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Abstract The following paper describes a framework for the visualization and
analysis of economic data. It can be employed in the context of risk analysis,
stock prediction and other tasks being important in the context of banking. The
system bases on a quantification of the similarity of related objects, which gov-
erns the parameters of a mass-spring system, organized as two concentric
spheres. More specifically, we initialize all information units onto the surface of
the inner sphere and attach them with springs to the outer sphere. Since the
spring stiffnesses correspond to the computed similarity measures, the system
converges into an energy minimum, which reveals multidimensional relations
and adjacencies in terms of spatial neighborhoods. In order to simplify complex
setups we propose an additional clustering algorithm for postprocessing. Fur-
thermore, depending on the application scenario we support different topologic
arrangements of related objects. In addition, we implemented various interaction
techniques allowing semantic analysis of the underlying data sets. The versatility
of our approach is illustrated by two examples, namely a comparison of agricul-
tural productivity and an analysis of the relation between interest rates and other
economic data.

1 Introduction
The visualization of complex, multidimensional, non-numeric information and of their
relationships is an emerging subfield of increasing importance in scientific visualiza-
tion. Nowadays, global computer networks and distributed data bases, such as the
world wide web (WWW), provide platforms for new dimensions of retrieval systems
for information units. As a consequence, the scientific visualization and computer
graphics communities have been challenged to develop advanced tools for understand-
ing, navigating and interactively analyzing the associated information spaces. How-
ever, as opposed to most of the classical data sets in scientific visualization,
information spaces carry over entirely new qualities of problems. The most important
ones can be summarized as follows:

• Multidimensional relationships: information units are generally related to many
other units. The resulting topological organization corresponds to a multidimen-
sional graph. Thus, adjacencies cannot be visualized straightforwardly and have to
be mapped into subspaces. Here, we can carry over some interesting methods being
already used in graph layout.

• Measuring similarity: In contrast to many scientific data sets, information space is
an abstract entity and there is no specific reason to employ Euclidean metrics to



project similarities into a 3 dimensional subspace. Moreover, up to now there is no
mathematical framework or paradigm, on how to map scores and similarities pro-
vided by retrieval systems onto a model in a three-dimensional world.

• Clustering and hierarchies: The huge amount of information forces the use of a
multiresolution setup. Hence, appropriate methods for the clustering of objects and
for interactive level of detail control are needed.

Due to the importance of information visualization for many applications, various
interesting approaches can be found in literature and excellent surveys are available
[20]. [5], [14] for instance, visualized text documents and clusters as galaxies and the-
mescapes, whereas [4] proposed cone trees which specifically address hierarchical
organization. Another promising method is [12] or [16], who essentially used self-
organizing schemes and neural networks to arrange information objects of the WWW.
In a more general understanding, multidimensional visualization problems have been
stressed in [6] or [1]. Here, mathematical projection algorithms were introduced to
map data into subspaces, while preserving their most important features. Interestingly,
many current methods use physically based paradigms, such as [18] or [13], where
information units are taken as nodes of some generalized mass spring system revealing
the structure of relations upon relaxation. These types of multidimensional visualiza-
tion methods have been studied extensively in graph theory, and efficient algorithms
had been introduced for fast graph relaxation, such as [11] and [12].

The work reported in our paper was inspired by the research summarized above.
However, unlike existing methods, our approach was mostly application driven, where
the context was focussed on visualization problems arising in financial service provid-
ing. Therefore, we define a propriety mathematical framework for quantifying rela-
tionships in information space. In addition, we propose a visualization paradigm that
considers all information units as initially located on the inner part of two concentric
spheres and as attached with springs to the outer one. The strengths of relations of dif-
ferent objects are correlated to the stiffnesses of springs between them. After initializa-
tion, the system converges into an equilibrium stage by solving the underlying
differential equations using popular strategies [2], [15]. Thus, the energy minimum
represents spatial adjacencies of objects which are similar to each other in information
space. Moreover, since the similarity matrix also encodes the topology of the underly-
ing graph, standard algorithms from graph theory can be employed to discover the
indirect links of objects and to find minimal paths between them. In order to simplify
the geometric complexity of large scale data sets, we propose an additional clustering
by computing an ellipsoidal hull around individual objects. The ellipsoid is parame-
trized by the principal components of the underlying cluster.

The organization of the paper is as follows: First we introduce the mathematical
definition of similarity and explain our metric. Section 3 discusses the paradigm of two
concentric spheres and describes the strategies for initial positioning and clustering of
information units. In section 4 interactive analysis algorithms are elucidated. Finally,
we illustrate the performance of our method by two examples: a comparison of agri-
cultural productivity and an analysis of the relation between interest rates and other
economic parameters.



2 Mathematical Foundations
This section introduces the mathematical foundations required to understand the
approach. First, our metric for similarity in information space is elaborated, since it
represents a major prerequisite for visualization. Furthermore, we briefly review the
principles of the dynamics of mass spring and particle systems.

2.1 Measuring Similarity in Information Space

One of the very challenging problems of information visualization is the definition of a
mathematical framework for the quantification of similarity of entities in information
space. We decided to found our framework on vector spaces, but it also supports prob-
abilistic, Boolean and Euclidean approaches for information retrieval. Specifically, we
assume the metric as being computed in a preprocessing step, and providing the input
parameters of a physically-based system.

Recalling some foundations of data base research we formalize the information
retrieval process as follows: LetA={A1, .., Ak} be a set of attributes (key words) and
let‘s considern objectsO={O1, ..,On}, where each objectOi is assigned to a score
vector si of dimensionk. The componentsil  represents the relative importance of docu-
mentOi with respect to key wordAl and is assumed to be bounded by [0, 1].

We now define the so-calledsimilarity cij of two objectsOi andOj by the dot prod-
uct of the associated scores normalized with respect to the dimensionk:

(1)

The resulting elements  form a symmetric, positive definite similarity
matrixC:

(2)

where .
The self-similarity cii of an object Oi is provided by the normalized length of the

score vector

(3)

Note, thatC also reflects whether or not two objects are related. Hence, it can be
considered as some sort of generalization of the so-called adjacency matrix, well-
known from graph theory [8]. The similarity defined by (1) can be interpreted as the
projection of one score vector onto another. Needless to say that the quality of the
selected key words and retrieval algorithms is crucial for the quality of our similarity
matrix.

The matrix from above quantifies the strengths of relations of information units in
an abstract space. At this point in time, we have to analyze the associated topology by
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which adjacent objects and their relations are described. We end up in anetwork type
modelor graph, such as illustrated in Figure 1a, which is obviously one of the funda-
mental topologies for visualizing related information units.

However, if we target at visualizing how particular objects match a predefined
string of key words, the upper model is apparently not well shaped. Moreover, a new
optimalobjectOn+1 has to be added, whose scores are all set to:s(n+1),l = 1, l = 1,..,k.
The similarity matrix is constructed by computing the dot products between all objects
and the one newly insertedOn+1. That is, we relate all objects to a theoretically opti-
mal score vector. The structure of the associated(n+1)x(n+1) matrix reveals only ele-
ments on the diagonal and in the last column and row, respectively.

(4)

 and .

Based on the metric defined by (1) the resulting elements compute to

(5)

As a consequence, the underlying topology has changed and converts into astar
typearrangement, such as depicted in Figure 1b. The central object is supposed to be
the theoretical optimum and taken as a fix point. It is clear that a combination of both
network typeand star typetopology is accomplished straightforwardly. Formally, we
can also construct a third arrangement like the one of Figure 1c. It enables us to visual-
ize both relations of objects between each other and with respect to a predefined score.
A detailed elaboration of the associated visualization paradigm will be given in the
next section.

2.2 Mass-Spring Systems

Mass-spring systems are linear finite elements and have been used widely and success-
fully in computer graphics [2], since the underlying physics is based on linear differen-
tial equations and is straightforward to implement. The principal equation that governs
the attractive forceFij  between two attached massesmi andmj at spatial locationsr i

Fig 1.Different type of visualization models for multidimensional relations in information
space: a) Network b) Star c) Combined Setting
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andr j and velocitiesvi andvj is given by

(6)

wherecij stands for the spring stiffness,l0 represents a bias length andf is the friction.
Applying Newton’s law converts (6) into a second order linear differential equa-

tion. Note, however, that a straightforward discretization and integration results in
algorithms of quadratic complexity. Therefore, it is recommended to invoke more
sophisticated techniques, such as the ones proposed in [14] or [12].

3 Arranging Information on a Sphere
In the following section we describe the visualization paradigm which combines the
metric introduced earlier with the physically based mass-spring approach. More pre-
cisely, we assign the computed similarities to the individual stiffnesses of springs link-
ing information units to each other. Hence, we end up with an intermediate mapping of
similarities onto parameters of a physically-based system. This approach has already
proved to promise good results [18], [13] and [14]. In this context we address two
major novelties of our framework: topology and arrangement of objects at initializa-
tion.

3.1 The Paradigms

Given a set of documentsO1,..,On the visualization method employs two concentric
spheres for the initial positioning of information units as illustrated in Figure 2a. The
objects are placed on the surface of the inner sphere and are attached with springs to
thevirtual outer sphere and to each other. The major advantage of this arrangement is
the degree of symmetry inherent to the geometry of a sphere of radius R. Conse-
quently, the model handles our three fundamental topologies from Figure 1.

3.2 Initialization Procedures

Positioning of Objects

First, for a given set ofn objects, the initial positions on the spherical surface have to
be found. A straightforward positioning could be at random. However, due to the prob-
lems arising with small numbers of objects, we recommend a Poisson disc sampling
procedure of the surface [9]. As depicted in Figure 2b each object is assigned to a solid

Fig 2.a) Initialization of information objects on a virtual sphere b) Poisson disc sampling for
initial positioning c) Poisson disc distribution for:fd = 1.0, d)fd = 0.3
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angle element and the distance of two objects must not exceed a distance threshold
dmin, computed by the following relation:

(7)

The influence of the factorfd on the uniformity of the distribution of the initial
positions is illustrated in Figure 2c and Figure 2d.

We have to be aware that our model corresponds to a multidimensional graph visu-
alization problem [11] and is prone to all problems associated with subspace proce-
dures [1]. Consequently, in order to prevent the system from convergence to a local
minimum, tightly related objects should be positioned as close as possible to each
other upon initialization. It is clear, that we won‘t succeed in the general case, but the
traversal strategy reported below avoids most initial ill-conditioning.

We start with an initial weighting of all objects, where the weightwi is defined by
the sum of all adjacent similarities.

; ui: number of objects adjacent toOi (8)

This weighting emphasizes the importance of units with strong relations. From
there, a listO={O1,..,On} of all objects is built which is sorted with respect to the
weightswi. The assignment of information objects to the computed surface positions is
figured out by a breadth-firststrategy. The algorithm starts from the most important
object and assigns first positions to all directly linked objects. These positions are
ranked according to their distance from the initial one in 3D space. From there, the
procedure traverses the list recursively until all objects are assigned. A pseudocode
fragment for the method is given by:

O={O1,..,O n} // initial object list //
P={P 1,..,P n} // initial positions //
T={} // list of sublists //
while  ( O not empty) do

fetch object O i  from O | w i  = w max
assign  random position P k to O i : O i  ->P k
remove  P k from P
generate  list L i  of all directly
linked objects sorted with respect to c il
keep  w i  with L i
add  L i  into T
while  ( T not empty) do

fetch  sublist L m from T | w m = w max
remove  all from O
while  (L m not empty) do

fetch  next object O j  from L m
assign  free position P k to O j  |
dist (P k,P m) = min: O j -> P k
remove  P k from P
generate  list L i of all directly
linked objects  sorted with
respect to c lj
keep wj  with L j
add Lj  into T
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od
od

od

It should be stated, that adepth-first traversal had been implemented as well but
experimental results perform similarly.

Spring Stiffness Assignment

Another important aspect is the computation of the stiffnesses of the anchor springs
attaching the objects to the outer sphere. It is clear that we have to take into account the
individual connectivity of a single information unit. In order to understand the compu-
tation, one should be aware that the anchor spring influences the degree to which
closely related objects converge to each other during energy minimization. Therefore,
we propose the following method, where, for convenience, all relations hold fort = 0:

Let l0 be the initial length of the anchor springi and let be its attractive force.
The resulting force  is computed from all springs linking objectOj = mj
to others according to the adjacency matrix. This is shown in Figure 3a.

The computation of the anchor spring stiffness is figured out by projecting-Fi
h

onto the vectorl0, which defines the direction of the anchor spring. Introducing an
additional factor fc, we set

(9)

and obtain the relation for the required anchor spring stiffnessci:

(10)

In order to computeFh
i all springs are supposed to have a uniform stiffness given by

averaging:

(11)

Experiments have shown that this approach is superior to the immediate usage of the
individual spring stiffnesses, since it balances differences of individual spring lengths.
Note, that the same relations hold for the star type topology.

The factorfc can be considered as a clustering factor, which takes immediate influ-

Fig 3.a) Spatial arrangement of the resulting force vector for initial spring stiffness computation
b) Clustering of information units for different cluster-factors:fc = 0.9 c)fc = 0.2
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ence on the degree to which related objects converge to each other during simulation.
Figure 3b and Figure 3c depict results of an experimental setup for different values of
fc.

4 Exploration of Information Space
Further important issues to be addressed concern the graph topology of related docu-
ments in information space. This formalism enables us to carry over some of the fun-
damental algorithms [8] to support interactive analysis and clustering, where in
addition a PCA based clustering mechanism allows to simplify the structure of com-
plex subregions. Minimal path procedures allow discovery and quantification of indi-
rect links between objects.

4.1 Discovering Relations using Minimal Paths

For some applications it is useful to explore indirect relationships rather than immedi-
ate ones. This holds also for probabilistic settings where the links and adjacencies are
marked by probabilitiesp<1. In order to provide tools for interactive exploration we
take advantage of the graph structure of the visualization problem. Here, the indirect
links which optimize a specific cost function are interesting for analysis.

Let cij  = pij be the probability that ranks the strength of two related objectsOi and
Oj. Assuming statistical independence, we compute the probabilitypaccof two objects
OSandOE indirectly linked through a specific path by:

(12)

Formally, paths from one node to another are derived from thetransitive closurein
graph theory, a Boolean matrix, whose elements are either 1, if two nodes are con-
nected or 0 if not. Since these types of algorithms belong to the standard repertoire of
computer science textbooks, we refer to those [10].

4.2 Clustering and Level-of-detail (LOD)

In order to simplify the geometry and topology of complex object arrangements it is
necessary to provide an efficient level-of-detail strategy. Initial work for information
visualization is reported in [7] who accomplished simple clustering by wrapping
hyperspheres around groups of objects. The transparency of the hyperspheres was con-
trolled as a function of the distance to the viewer. Unlike this approach we propose a
K-means and PCA based clustering mechanism [19] which will be explained in the
upcoming section.

The basic idea is to wrap ellipsoids around each cluster whose shape is controlled
by the principal components of the respective cluster. The method is designed as a two
pass procedure, where in a first step all objects in the scene are divided into a setK of
disjoined subsets. The algorithm passes though all objects and assigns a new cluster if
the distance of the current object to all existing clusters exceeds a threshold delta.This
variable finally governs the granularity of the generated clusters. A pseudocode frag-
ment is given below:

pacc piji j, path S E,( )∈∏=



O={O1,..,O n} // initial object list; r i  = position of O i  //
K={} // set of clusters; m j  = centroid of cluster K j  //
while  ( O not empty) do

fetch object O i  from O | minima = delta
iterate  over all clusters do

if  (|m j  - r i | < minima) then
Kmin  = K j
minima = |m j  - r i |

fi
od

if  (minima < delta) then
add  O i  into K min  | update  mmin

else
create  new cluster K new
add  O i  into K new | m new = r i
add  K new into K

fi
od

end

The second pass comprises the parametrization of an affine map which transforms
the initial 3D ellipsoidal shape appropriately into the scene. For clusterKj this trans-
form is defined by a translation vectormj, a scaling matrix Sj and a rotation matrixRj.
Let nj be the number of objects in clusterKj we obtain the required translation vector
immediately as the centroid of the cluster:

; r i: object positions in clusterKj (13)

In addition, the 3x3 Covariance-matrix of the cluster is given by

(14)

By solving the Eigenproblem  we compute the 3 Eigenvaluesσj1,
σj2, σj3 and the associated Eigenvectorsuj1, uj2, uj3 which define the required transfor-
mation matrices, where

 , (15)

Note that the 3x3 Eigenproblem can be solved analytically.
Thus the transform is figured out by the following set of equations. We start from

the implicit equation of the unit sphere with surface vectorxj:

| (16)

and perform a subsequent affine mapping by

; : surface vector of the ellipsoid (17)

Due to the statistical properties of the principal components it is not guaranteed that all
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objects of a cluster are enclosed by the ellipse. Thus we carry out additional postpro-
cessing and grow the hull until all objects are enclosed.

5 Examples
The following section illustrates the performance and versatility of our approach by
using two different examples: the visualization of agricultural productivity of selected
countries and the visualization and analysis of interest rates correlating with other
important economic parameters. Note, however, that the 2D pictures of this section do
not reveal the full 3D arrangement computed by our method [21].

5.1 Agricultural Productivity

A classical example for visualization and analysis of multidimensional relations is
given by taking some items from the world market. We employed figures from the
yearly production of different agricultural products for selected countries, some of
which are listed in Table 1.

Set of productsA ={butter, milk, meet, wheat, rice, soja, potatoes, sugar, bananas,
cacao, coffee, tea}.

Set of countriesO ={USA, Canada, China, India, Pakistan, Vietnam, Sri Lanca, Rus-
sia, Romania, Brazil, Argentina, Cuba, Columbia, Costa Rica,
Peru, Ecuador, France, Netherlands, Italy, Austria, Germany,
Switzerland, Australia, Japan}.

A can be considered as the set of key-words andO as the set of information units. The
figures of Table 1 were taken as a basis to construct a similarity matrixC according to
the metric of section 2.

Figure D and Figure E (see Appendix) show the results of thenetwork typemodel
approach by contrasting the initial setup to the energy minimum of the particle model.
All objects are textured according to their regional location, the USA and Switzerland
are presented by their flags. Line color and thickness reflect the strength of the connec-
tion. We observe that most objects are arranged around the USA which forms a cluster
center due to its high productivity. Conversely, Switzerland, as a small country moved

Table 1: Productions of different countries in 1994 (subset)

Product Country milk meat wheat rice potatoes
USA 69250 32091 63133 8547 19050

Canada 7750 2989 23180 0 0
China 5610 41424 102005 175608 36160
India 32112 4117 57802 117600 16318
Brazil 15774 8082 2127 11166 0
France 24900 6179 29944 0 4903

Germany 28200 5772 16100 0 12260
Switzerland 3300 448 0 0 800

............. ............. ............. ............ ............. .............
Total 460058 193809 534301 531341 283306



apart. Furthermore, the results of the clustering algorithm are presented, where the
clusters are visualized as transparent hulls whose opacity is controlled by the distance
to the camera position.

Further interactive analysis is depicted in Figure F (see Appendix) where all
objects with a direct link to the USA are presented. Those countries also lay within a
particular radius. Changing this threshold reveals gradually those countries competing
immediately to the USA on the world market. The strengths of the competition is
approximated by the elementscij of C, also indicated in the figure.

5.2 Long Term Interest Rates

In the second example we contrast our method with a traditional way of analyzing
multidimensional relationships of economic indicators. The goal is to evaluate the
influence of the indicators presented in the diagrams of Figure 4a on the long term
interest rates of individual countries. Each of these indicators was computed relative to
the USA as a reference. The state of the art approach, as depicted in Figure 4b, consists
of producing bar charts showing the correlation with individual indicators for different
countries. These charts form a basis for further interpretation performed by the finan-
cial analyst. In order to map the problem onto our visualization paradigm we start from
a special instance of thenetwork type model. By imposing displacement constraints we
first generate a subset of objects which keep their position during relaxation. For visu-
alization, we map our indicators on these object types. Conversely, we drop the anchor
stiffnesses of all other objects to zero, that is we cut off their anchors. These freely
movable objects represent the countries and are connected via links to all rigid objects
from above. The spring stiffness of a link conforms to the correlation of the associated
indicator to the long term interest rates of this country. Note that the movable objects
are not interconnected.

Figure G and Figure H (see Appendix) display two views on the relaxed model.
The cubes at the vertices of the tetrahedral structure stand for the different indicators
taken into account and the spheres representing the countries are textured with their
flags. Although the definition of individual indicators is beyond the scope of this paper
we observe that the interest rates of Canada correlate tightly with the index DRX,
whereas Switzerland relates more closely to GAP and CPI. Conversely, Germany is
located near the center of gravity of the plane spanned by DRX, BIPC and GAP and is
hence equally influenced by those.

Fig 4.Condensing multivariante relationships: a) Stack of conventional diagrams b) Correlation
tables c) Physically-based visualization paradigm

a) b) c)



Conclusions and Future Work

We presented a new variant for physically-based information visualization and illus-
trated its versatility. The fundamental idea is to arrange all information units on the
inner part of two concentric spheres and to attach them with springs to each other.
Relaxation of the model figures out the structural relations in information space. Spe-
cifically, we are convinced that the physically-based approach fits nicely advanced I/O
concepts with force and tactile feedback. Future research has to encompass a generali-
zation of the physically-based approach including timeseries, limited lifetime of parti-
cles and advanced clustering algorithms using isosurfaces.
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Appendix

A

B C

Fig E: Illustration of the clustering method: Initialization
Fig F: Model after relaxation and highlighted minimal path between two objects
Fig G: Disjoined clusters as transparent ellipsoids

D

E F

Fig D: Visualization of agricultural productivity: Initialization
Fig E: Clustered energy minimum (Parameters:R= 600,l0 = 100,fc = 0.02)
Fig F: Discovering competitors of the United States on the world market

G H

Fig G: Influence of economic indicators onto the long term interest rates of different countries
Fig H: Alternative view


