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Abstract

In the following paper, a new method for fast and accurate volume intensity and color integration

is elaborated, which employs wavelet decompositions and texture mapping. At this point, it com-

prises and unifies the advantages of recently introduced Fourier domain volume rendering tech-

niques and wavelet based volume rendering. Specifically, the method computes analytic solu-

tions of the ray intensity integral through a single wavelet by slicing its Fourier transform and

by backprojecting it into the spatial domain. The resulting slices can be considered as RGB tex-

tures where R, G,  and B account for the decomposed volume color function. Due to the similarity

of the basis functions, the computation of the texture map has to be figured out only once for each

3D mother wavelet. Hence, the final volume rendering procedure turns out to be a superposition

of self–similar, transparent and colored textures, which is supported by modern hardware accu-

mulation buffers. Linear shading and attenuation can be introduced by modifications of the wave-

let’s Fourier transform.

___________________________________________________________________________
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The main advantages of this method are the provision of accurate solutions and quantification

of error bounds, the absence of any expensive prefiltering and the independence of the computa-

tional costs from the image resolution. Furthermore, any required discretization, such as the reso-

lution of the basis textures is defined within the computational framework of the wavelet trans-

form. The method is not restricted to a specific type of wavelet unless is provides an analytic

Fourier description, such as any B–spline wavelets do.

1 Introduction

Volume rendering is one of the mainstream research lines in Computer Graphics covering a broad

range of applications, such as medical imaging [10], material sciences, computational chemistry,

quantum physics or atmospherical optics. Basic work had been done by [3] and [11], where the

relationship between the volume rendering problem and the transport equations of light in matter

is pointed out. In the last decade, most attraction had been spent on the development of algorithms

for fast numeric approximations of the low–albedo volume rendering integral [6]. [14] for

instance, proposed a first order approximation of the integral using a uniform sampling of the

intensity values on the ray along with trilinear interpolations. Shading of the volume is figured

out by estimations of the normal through the volume intensity gradient. Good mathematical anal-

ysis of the error bounds in volume rendering is given in [19]. Isosurfaces are treated in different

ways. [15] provide polygonial approximations using look–up table methods, others [18] compute

more accurate descriptions with respect to the topological problems in isosurfaces.

Recently, various approaches were proposed based on different types of transform coding for vol-

ume rendering. [12] stressed a basis of hierarchical splatting functions and [17] employed com-

putations of isosurfaces in volume data by ray–tracing the wavelet basis functions immediately.

[9] approximated the volume rendering integral in wavelet space using piecewise polynomials

and analytic integrations, whereas [22] figured out the rendering in the spatial domain and con-

trolled the stepsize in wavelet space.  The essential theoretical advantages of hierarchical decom-

positions are accurate computations of integrals, gradients and error bounds along with smooth,

analytic approximations resulting in sophisticated level–of–detail control. Unfortunately, these

advantages could not be harvested optimally up to now, since the approaches are either too expen-

sive or too rough.
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Apart from wavelet based volume rendering, Fourier domain methods, such as projection slicing

have a long tradition in CT and MR technology [7]. [16] accomplished fast volume intensity in-

tegrations of order O(n2 log n)  by slicing and backprojecting the Fourier transform of the volume

intensity function. [20] extended this concept by adding linear shading and attenuation. The most

time consuming step in this method is the application of a reconstruction filter. Although this

method does not perform exponential self–occlusion, it is still important for many applications,

especially with regard to hardware acceleration.

The method proposed in this paper combines the advantages of both wavelet decompositions and

Fourier domain descriptions for fast and accurate volume intensity and color integration. For this

end, we employ orthonormal wavelets, which are defined analytically in frequency space. The

volume intensity integral along the ray results by superimposing the local integrals through all

wavelets intersected by the ray. However, the local intensity integral through a single wavelet can

easily be computed by slicing its Fourier transform. Since it is defined analytically, our slice is

described analytically as well and no reconstruction filtering is required to compute the backpro-

jection in spatial domain. Moreover, the sliced wavelets in Fourier space can be interpreted as

local intensity integrals of bundles of intersecting rays. Due to the similarity of the basis func-

tions, all slices are derived from each other just by scaling and translating one prototype function

computed for each 3D mother wavelet. This can be accomplished for each color component R,

G, B and the backprojected slices are treated as self–similar, transparent, colored textures. The

required resolution of the basis textures can be computed from Nyquist’s sampling theorem. The

final rendering process is figured out by weighted accumulation of these colored and transparent

wavelet textures, and is evidently supported by the hardware of most high performance graphics

workstations [4]. Hence, the computational costs do not depend on the resolution of the image,

because we replace the ray–tracing by texture mapping. The embedding of our method within

the framework of the wavelet transform allows us to harvest all advantages arising from it, such

as control of error and level of detail.

The organization of this contribution is as follows: First of all, the mathematical foundations of

3D separable wavelet bases are briefly addressed and different prototypes in frequency space are

introduced. Then, the process of volume intensity integration  in wavelet space is illuminated and
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light is shed on how to compute local line integrals by the projection slice theorem. The next sec-

tion explains our method in detail and illustrates, how to solve the ray tracing problem by map-

ping of self–similar basis textures. Finally, we show the outperformance of our method on differ-

ent volume data sets.

2 Mathematical Foundations

2.1 Construction of 3D–Orthonormal Wavelets

Separable, multidimensional extensions of orthonormal wavelet–functions can easily be ob-

tained according to [5] by tensor products of three 1D prototype wavelets and scaling functions.

Consequently, the respective 3D subspaces of V1
m � L2(�) are defined as

V3
m � V1

m� V1
m� V1

m(1)

The scaled and shifted versions of the scaling function � � L2(�) with

�mp(x) � 2– m
2�(2–mx – p) provide orthonormal bases of the vectorspaces V1

m, whereas the

scaled and shifted versions of the wavelet � � L2(�) with �mp(x) � 2– m
2�(2–mx – p) span the

orthonormal complement U1
m. This results to:

V3
m � �V1

m�1 � U1
m�1

� � �V1
m�1 � U1

m�1
� � �V1

m�1 � U1
m�1

�

V3
m � V3

m�1 � U3,1
m�1

� U3,2
m�1

� ��� � U3,7
m�1

(2)

 The corresponding 3D versions of the wavelets and of the scaling function are yield from their

one–dimensional relatives, as

�3
mpqr(x, y, z) :� 2– 3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r) � V3
m

�3,1
mpqr(x, y, z) :� 2– 3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r) � U3,1
m

�3,2
mpqr(x, y, z) :� 2– 3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r) � U3,2
m

�3,3
mpqr(x, y, z) :� 2– 3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r) � U3,3
m

�3,4
mpqr(x, y, z) :� 2– 3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r) � U3,4
m

�3,5
mpqr(x, y, z) :� 2– 3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r) � U3,5
m

�3,6
mpqr(x, y, z) :� 2– 3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r) � U3,6
m

�3,7
mpqr(x, y, z) :� 2– 3m

2 �(2–mx – p)�(2–my – q)�(2–mz – r) � U3,7
m

(3)
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We can constitute an orthonormal basis of L2(�3) by the dilated and translated versions of � and

�.  In eq. (3) m denotes the scaling and p, q, r denote the shifts in x, y, z. By applying eq. (2) the

reconstruction of a continuous approximation of the volume intensity function f(x,y,x) can be

written as

(4) f (x, y, z) :�	
p,q,r

cMpqr�
3
Mpqr(x, y, z) � 	

M

m�1

	
7

i�1

	
p,q,r

d i
mpqr�

3,i
mpqr(x, y, z)

where M denotes the depth of the pyramid and

(5) cMpqr � �f , �3
Mpqr

� d i
mpqr� �f , �3,i

mpqr� < , > : inner product operator

Typically, the fast discrete wavelet transform of a given function is implemented using so–called

quadrature mirror pair filter cascades (QMF), as illustrated in fig.1. The decomposition of an ini-

tial volume data set is accomplished by subsequent filtering and subsampling of each row, column

and  plane of the volume. A good mathematical analysis of QMFs is given in [1].
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Fig. 1 QMF–pyramid to implement the 3D–wavelet transform. The
filters G’ and H’  are derived from the scaling function and from
the wavelet, respectively (see [8])

2.2 Wavelets in Frequency Domain
Our approach requires wavelets, whose Fourier transform is described analytically. With regard

to computational costs, the following three types are considered, although it has to be noted, that

the method can be applied to any other type of wavelet satisfying the upper criterion.
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1. Battle–Lemarie Wavelets

Lemarie [13] and Battle [2] studied a class of multiresolution approximations of L2(�). They

constructed a set of wavelets by orthogonalizing B–spline functions and received symmetric

wavelets and scaling functions. From a piecewise polynomial of degree n (Pn(n) � Cn�1) they

generated wavelets with n+1 vanishing moments. The Fourier transform of the BL–scaling func-

tion for n = 3 is defined as:

(6) �(�) :� 1
�4 �8(�)�

with:

(7) �8(�) :�
N1(�) � N2(�)

105	sin�
2

8

(8) N1(�) :� 5� 30	cos�
2

2

� 30	sin�
2

2	cos�

2

2

(9) N2(�) :� 2	sin�
2

4	cos�

2

2

� 70	cos�
2

4

� 2
3
	sin�

2

6

2. Haar Wavelets

The generic Haar wavelet is simple and symmetric on the one hand, but however has a low regu-

larity on the other. These wavelets are optimally localized in spatial–domain but, according to

the Heisenberg uncertainty principle, the frequency localization has to be poor. One of the essen-

tial advantages of the Haar wavelet is the compact support along with non–overlapping basis

functions.

For the mother scaling function and for its corresponding wavelet we obtain

(10) �(x) :� �1     for  0� x � 1

0     otherwise �(x) :�
�
��
�




     1     for  0� x � 1�2

� 1     for  1�2 � x � 1

     0     otherwise

And in frequency domain

(11) �(2�) � e�i� sin(�)
� �(2�) � ie�i� sin2(��2)

��2

3. Shannon wavelets

Inverse properties of spatial/frequency localization brings up the Shannon wavelet. Here, the
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Fourier transform is compactly supported, whereas the corresponding functions in spatial domain

are spread out.

(12) �(�) :� �1     for  |�| � �

0     otherwise �(�) :� �1     for  � � |�| � 2�

0     otherwise

(13) �(x) :�
sin(�x)
�x �(x) :��

�
�

sin��2 x	
�
2 x �



�

cos�3�
2

x	

In fig. 2 the functional courses of the 3 mother scaling functions from above are depicted in spatial

and in frequency domain. The different functional properties can be realized easily.

b ca

spatial
domain

frequency
domain

Fig. 2 Different scaling functions in spatial and frequency domain: 
a) Battle–Lemarie wavelet
b) Shannon wavelet
c) Haar wavelet

The Fourier theorems state, that scaling and shifting of a prototype function has to hold Parseval’s

energy equivalent and is related according to eq. (14). In other words, a contraction in spatial do-

main is related to an expansion in frequency domain and vice versa. For that we have for any func-

tion g:

(14) gab(x) � 1
a


g�x� b
a 	 � Gab(�) � a
 G(a�)e�ib� a � �

�, b � �

With eq. (14) for the dyadic case:
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(15) �mp(x) � 1
2m� �(2�mx� p) � �mp(�) � 2m� �(2m�)e�ip2m� m� �0, p � Z

In eq. (1) we defined a separable 3D extension of a closed L2(�) subspace, whose basis functions

are defined in eq. (3). Due to the separability of the Fourier transform, the corresponding defini-

tion in frequency domain results for the scaling function :

(16) �3
mpqr(�1,�2,�3) � �mp(�1)�mq(�2)�mr(�3)

and for the wavelets:

(17) �3,k
mpqr(�1,�2,�3) � �k div4

mp (�1)�
(k div2) mod 2
mq (�2)�

kmod 2
mr (�3) k � [1, 7]

�0
mn :� �mn(�)

�1
mn :� �mn(�)

Note, that eq.(16) and (17) define the Fourier transform of a set of orthogonal, separable 3D scal-

ing functions and wavelets, which will be processed further with our method.

3 Ray Tracing in Wavelet Space

3.1 Ray Intensity Function

As stated earlier, self–occlusion is not considered in this approach. Although the exponential term

in the low–albedo equation [3] is of fundamental physical importance, yet for many applications

a simple color integral renders sufficient results. Thus, the rendering problem reduces to solving

line integrals along the ray t through the color function

 f col(x, y, z) , col � {R, G, B}

Let t1be the entrance point of the ray into the volume and t2 be its exit, the intensity

 i col in each channel RGB is expressed by

(18) i col � �
t2

t1

f col(x(t), y(t), z(t))dt

where x(t), y(t), z(t) are the coordinates in parameter space t.

Because of the wavelet expansion in eq. (4) the upper integrals can be considered as a superposi-

tion (accumulation) of the line integrals of 3D wavelets intersected by the ray
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(19) i col ��
p,q,r

ccol
Mpqr �

�

��

�3
Mpqr(x(t), y(t), z(t))dt

� �
M

m�1

�
7

k�1

�
p,q,r

d k,col
mpqr �

�

��

�3,k
mpqr(x(t), y(t), z(t))dt

Within this process the parametrization of the wavelet in t turns out to be essentially a projection

onto the ray.

The goal of our further considerations is to find a fast algorithm to solve the fundamental relation-

ship of eq. (19) analytically.

3.2 The Fourier Projection–Slice Theorem

One approach for rendering volume data sets is based on the inverse problem of tomographic re-

construction [16]. This is briefly reviewed in the following section. Generally, the aim is to

achieve a fast computation of the density integral of a given 2D function f(x,y) along a line l(t,�).

The Fourier projection–slice theorem is given as:

(20) P�(�) � F(� cos�,� sin�)

where P�(�) is the Fourier transform of

 

(21) p�(�) � �
�

��

f (x(t,�), y(t,�))dt

and (�, �) define the frequency plane. Thus a slice of the Fourier transform of a given function

f(x,y) at an angle � represents the one–dimensional Fourier transform of its projection p�(�). Fig.

3 illustrates this relationship.
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y

x

f (x, y)

p�(�)

�

(cos �, sin �)

t

t

f (x(t,�), y(t,�))
x

l(t,�)
�

�

line integrals along t
as a function of �

spatial domain

Fig. 3 Illustration of the Fourier projection slice theorem in 2D

In 3D, the Fourier projection–slice theorem can be used for calculating the intensity integrals of

a function f(x,y,z) at a given point (�, �) onto an oriented projection plane along a perpendicular

ray t. We get the intensity i(�, �) in the image plane as:

(22) i(�, �) � �
�

��

f (x(t,�, �), y(t,�, �), z(t,�, �))dt

The computed intensity distribution and its parameters in spatial domain are represented in fig.

4.
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x

y

z
t

l(t,�, �)

f (x, y, z)

�

�

initial volume intensity
function

image plane

i(�, �)
f (x(t,�, �), y(t,�, �), z(t,�, �))

t

Fig. 4 Illustration of the Fourier projection slice theorem in 3D

The 3D Fourier transform of our function f(x,y,z) is given by:

(23) F(�1,�2,�3) � �
�

��

�
�

��

�
�

��

f (x, y, z)e�i2�(x�1�y�2�z�3)dxdydz

According to Fourier projection slice theorem [7] we have to compute F(�1,�2,�3) along the

slicing plane through the origin defined by two vectors u and v in order to obtain I(u,v).

(24) F(�1(u, v),�2(u, v),�3(u, v)) � I(u, v)

� �
�

��

�
�

��

�
�

��

f (x, y, z)e�i2�(x�1(u,v)�y�2(u,v)�z�3(u,v))dxdydz

The inverse FFT of the resulting 2D function I(u, v) leads to the intensity integral (eq.  (22)), of

a bundle of parallel rays perpendicular to the plane (u,v). This image can be considered as an X–

ray image of the volume, because of the lack of attenuation or illumination effects.
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3.3 Slicing 3D–Wavelets

In order to compute the upper intensity integral in wavelet space, each 3D wavelet intersected

by the ray has to be sliced. This is accomplished by a slicing plane P perpendicular to the ray.

It is specified by its normal  n and by the vectors u and v which define the viewing coordinates:

n :�	
�

�

cos� cos�
sin� cos�

sin�
	
�

�
(25) u :�	

�
�
� sin�
cos�

0
	
�
�

v :� n � u �	
�

�

� cos� sin�
� sin� sin�

cos�
	
�

�
This procedure is shown in fig. 5.

�1

�2

�3

�

n

v

�

Fourier transform
of a 3D wavelet

slicing plane P

u

Fig. 5 Slicing the Fourier transform of a 3D wavelet, coordinate sys-
tem

In most cases, the 2D slice I(u, v) can be computed analytically, but not its counterpart i(�, �).

Therefore it is necessary to perform an inverse FFT algorithm and to generate a discrete version

of size (resu � 1)� (resv� 1)  of I(u, v). This is figured out by the introduction of the two pa-

rameters i and j and by the stepsizes �u �
1

resu
 and �v �

1
resv

. The points ui  + vj  define a discre-

tization of the plane P, that slices the function F(�1,�2,�3):

(26) ui :�	
�

�

� sin� i �u

cos� i �u

0
	
�

�
vj :� n � u �	

�

�

� cos� sin� j �v

� sin� sin� j �v

cos� j �v

	
�

�
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with i � �� resu

2
,
resu

2
	 and j � �� resv

2
,
resv

2
	. The triple (
1,
2,
3) can be substituted by

the parameterized plane such that

(27) (
1,
2,
3)i,j
T :��

�




� sin� i �u � cos� sin� j �v

cos� i �u � sin� sin� j �v

cos� j �v

�
�

�
Applying eq. (27) on the 3D basis functions described in eq. (16) and eq. (17), yields for the 3D

scaling function and for the 7 wavelets

(28) �3
mpqr
(
1,
2,
3)i,j� � �

~ 3
mpqr(i, j)

� �mp(� sin� i �u � cos� sin� j �v)

� �mq(cos� i �u � sin� sin� j �v)

� �mr(cos� j �v)

(29) �3,k
mpqr((
1,
2,
3)ij) � �

~ 3,k
mpqr(i, j)

�0
mn :� �mn(
) �1

mn :� �mn(
)

� �k div4
mp (� sin� i �u � cos� sin� j �v)

� �k div4
mp (� sin� i �u � cos� sin� j �v)

��(k div2) mod 2
mq (cos� i �u � sin� sin� j �v)

��k mod 2
mr (cos� j �v)

The inverse Fourier transform now renders the required line integrals along t through the basis

functions � and � at (�,	) because it holds

(30) �
�

��

�3
mpqr(x(t,�, 	), y(t,�, 	), z(t,�, 	))dt � FT�1
�3

mpqr
1(u, v),
2(u, v),
3(u, v)�

and

(31) �
�

��

�3k
mpqr(x(t,�, 	), y(t,�, 	), z(t,�, 	))dt � FT�1
�3k

mpqr
1(u, v),
2(u, v),
3(u, v)�

Our implementation employs an Cooley–Tukey FFT method. Note that the resolution at level m

can be scaled with resm
u,v � resu,v�m.
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3.4 Ray Casting by Accumulation of Sliced Wavelet Textures

The upper section addressed how to find the intensity of a given wavelet or scaling function. This

concept can be used for computing the intensity integral of eq. (22) for any ray t perpendicular

to our viewing plane P(u,v). Supposing orthogonal projection (parallel rays) and inserting the

definitions from above, we finally obtain a mathematical description of the intensity or color inte-

gral distribution i col(�, �) in wavelet space, according to eq. (18) and eq. (19).

(32) i  col( �, �) � �
�

��

f col(x(t,�, �), y(t,�, �), z(t,�, �))dt

��
p,q,r

ccol
Mpqr �

�

��

�3
Mpqr(x(t,�, �), y(t,�, �), z(t,�, �))dt

� �
M

m�1

�
7

k�1

�
p,q,r

dk,col
mpqr �

�

��

�3,k
mpqr(x(t,�, �), y(t,�, �), z(t,�, �))dt

Especially, this function defines the RGB image obtained by volume intensity integration of a

function f col(x, y, z) approximated by a finite sum of self–similar ’colored’ wavelets.

Due to the alignment of the 3D wavelets onto the sampling grid, the rendering process can be

interpreted as an accumulation of scaled and shifted versions of eight 2D intensity or color dis-

tributions. They have to be located at the respective wavelet’s position in space, are parallel to

the viewing plane and are weighted with the coefficients of the transform. Fig. 6 reflects the entire

rendering pipeline. First of all, the 3D wavelets and scaling function are sliced in frequency space.

This is illustrated for the Shannon scaling function and can be computed analytically. This results

in 8 different 2D textures, one for each mother wavelet representing their ray intensity integrals

in frequency space. Furthermore, the initial RGB volume data set is decomposed by a 3D–WT,

separately for each channel. This procedure provides the required coefficients ccol and dcol.

The WTs of the RGB volumes have only to be performed once at the beginning whereas the slic-

ing has to be computed for each viewpoint. Next, the inverse FFT computes the intensity distribu-

tion in spatial domain. Note, that these distributions are the same for R,G and B but, following

eq. (32) they have to be weighted with their respective coefficients ccol and dcol.
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Superimposing these distributions for R,G and B results in an RGB texture representing the con-

tribution of a single wavelet to the integral color function f col(x,y,z).

The linearity of eq. (32) allows us to accumulate scaled and shifted distributions to obtain the

contributions of the corresponding basis functions. Hence, the final image is obtained by accu-

mulation of a set of self–similar textures. Note, that these values are both positive and negative.

The advantage of this method is, that we can compute the slices in frequency space analytically

and in some cases, the inverse FT as well. Thus, the volume rendering is taken as an accumulation

of textures. The resolution of a single texture can be low and is defined by Nyquist’s theorem.

In contrast to hierarchical spatting [12] we provide an expansion with orthonormal basis func-

tions and have all advantages arising from it, such as smooth interpolations, level of detail, error

control etc. These properties of WT–based methods are explained in detail in [9]. Another advan-

tage lies in the hardware support of image accumulation. The SGI–ONYX, for instance, offers

specific frame buffer operations or primitives, such as ’billboards’, which can be used immedi-

ately for implementing this method.

Fig. 6 Illustration of the entire rendering process using accumulation
of scaled and translated texture maps

4 Examples

This section illustrates the method by rendering some volume data sets. In fig. 7 a Gaussian inten-

sity distribution is rendered with Haar (a), Battle–Lemarie (b) and Shannon (c) wavelets. The

RGB volume data set has a resolution of 64 x 64 x 64 voxels, where red refers to a density range

of 0.2 to 0.35, green to a range of 0.35 to 0.6 and blue from 0.6 to 1.0. It is clear, that the different

colors dominate in the respective spatial regions, but due to the superposition the center of the

Gaussian appears in white color. The discontinuous Haar wavelet causes the picture to appear

more ”boxlike” than the smooth wavelet types. The decomposition of the data was performed

for M=0. Hence, the images are generated by scaling functions, only.

Figures 8–10 depict results obtained on the lobster data set at a resolution of 120 x 120 x 34. The

outer hull of the lobster contains voxels of high density and is enhanced using red color (from
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50 to 150), whereas the density range from 125 to 200 is rendered in green and 175 to 250 in blue.

The figures present reconstructions with different wavelets at various decompositions.

Fig. 7 Gaussian density distribution rendered as an RGB image with
a) Haar wavelets
b) Battle–Lemarie wavelets
c) Shannon wavelets

The figures 8–10 (a) show the lobster at M=0, where only the scaling functions are used. These

results are contrasted by fig. 8–10 (b,c), where decompositions with M=2 and M=1 were figured

out and only the scaling functions are included, respectively. Evidently, the image appears more

fuzzy, since the high frequency components are eliminated. Note, that the number of textures re-

quired for the reconstruction relates theoretically to 1/8M in this case. Our implementation, how-

ever rejects any texture, whose coefficients are zero. Only the remaining textures are rendered.

The respective percentages on non–vanishing textures are given in brackets.

Fig. 8 Lobster data set rendered with Haar wavelets at 
a) M = 0 (14 % of the coefficients are used for rendering) 
b) M = 1 (8 %)
c) M = 2 (2 %)

Fig. 9 Lobster data set rendered with Battle–Lemarie wavelets at 
a) M = 0 (14 % of the coefficients are used for rendering)
b) M = 1 (8 %)
c) M = 2 (2 %)

Fig. 10 Lobster data set rendered with Shannon wavelets at 
a) M = 0 (14 % of the coefficients are used for rendering)
b) M = 1 (10 %)
c) M = 2 (4 %)

The capabilities of the wavelet transform to control elegantly level of detail is finally elucidated

in fig. 11. Different views are presented and the wavelet coefficients are filtered, such that all high

frequency components are removed unless those within a small region around the left shear.

Fig. 11 Level of detail using Haar–wavelets
a) Original datasets (2 different views)
b) LOD control around the left shear at M=1 (14%) 
c) LOD control around the left shear at M=2 (10%)

5 Conclusion

In this paper a method for fast volume intensity integration was introduced using RGB textures

of wavelets sliced in the frequency domain. The computational advantages of this method lie spe-

cifically in the absence of additional prefiltering and in the self similarity of the textures. This
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allows to compute them only once for each mother wavelet. The rendering is accomplished by

accumulation of transparent and colored textures and is supported in modern graphics hardware.

Basically, the ray casting is replaced by polygon rendering or frame buffer operations and the

computing costs are only correlated weakly to the resolution of the image.

Although we presented the pictures without shading and attenuation, it is mathematically

straightforward to include these features as well. However, the problem of computing exponen-

tial self–occlusion and more complex nonlinear shading models is still unsolved. One way to ap-

proach it, is to replace the accumulation process by �–blending and depth sorting of the textured

polygons. This can be thought as a linear approximation of the low–albedo integral and is in the

focus of our current research activities. Furthermore, other biorthogonal B–spline wavelet types

should be considered, such as in [21].
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