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ABSTRACT

This paper describes some fundamental issues for robust
implementations of progressively refined tetrahedralizations
generated through sequences of edge collapses. We address
the definition of appropriate cost functions and explain on
various tests which are necessary to preserve the consis-
tency of the mesh when collapsing edges. Although being
considered a special case of progressive simplicial com-
plexes [10], the results of our method are of high practical
importance and can be used in many different applications,
such as finite element meshing, scattered data interpolation,

or rendering of unstructured volume data. Figure 1: Intersection of two tetrahedra: a) The edges of
two non-adjacent tetrahedra bounding the volume intersect
CR Categories:|.3.5 [Computer Graphics]: Computational while collapsing an edge in a locally concave mesh region.

Geometry and Object Modeling — surfaces and object repre- ~ b) Close-up of the intersection (see also CP 1).

sentations. . . .
In this paper we elaborate on some pitfalls and fallacies

Keywords: mesh simplification, multiresolution, level-of- people might get caught in when trying to implement the

detail, unstructured meshes, mesh generation. method of edge collapsing for tetrahedral meshes. Specifi-
cally, we address the issue of defining appropriate cost func-
1 INTRODUCTION tions. Unlike the elegant geometric approach presented in

[7], we must account for volume and application specific

Progressive meshes [7] and its generalizations to higherpropertles, suc_h as volume preservation, gradleny estimation
dimensions [10] proofed to be an extremely powerful notion Of the underlying data or aspect ratio of the simplex. In
for the efficient representation of triangulated geometric @ddition, we devised a sequence of tests to guarantee a
objects at different levels-of-detail. Although a general for- robust and consistent progressive tetrahedralization. Some
mulation for arbitrary triangulations has already been given "€Sults obtained on computational fluid dynamics (CFD)
in [10], the special case of progressive tetrahedralizationsdata sets illustrate the performance of the.PT

(PT) is of enormous practical importance, since it can be  The remainder of this paper is outlined as follows:

used as a sophisticated representation for a large variety of i _ ) _
computations. Finite element discretizations, from where *  In Section 2, we recapitulate previous work that is

our contribution was motivated, are one example. Here, closely related to our method.

sophisticated computational methods try to find an optimal ~*  The main part of this paper (Section 3) elaborates
balance between refinements of the mesh and of the polyno- on the core algorithm of our PT scheme and intro-
mial degree of the basis functions. Other important applica- duces new cost functions for tetrahedral meshes
tions of progressive tetrahedralizations comprise and special tests that guarantee mesh consistency.

interpolation and rendering of scattered volume data, where . Finglly, we describe some implementation issues
sucfcesswely reffmab':_e methods V\rlwouldpc\ieﬁmtelyI improve thg} and demonstrate the method's usefulness on an
performance ot exising approaches. A generaj overview o irregular mesh data set of a turbine blade in Section
various mesh simplification methods, including those based 4

on edge collapses, can be found in [6]. '

However, regardless of the brilliance and simplicity of 2 RELATED WORK

the idea of edge collapsing, a brute force implementation of L .
the method may rapidly destroy the consistency of the There are numerous schemes for simplifying geometric

mesh. Various artifacts can be introduced, such as flipped,eShes in computer graphics and scientific visualization, of
intersected and degenerated tetrahedra, which in turn ma))_/vmch Garland and Heckbert provide an extensive overview
impede any finite element computation. An example is ' [6]-

given in Fig. 1. Here two boundary tetrahedra intersect due 1 The method is currently implemented as a set of AVS/

to an edge collapse in a locally concave mesh region. Express modules and will be made available shortly.
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Previous work closely related to our method can be broadly 3 PROGRESSIVE TETRAHEDRALIZATI-
categorized into 2 main classes. Firstly, methods based on NS
edge-collapse/vertex-split transformations and secondly,

decimation methods which specifically support simplifica- For reasons of readability, we recapitulate some basic defi-

tion of volumetric data. nitions for progressive meshes [7] and adapt them to pro-
gres§ive 'getrahedralizations (PT). General introductions are
2.1 Methods based on edge collapsing provided in [7] or [10].

Hoppe et al. [9] proposed a triangular mesh simplification 3-1 Background

scheme, based on edge collapse and vertex split transformal-n PT representations, a tetrahedral mesh with scalar

tions. A set of energy functions is used in o_rder to decide on attributess, assigned to each vertex  is defined as
the sequence of edge collapse transformations, and a sophis-

ticated optimization method, which determines the position
of the new vertex, is provided. Hoppe [7] extended this

work with Support for selective refinement and progrESSive where M° is some coarse base mesh Miti are vertex

transmission, as well as with lossy geometric compression split operations to reconstruct the original megh= M"
[2] and the possibility to interpolate smoothly between dif- from Mo

ferent levels of approximation (geomorphs). A more
?etageld description of progressive meshes is given in Sec- MmO _VsPlity 41 _vsplity | vsplit, 3 A )
ion 3.1.

(MO, vsplity, vsplity, ..., vsplit, _,, vsplit, _;) (1)

Conversely,M? is derived fronM  through a series of
This has been the basis for several other extensions. Xiaedge collapse operatioesol ~ which are inversesptit,

et al. [16] and Hoppe [8] focused on fast, hierarchical repre-
sentations, that enable one to efficiently reconstruct selected ~ m" °%®h-y -t _ehp o _ecoh 0 (3
parts of a triangular progressive mesh. All of these algo-
rithms preserve the topology of the original data, whereas  Eachecol replaces an edge  with verticgs  apd
others [10, 3, 13, 12] allow topological changes, such as fill- by a new vertexr, . As opposed to some other methods we
ing of holes or connecting disconnected parts of a mesh.preserve the topological type of the mesh, that is, all
Popovic et al. [10] devised a general approach for arbitrary instances afl are homeomorphic. Specifically, we prohibit
dimensional simplicial complexes, which also allows topo- degenerations of tetrahedra into lower dimensional simpli-
logical changes of the data, in order to further reduce the ces. The set of tetrahedra sharigg  will be callécklls;}
complexity of the mesh. Unfortunately, they only provide an Thus, an edge split adds the tetrahedrg iicells;} to the
implementation and examples for the triangular case. Otherlist of active elements. Conversely, the set of non-vanishing

important types of simplices, such as tetrahedra, are nottétrahedra affected by the associated edge collapse is called
addressed in detail. {ncells} . Fig. 2 depicts an edge collapse operation in a tet-

rahedral mesh. All tetrahedra sharing  vanish, whereas all
Other work [12, 5, 13] differs from [9] and [7] in the tetrahedra sharing only one of the vertices of the edge
ordering of edge collapse transformations and the optimiza- ¢change in shape.
tion method which specifies the new vertex position. Gar-
land et al. [3] propose a very elegant scheme using quadrics
for both tasks.

2.2 Vertex removal methods

Various decimation algorithms have been published, which
remove single vertices from the mesh and retriangulate the
resulting hole. One of the most widely used methods in that
category is Schroeder et al. [14].

Vo

{ncells}
{icells}

Vs

Fewer methods have been devised that decimate higher b)

dimensional simplicial_comp_lexes. Staadt et a_l. [15] pre- Figure 2: Edge collapse in a tetrahedral mesh: a) Mesh
sented a method for simplifying and compressing unstruc-  pefore collapsing edge,, v,) . b) Configuration after col-

tured triangular and tetrahedral meshes by using  |apse with resulting vertex, . (The tetrahedra are shrinked
hierarchical, wavelet-based decimation schemes and Delau- to emphasize the underlying 3-dimensional structure. See

nay tetrahedralization. Grosso et al. [4] use finite element  also CP 2).

computations to represent triangular and tetrahedral meshes

at multiple levels. Cignoni et. al [1] propose a framework In order to compute a sequence of robust, non-degener-
which is based on a decimation method and allows one toate and consistent meshes, the following aspects have to be
represent tetrahedral meshes at arbitrary resolution. considered:
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. Cost functionswhich determine the order of ecol 0

operations depending on desired mesh optimiza- ABequ®) = Wequill Z 0 (I 5 =)

L . T;Oncells {a bfUT, 7

tion criteria. 2 )
(la,b_mj) O

e Sharpandfeature edgewhich should be preserved
can be checked during preprocessing.

«  Intersectionsand inversionsof tetrahedra inside  With edge lengthl, , = |v,-v,| and average edge length
and outside of {icells} O {ncell§}} ,suchasthe M =/[T| oT, la b
one in Fig. 1, have to be processed at run time.

{a, b} OT;

Each term can be weighted individually by coefficients

The remainder of this paper elaborates on the details of Wgraq» Wyoi 8Nd Weqi , respectively, to allow adoption to
these issues. specific data sets and applications.

Note that the initial mesim™  will usually be generated from
some triangulation scheme. Depending on the application
context and the desired mesh features it can be advanta-
geous to include SOMAE yee(€) = WeggeienVa—Vp|  INtO

3.2 Cost Functions

As already mentioned in Section 2, various elegant algo-
rithms [3, 7] based on the ecol/vsplit paradigm used cost
functions optimized for triangular surfaces, often account- ;[he C%St fUIﬂCtIOH thereby enforcmg short edges to be col-
ing for distance measures, triangle shape, and others. In tet- apsed earlier

rahedral meshes, however, we have to redefine the terms of

the cost function considering other features, like volume 3:3 Static Tests

preservation or gradients. Although many different mea-

sures are conveivable to control the simplification process,
the following ones yield a good balance between required
degrees of freedom and the difficulty of parameter optimiza-

Unfortunately, brute force selection of edges according to
the cost function from above can introduce mesh inconsis-
tencies, like degeneration, folding, intersection, or loss of
individual features.

tion.
In order to avoid these types of artifacts, sostatic
Thus, in our setting, for each edge = (v, , th

¢ g% = (Va Vb) +1 i tests can be carried out prior to building the edge heap.
associated edge collapse operatéani(a, b): M' — M’ S Before we introduce the test criteria we have to define some
assigned the following cost: properties of edges and vertices:

DE() = DBy &) + OE 4 (8) + AEgy,f€) - (4) . shar_p (boundary) edgean edgee; is called sharp
if it lies on the boundary of the mesh.

The first termAE .4 is defined as «  sharp (boundary) vertexa vertexy, is called sharp

if at least one edge incidenttp is sharp.

AE_ . (e) = w S, —S (5)
arad araa a4 *  sharp (boundary) facea triangular cell facef;, is
and forms a simplified measure for the difference of under- called sharp if all its edges are sharp.
lying scalar volume function along the edge . Hence, «  sharp (boundary) cella tetrahedral celf, is sharp

edges with considerably differing scalar attributes are

assigned high costs. if at least one of its faces is sharp.

Sharp edges can be detected efficiently by analyzing all
verticesv; O {icells} assuming appropriate data structures
0 represent the mesh In a preprocessing step we label all
sharp vertices and edges, respectively. Table 1 lists the 5 dif-
ferent cases for combinations of sharp edges and vertices.
Only cases 1 and 5 pass the consistency test.

When collapsing edges and removing tetrahedra from
the mesh, the overall volume tends to decrease, that is thet
mesh shrinks down. Therefore, we introduce a second term

E, Penalizing volume changes:

AEg(e) = W TH 5 (vol(T))—vol(T )

T,0{ncells} . () Table 1: The 5 possible cases for combinations of sharp edges and
+ vol(T ) sharp vertices. The examples refer to Fig. 3.
TO zells} U PERMISSIBLE EXAMPLE
! ! 1 yes Vg3, Vg
T. denote all tetrahedra in the set of neighborhood cells | 2 sharp optional® (Vi V1g)
{ncells} of e and introduced cell§icells} , respectively. 3 sharp optiorgala (V3 Vo)
vol(T ) stands for the volume of and; s the tetrahe- | 4 sharp | sharp i (Vg V1)
dron after the collapse. Note that only simplices in o LShap | sharp | shaip yes (Vo vy)
{icells} O{ncells} can contribute to volume changes. a: cases 2 and 3 induce “dents” on the boundary surface which
may not be desired.
Especially in FEM applications, it is often required that b: case 4 introduces degenerated cells, sigce  is not deleted.
tetrahedra sustain equilateral shapak,,; can be c: a sharp edge always implies that its vertices are sharp. Sim-

employed in order to balance the edge length of tetrahedra: plifications of the boundary surfaces are allowed.
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Vo Vig Vlg . ] _‘_’11 V1o Vg
Vi Vig L5 Vig Viz Vg
v, Vy Vs v,
Vs A S
sharp vertex sharp edge [ ncellg
® regular vertex — regular edge (T 3
Figure 3: Naming conventions used for static consistency o aharp
tests. For simplicity, the examples are depicted in 2D. ) {73
= (1)
34 DynamIC TeStS O {TsharpZ}
. . . ' . <)
Unfortunately, not all inconsistencies can be fixed with the ) . )
static tests from above. Some severe problems dyisami- Figure 4: Tetrahedron T;  intersects wo faces of
cally while performing individual ecol operations and fur- { f\} after collapsing edge, intovertax, . a) before col-
ther tests are required on the fly. lapse. b) after collapse. c) Traversal of the mesh

{Tfharp °} for iteration steps 1—4.

The normal flipping heuristic from [12] can be general-

ized in order to circumvent foldlng or self-intersection of In order to avoid testing these faces against all other
tetrahedra. This can easily be implemented by analyzing thesharp tetrahedra, we propose the following iterative method:
volume of all T; O {ncells} before and after the collapse. The algorithm starts from an initial s¢T; '}  containing

Recall that the volume of a tetrahedron is defined by the par-the subset of all sharp tetrahedra in the direct neighborhood
allelepipedial product of its 3 edges; ande, of ncells .

We take the first element gfT™"*%  and test for inter-
section with all faces irf, . If the test fails and no intersec-
If the volume of one of the neighboring tetrahedra tion occurs, we label the tetrahedron as visited and proceed

shar .
becomes negative, tetrahedral folding occurs. In this caset® the next element of T; } . Otherwise we can abort the

the edge fails the consistency test. This test also avoidstest and reverse the curreato}  operation. The restriction
degenerate cells by setting a lower volume threshold to beto the sharp faces of each tetrahedron simplifies the intersec-
retained after the collapse. tion test, since many cell have only one sharp face (see Fig.
We start from the following observation: edge collapses .4)' Afgchaarr proping aII.ceIIs, we replacg all vi§ited tetrahedra
can cause global intersections of tetrahedra, a simple exam." {T; } with their non-visited “i'h%t‘ptlo””g sharp Ce“S.

ple of which is shown in Fig. 1. This requires additional 2nd thereby traverse the mesh. THE™""} are shown in
testing. If the se{icells} O {ncells}} contains no sharp Fig. 4c for different iteration steps.

edge, it's boundary forms a polytope entirely wrapping the e following pseudo code summarizes the principle
edge. A collapse of the edge, howe\_/e_r,_does not aff_ect _thesteps of the intersection test:

boundary of the polytope, whose disjoint triangulation is .

given by the tetrahedra; O{ncells} . Thus, intersections '“ters‘j/ctgzgtf?;], charmcolls at fteratin s

can only occur with sharp cells and we can restrict the inter- 1 1K S,fa;p faces o ncells.

section tests to the mesh boundary. // calculate_intersections : triangle-triangle

. . . // intersection test
Fig. 4a depicts the top view of a tetrahedral mesh where /'S maximum iteration level

T. is a sharp cell that is close to, but not intersecting the 5=0;

1 1
glen e ad = zexe, el (8)

boundary of the mesh. L&ty  be the edge to be collapsed  while (Tsharplis] ~ notempty&& s <S)
next and let vertew, be closer to the viewpoint than . forall 101 o Tsharpli.s]
The situation after the collapse whe‘rﬁe is intersecting two calculate_intersections(fi, flk)):

faces of{ ncells} is depicted in Fig. 4b. update  Tsharp[i,s]

St+;

In essence, we have to perform triangle—triangle inter-
section tests [11] in case of sharp edges or vertices whichy

can be carried out as follows: .
Note that the test asymptotically traverses all sharp faces

First, we define the set of trianglds } containing all of the mesh and consumes time proportior@(lF [B) .
sharp faces of tetrahedfra} O{ncells} . These are the faceswhereF stands for the number of elementg i} and
which can change aftegcol  since they all share the new for the overall number of sharp faces in the data set. As we
vertex v, . Thus they are our prime candidates for intersec- will demonstrate in Section 4, one can restrict the iteration
tion with other sharp faces. to an upper bound in practice.
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In Fig. 3d, the mesh is cut to render its internal structure.
) o In order to emphasize the influence of individual cost func-
Afte_r calcul_a_tlng the cost of each e_dge and determining the tion terms we computed Fig. 3e-g.We observe that each of
static condm_ons of the cor_respondlng t_ad_ge collapse opera-the energy terms stands for a specific featurg, for
tion, we build a heap with all remaining edges sorted jnstance in Fig. 3e reconstructs the blade region very well,
according to their associated costs. In order to carry out thep,t violates volume preservation and produces poorly
edge collapseco} , we pop the topmost edge from the heap.shaped simplices. As expectet,,,  sustains the volume,

check for intersections, constructvaplit; ~ record for recon- \yhereasaE preserves the equilateral shape of the tetra-
struction, and update all edges on the heap which are inpggra.

{ncells} . This process is repeated until the heap is empty _ ) _
or the desired number of collapses has been reached. Usually, it can not be guaranteed that all intersections
Although we implemented various schemes for the optimal are detected withs = 2 . For the above example the total

positioning ofv, , such as stochastic optimization, we found humber of intersection hits witls ~ «» is 6,116, which
that the halfway between, ang is a good choice. means that 98.8% of the intersections have already been

detected at iteration level 2.
4 RESULTS
, , , ) . 5 CONCLUSIONS AND FUTURE WORK
Our implementation is currently integrated into AVS/

Express. Although in this paper we focus on specific issuesWe have presented a technique for generating progressive
of tetrahedral meshes, our AVS/Express modules can handlgetrahedralizations, especially emphasizing on problems
triangular meshes as well. such as intersections or degenerations. The cost functions
N L . that we have proposed are well suited for a wide range of
For the following investigations, an irregular mesh of & \o\yme data sets in different applications areas. Although
turbine blade was selected. The original data set consists Ofotrahedral mesh decimation is a complex task, we have

576,576 tetrahedra with scalar node data representing pres;y yjemented a fast and efficient method that avoids most of
sure between the blades. Fig. 3 shows results with various, o pitfalls of tetrahedral meshing.

levels of reconstruction, different settings of the cost func-
tions, and extracted isosurfaces, both for the original mesh ~ Future work will be directed towards combining the

and for a selected subset with only one blade. Table 2 listsOptimization of vertex placement after edge collapse with
the performance statistics and parameter settings used t@voiding selfintersection and folding. By solving a con-

generate the example meshsg. denotes the original numstraint linear optimization problem [11], we can determine a
ber of tetrahedra anth' is the number of tetrahedra of the Polytope, in which the new vertex can be placed intersec-
reconstructed mesiAE ad DEvol amtequi indicate the tion-free. We WOU|d also '|I|(e to enhance er'ror gnaly5|s in
individual cost function terms used for the examplene order to quantify geometric and data approximation errors.

shows the computation time for a full mesh collapsthe
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Vy

collapsing edge

V3

{ncells}
Ve {icells}
a) b)
CP 2: Edge collapse in a tetrahedral mesh: a) Mesh before
collapsing edgdv,, v,) . b) Configuration after collapse

with resulting vertexv, . (The tetrahedra are shrinked to
emphasize the underlying 3-dimensional structure.)

Vs

CP 1: Intersection of two tetrahedra: a) The edges of two

non-adjacent tetrahedra bounding the volume intersect
while collapsing an edge in a locally concave mesh region.
b) Close-up of the intersection.

e)

CP 3: PT representations of an irregular turbine blade mesh. a) Extraction of isosurfaces of the turbine blades using marching tetra-
hedra. b)-c) Part of the data set at different reconstruction levels with shrinked tetrahedra. d) Part of the mesh is cut to render its in-
ternal features. &) PTWItRE ;. . DE,; . @E.y,; only. Parameter settings and performance statistics are listed in Table 2. (Data
set courtesy of AVS Inc.)
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