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Abstract - This paper describes two methods for wavelet domain rendering of volume data sets, which base on entire
different paradigms for the approximation of the underlying volume rendering equation. The first approach comprises a
ray-tracing algorithm for cardinal B-spline wavelet representations of both color and opacity values and carries out high
quality images. We especially propose elaborated integration and evaluation schemes, where the computation of shading
is also performed in wavelet space. The second approach proposes a fast intensity integration method based on wavelet
splats. This scheme takes advantage from the self-similarity of the basis functions and computes the required splats by
Fourier projection slicing. At this point, it unifies the advantages coming along with Fourier domain and with wavelet
domain rendering and it avoids some of the major artifacts the first one is prone to. Due to the computational efficiency,
the splatting method allows to compute coarse approximations at interactive rates and refines the picture progressively.

1 Introduction

Volume Rendering is still a challenging and important subfield in scientific visualization, since volume data sets of any type
arise in many different applications. A general formulation of the volume rendering problem was provided by [7] or [14], who
describe the resulting image essentially as a solution of an integral equation, the sestaiedrendering equation most
cases, however, low-albedo approximations of the solution are sufficient and can be computed using one of the various ray-tr:
ing schemes introduced in the past, such as [3] or [18]. Unfortunately, these types of image order methods are stillreomputatic
ally expensive and, hence, are not very well shaped for real-time and interactive applications.

In contrast to the image order approaches, object order algorithms, such as splatting [9], [11] try to accelerate the renderi
process by harvesting the spatial structure of volume data sets. Recent approaches also include hybrid rendering methods
which link both paradigms. Other fundamental techniques are given with various types of transform domain volume rendering
where Fourier spaces have been explored succesfully [13], [19]. Unfortunately, beside of some computational advantages es
cially Fourier based methods are prone to major shortcomings regarding sampling, progressivity, filtering, local levedrof detail
transfer functions.

Hence, the wavelet transform has been stressed for volume rendering, since it seems to be a very promising tool to overco
some of the major problems. But in spite of different approaches, such as [6], [15], [20], there have not yet been fundament
guantum leaps in computational efficiency.

Our research was motivated by providing an overall framework for wavelet domain volume rendering to carry out approxima
tions of the volume rendering equation at different levels of accuracy. This enables one to harvest all advantages coming alo
with wavelet representations, such as error bounds, localization, progressive refinement, smooth approximations, leyel-of-dete
feature enhancement etc. Therefore, we propose two essentially different methods for wavelet domain volume rendering. T
first one, an image order algorithm, ray-traces volumes entirely in wavelet space including exponential transfer functions an
illumination. It features high quality images and can be considered as a reference method. The second approach introducec
this paper encompasses an object oriented splatting algorithm. Some of its initial ideas were scetched in [11] and especia
employ Fourier descriptions of wavelet basis functions to efficiently compute line integrals. As a consequence, the method pe
forms rendering at nearly interactive rates including all advantageous features of the WT. In particular, this approach is we
shaped for networked and remote rendering. Both methods base on cardinal B-spline wavelets, but are not restricted to them.



The paper is structured as follows: Due to the rich literature on wavelets in computer graphics, we preassume the reader to
familiar with the fundamentals of orthogonal and semi-orthogonal WTs and restrict our description in section 2 to the approxi
mations of the volume rendering equation we base on. Section 3 presents the ray-tracing approach, where particular emphas
given to the computation of color and alpha supported by efficient data structures. In Section 4 we explain the second algorith
a wavelet based splatting and its essential mathematical and algorithmic prerequisities. Finally, Section 5 given various exal
ples for both methods.

2 Volume Rendering in Wavelet Domain

The objective of the following section is to briefly summarize the mathematical foundations of volume rendering and of the
wavelet approximations of the underlying integral equation.

2.1 The Volume Rendering Integral
The most general representation of the volume rendering problem is provided by following equation [7], which is derived

from particle physics and regulates the transport of light in participating media. Here, the ih¢g/ssitt a locatiorx trans-
ported into directiors is computed as:
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whereQ(x,s) denotes the generalized source term, which itself can be decomposed into:
Q(x, s) = q(x) +05(X)_|'p(><, s' - s)I(x, s)ds’ (2)
Hereao denotes dotal interaction coefficienthat represents the probability that a particle will suffer absorlgtigfx)) or
scatteringo (x)) , per unit distance traveled:
0:=0, + Oy (3)
The source terrm(x) represents the number of particles created per unit volume. We can associate this term for instance witl
a local illumination model defined as:

a(X):=%ampientX) * qdiffusgx)z max(n(x) [Light;,0) + qspecula(x)z max(n(x) (Halfway; 0)specularity 4)

wheren(x) denotes the normal vectonatThe scattering phase functiiix, s' - s) describes the flow of particles at a given
point x from a directions’ intcs. In many classical volume rendering methods [10], only low albedo approximations of the
upper integral equation are computed, which are based on:
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For the opacity term we set
a(u)=a(x;, +uls) (6)

If the opacity ternut is set to 0, equation (5) collapses to a line integration procedure, which computes an image of the volume
intensity functiong along a given ray;, +t (s
tL
H(to )= [alx;, +tCB)at (7
t0
It is clear, that eq. (7) can be computed much more efficiently but due to the restriction of the transfer function tige resultin
image quality is X-ray like and inferior. The two methods proposed in the following sections target at numeric approximations
of eq. (5) and of eq. (7), respectively.
2.2 Wavelet Approximations of Volume Data

For a discrete volume data set, sampled on an equally spaced 3D grid, we deﬁ%%@r by the volume color samples and

Copar the opacity samples. Let furthermape, represent a wavelet basis function at iteratidriete,, be the correspond-
ing scaling function, the framework of the wavelet transform (WT) allows us to construct an initial continuous approximation of
our samples using scaling functions at iteration mg:
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If, for instance, the cardinal B-spline wavelets of [2] and [17] are employed for further processing, the upper equagion exactl
corresponds to a B-spline approximation of the volume data.
Let's now preassume a discrete 3D tensor product wavelet transform, such as in [6] or [15], which decomposes separatt
each RGB andl component according to fig. 1.
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Fig. 1. Initial 3D wavelet transform to decompose both volume color and opacity samples.

The resulting coefficients represent the underlying coordinates of the decomposed functions in the functional space of wav
lets and scaling functions. As a consequence we end up with a hierarchical approximation of the initial samples. A multiresolt
tion expansion of the color and opacity functions can be provided as follows:
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Based on the upper expansion, it is straightforward to compute the opacity gradient , which is fundamental to any illumi
nation and shading algorithm. The normé{(t), y(t), z(t)) defined for any spatial position along a viewing ray is given by
Oa(t) (14)

n(t) =
© = [Ga o)
Since, according to eq. (18)is defined by a linear combination of wavelets and scaling functions, the partial derivatives are

computed by
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Similar computations are necessary 8or’/dy and/ 0z . Because of the tensorproduct nature of the basis function
Ppqr @ndy ivpe , the upper expression can be computed analytically. The scaling function satisfies:
OGS pq/ 0% = (A %)/ dX) TP oY) Loy (2) (16)

For the wavelets we recieve similar expressions.
If the bases are given in closed form, as for instance in the case of B-splines, the normal can be computed analytically.

Note, that the upper expansions enable one to harvest all of the advanced features of the wavelet transform, such as
 progressive refinement
« hierarchical approximations



* local support

* linear time complexity

* smooth approximations

* error bounds

Recall, furthermore, that both global and local thresholding of single coefficients finally govern the compression ratio anc
overall level of detail of the approximation [5].

3 Ray-Tracing in Wavelet Space

This section introduces a ray-tracer in wavelet domain, which essentially computes an approximate solution of eq. (5). The
have been various attempts, such as in [6], [15], [20] which however feature high computational costs. This motivated us
come up with alternative solution. When designing this algorithm, particular emphasis was given on efficient data structures ar
fast algorithms for the local recovery of the color and opacity function.

3.1 Numeric Approximation

Following eq. (5) the color valugg(to, t;) is computed for each pixel in the image plane by line integration through the illu-
minated volume, weighted exponentionally with the accumulated opacity function along th&hayouter integral typically
runs from an entry poirtg up to a leaving poirt{ . For computational reasons we rewrite eq. (5) into a recurrence relation as:
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This relation implies a discretization of the ray paramet®ased on the approximationscofindg from egns. (12) and (13),
we have to find a numeric quadrature method, because eq. (17) cannot be solved analytically. Figure 2 illustrates the proces:
direct volume rendering in wavelet space. After an inital WT of color and opacity, a filtering step enables to contrositve preci
of the approximation. The local reconstruction step composes the attenuation and source term, where in the rightmast part of
pipelineA(ty, t) is computed. Obviously, it is not necessary to perform a global inverse wavelet transform. Moreover, due to the
local support of the bases, it is sufficient to collect a limited amount of wavelets to evaluate the required functianat argnd
spatial position. The major problem is to find a computationally efficient method for the extraction of the relevant basis func
tions.

Fig. 2. Pipeline for wavelet domain volume ray-tracing
The numeric techniques proposed for solving the volume rendering integral are based on the Newton-Cotes quadrature forn
lae. It enables us to describe the error-bounds analytically. For different segments of the volume data different sbey sizes al
the ray (dt; = t;—t;_,) are applied to ensure that the approximation error due to the integration scheme is less then the upp
error bound, defined by the user. For the trapezoid rule the approximation error is given by:
-t_q _ _
(to tj_p.t )-(Aoz' e Ao bd(qE)a(g)e Ah-r 9)@ E0(t_1 1) (19)

trapezoid

Error,

wheret;_; andt; describes the intersection parameter of the viewing ray and the support region of the wavelet,  denotes th
stepsize of th&\+1 evenly spaced parameters betwggrandt; and @) denotes the th. derivative. The error bound that is
obtained by Simpson’s rule can be expressed as:

Error, . (tpfi_pt) = (AD =t 0 hd(q@a@e 0@ g0yt (20)

Simp
Details can be found in [12]. Note, that within a multiresolution setup the support regions of different wavelets and scaling
functions can overlap significantly.

3.2 Computation of Relevant Basis Functions

As stated earier, the major procedure, which finally determines the computational efficiency is the local reconstruction of th
initial signal from the wavelet transform pyramid. Therefore, it is necessary to recover all basis functions at a givposipatial
tion (x(t), y(t), z(t)) on the viewing ray. Due to the local support of the bastsjancecan be defined as the set of all functions,
that do not vanish, e.g.
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A fast and accurate detection of these parameters is essential to restrict the summations in eqns. (12) and (13). IrelD we de
the support of a waveldt and of a scaling functiop as:

[l gl ol:=supH@)
[ILp-qu]:z supp(y)
This expression generalizes to an arbitrary dilation and translation paramaatdp into the following form

supf( fp) = [(I5 + p)2M(r¢ + p)2"] (23)
fO{e Y}, mnOZ

Hence, for each resolution parameteand for a given positiotx, y, 2T O R3  the correspondingandr have to satisfy:
[ x/2Mm—r; |sps[x/2m-1]
ly/2m—r; |<sqs[y/2m-1;] (24)
|z72M—r; |<sr<[z/2m—1]

(22)

3.3 Data Structures and Implementation

Due to the multiple overlap of the support regions of wavelets and scaling functions, sophisticated data handling and list ma
agement is essential to obtain a sufficient outperformance. In our implementation, we generate a two-level list datastructure
each ray, which keeps all basis functions contributing to the approximation of the actual spatial location. It is baseteon sepa
chaining. The first level of the list is organized with respect to the different levels of decomposition and connecteénga point
In the second level of the list, we keep all nonvanishing coefficients imR®Bose individual leaving parametgris greater
than the current ray parametefhey are arranged with respectfoFigure 3 illustrates the principal data organization we pro-
pose.

Once the current integration parametekceeds the leaving parameteof a single list element (wavelet coefficient, index,
ta) is removed from the list. Conversely, any new element is addediérs the wavelet's region of support.
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Fig. 3. Data organization for wavelet based volume ray tracing

In order to compute the leaving parametgzfficiently, we harvest the dilation and translation properties of the wavelet bases.
For a specific wavelet type and iteration stefihie support regions do not differ in size and are aligned to the principal axes of
the coordinate system. That is, all intersection parameters can be derived from an initial computation using three edges of t
prototype functiorfngg Let a ray be defined by its origirefy;,;;;,, ) and by a directi@ry{;, .cion ). The intersection param-
eters of the ray with respect to the thrlsmying edgesare obtained by parametric clipping:

O bj—raynigar; .
0 ——  if raygirectioni> 0
H raYgirection,i direction,i
Yeavingi = E 00 if raYgirectioni = 0 (25)
0 & —r@Yinitialj .
O ——  if raYyirectioni< 0
0 '@Ydirectioni direction,i
b, —a
O S~ .
H’w— if MaYdirection,i #0
dt; = direction,i
H 0 if raydirection,i =0

wherea andb specify the bounding box of the basis antf x, y, z
Each basis, translated from the prototypehy, r yields the following intersection parameters.

txztleaving, x+ p |:utx

ty:tleaving y+ q [dty (26)
+r [dt,

tz:tleaving.z
The required, is selected as the minimum of:
ta = Min(t,t,t,) (27)



This scheme is further explained by fig. 4, in which a 2D setup is presented for illustration.
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Fig. 4. Computation of the parametgifor a single basis function.

From the various examples presented in section 5 it can be fixed easily, that the method presented here enables one to c
out highly realistic images. The approximation order is governed by the type of wavelet underlying the transform. We recom
mend cardinal B-spline wavelets, because they yield a natural multiresolution extension to the standard B-spline approximatit
scheme [2].

4 Wavelet Based Volume Splatting

The method introduced above can be considered as a reference, since it renders high quality images including opacity, shac
and exponential transfer. However, the algorithms to accomplish this, are still computationally expensive. Obviouslypin order
achieve real time and interactive performance we have to find a different approach to the problem. Moreover, a trade-off has
be found between computational costs and image quality. Therefore, we developed an object oriented wavelet splatting meth
which was initially scetched in [11] and is extended subsequently.

4.1 Wavelet Splats

Designing this method, we were inspired by both Fourier projection slicing volume rendering, such as in [13] or [19] and by
splatting methods [9]. It is founded on the observation, that for many applications, as in medical imaging, X-ray likeémages a
even superior for interactive data exploration and analysis. Recalling eq. (7) these pictures are computed by a line integ
through the volume data. Consequently, the delgg(i,v) at a particular spatial positiop,¢) of the image plane is defined as
an integral over the parameter domiadaf the ray:

t
IRag(M: V) = [A(X(t 1L V)Y(t 1, V)2t 1, v))dt (28)
to

Inserting a wavelet approximation gfesults in

00
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Equation (29) can be interpreted as a weighted accumulation of integrals of t!]mﬁiyp(ﬁdt representing the scaling func

m, pqr
of the integration can be set t@ even for finite volume data sets. More precisely, these integrals finally turn out to be foo
prints of splats, in terms of RGRextures weighted by the associated coefficients. The self-similarity of the wavelets enables us

tions and of integrals Iiquﬁv typedt  for the various wavelets. Due to the local support of our bases, the lower and upper bounc
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to compute the integrals once for each of the 8 prototype funcjfpis, WiRes . All other textures are derived from it by

scaling and translating them in the image plane. Note, that R, G and B components of the resulting textures have the same st
ture and are splatted by weighting with the coefficients of the transform. In short, our method takes the volume rendering as
accumulation of scaled and translated versions of weighted RGB textures, as shown in fig. 5.

Note furthermore, that wavelet based splatting comes along with all advantagous properties, listed previously. Our proble
can be reduced to finding a method to compute efficiently the required line integrals (footprint textures) for the protetype func
tions.

RGB-components image

_—

dilation, accumulation
translation,
accumulation

———

_

Fig. 5. Volume rendering as a splatting process of wavelet textures.
4.2 Splat Computation via Fourier Projection Slicing

The computation of the line integrals can be accomplished by Fourier projection slicing. As a fundamental theorem of multi
dimensional Fourier transforms [4], it essentially states, that the Fourier transform (FT) of a bunch of line integratgioha fu
f(x,y,2) is given by slicing its Fourier transforf(w,, w,, w;)  with a plane perpendicular to those lines and intersecting the ori-
gin. Widely used in imaging, this method allows to compute the line integrals of any multidimensional band-limited tensor prod-
uct type function. Since many wavelet types, such as B-splines [2], come along with closed form representations in frequen
domain, it is straightforeward to apply this theorem to get the required splats. Figure 6 depicts the setting, whereRHTinverse
processes the slices to obtain the wavelet splat.

Formally the method can be described as follows:

Let F(w,;, w,, wg) be the 3D FT of a volume functidifx,y, 2 as

Fwy, Wy, Wg) = J’J’If(x, Y, z)e_i(xml+yw2+zw3)dxdydz (30)

The intersection plane spannedhy defines the 2D Fourier transforiu, v) = F(w;(u, v), w,(u, v), ws(u, v)) of our texture
splats. The definition of the viewing parameters is figured out in spherical coordin@)esvbere the following relations hold:

cosu cosf3 —sina —cosa sinf3
n= {sinacosB] u= {cosa] v = {—sinasinﬁ] (31)

sinf 0 cosB
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Fig. 6. lllustration of the Fourier projection slicing theorem in 3D for an idealized Shannon wavelet

Note, that the slicing of the FT depends strongly on the type of wavelet and can be accomplished analytically. As opposed
Fourier domain rendering, our method does not require expensive interpolation filtering in these cases. The footprint of th
splats are carried out using iFFT methods. A set of splats for cardinal B-spline scaling functions of different ordenta@ prese
in fig. 7.

a b c

Fig. 7. Footprints of splats for cardinal B-spline functions of different order. a) order: 1, b) order = 2, c) order = 4
Note furthermore, that the footprints can both be positive and negative valued for the wavelets, respectively.

4.3 Determination of the Sampling Rate

Although the method generally does not require expensive filtering in frequency domain, yet we have to specify the corre
sampling rate in order to discretize the FTs of our wavelets and scaling functions.

The sampling rate is finally derived by Shannons‘ sampling theorem [1]. The following considerations focus on B-spline
wavelets, but are not restricted to them. Any other type of wavelet, whose support can be computed with the standard secc
order moment formulae [2] performs as well.

In order to derive the theoretically optimal sampling rate as a function of the scaling pargmetestart from the support of
the basis in spatial domain, which is given for cardinal B-Spline wavelets ofjadéhe real line with [0j21]. Consequently,
the optimal sampling ratéw,, in frequency domain is obtained by inverse application of Shannon's theorem, which states:

21
YANES supA D (32)

In 3D however, the maximum length of the support is defined by the spatial diagonal giving rise to an additional.factor of

We vyield for the wavelet that correponds to a scaling function of grder

Aoy, = —20 (33)
J32"(2j-1)

The relations between wavelets of different scaling parametigrspatial and frequency domain are regulated by the Fourier
scaling theorem:

FT(2™ 2p(27™x) = 2™ 292 w) (34)
Obviously, sampling the Fourier transform of a wavglett positiond [Aw,, is invariant to scaling except of a factéf.2

Let w, bound the frequency interval, which computes as a function @ [-2"Mwg, 2"™w,] . That is the sampling rate
increases according to eq. (33) but the interval drops appropriately. Hence, at a first glance the total number of retpsred samy
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in frequency space would be constant. We have to note, however that the initial sampliag rate repeats the continuous fo
print in spatial domain. In order to compute the splat in spatial domain we have to sample them with the pixelrate of the frame
buffer. This operation enforces conversely a periodic spread of the spectrum, which is essentially independent of the iteration
Since the bandwidth drops but the support increaseswyitie overall number of samples grows withThe scaling properties

of the WT allow one to interpret the bases of different scaling parameterbe sampled at a constant rate, , while scaling
the bounds of the sampling interval with
[—2moos, mes] (35)
The final number of samples at a given iteratiorequired, according to Shannon, yields to:
N(m) = m+1ms+ 1 36
(m = | = (36)

Similar expressions can be derived for the 2D case, where we define a rectangular sampling region in frequency dome
bounded byw,h). This region scales according to

(1-2"w, 2"w], [-2"h, 2™h]) (37)
The number of required samples invj direction is obtained accordingly:

NW(m) = [ 2" w/Aw,+ 1] )
NH(m) = [ 2" /By +1]
This equation finally determines the spatial resolution of the footprint texture as a function of the scaling par afipier
8 illustrates the relationship for a Haar scaling function and presents the corresponding sampling grids. It is easy szake, th
ing the wavelet requires scaling the bounds of the sampling region appropriately while keeping the sampling rate according
the framebuffer.
Spatial domain

AH

Frequency domain

V<

m=M-1

m=M-2

Fig. 8. Sampling of the slicing plane of 3D wavelets of different scale in frequency domain
A typical setting of the paramters is given ¥orh=14 for B-spline wavelets of increasing order.

TABLE I: sampling rates for B-spline wavelets of increasing order

j =0 (Haar) j =2 (linear) j = 4 (cubic)
m=0 9 25 56
m=1 17 48 110
m=2 32 94 218
m=3 63 187 434
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Note, that the relations from above hold for optimal conditions since the implemented FFT restricts the number of samples
powers of two, we recommend a weak oversampling.

4.4 Some Remarks on Implementation

Although some advanced graphics workstations offer hard- and software support for fast texture accumulation, hardwal
independence encouraged us to implement the entire method as a software solution. More precisely, the textures are store
terms of sparse matrix data structures, as illustrated in fig. 9.

nullpointer strips

\
\

LTI

Fig. 9. Sparse matrix data structure to store the footprint textures
The accumulation is carried out efficiently by a software framebuffer. Since we restrict the summations to bounding boxe

around the footprints, the accumulation is performed at nearly interactive rates.
Additional antialiasing operations are required to prevent artifacts from the resampling of the footprints in the framebuffer.

5 Examples

This section elucidates the benefits we obtain from the wavelet based volume rendering schemes explained above. Therefc
we present results computed on different volume data sets. In particular, the Visible Human Data Set was used to produce so
of the images shown below. For all computations we employed cardinal B-spline wavelets of different order, since they offe
versatile useful properties for rendering applications, such as:

 Closed form descriptions in spatial and frequency domain

« strict local support

« C"?2 continuity

In addition, we restrict the implementation to wavelets defined on the real line and renounced bounded intervals.

However, it should be stated, that both methods are not limited to a particular type of wavelet.

5.1 Wavelet Based Ray Tracing

Figure 10 shows images computed from the hydrogene volume data set, where linear scaling functions are contrasted aga
cubics for different levels of iteration. For illustration purposes, only the scaling functions are displayed. Obviouséarthe |
splines produce onlg® continuous approximations, whereas cubics allow a smooth representation of the underlying volume
data sets.

linear

- n n n n :
a b c d e

Fig. 10. Linear versus cubic B-spline wavlets for different levels of resolution. Only the scaling functions are emplogedrfogre) M = 0, compression rate:
0.0%, b) M = 0, compression rate: 88.0%, ¢) M = 2, compression rate: 99.5%, d) M = 4, compression rate: 99.97%, e) Mes&ipoaaeg:. 99.997%
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In order to depict the compression ratio to be achieved, fig. 11 represents approximations at different levels of detail. In th
case, both wavelets and scaling functions contributed to the representation of the data and were thresholded appropriately to |
duce the results.

a b c d

Fig. 11. Thresholding linear spline wavelet coefficientslaR: compression rates: a) 63.3 %, b) 91.3 %, c) 94.8 %, d) 96.8 %

The presentations in fig. 12 reveal one of the most important properties of the wavelet transform: the localization. A loca
level of detail operation was carried out by thresholding the coefficients depending on the spatial position of the associate
bases. For these purposes, a wavelet space filter was developed in [5].

b
Fig. 12. Local level of detail operation by Gaussian filtering in wavelet spé=2)(a) linear, compression rate: 62.9 % , b) cubic, compression rate: 68.3 %

Similar results can be produced on the Visible Human Data Set. In fig. 13 the Gaussian filter was moved from back to fror
through the volume. As a result, different parts of the head are reconstructed at different levels of detail. Note, thelesar w
do not feature illumination.

Gaussian centered:
right middle left

}fig. 13. Local level of detail operations on the Visible Human data Bet&aa) Haar, b) linear B-Splines, c) cubic B-Splines (Data courtesy of the Visible Human
Project, National Library of Medicine, copyright (C)1995)
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Figure 14 shows a view into the visible human dataset. The data was taken from the RGB photo slices. The basis function 1
the RGB anda values were selected individually to display the influence of different B-spline functions. For the Haar function,
no gradient can be calculated and the shading model can not be applied. We observe, that increasing the order of the basis f
tions results in a smoother appearance of the data.

a

Fig. 14. Sagital view into the visible human dataset, rendered with different basis-functions: a) order 1(Haar), b) andier 2, ) order 6
5.2 Wavelet-Based Splatting

As stated earlier, the splatting method progressively refines the image when more and more footprints are used to build up |
representation. Consequently, it enables rendering schemes which allow interactive manipulation, such as translation, rotation
scaling. In order to get real time performance, only the most important splats are used for the reconstruction of the image. /
soon as the image stands still, it is refined progressively. Therefore, the coefficients have to be sorted according to-their mag
tude. The resulting list is traversed during rendering and corresponding footprints are splatted into the framebuffes. Figure 1
shows a sequence of progressively refined images, computed on an sd Andips R4400, 200MHz. After each step, the
remaining error image was computed and is displayed along with rendering time and energy. Because of the high compress
ratio achieved by the wavelet transform, the resulting images are visually equivalent after 4.1 s.

Computed Images Differences

Energy (%)

|

[
o
o

67.61 - - - - .-

376 - ——d - - - - - -

276 - - - - - -2 oo o -

et H4--1--------|-----------

76 H--4-------- ---

TTITITTTITITITTTITITTITIITTITT |>
5 10 15 20 25

Time (s)

Fig. 15. Sequence of progressively refined images of the Visible Human Data Set for Haar wavelets. The error is shownedftemeachstep.
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In a similar way, local level of detail allows to focus the center of interest of the approximation.

Fig. 16. Local LOD-control. a) Haar wavelet, compression rate: 65.5%, b) cubic B-Spline, compression ratev48)2% (
This is depicted in fig. 16 for the same setup, as in fig. 13.

We also contrasted Haar wavelets against cubics to show up perfect reconstruction for different levels of approximation. Fi
ure 17 gives an impression of the image quality to be achieved with our method.

Fig. 17. Progressive reconstructions of the visible human dataset using 30, 60 and 90%=6fdbaling functions. Upper column: Haar wavelets, lower column
cubic B-splines.
Note in particular the X-ray characteristics of the images. Although cubics are computational more expensive than Haz
wavelets, the pictures prove that the image quality is similar.

6 Conclusions and Future Work

We have presented two fundamentally different approaches for wavelet based volume rendering. The first one, as a high le
image order algorithm produces realistic images and is considered as a reference method. It encompasses all of the advar
features of the WT, but remains computationally expensive. Conversely, the second, object order splatting method was desigr
to achieve interactive rendering rates on low cost workstations and for network applications. The major shortcoming in imag
quality is exponential transfer and self-occlusion, which is in the focus of our future research. Future work also coatprises sh
ing algorithm for the splatting method. In summary, we believe that the results have illustrated the superiority of waialet dom
rendering methods.
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