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Abstract. An approach to computer-sup- 
ported cartooning is described that aims 
at optimizing the image-related working 
process by introducing computer-support 
in the drawing and painting stages of tra- 
ditional cartoon production, in particular, 
allowing automatic coloring of a sequence 
of digitized images. This is achieved by 
using a shape-matching algorithm to 
evaluate the similarity of image regions 
and by performing an optimum region 
assignment to identify the corresponding 
ones and propagate the color information 
through the image sequence. In order to 
maintain the use of traditional drawing 
tools, the first step in the proposed system 
architecture is the processing of scanned 
animators' drawings to enhance their 
quality and extract meaningful informa- 
tion. Two different system modules allow 
either manual coloring of images or com- 
puter-assisted automatic painting of an 
image sequence. Additional modules 
allow the construction of a vector repres- 
entation for the images, the generation of 
in-betweens, and the composing of each 
cartoon frame. The first stages of the sys- 
tem's architecture - image preprocessing, 
painting and vectorization are presented. 
Special emphasis is placed on the funda- 
mental ideas behind the computer- 
assisted painting and vectorization steps. 
The competitiveness of the approach, 
which requires no special hardware or 
high-performance workstation, is shown. 

1 Introduction 

Since the beginning of the 1970s various tech- 
niques have been developed to support the 
production of classical cartoons. Some of them 
attempted to automate the generation of drawings 
using key-frames and interpolation methods 
(Baecker 1969; Burtnyk and Wein 1971). Others 
tried to support the entire production process 
using vector input (Levoy 1977) or raster graphics 
(Stern 1979). To overcome some of the problems 
of the earlier in-betweening approaches, e.g., the 
shrinkage associated with rotation, additional 
and more complex methods for visually pleasing 
key-frame animation were developed (e.g., Bur- 
tnyk and Wein 1976; Reeves 1981; Kochanek and 
Bartels 1984; Sederberg and Greenwood 1992; 
Sederberg et al. 1993). Clearly, none of them can 
solve the basic problem of the lack of information 
inherent in the images. 

Catmull (1978) carried out a precise analysis 
of the problems of computer-supported anima- 
tion, while Thomas and Johnston (1981) stres- 
sed the artistic side of animation; as a result, 
the limitations of fully automatic approaches to 
cartooning became quite clear. In the 1980s re- 
search and development concentrated on 3D ani- 
mation tools, some of them taking the principles 
of classical animation (Lasseter 1987) into 
account. Although the 3D tools revolutionized 
certain market segments - e.g., special effects, 
TV commercials - some attempts to use them for 
traditional cartooning were less successful com- 
mercially, either because of their complexity, lack 
of user-friendliness or simply as a result of their 
costs and requirements, which sometimes made 
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them uncompetitive regarding manual produc- 
tion. For this reason, the expectations raised by 
early researchers have not yet been completely 
fulfilled. 

Therefore, dedicated tools are needed that do 
not limit the animation artists in their creativity; 
they need to be easy to use and allow cheaper 
cartoon production. Based on these requirements, 
a prototype was developed that allows automatic 
painting of a sequence of images by combining 
methods from computer graphics, image process- 
ing and scene analysis, and integrating them into 
the usual working procedure, thus optimizing it. 
Our approach acts as a bridge between traditional 
and computer-supported production, making it 
easily acceptable to animation artists, and strikes 
a balance between the amount  of user interaction 
and the execution time of the associated algo- 
rithms. 

Before presenting the overall architecture of the 
system, a short review of the traditional cartoon 
production process is given in the next section. 
Afterwards, the image preprocessing, manual 
painting and computer-assisted painting stages of 
the prototype are presented. For the latter the 
basic algorithms used are thoroughly described. 
The fundamental ideas associated with the image 
vectorization step, which is essential for the later 
generation of in-betweens, are also discussed. 

2 Traditional cartooning 

The production process of a cartoon consists of 
several major steps (Catmull 1978). The ones that 
are of direct interest in the context of this paper 
are briefly described below. 

The fundamental cartoon production informa- 
tion is defined by: 

• The story-board, in which the story is split 
into scenes and sequences 

• The model sheets, which show all cartoon 
characters in various poses 

• The exposure sheet, which contains a precise 
formal description on how to build up each 
frame in a sequence by stacking different 
images (i.e., layers) in the defined order 

For each cartoon sequence the animators draw 
first the key layers that contain (at least) one 

cartoon character - or a part of it - in character- 
istic or extreme positions. Between each pair of 
key layers, in-betweeners of different skill levels 
draw the intermediate layers that make up the 
sequence. These outline drawings are then trans- 
ferred to transparencies and colored. Afterwards 
the different layers are combined into frames ac- 
cording to the exposure sheet. Finally, the film is 
shot frame by frame. 

Considering the thousands of layers that have 
to be drawn and painted for just 1 min of ani- 
mated film, these two stages make up approx. 
60% of the labor required in traditional cartoon- 
ing (Durand 1991) and are well suited for the 
introduction of computer-support.  Time-consum- 
ing painting can especially be accelerated with 
appropriate methods. 

3 Overview of the system's 
architecture 

Since the animation artists' creative freedom must 
not be limited in any way and since there is no 
input device that satisfies all of the artists' needs, 
we decided to have hand-drawn images as input, 
thus enabling the artists to continue to use their 
convenient tools: specific pencils and paper. 

Aiming at supporting the drawing and painting 
stages of the traditional cartoon production, the 
system consisting of the modules shown in Fig. 1 
was laid out. The information flow between the 
different modules, which comprise almost all of 
the image-related tasks in cartoon production, is 
also depicted. 

The specific purpose of each module is roughly 
described below: 

P r e p r o c e s s i n 9  - the scanned line drawings 
are cleaned, skeletonized and segmented. 
Features like the regions' contours, and 
neighbors are extracted for later use. 
P a i n t i n 9  - a digital image is painted interac- 
tively by assigning colors to its regions. Si- 
multaneously, the image is hierarchically 
structured into objects consisting of sets of 
regions. It is intended that only the layers of 
the first frame of each sequence be colored 
manually; for the remaining ones the com- 
puter-assisted painting module is used. 
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Fig. 2. The preprocessing pipeline 

• C o m p u t e r - a s s i s t e d  p a i n t i n 9  - given an al- 
ready painted image, its successor in the im- 
age sequence will be (semi-)automatically 
painted, using shape-matching and region- 
assignment algorithms to identify corres- 
ponding regions and propagate the color 
information. Then, the just-colored image 
becomes the reference one, and the process 
continues. 

• V e c t o r i z i n 9  - the raster images are vec- 
torized and represented in a topologically 
correct way. The thickness of the image 
lines plays an important role in cartoon 
images and is associated with the vector 
representation. 

• I n t e r a c t i v e  i n - b e t w e e n i n 9  - between 
two vectorized key layers additional 
intermediate layers are (semi-)automati- 
cally generated and, if needed, interac- 
tively modified. This further reduces the 
number of images that have to be manually 
drawn. 

• S c e n e  c o m p o s i n 9  - using a computerized ex- 
posure sheet and sequences of painted layers, 
each cartoon frame is composed by layer 
stacking. The entire frame sequence can then 
be animated for testing purposes with a near 
real-time display rate. 

4 Preprocessing 

Using a scanner to digitize the line drawings en- 
tails the need for an image preprocessing stage, 
which is an additional one in comparison to the 
traditional procedure. Aiming at off-line process- 
ing, only fast algorithms that can run indepen- 
dently from any user intervention were selected. 
A pipeline grouping them together was defined as 
shown in Fig. 2. 

Since the scanned images usually contain black 
and blue lines - the latter will be painted with the 
fill color of the region they enclose - the prep- 
rocessing starts with color separation and genera- 
tion of two binary images. This is done by 
weighted color-component averaging and thre- 
sholding. To remove noise and enhance image 
quality the binary images are then cleaned. Be- 
cause of the line-shaped nature of the image 
contents, mathematical morphology operations 
(Haralick et al. 1987) turned out to be inappropri- 
ate for such a task. Instead, a spike/Nob removal 
procedure - namely, connected component sup- 
pression (Haralick and Shapiro 1992) - is applied 
to the images. 

Figure 3 shows a binarized cartoon image, 
scanned with 150 dpi and containing approx. 
250,000 pixels. Clearly, when handling the large 
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Fig. 3. A scanned image (original image by 
courtesy of France Animation) 

Fig. 4. The image skeleton 

number of digital images needed for a cartoon, 
a compromise has to be found between the resolu- 
tion necessary for appropriate image quality and 
storage space. For an entire cartoon this can only 
be achieved by using image-compression 
methods. 

To enable the extraction of image features the 
skeleton of the image lines is computed. A dis- 
tance-based skeletonizing algorithm (Niblack 
et al. 1992) was selected since its execution time 
does not depend on the largest-occurring line 
thickness. The distance map is calculated using 
a 3-4 metric because of its relatively small approx- 
imation error (<  10%) to the Euclidean distance 
(Leymarie and Levine 1992), which allows accu- 
rate reconstruction of the line thicknesses. Since 
the selected skeletonization algorithm does not 
guarantee construction of a minimal skeleton 
- for which removing just one more pixel would 
yield a loss of connectedness - a post-thinning 
step is also applied to the image. This two-phase 
process generates the result presented in Fig. 4. 

Afterwards a gap-closing step can be applied, 
which uses the Gestalt laws (Wertheimer 1921) as 
a basis for a set of heuristics and attributes to each 
possible closing a measure of goodness based on 
the distance between endpoints and the line direc- 
tion in the vicinity of each endpoint. 

The skeleton allows the extraction of features 
like adjacency relationships between regions, as 
well as the recognition of endpoints and simplifies 
the later vectorization process. Clearly, before ad- 
jacency relationships between regions can be ex- 
tracted the image regions have to be identified. 
This segmentation is done by flood-filling (Heck 

Image 

Background Objects 

Fig. 5. The hierarchical image structure 

bert 1990) each image region with an individual 
label. 

The example image shown in Fig. 3, containing 
532 x 516 pixels, passed the entire preprocessing 
pipeline in approx. 27 s on a SUN SPARCstation 
10, Model 30, with 86.1 MIPS, 10.6 MFLOPS 
and 32 MB RAM; the code is implemented in 
C + + .  

5 Painting 

The painting module can be used to color all 
images like a conventional paint toot, but it is 
intended to be used only for the layers that will be 
a reference for their successors in the computer- 
assisted painting stage. The user paints the differ- 
ent image regions by assigning a color to each of 
them. Since the image is already segmented, the 
painting is reduced to just a manipulation of the 
look-up table; this speeds up the interactive 
process. 
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Fig. 6. Example situation before the start of the 
assisted painting (original images by courtesy of 
France Animation) 

While painting the image, its contents are struc- 
tured hierarchically into objects consisting of sets 
of regions. An object can be arbitrarily defined by 
the user, but the intention is that it represents 
a cartoon character or a part of it. The structuring 
is done with almost no additional workload on 
the part of the user and supports efficiently the 
assisted painting. Figure 5 illustrates the structure 
that is built up as a basis for the assisted painting. 

Furthermore, the painting module places a 
comfortable gap-closing facility at the user's 
disposal. If the user notices a color spreading, 
he can select two line endpoints and the system 
automatically draws a line between them, checks 
if the closing was successful and updates the un- 
derlying data structure. 

6 Computer-assisted painting 

All the processing steps presented so far aim at 
building up a basis for the computer-assisted 
painting process. Its goal is to propagate the color 
information from an already-painted image to its 
uncolored successor in the image sequence. An 
initial situation, before the start of the assisted 
painting process, is depicted in Fig. 6. 

Although the images composing a cartoon se- 
quence are quite close to each other there are 
only 1/25 s between two succeeding images - 
region deformations and partial or NobaI occlu- 
sions usually occur. Thus, a (semi-)automatic 
painting method must be robust against these 
effects, as well as against region translation, rota- 
tion and scaling. Given these requirements, simple 
position-bounded approaches often present in to- 

day's commercial tools are inadequate. 
Our  approach can be described as follows: 

A topologically guided shape matching is carried out to evaluate 
the similarity of regions, considering specific constraints and heu- 
ristics, and region correspondences are established using linear 
optimization to determine a local best region assignment. 

When shape matching is applied, one funda- 
mental task is to find a description for a region's 
shape that incorporates all of the previously men- 
tioned requirements. One promising approach is 
to use the curvature along a region's contour. The 
curvature itself is robust regarding translation, 
rotation and uniform scaling, but in the case of 
raster images a precise determination of curvature 
is not possible; only approximations can be used 
for generating a shape description. A further task 
is the appropriate construction of such shape des- 
criptions to enable efficient shape comparisons. 

The region-matching and assignment process 
starts by letting the user select one region - region 
R - in the reference (i.e., previously painted) image 
and its corresponding region - region P - in the 
image to be painted. This initial match was intro- 
duced to speed up the matching procedure by 
avoiding an automatic search for two regions that 
constitute a best first match. 

Then a set of matching candidate regions is 
determined for each image. For the reference im- 
age the object structure is taken into account: 
only neighboring regions - R~, i = 1, 2 , . . . ,  m - o f  
R that belong to the same object and do not yet 
have a corresponding region in the image to be 
painted are considered to be possible matching 
candidates. For the image to be painted all neigh- 
boring regions - P j,  j = 1, 2 , . . . ,  n - of P that do 
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not yet have a corresponding region in the refer- 
ence image are possible candidates. 

Afterwards, for every pair of candidate regions 
(R~, P j), a measure of the dissimilarity between R~ 
and Pj is computed, using curvature-based shape 
descriptions. This is a critical step in terms of 
execution time; thus, we decided to use a set of 
heuristics to restrict a priori the number of pos- 
sible candidate region pairs and minimize the 
number of dissimilarity values that have actually 
to be computed. 

Using linear optimization, an assignment of 
candidate regions is then determined that minim- 
izes the sum of dissimilarity measures. The color 
information is propagated according to the region 
assignments and the corresponding object struc- 
ture is replicated in the image to be painted. Using 
each pair of assigned regions the process runs 
recursively until no assignable regions remain. 

Summing up, the two steps that have to be 
accomplished for each image region prior to the 
matching and assignment process are: 

• Compute a shape description for each image 
region. 

• Code each description as a character string 
to allow shape comparisons. 

The steps carried out for region matching and 
assignment are: 

• Determine the set of pairs of candidate re- 
gions and filter it with a set of heuristics to 
limit the number of comparisons. 

• Compare the string descriptions associated 
with each surviving pair of candidate regions 
to determine the dissimilarity measures. 

• Perform the region assignment, given the dis- 
similarity values associated with the pairs of 
candidate regions. 

We now explain each of these steps. The algo- 
rithms for the computation of a shape description 
for each region, string-based shape coding and string 
comparison are based on Liu and Srinath (1992). 

and Wintz 1987) to the skeletonized and seg- 
mented image to estimate the gradient at each one 
of the region's contour pixels. The gradient of an 
imagef(x, y) at pixel location (x, y) is defined as the 
two-dimensional vector Vf(x, y) = (c?f/~x, Of/~y). 
The Sobel operator is usually applied to gray- 
level images and estimates the gradient by in- 
specting the eight neighbors of (x, y), taking into 
account their gray values. 

Let Px,y represent the bit value at location (x, y). 
Using the Sobel operator, the gradient compon- 
ent in the x direction is approximated as: 

Ax = (Px+l,y-1 + 2Px+l,y + Px+l,y+l) 

--(Px ,,v- 1 + 2P~- 1,y + P~- 1,y+ 1) (1) 

and in the y direction as 

Ay = (Px-l,y+l + 2Px, y+l + Px+l,y+l) 

- (P~,-1,y-1 + 2Px, y- 1 + Px+l ,y-1) .  (2) 

The gradient direction is then defined as 

O = t a n _  1 A(~_~). (3) 

To exemplify how the Sobel operator works, an 
example is given in Fig. 7; the gradient direction 
is determined along the region's contour, repres- 
ented by the pixels in darker gray. Figure 8 depicts 
the gradient direction as a function. 

Once the gradient direction has been estimated, 
a measure of the curvature variation c~ at each 
contour pixel P~, i =  1, 2, . . . ,m, can be obtained 
by simply computing the difference between two 
succeeding gradient direction values: 

Ci ~-- ( ~ ( i m o d m ) + l  - -  (~ i  (4) 

The resulting contour description function for 
the example region is shown in Fig. 9. 

6.2 String-based shape description 

6. 1 Shape description 

The first step towards describing a region's shape 
is taken by applying the Sobel operator (Gonzalez 

So far, the contour descriptions are not suffi- 
ciently invariant against affine transformations, 
e.g., their length is directly related to the length of 
the contour. Each contour description is at this 
stage coded into a string aiming at increasing its 
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Fig. 8. The gradient direction at each contour pixel Pi 

Fig. 9. The contour description function 

scaling invariance and compactness, as well as 
accelerating the later comparison of any two 
shape descriptions. 

According to Liu and Srinath (1992) a string 
can be built from a shape description by introduc- 
ing quantization levels and using the sign of each 
value to determine the character inserted in the 
string: negative values are coded into one or more 
'd' (down) and positive ones into one or more 'u' 
(up). The number of times each character is in- 
serted in the string is computed by taking each 
function value and performing integer division by 
the amplitude of the quantization level. Figure 10 
illustrates this; the character(s) successively in- 
serted in the string are placed near to their func- 
tion points; the resulting string is: dddddd .  

This example shows the compression effect of 
the string coding. The contour description con- 
taining 12 curvature measures is coded into 7 
characters. Clearly, the coding does not work 
without quantization errors, e.g., the positive 

curvature values are not represented in the coding 
since they are smaller than the quantization level. 

Moreover, this simple kind of string coding has 
the essential drawback that all convex regions 
generate a string consisting exclusively of 'd' char- 
acters; thus, they are not distinguishable. Note 
that if a character is inserted multiple times at any 
given step, it is not possible to reconstruct the 
contour shape from the string since the same sub- 
string can correspond to different contour pieces. 

To overcome this problem we decided to use 
more than two characters for string coding: when 
building the string, instead of using only two 
characters and inserting them multiple times, dif- 
ferent characters are used to express the function's 
absolute value and sign. Assuming that each 
quantization level in the positive direction is 
coded with characters from the beginning of the 
alphabet starting with 'a,' and the negative ones 
are coded starting backwards from 'z,' the 
resulting string is: y z z z z z .  This coding has the 
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advantage of expressing the rate of change in 
curvature direction by different characters, in- 
stead of just inserting one character multiple times 
to accomplish this. 

String coding has one crucial parameter that 
has to be properly chosen: the size of the quantiz- 
ation level. This is illustrated in Fig. 11, where the 
above curvature function is string coded using 
smaller quantization levels. Now the resulting 
string is the following: vzzxazxyyx. 

Note that one of the positive values is now 
represented in the string, which means that the 
concavity at the bottom of the region depicted in 
Fig. 7 is detected. Thus, smaller quantization 
levels correspond to a finer contour description, 
but are also more sensitive against noise. Since the 
strings are constructed to facilitate region match- 
ing, a balance has to be found between description 
accuracy and string length, otherwise the execu- 
tion time of the string comparison algorithm will 
be prohibitively high. In the current implementa- 
tion the function range is divided into ten 36 ° 
quantization levels. 

6.3 Comparison heuristics 

Since the shape of a region's contour is represent- 
ed by a string, the dissimilarity of two regions can 
be measured by comparing their respective shape 
coding strings. As mentioned before, the string 
comparison is a crucial time step of the assisted 
painting process. A way to avoid performing 
unnecessary comparisons is to use a set of heuris- 
tics to sort out which pairs of candidate regions 
need to be compared and which can be outright 
rejected. However, one should not forget that the 
use of heuristics decreases somewhat the invari- 
ance regarding image transformations. 

Given two regions to be compared and their 
respective shape-coding strings, one filtering step 
is to check if one of the strings is judged to be 
much longer than the other; in this case no string 
comparison is performed and a large default dis- 
similarity value is assigned to this pair of regions. 
This heuristic restricts the invariance regarding 
image scaling, but large, sudden scale changes do 
not often occur in most cartoon sequences, so the 
restriction is not too imposing. 

Another step is to verify if there is too large 
a difference in the relative position of the cen- 
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troids of the regions to be compared - say Ri and 
Pj - regarding the centroids of their previously 
matched neighboring regions R and P, in the 
reference image and in the image to be painted, 
respectively. The allowed changes in relative posi- 
tion depend on the distances between the cen- 
troids: the greater the distances, the smaller the 
allowed angular variations. If the relative posi- 
tions of the two matching candidates are judged 
to be too different, again a default dissimilarity 
value is assigned and no string comparison is 
performed. This heuristic restricts the invariance 
regarding image rotation and translation, but 
again it is not too imposing. 

A further purely topological heuristic is also 
used: according to their neighborhood informa- 
tion, regions are classified as containers (i.e. they 
contain one or more regions), as contained-in (i.e., 
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surrounded by a single region) or as none of both. 
Regions that are contained-in in the reference im- 
age can only be assigned to regions of the same 
type. Again, some comparisons are avoided and 
a default dissimilarity value is assigned. However, 
in some cases this heuristic prevents correct 
matches: for instance, when a region is moving 
from the interior of its container towards its bor- 
der and starts crossing it, it ceases to be a con- 
tained-in region and can no longer be assigned to 
its corresponding region, which still is a con- 
tained-in region in the reference image. 

6.4 Evaluating region dissimilarity 

For each pair of regions that still have to be 
compared it is necessary to compute a measure of 
their shape dissimilarity. This is accomplished us- 
ing the respective shape-coding strings and com- 
puting the cost of transforming one of the strings 
into the other. The conversion costs between the 
two strings give a measure of the dissimilarity of 
the regions: low costs correspond to high sim- 
ilarity and vice versa. 

The aim is then to determine the least costly 
sequence of character substitutions, insertions, 
and deletions that convert one of the strings into 
the other. Usually the costs of the different opera- 
tions are written into a matrix and a minimum 
cost path through the matrix defines the best 
sequence of substitutions, insertions or deletions 
needed to transform the origin string into the 
destination string. If the matrix rows are asso- 
ciated with the origin string and the columns with 
the destination string, horizontal moves in any 
matrix path correspond to the insertion of charac- 
ters into the destination string, vertical moves to 
the deletion of characters from the origin string 
and diagonal moves to character substitution. 
The costs associated with each possible move 
have to be defined as a function of the characters 
and the probability of their substitution, insertion, 
or deletion taking place. 

The string comparison algorithm used (Wagner 
and Fischer 1974; Liu and Srinath 1992) is as 
follows: 

1. Given an origin string A = A , A 2  .... Am and 
a destination string B = BaB2 . . .B,,  a cost 
matrix d of size (m + 1) x (n + 1) is created. 

2. The first element of the matrix, which corres- 
ponds to the cost of transforming a null string 
into itself, is zero - i.e. do0 = 0. 

3. The remaining elements of the first row are 
computed as: 

. 

. 

J 

doj = ~ 7 ( 2 ~ B ~ ) , j  = 1 ,2 , . . . ,n  (5) 
r = [  

where 7(2 ~ B~) represents the cost of inserting 
character B~ in the destination string. Each 
element doj represents the cost of transforming 
the null string into successively larger sub- 
strings of B. 
The remaining elements of the first column are 
computed as: 

i 

d,o = v(A  ;0, i = 1, 2 , . . . ,  m (6) 
r = J .  

where 7(At --+ 2) represents the cost of deleting 
character Ar from the original string. Each 
element di0 represents the cost of deleting suc- 
cessively larger substrings of A. 
The remaining matrix elements are computed 
as:  

. 

dij = min(di_ lye. 1 + 7(Ai ~ Bj), 

di-  ~ j + ?'(Ai ~ 2), dij _ 1 + 7(2 ~ Bj)) (7) 

for all i =  1 ,2 , . . . ,m and j = 1,2, . . . ,n ,  where 
7(A~ - ,  Bj) represents the cost of replacing char- 
acter A~ in the origin string by character B~ in 
the destination string. Each element df~ repres- 
ents the cost of transforming the substring 
A1A2 ... Ai into the substring B I B 2 . . .  Bj - the 
last operation being either a character substitu- 
tion, deletion or insertion. 
The total cost of transforming the origin string 
into the destination string is given by din,. 

When comparing a pair of regions without any 
knowledge about eventual region transforma- 
tions, it is possible that the starting points of both 
string-coded shape descriptions do not match in 
the sense that their relative position in each region's 
contour is not the same. Then, the only way of 
correctly comparing both strings is to successively 
shift one of them, one character at a time, perform 
successive string comparisons (i.e., compute their 
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conversion costs), and keep the minimum value. 
In the end the minimum value is the rotation 
invariant measure of the strings' dissimilarity (Liu 
and Srinath 1992). Since such a sequence of con- 
version costs neither increases nor decreases 
monotonically - instead, the values are usually 
oscillating -, it cannot be decided, at any shifting 
position, if the minimum value has already been 
found or if one is moving downhill towards the 
minimum conversion cost. However, an analysis 
of the sequences of conversion costs associated 
with a set of test images showed that the consecut- 
ive values do not vary in a wide range and are 
rather close to the minimum. 

One optimization regarding execution efficien- 
cy - given that the conversion cost at any string 
shifting position is relatively close to the min- 
imum one - is not to perform string shifting. 
Although the conversion costs obtained are less 
precise, the previous filtering of the possible 
matching pairs through the set of heuristics com- 
pensates for the lack of precision introduced in the 
string matching. 

The shape-dissimilarity values assigned to the 
pairs of matching candidate regions through the 
heuristics - a default value stating that no final 
assignment is allowed - and the string compari- 
son algorithm are used as input to the region 
assignment algorithm. This algorithm establishes 
the region correspondences between the sets of 
matching candidates by minimizing the sum of the 
dissimilarity values associated with the assigned 
regions. 

6.5 Region assignment 

The aim of the region assignment can be stated as 
follows: given two sets of regions {R~} - belonging 
to the reference image - and {P j} - belonging to 
the image to be pa in ted-  with m and n elements, 
respectively, and given the corresponding (mx n) 
dissimilarity values, determine the min{m, n} as- 
signment pairs in such a way that no assignment 
sequence exists whose sum of dissimilarity values 
is smaller. 

Several methods exist to solve this assignment 
problem. A simple successive assignment using 
row search, column search or matrix search was 
rejected since the results vary depending on the 
assignment order, and an optimum assignment is 

usually not found. The best method is to formu- 
late the assignment as a linear programming 
problem: 

Let the dissimilarity between any two :regions 
Ri and Pj be denoted by dij, and let x~j have the 
value 1 if region P~ is assigned to region R~, and be 
0 otherwise. To determine the assignments in such 
a way as to minimize the sum of the dissimilarities 
associated with the assigned regions, the problem 
is formulated as follows (Gass 1975): 

min ~, ~ dijx, i (8) 
i = l j = l  

subject to 

~ xij = 1, i = 1,2, . . . ,m 
j = l  

~,xi j  = 1, i = 1,2, . . . ,n  
i = 1  

xij e {0, 1 } 

(9) 

(10) 

(11) 

The assignment problem is a special case of the 
well-known transportation problem and can be 
solved using the appropriate version of the 
simplex method (Gass 1975). Since the basic solu- 
tions to the assignment problem are highly degen- 
erate, a slightly perturbed problem has to be set 
up to facilitate the computational procedure; from 
its solution the corresponding solution of the 
original problem is inferred. When m e n, ficti- 
tious regions and default dissimilarity values are 
introduced to transform the problem into a 
square one. 

As mentioned before, after having computed 
a best assignment between the set of regions in the 
reference image and the set of regions in the image 
to be painted, the color information associated 
with each pair of matched regions is automati- 
cally established. The assisted painting process 
proceeds then recursively using each pair of 
matched regions as a basis for a new region 
matching and assignment step. 

6. 6 Results 

The speed with which an image is colored using 
the assisted painting approach depends on the 
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Fig. 12. Assisted painting result for the 
example in Fig. 6 

Fig. 13. Assisted painting: reference image 
(/eft) and automatically painted image 
(right) (original images by courtesy of 
France Animation) 

two corresponding regions that are chosen to 
start the region matching and assignment 
process, since they determine the sequence in 
which the successive sets of matching candidate 
regions are determined and assigned. Therefore, 
the performance of the assisted painting can only 
be expressed in terms of average execution times, 
taken for different pairs of initial corresponding 
regions. 

Figure 12 shows the result of the assisted paint- 
ing stage for the example of Fig. 6. The image on 
the right was correctly painted, although some 
regions are missing (e.g., the eyes are closed) and 
others are significantly deformed (e.g., the hat's 
feather). The average execution time for these two 
images is approx. 4 s on a SUNSPARCstationl0. 

An additional example (see Fig. 13) shows the 
applicability and efficiency of our approach. Both 
images are now larger (approx. 1 million pixels 
each) and more complex. The average execution 

time is approx. 17 s, and the result has 92% cor- 
rect region assignments. Note that a region asso- 
ciated with part of the right window pane was not 
painted at all in the second image; this is due to 
the fact that the corresponding part of the window 
pane in the reference image is made up of two 
regions; therefore, no region matching and assign- 
ment can be correctly achieved in this case, with- 
out bringing further information into play. 

In comparison to commercially available tools, 
our approach is more robust, needing only a few 
interactions. It is also not too demanding in terms 
of computing performance, so it can be used on 
low-cost hardware. Although no error-free results 
can be guaranteed, the execution times associated 
with the developed approach, which is 2-4 times 
faster than a fully interactive painting, leave 
enough free room for corrections. Thus, our ap- 
proach is competitive regarding the traditional 
interactive painting. 
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7 Vectorization 

The vectorization of raster data is one of the most 
relevant data acquisition techniques. Since our 
approach starts with the scanning of hand-drawn 
images, a fully automatic vectorization stage is 
needed to allow easy and comfortable editing of 
the digitized images, the generation of in-be- 
tweens, the merging of digitized data with addi- 
tional vector input, higher data compression and 
fast image rendering. 

In the case of cartoon images two main require- 
ments can be formulated: the topology of the 
image's contents has to be preserved, and the line 
thicknesses have to be approxinaated with a given 
error bound. The former is needed especially for 
edition purposes. The latter is essential to preserve 
artistic features, since animators often express the 
characters' moods by drawing the lines in a cer- 
tain way. 

To ease the vectorization it was decided to base 
it on already existing processing steps needed for 
the assisted painting: 

• Computation of the distance map, which 
allows extraction of line-thickness information 

• Distance-based skeletonizing, allowing accu- 
rate vectorization since the skeletal lines are 
placed on (or near) the medial axis of the 
original lines 

• Automatic segmentation, allowing extrac- 
tion of region adjacency relationships 

The two steps are needed for image vectorization: 

• Extraction of the topological information as- 
sociated with the image and its representa- 
tion in an appropriate data structure 

• Approximation of the line shape information 

7. 1 Data structure 

The two-dimensional cartoon drawings can be rep- 
resented in a winged-edge data structure reflecting 
the topology of their contents. The face-edge data 
structure (Weiler 1985) is a particularly efficient 
one. The correspondence between the image enti- 
ties and data structure elements is shown in Fig. 14. 

The data structure is automatically and consis- 
tently built up from a thinned and segmented 

image, whose regions and contours are now asso- 
ciated with faces and oriented loops. Skeleton 
endpoints and branchpoints (i.e., knots) are repre- 
sented by vertices, and a contour piece between 
two knots is represented by an edge. Since it can 
be traversed in the two opposite directions, such 
a directed contour piece is called "edgehalf'. The 
buildup of the data structure is carried out by 
following the contours associated with each image 
region to identify their edgehalves and vertices and 
to establish the appropriate adjacency relationships. 

Although the image is represented in Weiler's 
data structure, a vector representation is not yet 
achieved. Based on the previously extracted 
skeletal coordinates and the associated thickness 
values, an edgewise approximation to the original 
lines now has to be computed. 

7.2 Approximation 

The basic idea is to compute a three-dimensional 
curve that approximates, within a given tolerance, 
the data points defined by the sequences of (x, y) 
coordinates and thickness values associated with 
each edge. Each approximating curve is construc- 
ted as a piecewise B6zier curve (Farin 1990) with 
certain continuity conditions at its joints. Without 
any loss of generality, curves of degree three are 
used to explain the approach taken, which is a 
canonical extension of the works of Schneider 
(1990) and Pudet (1992) to three dimensions. 

A B6zier curve of degree three is defined as 

3 
Q(u) = ~ PiB,,3(u), u ~ [0,1] (12) 

i=0 

where the P~ are the curve's control points and the 
Bi,3 (U) are the Bernstein polynomials of degree 
three. Equation (12) can be rewritten as 

Q(U) = No Bo,3(u) -~- (No -}- 0"0 to)B1,3(u) 
4- (P3 - ¢lt l )  B2,3(u) + P3B3,3(u) (13) 

where to and tl are the unit tangent vectors at P0 
and P3, respectively, and ao and o-1 are positive 
constants defined by 

Crete = (P1 - -  Po)  (14)  

61/'1 = (P3 - P2) (15) 
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Fig. 14. The vectorization data structure 

: data structure element ] 

\ 
pre v!ous face ___f._...~ ~ #  ~;~?~;~;~{~ n~e xt face 
pointer ~ ~pointer 

\ ~ face back 
Loop I ~ pointer 
next 1Lp~  ' f  / po17,--  / 

\ ~  loop back 

Edgeha l f  ;geh21 f ~ ~  °inter 

other edgehalf pointeg-'N.,f ill 
It ~r.~-- next eclgehalf clockwise pointer 

opposite face Y "  
pointer . ,~---~---~ geometry pointer 

/ "  ~ next edgehalf counterclockwise pointer 

~ \  vertex edgehalf Tt ~ . . 
back poin- \ \ pointer 
ter \ ~  

Vertex / "  
/ 

/ 
/ 

Choosing the minimization of the sum of the 
squared distances from the data points to their 
corresponding points on the approximating curve 
as the fitting criterion, the following error function 
has to be minimized: 

S = ~, IlDi- Q(ui) l l  2 (16) 
i=o 

where the D~ are the data points and u~ is the 
parameter value associated with point Di. The 
chord-length parametrization is used in most 
cases. According to the properties of the B6zier 
curves (Farin 1990), the first and last control 
points of the approximating curve are the first and 

last data points: 

Po = Do (17) 

P3 = Dm (18) 

If the vectors to and t I a r e  estimated from the 
data, the remaining unknowns of Eq. 16 are the 
constants ao and o-1. Thus, minimizing the error 
function S corresponds to solving the following 
linear system: 

8O-o = 0 
8S (19) 

= 0  
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Afterwards, the control points P1 and P2 are 
computed using cr o and o'1 and the unit tangent 
vectors to and t~. An approximating curve is then 
completely defined. 

Using the described least squares data approxi- 
mation algorithm, a recursive procedure is ex- 
ecuted to compute a piecewise approximating 
curve, given the set of data points and the asso- 
ciated parametrization: 

1. Estimate the unit tangent vectors at the first 
and last data points. 

2. Compute the approximating curve using the 
least-squares algorithm. 

3. Compute the maximum approximation er- 
ror. 

4. If this error exceeds the given tolerance, sub- 
divide the data set and proceed recursively. 

The data-splitting step can be accomplished in 
one of two ways: subdivide the data at the point of 
maximum error (Schneider 1990) or at its mid- 
point (Pudet 1992). To avoid performing too 
many subdivisions, and thus generating a large 
number of curve pieces, a parametrization refine- 
ment can be carried out (Schneider 1990). Clearly, 
the number of required subdivisions - and the 
final number of curve segments - is determined by 
the shape of the discrete curve represented by the 
3D data points and the error tolerance. Note that 
by appropriately computing tangent vectors it can 
be checked if the data splitting point is a corner or 
not: in the former case, only positional continuity 
is associated with the adjoining curve segments, 
while in the latter first-order continuity is defined. 

Before computing the approximation the se- 
quence of data points should be filtered to reduce 
the rasterization effects and make tangent compu- 
tation more reliable. Corner detection can also be 
performed to split a priori the data sequence; 
again, at the detected corner points the ap- 
proximating curve will only have positional 
continuity. 

Given the 3D control points for each curve 
segment, a recursive subdivision algorithm is used 
to generate a sequence of points which approxim- 
ates the given curve within a certain tolerance 
(Lane and Riesenfeld 1980). The (x, y) coordinates 
of each one of these points approximate the skel- 
eton of the corresponding edge, while the third 
coordinate approximates the line thickness. 

Reconstruction of the original thick lines is done 
by rendering filled polygons. Each polygon is 
built up taking two successive points of the skel- 
eton approximation; the corresponding thickness 
values are marked perpendicular to the tangent at 
the points spanning the polygon. Special attention 
must be paid to the rendering of the lines endings. 

7.3 Results 

In order to give an idea of the performance of the 
data structure buildup and of the approximation 
steps, two images of different sizes and contents 
are presented in Figs. 15 and 16. 

The original scanned image in Fig. 15 has 
249 x 825 pixels and contains 7,766 black ones. 
The preprocessing steps needed as a basis for the 
data-structure build up - cleaning, skeletonizing, 
region segmentation and contour following, as 
well as classification of the skeleton pixels to allow 
vertex extraction -- take on average 12.6 s. In 
contrast, the data structure buildup takes on aver- 
age just 1.6 s; note that this is an extremely simple 
image with just one region, one loop, two 
edgehalves and two vertices. The approximation 
step takes 2.3 s; the 3D data points there are 858 
skeleton pixels - are approximated by 49 B~zier 
curves of degree three, within a 0.5 error bound. 
The image skeleton, its approximation, and the 
reconstructed image, which is quite visually pleas- 
ing, are also depicted in Fig. 15. 

Figure 16 shows the second example; the orig- 
inal scanned image has 532 x 516 pixels, of which 
16,384 are black. The preprocessing steps take on 
average 20.2 s and the data structure buildup 
2.7 s; 12 faces, 24 loops, 178 edgehalves and 90 
vertices (46 endpoints and 44 branch points) are 
defined in the image. The approximation step 
takes 10.2 s; the 4,472 data points are approxim- 
ated by 369 B6zier curves of degree three, within 
a 0.5 error bound. Note that some reconstruction 
deficiencies are recognizable in the eyes and the 
hat. 

Significant storage gains are achieved by the 
presented vectorization approach. For  the first 
example, the 7,766 black pixels defining the first 
image are represented after the approximation by 
the 196 three-dimensional control points defining 
the B6zier curves; in this case, since the image 
defines just one topological edge, there is no need 
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Fig. 15. Approximation example 

Fig. 16. Image reconstruction: original (top) and approximation 
(bottom) (original image by courtesy of France Animation) 16 

to store twice the junction points between adjac- 
ent curves; thus, only 127 of the control points 
actually have to be stored. 

Although the reconstructions show only minor 
errors, artifacts are unavoidable in cases where 
both high curvature and rapid changes in thick- 
ness occur. The use of separate filters for the shape 
and thickness information seems to provide more 
visually pleasing results. 

8 Further work 

Further work will be carried out in three distinct 
areas: assisted painting, vectorizing and in- 
betweening. For assisted painting new region- 
shape comparison methods are to be investigated 
and integrated into the current framework, 
aiming at higher accuracy and faster matching 
times. Another idea is to use the available 

vectorial representation as a basis for the region 
comparison. 

An additional topic is the development of more 
precise line approximation and reconstruction 
methods. It would also be important to provide 
the user with a tool that presents full editing 
capabilities, not only allowing editing of the image 
topology, but also editing of the line shape and 
thickness information. 

Considering the restrictions of fully automatic 
intermediate frame generation, a tool for interac- 
tively supported key-frame animation is currently 
under development, based on the vectorial repres- 
entations of the key-frames. 

9 Conclusion 

An approach towards computer-aided cartooning 
has been presented that aims at supporting the 
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drawing and painting stages of traditional 
cartoon production. The sequence of operations 
allowing the (semi-)automatic coloring of a se- 
quence of digitized images has been thoroughly 
described. 

Since it was decided to accept hand-drawn im- 
ages as input, appropriate image processing algo- 
rithms were selected and integrated into a pipeline 
to accomplish the required image preprocessing. 
This preprocessing stage is fully automatic, thus 
allowing off-line processing with a satisfactory 
execution time. By including some feature extrac- 
tion steps at the end of this stage, the execution 
time of later steps requiring some user interven- 
tion is considerably reduced. 

The (semi-)automatic coloring stage substan- 
tially accelerates the production of traditional 
cartoons: instead of the user having to spend 
significant time to paint each image, this task can 
be performed in seconds. This assisted painting is 
based on the extraction and coding of shape in- 
formation for each image region and on topologi- 
cally guided shape matching between sets of re- 
gions defined in the painted reference image and 
in the image to be painted. After obtaining 
a measure of the dissimilarity between pairs of 
regions, an assignment is performed which minim- 
izes the sum of the dissimilarity values associated 
with the assigned regions. Thus, the color in- 
formation can be propagated from each region in 
the reference image to its corresponding region in 
the image to be painted. Clearly, corrections are 
needed in some cases, because either wrong re- 
gions were assigned - due to their similarity - or 
no regions in the reference image exist that match 
the remaining regions in the image to be painted. 
However, even if corrections have to be done by 
the user, our approach to automatic painting is 
still considerably faster than fully interactive 
coloring. 

When aiming at supporting in-betweening, an 
image-vectorization stage is needed to build up an 
appropriate image representation, Two steps are 
accomplished in an automatic way: extraction of 
the appropriate topological relationships between 
the various image elements and approximation of 
the line shape and thickness information. Once 
the shape and topological information is stored, 
appropriate in-betweening and image-editing 
tools can be developed, which maintain the con- 
sistency of the image representation. 

The examples presented illustrate the perfor- 
mance and applicability of the developed ap- 
proach to support important stages of traditional 
cartoon production without using special, dedi- 
cated hardware. 
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