plied Mathematical Sciences. Springer New York, 2005. ISBN 978-0-387-
20880-0. doi:10.1007/0-387-27649-1.

[Ascher and Boxerman, 2003] Uri M. Ascher and Eddy Boxerman. On the
modified conjugate gradient method in cloth simulation. The Visual
Computer, 19:526–531, 2003. ISSN 0178-2789. doi:10.1007/s00371-003-
0220-4.

[Audoly and Pomeau, 2010] Basile Audoly and Yves Pomeau. Elasticity and
Geometry: From hair curls to the nonlinear response of shells. Oxford
University Press, 2010. ISBN 978-0198506256.

[Başar et al., 2000] Y. Başar, M. Itskov, and A. Eckstein. Composite lami-
nates: nonlinear interlaminar stress analysis by multi-layer shell el-
ements. Computer Methods in Applied Mechanics and Engineering, 185(2–4):
367 – 397, 2000. ISSN 0045-7825. doi:http://dx.doi.org/10.1016/S0045-
7825(99)00267-4.

[Bader and Schnabel, 2007] Brett W. Bader and Robert B. Schnabel. On the
Performance of Tensor Methods for Solving Ill-Conditioned Prob-
lems. SIAM Journal on Scientific Computing, 29(6):2329–2351, 2007.
doi:10.1137/040607745.

[Baker et al., 2011] Allison H. Baker, Robert D. Falgout, Tzanio V. Kolev,
and Ulrike Meier Yang. Multigrid Smoothers for Ultraparallel Com-
puting. SIAM Journal on Scientific Computing, 33(5):2864–2887, 2011.
doi:10.1137/100798806.

[Ball, 1976] John M. Ball. Convexity conditions and existence theorems in
nonlinear elasticity. Archive for Rational Mechanics and Analysis, 63:337–
403, 1976. ISSN 0003-9527. doi:10.1007/BF00279992.

[Baraff, 1989] David Baraff. Analytical Methods for Dynamic Simulation of
Non-penetrating Rigid Bodies. In Proceedings of the 16th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’89,
pages 223–232, New York, NY, USA, 1989. ACM. ISBN 0-89791-312-4.
doi:10.1145/74333.74356.

194

http://dx.doi.org/10.1016/j.cam.2005.12.030
http://dx.doi.org/10.1007/s10589-008-9223-4
http://dx.doi.org/10.1007/0-387-27649-1
http://dx.doi.org/10.1007/s00371-003-0220-4
http://dx.doi.org/10.1007/s00371-003-0220-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0045-7825(99)00267-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0045-7825(99)00267-4
http://dx.doi.org/10.1137/040607745
http://dx.doi.org/10.1137/100798806
http://dx.doi.org/10.1007/BF00279992
http://dx.doi.org/10.1145/74333.74356

REFERENCES

[Baraff, 1996] David Baraff. Linear-time Dynamics Using Lagrange Multi-
pliers. In Proceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’96, pages 137–146, New York, NY,
USA, 1996. ACM. ISBN 0-89791-746-4. doi:10.1145/237170.237226.

[Baraff and Witkin, 1998] David Baraff and Andrew Witkin. Large steps
in cloth simulation. In Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’98, pages
43–54, New York, NY, USA, 1998. ACM. ISBN 0-89791-999-8.
doi:10.1145/280814.280821.

[Batty et al., 2012] Christopher Batty, Andres Uribe, Basile Audoly, and Eitan
Grinspun. Discrete viscous sheets. ACM Trans. Graph., 31(4):1131–1137,
July 2012. ISSN 0730-0301. doi:10.1145/2185520.2185609.

[Bell et al., 2012] Nathan Bell, S. Dalton, and Luke Olson. Exposing Fine-
Grained Parallelism in Algebraic Multigrid Methods. SIAM Journal on
Scientific Computing, 34(4):C123–C152, 2012. doi:10.1137/110838844.

[Bergou et al., 2006] Miklós Bergou, Max Wardetzky, David Harmon, Denis
Zorin, and Eitan Grinspun. A Quadratic Bending Model for Inextensi-
ble Surfaces. In SGP ’06: Proceedings of the fourth Eurographics Symposium
on Geometry Processing, pages 227–230. Eurographics Association, 2006.
ISBN 30905673-36-3. doi:10.2312/SGP/SGP06/227-230.

[Bergou et al., 2008] Miklós Bergou, Max Wardetzky, Stephen Robinson,
Basile Audoly, and Eitan Grinspun. Discrete Elastic Rods. ACM
Trans. Graph., 27(3):63:1–63:12, August 2008. ISSN 0730-0301.
doi:10.1145/1360612.1360662.

[Bergou et al., 2010] Miklós Bergou, Basile Audoly, Etienne Vouga,
Max Wardetzky, and Eitan Grinspun. Discrete viscous threads.
ACM Trans. Graph., 29:116:1–116:10, July 2010. ISSN 0730-0301.
doi:10.1145/1778765.1778853.

[Bernoulli, 1789] Jacques Bernoulli. Essai théoretique sur les vi-
brations des plaques élastique rectangulaires et libres. In
Nova acta Academiae scientiarum imperialis Petropolitanae, vol-
ume 5, pages 197–219. Academiae scientiarum, 1789. URL
https://play.google.com/store/books/details/Nova_acta_

Academiae_scientiarum_imperialis_Petropo?id=UVs-AAAAcAAJ.

[Bertails-Descoubes et al., 2011] Florence Bertails-Descoubes, Florent
Cadoux, Gilles Daviet, and Vincent Acary. A Nonsmooth Newton
Solver for Capturing Exact Coulomb Friction in Fiber Assemblies.

195

http://dx.doi.org/10.1145/237170.237226
http://dx.doi.org/10.1145/280814.280821
http://dx.doi.org/10.1145/2185520.2185609
http://dx.doi.org/10.1137/110838844
http://dx.doi.org/10.2312/SGP/SGP06/227-230
http://dx.doi.org/10.1145/1360612.1360662
http://dx.doi.org/10.1145/1778765.1778853
https://play.google.com/store/books/details/Nova_acta_Academiae_scientiarum_imperialis_Petropo?id=UVs-AAAAcAAJ
https://play.google.com/store/books/details/Nova_acta_Academiae_scientiarum_imperialis_Petropo?id=UVs-AAAAcAAJ

REFERENCES

ACM Trans. Graph., 30(1):6:1–6:14, February 2011. ISSN 0730-0301.
doi:10.1145/1899404.1899410.

[Betsch and Siebert, 2009] Peter Betsch and Ralf Siebert. Rigid body dynam-
ics in terms of quaternions: Hamiltonian formulation and conserving
numerical integration. International Journal for Numerical Methods in En-
gineering, 79(4):444–473, 2009. ISSN 1097-0207. doi:10.1002/nme.2586.

[Betten, 1982] Josef Betten. Integrity basis for a second-order and a fourth-
order tensor. International Journal on Mathematics and Mathematical Sci-
ences, 5(1):87–96, 1982. doi:10.1155/S0161171282000088.

[Bobenko and Suris, 1999] A. I. Bobenko and Yu. B. Suris. Discrete Time La-
grangian Mechanics on Lie Groups, with an Application to the La-
grange Top. Communications in Mathematical Physics, 204:147–188, 1999.
ISSN 0010-3616. doi:10.1007/s002200050642.

[Böhlke and Bertram, 2002] Thomas Böhlke and Albrecht Bertram. On
the Ellipticity of Finite Isotropic Linear Elastic Laws. Preprint.
Otto von Guericke Universität Magdeburg, Fak. für Maschinenbau,
2002. URL http://www.uni-magdeburg.de/ifme/l-festigkeit/pdf/
1/boehlke-on-the-ellip.pdf.

[Bonet and Burton, 1998] J. Bonet and A. J. Burton. A simple orthotropic,
transversely isotropic hyperelastic constitutive equation for large
strain computations. Computational Methods in Applied Mechanical En-
gineering, 162(1–4):151–164, 1998. doi:10.1016/S0045-7825(97)00339-3.

[Bonnefon and Daviet, 2011] Olivier Bonnefon and Gilles Daviet. Quartic for-
mulation of Coulomb 3D frictional contact. Technical Report RT-0400,
INRIA, January 2011. URL https://hal.inria.fr/inria-00553859/
PDF/RT-0400.pdf.

[Bouaricha, 1997] Ali Bouaricha. Tensor Methods for Large, Sparse Uncon-
strained Optimization. SIAM Journal on Optimization, 7(3):732–756, 1997.
doi:10.1137/S1052623494267723.

[Boxerman and Ascher, 2004] Eddy Boxerman and Uri Ascher. Decompos-
ing Cloth. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’04, pages 153–161, Aire-la-
Ville, Switzerland, 2004. Eurographics Association. ISBN 3-905673-14-2.
doi:10.1145/1028523.1028543.

[Boyd and Vandenberghe, 2004] Stephen Boyd and Lieven Vandenberghe.
Convex optimization. Cambridge University Press, 2004. ISBN 978-0-
521-83378-3. URL http://stanford.edu/˜boyd/cvxbook/.

196

http://dx.doi.org/10.1145/1899404.1899410
http://dx.doi.org/10.1002/nme.2586
http://dx.doi.org/10.1155/S0161171282000088
http://dx.doi.org/10.1007/s002200050642
http://www.uni-magdeburg.de/ifme/l-festigkeit/pdf/1/boehlke-on-the-ellip.pdf
http://www.uni-magdeburg.de/ifme/l-festigkeit/pdf/1/boehlke-on-the-ellip.pdf
http://dx.doi.org/10.1016/S0045-7825(97)00339-3
https://hal.inria.fr/inria-00553859/PDF/RT-0400.pdf
https://hal.inria.fr/inria-00553859/PDF/RT-0400.pdf
http://dx.doi.org/10.1137/S1052623494267723
http://dx.doi.org/10.1145/1028523.1028543
http://stanford.edu/~boyd/cvxbook/

REFERENCES

[Bramble et al., 1996] James H Bramble, Richard E Ewing, Joseph E Pasciak,
and Jian Shen. The analysis of multigrid algorithms for cell centered
finite difference methods. Advances in Computational Mathematics, 5(1):
15–29, 1996. ISSN 1019-7168. doi:10.1007/BF02124733.

[Brandt et al., 1982] A. Brandt, S. McCormick, and J. Ruge. Algebraic multi-
grid (AMG) for automatic multigrid solution with application to
geodetic computations. Technical report, Institute for Computational
Studies, Colorado State University, POB 1852, Fort Collins, Colorado,
1982.

[Brandt et al., 1985] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic
multigrid (AMG) for sparse matrix equations. In David John Evans,
editor, Sparsity and its Applications, pages 257–284. Cambridge University
Press, 1985. ISBN 0-521-26272-0.

[Brandt et al., 2011] A. Brandt, J. Brannick, K. Kahl, and I. Livshits. Bootstrap
AMG. SIAM J. Sci. Comput., 33(2):612–632, March 2011. ISSN 1064-8275.
doi:10.1137/090752973.

[Brandt, 1977] Achi Brandt. Multi-level adaptive solutions to boundary-
value problems. Mathematics of Computation, 31(138):333–390, 1977.
doi:10.1090/S0025-5718-1977-0431719-X.

[Brandt and Livne, 2011] Achi Brandt and Oren E. Livne. Multigrid Tech-
niques: 1984 Guide with Applications to Fluid Dynamics, Re-
vised Edition. Classics in Applied Mathematics. Society for In-
dustrial and Applied Mathematics, 2011. ISBN 978-1-61197-074-6.
doi:10.1137/1.9781611970753.

[Brannick et al., 2007] James Brannick, Marian Brezina, David Keyes, Oren
Livne, Irene Livshits, Scott MacLachlan, Tom Manteuffel, Steve Mc-
Cormick, John Ruge, and Ludmil Zikatanov. Adaptive Smoothed Ag-
gregation in Lattice QCD. In Olof B. Widlund and David E. Keyes, ed-
itors, Domain Decomposition Methods in Science and Engineering XVI, vol-
ume 55 of Lecture Notes in Computational Science and Engineering, pages
505–512. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-34468-1.
doi:10.1007/978-3-540-34469-8 63.

[Brezina et al., 2004] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuf-
fel, S. McCormick, and J. Ruge. Adaptive Smoothed Aggregation
(aSA). SIAM Journal on Scientific Computing, 25(6):1896–1920, 2004.
doi:10.1137/S1064827502418598.

[Bridson et al., 2002] Robert Bridson, Ronald Fedkiw, and John Anderson.
Robust Treatment of Collisions, Contact and Friction for Cloth Ani-

197

http://dx.doi.org/10.1007/BF02124733
http://dx.doi.org/10.1137/090752973
http://dx.doi.org/10.1090/S0025-5718-1977-0431719-X
http://dx.doi.org/10.1137/1.9781611970753
http://dx.doi.org/10.1007/978-3-540-34469-8_63
http://dx.doi.org/10.1137/S1064827502418598

REFERENCES

mation. ACM Trans. Graph., 21(3):594–603, July 2002. ISSN 0730-0301.
doi:10.1145/566654.566623.

[Bridson et al., 2003] Robert Bridson, Sebastian Marino, and Ronald Fedkiw.
Simulation of clothing with folds and wrinkles. In SCA ’03: Proceedings
of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, pages 28–36. Eurographics Association, 2003. ISBN 1-58113-659-5.

[Briggs et al., 2000] W. Briggs, V. Henson, and S. McCormick. A Multigrid
Tutorial, Second Edition. Society for Industrial and Applied Mathemat-
ics, 2000. doi:10.1137/1.9780898719505.

[Cartis et al., 2011a] Coralia Cartis, Nicholas I. M. Gould, and Philippe L.
Toint. Adaptive cubic regularisation methods for unconstrained op-
timization. Part I: motivation, convergence and numerical results.
Mathematical Programming, 127(2):245–295, 2011a. ISSN 0025-5610.
doi:10.1007/s10107-009-0286-5.

[Cartis et al., 2011b] Coralia Cartis, Nicholas I. M. Gould, and Philippe L.
Toint. Adaptive cubic regularisation methods for unconstrained opti-
mization. Part II: worst-case function- and derivative-evaluation com-
plexity. Mathematical Programming, 130(2):295–319, 2011b. ISSN 0025-
5610. doi:10.1007/s10107-009-0337-y.

[Chladni, 1787] Ernst Florens Friedrich Chladni. Entdeckungen über die
Theorie des Klanges. Weidmanns Erben und Reich, Leipzig, 1787.
doi:10.3931/e-rara-4235.

[Ciarlet, 1980] Philippe G. Ciarlet. A justification of the von Kármán equa-
tions. Archive for Rational Mechanics and Analysis, 73(4):349–389, 1980.
ISSN 0003-9527. doi:10.1007/BF00247674. URL http://dx.doi.org/10.
1007/BF00247674.

[Ciarlet, 2000] Philippe G. Ciarlet, editor. Mathematical Elasticity Volume
III: Theory of Shells, volume 29 of Studies in Mathematics and Its Applica-
tions. 2000. ISBN 978-0-444-82891-0. URL http://www.sciencedirect.
com/science/bookseries/01682024/29.

[Cirio et al., 2014] Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and
Miguel A. Otaduy. Yarn-level Simulation of Woven Cloth. ACM
Trans. Graph., 33(6):207:1–207:11, November 2014. ISSN 0730-0301.
doi:10.1145/2661229.2661279.

[Dalton et al., 2015] Steven Dalton, Luke Olsen, and Nathan Bell. Optimizing
Sparse Matrix-Matrix Multiplication for the GPU. ACM Transactions on
Mathematical Software, 41(4), 2015.

198

http://dx.doi.org/10.1145/566654.566623
http://dx.doi.org/10.1137/1.9780898719505
http://dx.doi.org/10.1007/s10107-009-0286-5
http://dx.doi.org/10.1007/s10107-009-0337-y
http://dx.doi.org/10.3931/e-rara-4235
http://dx.doi.org/10.1007/BF00247674
http://dx.doi.org/10.1007/BF00247674
http://dx.doi.org/10.1007/BF00247674
http://www.sciencedirect.com/science/bookseries/01682024/29
http://www.sciencedirect.com/science/bookseries/01682024/29
http://dx.doi.org/10.1145/2661229.2661279

REFERENCES

[Daviet et al., 2011] Gilles Daviet, Florence Bertails-Descoubes, and Laurence
Boissieux. A Hybrid Iterative Solver for Robustly Capturing Coulomb
Friction in Hair Dynamics. ACM Trans. Graph., 30(6):139:1–139:12, De-
cember 2011. ISSN 0730-0301. doi:10.1145/2070781.2024173.

[Delassus, 1917] Étienne Delassus. Mémoire sur la théorie des liasons finies
unilatérales. Annales scientifiques de l’É.N.S., 3e série, 34:95–179, 1917. URL
http://www.numdam.org/item?id=ASENS_1917_3_34__95_0.

[Delingette, 2008] Hervé Delingette. Triangular Springs for Mod-
eling Nonlinear Membranes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 14(2):329–341, March/April 2008.
doi:10.1109/TVCG.2007.70431.

[Dembo et al., 1982] Ron S. Dembo, Stanley C. Eisenstat, and Trond Steihaug.
Inexact Newton Methods. SIAM Journal on Numerical Analysis, 19(2):
400–408, 1982. doi:10.1137/0719025.

[Dennis and Turner, 1987] J.E. Dennis, Jr and Kathryn Turner. Generalized
conjugate directions. Linear Algebra and its Applications, 88–89(0):187–
209, 1987. ISSN 0024-3795. doi:10.1016/0024-3795(87)90109-1.

[Drucker, 1957] D. C. Drucker. A definition of stable inelastic matieral. Tech-
nical Report 2, Division of Engeering, Brown University, September 1957.
URL http://www.dtic.mil/dtic/tr/fulltext/u2/143756.pdf.

[Duriez et al., 2004] Christian Duriez, Claude Andriot, and Abderrahmane
Kheddar. Signorini’s contact model for deformable objects in haptic
simulations. In Intelligent Robots and Systems (IROS 2004). Proceedings
2004 IEEE/RSJ International Conference on, volume 4, pages 3232–3237, Sep
2004. doi:10.1109/IROS.2004.1389915.

[Duriez et al., 2006] Christian Duriez, Frederic Dubois, Abderrahmane Khed-
dar, and Claude Andriot. Realistic Haptic Rendering of Interacting De-
formable Objects in Virtual Environments. IEEE Transactions on Visual-
ization and Computer Graphics, 12(1):36–47, January 2006. ISSN 1077-2626.
doi:10.1109/TVCG.2006.13.

[English and Bridson, 2008] Elliot English and Robert Bridson. An-
imating Developable Surfaces Using Nonconforming Elements.
ACM Trans. Graph., 27(3):66:1–66:5, August 2008. ISSN 0730-0301.
doi:10.1145/1360612.1360665.

[Ericson, 2004] Christer Ericson. Real-Time Collision Detection. The Mor-
gan Kaufmann Series in Interactive 3D Technology. Morgan Kaufmann,
December 2004. ISBN 1558607323.

199

http://dx.doi.org/10.1145/2070781.2024173
http://www.numdam.org/item?id=ASENS_1917_3_34__95_0
http://dx.doi.org/10.1109/TVCG.2007.70431
http://dx.doi.org/10.1137/0719025
http://dx.doi.org/10.1016/0024-3795(87)90109-1
http://www.dtic.mil/dtic/tr/fulltext/u2/143756.pdf
http://dx.doi.org/10.1109/IROS.2004.1389915
http://dx.doi.org/10.1109/TVCG.2006.13
http://dx.doi.org/10.1145/1360612.1360665

REFERENCES

[Etzmuß et al., 2003] O. Etzmuß, M. Keckeisen, and W. Straßer. A fast finite
element solution for cloth modelling. In Computer Graphics and Applica-
tions, 2003. Proceedings. 11th Pacific Conference on, pages 244–251, Oct 2003.
doi:10.1109/PCCGA.2003.1238266.

[Euler, 1766a] Leonhard Euler. In Novi commentarii Academiae scientiarum im-
perialis Petropolitanae, volume 10, pages 261–281. Academiae scientiarum,
1766a. URL http://eulerarchive.maa.org/pages/E303.html.

[Euler, 1766b] Leonhard Euler. In Novi commentarii Academiae scientiarum im-
perialis Petropolitanae, volume 10, pages 243–260. Academiae scientiarum,
1766b. URL http://eulerarchive.maa.org/pages/E302.html.

[Euler, 1960] Leonhard Euler. The rational mechanics of flexible or elastic
bodies 1638 - 1788. Opera mechanica et astronomica. Birkhäuser Basel,
1960. ISBN 978-3-7643-1441-5.

[Faure et al., 2008] François Faure, Sébastien Barbier, Jérémie Allard, and
Florent Falipou. Image-based Collision Detection and Response Be-
tween Arbitrary Volume Objects. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’08, pages
155–162, Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics As-
sociation. ISBN 978-3-905674-10-1. URL http://dl.acm.org/citation.
cfm?id=1632592.1632615.

[Fish et al., 1996] J. Fish, L. Pan, V Belsky, and S. Gomaa. Unstructured multi-
grid methods for shells. International Journal for Numerical Methods in En-
gineering, 39(7):1181–1197, 1996. ISSN 1097-0207. doi:10.1002/(SICI)1097-
0207(19960415)39:7<1181::AID-NME899>3.0.CO;2-Y.

[Fröhlich and Botsch, 2011] Stefan Fröhlich and Mario Botsch. Example-
Driven Deformations Based on Discrete Shells. Computer Graphics
Forum, 30(8):2246–2257, 2011. ISSN 1467-8659. doi:10.1111/j.1467-
8659.2011.01974.x.

[Garg et al., 2007] Akash Garg, Eitan Grinspun, Max Wardetzky, and De-
nis Zorin. Cubic shells. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’07, pages
91–98. Eurographics Association, 2007. ISBN 978-1-59593-624-0.

[Gast and Schroeder, 2014] Theodore F. Gast and Craig Schroeder. Optimiza-
tion Integrator for Large Time Steps. In Vladlen Koltun and Eftychios
Sifakis, editors, Eurographics/ ACM SIGGRAPH Symposium on Computer
Animation. The Eurographics Association, 2014. ISBN 978-3-905674-61-3.
doi:10.2312/sca.20141120.

200

http://dx.doi.org/10.1109/PCCGA.2003.1238266
http://eulerarchive.maa.org/pages/E303.html
http://eulerarchive.maa.org/pages/E302.html
http://dl.acm.org/citation.cfm?id=1632592.1632615
http://dl.acm.org/citation.cfm?id=1632592.1632615
http://dx.doi.org/10.1002/(SICI)1097-0207(19960415)39:7%3C1181::AID-NME899%3E3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1097-0207(19960415)39:7%3C1181::AID-NME899%3E3.0.CO;2-Y
http://dx.doi.org/10.1111/j.1467-8659.2011.01974.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01974.x
http://dx.doi.org/10.2312/sca.20141120

REFERENCES

[Gee, 2004] Michael Gee. Effiziente Lösungsstrategien in der nichtlin-
earen Schalenmechanik. PhD thesis, Institut für Baustatik, Universität
Stuttgart, 2004.

[Gee et al., 2005] Michael Gee, Ekkehard Ramm, and Wolfgang A. Wall. Par-
allel multilevel solution of nonlinear shell structures. Computer Meth-
ods in Applied Mechanics and Engineering, 194(21—24):2513–2533, 2005.
ISSN 0045-7825. doi:10.1016/j.cma.2004.07.043. Computational Methods
for Shells.

[Gee and Tuminaro, 2006] Michael W. Gee and Ray S. Tuminaro. Nonlinear
Algebraic Multigrid for Constrained Solid Mechanics Problems Using
Trilinos. Technical Report SAND2006-2256, Sandia National Laborato-
ries, April 2006.

[Gingold et al., 2004] Yotam Gingold, Adrian Secord, Jefferson Y. Han, Eitan
Grinspun, and Denis Zorin. A Discrete Model for Inelastic Deformation
of Thin Shells. Technical report, Courant Institute of Mathematical Sci-
ences, New York University, Aug 2004. URL http://www.cs.columbia.
edu/cg/pdfs/1162939464-fracture.pdf.

[Goldenthal et al., 2007] Rony Goldenthal, David Harmon, Raanan Fattal,
Michel Bercovier, and Eitan Grinspun. Efficient Simulation of Inex-
tensible Cloth. ACM Trans. Graph., 26(3), July 2007. ISSN 0730-0301.
doi:10.1145/1276377.1276438.

[Golub and Loan, 1983] Gene H. Golub and Charles F. Van Loan. Matrix
Computations. The Johns Hopkins University Press, 3rd edition, 1983.

[Golub and Varga, 1961] Gene H. Golub and Richard S. Varga. Chebyshev
semi-iterative methods, successive overrelaxation iterative methods,
and second order richardson iterative methods. Numerische Mathematik,
3(1):157–168, 1961. ISSN 0029-599X. doi:10.1007/BF01386014.

[Gould et al., 2001] Nicholas I. M. Gould, Mary E. Hribar, and Jorge No-
cedal. On the Solution of Equality Constrained Quadratic Program-
ming Problems Arising in Optimization. SIAM Journal on Scientific Com-
puting, 23(4):1376–1395, 2001. doi:10.1137/S1064827598345667.

[Gould et al., 2012] N.I.M. Gould, M. Porcelli, and P.L. Toint. Updating the
regularization parameter in the adaptive cubic regularization algo-
rithm. Computational Optimization and Applications, 53(1):1–22, 2012. ISSN
0926-6003. doi:10.1007/s10589-011-9446-7.

201

http://dx.doi.org/10.1016/j.cma.2004.07.043
http://www.cs.columbia.edu/cg/pdfs/1162939464-fracture.pdf
http://www.cs.columbia.edu/cg/pdfs/1162939464-fracture.pdf
http://dx.doi.org/10.1145/1276377.1276438
http://dx.doi.org/10.1007/BF01386014
http://dx.doi.org/10.1137/S1064827598345667
http://dx.doi.org/10.1007/s10589-011-9446-7

REFERENCES

[Goyal et al., 1991] Suresh Goyal, Andy Ruina, and Jim Papadopoulos. Pla-
nar sliding with dry friction Part 1. Limit surface and moment function.
Wear, 143(2):307–330, 1991.

[Griewank and Osborne, 1983] A. Griewank and M. R. Osborne. Analysis of
Newton’s Method at Irregular Singularities. SIAM Journal on Numerical
Analysis, 20(4):747–773, 1983. doi:10.1137/0720050.

[Grinspun et al., 2003] Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and
Peter Schröder. Discrete shells. In SCA ’03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages 62–67.
Eurographics Association, 2003. ISBN 1-58113-659-5.

[Hager and Zhang, 2005] William W. Hager and Hongchao Zhang. A New
Conjugate Gradient Method with Guaranteed Descent and an Effi-
cient Line Search. SIAM Journal on Optimization, 16(1):170–192, 2005.
doi:10.1137/030601880.

[Hager and Zhang, 2006] William W. Hager and Hongchao Zhang. Algo-
rithm 851: CG DESCENT, a Conjugate Gradient Method with Guar-
anteed Descent. ACM Trans. Math. Softw., 32(1):113–137, March 2006.
ISSN 0098-3500. doi:10.1145/1132973.1132979.

[Hairer and Wanner, 2004] Ernst Hairer and Gerhard Wanner. Solving
Ordinary Differential Equations II: Stiff and Differential-Algebraic
Problems. Springer, second edition, 2004. ISBN 978-3-642-05220-0.
doi:10.1007/978-3-642-05221-7.

[Hairer et al., 2004] Ernst Hairer, Gerhard Wanner, and Syvert P. Nørsett.
Solving Ordinary Differential Equations I: Nonstiff Problems.
Springer, second edition, 2004. ISBN 978-3-540-56670-0. doi:10.1007/978-
3-540-78862-1.

[Hairer et al., 2006] Ernst Hairer, Gerhard Wanner, and Christian Lubich. Ge-
ometric Numerical Integration : Structure-Preserving Algorithms for
Ordinary Differential Equations. Springer, 2006. ISBN 978-3-540-30663-
4. doi:10.1007/3-540-30666-8.

[Harmon, 2010] David Harmon. Robust, Efficient, and Accurate Contact Al-
gorithms. PhD thesis, Columbia University, 2010.

[Harmon et al., 2008] David Harmon, Etienne Vouga, Rasmus Tamstorf,
and Eitan Grinspun. Robust Treatment of Simultaneous Collisions.
ACM Trans. Graph., 27(3):23:1–23:4, August 2008. ISSN 0730-0301.
doi:10.1145/1360612.1360622.

202

http://dx.doi.org/10.1137/0720050
http://dx.doi.org/10.1137/030601880
http://dx.doi.org/10.1145/1132973.1132979
http://dx.doi.org/10.1007/978-3-642-05221-7
http://dx.doi.org/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1007/3-540-30666-8
http://dx.doi.org/10.1145/1360612.1360622

REFERENCES

[Harmon et al., 2009] David Harmon, Etienne Vouga, Breannan Smith, Ras-
mus Tamstorf, and Eitan Grinspun. Asynchronous contact mechan-
ics. In ACM SIGGRAPH 2009 papers, SIGGRAPH ’09, pages 87:1–
87:12, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-726-4.
doi:10.1145/1576246.1531393.

[Harmon et al., 2012] David Harmon, Etienne Vouga, Breannan Smith, Ras-
mus Tamstorf, and Eitan Grinspun. Asynchronous contact mechan-
ics. Commun. ACM, 55(4):102–109, April 2012. ISSN 0001-0782.
doi:10.1145/2133806.2133828.

[Hauth et al., 2003] Michael Hauth, Olaf Etzmuß, and Wolfgang Straßer.
Analysis of numerical methods for the simulation of deformable
models. The Visual Computer, 19:581–600, 2003. ISSN 0178-2789.
doi:10.1007/s00371-003-0206-2.

[He and Zheng, 1996] Q.-C. He and Quanshui Zheng. On the Symmetries
of 2D Elastic and Hyperelastic Tensors. Journal of Elasticity, 43:203–225,
1996. doi:10.1007/BF00042501.

[Hecht et al., 2012] Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and
James F. O’Brien. Updated Sparse Cholesky Factors for Corotational
Elastodynamics. ACM Transactions on Graphics, 31(5):123:1–13, October
2012. doi:10.1145/2231816.2231821.

[Heidelberger et al., 2003] Bruno Heidelberger, Matthias Teschner, and
Markus Gross. Real-time volumetric intersections of deforming ob-
jects. In Thomas Ertl, editor, Proc. of Vision, Modeling, and Visualization
VMV’03, page 461—468. Aka GmbH, November 2003. ISBN 3-89838-
048-3.

[Hill, 1957] R. Hill. On uniqueness and stability in the theory of finite elas-
tic strain. Journal of the Mechanics and Physics of Solids, 5(4):229–241, 1957.
doi:10.1016/0022-5096(57)90016-9.

[Hill, 1958] R. Hill. A general theory of uniqueness and stability in
elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 6(3):
236–249, 1958. ISSN 0022-5096. doi:http://dx.doi.org/10.1016/0022-
5096(58)90029-2.

[Hoffmann, 2000] Tim Hoffmann. Discrete Curves and Surfaces. PhD thesis,
Fachbereich 3 Mathematik der Technischen Universität Berlin, January
2000.

203

http://dx.doi.org/10.1145/1576246.1531393
http://dx.doi.org/10.1145/2133806.2133828
http://dx.doi.org/10.1007/s00371-003-0206-2
http://dx.doi.org/10.1007/BF00042501
http://dx.doi.org/10.1145/2231816.2231821
http://dx.doi.org/10.1016/0022-5096(57)90016-9
http://dx.doi.org/http://dx.doi.org/10.1016/0022-5096(58)90029-2
http://dx.doi.org/http://dx.doi.org/10.1016/0022-5096(58)90029-2

REFERENCES

[Horn and Johnson, 1985] Roger A. Horn and Charles R. Johnson. Matrix
Analysis. Cambridge University Press, 1985. ISBN 9780511810817.
doi:10.1017/CBO9780511810817. Cambridge Books Online.

[Itskov, 2001] Mikhail Itskov. A generalized orthotropic hyperelastic ma-
terial model with application to incompressible shells. International
Journal for Numerical Methods in Engineering, 50(8):1777–1799, 2001. ISSN
1097-0207. doi:10.1002/nme.86.

[Itskov and Aksel, 2004] Mikhail Itskov and Nuri Aksel. A class of or-
thotropic and transversely isotropic hyperelastic constitutive mod-
els based on a polyconvex strain energy function. International Jour-
nal of Solids and Structures, 41(14):3833–3848, 2004. ISSN 0020-7683.
doi:10.1016/j.ijsolstr.2004.02.027.

[Jean and Moreau, 1992] M. Jean and J. J Moreau. Unilaterality and dry fric-
tion in the dynamics of rigid body collections. In Proceedings of Contact
Mechanics International Symposium, volume 1, pages 31–48, October 1992.

[Jeon et al., 2013] Inyong Jeon, Kwang-Jin Choi, Tae-Yong Kim, Bong-
Ouk Choi, and Hyeong-Seok Ko. Constrainable Multigrid for
Cloth. Computer Graphics Forum, 32(7):31–39, 2013. ISSN 1467-8659.
doi:10.1111/cgf.12209.

[Kaldor et al., 2008] Jonathan M. Kaldor, Doug L. James, and Steve
Marschner. Simulating Knitted Cloth at the Yarn Level.
ACM Trans. Graph., 27:65:1–65:9, August 2008. ISSN 0730-0301.
doi:10.1145/1360612.1360664.

[Kaufman, 2009] Danny Kaufman. Coupled principles for computational
frictional contact mechanics. PhD thesis, Rutgers, The State University
of New Jersey, May 2009. doi:10.7282/T3VD6ZKG.

[Kaufman et al., 2014] Danny Kaufman, Rasmus Tamstorf, Breannan Smith,
Jean-Marie Aubry, and Eitan Grinspun. Adaptive Nonlinearity for Col-
lisions in Complex Rod Assemblies. ACM Trans. Graph, 33(4), July 2014.
doi:10.1145/2601097.2601100.

[Kaufman et al., 2008] Danny M. Kaufman, Shinjiro Sueda, Doug L. James,
and Dinesh K. Pai. Staggered Projections for Frictional Contact in
Multibody Systems. ACM Trans. Graph., 27(5):164:1–164:11, December
2008. ISSN 0730-0301. doi:10.1145/1409060.1409117.

[Kaufmann et al., 2009] Peter Kaufmann, Sebastian Martin, Mario Botsch,
and Markus Gross. Implementation of Discontinuous Galerkin

204

http://dx.doi.org/10.1017/CBO9780511810817
http://dx.doi.org/10.1002/nme.86
http://dx.doi.org/10.1016/j.ijsolstr.2004.02.027
http://dx.doi.org/10.1111/cgf.12209
http://dx.doi.org/10.1145/1360612.1360664
http://dx.doi.org/10.7282/T3VD6ZKG
http://dx.doi.org/10.1145/2601097.2601100
http://dx.doi.org/10.1145/1409060.1409117

REFERENCES

Kirchhoff-Love Shells. Technical Report 622, Institute of Visual Com-
puting, ETH Zürich, 2009. URL http://graphics.ethz.ch/˜smartin/
data/publication_Kau09c.pdf.

[Kharevych et al., 2006] L. Kharevych, Weiwei Yang, Y. Tong, E. Kanso, J. E.
Marsden, P. Schröder, and M. Desbrun. Geometric, variational in-
tegrators for computer animation. In Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on Computer animation, SCA ’06,
pages 43–51. Eurographics Association, 2006. ISBN 3-905673-34-7.
doi:10.2312/SCA/SCA06/043-051.

[Kikuchi and Oden, 1988] N. Kikuchi and J. T. Oden. Contact Problems
in Elasticity: A Study of Variational Inequalities and Finite Element
Methods, volume 8. Society for Industrial and Applied Mathematics,
1988. doi:10.1137/1.9781611970845.

[King, 2006] Michael J. King. A Continuum Constitutive Model for the Me-
chanical Behavior of Woven Fabrics Including Slip and Failure. PhD
thesis, MIT, June 2006. URL http://hdl.handle.net/1721.1/36192.

[Koiter, 1966] Warner T. Koiter. On the nonlinear theory of thin elastic
shells. Proceedings of the Koninklijke Nederlandse Academie van Wetenschap-
pen. Series B: Physical Sciences, B69:1–54, 1966. URL http://www.dwc.
knaw.nl.

[Krishnan et al., 2013] Dilip Krishnan, Raanan Fattal, and Richard Szeliski.
Efficient Preconditioning of Laplacian Matrices for Computer Graph-
ics. ACM Trans. Graph., 32(4):142:1–142:15, July 2013. ISSN 0730-0301.
doi:10.1145/2461912.2461992.

[Lee et al., 2010] Yongjoon Lee, Sung-eui Yoon, Seungwoo Oh, Duksu
Kim, and Sunghee Choi. Multi-Resolution Cloth Simulation.
Computer Graphics Forum, 29(7):2225–2232, 2010. ISSN 1467-8659.
doi:10.1111/j.1467-8659.2010.01811.x.

[Leine and Aeberhard, 2007] R. I. Leine and U. Aeberhard. The
Euler-Maupertuis principle of least action as variational in-
equality. PAMM, 7(1):4010019–4010020, 2007. ISSN 1617-7061.
doi:10.1002/pamm.200700666.

[Liu, 2005] I-Shih Liu. Further remarks on euclidean objectivity and the
principle of material frame-indifference. Continuum Mechanics and Ther-
modynamics, 17(2):125–133, 2005. ISSN 0935-1175. doi:10.1007/s00161-
004-0191-3.

205

http://graphics.ethz.ch/~smartin/data/publication_Kau09c.pdf
http://graphics.ethz.ch/~smartin/data/publication_Kau09c.pdf
http://dx.doi.org/10.2312/SCA/SCA06/043-051
http://dx.doi.org/10.1137/1.9781611970845
http://hdl.handle.net/1721.1/36192
http://www.dwc.knaw.nl
http://www.dwc.knaw.nl
http://dx.doi.org/10.1145/2461912.2461992
http://dx.doi.org/10.1111/j.1467-8659.2010.01811.x
http://dx.doi.org/10.1002/pamm.200700666
http://dx.doi.org/10.1007/s00161-004-0191-3
http://dx.doi.org/10.1007/s00161-004-0191-3

REFERENCES

[Marsden and Hughes, 1983] Jerrold E. Marsden and Thomas J. R. Hughes.
Mathematical foundations of elasticity. Dover Publications, Inc., 1983.
ISBN 0-486-67865-2.

[Mazhar et al., 2015] Hammad Mazhar, Toby Heyn, Dan Negrut, and
Alessandro Tasora. Using Nesterov’s Method to Accelerate Multibody
Dynamics with Friction and Contact. ACM Trans. Graph., 34(3):32:1–
32:14, May 2015. ISSN 0730-0301. doi:10.1145/2735627.

[McAdams et al., 2011] Aleka McAdams, Yongning Zhu, Andrew Selle, Mark
Empey, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. Ef-
ficient Elasticity for Character Skinning with Contact and Colli-
sions. ACM Trans. Graph., 30(4):37:1–37:12, July 2011. ISSN 0730-0301.
doi:10.1145/2010324.1964932.

[McCormick, 1984] Stephen McCormick. Multigrid Methods for Variational
Problems: Further Results. SIAM Journal on Numerical Analysis, 21(2):
255–263, 1984. doi:10.1137/0721018.

[Meurant, 2006] Gérard Meurant. The Lanczos and Conjugate Gradient
Algorithms: From Theory to Finite Precision Computations. Society
for Industrial and Applied Mathematics, 2006. ISBN 978-0-89871-616-0.
doi:10.1137/1.9780898718140.

[Miguel et al., 2013] Eder Miguel, Rasmus Tamstorf, Derek Bradley, Sara C.
Schvartzman, Bernhard Thomaszewski, Bernd Bickel, Wojciech Matusik,
Steve Marschner, and Miguel A. Otaduy. Modeling and Estimation
of Internal Friction in Cloth. ACM Trans. Graph., 32(6):212:1–212:10,
November 2013. ISSN 0730-0301. doi:10.1145/2508363.2508389.

[Mı́ka and Vaněk, 1992] Stanislav Mı́ka and Petr Vaněk. Acceleration of con-
vergence of a two-level algebraic algorithm by aggregation in smooth-
ing process. Applications of Mathematics, 37(5):343–356, 1992. ISSN 0862-
7940. URL https://eudml.org/doc/15720.

[Mirtich and Canny, 1995] Brian Mirtich and John Canny. Impulse-based
Simulation of Rigid Bodies. In Proceedings of the 1995 Symposium on In-
teractive 3D Graphics, I3D ’95, pages 181–ff., New York, NY, USA, 1995.
ACM. ISBN 0-89791-736-7. doi:10.1145/199404.199436.

[Moakher, 2008] Maher Moakher. Fourth-order cartesian tensors: old and
new facts, notions and applications. Quarterly Journal of Mechanics &
Applied Mathematics, 61(2):181–203, 2008. doi:10.1093/qjmam/hbm027.

[Morandi, 2007] Patrick J. Morandi. Symmetry Groups : The Classification
of Wallpaper Patterns. Technical report, Department of Mathematical

206

http://dx.doi.org/10.1145/2735627
http://dx.doi.org/10.1145/2010324.1964932
http://dx.doi.org/10.1137/0721018
http://dx.doi.org/10.1137/1.9780898718140
http://dx.doi.org/10.1145/2508363.2508389
https://eudml.org/doc/15720
http://dx.doi.org/10.1145/199404.199436
http://dx.doi.org/10.1093/qjmam/hbm027

REFERENCES

Sciences, New Mexico State University, Las Cruces, 2007. URL http:
//sierra.nmsu.edu/morandi/notes/Wallpaper.pdf.

[Moré and Thuente, 1994] Jorge J. Moré and David J. Thuente. Line
Search Algorithms with Guaranteed Sufficient Decrease. ACM
Trans. Math. Softw., 20(3):286–307, September 1994. ISSN 0098-3500.
doi:10.1145/192115.192132.

[Moreau, 1988] J. J. Moreau. Unilateral contact and dry friction in finite free-
dom dynamics. In J.J. Moreau and P.D. Panagiotopoulos, editors, Non-
smooth Mechanics and Applications, volume 302 of International Centre for
Mechanical Sciences, pages 1–82. Springer Vienna, 1988. ISBN 978-3-211-
82066-7. doi:10.1007/978-3-7091-2624-0 1.

[Moreau, 1970] Jean Jacques Moreau. Convexité et frottement. Technical
Report 32, Université de Montréal. Département d’informatique, March
1970.

[Moreau, 2011] Jean Jacques Moreau. On Unilateral Constraints, Friction
and Plasticity. In Gianfranco Capriz and Guido Stampacchia, editors,
New Variational Techniques in Mathematical Physics, volume 63 of C.I.M.E.
Summer Schools, pages 171–322. Springer Berlin Heidelberg, 2011. ISBN
978-3-642-10958-4. doi:10.1007/978-3-642-10960-7 7.

[Moreau, 1999] J.J. Moreau. Some Basics of Unilateral Dynamics. In F. Pfeif-
fer and Ch. Glocker, editors, IUTAM Symposium on Unilateral Multibody
Contacts, volume 72 of Solid Mechanics and its Applications, pages 1–14.
Springer Netherlands, 1999. ISBN 978-94-010-5853-7. doi:10.1007/978-
94-011-4275-5 1.

[Morrey, 1952] Charles B. Morrey. Quasi-convexity and the lower semicon-
tinuity of multiple integrals. Pacific Journal of Mathematics, 2(1):25–53,
1952. URL http://projecteuclid.org/euclid.pjm/1103051941.

[Narain et al., 2012] Rahul Narain, Armin Samii, and James F. O’Brien.
Adaptive Anisotropic Remeshing for Cloth Simulation. ACM
Trans. Graph., 31(6):152:1–152:10, November 2012. ISSN 0730-0301.
doi:10.1145/2366145.2366171.

[Nash and Sofer, 1990] Stephen G. Nash and Ariela Sofer. Assessing a search
direction within a truncated-newton method. Operations Research Let-
ters, 9(4):219–221, 1990. ISSN 0167-6377. doi:10.1016/0167-6377(90)90065-
D.

[Nesterov and Polyak, 2006] Yurii Nesterov and B.T. Polyak. Cubic regular-
ization of Newton method and its global performance. Mathematical

207

http://sierra.nmsu.edu/morandi/notes/Wallpaper.pdf
http://sierra.nmsu.edu/morandi/notes/Wallpaper.pdf
http://dx.doi.org/10.1145/192115.192132
http://dx.doi.org/10.1007/978-3-7091-2624-0_1
http://dx.doi.org/10.1007/978-3-642-10960-7_7
http://dx.doi.org/10.1007/978-94-011-4275-5_1
http://dx.doi.org/10.1007/978-94-011-4275-5_1
http://projecteuclid.org/euclid.pjm/1103051941
http://dx.doi.org/10.1145/2366145.2366171
http://dx.doi.org/10.1016/0167-6377(90)90065-D
http://dx.doi.org/10.1016/0167-6377(90)90065-D

REFERENCES

Programming, 108(1):177–205, 2006. ISSN 0025-5610. doi:10.1007/s10107-
006-0706-8.

[Neumann, 1885] Franz Ernst Neumann. Vorlesungen über die Theorie der
Elastizität der festen Körper und des Lichtäthers. B. G. Teubner-Verlag,
Leipzig, 1885.

[Ni et al., 2015] Xiang Ni, Laxmikant Kale, and Rasmus Tamstorf. Scalable
Asynchronous Contact Mechanics using Charm++. In IEEE 29th Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2015), May
2015. doi:10.1109/IPDPS.2015.45.

[Nocedal and Wright, 2006] Jorge Nocedal and Stephen J. Wright. Numeri-
cal Optimization. Springer New York, 2006. ISBN 978-0-387-30303-1.
doi:10.1007/978-0-387-40065-5.

[Noll, 1954] Walter Noll. On the Continuity of the Solid and Fluid States.
PhD thesis, Indiana University, 1954.

[Noll, 2005] Walter Noll. A Frame-Free Formulation of Elasticity, 2005. URL
http://www.math.cmu.edu/˜wn0g/FFFE.pdf.

[Ogden, 1984] R. W. Ogden. Non-linear elastic deformations. Wiley & Sons,
1984.

[Oh et al., 2008] SeungWoo Oh, Junyong Noh, and Kwangyun Wohn. A
physically faithful multigrid method for fast cloth simulation. Com-
puter Animation and Virtual Worlds, 19(3-4):479–492, 2008. ISSN 1546-
427X. doi:10.1002/cav.255.

[Otaduy et al., 2009] Miguel A. Otaduy, Rasmus Tamstorf, Denis Steinemann,
and Markus Gross. Implicit Contact Handling for Deformable Ob-
jects. Computer Graphics Forum, 28(2):559–568, 2009. doi:10.1111/j.1467-
8659.2009.01396.x.

[Press et al., 2007] William H. Press, Saul A. Teukolsky, William T. Vetter-
ling, and Brian P. Flannery. Numerical Recipes: The Art of Scientific
Computing. Cambridge University Press, third edition, 2007. ISBN
0521880688. URL http://www.nr.com.

[Provot, 1997] Xavier Provot. Collision and self-collision handling in cloth
model dedicated to design garments. In Daniel Thalmann and Michiel
van de Panne, editors, Computer Animation and Simulation ’97, Euro-
graphics, pages 177–189. Springer Vienna, 1997. ISBN 978-3-211-83048-2.
doi:10.1007/978-3-7091-6874-5 13.

208

http://dx.doi.org/10.1007/s10107-006-0706-8
http://dx.doi.org/10.1007/s10107-006-0706-8
http://dx.doi.org/10.1109/IPDPS.2015.45
http://dx.doi.org/10.1007/978-0-387-40065-5
http://www.math.cmu.edu/~wn0g/FFFE.pdf
http://dx.doi.org/10.1002/cav.255
http://dx.doi.org/10.1111/j.1467-8659.2009.01396.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01396.x
http://www.nr.com
http://dx.doi.org/10.1007/978-3-7091-6874-5_13

REFERENCES

[Radovitzky and Ortiz, 1999] R. Radovitzky and M. Ortiz. Error estima-
tion and adaptive meshing in strongly nonlinear dynamic problems.
Computer Methods in Applied Mechanics and Engineering, 172(1-4):203–240,
1999. ISSN 0045-7825. doi:10.1016/S0045-7825(98)00230-8.

[Rivlin, 1992] Ronald S. Rivlin. Stability of an elastic material. In P.E. Ricci,
editor, Problemi Attuali dell’Analisi e della Fisica Matematica, pages 201–
206, Rome, Taormina, Italy, 15-17 October, 1992 1992. Dipartimento di
Matematica, Universita di Roma ”La Sapienza”.

[Rivlin, 1997] Ronald S. Rivlin. Stability of an elastic material. In Grig-
ori Isaakovich Barenblatt and Daniel D. Joseph, editors, Collected Papers
of R.S. Rivlin, pages 883–908. Springer New York, 1997. ISBN 978-1-4612-
7530-5. doi:10.1007/978-1-4612-2416-7 60.

[Robbins, 2012] Clarence R. Robbins. Chemical and Physical Behavior of
Human Hair. Springer, fifth edition, 2012.

[Sadeghi et al., 2010] Iman Sadeghi, Heather Pritchett, Henrik Wann Jensen,
and Rasmus Tamstorf. An Artist Friendly Hair Shading System. ACM
Trans. Graph., 29(3):56:1–10, 2010. doi:10.1145/1833349.1778793.

[Schnabel and Chow, 1991] Robert B. Schnabel and Ta-Tung Chow. Tensor
Methods for Unconstrained Optimization Using Second Derivatives.
SIAM Journal on Optimization, 1(3):293–315, 1991. doi:10.1137/0801020.

[Schröder, 2010] Jörg Schröder. Anisotropic polyconvex energies. In Jörg
Schröder and Patrizio Neff, editors, Poly-, Quasi- and Rank-One Convex-
ity in Applied Mechanics, volume CISM Courses and Lectures, Vol. 516.
Springer, 2010. doi:10.1007/978-3-7091-0174-2.

[Shariff, 1995] M.H.B.M. Shariff. A constrained conjugate gradient method
and the solution of linear equations. Computers & Mathematics with
Applications, 30(11):25–37, 1995. ISSN 0898-1221. doi:10.1016/0898-
1221(95)00161-Q.

[Smith et al., 2012] Breannan Smith, Danny M. Kaufman, Etienne Vouga, Ras-
mus Tamstorf, and Eitan Grinspun. Reflections on simultaneous im-
pact. ACM Trans. Graph., 31(4):106:1–106:12, July 2012. ISSN 0730-0301.
doi:10.1145/2185520.2185602.

[Spillmann and Teschner, 2007] J. Spillmann and M. Teschner. CoRdE:
Cosserat Rod Elements for the Dynamic Simulation of One-
dimensional Elastic Objects. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’07, pages

209

http://dx.doi.org/10.1016/S0045-7825(98)00230-8
http://dx.doi.org/10.1007/978-1-4612-2416-7_60
http://dx.doi.org/10.1145/1833349.1778793
http://dx.doi.org/10.1137/0801020
http://dx.doi.org/10.1007/978-3-7091-0174-2
http://dx.doi.org/10.1016/0898-1221(95)00161-Q
http://dx.doi.org/10.1016/0898-1221(95)00161-Q
http://dx.doi.org/10.1145/2185520.2185602

REFERENCES

63–72, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Asso-
ciation. ISBN 978-1-59593-624-0. URL http://dl.acm.org/citation.
cfm?id=1272690.1272700.

[Steigmann, 2012] David J. Steigmann. A well-posed finite-strain model
for thin elastic sheets with bending stiffness. Mathematics
and Mechanics of Solids, 18(1):103–112, 2012. ISSN 1081-2865.
doi:10.1177/1081286512441105.

[Steigmann, 2013] David J. Steigmann. Koiter’s Shell Theory from the Per-
spective of Three-dimensional Nonlinear Elasticity. Journal of Elasticity,
111(1):91–107, 2013. ISSN 0374-3535. doi:10.1007/s10659-012-9393-2.

[Sterck et al., 2008] H. De Sterck, Thomas A. Manteuffel, Stephen F. Mc-
Cormick, Quoc Nguyen, and John Ruge. Multilevel Adaptive Aggrega-
tion for Markov Chains, with Application to Web Ranking. SIAM Jour-
nal on Scientific Computing, 30(5):2235–2262, 2008. doi:10.1137/070685142.

[Stewart, 2000] David E. Stewart. Rigid-Body Dynamics with Friction and
Impact. SIAM Review, 42(1):3–39, 2000. doi:10.1137/S0036144599360110.

[Stewart, 2001] David E. Stewart. Finite-dimensional contact mechanics.
Philosophical Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 359(1789):2467–2482, 2001. ISSN 1364-
503X. doi:10.1098/rsta.2001.0904.

[Stewart, 2011] David E. Stewart. Dynamics with Inequalities: Impacts and
Hard Constraints. Society for Industrial and Applied Mathematics, 2011.
doi:10.1137/1.9781611970715.

[Tamstorf, 2013] Rasmus Tamstorf. Derivation of discrete bending forces
and their gradients. Technical report, Walt Disney Animation Stu-
dios, Sep 2013. URL http://www.disneyanimation.com/technology/
publications/56.

[Tamstorf and Grinspun, 2013] Rasmus Tamstorf and Eitan Grinspun. Dis-
crete bending forces and their Jacobians. Graphical Models, 75(6):362–
370, November 2013. doi:10.1016/j.gmod.2013.07.001.

[Tamstorf et al., 2015] Rasmus Tamstorf, Toby Jones, and Stephen F. Mc-
Cormick. Smoothed Aggregation Multigrid for Cloth Simula-
tion. ACM Trans. Graph., 34(6), November 2015. ISSN 0730-0301.
doi:10.1145/2816795.2818081.

[Terzopoulos et al., 1987] Demetri Terzopoulos, John Platt, Alan Barr, and
Kurt Fleischer. Elastically Deformable Models. In Proceedings of the 14th

210

http://dl.acm.org/citation.cfm?id=1272690.1272700
http://dl.acm.org/citation.cfm?id=1272690.1272700
http://dx.doi.org/10.1177/1081286512441105
http://dx.doi.org/10.1007/s10659-012-9393-2
http://dx.doi.org/10.1137/070685142
http://dx.doi.org/10.1137/S0036144599360110
http://dx.doi.org/10.1098/rsta.2001.0904
http://dx.doi.org/10.1137/1.9781611970715
http://www.disneyanimation.com/technology/publications/56
http://www.disneyanimation.com/technology/publications/56
http://dx.doi.org/10.1016/j.gmod.2013.07.001
http://dx.doi.org/10.1145/2816795.2818081

REFERENCES

Annual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’87, pages 205–214, New York, NY, USA, 1987. ACM. ISBN 0-
89791-227-6. doi:10.1145/37401.37427.

[Teschner et al., 2005] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zach-
mann, L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-
Thalmann, W. Strasser, and P. Volino. Collision Detection for De-
formable Objects. Computer Graphics Forum, 24(1):61–81, 2005. ISSN
1467-8659. doi:10.1111/j.1467-8659.2005.00829.x.

[Thomaszewski et al., 2006] Bernhard Thomaszewski, Markus Wacker, and
Wolfgang Straßer. A Consistent Bending Model for Cloth Simulation
with Corotational Subdivision Finite Elements. In Proceedings of the
2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’06, pages 107–116, Aire-la-Ville, Switzerland, Switzerland, 2006.
Eurographics Association. ISBN 3-905673-34-7. URL http://dl.acm.
org/citation.cfm?id=1218064.1218079.

[Timoshenko and Woinowsky-Krieger, 1959] Stephen P. Timoshenko and
S. Woinowsky-Krieger. Theory of plates and shells. McGraw-Hill, 2nd
edition, 1959. ISBN 0-07-085820-9.

[Trinkle et al., 1997] J. C. Trinkle, J.-S. Pang, S. Sudarsky, and G. Lo. On
Dynamic Multi-Rigid-Body Contact Problems with Coulomb Friction.
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Ange-
wandte Mathematik und Mechanik, 77(4):267–279, 1997. ISSN 1521-4001.
doi:10.1002/zamm.19970770411.

[Trottenberg et al., 2000] Ulrich Trottenberg, Cornelius W Oosterlee, and An-
ton Schuller. Multigrid. Academic press, 2000.

[Truesdell and Noll, 1965] Clifford Truesdell and Walter Noll. The Non-
Linear Field Theories of Mechanics. Springer-Verlag, 1965.

[Turner et al., 1956] M. J. Turner, R. W. Clough, H. C. Martin, and L. P. Topp.
Stiffness and deflection analysis of complex structures. J. Aeronautical
Society, 23(9):805–824, 1956.

[van Baar et al., 2011] Jeroen van Baar, Steven Poulakos, Wojciech Jarosz,
Derek Nowrouzezahrai, Rasmus Tamstorf, and Markus Gross.
Perceptually-Based Compensation of Light Pollution in Display
Systems. In Symposium on Applied Perception in Graphics and Visualization,
2011.

211

http://dx.doi.org/10.1145/37401.37427
http://dx.doi.org/10.1111/j.1467-8659.2005.00829.x
http://dl.acm.org/citation.cfm?id=1218064.1218079
http://dl.acm.org/citation.cfm?id=1218064.1218079
http://dx.doi.org/10.1002/zamm.19970770411

REFERENCES

[van der Vorst, 1982] H. A. van der Vorst. A Generalized Lanczos Scheme.
Mathematics of Computation, 39(160):pp. 559–561, Oct 1982. ISSN
00255718. doi:10.2307/2007333.

[Vaněk, 1992] Petr Vaněk. Acceleration of convergence of a two-level algo-
rithm by smoothing transfer operator. Applications of Mathematics, 37:
265–274, 1992. URL http://dml.cz/dmlcz/104515.

[Vassilevski, 2008] Panayot S. Vassilevski. Multilevel Block Factorization
Preconditioners, Matrix-based Analysis and Algorithms for Solving Fi-
nite Element Equations. Springer, 2008. doi:10.1137/1.9780898719505.

[Volino et al., 2009] Pascal Volino, Nadia Magnenat-Thalmann, and Francois
Faure. A simple approach to nonlinear tensile stiffness for accurate
cloth simulation. ACM Trans. Graph., 28:105:1–105:16, September 2009.
ISSN 0730-0301. doi:10.1145/1559755.1559762.

[Vouga et al., 2011] Etienne Vouga, David Harmon, Rasmus Tamstorf, and Ei-
tan Grinspun. Asynchronous variational contact mechanics. Computer
Methods in Applied Mechanics and Engineering, 200(25–28):2181–2194, 2011.
doi:10.1016/j.cma.2011.03.010.

[Wardetzky et al., 2007] Max Wardetzky, Miklós Bergou, David Harmon, De-
nis Zorin, and Eitan Grinspun. Discrete Quadratic Curvature Energies.
Computer Aided Geometric Design, 24(8-9):499–518, Nov 2007.

[Wardetzky et al., 2008] Max Wardetzky, Miklós Bergou, Akash Garg, David
Harmon, Denis Zorin, and Eitan Grinspun. Discrete Differential Ge-
ometry: An Applied Introduction. In SIGGRAPH Asia ’08: ACM SIG-
GRAPH Asia 2008 Courses, New York, NY, USA, 2008. ACM.

[Williams, 2010] Robert W. Williams. Measuring and modeling the
anisotropic, nonlinear and hysteretic behavior of woven fabrics. PhD
thesis, University of Iowa, December 2010. URL http://ir.uiowa.edu/
etd/907.

[Wineman and Pipkin, 1964] A.S. Wineman and A.C. Pipkin. Material
symmetry restrictions on constitutive equations. Archive for Ra-
tional Mechanics and Analysis, 17(3):184–214, 1964. ISSN 0003-9527.
doi:10.1007/BF00282437.

[Witkin and Baraff, 1997] Andrew Witkin and David Baraff. Physically
Based Modeling: Principles and Practice. In SIGGRAPH ’97: ACM SIG-
GRAPH 1997 Courses. ACM, 1997.

[Wu et al., 2003] Z. Wu, C.K. Au, and Matthew Yuen. Mechanical
properties of fabric materials for draping simulation. Interna-

212

http://dx.doi.org/10.2307/2007333
http://dml.cz/dmlcz/104515
http://dx.doi.org/10.1137/1.9780898719505
http://dx.doi.org/10.1145/1559755.1559762
http://dx.doi.org/10.1016/j.cma.2011.03.010
http://ir.uiowa.edu/etd/907
http://ir.uiowa.edu/etd/907
http://dx.doi.org/10.1007/BF00282437

REFERENCES

tional Journal of Clothing Science and Technology, 15(1):56–68, 2003.
doi:10.1108/09556220310461169.

[Yan, 1999] Baisheng Yan. Existence and Regularity Theory for Nonlinear
Elliptic Systems and Multiple Integrals in the Calculus of Variations.
Course notes, Math 994-01, Spring ’99, 1999. URL http://users.math.
msu.edu/users/yan/full-notes.pdf.

[Zhang and Fu, 2000] Y.T. Zhang and Y.B. Fu. A micromechanical model
of woven fabric and its application to the analysis of buckling un-
der uniaxial tension: Part 1: The micromechanical model. International
Journal of Engineering Science, 38(17):1895–1906, 2000. ISSN 0020-7225.
doi:10.1016/S0020-7225(00)00012-4.

[Zhang and Fu, 2001] Y.T. Zhang and Y.B. Fu. A micro-mechanical model
of woven fabric and its application to the analysis of buckling under
uniaxial tension. Part 2: buckling analysis. International Journal of En-
gineering Science, 39(1):1–13, 2001. ISSN 0020-7225. doi:10.1016/S0020-
7225(00)00013-6.

[Zheng and James, 2011] Changxi Zheng and Doug L. James. Toward High-
Quality Modal Contact Sound. ACM Trans. Graph., 30(4):38:1–38:12, July
2011.

[Zheng, 1993a] Q.-S. Zheng. On transversely isotropic, orthotropic and rela-
tive isotropic functions of symmetric tensors, skew-symmetric tensors
and vectors. Part I: Two dimensional orthotropic and relative isotropic
functions and three dimensional relative isotropic functions. Interna-
tional Journal of Engineering Science, 31(10):1399 – 1409, 1993a. ISSN 0020-
7225. doi:10.1016/0020-7225(93)90005-F.

[Zheng, 1993b] Quanshui Zheng. Two-dimensional Tensor Function Repre-
sentation for All Kinds of Material Symmetry. Proceedings: Mathematical
and Physical Sciences, 443(1917):127–138, Oct 1993b.

[Zheng, 1994] Quanshui Zheng. Theory of Representations for Tensor
Functions—A Unified Invariant Approach to Constitutive Equations.
Applied Mechanics Reviews, 47(11):545–587, 1994. doi:10.1115/1.3111066.

[Zheng and Boehler, 1994] Quanshui Zheng and J. P. Boehler. The descrip-
tion, classification, and reality of material and physical symmetries.
Acta Mechanica, 102(1–4):73–89, 1994. doi:10.1007/BF01178519.

[Zhou et al., 2009] Wenwen Zhou, Joshua D. Griffin, and Ioannis G. Akrotiri-
anakis. A globally convergent modified conjugate-gradient line-search

213

http://dx.doi.org/10.1108/09556220310461169
http://users.math.msu.edu/users/yan/full-notes.pdf
http://users.math.msu.edu/users/yan/full-notes.pdf
http://dx.doi.org/10.1016/S0020-7225(00)00012-4
http://dx.doi.org/10.1016/S0020-7225(00)00013-6
http://dx.doi.org/10.1016/S0020-7225(00)00013-6
http://dx.doi.org/10.1016/0020-7225(93)90005-F
http://dx.doi.org/10.1115/1.3111066
http://dx.doi.org/10.1007/BF01178519

REFERENCES

algorithm with inertia controlling. Technical Report 2009-01, SAS In-
stitute Inc., September 2009. URL http://www.optimization-online.
org/DB_HTML/2009/09/2406.html.

214

http://www.optimization-online.org/DB_HTML/2009/09/2406.html
http://www.optimization-online.org/DB_HTML/2009/09/2406.html

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	List of Tables
	List of Symbols and Notation
	Introduction
	1.1 Outline
	1.2 Contributions
	1.3 Publications

	Related Work
	2.1 Cloth models
	2.2 Time integration
	2.3 Multigrid methods
	2.4 Contact handling

	Continuum mechanics
	3.1 Basics of continuum mechanics
	3.2 The elasticity tensor
	3.3 Strong ellipticity
	3.4 Invariants
	3.5 Symmetry
	3.6 Anisotropy
	3.7 Orthotropy
	3.8 Derivatives of invariants
	3.9 Summary

	St. Venant-Kirchhoff membranes
	4.1 Bases for symmetric matrices
	4.2 Isotropic St. Venant-Kirchhoff material
	4.3 Orthotropic St. Venant-Kirchhoff material
	4.4 Natural orthotropic invariants
	4.5 Constant strain discretization
	4.5.1 Representation of the strain tensor
	4.5.2 Evaluation of St. Venant-Kirchhoff energy
	4.5.3 Evaluation of other orthotropic energy functions
	4.5.4 Membrane force evaluation
	4.5.5 Membrane force Jacobians

	4.6 Animated rest state

	Discrete shells
	5.1 Background and overview
	5.2 Orthotropy
	5.3 Bending energy
	5.4 Hinge-angle gradient and Hessian
	5.5 Refactoring the bending energy Hessian
	5.5.1 Exploiting two levels of symmetry in ' `39`42`"613A``45`47`"603AHess()
	5.5.2 Computing '' T

	5.6 Implementation of a thin shell code testbed
	5.7 Method in brief
	5.8 Evaluation
	5.8.1 Test cases
	5.8.2 Numerical accuracy
	5.8.3 Performance

	5.9 Limitations

	Unconstrained dynamics
	6.1 Euler-Lagrange equations
	6.2 Time discretization
	6.3 Root finding
	6.4 Incremental potential
	6.5 Integrating a 3D hinge
	6.6 Ill-conditioning
	6.7 Non-convex optimization
	6.8 Summary

	Contact modeling
	7.1 Motivation
	7.2 Stiffness and compliance
	7.3 Constraint functions
	7.4 Constrained integration
	7.5 Inequality constraints
	7.6 Nonlinear collision constraints
	7.7 Linearized collision constraints
	7.8 Non-penetration model
	7.9 Restitution
	7.10 Friction model
	7.11 Contact force coupling

	Contact solver
	8.1 Nonlinear staggered projections
	8.2 QP formulation of non-penetration
	8.3 QP formulation of friction forces
	8.4 Dual formulation of contact forces
	8.5 Coupled QPs for contact and friction
	8.6 Iterative contact solver (ADONIS)
	8.7 Contact groups
	8.8 Application of the compliance matrix
	8.9 Termination
	8.10 A localized modified-Newton strategy
	8.11 Collision detection
	8.12 Choice of unconstrained guess
	8.13 Summary

	Evaluation of contact solver
	9.1 Case Study 1: Single Rod Collisions
	9.2 Case Study 2: Hair Balls
	9.2.1 Timing breakdown and scaling
	9.2.2 Sufficient nonlinearity
	9.2.3 Turning the contact numbers knob
	9.2.4 Stability in rod assemblies

	9.3 Case study 3: Combing, Flinging and Tangling
	9.3.1 Comb out
	9.3.2 Debris fling
	9.3.3 Rod catch

	9.4 Limitations
	9.5 Summary

	Multigrid methods
	10.1 Multigrid basics
	10.2 Smoothing
	10.3 Coarse-grid correction
	10.4 Convergence analysis
	10.5 Designing MG algorithms
	10.6 Nodal vs. unknown-based coarsening
	10.7 Designing problems for multigrid
	10.8 Summary

	Smoothed Aggregation
	11.1 Challenges for multigrid
	11.2 Smoothed Aggregation
	11.3 Null space
	11.4 Smoothing
	11.5 Prefiltering of equality constraints
	11.6 Implementation
	11.7 Examples
	11.8 Evaluation
	11.8.1 Convergence rates
	11.8.2 Setup time
	11.8.3 Time to solution

	11.9 Limitations
	11.10 Summary

	Conclusion
	Multigrid preconditioners
	References

