
Diss. ETH No. 17558

3D Video Acquisition,
Representation & Editing

A dissertation submitted to

ETH Zurich

for the Degree of

Doctor of Sciences

presented by

Michael Waschbüsch

Diplom-Informatiker
born 15 January 1976
citizen of Germany

accepted on the recommendation of

Prof. Dr. Markus Gross, examiner
Prof. Dr. Marcus Magnor, co-examiner
Dr. Stephan Würmlin, co-examiner

2007

ii

Abstract
3D video is a new kind of media that captures three-dimensional appearance
and dynamics of real-world scenes by combining data from multiple input video
streams to a consistent model. During playback, it provides the viewer with the
possibility of freely choosing the viewpoint of a virtual camera in space and time.

In this thesis, we present a 3D video system covering the full processing
pipeline from acquisition over data representation, post-processing and editing
up to high-quality display. The focus of our research lies on 3D video data rep-
resentations. We investigate both image-based and geometric models. While
the first show advantages in achievable output image quality, the latter provide
more flexibility for applications beyond pure playback. In particular, we inves-
tigate methods for data streaming and compression, dynamic out-of-core data
structures, and interactive 3D video editing.

For data acquisition we introduce a scalable system based on multiple sparsely
placed 3D video bricks. Each brick captures high-quality depth maps of the scene
from its respective viewpoint, using a combination of spacetime stereo vision and
structured light projection. Texture images and pattern-augmented views are ac-
quired simultaneously by time-multiplexed projections and synchronized camera
exposures.

Our image space representation consisting of billboard planes augmented by
detailed displacement maps combines the generality of acquired geometry with
the regularization properties of purely image-based methods. Being placed in
the disparity space of the acquisition cameras, the billboards provide a regular
sampling of the scene with a uniform error model. Based on that, we propose
a geometry filtering method which generates spatially and temporally coherent
models and removes reconstruction noise as well as calibration errors. Rendering
is performed using a GPU-accelerated algorithm which generates consistent view-
dependent geometry and texture for each individual viewpoint.

Point samples are the fundamental primitive of our second representation. By
carrying multiple surface attributes such as position and color, they provide a uni-
fied model of geometry and appearance of natural scenes. This representation
allows for application of various post-processing algorithms for improving noisy
input geometry. In particular, we propose a method that effectively removes out-
liers by enforcing photo consistency with all input views. By augmenting the
points by a statistical model of acquisition noise, smooth images of the scene
from novel viewpoints can be generated using a probabilistic renderer based on
GPU-accelerated EWA volume splatting.

iii

Abstract

Point samples are ideally suited for streaming and compression. In contrast
to mesh-based representations, no connectivity has to be encoded. We present a
unified framework for compression of geometry and appearance of point-sampled
models. Based on a multiresolution decomposition of the point cloud, it generates
a data stream which easily allows for progressive decoding during transmission.
Our method is generic in the sense that it can handle arbitrary point attributes
using attribute-specific coding operators. In particular, we provide operators for
point position, normal and color.

As an application beyond virtual playback we present a versatile system for
interactive nonlinear editing of 3D video footage. It combines the advantages
of conventional 2D video editing with the power of more advanced geometry-
enhanced 3D video streams. Its underlying core data structure is a point-based
representation of four-dimensional spacetime, which we call the video hypervol-
ume. A dynamic out-of-core spatial indexing structure permits handling of large
data sets that do not fit into main memory. Combined with a multiresolution hier-
archy, access is possible at interactive rates. Conceptually, the editing loop com-
prises three fundamental operators: slicing, selection, and editing. The slicing
operator allows users to visualize arbitrary subvolumes of the 4D data set. Vi-
sualization of both spatial and temporal domains allows for unified editing of all
dimensions. The selection operator labels subsets of the footage for further modi-
fication. It includes a semi-automatic segmentation algorithm based on 4D graph
cuts for convenient object selection. The actual editing operators include cut &
paste, affine transformations, and shadow mapping. With those, a user is able to
generate complex visual effects. Thus, 3D video provides a novel tool for video
post-production, yielding possibilities for special effects that would be difficult or
impossible to achieve with conventional two-dimensional imaging technologies.

iv

Kurzfassung
3D-Video ist eine neue Medienform, die das dreidimensionale Erscheinungsbild
sowie die Dynamik realer Szenen erfasst, indem bei der Aufnahme mehrere Vi-
deoströme zu einem konsistenten Modell zusammengefasst werden. Während der
Wiedergabe bietet es dem Betrachter eine virtuelle Kamera, deren Position und
Blickrichtung beliebig in Raum und Zeit festgelegt werden können.

In dieser Dissertation präsentieren wir ein 3D-Video-System, welches die voll-
ständige Verarbeitungskette von der Aufnahme über die Datenverarbeitung und
das manuelle Editieren bis hin zur hochqualitativen Bildgenerierung umfasst. Der
Fokus unserer Forschung liegt auf 3D-Video-Datenmodellen. Wir untersuchen so-
wohl bildbasierte als auch geometrische Repräsentationen. Während erstere eine
bessere Bildqualität ermöglichen, bieten letztere mehr Flexibilität für Anwendun-
gen, die über das reine Abspielen hinausgehen. Dort untersuchen wir insbesondere
Methoden zur Kompression und Datenübertragung, dynamische, externe Daten-
strukturen sowie interaktives Editieren von 3D-Video.

Zur Datenakquisition stellen wir ein skalierbares System basierend auf meh-
reren, spärlich platzierten 3D-Video-Bricks vor. Jeder Brick erfasst hochqualitati-
ve Tiefenkarten der Szene aus seiner individuellen Blickrichtung mit Hilfe eines
raumzeitlichen Stereo-Algorithmus in Kombination mit Projektionen strukturier-
ten Lichts. Durch eine spezielle Synchronisation der Projektionen mit den Kame-
raverschlüssen können sowohl Texturen der Szene als auch die Lichtmuster fast
gleichzeitig im Zeitmultiplex aufgenommen werden.

Unser bildbasiertes Datenmodell besteht aus Billboard-Ebenen und dazugehö-
rigen Texturen mit detaillierten Farb- und Höheninformationen. Es kombiniert die
Allgemeingültigkeit individuell rekonstruierter Geometrie mit den Regularisie-
rungseigenschaften rein bildbasierter Verfahren. Durch ihre Definition im Raum
der Disparitäten der Aufnahmekameras bieten die Billboards eine reguläre Abta-
stung der Szene mit einem uniformen Fehlermodell. Basierend darauf kann ein
Geometrie-Filter erstellt werden, der sowohl Rauschen als auch Kalibrierungsfeh-
ler räumlich und zeitlich kohärent beseitigt. Zur Bildgenerierung wird ein hard-
warebeschleunigter Algorithmus eingesetzt, der individuell von der Blickrichtung
abhängige, konsistente Geometrie und Textur erzeugt.

Punktprimitive bilden das fundamentale Element unseres zweiten Datenmo-
dells. Sie modellieren dreidimensionale Oberflächen durch diskrete Punkte, in-
dem sie gleichzeitig verschiedene lokale Attribute wie z.B. Position und Farbe
speichern, und ermöglichen somit eine einheitliche Repräsentation von Geome-
trie und Erscheinungsbild natürlicher Szenen. Sie erlauben die Anwendung einer

v

Kurzfassung

Vielzahl von Algorithmen zur Nachbearbeitung und Verbesserung der rekonstru-
ierten Geometrie. Insbesondere stellen wir eine Methode zur effektiven Entfer-
nung von Ausreißern vor, indem die photometrische Konsistenz des Modells mit
den Eingabebildern sichergestellt wird. Ein in der Repräsentation enthaltenes, sta-
tistisches Fehlermodell ermöglicht die Generierung sauberer Bilder der Szene aus
neuen Blickrichtungen mit Hilfe eines probabilistischen, hardwarebeschleunigten
Verfahrens basierend auf volumetrischem EWA-Splatting.

Punkte eignen sich ideal zur komprimierten Datenübertragung. Im Gegensatz
zu Dreiecksnetzen muss keine Konnektivität gespeichert werden. Wir präsentie-
ren ein einheitliches System zur Komprimierung von Geometrie und Erschei-
nungsbild punktbasierter Modelle. Durch eine hierarchische Dekomposition der
Punktwolke wird ein Datenstrom generiert, der auf einfache Weise während der
Übertragung progressiv dekodiert werden kann. Indem man ihr spezielle Kodie-
rungsoperatoren zur Verfügung stellt, kann unsere generische Methode beliebi-
ge Punkt-Attribute komprimieren. Wir stellen Operatoren für Position, Farbe und
Oberflächennormale zur Verfügung.

Als eine Anwendung, die über die reine Wiedergabe hinausgeht, präsentieren
wir ein System zum interaktiven nichtlinearen Editieren von 3D-Video. Es kom-
biniert die Vorteile konventioneller 2D-Video-Nachbearbeitung mit denen der in
3D-Video enthaltenen Geometrieinformationen. Es basiert auf einer punktbasier-
ten Repräsentation der vierdimensionalen Raumzeit, dem so genannten Video-
Hypervolumen. Eine dynamische, externe Indexstruktur ermöglicht die Verarbei-
tung großer Datensätze, die nicht in den Hauptspeicher passen. Kombiniert mit
einer Auflösungshierarchie ist ein interaktiver Zugriff möglich. Die Videobear-
beitung läuft konzeptionell in einer Schleife bestehend aus drei fundamentalen
Operatoren ab: Slicing, Selektion und Editieren. Der Slicing-Operator ermöglicht
es dem Benutzer, beliebige Teilvolumen des vierdimensionalen Datensatzes zu
visualisieren. Ansichten sowohl der räumlichen als auch der zeitlichen Domänen
ermöglichen eine einheitliche Bearbeitung aller Dimensionen. Die Selektionsope-
ratoren markieren Bereiche des Datensatzes für die weitere Bearbeitung. Sie bein-
halten einen halbautomatischen Segmentierungsalgorithmus basierend auf einem
vierdimensionalen Graphenschnitt-Verfahren. Zum eigentlichen Editieren stehen
unter anderem Operatoren zum Ausschneiden und Einfügen, affine Transforma-
tionen sowie Werkzeuge zum Einfügen künstlicher Schlagschatten zur Verfügung.
Mit diesen kann ein Benutzer auf einfache Weise komplexe Effekte erzeugen. Da-
mit eignet sich 3D-Video als ein neues Werkzeug zur Videoproduktion, das das
Erstellen von Spezialeffekten ermöglicht, die mit konventionellem, zweidimen-
sionalem Video nur schwierig oder überhaupt nicht zu erreichen wären.

vi

Acknowledgments
I would like to express my gratitude to my advisor Markus Gross for giving me
the opportunity to work in such a stimulating and challenging environment, and
for his guidance and support during the development of this thesis.

My sincere thanks go to my co-advisors: to Stephan Würmlin for his continuous
advice, insightful discussions, and critical observations, which helped to keep me
on the right track during the last four years, and to Marcus Magnor for his helpful
comments.

Many people assisted to successfully complete this project. I am especially
obliged to Daniel Cotting for our enjoyable and fruitful collaboration, Filip Sadlo
for helping with the camera calibration, Edouard Lamboray for contributing to the
point compression project, Doo Young Kwon and Vanessa Stadler for acting in
the 3D video recordings, and Christoph Niederberger for video cutting. Addition-
ally, many thanks to all students who contributed to parts of the implementation
(in alphabetical order): Rolf Adelsberger, Oliver Büechi, Michael Duller, Felix
Eberhard, Claudio Hatz, Patrick Jenni, Peter Kaufmann, Roger Küng, and Stefan
Rondinelli.

My special thanks go to all my colleagues and friends at ETH Zurich for
giving me daily support and for creating such a pleasant working environment:
Bernd Bickel, Mario Botsch, Manuela Cavegn, Gaël Guennebaud, Simon Heinzle,
Richard Keiser, Silke Lang, Martin Näf, Miguel Otaduy, Mark Pauly, Ronny Peik-
ert, Christian Sigg, Denis Steinemann, Bob Sumner, Nils Thürey, Tim Weyrich,
Martin Wicke, and Remo Ziegler.

Last but not least, let me thank Alexander Keller, who sparked my interest in
the fascinating world of Computer Graphics and who encouraged me to do a PhD
in that field.

This work has been carried out in the context of the blue-c-II project, funded by
ETH grant No. 0-21020-04 as an internal poly-project.

vii

Acknowledgments

viii

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Contributions . 3
1.3 Publications . 5
1.4 Organization . 6

2 Related Work 9

2.1 3D Video . 9
2.2 Point-Sampled Geometry . 10

2.2.1 Rendering . 11
2.2.2 Geometry Processing . 11
2.2.3 Compression . 12

2.3 Video Editing . 13

3 Reconstructing 3D Scenes from 2D Images 15

3.1 Survey of Depth Acquisition Methods . 16
3.1.1 Stereo Vision . 17
3.1.2 Structured Light . 18
3.1.3 Time of Flight . 19
3.1.4 Shape from Silhouettes . 19
3.1.5 Summary . 20

3.2 Mathematical Concepts of Image Acquisition 20
3.2.1 The Pinhole Camera Model . 21
3.2.2 Real-World Cameras . 23
3.2.3 Epipolar Geometry . 23
3.2.4 Image Rectification . 25
3.2.5 Stereo Triangulation . 27

3.3 Stereo Matching . 28
3.4 Stereo on Structured Light . 30
3.5 Handling Depth Discontinuities . 32

3.5.1 Symmetric Stereo Matching . 32
3.5.2 Multi-Window Matching . 34

3.6 Conclusion . 34

4 A 3D Video Acquisition System with Active Illumination 37

4.1 Acquisition Hardware . 37

ix

Contents

4.1.1 3D Video Bricks . 38
4.1.2 Recording and Projection Infrastructure 38
4.1.3 Studio Setup . 41

4.2 Simultaneous Structured Light and Texture Acquisition 41
4.3 Camera Calibration . 44
4.4 Real-Time Recording . 46
4.5 Results . 48
4.6 Conclusion . 50

5 Point-Sampled 3D Video 53

5.1 Introduction to Point-Sampled Geometry 54
5.1.1 Data Model . 54
5.1.2 Rendering . 56

5.2 Probabilistic Point Samples for 3D Video 59
5.3 Scan Merging . 61
5.4 Rendering . 63

5.4.1 Probabilistic Rendering . 63
5.4.2 View-Dependent Blending . 64

5.5 Results and Discussion . 65
5.5.1 Image Quality . 66
5.5.2 Scalability . 66
5.5.3 Editing Capabilities . 66

5.6 Conclusions . 69

6 3D Video Billboard Clouds 71

6.1 Data Model . 72
6.1.1 Scene Sampling and Error Model 74
6.1.2 Optimal Billboard Placement . 75

6.2 Filtering Framework . 77
6.2.1 Intra-View Filter . 77
6.2.2 Inter-View Filter . 78
6.2.3 Comparison of Filters . 80

6.3 View-Dependent Rendering and Blending 80
6.4 Handling Scenes . 82

6.4.1 Segmentation . 83
6.4.2 Matting . 88

6.5 Results . 88
6.6 Comparison with Point-Sampled 3D Video 92
6.7 Conclusion . 94

7 Point Samples for Efficient Storage of 3D Scenes 97

7.1 Algorithm Overview . 98
7.2 Multiresolution Decomposition . 99
7.3 Predictive Differential Coding . 101

x

Contents

7.3.1 Positions . 102
7.3.2 Colors . 104
7.3.3 Normals . 105

7.4 Encoding the Detail Coefficients . 105
7.5 Results . 106
7.6 Conclusion . 109

8 The Video Hypervolume 113

8.1 Data Model . 114
8.2 Hyperslicing . 115
8.3 Out-of-Core Data Structure . 117

8.3.1 External-Memory kd-Tree . 118
8.3.2 The Logarithmic Method . 120
8.3.3 External Storage of 3D Video Frames 123

8.4 Multiresolution Hierarchy . 123
8.5 Results . 126
8.6 Conclusion . 129

9 Interactive 3D Video Editing 131

9.1 System Overview . 131
9.2 Navigation . 133
9.3 Selection . 134

9.3.1 Region Selection Tools . 135
9.3.2 Object Selection . 136

9.4 Editing . 139
9.5 Results . 140
9.6 Conclusion . 141

10 Conclusion 145

10.1 Review of Contributions . 145
10.2 Outlook . 147

A 3D Video Data Sets 149

A.1 Acquisition Setups . 149
A.1.1 Three-Brick Setup . 149
A.1.2 Four-Brick Setup . 150

A.2 Data Sets . 151
A.2.1 Taekwondo . 151
A.2.2 Flamenco . 152
A.2.3 Juggle . 153
A.2.4 Sofa . 154

B Glossary of Notations 155

Copyrights 165

xi

Contents

Bibliography 167

Curriculum Vitae 179

xii

Figures

1.1 The 3D video pipeline . 6

3.1 The pinhole camera model . 21
3.2 Epipolar geometry . 24
3.3 Epipolar geometry of a rectified camera pair 25
3.4 Stereo image pair with epipolar lines . 27
3.5 Stereo triangulation . 28
3.6 Stereo images under uniform and structured light illumination 31
3.7 Depth map reconstructed under uniform and structured light illumination . 32
3.8 Difficulties in correlating depth discontinuities 33
3.9 Symmetric stereo matching . 33
3.10 Comparison of results of single-window and multi-window stereo 35

4.1 3D video brick . 39
4.2 3D video studio infrastructure . 39
4.3 Genlock connector . 40
4.4 Synchronization microcontroller . 40
4.5 3D video recording studio . 41
4.6 Schematic of a DLP projector . 43
4.7 Timing diagrams of different camera projector synchronization modes . . . 45
4.8 Camera images acquired using inverse pattern projection 46
4.9 Camera images acquired using black frame embedding 47
4.10 Camera calibration with a checkerboard target 48
4.11 Taekwondo scene: color images and depth maps 49
4.12 Flamenco scene: color images and depth maps 51

5.1 Surfels . 56
5.2 Point splatting algorithm . 58
5.3 Construction of a 3D Gaussian ellipsoid 60
5.4 Algorithm for photo consistency enforcement 62
5.5 Result of photo consistency enforcement 63
5.6 Comparison of probabilistic rendering methods 64
5.7 Re-renderings of a 3D video from novel viewpoints 67
5.8 Comparison between surfel renderer and probabilistic renderer 68
5.9 Reconstructed geometric detail . 68
5.10 Scan merging . 68

xiii

Figures

5.11 Special effects . 69

6.1 Billboard input data . 73
6.2 Illustration of billboard cloud . 73
6.3 Illustration of sampling and error model 75
6.4 Illustration of optimization of billboard plane position and orientation . . . 76
6.5 Splatting algorithm for inter-view filter . 80
6.6 Comparison of displacement filtering methods 81
6.7 Illustration of view-dependent depth blending 82
6.8 Comparison between color only blending and color & depth blending . . . 83
6.9 Illustration of graph cut segmentation . 86
6.10 Illustration of scene segmentation into billboard clouds 87
6.11 Graph cut segmentation using colors only or colors & depths 87
6.12 Object segmentation and matting process 88
6.13 Flamenco data set rendered from novel views 90
6.14 Taekwondo data set rendered from novel views 91
6.15 Subpixel stereo versus bilateral filtering 92
6.16 Issues of filtering thin, fast moving structures 92
6.17 Comparison of visual quality of point-based and billboard-based 3D video . 94

7.1 Compression pipeline . 98
7.2 Point contraction scheme . 99
7.3 Point clusters generated by successive perfect matching passes 101
7.4 Prediction and detail coefficients . 103
7.5 Encoding and decoding operator framework 103
7.6 Reference frame for position detail coefficients 104
7.7 Histograms of position detail coefficients 104
7.8 Histograms of color detail coefficients . 105
7.9 Histograms of normal detail coefficients 105
7.10 Compression performance of position coder 108
7.11 Rate-distortion curves for progressive decompression 109
7.12 Comparison of position coders . 109
7.13 Visual artifacts of position compression 110
7.14 Visual artifacts of color compression . 110
7.15 Visual artifacts of normal compression . 110
7.16 Visual artifacts of progressive decompression 110

8.1 The video hypervolume . 114
8.2 Hyperslice orientations . 116
8.3 Hyperslicing . 117
8.4 Blocked 2D kd-tree without block optimization 119
8.5 Blocked 2D kd-tree with block optimization 120
8.6 Example of node and leaf block file structure 121
8.7 Bkd-tree data structures . 122

xiv

Figures

8.8 Bkd-tree example . 122
8.9 Storage of multiple frames in Bkd-trees 124
8.10 Construction of multiresolution hierarchy 125
8.11 Distribution of multiresolution data into disk blocks 126
8.12 Scene displayed by preview renderer at different levels of detail 128
8.13 Time for window queries . 129
8.14 Insertion time . 130

9.1 The 3D video editing framework . 132
9.2 Typical 3D video editing session . 132
9.3 Interactive hyperslicing . 134
9.4 Generation of non-orthogonal hyperslices 135
9.5 Object selection . 136
9.6 4D graph construction . 137
9.7 Actor cloning . 142
9.8 Insertion of virtual object . 143
9.9 Insertion of 2D objects and videos . 144

A.1 Acquisition setup with three 3D video bricks 149
A.2 Acquisition setup with four 3D video bricks 150
A.3 Color camera images of the taekwondo sequence 151
A.4 Color camera images of the flamenco sequence 152
A.5 Color camera images of the juggle sequence 153
A.6 Color camera images of the sofa sequence 154

xv

Figures

xvi

Tables

3.1 Comparison of depth acquisition methods 20
3.2 Stereo matching performance . 35

5.1 Typical attributes of a point primitive . 55
5.2 Different point types used in the thesis . 57

6.1 Comparison of point-based and billboard-based 3D video 93

7.1 Compression performance of color coder 107
7.2 Compression performance of normal coder 108

8.1 Performance comparison of Bkd-tree with R*-tree 118
8.2 Time for loading LOD hierarchy levels . 127

A.1 Technical details of the taekwondo sequence 151
A.2 Technical details of the flamenco sequence 152
A.3 Technical details of the juggle sequence 153
A.4 Technical details of the sofa sequence . 154

xvii

Tables

xviii

Chapter 1

Introduction
3D video extends conventional video technologies by capturing three-dimensional
appearance and dynamics of real-world scenes. During playback, it provides the
viewer with the possibility to change the viewpoint at will. Moreover, 3D video
is a new tool for video post-production. Besides creation of novel visual effects,
available information about the three-dimensional scene structure greatly simpli-
fies conventional video editing such as scene compositing.

This chapter gives a motivation for our research on 3D video and discusses our
novel contributions to that field. After summarizing the publications that have
been released during our research, it closes with an overview over the remaining
parts of this thesis.

1.1 Motivation

Being able to digitally experience real-world locations and events from arbitrary
viewpoints and viewing directions has interesting applications in next-generation
television, video games, virtual reality and movie production. Imagine watch-
ing a sports play on television always from the best perspective by interactively
choosing any viewpoint in a sports stadium using your remote control. For such
experiences the scene has to be captured first using a set of digital cameras. Then,
the multi-view image or video data has to be processed to some representation of
the scene that allows virtual views to be synthesized.

Such technology is usually referred to as 3D photography if the scene is static,
or 3D video if the scene is captured in motion. It can be categorized as a disci-
pline of visual computing [Gross, 1994] as it uses algorithms from both computer
graphics and computer vision. It is closely linked to the area of computational pho-
tography [Raskar and Tumblin, 2007], where multiple images or are often used to
manipulate the appearance of a scene viewed from a single position for example
by modifying the illumination [Sen et al., 2005] or by changing the optical pa-
rameters of the camera [Ng et al., 2005; Wilburn et al., 2005]. In contrast to that,

1

Chapter 1 Introduction

we focus our research on the geometry of a scene and investigate applications like
replay from a virtual camera position and interactive content manipulation. This
field is also often referred to as free-viewpoint video.

Virtual replays as well as freeze-and-rotate visual effects become feasible with
fully automated processes using video cameras as input only. However, high-
quality results are not achieved easily for arbitrary setups. Today, such effects
typically have to be planned precisely and changes are no more feasible after
the scene has been shot. As an example, Digital Air’s R© Movia R© digital cam-
era systems comprise high-speed, high-definition digital cinema cameras which
are placed accurately such that no software view interpolation is needed. On the
other hand, LiberoVision’s R© DiscoverEye R© camera system is able to use video
streams of conventional television cameras. However, it is currently specialized
to broadcasts of soccer games only.

In this thesis, we would like to alleviate those constraints. We present a 3D
video system covering the full processing pipeline from acquisition over data
representation and editing up to high-quality display. Our work is motivated by
bringing 3D video to a new degree where not only capturing and subsequent high-
quality re-rendering is cost-effective, convenient and scalable but also editing is
easy to do.

The focus of our research lies on 3D video data representations. They strongly
influence the final image quality. Geometry-based representations are typically
view-independent and can be used for arbitrary camera configurations. However,
they often do not allow for production-quality results. Image-based represen-
tations allow to synthesize high-quality images even of highly complex scenes.
However, the lack of detailed geometry and the need for very dense camera setups
limit its practical applicability.

Moreover, the data representation determines the applicability of 3D video for
an end user. To bring the new media to the masses, efficient data distribution
methodologies have to be developed, including algorithms for streaming and com-
pression of 3D video content. Scale, resolution, and access patterns during play-
back impose new research challenges. 3D video in principle allows a user to
choose both wide-angle views on large-scale scenes and closeup viewpoints show-
ing high-resolution details. The sampling density required for display can change
over several orders of magnitude in such situations.

In our work we investigate various representations considering aspects like ef-
fective post-processing, high-quality rendering, streaming, compression, and flex-
ibility for editing. To a large part we use point samples. Being able to store a
variety of attributes such as geometry and color, they provide a homogeneous,
view-independent representation for natural scenes. Hence, storage, streaming,
and compression algorithms can handle various kinds of scene data in a unified
way. Because points do not explicitly store topology information, no connectivity
has to be updated during post-processing and editing. On the other hand, bet-
ter image quality can be achieved with our view-dependent representation based
on billboards. Being defined in image space, post-processing of the raw acquired

2

1.2 Contributions

data can be done more effectively, exploiting the regular structure of the sampling.
Editing, however, would break the regularity. In that case, the billboards can be
easily converted to point clouds.

To obtain the input data, we developed a mobile, scalable acquisition system
consisting of multiple so-called 3D video bricks. They capture texture and depth
images of dynamic scenes synchronously from multiple viewpoints. High-quality
depth reconstruction is achieved using a combination of state-of-the-art stereo vi-
sion and image processing algorithms. A three-dimensional description of the
dynamic scene is obtained by merging all information gathered by the different
bricks.

On the application side, current efforts mainly focus on playback from vir-
tual viewpoints. Relatively little research has been devoted to 3D video post-
processing. Having the three-dimensional scene information available, 3D video
cannot only provide novel special effects but also greatly simplifies conventional
video post-production. In principle, tasks like video cutout, scene compositing,
or relighting become more simple end less time-consuming. We developed a new
concept for intuitive manipulation of the four-dimensional data stream, including
a set of basic editing operators exploiting spatial and temporal coherence. In-
tegrated in our 3D video editing framework, they allow for producing a variety
of special effects which would be difficult or impossible to achieve with conven-
tional 2D video. We envision 3D video authoring as convenient as in Apple’s R©

iMovie R© 2D video editing software, allowing for similar editing as carried out in
3D content creation and modeling tools like Autodesk R© Maya R© or Pointshop 3D
[Zwicker et al., 2002a].

1.2 Contributions

In this thesis, we make the following contributions:

Modular 3D video acquisition system. We introduce portable 3D video bricks
which act as low-cost z-cameras and allow for simultaneous texture and depth map
acquisition using spacetime stereo on structured light. To improve reconstruc-
tion accuracy at depth discontinuities, we extend window-based spacetime stereo
matching with an efficient sliding window algorithm. Full 360 degree views of a
scene can be recorded with only a sparse arrangement of bricks. Together, they
build a modular, scalable 3D video acquisition studio.

Probabilistic, point-based 3D video representation. We propose a view-
independent representation of geometry information acquired by the 3D video
bricks. Its point-based nature supports application of a variety of processing al-
gorithms, e.g. for outlier removal, editing, or compression. A statistical model of
the depth reconstruction process together with a probabilistic rendering technique

3

Chapter 1 Introduction

based on view-dependent EWA volume splatting enables image generation from
novel viewpoints with appealing quality.

Image-based 3D video representation. As an alternative, we present a view-
dependent 3D video representation based on displacement-mapped billboards.
Being an image space description with a well-defined error model, it allows for ef-
ficient application of signal processing tools for post-processing the raw acquired
geometry. In particular, we apply a spatio-temporal bilateral filter that success-
fully removes noise and errors, and results in a close alignment of overlapping
surface patches. We propose a rendering technique that generates view-dependent,
consistent geometry from multiple, overlapping input scans. Together with view-
dependent blending of colors, it generates high-quality images of the scene from
novel viewpoints. If required, the image space representation can be easily con-
verted to our point-based representation to perform further editing operations.

Volumetric 3D video representation. We introduce the point-sampled video
hypervolume as a unified representation of four-dimensional spacetime. It allows
for space- and time-coherent application of processing operators and builds the
basis for our 3D video editing framework. A hyperslicing operator selects three-
dimensional subspaces of the four-dimensional volume and allows for visualizing
and editing both spatial and temporal aspects of the 3D video.

Progressive compression scheme for point-sampled models. We present a
generic framework for compression of point-sampled models. By exploiting local
coherence in the point cloud, various point attributes can be stored efficiently in
a progressive data stream containing a compact, multiresolution representation of
the scene. We provide efficient compression operators for point positions, surface
normals, and colors. Together, they allow for efficient, unified storage and trans-
mission of three-dimensional natural scenes including geometry and appearance.

Out-of-core data management. We propose an out-of-core data structure for
storage of large 3D videos in the hypervolume representation. It allows for ef-
ficient queries and for dynamic modifications of the point data with a limited
amount of main memory. Combined with a multiresolution representation, editing
of large data sets is possible at interactive rates.

3D video editing system. We define a set of basic spatio-temporal operators for
editing 3D video footage. In particular, we present a semi-automatic segmentation
algorithm as a tool for making complex selections of surfaces or objects of the 3D
video. Similar to 2D image or video cutout tools, it is based on a global graph
cut optimization process. By using not only colors but also the available geometry
information, we are able to greatly improve the robustness of the optimization
and, thus, require much less user interaction. By integrating all operators in a

4

1.3 Publications

nonlinear 3D video editing system, we demonstrate the suitability of 3D video for
video post-production and generation of novel visual effects.

1.3 Publications

This thesis is based on the following publications that have been released during
four years of research. For a complete list of papers please refer the author’s
resume in the appendix.

WASCHBÜSCH, M., GROSS, M., EBERHARD, F., LAMBORAY, E., and WÜRM-
LIN, S., 2004. Progressive compression of point-sampled models. Proc. of

Eurographics Symposium on Point-Based Graphics ’04, pp. 95–102.

The paper presents an algorithm for progressive compression of static point-
sampled models, including hierarchical prediction schemes for geometry,
surface normals, and colors.

WASCHBÜSCH, M., WÜRMLIN, S., COTTING, D., SADLO, F., and GROSS, M.,
2005. Scalable 3D video of dynamic scenes. Proc. of Pacific Graphics ’05,
pp. 629–638.

This work introduces the concept of 3D video acquisition bricks using active
stereo for depth reconstruction. Furthermore it presents a three-dimensional
probabilistic point-sampled scene model together with probabilistic render-
ing methods.

WASCHBÜSCH, M., WÜRMLIN, S., and GROSS, M., 2006. Interactive 3D video
editing. Proc. of Pacific Graphics ’06, pp. 631–641.

This paper presents our interactive 3D video editing system, including
a novel four-dimensional video hypervolume representation and a semi-
automatic 4D surface selection method based on graph cuts.

WASCHBÜSCH, M., WÜRMLIN, S., COTTING, D., and GROSS, M., 2007a.
Point-sampled 3D video of real-world scenes. Image Communication,
22(2), pp. 203–216.

An extended version of [Waschbüsch et al., 2005], including a novel
discontinuity-preserving stereo matching algorithm.

WASCHBÜSCH, M., WÜRMLIN, S., and GROSS, M., 2007b. 3D Video Bill-
board Clouds. Proc. of Eurographics ’07, pp. 561–569.

This paper presents an image-space 3D video representation using displace-
ment-mapped billboards. A spatio-temporal disparity filter and a rendering
algorithm based on view-dependent geometry achieve high-quality output
images.

5

Chapter 1 Introduction

Billboards (6) Points (5) Hypervolume (8)

Editing (9)Compression (7)

Acquisition (4) & Reconstruction (3)

Rendering

Figure 1.1: The 3D video pipeline as an underlying organization structure of this thesis.
The numbers in brackets denote the corresponding chapters.

1.4 Organization

The remainder of this thesis is organized as follows: After surveying related work
in chapter 2, the different aspects of our 3D video pipeline are described according
to the organization illustrated in figure 1.1. Chapter 3 introduces the fundamen-
tals of acquiring three-dimensional geometry of real-world scenes, which serves
as the basic input data for 3D video. After surveying various computer vision al-
gorithms for that purpose, it presents our implementation of stereo matching on
structured light, which achieves the most robust results. Based on that method,
chapter 4 presents our hardware setup for 3D video acquisition built on the mod-
ular concept of 3D video bricks. They serve as inexpensive capturing devices for
recording geometry and color information of a moving scene synchronously from
multiple viewpoints. To create a 3D video that can be played from arbitrary vir-
tual viewpoints, the gained input data has to be transformed into a representation
suitable for high-quality rendering. We present two basic representations together
with appropriate image generation algorithms: A view-independent, point-based
representation in chapter 5 and a view-dependent, image-based representation in
chapter 6. While the second one achieves superior image quality, the point-based
representation provides most flexibility for applications beyond free-viewpoint
playback, such as editing of 3D video. Because the image-based representation
can be easily converted to points, it can still be used as an intermediate model
to perform high-quality post-processing of the raw geometry data. The power
of points for 3D video transmission is presented in chapter 7. It discusses an

6

1.4 Organization

algorithm for compression of arbitrary attributes of point-sampled models such
as geometry or appearance in a unified way, resulting in a compact, progressive
data stream. Although it has been implemented for static models only, it can in
principle be easily extended to dynamic data. 3D video editing is based on the
point-sampled video hypervolume representation of chapter 8. By unification of
space and time, it permits application of video processing operators that maintain
both spatial and temporal coherence. Quick random access to large 3D video data
sets is achieved by a multiresolution out-of-core spatial indexing structure. Be-
ing a dynamic representation, editing tools can be applied interactively. For that
purpose, we integrated a fundamental set of manipulation operators in an inter-
active, nonlinear 3D video editing system presented in chapter 9. An included
semi-automatic graph cut segmentation algorithm allows for quick, time-coherent
selections of surfaces or objects in the video. Finally we conclude in chapter 10
with a validation of our claimed contributions.

7

Chapter 1 Introduction

8

Chapter 2

Related Work
This chapter presents the state of the art of research covered in this thesis. After
summarizing publications in the topic of 3D video, it focuses on two main aspects
of our work: point-based scene representations and video editing. The third im-
portant topic—reconstruction of depth maps—is covered in detail in section 3.1,
as it directly influences the design of our 3D video acquisition system.

2.1 3D Video

In 3D video, multi-view video streams are used to re-render a time-varying scene
from arbitrary viewpoints. There is a continuum of representations and algorithms
suited for different acquisition setups and applications. Each approach provides a
specific trade-off between image quality, number of acquisition devices, algorith-
mic complexity, and amount of generated data.

Purely image-based representations such as light fields [Levoy and Hanrahan,
1996] generally achieve very high image quality because they do not need any
geometry at all. However, they require very densely-sampled input views [Chai
et al., 2000; Zhang and Chen, 2001] and, thus, a large amount of densely-placed
acquisition cameras. Examples include dynamic light field cameras [Yang et al.,
2002; Wilburn et al., 2005] with camera baselines of a couple of centimeters. As
a consequence, the amount of generated data is high, depending on the acquired
viewing range. Thus, light field representations are most suitable for applications
like 3D-TV [Matusik and Pfister, 2004] when only a very limited virtual viewing
range has to be provided at maximum quality.

Camera configuration constraints can be relaxed by adding more and more ge-
ometry to image-based systems, as demonstrated by lumigraphs [Gortler et al.,
1996; Buehler et al., 2001]. Depth image-based representations [Shade et al.,
1998; Bayakovski et al., 2002] exploit depth information per pixel which can be
computed either by shape-from-silhouettes [Matusik et al., 2000] or by stereo al-
gorithms [Zitnick et al., 2004]. While the former is only applicable to stand-alone

9

Chapter 2 Related Work

objects, the latter still requires small baselines and does not integrate multiple
cameras easily. Hence, both do not permit practical camera configurations for
large viewing ranges.

Explicit 3D geometry allows for view-independent representations. Examples
include implicit surfaces [Cockshott et al., 2003], triangular meshes [Kanade et al.,
1997; Matusik et al., 2001] and 3D point samples [Würmlin et al., 2002]. How-
ever, most approaches are restricted to stand-alone objects due to the applied re-
construction algorithms.

Voxel-based methods [Vedula et al., 2002] are also suited. They represent the
scene as a set of non-empty cells of a regular grid which can be reconstructed from
the input camera images using voxel coloring [Seitz and Dyer, 1997; Culbertson
et al., 1999] or space carving [Kutulakos and Seitz, 1999] algorithms. However,
the regular sampling of the grid limits the resolution of the 3D video, preventing
the user from moving the virtual camera to closeup views.

The use of geometric templates together with video textures alleviates the prob-
lem of robust geometry acquisition. By fitting prior triangular meshes into the
images of the acquisition cameras [Carranza et al., 2003], high-quality output im-
ages can be achieved for almost all camera configurations. The approach can even
be used for relighting the scene [Theobalt et al., 2007]. However, the template
has to be known beforehand. As a consequence, complex scenes are difficult to
model.

Besides virtual playback of prerecorded scenes, researchers also target online
applications for virtual telepresence. Gross et al. [2003] use a 3D video system
based on a point sample representation [Würmlin et al., 2004] for their telecollab-
oration system blue-c. By using the silhouette-based reconstruction algorithm by
Matusik et al. [2000], they are able to achieve a full 360 degree viewing range in
real-time. However, they are again limited to reconstruct foreground objects only.
Mulligan and Daniilidis [2000] also target telepresence. They compute geometric
models with multi-camera stereo and transmit texture and depth over a network.
If only a constrained virtual viewing range is required, the hardware setup and
algorithmic complexity can be dramatically reduced by using billboards instead
of reconstructed geometry [Rhee et al., 2007].

2.2 Point-Sampled Geometry

Over the last years, the point sample gained more and more popularity as a funda-
mental primitive for representing and rendering three-dimensional models. Espe-
cially for the highly complex geometry of scanned real-world objects, points are
often superior to triangle meshes, because no time-consuming computation of a
consistent triangulation is needed. In the following, we summarize the research
on the topics rendering, geometry processing, and compression, that are relevant
for our work. For an overview over the whole field, please refer to Gross [2006]

10

2.2 Point-Sampled Geometry

or Gross and Pfister [2007].

2.2.1 Rendering

One of the first approaches using points for modeling three-dimensional objects
was proposed by Levoy and Whitted [1985]. There, the authors concentrated on
the special case of continuous, differentiable surfaces. Extensions to general sur-
face geometry were proposed by Grossman and Dally [1998], and Pfister et al.
[2000], using adequately sampled hierarchical data structures and forward warp-
ing for storage and rendering. Most current point rendering algorithms are based
on the work of Zwicker et al. [2001a, 2002b]. Inspired by the EWA framework
by Heckbert [1989], the authors formulate a forward splatting approach including
an efficient screen space antialiasing filter for rendering high-quality images. The
algorithm can be easily extended to volumetric rendering [Zwicker et al., 2001b].

With the increasing power of graphics hardware, GPU adaptations of point
splatting are continuously developed and extended. Starting with the implemen-
tations by Ren et al. [2002] and Botsch et al. [2002], extensions include improved
splatting kernels [Zwicker et al., 2004], clipped splats for sharp edges [Adams
and Dutré, 2003, 2004; Wicke et al., 2004], per-pixel illumination [Botsch et al.,
2004], and deferred shading [Botsch et al., 2005].

Besides splatting, alternative image generation methods such as adaptive re-
sampling [Alexa et al., 2001] and ray tracing [Adamson and Alexa, 2003] have
been proposed, too.

2.2.2 Geometry Processing

To post-process our 3D video data for outlier removal, smoothing, simplification,
scan merging, and editing, we can use a great range of available processing algo-
rithms for point-sampled geometry. Many of them are publicly available in the
integrated editing application Pointshop 3D [Zwicker et al., 2002a].

Pauly and Gross [2001] propose a method for processing point-sampled sur-
faces in the Fourier domain. They decompose the surface into a set of patches
and express their geometry at height fields on tangential planes. Blending at patch
boundaries ensures global consistency.

Simplification of point clouds is introduced by Pauly et al. [2002]. Three dif-
ferent methods are proposed, using clustering, iterative decimation, and particle
simulation. Measurements for local surface variation and quadric error permit
exact control over the degree of simplification.

A practical tool set for post-processing the raw point clouds generated by range
scanners is presented by Weyrich et al. [2004]. It includes various tools for outlier
removal, smoothing, and hole filling. Merging of point sets from multiple scans
can be done as proposed by Sadlo et al. [2005] who use a patch selection algorithm
based on resolution and confidence measures.

11

Chapter 2 Related Work

Finally, surface editing operations such as deformations and Boolean operations
are introduced by Pauly et al. [2003]. They are using a hybrid geometry descrip-
tion based on point samples and implicit moving least-squares surfaces [Levin,
2003]. Dynamic resampling retains surface quality even for large-scale modifica-
tions.

2.2.3 Compression

Because point sets do not contain any explicit connectivity information, they can
be efficiently used for progressive streaming and compression.

In QSplat [Rusinkiewicz and Levoy, 2000], which is a multiresolution rendering
system based on a hierarchical bounding sphere data structure and splat render-
ing, each node of the data structure is quantized to 48 bits, including color and
surface normal data. By integrating view-dependent, progressive decompression
[Rusinkiewicz and Levoy, 2001], an interactive viewer can request only the visible
parts of the data stream over a network.

Botsch et al. [2002] use an octree data structure for storing point-sampled ge-
ometry as a binary vector representing the octree cell occupation. Surface normals
are encoded using quantization schemes based on sphere subdivision. The authors
show that the geometry of typical data sets can be encoded with five to ten bits per
point. Compression performance can be further improved by predicting for each
parent cell the occupancy of its child cells [Huang et al., 2006; Schnabel and Klein,
2006] using local surface statistics.

Instead of an octree, Bordignon et al. [2006] use a BSP-tree. By aligning its
splitting planes along the principal components of local point neighborhoods, its
structure better adapts to the object geometry. They are able to achieve a compres-
sion performance of 14 bits per point.

A similar performance is achieved by Fleishman et al. [2003] who propose a
progressive point set coder based on the projection of points onto local polynomial
surface approximations. However, their resampling method based on the moving
least-squares (MLS) projection operator [Levin, 2003] tends to smooth out sharp
features. Furthermore, the decompression is very time-consuming because the
MLS projection also has to be applied during decoding.

For dynamic point clouds, temporal coherence can be exploited by encoding
differential point updates [Würmlin et al., 2003]. By adding an acknowledgment
protocol, such a scheme has been used in the blue-c project for real-time, fault-
tolerant transmission of point-based 3D video over a network [Lamboray et al.,
2004a]. Lamboray et al. [2004b] use multi-channel images from the input camera
views to store the point information. Then, conventional image and video codecs
can be used for compression [Würmlin et al., 2005].

12

2.3 Video Editing

2.3 Video Editing

To the best of our knowledge, no research has been done in the field of 3D video
editing, yet. However, our work is based on several publications related to 2D
video editing which we summarize here.

Our spatio-temporal data representation is inspired by the video cube that has
been previously introduced by Fels and Mase [1999]. Intuitively, by stacking
all successive two-dimensional frames on top of each other, one obtains a three-
dimensional volumetric representation of the complete video stream. Such a struc-
ture allows for editing the video in both the spatial and temporal domain in a uni-
fied manner. For example Klein et al. [2002] use video cubes to produce a variety
of visual effects. Bennett and McMillan [2003] provide a unified framework on
the volumetric representation to elegantly formulate different editing tasks like
object removal, camera stabilization and reformatting.

A fundamental task in editing of traditional 2D video is the computation of ac-
curate alpha mattes of foreground objects. That problem has been initially covered
for still images. Chuang et al. [2001] are using a Bayesian formulation based on
color models of foreground and background. It has later been extended by Shum
et al. [2004] who added a weak constraint ensuring boundary coherence. Simi-
lar results have been achieved by Sun et al. [2004] by solving a Poisson equation
based on the image gradient. For video, Chuang et al. [2004] apply Bayesian mat-
ting on every frame while enforcing time coherence using optical flow [Barron
et al., 1994]. As input, the user has to provide a coarse initial segmentation—a
so-called graymap—for a single frame.

Video cutout techniques [Li et al., 2005; Wang et al., 2005] further simplify user
interaction by automatically computing an initial binary segmentation based on
some user-defined object markings using graph cuts [Boykov et al., 1999; Boykov
and Jolly, 2001]. They extend two-dimensional image cutout techniques [Li et al.,
2004; Rother et al., 2004] into the temporal domain by solving a three-dimensional
optimization problem on the video cube. Wang et al. [2005] integrate the video
cube into the user interface, allowing for conveniently marking of moving objects
over time.

To completely avoid user input, fully automatic approaches have been proposed.
They segment the foreground object based on its depth, using specialized video
acquisition equipment. Gvili et al. [2003] use an additional time-of-flight camera
for depth extraction. The approach by McGuire et al. [2005] uses multiple video
cameras with different foal lengths and, thus, has the advantage of also working
in large-scale outdoor environments.

13

Chapter 2 Related Work

14

Chapter 3

Reconstructing 3D
Scenes from 2D Images

3D video captures two fundamental kinds of information about real-world scenes
which dynamically changes over time: three-dimensional geometry and appear-
ance of surface materials.

For a fixed viewpoint, appearance can be acquired completely using conven-
tional video cameras. This may be simply extended to 3D video by recording all
possible viewpoints at the same time, resulting in a so-called light field represen-
tation [Levoy and Hanrahan, 1996]. Although this is the most generic approach,
yielding high-quality output images for most scenes, it has several practical lim-
itations. The desired viewing range has to be densely sampled using a lot of
cameras. As a result, the amount of produced image data is huge and difficult to
handle. Moreover, no inherent knowledge about the scene besides images is cap-
tured, making post-processing difficult and constraining the application to virtual
replay and synthetic aperture and lens effects only.

Instead, we opt for a different approach including explicit information about
scene geometry. By acquiring not only images but also depth maps, novel views
can be interpolated from a sparse set of input viewpoints. A consistent three-
dimensional model can be built easily by backprojecting pixels from all views
into three-dimensional space using their individual depth values. Such a scene
model allows for applications beyond virtual camera control. As an example, we
introduce a system for 3D video editing in chapter 9.

Our view interpolation requires one fundamental assumption: Each surface
point has to have an identical appearance from all possible viewing directions.
As a consequence, novel views of that point can be computed easily as soon as its
position in three-space and its appearance from one viewing direction is known.
Moreover, its appearance under the present lighting conditions can be captured
from a single viewpoint by using a color camera. Thus, we impose the following
requirements on the acquired scene and our applications:

15

Chapter 3 Reconstructing 3D Scenes from 2D Images

• We are only interested in surfaces of objects, not in their interior structure.

• All surface materials have to be Lambertian, i.e. they scatter all incoming
light evenly in all possible directions. There are no effects such as specular
reflections or transparencies.

• There is no visible medium like smoke or fog between surfaces and acqui-
sition cameras.

For such cases, reconstruction of depth maps is a heavily researched topic in
the field of computer vision. A variety of methods exist, differing in the required
hardware, reconstruction quality, and additional scene constraints. After survey-
ing those approaches and discussing the needed theoretical concepts, we present
our chosen method of depth from stereo on structured light. Especially, we dis-
cuss our extension for increasing fidelity at depth discontinuities. As a result, we
are able to obtain decent-quality depth maps in a robust way.

3.1 Survey of Depth Acquisition

Methods

All depth map acquisition methods we examine are based on some imaging
device acquiring a two-dimensional view of light reflected or emitted by the
scene. However, such information is generally not enough for reconstructing
three-dimensional geometry. Thus, additional techniques are used for obtaining
more data. These form the main differences between the examined methods and
determine the complexity of the performed computations. Most approaches are
based on triangulation. They can be separated in active methods which illumi-
nate the scene with specialized light sources and passive methods which do not
influence the environment. Different approaches are used by time-of-flight and
shape-from-silhouette methods. The first performs temporal measurements in-
stead of triangulation, the latter reconstructs an approximate geometry based on
the silhouettes of an object seen from multiple viewpoints.

We define a set of requirements an optimal reconstruction algorithms should
fulfill for recording 3D video of dynamic scenes:

• Quality. The acquired depth values should be of high quality, accurately
representing the real scene without too much noise and outliers.

• Density. The depth maps should be dense, i.e. they should contain a valid
depth value at almost every image pixel.

• Dynamics. The algorithm should be able to robustly capture moving scenes.

16

3.1 Survey of Depth Acquisition Methods

• Scalability. The system using the depth reconstruction algorithm should
be scalable to an arbitrary number of acquisition viewpoints. As a conse-
quence, multiple depth acquisition devices should not interfere with each
other.

• Generality. The depth reconstruction method should be applicable to a
large variety of scenes.

• Practicability. The acquisition system should comprise an acceptable
amount of hardware that can be set up easily.

Existing methods are surveyed under these constraints.

3.1.1 Stereo Vision

Stereo vision algorithms are inspired by human depth perception. By finding pixel
correspondences in two camera images captured from different but nearby view-
points, the depth of the projected object point can be calculated via triangulation.
The pixel search is essentially a minimization problem optimizing the matches for
all pixels. A survey of different methods and their implementations can be found
in the paper by Scharstein and Szeliski [2002]. They can be divided into two
fundamentally different categories. Local methods do a matching search for each
pixel individually, whereas global methods try to solve the problem for the whole
image at once. Moreover, one could distinguish sparse methods providing depth
values only at feature points from dense methods providing depth values at every
pixel. As we require dense depth maps, we concentrate on the second category.

Local matching algorithms are based on correlation of small pixel neighbor-
hoods within a usually rectangular window in both images. Due to their local
view, they have difficulties at ambiguities occurring in regions with uniform color
or repetitive texture. Hence, they require input images with highly varying tex-
tures. A second issue are depth discontinuities which cannot be modeled if they
occur inside the correlation window. Thus, the core algorithms are not capable of
accurately capturing object silhouettes without further extensions. On the other
hand, they can easily find matches with subpixel accuracy, which is important for
obtaining a high depth resolution.

Global stereo algorithms based on Markov random fields [Boykov et al., 1999;
Sun et al., 2003] try to find all pixel matches at the same time with respect to some
overall consistency constraints. By minimizing an energy composed of a correla-
tion term and an edge-preserving smoothness term, they are able to handle both
ambiguities and depth discontinuities. However, obtaining accurate depth values
in texture-less regions still remains difficult because they are just interpolated by
the smoothness function. In texture-rich regions, global algorithms are in general
not better than local methods. Depth resolution can be even worse because many

17

Chapter 3 Reconstructing 3D Scenes from 2D Images

global algorithms such as the one by Boykov et al. [1999] cannot easily handle
subpixel accuracy.

More recently, segmentation-based stereo algorithms have been developed.
Correlation of whole color segments [Zitnick et al., 2004] performs much better
at depth discontinuities than pixel-based matching and is able to accurately recon-
struct sharp boundaries. Global solvers [Hong and Chen, 2004] again produce the
best quality. However, those methods require a color segmentation as input that
reliably represents discontinuities and that is consistent in both camera images.
This is an additional nontrivial computer vision problem.

Matching ambiguities in homogeneous regions can be avoided by producing
artificial textures using structured light illumination [Kang et al., 1995]. Because
the light patterns can be random, such an approach scales well with overlapping
projections. Window-based algorithms show a great improvement with structured
light. Their only remaining instability is in matching depth discontinuities. Global
methods, on the other hand, showed to behave very unstable in our experiments.
This is due to their build-in smoothness function which assumes correlation be-
tween depth and texture discontinuities, which is not true with the employed light
patterns.

All stereo algorithms are in principle able to handle dynamic input data because
they only require one image pair recorded at one point in time. To improve coher-
ence, matching can be extended to the temporal domain by considering a whole
stack of successive images at once [Davis et al., 2003; Zhang et al., 2003]. With
local approaches, this usually improves stability at slow but not at fast motions,
because the latter tend to create additional depth discontinuities in time.

Stereo vision can theoretically reconstruct arbitrary scenes as long as enough
texture information is available. If the latter is generated by structured light pro-
jections, acquisition is naturally constrained to indoor scenes only. The acqui-
sition setup consists of pairs of calibrated cameras and, optionally, uncalibrated
structured light projectors, which have to be synchronized in the case of dynamic
recording. The resulting matching quality largely depends on the number and
complexity of occlusions which should be minimized. Besides changing the scene
itself, this can be achieved by choosing small baselines between corresponding
cameras of the stereo pairs. Between independent camera pairs, large baselines
can be used to cover a large viewing range. Details can be found in chapter 4.
On the other hand, specialized wide-baseline stereo vision methods exist [Pritch-
ett and Zisserman, 1998], but they largely depend on distinct image features and,
thus, rather belong to the category of sparse matching algorithms.

3.1.2 Structured Light

Structured light scanning systems [Salvi et al., 2004] are similar to stereo vision
systems but replace one camera with a projector. Thus, they are naturally con-
strained to indoor scenes. Stereo matching is performed between camera and

18

3.1 Survey of Depth Acquisition Methods

projector pixels. In contrast to the aforementioned stereo vision on structured
light, the projector has to be calibrated. The camera-projector baselines should
be small in order to minimize occlusions. To find correct correlations, the algo-
rithms have to uniquely identify light from distinct projector pixels in the camera
images. Therefore, the projected patterns have to be well defined and should be
more prominent than the scene textures. Compared to stereo vision, this improves
the quality of correlation and generally yields superior results. On the other hand,
it constrains the setup of multiple projectors and impairs scalability, as the pattern
determinateness gets destroyed as soon as multiple projections overlap.

Structured light algorithms can be categorized into single-shot and multi-shot
methods. Single-shot methods such as the one by Vuylsteke and Oosterlinck
[1990] only need one image of the scene under one pattern illumination, mak-
ing them suitable for capturing dynamic scenes. However, due to ambiguities in
the pattern, they are only able to uniquely identify some specific projector pix-
els, yielding sparse depth maps only. Multi-shot methods [Inokuchi et al., 1984]
resolve for those ambiguities by capturing multiple images of the scene under
a sequence of different lighting conditions. They are able to reconstruct dense
depth maps but cannot easily cope with motions. A special case of multi-shot ap-
proaches are laser range scanners which replace the pattern projection with a laser
line that is constantly swept over the recorded object.

3.1.3 Time of Flight

Time-of-flight systems such as the one by Iddan and Yahav [2001] are based on a
completely different approach. Instead of computing triangulations they measure
the time light needs to travel from a calibrated source to an imaging sensor. This
is achieved by measuring either directly the time of light pulses or phase shifts
of modulated light. In the latter case, multiple devices can be combined without
interference by using different modulation frequencies.

Today, integrated off-the-shelf products like the SR-3000 camera by MESA
Imaging R© or Canesta’sTMCanestaVisionTMcamera become available. Their depth
range is constrained to a couple of meters depending on the intensity of the emitted
light, but they even work in moderately bright outdoor scenes. However, their
depth images are still suffering from low resolution, noise, and outliers. In the
future, they may provide a good alternative to our chosen approach.

3.1.4 Shape from Silhouettes

Shape-from-silhouette methods [Matusik et al., 2000, 2001] reconstruct an ap-
proximate geometry of distinct objects by backprojecting their silhouettes from
multiple viewpoints into three-space and intersecting the resulting generalized
cones. The acquisition setup consists of multiple calibrated cameras covering a
convex viewing range. In order to be able to extract the silhouettes, only one or

19

Chapter 3 Reconstructing 3D Scenes from 2D Images

Stereo vision Structured light Time Shape
Local Global Single- Multi- of from

Passive St. light Passive St. light shot shot flight silh.
Quality − + ◦ − + + ◦ ◦
Density + + + + − + + +
Scalability + + + + − − ◦ +
Dynamics + + + + + − + +
Generality + ◦ + ◦ ◦ ◦ ◦ −
Practicability + ◦ + ◦ − − + +

Table 3.1: Summary of the capabilities of various depth map acquisition methods (+ good,
◦ average, − bad).

very few clearly separated objects but no complex scenes can be captured. They
are usually placed in front of a background with a defined color. The reconstruc-
tion method is very robust but needs many cameras to create a good approximation
to the real geometry. Even in the theoretical limit, when using an infinite amount
of cameras covering all possible viewing directions, it cannot reconstruct the real
geometry but only its visual hull which does not capture surface concavities.

3.1.5 Summary

Table 3.1 summarizes the capabilities of the discussed depth reconstruction meth-
ods. As we give the highest priority to reconstruction quality, local stereo match-
ing supported by structured light projection fulfills our requirements at the best.
Hence, this is the approach we have chosen for our 3D video acquisition system.
A detailed explanation of the employed algorithms follows in the next sections.

3.2 Mathematical Concepts of Image

Acquisition

All traditional image acquisition devices capture projections of light rays ema-
nating from three-dimensional space onto a two-dimensional image plane. Meth-
ods reconstructing three-dimensional geometry from imagery perform the inverse
projection based on the image data and known internal and external camera pa-
rameters. This section presents the mathematical foundations for computing those
projections. The pinhole camera model provides a simple but powerful mathe-
matical abstraction which can be applied to images of real-world cameras after
compensating for effects of their optical systems. Epipolar geometry makes the
transition from one to multiple cameras that acquire the same scene from different
viewpoints by describing relations between the different images. For two cameras,

20

3.2 Mathematical Concepts of Image Acquisition

Image plane

Focal plane

X

Y

Z

XC

YC

ZC

x

y

X

x

(px, py)

O
f

Π

Figure 3.1: The pinhole camera model.

the epipolar geometry can be greatly simplified by post-processing their images
with the presented rectification method.

3.2.1 The Pinhole Camera Model

The pinhole camera model [Faugeras, 1993], as illustrated in figure 3.1, describes
how a point X in three-dimensional world coordinates (X ,Y,Z) is projected on
a two-dimensional image plane Π, yielding a pixel x with coordinates (x,y). It
is an abstraction of real-world cameras, replacing the optical lens system by an
infinitesimal small pinhole which is the center of projection O where all light rays
pass through. O is lying on the focal plane which is parallel to the image plane.
The distance f between both planes is called the focal length of the camera. In
contrast to real cameras, we use the common approach of placing the image plane
in front of the center of projection instead behind it. This is valid due to symmetry.

For convenience, points X are first transformed into 3D camera coordinates
XC = (XC,YC,ZC) before performing the projection. The origin of the camera
coordinate system is placed at the center of projection O, its XC- and YC-axes span
the focal plane. Transformation of world coordinates into camera coordinates
can be described by a 3× 3 rotation matrix R and a translation to the center of
projection O as

XC = R · (X−O) (3.1)

21

Chapter 3 Reconstructing 3D Scenes from 2D Images

or by using homogeneous coordinates as

X̃C =

(

R −RO

0 1

)

· X̃. (3.2)

R and O are the so-called extrinsic parameters of the camera. They encode all
external characteristics like camera position and orientation. For convenience, we
mainly use the notation of (3.1).

The main step for projecting XC into a pixel x = (x,y) on the image plane is the
perspective division by its third coordinate ZC scaled with the focal length f :

x = f · XC

ZC

, (3.3)

y = f · YC

ZC

. (3.4)

It can be written in homogeneous matrix notation as

x̃ =

f 0 0
0 f 0
0 0 1

 ·XC. (3.5)

However, in this example, image coordinates are measured in the same length
units as camera coordinates. For image processing, it is practical to transform
them into pixel coordinates by scaling the focal length f differently in the x- and
y-directions, yielding separate coefficients fx and fy:

x̃ =

fx 0 0
0 fy 0
0 0 1

 ·XC. (3.6)

Having separate scaling factors for the two image coordinate axes allows for mod-
eling of non-square pixels as they occur in some image sensors. So far, the origin
of the pixel coordinate system is located at the orthogonal projection of the pin-
hole onto the image plane. To comply with standard pixel coordinate notations
that define the origin at an image corner, we add two more shifting coefficients px

and py to equation (3.6) that describe the so-called principal point of the camera:

x̃ =

fx 0 py

0 fx py

0 0 1

 ·XC. (3.7)

Ideally, the principal point is located in the image center. Thus for an image of
width w and height h its coordinates would be px = w/2 and py = h/2. However,
lens systems of real-world cameras often introduce some small displacement there
which is measured along with the other parameters by standard camera calibration
tools.

22

3.2 Mathematical Concepts of Image Acquisition

The final matrix of equation (3.7) encodes all internal parameters of the camera
responsible for image projection. It is called the intrinsic matrix P. Putting it
all together, any point X in Cartesian world coordinates can be projected to its
homogeneous pixel coordinates x̃ via

x̃ = P ·R · (X−O). (3.8)

As a side effect, the resulting homogeneous coordinate z of a pixel x̃ = z·(x,y,1)T

contains the so-called pixel depth that is the distance of the corresponding 3D
point to the focal plane, i.e. z = ZC. The three orthogonal coordinates x, y, and z

define the so-called ray space of the camera. If, for a specific pixel, z is known,
the 3D point can be reconstructed by inverting equation (3.8):

X = R−1 ·P−1 · z

x

y

1

+O. (3.9)

3.2.2 Real-World Cameras

Optical systems of real-world cameras show some additional effects that are not
covered by the pinhole model. They include depth-of-field effects caused by the
spatial extent of the aperture, chromatic aberration due to varying light refrac-
tion depending on the wavelength, and lens distortion. Chromatic aberration and
depth-of-field effects cannot be handled easily without prior knowledge of the
scene geometry. They have to be avoided during acquisition by choosing high-
quality lenses and a small aperture. Lens distortion can be compensated by apply-
ing two-dimensional post-processing to the acquired image. As result, we obtain
an image looking similar to one that would have been captured using a corre-
sponding pinhole camera.

We use the common Brown-Conrady model [Brown, 1966] describing radial
and tangential distortion of camera lenses. Given a pixel at coordinates (x,y) in
an ideal image, the model describes the distorted pixel coordinates (xD,yD) as

xD = (1+ r1ρ2 + r2ρ4) · x+2t1xy+ t2(ρ
2 +2x2), (3.10)

yD = (1+ r1ρ2 + r2ρ4) · y+ t1(ρ
2 +2y2)+2t2xy, (3.11)

where ρ2 = x2 + y2. The radial distortion coefficients r1 and r2 as well as the
tangential distortion coefficients t1 and t2 can be estimated using the camera cal-
ibration routines provided by the OpenCV library [OpenCV]. It also includes a
procedure for undistorting camera images.

3.2.3 Epipolar Geometry

Having two cameras with image planes ΠL, ΠR and centers of projection OL, OR

acquiring the same scene, there is a linear relationship between coordinates of

23

Chapter 3 Reconstructing 3D Scenes from 2D Images

X

ΠL ΠR

xL xR

OL eL OReR

Figure 3.2: Epipolar geometry.

corresponding pixels that is described by the epipolar geometry. Consider an ob-
ject point X. Together with both centers of projections, the point forms a triangle
∆(X,OL,OR) as shown in figure 3.2. Its edges X,OL and O,OR intersect the im-
age planes at the respective projections xL and xR of X. The projections of the
epipolar plane into the camera images form so-called epipolar lines. For a varying
X the epipolar plane rotates around the baseline of the camera pair building the
epipolar pencil. All epipolar lines of the pencil intersect in one point eL and eR,
respectively, for each image, the so-called epipoles. The epipoles are located at
the intersections of the camera baseline with the image planes.

Projections onto the two image planes corresponding to the same object point
are always located on corresponding epipolar lines. This greatly reduces the
search space in the stereo matching process. For a given pixel in the left image,
the matching pixel in the right image can be found on the corresponding epipolar
line. Intuitively, the search is performed on the projection of the viewing ray of the
left image into the right image. Thus, stereo matching of two-dimensional images
can be reduced to a one-dimensional search per pixel.

Mathematically, for each given camera setup, there exists a 3×3-matrix F such
that for each object point X its two projections x̃L and x̃R fulfill the equation

x̃T
L ·F · x̃R = 0. (3.12)

F is the so-called fundamental matrix which even holds for uncalibrated cameras.
It is of rank 2 having 6 degrees of freedom. In the calibrated case, F can be reduced

24

3.2 Mathematical Concepts of Image Acquisition

X

Π̄L Π̄R

x̄L x̄R

ŌL ŌR

Figure 3.3: Epipolar geometry of a rectified camera pair.

to the special case of the so-called essential matrix describing the relationship of
points in camera coordinates by encoding the difference of orientation and posi-
tion of both cameras. Those matrices can be used to compute the epipolar lines.
Details can be found in the book by Faugeras [1993].

For stereo matching, we use a different approach instead. By applying a rectifi-
cation algorithm, the camera images are post-processed in a way that makes their
epipolar geometry as simple as possible, alleviating the needed computations.

3.2.4 Image Rectification

Generally, epipolar lines form a pencil in each image. Image rectification warps
and resamples both images in such a way that all epipolar lines are parallel and
corresponding lines lie on the same scan line. In that case, the epipoles of both
cameras are located at infinity and the image planes are coplanar and parallel to the
baseline, as illustrated in figure 3.3. We use the rectification method by Fusiello
et al. [2000]. Given the intrinsic and extrinsic matrices of the input cameras, it
computes a new rectified camera configuration and a transformation that warps
the images from the input cameras into the rectified cameras.

Consider a pair of pinhole cameras defined by their projection matrices PL,PR,
rotation matrices RL,RR and centers of projection OL,OR. They can be trans-
formed into a rectified pair as follows:

First, the rectified cameras have to have the same intrinsic matrices P̄L = P̄R.

25

Chapter 3 Reconstructing 3D Scenes from 2D Images

They can be defined arbitrarily, e.g.

P̄L = P̄R =
1
2
· (PL +PR). (3.13)

Second, their image planes should have the same orientation, parallel to their
baseline. This is achieved by building a new orthonormal camera coordinate sys-
tem defined by the three vectors

V1 =
OL−OR

||OL−OR||
, (3.14)

V2 = V1×W, (3.15)

and

V3 = V1×V2, (3.16)

where W is an arbitrary vector and × denotes the cross product. A new, common
rotation matrix can then be built as

R̄L = R̄R =

VT
1

VT
2

VT
3

 . (3.17)

Finally, the center of projections remain unchanged, i.e.

ŌL = OL (3.18)

and

ŌR = OR. (3.19)

Keeping the camera positions permits the computation of rectified images using
a 2D linear warping function. Warping matrices can be computed as

TL = P̄LR̄LR−1
L P−1

L (3.20)

and

TR = P̄RR̄RR−1
R P−1

R . (3.21)

Figure 3.4 shows the original camera images and the resulting rectified images
with augmented epipolar lines.

From now on, if not mentioned otherwise, all matrices and images from stereo
camera pairs are assumed to be rectified, without using the bar notation.

26

3.2 Mathematical Concepts of Image Acquisition

Figure 3.4: Stereo image pair with augmented epipolar lines. Top: original images. Bot-
tom: rectified images.

3.2.5 Stereo Triangulation

If projections xL, xR of an object point X onto two different camera planes ΠL, ΠR

are known, one can reconstruct the coordinates of X via triangulation. Depth from
stereo algorithms typically first compute pixel disparities, i.e. the coordinate de-
viations of corresponding pixels in two images. They can be directly transformed
into depth maps that store for each image pixel the distance from its corresponding
object point to the focal plane. Finally, three-dimensional geometry can be com-
puted by backprojecting the pixels using the inverse camera projection matrix.

We only consider the case for two rectified camera images where corresponding
pixels only differ in their x-coordinate. This reduces the problem to one dimension
as depicted in figure 3.5.

The pixel disparity d is defined as the deviation of the pixel coordinates, mea-
sured relative to the principal points of the cameras:

d = (xR− px,R)− (xL− px,L). (3.22)

To compute the pixel depth, note that the triangles ∆(X,OL,OR) and ∆(X,xL,xR)

27

Chapter 3 Reconstructing 3D Scenes from 2D Images

X

px,L px,RxL xR

ΠL ΠR

fx fxz

OL OR

Figure 3.5: Stereo triangulation.

in figure 3.5 are similar and it holds that

||OR−OL||
z

=
||OR−OL||+(xR− px,R)− (xL− px,L)

z− fx
. (3.23)

Simple calculations and substitution of d yields

z =−||OR−OL|| ·
fx

d
. (3.24)

With the gained pixel depths, the object point can be reconstructed from e.g.
the left camera by backprojection:

X = R−1
L ·P−1

L · z

xL

y

1

+OL. (3.25)

3.3 Stereo Matching

Stereo reconstruction is a one-dimensional search for corresponding pixels in two
images along corresponding epipolar lines. Hence, for two rectified grayscale or
color images CL and CR one has to find for every pixel (x,y) its disparity d such
that CL(x,y) = CR(x+d,y). This can be expressed as a minimization of an energy
[Zhang et al., 2003]

EM(d) = eM(CL(x,y),CR(x+d,y)), (3.26)

where eM is an error function describing the difference between two pixels, for
example the absolute difference metric eM(a,b) = |a−b|. In our implementation

28

3.3 Stereo Matching

we use the error metric of Birchfield and Tomasi [1998]. It employs absolute
differences on intensity functions that are linearly interpolated from small pixel
neighborhoods and is therefore independent from image sampling.

Because all real images are augmented by acquisition noise, the colors of two
corresponding pixels will never be the same and the above pixel-wise minimiza-
tion will not succeed. This problem is solved by minimizing over a small rectan-
gular windowW(x0,y0) = {x0−∆x, . . . ,x0 +∆x}×{y0−∆y, . . . ,y0 +∆y} of size
2∆x+1×2∆y+1 around one pixel of interest (x0,y0):

EM(d) = ∑
(x,y)∈W(x0,y0)

e(CL(x,y),CR(x+d,y)). (3.27)

However, this assumes a constant disparity over the whole correlation window
which is only correct for planar surfaces parallel to the image plane. If this is not
the case, the computed disparities may deviate a few pixels from the ground truth.
To obtain more accurate results, Zhang et al. [2003] extend the minimization by
also searching for the gradient (dx,dy) of the disparity:

EM(d,dx,dy) = ∑
(x,y)∈W(x0,y0)

e(CL(x,y),CR(x+d′,y)), (3.28)

where
d′ = d +dx(x− x0)+dy(y− y0). (3.29)

This corresponds to linearly changing disparities in the matching window which is
exact for all planar surfaces and a good local approximation of the scene geometry.

If not only still images but videos are used as input, temporal coherence can
be improved by extending the matching window over multiple successive frames,
yielding a so-called spacetime stereo algorithm [Davis et al., 2003; Zhang et al.,
2003]. Furthermore, it can be used to reconstruct static scenes under varying
illumination conditions, increasing the robustness of the matching. In both cases,
equation (3.28) is extended to

EM(d,dx,dy,dt) = ∑
(x,y,t)∈W(x0,y0,t0)

e(CL(x,y, t),CR(x+d′,y, t)), (3.30)

with
d′ = d +dx(x− x0)+dy(y− y0)+dt(t− t0). (3.31)

There, t0 denotes position of the current frame along the temporal axis t. Mini-
mizing for the temporal derivative dt of the disparities permits linear motions of
objects perpendicular to the image plane.

According to Scharstein and Szeliski [2002], most stereo matching algorithms
can be subdivided into the following successive stages:

S1 Matching cost computation
S2 Cost aggregation
S3 Minimization
S4 Disparity refinement

29

Chapter 3 Reconstructing 3D Scenes from 2D Images

For efficiency, steps 1 to 3 usually only compute disparities at integer pixel
accuracy. They are finally refined in the optional stage 4 up to a desired subpixel
level. In the following, we explain those stages for our stereo matching implemen-
tation for a single pair of images. Extension to spacetime stereo is straightforward
by adding the additional temporal domain.

S1. Matching cost computation does a pixel-wise correlation by evaluating
equation (3.26) for all pixels (x,y) and a set of integer disparities d within a
specific range. For each disparity d, all pixels of the left image are compared
with those of the right image that has been shifted about d pixels along
the x-direction. The result of the comparison using the error metric eM is
stored in a new image. Iteration over all disparities produces a whole stack
of difference images, a so-called three-dimensional disparity space image
(DSI).

S2. Cost aggregation does the averaging over the matching windowW by com-
puting the sum of equation (3.27). For a rectangular window, this can simply
be achieved by applying a box filter to each DSI layer of constant disparity.

S3. Minimization computes the final pixel-accurate disparities by identifying
for each pixel in the DSI the layer with minimal cost.

S4. Disparity refinement computes a subpixel-accurate result by minimizing
equation (3.28). By constraining the search space of d to a small region
around the previously computed coarse disparities, the optimization prob-
lem can be solved efficiently using the Levenberg-Marquardt algorithm
[Press et al., 1992]. Besides allowing for skew surfaces by optimizing for
dx and dy, we also handle discontinuities by masking those pixels in the
correlation window whose coarse disparities differ too much from the one
of the center pixel. This yields a non-rectangular window at depth bound-
aries. The additionally computed disparity gradients can be also used later
to compute the 3D scene representation (see chapter 5).

3.4 Stereo on Structured Light

The presented stereo matching algorithm requires a highly textured scene to find
good correlations between different views. It generally fails in reconstructing sim-
ple geometry of uniformly colored objects, e.g. white walls. Additionally, the
textures should be non-periodic to guarantee unique matches. As a consequence,
we add artificial textures to the scene by projecting structured light patterns, as
originally proposed by Kang et al. [1995]. We use a binary vertical stripe pattern
with randomly varying stripe widths. It yields strong and unique correlations in
the horizontal direction of the stereo baseline and is at the same time insensitive to
vertical deviations which may occur from inaccuracies in the camera calibration.

30

3.4 Stereo on Structured Light

Figure 3.6: Rectified stereo camera images of a scene under uniform illumination (top) and
under structured light illumination (bottom).

If spacetime stereo is used, temporally changing patterns can further increase the
matching quality. To avoid untextured shadows, multiple overlapping projections
can be used for illumination. Unlike pure structured light approaches or stereo
matching between a single camera and a projector, our approach has the advan-
tage of also working robustly within those overlap regions up to a certain extent:
The dynamic range of the imaging sensors should be high enough to cover both
single and overlapping projections with a sufficient contrast. Due to the linearity
of light reflection, the minimum pattern contrast of an overlap region is actually
equal to the one of a single projection. Practical experience has shown that our ac-
quisition equipment is able to robustly handle up to four overlapping projections,
which should be sufficient to cover a whole scene. Moreover, stereo on structured
light does not need a projector calibration. Figure 3.6 shows a stereo pair of im-
ages from the same scene under uniform and under structured light illumination.

As a result, stereo matching is much more robust, even in untextured regions
of the scene. Figure 3.7 shows a comparison of reconstructions of the same scene
under uniform illumination and with structured light projections.

31

Chapter 3 Reconstructing 3D Scenes from 2D Images

Figure 3.7: Depth map of the scene shown in figure 3.6 reconstructed by local stereo match-
ing under uniform illumination (left) and by stereo on structured light (right). In
both cases, a matching window of 25×25 pixels was used.

3.5 Handling Depth Discontinuities

Local stereo matching algorithms generally have difficulties in properly handling
depth discontinuities, as illustrated in figure 3.8. Due to occlusions, pixels in one
image may not have corresponding partners in the other image. Furthermore, dis-
parities are assumed to change only linearly within the matching window, which
is not the case at discontinuities. In the following, two extensions for handling
those issues are presented.

3.5.1 Symmetric Stereo Matching

The algorithm presented so far is asymmetric in a sense that it performs matching
search only in the right image for fixed pixels of the left image. As a consequence,
it assumes that each pixel in the left image should have a corresponding partner in
the right image. This is, however, not the case at occlusions. In those situations,
the algorithm finds matches that do not exist in reality. A good stereo algorithm
should detect those situations and mask all occluded pixels.

This can be achieved by a simple extension called cross-checking. There, the
coarse stereo matching in steps one to three is performed twice: search in the
right image for pixels corresponding to left image, and vice versa. Corresponding
pixels in both disparity maps should have the same values, otherwise they belong
to occlusions. A result of symmetric stereo matching is presented in figure 3.9.

As a drawback, time for computing the coarse matching is doubled. This can be
overcome by symmetric stereo algorithms [Zitnick and Kanade, 1999; Sun et al.,
2005] which search for matches on both sides in one step. However, because
processing time of coarse matching can be neglected over the time for subpixel
matching, we have chosen cross-checking for simplicity.

32

3.5 Handling Depth Discontinuities

Figure 3.8: Illustration of difficulties in correlating depth discontinuities. Left to right:
correlation window in left image, disparity image and right image. Upper row:
occlusion. Lower row: sharp color boundary.

Figure 3.9: Symmetric stereo matching. Original scene (left) and computed occlusion
mask (right).

33

Chapter 3 Reconstructing 3D Scenes from 2D Images

3.5.2 Multi-Window Matching

Due to the spatial extend of the correlation window, a second issue arises at discon-
tinuities. Because discontinuities generally come along with sharp color bound-
aries, they cause a strong correlation. This yields a low matching cost as soon as
the pixel window overlaps the color edge, no matter if the center pixel itself is
part of that edge. Thus, the matching algorithm tends to find similar disparities
in neighborhoods on both sides of color boundaries, which cannot be correct at
depth discontinuities.

To solve that, we extend our matching algorithm to a multi-window approach.
At each pixel we consider all matching windows of equal size that still contain
the pixel of interest and choose the one with the best correlation by extending
equation (3.27) to

EM(d) = min
(x′,y′)∈W(x0,y0)

∑
(x,y)∈W(x′,y′)

e(CL(x,y),CR(x+d,y)). (3.32)

The chosen window usually has minimal overlaps with possible depth disconti-
nuities, yielding a more reliable disparity value. A similar algorithm has already
been proposed by Fusiello et al. [1997] who considered five different dilated win-
dows around each pixel at the cost of a five times higher computation time. By
sharing computations among neighboring pixels, our algorithm is able to consider
all possible dilated windows containing the pixel of interest with low computa-
tional costs. It is implemented as a minimum filter on the DSI layers of equal
disparity, using the shape of the matching window as structuring element. The
filter is applied after the cost aggregation, yielding a new five-step stereo pipeline:

S1 Matching cost computation
S2 Cost aggregation
S3 Minimum filter for discontinuity preservation
S4 Minimization
S5 Disparity refinement

As a result, our algorithm achieves a better reconstruction quality at depth dis-
continuities with only a small overhead in computational costs. A comparison of
conventional window-based stereo and our multi-window approach is presented
in figure 3.10.

3.6 Conclusion

We presented a robust depth map reconstruction algorithm based on stereo vision,
which builds the basis for our 3D video acquisition studio described in chapter 4.
Ambiguities in originally untextured regions of the scene are resolved by generat-
ing artificial textures with structured light projections. That way, a local matching
algorithm based on pixel windows can robustly find unique correlations in regions

34

3.6 Conclusion

Figure 3.10: Comparison of disparity maps computed by a conventional window-based
stereo (left) and our multi-window algorithm (right). Occluded pixels are colored
in black. In both cases, a matching window of 25×25 pixels was used. As can be
seen, the latter yields better reconstructions at depth discontinuities.

S1 Matching cost computation 9.0s
S2 Cost aggregation 4.7s
S3 Minimum filter for discontinuity preservation 9.3s
S4 Minimization 1.2s
S5 Disparity refinement 348s

Table 3.2: Stereo matching performance for an image pair of 791× 524 pixels, using a
25×25 pixels correlation window. Timings were measured on a 3GHz Pentium-
4 PC. Note that steps S1 to S4 denote the overall time for two matching processes
which are necessary to perform cross checking.

of continuous depth. Discontinuities are handled by using multiple matching win-
dows for each image pixel. This can be implemented with a low additional com-
putational cost by applying a simple minimum filter on the disparity space image.
Finally, the initially computed disparities are refined to subpixel accuracy using
nonlinear optimization.

The computational effort of our C++-implementation of the whole stereo
pipeline is summarized in table 3.2. In the example, a correlation window of
25×25 pixels has been used. Steps S1 and S2 compute the disparity space image
using a single matching window for each image pixel in an overall time of 13.7s.
A naive multi-window approach for discontinuity preservation would use for each
pixel 252 windows, yielding a computation time of 252 · 13.7s = 2.4h. Instead,
our equivalent, optimized implementation using the minimum filter in step S3
only increases the time by a factor of 1.5.

Most of the computational time is used by the disparity refinement step. There
is still room for improvement because we are currently using a non-optimized
standard implementation for the involved nonlinear optimization. However, de-
pending on the employed 3D video data structure and post-processing algorithms,

35

Chapter 3 Reconstructing 3D Scenes from 2D Images

we do not necessarily need subpixel-accurate data for our application. In chap-
ter 6, we propose a computationally more efficient disparity filter that generates
visually pleasing results from only pixel-accurate disparities.

36

Chapter 4

A 3D Video Acquisition
System with Active
Illumination

In this chapter, we present a 3D video recording system based on so-called 3D
video bricks. They act as low-cost z-cameras capturing color videos and depth
maps of the scene from their respective viewpoints. Depth reconstruction is per-
formed using stereo vision on structured light as presented in chapter 3. For that
purpose, structured light patterns are captured concurrently to color texture im-
ages. Multiple bricks can be placed at will to achieve a large viewing range and to
resolve for occlusions. Together, they build a scalable, mobile acquisition studio.

A very similar setup is used by Cotting [2007]. There, multiple bricks are com-
bined to a system in which the projectors collaboratively contribute to a large-scale
interactive display. A depth reconstruction method based on imperceptible struc-
tured light patterns embedded in the projected images is employed to adapt the
display to the projection surface and to recognize interaction gestures. Our system
is based on the same hardware components but uses a custom software with differ-
ent data acquisition, synchronization, pattern projection and depth reconstruction
methods, which are specifically tailored to our task of 3D video acquisition.

4.1 Acquisition Hardware

This section presents the complete hardware setup of our 3D video recording stu-
dio.

37

Chapter 4 A 3D Video Acquisition System with Active Illumination

4.1.1 3D Video Bricks

Each 3D video brick concurrently captures stereo images of the scene illuminated
by structured light and texture images under constant illumination. For stereo vi-
sion, the bricks are equipped with two grayscale cameras and a projector for struc-
tured light illumination. Textures are captured concurrently with a color camera.
Using an appropriate synchronization, the projectors can optionally be used as a
constant light source for texture acquisition. An illustration and a prototype of a
3D video brick is shown in figure 4.1.

In our setup, we use single-chip CCD cameras of the type Dragonfly R© from
Point Grey Research R© which are capable to capture videos in XGA resolution of
1024×768 pixels at 15 frames per second. Their video streams are transmitted via
standard IEEE-1394a FireWire interfaces which are merged to a single connector
per brick using FireWire hubs. The camera shutters can be synchronized in hard-
ware via a TTL signal over a custom two-pin connector. In that case, however, the
maximum achievable frame rate drops to 12Hz.

Structured light patterns are generated by single-chip DLP projectors of the type
NEC R© LT240K. They produce images in XGA resolution at 60 frames per sec-
ond. In contrast to most similar products, those projectors generate their frames
synchronously to the VGA input signal which makes them suitable for synchro-
nization with the acquisition camera shutters.

Cameras and projector are mounted on a portable aluminum rig standing on two
tripods. The interface of such an integrated system consists of three ports for data
transfer and synchronization: one FireWire port outputting the video streams of
the cameras, one two-pin TTL port for camera shutter synchronization, and one
VGA port for input of the structured light signals and for projector synchroniza-
tion. Nowadays, as small-size projectors and cameras are available, it would be
possible to integrate all components into a small, portable device.

4.1.2 Recording and Projection Infrastructure

A schematic overview over the whole studio infrastructure is depicted in fig-
ure 4.2. Each 3D video brick is connected via FireWire to its own computer for
recording and processing the video streams of the three cameras. It is a standard
PC equipped with two fast hard disks working in parallel in a RAID-0 compound
which guarantees the data transfer rate needed for real-time video recording. Be-
sides frame acquisition, the PCs can perform all post-processing steps including
depth from stereo extraction. The resulting color and depth videos can finally be
collected via Ethernet.

Depth from stereo vision does not require specific textures or structured light
images. The patterns can—and should—be random. Our system makes use of
that fact by providing the same image data to all projectors. The structured light
patterns are generated by one additional dedicated PC and distributed to all 3D

38

4.1 Acquisition Hardware

Projector

Color

camera

Grayscale

camera

VGA

FireWire

Sync

Figure 4.1: Left: Concept of a 3D video brick equipped with a color camera for texture
acquisition, a stereo pair of grayscale cameras for structured light acquisition, and
a projector for structured light illumination. Right: Prototype implementation.

Brick

PC

F
ir
e
W

ir
e

B
ric

k

P
C

FireWire

Brick

PC
Fire

W
ire

μC

PC

G
e
n
lo

c
k

R
S

-2
3
2

Ethernet

VGA

Sync Scene

Figure 4.2: Infrastructure of the 3D video studio consisting of multiple acquisition bricks.
Each brick transmits its video streams to a dedicated recording PC. A structured
light video signal is distributed to all projectors from an additional PC. All compo-
nents are synchronized to a common reference clock signal generated by a micro-
controller. The structured light PC additionally acts as a command console which
accesses all other computers via Ethernet.

39

Chapter 4 A 3D Video Acquisition System with Active Illumination

Figure 4.3: Genlock connector at an NVIDIA R© Quadro R© FX 3000G graphics board for
external synchronization of the video signal.

Figure 4.4: Toshiba R© TMP92FD54 microcontroller board generating the synchronization
signals for the whole 3D video studio.

video bricks via a VGA splitter, which simplifies synchronization because only
one image signal has to be generated. This is achieved by a genlock graphics board
(NVIDIA R© Quadro R© FX 3000G) which is able to synchronize its video signal to
a clock signal fed into an external connector (cf. figure 4.3). Alternatively, to
save additional costs for the genlock hardware, software synchronization [Allard
et al., 2003; Waschbüsch et al., 2006] can be used. The pattern generation PC
furthermore acts as a master console for controlling the whole acquisition studio
via Ethernet.

For synchronization we employ the Toshiba R© TMP92FD54 microcontroller
unit shown in figure 4.4, running a custom embedded program. It derives two
signals from the internal clock of the controller: one at 60Hz for the projections,
and one at 12Hz for the cameras. The 60Hz signal is fed into the genlock port of
the graphics hardware. The 12Hz signal is directly distributed in a star topology
to all cameras. The response of the camera shutters to that signal can be adjusted
using a camera-internal register controlling the shutter delay. This is used for con-
current texture and structured light acquisition, where the color cameras need a
different delay than the grayscale cameras, as explained in section 4.2. The syn-
chronization unit itself can be controlled from the master PC to which it is attached
via an RS-232 port.

40

4.2 Simultaneous Structured Light and Texture Acquisition

Figure 4.5: Panoramic view of our 3D video recording studio consisting of four 3D video
bricks. The scene in the center is illuminated with structured light for depth acqui-
sition. Two additional light sources are installed for capture of high-quality color
textures.

4.1.3 Studio Setup

In our reconfigurable acquisition studio, four 3D video bricks are used to resolve
for occlusions in the scene and to cover a greater viewing range. Scalability is
guaranteed because overlapping projections are explicitly allowed by our depth
reconstruction method. As each brick brings its own computer for recording and
depth reconstruction, the overall computation load does not increase with the num-
ber of bricks.

The brick configurations we used for our data acquisition are described in
appendix A. With four bricks, we were able to cover a working volume of
2.8×3.2×1.9m3 at a horizontal viewing range of 71 degrees and a vertical range
of about 51 degrees. The main constraint of the setup are the projections. They
have to cover the whole working volume while also having a certain amount of
overlap to resolve for shadows. Using wide angle lenses in front of the projectors
would relax this issue and provide more freedom.

Figure 4.5 shows a panoramic view of the complete setup. The four 3D video
bricks visible at both sides fully cover the scene in the center with structured light
projections. Two studio light sources provide additional illumination for color
texture acquisition.

4.2 Simultaneous Structured Light and

Texture Acquisition

The various cameras of the acquisition system have to capture the scene under
different lighting conditions. For depth extraction, the grayscale cameras need
pictures of the scene under a structured light illumination. In contrast, the color
cameras need a uniform, bright illumination for obtaining high-quality textures.
Both image types have to be captured simultaneously in approximately the same
time slots to guarantee a good registration between scene geometry and textures.

41

Chapter 4 A 3D Video Acquisition System with Active Illumination

In our system, this is achieved by synchronization of the projectors and camera
shutters.

All cameras are attached to the common 12Hz reference clock for triggering
their shutters. Additionally, a temporal delay between the release of the triggering
signal and the real activation of the shutter can be defined via an internal camera
register. Thus, the cameras can be activated at different points in time with only
one common synchronization signal. Another camera register controls the shutter
time, i.e. the duration of one image acquisition.

The projectors are able to generate 60 frames per second. They all receive the
same analog video signal distributed via a VGA splitter, synchronized to the ex-
ternal 60Hz reference clock using genlock-enabled graphics hardware. However,
triggering the video signal is not sufficient. To achieve an accurate cooperation
with image acquisition, it is important to understand the internal timing of the em-
ployed projectors, which can be uncovered by reverse engineering [Cotting et al.,
2004]. The single-chip DLP projectors we use have an internal clock that trig-
gers the frame drawing. They have been carefully chosen such that they are able
to synchronize their clock to the VGA signal, which is not necessarily the case
for other models. Hence, drawing of the frame is synchronous to the genlocking
signal, delayed by a constant time of a few milliseconds. Because this delay is
usually not specified, it is important to use identical projector models in the whole
system.

As illustrated in figure 4.6, DLP projectors generate images using a digital mi-
cromirror device (DMD), a small chip containing one mirror for each image pixel.
Each mirror can be flipped into two different positions, reflecting the light either
through an optical system onto the screen or to an internal absorber. Varying light
intensities are achieved by temporal modulation of the mirror flips. Colored pixels
are generated with a rotating color wheel between DMD and light source. Besides
red, green, and blue segments, the wheel in our system possesses a fourth, clear
segment for boosting the brightness of the projection. At 60Hz, generation of a
whole image takes 16.67ms. In that time, the color wheel performs two whole
rotations. Because we are interested in acquiring only projections consisting of
fully black or fully white pixels, the camera shutter times have to be either shorter
than about 1ms, corresponding to the exposure of the white color wheel segment,
or they have to be a multiple of 8.33ms, corresponding to one full rotation of the
color wheel.

For concurrent capturing of textures and structured light, our system supports
four different synchronization modes as depicted in figure 4.7, three of them addi-
tionally use the projections as constant white illumination for texture acquisition.
They exploit the fact that the 12Hz acquisition rate is only one fifth of the pro-
jection rate. Their main difference is in the sequence of patterns and the camera
synchronization. In the first three modes, the shutters of the grayscale cameras are
always exposed to the full time of one structured light projection lasting 16.67ms.

42

4.2 Simultaneous Structured Light and Texture Acquisition

Figure 4.6: Schematic of a DLP projector.

Embedding of black frames. This mode exposes the color cameras to projec-
tions of black frames which are generated alternately with structured light pat-
terns. For texture acquisition, the scene can be illuminated with external, high-
quality constant light sources. However, their intensity has to be limited in order
to maintain a good contrast of the captured structured light images. Moreover,
there is a delay of 16.67ms between a texture and a structured light acquisition.

Embedding of white frames. No external light sources have to be used if white
frames are embedded instead of black frames. In that case, the projectors take over
the illumination for texture acquisition. The timings are similar to the previous
synchronization mode. However, the shutter time of the color cameras has to be
exactly either 8.33ms or 16.67ms, corresponding to one or two rotations of the
color wheel in the projectors.

Inverse pattern projections. By alternating projection of inverse patterns, the
delay between texture and structured light acquisition can be reduced. The color
camera shutters are triggered 8.33ms after the beginning of the first projection
and kept open for 16.67ms. Thus, they acquire both a structured light pattern
and its inverse, which sums up to an image of the scene illuminated by uniform
white light. However, at surfaces moving very quickly towards or away from the
camera, slightly visible patterns can be observed, because the projections are not
anymore exactly inverse to each other. This effect usually appears in combination
with common motion blur artifacts.

Imperceptible structured light. Imperceptible structured light [Cotting et al.,
2004] exploits the light modulation of DLP projectors to embed invisible patterns

43

Chapter 4 A 3D Video Acquisition System with Active Illumination

in any projection. It uses a time slot of 0.1ms where each micromirror is in a
constant position—either bright or dark. The color space of the projector is di-
vided into two disjoint parts where all pixels appear either white or black within
this time slot. By using a specialized color dithering approach, binary patterns
can be embedded that are only visible to a specially synchronized camera. In our
experiments, we used a constant projection of white with an embedded imper-
ceptible pattern only visible to the grayscale cameras. However, due to the very
short shutter time, the acquired images were too noisy to achieve a robust result
from the depth reconstruction algorithm. But in principle, it would work if more
light-sensitive cameras were used. The main advantages of this approach are the
close alignment between texture and pattern acquisitions, as well as the constant
illumination, producing no flickering visible for the human eye.

Figure 4.8 shows color and structured light images acquired by our system. White
projections were used for scene illumination by running the capturing process
in the inverse pattern projection mode. The visible projection boundaries in the
color images are due to space restrictions of our acquisition studio. We had to
position the projectors quite close to the scene. If we had been able to move the
projectors further away or to equip them with wide angle lenses, the scene would
have been covered completely in uniform white light. If more controllable lighting
conditions are necessary, embedding of black frames in combination with studio
light sources can be used, resulting in images like those of figure 4.9.

4.3 Camera Calibration

In order to compute valid depth maps and to merge the information gained from
several bricks, all cameras in the 3D video system must be calibrated intrinsi-
cally and extrinsically. The projectors can remain uncalibrated because they just
produce random textures supporting the depth from stereo algorithm.

For camera calibration, we use a custom software based on the calibration rou-
tines of the OpenCV library [OpenCV]. It assumes a pinhole camera model with
a second order radial and tangential lens distortion, as explained in sections 3.2.1
and 3.2.2. All camera parameters are determined by acquiring images of pla-
nar checkerboard targets, as shown in figure 4.10. In a first step, the intrinsic
parameters are determined for each camera separately, using a small DIN-A4
(210×297mm2) checkerboard. It has to be acquired from about five different ori-
entations for each camera. To obtain a good estimate of lens distortion, one shot
should capture the checkerboard oriented parallel to the image plane, covering the
whole field of view up to the image corners. Note that the intrinsic calibration of
the whole system has to be performed only once. It remains stable as long as the
lens parameters of the cameras are not changed. If a zoom-lens is readjusted, the
calibration only has to be repeated for that particular camera. The extrinsic cali-

44

4.3 Camera Calibration

Time in milliseconds16.678.330

In
v
e
rs

e
 p

a
tt

e
rn

p
ro

je
c
ti
o
n

B
k
a
c
 /

 w
h
it
e

fr
a
m

e
 p

ro
je

c
ti
o
n

IS
L

p
ro

je
c
ti
o
n

Pattern

Black /
white

5V

0V

White
 Blue

Green
Red

5V

0V

Pattern

Inverse
pattern

Open

Closed

Open

Closed

Open

Closed

Open

Closed

Open

Closed

ISL
pattern

Open

Closed

Projected
image

VGA
sync

Projector
color

wheel

Camera
sync

Projected
image

Texture
camera
shutter

Grayscale
camera
shutter

Texture
camera
shutter

Grayscale
camera
shutter

Texture
camera
shutter

Projected
image

Grayscale
camera
shutter

Figure 4.7: Timing diagrams of the different modes for simultaneous acquisition of color
textures and structured light patterns supported by our recording system.

bration is determined for all cameras at once by a single shot of a large DIN-A0
(841× 1189mm2) checkerboard in the center of the working volume. It can be
performed conveniently before each recording. As a result, we achieve an error
of reprojection of the calibration target into the camera images that is below one
quarter of a pixel. This corresponds to a stereo triangulation accuracy below 1cm
in the three-dimensional volume at three meters distance to the camera.

Self-calibration methods such as the one by Svoboda et al. [2005] may be an

45

Chapter 4 A 3D Video Acquisition System with Active Illumination

Figure 4.8: Camera images of our 3D video acquisition system captured using the inverse
pattern projection mode. The scene has been recorded from three input views,
using the projectors for texture illumination.

alternative to our approach, especially for a viewing range of 360 degrees, where
our routine would require a more complicated three-dimensional calibration target
that can be seen from all directions. However, in our experiments with our con-
strained viewing range, our method performed more robustly than self-calibration,
yielding a similar accuracy. While the approach by Svoboda et al. [2005] in gen-
eral needs less user interaction for intrinsic and extrinsic calibration together, our
approach is less time-consuming if only the extrinsic parameters have to be up-
dated.

4.4 Real-Time Recording

Each 3D video brick is equipped with three cameras for capturing frames of
1024× 768 pixels at 12 frames per second. A recording device must be able
to store a continuous data stream at 27 megabytes per second. We use a low-cost
solution with a conventional office PC attached to each brick via the FireWire bus.

46

4.4 Real-Time Recording

Figure 4.9: Camera images of our 3D video acquisition system captured using the black
frame embedding mode. The scene has been recorded from four input views,
using additional studio lights for texture illumination.

To guarantee the necessary data rate without interruptions, each PC is equipped
with two IDE hard disks working in parallel in a RAID-0 compound.

However, even in such a setup, frame-losses couldn’t be prevented in our first
experiment that used conventional file I/O operations for data storage. It seems
that the asynchronous write buffer or the disk block allocation routines of the file
system are causing sparse but unpredictable delays. As a solution, our recording
software preallocates a large continuous block as one file on a separate hard disk
partition. This file is used as cache that receives the raw data stream using un-
buffered write operations. With that method, our system is able to avoid frame

47

Chapter 4 A 3D Video Acquisition System with Active Illumination

Figure 4.10: Camera calibration with a checkerboard target.

losses even when recording at 15 frames per second in the unsynchronized case.
That could be shown in an empirical study where the recording system was run-
ning without interruptions for a whole day.

After recording is finished, the raw data is extracted offline from the cache
and converted into sequences of image files. During that process, images of the
color cameras are computed using the demosaicing algorithm of Malvar et al.
[2004]. Furthermore, all images are undistorted using the parameters obtained in
the camera calibration process.

4.5 Results

Figures 4.11 and 4.12 show color images acquired from multiple views with our
3D video recording system and corresponding depth maps reconstructed from the
structured light pattern images using the stereo vision algorithm of chapter 3. In
order to simplify the later processing steps, the depth maps have been warped into
the views of the color cameras of the corresponding acquisition bricks, yielding
one-to-one correspondences between depth and color pixels.

The taekwondo scene of figure 4.11 has been recorded at 10 frames per second
using three bricks covering a horizontal angle of 61 degrees and a vertical angle
of 40 degrees. Depth reconstruction has been performed without occlusion detec-
tion and discontinuity preservation. As a result, object silhouettes have a jagged
appearance in the depth maps and contain many outliers. That issue has to be
handled by later post-processing steps.

The flamenco scene of figure 4.12 has been recorded at 12 frames per second
using four bricks covering a horizontal angle of 71 degrees and a vertical angle
of 51 degrees. This time, the full depth reconstruction pipeline has been applied,
including occlusion detection and discontinuity preservation. Depth pixels that

48

4.5 Results

Figure 4.11: Color images and corresponding depth maps of the taekwondo scene acquired
by three 3D video bricks.

49

Chapter 4 A 3D Video Acquisition System with Active Illumination

are likely to be more inaccurate are marked as invalid. The resulting depth maps
contain more holes and, thus, only provide a conservative representation of the
scene geometry. The holes can be filled using the information from neighboring
bricks, which is easier than removing invalid depth values in a later stage. Object
silhouettes are represented quite accurately by the valid depth values.

An summary of all data sets that we acquired is given in appendix A.

4.6 Conclusion

Our 3D video acquisition system captures dynamic real-world scenes syn-
chronously from a sparse amount of input viewpoints. The scalable setup of
mobile 3D video acquisition bricks can be easily adapted to the scene complexity
and the desired virtual viewing range during playback. Color textures are acquired
concurrently with stereo grayscale images under structured light illumination, op-
tionally using the projectors as white light sources. Based on the pattern images, a
stereo matching algorithm computes dense depth maps from all input viewpoints.

50

4.6 Conclusion

Figure 4.12: Color images and corresponding depth maps of the flamenco scene acquired
by four 3D video bricks.

51

Chapter 4 A 3D Video Acquisition System with Active Illumination

52

Chapter 5

Point-Sampled 3D Video

For conventional two-dimensional video, there exists a well-established, generic
data representation: the image pixel. It is a simple yet powerful primitive capable
of modeling 2D views of arbitrary complex scenes. It builds the basis for a large
amount of applications ranging from image processing, video editing, streaming,
and compression. To establish 3D video as a novel form of multimedia content, a
similarly generic data primitive is needed.

In this chapter, we propose to use points that model all surfaces of a three-
dimensional scene as an irregular cloud of samples. By sampling not only ap-
pearance but also geometry, points can be seen as a generalization of pixels to the
third spatial domain [Würmlin, 2007]. The irregularity of the point cloud permits
scalability: data from multiple 3D video acquisition bricks can be merged into one
consistent, view-independent model of the scene. Sampling resolution can be lo-
cally adapted to the desired amount of detail. Unlike image-based structures such
as such as those used by Zitnick et al. [2004], it is possible to keep the amount
of data low by removing redundant points from the geometry [Pauly et al., 2002;
Sadlo et al., 2005].

Compared to mesh-based methods, points provide advantages in terms of scene
complexity because they reduce the representation to the absolutely necessary data
and do not carry any topological information which is often difficult to acquire and
maintain. For applications such as rendering or certain geometry processing tasks,
a continuous surface is constructed locally on demand using efficient splatting (cf.
section 5.1.2) or moving least-squares interpolation [Levin, 2003] algorithms. As
each point in our model has its own assigned color, we also do not have to deal
with texturing issues. The uniformity of the data structure allows for simple but ef-
ficient streaming and compression algorithms, as we show in chapter 7. Moreover,
in combination with the spatio-temporal data structure of chapter 8, point samples
are very suitable for 3D video editing applications as presented in chapter 9.

Specifically for scanned real-world data, we propose a probabilistic model
where each point has an associated distribution describing the uncertainty of its
position. This allows for modeling noise and errors introduced in the acquisition

53

Chapter 5 Point-Sampled 3D Video

and reconstruction process. In particular, we provide a method for modeling quan-
tization noise of the image pixel grid and camera calibration errors. These errors
are considered in our probabilistic rendering method which is able to generate
smooth images out of noisy input data.

The next section introduces the fundamentals of point-based representations
and rendering. Subsequently, our specialized probabilistic point-based 3D video
data model is presented, followed by descriptions of post-processing algorithms
and image generation methods. The chapter concludes with a discussion of the
achieved results.

5.1 Introduction to Point-Sampled

Geometry

In this section, we give an introduction into point-based representations and ren-
dering algorithms that build the basis for the data models used in this thesis. For a
more extensive overview over point-sampled geometry, including topics like sur-
face analysis, filtering, resampling, and feature extraction, we refer to the book by
Gross and Pfister [2007].

5.1.1 Data Model

As first introduced by Levoy and Whitted [1985], points can be used as an effi-
cient representation for complex geometries alternatively to traditional triangles.
They provide a compact model of geometry and appearance of three-dimensional
scenes by storing local samples of specific attributes such as position or color.
The complete scene is modeled by an irregular cloud of many points [Grossman
and Dally, 1998]. Depending on the sampling, they can be used for modeling both
surfaces [Pfister et al., 2000] and volumes [Zwicker et al., 2001b]. In contrast to
more traditional meshes, points do not store any neighborhood information. Thus,
they do not explicitly model topology.

All point representations used in this thesis follow the generic framework de-
scribed by Zwicker et al. [2001b]. There, a point sample is defined completely by
the values of its attributes. An example of a typical attribute for a k-dimensional
geometry is shown in table 5.1. Usually, the geometry space is three-dimensional,
i.e. k = 3, but we will later also define point samples in four-dimensional space-
time.

The most important attribute is the position X which is generally used to identify
a specific point in the cloud. Typically, all points are stored in a spatial query data
structure like a kd-tree [Bentley, 1975] according to their position attribute. This
is used as a basis for most algorithms processing the geometry.

54

5.1 Introduction to Point-Sampled Geometry

Symbol Data type Description
X k-dim. vector position
V k× k-matrix covariance matrix
c scalar triple color

Table 5.1: Typical attributes of a point primitive.

During rendering, all points are projected onto the screen. In order to be visible
at all, their projections have to cover a certain amount of image pixels. Therefore,
points do generally not represent infinitesimally small Dirac samples but they de-
scribe small volumes of space around their center position. The volume is often
modeled as a k-dimensional Gaussian normal distribution

Nk(ζ;X,V) =
1

√

(2π)k|V|
e−

1
2 (ζ−X)TV−1(ζ−X) (5.1)

centered at the sample position X. The covariance matrix V describes its ellip-
soidal shape. Intuitively, the Gaussian blurs the point samples to some extent and
interpolates their attributes in the space in-between. That way, points are able to
model closed surfaces or volumes. Because its infinite extent is inefficient to han-
dle, Nk is often only evaluated in a region up to a certain user-defined cutoff radius
rC, i.e. for all ζ with (ζ−X)V−1(ζ−X) < r2

C. Outside that region, the function is
assumed to be zero.

The covariance matrix V provides a unified framework for the various special-
ized point primitives used in this thesis. It can be composed from k-dimensional
vectors T1, . . . ,Tk that span the k-dimensional Gaussian ellipsoid as

V = Σ ·ΣT (5.2)

with
Σ =

(

T1 · · · Tk

)

. (5.3)

In practice, one or more of the spanning vectors may be zero, collapsing the Gaus-
sian into a lower-dimensional ellipsoid.

A typical special case consists of two-dimensional elliptical discs, so-called
surfels [Pfister et al., 2000], that are tangentially aligned to the three-dimensional
surface they represent (cf. figure 5.1). Their non-zero spanning vectors T1 and
T2 may be obtained by any of the available point-based algorithms such as those
contained in Pointshop 3D [Zwicker et al., 2002a]. Alternatively, if the 3D video
acquisition system is able to provide stable depth values z along with their gradi-
ents zx and zy, they can be computed by backprojecting the footprint of an image
pixel into three-space. Based on the rotation matrix R, projection matrix P, and
center of projection O of the acquisition camera, the center X of the surfel corre-
sponding to a pixel (x,y) can be computed as

X = R−1 ·P−1 · (x,y,1)T · z+O. (5.4)

55

Chapter 5 Point-Sampled 3D Video

T1

T2

X

Figure 5.1: Surfels model three-dimensional surfaces as a set of small tangentially aligned
ellipses.

Calculation of the spanning vectors follows from differentiation:

T1 = R−1 ·P−1 ·
(

z · (1,0,0)T + zx · (x+1,y,1)T) , (5.5)

T2 = R−1 ·P−1 ·
(

z · (0,1,0)T + zy · (x,y+1,1)T) . (5.6)

Table 5.2 lists all types of point samples that are used in this thesis.

5.1.2 Rendering

Images of point clouds can be generated in a forward rendering process called
splatting. In the following, we give a summary of the basic algorithm. Besides its
simplicity, it has the advantage of being based on a solid signal processing frame-
work which allows for extensions such as high-quality texture antialiasing. Details
can be found in the papers by Zwicker et al. [2001a, 2002b, 2001b]. Moreover, it
can be easily implemented on the GPU [Ren et al., 2002; Botsch et al., 2002].

The algorithm in figure 5.2 shows the point splatting procedure in pseudocode
notation. It consists of four basic steps:

56

5.1 Introduction to Point-Sampled Geometry

Description Dimensions
of space

Dimensions
of Gaussian

Representation Usage in thesis

Circular disk 3 2 Normal vector, disk
radius

Model compression
(chapter 7)

Elliptical disk 3 2 2 spanning vectors Surfel-based 3D video
(section 5.1)

3D ellipsoid 3 3 3 spanning vectors Probabilistic 3D video
model (chapter 5.2)

Ellipsoid in 4D
spacetime

4 4 3 spanning vectors
in space, 1 in time

Video hypervolume
(chapter 8)

Table 5.2: Different point types used in this thesis.

1. Projection onto image plane
2. Fuzzy depth test
3. Rasterization and blending
4. Normalization

Step one is performed in line 3 of the code listing. There, each point is projected
onto the image plane together with its associated Gaussian normal distribution,
yielding a screen space kernel AS(x,y) centered around a pixel (x0,y0), serving as
an alpha mask for rasterization. Many point renderers use a local affine approxi-
mation of the projection operator [Zwicker et al., 2001a] for simplification of the
rasterization stage because the screen space kernels are then again Gaussians in
two dimensions.

The fuzzy depth test resolves for occlusions. Because Gaussians of neighbor-
ing points from the same surface tend to have some overlap, this step differs from
traditional image generation approaches. Occlusions should only occur if screen
space kernels from different surfaces contribute to the same pixel. If the kernels
belong to neighboring points of the same surface, they should all contribute to the
pixel color. This can be achieved approximately by a fuzzy depth test. Similar
to conventional depth tests, depths zS of fragments (x,y) are written into a depth
buffer ZS(x,y). A global value ∆zS defines a minimum distance that is consid-
ered as occlusion. If the depth zS of a new fragment (x,y) differs no more than
∆zS from the depth buffer value ZS(x,y) (line 9), there is no occlusion and the
fragment color is blended with the color buffer value in the rasterization stage.
Otherwise, an occlusion has occurred and the new pixel value is either rejected if
zS >ZS(x,y)+∆zS or depth and color buffer are overdrawn if zS <ZS(x,y)−∆zS

(line 5).
The third step performs the actual rasterization. Each incoming fragment (x,y)

has an associated depth zS, color c and transparency value AS(x,y). Depending
on the result of the fuzzy depth test, rasterization either overdraws the frame-
buffers (lines 6 to 8) or blends their content with the attributes of the new fragment
(lines 10 and 11) to obtain a smooth transition of neighboring surface samples.

57

Chapter 5 Point-Sampled 3D Video

foreach pixel (x,y) do AS(x,y)← 0, ZS(x,y)←∞ ⊲ Initialization1

foreach point (X,V,c) do2

compute screen-space kernel AS(x,y) and depth zS ⊲ Projection3

foreach pixel (x,y) with AS(x,y) > 0 do4

if zS < ZS(x,y)−∆zS then ⊲ Fuzzy depth test5

ZS(x,y)← zS ⊲ Rasterize6

CS(x,y)← c7

AS(x,y)← AS(x,y)8

else if zS ≤ZS(x,y)+∆zS then ⊲ Fuzzy depth test9

CS(x,y)← AS(x,y) · c+AS(x,y) · CS(x,y) ⊲ Rasterize and blend10

AS(x,y)← AS(x,y)+AS(x,y)11

end12

end13

end14

foreach pixel (x,y) do ⊲ Normalization15

CS(x,y)←CS(x,y)/AS(x,y)16

AS(x,y)← 117

end18

Figure 5.2: Point splatting algorithm.

Blending is performed in an additive way by setting the new pixel color CS(x,y)
to AS(x,y)c+AS(x,y)CS(x,y) and its alpha value AS(x,y) to AS(x,y)+AS(x,y).

When all points have been rasterized, framebuffer pixels still have varying
transparency values depending on the amount of overdraw caused by the addi-
tive blending function. To render constant opaque surfaces, the final color buffer
is normalized in step four (lines 15 to 18) by dividing all pixel colors by their
alpha values.

We did an efficient GPU implementation of the above splatting algorithm using
OpenGL vertex and fragment shaders, similar to the one by Botsch et al. [2002],
with the addition of a screen-space EWA texture antialiasing filter [Zwicker et al.,
2001a]. Local affine projection [Zwicker et al., 2001a] is performed in a vertex
shader, rasterization is done in a fragment program. The fuzzy depth test is not
supported in current graphics hardware but can be simulated by a two-pass render-
ing approach called visibility splatting [Ren et al., 2002]: With the hardware depth
test enabled, the scene is first rendered into the depth buffer only. In the second
pass, the depth test is still enabled but the depth buffer is write protected. Dur-
ing rendering, all fragment depths are decremented by 2∆zS to simulate the fuzzy
depth test. The final normalization step is implemented as a fragment program
running in one pass over all framebuffer pixels. Our renderer is able to achieve
an average performance of about eight million splats per second on a NVIDIA R©

GeForce R© 7800 GS graphics board.

58

5.2 Probabilistic Point Samples for 3D Video

5.2 Probabilistic Point Samples for 3D

Video

While surfels provide a good model for artificial geometry, they are not an opti-
mal solution for noisy, real-world data. To compute an accurate alignment of the
surfels, stable surface normals are needed, which are difficult to obtain from 3D
reconstruction methods. Disturbed normals produce visible artifacts in rendered
images.

Therefore, we propose a different approach, similar to the one by Hofsetz et al.
[2005]. Every point is modeled by a three-dimensional Gaussian ellipsoid with
covariance matrix V spanned by the vectors T1, T2 and T3 around its center X.
This corresponds to a probabilistic model describing the positional uncertainty of
each point by a trivariate normal distribution.

To estimate V, Hofsetz et al. [2005] have chosen an approach based on the
quality of the pixel correlation of the stereo matching. However, it turns out that
those heuristic uncertainties are quite large compared to the high-quality dispari-
ties we are able to obtain from our structured light assisted approach, resulting in
too blurry images. Consequently, we propose a different approach that constrains
the uncertainties to cover only small but well-defined acquisition errors. We as-
sume that most disparities are correctly estimated up to small errors caused by
quantization noise of the image pixel grid and deviations in camera calibration.

Assuming a Gaussian model for each image pixel, we first compute the back-
projection of the pixel into three-space which is a 2D Gaussian parallel to the
image plane spanned by two vectors Tx and Ty. Extrusion into the third domain
by adding a vector Tz guarantees a full surface coverage under all possible views.
This is illustrated in figure 5.3.

Each pixel (x,y) is spanned by orthogonal vectors σx(1,0)T and σy(0,1)T in the
image plane. Assuming a positional deviation σC, the uncertainties of pixel width
and height are σx = σy = 1 + σC. σC is estimated to be the average reprojection
error of our calibration routine.

The depth z of each pixel is inversely proportional to its disparity d as defined
by the equation

z =−‖OL−OR‖ ·
fx

d
, (5.7)

where fx is the x-component of the focal length of the rectified camera pair, OL

and OR are the centers of projection, and px,L and px,R the x-coordinates of the
principal points. The depth uncertainty σz is obtained by differentiating equa-
tion (5.7) and augmenting the derivative dx of the disparity with the uncertainty
σC:

σz = ‖OL−OR‖ ·
fx

d2 · (dx +σC) . (5.8)

59

Chapter 5 Point-Sampled 3D Video

Gaussian

ellipsoid

Point

sample

Geometry surface

Pixel

Image plane

Depth

Center of projection

Viewing rays

Tz

Ty Tx

σy σx

Figure 5.3: Construction of a three-dimensional Gaussian ellipsoid.

Now we can construct for each pixel its Gaussian covariance matrix

VR = ΣR ·ΣT
R (5.9)

in ray space with

ΣR =

σx · z 0 σz · x
0 σy · z σz · y
0 0 σz

 . (5.10)

It is transformed into the world coordinate system by

V = R−1 ·P−1 ·VR · (P−1)T · (R−1)T (5.11)

using the camera rotation matrix R and projection matrix P.
The centers X of the ellipsoids are constructed by backprojection as

X = R−1 ·P−1 · (x,y,1)T · z+O, (5.12)

where O is the center of projection of the camera.

60

5.3 Scan Merging

5.3 Scan Merging

Multiple scans from different views are merged into one consistent, view-
independent 3D model of the scene by backprojecting all points into the same
world reference frame. The scalability of our system permits simple addition of
further input viewpoints in order to achieve a greater virtual viewing range and to
resolve for occlusions.

After backprojection, the point model still contains outliers and falsely pro-
jected samples, especially at object silhouettes due to instabilities of the stereo
reconstruction at depth discontinuities. While those points look correct from their
originating viewpoint, they produce visible artifacts in renderings of other views,
disturbing the overall appearance of the 3D video. Thus, we remove those points
by checking the whole model for photo consistency with all texture cameras. This
is similar to space carving [Kutulakos and Seitz, 1999] or generalized voxel col-
oring [Culbertson et al., 1999], but unlike those algorithms, our method works on
the already reconstructed irregular point samples instead of a voxel grid.

The method, which is outlined in the algorithm of figure 5.4, works by suc-
cessively rendering the complete point cloud in all input views using a modified
version of the previously explained splatting algorithm. During rasterization, the
colors c of the pixels (x,y) of each splat are compared with those of the corre-
sponding input camera image Cv. If the deviation exceeds a user-defined threshold
∆cP (line 15), the splat is inconsistent with the input image and the corresponding
point is removed from the data model (line 16). Otherwise, the splat is rasterized
into the fuzzy z-buffer (lines 18 to 22) for occlusion handling. Areas of the scene
that are occluded in the current rendering view are generally inconsistent with the
input image. Therefore, occluded splats should not be tested for consistency at all,
which is achieved by rendering the points in increasing depth order (lines 3 to 6)
starting with those that are closest to the camera.

As consistency measure, the color deviations of all unoccluded pixels of a splat
are weighted by its alpha mask and summed up by computing

∆c = ∑
(x,y)

AS(x,y)ξv(x,y)(Cv(x,y)− c), (5.13)

in lines 9 to 14, where ξv(x,y) = 1 if fragment (x,y) of the splat is visible in the
current view v and ξv(x,y) = 0 if it is occluded. The colors c, CS(x,y), ∆c, and
∆cP denote three-dimensional vectors in the employed color space. Therefore,
the comparison in line 15 is actually performed component-wise. If a material is
not perfectly Lambertian it is likely that the luminance of reflected light shows
a higher variance over the reflection angle than its color. To cope with that, our
algorithm expresses ∆c in YUV color space which separates the luminance Y from
chrominance U and V. We can then chose a higher threshold for the Y-component
(e.g. 40% of the maximum possible value) than for the U- and V- components
(e.g. 15% of the maximum possible value).

61

Chapter 5 Point-Sampled 3D Video

foreach input view v do1

foreach pixel (x,y) do ZS(x,y)←∞ ⊲ Initialization2

foreach point i with attributes (X,V,c) do ⊲ Depth sorting3

Compute depth zS in view v4

end5

Sort points according to increasing zS6

foreach point i with attributes (X,V,c,zS) do7

Compute screen-space kernel AS(x,y) in view v ⊲ Projection8

∆c← 0 ⊲ Color deviation9

foreach pixel (x,y) with AS(x,y) > 0 do10

if zS < ZS(x,y)+∆zS then11

∆c← ∆c+AS(x,y) · (c−Cv(x,y))12

end13

end14

if ∃ j ∈ {1,2,3} : |∆c j|> ∆cP j then ⊲ Consistency test15

remove point i ⊲ Delete inconsistent point16

else17

foreach pixel (x,y) with AS(x,y) > 0 do ⊲ Rasterize...18

if zS < ZS(x,y)+∆zS then ⊲ ...consistent point19

ZS(x,y)← zS20

end21

end22

end23

end24

end25

Figure 5.4: Algorithm for photo consistency enforcement.

As a result, enforcing photo consistency considerably improves the seamless
fit of multiple acquired depth maps in our model. The reduction of artifacts can
be clearly seen in figure 5.5. Nevertheless, there still remain some issues with
mixed pixels, i.e. silhouette pixels possessing a color that is interpolated from
different surfaces. These tend to produce holes in the cleaned model. This may
be solved using boundary matting techniques which are introduced in the next
chapter. Currently, we apply our consistency check conservatively and tolerate
remaining outliers that are not detected.

The resulting point cloud still contains redundancies, especially in overlap re-
gions of surfaces reconstructed from neighboring input views. They can be re-
moved using any of the available point cloud simplification [Pauly et al., 2002] or
merging [Sadlo et al., 2005] methods.

62

5.4 Rendering

Figure 5.5: Enforcing photo consistency during view merging: without (left) and with
(right) enforcement.

5.4 Rendering

The uncertainties modeled by the Gaussian ellipsoids are used in our probabilistic
renderer for generating smooth images of the scene from novel viewpoints. Our
method combines the advantages of the probabilistic image generation approach
described by Broadhurst et al. [2001] with those of visibility splatting [Ren et al.,
2002]. Additionally we perform a view-dependent blending similar to method
used by Hofsetz et al. [2005].

5.4.1 Probabilistic Rendering

Broadhurst et al. [2001] use probabilistic volume ray casting to generate smooth
images. Each ray is intersected with the Gaussians of the scene model. At a
specific intersection point X with the sample i, the evaluation Nk(ζ;Xi;Vi) of the
Gaussian describes the probability that a ray hits the corresponding surface point.
To compute the final pixel color, the algorithm employs the Bayes rule: It inte-
grates all colors along each ray weighted by the probabilities without considering
occlusions. Thus, the color cR of a rayR is computed as

cR =

R

ζ∈R∑i ciN(ζ;Xi,Vi)∂ζ
R

ζ∈R∑i N(ζ;Xi,Vi)∂ζ
. (5.14)

That approach produces very smooth images, but is incapable of handling occlu-
sions and rendering solid surfaces in an opaque way.

Occlusions can be resolved via visibility splatting, as done in our point ren-
derer of section 5.1.2. In combination with the final alpha normalization step, this
method is able to generates crisp images containing opaque surfaces. On the other
hand, it also sharply renders noise in the geometry.

63

Chapter 5 Point-Sampled 3D Video

Figure 5.6: Comparison of visibility splatting (left) and Bayesian rendering (center) with
our approach (right).

We propose a rendering method that combines both approaches in order to ben-
efit from their respective advantages. Our idea is to accumulate the colors along
each ray like in the Bayesian setting, but to stop as soon as a maximum accu-
mulated probability has been reached. Thus, we accumulate the solution of the
integrals of equation (5.14) by traversing along the ray from the camera into the
scene and stop as soon as the denominator reaches one. Assuming that solid sur-
faces are densely sampled, the probabilities are high enough so that the rays will
stop within the front surface. This is still not guaranteed, but in practice, surfaces
in the generated images appear much more opaque compared to the Bayesian ren-
derings.

Such a renderer can be implemented by a modified version of our splatter. First,
the Gaussians have to be presorted by the CPU according to their depths such that
the GPU renderer splats them from front to back. As a consequence, no fuzzy
depth test is needed for occlusion handling. The blending function is modified
such that it stops accumulation when the accumulated values in the alpha buffer
reach a level of saturation. This is directly supported by the OpenGL blending
function GL_SRC_ALPHA_SATURATE.

We compare visibility splatting and Bayesian rendering with our approach on
noisy data in figure 5.6. Notice the large distortions in the image generated by
visibility splatting, which get smoothed out by the other two methods. However,
the Bayesian renderer blends all the points including those from occluded sur-
faces, while our method renders opaque surfaces and keeps the blending. Thus,
our renderer provides the advantages of both previous methods.

5.4.2 View-Dependent Blending

One specific sample usually looks most accurate from the view it has been ac-
quired from. As the deviation between the acquisition and the virtual view be-

64

5.5 Results and Discussion

comes larger, the quality decreases. Thus, the contribution of a specific point to
the generated image should be weighted by the deviation of its acquisition view-
point from the virtual viewpoint. We achieve this by computing a weight for the
alpha mask of each Gaussian using the view-dependent criterion of the unstruc-
tured lumigraph framework introduced by Buehler et al. [2001].

Because the camera of our acquisition system all have the same resolution and
a similar distance from the recorded scene, we only use the angular penalty. If a
different camera setup was used, implementation of the other penalties would be
straightforward.

Assuming that the reconstructed scene looks best from the view of an acqui-
sition camera and worse from other viewing angles, the algorithm compotes for
each input view v ∈ {1, . . . ,m} a penalty of the form

ω′′
v = arccos(R ·Rv), (5.15)

where R and Rv are the viewing rays of the virtual and the acquisition cameras,
respectively. For efficiency, we approximate those vectors with the viewing di-
rections of the respective cameras: Given a camera rotation matrix R, they can be
computed as R = RT · (0,0,1)T. Instead of using the scalar product only as done
by Hofsetz et al. [2005] and many other people, we found that our penalty which
is linear to the deviation of viewing angles generates a smoother transition in the
rendering when the viewing direction of the virtual camera is changed.

As suggested by Buehler et al. [2001], a blending weight for each input camera
is then computed by

ω′
v =

(

1− ω′′
v

maxu∈{1,...,m}ω′′
u

)

· 1
ω′′

v

. (5.16)

This equation ensures epipole consistency: if an acquisition camera is identical
with the virtual camera, its weight goes to infinity and dominates the weights of
all other input cameras. For practical calculations, the weights have to be clamped
to a large, finite number. Finally, they are normalized to

ωv =
ω′

v

∑m
u=1 ω′

u

. (5.17)

During splatting, weighted Gaussian screen-space kernels ωvAS(x,y) are used,
yielding splats that are more transparent the more their acquisition camera view
deviates from the rendering viewpoint.

5.5 Results and Discussion

The following results have been created using the taekwondo data presented in
chapter 4 and appendix A. It has been recorded in our acquisition studio with three
3D video bricks covering an overall viewing angle of 61 degrees horizontally and
40 degrees vertically.

65

Chapter 5 Point-Sampled 3D Video

5.5.1 Image Quality

Figure 5.7 shows novel views of the scene generated from our reconstructed point-
based 3D model. Our re-renderings have a decent look with a high-quality texture.
Acquisition noise is smoothed out by our probabilistic data model in combination
with the view-dependent rendering algorithms. This is clearly visible in compari-
son with a conventional point model based on surfels, as shown in figure 5.8.

Our depth map acquisition system based stereo vision and structured light pro-
jection together with our resolution-adaptive, irregularly sampled scene represen-
tation allows for capturing highly detailed textures and geometry. As shown in
figure 5.9, we are able to reconstruct the texture details of the small-scale box on
the table as well as the complex geometry of the tablecloth.

A remaining issue are outliers especially at object silhouettes which couldn’t be
removed by the photo consistency check. They are artifacts of the depth recon-
struction process due to inaccurate stereo matches at depth discontinuities. Our
time-coherent filtering and alpha matting approaches introduced in chapter 6 help
to further improve image quality.

5.5.2 Scalability

With our system we are in principle able to acquire a large viewing range with
a relatively low amount of cameras. To support increasingly large ranges, our
system is scalable up to full spherical views. To fully cover 360 degrees in all
dimensions about 10 to 12 3D video bricks are needed. Data of additional bricks
is just added to the global scene model, as shown in figure 5.10. Note that this is
in principle not constrained to convex views. Although overlaps in the geometry
can help to improve the overall quality due to the photo consistency enforcement,
they are not required as each brick reconstructs its own scene part independently.

A practical limitation is the size of the acquired data. For example, each 3D
video frame of the taekwondo data set consists in average of 1.21 million points,
which corresponds to a raw data size of 45 megabytes for point positions, covari-
ance matrices and colors together. Although it can be reduced by simplification,
this comes at the cost of resolution, which may be undesirable if the user should
have the possibility of free camera control including closeup views. Therefore, we
investigate appropriate compression algorithms in chapter 7, as well as out-of-core
data management in chapter 8.

5.5.3 Editing Capabilities

Our view-independent data model provides possibilities for novel effects and 3D
video editing. Due to its point-based structure we are able to employ any kind of
available point processing algorithms [Gross and Pfister, 2007]. Once the three-
dimensional information is available, selection and compositing issues become

66

5.5 Results and Discussion

Figure 5.7: Re-renderings of the 3D video from novel viewpoints.

67

Chapter 5 Point-Sampled 3D Video

Figure 5.8: Rendering using surfels (left) and our view-dependent uncertainty blending
(right).

Figure 5.9: Geometric detail in the tablecloth. For illustration we recomputed smooth
surface normals and rendered the scene with Phong lighting under two different
illumination conditions.

Figure 5.10: Scan merging: reconstructions from one (left), two (center) and three bricks
(right).

68

5.6 Conclusions

Figure 5.11: Special effects: actor cloning (top), motion trails (bottom).

straightforward and can be easily implemented using spatial clustering or bound-
ing box algorithms. Such tasks are much harder to achieve on both conventional
2D video and view-dependent 3D video approaches based on light fields or depth
maps only. Apart from the well-known time freeze we show two example ef-
fects in figure 5.11. We clone the actor by copying its corresponding point cloud
to other places in the scene. Motion trails are generated by compositing semi-
transparent renderings of moving objects from previous time steps.

To further investigate novel possibilities of video post-production, we devel-
oped a 3D video editing system which is introduced in chapter 9. It provides a
convenient user interface for navigating in the four-dimensional spatio-temporal
data set, as well as a toolbox of manipulation operators such as semi-automatic
graph cut segmentation for object selection.

5.6 Conclusions

Our point-based data model together with our scalable concept of modular 3D
video acquisition bricks allows for capturing of a large viewing range with
sparsely placed components. Decent-quality images of novel views are gener-
ated using Gaussian ellipsoid rendering with view-dependent blending methods.

69

Chapter 5 Point-Sampled 3D Video

The view-independent data representation is well suited for spatio-temporal video
editing. It can directly benefit from a large variety of available point-based pro-
cessing algorithms for simplification, compression, multiresolution rendering or
out-of-core storage, which we show in the following chapters of this thesis.

The resulting image quality, however, still has room for improvement. Filtering
the point cloud for smoothing or outlier removal remains difficult due to its ir-
regular nature. Therefore, the next chapter introduces an alternative image-based
representation that is able to significantly improve visual quality. It can either be
used exclusively for re-rendering acquired depth and texture images or as an in-
termediate representation for efficient application of post-processing algorithms
before conversion into a point-based model.

70

Chapter 6

3D Video Billboard
Clouds

Although the previously introduced point-based model has its advantages in gen-
erality, scalability, and flexibility, post-processing of the raw scanned data for re-
moving noise and outliers remains difficult. The irregular and three-dimensional
nature of the point cloud requires complex error models, query data structures,
and processing algorithms.

In this chapter we present an alternative representation called 3D video bill-
board clouds. They combine the generality of geometry-based representations
with the regularization properties of image-based representations. As an ex-
tension to the original billboard clouds representation [Décoret et al., 2003],
displacement-mapped billboard clouds (DMBBC) have been recently introduced
by Mantler et al. [2007] as a new image-based rendering primitive. They represent
parts of a geometrically complex scene as a set of proxy planes augmented with
detailed displacement maps. We exploit DMBBCs for 3D video by constructing
both their proxy planes and displacement maps from depth images of the scene.
Those can be acquired using stereo matching algorithms, which are usually sub-
ject to noise and errors. The billboard planes with their approximate geometry are
used to regularize this noisy, detailed geometry. By placing the billboard repre-
sentation in the disparity space of the acquisition cameras, they provide a regular
sampling of the scene with a uniform model of acquisition error. This allows to
apply signal processing algorithms to generate smooth models with space and
time coherence. The application of bilateral filters can successfully remove re-
construction and quantization noise as well as calibration errors and, thus, allows
for higher quality renderings compared to those of reconstructions from complex
and time-consuming subpixel stereo matching algorithms. Our GPU-accelerated
rendering algorithm is able to further improve the final image quality by generat-
ing consistent view-dependent geometry and textures for each individual frame.
To handle not only single objects with our representation, we also present a semi-
automatic approach for modeling complete dynamic three-dimensional scenes

71

Chapter 6 3D Video Billboard Clouds

with a set of multiple 3D video billboards clouds.
With this framework, we are able to achieve a significantly higher image quality

given the same input data. For 3D video editing, the billboard clouds can be easily
converted into our point-based representation. The resulting 3D model benefits
from the post-processing filters that have been applied in the image space domain
of the billboards.

6.1 Data Model

A 3D video billboard cloud models a single 3D video object and comprises a col-
lection of multiple 3D video billboards. A 3D video billboard represents the 3D
structure and texture of an object at a specific point in time as observed from a
single viewpoint. It consists of an arbitrarily placed and oriented texture mapped
rectangle or proxy Π̂ approximating the real geometry of the object. Its associated
textures are a displacement map D̂ for adding fine scale geometric detail, a color
map Ĉ modeling the surface appearance, and an alpha map Â representing the ob-
ject’s boundary. The latter is employed for seamless blending with the background
of the scene.

Let us first assume that the required input data to generate such a billboard is
available. Figure 6.1 shows the input data consisting of color images, alpha mat-
tes, and depth maps of a single object. Color images and alpha mattes directly
serve as texture maps on the billboard planes. They can be recorded e.g. by
standard cameras in front of a green screen or using segmentation and matting al-
gorithms [Wang et al., 2005; Li et al., 2005]. In section 6.4 we propose a method
to construct this data from multi-view recordings of real-world scenes with mul-
tiple objects. The depth maps can be reconstructed using e.g. our stereo vision
algorithm of chapter 3. They are transformed into displacement maps for the bill-
boards, which are placed in disparity space of the acquisition cameras as explained
in section 6.1.1. Figure 6.2 illustrates the billboard planes and their composition
to a billboard cloud, as well as displacement-mapped billboard planes.

We impose a set of requirements for an optimal 3D video billboard clouds rep-
resentation:

1. Simple geometric proxy. The geometric proxy should be as simple as pos-
sible, i.e. a rectangle. This permits an easy parametrization for texture
mapping.

2. Regular sampling. By ensuring a regular sampling we can exploit standard
signal processing methods for post-processing of the geometry without the
need of resampling. In particular, we would like to directly exploit the ex-
isting regular sampling from the acquisition cameras.

3. Uniform error model. 3D reconstruction introduces noise that is usually
not uniform in world coordinates. The uncertainty of depth values recon-

72

6.1 Data Model

Figure 6.1: Billboard input data: colors (left), alpha matte (middle), and depth map (right).

Figure 6.2: Illustration of the billboard cloud for one object: billboard plane from one input
view (left), composition of planes from multiple input views to a billboard cloud
(middle), displacement-mapped billboard plane from one input view (right).

structed by triangulation increases with their absolute value. Our billboard
representation should be defined in a space where the reconstruction error
is approximately uniform, independent from the distance of a surface from
the camera. Thus, uniform, linear filters can be applied for smoothing the
acquired geometry.

4. Minimal displacements. A minimal displacement of the proxy to the real
surface ensures a good approximation of the geometry and can improve
future compression and level-of-detail algorithms.

Requirement 1 can be guaranteed by construction. Requirements 2 and 3 are
fulfilled by defining the billboards not in conventional 3D space of the scene but
in the so-called disparity space of the acquisition camera. This is described in sec-

73

Chapter 6 3D Video Billboard Clouds

tion 6.1.1. Finally, a minimization algorithm introduced in section 6.1.2, ensures
the last requirement.

6.1.1 Scene Sampling and Error Model

Consider an input depth map Z = {(xi,yi,zi)} which has for each pixel at co-
ordinates (xi,yi) a unique depth value zi. The pixels are sampled on a uniform,
regular grid. This is a representation of the scene in the ray space of an acquisi-
tion camera, as each pixel corresponds to a unique viewing ray. Assume a pinhole
camera model with projection matrix P. Camera space coordinates (XCi,YCi,ZCi)
are projected into ray space by

zixi

ziyi

zi

= P ·

ZCi

YCi

ZCi

 (6.1)

followed by the division by the homogeneous coordinate zi. This is a nonlin-
ear transform, i.e. linear functions in camera space are not linear in ray space
anymore, as illustrated in figure 6.3, and vice versa. Hence, if we defined the
billboard plane in ray space and used the depth values as displacements, it would
not be planar in world coordinates and thus it would be difficult to use it as an
approximation for the real geometry. On the other hand, if we placed it in camera
space, the sampling would become irregular.

Instead, we define a disparity space of a camera as coordinates (xi,yi,di) with
di being inversely proportional to zi, i.e. di ∝ 1

zi
. Using this representation, we can

observe that planes in disparity space stay planar in camera space (cf. figure 6.3).
Moreover, sampling in disparity space is identical to the regular sampling of the
acquisition cameras. Thus, requirement 2 is fulfilled if we define the billboard
planes in these coordinates.

This representation is directly motivated from the fact that most 3D scan-
ners based on triangulation do not compute depth maps but disparity maps
D= {(xi,yi,di)}. For example, our depth from stereo algorithm of chapter 3 with-
out subpixel matching computes disparities as the difference of the x-coordinates
of two corresponding pixels in two different, rectified camera images. Due to
the spatial extent of the pixels, this produces a quantization error of σz which
is constant for each sample. Also with subpixel matching, there is a remaining
uncertainty in the disparity values. In camera space it can be observed that the
resulting uncertainty of the geometry is not constant anymore but depending on
the absolute value of the disparity. This is illustrated with the red error bars in
figure 6.3. By defining the billboards in disparity space we can thus use a uniform
model for the reconstruction error and fulfill requirement 3.

In conclusion, we obtain an image-space representation of a billboard using
pixel disparities by modeling the plane

Π̂(x,y) = π̂x · x+ π̂y · y+ π̂0 (6.2)

74

6.1 Data Model

XC

z

xx

ZCd

Figure 6.3: Illustration of the sampling of a plane (blue) and the triangulation error model
(red) in disparity space (left), ray space (middle), and camera space (right).

as a linear scalar function over the pixel coordinates x and y, and the displacement
map D̂ = {(xi,yi, d̂i)} with

d̂i = di− Π̂(xi,yi) =
1
zi
− Π̂(xi,yi). (6.3)

Using stereo vision as input, we can compute the displacements directly from the
disparities di.

6.1.2 Optimal Billboard Placement

We are still free to choose the position π̂0 and orientation π̂x and π̂y of the billboard
plane. A bad choice of these values can lead to arbitrarily large displacements in
world coordinates. This becomes an important issue as soon as the values of the
displacement map should be processed. E.g. by applying filters for improving
the surface geometry, already very small errors due to numerical instabilities can
become very large in world coordinates and produce large geometric artifacts.
Another example is lossy compression of displacement maps, e.g. if they are
stored as compressed textures in the GPU. While compression algorithms try to
minimize artifacts appearing in the displacement maps it should also be ensured
that visible artifacts on the actual surfaces also remain small. In these terms, we
are looking for an optimal choice of the plane parameters.

Note that constructing a least-squares plane in disparity space by computing

arg min
π̂x,π̂y,π̂0

∑
i

||π̂xxi + π̂yyi + π̂0−di||2 (6.4)

75

Chapter 6 3D Video Billboard Clouds

XX

Z Z

Figure 6.4: Illustration of surface (green), billboard plane (blue) and displacements (red)
in world space. Left: displacements optimized in disparity space. Right: displace-
ments optimized in world space.

is not sufficient. Although it minimizes the displacements in disparity space they
can grow arbitrary large in world coordinates depending on the magnitude of the
present disparities. A result of such a minimization in 2D is illustrated on the left
side of figure 6.4. Instead the optimization has to be carried out directly in world
coordinates by solving the nonlinear least squares problem

arg min
π̂x,π̂y,π̂0

∑
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P−1 ·

xi

yi

1

 ·
(

1
π̂xxi + π̂yyi + π̂0

− 1
di

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

. (6.5)

Usually, five to ten iterations of the Levenberg-Marquardt algorithm [Press et al.,
1992] are sufficient for convergence to a relative error below 10−6. The right side
of figure 6.4 shows the result of such an optimization.

The billboard planes may be additionally stabilized over time by incorporat-
ing additional disparity space coordinates (xi,yi,di) from previous and successive
frames into equation (6.5), weighted by their temporal distance from the current
frame. However, our experiments have shown already a good temporal stability
without this approach for our application. This can be explained with the temporal
invariance of acquisition noise and the robustness of the least-squares fit against
outliers. For different data sets that for example contain large clusters of outliers,
temporal stabilization may be necessary.

76

6.2 Filtering Framework

6.2 Filtering Framework

The displacement values generated by the acquisition system are subject to quanti-
zation errors, noise, and calibration inaccuracies, resulting in several kinds of arti-
facts in the re-rendered image: The object surfaces do not appear smooth and their
geometry is very noisy, which is especially visible as flickering over time. More-
over, overlapping parts of surfaces from different scanning directions do not nec-
essarily fit to each other. To improve this, we apply a four-dimensional smoothing
filter yielding better spatial coherence within surfaces and between overlapping
surfaces, and better coherence over time. This complements the spacetime stereo
matching algorithm of chapter 3 which applies a spatio-temporal filter on the cor-
relation function in order to enhance local maxima before they are extracted. The
method described here filters the locations of these maxima after extraction to
smooth errors of the previous optimization step, as well as errors like camera mis-
alignment, which stereo matching cannot handle.

Our displacement map representation has some nice properties allowing us to
use standard signal processing tools to filter the geometry. The billboard plane
serves as a parameter domain for scalar data sampled on a regular grid. Over
time, it provides a parametrization along object trajectories because each billboard
represents a best fit to the local geometry. Additionally, the invariant error model
in disparity space allows for using a uniform filter kernel.

Our method is based on the bilateral filter [Tomasi and Manduchi, 1998], which
is a well-established tool in image processing for smoothing noise while retaining
sharp features. It can be shown [Elad, 2002] that it is based on the same Bayesian
framework as traditional methods for additive noise removal such as anisotropic
diffusion [Weickert, 1998]. But unlike those iterative approaches, the bilateral fil-
ter is a very simple single-pass algorithm with low computational effort, yielding
similar results. Section 6.2.1 introduces the concept and our application to the dis-
placement maps of the billboards. We call it intra-view filter because it processes
the different input views separately. In section 6.2.2, we describe our extension to
the so-called inter-view filter which processes all input views together to improve
geometric consistency. Both approaches are finally compared in section 6.2.3.

6.2.1 Intra-View Filter

Let D̂(ẋ) denote all displacements reconstructed from a single acquisition view,
where ẋ = (x,y, t) contains the pixel coordinates x and y, as well as the acquisition
time t. A general bilateral spatio-temporal filter that computes new displacements
D̂′ is of the form

D̂′(ẋ) =

R D̂(ζ) · kD(ζ, ẋ) · kR

(

D̂(ζ),D̂(ẋ)
)

·∂ζ
R

kD(ζ, ẋ) · kR

(

D̂(ζ),D̂(ẋ)
)

·∂ζ
. (6.6)

77

Chapter 6 3D Video Billboard Clouds

It is a combination of a domain filter with kernel kD and a range filter with kernel
kR [Tomasi and Manduchi, 1998]. The denominator is a normalization term.

In our case, kD is used to smooth the displacements over space and time while
kR retains geometric discontinuities. For that purpose, we employ for kD a cubic b-
spline low-pass filter kernel B, which is additionally weighted by the alpha values
Â(ẋ) of the current billboard:

kD(ζ, ẋ) = Â(ζ) ·B(ζ− ẋ). (6.7)

This alpha weight ensures that the filter only accumulates points belonging to the
current billboard. Moreover, it provides a local extension to our uniform error
model by considering points at the surface boundary as less important, because
they are likely to be more inaccurate. The range filter kernel kR is a simple step
function

kR(d̂1, d̂2) =

{

1 if |d̂1− d̂2| ≤ ∆d

0 if |d̂1− d̂2|> ∆d
(6.8)

which maintains discontinuities that are larger than a user-defined disparity thresh-
old ∆d.

As we are working with sampled data, the filter can be discretized. For ease of
notation, let us omit the temporal and one spatial domain and consider only the
case of one-dimensional displacement and alpha maps D̂(x) and Â(x). Let those
images be sampled at discrete positions xi, yielding corresponding pixel values d̂i

and α̂i for i ∈ {1, . . . ,n}. After inserting equation (6.7) into (6.6), the filter can
now be written as

d̂′
i =

∑n
j=1 d̂ j · α̂ j ·B(x j− xi) · kR(d̂ j, d̂i)

∑n
j=1 α̂ j ·B(x j− xi) · kR(d̂ j, d̂i)

. (6.9)

Because the image sampling positions are on a regular grid, we can further set
xi = i and write

d̂′
i =

∑n
j=1 d̂ j · α̂ j ·B j−i · kR(d̂ j, d̂i)

∑n
j=1 α̂ j ·B j−i · kR(d̂ j, d̂i)

. (6.10)

There, we also discretized the b-spline kernel to Bi := B(i) = B(xi), which expands
to an efficient separable filter matrix in the multi-dimensional case. Such regular-
ity is, however, not given in our following extension, which therefore builds upon
equation (6.9).

6.2.2 Inter-View Filter

When filtering all acquisition views independently, problems can arise in regions
of overlapping geometry coming from different billboards. The filtering result
may diverge such that the distinct surface patches will not fit to each other. Thus,

78

6.2 Filtering Framework

we extend the filter to an additional domain providing inter-view coherence infor-
mation.

Let us consider again the one-dimensional case similar to equation (6.9). To
distinguish the different views, we use an upper index in our following notation.
Thus, d̂v

i and α̂v
i denote the discrete pixel values of the displacement and alpha

maps belonging to the billboard that has been generated from a specific view
v ∈ {1, . . . ,m}. Those pixels are sampled at discrete positions xv

i .
The filter is still applied successively to each single view. But before filtering

a specific view v, the unfiltered disparities from all other views u are projected
into v by using depth image warping: From view u, each pixel with position xu

i

and displacement d̂u
i is first reconstructed in three-dimensional world coordinates

and subsequently projected into v, yielding a new pixel there, with image-space
position xu⊲v

i and displacement d̂u⊲v
i . With u⊲ v we denote the projection operator

from u to v. Note that the pixel positions xu⊲v
i are irregular: They are coordinates

on the image plane of view v, but they are not aligned to the pixel grid.
Now, the displacements d̂v

i can be filtered, taking into account all other dis-
placements d̂u⊲v

i by extending equation (6.9) to

d̂′
i
v =

∑m
u=1 ∑n

j=1 d̂u⊲v
j · α̂u

j ·B(xu⊲v
j − xv

i) · kR(d̂u⊲v
j , d̂v

i)

∑m
u=1 ∑n

j=1 α̂u
j ·B(xu⊲v

j − xv
i) · kR(d̂u⊲v

j , d̂v
i)

(6.11)

=
∑m

u=1 ∑n
j=1 d̂u⊲v

j · α̂u
j ·B(xu⊲v

j − i) · kR(d̂u⊲v
j , d̂v

i)

∑m
u=1 ∑n

j=1 α̂u
j ·B(xu⊲v

j − i) · kR(d̂u⊲v
j , d̂v

i)
. (6.12)

There, the range filter kernel kR does not only maintain discontinuities but also
ensures a correct handling of occlusions that occur during projection.

In contrast to the previous filter, the b-spline kernel cannot be discretized. But
nonetheless, the filter can be implemented very efficiently via splatting, similar
to our point renderer described in chapter 5. The algorithm is provided in pseu-
docode notation in figure 6.5. It maintains two pixel buffers {pi} and {qi} for
the numerator and denominator of equation (6.12), which are initialized in line 1.
All billboard pixels are successively projected into the current view v (line 4) and
splatted (lines 5 to 9). In the real implementation, rasterization is only performed
in the finite support region of the b-spline kernel. Finally, the fraction is computed
in line 12.

Because the projection itself depends on the unfiltered displacements, it may
be necessary to apply the filter iteratively. In each iteration, all views are filtered
successively, using the displacements from the previous iteration for the projec-
tion. However, because the b-spline filter diminishes all frequencies to a certain
extent, all displacements belonging to a continuous surface patch would converge
to a smooth geometry after an infinite amount of iterations. Only larger disconti-
nuities would be retained by the range filter kernel. Thus, the number of iterations
has to be fixed beforehand and the size of the b-spline has to be adjusted appro-
priately. With our data sets, more than one iteration did not show a visible effect
in the rendered images.

79

Chapter 6 3D Video Billboard Clouds

for i ∈ {1, . . . ,n} do pi← 0, qi← 0 ⊲ Numerator & denominator1

for u ∈ {1, . . . ,m} do2

for j ∈ {1, . . . ,n} do3

compute xu⊲v
j and d̂u⊲v

j ⊲ Projection4

for i ∈ {1, . . . ,n} do ⊲ Splat rasterization5

a← α̂u
j ·B(xu⊲v

j − i) · kR(d̂u⊲v
j , d̂v

i) ⊲ Screen-space kernel6

pi← pi + d̂u⊲v
j ·a ⊲ Accumulate numerator7

qi← qi +a ⊲ Accumulate denominator8

end9

end10

end11

for i ∈ {1, . . . ,n} do d̂′
i
v← pi

qi
⊲ Normalization12

Figure 6.5: Splatting algorithm for inter-view filter (1D example).

6.2.3 Comparison of Filters

In figure 6.6, both the intra-view and the inter-view filter have been applied for
comparison. The size of the b-spline kernel has been chosen as 21× 21 pixels
in image space and 5 frames over time. The raw displacements were calculated
from disparity maps generated by our window-based stereo algorithm of chap-
ter 3 without subpixel estimation. In contrast to subpixel stereo, which can also
generate smooth displacements, our second filter can additionally correct for cal-
ibration errors. It can even outperform our subpixel stereo matching as shown in
section 6.5.

6.3 View-Dependent Rendering and

Blending

The billboards are directly rendered from the disparity space representation.
Transformation into world coordinates is done during image generation in the
GPU. We implemented a simple displacement mapping technique that stores a
tessellated plane as vertex array and uses the CPU to set the z-coordinates of all
vertices to the disparities. There also exist displacement mapping algorithms for
the GPU [Donnelly, 2005; Mantler et al., 2007] that can be directly integrated in
our framework.

Consistent images from multiple billboards from different views are generated
by our view-dependent rendering approach. Each billboard from a view v gets an
assigned weight ωv according to the unstructured lumigraph framework [Buehler
et al., 2001] presented in section 5.4.2, based on the orientation of its correspond-

80

6.3 View-Dependent Rendering and Blending

Figure 6.6: Comparison of displacement filtering methods. Far left: all displacements
set to zero. Middle left: unfiltered displacements. Middle right: displacements
smoothed using our intra-view filter. Far right: displacements smoothed using our
inter-view filter.

ing acquisition camera and of the current virtual camera. Thus, billboards closer
to the current view have a larger impact on the image generation process.

In contrast to the original approach, our method does not only blend the colors
but first reconstructs a consistent, view-dependent geometry of the scene, where
each pixel has a uniquely assigned depth value. The procedure is illustrated in the
rightmost part of figure 6.7.

If multiple fragments are rendered at the same pixel, a new depth buffer value
zS is computed in a fragment program by averaging all individual fragment depths
zSi:

zS =
1

∑i ωiα̂i
∑

i

ωiα̂izSi. (6.13)

The depths are additionally weighted with the values α̂i from the alpha matte of the
billboard because they are likely to be more inaccurate at the billboard boundary.

The pixel color cS is assigned afterwards according to the new depth, using
projective texturing. It is determined by view-dependent blending all incoming
texture values cSi using

cS =
1

∑i ωiα̂i
∑

i

ωiα̂icSi. (6.14)

81

Chapter 6 3D Video Billboard Clouds

Vieweing ray

Screen

Depth maps

Texture maps

Real
geometry

Figure 6.7: Illustration of rendering a surface patch textured with a red-green-blue pattern.
While ray-casting the real geometry (left) always yields a correct result, view-
dependent color blending (middle) may mix inconsistent texture values due to
inaccuracies in the depth maps. By first constructing a consistent view-dependent
depth value per screen pixel with successive view-dependent texturing, our ap-
proach (right) tends to better reproduce the original colors.

Furthermore, we compute the alpha value of the pixel as

αS = max
i

αSi (6.15)

to ensure that the transparencies of the alpha matte are maintained such that the
billboard cloud still smoothly blends with the background.

Due to blending, occlusions cannot be handled using the conventional z-buffer
algorithm. Instead of doing an expensive back-to-front rendering we implemented
a fuzzy z-buffer via visibility splatting [Ren et al., 2002], similarly to the point
renderer of chapter 5.

Compared to conventional unstructured lumigraph rendering, our approach
tends to better reproduce the original textures by first generating a consistent,
view-dependent depth map. As can bee seen in the comparison of figure 6.8, this
results in much crisper images with less ghosting artifacts.

6.4 Handling Scenes

To model complete scenes, each view has to be decomposed into multiple bill-
boards. We use a semi-automatic video cutout technique to segment the input
videos into distinct objects. The segment boundaries are refined by a Bayesian
matting algorithm yielding alpha mattes for the billboards.

82

6.4 Handling Scenes

Figure 6.8: Comparison between unstructured lumigraph blending of colors only (left),
and colors and depths (right).

6.4.1 Segmentation

Segmentation of the video is done interactively. The user marks objects in a single
input frame of each view by applying a few brush strokes. A graph cut optimiza-
tion then automatically computes the segments for each object over time. We
extend the video cutout method by Wang et al. [2005] by including also the avail-
able depth values into the graph cut segmentation. This makes the minimization
more robust and needs less user input. We now describe the segmentation of one
single object. Segmentation of multiple objects can be achieved by running the al-
gorithm multiple times on the same input, each time considering a different brush
stroke as a mark of the object of interest.

For the further considerations, we call the image region containing the object
of interest the foreground and the remaining region the background. To segment
foreground from background, the algorithm minimizes an energy function

argmin
A

EA(A,C,Z,ΘF ,ΘB,RF ,RB,RU), (6.16)

which we denote shorter as argminAE(A). For a vector of input pixel colors
C = {c1, . . . ,cn} and depths Z = {z1, . . . ,zn}, it tries to find a binary labeling
A = {α1, . . . ,αn} ∈ {0,1}n such that all pixels i belonging to the foreground are
labeled with αi = 1 and all remaining pixels with αi = 0. Note that the depths
Z are not included in the originally proposed algorithm. The minimization is
guided by three disjoint image regionsRi ⊂ {1, . . . ,n} withRi∩R j = ∅ for i 6= j,
i, j ∈ {F,B,U}, and RF ∪RB ∪RU = {1, . . . ,n}. RF and RB contain all pixels
that have been marked by the user as belonging to the foreground and background,
respectively. RU contains all remaining pixels whose labeling is still unknown.

83

Chapter 6 3D Video Billboard Clouds

Furthermore, some prior statistical models ΘF and ΘB of the foreground and back-
ground are used that are automatically generated from the marked pixels.

The energy can be split into a weighted sum of two parts:

E(A) = λDED(A)+ES(A). (6.17)

ED(A) is the so-called data energy that measures the compliance of the proposed
segmentation with the foreground and background models. The smoothness en-
ergy ES(A) tries to keep the segmentation smooth in space and time.

Data Energy

The data energy measures how well the proposed segmentation A complies with
the user marks by summing up energies for each pixel:

ED =
n

∑
i=1

Di(αi) (6.18)

with Di(αi) defined as follows:

Di(αi) i ∈RF i ∈RB i ∈RU

αi = 1 0 ∞ ΘF (ci,zi)
ΘF (ci,zi)+ΘB(ci,zi)

αi = 0 ∞ 0 ΘB(ci,zi)
ΘF (ci,zi)+ΘB(ci,zi)

(6.19)

In the marked regions, the pixel labels are already known and the energy values
are assigned appropriately. For pixels in the unknown region the energies evaluate
their compliance with the respective model ΘF or ΘB. As in the paper by Rother
et al. [2004] they are normalized for determining the final energy.

In contrast to previous implementations of image or video cutout algorithms,
our method incorporates a model ΘF,Z of the available pixel depths in addition
to a color model ΘF,C. Both prior models are built separately and combined in a
weighted sum by letting

ΘF(ci,zi) = (1−λZ)ΘF,C(ci)+λZΘF,Z(zi) (6.20)

and

ΘB(ci,zi) = (1−λZ)ΘB,C(ci)+λZΘB,Z(zi) (6.21)

Each component is the negative logarithmic likelihood of a Gaussian mixture
model [McLachlan and Basford, 1988] describing the probability if the current
pixel fits to the respective foreground or background model. For example, the
model of foreground colors is defined as

ΘF,C(c) =− log
k

∑
j=1

ν jN3(c;µF,C j
,VF,C j

), (6.22)

84

6.4 Handling Scenes

where N3(c;µF,C j
,VF,C j

) denotes a Gaussian normal distribution in three-dimensional
color space with mean value µF,C j

and covariance matrix VF,C j
. They are fitted

to the color distribution of the marked foreground pixels using k-means clustering
[Jain and Dubes, 1988] followed by a principal component analysis [Keinosuke,
1990]. The number k of clusters is a user-defined value, commonly between five
and ten. The convex weights ν j are assigned proportionally to the number of
pixels contributing to the individual clusters, such that ν j > 0 and ∑k

i=1 ν j = 1.
The Gaussian mixture models of depths are built in a similar fashion. In contrast
to the color models, they are only one-dimensional.

Smoothness Energy

The smoothness energy ensures that the segmentation follows object boundaries
in image space and that it is smooth in time. Because the available depth maps do
not contain pixel-exact representations of object boundaries, the energy equation
is based on colors only.

The energy term is based on the assumption that neighboring pixels of similar
colors tend to belong to the same image segment. Thus, it penalizes neighboring
pixel pairs having a similar color but a differing assigned labeling. It considers
two kinds of neighborhoods: intra-frame links (i, j) ∈ NI between neighboring
pairs of pixels within the same image for ensuring spatial smoothness, and inter-
frame links (i, j)∈NT between pairs of pixels over successive frames for temporal
smoothness. The overall energy is a weighted sum of both types:

ES(A) = λI ∑
(i, j)∈NI

(1−δαi,α j
)Si, j +λT ∑

(i, j)∈NT

(1−δαi,α j
)Si, j (6.23)

with

δa,b =

{

1 if a = b

0 if a 6= b
. (6.24)

For Si, j we use an exponential function based on the Euclidean distance of colors
according to Boykov and Jolly [2001]:

Si, j = e−β||ci−c j||
2
. (6.25)

The scaling factor β can be precomputed from the input images as explained in
that paper.

Graph Cut Optimization

As has been shown by Kolmogorov and Zabih [2002], equation (6.17) can be ef-
ficiently solved using graph cut optimization. The image pixels {1, . . . ,n} build
vertices of a graph G = 〈V,E〉. Additionally, two so-called terminal nodes TF and

85

Chapter 6 3D Video Billboard Clouds

TF

TB

TF

TB

Figure 6.9: Graph cut segmentation of a 9×9 pixel image into foreground (red) and back-
ground (blue) regions. Left: Complete graph with pixel and terminal nodes, and
smoothness and terminal edges. Edge costs are illustrated by line widths. Right:
Graph after computing the optimal cut. The two separate subgraphs correspond to
the resulting segmentation.

TB are added, hence V = {1, . . . ,n,TF ,TB}. Edges are inserted between all neigh-
boring pixels both in space and time, and additionally between each pixel and
each of the two terminal nodes. This is illustrated in figure 6.9 for a single image
only without temporal edges for the sake of clarity. Edge weights are assigned
according to the following table:

Edge Weight
(i, j) ∈NI λISi, j

(i, j) ∈NT λT Si, j

(TB, i) λDDi(1)
(TF , i) λDDi(0)

Next, a minimum cut EC ⊆E through the graph is computed such that in the new
graph GC = 〈V,E \ EC〉 the terminal nodes TF and TB become separated and the
sum of weights of all edges in EC is minimal. This can be solved using the max-
imum flow algorithm [Boykov and Kolmogorov, 2004]. In the resulting graph,
each pixel vertex is connected to exactly one terminal node. This can be inter-
preted as the optimal solution of the minimization problem in equation (6.17): A
pixel i connected with terminal node TF obtains a foreground label αi = 1, a pixel
i connected with TB obtains a background label αi = 0.

We further speed up the optimization by a two-pass process similar to method
by Li et al. [2004]. Initially, an over-segmentation of all color images is com-
puted in an offline process and stored together with the original videos. A first
graph cut optimization is then run on the coarse segmentation. Due to its irreg-
ularity, smoothness links are introduced between each segment and its k nearest

86

6.4 Handling Scenes

Figure 6.10: Illustration of a segmentation (right) of a scene (left) into four billboard
clouds.

Figure 6.11: Graph cut segmentation using the input image with user markings on the left.
Results of the optimization considering colors only (middle) and additional depths
(right).

neighbors. The result is refined up to pixel level by running a second graph cut.

Segmentation Results

As result, the user can quickly generate a segmentation of a complete scene as
illustrated in figure 6.10 with a few brush strokes. As shown in figure 6.11, in-
clusion of available depths increases the overall stability of the optimization and
requires fewer input brush strokes from the user.

87

Chapter 6 3D Video Billboard Clouds

Figure 6.12: Object segmentation and matting. From left to right: original image, graph cut
segmentation, graymap after dilation and erosion, alpha matte, foreground colors.

6.4.2 Matting

Pixels on the segment boundary typically cannot be assigned completely to either
foreground or background. Their color is a mixture of both, i.e.

c = αcF +(1−α)cB, 0≤ α≤ 1. (6.26)

Matting algorithms can separate them again into foreground color cF , background
color cB, and alpha weight α.

To solve that problem, we employ Bayesian matting [Chuang et al., 2001] which
achieves robust results in an efficient way. As input it needs, similarly to the
segmentation procedure, a color image and an initial segmentation into a known
foreground region RF , a known background region RB, and an unknown region
RU . Equation (6.26) is then solved for all pixels inRU . For stability, the unknown
region has to be considerably smaller than in the segmentation problem. Thus, the
regions are usually defined by a so-called graymap: a grayscale image using black,
gray, and white pixel colors forRB,RU , andRF , respectively.

For each video object, we generate the graymap automatically by dilating and
eroding the previously computed segmentation. The matting algorithm then com-
putes an accurate alpha matte and foreground colors of the object, as shown in
figure 6.12.

6.5 Results

For evaluating our 3D video billboard cloud representation we used the taekwondo
and flamenco data sets presented in chapter 4 and appendix A. As input, we used
depth maps computed by the stereo vision algorithm of chapter 3 without the

88

6.5 Results

subpixel estimation stage. Instead, our bilateral filter was used to obtain accurate
and smooth geometry.

Figures 6.13 and 6.14 show both sequences rendered from novel views. In
comparison to previous approaches, we achieve better time coherence due to the
spatio-temporal filtering. Furthermore, the alpha textures of the billboards smooth
the appearance at object silhouettes and nicely blend the different segments of the
scene.

The proxy geometry of the billboards introduces the possibility of manual user
control. The flamenco data set is composed of four billboard clouds: one for the
actor, two for both walls and one for the floor. For the background billboard, the
proxy planes are already a very good approximation to the real geometry. Thus,
all disparities can be set to zero. In the taekwondo data set the background is much
more complex. Nonetheless, because the background billboards are known to have
a static geometry, they can be stabilized by accumulating their displacements over
time. This can be achieved by configuring the bilateral domain filter kernel to have
a very long temporal extent. If manual intervention is not desired, one could also
use automatic background estimation methods such as those described by Long
and Yang [1990] or Colombari et al. [2006] on the input color videos to identify
static scene parts.

In our application, our filtering framework can also be used as an alternative
to the time-consuming subpixel estimation process of our stereo reconstruction
algorithm. In the left part of figure 6.15 the disparity maps for the four billboard
planes have been generated with the full pipeline of chapter 3, including sub-
pixel matching. In contrast, the right part of figure 6.15 has been reconstructed
with just the simple window-based stereo algorithm without subpixel matching,
followed by bilateral filtering. Especially at surface boundaries, the filter shows a
better numerical stability than the complex minimization algorithm of the subpixel
matching, resulting in fewer outliers. On the other hand, the filter introduces more
smoothing and discards some small geometric detail, but the overall visual appear-
ance is still increased. Moreover, there is the temporal advantage of 1.5 minutes
for filtering versus 28 minutes for the subpixel method. In principle, the filtering
approach can be accelerated to real-time by using available GPU implementations
for window-based stereo [Yang et al., 2006] and splatting [Botsch et al., 2005].

A current limitation of our method is shown figure 6.16. Thin, fast moving
structures in the video like the arms or legs of an actor are difficult to handle. In
such cases, the domain kernel of the bilateral filter does not have enough support
by the data, neither in space nor in time. As a result, smoothing of those structures
is not as good as in other surface regions. This may be improved in the future
by using optical flow [Barron et al., 1994] or scene flow [Vedula et al., 1999]
algorithms to obtain better temporal coherence.

89

Chapter 6 3D Video Billboard Clouds

Figure 6.13: Image sequence of the flamenco data set rendered from novel views.

90

6.5 Results

Figure 6.14: Image sequence of the taekwondo data set rendered from novel views.

91

Chapter 6 3D Video Billboard Clouds

Figure 6.15: Subpixel stereo versus bilateral filtering. Left: displacement maps generated
by subpixel stereo matching without filtering. Right: displacement maps gener-
ated by simple stereo matching with bilateral filtering.

Figure 6.16: Thin, fast moving structures like the actor’s arms cannot provide sufficient
spatio-temporal support for high-quality filtering.

6.6 Comparison with Point-Sampled 3D

Video

In table 6.1, we compare the 3D video billboard clouds with our point-sampled
representation of chapter 5 using the following criteria:

• Image quality. Figure 6.17 directly compares the visual quality of both
representations, using re-renderings of the scene from a novel viewpoint.
There, billboards achieve a better image quality than points. The main rea-
son for that is the decoupling of geometry and color in the billboard ren-

92

6.6 Comparison with Point-Sampled 3D Video

Image
quality

Scene
complexity

Geometry
filtering

Streaming &
compression Editing

Points ◦ + ◦ + +
Billboards + ◦ + + −

Table 6.1: Comparison of point-sampled 3D video and 3D video billboard clouds (+ good,
◦ average, − bad).

dering process. Because points have individually associated colors, noise in
the geometry directly influences the texture. The projective texturing used
for billboard rendering is less sensitive for such noise. For example, a geo-
metric error that is exactly parallel to the image plane of the virtual camera
would still produce correct view-dependent pixel depths and, thus, would
not influence the texture at all. In principle, a similar approach could be im-
plemented for point rendering, too, by splatting only pixel depths in a first
pass and projecting the textures afterwards. Another reason for the superior
image quality besides rendering is the different data processing pipeline. As
discussed below, billboards support better methods for filtering reconstruc-
tion noise.

• Scene complexity. Because points make no assumptions about geometry
and topology, they support in principle arbitrary scenes. Billboards, on the
other hand, need a segmentation of the scene into distinct objects. Because
the segmentation algorithm currently requires manual intervention, complex
scenes with many moving objects are difficult to model. But there is still
room for improvement. The segmentation algorithm could for example be
guided by the input depths which contain strong hints about object positions.

• Geometry filtering. Being an image space representation, billboards nat-
urally support a wide range of signal processing tools for post-processing
the raw depth maps. Our bilateral filter is able to efficiently smooth recon-
struction noise and errors. Powerful filtering algorithms exist for points,
too [Pauly and Gross, 2001; Weyrich et al., 2004], but they are more com-
plex because they have to deal with irregular sampling and the lack of local
topology information.

• Streaming & compression. Both representations are very well suited for
streaming and compression of 3D video. Both have the advantage of being
a uniform storage container for geometry and appearance, which makes it
easy to perform coding within a single framework. Because points do not
store topology information, streaming is straightforward. Many point cloud
compression algorithms are currently being developed. We introduce one
in chapter 7. For compressing billboards, standard 2D video codecs can
be used [Würmlin et al., 2005]. They can be in principle applied to the

93

Chapter 6 3D Video Billboard Clouds

Figure 6.17: Comparison of the visual quality of the point-based representation of chapter 5
(left) with our method based on 3D video billboards (right).

displacement maps, too, but their performance in that case still has to be
examined, because they are originally tailored to natural color images.

• Editing. Being a view-independent representation, points are very well
suited for 3D video editing. Their irregularity provides much flexibility
for geometric deformations. Hence, we introduce a 3D video editor based
on points in chapter 9. On the other hand, editing using the billboard rep-
resentation would be difficult. Because billboards fix the data to regular
grids, continuous resampling would be required. Moreover, editing opera-
tors would always have to assure consistency between multiple billboards
representing the same object from multiple views.

6.7 Conclusion

We introduced 3D video billboard clouds as an image space representation for 3D
video applications. Both the proxy billboard planes and displacement maps can be
constructed from depth images of the scene acquired by a standard stereo match-
ing algorithm. They provide a regular, uniform sampling of the scene in space and
time which makes them suitable for standard signal processing methods. Applica-
tion of a four-dimensional bilateral filter yields geometry with higher spatial and
temporal coherence. Novel views are rendered using a GPU-accelerated method
which generates consistent view-dependent geometry and textures for each indi-
vidual frame. Modeling of dynamic three-dimensional scenes is achieved using a
semi-automatic approach that generates a collection of 3D video billboard clouds.

Compared to our point-based data model, 3D video billboard clouds are able
to achieve a higher image quality due to their regular structure that allows for
more efficient post-processing. If, on the other hand, more flexibility for 3D video

94

6.7 Conclusion

editing is required, they can be used as an intermediate representation that can be
easily converted into points after post-processing by backprojecting all pixels of
their texture maps into three-dimensional space.

Possible extensions include fully automatic segmentation of complex scenes.
This may be implemented by searching for planar patches in the input geometry
using a 3D Hough transform similar to the approach by Décoret et al. [2003].
In contrast to the current system, this might lead to an over-segmentation that
decomposes the scene into many very small billboards.

95

Chapter 6 3D Video Billboard Clouds

96

Chapter 7

Point Samples for
Efficient Storage of 3D
Scenes

The 3D video acquisition process generates a large amount of data. Assuming
one texture and depth video per input view, it is a multiple of conventional 2D
video data that scales linearly with the amount of input views and thus with the
desired viewing range. The raw data has to be transformed into a representation
suitable for interactive playback. To establish 3D video as a new form of digital
multimedia content, this imposes novel challenges on the underlying data struc-
ture. Already conventional, two-dimensional digital video would not be possible
today without suitable streaming and compression algorithms. There, however,
representing the scene in a single resolution is sufficient, which does not hold for
3D video where the user can change his viewpoint at will. With 3D video, a user
may want to view the scene as a whole, but, at the same time, he would like to be
able to zoom his virtual camera to specific details. A 3D video data representation
has to be flexible enough to cope with such situations.

Our point-based data model from chapter 5 builds an ideal basis for fulfill-
ing those requirements. This chapter specifically demonstrates its strengths for
streaming, multiresolution and compression. As the points do not store connec-
tivity, streaming be can easily implemented by sequential transmission of single
points. A multiresolution hierarchy can be built by successive merging of neigh-
boring samples. Moreover, compression of a point-sampled scene can be im-
plemented in a unified way. Because point samples integrate information about
appearance and geometry, both data types can be handled in the same manner.
In contrast to meshes, no separate data structures like textures have to be stored.
Moreover, no additional topology information has to be compressed.

The compression approach presented in this chapter integrates all those aspects
within one single algorithm. It processes various point attributes like position,

97

Chapter 7 Point Samples for Efficient Storage of 3D Scenes

Multiresolution

decomposition

Differential

coding

Zerotree

coding

Arithmetic

coding

Figure 7.1: Compression pipeline.

color, and surface normal, and stores them as a compressed, progressive, multires-
olution output stream. This data can be efficiently transmitted over the network.
Resolution and detail of the point cloud progressively increase as more and more
data is received. The presented algorithm concentrates on compression of static
point models. Using a four-dimensional, spatio-temporal point cloud of a dynamic
scene, as introduced in chapter 8, it can in principle be extended to 3D video.

7.1 Algorithm Overview

Our compression scheme comes as a general framework for coding a set of arbi-
trary point attributes. It is based on a multiresolution decomposition of the whole
point set. Our predictive differential coding scheme has the ability of decorre-
lating the information contained in the model by exploiting local coherence. The
multiresolution approach splits the information into several frequency bands. This
property easily allows for progressive decoding by successively adding more de-
tail to the model.

An overview of the whole compression pipeline is given in figure 7.1. In the first
step, the multiresolution hierarchy is built up by recursively computing coarser
approximations of the point set. This task requires local neighborhood relations
between point samples that, unlike in triangle meshes, are not explicitly available
in point-based models. To that end, we employ a search algorithm that delivers
neighboring points. As a benefit, we can control the search in a way that gives
us good correlations between neighbors in all attributes and not only in the ge-
ometry. Both the neighborhood search and the multiresolution decomposition are
described in section 7.2.

Next, we compute the hierarchy of detail coefficients that describes how to suc-
cessively reconstruct the original model from the lowest-resolution point set. The
respective computations are driven by a prediction that is customized to the spe-
cific characteristics of each point attribute separately. After completing one hier-
archy layer we immediately perform the quantization of the coefficients and prop-
agate the quantization error into the computation of the next layer. This method
prevents recursive accumulation of the quantization error over all multiresolution
layers and thus minimizes the total error of our coding method. A detailed discus-
sion follows in section 7.3.

We eventually end up with a set of quantized detail coefficients. They are not

98

7.2 Multiresolution Decomposition

Figure 7.2: 8-neighborhood after 3 passes of hierarchical point contraction.

yet fully decorrelated but still contain some coherence which can be eliminated
very efficiently by a zerotree coder. Finally, the data is further compressed by
arithmetic coding. Both coders allow for progressive decoding. In addition to the
conventional zerotree coder, we present a modified algorithm with a progressive
behavior that better collaborates with our multiresolution framework. All those
methods are further explained in section 7.4.

The first two stages of the pipeline have to be customized for the specific char-
acteristics of the compressed point attributes. Stage one needs a distance measure
for the neighborhood search, stage two requires a prediction operator and a coor-
dinate transform. We provide specialized measures and operators for coding the
point positions. We further show the extensibility of our framework towards other
attributes by proposing coding methods for point colors and normals.

7.2 Multiresolution Decomposition

In the first stage, we compute a multiresolution hierarchy of the point cloud by
recursively generating a sequence of subsampled versions (Λ−1, . . . ,Λ−l) of the
original point set Λ0. We use here a notation related to the paper by Sweldens
[1995] where Λ−k denotes the point set at the k-th level of the multiresolution
hierarchy. A specific point in a subsampled model is identified by λ−k

i . We build
the hierarchy bottom up, i.e. from high to low resolution, by decomposing in each
step the point set into disjunctive point pairs and contracting each pair to an av-
erage point by averaging its associated attributes. In this way, we obtain a forest
of binary trees of depth l, of which each layer describes a certain resolution. As
the point pairs describe neighborhood relations between two points in the attribute
space, each subtree in the hierarchy with depth k describes a neighborhood of 2k

points, as illustrated in figure 7.2. All those neighborhood relations are implic-
itly stored in the point ordering of the full resolution model and hence are still
available after decompression.

Note that such a hierarchy can only be built if each layer in the forest but the root

99

Chapter 7 Point Samples for Efficient Storage of 3D Scenes

layer contains an even number of points. Thus, the original model has to consist of
a multiple of 2l points. If this is not the case, the maximum 2l−1 remaining points
are stored separately and compressed by entropy coding only. For a moderate
number of recursions, like l = 10, this number is relatively small compared to the
overall size of typical models which often consist of several hundred thousand
points.

The compression performance largely depends on the pair decomposition be-
cause it considers each average point as an approximation to each of its sons.
Thus, we preferably want to contract “good” pairs of points with similar attribute
values. Finding the best set of pairs is an optimization problem in the space
spanned by all point attributes. This can be described as a minimum weight perfect
matching problem [Lovasz and Plummer, 1986] in an undirected, weighted graph
G = 〈V,E〉 with vertices V and weighted edges E . Its task is to find a set of edges
EM ⊆ E of cardinality |EM|= |V|/2 such that no two edges share a vertex in com-
mon and the sum of edge weights in EM is minimal. In a complete graph with an
even number of vertices, such a matching always exists. To speed up the matching
process, we do not construct a complete graph but only an adjacency graph con-
necting each point with its k = 12 nearest neighbors. In the very unlikely event
when no matching is found we can still increase k and let the algorithm run again,
but this never happened in our experiments. A classical solution of the matching
problem is provided by Edmonds’ blossom shrinking algorithm [Edmonds, 1965].
In our implementation, we use the faster method by Cook and Rohe [1999].

The weight wi, j for each edge {i, j} can be expressed as a sum of distance
functions eA, describing for each attribute A the difference of its values at the
points λ−k

i and λ−k
j adjacent to that edge:

wi, j = ∑
A

eA(i, j). (7.1)

In practice, we incorporate here the point positions X−k
i and normals N−k

i . The
distance between normals corresponds to the cosine of their enclosing angle:

eN(i, j) =
1−N−k

i ·N−k
j

2
. (7.2)

If we consider as a position weight only the Euclidean distance, we may end up
after two recursive subsampling passes in 4-neighborhoods consisting of linearly
arranged points. This will lead to instabilities in the subsequent detail coefficient
computation. So we additionally include the previous direction of the contraction
of the points λ−k+1

2i and λ−k+1
2i+1 towards λ−k

i and similarly for the contraction to

100

7.3 Predictive Differential Coding

Figure 7.3: 64-neighborhoods after 16 matching passes.

λ−k
j :

eX(i, j) =
∣

∣

∣X
−k
i −X−k

j

∣

∣

∣

+

∣

∣

∣

∣

∣

X−k+1
2i −X−k+1

2i+1

|X−k+1
2i −X−k+1

2i+1 |
·

X−k
i −X−k

j

|X−k
i −X−k

j |

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

X−k+1
2 j −X−k+1

2 j+1

|X−k+1
2 j −X−k+1

2 j+1 |
·

X−k
i −X−k

j

|X−k
i −X−k

j |

∣

∣

∣

∣

∣

.

(7.3)

figure 7.3 shows the resulting 64-neighborhoods after six recursive executions of
the matching algorithm.

7.3 Predictive Differential Coding

Next, we successively compute a binary forest of detail coefficients (Γ−l, . . . ,Γ−1)
of which each layer Γ−i contains the information that is necessary to reconstruct
Λ−i+1 from Λ−i. The calculations are done with the help of two attribute-specific
operators: a coordinate transform C and a prediction operator B. With regard to
later decompression, C has to be invertible but not B. We finally end up in a set of
coefficients (Λ−l,Γ−l, . . . ,Γ−1) which is sufficient for reconstruction of the orig-
inal model. Because each detail layer Γ−i has the same size as its corresponding
average layer Λ−i, the whole coefficient set is still of the same size as the original

101

Chapter 7 Point Samples for Efficient Storage of 3D Scenes

model. But the new data is much more decorrelated and therefore more suitable
for compression.

Because high-resolution detail coefficients recursively depend on their lower-
resolution counterparts, quantization errors that will be introduced due to com-
pression would accumulate in each recursion. To prevent this, we compute the
detail coefficients top down from Γ−l to Γ1, quantize them after each recursion
and propagate the quantization error to the next higher resolution: After deter-
mining and quantizing the coefficients Γ−k we first update the next average layer
Λ−k+1 out of Λ−k and the quantized Γ−k and then recursively proceed comput-
ing the detail coefficients Γ−k+1 of the next higher resolution layer. The decoder
later successively reconstructs higher-resolution models Λ−k+1 from the average
points Λ−k and the detail Γ−k. There, all the data processing can be done in place
by recursively substituting Λ−k and Γ−k by Λ−k+1, similarly to the lifting scheme
[Sweldens, 1995].

The actual computation of the detail coefficients is performed as illustrated in
figure 7.4. For each contraction pair (λ−k+1

2i ,λ−k+1
2i+1) and its corresponding aver-

age point λ−k
i , we try to predict λ−k+1

2i from λ−k
i using a prediction operator B

and store the prediction error in γ−k
i . With this information, both higher resolution

points can be reconstructed due to symmetry. In many cases, the prediction does
not perform well if it is carried out in the global space of the model. So we apply
beforehand a local coordinate transform C that depends on the points of Λ−k and
better characterizes the attribute space locally. Figure 7.5 illustrates the operator
framework both for encoding and decoding. Note that the decoder performs the
same prediction B as the encoder, whereas the coordinate transform C during de-
coding is inverse in order to obtain again the global model coordinates from the
coefficients encoded in the local reference frames.

The whole transformation is recursively applied up to a depth l. As the coher-
ence between neighboring points get worse for lower resolutions, a depth between
l = 6 and l = 8 usually gives the best compression results. Because the coordinate
transform C depends on neighborhood relations in the point set λ−k, the multires-
olution forest is built some recursions higher for getting neighborhood relations in
λ−l . We actually use there a depth of l +2 because our coordinate transforms rely
on 4-neighborhood relations.

In the following, we provide operators C and B for the compression of the point
positions, colors and normals.

7.3.1 Positions

For compression of the point positions, we want to exploit the fact that all points
are arranged on a surface and not for instance in a volume. So we locally approx-
imate the geometry by a least-squares plane and store the prediction error relative
to that plane.

For an average point λ−k
i , the operator C constructs the least-squares plane from

102

7.3 Predictive Differential Coding

λ−k+1
2i+1

λ−k+1
2i

λ−k
i

γ−k
i

B

Figure 7.4: Prediction and detail coefficient.

−k

−k+1 −k−

B

C

CΛ

Λ

Γ −1+

−k

−k −k+1Λ

Λ

Γ

B

C

C

Figure 7.5: Operator framework. Left: encoding, right: decoding.

the point positions (X−k
i−(i mod 4)

, . . . ,X−k
i−(i mod 4)+3) that are part of a neighborhood

relation. The plane minimizes the squared distances to these four points and is
therefore an approximation to the local geometry of the model. It is computed by a
principal component analysis [Keinosuke, 1990] over those points which delivers
an orthonormal coordinate system (N,V1,V2) describing the principal directions
of the covariance ellipsoid of the point positions [Pauly et al., 2002]. This system
is aligned to the least-squares plane of which N represents its normal vector. As
depicted in figure 7.6, we translate the origin of that system to X−k

i and represent
all points by cylindrical coordinates (R,Θ,Z).

The operator B then predicts the coordinates (R,Θ,Z) of X−k+1
2i . Assuming that

the least-squares plane is a close approximation of the geometry, we can predict
the elevation Z of the point over the surface as Z = 0. Under the condition of
an approximately regular sampling of the model, we can also make a prediction
for R: As the average point density drops by a factor of

√
2 with each lower

resolution step, R can be predicted from the density of the four average points
divided by 2

√
2. The density of the average points itself is estimated by their

average distance. Finally, we also predict Θ = 0. The prediction error for Θ then

103

Chapter 7 Point Samples for Efficient Storage of 3D Scenes

R

Z

N

V1

V2

Θ

Figure 7.6: The reference frame for the position detail coefficients.

0

R

0

Θ

0

Z

Figure 7.7: Histograms of the position detail coefficients R (left), Θ (middle), and Z

(right).

lies in the interval [0,2π]. It can be further constrained to [0,π] by swapping the
points λ−k+1

2i and λ−k+1
2i+1 along with their associated subtrees in the multiresolution

hierarchy in the case of an error greater than π.
Figure 7.7 shows histograms of the detail coefficients from the Chameleon

model over all resolution levels. The peaks at zero prove the suitability of our
predictions. It also shows an accumulation of the angular component around zero
which is due to the alignment of our reference frame to the covariance ellipsoid.

7.3.2 Colors

All colors are first transformed from RGB into the global YUV space by the op-
erator C. This representation is more closely related to the human perception as it
splits the color information into a luminance part Y and a chrominance U and V.
Because humans are more sensitive for the luminance than the chrominance, we
spend more bits for Y than for U respectively V during quantization.

Assuming that neighboring points of the model have similar colors, the pre-
diction operator B is zero. Hence, we store in the detail coefficients for each
contraction pair the difference between the colors of one higher-resolution point
and the average point. Histograms of those coefficients are depicted in figure 7.8.

104

7.4 Encoding the Detail Coefficients

0

Y

0

U

0

V

Figure 7.8: Histograms of the color detail coefficients Y (left), U (middle), and V (right).

0

Θ

0

Φ

Figure 7.9: Histograms of the normal detail coefficients Θ (left), and Φ (right).

7.3.3 Normals

For each contraction pair we store the angle between the average normal and one
of the higher-resolution normals in spherical coordinates. Hence, the prediction B
is zero for both Θ and Φ. The coordinate transform C needs a local reference frame
to align the spherical coordinate system. We use the average normal as the polar
reference direction. To obtain an azimuthal reference vector, we project the vector
with the biggest eigenvalue delivered by the principal component analysis from
the position coder onto the plane perpendicular to the average normal. Figure 7.9
shows histograms of the detail coefficients.

7.4 Encoding the Detail Coefficients

The detail coefficients are eventually compressed by a zerotree coder [Shapiro,
1993] which is specialized on the coding of multiresolution coefficients and is
able to encode them very efficiently. It exploits similarities between coefficients
in subtrees of the multiresolution hierarchy. The output of the zerotree coder is a
stream of symbols which is further compressed by arithmetic coding. We currently
use the algorithm provided by Moffat et al. [1998]

Both zerotree and arithmetic coder behave progressively. A partial arithmetic
decoding of the compressed data stream delivers a prefix of the zerotree stream

105

Chapter 7 Point Samples for Efficient Storage of 3D Scenes

after arithmetic decoding. The zerotree decoder then produces a set of inexact
coefficients which gets refined as more data is delivered to the decoder.

The conventional zerotree algorithm however successively refines the coeffi-
cients of all resolutions simultaneously during progressive decoding. This behav-
ior does not blend well with our quantization error propagation because our coder
assumes an ascertained accuracy of lower-resolution coefficients. Introducing a
greater error after compression leads to instabilities in the least-squares planes
and thus produces an inferior quality of decompressed point positions. Therefore
we use the conventional zerotree coder only for fixed rate compression.

If real progressive decompression is desired, we suggest a modification of the
zerotree encoder which consists in reordering its output stream in such a way that,
during later decompression, the detail coefficients get refined successively from
low to high resolution. The conventional zerotree coder does the encoding in sev-
eral passes. In each pass, an additional bit for each significant coefficient is coded,
successively gaining more accuracy. Within each pass, the data is processed from
the low resolution coefficients up to the high resolution. Our modification consists
in swapping those two orderings. Thus, we first arrange the data from low to high
resolution coefficients and then do the ordering according to the bit significance.
During progressive decoding of that stream, the high resolution coefficients all
start with a value of zero and they will not be refined until all lower resolution
coefficients are fully decoded. This manifests itself in increasing the resolution of
the decoded model. In the following section, we provide experimental results for
both approaches.

7.5 Results

We evaluate our coders with various point models of different sizes. The compres-
sion performance is quantified for each attribute by the average number of bits per
point (bpp) in relation to the loss of quality, measured by the peak signal to noise
ratio (PSNR).

In the field of mesh compression, the geometric error is usually calculated from
the distance between the compressed and uncompressed mesh surfaces. A similar
approach for point set surfaces is the comparison of the corresponding MLS sur-
faces [Pauly et al., 2002] which is also used by Fleishman et al. [2003]. However,
this metric is unable to measure the sampling of the model, which is a crucial
criterion for high-quality point-based rendering. In contrary to triangle meshes, a
bad sampling would lead to cracks in the surface due to the lack of connectivity
information. Furthermore, the MLS surface tends to smooth the quantization er-
rors such that the measured error is usually lower than disturbance in the visual
quality.

For these reasons we use the MLS metric for comparison with the algorithm by
Fleishman et al. [2003] only. Whereas, in the main part of the following evalua-

106

7.5 Results

PSNR / dB Bits per point
Y U V Fixed Progr.

Chameleon 29.5 39.5 38.8 2.5 2.7
(102k points) 24.4 38.1 37.3 0.9 1.0
Octopus 26.9 33.7 31.0 2.0 2.1
(466k points) 21.9 32.2 28.7 0.8 0.9
Face 35.5 47.4 42.3 1.7 1.8
(41k points) 31.9 45.1 39.7 0.8 0.8

Table 7.1: Compression performance of color coder.

tion, we concentrate on measuring the quantization error directly between discrete
pairs of corresponding samples from the original and compressed model. The
PSNR for the position attribute is evaluated using the Euclidean distance between
the points. The peak signal is given by the length of the diagonal of the bounding
box. The error between the normals is calculated from the enclosed angle with a
peak angle of 180 degrees. For the colors, we compute the PSNR on the scalar
values of each channel Y, U and V separately.

We first compare our fixed rate compression with our progressive scheme, using
various coarse quantizations for the different point attributes. Figure 7.10 shows
rate-distortion curves from the position coder. The progressive coding performs
between 2 and 10 percent worse than the fixed rate coding. This is due to the fact
that the compression gain of the arithmetic coding is worse for the progressively
reordered zerotree stream than for the conventional stream. The behavior of the
other pipeline stages is identical in both cases. Compared to state of the art mesh
compression, the PSNRs given here are lower since they also measure the quality
of the sampling. As shown by the images of figure 7.13, the compression artifacts
differ from those of mesh compression due to the lack of connectivity information.
For low bit rates, the sampling gets more and more irregular. We compensate for
these irregularities by recomputing the splat radii during decompression which
can be done very efficiently using the neighborhood relations that are inherently
stored in the point ordering.

We further give some results for our color and normal coders. The color com-
pression is evaluated in table 7.1. As can be seen in figure 7.14, it shows some
blurry artifacts which are typical for high compression of images. Table 7.2 shows
rate-distortion values of our normal coder; sample images are given in figure 7.15.
In contrast to mesh compression, we are able to code the appearance of the model
in the same way than the geometry, using the same data structures. Hence there is
no need to store additional texture images and to associate and compress texture
coordinates with each vertex.

Its multiresolution character makes our compression approach very suitable
for streaming and progressive decompression. Figure 7.11 shows rate-distortion
curves for progressive decoding of different models. The amount of data is de-

107

Chapter 7 Point Samples for Efficient Storage of 3D Scenes

53

53.5

54

54.5

55

55.5

56

4 5 6 7 8 9 10

Bits per point

P
S

N
R

 /
 d

B

Fixed

Progressive

Chameleon (102k points)

52

52.5

53

53.5

54

54.5

55

55.5

56

56.5

57

3 4 5 6 7 8

Bits per point

P
S

N
R

 /
 d

B

Fixed

Progressive
55

56

57

58

59

60

61

62

63

4 5 6 7 8 9

Bits per point

P
S

N
R

 /
 d

B

Fixed

Progressive

Igea (134k points) Dragon (436k points)

Figure 7.10: Compression performance of position coder.

PSNR / dB Bits per point
Fixed Progr.

Chameleon 25.8 10.5 13.1
(102k points) 24.8 5.8 6.9
Igea 40.0 13.5 17.0
(134k points) 36.7 7.9 9.4
Dragon 31.1 10.5 12.7
(436k points) 27.8 5.6 6.4

Table 7.2: Compression performance of normal coder.

108

7.6 Conclusion

46

47

48

49

50

51

52

53

54

55

56

0 5 10 15 20 25 30

Total bits per point

P
S

N
R

 /
 d

B
 p

o
s
it
io

n
s

15

17

19

21

23

25

27

29

31

P
S

N
R

 /
 d

B
 c

o
lo

rs
 &

 n
o
rm

a
ls

Positions

Colors Y

Normals
54

56

58

60

62

64

66

68

0 5 10 15 20 25

Total bits per point

P
S

N
R

 /
 d

B
 p

o
s
it
io

n
s

15

17

19

21

23

25

27

29

31

33

P
S

N
R

 /
 d

B
 c

o
lo

rs
 &

 n
o
rm

a
ls

Positions

Colors Y

Normals

Chameleon (102k points) Octopus (466k points)

Figure 7.11: Rate-distortion curves for progressive decompression.

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14

Bits per point

M
e
a
n
 M

L
S

 s
u
rf

a
c
e
 e

rr
o
r

/
1
0

-4 Dragon, our coder

Dragon, Fleishman

Venus, our coder

Venus, Fleishman

Figure 7.12: Comparison of our progressive position coder with the method by Fleishman
et al. [2003]

scribed in total bits per point. One fifth of the bits is used for color compression.
The rest is spread evenly over the position and normal coding. As more and more
data is decoded, the resolution of the model successively increases. Visual results
of this process are provided in figure 7.16.

Figure 7.12 shows a comparison of our progressive position coder with the one
presented by Fleishman et al. [2003]. We use the error metric from their paper
which measures the mean distance between the MLS surfaces of the original and
compressed models. While Fleishman’s coder introduces less error for high bit
rates we are able to achieve superior results for lower rates of about 4 bits per
point.

7.6 Conclusion

In this chapter we proposed a framework for compression of point-sampled mod-
els. In contrary to mesh compression we are able to code not only the geometry

109

Chapter 7 Point Samples for Efficient Storage of 3D Scenes

Figure 7.13: Comparison of position compression (uncompressed, 8.8 bpp, 4.4 bpp).

Figure 7.14: Comparison of color compression (uncompressed, 2.5 bpp, 1.0 bpp).

Figure 7.15: Comparison of normal compression (uncompressed, 12.7 bpp, 6.4 bpp).

Figure 7.16: Progressive decompression with total bit rates of 7, 14 and 23 bits per point.

110

7.6 Conclusion

but arbitrary appearance attributes associated with the point samples in a unified
way. The lack of connectivity information further helps to save storage space.

Our method is based on multiresolution predictive coding that has the capabil-
ity of exploiting similarities between neighboring points. By employing a graph
matching algorithm we are able to find neighborhood relations that give us a max-
imum correlation in all attributes. The multiresolution approach naturally leads to
a compression scheme that allows for progressive decoding.

In particular, we present a coder for the model geometry. By transforming the
point positions into a local reference frame, we exploit the fact that all the points
are living on a surface. We have shown by a set of various examples that this
approach works quite efficiently. We complete our framework by also suggesting
methods for compression of colors and normals.

By using the four-dimensional, spatio-temporal point cloud structure presented
in the next chapter, our approach naturally extends to 3D video. In the tempo-
ral domain, the prediction would have to be changed from hierarchical perfect
matching to a sequential approach that relates points from neighboring frames.
This would allow streaming of successive frames during playback. Because many
parts of the scene are usually static, predicting points as being constant would al-
ready yield a good compression rate. Further improvements may be achieved by
additionally using scene flow algorithms [Vedula et al., 1999] that generalize the
motion estimation used in 2D video codecs to three dimensions.

111

Chapter 7 Point Samples for Efficient Storage of 3D Scenes

112

Chapter 8

The Video Hypervolume

By modeling both spatial and temporal aspects of real-world scenes, 3D video
is in principle a four-dimensional structure. Playback generates a sequence of
images of three-dimensional scenes and, thus, successively accesses local three-
dimensional subspaces of the data stream at increasing temporal positions. Appli-
cations such as 3D video editing require more flexible access to the video stream.
Operators that modify the data have to consider all four dimensions in order to
avoid temporal or spatial discontinuities. Interactive editing should permit tempo-
rally coherent manipulation of complete frame sequences.

Inspired by research on visualization of time-varying volumetric data [Bajaj
et al., 1998; Pasko et al., 2002], we introduce in section 8.1 the video hypervolume
as a representation for 3D video. Similar to video cubes for 2D video [Fels and
Mase, 1999; Klein et al., 2002], it considers space and time as compound entities
in four dimensions. By applying hyperslicing and projection methods as described
in section 8.2, we can exploit both spatial and temporal coherence. With these
operations, the video hypervolume builds the basis for our nonlinear 3D video
editing system introduced in chapter 9, which allows for operating in all four
dimensions in a unified manner.

Based on the point samples of chapter 5, the hypervolume has some nice proper-
ties for representing 3D video data. Primarily, points do not need explicit topology
and, hence, no connectivity information has to be constructed and maintained over
time. Secondly, they encode explicit 3D scene geometry and color in a homoge-
neous way. Furthermore points can be flexibly extended to contain application-
specific data like sophisticated material properties or object labels. In terms of
storage efficiency, the hypervolume has some advantages over a dense regular
grid due to the irregular sampling and the level of sparsity of 3D video data.

The point-sampled video hypervolume fits nicely into existing frameworks for
processing point-sampled geometry [Zwicker et al., 2002a]. This allows for uti-
lizing a variety of post-processing operations for outlier removal [Weyrich et al.,
2004], redundancy elimination [Sadlo et al., 2005], simplification [Pauly et al.,
2002], and geometry smoothing [Pauly and Gross, 2001]. Many of these algo-

113

Chapter 8 The Video Hypervolume

t

t +1

t−1

Space

Time

(X ,Y,Z)

Figure 8.1: The video hypervolume.

rithms are independent of the number of dimensions and, thus, can naturally be
extended to integrate time coherence.

However, high-quality 3D video still requires storage of several megabytes per
frame. The complete hypervolume usually does not fit into main memory. 3D
video editing does not only require interactive random access to the data but also
has to allow for local manipulations. To handle that large amount of data, we pro-
pose in section 8.3 an out-of-core representation for the video hypervolume that
permits random access and dynamic updates directly from the hard disk. Com-
bined with the multiresolution hierarchy of section 8.4, this is possible at interac-
tive rates.

8.1 Data Model

The video hypervolume is an irregular set of point samples in the four-dimensional
spacetime domain, as illustrated in figure 8.1. Each sample represents a point on a
scene surface with a positional coordinate (X ,Y,Z) and a temporal coordinate T .

The video hypervolume can be constructed independently from the 3D video
acquisition system, using e.g. depth and color images as an input. It does not
impose any constraints on the setup of the acquisition cameras as long as occlu-
sions can be resolved. Each point sample in the video hypervolume carries a set of

114

8.2 Hyperslicing

attributes describing local surface properties like position, orientation and color.
Identification of a specific sample is done via its position attribute Ẋ = (X ,Y,Z, t)T

which is a vector in Euclidean spacetime R4.
The point samples in the video hypervolume can be easily constructed by back-

projecting the image pixels from the acquisition cameras using the correspond-
ing depth information. To generate hole-free renderings as output, each point
sample represents a small region in spacetime such that its projection onto the
screen covers a certain area of pixels. Our point-based data model of chapter 5
already provides full surface coverage in the spatial domain. To also cover the
time domain, we generalize it to 4D hyperpoints representing small ellipsoidal
hypervolumes in R4. A hyperpoint is constructed from four orthogonal vectors
Ṫ1, . . . , Ṫ4, Ṫi = (tix, tiy, tiz, tit)

T spanning a 4D Gaussian ellipsoid with covariance
matrix V̇ = (Ṫ1, . . . , Ṫn) · (Ṫ1, . . . , Ṫn)

T. The first three vectors describe a con-
ventional point sample in the spatial domain. They can be constructed using the
methods of chapter 5 and by setting their fourth component to zero. To cover the
time domain we define the fourth spanning vector as Ṫ4 = (0,0,0,∆t)T, where
∆t denotes the temporal sampling density corresponding to the frame rate of the
video.

In the spatial domain, the samples are irregularly placed on the surfaces,
whereas in time we usually deal with regular sampling resulting from distinct
video frames of the acquisition system. Hence, there is some remaining redun-
dancy at static parts of the scene as their samples are explicitly stored at each
point in time. Being a general 4D point cloud, the video hypervolume in principle
allows for completely irregularly positioned samples. Specifically, merging static
samples into single ellipsoids elongated in time over multiple frames provides
an easy way of compression by exploiting time coherence. However, such an
approach introduces several drawbacks for nonlinear editing applications: The
introduced inter-frame dependencies increase complexity for video cutting or
editing of single frames. Moreover, time complexity of point queries in a com-
pletely irregular video hypervolume increases with the number of frames, making
editing performance dependent on the length of a video. Therefore, we prefer
regular temporal sampling at the cost of more storage space. This is similar to
intra-frame-only coding used in most common formats for nonlinear 2D video
editing, such as DV, DVCPRO [Uchida et al., 1996], or HDCAM [Wheeler, 2001].
Storage is handled by our out-of-core data structure presented in section 8.3.

8.2 Hyperslicing

Hyperslicing [Woodring et al., 2003] is the fundamental operation for visualizing
parts of the video hypervolume, either for playback or for interactive editing. Pro-
jection onto the screen is performed in a two-stage process: First, hyperslicing
selects a subset of all 4D point samples and projects them to three-dimensional

115

Chapter 8 The Video Hypervolume

t t t

Figure 8.2: Different hyperslice orientations: orthogonal to the temporal axis for playback
(left), parallel to the temporal axis for visualizing dynamic behavior (middle), and
arbitrary orientation (right). The images of the upper row have been generated
with the preview-renderer of our interactive 3D video editing system. For the slic-
ing illustrations in the lower row, the number of dimensions of the hypervolume
has been reduced to three.

space. The resulting 3D point cloud is then displayed using conventional point
rendering methods (see chapter 5).

Intuitively, hyperslicing extracts a three-dimensional subspace from the 4D vol-
ume by intersection with a hyperplane. Depending on the orientation of the hy-
perplane, different views on the four-dimensional spacetime can be generated, as
shown in figure 8.2. A hyperslice orthogonal to the time domain generates a con-
ventional 3D video frame. Thus, 3D video playback is achieved by moving the
position of such a slice continuously along the temporal axis. Conversely, a hy-
perslice that is parallel to the temporal axis visualizes the time domain. It can be
used to perform 3D video editing over multiple frames with one single operation.
Generally, our editing system allows to perform hyperslicing arbitrarily, providing
the user with views of both spatial and temporal scene information. Applications
for temporal slices are discussed in chapter 9.

Intersecting the hypervolume with a single hyperplane would select all points
Ẋ ∈ R4 fulfilling the plane equation ṄH · Ẋ− bH = 0, where ṄH ∈ R4 is the
normal of the hyperplane and bH its distance from the origin. To comply with the
sparse, irregular sampling of our video hypervolume, we extend this procedure as
depicted in figure 8.3 and select all points within a specific distance ∆bH from the
plane by solving

|ṄH · Ẋ−bH | ≤ ∆bH . (8.1)

116

8.3 Out-of-Core Data Structure

t

X ,Y,Z

Figure 8.3: Samples of the video hypervolume (red) are intersected with the hyperslice
(blue) and projected onto its center plane.

Three-dimensional positions

X = ṖH · ṘH · Ẋ (8.2)

are obtained by a rotation ṘH of Ẋ into a coordinate system locally aligned at
the hyperplane followed by a parallel projection ṖH along the hyperplane nor-
mal. The local coordinate system is spanned by four orthonormal column vectors
V̇1, . . . , V̇4 with V̇1 = ṄH , yielding ṘH = (V̇1, V̇2, V̇3, V̇4)

T. For 2D rendering of
the projected 3D point samples using EWA volume splatting (see section 5.1.2),
the covariance matrices have to be projected accordingly by computing

V = ṖH · ṘH · V̇ · ṘT
H · ṖT

H , (8.3)

which results in descriptions of three-dimensional Gaussian ellipsoids.
To find the intersections with the hyperslice, the irregular point cloud has to

be stored in a data structure that allows for efficient spatial queries. A well-
established spatial indexing structure for irregular point clouds is the kd-tree
[Bentley, 1975]. However, traditional kd-trees have to completely fit into the
main memory of the computer, which is not possible with our large 3D video
data sets. Thus, we employ an extension to an out-of-core structure, which is de-
scribed in section 8.3. Apart from point queries, it also supports efficient dynamic
modifications, which are necessary for 3D video editing. Moreover, to achieve
interactivity, the structure is extended to a multiresolution hierarchy in section 8.4.

8.3 Out-of-Core Data Structure

Our out-of-core data structure is based on the Bkd-tree [Procopiuc et al., 2003].
It is a dynamic external-memory adaptation of the kd-tree [Bentley, 1975] for
indexing multi-dimensional point data sets. Compared to octrees, kd-trees have

117

Chapter 8 The Video Hypervolume

60 frames at 200k surfels 2 frames at 1.75M surfels
Single 4D tree One 3D tree per frame
R* Bkd R* Bkd R* Bkd

Average insertion time per frame 140s 34s 64s 7s 1141s 112s
Average full frame query time 1.10s 1.17s 0.69s 0.61s 5.0s 4.6s
Total size on disk 1542MB 1033MB 1575MB 1134MB 415MB 285MB

Table 8.1: Performance comparison of the Bkd-tree with the R*-tree.

a better storage efficiency for sparse point clouds because they can be always
fully balanced and thus contain less empty cells [Samet, 1984; Gross and Pfister,
2007]. This is especially important for out-of-core structures where the amount of
necessary hard disk accesses should be kept as low as possible.

The traditional kd-tree is static: It has as to be completely rebuilt upon changes.
To avoid that, the Bkd-tree uses the logarithmic method [Bentley, 1978; Overmars,
1987], a common approach to make originally static structures dynamic.

In prior experiments with unoptimized code, we compared the Bkd-tree with
the famous R*-tree [Beckmann et al., 1990]. We considered both using one
tree for the complete four-dimensional hypervolume, as well as multiple three-
dimensional trees storing one frame each. Access time was measured by doing
point queries returning one complete 3D video frame as result. To compare the
performance of dynamic updates, we measured the average time needed for in-
serting surfels of each frame into initially empty trees. The results in table 8.1
show that the Bkd-tree outperforms the R*-tree in both I/O efficiency and space
utilization.

To be independent from the duration of the 3D video, we exploit the regular
structure of the video hypervolume in the temporal domain and use one Bkd-
tree per frame. Thus, our data structure is a combination of a regular grid in the
temporal domain and Bkd-trees in the spatial domains. In contrast to one single
four-dimensional tree for the whole hypervolume, query performance with respect
to the number of frames is O(1).

The following sections give detailed descriptions of the building blocks of our
structure: the out-of-core kd-tree, the logarithmic method, and the integration with
the video hypervolume. The data structure was implemented based on the code by
Procopiuc et al. [2003], using the TPIE library [Vengroff, 1994] which provides
the basic C++ structures and abstractions for out-of-core programming.

8.3.1 External-Memory kd-Tree

A kd-tree [Bentley, 1975] is a binary space partitioning data structure. It is tra-
ditionally used for indexing multi-dimensional point data sets and can be used to
perform axis-aligned bounding box or window queries at O(

√
n) [Lee and Wong,

1977], or nearest neighbor queries or O(logn) time complexity in a point cloud of

118

8.3 Out-of-Core Data Structure

Figure 8.4: A blocked 2D kd-tree without block optimization. Most leaf blocks are not
full, storage efficiency is approximately 72%.

size n. At each node, the k-dimensional space is split orthogonal to one dimension
such that the point cloud is divided into two subsets of roughly equal size. Split-
ting is repeated recursively until the size of the point set contained in the current
subspace reaches a lower bound—the so-called bucket size. The points are then
stored in the leaves of the tree.

An out-of-core adaptation of the kd-tree has to amortize for the high access cost
to external memory. For storage on the hard disk it should be optimized for the
size of a disk block which is the indivisible amount of data that is transferred into
main memory at each access. Choosing the bucket size of the kd-tree according
to the size of one disk block is an obvious way: if one disk block is able to hold b

points, the bucket size of the tree should be b. Thus, at each query, a whole leaf is
transferred to main memory.

However, as illustrated in figure 8.4, choosing an inappropriate split criterion
results in many half-empty leaves causing unnecessary transfer of unused data.
For optimal space utilization, most leaves should be filled. Splitting the point set
in such a way that the left subtree always contains a power of two of full disk
blocks achieves that: Given q points to be split, b · 2⌊log2(q/b−1)⌋ points are put
into the left child. As a result, the left subtree of the root node will be perfectly
balanced and have perfect space utilization. This is true for the left subtree of any
node. Thus, only a single block at most is not filled—the one in the rightmost
path. Given a number n of points and a block size b, this is the smallest possible
tree. Figure 8.5 shows such a tree for the point set of the previous example. Note
that the number of internal nodes decreased from 15 to 9, and the number of leaf
blocks decreased from 13 to 10. While the maximum height is the same as before,
the average length of a path from root to leave decreased.

The inner nodes are also stored in a blocked fashion: Assume bI is the num-
ber of inner nodes that can be stored in a single block. Starting from the kd-tree
root, the tree is traversed depth-first until bI nodes have been visited. All traversed
nodes are then stored in a block. The remaining nodes are blocked recursively.
The total number of blocks needed for all the internal nodes is O(n/(bbI)) [Pro-

119

Chapter 8 The Video Hypervolume

Figure 8.5: A blocked 2D kd-tree with block optimization. Most leaf blocks are full,
storage efficiency is approximately 97% (optimal for this example).

copiuc et al., 2003].
In our implementation, each kd-tree consists of two collections of blocks,

one for leaf blocks and one for node blocks. Each block can be accessed using
memory-mapped I/O via a unique block ID that is managed by the TPIE library.
The structure of such a tree on the hard disk is depicted in figure 8.6; figure 8.7
shows the respective data structures in C++ notation. A LeafBlock simply
stores surface elements of type Point, whereas a NodeBlock stores binary
nodes of type BinaryNode as well as links blockLinks of type BlockID
to other blocks—either leaf blocks or node blocks. In addition to the value
and direction of the splitting axis, each BinaryNode has two children. Be-
sides a reference, it stores the type of each child, which can be BINARY_NODE,
NODE_BLOCK or LEAF_BLOCK. Depending on this type, the child reference
either directly points to a node in the same block or to the block ID of another
node or leaf block, which is stored in the blockLinks vector.

8.3.2 The Logarithmic Method

The kd-tree traditionally is a static data structure. Insertion and deletion is in prin-
ciple possible in O(log2 n) time by, first, finding the appropriate leaf, and, second,
performing leaf splitting or merging operations. However, the tree quickly de-
generates after multiple of such operations, deteriorating its query performance.
Thus, rebalancing has to be performed very often, which, however, requires reor-
ganization of large parts of the tree [Samet, 1990].

Therefore, the authors of the Bkd-tree propose to use the logarithmic method
[Bentley, 1978; Overmars, 1987], a generic approach to make static data structures
dynamic. Rather than maintaining a single tree holding n points, a forest of up to
log2(n/p) smaller kd-trees Ti together with a main memory buffer T M

0 of size
p≪ n is used. The kd-trees have geometrically increasing size: each tree Ti stores
at maximum 2i p points. Changes are applied to the main memory buffer and

120

8.3 Out-of-Core Data Structure

Node block

Block links

Binary nodes

H

JI

F

G

ED

C

B

A

JI

F

HG

EDCBA

Figure 8.6: An example of how a kd-tree is blocked into ten leaf blocks and three node
blocks. Leaf blocks have capacity for three points. Node blocks have capacity for
five binary nodes.

occasionally written back into the forest. During a write-back, only one small tree
has to be rebuilt completely. Thus, amortized insertion and deletion cost remains
low, and query performance remains high. Figure 8.8 shows an example of a
Bkd-tree. Operations for building, updating and querying Bkd-trees are described
in detail by Procopiuc et al. [2003]. In the following sections, we give a short
overview.

Bulk loading. Bulk loading builds a whole Bkd-tree from scratch from an un-
ordered set of points. It basically generates all kd-trees of the log method using
efficient kd-tree bulk loading algorithms. They are essentially out-of-core sorting
algorithms optimized for best tree balance and minimum number of I/Os. With
the algorithm by Procopiuc et al. [2003], a kd-tree of size n can be bulk-loaded in
O(n

b
log p

b

n
b

I/Os.

Insert. Inserts are initially applied to the memory buffer T M
0 . When it becomes

full, its content is written back to the forest using the following method: First, the
smallest tree Ti that is completely empty is determined. Then, all trees T j with
0 ≤ j < i as well as T M

0 are emptied by bulk-loading their content into a new
tree T ′. Its size is guaranteed to be smaller than the maximum possible size of

121

Chapter 8 The Video Hypervolume

class BinaryNode

{

enum {X, Y, Z, T} splittingAxis;

float splittingValue;

size_type leftChildIdx,

rightChildIdx;

enum {BINARY_NODE, NODE_BLOCK, LEAF_BLOCK} leftChildType,

rightChildType;

};

class NodeBlock

{

vector<BinaryNode> binaryNodes;

vector<BlockID> blockLinks;

};

class LeafBlock

{

vector<Point> points;

};

Figure 8.7: Data structures for storing disk blocks of internal nodes and leaf nodes of the
Bkd-tree.

On external

storage

In main

memory

250 500 1000 2000 4000250

T M
0 T0 T1 T2 T3 T4

Figure 8.8: Bkd-tree example. p = 250 memory capacity. Three full trees are on disk, two
trees are empty.

122

8.4 Multiresolution Hierarchy

Ti. Thus, T ′ can be reinserted into the forest at the lowest possible of the empty
places 0 ≤ j ≤ i. According to Procopiuc et al. [2003], the amortized cost of an

insert operation is O(
logp/b(n/b) log2(n/p)

b
) I/Os.

Delete. Deletion is performed in a weak fashion: the point is just queried and
marked as deleted. As a consequence, the Bkd-tree is not rebalanced for optimal
query performance until insert operations cause again an overflow of the memory
buffer. On the other hand, deletion is as fast as a single point query, requiring
O(logb(n/b) log2(n/p)) I/Os.

Query. Window queries are performed in parallel in all log2(n/p) kd-trees as
well as in the main memory buffer T M

0 . Due to the geometrically increasing size
of the trees in the forest, its worst-case query performance is equal to the perfor-
mance using one single kd-tree. For a window query returning k out of n points,
O(
√

n/b+ k/b) I/O operations of disk blocks of size b are needed. As shown by
Procopiuc et al. [2003], average performance is even much better.

8.3.3 External Storage of 3D Video Frames

In order to be independent of the length of the video, we store each frame in a
separate Bkd-tree. For hyperslices that visualize a range of frames, data from
multiple Bkd-trees has to be kept in main memory. Hence, in contrast to the prior
description, we cannot use a separate in-memory buffer T M

0 for each frame. As
illustrated by figure 8.9, T M

0 is also stored on disk. Instead, the editing system uses
one in-memory cache as a common buffer for all Bkd-trees of currently visualized
frames. The parameter p is chosen such that each T M

0 exactly fits into one disk
block. Typically, the cache is able to hold the complete buffers T M

0 of many
frames. E.g. for a typical cache size of 64 megabytes and a disk block size of 64
kilobytes, 1024 frames can be buffered. As a consequence, point insertions that do
not trigger a reorganization of the kd-tree forest are effectively performed in-core.

Furthermore, we constrain the size of each Bkd-tree to completely fit into main
memory. Because a whole frame has to be loaded for rendering anyway during
playback, this is a reasonable assumption. As a consequence, we can speed up
reorganization of the distinct kd-trees by using an in-core sorting algorithm instead
of the out-of-core bulk-load method.

8.4 Multiresolution Hierarchy

The pure out-of-core representation is not yet sufficient for rendering the selected
slices at interactive rates because all data still has to be streamed from disk. There-
fore, we augment our data structure with a multiresolution point hierarchy. During

123

Chapter 8 The Video Hypervolume

On external

storage

In main

memory

Cache
t

T M
0 T0

T1
T2

T3

Figure 8.9: Multiple 3D video frames are stored in separate Bkd-trees. An in-memory
buffer serves as a common cache for all currently accessed frames.

editing, a low-resolution model can be presented to the user instantaneously. By
exploiting idle times of the hard disk, it is successively refined by a background
thread running in the editing software.

Traditional multiresolution point hierarchies such as QSplat [Rusinkiewicz and
Levoy, 2000] recursively merge high-resolution samples to larger points of lower
resolution. All resolution levels are explicitly stored. Hence, the amount of data is
increased if no compression is applied. For the sake of easy editing, compression
is not desirable in our case. As the low-resolution levels are just used for preview
rendering, we prefer a data structure that is inexpensive both in computational
costs and storage amount. We simply subsample the high-resolution model by
recursively omitting every second point. Thus, the complete multiresolution hier-
archy is just an indexing scheme for the original point cloud. By presorting the
points in a special way, a progressive data stream can be constructed that succes-
sively refines the model from low to high resolution. No additional data besides
the original point cloud has to be stored.

The sorting procedure works as illustrated by figure 8.10. In a first step, pairs
of similar points are found by constructing a balanced kd-tree with bucket size
1. Pairs are recursively simplified by deleting one of the two points. Thus,
a multiresolution hierarchy of depth l + 1 can be built by sorting the n leaves
of the tree into l + 1 sets Λ0, . . . ,Λ−l , where the upper negative index denotes
the hierarchy level. For the lower levels i ∈ {0, . . . , l − 1}, they are built as

124

8.4 Multiresolution Hierarchy

Λ0

Λ−1

Λ−2

Λ−3

Figure 8.10: Construction of the multiresolution hierarchy. Similar point pairs are found
by constructing a kd-tree. The multiresolution sets are then built by recursively
assigning every second point to a higher level.

Λ−i = {i + j · 2i+1}, j ∈ {0, . . . ,n/2i+1}; the highest level is Λ−l = {l + j · 2l},
j ∈ {0, . . . ,n/2l}. The progressive point stream is finally built by concatenating
the sets in ascending order Λ−l, . . . ,Λ0. Note that the overall number of stored
points is still the same as in the original model: ∑l

i=1 |Λ−i|= n.

For displaying the model at resolution level i, where i = 0 is the highest reso-
lution, all points of sets Λ−i, . . . ,Λ−l have to be rendered. Because the average
sampling density is reduced by a factor of 2i compared to the original model, the
renderer increases the point size online by 2i/2.

We integrate the multiresolution representation into our out-of-core structure by
constructing separate point hierarchies in all buckets of the Bkd-tree. The Bkd-tree
is first built up to a bucket size of 2b points occupying the size of two disk blocks.
Within each bucket, we then build the sets Λ0 to Λ−l . Λ0 occupies exactly one
disk block, the higher levels, however, only fill parts of a block. By merging the
higher-level sets with those of the neighboring buckets, as depicted in figure 8.11,
we are able to obtain a maximum space utilization.

Note that a query for a single point in this structure needs to access l leaf blocks.
In contrast, the single-resolution representation only needs one block access. That
drawback is amortized for practical range queries because they typically span mul-
tiple buckets whose low-resolution point sets are often stored in the same disk
blocks. Moreover, there is the advantage of quick access to previews of the point
cloud. Nonetheless, the height of the multiresolution hierarchy should be kept at
a moderate level, typically l = 5.

The final data structure can be summarized as illustrated follows: There is one

125

Chapter 8 The Video Hypervolume

Λ−1
1 Λ−1

2

Λ−1
1 Λ−1

2

Λ−2
1 Λ−2

2

Λ−3
1 Λ−3

2

Λ−2
1 Λ−2

2Λ−3
1 Λ−3

2

Λ0
1 Λ0

2 Λ0
3 Λ0

4

Λ0
1 Λ0

2 Λ0
3 Λ0

4

Λ−1
3

Λ−1
4Λ−1

3

Λ−1
4

Λ−2
4Λ−2

3

Λ−3
4Λ−3

3

Λ−2
3 Λ−2

4Λ−3
3 Λ−3

4

Figure 8.11: Distribution of multiresolution data into disk blocks. The point sets in each
leaf of the Bkd-tree are subdivided separately into multiresolution layers (upper
part). Those subsets are then sequentially written into disk blocks in order of
increasing resolution.

Bkd-tree per frame. Each Bkd-tree consists of multiple out-of-core kd-trees. Each
kd-tree is saved to disk as a collection of disks blocks: one for internal nodes and
one for leaves. The collection for the leaves is further distributed into l +1 sets of
the multiresolution hierarchy.

Level-of-detail access to the temporal domain exploits its regular sampling: For
a resolution of level i, only each 2ith frame is accessed. The temporal extent of a
point sample is multiplied by a factor of 2i.

8.5 Results

We evaluate our data structure with a static scene consisting of 20 identical frames
with approximately 1.5 million points each. Besides position, color and tangent
vectors, the samples carry additional application-specific attributes such as user-
defined object tags. Thus, they occupy 64 bytes each, which sums up to a storage
amount of 98 megabytes per frame. With a block size of 64 kilobytes, each disk
block is able to hold exactly 1024 points. They are stored on a RAID-0 compound
of two hard disks that achieves an average linear transfer rate of 97 megabytes per
second with an access time of 14 milliseconds.

Our test scene is stored in a multiresolution hierarchy consisting of 6 different
levels of detail. Images of those levels generated by the preview renderer of our 3D
video editing software are shown in figure 8.12. The loading times for each detail

126

8.5 Results

Level Surfels Time
5 44700 38ms
4 45652 62ms
3 91304 86ms
2 182608 140ms
1 365215 320ms
0 729480 515ms

Table 8.2: Time for loading the distinct levels of the LOD hierarchy levels of the scene
displayed in figure 8.12.

level are given in table 8.2. As can be seen, the lowest level already provides a
sufficiently detailed view and allows for interactive navigation in the video stream
at 26 frames per second. By sequentially reading the complete data stream, the
model is successively refined. Its full resolution of 1.5 million points is reached
after 1161 milliseconds.

To test the data access performance, we ran range queries on Bkd-trees of evenly
distributed random points. The tree sizes were changed from 100000 to 2 million
at increments of 100000. For each measurement, we chose the query range in such
a way that the result consisted of approximately 10000 points. We measured the
query time for the full resolution model as well as for the first level of detail. The
results are displayed in figure 8.13. In contrast to streaming of complete frames,
disk access time clearly dominates because blocks cannot be read in sequential
order anymore. However, interactive rates can still be achieved by progressively
querying the different levels in the multiresolution hierarchy. A result from the
lowest level of detail is obtained already after less than 100 milliseconds. Succes-
sive high-resolution queries do not demand for new traversal of the Bkd-tree. It is
just necessary to evaluate the points in the high-resolution leaves.

We measured the update performance of our data structure by successively in-
serting sets of 1000 random points into an initially empty Bkd-tree. The blue
graph in figure 8.14 shows insertion times for individual sets. Its oscillating be-
havior is due to reorganizations of trees of the logarithmic method. As can be
seen, most insertions only require reorganization of the smallest kd-trees in the
forest of the logarithmic method, keeping insertion time below 120 milliseconds.
The peaks indicate rebalancing of larger trees. Although it only happens rarely,
those situations imply a longer waiting time for the user. This could be improved
in the future by temporally increasing the size of the buffer T M

0 in order to perform
a delayed rebalancing in a background process. On average, however, the time for
inserting 1000 points is staying below 110 milliseconds, as indicated by the red
curve. It shows the average of all insertions that were used to create the Bkd-tree
of the given size.

Our data representation scales well with the length of the video. Because each
frame is stored in a separate Bkd-tree, both query and update time remains con-

127

Chapter 8 The Video Hypervolume

44700 points. 90352 points.

181656 points 364264 points.

729479 points 1458959 points.

Figure 8.12: Scene displayed by the preview-renderer of the 3D video editor at six different
levels of detail.

128

8.6 Conclusion

T
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

Tree size

 0 0.5M 1M 1.5M 2M

 0

 200

400

600

800

 1000

 1200
Full resoution

Lowest level of detail

Figure 8.13: Time for window queries resulting in 10000 high-resolution points. Blue:
time for complete full-resolution query. Red: time for low-resolution query.

stant. Queries that include several trees—i.e. slices that are not orthogonal to
the t-axis—would have to access more trees. Search time for such slices would
therefore approximately increase linearly with the number of frames. Because a
user typically only edits a small number of successive frames at the same time, the
number of frames visualized by those slices is bound with an adjustable parameter
in order to prevent access to all frames over the full length of the video.

8.6 Conclusion

We presented the video hypervolume as a representation for 3D video data sets
in four-dimensional spacetime . Consisting of point samples, it nicely fits into
existing frameworks for processing point-based geometry. With its unification of
space and time, processing operators are able to exploit and maintain coherence
in all dimensions. The concept of hyperslicing extracts three-dimensional subvol-
umes for visualization and manipulation. Editing of large videos is possible using
our dynamic out-of-core storage method. The integrated multiresolution hierarchy

129

Chapter 8 The Video Hypervolume

10

100

 1000

 10000

 0 0.5M 1M 1.5M 2M

Tree size

T
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

Insertion time

Accumulated average

Figure 8.14: Time for inserting blocks of 1000 points into a Bkd-tree of a given size. Blue:
Insertion time for a single block. Red: Accumulated average of previous insertion
times.

achieves interactivity. The video hypervolume builds the basis for our nonlinear
3D video editing system presented in the following chapter.

130

Chapter 9

Interactive 3D Video
Editing

In this chapter, we present a generic framework for interactive editing of 3D video
footage. It extends existing concepts for two-dimensional video and combines
their conceptual simplicity with the power of depth-enhanced video data. The
multi-dimensional, spatio-temporal nature of 3D video leaves its editing highly
non-trivial, but, at the same time, allows for a variety of novel features.

Our framework is based on explicit 3D geometry providing a view-independent
scene model. Its point-sampled representation is independent of the used acqui-
sition system as long as it captures depth information. It can be generated easily
from depth maps using the approach presented in chapter 5. Built upon the video
hypervolume of chapter 8 for representing the spatio-temporal video stream, our
system allows for intuitive handling and editing of the four-dimensional domain.

We designed a concept for video editing which is based on three fundamental
operators: slicing, selection, and editing. In particular, we present a 4D object
selection algorithm based on graph cuts. To convey object boundaries, the user
indicates object and non-object regions in the spatio-temporal domain by painting
on the surfaces with a 3D paintbrush. In addition, we provide a set of spatio-
temporal editing operations, such as cut & paste and affine transformations. By
using the operators, processing of 3D video becomes easy and intuitive.

9.1 System Overview

Our system complements the 3D video acquisition and reconstruction pipeline
with an editing framework for post-production as illustrated in figure 9.1. It is
based on the four-dimensional video hypervolume which represents appearance
and geometry of the scene as point samples in spacetime.

The editing framework is based on three operators: slicing, selection and edit-

131

Chapter 9 Interactive 3D Video Editing

Slicing Selection

Interactive 3D video editing
3
D

 a
c
q
u
is

it
io

n

2
D

 r
e
n
d
e
ri
n
gVideo

hypervolume

Slicing Selection Editing

Editing

Figure 9.1: The 3D video editing framework.

Figure 9.2: Our interactive 3D video editing combines the advantages of 2D video editing
with depth-enhanced 3D video streams. From left to right: Interpolated view of
the 3D video input data; cutout of a 3D video object; composite 3D video with
additional 2D and 3D objects, new background and shadow mapping.

ing. The slicing operator, which has already been introduced in section 8.2, pro-
vides an intuitive interface to interact with the four-dimensional domain. It trans-
forms selected parts of the 4D data set from the video hypervolume to a cloud
of 3D point samples. Slice orientation and position can be changed interactively
(section 9.2). With the selection operator (section 9.3) the user can mark regions or
objects of interest. While region selection can be performed using marquee, lasso
or paintbrush tools, object selection requires the notion of boundaries which we
introduce using a graph cut selection scheme. Users guide the selection process by

132

9.2 Navigation

painting with an object brush and with a background brush. All selected parts can
be modified by a set of editing operators (section 9.4). Operations make use of the
explicitly modeled scene geometry and include cut & paste, spatial and temporal
translations, rotations and scaling. During compositing, handling of occlusions is
provided for free.

Our unified handling of space and time naturally supports editing operations
exploiting both spatial and temporal coherence. Selection and editing are applied
directly on a cloud of 3D point samples yielding from the slicing operation. The
invisible, fourth domain can only be accessed by defining a different slice. Upon
completion of an editing operation the data in the current slice is backpropagated
into the video hypervolume. By operating on the slice only, we leverage interac-
tive editing of the huge 3D video data sets. A typical editing session is illustrated
in figure 9.2.

Interactive visualization and editing of the video hypervolume requires data
structures providing efficient access to the samples. We implemented a two-level
approach that relates to the general structure of our editing framework. The first
level of the data structure represents the entire four-dimensional video volume. It
is directly accessed from hard disk using our out-of-core representation presented
in chapter 8. As typical access patterns do not select single points but whole
subvolumes, the combination of spatial Bkd-trees and regular temporal sampling
has proved to be very efficient. Moreover, the structure supports dynamic updates
if the user adds, removes or transforms points during the editing session.

The editing itself only takes place in the 3D projection of a selected hyperslice.
For efficient rendering, the 3D points are stored as vertex arrays in main memory.
Editing operations typically need fast access to single points. Kd-trees are very ef-
ficient and widely used for that purpose in traditional point processing frameworks
[Zwicker et al., 2002a]. In our implementation, we build and update a kd-tree on
the fly as soon as a query for a specific point is performed. The kd-tree can be
represented just as a reordering of the vertex arrays. Thus, no additional storage
is needed.

9.2 Navigation

The slicing operator introduced in section 8.2 is used to navigate in the video
hypervolume. In the most common case, the slice is orthogonal to the t-axis and
corresponds to a single 3D video frame. Orientation of the 3D point cloud can be
controlled interactively using an arcball interface. The user can select a specific
frame using a slider to control the slice position bH in time. Moreover, he can
adjust its thickness ∆bH by defining in and out points—quite similar to 2D video
processing—resulting in multiple frames getting displayed. This easily allows to
identify static and dynamic scene parts.

For spatio-temporal editing it is also interesting to visualize the time domain on

133

Chapter 9 Interactive 3D Video Editing

Figure 9.3: For defining a new hyperslice, the user draws a blue line onto the screen that
represents the projection of its center plane (left). In this example, the new hyper-
slice reveals the time domain, allowing for easy selection and editing of objects
over multiple frames.

the screen. This facilitates intuitive spatio-temporal selection as described in the
next section. The user can define arbitrarily oriented slices by drawing a line on
the screen representing the hyperplane. This conveniently allows to generate slices
through a specific object of interest, as can be seen in figure 9.3. The slider now
generally controls the movement of the slice through the video hypervolume. The
slice thickness can be increased such that a greater part of the orthogonal, fourth
dimension gets projected onto the screen. When the user defines the new slice,
the system automatically computes its rotation matrix Ṙ by determining its local
coordinate system according to the drawn line and the current view. Figure 9.4
shows the vectors V̇1, V̇2 and V̇3 which are all constructed within the current
hyperslice. V̇1 and V̇2 are located in the current image plane, V̇2 is orthogonal to
the drawn line and defines the normal of the new slice. V̇3 is orthogonal to the
image plane. V̇4 is not depicted as it is orthogonal to the current hyperslice.

9.3 Selection

The selection operator is the key to subsequent 3D video editing tasks. The 4D
data does not feature object labels indicating conceptually connected data samples.
For this purpose, our framework provides an algorithm based on graph cuts to
associate such labels for further editing operations. But first we introduce some
basic selection tools.

134

9.3 Selection

Hypervolume

Hyperslice

Viewing frustum

Screen

V̇1

(X ,Y,Z, t)

V̇3

V̇2

Figure 9.4: Non-orthogonal hyperslices are generated by calculating the required rotation
matrix simply from a line drawn onto the screen.

9.3.1 Region Selection Tools

The user can view and select objects both in space and along trajectories in time
using the slicing operator. By taking advantage of the underlying 3D geometry,
accurate selection of objects and regions of interest is sometimes already possible
by using basic selection tools.

Marquee and lasso selection tools. Similar to 2D photo editing applications
our framework provides marquee and lasso selection tools. With these tools users
are intuitively able to select large areas of the visualized slice. Users draw 2D
regions on the screen which get extruded into the slice domain for 3D selection,
using the current virtual camera parameters. In this way a whole subvolume and
possibly hidden surfaces are selected. However, by rotating the viewed data, the
user easily sees where hidden surfaces are selected and can work on the selection
using different selection modes. Our framework provides addition, difference and
intersection modes.

3D paintbrush. Another selection tool is the paintbrush also known from 2D
photo and video editing applications to paint selections or colors. However, due
to the additional dimension, we have to define a 3D footprint of the paintbrush.
Intuitively we define the 3D paintbrush as a spherical volume in 3D. We deter-
mine the 3D center point by calculating the 3D position of the front surface data
sample at the 2D screen space coordinate of the mouse pointer. 3D data points
are selected if they are contained in the spherical volume around the center point
and are determined using a range query in the underlying kd-tree structure. We
calculate the 3D center point with help of the z-buffer. By considering z-values

135

Chapter 9 Interactive 3D Video Editing

Figure 9.5: Object selection. Left: The user wants to select a person and marks her with
red paint, the floor with blue paint and the region of interest with a rectangular
marquee selection. Middle: The first invocation of the min-cut optimization yields
wrongly marked samples on the wall behind the person. Right: After specifying
more paintbrush strokes, the optimization completes with a satisfying selection.

of all pixels within the screen space footprint of the projected spherical volume,
the intersection point of the picking ray with the scene can be determined very
robustly. The user can chose the depth of the sphere as either determined by the
nearest z-value or by a median filter over all z-values. The former can be used
for selecting small surface patches in front of a bigger surface without the need to
exactly click on them. The latter can be employed for selecting the densest surface
without considering small surface patches.

9.3.2 Object Selection

The captured 4D data set does not supply the user with object boundaries or la-
bels. However, for complex editing tasks, such a labeling is essential. There-
fore, we introduce a graph cut algorithm to associate such labels. We use the 3D
paintbrush and the marquee selection tools introduced in the previous section to
specify the necessary constraints. With the paintbrush, the user can mark sur-
face patches which should be selected (red paint) and patches which should not
be selected (blue paint). The marquee selection tools (green paint) are used to
define a spatio-temporal region of interest, thereby excluding large uninteresting
regions and speeding up the min-cut optimization significantly. Performing the
optimization on whole 3D video data streams is not feasible interactively.

The status of all data samples marked with green paint is then determined by
invoking a min-cut optimization after hitting a button in the interface. Upon com-
pletion, the user can refine his markings using the region selection tools and run
the optimization again. Figure 9.5 illustrates the object selection operator.

136

9.3 Selection

t

t +1

t−1

Space

Time

ρi = F

ρi = B

(X ,Y,Z)

ED

ET

EI

Figure 9.6: When constructing the 4D graph, any data sample or data region contributes to
the graph according to intra-frame and inter-frame neighborhoods and energies,
as well as to virtual nodes with data energies.

Graph Construction

The object selection problem is very similar to the video segmentation problem of
section 6.4.1 but directly operates on the irregular four-dimensional point cloud.
It can be interpreted as a graph labeling problem. Each data sample i is assigned
a unique label αi ∈ {0,1} where 1 means that the data sample belongs to the
selection and 0 that it does not belong to the selection. We construct a 4D graph
G = 〈V,E〉 on the 4D hypervolume bounded by the region of interest. The node set
V contains all data samples that have been defined as the spatio-temporal region of
interest. A node i represents a data sample with label αi, color ci, surface normal
Ni, as well as a user-assigned label ρi ∈{F,B,U}. The latter is assigned depending
on the input brush strokes: nodes marked with the foreground or background brush
are tagged as ρi = F or ρi = B, respectively, unmarked nodes are tagged as ρi =U .
Furthermore, we define Λt as the scene at a time instant t. Figure 9.6 illustrates
the 4D graph construction.

We construct the intra-frame arcs EI by connecting spatially adjacent data sam-
ples in the same time instant Λt . The data samples are irregularly sampled in
spacetime and do not feature connectivity. Hence, we have to calculate the spa-
tially adjacent samples by using range queries—quite contrary to the 2D video

137

Chapter 9 Interactive 3D Video Editing

cutout of section 6.4.1 which uses explicit neighborhoods on the pixel grid. We
apply a 3D kd-tree for this purpose and generate arcs for all data samples which
lie inside a sphere with given radius (orange sphere in figure 9.6), typically 2cm in
our metric environment. We take the nearest k data samples and exclude evidently
unrelated samples with mean color or normal differences over a certain threshold
(usually 10%).

Inter-frame arcs ET connect temporally and spatially adjacent point samples in
adjacent time instants Λt±1 that are located within a given 3D radius, typically
4cm. We also use a kd-tree for this purpose, created in the corresponding time
instants t±1. We initialize the range query by projecting the data sample (orange
point in figure 9.6) from time t to t±1 (yellow points in figure 9.6). Note that the
radius has to be higher than for the intra-frame arcs due to non-regular sampling
and motion. Furthermore, we only take the k/2 nearest data samples and exclude
unrelated data samples too. In our current implementation we set k to 8.

4D Graph Cut Optimization

Similar to the 2D video cutout of section 6.4.1, we define a cost function E on the
constructed graph G. The 4D graph cut algorithm then solves the object labeling
problem by minimizing the following energy:

EA({αi}) = λD ∑
i∈V

ED(αi)

+λI ∑
(i, j)∈EI

EI(αi,α j)

+λT ∑
(i, j)∈ET

ET (αi,α j)

(9.1)

The optimization assigns labels αi for each data sample i represented by the graph
nodes. Figure 9.6 illustrates the different terms of the energy function. ED is
the likelihood energy while ES and ET are the prior energies. ED measures the
similarity of the color of a data sample to the color models assembled from the
user-assigned labels. ES and ET assess the color and geometry differences be-
tween spatially and temporally adjacent samples. They penalize strong color and
normal deviations and ensure spatial and temporal coherence in the selection pro-
cess. Consistency of point positions is assured implicitly by the graph arcs be-
cause they only connect points in local neighborhoods. We employ the max-flow
algorithm by Boykov and Kolmogorov [2004] to minimize the energy EA({αi})
in equation (9.1).

Likelihood energy. We assemble two Gaussian mixture models by sampling
the color ci of the data samples with user-assigned labels. One model ΘF is built
for the “foreground” samples with ρi = F and one for the “background” samples

138

9.4 Editing

with ρi = B. The likelihood energy ED(αi) can then be defined similar to equa-
tion (6.19) as:

ED(αi) ρi = F ρi = B ρi = U

αi = 1 0 ∞ ΘF (ci)
ΘF (ci)+ΘB(ci)

αi = 0 ∞ 0 ΘB(ci)
ΘF (ci)+ΘB(ci)

, (9.2)

where the color models are equivalent to those of section 6.4.1, e.g.

ΘF(c) =− log
k

∑
j=1

ν jN3(c;µF j,VF j) (9.3)

using k Gaussian normal distributions N3(c;µF j,VF j with mean values µF j, co-
variance matrices VF j, and weights ν j. We use k = 5 Gaussians which provides
satisfying results in our editing framework.

Prior energies. The prior energies EI and ET are both defined in a similar fash-
ion as

E(αi,α j) = (1−δαi,α j
)Si, j (9.4)

with

δa,b =

{

1 if a = b

0 if a 6= b
. (9.5)

The Si, j are the intra- and inter-frame link costs, respectively, that are assigned to
the actual graph edges. We adopt the global link costs from Wang et al. [2005]
and extend them by geometry information. Besides considering color differences
we weight the normal differences between adjacent data samples in a similar way.
The link costs are defines as:

Si, j = e(−∆2
C/(2β2

C)) + e(−∆2
N/(2β2

N)) (9.6)

∆ defines the color or normal difference between two nodes i and j which the
link connects. The β represent the intra-frame and inter-frame variance of colors
or normals. In our current implementation we do not calculate the variances but
empirically set them to βC = 0.08 and βN = 0.12.

9.4 Editing

Editing operations are leveraged using the slicing and selection operators de-
scribed in the previous sections. Our supported set of editing operations is simple
yet becomes very powerful in our framework and with the underlying 4D repre-
sentation.

139

Chapter 9 Interactive 3D Video Editing

Cut & paste. After slicing and selection, the user can employ a clipboard to
perform cut or copy operators for selected regions or objects. The data in the clip-
board can then be used to paste objects to other hyperslices, other scenes or to
clone objects. Compositing of multiple scenes can be done conveniently by first
loading all the scenes together at different places in the video hypervolume and
then moving their objects around. Objects can be easily removed without leaving
holes in the background scene if the acquisition system was able to capture the
background behind the object from a suitable viewing angle. Note that composit-
ing in the spatial domain becomes very convenient because our representation
explicitly stores the scene geometry.

Transformations. We can apply arbitrary affine transformations to the selec-
tion. Transformations are straightforward and intuitive in the case of a hyperslice
orthogonal to the t-axis. On the other hand, by using other hyperslices we con-
veniently perform translations in time. To this end, the user simply generates a
hyperslice non-orthogonal to the time axis. The translation operator nicely shows
the possibilities of a uniform spacetime representation. Other transformation oper-
ators include rotation and scaling. The user can rotate objects freely in spacetime,
even from the temporal into the spatial domain, creating interesting novel effects
like visualization of movement trajectories. Note that in all cases, occlusions are
correctly resolved for free by our explicit 3D geometry.

Compositing and shadow mapping. We provide various compositing opera-
tors with other media, e.g. images, videos, and virtual objects. They can be in-
serted into the video hypervolume by conversion to point samples. Alternatively,
we allow for insertion of textured meshes during the final rendering phase. To
seamlessly blend objects with new backgrounds we adopted a shadow mapping
technique [Williams, 1978] to cast shadows of inserted objects into the new back-
ground. Again, this is leveraged by the underlying explicit 3D geometry. More
realistic compositing can be achieved by adapting the scene’s illumination condi-
tions. However, for this purpose time-varying reflectance properties of the scene
need to be calculated. This is an interesting challenge for future work.

9.5 Results

We recorded a number of 3D videos and performed editing tasks on the 4D data.
The input consists of sequences with a flamenco dancer, an actor juggling a ball
and a shot with a plant, a sofa and a sitting person. All sequences have been cap-
tured with our acquisition system using four 3D video bricks covering a convex
horizontal viewing range of 71 degrees around a 2.8× 3.2× 1.9m3 scene. They
were recorded at 12fps and their length was between 120 and 300 frames. Further

140

9.6 Conclusion

details can be found in appendix A. The interactive editing session took approx-
imately one day to complete. To generate appealing videos, our editing system
allows for content and viewpoint trajectory scripting. The final images have been
rendered using our point splatter of chapter 5.

Figure 9.7 shows a scene with the flamenco dancer. The dancer was cut out of
the original background and inserted into a new one. We used the object selec-
tion operator for this purpose. The sequence shows the generation of a “clone”
in the same scene and subsequent scaling and transformation to the sofa. Shadow
mapping and matting ensures that the dancer still blends in with the new back-
ground. Note the shadow in the fifth image which nicely shows the underlying
geometry with the cast shadow of the small dancer on the sofa. The poster is also
inserted onto the wall using the media import feature of our editor. Figure 9.8
shows an edited 3D video of the juggle sequence inserted into the environment
with the sofa and the person. The plant shows the limitation of the employed 3D
capturing system. Thin structures cannot be handled yet and the resulting geome-
try is not captured well. Nevertheless, unstructured lumigraph rendering reduces
the resulting artifacts. In this sequence we also replaced the ball with a teapot.
The trajectory was captured by cutting out the ball and calculating its center of
gravity. We generated spin artificially since we could not capture this from the
video footage. Figure 9.9 combines most of the editing operators in one shot. We
placed a video trailer and the Pacific Graphics 2006 logo onto the walls.

9.6 Conclusion

We have demonstrated a system for interactive editing of 3D video footage. Based
on our four-dimensional video hypervolume representation, it allows for unified
handling of space and time. Using a three-staged processing loop, we support
various editing tasks for post-production of 3D video. For future work we would
like to improve our representation by explicitly modeling time coherence [Vedula
et al., 1999]. To speed up the graph cut object selection, mean-shift presegmen-
tation could be employed. Although the presented editing operators allow for the
most common editing tasks, others can be envisioned, e.g. altering the motion of
actors or retargeting of motion from one actor to another [Cheung et al., 2004]. In
addition, illumination adaptation needs to be solved for application in productive
environments. Finally, our system is still limited by the employed 3D video cap-
turing system. Future development in depth video scanning systems will directly
improve the resulting image quality.

141

Chapter 9 Interactive 3D Video Editing

Figure 9.7: The flamenco dancer is inserted into a new environment and cloned. Shadow
mapping is applied for seamless blending with the scene.

142

9.6 Conclusion

Figure 9.8: The juggling actor is placed into a new environment. The ball can be replaced
by a virtual object following the same trajectory.

143

Chapter 9 Interactive 3D Video Editing

Figure 9.9: The Pacific Graphics 2006 logo and a video trailer are placed onto the walls.

144

Chapter 10

Conclusion

In this thesis, we investigated various parts of a typical 3D video production
pipeline, including acquisition, representation, editing, and display. Our focus
lies in the 3D video data representations. While image space representations
show their superiority in achievable rendering quality due to their regular struc-
ture, point-based representations with explicit geometry provide more flexibility
for interactive applications beyond pure playback. We have demonstrated this
with various algorithms and applications based on point-sampled geometry, such
as streaming and compression, dynamic out-of-core access, spatio-temporal edit-
ing, and probabilistic image generation. Point samples can be easily constructed
from color and depth images which we acquire with our modular system of 3D
video bricks based on stereo vision on structured light. Together with our nonlin-
ear editing system, point-sampled 3D video provides a novel tool for video post-
production, yielding novel possibilities for special effects that would be difficult or
impossible to achieve with conventional two-dimensional imaging technologies.

10.1 Review of Contributions

The main contributions of our work can be summarized as follows:

Modular 3D video acquisition system. We presented a modular 3D video ac-
quisition system based on the concept of portable 3D video bricks. They acquire
depth maps of the scene using spacetime stereo vision on structured light. An
improved sliding window stereo matching algorithm achieves robustness at depth
discontinuities. Specialized camera projector synchronization schemes permit si-
multaneous acquisition of color textures. The 3D video bricks are arranged in a
scalable setup, allowing recording of full 360 degree views with a sparse arrange-
ment of acquisition devices.

145

Chapter 10 Conclusion

Probabilistic, point-based 3D video representation. We proposed a view-
independent 3D video representation based on point samples that are generated
by merging the depth information of all 3D video bricks into a common world
reference frame. By applying a photo consistency check, we are able to remove
outliers. The points describe a statistical model of the acquisition error, which is
used in our probabilistic, view-dependent rendering technique to smooth geomet-
ric noise during image generation.

Image-based 3D video representation. As a second data model, we introduced
3D video billboard clouds as a view-dependent, image space representation based
on displacement-mapped billboards. Being defined in the disparity space of the
acquisition system, they provide a uniform model of reconstruction noise. To-
gether with their regular sampling, they allow for efficient geometry filtering using
signal processing operators. The presented spatio-temporal bilateral filter is able
to successfully smooth quantization noise and outliers, and compensates for cali-
bration errors in overlapping regions of different scans. Thus, the billboards can
be used as an intermediate representation for efficient post-processing, and can
be converted to point samples afterwards. Alternatively, images from novel view-
points can be generated directly using our proposed rendering scheme. Our novel
view-dependent geometry blending technique combined with projective texturing
achieves high-quality output images.

Volumetric 3D video representation. To enable spatially and temporally con-
sistent processing and editing of 3D video, we extended the point-sampled model
to a for-dimensional volumetric representation, the so-called video hypervol-
ume. As a fundamental operation, we introduced hyperslicing to select three-
dimensional subspaces. By varying the orientation of the hyperslice, both spatial
and temporal aspects of the video can be visualized and manipulated.

Progressive compression scheme for point-sampled models. For efficient
storage and transmission of scanned three-dimensional scenes, we presented a
generic framework for compression of point-sampled models. By exploiting local
coherence in the point cloud, various point attributes can be stored efficiently in
a progressive data stream containing a compact, multiresolution representation of
the scene. In particular, we proposed efficient coding operators for point positions,
surface normals, and colors, allowing for compression of geometry and appear-
ance in a unified manner. Although being initially developed for static models,
we discussed possible extensions of the compression algorithm towards dynamic
point clouds.

Out-of-core data management. 3D video editing requires fast random access
to large data sets. Therefore, we proposed an out-or-core storage scheme for our

146

10.2 Outlook

video hypervolume representation. Based on external-memory Bkd-trees, it al-
lows for efficient queries and for dynamic modifications of the point data with a
limited amount of main memory. Combined with our multiresolution representa-
tion, editing of large data sets is possible at interactive rates.

3D video editing system. Based on the video hypervolume, we implemented
a system for nonlinear 3D video editing, consisting of a pipeline of three funda-
mental operators: hyperslicing, selection, and editing. For complex selections of
surfaces or objects of the 3D video, we presented a semi-automatic segmentation
tool based on global graph cut optimization. In contrast to 2D video segmentation,
we are able to improve the robustness of the optimization by using not only colors
but also the available geometry information. Together with a set of manipulation
tools in the editing stage, we demonstrated the suitability of 3D video for video
post-production and generation of novel visual effects.

10.2 Outlook

In this thesis, we presented solutions to various problems in the fields of 3D video.
Nonetheless, there is still room for improvement. In the following, we point out
possible directions for future research.

High-quality 3D video acquisition. Achieving an image quality similar to to-
day’s 2D video or cinema is certainly the ultimate research goal. Although we
have shown that quality is highly dependent on the employed representations and
rendering algorithms, it is limited by the accuracy of the input data, especially
of the depth reconstruction. In the near future, time-of-flight cameras may be a
possible solution to that problem. They appear to achieve more robust results than
traditional computer vision algorithms. On the other hand, they suffer from dif-
ferent limitations such as low resolution. Hence, novel algorithms to process that
kind of data have to be developed.

Explicit temporal coherence. Our video hypervolume implicitly models tem-
poral coherence by assuming smooth, slow movements of objects. However, as
motions are often fast in relation to the sparse temporal sampling, algorithms for
video post-processing, compression, and editing would largely benefit of hav-
ing explicit correspondence information over successive frames, similar to mo-
tion vectors used in 2D video coding. Feature tracking or scene-flow algorithms
can provide that information. However, robust results cannot be achieved easily.
Those algorithms are still under heavy research in the field of computer vision.
Another promising approach that reconstructs a spatio-temporal hypersurface has
been recently proposed by Goldlücke et al. [2007].

147

Chapter 10 Conclusion

Standardized coding formats. To bring 3D video to the masses, a compact
data representation is necessary, both for storage and for streaming over networks.
Solutions like ours developed in academic research are a first step. However, to
achieve broad acceptance, a common industry standard is necessary, similar to
existing standard formats for conventional digital video. The MPEG committee is
currently investigating coding of multi-view video data. While this may be suf-
ficient for pure playback, novel interaction metaphors may require more flexible
representations that support explicit geometry information.

Interaction and editing. In our work we have shown that 3D video in principle
provides novel possibilities besides virtual playback, for example simple replace-
ment of video objects. With hyperslicing we also introduced a first novel interac-
tion metaphor suitable for our needs. As a next step, concrete novel applications
should be identified. For example one could study the cases in which creation
of visual effects for 2D videos could benefit from available geometry. There, the
right trade-off between simplicity of editing and the additional acquisition effort
has to be found. Moreover, novel special effects could be crated that would not
be possible with conventional methods. Furthermore, 3D video may be used as
a completely new media type for entertainment applications, combining realistic
image quality of movies with interaction possibilities of today’s computer games.

148

Appendix A

3D Video Data Sets

This chapter provides an overview over the different 3D video acquisition setups
and 3D video data sets that have been recorded for this theses.

A.1 Acquisition Setups

A.1.1 Three-Brick Setup

Figure A.1 shows a schema of our first acquisition setup. Three 3D video bricks
cover a 2.4× 2.5× 2.0m3 working volume in a corner of a room at a viewing
range of 61◦ horizontally and 40◦ vertically. The setup was used to record the
taekwondo data set.

3

2

1

Working

volume

1

2

3

Working

volume

Top view Front view
1 m

2.4 m

2
.5

 m

2.4 m

2
.0

 m

Figure A.1: Acquisition setup with three 3D video bricks.

149

Appendix A 3D Video Data Sets

A.1.2 Four-Brick Setup

Figure A.2 shows a schema of our second acquisition setup. Four 3D video bricks
cover a 2.8× 3.2× 1.9m3 working volume in a corner of a room at a viewing
range of 71◦ horizontally and 51◦ vertically. The setup was used to record the
flamenco, juggle, and sofa data sets.

3

2

1

4

1

2

4

Top view Front view
1 m

Working

volume
Working

volume

2.8 m

3
.2

 m

2.8 m

1
.9

 m

3

Figure A.2: Acquisition setup with four 3D video bricks.

150

A.2 Data Sets

A.2 Data Sets

A.2.1 Taekwondo

Figure A.3 shows sample images of the taekwondo sequence. It has been captured
using our three-brick setup described in section A.1.1. Technical details are given
in table A.1.

Figure A.3: Color camera images of the taekwondo sequence, captured by three 3D video
bricks.

Duration 10s
Frames 100

Frame rate 10fps
Camera resolution 1024×768 pixels

Input viewpoints 3
Horizontal viewing range 61◦

Vertical viewing range 40◦

Camera projector synchronization mode inverse pattern projection
Points per 3D video frame (average) 1.21 million

Overall 3D video data size
(positions, colors, covariance matrices) 4.4GBytes

Table A.1: Technical details of the taekwondo sequence.

151

Appendix A 3D Video Data Sets

A.2.2 Flamenco

Figure A.4 shows sample images of the flamenco sequence. It has been captured
using our four-brick setup described in section A.1.2. Technical details are given
in table A.2.

Figure A.4: Color camera images of the flamenco sequence, captured by four 3D video
bricks.

Duration 25s
Frames 300

Frame rate 12fps
Camera resolution 1024×768 pixels

Input viewpoints 4
Horizontal viewing range 71◦

Vertical viewing range 51◦

Camera projector synchronization mode black frame embedding
Points per 3D video frame (average) 1.47 million

Overall 3D data size
(positions, colors, covariance matrices) 16.0GBytes

Table A.2: Technical details of the flamenco sequence.

152

A.2 Data Sets

A.2.3 Juggle

Figure A.5 shows sample images of the juggle sequence. It has been captured
using our four-brick setup described in section A.1.2. Technical details are given
in table A.3.

Figure A.5: Color camera images of the juggle sequence, captured by four 3D video bricks.

Duration 20s
Frames 240

Frame rate 12fps
Camera resolution 1024×768 pixels

Input viewpoints 4
Horizontal viewing range 71◦

Vertical viewing range 51◦

Camera projector synchronization mode black frame embedding
Points per 3D video frame (average) 1.43 million

Overall 3D data size
(positions, colors, covariance matrices) 12.5GBytes

Table A.3: Technical details of the juggle sequence.

153

Appendix A 3D Video Data Sets

A.2.4 Sofa

Figure A.6 shows sample images of the sofa sequence. It has been captured using
our four-brick setup described in section A.1.2. Technical details are given in
table A.4.

Figure A.6: Color camera images of the sofa sequence, captured by four 3D video bricks.

Duration 20s
Frames 120

Frame rate 12fps
Camera resolution 1024×768 pixels

Input viewpoints 4
Horizontal viewing range 71◦

Vertical viewing range 51◦

Camera projector synchronization mode black frame embedding
Points per 3D video frame (average) 1.46 million

Overall 3D data size
(positions, colors, covariance matrices) 6.4GBytes

Table A.4: Technical details of the sofa sequence.

154

Appendix B

Glossary of Notations

A

AS screen space splatting kernel
A input alpha map
Â billboard alpha map
AS alpha framebuffer

B

b point capacity of a hard disk block
bH hyperslice distance from origin
∆bH hyperslice thickness
bI inner node capacity of a hard disk block
B b-spline filter kernel
B prediction operator of lifting scheme

C

c point or pixel color
∆c color deviation for photo consistency check
cB background color
cF foreground color
∆cP color deviation threshold for photo consistency check
cR ray color
cS framebuffer pixel color
C coordinate transform of lifting scheme
C input color map

155

Appendix B Glossary of Notations

Ĉ billboard color map
CL input color map of left camera of a rectified stereo pair
CR input color map of right camera of a rectified stereo pair
CS color framebuffer

D

d pixel disparity
∆d disparity discontinuity threshold
d̂ billboard texel displacement
d̂′ filtered billboard texel displacement
dt derivative of pixel disparity in time
dx derivative of pixel disparity in x-direction
dy derivative of pixel disparity in y-direction
Di graph cut segmentation data term
D input disparity map
D̂ billboard displacement map
D̂′ filtered billboard displacement map

E

e graph edge
eM stereo matching distance metric
eN distance of point normals used in lifting scheme
eX distance of point positions used in lifting scheme
eL epipole of left camera of a stereo pair
eR epipole of right camera of a stereo pair
EA graph cut segmentation energy function
ED graph cut segmentation data energy function
EI graph cut segmentation spatial smoothness energy function
EM stereo matching energy function
ET graph cut segmentation temporal smoothness energy function
E graph edge set
EI intra-frame graph edge set
EC graph cut edge set
EM perfect matching edge set
ET inter-frame graph edge set

156

Appendix B Glossary of Notations

F

f focal length of camera
fx focal length of camera with scaling factor for image space x-axis
fy focal length of camera with scaling factor for image space y-axis
F fundamental matrix

G

G graph
GC cut graph

H

h image height

I

i index used for counting elements

J

j index used for counting elements

K

k natural number
kD domain filter kernel
kR range filter kernel

L

l height of multiresolution point hierarchy

157

Appendix B Glossary of Notations

M

m number of input views

N

n number of points or pixels
Nk k-dimensional Gaussian normal distribution
N 3D point normal in world space
ṄH 4D hyperplane normal in world space and time
NI pixel neighborhoods in image space
NT pixel neighborhoods in time

O

O time complexity
O center of projection of camera
OL center of projection left camera of a stereo pair
ŌL center of projection left camera of a rectified stereo pair
OR center of projection right camera of a stereo pair
ŌR center of projection right camera of a rectified stereo pair

P

p point capacity of main memory buffer
pi numerator of bilateral filter term
px x-coordinate of principal point
px,L x-coordinate of principal point of left camera of a rectified stereo pair
px,R x-coordinate of principal point of right camera of a rectified stereo pair
py y-coordinate of principal point
P intrinsic matrix of camera
ṖH 4D hyperplane projection matrix in world space and time
PL intrinsic matrix of left camera of a stereo pair
P̄L intrinsic matrix of left camera of a rectified stereo pair
PR intrinsic matrix of right camera of a stereo pair
P̄R intrinsic matrix of right camera of a rectified stereo pair

158

Appendix B Glossary of Notations

Q

q natural number
pi denominator of bilateral filter term

R

r1, r2 radial lens distortion coefficients
rC splat cutoff radius
R cylindrical world space coordinate
R extrinsic matrix of camera
ṘH 4D hyperplane rotation matrix in world space and time
RL extrinsic matrix of left camera of a stereo pair
R̄L extrinsic matrix of left camera of a rectified stereo pair
RR extrinsic matrix of right camera of a stereo pair
R normalized 3D viewing ray direction in world space
R viewing ray
RB input background region for segmentation & matting
RF input foreground region for segmentation & matting
RU input unknown region for segmentation & matting

S

Si, j graph cut segmentation smoothness term

T

t time
∆t duration of a video frame
t1, t2 tangential lens distortion coefficients
TB background terminal node for graph cut segmentation
TF foreground terminal node for graph cut segmentation
Ti vectors spanning Gaussian point samples in world space
Ṫi vectors spanning Gaussian point samples in world space and time
TL rectification matrix for left camera of stereo pair
TR rectification matrix for right camera of stereo pair
Ti kd-tree of logarithmic method
T M

0 main memory buffer of logarithmic method

159

Appendix B Glossary of Notations

U

u natural number for counting input views

V

v natural number for counting input views
V covariance matrix
V̇ covariance matrix in world space and time
VF covariance matrix of foreground Gaussian mixture model
VF,C covariance matrix of foreground color Gaussian mixture model
VR covariance matrix in ray space
V 3D vector in world space
V̇ 4D vector in world space and time
V graph vertex set

W

w image width
wi, j graph edge weight
W 3D vector in world space
W pixel window for stereo matching

X

x Cartesian image space coordinate
xD x-coordinate of distorted pixel
xL x-coordinate of pixel in left image of a rectified stereo pair
xR x-coordinate of pixel in right image of a rectified stereo pair
x 2D pixel position in image space
ẋ 3D pixel position in image space and time
x̃ homogeneous pixel position in image space
xL 2D pixel position in left image of a stereo pair
x̄L 2D pixel position in left image of a rectified stereo pair
x̃L homogeneous position of pixel in left image of a stereo pair
xR 2D pixel position in right image of a stereo pair
x̄R 2D pixel position in right image of a rectified stereo pair
x̃R homogeneous position of pixel in right image of a stereo pair
X Cartesian world space coordinate
XC Cartesian camera space coordinate

160

Appendix B Glossary of Notations

X 3D point position in world space
Ẋ 4D point position in world space and time
X̃ homogeneous point position in world space
XC 3D point position in camera space
X̃C homogeneous point position in camera space

Y

y Cartesian image space coordinate
yD y-coordinate of distorted pixel
Y Cartesian world space coordinate
YC Cartesian camera space coordinate

Z

z pixel depth
zS framebuffer pixel depth
∆zS threshold for fuzzy depth test
zx derivative of pixel depth in x-direction
zy derivative of pixel depth in x-direction
Z Cartesian or cylindrical world space coordinate
ZC Cartesian camera space coordinate
ZS depth framebuffer

A
α pixel alpha
αS framebuffer pixel alpha
α̂ billboard texel alpha

B
β weight in graph cut segmentation smoothness term
βC color variance in graph cut segmentation smoothness term
βN normal variance in graph cut segmentation smoothness term

161

Appendix B Glossary of Notations

Γ
γ−k

i individual detail coefficient in multiresolution hierarchy at level k

Γ−k set of detail coefficients in multiresolution hierarchy at level k

∆
∆C L2 color distance
∆N L2 normal distance
δa,b Kronecker delta

Θ
Θ cylindrical or spherical world space coordinate
ΘB Gaussian mixture model of background
ΘB,C Gaussian mixture model of background color
ΘB,Z Gaussian mixture model of background depth
ΘF Gaussian mixture model of foreground
ΘF,C Gaussian mixture model of foreground color
ΘF,Z Gaussian mixture model of foreground depth

Λ
λD weight for data energy in graph cut segmentation
λI weight for spatial smoothness energy in graph cut segmentation
λT weight for temporal smoothness energy in graph cut segmentation
λZ weight for depth data energy in graph cut segmentation
λ−k

i individual point in multiresolution hierarchy at level k

Λt point cloud at time instant t

Λ−k point cloud in multiresolution hierarchy at level k

M
µF mean value of foreground Gaussian mixture model
µF,C mean value of foreground color Gaussian mixture model

162

Appendix B Glossary of Notations

N
ν Gaussian mixture model component weights

Ξ
ξ fragment visibility

Π
π̂0 billboard plane offset
π̂x gradient of billboard plane in x-direction
π̂y gradient of billboard plane in y-direction
Π image plane of camera
Π̂ billboard plane
ΠL image plane of left camera of a stereo pair
Π̄L image plane of left camera of a rectified stereo pair
ΠR image plane of right camera of a stereo pair
Π̄R image plane of right camera of a rectified stereo pair

P
ρB input background labels for graph cut segmentation
ρF input foreground labels for graph cut segmentation
ρU input unknown labels for graph cut segmentation

Σ
σx uncertainty of pixel position in x-direction
σy uncertainty of pixel position in y-direction
σz uncertainty of pixel depth
σC uncertainty of pixel position due to camera calibration error

Φ
Φ spherical world space coordinate

163

Appendix B Glossary of Notations

Ω
ω unstructured lumigraph weight

164

Copyrights
The following list specifies the sources of origin of all figures and models used in
this thesis that have not been created by the author.

• Figure 4.6 is courtesy of Texas Instruments Incorporated.

• The chameleon model used in figures 7.3 and 7.14 is courtesy of Digimation
Incorporated.

• The Igea model used in figure 7.13 is courtesy of Cyberware Incorporated.

• The dragon model used in figure 7.15 is courtesy of the Stanford Computer
Graphics Group.

• The octopus model used in figure 7.16 is courtesy of the Computer Graphics
Laboratory of ETH Zurich.

165

Copyrights

166

Bibliography

ADAMS, B. and DUTRÉ, P., 2003. Interactive boolean operations on surfel-bounded solids.
Proc. of SIGGRAPH ’03, pp. 651–656.

ADAMS, B. and DUTRÉ, P., 2004. Boolean operations on surfel-bounded solids using
programmable graphics hardware. Proc. of Eurographics Symposium on Point-

Based Graphics ’04, pp. 19–24.

ADAMSON, A. and ALEXA, M., 2003. Ray tracing point set surfaces. Proc. of Shape

Modeling International ’03, p. 272.

ALEXA, M., BEHR, J., COHEN-OR, D., FLEISHMAN, S., LEVIN, D., and SILVA, C. T.,
2001. Point set surfaces. Proc. of Visualization ’01, pp. 21–28.

ALLARD, J., GOURANTON, V., LAMARQUE, G., MELIN, E., and RAFFIN, B., 2003.
SoftGenLock: active stereo and genlock for PC cluster. Proc. of Workshop on

Virtual Environments ’03, pp. 255–260.

BAJAJ, C. L., PASCUCCI, V., RABBIOLO, G., and SCHIKORC, D., 1998. Hypervolume
visualization: a challenge in simplicity. Proc. of IEEE Symposium on Volume

Visualization ’98, pp. 95–102.

BARRON, J., FLEET, D. J., and BEAUCHEMIN, S. S., 1994. Performance of optical flow
techniques. International Journal of Computer Vision, 12(1), pp. 43–77.

BAYAKOVSKI, Y., LEVKOVICH-MASLYUK, L., IGNATENKO, A., KONUSHIN, A.,
TIMASOV, D., ZHIRKOV, A., HAN, M., and PARK, I. K., 2002. Depth image-
based representations for static and animated 3D objects. Proc. of International

Conference on Image Processing ’02, vol. 3, pp. 25–28.

BECKMANN, N., KRIEGEL, H.-P., SCHNEIDER, R., and SEEGER, B., 1990. The R*-
tree: An efficient and robust access method for points and rectangles. Proc. of

SIGMOD ’90, pp. 322–331.

BENNETT, E. P. and MCMILLAN, L., 2003. Proscenium: a framework for spatio-temporal
video editing. Proc. of ACM Multimedia ’03, pp. 177–184.

BENTLEY, J. L., 1975. Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 18(9), pp. 509–517.

167

Bibliography

BENTLEY, J. L., 1978. Decomposable searching problems. Information Processing Let-

ters, 8(5), pp. 244–251.

BIRCHFIELD, S. and TOMASI, C., 1998. A pixel dissimilarity measure that is insensitive
to image sampling. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 20(4), pp. 401–406.

BORDIGNON, A., LEWINER, T., LOPES, H., TAVARES, G., and CASTRO, R., 2006. Point
set compression through BSP quantization. Proc. of Brazilian Symposium on

Computer Graphics and Image Processing ’06, pp. 229–238.

BOTSCH, M., HORNUNG, A., ZWICKER, M., and KOBBELT, L., 2005. High-quality
surface splatting on today’s GPUs. Proc. of Eurographics Symposium on Point-

Based Graphics ’05, pp. 17–24.

BOTSCH, M., SPERNAT, M., and KOBBELT, L., 2004. Phong splatting. Proc. of Euro-

graphics Symposium on Point-Based Graphics ’04, pp. 25–32.

BOTSCH, M., WIRATANAYA, A., and KOBBELT, L., 2002. Efficient high quality rendering
of point sampled geometry. Proc. of Eurographics Workshop on Rendering ’02,
pp. 53–64.

BOYKOV, Y. and JOLLY, M.-P., 2001. Interactive graph cuts for optimal boundary and
region segmentation of objects in n-d images. Proc. of International Conference

on Computer Vision ’01, vol. 1, pp. 105–112.

BOYKOV, Y. and KOLMOGOROV, V., 2004. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 26(9), pp. 1124–1137.

BOYKOV, Y., VEKSLER, O., and ZABIH, R., 1999. Fast approximate energy minimization
via graph cuts. Proc. of International Conference on Computer Vision ’99, vol. 1,
pp. 377–384.

BROADHURST, A., DRUMMOND, T., and CIPOLLA, R., 2001. A probabilistic framework
for the space carving algorithm. Proc. of International Conference on Computer

Vision ’01, vol. 1, pp. 388–393.

BROWN, D. C., 1966. Decentering distortion of lenses. Photogrammetric Engineering,
32(3), pp. 444–462.

BUEHLER, C., BOSSE, M., MCMILLAN, L., GORTLER, S., and COHEN, M., 2001. Un-
structured lumigraph rendering. Proc. of SIGGRAPH ’01, pp. 425–432.

CARRANZA, J., THEOBALT, C., MAGNOR, M., and SEIDEL, H.-P., 2003. Free-viewpoint
video of human actors. Proc. of SIGGRAPH ’03, pp. 569–577.

168

Bibliography

CHAI, J.-X., CHAN, S.-C., SHUM, H.-Y., and TONG, X., 2000. Plenoptic sampling.
Proc. of SIGGRAPH ’00, pp. 307–318.

CHEUNG, G., BAKER, S., HODGINS, J., and KANADE, T., 2004. Markerless human
motion transfer. Proc. of International Symposium on 3D Data Processing, Visu-

alization and Transmission ’04, pp. 373–378.

CHUANG, Y.-Y., AGARWALA, A., CURLESS, B., SALESIN, D. H., and SZELISKI, R.,
2004. Video matting of complex scenes. Proc. of SIGGRAPH ’02, pp. 243–248.

CHUANG, Y.-Y., CURLESS, B., SALESIN, D. H., and SZELISKI, R., 2001. A Bayesian
approach to digital matting. Proc. of IEEE Conference on Computer Vision and

Pattern Recognition 01, vol. 2, pp. 264–271.

COCKSHOTT, W. P., HOFF, S., and NEBEL, J.-C., 2003. An experimental 3D digital TV
studio. IEE Proceedings Vision, Image and Signal Processing, 150(1), pp. 28–33.

COLOMBARI, A., FUSIELLO, A., and MURINO, V., 2006. Background initialization in
cluttered sequences. Proc. of Conference on Computer Vision and Pattern Recog-

nition Workshop ’06, pp. 197–202.

COOK, W. and ROHE, A., 1999. Computing minimum-weight perfect matchings. IN-

FORMS Journal on Computing, 11(2), pp. 138–148.

COTTING, D., 2007. Smart displays in interactive visual workspaces. Ph.D. thesis, ETH
Zurich, Department of Computer Science.

COTTING, D., NAEF, M., GROSS, M., and FUCHS, H., 2004. Embedding imperceptible
patterns into projected images for simultaneous acquisition and display. Proc. of

IEEE/ACM International Symposium on Mixed and Augmented Reality ’04, pp.
100–109.

CULBERTSON, W. B., MALZBENDER, T., and SLABAUGH, G. G., 1999. Generalized
voxel coloring. Proc. of Workshop on Vision Algorithms ’99, pp. 100–115.

DAVIS, J., RAMAMOORTHI, R., and RUSINKIEWICZ, S., 2003. Spacetime stereo: A
unifying framework for depth from triangulation. Proc. of IEEE Conference on

Computer Vision and Pattern Recognition 03, pp. 359–366.

DÉCORET, X., DURAND, F., SILLION, F., and DORSEY, J., 2003. Billboard clouds for
extreme model simplification. Proc. of SIGGRAPH ’03, pp. 689–696.

DONNELLY, W., 2005. Per-pixel displacement mapping with distance functions. PHARR,
M., ed., GPU Gems 2, chap. 8, pp. 123–136. Addison Wesley.

EDMONDS, J., 1965. Paths, trees and flowers. Canadian Journal of Mathematics, 17(3),
pp. 449–467.

169

Bibliography

ELAD, M., 2002. In the origin of the bilateral filter and ways to improve it. IEEE Trans-

actions on Image Processing, 10(10), pp. 1141–1151.

FAUGERAS, O., 1993. Three-Dimensional Computer Vision. MIT Press.

FELS, S. and MASE, K., 1999. Interactive video cubism. Proc. of Workshop on New

Paradigms in Information Visualization aNd Manipulation ’99, pp. 78–82.

FLEISHMAN, S., COHEN-OR, D., ALEXA, M., and SILVA, C. T., 2003. Progressive point
set surfaces. ACM Transactions on Graphics, 22(4), pp. 997–1011.

FUSIELLO, A., ROBERTO, V., and TRUCCO, E., 1997. Efficient stereo with multiple
windowing. Proc. of IEEE Conference on Computer Vision and Pattern Recogni-

tion 97, pp. 858–863.

FUSIELLO, A., TRUCCO, E., and VERRI, A., 2000. A compact algorithm for rectification
of stereo pairs. Machine Vision and Applications, 12(1), pp. 16–22.

GOLDLÜCKE, B., IHRKE, I., LINZ, C., and MAGNOR, M., 2007. Weighted minimal
hypersurface reconstruction. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(7), pp. 1194–1208.

GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., and COHEN, M. F., 1996. The lumi-
graph. Proc. of SIGGRAPH ’96, pp. 43–54.

GROSS, M., 1994. Visual Computing: Integration of Computer Graphics, Visual Percep-

tion and Imaging. Springer-Verlag.

GROSS, M., 2006. Getting to the point. IEEE Computer Graphics & Applications, 26(5),
pp. 96–99.

GROSS, M. and PFISTER, H., eds., 2007. Point-based graphics. Morgan Kaufmann.

GROSS, M., WÜRMLIN, S., NÄF, M., LAMBORAY, E., SPAGNO, C., KUNZ, A., MOERE,
A. V., STREHLKE, K., LANG, S., SVOBODA, T., KOLLER-MEIER, E., GOOL,
L. V., and STAADT, O., 2003. blue-c: A spatially immersive display and 3D
video portal for telepresence. Proc. of SIGGRAPH ’03, pp. 819–827.

GROSSMAN, J. P. and DALLY, W., 1998. Point-sample rendering. Proc. of Eurographics

Workshop on Rendering ’98, pp. 181–192.

GVILI, R., KAPLAN, A., OFEK, E., , and YAHAV, G., 2003. Depth keying. Stereoscopic

Displays and Virtual Reality Systems X (Proceedings of SPIE Volume 5006), pp.
564–574.

HECKBERT, P. S., 1989. Fundamentals of texture mapping and image warping. Master’s
thesis, CS Division, U.C. Berkeley.

170

Bibliography

HOFSETZ, C., NG, K., MAX, N., CHEN, G., LIU, Y., and MCGUINNESS, P., 2005.
Image-based rendering of range data with estimated depth uncertainty. IEEE Com-

puter Graphics & Applications, 24(4), pp. 34–42.

HONG, L. and CHEN, G., 2004. Segment-based stereo matching using graph cuts. Proc.

of IEEE Conference on Computer Vision and Pattern Recognition 04.

HUANG, Y., PENG, J., KUO, C.-C. J., and GOPI, M., 2006. Octree-based progressive
geometry coding of point clouds. Proc. of Eurographics Symposium on Point-

Based Graphics ’06, pp. 103–110.

IDDAN, G. J. and YAHAV, G., 2001. 3D imaging in the studio (and elsewhere. . .). Three

Dimensional Image Capture and Applications IV (Proceedings of SPIE Volume

4298), pp. 48–55.

INOKUCHI, S., SATO, K., and MATSUDA, F., 1984. Range imaging system for 3-d object
recognition. Proc. of International Conference on Pattern Recognition ’84, pp.
806–808.

JAIN, A. K. and DUBES, R. C., 1988. Algorithms for clustering data. Prentice-Hall Inc.

KANADE, T., RANDER, P., and NARAYANAN, P. J., 1997. Virtualized reality: Construc-
tion of virtual worlds from real scenes. IEEE Multimedia, 4(1), pp. 34–47.

KANG, S., WEBB, J., ZITNICK, L., and KANADE, T., 1995. A multi-baseline stereo
system with active illumination and real-time image acquisition. Proc. of Interna-

tional Conference on Computer Vision ’95, pp. 88–93.

KEINOSUKE, F., 1990. Introduction to Statistical Pattern Recognition. Elsevier Science
Ltd, 2nd edn.

KLEIN, A. W., SLOAN, P.-P. J., FINKELSTEIN, A., and COHEN, M. F., 2002. Stylized
video cubes. Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer

Animation ’02.

KOLMOGOROV and ZABIH, 2002. What energy functions can be minimized via graph
cuts? Proc. of European Conference on Computer Vision ’02, vol. 3, pp. 65–81.

KUTULAKOS, K. N. and SEITZ, S. M., 1999. A theory of shape by space carving. Proc.

of International Conference on Computer Vision ’99, pp. 307–314.

LAMBORAY, E., WÜRMLIN, S., and GROSS, M., 2004a. Real-time streaming of point-
based 3D video. Proc. of IEEE Virtual Reality ’04, pp. 91–98.

LAMBORAY, E., WÜRMLIN, S., WASCHBÜSCH, M., GROSS, M., and PFISTER, H.,
2004b. Unconstrained free-viewpoint video coding. Proc. of International Con-

ference on Image Processing ’04, vol. 5, pp. 3261–3246.

171

Bibliography

LEE, D. T. and WONG, C. K., 1977. Worst-case analysis for region and partial region
searches in multidimensional binary search trees and balanced quad trees. Acta

Informatica, 9, pp. 23–29.

LEVIN, D., 2003. Mesh-independent surface interpolation. Geometric Modeling for Sci-

entific Visualization, pp. 32–49. Springer-Verlag.

LEVOY, M. and HANRAHAN, P., 1996. Light field rendering. Proc. of SIGGRAPH ’96,
pp. 31–42.

LEVOY, M. and WHITTED, T., 1985. The use of points as display primitives. Tech.
Rep. 85–022, The University of North Carolina at Chapel Hill, Department of
Computer Science.

LI, Y., SUN, J., and SHUM, H.-Y., 2005. Video object cut and paste. Proc. of SIG-

GRAPH ’05, pp. 595–600.

LI, Y., SUN, J., TANG, C.-K., and SHUM, H.-Y., 2004. Lazy snapping. Proc. of SIG-

GRAPH ’04, pp. 303–308.

LONG, W. and YANG, Y.-H., 1990. Stationary background generation: an alternative to
the difference of two images. Pattern Recognition, 23(12), pp. 1351–1359.

LOVASZ, L. and PLUMMER, M. D., 1986. Matching Theory. Elsevier Science Ltd.

MALVAR, H. S., HE, L.-W., and CUTLER, R., 2004. High-quality linear interpolation
for demosaicing of Bayer-patterned color images. Proc. of IEEE International

Conference on Acoustics, Speech, and Signal Processing ’04, vol. 3, pp. 485–488.

MANTLER, S., JESCHKE, S., and WIMMER, M., 2007. Displacement mapped billboard
clouds. Tech. Rep. TR-186-2-07-01, Institute of Computer Graphics and Algo-
rithms, Vienna University of Technology.

MATUSIK, W., BUEHLER, C., and MCMILLAN, L., 2001. Polyhedral visual hulls for
real-time rendering. Proc. of Eurographics Workshop on Rendering ’01, pp. 115–
125.

MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S. J., and MCMILLAN, L., 2000.
Image-based visual hulls. Proc. of SIGGRAPH ’00, pp. 369–374.

MATUSIK, W. and PFISTER, H., 2004. 3D TV: A scalable system for real-time acqui-
sition, transmission, and autostereoscopic display of dynamic scenes. Proc. of

SIGGRAPH ’04, pp. 814–824.

MCGUIRE, M., MATUSIK, W., PFISTER, H., HUGHES, J. F., and DURAND, F., 2005.
Defocus video matting. Proc. of SIGGRAPH ’05, pp. 567–576.

MCLACHLAN, G. J. and BASFORD, K. E., 1988. Mixture models. Inference and applica-

tions to clustering. New York: Dekker.

172

Bibliography

MOFFAT, A., NEAL, R. M., and WITTEN, I. H., 1998. Arithmetic coding revisited. ACM

Transactions on Information Systems, 16(3), pp. 202–211.

MULLIGAN, J. and DANIILIDIS, K., 2000. View-independent scene acquisition for tele-
presence. Proc. of International Symposium on Augmented Reality ’00, pp. 105–
110.

NG, R., LEVOY, M., BRÉDIF, M., DUVAL, G., HOROWITZ, M., and HANRAHAN, P.,
2005. Light field photography with a hand-held plenoptic camera. Tech. Rep.
CSTR 2005-02, Stanford University Computer Science.

OpenCV. Open source computer vision library. Available at
http://www.intel.com/technology/computing/opencv/index.htm.

OVERMARS, M. H., 1987. Design of Dynamic Data Structures. Springer-Verlag New
York, Inc.

PASKO, A., ADZHIEV, V., SCHMITT, B., and SCHLICK, C., 2002. Constructive hypervol-
ume modeling. Graphical Models, 64(2).

PAULY, M. and GROSS, M., 2001. Spectral processing of point sampled geometry. Proc.

of SIGGRAPH ’01, pp. 379–386.

PAULY, M., GROSS, M., and KOBBELT, L., 2002. Efficient simplification of point-
sampled geometry. Proc. of Visualization ’02, pp. 163–170.

PAULY, M., KEISER, R., KOBBELT, L., and GROSS, M., 2003. Shape modeling with
point-sampled geometry. Proc. of SIGGRAPH ’03, pp. 641–650.

PFISTER, H., ZWICKER, M., VAN BAAR, J., and GROSS, M., 2000. Surfels: Surface
elements as rendering primitives. Proc. of SIGGRAPH ’00, pp. 335–342.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., and FLANNERY, B. P., 1992.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University
Press, 2nd edn.

PRITCHETT, P. and ZISSERMAN, A., 1998. Wide baseline stereo matching. Proc. of

International Conference on Computer Vision ’98, pp. 754–760.

PROCOPIUC, O., AGARWAL, P., ARGE, L., and VITTER, J., 2003. Bkd-tree: A dy-
namic scalable kd-tree. Proc. of International Symposium on Spatial and Tempo-

ral Databases ’03, pp. 46–65.

RASKAR, R. and TUMBLIN, J., 2007. Computational Photography: Mastering New Tech-

niques for Lenses, Lighting, and Sensors. A K Peters.

REN, L., PFISTER, H., and ZWICKER, M., 2002. Object space EWA surface splatting: A
hardware accelerated approach to high quality point rendering. Computer Graph-

ics Forum, 21(3), pp. 461–470.

173

Bibliography

RHEE, S.-M., ZIEGLER, R., PARK, J., NAEF, M.-M., GROSS, M.-M., and KIM, M.-
H., 2007. Low-cost telepresence for collaborative virtual environments. IEEE

Transactions on Visualization and Computer Graphics, 13(1), pp. 156–166.

ROTHER, C., KOLMOGOROV, V., and BLAKE, A., 2004. "GrabCut"—interactive fore-
ground extraction using iterated graph cuts. Proc. of SIGGRAPH ’04, pp. 309–
314.

RUSINKIEWICZ, S. and LEVOY, M., 2000. QSplat: a multiresolution point rendering
system for large meshes. Proc. of SIGGRAPH ’00, pp. 343–352.

RUSINKIEWICZ, S. and LEVOY, M., 2001. Streaming QSplat: a viewer for networked
visualization of large, dense models. Proc. of SIGGRAPH ’01, pp. 63–68.

SADLO, F., WEYRICH, T., PEIKERT, R., and GROSS, M., 2005. A practical structured
light acquisition system for point-based geometry and texture. Proc. of Euro-

graphics Symposium on Point-Based Graphics ’05, pp. 89–98.

SALVI, J., PAGES, J., and BATLLE, J., 2004. Pattern codification strategies in structured
light systems. Pattern Recognition, 37(4), pp. 827–849.

SAMET, H., 1984. The quadtree and related hierarchical data structures. ACM Computing

Surveys, 16(2), pp. 187–260.

SAMET, H., 1990. The design and analysis of spatial data structures. Addison Wesley.

SCHARSTEIN, D. and SZELISKI, R., 2002. A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. International Journal of Computer Vi-

sion, 47(1–3), pp. 7–42.

SCHNABEL, R. and KLEIN, R., 2006. Octree-based point-cloud compression. Proc. of

Eurographics Symposium on Point-Based Graphics ’06, pp. 111–120.

SEITZ, S. and DYER, C., 1997. Photorealistic scene reconstruction by voxel coloring.
Proc. of IEEE Conference on Computer Vision and Pattern Recognition 97, pp.
1067–1073.

SEN, P., CHEN, B., GARG, G., MARSCHNER, S. R., HOROWITZ, M., LEVOY, M., and
LENSCH, H. P. A., 2005. Dual photography. Proc. of SIGGRAPH ’05, pp. 745–
755.

SHADE, J., GORTLER, S., HE, L.-W., and SZELISKI, R., 1998. Layered depth images.
Proc. of SIGGRAPH ’98, pp. 231–242.

SHAPIRO, J. M., 1993. Embedded image coding using zerotrees of wavelet coefficients.
IEEE Transactions on Signal Processing, 31(12), pp. 3445–3462.

174

Bibliography

SHUM, H.-Y., SUN, J., YAMAZAKI, S., LI, Y., and TANG, C.-K., 2004. Pop-up light
field: An interactive image-based modeling and rendering system. ACM Transac-

tions on Graphics, 23(2), pp. 143–162.

SUN, J., JIA, J., TANG, C.-K., and SHUM, H.-Y., 2004. Poisson matting. Proc. of

SIGGRAPH ’04, pp. 315–321.

SUN, J., LI, Y., KANG, S.-B., and SHUM, H.-Y., 2005. Symmetric stereo matching for
occlusion handling. Proc. of IEEE Conference on Computer Vision and Pattern

Recognition 05, pp. 399–406.

SUN, J., ZHENG, N.-N., and SHUM, H.-Y., 2003. Stereo matching using belief propaga-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7), pp.
787–800.

SVOBODA, T., MARTINEC, D., and PAJDLA, T., 2005. A convenient multicamera self-
calibration for virtual environments. Presence: Teleoperators Virtual Environ-

mants, 14(4), pp. 407–422.

SWELDENS, W., 1995. The lifting scheme: A new philosophy in biorthogonal wavelet
constructions. Wavelet Applications in Signal and Image Processing III (Proceed-

ings of SPIE Volume 2569), pp. 68–79.

THEOBALT, C., AHMED, N., LENSCH, H., MAGNOR, M., and SEIDEL, H.-P., 2007. See-
ing people in different light—joint shape, motion, and reflectance capture. IEEE

Transactions on Visualization and Computer Graphics, 13(4), pp. 663–674.

TOMASI, C. and MANDUCHI, R., 1998. Bilateral filtering for gray and color images. Proc.

of International Conference on Computer Vision ’98, pp. 839–846.

UCHIDA, H., ISAKA, H., YOSHIDA, T., and SAFAR, J., 1996. DVCPRO: A compre-
hensive format overview. SMPTE Technical Conference and World Media Expo

No137, pp. 406–418.

VEDULA, S., BAKER, S., and KANADE, T., 2002. Spatio-temporal view interpolation.
Proc. of Eurographics Workshop on Rendering ’02, pp. 65–76.

VEDULA, S., BAKER, S., RANDER, P., COLLINS, R., and KANADE, T., 1999. Three-
dimensional scene flow. Proc. of International Conference on Computer Vi-

sion ’99, pp. 722–729.

VENGROFF, D. E., 1994. A transparent parallel I/O environment. Proc. of DAGS

Symposium on Parallel Computation, pp. 117–134. Source code available at
http://www.cs.duke.edu/TPIE.

VUYLSTEKE, P. and OOSTERLINCK, A., 1990. Range image acquisition with a single
binary-encoded light pattern. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12(2), pp. 148–164.

175

Bibliography

WANG, J., BHAT, P., COLBURN, A., AGRAWALA, M., , and COHEN, M., 2005. Interac-
tive video cutout. Proc. of SIGGRAPH ’05, pp. 585–594.

WASCHBÜSCH, M., COTTING, D., DULLER, M., and GROSS, M., 2006. WinSGL:
Software genlocking for cost-effective display synchronization under Microsoft
Windows. Proc. of Eurographics Symposium on Parallel Graphics and Visualiza-

tion ’06, pp. 111–118.

WEICKERT, J., 1998. Anisotropic diffusion in image processing. Teubner Verlag.

WEYRICH, T., PAULY, M., KEISER, R., HEINZLE, S., SCANDELLA, S., and GROSS,
M., 2004. Post-processing of scanned 3D surface data. Proc. of Eurographics

Symposium on Point-Based Graphics ’04, pp. 85–94.

WHEELER, P., 2001. Digital Cinematography. Focal Press.

WICKE, M., TESCHNER, M., and GROSS, M., 2004. CSG tree rendering of point-sampled
objects. Proc. of Eurographics Symposium on Point-Based Graphics ’04, pp. 160–
168.

WILBURN, B., JOSHI, N., VAISH, V., TALVALA, E.-V., ANTUNEZ, E., BARTH, A.,
ADAMS, A., HOROWITZ, M., and LEVOY, M., 2005. High performance imaging
using large camera arrays. Proc. of SIGGRAPH ’05, pp. 765–776.

WILLIAMS, L., 1978. Casting curved shadows on curved surfaces. Proc. of SIG-

GRAPH ’78, pp. 270–274.

WOODRING, J., WANG, C., and SHEN, H.-W., 2003. High dimensional direct rendering
of time-varying volumetric data. Proc. of Visualization ’03, pp. 417–424.

WÜRMLIN, S., 2007. Dynamic point samples as primitives for free-viewpoint video. Ph.D.
thesis, ETH Zurich, Department of Computer Science.

WÜRMLIN, S., LAMBORAY, E., and GROSS, M., 2004. 3D video fragments: Dynamic
point samples for real-time free-viewpoint video. IEEE Computer Graphics &

Applications, 28(1), pp. 3–14.

WÜRMLIN, S., LAMBORAY, E., STAADT, O., and GROSS, M., 2003. 3D video recorder:
A system for recording and playing free-viewpoint video. Computer Graphics

Forum, 22(2), pp. 181–193.

WÜRMLIN, S., LAMBORAY, E., STAADT, O. G., and GROSS, M. H., 2002. 3D video
recorder. Proc. of Pacific Graphics ’02, pp. 325–334.

WÜRMLIN, S., LAMBORAY, E., WASCHBÜSCH, M., KAUFMANN, P., SMOLIC, A., and
GROSS, M., 2005. Image-space free-viewpoint video. Proc. of Vision, Modeling,

and Visualization ’05, pp. 453–460.

176

Bibliography

YANG, J. C., EVERETT, M., BUEHLER, C., and MCMILLAN, L., 2002. A real-time
distributed light field camera. Proc. of Eurographics Workshop on Rendering ’02,
pp. 77–86.

YANG, Q., WANG, L., YANG, R., WANG, S., LIAO, M., and NISTÉR, D., 2006. Real-
time global stereo matching using hierarchical belief propagation. Proc. of British

Machine Vision Converence ’06, pp. 989–998.

ZHANG, C. and CHEN, T., 2001. Generalized plenoptic sampling. Tech. Rep. AMP 01-06,
Electrical and Computer Engineering, Carnegie Mellon University.

ZHANG, L., CURLESS, B., and SEITZ, S. M., 2003. Spacetime stereo: Shape recovery
for dynamic scenes. Proc. of IEEE Conference on Computer Vision and Pattern

Recognition 03, pp. 367–374.

ZITNICK, C. and KANADE, T., 1999. A cooperative algorithm for stereo matching and
occlusion detection. Tech. Rep. CMU-RI-TR-99-35, Robotics Institute, Carnegie
Mellon University.

ZITNICK, C. L., KANG, S. B., UYTTENDAELE, M., WINDER, S., and SZELISKI, R.,
2004. High-quality video view interpolation using a layered representation. Proc.

of SIGGRAPH ’04, pp. 600–608.

ZWICKER, M., PAULY, M., KNOLL, O., and GROSS, M., 2002a. Pointshop 3D: an in-
teractive system for point-based surface editing. Proc. of SIGGRAPH ’02, pp.
322–329.

ZWICKER, M., PFISTER, H., VAN BAAR, J., and GROSS, M., 2001a. Surface splatting.
Proc. of SIGGRAPH ’01, pp. 371–378.

ZWICKER, M., PFISTER, H., VAN BAAR, J., and GROSS, M., 2002b. EWA splatting.
IEEE Transactions on Visualization and Computer Graphics, 8(3), pp. 223–238.

ZWICKER, M., PFISTER, H., VANBAAR, J., and GROSS, M., 2001b. EWA volume splat-
ting. Proc. of Visualization ’01, pp. 29–36.

ZWICKER, M., RÄSÄNEN, J., BOTSCH, M., DACHSBACHER, C., and PAULY, M., 2004.
Perspective accurate splatting. Proc. of Graphics Interface ’04, pp. 247–254.

177

Bibliography

178

Curriculum Vitae

Dipl.-Inform. Michael Waschbüsch

Personal Data

Date of birth January 15, 1976
Place of birth Wadern, Germany
Nationality German
Civil status Single

Education

2003–2007 ETH Zurich, Switzerland, Dep. of Computer Science
Doctoral candidate in the Computer Graphics Laboratory
Dissertation: 3D Video Acquisition, Representation and Editing

Referee: Prof. Dr. Markus Gross
Co-referees: Prof. Dr. Marcus Magnor, Dr. Stephan Würmlin

1996–2003 University of Kaiserslautern, Germany, Dep. of Computer Science
Diploma degree in computer science, minor in electrical engineering
Diploma Thesis: Efficient Data Structures for Animated Virtual Humans

Semester Thesis: Rendering von Tageslicht

1986–1995 Hochwald-Gymnasium Wadern, Germany
Abitur (university entrance exam)

1982–1986 Grundschule Nunkirchen, Germany

Professional Experience

2003–2007 ETH Zurich, Switzerland, Dep. of Computer Science
Research and teaching assistant in the Computer Graphics Laboratory

2001–2002 University of Kaiserslautern, Germany, Dep. of Computer Science
Student research assistant in the Numerical Algorithms Group

2000–2001 University of Kaiserslautern, Germany, Dep. of Computer Science
Student research assistant in the Artificial Intelligence and
Knowledge-based Systems Group

179

Curriculum Vitae

1998–2002 University of Kaiserslautern, Germany, Dep. of Computer Science
Student teaching assistant for various lectures in theoretical and
technical computer science

1995–1996 Civilian service at Arbeiterwohlfahrt des Saarlandes,
Wadern-Nunkirchen, Germany

Scientific Publications

WASCHBÜSCH, M., WÜRMLIN, S., and GROSS, M., 2007. 3D Video Billboard Clouds.
Proc. of Eurographics ’07, pp. 561–569.

COTTING, D., WASCHBÜSCH, M., DULLER, M., and GROSS, M., 2007. WinSGL: Syn-
chronizing displays in parallel graphics using cost-effective software genlocking. Parallel

Computing, 33(6), pp. 420–437.

WASCHBÜSCH, M., WÜRMLIN, S., COTTING, D., and GROSS, M., 2007. Point-sampled
3D video of real-world scenes. Image Communication, 22(2), pp. 203–216.

WASCHBÜSCH, M., WÜRMLIN, S., and GROSS, M., 2006. Interactive 3D video editing.
Proc. of Pacific Graphics ’06, pp. 631–641.

WASCHBÜSCH, M., COTTING, D., DULLER, M., and GROSS, M., 2006. WinSGL:
Software genlocking for cost-effective display synchronization under Microsoft Windows.
Proc. of Eurographics Symposium on Parallel Graphics and Visualization ’06, pp. 111–
118.

WASCHBÜSCH, M., WÜRMLIN, S., COTTING, D., SADLO, F., and GROSS, M., 2005.
Scalable 3D video of dynamic scenes. Proc. of Pacific Graphics ’05, pp. 629–638.

WÜRMLIN, S., LAMBORAY, E., WASCHBÜSCH, M., KAUFMANN, P., SMOLIC, A., and
GROSS, M., 2005. Image-space free-viewpoint video. Proc. of Vision, Modeling, Visual-

ization ’05, pp. 453–460.

WÜRMLIN, S., LAMBORAY, E., WASCHBÜSCH, M., and GROSS, M., 2004. Dynamic
point samples for free-viewpoint video. Proc. of Picture Coding Symposium ’04.

WASCHBÜSCH, M., GROSS, M., EBERHARD, F., LAMBORAY, E., and WÜRMLIN, S.,
2004. Progressive compression of point-sampled models. Proc. of Eurographics Sympo-

sium on Point-Based Graphics ’04, pp. 95–102.

LAMBORAY, E., WÜRMLIN, S., WASCHBÜSCH, M., GROSS, M., and PFISTER, H., 2004.
Unconstrained free-viewpoint video coding. Proc. of International Conference on Image

Processing ’04, vol. 5, pp. 3261–3264.

LAMBORAY, E., WASCHBÜSCH, M., WÜRMLIN, S., PFISTER, H., and GROSS, M., 2003.
Dynamic point cloud compression for free-viewpoint video. Tech. Rep. 430, Institute of
Computational Science, ETH Zurich. Also available as Tech. Rep. TR2003-137, Mit-
subishi Electric Research Laboratories.

180

Curriculum Vitae

Industry Standardization Contributions

WÜRMLIN, S., LEE, C., ZWICKER, M., WASCHBÜSCH, M., GROSS, M., and PFIS-
TER, H., 2004. Results on reference software implementation on point based rendering for
MPEG-4 AFX. MPEG2004/m11038, Redmond, USA.

WÜRMLIN, S., WASCHBÜSCH, M., LAMBORAY, E., KAUFMANN, P., SMOLIC, A., and
GROSS, M., 2004. Image-space free-viewpoint video. MPEG2004/m10894, Redmond,
USA.

WÜRMLIN, S., ZWICKER, M., WASCHBÜSCH, M., GROSS, M., and PFISTER, H., 2004.
Results on core experiments on point based rendering for MPEG-4 AFX. MPEG2004/
m10579, Munich, Germany.

WÜRMLIN, S., WASCHBÜSCH, M., and GROSS, M., 2004. ETH-REAL: A real-world
test data set for 3DAV EE2. MPEG2004/m10580, Munich, Germany.

WASCHBÜSCH, M., WÜRMLIN, S., LAMBORAY, E., GROSS, M., and PFISTER, H., 2004.
Average coding of free-viewpoint video in MPEG-4. MPEG2004/m10581, Munich, Ger-
many.

LAMBORAY, E., WÜRMLIN, S., WASCHBÜSCH, M., GROSS, M., and PFISTER, H.,
2003. A compression framework for free-viewpoint video based on 3D video fragments.
MPEG2003/m10339, Waikoloa, Hawaii, USA.

Patents

LAMBORAY, E., WASCHBÜSCH, M., WÜRMLIN, S., and GROSS, M., 2003. Method for
encoding and decoding free viewpoint videos. U.S. Patent No. 10/723,035.

181

