
Appeared in Proceedings of IEEE Visualization ‘98, pp. 397-402, 1998.

es
e
ifi-

nc-
in

c
ion
n
e a
me
)

s

s
-

es
y.
s
an
n

ric
of
w

Progressive Tetrahedralizations

Oliver G. Staadt, Markus H. Gross

Computer Graphics Research Group
Department of Computer Science

Swiss Federal Institute of Technology (ETH) Zurich
e-mail: {staadt, grossm}@inf.ethz.ch

ABSTRACT

This paper describes some fundamental issues for robust
implementations of progressively refined tetrahedralizations
generated through sequences of edge collapses. We address
the definition of appropriate cost functions and explain on
various tests which are necessary to preserve the consis-
tency of the mesh when collapsing edges. Although being
considered a special case of progressive simplicial com-
plexes [10], the results of our method are of high practical
importance and can be used in many different applications,
such as finite element meshing, scattered data interpolation,
or rendering of unstructured volume data.

CR Categories:I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling – surfaces and object repre-
sentations.

Keywords: mesh simplification, multiresolution, level-of-
detail, unstructured meshes, mesh generation.

1 INTRODUCTION

Progressive meshes [7] and its generalizations to higher
dimensions [10] proofed to be an extremely powerful notion
for the efficient representation of triangulated geometric
objects at different levels-of-detail. Although a general for-
mulation for arbitrary triangulations has already been given
in [10], the special case of progressive tetrahedralizations
(PT) is of enormous practical importance, since it can be
used as a sophisticated representation for a large variety of
computations. Finite element discretizations, from where
our contribution was motivated, are one example. Here,
sophisticated computational methods try to find an optimal
balance between refinements of the mesh and of the polyno-
mial degree of the basis functions. Other important applica-
tions of progressive tetrahedralizations comprise
interpolation and rendering of scattered volume data, where
successively refinable methods would definitely improve the
performance of existing approaches. A general overview of
various mesh simplification methods, including those based
on edge collapses, can be found in [6].

However, regardless of the brilliance and simplicity of
the idea of edge collapsing, a brute force implementation of
the method may rapidly destroy the consistency of the
mesh. Various artifacts can be introduced, such as flipped,
intersected and degenerated tetrahedra, which in turn may
impede any finite element computation. An example is
given in Fig. 1. Here two boundary tetrahedra intersect due
to an edge collapse in a locally concave mesh region.

In this paper we elaborate on some pitfalls and fallaci
people might get caught in when trying to implement th
method of edge collapsing for tetrahedral meshes. Spec
cally, we address the issue of defining appropriate cost fu
tions. Unlike the elegant geometric approach presented
[7], we must account for volume and application specifi
properties, such as volume preservation, gradient estimat
of the underlying data or aspect ratio of the simplex. I
addition, we devised a sequence of tests to guarante
robust and consistent progressive tetrahedralization. So
results obtained on computational fluid dynamics (CFD
data sets illustrate the performance of the PT1.

The remainder of this paper is outlined as follows:

• In Section 2, we recapitulate previous work that i
closely related to our method.

• The main part of this paper (Section 3) elaborate
on the core algorithm of our PT scheme and intro
duces new cost functions for tetrahedral mesh
and special tests that guarantee mesh consistenc

• Finally, we describe some implementation issue
and demonstrate the method’s usefulness on
irregular mesh data set of a turbine blade in Sectio
4.

2 RELATED WORK

There are numerous schemes for simplifying geomet
meshes in computer graphics and scientific visualization,
which Garland and Heckbert provide an extensive overvie
in [6].

Figure 1: Intersection of two tetrahedra: a) The edges of
two non-adjacent tetrahedra bounding the volume intersect
while collapsing an edge in a locally concave mesh region.
b) Close-up of the intersection (see also CP 1).

1 The method is currently implemented as a set of AVS/
Express modules and will be made available shortly.

collapsing edge

a) b)

Appeared in Proceedings of IEEE Visualization ‘98, pp. 397-402, 1998.

fi-
ro-
re

lar

tex

f
:

we
ll
it
li-
.

he
ng
lled
t-
all
ge

er-
be
Previous work closely related to our method can be broadly
categorized into 2 main classes. Firstly, methods based on
edge-collapse/vertex-split transformations and secondly,
decimation methods which specifically support simplifica-
tion of volumetric data.

2.1 Methods based on edge collapsing

Hoppe et al. [9] proposed a triangular mesh simplification
scheme, based on edge collapse and vertex split transforma-
tions. A set of energy functions is used in order to decide on
the sequence of edge collapse transformations, and a sophis-
ticated optimization method, which determines the position
of the new vertex, is provided. Hoppe [7] extended this
work with support for selective refinement and progressive
transmission, as well as with lossy geometric compression
[2] and the possibility to interpolate smoothly between dif-
ferent levels of approximation (geomorphs). A more
detailed description of progressive meshes is given in Sec-
tion 3.1.

This has been the basis for several other extensions. Xia
et al. [16] and Hoppe [8] focused on fast, hierarchical repre-
sentations, that enable one to efficiently reconstruct selected
parts of a triangular progressive mesh. All of these algo-
rithms preserve the topology of the original data, whereas
others [10, 3, 13, 12] allow topological changes, such as fill-
ing of holes or connecting disconnected parts of a mesh.
Popovic et al. [10] devised a general approach for arbitrary
dimensional simplicial complexes, which also allows topo-
logical changes of the data, in order to further reduce the
complexity of the mesh. Unfortunately, they only provide an
implementation and examples for the triangular case. Other
important types of simplices, such as tetrahedra, are not
addressed in detail.

Other work [12, 5, 13] differs from [9] and [7] in the
ordering of edge collapse transformations and the optimiza-
tion method which specifies the new vertex position. Gar-
land et al. [3] propose a very elegant scheme using quadrics
for both tasks.

2.2 Vertex removal methods

Various decimation algorithms have been published, which
remove single vertices from the mesh and retriangulate the
resulting hole. One of the most widely used methods in that
category is Schroeder et al. [14].

Fewer methods have been devised that decimate higher
dimensional simplicial complexes. Staadt et al. [15] pre-
sented a method for simplifying and compressing unstruc-
tured triangular and tetrahedral meshes by using
hierarchical, wavelet-based decimation schemes and Delau-
nay tetrahedralization. Grosso et al. [4] use finite element
computations to represent triangular and tetrahedral meshes
at multiple levels. Cignoni et. al [1] propose a framework
which is based on a decimation method and allows one to
represent tetrahedral meshes at arbitrary resolution.

3 PROGRESSIVE TETRAHEDRALIZATI-
ONS

For reasons of readability, we recapitulate some basic de
nitions for progressive meshes [7] and adapt them to p
gressive tetrahedralizations (PT). General introductions a
provided in [7] or [10].

3.1 Background

In PT representations, a tetrahedral mesh with sca
attributes assigned to each vertex is defined as

(1)

where is some coarse base mesh and are ver
split operations to reconstruct the original mesh
from :

. (2)

Conversely, is derived from through a series o
edge collapse operations which are inverse to

. (3)

Each replaces an edge with vertices and
by a new vertex . As opposed to some other methods
preserve the topological type of the mesh, that is, a
instances of are homeomorphic. Specifically, we prohib
degenerations of tetrahedra into lower dimensional simp
ces. The set of tetrahedra sharing will be called
Thus, an edge split adds the tetrahedra in to t
list of active elements. Conversely, the set of non-vanishi
tetrahedra affected by the associated edge collapse is ca

. Fig. 2 depicts an edge collapse operation in a te
rahedral mesh. All tetrahedra sharing vanish, whereas
tetrahedra sharing only one of the vertices of the ed
change in shape.

In order to compute a sequence of robust, non-degen
ate and consistent meshes, the following aspects have to
considered:

Figure 2: Edge collapse in a tetrahedral mesh: a) Mesh
before collapsing edge . b) Configuration after col-
lapse with resulting vertex . (The tetrahedra are shrinked
to emphasize the underlying 3-dimensional structure. See
also CP 2).

si vi

M0 vsplit0 vsplit1 … vsplitn 2– vsplitn 1–, , , , ,()

M0 vspliti
M Mn=

M0

M
0 vsplit0 M

1 vsplit1 … vsplitn 1– M
n

M0 M
ecoli vspliti

M
n ecoln 1– M

n 1– ecoln 2– … ecol0 M
0

ecoli ei va vb
va

M

ei icellsi{ }
icellsi{ }

ncellsi{ }
ei

v1v2

v4

v3

vav5

v4

v3

v1

v2

v5

va

vb

a) b)

ncellsi{ }
icellsi{ }

va vb,()
va

Appeared in Proceedings of IEEE Visualization ‘98, pp. 397-402, 1998.

th

s

on
ta-

ol-

to
is-
of

p.
e

all
es
l all
dif-
es.
• Cost functionswhich determine the order of ecol
operations depending on desired mesh optimiza-
tion criteria.

• Sharpandfeature edgeswhich should be preserved
can be checked during preprocessing.

• Intersectionsand inversionsof tetrahedra inside
and outside of , such as the
one in Fig. 1, have to be processed at run time.

The remainder of this paper elaborates on the details of
these issues.

3.2 Cost Functions

As already mentioned in Section 2, various elegant algo-
rithms [3, 7] based on the ecol/vsplit paradigm used cost
functions optimized for triangular surfaces, often account-
ing for distance measures, triangle shape, and others. In tet-
rahedral meshes, however, we have to redefine the terms of
the cost function considering other features, like volume
preservation or gradients. Although many different mea-
sures are conveivable to control the simplification process,
the following ones yield a good balance between required
degrees of freedom and the difficulty of parameter optimiza-
tion.

Thus, in our setting, for each edge , the

associated edge collapse operation is

assigned the following cost:

. (4)

The first term is defined as

(5)

and forms a simplified measure for the difference of under-
lying scalar volume function along the edge . Hence,
edges with considerably differing scalar attributes are
assigned high costs.

When collapsing edges and removing tetrahedra from
the mesh, the overall volume tends to decrease, that is the
mesh shrinks down. Therefore, we introduce a second term

 penalizing volume changes:

. (6)

denote all tetrahedra in the set of neighborhood cells
of and introduced cells , respectively.

stands for the volume of and is the tetrahe-
dron after the collapse. Note that only simplices in

 can contribute to volume changes.

Especially in FEM applications, it is often required that
tetrahedra sustain equilateral shape. can be
employed in order to balance the edge length of tetrahedra:

(7)

with edge length and average edge leng
.

Each term can be weighted individually by coefficient
, and , respectively, to allow adoption to

specific data sets and applications.

Note that the initial mesh will usually be generated from
some triangulation scheme. Depending on the applicati
context and the desired mesh features it can be advan
geous to include some into
the cost function thereby enforcing short edges to be c
lapsed earlier.

3.3 Static Tests

Unfortunately, brute force selection of edges according
the cost function from above can introduce mesh incons
tencies, like degeneration, folding, intersection, or loss
individual features.

In order to avoid these types of artifacts, somestatic
tests can be carried out prior to building the edge hea
Before we introduce the test criteria we have to define som
properties of edges and vertices:

• sharp (boundary) edge: an edge is called sharp
if it lies on the boundary of the mesh.

• sharp (boundary) vertex: a vertex is called sharp
if at least one edge incident to is sharp.

• sharp (boundary) face: a triangular cell face is
called sharp if all its edges are sharp.

• sharp (boundary) cell: a tetrahedral cell is sharp
if at least one of its faces is sharp.

Sharp edges can be detected efficiently by analyzing
vertices assuming appropriate data structur
to represent the mesh. In a preprocessing step we labe
sharp vertices and edges, respectively. Table 1 lists the 5
ferent cases for combinations of sharp edges and vertic
Only cases 1 and 5 pass the consistency test.

icellsi{ } ncellsi{ }∪{ }

ei va vb,()=

ecoli a b,(): M
i

M
i 1+←

E∆ ei() Egrad∆ ei() Evol∆ ei() ∆Eequi ei()+ +=

∆Egrad

∆Egrad ei() wgrad sa sb–⋅=

ei

∆Evol

∆Evol ei() wvol vol T j() vol T j()–()

vol T j()
T j icellsj{ }∈

∑+

T j ncellsi{ }∈
∑







⋅=

T j
ncellsi{ } ei icellsi{ }

vol T j() T j T j

icellsi{ } ncellsi{ }∪

∆Eequi

Table 1: The 5 possible cases for combinations of sharp edges and
sharp vertices. The examples refer to Fig. 3.

CASE PERMISSIBLE EXAMPLE
1 yes
2 sharp optionala

a: cases 2 and 3 induce “dents” on the boundary surface which
may not be desired.

3 sharp optionala

4 sharp sharp nob

b: case 4 introduces degenerated cells, since is not deleted.

5 sharp sharp sharp yesc

c: a sharp edge always implies that its vertices are sharp. Sim-
plifications of the boundary surfaces are allowed.

∆Eequi ei() wequi la b, mj–()2

a b,{ } T j∈
∑

la b, mj–()2

a b,{ } T j∈
∑

–






T j ncellsi∈

∑⋅=

la b, va vb–=

mj 1 T j⁄ la b,a b,{ } T j∈∑⋅=

wgrad wvol wequi

Mn

∆Eedgelenei() wedgelen va vb–⋅=

ei

vi
vi

f i

Ti

vj icellsi{ }∈

e va vb
v3 v4,()
v1 v14,()
v3 v2,()

v9

v8 v10,()
v0 v1,()

Appeared in Proceedings of IEEE Visualization ‘98, pp. 397-402, 1998.

er
d:

od

-
-
ed
e
on
ec-
ig.
a

in

le

es
,

we
n

3.4 Dynamic Tests

Unfortunately, not all inconsistencies can be fixed with the
static tests from above. Some severe problems arisedynami-
cally while performing individual ecol operations and fur-
ther tests are required on the fly.

The normal flipping heuristic from [12] can be general-
ized in order to circumvent folding or self-intersection of
tetrahedra. This can easily be implemented by analyzing the
volume of all before and after the collapse.
Recall that the volume of a tetrahedron is defined by the par-
allelepipedial product of its 3 edges :

. (8)

If the volume of one of the neighboring tetrahedra
becomes negative, tetrahedral folding occurs. In this case
the edge fails the consistency test. This test also avoids
degenerate cells by setting a lower volume threshold to be
retained after the collapse.

We start from the following observation: edge collapses
can cause global intersections of tetrahedra, a simple exam-
ple of which is shown in Fig. 1. This requires additional
testing. If the set contains no sharp
edge, it’s boundary forms a polytope entirely wrapping the
edge. A collapse of the edge, however, does not affect the
boundary of the polytope, whose disjoint triangulation is
given by the tetrahedra . Thus, intersections
can only occur with sharp cells and we can restrict the inter-
section tests to the mesh boundary.

Fig. 4a depicts the top view of a tetrahedral mesh where
is a sharp cell that is close to, but not intersecting the

boundary of the mesh. Let be the edge to be collapsed
next and let vertex be closer to the viewpoint than .
The situation after the collapse where is intersecting two
faces of is depicted in Fig. 4b.

In essence, we have to perform triangle–triangle inter-
section tests [11] in case of sharp edges or vertices which
can be carried out as follows:

First, we define the set of triangles containing all
sharp faces of tetrahedra . These are the faces
which can change after since they all share the new
vertex . Thus they are our prime candidates for intersec-
tion with other sharp faces.

In order to avoid testing these faces against all oth
sharp tetrahedra, we propose the following iterative metho
The algorithm starts from an initial set containing
the subset of all sharp tetrahedra in the direct neighborho
of .

We take the first element of and test for inter
section with all faces in . If the test fails and no intersec
tion occurs, we label the tetrahedron as visited and proce
to the next element of . Otherwise we can abort th
test and reverse the current operation. The restricti
to the sharp faces of each tetrahedron simplifies the inters
tion test, since many cell have only one sharp face (see F
4). After probing all cells, we replace all visited tetrahedr
in with their non-visited neighboring sharp cells
and thereby traverse the mesh. The are shown
Fig. 4c for different iteration steps.

The following pseudo code summarizes the princip
steps of the intersection test:

intersection_test {
// Tsharp[i,m]: sharp cells at iteration s
// f[k]: sharp faces in
// calculate_intersections : triangle-triangle
// intersection test

// S: maximum iteration level
s = 0;
while (Tsharp[i,s] not empty && s < S){

forall f[i] in Tsharp[i,s]
forall f[k]

calculate_intersections(f[i], f[k]);
update Tsharp[i,s] ;

s++;
}

}

Note that the test asymptotically traverses all sharp fac
of the mesh and consumes time proportional
where stands for the number of elements in and
for the overall number of sharp faces in the data set. As
will demonstrate in Section 4, one can restrict the iteratio
to an upper bound in practice.

Figure 3: Naming conventions used for static consistency
tests. For simplicity, the examples are depicted in 2D.

v0 v13 v12

v15

v4

v3

v2

v1 v14

sharp edge
regular edge

sharp vertex
regular vertex

v9v10v11

v16

v5

v6

v7

v8v17

Ti ncellsi{ }∈

ei ej andek,

1
6
--- ei ej ek, ,[] 1

6
--- ei ej× ek,〈 〉=

icellsi{ } ncellsi{ }∪{ }

T j ncellsi{ }∈

T j
ei

vb va
T j

ncellsi{ }

f k{ }
T j ncellsi{ }∈
ecoli

va

Figure 4: Tetrahedron intersects two faces of
after collapsing edge into vertex . a) before col-

lapse. b) after collapse. c) Traversal of the mesh
 for iteration steps 1–4.

va

vb

icellsi

e

T j

ncellsi

a)

va

face intersection

b)

ncellsi

Ti
sharp 1,{ }

va
Ti

sharp 2,{ }

Ti
sharp 3,{ }

Ti
sharp 4,{ }

c)

T j
f k{ } ei va

Ti
sharp s,{ }

Ti
sharp{ }

ncellsi

Ti
sharp{ }

f k

Ti
sharp{ }

ecoli

Ti
sharp{ }

Ti
sharp s,{ }

Ti

ncellsi

O F B⋅()
F f k{ } B

Appeared in Proceedings of IEEE Visualization ‘98, pp. 397-402, 1998.

e.
c-
of

or
ll,

rly
e,

tra-

ns
tal

en

ive
s

ons
of

gh
ve
of

th
-
a
c-
in
s.

rch
er
r

-
e
r

-

n
1

a-

-

r,
-

3.5 Edge Collapse

After calculating the cost of each edge and determining the
static conditions of the corresponding edge collapse opera-
tion, we build a heap with all remaining edges sorted
according to their associated costs. In order to carry out the
edge collapse , we pop the topmost edge from the heap,
check for intersections, construct a record for recon-
struction, and update all edges on the heap which are in

. This process is repeated until the heap is empty
or the desired number of collapses has been reached.
Although we implemented various schemes for the optimal
positioning of , such as stochastic optimization, we found
that the halfway between and is a good choice.

4 RESULTS

Our implementation is currently integrated into AVS/
Express. Although in this paper we focus on specific issues
of tetrahedral meshes, our AVS/Express modules can handle
triangular meshes as well.

For the following investigations, an irregular mesh of a
turbine blade was selected. The original data set consists of
576,576 tetrahedra with scalar node data representing pres-
sure between the blades. Fig. 3 shows results with various
levels of reconstruction, different settings of the cost func-
tions, and extracted isosurfaces, both for the original mesh
and for a selected subset with only one blade. Table 2 lists
the performance statistics and parameter settings used to
generate the example meshes. denotes the original num-
ber of tetrahedra and is the number of tetrahedra of the
reconstructed mesh. , , and indicate the
individual cost function terms used for the example.Time
shows the computation time for a full mesh collapse,i the
number of vsplits, andHits the number of dynamically
detected intersections (). The performance of our
algorithms was measured on an Indigo2 R10000@195MHz.
The reconstruction time for the examples was between 0.1s
and 0.8s, depending on the number of splits.

Fig. 3a shows isosurfaces of the blades, extracted from

at isovalue 5.0. A slice through the mesh is dis-
played in order to depict the irregularity of the mesh recon-
struction. Note especially the high quality of the isosurfaces
which confirms the effectiveness of . A subset of the

mesh with one blade is shown in Fig. 3b-c for two different
resolutions. In order to balance the individual terms of ,
the weights were set to , , and

, respectively.

In Fig. 3d, the mesh is cut to render its internal structur
In order to emphasize the influence of individual cost fun
tion terms we computed Fig. 3e-g.We observe that each
the energy terms stands for a specific feature. , f
instance in Fig. 3e reconstructs the blade region very we
but violates volume preservation and produces poo
shaped simplices. As expected, sustains the volum
whereas preserves the equilateral shape of the te
hedra.

Usually, it can not be guaranteed that all intersectio
are detected with . For the above example the to
number of intersection hits with is 6,116, which
means that 98.8% of the intersections have already be
detected at iteration level 2.

5 CONCLUSIONS AND FUTURE WORK
We have presented a technique for generating progress
tetrahedralizations, especially emphasizing on problem
such as intersections or degenerations. The cost functi
that we have proposed are well suited for a wide range
volume data sets in different applications areas. Althou
tetrahedral mesh decimation is a complex task, we ha
implemented a fast and efficient method that avoids most
the pitfalls of tetrahedral meshing.

Future work will be directed towards combining the
optimization of vertex placement after edge collapse wi
avoiding selfintersection and folding. By solving a con
straint linear optimization problem [11], we can determine
polytope, in which the new vertex can be placed interse
tion-free. We would also like to enhance error analysis
order to quantify geometric and data approximation error

ACKNOWLEDGMENTS
This research was supported in parts by the ETH resea
council under grant No. 41–2642.5 and the Schlumberg
Stichting Fund. Our special thanks to Marcelo Vetter fo
implementing parts of the algorithms.

REFERENCES
[1] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. “Mul

tiresolution representation and visualization of volum
data.” IEEE Transactions on Visualization and Compute
Graphics, 3(4):352–369, Dec. 1997.

[2] M. F. Deering. “Geometry compression.” In R. Cook, edi
tor, SIGGRAPH 95 Conference Proceedings, Annual Con-
ference Series, pages 13–20. ACM SIGGRAPH, Addiso
Wesley, Aug. 1995. held in Los Angeles, California, 06-1
August 1995.

[3] M. Garland and P. S. Heckbert. “Surface simplification
using quadric error metrics.” InComputer Graphics (SIG-
GRAPH ’97 Proceedings), pages 209–216, Aug. 1997.

[4] R. Grosso, C. Lürig, and T. Ertl. “The multilevel finite ele-
ment method for adaptive mesh optimization and visualiz
tion of volume data.” InProceedings of IEEE Visualization
’97, pages 387–394, 1997.

[5] A. Guéziec. “Surface simplification inside a tolerance vol
ume.” Technical Report RC 20440, IBM T. J. Watson
Research Center, 1996.

[6] P. Heckbert, J. Rossignac, H. Hoppe, W. Schroede
M. Soucy, and A. Varshney. “Course no. 25: Multiresolu

Table 2: Parameter settings and performance statistics for the results
shown in Fig. 3.

Fig. Mn Mi Egrad Evol Eequi Time i Hits
a) 576,576 117,139 ✓ ✓ ✓ 4h57’ 15,000 40,415
b) 78,624 8,317 ✓ ✓ ✓ 34’23” 1,000 6,040
c) 78,624 13,327 ✓ ✓ ✓ 34’23’’ 2,000 6,040
d) 78,624 13,327 ✓ ✓ ✓ 34’23’’ 2.000 6,040
e) 78,624 10,554 ✓ ✕ ✕ 19’26’’ 1,000 2,386
f) 78,624 7,440 ✕ ✓ ✕ 41’58’’ 500 7,919
g) 78,624 8,169 ✕ ✕ ✓ 39’35’’ 1,000 4,798

ecoli
vspliti

ncellsi{ }

va
va vb

M
n

M
i

∆Egrad ∆Evol ∆Eequi

s 2=

M
15000

∆Egrad

∆E

wgrad 1= wvol 500=

wequi 200=

∆Egrad

∆Evol
∆Eequi

s 2=
s ∞→

Appeared in Proceedings of IEEE Visualization ‘98, pp. 397-402, 1998.

i-

n

e
.”
-

hing
er its
2.
tion surface modeling.” InCourse Notes for SIGGRAPH
’97. ACM SIGGRAPH, 1997.

[7] H. Hoppe. “Progressive meshes.” In H. Rushmeier, editor,
Computer Graphics (SIGGRAPH ’96 Proceedings), pages
99–108, Aug. 1996.

[8] H. Hoppe. “View-dependent refinement of progressive
meshes.” InProceedings of SIGGRAPH ’97, pages 189–
198, 1997.

[9] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. “Mesh optimization.” InProceedings of SIG-
GRAPH ’93, pages 19–26, Aug. 1993.

[10] J. Popovic and H. Hoppe. “Progressive simplicial com-
plexes.” InComputer Graphics (SIGGRAPH ’97 Proceed-
ings), pages 217–224, Aug. 1997.

[11] F. P. Preparata and M. I. Shamos.Computational Geome-
try. Springer, New York, 1985.

[12] R. Ronfard and J. Rossignac. “Full-range approximation of
triangulated polyhedra.” InProceedings of EUROGRAPH-
ICS ’96, pages C67–C76, 1996.

[13] W. Schroeder. “A topology modifying progressive decima-
tion algorithm.” InProceedings of IEEE Visualization ’97,
pages 205–212, 1997.

[14] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. “Dec
mation of triangle meshes.” InProceedings of SIGGRAPH
’92, pages 65–70. ACM SIGGRAPH, 1992.

[15] O. G. Staadt, M. Gross, and R. Weber. “Multiresolutio
compression and reconstruction.” InProceedings of IEEE
Visualization 1997, pages 337–346. IEEE, 1997.

[16] J. C. Xia, J. El-Sana, and A. Varshney. “Adaptive real-tim
level-of-detail-based rendering for polygonal models
IEEE Transactions on Visualization and Computer Graph
ics, 3(2):171–183, 1997.

Figure 5: PT representations of an irregular turbine blade mesh. a) Extraction of isosurfaces of the turbine blades using marc
tetrahedra. b)-c) Part of the data set at different reconstruction levels with shrinked tetrahedra. d) Part of the mesh is cut to rend
internal features. e) PT with . f) . g) only. Parameter settings and performance statistics are listed in Table
(See also CP 3. Data set courtesy of AVS Inc.)

a)

b) c) d)

e) f) g)

∆Egrad ∆Evol ∆Eequi

Appeared in Proceedings of IEEE Visualization ‘98, pp. 397-402, 1998.

CP 1: Intersection of two tetrahedra: a) The edges of two
non-adjacent tetrahedra bounding the volume intersect
while collapsing an edge in a locally concave mesh region.
b) Close-up of the intersection.

collapsing edge

a) b)

CP 2: Edge collapse in a tetrahedral mesh: a) Mesh before
collapsing edge . b) Configuration after collapse
with resulting vertex . (The tetrahedra are shrinked to
emphasize the underlying 3-dimensional structure.)

v1v2

v4

v3

vav5

v4

v3

v1

v2

v5

va

vb

a) b)

ncellsi{ }
icellsi{ }

va vb,()
va

CP 3: PT representations of an irregular turbine blade mesh. a) Extraction of isosurfaces of the turbine blades using marching tetra-
hedra. b)-c) Part of the data set at different reconstruction levels with shrinked tetrahedra. d) Part of the mesh is cut to render its in-
ternal features. e) PT with . f) . g) only. Parameter settings and performance statistics are listed in Table 2. (Data
set courtesy of AVS Inc.)

a)

b) c) d)

e) f) g)

∆Egrad ∆Evol ∆Eequi

	Progressive Tetrahedralizations
	Abstract
	1 Introduction
	2 Related Work
	2.1 Methods based on edge collapsing
	2.2 Vertex removal methods

	3 Progressive Tetrahedralizations
	3.1 Background
	3.2 Cost Functions
	3.3 Static Tests
	3.4 Dynamic Tests
	3.5 Edge Collapse

	4 Results
	5 Conclusions and Future Work
	Acknowledgments
	References

