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Abstract
The choice of data representation is one of the most important design decisions
when implementing algorithms or applications. This thesis will examine alterna-
tive representations in two core domains of computer graphics: Surface modeling
and physically-based computer animation. It will be shown that algorithms based
on less structured data representations can outperform those requiring more regu-
larity. The first part of this thesis treats point-sampled surfaces, a minimally struc-
tured surface representation that has recently gained considerable momentum in
the field of computer graphics. In the second part, algorithms for physically-based
simulation in the context of computer animation will be considered.

As one of the foundations of computer graphics, surface modeling has been
thoroughly researched, making use of various surface representations. These in-
clude spline patches, implicit surfaces, and polygonal meshes. Due to the avail-
ability of specialized hardware, triangle meshes have been dominant in the last
years. Recently, point-sampled surfaces, representing the surface as an unorga-
nized set of surface samples, have emerged as an alternative.

One of the long-standing problems with point-sampled surfaces is the represen-
tation of discontinuities. A rendering algorithm is proposed that handles geometric
discontinuities. No preprocessing is necessary, and no per-sample information has
to be provided, making the approach ideally suited for dynamic data.

Exploiting the flexibility of point-sampled surfaces for fast dynamic resam-
pling, a painting system based on point-sampled surfaces is presented. The system
provides an intuitive user interface and demonstrates the strengths of a less orga-
nized and more flexible surface representation.

To ensure interoperability, an algorithm converting point clouds to textured
meshes is described.

Since point-sampled surfaces to not provide consistent connectivity, traditional
animation methods like finite element methods are not directly applicable. To
make animations of point-based surfaces possible, a method for thin shell simu-
lation of point-sampled surfaces is presented. The geometric properties necessary
for the evaluation of the shell energy functional are approximated using locally
defined splines embedded in the surface.

Particle-based methods were at the heart of the earliest animation techniques,
and are still popular in fluid simulation. Avoiding persistent connectivity, a method
for computing elastic forces within a fluid simulation is proposed. This method
allows for simulation of elastic objects within the fluid simulation. The unified
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simulation method and material representation greatly facilitates phase transitions
between liquids and solids.

Arguably the most important simulation methods in animation of deformable
solids are finite element methods. These methods usually require a tetrahedral, or
in some cases hexahedral mesh. A new finite element method presented in this
thesis can handle meshes consisting of arbitrary convex polyhedra, and greatly in-
creases the flexibility with regard to the discretization. Relaxing the requirements
for the discretization yields advantages when considering topological changes in
the simulation domain, e. g. introduced by cutting or fracture.

iv



Kurzfassung
Die Wahl der Datenrepräsentation ist eine der wichtigsten Entscheidungen bei
der Implementation von Algorithmen oder Anwendungen. In dieser Arbeit sollen
alternative Repräsentationen in zwei Kerngebieten der graphischen Datenverar-
beitung untersucht werden: Flächenmodellierung und physikalisch-basierte Com-
puteranimation. Es wird gezeigt, dass Algorithmen, die auf weniger strukturierten
Repräsentationen arbeiten, Vorteile gegenüber solchen bieten, die höhere Regu-
larität nutzen. Der erste Teil dieser Arbeit behandelt punkt-basierte Oberflächen,
eine Flächenreprs̈entation mit minimaler interner Struktur, die sich in den letzten
Jahren zu einer wesentlichen Komponente in der graphischen Datenverarbeitung
entwickelt hat. Im zweiten Teil werden Algorithmen zur physikalisch-basierten
Simulation im Kontext der Computeranimation vorgestellt.

Oberflächenmodellierung ist eines der grundlegenden Probleme der graphis-
chen Datenverarbeitung und Ansätze mit verschiedensten Flächenrepräsentatio-
nen wurden dementsprechend gründlich untersucht. Aufgrund der Verfügbarkeit
von spezialisierter Hardware haben sich Dreiecksnetze zur dominanten Repräsen-
tation entwickelt. Punkt-basierte Oberflächen sind alternative Diskretisierungen,
welche die Fläche als unstrukturierte Punktwolke repräsentieren.

Ein hartnäckiges Problem von punkt-basierten Oberflächen ist die Darstel-
lung von Unstetigkeiten. Ein Verfahren, das punkt-basierte Oberflächen mit
Unstetigkeiten darstellen kann, wird vorgestellt. Da keine Vorberechnungen
notwendig sind, und keine Information für jeden Punkt explizit spezifiziert werden
müssen, ist der Ansatz für dynamische Daten geeignet.

Die Flexibilität von punkt-basierten Oberflächen kann ausgenutzt werden, um
das Sampling auf Teilen der Fäche schnell zu ändern. An einer Applikation zum
interaktiven Malen auf drei-dimensionalen Objekten werden Vorteile der punkt-
basierten Oberfläche gegenüber weniger flexiblen Flächenrepräsentationen deut-
lich.

Um Interoperabilität mit herkömmlichen Verfahren sicherzustellen, wird ein
Algorithmus zum Konvertieren von Punktwolken zu texturierten Dreiecksnetzen
beschrieben.

Da punkt-basierte Oberflächen keine konsistente Konnektivität zur Verfügung
stellen, können herkömmliche Simulationsverfahren wie finite Elemente Metho-
den nicht direkt verwendet werden, um solche Flächen zu animieren. Um Anima-
tionen von punkt-basierten Oberflächen zu ermöglichen, wird eine Methode zur
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Simulation der Fläche als Schalenmodell vorgestellt. Die geometrischen Eigen-
schaften der Fläche, die für die Auswertung der Schalenenergie benötigt werden,
werden mittels lokal definierten Splines angenähert.

Partikelmethoden waren ein Kernstück der frühen Arbeiten zur Computeran-
imation, und sind noch immer beliebt zur Simulation von Flüssigkeiten. Eine
Methode, die elastische Kräfte in eine Flüssigkeitssimulation integriert, ohne auf
gespeicherte Konnektivität zurückzugreifen, wird vorgestellt. Die Methode er-
laubt es, elastische Materialien als Flüssigkeiten zu simulieren. Die einheitliche
Simulationsmethode vereinfacht die Simulation von Phasenübergängen zwischen
Flüssigkeiten und Festkörpern.

Die wahrscheinlich wichtigsten Simulationsmethoden in den Ingenieurswis-
senschaften, und auch in der graphischen Datenverarbeitung sowie der Comput-
eranimation sind finite Elemente Methoden. Diese benötigen im Allgemeinen eine
Diskretisierung des zu simulierenden Materials in Tetraeder oder in manchen
Fällen kubische Elemente. In dieser Arbeit wird eine finite Element Methode
vorgestellt, die volumetrische Netze bestehend aus beliebigen konvexen Polyedern
als Diskretisierung akzeptiert. Die reduzierten Regularitätsanforderungen erhöhen
die Flexibilität der Methode drastisch. Daraus ergeben sich Vorteile, die insbeson-
dere in Simulationen, in denen sich — beispielsweise durch Brüche oder Schnitte
— die topologische Struktur des Simulationsbereichs ändert, sichtbar werden.

vi



Acknowledgments
First and foremost, I want to thank my adviser Markus Gross. His experience
and expertise are invaluable, and his incessant encouragement and support were
crucial to the successful completion of this thesis. I am glad that he (contrary to
myself) always had the necessary critical distance to avoid getting lost in details.

One of the most pleasing characteristics of scientific research is the intense
intellectual exchange with collaborating researchers. The work presented in this
thesis is no exception, and many of the insights I have gained throughout these
past four years are the result of discussions and scientific debate. I am grateful
to Matthias Teschner, with whom I worked during my first years. I also want
to thank Matthias Müller, whose interesting ideas have been a great inspiration.
Many thanks also to Mark Pauly and Leo Guibas for inviting me to spend a pro-
ductive and stimulating month in Stanford. Special thanks to Bart Adams. It was
a pleasure to work with you, and I hope to continue our fruitful collaboration in
the future. Finally, thanks to Mario Botsch for the great teamwork during this last
year, and for playing the guitar.

Before I started working on my PhD at ETH Zurich, the adviser of my diploma
thesis, Alexander Keller, introduced me to Computer Graphics and sparked my
interest in pursuing an academic career in the field. Without him, this thesis would
not have been written.

Last, but not least, I am indebted to my office mates. I learned a lot from Chris-
tian Sigg during our frequent discussions and our tournaments. Thanks also to
Richard Keiser and Bernd Bickel for making our office a great place to spend my
days in — and before deadlines, also my nights.

This work has been made possible by funding supplied by NCCR Co-Me, and
KTI/CTI.

vii



Acknowledgments

viii



Contents
Abstract iii

Kurzfassung v

Acknowledgments vii

1 Introduction 1
1.1 Point-Based Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Physically-Based Animation . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 9
2.1 Point-Sampled Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Physically-Based Animation . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Fluid Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Simulation of Elastic Deformable Bodies . . . . . . . . . . . . . 13

I Modeling 17

3 Point-Sampled Surfaces 19

3.1 Moving Least Squares Surfaces . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Simplified MLS Surface . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Surface Normals . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Raytracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Inside/Outside Test . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.5 Weight Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Surface Splatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Extended Depth Test . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Hardware Acceleration . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Acceleration Data Structures . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 kd-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



Contents

3.4.2 Spatial Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Modeling Discontinuities 35

4.1 CSG Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.1 Inside/Outside Classification . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Surface Representation . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Rendering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Finding clipping partners . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Clipped splatting . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Combined Hardware/Software Renderer . . . . . . . . . . . . . . 44

4.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Appearance Modeling using Haptic Interaction 53

5.1 Virtual Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Object Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Brush Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.1 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.2 Haptic Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.3 Brush Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Paint Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.1 Split Brushes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.2 Downsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6 Paint Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6.1 Paint Drying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6.2 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.6.3 Geometric Detail . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conversion 73

6.1 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Texture Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.1 Patch Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Texture Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

x



Contents

II Animation 85

7 Point-Sampled Thin Shells 87
7.1 Physics of Thin Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2.1 Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2.2 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3.1 Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3.2 Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.3 Nonlinear Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3.4 Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.4 Surface Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Visco-Elastic Fluid Simulation 103
8.1 Smoothed Particle Hydrodynamics . . . . . . . . . . . . . . . . . . . . . 103

8.1.1 Kernel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.1.2 Function Approximation using SPH . . . . . . . . . . . . . . . . 105
8.1.3 Approximations of Differential Operators . . . . . . . . . . . . . 106
8.1.4 Fluid Simulation using SPH . . . . . . . . . . . . . . . . . . . . 107

8.2 Elastic Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.2.1 Implicit Rest State . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2.2 Computing Strain . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.2.3 Direct Force Estimate . . . . . . . . . . . . . . . . . . . . . . . . 112
8.2.4 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2.5 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2.6 Multiple Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.2.7 Surface Animation . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9 Finite Elements on Irregular Meshes 123
9.1 Elastic Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.1.1 Interpolation Functions for Convex Polyhedra . . . . . . . . . . . 125
9.1.2 Finite Element Discretization . . . . . . . . . . . . . . . . . . . . 127
9.1.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.1.4 Simulation Loop . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.2 Sliver Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.3 Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.3.1 Splitting Elements . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.3.2 Progressive Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xi



Contents

9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10 Conclusion 141
10.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A Correctness of Surfel Clipping 145

B Fiber Properties 147
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Chapter 1

Introduction
When modeling the real world in a computer, volumes and surfaces are dis-
cretized. Different types of discretizations vary widely in which operations they
support. Hence, the choice of discretization and data representation has great
impact on the design of algorithms. Choosing the right representation for a given
problem is one of the most important design decisions early in the develop-
ment process. There is a trade-off involved: Simpler data structures are easier
to maintain and some basic operations are typically faster. However, the access
and processing operators available are often restricted by the lack of structural
information within the data representation. On the other hand, as representations
get more and more sophisticated, they become harder to maintain under changes.
The additional work might pay off in the end: Since the information is represented
in a more organized fashion, and as more guarantees on the content are available,
more powerful operations are often possible.

The field of computer graphics is mainly concerned with geometry. Conse-
quently, geometry representations, either representing surfaces, or volumes, are
of highest interest for computer graphics research. Traditionally, surfaces are rep-
resented with either spline patches or polygonal meshes. With the advent of spe-
cialized hardware, triangle meshes have gained additional importance. Triangle
meshes are highly structured, with strong guarantees on topology and connectiv-
ity.

More recently,point-sampled surfaceshave been developed as a surface rep-
resentation. A point-sampled surface representation is essentially a set of sample
points taken from the surface. Connectivity is not stored explicitly, the only con-
nectivity information available is what can be extracted from spatial neighborhood
relationships. Guarantees on topology are difficult to formulate, and require addi-
tional information on the input. The set of available surface operators is more lim-
ited than for triangle meshes. Texture discontinuities and sharp geometric features
are difficult to represent using point-based surfaces.

For some applications, these drawbacks are worth accepting. Point-sampled sur-
faces are easier to maintain than triangle meshes. Since the points are unstructured
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Chapter 1 Introduction

by definition, no additional structural information such as connectivity has to be
carried along during manipulations. This is particularly noticeable for operations
like surface resampling. Especially in modeling applications, the surface needs to
be resampled frequently to adequately represent the changed surface geometry or
appearance. However, in order to use point-sampled surfaces as a representation
in a modeling tool, problems like the representation of discontinuities have to be
overcome.

Computer animation increasingly relies on physical simulations. With the ex-
ception of thin shell simulation, working entirely on surfaces, such physical simu-
lations require a volume discretization. For physically-based animation, the choice
of data representation determines the simulation algorithms that can be applied,
and vice versa.

In the area of fluid simulations,Eulerian approaches are very popular. These
methods discretize space, and regular grids or tetrahedral meshes are used as un-
derlying representations. For simulation of soft bodies,Lagrangianmethods are
dominant. Lagrangian methods discretize the material, not its embedding space.
Hence, it is crucial that the discretization conforms well to the material shape.
Tetrahedral meshes are used in almost all approaches. In these highly regular
discretizations, important simulation methods such as the finite element method
(FEM) have a particularly simple form.

Meshlessapproaches are an alternative for both fluid and soft body simulation.
Uncoupled and weakly coupled particle systems sample the material with par-
ticles that are animated using scripted trajectories or interaction forces defined
for pairs of particles. For fluid animation, the smoothed particle hydrodynamics
(SPH) method has been used. Meshless fluid simulation techniques do not require
connectivity, the necessary operators from vector algebra are replaced with ap-
proximate discrete operators that are derived assuming uniformity of the particle
distribution.

On the other hand, meshless approaches for the simulation of deformable soft
bodies typically do require some connectivity, although they do not require a con-
sistent mesh. In other words, meshless approaches for elasticity computations re-
lax the requirements for admissible connectivity compared to their mesh-based
counterparts. The connectivity present in a consistent mesh partitions the dis-
cretized domain into a disjoint set of primitives. Often, for example in the case
of tetrahedral or triangle meshes, these are further restricted to simplicial primi-
tives. In contrast, meshless methods do not require a consistent connectivity that
induces a disjoint partitioning of the domain. Commonly, the connectivity is sim-
ply defined as the neighborhood graph over the samples in the initial state of the
material.

Figure 1.1 illustrates different levels of organization for space discretization.
Meshless fluid simulation methods like SPH are on the far left of the scale (a),
while stored connectivity is used in almost all solid animation techniques, includ-
ing meshless approaches. Meshless elasticity simulations, as well as some types
of mass-spring systems do no require a consistent mesh (b). Most mass spring

2



1.1 Point-Based Modeling

(a) (b) (c) (d) (e)

Figure 1.1: Different requirements for space discretizations. The degree of regularity in-
creases from left to right, while the computational complexity of operators de-
creases. (a) Unstructured points without stored connectivity. (b) Point samples
with stored connectivity (shown are 5 nearest neighbors for two points). (c) Irreg-
ular, but consistent mesh. (d) Mesh with only one primitive type (in this case, a
simplicial mesh). (e) Regular mesh.

systems can work on a irregular mesh (c), while traditional FEM and mass-spring
systems with better convergence guarantees require a mesh with a specific element
type, such as a tetrahedral mesh (d). Eulerian Fluid simulations discretize space
as a simplicial (d) or regular mesh (e).

1.1 Point-Based Modeling
Representing surfaces as a collection of sample points trades connectivity for flexi-
bility and ease of maintenance under some operations. Without connectivity infor-
mation available, most operators devised for meshes are not applicable, and ways
to work around these restrictions have to be found. Research on point-samples sur-
faces first developed techniques for rendering. Methods for processing and model-
ing of point-sampled geometry followed. The increasing availability of data from
laser range scanners accelerated this development, as meshing the huge amounts
of data produced by these scanners is not always practical. Instead of triangulating
these point clouds, they can be processed directly. Often, additional information
about the local structure of the point cloud is available or can be inferred, such
as per-sample normals, or optimal sample sizes, encompassing information about
local sample spacing and anisotropy. This information can be used for subsequent
modeling and high-quality rendering.

Despite efforts in recent years, the set of algorithms that are available for pro-
cessing and modeling of point-sampled geometry is far from complete. A long-
standing issue with point-sampled surfaces is the representation of discontinuities.
Surface reconstruction methods for point-sampled surfaces have to fill the space
between sample positions. It is an important assumption in these algorithms that
the surface is smooth, hence, without explicit handling, discontinuities cannot be
represented in point-sampled geometry.
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There are clear advantages of point-sampled surfaces over more organized tri-
angle meshes in applications heavy on dynamic resampling. This is of particu-
lar interest during the data acquisition process, when samples are generated and
added to the model, as well as during shape modeling. Appearance modeling also
requires dynamic resampling to accurately capture texture detail.

1.1.1 Contributions
In this thesis, the point-based surface representation is extended to handle arbitrary
discontinuities in both geometry and texture. This is a crucial step to enable the
use of point-based surfaces in general-purpose modeling tools. Additionally, an
appearance modeling system leveraging the strengths of point-sampled surfaces
is proposed. As an indispensable addition to the pool of tools for working with
point-sampled surfaces, a method for converting point clouds to textured trian-
gle meshes is presented. Specifically, the contributions regarding modeling with
point-sampled surfaces are:

• A framework for discontinuity modeling for point-sampled surfaces. Dis-
continuities are handled explicitly, but only readily available high-level in-
formation has to be supplied during modeling, while the per-sample clas-
sification is computed during rendering. This makes the approach ideally
suited for dynamic data and interactive editing.

• To date, appearance modeling for point-sampled surfaces relies on 2D tex-
ture painting, or relatively crude interaction metaphors on three dimensions.
In this thesis, an intuitive appearance modeling system is presented. Using
haptic input and a realistic brush input metaphor, this system makes use of
the superior resampling capabilities of point-sampled surfaces. Both texture
and fine-scale geometric surface detail can be edited in a natural way.

• As most of the tools available for geometric modeling work on triangle
meshes, the content that is acquired and edited as a point cloud needs to
be converted to a triangle mesh in order to use such tools. In this thesis,
an algorithm is presented that converts a point cloud to a textured mesh,
controlling the error in both geometry and texture.

1.2 Physically-Based Animation
As computing power grows, the complexity of models and scenes used to auto-
matically or semi-automatically create content has exploded. At the same time,
the art of computer animation has seen a transition from entirely hand-modeled
scenes to scripted content, and more and more towards animations that are the
result of physical simulations. Often, simulations used for animation place less
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weight in physical accuracy, trading it for flexibility, or speed. The primary goal
of animations is to look realistic, thus the criterion ofplausibility replaces numer-
ically quantifiable accuracy in most cases. Although accuracy implies plausibility
to some extent, it is not always wanted. To the animator,controllability is more
important. A purely physical simulation, while being correct in a physical sense,
might curtail their creativity and produce unwanted effects, destroying the illusion
it was supposed to create.

As outlined above, the choice of algorithm is inseparably joined to the choice of
data representation and discretization. Each discretization has its own drawbacks
and advantages. For instance, some phenomena like fluid spray or cloud forma-
tion are more amenable for simulation using particles-based approaches, while
incompressible fluid simulation requires a Eulerian discretization of space.

Generally, as the flexibility in the discretization increases, the algorithms based
on it become more versatile. While the optimal choice of discretization and sim-
ulation algorithm naturally depends on the problem at hand, a wide choice of
feasible simulation methods makes a better adaptation to each individual problem
possible.

1.2.1 Contributions
This thesis proposes several algorithms for physical simulation that require a less
structured data representation than the current state of the art, and studies the
effects for the resulting algorithms. To this end, methods for thin shell simula-
tion, continuum elasticity and visco-elastic fluid simulation are proposed. For thin
shells, the simulation does not need a consistent triangulation, and relies on point-
based surfaces with stored connectivity as the underlying representation. It will be
shown that adding elastic forces to a fluid simulation to create visco-elastic effects
can be achieved without requiring stored connectivity. Finally, a finite element
method requiring less regularity in the discretization is proposed. The contribu-
tions to the field of animation are:

• Thin shells can be simulated with higher-order FEM or using a geomet-
ric formulation on triangle meshes. Using local spline fits, the shell energy
functionals can be discretized on point clouds with stored initial connec-
tivity. A method using suchfibersto approximate surface properties is pre-
sented. This is applied to thin shell simulation, including physical phenom-
ena like plasticity and fracture.

• SPH is the most important particle method for fluid simulation. A method
for enhancing SPH simulations with elastic forces without relying on stored
connectivity is proposed.

• Finite element methods for continuum elasticity are usually implemented
using tetrahedral or hexahedral elements. In this thesis, a finite element
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method on arbitrary convex elements is proposed. This is particularly use-
ful for simulations involving changes to simulation domain, such as incurred
by cutting and fracture during the simulation. Adapting the discretization is
considerably easier if elements are not required to have one specific shape.

1.3 Thesis Outline
This text is organized into two parts. While the first will deal with point-sampled
surfaces in the context of modeling, the second part moves to simulation, first
treating animation of point-sampled surfaces as thin shells, then moving on to
more general topics in animation.

The next chapter will give an overview over past research and related work.
In Chapter 3, fundamentals on point-sampled surfaces are discussed. The chapter
covers surface definitions and some surface operators based on these definitions
such as a ray-surface intersection, or inside/outside tests. Rendering techniques in
both software and hardware are described. Finally, some acceleration data struc-
tures improving performance of nearest neighbor searches for point clouds are
discussed. These are relevant not only in the context of point-sampled surfaces,
but also significantly impact performance of particle-based simulation techniques
such as SPH.

Chapter 4 presents a novel technique for representing discontinuities in point-
sampled surfaces. Using CSG operations of smooth point-sampled surface patches,
arbitrary discontinuities can be represented. This technique handles discontinu-
ities explicitly, however, the actual per-sample evaluation of the discontinuity is
deferred until rendering (or evaluation of an inside/outside test), such that the
modeler does not need to supply low-level, per-sample information. The approach
is ideally suited for dynamic data, as no preprocessing is necessary.

Chapter 5 describes a surface editing system for point-sampled geometry. It
supports input with a haptic device and uses a physically-based brush model as
its main interaction metaphor. Using point-sampled surfaces in this context allows
for fast dynamic resampling of modified surface areas. This makes modifications
of the small-scale geometry of the surface possible, creating effects such as brush
imprints in viscous paint.

In Chapter 6, an algorithm for computing texture atlases containing the color
and normal information stored in a point cloud is presented. Special attention is
paid to ensuring that the information present in the point cloud is adequately repre-
sented in the textures created. An iterative refinement process using image-based
texture creation makes sure that the texture error is within a user-supplied tol-
erance. Finally, a customized texture packing algorithm produces texture atlases
usable with generic mesh processing software.

The second part of this thesis moves toward topics in animation. Chapter 7
presents a method for animating point-sampled objects as thin shells. The nec-
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essary surface properties are computed usingfibers, one-dimensional splines em-
bedded in the surface. Thus, the method relies on stored connectivity but does not
require a consistent triangle mesh. After discussing the physics of thin shells, a
discretization of the thin shell energy usingfibers is proposed. A wide range of
material properties can be modeled using this discretization, including fracture
and plasticity.

In Chapter 8, the SPH fluid simulation framework is discussed in detail, in-
cluding methods for enforcing incompressibility of the simulated fluid. Pure SPH
does not store any connectivity between particles. A method for integrating elas-
tic forces into the SPH framework without introducing additional connectivity
requirements is presented. The connectivity-free formulation of elasticity makes
it particularly easy to model phase transitions. The consequences of abandoning
stored connectivity are discussed: The range of materials that can be simulated
using this method is restricted.

Chapter 9 describes a novel finite element method working on arbitrary convex
elements. While most established finite element methods require their elements
to be of a particular shape, like tetrahedral, or hexahedral cells, the new method
allows for a much larger class of shapes. Recently developed barycentric coordi-
nates for convex polytopes in three dimensions make this generalization possible.
The modifications necessary to a standard FEM approach are discussed in detail.
The more relaxed requirements for the discretization enable simpler topological
changes of the discretized domain. This is demonstrated using cutting simulations.
Additionally, sliver elements that have plagued FEM simulations can be removed
from a given discretization as the output is allowed to be a complex of arbitrary
convex elements.

Finally, Chapter 10 concludes this thesis by offering an overview of my find-
ings, and giving an outlook on possible future research directions.

1.4 Publications
This thesis is based on technical contributions that have been published in peer-
reviewed conference proceedings and journals.

• Parts of the discontinuity representation for point-sampled surfaces pre-
sented in Chapter 4 have been published as [220]:

Wicke, M., Teschner, M., and Gross, M. CSG Tree Rendering of Point-
Sampled Objects. InProceedings of Pacific Graphics’04, pages 160–168,
2004.

• Parts of the painting system described in Chapter 5 have also been described
in [4]:
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Adams, B., Wicke, M., Dutré, P., Gross, M., and Teschner, M. Interactive
3D Painting on Point-Sampled Surfaces. InProceedings of the Symposium
on Point-Based Graphics’04, pages 57–66, 2004.

• The conversion algorithm to convert from point-sampled surfaces to triangle
meshes, as described in Chapter 6, was previously published as [218]:

Wicke, M., Olibet, S., and Gross, M. Conversion of Point-Sampled Mod-
els to Textured Meshes. InProceedings of the Symposium on Point-Based
Graphics’05, pages 119–124, 2005.

• The method for thin shell simulation presented in Chapter 7 has been pub-
lished as [219]:

Wicke, M., Steinemann, D., and Gross, M. Efficient Animation of Point-
Based Thin Shells. Computer Graphics Forum 24:3, pages 667–676, 2005.

• The enhanced SPH algorithm described in Chapter 8 has been previously
described in [217]:

Wicke, M., Hatt, P., Pauly, M., Müller, M., and Gross, M. Versatile Virtual
Materials Using Implicit Connectivity. InProceedings of the Symposium on
Point-Based Graphics’06, pages 137–144, 2006.

• Chapter 9 presents a finite element method that is accepted for publication
in [216]:

Wicke, M., Botsch, M., and Gross, M. A Finite Element Method on Convex
Polyhedra. Computer Graphics Forum 26:3, 2007. to appear.
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Related Work
In this chapter, previous research is discussed that is relevant to the topics treated
in this thesis. While it should give an overview of the state of the art and provide
some context for the reader, more specialized references are given in the descrip-
tion of the technical contributions in the following chapters.

2.1 Point-Sampled Surfaces
Representing surfaces as sets of points was first proposed by Levoy and Whitted as
an intermediate stage for rendering [129]. With the advent of optical scanners that
can generate huge point clouds (for example [98,110,163,167,179]), the question
of how to render and edit such data became more pressing. Creating meshes from
scanned point clouds is a challenging task, especially in the presence of noise. For
large models, this option quickly becomes impractical.

Instead, the geometry can be represented by the sample points alone, as an
unstructured point cloud. For a comprehensive treatment of the topic, see [93].
A comparison of points-sampled surfaces to other surface representations can be
found in [92].

No explicit connectivity is stored in a point cloud — the connectivity induced
by spatial neighborhood is used where a neighborhood relationship is needed. This
connectivity is notconsistentin the sense that it does not define a disjoint partition-
ing of the surface in a way a polygonal mesh does. Useful concepts easily defined
for meshes, such as the one-ring, cannot be used as they have no equivalent if
no consistent connectivity is available. As a consequence, algorithms working on
polygonal or triangle meshes cannot be transferred to unstructured point clouds.

When only sample points of the surface are given, defining the actual surface is
an important step towards making point-sampled surfaces a useful tool in graphics.
The most common surface definition is an implicitmoving least squares(MLS)
surface [5,10,11,18,127,128].
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This implicit surface definition can then be used to render the surface using
raytracing techniques [3, 6, 8, 11, 210]. While producing images of high quality,
raytracing or ray-casting is often not appropriate when interactive or even real-
time rendering is necessary.

Rendering techniques based on point splatting fill this gap. Samples are smeared
out in object space and projected onto the viewing plane [165,231,232]. This tech-
nique also allows for hardware acceleration [37, 38, 233]. Although it is not na-
tively supported by current graphics hardware, interactive frame rates are possible
for typical model sizes up to a million samples. For large models, adaptive render-
ing techniques have been developed [59, 156, 175], making it possible to display
huge models at interactive rates. These techniques exploit the lack of structure in
the point cloud to quickly add and remove samples as needed.

Of course, existing models in form of meshes can be converted to point clouds
for rendering or editing using tools for point-sampled geometry. Some of the early
rendering algorithms include methods for converting textured meshes to point
clouds [94, 165].Layered depth cube(LDC) sampling, or a variety thereof, has
emerged as the standard technique for generating a point cloud from a triangle
mesh. Here, parallel rays are cast onto the mesh from three orthogonal directions,
and all intersections with the surface become sample points. If the rays’ distance
is d, the maximum sample distance in the sampling created with this approach is√

3d [94,165].

The inverse operation is more involved. One way to generate a triangle mesh
from a point-sampled surface is to use global Delaunay triangulation on the sample
points [14, 15, 65]. This method can be extended to guarantee watertight meshes
[66], or adapted to tolerate noise [67]. Others have applied local measures to find a
triangulation [31]. The meshes produced by triangulation are unnecessarily large:
They contain every sample point as a vertex and need to be simplified in order
to be useful for further processing. Other approaches to surface reconstruction
use implicit surfaces as an intermediate representation [101, 156], however, these
approaches discard all additional information present in the point cloud, such as
colors and normals. The problem of converting point-sampled objects to textured
meshes is treated in detail in Chapter 6.

With the capability of acquiring and rendering point clouds, they become in-
teresting as a general surface representation. Consequently, algorithms to directly
process point clouds without first converting them to triangle meshes were de-
veloped. Automatic filtering techniques for noisy scanned data greatly increase
the efficiency of model generation using optical scanners [180]. A set of tools
for cleaning of noisy point clouds acquired by an optical scanner was presented
by Weyrich et al. [215]. Pauly et al. used frequency analysis for smoothing and
feature enhancement [157] and implemented feature detection [160] as well as
simplification [158] algorithms for point clouds.

The lack of explicit connectivity also simplifies some operations, such as re-
sampling. This has been used in a variety of applications, such as the adaptive
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rendering methods mentioned earlier. The ability to adaptively resample the sur-
face has proven particularly useful for interactive editing and modeling.

2.1.1 Modeling
Szeliski and Tonnesen were the first to use particles for surface modeling [197].
Zwicker et al. used point-sampled surfaces in a surface editing application, their
Pointshop3D software [229]. Pointshop3D offers a set of tools to paint, filter and
sculpt point-sampled objects. Painting is performed by projecting a brush foot-
print bitmap. Reuter et al. [171] developed a Pointshop3D plugin to interactively
texture an object using a point-sampled multi-resolution surface representation.
From a interaction point of view, these tools are rather crude. An interactive paint-
ing system with an intuitive user interface based on point sampled surfaces is
described in Chapter 5.

Point-sampled surfaces have also been used for shape modeling [161], and CSG
operations [2,161]. CSG operations create sharp geometric features such as edges,
corners, and creases. Surface meshes can easily represent such discontinuities,
and research into CSG rendering for meshes has mainly focused on acceleration
techniques (e. g. [51,83,169,173,194,221]). The question of how to represent such
sharp features in point cloud data is much more challenging. Surface splatting,
the prevalent rendering and surface reconstruction algorithm used in interactive
editing systems, blurs sharp edges.

Adams and Dutré [2] resample the area around the edges using very small sur-
fels in order to push the blurred area below the pixel area. This method is fast, but
can never completely conceal the point-sampled nature of the edge. Magnifying
the edge will result in blurring.

In contrast, Pauly et al. [161] introduce a special surfel class that explicitly
represents an edge. This surfel carries two normals, and is rendered as two clip-
ping surfels with identical centers. This surfel is moved onto the edge using MLS
projection, and the affected area is resampled to fill holes. This method always
provides sharp edges, but does not support more complex intersection types like
corners. Zwicker et al. [233] present a method for hardware accelerated render-
ing that can clip surfels with one or more clipping planes. However, when more
than two clipping planes affect one surfel, the results are ambiguous. Complex in-
tersections can not be represented with this approach. A method for representing
sharp features of arbitrary complexity in point-sampled geometry is proposed in
Chapter 4.

Point-sampled surfaces have been successfully applied to problems in computer
animation [96, 112, 113, 149, 159, 162, 219]. In this context, the question of how
to generalize the connectivity-free sampling paradigm to 3D naturally arises from
research on animation of point-sampled surfaces. Previous research on volumetric
point sampling in computer graphics has focused on visualization and representa-
tion of volumetric data [52, 88, 230]. In physically-based animation, particle sys-
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tems and molecular dynamics approaches are closest to unstructured point clouds.
The next section will give some context in the topic of computer animation.

2.2 Physically-Based Animation
As scenes generated with computer graphics methods become more and more
complex, automatic and semi-automatic techniques help animators to handle such
large modeling tasks. Early work on automatic generation of animations used
scripted animations [86] or weakly coupled particle systems [170]. These ap-
proaches are easy to control and extremely versatile, and have been used to sim-
ulate effects such as fire [124, 164, 170], smoke and clouds [139, 186], waves and
flowing water [77,100], rain [79], and crowd behavior [172].

Using pairwise, distance-dependent interaction forces between particles yields
spatially coupled particle systems [202, 203]. This method is inspired by molec-
ular dynamics, and often uses the Lennard-Jones potential as interaction force.
Molecular dynamics approaches can be used to model a wide range of mate-
rials, from solids to viscous liquids [204], as well as phase transitions between
them [198,204]. They have also been applied to physically-inspired surface mod-
eling [197]. However, spatially coupled particle systems rely on parameters that
are known to be hard to fine-tune. For stiff materials, these methods impose se-
vere time step restrictions on the simulation. In the context of this thesis, spatially
coupled particle systems are particularly interesting because they can be used to
simulate solids without storing connectivity. A more detailed discussion and a
comparison with a novel connectivity-free method can be found in Chapter 8.

Another connectivity-free particle method is SPH, which can also be used to
model soft elastic, highly plastic objects as viscous fluids [64]. It is now mostly
used in the context of fluid simulation.

2.2.1 Fluid Simulation
The SPH simulation method was originally developed for simulations in the con-
text of astrophysics [81,137]. A good overview is given in [132,145]. Introduced
by Desbrun and Gascuel to model soft plastic objects [64], SPH has become in-
creasingly popular in computer graphics. At low resolutions, the method can be
used interactively [146]. Boundary conditions, including complicated boundary
shapes, moving boundaries [152], and interaction with other fluids [150] are rel-
atively easy to implement. Visco-elasticity can be implemented in particle-based
fluid simulations using dynamically generated springs [56, 198] or additionally
running an elasticity model [112]. These methods require stored connectivity.

Smoothed Particle Hydrodynamics suffers from two major drawbacks at the
discretization resolutions usually used in computer graphics applications: Com-
pressibility and excess viscosity. The function approximation used in the SPH
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framework uses kernel functions to obtain a continuous function from scattered
samples. Hence, the velocity field is smoothed in each time step, resulting in nu-
merical viscosity. These problems are discussed in more depth in Chapter 8.

Because of the problems mentioned above, Eulerian methods are dominant for
high-quality fluid simulations in compute animation. First introduced by Foster
and Metaxas [74–76], these methods discretize the fluid velocity field on a grid.
The incompressible Navier-Stokes equation is used as a model for both liquids as
well as smoke. A stable solution was presented by Stam [190]. Simulation using
regular grids is computationally expensive, and adaptive methods based on octrees
have been proposed for large problems [134,184]. Still, these methods have prob-
lems representing complex boundaries. More flexible discretizations into tetrahe-
dral cells solve this problem [70,118].

Simulation of phase transitions require transfer of material between represen-
tations. Losasso et al. [136] show how to melt solids represented by Lagrangian
tetrahedral meshes into a fluid simulation running on a Eulerian grid. The process
of phase transitions, in particular freezing, is a complex physical phenomenon. For
interactive animation, some approximate or stochastic model is usually preferred
over a full physical simulation [116,117].

Eulerian approaches can be used to model solids as high viscosity fluids [44],
and rigid bodies by applying projection operators on the velocity field [43]. Sim-
ulating phase transitions is quite involved due to different discretization types in-
volved [135]. Visco-elastic fluids can be simulated by integrating strain change
over time [82].

2.2.2 Simulation of Elastic Deformable Bodies
While fluid simulation algorithms can be used to animate solid material [43, 44,
64], these methods do not offer a general solution to the simulation of deformable
bodies. Elastic materials are usually discretized in a Lagrangian fashion. Starting
with geometrically inspired deformation measures [199], several methods for ani-
mating deformable objects have been proposed. For a good overview over existing
techniques in the area of physically-based animation, see the recent state of the art
report by Nealen et al. [153].

The methods that are easiest to implement are mass-spring systems (some ex-
amples include [48, 166, 205]). These have been generalized to include area- or
volume-preserving energy terms [40,200]. The spring metaphor is stretched when
considering these more general models, which are therefore often called particle
systems. To avoid confusion, in this text, the termparticle systemis only used for
models with no stored connectivity, such as the methods described in the previous
sections. Convergence of mass-spring approximations is generally problematic,
and the discretization significantly influences the solution.

For some applications like games, where physical accuracy is not nearly as
important as fast evaluation and stability, approximate models have been devel-
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oped [148]. These methods have virtually no requirements on the input data,
in particular, no consistent connectivity is necessary. Another particle-based ap-
proach also uses particles to sample the volume, but computes standard strain
energy using an MLS approximation [149].

By far the most common simulation methods in computer graphics are finite
element methods.

Finite Element Methods

The finite element method is a very powerful tool to discretize and solve partial
differential equations, offering strong guarantees for convergence and accuracy.
For an introduction to the topic, see for example [23].

Due to its higher computational cost, FEM was introduced to computer graph-
ics later than simpler methods like mass spring models. FEM methods were first
used in medical simulation and facial animation, where accuracy is important es-
pecially if quantitative analyses are performed (e. g. [57, 84, 119, 177]). For large
simulations, adaptive methods have been developed [61,62,90].

For simulation using FEM, the simulation domain needs to be discretized into
elements. Typically, the elements are chosen to be tetrahedral or, in some cases,
hexahedral [151]. In the FEM framework, quantities are interpolated between the
nodes using locally supported basis functions. For tetrahedral and hexahedral el-
ements, these basis functions can be chosen to be piecewise linear or trilinear,
yielding particularly simple equations. Even if nonlinear basis functions are con-
sidered to improve accuracy, the discretization is usually tetrahedral [174].

In order to create a more flexible FE method that does not require tetrahedral
or hexahedral elements, basis functions for the new element shapes have to be
found. FE methods based on more flexible basis functions have been available
for two-dimensional problems since Wachspress introduced basis functions for
arbitrary convex polygons [208, 209]. Chapter 9 describes how a finite element
method based on new three-dimensional interpolation functions [73,108,109] can
be constructed.

Cutting and Fracture

The easiest way to incorporate topological changes into a simulation is to split the
material along element boundaries, thus avoiding restructuring of the discretiza-
tion [147]. Using this simple approach, newly created surfaces must conform to
the initial discretization of the simulation domain. While this is acceptable in ap-
plications with hard real-time constraints, it is a severe limitation for animation.
Accurate cutting along arbitrary trajectories is not possible.

O’Brien et al. [154,155] apply continuous remeshing to make the discretization
conform to the crack surface after fracture events. Bielser et al. [32,91] subdivide
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tetrahedra locally in order to accommodate the crack surface. This approach fre-
quently leads to ill-conditioned elements, which cannot be used robustly in a FEM
simulation [181]. Steinemann et al. [192] try to avoid these problems by snapping
the simulation nodes to the cut trajectory. The remeshing process is highly non-
trivial, because ill-conditioned sliver tetrahedra have to be avoided in order to
guarantee a stable simulation.

An alternative to remeshing is the virtual node algorithm introduced by Molino
et al. [141]. Instead of actually splitting simulation elements, the element that is
to be split is duplicated. The newly created surface is embedded in both elements
and used for rendering and collision detection. The pitfalls of remeshing can be
entirely avoided using this scheme, however, each element can be split at most
three times. Hence, the original mesh resolution limits the resolution of fracture
patterns or cuts, requiring a high input resolution for realistic results.

Meshless approaches for modeling elastic solids [149] do not require an under-
lying tetrahedral mesh. Interactions between particles are evaluated using the ma-
terial distance between the particles. In the case of fracture, the material distance
within the object might not be equal to the Euclidean distance any more, prompt-
ing recomputation of the shape functions of nearby particles [159]. This process
is local, however, coverage issues complicate the fracturing process, making it
necessary to adjust the particle distribution near cracks. Steinemann et al. [193]
have therefore reintroduced explicit connectivity into a particle-based simulation.
A distance graph is used to approximate the material distance. After cutting, this
graph is modified to reflect the new situation. Still, resampling is necessary to
maintain an adequate discretization near cracks.

Cloth and Thin Shells

Objects that are almost two-dimensional cannot be simulated using the methods
developed for volumetric objects. Even if a finite thickness is assumed, methods
discretizing the volume become numerically unstable as the thickness of the object
decreases. Both cloth and thin shells are in this class of materials. In the literature,
cloth simulation typically refers to objects with a planar rest state. Such object can
be simulated using thin plate energies, which are a special case of the thin shell
energy functional.

Thin shells have been introduced to Computer Graphics by Terzopoulos et al.
in 1987 [199], who described their behavior in terms of the first and second order
metric tensors. However, the efficient numerical solution of these functionals is a
major challenge. Mass-spring approximations to thin shell behavior are available
[41,200], and FEM approaches using linearized energy terms have been developed
[47, 119]. For the simpler case of cloth simulation, mass-spring systems are still
the dominant simulation method (e. g. [22,41,42,200]). This has sometimes been
justified with the presence of strands and fibers in cloth, making a mass-spring
system a more natural model than a continuum approximation [40].
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For thin shell simulation, Cirak et al. [55] investigated the utility of subdivision
surfaces. If subdivision surfaces are used to construct the required 2nd order basis
functions, their special properties guarantee that the resulting approximation is
conforming.

A simple and efficient simulation method for thin shells has been proposed by
Grinspun et al. [89]. Like the earlier work of Terzopoulos et al. [199] it is based
on discretization of the metric tensors. These methods employ surface operators
discretized on triangle meshes to compute the elastic energy. In particular, bending
energy is represented by a discrete curvature operator [140], and stretching energy
is approximated by edge lengths and triangle areas.

Recently, Guo et al. [96] have proposed a simulation method for thin shells that
uses unstructured point clouds as the underlying representation. The point cloud
is parameterized globally, and the surface metrics induced by the parameterization
are used to define elastic energies. While this yields good results for most surfaces,
the parameterization is not isometric, which can lead to artifacts. In Chapter 7, a
different method for the simulation of point-sampled surfaces as thin shells is
presented that avoids parameterization. Surface operators are defined using splines
defined by neighboring sample points.
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Modeling

17





Chapter 3

Point-Sampled Surfaces
Instead of using a triangle mesh or higher order polynomial spline patches, using
only sample points on these surfaces has proven to be a fruitful approach to surface
representation.

Abandoning the connectivity information present in more structured represen-
tations will make some operations more difficult, while simplifying others. It has
turned out that especially in situations where dynamic resampling is necessary,
and continuous remeshing is complicated or intractable, surfaces represented by
unstructured point samples have advantages over meshes and other connected rep-
resentations.

This chapter summarizes the basic concepts of surface representation using
unstructured point samples. Section 3.1 introduces the notion of a moving least
squares (MLS) surface, the most common implicit surface definition. This sur-
face definition is useful for high-quality rendering using raytracing techniques. In
Section 3.2, surface representation using a set of elliptical discs, so calledsurfels,
will be discussed. These can be rendered by splatting them, thus making real-time
rendering and interactive manipulation of point-sampled objects possible. Finally,
Section 3.4 gives some details on the data structures typically used to accelerate
algorithms working with unstructured point clouds.

3.1 Moving Least Squares Surfaces
LetS be a manifold surface andP= {x1 . . .xn} a set of points on that surface. The
goal is to find an implicit surfacẽS that approximatesS. In practice, one defines
a projection operatorΨ(x) that maps any point to the closest point onS̃.

A weight function or kernelwi(·) determines how each pointi influences its
surroundings. The kernel is usually chosen as a smooth, non-negative function
with a single maximum atxi . Section 3.1.5 gives more details on weight functions.
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Figure 3.1: (a) Step 1: Fitting the plane. (b) Step 2: Fitting the polynomial.

Levin’s MLS surface
Levin [127, 128] defines a projection operatorΨL as a two-step procedure. In a
first step, a plane given by its normalN(x) and a pointq(x) is fitted to the samples
close to the query pointx. We findq(x) and a normalizedN(x) such that

∑
i

wi(q(x))(N(x)∗ (xi −q(x)))2 (3.1)

is minimized, while fulfilling the additional constraint that

(x−q(x)) ‖ N(x). (3.2)

This constraint ensures that the resulting operator is an orthogonal projection. To
exclude trivial solutions to the above minimization, the solution should also fulfill
∑i wi(q(x)) 6= 0. There might be several minima of (3.1), in such cases, the one
closest tox is chosen. Figure 3.1 (a) illustrates the plane fit.

In a second step, a bivariate polynomial is fitted to the points, using a local
coordinate system centered atq(x). Let t1(x) andt2(x) be two vectors forming an
orthonormal basis withN(x), and letx′i = [(xi −q(x))∗ t1(x),(xi −q(x))∗ t2(x)]
be an orthogonal projection ofxi onto the least-squares plane, expressed in the
local coordinate system. The polynomialf is chosen to minimize the distance to
samples parallel toN(x):

∑
i

wi(q(x))
(

f (x′i)−N(x)∗ (xi −q(x))
)2

. (3.3)

See Figure 3.1 (b) for an illustration. Finally, the MLS projection is defined as

ΨL(x) = q(x)+ f (x′)N(x) = q(x)+ f (0)N(x). (3.4)

FindingN(x) andq(x) requires a nonlinear optimization. In practice, simplifi-
cations of the above technique are of higher relevance.
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3.1.1 Simplified MLS Surface
The problematic part of the surface definition above is the nonlinear optimization
in the first step of the algorithm. Adamson and Alexa [5,6] introduce a simplifica-
tion of the procedure. As noted by Amenta and Kil [18], the simplified procedure
defines a different surface. The differences, however, are not noticeable in most
applications.

Instead of minimizing (3.1) in the first step of the projection, Adamson and
Alexa minimize

∑
i

wi(x)
[
N(x)∗ (xi −q(x))

]2
, (3.5)

always evaluating the weight functions at the query point. Since the weights are
now independent ofN(x) andq(x), the minimization is simplified significantly.
q(x) can be computed as a weighted average of sample positions:

q(x) = ∑i wi(x)xi

∑i wi(x)
. (3.6)

The normal of the least squares fit (3.5) can be computed as the eigenvector to the
smallest eigenvalue of the weighted covariance matrix of the sample points [5].

The polynomial fit in the second step of the projection procedure also uses the
weightswi(x) instead ofwi (q(x)). In practice,f is often chosen to be a polyno-
mial of degree one. In this case, the result of the polynomial fit isf = 0, and the
second step can be omitted altogether. The simplified projection operator becomes

ΨS(x) = q(x). (3.7)

Recently, Guennebaud and Gross [95] proposed a MLS surface reconstruction
technique based on sphere fits instead of plane fits. This techniques drastically
improves the quality of the reconstruction especially when the surface is only
sparsely sampled.

3.1.2 Surface Normals
The normal of the polynomialf at q is usually taken to be the surface normal
of S̃. For the simplified procedure described in Section 3.1.1, this means that the
normal of the projected pointΨS(x) is N(x).

If Hermite data is available for the sample points, a least squares normal can be
computed analogously to (3.6):

N(x) = ∑i wi(x)Ni

∑i wi(x)
, (3.8)

whereNi is the normal given at pointxi .
Alexa and Adamson [10] show that these normals are not necessarily perpen-

dicular toS̃, and propose a way of computing the actual surface normal. Again,
the differences are negligible for most applications.
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Figure 3.2: Raytracing using iterative MLS plane fits. The results of the first three iterations
are shown.q(x0), x1 are colored blue,q(x1) andx2 of the second iteration are
shown in purple, andq(x2) andx3 in red.

3.1.3 Raytracing
The main use for the MLS projection operators in the context of computer graph-
ics is modeling and raytracing. For use in raytracing, a ray-surface intersection
has to be defined. Adamson and Alexa [10] have proposed the following iterative
procedure to intersect a rayx + td with the MLS surfaceS̃. We assume thatx is
close toS. This is easily achieved by using a bounding volume hierarchy to cull
rays [6].

setk = 0, x0 = x1

repeat2

setk = k+13

set xk = x+ N(xk−1)∗(x−q(xk−1))
N(xk−1)∗d d // intersect plane and ray4

until ‖xk−xk−1‖< ε // until convergence5

if ‖q(xk)−xk‖< ε2 then6

return x k7

else8

return no intersection9

Algorithm 3.1: Ray-Surface intersection

Algorithm 3.1 iteratively computes the least squares plane, and intersects the
ray with that plane. If the iteration converges, it converges to the point on the ray
that is closest toS̃. If this point lies on the surface, then an intersection has been
found. Figure 3.2 illustrates the procedure. The animations shown in Chapter 7
were rendered using this technique.

22



3.1 Moving Least Squares Surfaces

3.1.4 Inside/Outside Test
Using the projection operatorΨ(x) as well as normal information, we can design a
simple inside/outside test for MLS surfaces. A point is outside an object bounded
by S if the normal at its projected position points in its direction.

[x outsideS]⇔ [(Ψ(x)−x)∗N(Ψ(x)) > 0] (3.9)

Due to the definition of the MLS surface, this test only works reliably close to the
surface, and will fail if the surface is not adequately sampled [17].

3.1.5 Weight Functions
The choice of weight function is a critical parameter in the surface definition.
It determines the smoothness of the surface as well as the performance of the
projection. The kernelwi for a pointxi should have the following properties:

Smoothness The weight function should be smooth. The continuity of the
weight function determines the continuity of the resulting surface [128].

Monotony There should be a single maximum atwi(xi), i. e. the influence of
the sample is strongest at the sample point itself. More (local) maxima lead to
additional problems when solving the minimization described in Section 3.1.

Locality The function should go smoothly to zero as the evaluation point is
moved further away fromxi . Together with monotony, this implies non-negativity.
Many weight functions have only local support. In this case, a sample only con-
tributes to its neighborhood. Thus, acceleration data structures can be used to
quickly compute the relevant set of neighbors (see Section 3.4).

Most weight functions are radially symmetric, i. e. of the formwi(x) = w(‖xi−
x‖) = w(d). Gaussian kernels are a popular choice due to theirC∞ continuity:

wG(d) = e−
d2

σ2 . (3.10)

Here,σ is a parameter determining how much the samples are to be smeared out in
space. High values ofσ lead to a smoother surface. A major drawback of Gaussian
kernels is their global support. In practice, this means that all sample points have
to be considered for each projection. Often, clipped Gaussians are used instead:

wCG(d) =
{

wG(d) d < cσ2,
0 otherwise.

(3.11)

If clipped Gaussians are used, the surface loses its continuity. This effect is not
noticeable ifc is chosen large enough.
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Polynomial approximations to Gaussians have several advantages over clipped
Gaussians. They have local support, and they can be chosen such that all deriva-
tives vanish at the domain boundary. If the polynomial is chosen carefully, poly-
nomial weights can be evaluated much more efficiently than Gaussian weights.
Several such weight functions have been introduced by Wendland [212]. An ex-
ample withC2 continuity is

wW(d) =
{

(1− d
r )

4(1+ d
r ) d < r,

0 otherwise.
(3.12)

The parameterr determines the support radius of the kernel.
Where performance is critical, even simpler weights may be necessary. Wald

and Seidel [210] use linear weights in their interactive raytracing system for point
clouds.

Not all commonly used kernels are radially symmetric. If the sampling den-
sity is not isotropic, elliptic kernels can greatly improve the quality of surface
reconstruction. Each sample pointi is equipped with tangent axest i

1 andt i
2. Their

lengths determine the size of the kernel in that direction. Withd = xi − x, the
weight is computed as

wE(d) = w(

√
(t i

1∗d)2

‖t i
1‖4

+
(t i

2∗d)2

‖t i
2‖4

), (3.13)

wherew(·) is a radially symmetric weight function. The weight functions used for
MLS approximations share some characteristics with SPH kernels, discussed in
Section 8.1.1.

3.2 Surface Splatting
While MLS surfaces are of great importance in modeling, rendering them is com-
putationally expensive. Therefore,surface splatting[165, 231, 232], analogous to
rasterization for triangles, is used to render point-sampled surfaces in interactive
applications.

In the following, we will considersurfels, small circular or elliptical disks. In
the context of rendering,splatis used synonymously with surfel. In order to render
a surfel, we need its position and tangent axes. If the splat is circular, normal and
radius are usually substituted for tangent axes for memory efficiency. In order to
guarantee a hole-free surface, the radii or tangent axes need to be chosen such that
neighboring surfels overlap [223]. A weight function is associated with each sur-
fel, which is used to blend colors and normals of overlapping splats. This weight
function needs to have local support to make interactive splatting computationally
feasible. Clipped Gaussians are the most popular choice [231]. The discontinuity
at the boundary of the splat is not a problem here as its effects are small compared
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(a) (b)

Figure 3.3: A surface represented with circular (c) and elliptical (d) surfels. Elliptical sur-
fels can handle irregular and anisotropic sampling better.

to the discretization error of the 8-bit RGB color space. Figure 3.3 shows sur-
faces sampled with circular and elliptical surfels. Elliptical surfels require more
memory, but are superior especially when anisotropic sampling is considered.

Each surfel in rendered by projecting it onto the screen. This results in an ellipse
in screen-space, which can then be rasterized. For each pixel, an extended depth
test first determines whether this splat is visible at this point. If this is the case, a
weight is computed using the surfel’s projected weight function, and the weighted
color contributions are added to the framebuffer. Once all surfels have been pro-
cessed, each pixel’s color is re-normalized with the sum of blending weights ac-
cumulated for that pixel.

Lighting can either be computed per surfel or per pixel. In the latter case, nor-
mals are averaged using the splat weight functions, and shading is performed in a
second pass [231].

The splatting algorithm described above may lead to aliasing artifacts if the
projected kernels become smaller than the pixel size. A solution to this problem
is EWA splatting [231]. Here, the kernels are depth-pass filtered before sampling
them at the screen resolution. The projected weight function of each splat is con-
volved with a Gaussian. Using elliptic Gaussians as weight functions, the result of
this convolution is again an elliptic Gaussian. This is then used as blending weight
as before.

3.2.1 Extended Depth Test
Fragments generated during ellipse rasterization should only be rendered if they
belong to a visible surface. Since the actual surfaceS is not known, a fuzzy depth
test is used to determine the blending behavior [165]. This depth test has three
possible outcomes: A surfel can be clearly hidden by the surface in the frame-
buffer, and is hence discarded. It can be clearly visible, and thus overwrites the
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Figure 3.4: Extended depth test for splatting. The red lines show the content of the depth
buffer. (a) 3-way depth test. If the depth toleranceεz is chosen too small or too
large, blending results will be wrong. (b) Hardware implementation. In a first pass,
the frontmost surfel is computed (blue depth values), its depth value is translated
away from the viewer and stored (red depth values). A simple depth test using
these values determines visibility.

framebuffer content, or it is very close to the surface in the framebuffer, and its
contribution is added to the current surface. Consider an incoming fragment with a
depth value ofzf . The framebuffer currently stores a depth value ofzat this pixel.
The action taken during rasterization is then

zf < z− εz overwrite
|zf −z|< εz blend
zf > z+ εz discard

Figure 3.4 (a) shows an example. Note that the choice of the depth toleranceεz

is critical for the rendering result. Ifεz is too large, close-by surfaces are blended
together, if it is too small, blending will be disabled even within a contiguous
surface, leading to shading discontinuities. To remedy these problems,εz is usually
chosen dependent on the average surfel size. The best quality can be achieved by
choosingεz depending on the average surfel size and orientation at the current
pixel, as well as the surfel size and orientation of the currently rasterized surfel.

3.2.2 Hardware Acceleration
Interactive rendering times for point-sampled models of high complexity can only
be achieved with hardware support. Recently, specialized hardware has been de-
veloped that implements splatting as described above [214]. Since the advent of
vertex and fragment programs, commodity graphics hardware can also be used
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to render point-sampled surfaces. Several modifications and simplifications of the
original algorithms are necessary, however.

Current hardware rendering algorithms [37, 233] need three passes instead of
the two used in software rendering. In a first pass, a depth image is computed that
is used to determine visibility. The second pass performs per-surfel shading and
accumulates weights and weighted color contributions. A final pass is needed to
normalize the colors by dividing each pixel’s color by the sum of accumulated
weights. Only the first two passes have object order complexity, while the com-
plexity of the third pass only depends on the framebuffer size. Even for medium-
sized models, its contribution to the overall complexity is negligible.

On newer hardware, floating point framebuffers are available, which makes de-
ferred shading possible [38] (see also Section 5.7). The deferred shading pass can
be integrated into the the third rendering pass used for normalization and does not
add much to the overall complexity.

Visibility Computations

Since current graphics hardware does not support reading and writing to the depth
buffer at the same time, the visibility computations have to be distributed to two
passes. In the first pass, only depths are written, colors and weight functions are
not evaluated. In a vertex shader, each surfel is moved away from the viewing
plane byεz. If z(x,y) is the depth of the frontmost surfel at each pixel(x,y), the
depth buffer now containsz(x,y) +εz in each pixel. The contents of the framebuffer
after the first pass is the upper bound for the depth if fragments that will be blended
in the second pass. In the second pass, a regular depth test culls fragments with a
depth greater themz(x,y) + εz.

Compared to the original fuzzy z-test, the first pass decides which surface is
visible, while the second pass culls fragments that belong to hidden surfaces. Fig-
ure 3.4 (b) illustrates the hardware implementation of the fuzzy depth test.

Although not identical to the original fuzzy z-test, the hardware implementation
has proven to be a good approximation. Apart from the fact that it needs two passes
over the geometry, its major drawback is that the depth toleranceεz can only be
chosen dependent on the frontmost surfel in each pixel. In fact, a constantεz is
most common. This can lead to artifacts when models with varying splat sizes are
rendered.

3.3 Sampling
Contrary to mesh-based representations, where the topology is explicitly given by
the connectivity of the mesh, the topology of a point cloud is implicitly defined
by neighborhood relationships of the sample points. Therefore, it is important that
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(a) (b)

Figure 3.5: (a) When the surfel radii are chosen appropriately, splatting or MLS reconstruc-
tion yields a contiguous surface. (b) If the support radii of the weight functions do
not overlap, holes appear in the surface.

the surface isadequately sampled. What exactly is meant by adequate sampling
depends on the reconstruction algorithm used.

For surface splatting,coverageandseparationare the most important issues:
The surfels have to be close enough that their reconstruction kernels overlap. If
this is not the case, holes appear in the surface [165] (see Figure 3.5). Also, if two
surface sheets are close to each other, the surfel radius should be small enough to
ensure that the fuzzyz-test can separate the two surface sheets. Note that the latter
criterion only applies if the depth toleranceεz can be chosen on a per-fragment
basis. For simple hardware implementations, whereεz is constant over the frame-
buffer, surfel sizes have no impact on the separation of surface sheets.

Very similar criteria apply for MLS surfaces. If the support radius of the weight
functions associated with the sample points is too small, the surface will break up
into separate components. Also, if surface sheets come too close to each other, the
plane fits used in the MLS projection become unreliable, and the sheets cannot be
separated robustly [17].

Under certain conditions, the surfacẽS reconstructed from the sample points
can be proven to be geometrically close and homeomorphic to the input surface
S. We call such a reconstruction agoodreconstruction of the surface. The neces-
sary conditions for a provably good MLS reconstruction [68,120] are very similar
to the criteria used for surface reconstruction techniques relying on Delaunay tri-
angulation [13, 14, 16, 34]. The predicate that is used in most proofs concerning
surface reconstruction is the concept ofε-sampling. LetS be a surface andP a set
of samples taken from the surface. Themedial axis Mof the surface is the set of
points that have more than one closest point onS. For each pointx ∈ S, the local
feature sizeΛ(x) is defined as the distance ofx to the medial axis:

Λ(x) = min
q∈M

‖x−q‖. (3.14)
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Using the local feature size, we can define a criterion for adequate sampling: A
set of samplesP⊂ S is called anε-sample ofS if for eachp ∈ P, there is a point
q ∈ P, p 6= q, which is close top compared to the local feature size inp:

‖p−q‖< εΛ(p), (3.15)

for some smallε. Several variations of this definition have been proposed [68,120].
Knowing that a point set is anε-sampling of a surface, we can prove that a good

reconstruction of this surface can be computed using a Delaunay-based triangula-
tion [12,13]. Similar guarantees can be derived for MLS surfaces [68,120]

ε-sampling is a very strong requirement. In particular,ε-sampling leads to an
infinite sampling density around sharp features. Checking whether a given point
cloud is anε-sample involves computing the medial axis, which is a challenging
task by itself. Therefore, simpler measures are used to determine adequate sam-
pling in practice. In many applications, making sure that adjacent surfels overlap
such that no holes appear in the surface is sufficient.

3.4 Acceleration Data Structures
When working with point-sampled surfaces, and more generally meshless repre-
sentations, many operations rely on local neighborhood relationships. Given a set
of pointsP = {x1 . . .xn} and a query pointx (which may not be inP), two types
of queries are of special interest:

1. Range query: return all points inside a sphere with radiusr centered atx.

2. Nearest neighbor query: return them closest points tox.

Either query requiresO(n) time if a brute force algorithm is used. Acceleration
data structures can significantly lower the complexity of these queries. This sec-
tion discusses kd-trees and spatial hashing, which are particularly well suited for
the query types of interest. Other data structures, such as uniform grids, octrees,
or bounding volume hierarchies, can be used as well. For a detailed comparison,
see [29,178].

3.4.1 kd-Trees
A kd-tree, ork-dimensional binary search tree, is a special case of a binary space
partition tree with axis-aligned separating planes [28]. Its root cell contains all
points inRk. In each level of the hierarchy, each cell is divided once by an axis
aligned plane. Since cell boundaries are axis-aligned, inside/outside tests for
points are extremely fast. See Figure 3.6 (a) for an illustration.
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Figure 3.6: (a) A balanced kd-tree. The tree adapts to the spatial distribution of the input
samples. (b) A hash grid. The grid structure is virtual, only the hash table (right)
is actually stored. The hash functionh maps cell indices to hash table indices.

Construction

Given the point setP, a kd-tree can be constructed by recursively splitting cells
until a minimum number of points remain in the cell. For each cell, a good sep-
arating plane has to be found. Most commonly, the orientation of the planes is
simply cycled through, and the median of point positions within the cell is used to
determine the position of the separating plane. More sophisticated methods based
on statistical analysis of the input points have been proposed for high-dimensional
data [168, 213]. In the context of computer graphics, the trade-off between con-
struction time and query time rarely justifies these more complex construction
methods.

The construction time for a kd-tree isO(nlogn). Adding, deleting, or moving
samples will create an unbalanced tree and degrade search performance [71]. In
practice, a kd-tree is rebuilt from scratch whenever the set of points changes.

Queries

Querying a kd-tree requires finding the cell containing the query pointx, and then
computing all cells that are intersected by the sphere of radiusr centered aroundx
(see Figure 3.7 (a)). The relevant cells are found by backtracking up the hierarchy
until a cell fully contains the sphere. All children of this cell are recursively tested
for intersection with the query range. Points contained in intersecting cells are
candidates to be returned by the query and have to be tested against the sphere
[78]. See [19] for a good description of the algorithm.

Nearest neighbor queries in kd-trees are executed as a series of incremental
range queries that are terminated once the sphere containing exactly the desired
number of points does not intersect unvisited cells [19]. The average time com-
plexity for both range and nearest neighbor queries is linear in the number of

30



3.4 Acceleration Data Structures

returned points, and logarithmic in the total number of points [49]. However, this
result is derived based on assumptions on the point distribution and cannot be
straightforwardly generalized for more orderly point sets representing 2-manifolds
embedded inR3.

3.4.2 Spatial Hashing
Hash grids are regular grids whose contents is stored in a hash table. The em-
bedding space is discretized into cells, and each cell is assigned an index. The
cell indices are passed through a hash function, resulting in an index in a hash
table. All data associated with the cell is stored in this hash table entry. Hash grids
provide fast access to stored data elements and are very easy to maintain. Since
cells are not explicitly stored in memory, the searchable domain is not bounded.
The memory requirements of a hash grid grow with the number of non-empty
cells, but are independent of the number of empty cells. See Figure 3.6 (b) for an
illustration.

Construction
To construct a hash grid, the search space has to be divided into cells. Most com-
monly, an infinite regular grid is used as the discretization. For some applications,
it is advantageous to let cells overlap. It is critical that the cell(s) containing a
point, as well as neighboring cells of a given cell can be computed efficiently.
Each cell is assigned an index, or a tuple of indices. Even though it is not strictly
required that these indices are unique, artificial collisions are introduced if they
are not. For a regular, disjoint discretization ofR3, the following function maps
any pointx = [x,y,z] to a 3-tupleI = (i, j,k) of integer indices:

I(x) = (bx/dc,bz/dc,bz/dc) , (3.16)

whered is the grid spacing. The cells in this indexing scheme are non-overlapping
cubes with edge lengthd. A simple hash function for such index tuples has been
proposed by Teschner et al. [201]:

h(i, j,k) = (ip1 xor jp2 xor kp3) mod s, (3.17)

Wherep1,2,3 are prime numbers ands is the hash table size. In order to minimize
collisions,s should also be prime [201]. More advanced hash functions might re-
sult in fewer collisions for small hash table sizess, however, they are typically
more complicated to compute. Which hash function is best depends on the appli-
cation. For the algorithms discussed in this thesis, the additional cost incurred by
an occasional collision is low, and consequently there is no performance gain from
using more complicated hash functions. Note that since queries test each candi-
date for its distance to the query point, false positives due to hash collisions are
eliminated and do not cause fundamental problems.
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(a) (b) (c)

Figure 3.7: (a) Range query in a kd-tree. The highlighted cells have to be searched for
sample points within the query radius. (b) Range query in a hash grid, where
d = rmax. The 9 cells closest to the query point have to be searched (27 in 3D). (c)
d = 2rmax. The 4 nearest cells (8 in 3D) need to be searched.

For any given point set, a perfect hash function can be constructed [126], avoid-
ing collisions altogether while minimizing the hash table size. Perfect hash func-
tions can greatly increase performance, although their construction is too expen-
sive to be useful in dynamic settings.

To construct a hash grid from a given point setP, points fromP are sequentially
added to the hash grid, and assigned to their respective hash table entries. The
construction time of a hash grid for a point set of sizen is O(n). Adding, deleting,
or moving points in an existing hash grid is easy and requires onlyO(1) time on
average.

Queries

Range and nearest neighbor queries are straightforward to implement for hash
grids. First, the hash cell(i, j,k) that contains the query pointx is found. For
range queries, all cells intersected by a sphere of radiusr aroundx have to tested
for points within the query range. If the maximum query rangermax is known,
The cell spacingd should be chosen to be eitherrmax or 2rmax. In the former
case, the cell(i, j,k) and all 26 neighboring cells have to be checked for points
within the query radius. Withd = 2rmax, only the 8 closest cells tox have to be
considered (see Figure 3.7). Although settingd = rmax allows for a more fine-
grained discretization, experiments have shown thatd = 2rmax is faster in almost
all cases. Memory access time dominates the query times, hence less queried cells
containing more candidate points are preferable over having to load more cells
from memory. The average complexity of range query of fixed radius is linear in
the numberm of returned points.
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Them-nearest neighbor query maintains a list of the closest points. While not
enough points have been found, the points in neighboring cells are added to the
list. Then, a sphere with radiusdm, the distance of them’th nearest point in the
list is searched for closer points. Once it is assured that there are no closer points,
the query is complete. In situations where the spatial density of points does not
vary much, the cell spacingd can be chosen such that with high probability, then
closest points lie in the 8 closest cells to a pointx.

3.4.3 Comparison
Both hash grids and kd-trees are used in applications presented in this thesis.
Which data structure to use depends on several factors, and a final decision can of-
ten only be made after performance figures can be compares for several test cases.
There are, however, some general rules that help determine which method is most
appropriate.

Most importantly, kd-trees are fully adaptive data structures, while hash grids
discretize space uniformly. In situations with strongly varying sampling density,
kd-trees offer advantages over hash grids since the spatial resolution adapts to the
local spatial density of the point set. However, the adaptivity comes at a cost. Con-
structing a kd-tree takesO(nlogn) time as opposed toO(n) for hash grids. While
construction cost is not an issue for static data, it might become a limiting factor
for dynamic point sets. However, even for many dynamic applications, construct-
ing the data structure from scratch in every step is not the limiting factor as other
parts of the algorithms have higher complexity.

Another distinguishing criterion is the query type needed by the application.
Hash grids are most efficient with range queries of known constant radius. The
grid spacing can then be adapted to the query radius, thus making sure that all
queries can be completed by considering only 8 cells. If the sampling density does
not vary significantly throughout the domain, this leads to a retrieval inO(1).

Weaker guarantees are available form-nearest neighbor queries with constant
m: If the sampling density is constant throughout the domain, the grid spacing can
be chosen such that it is likely thatm-nearest neighbor queries terminate within
the first 8 visited cells. However, constant sampling densities are rare. In general,
kd-trees are better suited form-nearest neighbor queries. Only for huge point sets,
the logarithmic dependence of query times on the total number of points is a sig-
nificant drawback of kd-trees.

Consequently, kd-trees are used for static point data of varying resolution in
Chapter 5. The shell animation approach presented in Chapter 7 also uses kd-
trees form-nearest neighbor searches. The construction time for the kd-tree is
not a limiting factor in this case as query times and simulation times dominate
the overall complexity. Chapter 8 describes a fluid simulation technique that uses
range queries of known constant radius. Hash grids have been used to speed up
searches in this example.
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Chapter 4

Modeling Discontinuities
While point-sampled surfaces are well suited to represent smooth manifolds, rep-
resenting sharp features or texture discontinuities is difficult. Features of higher
frequency than the finite sampling rate can represent are smoothed out by the re-
construction method.

In this chapter, a method is presented that explicitly represents sharp features in
point-sampled objects. The geometry is stored as severalpatches, each of which
represents a smooth surface. The intersections of these patches are evaluated dur-
ing rendering according to given CSG operations, resulting in discontinuities at
patch boundaries.

The surface patches are represented as sets of surfels, i. e. elliptical disks. Sur-
face reconstruction during rendering is performed using EWA splatting. Sharp
features are created by clipping surfels during rendering. Thus, for the sake of
defining sharp features, the surfaces are considered to consist of intersecting and
overlapping disks.

The next section describes how CSG operations can be implemented for point-
sampled surfaces, before presenting a rendering algorithm that renders any CSG
combination of surface patches. Finally, representing texture discontinuities ex-
plicitly using special discontinuity surfels is discussed.

4.1 CSG Operations
CSG operations can be reduced to an inside/outside test. Consider two objects
A andB with surfacesSA andSB, respectively. The surface resulting from the
CSG operationA∩B is constituted of the parts of surfaceSA that areinsideB
combined with the parts of surfaceSB insideA:

SA∩B = (SA∩B) ∪ (SB ∩A). (4.1)

The union operation is analogous:

SA∪B = (SA∩B̄) ∪ (SB ∩Ā). (4.2)

35



Chapter 4 Modeling Discontinuities

(a) (b) (c)

Figure 4.1: Using only the closest surfel for inside/outside classification leads to classifi-
cation errors. (a) Blue: Incorrect outside classification. Red: Incorrect inside clas-
sification. (b) An intersection of two differently sampled surfaces, rendered using
only the closest surfel for classification. (c) The same edge rendered using the two
closest surfels for classification.

Throughout the algorithmic description, only union and intersection operations
will be considered. Section 4.3 gives details on how to handle other operations.

In order to model complex objects, a CSG tree is stored. The leaves of the tree
representpatches, i. e. point sampled surfaces without sharp edges. Each inner
node stores a CSG operator, i. e. union or intersection. Hence, each inner node
represents the result of applying its operator to its child nodes.

Each CSG operation may create sharp edges. If edges intersect, they can form
corners of increasing complexity. It is essential that such corners can be repre-
sented correctly, independent of the number of patch primitives involved. Prior
approaches based on surfel clipping are limited to sharp edges between two prim-
itives [161], or purely convex corners [233].

4.1.1 Inside/Outside Classification
It is common practice to reduce the inside/outside classification for a point-
sampled objectA represented by a set of surfelsPA to a front-face/back-face test
with respect to the closest surfel inPA [2]. A point x is consideredinsideA if it is
on the back-facing side of its nearest neighbor surfels:

[x insideA]⇔ [(x−cs)∗Ns < 0]. (4.3)

Here,cs denotes the center, andNs the normal of the closest surfel tox. If a point
x is classified asoutsideby a surfels, we also says clipsx.

As illustrated in Figure 4.1, this leads to classification errors. For many applica-
tions these errors are acceptable, however, when used in the context of rendering,
the simple classification leads to disturbing jagged edges.
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(a) (b)

Figure 4.2: (a) Twoconcavesurfels. Each surfel centerc1,2 is on the front facing side of
the other surfel. (b) Twoconvexsurfels. At least one ofc1,2 is on the back facing
side of the other surfel.

The artifacts can be alleviated by incorporating information of the two closest
surfelss1 ands2 for inside/outside classification. The inside/outside test according
to (4.3) is performed for boths1 ands2, yielding results that are combined depend-
ing on the configuration of the closest surfels. We call two surfelss1 ands2 with
centersc1 andc2 concaveif s1 clips c2 ands2 clips c1. Otherwise, they are called
convex. Figure 4.2 illustrates the configurations.

Then, we can define the inside/outside classification with respect to an objectA
using the two closest surfelss1,2 of a pointx:

[x insideA]⇔

{
¬[s1 clipsx]∨¬[s2 clipsx] if s1,2 concave,

¬[s1 clipsx]∧¬[s2 clipsx] if s1,2 convex.
(4.4)

Figure 4.1 (c) shows the effect of the new classification scheme. Note that in
three dimensions, one can construct situations where even the use of the two clos-
est surfels for classification leads to non-intuitive clipping results. However, in
practice, these situations are very rare, and the resulting artifacts are only notice-
able in extreme close-ups. In order to avoid such artifacts, a consistent surface
needs to be defined, for example using MLS projection. Pauly et al. [161] use
the MLS surface to obtain an exact classification (see also Section 3.1.4) on a
per-surfel basis. The classifications are computed in a preprocess, hence the high
cost of the MLS projection is not a problem. The rendering algorithm described
here requires evaluation of inside/outside classification on a per-fragment basis.
Since the goal of this method is interactive rendering, using the MLS surface for
inside/outside classification is not viable. This might change if recently developed
hardware accelerated MLS techniques are used [95].

4.1.2 Surface Representation
When combining two surfacesSA andSB using a CSG operation◦, the surfaces
are classified into regions that are part of the combined surfaceSA◦B, and those
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(a) (b)

Figure 4.3: (a) A cube, with surfels discarded by a conventional CSG operation marked
red. (b) The cube rendered without these surfels. Holes appear along the edge.

that are not. In the case of point-sampled surfaces,SA andSB are represented as
discrete sets of sample pointsPA andPB.

The surfaces are rendered using splatting. Thus, sample points contribute to
the surface beyond their actual position: They influence the surface appearance
wherever their weight function is non-zero. If all surfels whose center does not
belong toSA◦B are discarded, holes appear along the patch edges (see Figure 4.3).

To make sure that the surface can be properly reconstructed, only surfels that do
not contribute to the surface are discarded. Instead of computing an inside/outside
classification for the surfel center, surfels are classified into one of three cate-
gories, depending on whether the surfels intersect another surface. For a surfels
which is part ofPA, the classification is

• surface surfels: cs∈ SA◦B, andsdoes not intersectSB. Surface surfels are
splatted normally.

• edge surfels: s intersectsSB. These surfels might be clipped.

• outside surfels: cs /∈ SA◦B ands does not intersectSB. Outside surfels do
not contribute to the resulting surface and are discarded.

Figure 4.4 shows the different surfel types. Edge surfels fromPA need to be
clipped againstB, and vice versa. Each of the objectsA andB might be a complex
object consisting of several patches combined by CSG operations. Edge surfels are
rendered using a specialized renderer which is described in Section 4.2.

38



4.2 Rendering Algorithm

Figure 4.4: The different surfel types: Outside surfels (red), Edge surfels (gray), surface
surfels (blue). If a surfel’s distance to the intersection is smaller than its radius
(or maximum extent, for ellipses), it is classified as edge surfel. The classification
is conservative to avoid numerical problems: More surfels are classified as edge
surfels than are strictly necessary.

4.2 Rendering Algorithm
Rendering geometry represented as described above requires that edge surfels are
clipped against intersecting surfaces. Since all surfaces are represented by point
samples, the algorithm identifies a set of intersecting surfelsIs for each edge sur-
fel s. In a second step, all edge surfels are clipped against their respective set of
intersecting surfels, using the CSG tree to correctly interpret the intersecting sur-
face. Surface surfels are splatted as usual. The two images are merged in a final
rendering pass.

4.2.1 Finding clipping partners
The surface is considered to be the union of surfel disks. Thus, a preprocessing
step can identify the set of surfelsIs intersecting a surfels. We call this set of sur-
fels theclipping partnersof s, as it is later used for clipped splatting. This section
details an approach for finding clipping partners based on splatting. The edge sur-
fels are splatted into a specializedclip bufferstoring surfel lists, and intersecting
surfels are identified by analyzing the clip buffer content. The complexity of this
approach isO(n) wheren is the number of edge surfels, and it is fast enough to
be executed in each frame. This makes it ideally suited for dynamic data, where
interacting surfels need to be recomputed in every frame.

The idea of finding intersecting surfels using a rendered image is based on the
observation that if two surfels intersect in object space, they also intersect in any
projection. All edge surfels are splatted into a the clip buffer, which stores a set
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of surfelsP(x,y) for each cell (pixel). Whenever a fragment of a surfels1 from
patchPA is added to a cell(x,y), it is a potential clipping partner of all surfels
s2∈P(x,y) belonging to patchesPB with PA 6= PB. If s1 ands2 intersect,s2 is added
to Is1 ands1 is added toIs2. A conservative estimate is used to determine whether
s1 and s2 potentially intersect. To speed up computations, they are considered
intersecting whenever the distance of their centers is smaller than the sum of their
radii: ‖cs1−cs2‖ < rs1 + rs2. For elliptical splats, the largest of the ellipse radii is
used in the estimate. In pseudo-code, the algorithm can be written as:

Input : cell position(x,y), Surfels1

foreachs2 ∈ P(x,y) do1

if s1.patchid 6= s2.patchidand ‖cs1−cs2‖< rs1 + rs2 then2

setIs1 = Is1∪{s2}3

setIs2 = Is2∪{s1}4

Algorithm 4.1: Adding a fragment ofs1 to the cell(x,y)

Note that this method uses a 2D regular grid to speed up neighborhood com-
putations in three dimensions. Other acceleration data structures, such as those
discussed in Section 3.4, can be used instead. When a search data structure for
all samples is constructed, range queries can be used to identify clipping splats.
In the algorithm described above, the problem of identifying clipping partners is
reduced from three to two dimension using splatting. Complex adaptive data struc-
tures such as kd-trees or quad-trees cannot easily be adjusted for this technique.
It would of course be possible to replace the regular grid that constitutes the clip
buffer by a hash grid. However, for typical scenes, the clip buffer is densely oc-
cupied by splats. A hash grid will therefore not offer tangible advantages, while
requiring significant computational overhead due to random memory access.

4.2.2 Clipped splatting
After clipping partners have been determined for all surfels, the surface can be
rendered. Clipping is performed during ellipse rasterization. Object space coordi-
nates are computed for each fragment. These are then used to determine whether
or not the fragment lies on the surface resulting from the CSG operations as stored
in the CSG tree.

We consider a fragment at world space positionx created by a surfel from patch
PC . This fragment is certainly part of the surfaceSC . The algorithm determines if
x is part of the surface of the object represented by the root node of the CSG tree.
The tree is traversed bottom up, starting at the leaf node representingSC , until the
root node is reached.

In each level of the hierarchy,x is part of a surfaceSA, represented by some
nodeTA in the tree. The sibling ofTA in the CSG tree,TB, representing a surface
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SB, is combined withTA with the CSG operator stored in their father nodeT ′.
The CSG operations (4.1) and (4.2) are applied to determine whetherx lies on
the surface represented byT ′. Sincex is known to be part ofSA, these equations
simplify to

[x ∈ SA∩B] ⇔ [x insideB], (4.5)

[x ∈ SA∪B] ⇔ ¬[x insideB]. (4.6)

If x is on the surface represented byT ′, we continue up the tree. Otherwise, the
fragment atx can be discarded.

Algorithm 4.2 shows a pseudo-code version of the tree traversal for fragment
clipping. Appendix A sketches a proof that the algorithm yields the correct result.

Input : Pointx, PatchC
setTA = TC, on= true1

while on∧¬isRoot (TA) do2

setTB = getSibling (TA)3

set in = insideTree (x,TB)4

if in 6= unknownthen5

switch TA.operatordo6

case∩ : seton= in7

case∪ : seton= ¬in8

setTA = getFather (TA)9

return on10

Algorithm 4.2: Determining whether a fragment atx of patchC should be rendered

The insideTree predicate is defined in the next section. Note that the in-
side/outside classification can yield the valuestrue, falseandunknown. Theun-
knownclassification is used if an inside/outside test is attempted for a surfels
with respect to a patchPA which is not represented by any surfels inIs. This case
is discussed below.

Inside/Outside Test for CSG Trees
We now need to specify theinsideTree predicate used to determine if a point
x is inside an object represented by a CSG treeT. Using the operators stored
in T, we can recursively descend intoT and thus reduce the problem to finding
inside/outside classifications with respect to the leaf nodes ofT, each representing
a patch. For the patches at leaf nodes, the inside/outside test (4.4) is used. At
each node whose children represent objectsA andB, the following operations are
applied:

[x insideA∪B] ⇔ [x insideA]∨ [x insideB], (4.7)

[x insideA∩B] ⇔ [x insideA]∧ [x insideB]. (4.8)
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A pseudo-code version of the tree traversal is given in Algorithm 4.3. Thein-
sidePatch predicate implements the inside/outside classification as defined in
(4.4) and is described below.

Input : Pointx, CSG Tree NodeT
if isLeaf (T) then1

return insidePatch (x,T.patchid)2

else3

switch T.operatordo4

case∩ : return insideTree (T.child1)∧ insideTree (T.child2)5

case∪ : return insideTree (T.child1)∨ insideTree (T.child2)6

Algorithm 4.3: insideTree : Inside/outside test for CSG trees

Inside/Outside Test for Patches
When clipping a surfels, we can only use clipping partners stored withs. How-
ever, during tree traversal, we might need inside/outside classifications for other
patches. If not all patches are represented by clipping partners fors, some in-
side/outside classifications remain unknown.

The extended classification including theunknownvalue is shown in Algo-
rithm 4.4. TheinsidePatch predicate returns a classification ofunknownif
no clipping partners for the patch in question can be found. If there is only one
clipping partner from the relevant patch, (4.3) is used to determine whether the
point is inside or outside. Only if two or more clipping partners are available,
(4.4) is evaluated.

Input : Pointx, Surfels, PatchPA
setC = Is∩PA // find all clipping partners ofs that are part of patchPA1

switch |C| do2

case0: return unknown3

case1: return ¬clips (C0,x) // Eq. 4.34

otherwise5

sortForDistance (C,x)6

if concave (C0,C1) // Eq. 4.4, see Section 4.1.17

then return ¬clips (C0,x)∨¬clips (C1,x)8

else return¬clips (C0,x)∧¬clips (C1,x)9

Algorithm 4.4: insidePatch : Inside/outside test for a patch

An unknownclassification does never lead to discarding a fragment (see Algo-
rithm 4.2). Consider a fragment at positionx of a surfels. If the inside/outside
classification forx with respect to a patchPA cannot be determined, no surfels of
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s1

s2

PB

PA

Figure 4.5: Three intersecting patches. The patchPC (gray) intersectsPA (red) andPB
(blue). Fors1∈PC , the inside/outside classification with respect to bothPA andPB
can be computed. Fors2∈PC , the classification with respect toPA yieldsunknown.
Thus, the decision which fragments to discard only depends onPB.

P are clipping partners ofs, i. e. PA does not intersects. Thus,s is either com-
pletely inside or completely outsidePA. If any of the fragments ofs needed to be
discarded due toPA, s would have been discarded entirely by the CSG operation.

If the inside/outside classification for a complex object is computed and the
classification for one of the involved patches is unknown, we need to deal with
unknownas a value in Algorithm 4.3. In order to evaluate (4.7) and (4.8), the∨
and∧ operators are extended to handle theunknownvalue:

b∨unknown = b, (4.9)

b∧unknown = b. (4.10)

for all b∈ {true, f alse,unknown}.
The reason for using these propagation rules is as follows: If the inside/outside

classification for patchPA yields unknown, the clipped surfels is not affected
by PA. Thus, if PA andPB form a complex object, we can use the classification
returned byPB for the combination ofPA andPB. Only if the inside/outside status
for bothPA andPB is unknown, the classification for their combination isunknown
as well.

Figure 4.5 shows an example. Let an object be defined by the CSG tree(A∩
B)∩C. We consider two surfelss1,s2∈PC . In order to determine which fragments
x to discard, we need inside/outside classifications with respect to the objectA∩B.
According to the CSG tree,[x insideA∩B]⇔ [x insideA]∧ [x insideB]. Because
s1 intersects the surfaces of bothA andB, this expression can be evaluated for
fragments ofs1. s2 does not intersect the surface ofB, and the classification can-
not be computed. The value of[x insideB] is unknown. In this case, the classifi-
cation becomes independent ofB: [x insideA∩B] ⇔ [x insideA]∧unknown⇔
[x insideA].
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4.2.3 Combined Hardware/Software Renderer
One big advantage of surface splatting is that hardware acceleration is possible
[37, 233]. This partly holds for the algorithm presented here. All surface surfels
can be rendered using an arbitrary renderer, possibly hardware accelerated. The
edge surfel rendering is done in software.

In a final step, the images obtained by rendering edge surfels and rendering sur-
face surfels are combined using the blending weights accumulated during splat-
ting. Hence, the blending step has to be executed before the normalization. The
easiest way to achieve this is to pass the software rendered image to the hardware
renderer, and modify the regular normalization pass such that it adds the weighted
contribution from the software renderer before normalization.

For splatting, the algorithm described in [233] is used. The algorithm involves
computing the matrix inverse of the splat space to screen space mappingM . When
this mapping is close to singular, i. e. when the splat normal is almost perpendicu-
lar to the viewing direction, numerical instabilities make the matrix inverse unre-
liable. In [233], such splats are discarded. Since they are almost perpendicular to
the viewing plane, the resulting artifacts are hardly noticeable.

However, we use splatting to determine clipping partners. Missing a clipping
plane can result in serious artifacts, independent of the direction of the clipping
plane. It is hence imperative that all potential clipping partners are considered.
Therefore, we can not simply discard surfels with almost singularM . Instead, for
surfels whose normal is almost perpendicular to the viewing direction, a thick
line is rasterized into the clip buffer, covering the ellipse. This might result in
clipping partners being added to surfels that do not overlap in the clip buffer.
As only the closest surfels are taken into account when computing inside/outside
classifications, adding too many clipping partners does not cause any problems.
Surfels that are clipping partners although they do not overlap in the clip buffer
are never used for an inside/outside decision.

4.3 Modeling
There are several ways in which models with sharp features can be created. The
most obvious is CSG modeling. It is sufficient to classify the surfels as described
in Section 4.1.1 and save the CSG tree built during modeling. The actual clipping
is then performed during rendering.

CSG modeling typically uses more operators than only union and intersection
that are described above. However, all other operations can be easily assembled
from union and intersection. When a CSG tree originally contains other opera-
tors than union and intersection, it is rebuilt as follows: First, other operations are
rewritten as combinations of union, intersection and inversion. Then, all inversion
operations are propagated down the CSG tree until the tree only contains inversion
operations at its leaf nodes. At leaf nodes, inversion is performed by inverting the
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(a) (b)

Figure 4.6: Introducing texture discontinuities. (a) A square is painted onto a sphere by
coloring the surfels inside the square. Splatting blurs the edges of the square. (b)
Texture discontinuity surfels enforce sharp features in the texture, while allowing
smooth normal interpolation.

result of the inside/outside test (i. e. the result ofinsidePatch ). Consider for
example the CSG treeA\ (B∪C). Rewriting the\ operator yieldsA∩ (B∪C).
The inversion is then propagated to the leaf nodes:A∩ (B̄ ∩ C̄), which is an ex-
pression that can be evaluated using the clipping algorithm.

Sharp features can also be identified by feature detection algorithms, e. g. [160].
Region growing algorithms can then be used to identify patches.

Animations of point-sampled objects involving fracturing can also create sharp
edges. An example of such animations is presented in Chapter 7. In these cases,
the sharp edge is at a boundary of the surface. Contrary to the situation after CSG
operations, there is no visible surface that the geometry is clipped against. The
discontinuity is therefore enforced by specialdiscontinuity surfels. These surfels
are invisible, and are only used to clip surfels to create a clean edge.

The technique presented above can not only be used to represent geometric
discontinuities, but also discontinuities in texture. To achieve this, texture discon-
tinuity surfels are added at texture discontinuities. During splatting, the normal
and depth information is splatted as usual, and only the color values are clipped.
Thus, the surface is smooth across the intersection with the texture discontinuity,
while a discontinuity is introduced into the texture. Figure 4.6 shows an example.
A square is texture-mapped onto a sphere by simply coloring the surfels. Splatting
the surfels blurs out the edges. By introducing texture discontinuity surfels, the
shading is smooth across the edges of the square, while the color information is
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(a) (b)

Figure 4.7: (a) A cube with differently sampled faces. (b) Sampling of the cube: The faces
are represented with 1, 25, and 900 surfels, respectively.

discontinuous. Texture discontinuities can be identified using texture analysis, or
they are explicitly specified during modeling.

4.4 Results
To date, the algorithm described in this chapter is the only rendering algorithm for
point-sampled objects supporting arbitrary CSG combinations of smooth primi-
tives. It enhances point-sampled surfaces with the possibility of representing sharp
features, making no assumptions on sampling, or the shape and size of the fea-
tures.

Figure 4.7 illustrates the robustness of the algorithm against varying sampling
densities. Since the algorithm allows for an arbitrary number of clipping partners,
the edges and corners of the cube can be rendered without problems, even though
the sampling density varies abruptly across the edges. The faces are sampled with
1, 25, and 900 samples, respectively. An example of curved edges formed by
patches with different sampling densities and patterns is shown in Figure 4.8.

In Figure 4.9, an extremely thin geometric structure illustrates the importance
of the possibility to clip surfels from several sides. Figure 4.10 shows another
example: An icosahedron is created as the intersection of 20 half-spaces, each
face is represented with a single surfel.

The two-pass renderer performing edge clipping is significantly slower than
a hardware splatting algorithm, such as [37] or [233]. However, the former can
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Figure 4.8: (a) A femoral neck minus two spheres. (b) Close-up of a 3-surface intersection.
The edges can be magnified indefinitely without blurring. (c) Sampling. Note the
different sampling densities.

(a) (b) (c) (d)

Figure 4.9: (a) An extremely thin structure created by CSG difference operations. (b) Sam-
pling of the spheres. (c) Close-up of the spikes. Top: normal view, bottom: Sam-
pling. (d) Spatial setup creating the structure.
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Figure 4.10: (a) An icosahedron created by the intersection of 20 half-spaces. (b) Sampling.
Each face is represented with one surfel.

not perform any edge clipping while the latter provides only limited support for
corners.

Using the combined hardware/software renderer, the method presented here is
faster than the software renderer provided with Pointshop3D [161], as long as
edges only fill a small fraction of the screen. Rendering times are similar when
approximately one fourth of all pixels show edges. In practice, only a small part
of the screen is covered by edge surfels.

Because the costly edge rendering algorithm is only used for surfels close to
the edge, the rendering time mainly depends on the number of viewport pixels
covered by edge surfels. Usually, edge surfels only amount to a small fraction of
all surfels, and only cover a small portion of the screen. Since time complexity for
regular splatting algorithms depends on the total number of surfels as well as the
total number of pixels covered by the model, a timing comparison is difficult.

Table 4.1 shows rendering performance for the scenes shown in Figures 4.9,
4.10 and 4.8, at different zoom levels. The timings were taken on a Pentium 4,
3 GHz with a GeForce FX5900 graphics board.

The data supports the assumption that rendering time is linearly dependent on
the number of visible edge pixels, while the total number of surfels has almost no
impact on computation times. The depth of the CSG tree has only minor influence
on complexity, as the CSG tree is rarely fully traversed. Spatial coherence can be
exploited to further speed up the CSG tree traversal. Past results of the traversal
are cached and reused for neighboring fragments.

Since clipping partners can easily be recomputed in every frame, the method is
particularly well-suited for scenes including dynamic CSG operations. The pro-
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Figure # Surfels # Edge surfels # Edge pixels FPS
4.9 1871 972 7189 9.09

33404 2.63
4.10 20 20 8763 8.3

47469 2.27
4.8 116650 2272 12234 5.55

69450 2.0

Table 4.1: Rendering performance depending on the number of surfels and visible edge
pixels.

posed algorithm can be directly applied after CSG classification, without the need
for further processing such as edge resampling.

4.5 Discussion
There are two alternative algorithms for edge rendering after CSG operations on
point-sampled objects [2, 161]. In contrast to the approach presented here, both
rely on resampling.

Adams and Dutré [2] focus on interactive CSG operations. Sharp edges are
created by resampling the surfaces close to the edges. Surfels close to the edge
are replaced with smaller surfels in order to minimize blending between the two
surface parts. Only the closest surfel is used for inside/outside classification, and
there can only be one clipping plane per surfel during the resampling step. After
the CSG operation is complete, the resolution of the edge is arbitrarily high, but
fixed. An advantage of [2] is that the resampling process does not result in surfels
requiring special treatment. After a CSG operation is applied, the resulting object
can be rendered using hardware splatting. The resampling ensures sharp edges up
to a magnification at which the surface reconstruction visibly blurs edges created
by small surfels.

Pauly et al. [161] also resample the edges after a CSG operation. They use
the MLS projection operator for inside/outside classification. After the CSG op-
eration, the edges are resampled as follows: Along the edge, pairs of surfels are
identified. Each of these pairs is moved to a point on the edge, and the two sur-
fels are fused into a special surfel storing two normals. This surfel is rendered as
two half-surfels. The holes in the surface that are created by moving the surfels
are closed by resampling the affected areas and inserting surfels where necessary.
The edge can be refined arbitrarily, and converges toward the edge that would have
been created by the CSG operation applied to the MLS reconstruction of the sur-
fel sets, as defined in [5]. As the edges are created by the special half-surfels, they
remain sharp even when zooming in to the edge. When applying more than one
CSG operation, the resulting corners cannot be represented this way. Zwicker et
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Figure 4.11: Artifact created by the classification method. Shown is a union operation on
surfacesSA (red) andSB (blue). SurfelsA should be clipped at its intersection
with sB0. However, as the center ofsB0 is far away,sB1 and sB2 are used for
classification of the pixels in question.sA “bleeds” into the surface ofB.

al. [233] extend the idea of clipped surfels by storing several clipping planes per
surfel. Note that arbitrary corners cannot be rendered with neither [161] nor [233].
In [233], corners are generally assumed to be convex: a fragment is discarded if it
is clipped by any one of the clipping planes. This is not correct in the general case,
see Figure 4.1 for an example of an edge that is neither convex nor fully concave.

CSG operations between objects with highly different sampling densities pose
problems for both algorithms presented in [2,161]. As noted in [161], these prob-
lems can be resolved by upsampling the areas close to edges before the CSG
operation.

The algorithm presented here does not resample the edges created by CSG op-
erations. Instead, surfels along the edges are interpreted as circular disks, which
are then clipped. This way, it is possible to render arbitrary CSG trees applied
to point-sampled objects. The sampling density of the participating surfaces can
vary arbitrarily, as shown in Figure 4.7. Complex corners or saddle points can be
rendered. As a single surfel can be clipped by many others, also very sharp edges
and degenerate cases as seen in Figure 4.9 can be rendered without artifacts.

In order to define CSG operations for surfaces represented by surfels, we define
the surfaces as a union of disks, which is not necessarily smooth. Figure 4.11
shows a schematic drawing of a situation resulting in an artifact. The artifact is
caused by depth discontinuities in the surface and appears only when the sampling
density within a single surface patch changes abruptly.

The only way to avoid this problem is to use a smooth surface definition in
the whole pipeline. As graphics hardware becomes more flexible, it is possible
to accelerate more advanced inside/outside tests based on MLS projection, which
eliminates such artifacts. Guennebaud and Gross [95] propose a modified MLS
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projection procedure that can be accelerated in hardware and could be used in a
CSG framework as presented here.

Like other approaches [2, 161, 233], the algorithm for inside/outside classifica-
tion faces numerical instabilities when two clipping surfels are almost coplanar.
In those cases, the frontface/backface test (4.3) becomes unreliable, which might
lead to jagged edges at surface intersections.

Since CSG operations define the final model, the patch primitives have to be
orientable manifolds. For non-orientable, or non-manifold surfaces, the notion
of inside and outside is not well defined, and CSG operations can not be used
in modeling. However, it is sufficient that the surface patches are manifold near
the intersection, as only neighboring surface parts are used in classification. Al-
though geometric sharp features pose some difficulties, it is possible to enforce
texture discontinuities on non-manifold or non-orientable surfaces without mod-
ifications to the rendering algorithm. Since discontinuity surfels are not drawn,
inside/outside tests with respect to the surface containing the texture discontinuity
are not necessary.

This chapter presented a solution to one of the inherent problems of point-
sampled surfaces. The surface representation was enhanced by the possibility to
represent arbitrary discontinuities. This is an important feature for shape model-
ing, especially when modeling artificial shapes like machine parts that have many
sharp edges and complex corners. The method can also be applied to texture dis-
continuities.

The next chapter will present a system harnessing one of the core strengths of
point-sampled surfaces: their capability to locally adapt the sampling density on
the fly.
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Chapter 5

Appearance Modeling
using Haptic Interaction

This chapter introduces an interactive system for appearance modeling. Mimick-
ing a painter’s workspace, the system allows the user to use brushes and a color
palette in order to modify the appearance of a three-dimensional object. The user
paints on the surface of the object using a haptic input device, which also gives
tactile feedback to the user. In order to represent the changing appearance of the
object, the surface is resampled wherever a part of it is modified. Point-sampled
surfaces offer advantages when the surface needs to be dynamically resampled,
and consequently, all objects in the system are represented using surfels.

The interface is designed to be intuitive to use and hides the underlying rep-
resentation as completely as possible. By rigidly following a painting metaphor,
the goal is that knowing how to paint in reality should be enough to use the vir-
tual painting system. Therefore, a paint model simulates the behavior of real paint
when it comes in contact with the object surface, capturing effects such as paint
viscosity, diffusion, and drying. Figure 5.1 shows a photograph of the system in
use.

5.1 Virtual Painting
Several 2D painting systems have been described in the literature. These mostly
focus on realistic paint modeling [24–26,226]. Elaborate brush models have been
developed [53, 222, 225, 227], since they are crucial to Chinese calligraphy. Such
systems can can achieve an expressive power similar to painting on real canvases,
owing to advanced brush models and bidirectional paint transfer.

Painting on 3D surfaces has proven significantly more challenging. Hanrahan
and Haeberli [99] first suggested a 3D painting system, using a mouse to position
the brush. Agrawala et al. [9] color the vertices of a scanned object using a spheri-
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Figure 5.1: A photograph of the virtual painting system. The haptic device (left) is used
to control the brush, another 6D input device (right) moves and rotates the object.
Similar to the real painting process, a palette is used to mix paint.

cal brush volume. There is no remeshing and therefore the painted detail is limited
by the original resolution. More recent painting systems [87, 106, 115] provide a
haptic interface, but still use a sphere-shaped brush to apply paint to the object. In
all these systems, color and material information is stored in fixed-sized textures,
limiting the level of detail that the artist can apply.

To overcome these limitations, Berman et al. [30] propose the use of multi-
resolution images to represent 2D paintings with regions of varying levels of
detail. In 3D, theChameleonpainting system [104] overcomes the limitations
of fixed-sized textures and predefineduv-mappings by automatically building a
texture map and corresponding parameterization during interactive painting. This
adaptive mapping is further improved by Carr and Hart [46]. However, even these
elaborate techniques cannot fully solve the parameterization problems inherent in
texture mapping. DeBry et al. [60] as well as Benson and Davis [27] solve the
parameterization problems by storing paint properties in adaptive octrees, only
creating texture detail when necessary.

In order to avoid parameterization problems inherent in texture mapping tech-
niques, the system presented here uses point-sampled surfaces. The object surface
as well as the surface of the brush and the palette are represented using sample
points. Using resampling operators defined for point-sampled surfaces, the sam-
pling density of these surfaces can be dynamically adapted to the needs of the user.
Point-sampled surfaces provide tremendous advantages over textures meshes in
this context, as local resampling operations are cheap. Texture atlases are hard to
maintain in an environment requiring dynamic resampling, and suffer from dis-
continuity artifacts across patch boundaries.
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5.2 System Overview
From a user’s perspective, the user interface presents itself as a 6D input device
with haptic feedback that is used to control the brush, and a 6D input device which
allows the user to move the object being painted. A regular computer monitor
displays an image of the object, as well as a palette that is used to mix colors
using the brush.

On the technical side, the system consists of the following components, each of
which shall be discussed below:

Object representation: The object is represented as a point cloud. This allows
for easy and efficient local resampling. When the user adds detailed textures to
the surface, it will be locally upsampled. Similarly, if detail is removed (e. g. by
painting over detailed parts), a downsampling algorithm reduces the number of
surfels in that region.

Brush model: The brush surface is represented as a point-sampled surface,
while the brush dynamics are computed using a simple mass-spring skeleton. The
brush surface is deformed using skinning. Collisions between the brush and the
object are resolved using only the brush skeleton. Interpenetration of object and
brush surface is used to determine affected regions in the paint transfer model.

Paint transfer model: Paint transfer between two point-sampled surfaces is
computed based on parameters obtained from the brush simulation, such as pen-
etration depth and pressure, as well as attributes of the paint model. To transfer
paint onto the object surface, the object surface is resampled to match the required
resolution and ensure that no detail is lost. Since the surface is resampled, it is pos-
sible to change not only texture (color) information, but also change the geometry
by carving.

Paint Model: Paint is a complex and diverse material. The system can capture
the phenomenology of several types of paint. Surface diffusion is computed in the
background, creating an effect of watercolor-like mixing. Thick layers of highly
viscous oil- or acrylic paint can be applied to the surface leading to changes in the
surface geometry.

Renderer: In order to guarantee interactive display rates, a specialized surfel
render supports partial updates. The contributions of surfels can be removed from
an image, hence surfel colors can be altered without redrawing the complete im-
age. The renderer implements shadow mapping to enhance realism and give the
user critical depth cues. Environment mapping is used to render reflective surfaces
such as metallic paint.
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dynamic surfel
lists for resampled
surface parts

original object samples
(static kd-tree)

Figure 5.2: The data-structure used to store the object geometry. The original surfel ge-
ometry is stored in a static kd-tree. As parts of the surface are resampled, the new
surfels are added to lists stored with each surfel.

5.3 Object Representation
Painting systems described in the literature use fixed sized textures [9, 25, 87, 99,
106, 115], or dynamic texture atlases [30, 46, 104] to store the color information.
Methods relying on a static texture are severely limited in the resolution they can
represent. If dynamic texture atlases are used, artifacts at patch boundaries may
become visible.

In the system presented here, the object is represented as a point cloud. Since
geometry and texture information is not separated, issues of parameterization do
not arise. Pieces of the surface can be up- and downsampled without affecting
other surface parts.

Because the painting system needs to be interactive, hard real-time constraints
apply for resampling operations, as well as geometric queries such as collision de-
tection for haptic interaction and brush simulation. Therefore, the surfels that rep-
resent the object surface are stored in a specialized search data structure, shown
in Figure 5.2: The original geometry of the object is stored in a static kd-tree.
This geometry is used for collision detection with the brush, and as a lower bound
for downsampling operations. When surfels are replaced during resampling oper-
ations, the new sampled are added to lists at each leaf node, replacing the orig-
inal object surfels for rendering and paint transfer. That way, all neighborhood
and range queries are still accelerated by the kd-tree up to the original resolution.
Static object samples are never deleted, as they are used in collision detection.

A kd-tree is used for the static object samples because the situation calls for
an static, space-adaptive search data structure (cf. Section 3.4). Since the object
samples are stored statically, the kd-tree will not become unbalanced by insertion
or deletion operations and only has to be constructed once. For collision detection
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(a) (b) (c) (d) (e)

Figure 5.3: (a), (b) A round brush and its skeleton. (c), (d) A flat brush. The active masses
shown in red are simulated, while the blue handle points are directly controlled by
the haptic device. (e) The brush skeleton deforms in contact with the surface.

as described in Section 5.4.1, only nearest neighbor queries with a fixed number
of surfels are used, yielding an average time complexity ofO(logn) per query,
wheren is the number of surfels in the tree.

Additionally to the regular surfel attributes such as color, normal, and radius,
the surfels representing the object surface carry paint-specific attributes. This set
of attributes is described in more detail in Section 5.6.

5.4 Brush Model
The brush is modeled as a mass-spring skeleton with a point-sampled surface
animated using the deformation computed by the skeleton simulation. Using this
simple description, different brush shapes and types can be modeled. Figure 5.3
shows some brushes along with their skeleton. The endpoints of the springs are
attached to a rigid brush handle that is controlled by the haptic device. These
points will be calledhandle points. The dynamically simulated masses at the tip
of the brush are calledactive masses. The springs used in the brush model are
simple linear springs exerting a force of

Fs = Ks(l − l0)(x0−x1), (5.1)

whereKs is a stiffness constant depending on the brush type,l is the current length
of the spring andl0 is its rest length.x0 andx1 are the current positions of the
spring’s end points. The dynamic behavior of the active masses is computed using
Verlet integration [207].

Once the skeleton deformation has been computed, the brush surface is de-
formed using a combination of linear blend skinning [130] and free-form deforma-
tion for point-sampled surfaces [161]. The procedure is described in detail in [1].
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5.4.1 Collision Detection
Collision detection is computed for all spring end points. A simple inside/outside
test based on the closest surfel is used to determine whether collision has occurred
(cf. Section 3.1.4). If there is a collision, a variant of force shading [176] adapted
for point-sampled surfaces is used do determine penetration direction and penetra-
tion depth. Given the positionx of the mass point that is colliding with the surface,
the algorithm finds then (typically n = 10) closest object samples with positions
xi and normalsNi and computes a weighted average penetration depthd and local
surface normalN:

d =
n

∑
i=1

wi ·Ni ∗ (xi −x), (5.2)

N =
n

∑
i=1

wi ·Ni , (5.3)

where the weightswi are defined using normalized distances of the surface points
di = ‖xi −x‖:

wi =
dmax−di

∑n
j=1dmax−d j

. (5.4)

Here,dmax = max({di}). This weighting scheme provides a smooth interpolation
of normals over the surface. When a collision for an active mass point is detected,
the mass is projected onto the surface of the object:

x′ = x+d
N
‖N‖

. (5.5)

If handle points are inside the object, they are not projected outside the object.
Instead, a linear force model with a penalty stiffnessKp is used to provide haptic
feedback to the user:

Fp = KpdN. (5.6)

Depending on the velocityvt that is tangential to the surface, friction forces are
applied:

Ft =−ηdvt , (5.7)

where the friction coefficientη depends on the brush used and the object surface.

5.4.2 Haptic Interaction
All forces acting on handle points are passed to the haptic device as feedback to
the user. Haptic interfaces require a very high update rate in order to generate a
believable impression of a smooth surface. For the haptic device in use, the neces-
sary update frequency is 1 kHz. Therefore, the haptic update is decoupled from all
other computations, such as paint transfer or collision detection. In order to pro-
vide realistic feedback, the main loop updates the collision detection parameters
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5.5 Paint Transfer

Haptic Feedback Loop
(1 kHz)

Linear Force Model

DownsamplingPaint Transfer

Rendering

Main Loop
(30 Hz)

DiffusionCollision Detection

(asynchronous)
Background Processes

Paint drying

Figure 5.4: Processes used in the haptic painting application. The haptic feedback is decou-
pled from the rest of the application to allow high update rates. The actual painting
as well as rendering is performed in a significantly slower loop. Background pro-
cesses are used for tasks that are not time-critical, such as diffusion, paint drying
and downsampling.

d andN whenever possible, while the haptic update evaluates the linear penalty
force and friction model at 1 kHz. Figure 5.4 shows a schematic drawing of the
processes.

In order to avoid discontinuities in the forces displayed to the user, the collision
penalty and friction forces are passed through a simple low-pass filter. This filter
averages the forces over the last 1/60 second. In theory, this results in slightly
viscous behavior. In practice, the inertia of the actual haptic device and the non-
rigidity of the object due to the penalty-based collision response hide these effects
entirely.

5.4.3 Brush Splitting
If a brush with several active masses moves across regions of high curvature, it
might split. Figure 5.5 (a) shows such a case. Such situations can be detected by
checking whether the normal directions for each of the colliding active masses
differ significantly. A threshold of 60◦ is used to determine whether the brush
is split. If it is, internal surfaces in the brush are activated, and paint transfer is
computed using these surfaces. Note that brush splitting is a binary process, the
brush is either split or it is not. Due to the visual similarity of the two states, this
effect is not noticeable for the user. However, it is important during painting, see
Section 5.5.1 for details.

5.5 Paint Transfer
When there is a collision between the brush and the object, paint is transferred.
Figure 5.6 shows the steps of the transfer process. First, a local planar approxi-
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Figure 5.5: (a) When a brush with two active masses moves over a region of high curvature,
the brush is split. (b) If the brush splits, paint transfer is computed in several paint
buffers to better approximate the surface.

(a) (b)

(c) (d)

Figure 5.6: Paint transfer computations. (a) Thepaint buffer is constructed as a least
squares plane around the brush tip. (b) Surface surfels affected by the paint trans-
fer are splatted into the paint buffer. (c) Penetrating parts of the brush surface are
splatted into the paint buffer. (d) After paint transfer is computed in the paint
buffer, the object surface is resampled and the resulting colors from the paint
buffer are re-projected onto the object and brush surfaces.
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mation of the surface around the brush tip is constructed. In this plane, apaint
buffer is created. The paint buffer is a pixel grid in which the actual paint transfer
computations take place. Its resolution is chosen such that each pixel is about the
size of a brush surfel. This ensures that no detail is lost during paint transfer. Once
the paint buffer has been constructed, object surfels and brush surfels are splatted
into the paint buffer. A simple depth test determines the penetrating parts of the
brush surface. Only these penetrating surface parts are affected by the paint trans-
fer. Attribute sets for both brush surfels and object surfels are stored in the paint
buffer to have all information at hand for paint transfer.

Paint transfer is computed on a per-pixel basis in the paint buffer. A full set
of paint attributes as well as penetration depth is available in each pixel, so an
arbitrary paint model can be used. The actual paint model used in this system is
described in detail in Section 5.6.

Once paint transfer is complete, the part of the object surface penetrated by the
brush is resampled to accommodate the information in the paint buffer. One surfel
is created for each paint buffer pixel in the resampled region. Again, this process
guarantees that information present in the paint buffer is not lost. Although the
paint transfer model is inherently bidirectional, the brush surface is not resampled.
Instead, the information in the paint buffer is re-projected onto the brush surface
and averaged onto the existing brush surfels. Since the sampling density on the
brush is high compared to the level of detail one can create with the brush, this is
no limitation for the user. Paint transfer has been described in more detail in [1,4].

When new surfels are created, they replace surfels that are part of the object
surface. New surfels are assigned to the closest original object surfel. We say
they arechild surfelsto their father surfel. Surfels that have become unnecessary
due to resampling are marked as deleted. If deleted surfels are part of the original
surface description, they are retained, but disabled for rendering and paint transfer.
Deleted child surfels are removed from the data structure and replaced with new
surfels.

5.5.1 Split Brushes

In regions of high curvature, the plane that is fitted to the surface is not a good
approximation. This can lead to projection artifacts and distortions if the brush
covers larger areas. In such cases, the ability of the brush to split becomes impor-
tant. A large brush will split when drawn over regions of high curvature. To obtain
a better approximation of the surface, a paint buffer is constructed for each of the
brush tips, thus approximating the surface with several planes instead of only one.
Figure 5.5 (b) shows an illustration.
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5.5.2 Downsampling

The paint transfer resamples the object surface to the resolution of the paint buffer.
If the brush is of a uniform color, this high resolution is unnecessary. Therefore,
a background process permanently checks if parts of the surface can be down-
sampled. For each original object surfel that is marked as deleted, we compute
color variance and normal variance of its children. If these metrics lie below a
user-defined threshold, the child surfels are removed and the father surfel is reacti-
vated. Figure 5.7 shows the effect of downsampling. In the interactive application,
downsampling occurs in the background, in each downsampling step, only a small
part of the surface is processed to guarantee interactivity.

Figure 5.7: The “Fire Dragon” before (left) and after (right) downsampling. The bottom
row shows the model with reduced splat size to give an impression of sampling
densities. Parts of the surface have been painted, resulting in high sampling den-
sity. After downsampling, high sampling density is confined to areas with texture
detail. With appropriate variance thresholds, the two versions are visually indis-
tinguishable.
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5.6 Paint Model

Mimicking a realistic painting experience necessarily involves creating a realis-
tic model for paint behavior. Several models for interactive painting have been
proposed [24–26]. Paint models typically operate on a per-pixel basis. Hence, the
model is evaluated in the paint buffer during paint transfer, where information is
available in a regular pixel format. However, the adaptive and irregular structure
of the underlying surface representation makes modifications and extensions of
the paint model necessary once effects other than paint transfer are considered.

The paint model described here is based on the basic paint transfer model by
Baxter et al. [25]. Paint is described with a set of attributes determining paint
behavior. Most importantly, the visual appearance of the paint is determined by
a dry colorCd and a wet colorCw, as well as an optical densityρ. The optical
density determines how transparent the paint is while wet. Dry paint is assumed
to be entirely opaque. To determine the visible color of a point given the wet color
volumeVw, we evaluate

C = α ·Cw +(1−α) ·Cd, (5.8)

whereα = min(ρVw,1) weighs the influence of the wet color on the visible color.
While we use simple RGB mixing of paint, more complex models such as the
Kubelka-Munk model can be used without incurring major changes [58, 121].
Note that the word color is used to refer to not only an RGB value, but a set of
attributes determining paint appearance, such as other rendering parameters like
reflectivity and shininess.

When brush and surface interact, paint is exchanged. The paint exchange only
affects wet paint. The volume of paint that is mixed depends on the pressurep
applied to the surface and a paint-specific transfer rateτ as well as the interaction
time ∆t. Paint mixing between two surfelsi and j can then be described as

∆V i
w = (1−e−τi→ j p∆t)V i

w, (5.9)

∆V j
w = (1−e−τ j→i p∆t)V j

w, (5.10)

Ci,new
w =

(V i
w−∆V i

w)Ci
w +∆V j

wC j
w

V i
w−∆V i

w +∆V j
w

. (5.11)

C j,new
w is computed analogously. Ifτi→ j 6= τ j→i , paint transfer is not symmetric.

This additional degree of freedom can be used to fine-tune paint transfer to make it
more usable. Paint flowing back to the brush, while a realistic effect, might not be
wanted in some situations. Figure 5.8 shows an example illustrating bidirectional
paint transfer.
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Figure 5.8: A stroke through a wet part of the surface. Top: With bidirectional paint trans-
fer. Bottom: Without transfer from surface to brush (τSurface→Brush= 0).

5.6.1 Paint Drying
To simulate the drying of paint, wet paint volume is converted to dry paint with
time. This process is performed continuously in the background. For each object
surfel, a paint volume of∆V is transformed from wet to dry paint:

∆V = (1−e−κ∆t)Vw. (5.12)

The new dry paint color is then computed similar to (5.11):

Cnew
d =

VdCd +∆VG(Cw)
Vd +∆V

. (5.13)

Here,∆t is the time since the surfel was last visited by the drying process, andκ
is a parameter defined for each paint type. As wet paint dries, its appearance does
not stay the same. This is modeled using thedrying functionG(·), which reduces
reflectivity and shininess, and slightly brightens the color.

Note that since wet and dry paint have different appearance, it is not sufficient
to only evaluate paint drying before paint transfer computations, since that would
lead to sudden changes in appearance.

Paint on the brush is not subject to drying. While certainly realistic, the effect
is generally unwanted, and was found to disturb users.
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(a) (b)

Figure 5.9: Surface diffusion. (a) A stroke with and without diffusion. (b) Distribution of
wet paint volume after the stroke.

5.6.2 Diffusion
Watercolor or Aquarelle painting heavily relies on transport effects to achieve their
typical style. Several researchers have proposed models to simulate the behavior
of water-based paint [58, 125, 188, 195, 206]. These range from simple textured
strokes to complex physical simulation of the interaction between pigments, water,
and paper. In this section, a simple diffusion method is presented that simulates
transport of pigments across the surface.

For a functionV(x, t), the diffusion equation can be written as

∂
∂t

V(x, t) =−D ·∇2V(x, t), (5.14)

whereD is the diffusion coefficient matrix. For isotropic diffusion,D reduces to
a scalar. A discretization for two surfelsi and j at positionsxi andx j yields the
paint volume that is exchanged between the two surfels in a given time interval
∆t:

∆Vi j =
1
2
(Vi −Vj)e

− 1
Di j ∆t , (5.15)

whereDi j = (xi −x j)TD(xi −x j) is the diffusion coefficient between the two sur-
fels. Because of the exponential decay of∆Vi j with distance, we restrict the com-
putations to a small neighborhood aroundi. The parameterD depends on the paint
type used.

Similar to the paint drying and downsampling computations, surface diffusion
is computed asynchronously in the background. The system maintains a list of
surfels with non-zero wet paint volume. Whenever a diffusion step is scheduled,
a surfel is taken from the list and (5.15) is evaluated for all neighboring surfels.
Then, paint volume is exchanged with all of these surfels, and their colors are
mixed according to (5.11). Figure 5.9 shows the effect of surface diffusion.
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(a) (b) (c)

Figure 5.10: Surface effects. (a) Hair imprints in viscous paint (detail of Figure 5.12). (b)
Beaten gold or mosaic pattern. Small patches are restricted to a single normal
direction. The detail in (a) and (b) is purely geometric. (c) Metallic paint. Envi-
ronment mapping is used to give the impression of a reflecting surface. (b) and (c)
are details of the “Fire Dragon” model shown in Figure 5.7.

5.6.3 Geometric Detail
Very viscous paint such as oil or acrylic paint is not absorbed by the canvas mate-
rial, but instead forms layers of finite thickness. The brush or tool used to apply the
paint leaves imprints in the paint. In order to simulate these effects, the geometry
of the surface has to be changed. Since the surface is resampled during painting,
we have complete control over both appearance and geometry of the new surface
samples. Depending on the brush type used, we carve a geometric pattern into the
newly generated surface, thus adding layers of paint, or molding the applied paint
with brush imprints. The surface is shaped using an offset function whenever the
brush velocity is aligned with the direction of the brush skeleton. Thus, the illu-
sion of brush hair imprints is generated. Figure 5.10 shows surface patterns that
were created by small-scale geometric modifications.

Note that it is not possible to use this technique for modeling larger features.
While newly created surface surfels accurately represent the new surface geome-
try, collision detection relies on the static search data structure based on the origi-
nal geometry. If the current surface deviates too far from the original surface, this
might lead to incorrect collision information.

5.7 Rendering
Except for the brush handle and the palette, which are represented using triangle
meshes, all surfaces in the painting system are point-sampled and represented with
surfels. While hardware accelerated point rendering has made interactive render-
ing possible, frame rates of well over 20 frames per second are necessary in order

66



5.7 Rendering

OpenGL

brush, palette brush, palette

OpenGLsplatting splattingsplatting

all surfels added surfels removed surfels

rendering result

compositing
shading

normalization
shading

normalization

rendering result

compositing

shadow
 m

ap

color im
age

depth im
age

shadow
 m

ap

color im
age

depth im
age

(unnorm
alized)

color im
age

w
eight im

age

(unnorm
alized)

color im
age

w
eight im

age

(unnorm
alized)

color im
age

w
eight im

age

depth im
age

+ −
+ −

Figure 5.11: The rendering pipeline. Left: Full update. Right: Differential update.

to deliver a believable virtual painting experience. Painted models quickly ap-
proach half a million surfels, rendering all of these in each frame is not possible
in an interactive setting.

Therefore, only parts of the surface that have changed are redrawn. This in-
cludes the brush tip and, if a paint was transferred since the last rendered frame,
the parts of the surface that have changed. The renderer supportsun-splattingof
surfels. Thus, changed parts of the surface can be updated without redrawing the
complete image. The renderer also supports environment mapping to simulate the
visual appearance of reflective paint. Figure 5.11 shows the rendering pipeline.

The point renderer creates a color image, the corresponding accumulated
weights, and a depth image. Experience has shown that shadows provide cru-
cial depth cues in the absence of 3D vision. Hence, a shadow map is created from
the brush to indicate its position relative to the object. Reflectivity is evaluated
per surfel using a cube map, the resulting colors are blended normally. More
recently, deferred shading for point-sampled objects has been presented [38].
This technique would make it possible to evaluate reflections on a per-pixel basis,
leading to more accurate reflection lines. However, it is only available on graphics
hardware supporting floating point framebuffers.

In standard surfel splatting, the accumulated per pixel weights are used to nor-
malize the color image and then discarded. To permit differential updates, the un-
normalized color image as well as the weights are retained. In case of a differential
update, an image of all deleted surfels and one of all added surfels is created, as
well as a weight image for each of these. These are then combined with the source
image in the final normalization pass, which additionally draws palette and brush
handle. The partial update does not change the depth buffer. For the small-scale
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Chapter 5 Appearance Modeling using Haptic Interaction

carving that is used to simulate layers of paint, this is not a problem, however,
this technique is not well-suited for carving operations modifying the geometry
on larger scales.

Lists of surfels to be subtracted and added to the image are kept and updated
whenever painting events invalidate parts of the surface. These lists are used to
compute partial updates whenever a frame is rendered. Full updates are computed
when the object was moved (requiring all visible surfels to be updated), or when
the number of surfels in the partial update lists exceeds a threshold, making partial
updates unprofitable. Due to numerical inaccuracies in the 8 bit framebuffer, a
full update should be performed if certain pixels are updated more than a certain
number of times. A per surfel update counter is used to trigger a full update if any
region is painted repeatedly.

5.8 Results
The painting system as described above was used to create the painted bunnies
shown in Figure 5.12. The models have 300000 to 750000 surfels. The main loop
runs at approximately 30 Hz, i. e. 30 paint events are evaluated each second (mea-
sured on a Pentium 4 at 3 GHz). A differential rendering update is scheduled after
each paint event, such that painted strokes become visible immediately. Due to
the possibility of differential updates, the frame rate is almost independent of the
number of object samples, while the time for a full update depends linearly on
the number of surfels. The only part of the computations during painting that is
influenced by the total number of surfels is the collision detection, which takes
O(logn) time for n sample points. However, compared to rendering times, the
cost for collision detection and brush simulation is negligible (below 100µs).
This guarantees stable frame rates — the system remains usable even for large
input models. Table 5.1 gives rendering times for full updates. For comparison, a
scatter plot shows differential update times depending on the number of updated
surfels. Typical differential updates affect up to 5000 surfels, and are completed
in 15 ms.

Figure # Surfels Rendering time
not shown 96518 123 ms
5.12

middle 347424 497 ms
top-left 398484 610 ms
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Table 5.1: Rendering performance. The table lists average rendering times (full update) for
several models. The graph on the right shows timing for differential updates as a
function of the number of updated surfels.
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5.9 Discussion
The results show the advantages of using a point-based surface representation.
By abandoning a more rigidly structured representation such as textured triangle
meshes, we gain the flexibility needed to create a believable virtual painting expe-
rience. Several aspects are noteworthy:

• Surfels represent both texture and geometry. As samples of both surface po-
sition and color (as well as, in our case, paint attributes), they allow for local
modification of both aspects of the object surface in a unified fashion. Since
the object surface is resampled during painting, we are free to arbitrarily
modify the new surface, not only changing its color, but adding geometric
detail as described in Section 5.6.3.

• It is easily possible to locally resample the surface, adding detail where nec-
essary. In mesh-based representations, storing and dynamically and adap-
tively changing surface detail causes major problems. Algorithms for the
maintenance of dynamic texture atlases have been developed that enable
adaptive storage of appearance information [46, 104]. However, problems
like discontinuities at triangle boundaries and distortion artifacts due to pro-
jection errors remain. The system presented here, based entirely on point-
sampled surfaces, does not suffer from these problems.

• The surface is resampled when it is changed, giving the system full control
over the surface geometry after each paint event. This is used to implement
small-scale geometric effects in order to realistically model viscous paint.
While in principle, this would be possible to implement for mesh-based ed-
itors, it would cause additional complications for the maintenance of adap-
tive textures. Baxter et al. have implemented geometric manipulations for
their painting system, which paints into a fixed-size texture on a plane using
displacement textures [26].

When painting, geometric detail can be added to the surface (see Section 5.6.3).
These changes to the object geometry are restricted to small surface details. True
carving that would significantly change the object shape is not possible. The rea-
son for this is twofold: Due to performance considerations, the kd-tree used for
collision detection is entirely static. This is a design choice deemed necessary
as stable and interactive frame rates are critical to convey realism. Unfortunately,
this means that collision detection cannot reflect the changes to the geometry made
during painting. Changing the geometry during painting would lead to divergence
of haptic and visual experience, which is obviously unacceptable. The second
problem is related to rendering. Significant changes in geometry would require
an update of the depth map. This, however, is not easily possible during partial
updates. A complete re-rendering would be necessary, which would severely de-
grade interactivity.
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Chapter 5 Appearance Modeling using Haptic Interaction

Figure 5.12: Art on Bunnies. Several designs produced using virtual painting. The bunnies
shown here took three to five hours to create.
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5.9 Discussion

The choice of data representation is a critical design decision for an interactive
system as presented here. Due to their flexibility, point-sampled are a near optimal
choice for virtual painting. The most noticeable drawback is that rendering is slow
compared to mesh-based geometry. On more recent hardware, this is less and less
problematic as splat throughput reaches levels where models with surfel counts of
half a million splats can be rendered at more than 30 Hz [38], removing the need
for workarounds like differential updating.

Using the painting system described here, it is possible to create visually ap-
pealing painted models. The user interface is designed to be intuitive and hides
the underlying representation. This makes the system useful for non-expert artists.
Once the artwork is completed, it is represented as a point cloud. In order to use it
in mesh-based systems for further processing, modeling, or animation, it needs to
be converted to a triangle mesh. The next chapter presents a method for conversion
of point-sampled objects to textured triangle meshes.
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Chapter 6

Conversion
While point-sampled surfaces are a good choice for many applications, such as the
one described in the last chapter, most algorithms and tools for geometry process-
ing, editing, and rendering work on triangle meshes. To ensure interoperability,
conversion between point-sampled surfaces and triangle meshes has to be imple-
mented.

Early work on point-sampled surfaces includes techniques to convert traditional
mesh-based or implicit representations to a point-sampled surface [165].LDC
sampling[131] is one such technique. Texture and geometry are sampled by or-
thogonal views, yielding a sampling with guaranteed maximum surfel distance.

Conversion from a point cloud to a triangle mesh is much harder. Algorithms
for surface reconstruction from point sets have been developed in computational
geometry, for instance [15, 16, 33, 35, 45, 65, 101]. However, these algorithms are
only concerned with geometry, not texture. Directly triangulating a point cloud
will result in a impracticably large triangle mesh. In triangle meshes, geometry
and texture are not sampled in a unified manner, but appearance information and
small-scale detail is separated from the geometry and stored in textures, yielding
a significantly smaller base mesh and detailed texture information in a compact
form.

In this chapter, an algorithm separating geometry and texture information is
presented that solves the problem of converting a point-sampled object to a mesh
of reasonable size and a texture atlas storing surface detail and appearance infor-
mation.

The algorithm first generates a mesh by triangulation and reduces its complexity
using established simplification techniques. Once a mesh of appropriate size has
been computed, texture patches are computed for each of the mesh triangles. The
patch size is chosen adaptively to capture detail where present, while conserving
space wherever low resolution is sufficient. Finally, the texture patches are packed
into a texture atlas. The output mesh can then be used by tools for mesh processing
and editing.
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Chapter 6 Conversion

6.1 Mesh Generation

In a first step, a mesh is computed that approximates the geometry represented
by the input point cloud. Such a mesh can be computed by triangulating the in-
put point cloud using Delaunay triangulation, for example using the Cocone and
Tight Cocone algorithms [15,65,66]. Tight Cocone always generates a watertight
triangulation, while the Cocone algorithm can be used to triangulate surfaces with
boundaries. The triangulations produced by these algorithms are generally of good
quality. In the presence of noise, a less susceptible triangulation method, for ex-
ample Robust Cocone [67], is used. The result of a triangulation contains almost
every sample point as a mesh vertex. While containing all information present
in the point cloud, the resulting mesh is unwieldy and unnecessarily complex in
regions of low geometric detail.

Since the goal is to separate textures and geometry, the mesh is simplified in
a second step. This ensures that the mesh resolution is adequate to represent the
object geometry, and not influenced by the object texture.

Garland and Heckbert’s simplification method [80] is steered by a single quality
parameter and thus well suited for the task. The algorithm contracts pairs of ver-
tices if the operation only changes the surface geometry within the user-specified
threshold. Since in our case, it is important that the topology of the mesh is not
changed, only pair contractions along edges of the mesh are allowed. The result of
the simplification is a mesh that approximates the original surfel geometry, while
having an appropriate triangle count to capture the input geometry.

Without changing the subsequent texture generation algorithm, the triangulation
and simplification steps can be replaced with a different surface reconstruction
method that is insensitive to texture information present in the set of samples, for
instance using an implicit function as intermediate representation [101].

6.2 Texture Generation

The main part of the conversion algorithm deals with the generation of textures
for the simplified mesh. The problem can be broken down to individual triangles:
A texture patch is created for each triangle in the mesh. Since many small textures
are not practical, texture patches are packed into one or more texture atlases that
can be used in rendering or further processing.

The patch rendering algorithm uses iterative refinement to adapt the patch size
to the detail present in the original model. An error metric controls the texture
size.
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render patch

evaluate
(6.1)

resize patch

(a) (b) (c)

Figure 6.1: Rendering texture patches: (a) Patch rendering setup for a triangle. The view-
port is parallel to the triangle, the triangle’s longest edge is aligned with thex-axis
of the framebuffer. (b) Iterative refinement. (c) Patch extraction. Blue pixels are
used in the texture atlas, the outline of the texture patch is highlighted in red.

6.2.1 Patch Rendering
Computing the texture patches for mesh triangles is essentially an image-based
technique. EWA splatting [232] is used to render the texture patches.

For each trianglet, the viewing transformation for patch rendering is set up such
that the triangle lies in the image plane, with its longest side parallel to the screen-
spacex-axis. The surfels are projected onto the triangle plane using an orthogonal
projection. Hidden surface removal is performed using visibility splatting [165].
Only few surfels will contribute to each texture patch, and an acceleration structure
can be used to significantly speed up patch rendering. During splatting, visible
surfels whose projected splat ellipses intersect with the triangle are added to a set
Pt . Figure 6.1 illustrates the rendering setup.

The viewport size determines the resulting patch size. Starting from the smallest
possible patch size, the viewport size is enlarged iteratively until an error function
E drops below a user-defined threshold.E measures the difference between the
color function reconstructed from the irregular point samples,CPt (x,y), and the
piecewise linear function represented by the texture,T(x,y).

E =
∫

(x,y)∈t
e(CPt (x,y),T(x,y))dxdy

≈ ∑
s∈Pt

As ·e(Cs,T(xs,ys)) (6.1)

Here, (xs,ys) is the projected position, andCs is the color of the surfels. The
integral is approximated numerically by summing up the errors at the projected
surfel centers, weighted with the area of the surfel,As. The local errore(·, ·) is a
metric for colors. We use the metric induced by theL2 norm in RGB space. The
same procedure can be applied to bound the error for normal and depth textures.
Note that in general,CPt (xs,ys) 6= Cs. The reason for this is that the reconstruction
of the color function using EWA splatting is not interpolating. Therefore, there
can be pathological cases in which the error never drops below the user threshold,
independent of the resolution.
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The iteration is terminated once the texture error is below a threshold, or when a
maximum resolution is reached. This maximum sensible resolution can be derived
from the surfel arrangement inPt : Given the minimum distancedmin between two
surfels inPt , we can safely resample the information contained inPt onto a regular
grid with a pixel spacing of no less thans = 1

2
√

2
dmin, independent of the grid

resolution.
We can thus exit the refinement loop once the pixel spacing falls belows. This

defines an upper bound on the texture resolution. In most cases, however, the
refinement will exit early as the error (6.1) drops below the user-defined threshold.

Once the patch size has been determined, the triangular texture patch is ex-
tracted from the framebuffer by rasterizing the triangle. To make sure that no in-
terpolation errors appear along the triangle edges, the triangle is rasterized with
a one pixel boundary to all sides. The resulting texture patch is stored and later
packed into a texture atlas.

Normal and Depth Textures
EWA Splatting can be used to interpolate any surfel attribute, such as normals and
depths. This data can be used for normal mapping or displacement mapping re-
spectively. The procedure, including the iterative patch size computation, remains
largely unchanged, however, a suitable local error functione(·, ·) needs to be found
for other attributes. For normals,

eN(Ns,Nt) = 1− (Ns∗Nt) (6.2)

is a good choice. Note that in general, normal, color, and depth textures for a given
triangle will not be of the same size.

6.3 Texture Packing
Once all texture patches are available, these are compiled into rectangular texture
atlases. Previous work in the area has applied packing algorithms that allow shear-
ing [54] and even resizing [189]. However, this would defeat the purpose of com-
puting an optimal patch size as in Section 6.2.1. Methods for optimal placement
of polygons into a square exist, but their high complexity quickly becomes pro-
hibitive for more than a few triangles. Heuristics and machine learning techniques
have been used to alleviate these problems [20, 50, 122]. The texture packing al-
gorithm described here is a variation of a bottom-left packing strategy [69, 97]. It
packs triangular patches into bigger rectangular textures without resizing or shear-
ing them.

The algorithm creates rows of triangles of similar height. Each input trianglet
is aligned such that its longest edge is parallel to thex-axis of the texture, with the
remaining vertex above thisbase edge. The angles left and right of thebase edge
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are called thebase anglesαl (t) andαr(t), respectively. The height of the triangle
is denotedh(t).

In each iteration, a row height̄h is chosen and a set of trianglesTh̄ whose
height differs only slightly fromh̄ is computed. These triangles are candidates
to be placed in the current row. From this set, the best-fitting triangle is selected.
The quality of a triangle with respect to a row is determined by comparing the
base angles of the new triangle with the free base angleβ of the last triangle in the
row. The triangle that minimizes min(|αl (t)−β|, |αr(t)−β|) is inserted into this
row. It is aligned with the bottom or top border of the current row and flipped hor-
izontally if |αl (t)−β|> |αr(t)−β|. It is then pushed as far to the left as possible.
Every second triangle is flipped vertically. New rows are started if a row is full.

Input : Set of triangular patchesT
setymin = 01

while |T|> 0 do2

seth̄ = maxt∈T h(t)3

setTh̄ = {t ∈ T : h(t) > h̄−∆h}4

setβ = 90◦5

setmirror = f alse6

while |Th̄|> 0 do7

sett = arg mint∈Th̄
{min(|αl (t)−β|, |αr(t)−β|)}8

if |αl (t)−β|> |αr(t)−β| then9

flipHorizontal (t)10

setβ = αl (t)11

else12

setβ = αr(t)13

if mirror then14

flipVertical (t)15

setmirror = ¬mirror16

setTh̄ = Th̄\{t}17

if insert (ymin, t) then18

setT = T \{t}19

setymin = ymin + h̄20

Algorithm 6.1: Packing texture patches into a rectangular texture atlas.

Algorithm 6.1 shows a pseudo-code version of the algorithm. The function
insert (·, ·) inserts a triangle at the giveny-Location in the texture. The triangle
is inserted on the far right and pushed as far left as possible. If there is not enough
space in the texture to accommodate the triangle, the function returnsf alse. The
algorithm then tries to find another triangle in the height range to add to this row.

Figure 6.2 shows the result of this texture packing algorithm. Typically, 85%
to 95% of the texture space is used. Texture usage tends to be better if more and
smaller texture patches are available.
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Figure 6.2: Result of the texture packing algorithm for the Fire Dragon model. The texture
was split into several 2n×2n pieces. 89% of the texture are used.

6.4 Results

The conversion algorithm was implemented as a Pointshop3D plugin. The only
parameters necessary for the conversion are an error bound for the mesh simplifi-
cation and a error threshold for the texture generation, making conversion simple
and intuitive. The algorithm outputs both color and normal textures by default,
thus creating a faithful reconstruction of highly detailed surfaces present in the
point-sampled original models even for lower resolution meshes.

Figures 6.3 and 6.5 show painted point-sampled models and their corresponding
meshes generated by conversion. As can be seen in Figure 6.3 (c) and (d), fine
detail present in the original model texture is preserved in the conversion. Surface
sampling with surfels and triangles on the back of the bunny model are shown in
Figure 6.4.

Since the patch size is computed for each triangle individually, regions with
low texture resolution in the input point cloud only take up little space in the
output texture. In this example, the texture patch for the triangle containing the
bee occupies 5228 pixels in the color texture. The patch of an adjacent, uniformly
blue triangle which is of comparable size occupies only 6 pixels. Note that the
converted bee patch appears slightly smoother than the surfel rendering. This is
due to the additional linear texture interpolation in the mesh-based rendering.

Figure 6.6 shows the effect of simplification on the result. It is hard to visu-
ally distinguish between the original point cloud and the output of our conversion
algorithm using reasonable simplification parameters. Only after extreme simpli-
fication of the mesh, simplification artifacts become visible, especially along the
silhouette. These artifacts are due to inappropriate sampling of the geometry, they
are not inherent in the conversion algorithm. If generation of normal textures is
not enabled, the lack of geometric detail quickly becomes noticeable.

Table 6.1 lists sizes and conversion times for the models.
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(a) (b)

(c) (d)

Figure 6.3: A converted painted bunny-model. (a) Surfel model. (b) Textured mesh (10000
triangles). (c) Detail on the surface of the surfel model, (d) on the textured mesh.

(a) (b)

Figure 6.4: Sampling on the back of the bunny model: (a) Point-sampled original. (b) Tri-
angle mesh. The mesh resolution only depends on geometry, the texture detail on
the back of the bunny results in upsampling of the corresponding texture patches
only.
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(a) (b) (c)

Figure 6.5: The (a) original and (b) converted dragon model. (c) Mesh resolution.

(a) (b) (c) (d)

Figure 6.6: Effect of simplification on the converted Igea model. After extreme simplifi-
cation, discontinuity artifacts become visible in the texture. Top row: (a) 11340
triangles. (b) 3420 triangles. (c) 446 triangles. (d) 30 triangles. Middle row: Mod-
els rendered without bump mapping. Bottom Row: (a) Surfel model. (b)-(d) Mesh
resolutions.
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Model # Points # Triangles Textures Times [s]
Igea 134345 11340 2.3MB/93% 258,15,35
Bunny 349989 10000 3.8MB/86% 511,28,104
Dragon 553619 30000 12.1MB/89% 907,37,444

Table 6.1: Statistics for converted models. The data shown are: The number of points in
the input model, the number of triangles after simplification, number and size of
(color) textures, and the timings for triangulation/simplification/texture generation
(in seconds).

6.5 Discussion
The conversion algorithm proposed in this chapter produces high-quality meshes
and textures. If the mesh geometry does not deviate significantly from the sur-
fel geometry, the converted objects are visually indistinguishable from the point-
sampled originals. Only under large magnifications, differences become visible.
Most of these are caused by linear interpolation between texels, leading to discon-
tinuities at the triangle boundaries if two adjacent triangles have different patch
sizes. Higher order texture interpolation [185] alleviates the problem, but it is sel-
dom available in off-the-shelf rendering and editing systems.

Older approaches have used nearest neighbor interpolation [97, 189] or linear
interpolation [138] to compute texel values. No texture filtering is performed.
Cignoni et al. [54] propose an interesting texture-preserving simplification method
that does not assume a specific mesh decimation technique. However, the com-
puted textures are not sensitive to the input texture detail. Both Maruya [138]
and Soucy et al. [189] determine patch sizes using the number of vertices pro-
jected onto a triangle. This heuristic can result in under-sampling in regions of
varying sampling density. If a surface is densely sampled in a uniform color, or
densely sampled to represent a linear color gradient, determining the patch size
based on the number of vertices leads to large textures where only little informa-
tion is present on the surface. The adaptive refinement described in Section 6.2.1
works around these problems and guarantees an adequate sampling in all cases.

The resulting texture atlas is tightly packed and does not introduce distortion
artifacts due to scaling or shearing of patches. However, it is not well suited for
manual editing in an image manipulation program, since adjacent triangles do not
have neighboring texture patches in the atlas. It is, however, possible to use editing
tools designed to handle texture atlases.

Standard mip-mapping techniques cannot be applied for texture simplification
without introducing severe artifacts. However, it is easy to extend the algorithm to
produce mip-mapped versions of the texture atlas. Custom tailored mip-mapping
can be performed by not only dumping the texture patches at the computed optimal
resolution, but also at half and quarter resolutions. The texture packing only needs
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(a) (b)

Figure 6.7: Artifacts after extreme simplification. (a) Original geometry and simplified
mesh around a saddle point. (b) No texture is available for the lower part of the
triangle (red), the texture in the upper part is distorted due to the orthogonal pro-
jection.

to be carried out once, the smaller resolution patches are then assembled in the
same pattern as the original resolution.

The triangulation of the input model is by far the most time-consuming task.
Since the texture generation does not assume anything about how the mesh was
acquired, it is possible to substitute any surface reconstruction algorithm for the
triangulation and simplification steps. An adaptive version of [101] would be a
suitable candidate.

Due to the different interpolation schemes used for textures and point samples,
bilinear interpolation and EWA splatting, respectively, the reconstructed color
functions look slightly different (e. g. Figure 6.3 (c) and (d)). However, the er-
ror metric accounts for these differences and hence the error caused by different
interpolation is bounded.

Note that a crucial assumption during texture generation is that the mesh ade-
quately represents the geometry of the input point cloud. Under extreme simpli-
fication, textures become distorted and the resulting mesh can even contain trian-
gles that cannot be fully textured using the method described here. In these cases,
the orthogonal projection of the object surfels does not entirely cover the triangle
area. These triangles typically lie around points of negative Gaussian curvature
(see Figure 6.7 for an example).

If the surface deviates from the mesh at the mesh edges, the orthogonal pro-
jections either ignore or repeat parts of the surface. Figure 6.8 (a) illustrates the
problem. This can cause discontinuity artifacts when the mesh is drastically sim-
plified.

Hale [97] shows how the projection can be adapted to gracefully handle these
cases. He interpolates the vertex normals over the area of each triangle in order
to find a projection normal for each point on the triangle. Applying the interpo-
lated normals projection to our approach, each surfel has to be splatted using its
own projection normal. This method greatly alleviates distortion artifacts, how-
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(a) (b)

Figure 6.8: (a) Using orthogonal projection of adjacent faces may ignore parts of the orig-
inal surface (red). (b) A mushroom-shaped geometric detail is discarded by the
simplification algorithm. The resulting texture can have discontinuities along the
contours of the mushroom.

ever, finding the correct projection normal for a surfel is a nontrivial optimization
problem.

Another class of artifacts is introduced by surface patches with depth com-
plexity greater than one. Figure 6.8 (b) shows an example. If a small part of the
geometry is entirely discarded by the simplification, the rendering will result in
discontinuities along the contours. A remedy to this class of artifacts is to use
a parameterization of the original, as done in [138, 189]. It might be possible to
modify a method like [138] to use EWA splatting for texture filtering. However,
surfels have finite extent and cannot be attributed to only one triangle, complicat-
ing the process. A method like this requires triangulation and lacks the flexibility
to change the mesh generation method.

Using the method described above, point-sampled models can be converted to
triangle meshes. The previous chapters presented work on modeling with point-
sampled surfaces, a surface representation with only minimal internal structure.
Abandoning consistent connectivity leads to problems, for example with the rep-
resentation of discontinuities, as discussed in Chapter 4. On the other hand, the
lack of structure makes some operations significantly easier, which can be ex-
ploited in applications such as the painting system presented in Chapter 5.

In the second part of this thesis, the focus will shift from modeling to anima-
tion. The effect of using less structured representations in simulation algorithms
will be examined. The next chapter will treat animation of thin shells, using point-
sampled surfaces as underlying surface representation, before moving on to algo-
rithms for fluid simulation and continuum elasticity in Chapters 8 and 9, respec-
tively.
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Chapter 7

Point-Sampled Thin
Shells

With the availability of algorithms for shape and appearance modeling that make
point-sampled surfaces a fully-fledged general-purpose surface representation, the
question of how to animate such surfaces arises. In this chapter, a method for
simulation of point-sampled surfaces as thin shells is presented.

Thin shells are almost two-dimensional objects, such as cloth or sheet metal.
Many everyday objects are of this type, like clothing, soda cans, and cars. The
behavior of these objects is hard to capture with volumetric techniques, since the
discretization degrades as the thickness decreases. In order to animate surfaces as
thin shells, specialized techniques are called for.

Most thin shell simulation methods use triangle meshes as a material discretiza-
tion [55,89,199]. Since our goal is to animate point-sampled surfaces directly, we
avoid triangulation and instead discretize the necessary surface operators without
requiring a consistent connectivity.

Other approaches for simulation of point-sampled shells have been proposed.
Guo et al. [96] use a global conformal parameterization to construct local frames
in which the shell functionals can be evaluated. Since the parameterization is not
isometric, the stiffness may vary locally.

Instead of requiring a globally consistent parameterization, we embed splines
into the surface. Thesefiberslocally measure stretch and curvature. The informa-
tion measured by the fibers is then consolidated in the nodes of our discretization,
yielding a finite-difference type approach.
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7.1 Physics of Thin Shells
The fundamental theory underlying thin shells is based on the Kirchhoff-Love
theory of thin shells [85]. The thin shell functional depends on surface curvature,
and thus contains second order derivatives of the displacement function.

The potential elastic energy stored in a deformed thin shell can be derived as
the limit case for an infinitely thin material. The elastic energy then breaks down
into astretching(or membrane) term and abending(or flexural) term defined on
the surfaceS of the thin shell:

Epot = Es+Eb =
∫
S

Us+Ub. (7.1)

Here,Es andEb are bending and stretching energies andUb andUs are the re-
spective energy densities. While the former depends on a first order differential
operator, the latter includes a second order term. In addition, the full formulation
includes nonlinear geometric differentials, such as curvature, which are very often
linearized to become numerically tractable [47].

Finite element solutions for thin shell problems require basis functions with
C1 continuity across elements. Such elements are hard to design and pose signif-
icant numerical difficulties, and non-conforming FEM can be used instead [23].
One way of creating conforming higher order terms is to exploiting the specific
properties of subdivision surfaces [55].

Following Terzopoulos et al. [199], the elastic energy of the thin shell can be
defined in terms of the first and second fundamental forms to penalize deviations
from the original shape. Given a surfaceS to animate, the energy densities in any
pointx ∈ S can be written as a functions of the first fundamental tensorR and the
shape operatorS:

Us =
Ks

2
‖R−R0‖2

p, (7.2)

Ub =
Kb

2
‖S−S0‖2

p. (7.3)

Here, the superscript 0 denotes the undeformed (rest) value. To measure difference
in shape, a pseudo-norm‖·‖p is used. The parametersKb andKs are stiffness con-
stants for bending and stretching deformations respectively. The first fundamental
tensorR measures differential area, whileS measures curvature, thus providing
an intuitive interpretation of the energy terms.

7.2 Discretization
The core idea of the method presented here is to sample the surface at distinct
points and directions. First, (7.2) and (7.3) are discretized on a setP⊂ S of sim-
ulation nodes on the surface. The sampling with nodes does not need to be regu-
lar, but it is crucial that the surface is adequately sampled, and that the sampling
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(a) (b)

Figure 7.1: (a) Sampling of the surface with simulation nodes. Fibers are created connect-
ing the simulation nodes, the other points defining the surface are not used in the
simulation, and are passively animated. (b) The network of fibers on the surface
of the object.

density does not vary abruptly. Given a point-sampled input surface, nodes are
chosen using a clustering algorithm also used for simplification [158], yielding a
good sampling with simulation nodes that adequately represents the surface ge-
ometry (see also Section 3.3). The simulation nodes carry the mass of the model,
and the energy is discretized in the node positions. In each node, a set of para-
metric curves is fitted to the surface. Thesefibersmeasure normal curvature and
arc length in their respective directions. Figure 7.1 illustrates the sampling. Sur-
fels that are not used as simulation nodes are passively animated using skinning
as described in Section 7.4.

7.2.1 Fibers
Each node represents a small surface patch on the thin shell. The fibers passing
through a node are used to calculate the surface area and curvature at that point,
which are in turn used to compute the elastic energy density. Fibers are natural
cubic splines which are defined by three points: a central node and two of its
neighboring nodes. The neighborhood of one such node with embedded fibers is
shown in Figure 7.2.

Fiber creation
The fibers sample a three dimensional space: two dimensions for the position on
the surface, plus one dimension representing the direction of the fibers. We have to
make sure that all these dimensions are adequately sampled. While the clustering
algorithm used for node selection ensures a good sampling for the positions on the
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i

j

j ′

(a) (b)

Figure 7.2: Fiber creation. (a) In a neighborhood of nodesNi around a central node atxi ,
one fiber is created for eachj ∈ Ni , connecting the nodesj, i, and j ′, where j ′ is
the most opposite node toj. (b) Fibers created for one neighborhood on an actual
surface. Note that several fibers can end in the same point.

surface, a roughly isotropic sampling in the directional domain has to be enforced
by the fiber creation algorithm.

A simple heuristic creates such an isotropic sampling. For a nodei at position
xi , let Ni = { j1, . . . , jni} be the set of nearest neighbor nodes toi. For each node
j ∈ Ni , we find the most opposite point with respect toxi , i.e.

j ′ = arg min
j ′∈Ni

(x j ′−x j)∗ (x j −xi). (7.4)

A fiber connecting the nodesi, j and j ′ is then created, duplicate fibers are dis-
carded (see Figure 7.2). There are pathological cases in which this heuristic leads
to degenerate sampling, in particular when the neighborhood is highly anisotropic.
However, since we control which points on the surface become simulation nodes,
these cases can be easily avoided. The clustering algorithm used to select simula-
tion nodes produces well-behaved neighborhoods.

Each fiber is a natural cubic spline. Its parametric representation is given as a
piecewise cubic polynomialf(t) whose coefficients linearly depend on the defin-
ing points. The exact expressions for the coefficients are given in Appendix B.

Membrane Energy
The surface area represented by each node is determined by the local sampling
density. Because of the way the node position on the surface are chosen, the neigh-
borhood shape is roughly circular for each node. This fact can be used to define
an approximation of the area that each node represents. Each fiberk provides us
with a measurement of the area associated with its central point:

Ak =
π
4

l(fk)2, (7.5)
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f1

f2

i

t1
t1

t2

θ

∂f
∂t2

xi

N(xi)

(a) (b) (c)

Figure 7.3: (a) Area approximation using two arc length samples from the fibersf1 andf2.
Each fiber estimates the area of the sample according to its own length only. The
area assigned toi is the average of the fiber areas. (b) Approximating the curvature
of a fiber throughxi . The angleθ between the tangentst1 andt2 at the end points
is used as a measure for curvature. (c)θ is oriented according to surface normal
N(xi) and the second derivative of the spline defining the fiber,∂f

∂t2 .

wherel(fk) is the arc length of the fiberk. Computing the arc length of a cubic
spline involves solving an elliptic integral [21]. Therefore, we use numeric inte-
gration to approximate the arc length, yielding a functionl̃ . The approximation
is sufficiently accurate even with a very small number of sample points. It is de-
scribed in detail in Appendix B.

Using the area estimate by the fibers through a nodei, we can define a measure
for the current areaAi of a surface patch represented by the nodei by simply
averaging the fiber estimates:

Ai ≈ Ãi =
1
mi

∑
k

Ãk =
π

4mi
∑
k

l̃(fk)2. (7.6)

Here,mi is the number of fibers through the nodei, and all fibersk pass through
nodei. Figure 7.3 (a) shows an illustration of the approximation. Note that area
approximations for all nodes do not add up to the total area of the surfaceS.
However, since the membrane energy only depends on changes in area, this is not
a problem during the simulation.

Now, the discrete membrane energy can be defined in terms of the area estimates
for each simulation node:

Ẽs(xi) =
Ks

2

[(
Ãi − Ã0

i

)2
+

1
mi

∑
k

(
Ãk− Ã0

k

)2]
. (7.7)

The energyẼs(xi) becomes nonzero when either the total areaÃi or the individual
fiber areasÃk change. This amounts to preserving the area represented by each
point, as well as the shape of the area element.
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Flexural Energy
The shape operatorSmeasures curvature:Tr(S) = 2H, whereH denotes the mean
curvature andTr(·) is the matrix trace. Noting that the trace is a pseudo-norm as
well as a linear operator, the flexural energy densityUb can be written as

Ub =
Kb

2

(
H−H0)2 . (7.8)

For a sample pointi, the mean curvatureHi can be approximated using the direc-
tional curvature samples given by the fibers throughxi . We can write:

Hi ≈ H̃i =
1
mi

∑
k

κ(fk), (7.9)

whereκ(fk) is the curvature of a fiberk, corresponding to the normal curvature of
the surface in its direction.

As a measure for the curvature of the fiber, we use the angleθ between the
tangents at the start and end point of the fiber. In order to avoid flipping problems,
the angle is oriented according to the surface normalN(xi) in the center point of
the fiber. Figure 7.3 shows an illustration.

Specifically, a fiber curvature is negative if the second derivative of its defining
splinef(t) points in the same direction as the surface normalN(x) in the central
point.

[θ < 0]⇔ [N(x)∗ ∂f
∂t2(0.5) > 0]. (7.10)

To obtain the bending energy, we integrate the energy density over the surface
area represented by a sample point. Assuming that the energy density is constant
over the surface element, the bending energy becomes

Ẽb(xi) = Ũb(xi)Ã0
i =

Ã0
i Kb

2

(
H̃− H̃0)2 . (7.11)

7.2.2 Dynamic Behavior
With the energies defined as above, the dynamic behavior can be computed by
deriving forces for the simulation nodes. The elastic force for each node is given
as the negative gradient of the potential energy with respect to the node’s position:

Fi =−∇xi (Ẽs+ Ẽb). (7.12)

In the discrete setting, the force on simulation nodei can be written as a sum over
the contributions of all simulation nodes:

Fi = ∑
j

F ji =−∑
j

(
∇xi Ẽs(x j)+∇xi Ẽb(x j)

)
. (7.13)
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Figure 7.4: An elastic mask is dropped. The shell deforms and bounces, before coming to
a rest state on the surface.

Substituting the membrane and flexural energies (7.7) and (7.11) into (7.13) and
evaluating the gradients, we obtain

F ji = −Ks

mj
∑
k

(
Ãk− Ã0

k

)
∇xi Ãk (7.14)

−Ks
(
Ã j − Ã0

j

)
∇xi Ã j

−Ã0
j Kb
(
H̃ j − H̃0

j

)
∇xi H̃ j .

Noting that both∇xi Ã j and∇xi H̃ j are sums over the same fibers, we can split the
forceF ji into components induced by individual fibersk:

F ji = ∑
k

Fki, (7.15)

Fki = −Ks

mj

(
Ã j + Ãk− Ã0

j − Ã0
k

)
∇xi Ãk

−Ã0
j
Kb

mj

(
H̃ j − H̃0

j

)
∇xi κ(fk). (7.16)
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Fki is the force that the fiberk, passing through the nodej, exerts on the nodei.
The gradient of one fiber’s area estimateÃk is given by

∇xi Ãk =
π
2

l̃(fk)∇xi l̃(fk). (7.17)

Expressions for the gradients ofl̃(fk) andκ(fk) are stated in Appendix B. Taking
all surface elements into consideration, the resulting forces add up to zero.

Forces are computed in two passes. In a first pass,l̃(fk) and κ(fk) and their
respective gradients are computed for all fibers. In a second pass over all simu-
lation nodes, (7.16) can be evaluated and the force contributions of the fibers are
summed in the nodes to obtainFi .

The governing equation for our system is

−∇x Epot+MẌ +DẊ = Fext, (7.18)

whereM is the mass matrix containing the masses of the simulation nodes in its
diagonal,D is a damping coefficient, andFext denotes the external forces acting
on the system. The system stateX contains the position of all simulation nodes.

Upon computingFi for all simulation nodes, the velocity Verlet integration
scheme [207] is used to compute a time step in (7.18) and animate the model.
Figure 7.4 shows elastic deformation of a point-sampled mask.

7.3 Material Properties
So far, only the behavior of purely elastic objects has been described. However,
most objects exhibit some plasticity, or fracture under high stress. This section
describes how plasticity and fracturing can be integrated into the simulation.

7.3.1 Plasticity
Materials that exhibit plastic behavior remember part of their deformation. Elastic
forces will not restore the original shape completely. In our model, the rest shape
of an object is stored in the rest shape of the fibers used to sample it. It is thus
possible to reduce the plasticity computations to single fibers.

The elastic force for a fiber is computed using its rest arc lengthl0 and rest
tangential angleθ0, as well as the current lengthl and current tangential angleθ.
To incorporate plasticity, the rest length and rest angle used to compute the elastic
force is expressed in terms of the original value and a plastic deformation

l0 = lorig + lplastic,
θ0 = θorig +θplastic.

(7.19)

This approach is equivalent to storing plastic strain in FEM simulations [147].
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The plastic deformation represented bylplasticandθplasticchanges whenever the
deformation of the fiber becomes too high. The rest arc length of a fiber changes
if

βs < |l − l0|, (7.20)

whereβs is the plastic yield constant for stretching deformations. Similarly, the
curvatureθplastic is updated if

βb < |θ−θ0|, (7.21)

whereβb is the plastic yield threshold for bending deformations. We update the
rest state similar to [154], however accounting for plastic creep by adding time
dependence to the update rule:

∆lplastic = αs(l − l0)∆t, (7.22)

∆θplastic = αb(θ−θ0)∆t. (7.23)

In each time step in which (7.20) or (7.21) hold,lplastic andθplastic are changed
according to (7.22) and (7.23) respectively. The plastic creep parametersαs,b de-
termine how fast the material can adapt to the new state. In addition to this basic
form of plasticity, a variety of other nonlinear effects can be modeled, an example
is given in Section 7.3.3.

Figure 7.5 shows a simulation with plastic effects. A heavy bronze bust is sim-
ulated as a thin shell. As it hits the floor, it deforms plastically and remains in
the deformed state. Note that the expected behavior for a solid object would be to
form a flat surface where plastically deformed by the impact. However, due to the
lack of volume preservation forces, a shell caves in.

7.3.2 Fracture
The strength of influence a node has on other nodes is determined by thematerial
distancebetween those nodes. By connecting neighboring nodes with fibers, we
implicitly assume that the Euclidean distance is a good approximation to material
distance. When a material fractures or tears, parts of the material that are separated
by a crack do not influence each other, even though they might are close. Euclidean
distance alone is no longer useful in determining the coupling between nodes.

In order to model fracture in the simulation framework, the notion of spatial
neighborhood needs to be redefined to give a better approximation tomaterial
distance. This is achieved by introducing a visibility criterion when determining
neighborhoods once fracture has occurred.

A crack is initiated if the stress on some fiber in the model becomes too high,
specifically if one of

γs < l/l0,
γb < |θ−θ0|, (7.24)
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Figure 7.5: A heavy bronze bust is dropped on the floor and deforms plastically on impact.

holds for any fiber.γs and γb are fracture thresholds for tensile stretching and
bending fracture respectively. Figure 7.6 shows the two cases.

Once a fiber is chosen, a small disc, the crack plane, is placed at the center node
x of the fiber. Its normal equals the fiber’s tangent inx, and its radius is equal to
the average node distance in the neighborhood.

The neighborhoods of nearby simulation nodes are then recomputed accounting
for crack planes. Only nodes that are not separated by a crack plane can be in the
same neighborhood. This yields a better approximation to material distance in
the presence of cracks. Fibers within those new neighborhoods are initialized as
described in Section 7.2.1, using the original positions of the simulation nodes.

This procedure effectively cuts any fibers that would intersect with a crack
plane. The recomputation of neighborhoods makes sure that the material remains
adequately sampled with fibers, also along the crack surfaces. Figure 7.7 illustrates
the procedure.

The crack plane can be used to create discontinuity surfels for accurate edge
rendering as described in Section 4.3. In this case, two discontinuity surfels with
opposing normals are created. These new surfels are animated with the other ob-
ject surfels as described in Section 7.4. Figure 7.8 shows tearing of a thin shell.
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(a) (b)

Figure 7.6: Different fracture modes. (a) A crack introduced by tensile stress. (b) Bending
stress.

7.3.3 Nonlinear Effects
Many materials change their material properties depending on the current strain
state or the amount of plastic deformation they undergo. It is easy to integrate such
effects into the simulation framework. Since all material properties are stored with
the individual fibers, the parameters can be varied depending on the current state
of the fiber (the local strain state of the material), or past deformations of the fiber.

As an example, the following update rule for the fracture thresholds implements
a behavior often found in hard plastics and metals. The fracture threshold depends
on the deformation history of the material, the material weakens under repeated
plastic bending:

∆γb =−χγb|∆θplastic|. (7.25)

Here, the parameterχ determines how much the material is weakened by plastic
deformation.∆θplastic is the change of plastic deformation as defined in (7.23),
which is evaluated in each time step.

7.3.4 Anisotropy
The fiber-based energy as described above can easily be extended to han-
dle anisotropic and inhomogeneous materials. Such materials exhibit variable
stiffness depending on stress direction, or position. The best way to integrate
anisotropy into the fiber-based energy is to use a roughly regular and isotropic
sampling throughout the model, and vary the stiffness constants of the individual
fibers according to their position or direction. It would be possible to achieve
anisotropic behavior by deliberately creating an anisotropic fiber sampling. How-
ever, as the approximations used in the derivation of the energy rely on isotropic
sampling, this assumption should not be violated.
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(a) (b)

Figure 7.7: (a) When the stress along some fiber (red) exceeds a fracturing threshold, a
new crack plane orthogonal to the fiber tangent is created. (b) Fiber sampling
after neighborhood recomputation. Fibers intersecting the crack plane have been
deleted, the edges have been resampled.

Figure 7.8: A large poster is torn apart by external forces. The crack starting point is con-
trolled by adding a weak point to the top edge of the sheet. Since the material is not
brittle and the forces are moderate, the crack propagates slowly, and the material
tears.
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Figure 7.9: Deforming the surface using local coordinate frames. The deformation field
computed for the simulation nodes is interpolated to a surface pointp (blue). (a)
In the rest state, a local coordinate frame is computed for each neighboring node
(gray) of the nearest simulation nodex0. (b) In the transformed configuration, the
local coordinates are used to reconstruct a deformed position forp by blending the
deformed local positions obtained using the local coordinates for each neighboring
node.

7.4 Surface Animation
The surface of the thin shell is only sparsely sampled with simulation nodes. The
deformation computed for these nodes has to be re-mapped onto the much denser
surfel sampling that is used for rendering. The method applied here is somewhat
similar to the skinning approach proposed by Singh and Kokkevis in [187]. While
they compute barycentric coordinates and a normal displacement on a triangle
mesh, we use coordinate systems defined by neighboring simulation nodes to en-
code the distance to the closest active node.

For eachpassive pointon the surface that needs to be deformed, local coordi-
nates with respect to its neighborhood of simulation nodes are computed. When
the object deforms and the simulation nodes move, an updated position of the
passive point can be computed using these local coordinates.

Let p be the position of a passive point andPp = {xi , i = 0. . .np} be the set of
neighboring simulation nodes in their undeformed state, ordered such that‖xi −
p‖ ≤ ‖xi+1−p‖. In a first step, a least squares plane through thexi is computed,
yielding a (normalized) plane normalN. Using the plane normal and the position
of one of the neighborsxi ∈ Pp relative to the nearest neighborx0, np coordinate
systemsLi = {ei

1,e
i
2,e

i
3} are computed:

ei
1 = xi −x0, ei

2 =
N×ei

1

‖ei
1‖

, ei
3 =

ei
2×ei

1

‖ei
1‖

, (7.26)

see Figure 7.9 for an illustration. Each of these coordinate systems measures
surface stretch in the directionei

1, and accounts for rotations aroundei
1. Due to

the normalization ofei
2 andei

3, the coordinate systemLi does not capture surface
stretch in other directions.
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Finally, p−x0 is transformed into each of the local framesLi , yielding coordi-
natesyi = {yi

1,y
i
2,y

i
3}. Local coordinates are computed as

yi
k =

(p−x0)∗ei
k

‖ei
k‖2

. (7.27)

The yi
k are stored with the passive point. When the surface deforms, deformed

local framesL′i = {ei′
1,e

i′
2,e

i′
3} can be computed analogously to (7.26). Then, the

stored local coordinates are transformed back to world coordinates, yieldingnp
positions

p′i = x′0 +yi
1ei′

1 +yi
2ei′

2 +yi
3ei′

3. (7.28)

The final deformed positionp′ is a computed as a weighted sum of the pointsp′i :

p′ = ∑i wip′i
∑i wi

, (7.29)

where the weights are given by

wi = w(
‖xi −p‖
‖xnp −p‖

), (7.30)

using some smooth weight functionw(·) satisfyingw(0) =∞ andw(1) = 0. Thus,
the surface deformation is smooth and interpolates the deformation given by the
nodes.

Alternative methods for the animation of point-sampled surfaces from sampled
deformation fields have been proposed [111, 112]. Keiser’s method deforms sur-
face points using first order approximations of the deformation fields computed in
each simulation node. In the thin shell setting, a full least squares approximation of
the Jacobian of the deformation field, as required by [112], is not straightforward
to compute. Since the geometry is (locally) planar, the sampling with simulation
nodes is degenerate for the purposes of computing a least squares approximation.
Therefore, no full first-order approximations to the Jacobian are available. Instead,
approximations to directional deformation gradients are only computed in a finite
difference fashion. Each local coordinate system measures a deformation gradient
in direction ofei

1.

7.5 Results
The animation method described above can be used to animate point-sampled
models without requiring a triangulation of the surface. It supports a variety of
physical effects such as plasticity, and fracture. Nonlinear material behavior such
as material fatigue can be modeled on a per-fiber level.
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7.6 Discussion

Average time/frame [ms]
Figure # Nodes # Points Forces Fracture Surface Total
7.5 931 9835 7 — 64 71
7.10 1170 24578 24 23 166 212
7.4 1987 40880 222 — 325 547
7.8 11860 240000 1533 6066 1459 9058

Table 7.1: Simulation times. Shown are (from left to right): number of simulation nodes,
number of surface points, time for force computation and integration, time for
fracture testing and neighborhood recomputation, time for high-resolution surface
animation, total animation time per frame.

Figure 7.4 shows an elastic mask dropping on the floor. The mask is sampled
with 9835 surfels, approximately every tenth surfel is used as a simulation node.
The material is fully elastic.

Figure 7.5 illustrates plasticity. The additional plasticity computations have no
significant impact on simulation times.

In Figure 7.8, a poster is torn apart. A weak point in the middle of the top edge
determines the starting point of the crack. The material has a very high stretching
stiffness. The temporal discontinuities introduced by the fracture process lead to
small-scale oscillations along the tear. The geometry is initially planar, and its
texture is represented using 240000 surfels. The dynamic behavior is computed
using 11860 nodes. Fracture computations are quite expensive as neighborhoods
have to be recomputed while considering visibility.

Even though the sampling with nodes and fibers is quite coarse in the mod-
els shown, the method yields surprisingly realistic results. Figure 7.10 shows an
animation of a tearing balloon, sampled with 1170 nodes.

The simulation parameters used to produce the simulations shown in the ex-
amples are given in Appendix F.1. Table 7.1 summarizes the timing data for the
scenes shown in Figures 7.4, 7.5, 7.8, and 7.10. Simulation times were measured
on a Pentium 4 at 3 GHz. As can be seen from the data, the animation of the
high-resolution surface is relatively expensive. Since it is only performed once
per frame, it is a good alternative to a full simulation if the simulation time step
is small compared to the frame time. For slow motion animations, such as the
balloon sequence, surface reconstruction becomes the limiting factor.

7.6 Discussion
The discretization approach described in Section 7.2 will lead to different mate-
rial behavior depending on the sampling chosen. Since the forces are normalized,
increasing the number of fibers per point does not increase material stiffness, how-
ever, anisotropic sampling results in anisotropic material behavior. This can also
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Figure 7.10: A balloon tears when inflated too much. Once the tear is opened, the shell can
relax and the tearing process stops. Bottom right: a picture taken with a high-speed
camera.

occur in regions of highly irregular sampling, where the heuristic described in
Section 7.2.1 breaks down.

This dependence on the sampling pattern is the drawback that is incurred by
abandoning a consistent connectivity. An alternative simulation method based on
global parameterization of the object [96] avoids these issues. However, since the
parameterization is not isometric in general, the material behavior is then depen-
dent on the parameterization chosen.

Under very large stretching deformations, the initial sampling degrades. Hence,
simulation quality suffers after applying large plastic deformations. This could
be alleviated by dynamically resampling the surface in areas that were stretched.
While resampling and activating new nodes on the surface is easy, transferring
the plastic deformation onto the newly created fibers without creating temporal
discontinuities is challenging.

As demonstrated in the previous chapters, using point samples without con-
nectivity is a viable approach for surface modeling. Reintroducing persistent, but
not necessarily consistent connectivity makes it possible to animate point-sampled
surfaces as thin shells. Naturally, the question of how sampling approaches would
perform for volumetric data arises. Such approaches have been studied in the con-
text of rendering and data representation [88, 230]. One of the preferred methods
for fluid animation is also a particle-based approach. An extension to the popular
smoothed particle hydrodynamicsapproach for fluid simulation shall be treated in
the next chapter.
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Visco-Elastic Fluid
Simulation

The behavior of fluids is governed by the Navier-Stokes equations. Most com-
monly, the incompressible version of these equations is discretized on either regu-
lar or tetrahedral meshes for both water and smoke simulations [70,118,134,190].

An alternative to these Eulerian approaches is to discretize the material instead
of its embedding space. Using a tetrahedral or hexahedral grid, this is the stan-
dard method for simulations involving continuum elasticity (see also Chapter 9).
However, fluid simulations in computer graphics involve free surfaces and com-
plex topological changes. Hence, a grid-based Lagrangian discretization is not
feasible, as the grid would have to be restructured in every time step. Instead,
Lagrangian fluid simulations are particle-based. Similar to the connectivity-free
sampling used for point-sampled surfaces, particles without persistent connectiv-
ity are used to sample the fluid volume. The velocity field is sampled at the particle
locations, and differential operators capable of handling irregular samples are used
to evaluate the Navier-Stokes equations.

The following sections first introducesmoothed particle hydrodynamics(SPH),
the most popular particle method for fluid simulation. Then, an extension to SPH
is proposed that adds elastic forces to the fluid simulations without requiring ad-
ditional connectivity information. Thus, elastic objects, fluids, as well as phase
transitions between these states can be simulated. The goal is to offer a truly
connectivity-free method that can compute a believable approximation to the be-
havior of visco-elastic materials.

8.1 Smoothed Particle Hydrodynamics
At the core of smoothed particle hydrodynamics is a method for function approx-
imation from scattered samples [81, 137]. Originally invented for astrophysical
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simulations, the method has been applied to a variety of problems [145]. A good
introduction to the method can also be found in [132]. It has been introduced
to computer graphics for the simulation of soft deformable objects [64], and has
since mainly been used for fluid simulations [112,146,228]. As the particles carry
the mass of the fluid, boundary conditions can be formulated on the basis of indi-
vidual particles, making interaction between the fluid and its surrounding simple
and intuitive [152].

In the following, the framework for function approximation used by SPH is dis-
cussed, before treating the specifics of fluid simulation using the SPH framework.

8.1.1 Kernel Functions
In SPH, a number of particles represents the material. Each particle carries mass,
velocity and other attributes.

A kernel functionWh(·) describes the influence of each particle on its surround-
ings. The kernels share some characteristics with the weight functions for surface
reconstruction discussed in Section 3.1.5. They are defined as smooth, radially
symmetric functions fromR3 → R, mapping a distance vector to a corresponding
weight. SPH kernels are required to be normalized, i. e.∫

Wh(x)dx = 1. (8.1)

As the kernel functions are radially symmetric, they can also be written asWh(x) =
wh(‖x‖). The normalization criterion is then modified to

∫
2πrwh(r)dr = 1 for

two-dimensional kernels, and
∫

4πr2wh(r)dr = 1 in three dimensions.
Thesmoothing length his a constant of the particle determining the maximum

influence radius of a particle. Forh→ 0, the limit of any SPH kernel should be a
Dirac δ-function. In computer graphics, the smoothing length is usually assumed
to be constant over all particles, and does not change during the simulation, yield-
ing equal-sized particles that are much easier to handle algorithmically.

Gingold and Monaghan initially proposed normalized Gaussian kernels [81],
while Lucy proposed to use polynomial splines [137]. Polynomial spline kernels,
while of lower smoothness, have local support and their derivatives vanish at the
boundary of the support region. Additionally, a well-chosen polynomial kernel
is computationally cheaper. Good polynomial kernels for 2D and 3D simulation,
as well as their derivatives, are given in Appendix C. Figure 8.1 shows a typical
kernel function.

If the kernels have local support, acceleration data structures can be used to
quickly find neighboring particles that are of interest at a specific location. Since
the smoothing radiush is usually constant throughout space, a hash grid is ideally
suited for SPH simulations. The cell spacing should be chosen to optimize range
queries of radiush as described in Section 3.4.

Often, several kernel functions are used for different interpolation tasks within
the same simulation [56,146].
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0
0

0

1

(a) (b)

Figure 8.1: (a) A polynomial 3D kernel functionWh(x) (see Appendix C for a definition).
(b) The corresponding functionwh(‖x‖) for several values ofh = 1 (red),h = 3

2
(blue), andh = 2 (gray).

8.1.2 Function Approximation using SPH
Using a kernel function as defined above, any continuous functionf (x) can be
smoothed by convolution withWh to obtain f̃ (x):

f̃ (x) =
∫

Wh(x−y′) f (y′)dy′. (8.2)

In the discrete setting, only samples off (x) are available at discrete particle
locations:fi = f (xi). Each particle represents a small volume fractionVi . Thus the
integral in (8.2) can be approximated by a sum over the particles:

f̃ (x)≈ 〈 f (x)〉= ∑
i

Wh(x−xi) fiVi (8.3)

We will call 〈 f (x)〉 the SPH approximation of the functionf (x).
Every particle carries a fixed massmi , but since we make no assumption on

the distribution of the particles, the density at each sample point,ρi , and thus the
particle volumeVi = mi/ρi may vary. However, we can estimate the density using
the SPH approximation of the unknown density functionρ(x):

〈ρ(x)〉= ∑
i

Wh(x−xi)ρiVi = ∑
i

Wh(x−xi)mi (8.4)

We can then defineρi := 〈ρ(xi)〉. Now that bothmi andρi are known, (8.3) can be
used to interpolate any function from samples given at the particle positions.

In a simulation, SPH approximations are mostly evaluated at particle positions
xi . We will therefore introduce the following short-hand notation. For the SPH
approximation of the functionf , evaluated at a pointxi , we write

〈 f 〉i := 〈 f (xi)〉 . (8.5)
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For the kernel weight of a particle atx j with respect toxi , we introduce the short-
hand

Wi j = Wji := Wh(xi −x j), (8.6)

assuming the smoothing lengthh to be constant throughout the simulation.

8.1.3 Approximations of Differential Operators
To obtain approximations of differential operators, they are applied to the approx-
imation 〈 f (x)〉. Linear operators can thus be reduced to the operations on the
kernel functions. For instance, a simple approximation to the gradient off (x) is

〈∇ f (x)〉= ∑
i
∇Wh(x−xi) fiVi , (8.7)

where the gradient∇Wh(x− xi) can be written in terms of the derivative of the
one-dimensional kernel functionwh:

∇Wh(x−xi) =
x−xi

‖x−xi‖
w′h(‖x−xi‖). (8.8)

The naïve gradient operator (8.7) is quite sensitive to the distribution of parti-
cles. If the distribution is not symmetric, (8.7) can yield non-zero gradients even
if the samplesfi are all equal. In case the gradient is evaluated at a sample point
xi , a better approximation is available. Since the gradient of any function remains
unchanged if we subtract a constant, we can rewrite the gradient approximation at
the sample pointxi by using the SPH approximation of∇( f − fi):

〈∇ f 〉i := 〈∇( f − fi)〉i = ∑
j
∇Wi j ( f j − fi)Vj . (8.9)

Eq. 8.9 correctly produces zero gradients for constant functions. There are differ-
ent methods to derive the above result, for a more general derivation, see [145]. A
similar argument could be used at arbitrary evaluation points. However, evaluating
〈∇( f −〈 f 〉)〉 does not yield a significantly more stable gradient estimate between
sample points.

Similarly to (8.8), a Laplace operator forf and a divergence operator for a
vector-valued functionf can be defined:〈

∇2 f (x)
〉

= ∑
i
∇2Wh(x−x j) fiVi (8.10)

〈∇∗ f(x)〉 = ∑
i
∇Wh(x−x j)∗ f iVi . (8.11)

For evaluation at the sample points, we can apply the same reasoning as above and
obtain 〈

∇2 f
〉

i = ∑
j
∇2Wi j (f j − f i)Vj , (8.12)

〈∇∗ f〉i = ∑
j
∇Wi j ∗ (f j − f i)Vj . (8.13)
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The Laplacian of the weight function is given by∇2Wh(x) = w′′h(x).
In general, mathematical identities known from vector calculus do not carry

over to SPH approximations. It is hence worth carefully selecting the right func-
tion to approximate, as results might be radically different, especially for low sam-
pling densities and irregular sampling.

8.1.4 Fluid Simulation using SPH
Fluid behavior is governed by the Navier-Stokes equations, derived from the mo-
mentum and mass conservation laws. For compressible fluids, the momentum
equation can be written as

Dv
Dt

=
1
ρ

(−∇p+Fviscous+Fext) , (8.14)

whereDv
Dt = ∂v

∂t +v ∗∇v is thematerial derivativeof v, i. e. the derivative ofv at
a point moving with the material. In a Lagrangian setting, the particles move with
the material they represent. Thus, the material derivative can simply be computed
by looking at the time derivative of a value stored with a given particle.p denotes
the pressure field,Fext are external forces acting on the fluid, andFviscousare forces
due to internal friction.

The continuity equation, stating the conservation of mass, is not needed in the
Lagrangian framework, since the mass is carried by the particles, and it hence
preserved automatically if no particles are deleted or inserted, and the particle
masses are not changed.

The pressurep is a function of the density of the fluid. A common choice for
the pressure function is [144]

p = K(
(

ρ
ρ0

)Γ
−1). (8.15)

The parameterK is a stiffness constant. Monaghan proposedΓ = 7, whereas in
computer graphics, a value ofΓ = 1 is typically used [64, 146]. Low values of
Γ andK make the fluid more compressible, but allow for larger time steps. For
simulations involving free boundaries, the pressure can be clamped to positive
values, or reduced by a factorζ for negative values:

p′ =
{

p p≥ 0,
ζp p< 0.

(8.16)

Clamping or reducing the pressure at the boundaries reduces the cohesive forces
inside the fluid and makes splashes and spray more likely.

Directly computing the SPH approximation of the pressure force−∇p yields
non-symmetric forces that violate the conservation of linear and angular mo-
mentum, leading to ghost forces during the simulation. Instead, we can approxi-
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mate the acceleration due to pressure forces directly and obtain a symmetric and
momentum-preserving expression at the particle locations:[

−∇p
ρ

]
(xi) = −

[
∇
(

p
ρ

)]
(xi)−

pi

ρ2
i

∇ρ(xi)

≈ −
〈
∇
(

p
ρ

)〉
i
− pi

ρ2
i

〈∇ρ〉i

= −∑
j
∇Wi j

(
p j

ρ2
j

+
pi

ρ2
i

)
mj . (8.17)

In computer graphics, most fluid simulations deal with (almost) inviscid liquids
like water, or gases. In SPH simulations, viscosity is mostly an unwanted side-
effect of the simulation method. If it is modeled at all, the bulk viscosity, measur-
ing viscous forces due to compression, is ignored [146]. The viscosity forces then
reduce to the viscosity term for a Newtonian, incompressible fluid:

Fviscous= µ∇2v≈ µ
〈
∇2v

〉
, (8.18)

whereµ is the shear viscosity coefficient. Moderate viscosity regularizes the ve-
locities of neighboring particles, and has a stabilizing effect. Simulations with very
high or very low viscosity values require smaller time steps. Usually, viscosity is
only needed for numerical stability, and should be set as low as possible. Methods
for artificial viscosity make this easier. One example is the XSPH technique [142].
To simulate the effect of viscosity, the velocities are smoothed in each time step:

ṽi = (1−ξ)vi +ξ〈v〉i . (8.19)

The parameter 0≤ ξ≤ 1 determines the amount of artificial viscosity. XSPH uses
the smoothed velocities̃vi only for advection. If̃vi is also stored with the particles
and used in all subsequent computations, the viscosity is higher. The advantage
of artificial viscosity is that the parameterξ can be set as high as necessary: high
artificial viscosity does not require a smaller time step.

Using the forces computed as above, velocity Verlet integration [207] can be
used to animate the fluid.

8.2 Elastic Forces
An SPH fluid simulation requires only the current spatial neighborhoods for its
computations. Methods that add elastic forces to SPH simulations require per-
sistent connectivity information to evaluate elastic stresses [112]. In this section,
an alternative approach is presented that uses only the current simulation state to
compute elastic forces.

108



8.2 Elastic Forces

Inspired by crystallography, the material is initially sampled regularly, using a
closest sphere packing — a hexagonal grid in two dimensions, and a cubic clos-
est packed lattice in three dimensions. Since the rest state that is necessary for
elasticity computations is not stored, it has to be reconstructed from the current
simulation state alone. To this end, shape matching is used to locally fit a lattice
to the current neighbors of each particle. The orientation and scale of the local
lattice is determined using shape matching similar to [148]. Hence, the spatial
neighborhood relationships between particles in the current simulation state im-
plicitly define a connectivity that is used for computation of elastic forces.

The absence of a simulation mesh or rest state simplifies the simulation of melt-
ing and freezing processes. The neighborhood information computed during the
simulation can be also used to provide a simple penalty-based collision handling
scheme at no additional computational cost.

8.2.1 Implicit Rest State
In a crystal lattice, the rest state of the neighbors of any atom is determined by the
orientation of the lattice and the lattice type. Since we choose the initial sampling
to be a closest sphere packing, the lattice type is known, and only the orientation of
the lattice has to be determined. An important property of a closest sphere packing
is that it is a stable state of particle-based fluid simulations, such that there is no
conflict between the fluid simulation and the elastic forces.

In 2D, the only closest sphere packing is a regular hexagonal grid. In three
dimensions, there are two possible closest sphere packings: hexagonally closest
packed (HCP) and cubic closest packed (CCP) [224]. As initial sampling, we
sample the material using CCP, as the set of neighbors to each point has higher
symmetry. A CCP lattice around the origin consists of the points

L =
{

d

[
ie1 + j

(1
2

e1 +

√
3
4

e2
)
+k
(1

2
e1 +

√
1
12

e2 +

√
2
3

e3
)]}

, (8.20)

with integersi, j,k∈ Z. The vectorse1,2,3 form an orthonormal basis ofR3. d de-
notes the inter-particle distance in the lattice. Figure 8.2 shows the nearest neigh-
bors to a lattice point in 2D and 3D.

Computing the Rest State
In each simulation step, the orientation and deformation of the lattice has to be
reconstructed from the current particle positions. This is done for each particle
separately. The procedure computes a shape matching of the neighborhood parti-
cles with the lattice points. See Figure 8.3 for an illustration.

In a first step, lattice points are assigned to particles in the neighborhood. Then,
a linear transformationA is computed such that the transformed grid best matches
the particle locations.
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(a) (b)

Figure 8.2: Closest lattice points to a particle. (a) 2D lattice. (b) 3D lattice. Shown are
the center particle (red) as well as the lattice positions of its immediate neighbors
(blue).

The grid transformationA(t−1) from the last time step is used to assign lattice
points to particles. For each particlex j in the neighborhood ofxi , we assign the
lattice pointl i j which is closest tor i j = (x j −xi) in the untransformed lattice.

l i j = arg min
l∈L

∥∥∥∥l−
(

A(t−1)
i

)−1
r i j

∥∥∥∥2

. (8.21)

Due to the structure of the grid, this minimization can be easily solved by enu-
merating the nearest points inL. Note that it is possible that several neighboring
particles are assigned to the same lattice point. In such a case, only the closest
particle is assigned to the lattice point. The forces generated by the neighborhood
of the particlei will not be applied to the free particle.

Erroneous assignment mainly happens due to two reasons: When the material
is deformed rapidly, the lattice structure in the last time step is not a good approx-
imation to the lattice structure in the current time step, and the “true” assignment
of particles to lattice points might be lost. Under large compressive deformations,
the lattice positions lie very close to each other, such that even small disturbances
in the particle positions can cause neighboring particles to be assigned to the same
lattice position.

After all points are assigned, the transformationA is computed such that the
transformed grid best matches the actual particle positions in a least squares sense:

A i = arg min
A∈R3×3

∑
j

Wi j‖A−1r i j − l i j‖2. (8.22)
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(a) (b)

Figure 8.3: Assigning lattice points and shape matching. (a) Neighboring particles (red)
are assigned to lattice points (blue) using the local grid transformationA(t−1)

i . (b)
Shape matching:A i is computed such that the deformed lattice points (black) best
match the assigned particle positions (red).

As pointed out in [148], the solution to this minimization is

A i =

(
∑

j
Wi j r i j lTi j

)(
∑

j
Wi j l i j lTi j

)−1

. (8.23)

We then use a singular value decomposition to compute the rotational part of
the lattice transformationA i = UiΣiVT

i :

Ri = UiVT
i . (8.24)

The rotationRi gives the rigid transformation of the lattice around the particlei,
the translational part of the transformation is already accounted for by the move-
ment of the particle itself. The rest positiongi j of a particle atx j relative toxi

is

gi j = Ri l i j . (8.25)

The singular valuesΣi give additional information about the deformation of the
lattice.

We can use the implicit rest state of surrounding particles in two ways. The
next section details how a general strain tensor can be computed using the rest
positionsgi j . Section 8.2.3 presents a method to compute approximate forces. The
latter method is more robust against bad particle distributions, however, physical
accuracy is lost in the approximation.
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8.2.2 Computing Strain
Having computed rest states for the neighboring particlesj, we can compute an
estimate for the strain tensor at a particlei. The linear (Cauchy) strain tensor is
defined as

ε =
1
2

(
∇u+(∇u)T) , (8.26)

whereu = [ux,uy,uz]T is the displacement of the material. We discretize the partial
derivatives of the displacement using one-sided differences. For theβ component
of the gradient ofuα atxi , a particlex j contributes(

∂uα
∂β

)
i j

=
(r i j −gi j )∗eα

gi j ∗eβ
, (8.27)

for α = x,y,z. The orthonormal vectorsex,y,z form a basis ofR3. As all particles
in the neighborhood of particlei influence the strain state atxi , we weight the
contributions of the particles:

(
∂uα
∂β

)
i
=

∑ j

[
Wi j (gi j ∗eβ)

(
∂uα
∂β

)
i j

]
∑ j
[
Wi j (gi j ∗eβ)

] =
∑ j
[
Wi j (r i j −gi j )∗eα

]
∑ j
[
Wi j (gi j ∗eβ)

] (8.28)

Thus, the strain can be computed from the knowledge of rest state and current
particle positions. Note that in a regular setting, (8.28) yields central differences.
The strain can be used to apply any standard elasticity model.

8.2.3 Direct Force Estimate
The strain estimate is only reliable if a relatively large number of neighbors is
available. When only few neighbors contribute to the strain estimate, the results
strongly depend on the particle distribution.

An alternative to computing the strain in order to obtain forces is to use purely
geometric reasoning to derive elastic forces. The basic idea is that each neigh-
borhoodi compels particlesj to move towards their assigned rest state positions
gi j . This corresponds to the behavior of a material with a Poisson ratio of zero.
In order to include local volume preservation forces into the framework, we use a
method similar to [148]. We make use of the additional information contained in
the singular values of the lattice transformationA i . We allow some deformation
of the lattice, while keeping the volume of the lattice constant. This yields goal
positions

g′i j = UiSVT
i l i j . (8.29)

Here, the volume-preserving scale matrix

S=
sΣi +(1−s)I

3
√

det(sΣi +(1−s)I)
(8.30)
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deforms the lattice half-way from the identityI to its current best match. The nor-
malization in the denominator ensures that volume is preserved by the transforma-
tion. The parameterscontrols how much deformation is allowed when computing
goal positions. Once the goal positions are computed, we obtain forces that pull
each particle to its assigned goal position:

Fi j = Wi j Ke(g′i j − r i j ), (8.31)

whereKe is a stiffness constant.
The elastic forces are not necessarily symmetric, i. e.Fi j 6= F ji , and do not pre-

serve linear and angular momentum. In order to preserve linear momentum,1
2Fi j

is applied to particlej and−1
2Fi j to i.

Also the torque introduced by the elastic forces has to be compensated for. The
spurious torque around the center of mass of the neighborhoodci can be measured
as

τi =
1
2∑

j
(x j −ci)×Fi j − (xi −ci)×Fi j . (8.32)

As this torque would violate the preservation of angular momentum, we redis-
tribute it onto thex j by adding a torque correction force tox j :

Fτ
i j =

Wi j

∑ j Wi j‖x j −ci‖
τi ×

x j −ci

‖x j −ci‖
. (8.33)

Thus, the total torque incurred by the elastic forces is zero, as required.

8.2.4 Phase Transitions
The only difference between elastic solids and fluids in our framework is the fact
that particles in a solid are subject to elastic restoring forces while particles in the
fluid phase are not. Thus, phase transitions can be implemented by activating or
deactivating the elastic restoring forces described in the previous sections.

As both fluids and elastic solids can be handled within our framework, phase
transitions can be implemented without transferring material between representa-
tions. Since no connectivity or explicit rest state is stored, this information does
not have to be generated in case of freezing. Instead, the fluid particles crystallize
when freezing. Note that the phase transition model presented here does in no way
aim for a correct simulation of the physical process of phase transitions. Instead,
melting and freezing are modeled as stochastic processes: A Poisson process gives
the probabilityω that a particle changes melts or freezes within the current time
step:

ω = 1−e−λ∆t . (8.34)

The transition rateλ can be determined from criteria like position in space, struc-
ture of the neighborhood, or physical properties like temperature. For temperature-
based melting or freezing, heat conduction can be simulated using the SPH frame-
work [145].
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Figure 8.4: Frames from an animation involving a solid to fluid phase transition. The bunny
drops on the floor where it deforms and melts. The particle rendering on the right
shows the temperature distribution.

Melting

To simulate melting, themelting rateλm for each particle is computed from the
temperature:

λm = max(0,λ0
m(T−Tm)), (8.35)

whereT is the temperature of a particle andTm is the melting point of the material.
Figure 8.4 shows frames from an animation that involves melting.

Freezing

The inverse process of freezing is modeled similarly. If a fluid particle is close to
a solid, it has a probability to freeze and thus integrate into the lattice of the solid.
This probability is dependent on the relative velocity of the particle to its solid
neighbors, and the distance of the fluid particle to the next available lattice point,
as well as the temperature. This statistical approach mimics the freezing process
without computing a full-blown physical simulation [116,117].
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Figure 8.5: Frames from an animation involving a fluid to solid phase transition. The green
slime is a viscous fluid simulated using SPH with artificial viscosity. “Ice” forms
on the rod as fluid particles solidify and are subjected to elastic forces.

To compute thefreezing rateλ f for a particlei with neighbors j, we use a
criterion based on temperatureT, number of solid neighborsns, their average
velocityv, and the accumulated lattice forces:

λ f = max
(

0,λ0
f (Tf −T)(ns−nmin)min(1,cv)min(1,cF)

)
(8.36)

Here,Tf is the freezing temperature of the fluid andnmin denotes the minimum
number of solid neighbors. If this parameter is set to zero, particles can freeze
spontaneously, otherwise, particles can only freeze to already solid material. The
velocity regularization termcv = vmax/‖vi − v‖ decreases the freezing probabil-
ity when the velocity of the particle differs significantly from the velocity of its
neighborhood. The last termcF = Fmax/‖∑ j Fi j‖ diminishes the freezing rate of
a particle if the (hypothetical) lattice forces exceed a given maximum. This is a
simple measure of how good the current position of the particle fits into the lattice
of a neighboring solid.

Figure 8.5 shows an animation involving freezing. The fluid is cooled when it
comes in contact with the rod, and freezes.
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Figure 8.6: Inherent plasticity: Since we do not store connectivity, the center particle has
no way of distinguishing between the situations (a) and (b). Its neighborhood is
limited to the blue region. There will be no restoring forces for particles 1, 2 and
3. Particle 1 is integrated into the neighborhood, while particle 3 leaves. These
deformations are plastic.

8.2.5 Material Properties
The materials that can be modeled using the enhanced SPH method range from
very stiff elastic materials to fluids. However, abandoning stored connectivity
gives rise to some inherent traits that apply to all possible simulations using this
method.

Plasticity

Since no rest state information is stored, the rest state of the material has to be
inferred from the current state. Thus, all information on the rest state is contained
in the positions of the current neighbors of a particle. The particle does not store
which particles were its initial neighbors, and hence the algorithm has no way
of distinguishing particles. Even if the positions of neighboring particles stay the
same, the particles occupying these position may have changed. In that case, there
are no restoring forces for the original particles. Instead, they are integrated into
their new neighborhoods. Figure 8.6 shows an illustration.

The shape matching process assumes that the local lattice deformation does not
change abruptly. This means that the material cannot be deformed too quickly
without acting plastic: Consider a pair of neighboring particlesi and j. A per-
manent plastic deformation occurs wheneverj is displaced far enough such that
different lattice point is closest to its current position in the next time step. As the
material has no memory and does not know the “true” rest state of the particlej
with respect toi, these changes are not counteracted by restoring forces.
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(a) (b) (c)

Figure 8.7: Particles in 2D simulations of different material properties. (a) An elastic cube
bounces off the ground plane. (b) Rest state of a plastic cube after falling. (c)
Fracture. The cube is fixed to the Wall and fractures under the influence of gravity.
Darker particles have a docking rateλd = 0 for some of their lattice points. They
form the boundary of the solid.

The inherent plasticity due to particle ambiguity acts independently of any plas-
ticity computations that are used in the simulation, for example using stored plastic
strain. Figure 8.7 (b) shows plastic deformation in a 2D simulation.

Fracture

If a particle leaves a neighborhood of an adjacent particle due to large deforma-
tions, it is not considered for shape matching any longer, and no restoring forces
are generated — the material has fractured. However, without further processing,
the crack is closed as soon as the stray particle (or another particle) re-enters the
neighborhood. This causes the material to behave sticky.

To avoid this, each particle remembers which of its lattice points are occupied
by other particles. We use a probabilistic model to account for faults and weak-
nesses in the material. Similar to the probabilistic model for melting and freezing,
each particle stores adocking ratefor each lattice pointq. If the shape matching
assigns a particle toq, the probability that it is accepted and forces are computed
is given by (8.34), using the docking rateλq

d. In every time step that a lattice point
q is not occupied by a particle, its docking rate is reduced by∆λ−d . Conversely, the
docking rate of an occupied lattice point is increased by∆λ+

d in each time step.
A stress criterion can be used to additionally modifyλd. Figure 8.7 (c) shows
fracturing in a 2D simulation.

The parameters∆λ+/−
d determine how easy it is for the material to close once

opened cracks. High values of∆λd create a brittle material, while lower values
allow for ductile fracture.
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8.2.6 Multiple Objects
Starting from a fluid simulation, we have so far only considered one object. If elas-
tic forces are considered, several distinct objects are possible. The algorithm can
be easily extended to handle multiple objects. Each particle carries an object ID,
and the shape matching as well as the force computation are confined to particles
with the same object ID.

If forces acting between different objects are restricted to repulsive forces in-
stead of disallowing them altogether, the result is a simple penalty-based collision
handling scheme. Ifi and j are particles from different objects, we apply a modi-
fied interaction forceF′i j

F′i j =

{
( x j−xi

‖x j−xi‖ ∗Fi j )
x j−xi

‖x j−xi‖ (x j −xi)∗Fi j > 0,

0 otherwise.
(8.37)

Of course, more elaborate collision handling schemes can be implemented, but
the implicit collision handling provided comes at no additional cost and is suffi-
cient in most situations. Figure 8.8 shows an example animation of stiff-elastic ob-
jects. Collisions were resolved using the penalty-based collision described above.

8.2.7 Surface Animation
In order to render the simulation result, a surface needs to be extracted from the
simulation data. The surface of fluids in the examples shown in this thesis was
extracted using marching cubes [133] to extract an iso-surface of the fluid density.

In order to enable texturing of solid objects, a simple skinning approach is used
to advect a surface with the particles. It is discussed in terms of a surface mesh,
but works without modification for point-sampled surfaces. Each particlei stores
the relative rest state positionss0

i j = x0
j −x0

i of nearby surface mesh verticesj. The
lattice transformationA i that are computed in each time step is used to transform
the relative positions, yielding estimates of the deformed positionsi j = xi +A is0

i j .
The position estimates of all particles are then averaged using the SPH smoothing
operator, yielding a deformed position for the mesh vertex

si = ∑
j

Wh(si j )si jVj . (8.38)

Since we make use of the SPH framework to interpolate the positions, the re-
sulting surface is smooth. If the surface is represented as a point cloud, the same
transformation can be applied to warp the tangents or normals of the surfels.
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8.2 Elastic Forces

Figure 8.8: Several colliding stiff elastic objects. Inter-object collisions are handled as
described in Section 8.2.6, no additional collision handling is necessary. On the
right, the particle sampling is shown.
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Figure # Particles # Objects Time/Frame [s]
8.4 9871 1 17
8.5 1606 - 7000 2 (1 solid, 1 fluid) 18.2
8.8 2214 9 18.7

Table 8.1: Statistics for the examples shown in this chapter.

8.3 Results
Figures 8.4 and 8.5 show phase transitions between solid and fluid phase. Both
phenomena are simulated using an SPH simulation enhanced with elastic forces
as described above.

Figure 8.4 shows an elastic bunny being dropped and melting on the ground.
The ground is heated, and a simple diffusion algorithm computed heat transfer
between the ground and the particles. The surface is reconstructed using marching
cubes.

In Figure 8.5, a viscous fluid freezes to a cooled rod. Fluid, ice and rod are
modeled using the presented method. The surface of the cylinder is attached to
its particles using skinning as described in Section 8.2.7, the surfaces for fluid and
ice are computed using marching cubes. The collisions between fluid and solid are
handled as described in Section 8.2.6, no additional collision handling mechanism
is necessary.

Figure 8.8 shows nine stiff-elastic dice. Each die is sampled with 246 particles.
The dice are rendered using a textured surface mesh which is moved along with the
particles using the skinning method described in Section 8.2.7. The high stiffness
of the material limits the time step size, making the animation more expensive to
compute. The collision handling is performed using the method described in this
chapter. Thus, collision handling does not incur additional costs for the simulation.

The simulation parameters used in the examples shown in this chapter are sum-
marized in Appendix F.2. Simulation times are given in Table 8.1. The timings
were measured on a Pentium 4 at 3 GHz and do not include rendering time.

8.4 Discussion
The method for enhancing an SPH simulation with elastic forces described in this
chapter does not use any persistent connectivity. This is an advantage in situations
where maintaining connectivity of any kind is problematic. From an algorithmic
point of view, simulations involving melting or freezing are simplified signifi-
cantly if no connectivity has to be considered.

A simulation method not requiring connectivity is an advantage on architec-
tures where no complex data structures are available, in particular highly parallel
processing units. Here, maintaining persistent neighborhoods is a major compu-
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tational burden compared to streaming particles and their current neighborhoods,
requiring only local computations.

The materials that can be modeled using the enhanced SPH method range from
regular fluids to stiff elastic objects, such as seen in Figure 8.8. However, all of
these materials exhibit the material properties described in Section 8.2.5. In par-
ticular, this means that materials simulated using this model deform plastically
under large or abrupt deformations and fracture if stretched too much.

These specific material properties are a direct consequence of abandoning per-
sistent connectivity, other approaches with no persistent connectivity exhibit the
same behavior [204]. A comparison to simulations using Lennard-Jones poten-
tials is instructive. These also rely on current spatial relationships alone to com-
pute forces, and hence share many of the characteristics of the method described
here. The rest state of a Lennard-Jones material is also implicit: For each particle,
its rest state is given by the nearest minimum of the potential energy, which is a
simple superposition of potential fields evaluated at the current particle positions.
However, the potential energy may have many more minima than there are par-
ticles, such that particles can more easily move to a different minimum, leading
to plastic deformation analogous to the one described in Section 8.2.5. While this
is in fact the way plasticity works for crystalline materials, such as metals, plas-
ticity derived from continuum mechanics is a better approximation for sampling
densities such as found in typical computer graphics simulations.

The shape matching that replaces the implicit assignment to the nearest en-
ergy minimum is a smarter way of finding suitable rest state positions, making
the material significantly more robust against inherent plasticity, even for large
deformations. In order to simulate true elasticity that does not exhibit the inherent
plasticity incurred by erroneous particle assignments, the initial particle neighbor-
hoods need to be stored throughout the simulation. The resulting algorithm is very
similar to [148]. Müller et al. organize the material into overlapping clusters of
points for which shape matching is performed. If the particle assignment step is
replaced with stored connectivity information, the algorithm described above is
roughly equivalent to [148], where each neighborhood forms one cluster.

Müller et al. do not use forces in their simulation, but directly move the particles
towards goal positions computed using shape matching. This leads to a material
stiffness that is time step dependent. Theirα-parameter can be translated to a
stiffnessKe using Ke = α/∆t2. Thus, the stability criterion from [148],α ≤ 1
yields a upper bound on the time step depending on the material stiffness.

The major difference between the approaches is that abandoning persistent con-
nectivity requires dynamic particle assignment in each time step. If large, non-
plastic deformations are considered, the method presented here cannot be used
due to its inherent restrictions. Connectivity information is crucial for these defor-
mations. The next chapter introduces a finite element method that is able to model
the full spectrum of linear continuum elasticity.

121



Chapter 8 Visco-Elastic Fluid Simulation

122



Chapter 9

Finite Elements on
Irregular Meshes

The last chapter described a method for integrating elasticity into a fluid simu-
lation. While this technique is useful for enhancing fluid simulations, it is not
general enough to be used for arbitrary simulations involving elastic materials.

By far the most popular simulation method for elasticity computations is the
finite element method. It requires that the simulation domain is partitioned into a
finite number of elements. Hence, a consistent mesh that divides the simulation
domain into disjoint primitives is needed. A function sampled at the vertices of
the mesh can then be approximated by a sum over basis functions defined within
each element. A comprehensive treatment of the theory behind FEM can be found
in [23].

Most three-dimensional finite element methods partition the domain into tetra-
hedral or hexahedral elements. Thus, linear or trilinear shape functions can be
used to interpolate within elements and the computations are simplified signifi-
cantly. This chapter will explore a way to relax the regularity requirements for
the discretization, allowing for arbitrary convex elements. As has been shown in
previous chapters, abandoning guarantees on the connectivity can lead to more
flexible methods, while increasing the cost of basic operators. In the case of a fi-
nite element method for arbitrary convex polyhedra, the interpolation functions
become more cumbersome, while the ability to handle non-tetrahedral elements
makes the simulation method more flexible.

In order to use arbitrary convex elements, basis functions based on mean value
coordinates [73, 108, 109] are proposed. Therefore, a purely tetrahedral or hexa-
hedral grid is no longer necessary. This method is a true generalization of linear
tetrahedral finite elements: If the domain happens to be meshed with tetrahedral
elements, the new formulation yields regular linear basis functions.

In the following sections, a finite element method based on new basis func-
tions using mean value coordinates is introduced. The advantages become appar-
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ent when the topology of the simulation domain changes during the simulation.
This is demonstrated in simulations involving cutting, where costly and numeri-
cally challenging remeshing can be avoided.

9.1 Elastic Deformation
Deformation of elastic material is governed by the equations of continuum elas-
ticity, which can be discretized using the finite element method. In the following,
we consider an object with material coordinatesx = [x,y,z]T deformed by a dis-
placement fieldu(x) = [ux(x),uy(x),uz(x)]T .

The elastic energy density of a deformable body is defined in terms of stress
and strain within the object. We use Cauchy strainε, which linearly depends on
the Jacobian∇u of the deformation fieldu. Recalling Eq. 8.26, we can write

ε =
1
2

(
∇u+(∇u)T) . (9.1)

The strain of the material causes elastic restoring forces, represented by the 3×3
stress tensorσ. We assume a Hookean material, i.e. a linear stress-strain relation-
ship, yielding

σi j =
3

∑
k,l=1

Ci jkl εkl , i, j ∈ {1,2,3}, (9.2)

with a tensorC containing the elastic coefficients of the material. Asε and σ
are symmetric 3×3 matrices, their independent coefficients can be written as 6D
vectors. For the strain, this yields

ε =
[

∂ux

∂x
,

∂uy

∂y
,

∂uz

∂z
,

∂ux

∂y
+

∂uy

∂x
,

∂ux

∂z
+

∂uz

∂x
,

∂uy

∂z
+

∂uz

∂y

]T

. (9.3)

Thus, the strain-stress relationship (9.2) becomes a 6×6 matrix product

σ = Cε. (9.4)

For an isotropic material, the constitutive matrixC only depends on the material’s
elasticity modulus (also Young’s modulus)Y and Poisson ratioν, controlling stiff-
ness and volume preservation, respectively.

With stress and strain defined throughout the material, the total elastic energy
E (u) can be computed as the integral of stress times strain over the object’s vol-
umeV:

E (u) =
1
2

∫
V

σTε =
1
2

∫
V

εTCε. (9.5)
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In a finite element discretization, the displacement is given at discrete locations.
The space in between these nodes is divided into elements, such that the integral
(9.5) can be written as a sum of per-element energiesEe:

E (u) = ∑
e

Ee = ∑
e

1
2

∫
Ve

εTCε. (9.6)

The following sections detail how the displacement functionu (and thus, the
strainε) can be interpolated within the elements, and how the per-element energies
are computed.

9.1.1 Interpolation Functions for Convex
Polyhedra
In order to discretize the energy equation (9.5) the continuum object is decom-
posed into a finite number of elements, and each nodei of this decomposition is
associated with a material positionxi , a displacement valueui = u(xi), and a scalar
shape functionφi(x). Now, the continuous functionu(x) can be approximated by

u(x) = ∑
i

ui φi (x) . (9.7)

Since the goal is to discretize the material into arbitrary convex elements, we re-
quire basis functions suitable to interpolate within an arbitrary convex polyhedron.

For 2D simulations, Wachspress coordinates [208, 209] and two-dimensional
mean value coordinates [72,196] have been used for finite element simulations on
convex polygons. Generalizations of Wachspress and mean value coordinates to
three dimensions are available [73, 107–109, 211]. In the following, mean value
coordinates are used.

The generalized mean value coordinates are only defined on convex polyhedra
with triangular faces. The faces of the elements are therefore triangulated in order
to compute the weight functions. Triangulating non-triangular faces is unproblem-
atic compared to computing a tetrahedralization of the element. Note that if two
convex polyhedra share a common face, this face is necessarily planar, such that
the exact nature of the triangulation does not change the shape of the elements.
Therefore, a triangulation that avoids degenerate triangles can be chosen.

Given the triangulation of the surface of the element, we consider the vertexxi

and its edge-incident one-ring neighborsx j . The weightwi is defined as a weighted
sum of ratios of signed tetrahedron volumes

wi (x) = ∑
j

[
c j, j+1

Vi, j, j+1
+

ci, jVj−1, j+1, j

Vi, j−1, jVi, j, j+1

]
, (9.8)
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Figure 9.1: Basis functions for the highlighted nodes visualized by hue interpolation on a
plane through the element.

whereVa,b,c =V (xa,xb,xc,x) is the signed volume of a tetrahedron with the nodes
a, b, c, and the evaluation pointx as vertices. The per-edge weightsca,b are given
by

ca,b =
‖(xa−x)× (xb−x)‖

6
arccos

[
(xa−x)∗ (xb−x)
‖xa−x‖‖xb−x‖

]
. (9.9)

The mean value shape functionφi within the element is finally obtained by nor-
malizing the weight functionwi :

φi (x) =
wi (x)

∑k wk (x)
. (9.10)

See Figure 9.1 for a visualization ofφi .
The functionsφi are true barycentric coordinates for convex polyhedra in the

sense that they are positive inside the polyhedron (if it is convex), and that each
point x inside the polyhedron can be written as a weighted sum of the verticesxi

with its coordinates as weights:

x = ∑
i

φi (x)xi . (9.11)

This property implies partition of unity and reproduction of linear functions: Let
f (x) be a linear function. Then, it can be easily shown that the approximation
reproducesf (x) exactly:

∑
i

φi (x) f (xi)
f linear
= f (φi (x)xi)

(9.11)
= f (x) . (9.12)

Setting f (x) = 1 yields partition of unity.
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Therefore, the functionsφi fulfill all properties necessary to prove convergence
of the finite element approximation: The basis functions are positive and repro-
duce linear functions. Their support is limited to incident elements. Continuity is
C1 within elements, and since they reduce to linear barycentric coordinates on the
faces of the triangulation, the functions areC0 continuous across element bound-
aries. Hence, the basis functionsφi are in the Sobolev spaceH1, and the finite
element approximation converges [23].

In order to evaluate the strain, we require the first order partial derivatives of the
shape functions. The derivatives of (9.8) and (9.10) can be computed analytically,
the corresponding expressions are given in Appendix D.

Note that if the element is tetrahedral, theφi are linear, and equal to the shape
functions commonly used in tetrahedral element discretizations. Hence, optimized
code can be used for tetrahedral elements.

Numerical Issues
The shape functions defined as above are sums of volume ratios, which are prob-
lematic to compute if the volumes in (9.8) approach zero. This can occur in two
situations: 1) if the pointx lies on the boundary of the element, or 2) if a surface
triangle has zero area.

Theφi are not well defined on the boundary of the element, however, they con-
verge to barycentric coordinates on the faces. Thus, this special case can easily
be resolved. In practice, we can choose where to evaluate the interpolant during
per element integration (see Section 9.1.3), and avoid evaluatingφi or∇φi on the
faces, except in the case of sliver elements. Slivers are almost planar elements
that are known to pose numerical difficulties in FEM simulations. Owing to the
flexibility of the discretization, it is possible to remove such slivers during the
simulation. This technique is described in Section 9.2.

Triangles with zero area make no net contribution to the weightswi . Although
not obvious from Equations (9.8) or (9.10), this can be easily seen in the equivalent
formulation presented in [109].

9.1.2 Finite Element Discretization
With the shape functions defined in the last section, the continuous energy (9.5)
can be discretized using the approximation (9.7). In any particular elementewith
verticesi = 1, . . . ,ne, only the shape functionsφ1, . . . ,φne of its vertices are non-
zero. Hence, withine, the displacement interpolation (9.7) is

u(x) =

φ1(x) φne (x)
φ1(x) · · · φne (x)

φ1(x) φne (x)


︸ ︷︷ ︸

=:He(x)

 u1
...

une

= HeUe, (9.13)
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with a 3×3ne interpolation matrixHe(x) and the 3ne element displacement vector
Ue. The 6D strain vector (9.3) inside this element can then be written as

ε(x) =



∂
∂x 0 0
0 ∂

∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x


He(x) Ue =: Be(x) Ue. (9.14)

From the stress-strain relationship (9.4) we get the per element energy element’s
energy density:

Ee =
1
2

UT
e

(∫
Ve

BT
e CBe

)
Ue =:

1
2

UT
e KeUe. (9.15)

The element’s 3ne×3ne stiffness matrixKe is assembled by integrating products
of partial derivatives of the shape functions, as described below.

Note that for linear elasticity,Ke is only computed in the rest state of the ma-
terial, i. e. in a state where all elements are guaranteed to be convex. In particular,
this means that the shape functions are always evaluated on convex polyhedra,
even if the elements are non-convex in the deformed shape. Also, the expensive
stiffness matrix setup is only necessary whenever the topology of the simulation
domain changes.

Once the element stiffness matricesKe are computed, the global 3n×3n stiff-
ness matrixK is assembled [23]. If we denote byU = [uT

1 , . . . ,uT
n ]T the vector of

nodal displacements, the discrete version of the total elastic energy (9.5) becomes

E (U) =
1
2

UT KU . (9.16)

9.1.3 Integration
In order to compute the per element stiffness matrixKe =

∫
Ve

BT
e CBe, we have

to integrate over each element. For linear tetrahedral elements, these integrals are
trivial to compute sinceBe is constant over the element. For other simple element
shapes, for example hexahedral elements, integrals can be evaluated using Gauss
quadrature. In the more general case of irregular convex elements, such quadrature
rules are unwieldy. Instead, the integral is approximated with a low number of
sample pointsp heuristically placed throughout the element.

For integration, one sample per vertex of the element, plus one sample for each
face of the triangulation of the element surface is used. The vertex samples are
placed between the element centroidc and the vertexxi , at pi = 0.8xi + 0.2c.
The face samples are placed similarly, atp f = 0.9cf +0.1c, wherecf is the face
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(a) (b) (c)

Figure 9.2: (a) Integration samples for a 2D element. Face samples are shown in blue,
vertex samples in red. Is is important that the corners of the element are sampled
appropriately. (b) The weight for a vertex sample is proportional to the volume
between the incident faces with the element centroid. (c) The weight for a face
sample is proportional to the volume between the face and the element centroid.

centroid. The heuristic ensures that there are samples near the boundaries of the
element. Experiments have shown that it is important that there are integration
samples near all nodes to make sure that all nodes have sufficient influence on the
element energy. However, the exact location of the sample points does not have a
critical influence on the simulation result. A 2D example of sample position in an
irregular element is shown in Figure 9.2.

The integration samples are weighted proportional to the volume between the
element centroidc and incident faces (for vertex samples), or the corresponding
face (for face samples). With the same one-rings as in Section 9.1.1, we define the
volume fractionµe

i of elementeassociated with the vertexi as

µe
i =

∑ j V
(
xi ,x j ,x j+1,c

)
3Ve

. (9.17)

Similarly, the volume fraction for the face sample of facef with vertices j1, j2,
and j3 is

νe
f =

V
(
x j1,x j2,x j3,c

)
Ve

. (9.18)

Using the weightsµe
i andνe

f , the element stiffness matrixKe is then computed as

Ke = ∑
i

µe
i

2
BT

e (pi)CBe(pi)+∑
f

νe
f

2
BT

e

(
p f
)

CBe
(
p f
)
. (9.19)

In the special case of a tetrahedral element, only one integration point is nec-
essary. Note that while computing the element stiffness matrix for arbitrary ele-
ments by integration is more complex than in the tetrahedral case, this has only
minor impact on the overall simulation complexity. For linear elasticity, the stiff-
ness matrices of the elements are constant throughout the simulation, and can be
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pre-computed. Recomputation is necessary only if the discretization is changed.
This can happen in simulations involving adaptive refinement, or due to element
splitting after fracture or cutting. Thus, the computational complexity during the
actual simulation is mainly dependent on the total number of nodes.

9.1.4 Simulation Loop
The discrete energy (9.16) leads to the discrete equations of motion

M Ü + DU̇ + KU = F, (9.20)

whereM andD are the mass and damping matrices, respectively, andF represents
external forces.

In order to simplify the computations, we employ mass lumping to obtain a di-
agonal mass matrixM . Assuming constant density per element, the mass of each
element can be trivially computed from its volume. We then use the volume frac-
tionsµe

i to obtain a mass for each node by summation over all incident elements:

mi = ∑
e

µe
i Veρe, (9.21)

whereρe is the density of elemente. The volume ratioµe
i is a good approximation

of the integral over the shape functionφi within the element.
The linear elasticity model (9.3) is not invariant to rotations. Therefore, stiffness

warping [147] is used to control linearization artifacts. Stiffness warping estimates
a rotation for each element, and rotates the displacement values back to best match
the rest shape. Strain is then evaluated on the rotated displacements, and the re-
sulting forces are re-transformed into the current state.

This method requires that we compute per-element rotation matricesRe. The
shape matching method described by Müller et al. [147] only works for tetrahedral
elements. Therefore, we adopt the registration method presented by Horn [103]
instead, which has the additional advantage of being stable even for degener-
ate planar elements. Once the per-element rotations are known, the global stiff-
ness matrixK has to be reassembled using the rotated element stiffness matrices
K ′

e = RT
e KeRe. Using stiffness warping, only the element rotations have to be re-

computed in each time step, the un-rotated stiffness matrixKe which is computed
by costly integration is constant.

Implicit Euler integration is used to solve for the dynamic behavior of the ob-
ject. Since most real-world deformable objects are strongly damped, the numerical
damping introduced by the integration scheme is acceptable. For undamped sim-
ulations, symplectic integration can be used [114].

Figure 9.3 shows deformation of a single element with 12 nodes. Since the basis
functions are nonlinear, the deformations are nonlinear as well, even though the
object is sampled with only a single element.
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(b)

(a) (c)

Figure 9.3: (a) A single element deforms on impact with the ground. The deformations of
the element are nonlinear. (b) Wireframe of the element. (c) Wireframe view with
triangulated faces.

Figure 9.4 shows a cube that deforms on impact. The cube is partitioned into
elements by 30 randomly chosen planes. For each plane, an element is chosen
which is then split as described in Section 9.3.1. The initial sampling is a single
hexahedral element, yielding a consistent mesh of 31 elements after the plane
splits are complete. The elements are highly irregular, and have between 8 and 32
nodes.

9.2 Sliver Removal
The accuracy of a finite element solution depends on the quality of the discretiza-
tion. For tetrahedral discretizations, several quality criteria for the shape of ele-
ments have been proposed as a quality measure [181,182]. Contrary to tetrahedral
meshes, it is unclear what criteria determine the quality of a convex polyhedral
element. Experiments suggest that bad elements are almost planar. These ele-
ments give rise to numerical problems during simulation, because the gradients
of basis functions inside such elements cannot be evaluated robustly. Following
Shewchuck [181, 182], we call elements that are (almost) planar due to degener-
ated edgesneedles, while planar elements without degenerated edges are called
slivers.

Needles are easy to avoid: Whenever a node is created (during initial meshing
or remeshing during the simulation, it is snapped to existing nodes if incident
edges would become too short. Most widely available meshing software, such as
TetGen, can control the minimum edge length, and checking for nearby nodes

131



Chapter 9 Finite Elements on Irregular Meshes

Figure 9.4: A cube deforms on impact with the ground. Bottom right: Wireframe view
showing the tessellation into elements.

during cutting is relatively easy, such that needles do not cause problems during
simulations.

Slivers are more problematic. See Figure 9.5 for examples. Creating slivers is
notoriously hard to avoid, and robustly removing them from a discretization is a
daunting task. For tetrahedral meshes, remeshing algorithms based on constrained
Delaunay tetrahedralization insert more nodes into adjacent elements and remesh
the neighborhood of the sliver element. This process is costly, and is not guaran-
teed to be local [183].

When using FEM on convex polyhedra, there is no restriction to tetrahedral ele-
ments, and sliver elements can be merged with neighboring elements. This process
consists of the following steps (see Figure 9.6 for an illustration): First, a least-
squares plane through the element is computed, which we call thesliver plane.
All vertices of the sliver element are projected onto the sliver plane. Note that this
does not significantly change the geometry of the surrounding elements, as the
sliver element is almost planar by definition. We can hence guarantee that sliver
removal does not create more sliver elements, and all elements in the discretization
stay convex.

132



9.2 Sliver Removal

(a) (b)

Figure 9.5: Sliver elements: (a) A tetrahedral sliver element. Note that all faces can have
reasonable areas, and no edge is too short. (b) Allowing arbitrary convex polyhe-
dra can lead to more complex slivers.

(a) (b) (c)

Figure 9.6: Removing sliver elements: (a) A sliver element and its neighbors. (b) New
nodes are created at edge intersections. (c) After tessellating the sliver plane, new
faces are connected to their neighboring elements. The faces in the sliver plane
are colored with the color of both elements they are connected to. Note that the
shape of the adjacent elements is not changed, only their connectivity is modified
to eliminate the sliver.
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If the projection moves nodes too close together, those nodes are merged to
avoid the creation of needles. Then, all edges in the sliver plane are intersected
and new nodes are inserted at the intersection points. Finally, the sliver plane is re-
tessellated and each new face is connected to the two elements that were attached
to the old faces it intersects. Thus, the sliver element is removed.

If the elements were tetrahedral before the sliver was removed, exactly one
new node is created using this technique. The neighboring elements have five
nodes each after the sliver is deleted. In more complex cases, more nodes might
be inserted.

Although the geometry does not change significantly during sliver removal, pro-
jecting the nodes of a sliver element onto the sliver plane may lead to slightly
non-convex elements in the neighborhood. The mean value coordinates used to
construct basis functions are well-behaved in the case of slightly non-convex el-
ements [109]. Hence, the simulation is stable in these cases. On the other hand,
generalized Wachspress coordinates [211] are much more sensitive to non-convex
elements.

9.3 Cutting
Changing the topology of the simulation mesh shows the advantages of discretiz-
ing the domain into convex elements instead of tetrahedral cells. As our only re-
quirement to the mesh is that all elements must be convex, maintaining a valid
simulation mesh after cutting operations is significantly easier.

This section first describes how elements are split by a single plane. In Sec-
tion 9.3.2, the more general case of progressive cuts is considered.

9.3.1 Splitting Elements
Splitting a convex polyhedron along a plane results in two convex polyhedra.
Thus, after planar element split operations, no remeshing is necessary in order
to maintain a valid discretization of the simulation domain.

The splitting process works as follows: Wherever the splitting plane intersects
existing edges of the element to be split, new simulation nodes are created. We
compute displacement samples for the new nodes using our interpolantu, which
is linear on the edges of the discretization. During these edge splits, care has to
be taken not to create nodes too close to existing nodes. In practice, nodes that
would be created too close to existing nodes are snapped to the existing geometry.
This avoids needle elements mentioned in Section 9.2. For all elements that were
changed in the process, new integration samples are computed. In order to avoid
computing integration samples multiple times, reinitialization of element integra-
tion samples is deferred until the end of the time step. Figure 9.7 illustrates the
procedure.
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(a) (b)

Figure 9.7: (a) The bottom element is split along a plane. New simulation nodes (red) are
added where the cutting plane intersects the original geometry of the element. (b)
New integration samples are created in all elements that were changed by the split
(shaded blue). Not all neighboring elements need to be updated.

Note that t-junctions might be created during splitting, as seen in Figure 9.7.
This is not a problem, since the only requirement to the discretization is that all
elements are convex. At a t-junction, one element has two coplanar faces.

9.3.2 Progressive Cuts
When progressive cuts are considered, elements are not necessarily split entirely
in a single time step. Instead, we have to deal with an arbitrary surface intersecting
the element [32,193]. This surface is assumed to be tessellated into polygons. It is
therefore sufficient to show how one element can be cut by a polygon, yielding a
valid mesh whose boundary contains the polygon. The simulation mesh can then
be cut by an arbitrary cut surface by sequentially cutting it with each of the surface
polygons.

As thecut shape, consider a polygon with verticesp1 . . .pk, lying in a common
cutting plane. First, all elements that intersect the cut shape are split along the
cutting plane, as described in Section 9.3.1. Then, simulation nodes are created at
the polygon pointsp1 . . .pk, which are connected with edges. The polygon edges
are intersected with the faces of the simulation mesh and all intersection points are
added as new simulation nodes. The faces in the cut plane are split to accommo-
date the new nodes and edges. If this process generates non-convex faces, those
faces are split again to enforce that all generated faces are convex. Finally, all
simulation nodes inside the cut shape are duplicated, and their incident elements
are separated along the cutting plane. Figure 9.8 illustrates the necessary steps.
After the partial cut, the element has been split along the plane, creating two ele-
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(a) (b)

(c) (d)

Figure 9.8: (a) Two elements are cut with a polygonal cut shape (blue). (b) All intersected
elements are split along the cutting plane. (c) The polygon edges are intersected
with the existing edges of the mesh, and new nodes are inserted at intersections.
Faces in the cutting plane are split to create a consistent tessellation. (d) Nodes
inside the cut shape are duplicated, the material is separated along the cut.

ments. These element are separated in the area of the cut shape, but stay connected
outside the cut shape, creating a partial cut.

If there are no simulation nodes inside the cut shape, the cut cannot open. In
such cases, one additional simulation node is created at the centroid of the cut
shape, and connected with edges to the polygon nodes atp1 . . .pk, thus creating a
pocket in the material.

Note that for non-tetrahedral elements, cuts through a single element might not
be planar. In these cases, the surface within the element has to be tessellated after
its edges have been intersected. The element is then sequentially cut with all faces
of the tessellation.

9.4 Results
Figure 9.9 shows progressive cuts. The cube is initially sampled with 3× 3× 3
hexahedral cells. During the cuts, only nodes that are necessary to sample the
cut surface are created. As elements are cut repeatedly, the number of nodes cre-
ated would be significantly higher if elements had to be subdivided to maintain a
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9.4 Results

Figure 9.9: A block of material is sliced. Very few additional elements are created as tetra-
hedral subdivision is not necessary. The bottom row shows the elements. Note
that even though many nodes are created to accurately represent the cut surface,
elements do not need to be split.
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Start End Avg. time/
Figure # Nodes # Elements # Nodes # Elements frame [s]
9.3 12 1 12 1 0.012
9.4 184 31 184 31 0.22
9.9 64 27 1214 60 0.8 (0.04)
9.10 24079 8278 46132 44118 6.08 (3.56)

Table 9.1: Node count, element count, and computation time. The time in parenthesis is
the computation time for the dynamic update not including recomputation of basis
functions.

tetrahedral mesh. Edges added in order during tetrahedral remeshing would be cut
again, leading to more elements and simulation nodes.

More complex, non-planar cuts are shown in Figure 9.10. The initial sampling
is a tetrahedral mesh created with the meshing software TetGen. After all cuts are
complete, 51% of the elements are still tetrahedral, the elements with the highest
number of nodes has 27 nodes. Performing the same sequence of cuts using a state
of the art tetrahedral subdivision method [193] results in more than 75000 nodes
and more than 300000 elements, even if the cuts are executed non-progressively,
i. e. each element is split at most once per cut. The exact number of nodes and
elements in the tetrahedral setting depends on snapping thresholds.

Simulation parameters for the examples shown in this chapter can be found in
Appendix F.3. Table 9.1 summarizes the computation times, as well as node and
element counts for the examples shown here. The timings were measured on a
Pentium 4 at 3 GHz, and exclude rendering time. The simulation time excluding
recomputation of basis functions after cuts depends mostly on the total number of
nodes. Due to the shape matching needed for stiffness warping, there is a linear
dependence on the number of elements. Highly optimized code is available for
tetrahedral FE simulation. On purely tetrahedral models, the proposed method is
clearly slower than specialized implementations. However, the theoretical com-
plexity in these cases is of the same order. As soon as topological changes are
considered, the number of elements and nodes in the discretization grows faster
when only tetrahedral elements are allowed.

9.5 Discussion
The finite method presented in this chapter is a true generalization of linear tetra-
hedral finite elements. If the simulation mesh composed of tetrahedral elements,
the methods are identical. However, since we are no longer restricted to tetrahedral
elements, we have more flexibility in choosing the domain discretization. This is
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9.5 Discussion

Figure 9.10: Slicing the Stanford Bunny. The cut trajectories are accurately represented.
We can cut extremely thin slices without mesh restructuring — the simulation
method is stable in these cases.
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particularly useful when the domain topology is changed, for example by cutting,
or fracture.

Because the shape functions based on mean value coordinates are only positive
for convex polyhedra, non-convex elements are not allowed in the discretization.
Slightly non-convex shapes can occur in the mesh, for example due to numerical
inaccuracies or after sliver removal. This is not a problem, since the basis func-
tions are smooth, and smoothly change depending on the element vertex positions.
However, severe concavities would be problematic. This is why nonlinear strain
cannot be simulated using the method presented here. Nonlinear elasticity would
require evaluating the basis functions and their gradients also for the deformed
state of the simulation mesh. For large deformations, the elements might not be
convex in the deformed state. One possible remedy might be to subdivide the
deformed elements into convex parts in each time step. Irving et al. [105] treat
similar problems arising for nonlinear strain in hexahedral elements, however,
their method is not directly applicable to arbitrary convex polyhedra. DeRose and
Meyer [63] propose a method to compute barycentric (and in particular, positive)
coordinates for arbitrary, even non-convex meshes. However, their technique in-
volves discretizing the mesh into a grid and solving a Laplacian. Doing so in each
time step, and for each element would be prohibitively expensive, and certainly
not competitive with tetrahedral subdivision.
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Conclusion
In this thesis, several algorithms with reduced connectivity requirements have
been presented. Compared to the state of the art in computer graphics, these
techniques require less structure within the computational domain. The methods
treat problems in two major fields of computer graphics: Geometric modeling and
physically-based animation.

In the first part of this thesis, methods for modeling with point-sampled geom-
etry were examined. Point-sampled surfaces are an alternative to triangle meshes
which are the most commonly used surface representation in modeling. Their in-
herent lack of connectivity significantly complicates some operations. In Chap-
ter 4, a method for representing and rendering discontinuities in point-sampled
objects was presented. For edge rendering, the surfaces are considered to consist
of overlapping disks. The actual clipping operations are deferred until rendering,
which makes the approach ideally suited for dynamic data, where costly prepro-
cessing cannot be performed. Unlike previous approaches for representation of
geometric discontinuities in point-sampled objects, the proposed method can rep-
resent arbitrarily complex edges and corners.

Chapter 5 described a virtual painting system that makes extensive use of point-
sampled surfaces as its internal surface representation. The system uses the supe-
rior resampling capabilities of point-sampled surfaces to dynamically adapt the
surface sampling to the texture detail. Contrary to traditional, mesh-based ap-
proaches that rely on dynamically updated texture atlases, projection and discon-
tinuity artifacts at texture patch boundaries can be avoided entirely. The surface
representation is hidden from the user, and the system is designed to be intu-
itive to use by closely mimicking the real-world painting process. This is achieved
by consequently following the painting metaphor, including a painter’s palette, a
physically-animated brush model, and haptic feedback. To guarantee interactive
frame rates, a specialized renderer is used that is capable of modifying point-
sampled surfaces without completely re-rendering them.

Much work has been done on point-sampled surfaces, and the number of appli-
cations supporting or even requiring point-sampled surfaces as a data representa-
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tion has increased dramatically in recent years. However, meshes remain the dom-
inant surface representation in computer graphics. Since each representation has
its own advantages and disadvantages, it is important to ensure interoperability.
Chapter 6 presents a method to convert point-sampled models to textured triangle
meshes. An error metric controls the resolution of the textures used to capture the
appearance of the surface. This way, objects produced in tools relying on point-
sampled surfaces, for example the models produced using the painting system
described in Chapter 5, can be converted and reused in mesh-based applications.

The second part of the thesis treated problems in the field of computer ani-
mation. Current research in computer animation is focused on physically-based
animation. Simulation algorithms for physical phenomena usually have strict re-
quirements regarding the discretization. Conversely, the nature of the discretiza-
tion determines the type of algorithm applicable to a specific problem. In Chap-
ter 7, a method for animation of point-sampled surfaces as thin shells was pre-
sented. Since the surface representation does not partition the mesh into disjoint
elements, finite element methods or other methods that require a more structured
representation cannot be applied to point-sampled surfaces. Instead, a network of
fibers encoding the local neighborhood structure is used to provide area and cur-
vature measurements. This information is then used to geometrically approximate
the thin shell energy functional and animate the surfaces.

Chapter 8 explored the possibility of implementing elasticity without storing
connectivity. This way, elastic forces can be integrated into a particle-based fluid
simulation without storing a rest state. Since both elastic and fluid behavior can
now be simulated using the same framework, phase transitions between solids and
fluids are particularly easy to model. However, the connectivity information com-
puted in each time step cannot sustain elastic forces under large deformations, and
plasticity is inherent to the approach. Although less pronounced, this behavior is
similar to other approach relying only on implicit connectivity. For true elasticity
simulation, some stored connectivity is necessary.

The most popular method for the simulation of elastically deforming objects is
the finite element method. Here, the material is usually discretized into a tetra-
hedral, or hexahedral mesh. In chapter Chapter 9, a more general finite element
method was presented that does not require a certain element shape and is appli-
cable to to irregular volumetric meshes consisting of arbitrary convex elements.
Mean value coordinates are used to construct basis functions for the more gen-
eral elements. The basis functions are nonlinear, requiring per-element integra-
tion of the strain. Since quadrature rules for approximate evaluation of the per-
element stiffness matrices are not available for general convex polyhedra, a heuris-
tic quadrature is used to approximate the integrals. Abandoning the requirement
that all elements have to be of one specific shape drastically simplifies remeshing
after topological changes within the domain. This is particularly useful in simu-
lations involving cutting, where remeshing can be avoided after planar element
splits, and slivers can be removed locally.
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10.1 Discussion
Naturally, each form of data representation or discretization has its own strength
and weaknesses. This thesis has presented several alternative methods with less
stringent requirements on the connectivity present in the underlying data repre-
sentation. These new algorithms present us with a trade-off. In the case of model-
ing with point-sampled surfaces, we gain easier resampling compared to triangle
meshes, but we lose guarantees on topology and the ability to natively represent
sharp features and geometric discontinuities. Hence, sharp features have to be rep-
resented explicitly, for instance as proposed in Chapter 4. The ability to easily re-
sample surfaces where needed is used extensively in the painting system described
in Chapter 5.

For algorithms in physically-based animation, the discretization largely deter-
mines the type of algorithms that can be used, and thus which convergence prop-
erties can be achieved and which physical phenomena can be modeled. In Chap-
ter 7, we have traded the convergence guarantees of finite element methods for the
ability to animate point-sampled thin shells without first computing a consistent
triangulation.

The enhanced SPH simulation method proposed in Chapter 8 can simulate elas-
ticity up to a certain point, but without persistent connectivity, it is impossible to
avoid plastic effects and fracture under large deformations. However, since no
connectivity is stored, the method can be integrated into an SPH fluid simulation,
and the lack of rest state information makes phase transitions easy to implement.

Finally, the finite element method described in Chapter 9 maintains all conver-
gence properties of standard tetrahedral finite element methods for linear elas-
ticity, even though it relaxes the discretization requirements to irregular meshes
consisting of convex elements. However, due to the definition of the basis func-
tions, the approach is still limited to linear elasticity. Relaxing the discretization
has other advantages, again related to resampling: In simulations involving cutting
or fracture, the remeshing process necessary after topological changes in the do-
main is simplified significantly, and the ability to locally remove sliver elements
yields a more stable simulation.

There is no easy answer to the question how much connectivity is optimal.
As can be seen in the examples presented herein, some tasks require a certain
minimum structure. However, this minimum is often lower than the requirements
of the dominant method in the area. In some cases, additional structure presents
more of a burden to the application than is gained by the added possibilities. A
lighter data representation can perform better in such cases, examples for this are
the finite element method from Chapter 9, or the painting system in Chapter 5.

In any case, interoperability with other methods has to be ensured. For modeling
applications, this means we have to explicitly provide methods for conversion
between representations, as done in Chapter 6. A basic level of compatibility for
physics-based simulations can be achieved by allowing external forces to interact
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with the simulation. Even this basic interaction is not always straightforward to
implement if the discretization differs. Ideally, a new method can be used side-by-
side with traditional approaches, such as the finite element method from Chapter 9,
which encompasses traditional tetrahedral finite elements as a special case.

10.2 Outlook
With the availability of more flexible graphics processors, a large part of the com-
putational burden of the methods for point-sampled modeling discussed here can
be off-loaded to the graphics card. Today, it should be possible to implement
the explicit handling of discontinuities for point-sampled surfaces as proposed
in Chapter 4 entirely in hardware. Also the painting system described in Chapter 5
will benefit greatly from a hardware implementation of paint transfer.

We have seen that loosening the requirements on data representations makes it
easier for them to be modified during use. Point-sampled modeling systems use
this fact to resample the surface whenever necessary. Level of detail rendering
systems relying on point samples were among the first applications of splat ren-
dering.

Implementing adaptive physical simulation is more involved. Methods that
adaptively solve for dynamic behavior rely on hierarchies of discretizations. Of
course, such hierarchies are even harder to maintain than a flat structured repre-
sentation. Representations with less structure can be used for adaptive multilevel
simulation and might drastically reduce the maintenance overhead of such algo-
rithms.
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Appendix A

Correctness of Surfel
Clipping

Algorithm 4.2 determines whether or not a fragment at positionx created by a
surfel belonging to an objectC needs to rendered. The algorithm traverses the
CSG tree bottom up, starting at the leaf node representingC. The algorithm always
terminates, either if at some pointon= f alse, or when the root node is reached.

To show the correctness of the algorithm, we use a slightly modified but equiv-
alent version of the algorithm, shown below, which simplifies the argument.

Input : Pointx, PatchC
setTA = TC , on= true1

while ¬isRoot (TA) do2

setTB = getSibling (TA)3

set in = insideTree (x,TB)4

if in 6= unknownthen5

switch TA.operatordo6

case∩ : seton= on∧ in7

case∪ : seton= on∧¬in8

setTA = getFather (TA)9

return on10

Algorithm A.1 : Determining whether a fragment atx of patchC should be rendered
(without early termination)

We artificially extend the loop to traverse the tree until we reach the root node,
also in caseon becomes false. Hence, the condition of the while loop is changed
to¬isRoot (TA). The equations

[x ∈ SA∩B] ⇔ [x ∈ SA∧x insideB], (A.1)

[x ∈ SA∪B] ⇔ [x ∈ SA∧¬[x insideB] ] . (A.2)
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replace (4.5) and (4.6) in lines 7 and 8. Note that asx ∈ SC , (4.5) and (4.6) are
equivalent to (A.1) and (A.2).

It is easily verified that the above algorithm is equivalent to Algorithm 4.2. If Al-
gorithm 4.2 returnstrue, so does Algorithm A.1: In this case, the loop terminates
when reaching the root node, thus the changed termination condition in line 2 does
not change the outcome of the algorithm. When computing a new value foron, on
is never false. Therefore, it can be ignored in the conjunctions in lines 7 and 8,
leading to the same equations as used in Algorithm 4.2.

If Algorithm 4.2 returnsf alse, so does Algorithm A.1: In this case,on= true
only holds up to some iteration. Before that point, the two algorithms behave iden-
tical, as demonstrated above. Algorithm 4.2 terminates as soon ason= f alse. It
is sufficient to show that in Algorithm A.1, onceon= f alse, on is not changed
any more. Ason itself is one operand of the conjunctions in lines 7 and 8, these
always yield f alse. Thus,on= f alseuntil the root node is reached, andf alseis
returned as required.

The algorithm returnson, therefore it is correct if we can show that

[on= true]⇔ [x ∈ STA] (A.3)

is an invariant of the while loop. Written out,x ∈ STA means “x is on the surface
of A”, i. e. x is on the surface of the object represented by the current node. Once
the root node is reached, we obtain the desired result.

This can be easily shown by induction over the number of iterations. The condi-
tion holds at the beginning of the first iteration: sincex is part of a surfel of object
C andTA = TC due to the initialization ofTA, x ∈ SA. on is initialized totrue, so
(A.3) holds.

Given that (A.3) holds at the beginning of some iteration, we show that it also
holds at the end. We denote the value ofTA at the beginning of the loopTAstart. Its
value at the end of the loop isTAend, the father node ofTAstart and its sibling node
TB. Since (A.3) holds,x ∈ SAstart. There are two cases to consider, depending on
the inside/outside classification forTB, i. e. depending on the value ofin.

1. If in = unknown, on remains in the same state it was. There are no clipping
partners from the object represented byTB, hencex ∈ SAend ⇔ x ∈ SAstart.
Therefore,x ∈ SAend, and (A.3) holds.

2. If in = true or in = f alse, the value ofon depends on the operator stored
in TAend. The logic directly follows equations (A.1) and (A.2), which im-
plement (4.1) and (4.2). Thus, after evaluation,[on= true] ⇔ [x ∈ SAend],
which is the invariant.
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Fiber Properties
A fiber in our implementation is a natural cubic spline through three simulation
nodes on the object surface. Its parametric representation is given as a vector-
valued, piecewise cubic polynomial:

f(t) =
{

f1(2t) 0 <= t < 0.5
f2(2(t−0.5)) 0.5 <= t < 1

(B.1)

The polynomialsf1 andf2 are defined as

f i(t) = ai +bit +cit
2 +dit

3, (B.2)

their coefficients depend linearly on the input points. For a fiber through the central
node at positionx and two of its neighborsx1 andx2, the coefficients are given by

a1 = x1

a2 = x
b1 = −5

4x1 + 3
2x− 1

4x2

b2 = −1
2x1 + 1

2x2

c1 = 0
c2 = 3

4x1− 3
2x+ 3

4x2

d1 = 1
4x1− 1

2x+ 1
4x2

d2 = −1
4x1 + 1

2x− 1
4x2

(B.3)

B.1 Arc Length Approximation l̃
The arc length of a parametric curve given by a splinef(t) as defined above can
be numerically approximated withn samples:

l̃ (f) =
1
n

n−1

∑
i=0

‖∂f
∂t

(
i
n
)‖ (B.4)

Taking the first derivative of (B.2) and coefficients defined in (B.3), (B.4) can be
computed easily. Since the splines in our framework are well-behaved, the approx-
imation is sufficiently accurate even for a small number of sample points.
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B.2 Gradient of l̃
The gradient of (B.4) is essentially a sum of gradients.

∇l̃ =
1
n

n−1

∑
i=0

∇‖∂f1

∂t
(

i
n
)‖+

1
n

n−1

∑
i=0

∇‖∂f2

∂t
(

i
n
)‖ (B.5)

Thus, the gradients of the arc length with respect to the center pointx and the
endpointsx1 andx2 can be written as

∇x1 l̃ =
n−1

∑
i=0

1

n‖∂f1
∂t (i/n)‖

(−5
4

+
3
4

t2)
∂f1

∂t
(i/n) (B.6)

+
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B.3 Tangential Angle θ
As a measure for the curvature of a fiber, we use the angleθ between the fiber’s
tangents att = 0 andt = 1: t0 andt1 respectively. This angle is oriented accord-
ing to the surface normal inx. Therefore, we multiply the angle with the sign of
−N(x)∗ ∂f

∂t2(0.5).

κ ≈ θ = sign(−N(x)∗ ∂f
∂t2(0.5))arccos

t0∗ t1

‖t0‖‖t1‖
(B.9)

B.4 Gradient of θ
Since the derivative of the sign function is zero, the gradient of (B.9) with respect
to any pointxi is

∇xi θ = sign(−N(x)∗ ∂f
∂t2(0.5))∇xi

(
arccos

t0∗ t1

‖t0‖‖t1‖

)
(B.10)

148



B.4 Gradient of θ

The tangents are given byt0 = b1 and t1 = b2 + 2c2 + 3d2. Noting that the
tangent tof at t = 0.5 is given bytc = b2, we find for the center pointx and
endpointsx1 andx2,

∇x1θ = c(−
9
2d1−tc

‖t0‖‖t1‖ + 5
4

t0∗t1
‖t0‖3‖t1|

t0− 1
4

t0∗t1
‖t0‖‖t1|3

t1),

∇xθ = c( 9d1
‖t0‖‖t1‖ −

3
2

t0∗t1
‖t0‖3‖t1|

t0 + 3
2

t0∗t1
‖t0‖‖t1|3

t1),

∇x2θ = c(−
9
2d1+tc

‖t0‖‖t1‖ + 1
4

t0∗t1
‖t0‖3‖t1|

t0− 5
4

t0∗t1
‖t0‖‖t1|3

t1),

(B.11)

where

c =
sign(−N(x)∗ ∂f

∂t2(0.5))√
1−cos2(θ)

. (B.12)
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SPH Kernel Functions
A good polynomial kernel function for 3D SPH simulation is [146]:

wh(d) =

 315
64πh3

(
1− d2

h2

)3
d < h,

0 otherwise.
(C.1)

This sinced is only used squared, (C.1) can be evaluated without using a square
root. Their first and second derivatives are then:

w′h(d) =

 − 945
32πh3

d
h2

(
1− d2

h2

)2
0 < d < h,

0 otherwise,
(C.2)

w′′h(d) =

{
945

32πh3
1
h2

(
1− d2

h2

)(
5d2

h2 −1
)

d < h,

0 otherwise.
(C.3)

For 2D simulations, the normalization has to be adjusted, yielding:

wh(d) =

 4
πh2

(
1− d2

h2

)3
d < h,

0 otherwise,
(C.4)

with derivatives

w′h(d) =

 − 24
πh2

d
h2

(
1− d2

h2

)2
0 < d < h,

0 otherwise,
(C.5)

w′′h(d) =

{
24
πh2

1
h2

(
1− d2

h2

)(
5d2

h2 −1
)

d < h,

0 otherwise.
(C.6)

To avoid clumping in low resolution simulations, the spiky kernel ˆwh(d) can be
used to compute the pressure gradient. Its gradient does not go smoothly to zero at
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d = 0, thus preventing a force-free state where particles clump at a single position.
For 3D, it is given by

ŵh(d) =

{
15
πh3

(
1− d

h

)3
d < h,

0 otherwise,
(C.7)

with first and second derivatives

ŵ′h(d) =

{
− 45

πh3
1
h

(
1− d

h

)2
0 < d < h,

0 otherwise,
(C.8)

ŵ′′h(d) =

{
90
πh3

1
h2

(
1− d

h

)
d < h,

0 otherwise.
(C.9)

In 2D, the changed normalization yields

ŵh(d) =

{
15
πh2

(
1− d

h

)3
d < h,

0 otherwise,
(C.10)

with first and second derivatives

ŵ′h(d) =

{
− 30

πh2
1
h

(
1− d

h

)2
0 < d < h,

0 otherwise,
(C.11)

ŵ′′h(d) =

{
60
πh2

1
h2

(
1− d

h

)
,

0 otherwise.
(C.12)
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Appendix D

Derivatives of Shape
Functions

Consider a convex polyhedron with vertices at positionsxi . Recalling (9.10) from
page 126, we can write the gradient of the basis functionφi as

∇φi =
∂φi

∂x
=
∇wi ∑k wk−wi ∑k∇wk

(∑k wk)
2 . (D.1)

With the one-ring vertices of vertexi enumerated asx j , the gradient of the weight
wi is

∇wi = ∑ j
[∇c j, j+1Vi, j, j+1−c j, j+1∇Vi, j, j+1

V2
i, j, j+1

+

(∇ci, jVj−1, j+1, j+ci, j∇Vj−1, j+1, j)Vi, j−1, jVi, j, j+1

V2
i, j−1, jV

2
i, j, j+1

−
ci, jVj−1, j+1, j(Vi, j−1, j∇Vi, j, j+1+∇Vi, j−1, jVi, j, j+1)

V2
i, j−1, jV

2
i, j, j+1

]
.

(D.2)

The gradient of a tetrahedron volumeVa,b,c has the magnitude of one third the
triangle areaA(a,b,c) and points in the direction of the triangle normal:

∇Va,b,c =
‖(xc−xa)× (xb−xa)‖

6
. (D.3)

We definedi = x−xi andd̂i = di/‖di‖. The gradient of the termca,b is given by

∇ca,b = 1
6

[(
d̂a∗ d̂b

)(
d̂a‖db‖+ d̂b‖da‖

)
−da−db+

arccos(d̂a∗d̂b)
‖d̂a×d̂b‖

[
(d̂a× d̂b)× (xb−xa)

]]
.

(D.4)

Note that since
arccos(d̂a∗d̂b)
‖d̂a×d̂b‖

= α
sinα and limx→0

x
sinx = 1, (D.4) can be robustly

evaluated in all cases.
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Appendix E

Notation
Throughout this thesis, all scalar variables or functions are set in italics, while
vector-valued expressions and functions, including matrices, are set in bold face.
Symbols are also defined where they first appear.

Operators
∗ dot product

× cross product

∇ gradient

∇x gradient w. r. t. the components ofx

ẋ, ẍ first and second time derivative:ẋ = ∂x
∂t , ẍ = ∂x

∂t2

∇∗ divergence

∇2 Laplacian

‖ · ‖ Euclidean norm

‖ · ‖p pseudo-norm

| · | absolute value

det determinant

·T matrix transpose

Geometry
A,B,C objects/patches

S surface

A area

c centroid, or surfel center
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Appendix E Notation

d direction

e basis vectors

f function

H mean curvature

n a number of points, vertices, or nodes

N normal

N set of neighbor indices

P set of points

r radius

t tangent vector

V volume

x = [x,y,z], p, q, y points inR3

Point-Sampled Surfaces

η friction coefficient

ρ optical density

Ψ(·) projection operator

C color

D diffusion coefficient matrix

D isotropic diffusion coefficient

e local error function

E total error

M object to screen space mapping

T(·, ·) texture function

w(·) weight function

Physics
ε strain

ρ density

τ torque

D damping coefficient matrix

D scalar damping coefficient

E energy

F force
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K stiffness matrix

K scalar stiffness

M mass matrix

m mass

T temperature

t,∆t time, time step

U energy density

u = [ux,uy,uz] displacement

U vector of displacementsU = [ux1,uy1,uz1 . . .uxn,uyn,uzn]T

v velocity

X vector of positionsX = [x1,y1,z1 . . .xn,yn,zn]T

Point-Sampled Thin Shells

α plastic creep

β plastic yield

γ fracture threshold

χ plastic weakening coefficient

R first fundamental tensor

S shape operator

Visco-Elastic Fluid Simulation
D·
D· material derivative

〈·〉 SPH approximation

Γ exponent in density-pressure relationship

ζ negative pressure scaling

λ Poisson process parameter

µ viscosity coefficient

ξ XSPH parameter

ω probability

l lattice point

g rest position

h smoothing length

p pressure

s volume preserving deformation parameter
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Finite Elements on Irregular Meshes

µ,κ volume fractions

ν Poisson ratio

φ basis function

σ stress

C constitutive matrix

H interpolation matrix

Y Young’s modulus
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Appendix F

Simulation Parameters
This appendix summarizes simulation parameters used to create the example ani-
mations shown in this thesis.

F.1 Point Sampled Thin Shells

Elasticity Plasticity Fracture

Figure Ks Kb α β γs γb D ∆t

7.4 25 25 0.4 0.01

7.5 1000 1000 2 0.2 0.5 0.01

7.8 1000 10000 0.02 5 0.3 0.001

7.10 100 100 0.04 5 0.4 0.001

F.2 Visco-Elastic Fluid Simulation
In all simulations from Chapter 8,Γ = 1, ρ = 1, and the smoothing lengthh is
twice the particle radius.

SPH Parameters

Figure h K ξ ζ Ke ∆t

8.4 0.04 200 0.1 0.01 39528 0.005

8.5 0.11 200 0.3 0.5 58320 0.004

8.8 0.07 20 0.1 0.01 2.4·107 0.0004
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Appendix F Simulation Parameters

F.3 Finite Elements on Irregular Meshes
All simulations in Chapter 9 are computed without damping (i. e.D = D = 0),
since the implicit integration scheme used provides sufficient damping by itself.
Furthermore, the simulations assume a homogeneous, isotropic material, which
can be described by Young’s modulusY and Poisson ratioν alone. The density of
the material is assumed to beρ = 1.

Figure Y ν ∆t

9.3 50 0.3 0.001

9.4 50 0.3 0.005

9.9 50 0.3 0.01

9.10 3·103 0.3 0.04
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Some of the models used to create animations and pictures shown in this thesis
are copyrighted material. They are used courtesy of their respective owners.

Item used in Fig. Copyright by

Max Plank model 3.3 a, 7.1, 7.5 Max Planck Institut für
Informatik Saarbrücken

Igea model
(geometry only)

3.3 b, 6.6 Cyberware, Inc.

Femur model 4.8 Cyberware, Inc.

Bunny model
(geometry only)

5.8, 5.9, 5.10 a,
5.12, 6.3, 6.4,
8.4, 9.10

Stanford Computer Graphics
Laboratory

Dragon model
(geometry only)

5.1, 5.5 a, 5.7,
5.10 b+c, 6.5

Stanford Computer Graphics
Laboratory

Mask model 7.4 Cyberware, Inc.

Lenna texture 7.8 Playboy

Balloon photo 7.10 Chris DiBona
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