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Abstract
We present multiresolution B-spline surfaces of arbitrary
order defined over triangular domains. Unlike existing
methods, the basic idea of our approach is to construct the
triangular basis functions from their tensor product rela-
tives in the spirit of box splines by projecting them onto the
barycentric plane. The scheme works for splines of any
order where the fundamental building blocks of the sur-
face are hierarchies of triangular B-spline scaling func-
tions and wavelets spanning the complement spaces
between levels of different resolution. Although our
decomposition and reconstruction schemes operate in
principle on a tensor product grid in 3D, the sparsity of
the arrangement enables us to design efficient linear time
algorithms. The resulting basis functions are used to
approximate triangular surfaces and provide many useful
properties, such as multiresolution editing, local level of
detail, continuity control, surface compression and much
more. The performance of our approach is illustrated by
various examples including parametric and nonparamet-
ric surface editing and compression.

Keywords:Triangular B-spline wavelets, box splines, mul-
tiresolution editing, hierarchical surface representation,
surface compression, decomposition, reconstruction.

1   Introduction

Multiresolution surface representations have become
a fundamental paradigm in geometric modeling and com-
puter graphics, primarily because they enable one to
design and edit a surface at different levels of detail. In
addition, the multiresolution approach comes along with
many other useful properties such as local and global level
of detail, efficient surface compression, progressively
refinable reconstruction, error bounds, and mostly fast and
handy computational algorithms.

Many different approaches to multiresolution and
hierarchical surface representations can be found in litera-
ture. One of the pioneers (Forsey et al. [13]) constructed
hierarchies of B-spline bases, whose tensor product exten-
sions can be used for surface approximations at multiple
levels of detail. Others, such as Chui [7] or Quak [21],
designed sets of semi-orthogonal wavelets to span the
associated difference spaces and used them in the context
of curve and surface design (Finkelstein [12]), or to imple-
ment surface compression (Staadt [25]) and triangulation
[15]. Due to the limitations of tensor product construc-
tions, various researchers proposed multiresolution surface
representations over triangular domains. Here Lounsbery
[18] or Eck [11], for instance, proposed linear bi-orthogo-
nal wavelet bases to efficiently describe triangular meshes.
Others, such as Schroeder [22] or Nielson [20], introduced
different forms of bi-orthogonal or orthogonal Haar bases
on triangular spherical domains and employed them for
various tasks in modeling, rendering and visualization.
Nonseparable sampling schemes can also be found in the
signal processing literature (Simoncelli [24]). Unfortu-
nately, most of the existing explicit construction schemes
for triangular wavelets only work out for low degrees and
must find a balance between different fundamental mathe-
matical properties, such as vanishing moments or continu-
ity. Thus, for efficient surface modeling, higher order
smooth triangular B-spline wavelets are highly desirable.

Whereas the compact wavelet representation imposes
tight constraints on the design of the associated decompo-
sition and reconstruction operators, more general subdivi-
sion schemes, such as Dyn [10], Loop [17], or Doo [9],
turned out to be a promising alternative. Using them
(Schroeder [22]) in combination with generalized subsam-
pling operators (Taubin [28]), allows one to build sophisti-
cated multiresolution mesh editors. In these cases,
however, the freedom taken for the operator design goes at
the cost of over-representations, and the basic building
blocks are no longer splines.

Since B-splines have been a fundamental concept in
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surface modeling and CAGD, the motivation for our
research was to point out a simple and efficient alternative
for the construction of multiresolution triangular B-spline
surfaces of arbitrary polynomial order. Unlike contempo-
rary approaches operating directly on the barycentric
domain (Seidel [23]), we recalled some fundamental work
on box splines from Boehm [2] and de Boor [3], [4]. Here,
the basic idea was to construct a B-spline basis function
over a triangular domain by projecting a 3D tensor product
spline onto the barycentric plane. The line integration
inherent to the projection operator raises the degree of the
resulting triangular B-spline. This powerful concept can
be extended to hierarchies of B-spline functions and wave-
lets. We will demonstrate that a multiresolution hierarchy
of triangular scaling functions and wavelets can be con-
structed effectively by projection of their 3D tensor prod-
uct relatives. The raise of degree and continuity of the
bases allows us to generate linear triangular spline wave-
lets using 3D Haar wavelets; consequently, we obtainC2

spline surfaces over triangular domains by using linear
building blocks in 3D. However, a fundamental difference
to immediate construction is that we create 7 types of tri-
angular wavelets (instead of 3). A two-scale relationship in
the barycentric plane determines the corresponding
decomposition and reconstruction operators. Here we
accept an over-representation in the pyramid, that is, we
do not sample critically. Interestingly, the sparsity of the
data allows one to perform the respective push and pull
operation in linear time and generates a hierarchy of con-
trol points for surface editing at different levels of detail.
In addition, oracles (Gross [14]) can help to identify and to
reject unimportant basis functions, thus governing the
compression rate. It should be noted that a similar type of
projection was used by Lippert [16] to compute hierarchi-
cal splats for volume rendering. In this case, however, the
projection was computed via Fourier transforms of the
underlying splines and the resulting splat functions were
not considered the bases of a barycentric wavelet trans-
form.

The remainder of this paper is organized as follows:
Followed by a brief overview, section 2 addresses the
mathematical details underlying our approach including
projection, two-scale relationship and the resulting bary-
centric bases. Section 3 introduces efficient decomposition
and reconstruction algorithms. Section 4 discusses some
issues concerning implementation. Finally, section 5 illus-
trates the performance of our scheme for multiresolution
representation and editing of various types of triangular
surfaces.

2   Construction of Triangular B-Spline Bases

2.1   Overview

The basic concept of the construction scheme is
depicted in Fig. 1. Let(u,v,w)be the coordinates parame-
trizing a 2-dimensional triangular domain. We assume, in
the discrete setting, the functional values to be given at
each triangle vertex. In order to define a multiresolution
analysis (MRA), we recall the notion of barycentric coor-
dinates, which span the diagonal plane in a 3D Euclidean
space(x,y,z), and follow the relationship:

(1)

Many years ago, de Boor ([3], [4]) discovered that tri-
angular B-splines - so-called box splines - can be con-
structed from 3D tensor product relatives by projection
into the barycentric plane . The same idea can be car-
ried over to tensor product B-spline wavelets (Chui [6] or
[7]), which are by definition linear combinations of tensor
product B-spline bases. The fundamental problem is to
define an MRA for the discrete setting.

Conversely, we observe that the upper interpretation
allows one to map sets of functional values defined over
regular triangulations onto the nodes of an equally-spaced
3D tensor product grid.

In principle, this correspondence enables one to run
discrete tensor product algorithms in 3D thereby raising
the dimension of the problem by one. A fundamental pre-
requisite, however, is an appropriate scheme to project the
data values onto the nodal positions in 3D and vice versa.

Generally, the complexity of discrete convolution
algorithms scales with the dimension of the data. How-
ever, as we will demonstrate, the decomposition and
reconstruction algorithms can be implemented immedi-
ately on the barycentric plane. Thus, it is possible to keep
the computational and storage costs in .

Using these relationships, we can implement a bary-
centric MRA implicitly in terms of a 3D tensor product
MRA. Because tensor product wavelet constructions com-
pute 7 independent wavelets, the barycentric projection

Figure 1: Barycentric plane spanning a 2D sub-
space in 3D

u v w+ + Const=

Eb

x
y

z

u v

w

Eb

O n( )



Proceeding of Computer Graphics International 1998, pp. 166-177, June 1998

- 3 -

generates 7 different triangular wavelet types, such as the
ones of Fig. 9. A 4:1 subsampling scheme, along with the
projected wavelets, provides an overrepresentation, which,
however, does not affect the performance of the approach,
since most wavelet coefficients will vanish.

We implemented this scheme for a multiresolution
editor for triangular surfaces, whose conceptual compo-
nents are depicted in Fig. 2. The input data, initially
defined over a uniform triangular grid is decomposed
using the barycentric MRA. More precisely, individual
push and pull operators enable one to move up and down
the hierarchy and generate a hierarchical set of scaling
function control points for editing the surface at different
resolutions.

The approximation error and the compression gain are
governed by some global oracles which reject unimportant
coefficients from the hierarchy. The remainder of the paper
elaborates on the mathematical and implementation details
of the method.

2.2   Constructing Bases by Projection

As explained above, we deduce the barycentric multi-
resolution analysis from the 3D-MRA. To obtain a bary-
centric representation, we first have to recall some details
of the 3D-wavelet transform (WT). Here the coefficients

of the transform are computed by inner product of
a function f with the set of 3D tensor product bases

(for definition of tensor product wavelets
and scaling functions  see [19]), denoted by :

(2)

m: iteration depth.
i, j, k: indices.
In order to compute the projection of the tensor prod-

uct basis onto the barycentric plane we have to integrate
along a linet which is perpendicular to the barycentric
plane. From here, the respective barycentric basis

 yields as follows:

(3)

It’s inner product with any L2 function defined over
the triangular coordinates (u,v,w) is computed conform-
ingly by

(4)

This approach can easily be applied to arbitrary wave-
lets. In section 2.5 we will use B-spline wavelets of order 1
and 2.

Note that the integration along the direction of projec-
tion raises the degree of the triangular B-spline bases. As a
consequence, we obtain C0 continuous surfaces for 1D-
Haar bases and C2 continuous surfaces in case of 1D linear
B-splines.

Furthermore, due to our approach of using a special-
ized mapping of the coefficients (see Section 3.1) from the
barycentric plane to the 3D-space and vice versa, we
deduce, that the barycentric basis functions form a basis in
the barycentric plane.

Figure 2: Conceptual components of a multiresolution editor for triangular B-splines.
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As explained in the upcoming section the discrete
implementation does not require an explicit mathematical
representation of the basis, which can, however, be given
in the case of B-splines.

2.3   Two-Scale-Relationship

The two-scale-relationship [19] links basis functions
of different resolution and is fundamental to the design of
decomposition and reconstruction algorithms. In order to
derive a two-scale-relationship for barycentric scaling
functions we start from their 3D relatives given by:

(5)

x0, y0, z0: offset.

{ ai}: discrete filter sequence.

Exploiting the line integration property of (3) yields

(6)

with

To simplify notation a further index transform gives

(7)

l: index.

Due to the infinite range of the integration the integral
of the basis function according to point equals the
integral of the basis function through .

This allows one to replace the upper integral by a
barycentric basis in thereby establishing the
desired relation between two adjacent levels:

(8)

Wavelets can be constructed similarly from their 3D
counterparts, where 7 different prototypes are obtained for
each level.

2.4   Orthogonality

Although a rigorous mathematical analysis of the
orthogonality properties of the bases is omitted here for
brevity, it is necessary to briefly discuss this issue.

Using the inner product operator < , > it is easy to
prove that even in the case of 3D tensor product Haar
wavelets, orthogonality of both wavelets and scaling func-
tions gets lost. As an example, we compare the basis func-
tions from Fig. 9, which are computed from 3D Haar
wavelets. In this case, for instance, the inner product of
with wavelet  cancels to zero,

(9)
while other combinations do not fulfill the orthogonal

property, such as

(10)
The examination of linear bases yields similar results,

particularly since these functions are semi-orthogonal in
1D.

2.5   Examples

In our implementation we use cardinal B-spline wave-
lets [7], since they form a canonic extension of B-splines
which are fundamental in geometric modeling. It has to be
noted, however, that the construction scheme from above
is not restricted to a particular type of wavelet.

Especially Haar and linear spline bases have enor-
mous practical importance, because they enable one to
represent piecewise linear and quartic surfaces in the bary-
centric plane.

Linear Barycentric B-Spline Bases

Applying our scheme to Haar bases, with scaling
functions and wavelets as shown in Fig. 3, results in
piecewise linear C0-continuous functions. Fig. 9 depicts
the bases functions using an intensity plot. We observe
eight different types of bases, four of which are displayed
in Fig. 10.
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Quartic barycentric B-spline bases

One of the many advantageous properties of B-splines
is the automatic continuity control. Therefore, the use of
linear tensor product B-spline bases implies C2 continuity
and an increase of the support. Fig. 4 illustrates the 1D
versions.

The corresponding barycentric children are presented
in Fig. 11. As a fundamental observation, we distinguish 4
different types of basis functions, as given in Fig. 12.

The linear dependency of the basis functions is ana-
lyzed in Appendix A.

3   Analysis / Synthesis Algorithms

3.1   Barycentric convolution

As mentioned above, the analysis and synthesis algo-
rithms for the barycentric approach are constructed by
using the filter sequences {ai} and {bi} of the 1D-MRA.

In principle, it is possible to run the respective tensor
product algorithm in 3D. Here we recall that the 3D MRA
is computed by sequential convolution and subsampling
along the 3 principal axesx, y, z.

Our implementation represents an optimization of the
original 3D-approach. In order to illustrate the fundamen-
tal differences, let us compare a 2D tensor product MRA
to a 1D-barycentric multiresolution analysis which can be
thought of as operating along the barycentric line. Fig. 5
illustrates the setting.

The coefficients on the lines orthogonal to the bary-
centric line are set to equal values (indicated by the same

color in Fig. 5).
A thorough investigation of the convolution process

of the 2D-MRA reveals that the convolution (i.e. inx-
direction at every point of a unicolored line) operates on
the same coefficients and, consequently, computes the
same results. That is, the computation along one line must
be performed only once.

Another fundamental aspect is the direction of convo-
lution. Again, assuming equal coefficients along the
orthogonal lines, a convolution inx-direction evokes the
same result as a direct convolution on the barycentric line,
as indicated in Fig. 6. In addition, we observe from Fig. 6
that the barycentric line obviously needs to be resampled
at every intersection point of our orthogonal lines with the
barycentric line. This conforms to a retriangulation in 3D.
Note that the vertices of the triangle mesh do not neccessa-
rily lie entirely in the barycentric plane (for example refer
to the samples on the yellow line in Fig. 6).

The consequences for the overall computational per-
formance of our 3D algorithms can be summarized as fol-
lows:
• Sparsity:The 3D convolution required to implement the

decomposition and reconstruction is sparse; therefore,
requires only linear time O(n) with respect to the data.

• Directness:The computational scheme operates imme-
diately on the barycentric plane; thus, rather than storing
and maintaining a 3D array, it is sufficient to design
appropriate 2D data structures.

Figure 3: 1D Haar scaling functions and wa-
velets.

Figure 4: 1D linear B-spline bases according to
[7].
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In this case, a convolution along one of the main axes
is expressed by a convolution along one direction of the
triangular mesh. Thus, convolutions inx-, y- andz-direc-
tion are equivalent to corresponding operations inu-, v-
andw-directions on the barycentric plane.

Unlike convolution, the subsampling has to be modi-
fied for direct 2D implementations. In this case, the last
subsampling step is redundant on the triangular mesh,
whereas it is needed on the 3D tensor product grid. To
cope with this problem, we restrict subsampling to the last
two convolution directions.

3.2   Decomposition

The resulting decomposition and analysis scheme for
the direct barycentric MRA is shown in Fig. 7. The omis-
sion of the subsampling inu-direction leads to a non-criti-
cally sampled pyramid whose estimation is shown in Fig.
8.

The corresponding decomposition algorithm can be
outlined in pseudo-code as follows:

Initial data:
c0[u,v]: 1- or 3-dimensional array of function values
a[t], b[t]: scaling and wavelet filter kernels for the decomposition

push()
{
for  i ← 0 to  N-1   // MRA-level i

// convolution in u-direction using filter a and b
// without subsampling
for  u ← umin to  umax

for  v ← vmin to  vmax
temp1[u,v] = Convolution(a[t], ci[u+t,v], t)
temp2[u,v] = Convolution(b[t], ci[u+t,v], t)

// convolution in v-direction using filter a and b
// including subsampling
for  u ← umin to  umax step 2

for  v ← vmin to  vmax step 2
temp3[u/2,v/2] = Convolution(a[t], temp1[u,v+t], t)
temp4[u/2,v/2] = Convolution(b[t], temp1[u,v+t], t)
temp5[u/2,v/2] = Convolution(a[t], temp2[u,v+t], t)
temp6[u/2,v/2] = Convolution(b[t], temp2[u,v+t], t)

// convolution in w-direction using filter a and b
// including subsampling
for  u ← umin to  umax step 2

for  v ← vmin to  vmax step 2
ci+1[u/2,v/2]  = Convolution(a[t],temp3[u+t,v+t],t)
d1,i+1[u/2,v/2] = Convolution(b[t],temp3[u+t,v+t],t)
d2,i+1[u/2,v/2] = Convolution(a[t],temp4[u+t,v+t],t)
d3,i+1[u/2,v/2] = Convolution(b[t],temp4[u+t,v+t],t)
d4,i+1[u/2,v/2] = Convolution(a[t],temp5[u+t,v+t],t)
d5,i+1[u/2,v/2] = Convolution(b[t],temp5[u+t,v+t],t)
d6,i+1[u/2,v/2] = Convolution(a[t],temp6[u+t,v+t],t)
d7,i+1[u/2,v/2] = Convolution(b[t],temp6[u+t,v+t],t)

}

3.3   Reconstruction

Analogous to the decomposition, we derive the recon-
struction algorithm in pseudo-code:
Initial data:
Scaling coefficients (level N)
cN[u,v]
Wavelet coefficients (level 1,...,N)
dj,i[u,v], i=1,...,N; j=1,..7
p[t], q[t]: scaling and wavelet filter kernels for the recontruction
(semi-orthogonal)

Figure 7: Analysis pipeline of the barycentric MRA.
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pull()
{
for  i ← N-1 to  0   // MRA-level i

// convolution in w-direction using filter p and q
// including upsampling
for  u ← umin to  umax

for  v ← vmin to  vmax
temp1[u,v] = Convolution(p[t], ci+1[2u+t,2v+t],t)

+ Convolution(q[t], d1,i+1[2u+t,2vt],t)
temp2[u,v] = Convolution(p[t], d2,i+1[2u+t,2v+t],t)

+ Convolution(q[t], d3,i+1[2u+t,2vt],t)
temp3[u,v] = Convolution(p[t], d4,i+1[2u+t,2v+t],t)

+ Convolution(q[t], d5,i+1[2u+t,2vt],t)
temp4[u,v] = Convolution(p[t], d6,i+1[2u+t,2v+t],t)

+ Convolution(q[t], d7,i+1[2u+t,2vt],t)
// convolution in v-direction using filter p and q
// including upsampling
for  u ← umin to  umax

for  v ← vmin to  vmax
temp5[u,v] = Convolution(p[t], temp1[2u,2v+t],t)

+ Convolution(q[t], temp2[2u,2v+t],t)
temp6[u,v] = Convolution(p[t], temp3[2u,2v+t],t)

+ Convolution(q[t], temp4[2u,2v+t],t)
// convolution in u-direction using filter p and q

// without upsampling
for  u ← umin to  umax

for  v ← vmin to  vmax
ci[u,v] = Convolution(p[t], temp5[u+t,v],t)

+ Convolution(q[t], temp6[u+t,v],t)
}

Note, however, that editing or rejection of individual
coefficients in the hierarchy requires some additional post-
processing, because modifying a coefficient leads to
inconsistencies along the lines orthogonal to the barycen-
tric plane.

In our implementation, we modified the synthesis
algorithm so that the last convolution step is performed on
an extended mesh. This mesh consists of several parallel
planes depending on the support of the bases, and the
reconstruction algorithm operates on a sparse 3D slice
around the barycentric plane.

3.4   Compression and Complexity

One major advantage of the wavelets is their compres-
sion performance resulting from the vanishing moments.
The rejection of unimportant coefficients is a non-trivial,
discrete, global optimization problem in semi-orthogonal
settings [14], although experiments have shown that mag-
nitude based rejection often performs well.

Storage expense and computational complexity are
mainly influenced by the number of basis functions.
Unlike the direct 2D-MRA [22] which employs 4 basis
functions, the 3D non-critically sampled setting used in
our approach produces 7 coefficients at each level of reso-
lution. This implies an over-representation of the data
which can be organized in a modified pyramidal setup,
such as the one presented in Fig. 8.

As the maximum decomposition level increases, the
storage expense converges to 2 1/3 of the initial data.

This over-representation requires to investigate possi-
ble linear dependencies between individual types of basis
functions. An analysis yields a linear dependency for the
basis functions for Haar-based constructions.

4   Implementation

The presented multiresolution analysis approach for
triangular data was used to implement a multiresolution
surface editor. Our prototype system comprises the follow-
ing functionalities:
• Modification of triangular surfaces at several levels of

detail (multiresolution editing).
• Piecewise linear and piecewise quartic basis functions.
• Pushing and pulling along the hierarchies.
• Editing of heightfields and parametric surfaces.

The scaling function coefficients generated at differ-
ent levels in the hierarchy form the control points and
enable editing of the shape at different resolutions. The
smoothness of the surface and of the editing operation
depends on the polynomial degree of the bases. This is
illustrated in Fig. 13, where we lifted one scaling function
coefficient for linear and quartic representations.

The surface region affected by an individual scaling
function conforms to its spatial support and scales accord-
ing to (8) exponentially with the decomposition level.
Here the power of the multiresolution editing concept
allows the user to push/pull along the hierarchies in order
to realize modifications from a rough, global scale to fine
grain details.

5   Results

This section illustrates the usefulness and perfor-
mance of our approach in the context of surface design and
editing. Therefore, we implemented both linear and quar-
tic barycentric basis functions. In the first series of images,
displayed in Fig. 14, we reconstructed a digital terrain
model of Matterhorn, Switzerland, using different ratios of
basis functions. Although a full reconstruction requires

Figure 8: Pyramidal data structure used for the
barycentric MRA.
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almost 231% of the original data, the oracle easily com-
putes a 1:3 compression without notable degradation of
surface quality, as presented in Fig. 14 b. As expected,
most of the computed coefficients do not contribute much
to the overall surface quality and, hence, can be zeroed
out. The corresponding L2 errors are presented in terms of
percentage of error energy. We contrasted linear and quar-
tic bases in the left and right columns, respectively. The
difference in smoothness between the C0 and C2 continu-
ous surfaces strikes in particular for high compression
rates, such as in Fig. 14 d or h.

Multiresolution surface editing is depicted in Fig. 15
where a parametric range data set of a human face is
edited at different levels of detail. The left hand images
show the corresponding control meshes of the surface,
where Fig. 15 a, c represent the mesh at levelm=1. Push-
ing further down the hierarchies as in Fig. 15 e, g enables
one to edit the mesh atm=2. Again, the linear C0 surfaces
are contrasted against quartic C2 representations. The dif-
ference in the smoothness of the surface is particularly
striking when comparing Fig. 15 e and g. We observe that
an editing operation at levelm=1 affects the surface only
locally in a small neighborhood of the control vertex.
Since the local support of the barycentric spline bases
increases dyadically at each level, the same operation per-
formed at levelm=2 affects a larger part of the surface.
The push and pull operations explained in the previous
sections allow one to switch between individual levels and
to edit and design the surface at different scales. Higher
levels allow interactions which have a global impact on the
surface, whereas, lower levels are localized and allow to
shape out on small surface details.

6   Conclusion and Future Work

We presented a novel approach for the construction of
multiresolution B-spline surfaces over triangular domains.
Rather than trying to compute the spline bases immedi-
ately we generated them through projection of 3D tensor
product basis functions onto the barycentric plane. This
powerful concept, which had already been used years ago
to design box splines, provides an elegant way to generate
triangular B-spline scaling functions and wavelets of arbi-
trary polynomial order. We have implemented this
approach for linear and quartic bases in a multiresolution
mesh editor and illustrated its usefulness and performance
by various examples. It is our belief that multiresolution
editing is an extremely powerful notion which may be
used in future generations of CAD and modeling systems.

Future work must include proofs on some of the fun-
damental mathematical properties of the basis functions,
partly omitted in this paper. In addition, focus will be

given to a reduction of the over-representation and to
boundary problems by designing new generations of
decomposition and reconstruction operators. Furthermore,
some research will be conducted to construct globally C2

continuous representations of surfaces of arbitrary topo-
logical type.
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A   PROOFS

Linear dependency of the wavelets

To investigate the linear dependency of the 8 different
kinds of barycentric basis functions we start from the two-
scale relationship:

with

The barycentric wavelets are linear combinations of
shifted versions of one prototype function weighted with
coefficients of type

(11)

whereg stands for the filter kernels {a} and {b}.
We rewrite the relations in a vector form, where the

individual coefficients form the entries of the correspond-
ing vector:

ϕ̃m X( ) a i l+( ) a j l+( ) a k l+( ) ϕ̃m 1– i j k, , , X( )⋅ ⋅⋅
i j k l, , ,

i j k+ + 0=

∑=

ψ̃1
m

X( ) a i l+( ) a j l+( ) b k l+( ) ϕ̃⋅ m 1– i j k, , , X( )⋅⋅
i j k l, , ,

i j k+ + 0=

∑=

ψ̃ 2

m
X( ) a i l+( ) b j l+( ) a k l+( ) ϕ̃⋅ m 1– i j k, , , X( )⋅⋅

i j k l, , ,
i j k+ + 0=

∑=

ψ̃3
m

X( ) a i l+( ) b j l+( ) b k l+( ) ϕ̃⋅ m 1– i j k, , , X( )⋅⋅
i j k l, , ,

i j k+ + 0=
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ψ̃4
m

X( ) b i l+( ) a j l+( ) a k l+( ) ϕ̃⋅ m 1– i j k, , , X( )⋅⋅
i j k l, , ,
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ψ̃ 5

m
X( ) b i l+( ) a j l+( ) b k l+( ) ϕ̃⋅ m 1– i j k, , , X( )⋅⋅
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ψ̃ 6

m
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m
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From here we analyze a possible linear dependency
by computing the nullspace of the basis MatrixB with:

(12)

For Haar basesB is given by:

(13)

Its nullspace can be computed straightforwardly to

(14)

Obviously, the linear barycentric wavelets constructed
from the Haar basis are linear dependent. Note, that we
only determined the linear dependency of basis functions
in one point of the barycentric plan. Thus, in order to esti-
mate the dimension of linear dependency, all translations
of the wavelets and the scaling functions need to be con-
sidered. For purpose of brevity, we omitted a detailed elab-
oration.

B   EXAMPLES

Haar basis (1D)

The operators for Haar wavelets are trivial and given
by

(15)

wherea denotes the low pass filter (scaling function)
andb denotes the band pass filter (wavelet). Orthogonality
forces the inverse operators to equal the transpose.

Linear basis (1D)

Linear B-splines, as proposed by [6] are semi-orthog-
onal. Hence, we have different filters for analysis and syn-
thesis with the sequences

(16)

(17)

and

(18)

with given constantsΨ̃7 b i l+( ) g j l+( ) b k l+( )⋅⋅
l
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=

B Φ̃ Ψ̃1 Ψ̃2 Ψ̃3 Ψ̃4 Ψ̃5 Ψ̃6 Ψ̃7
=
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1 1– 1 1– 1– 1 1– 1

=

NullspaceB( ) 0 1 1 0 1 0 0 1, , , , , , ,[ ]{ }=
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1
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2
---, b, 1

2
--- 1

2
---–,= =

a a10 a9 a8 a7 a6 … a1 a0 a1 … a10, , , , , , , , , ,[ ]=

b b9 b8 b7 … b1 b0 b1 … b9, , , , , , , ,[ ]=

p p2 p1 p2, ,[ ] q; q3 q2 q1 q2 q3, , , ,[ ]= =

Figure 9: Linear barycentric B-spline bases (in-
tensity plot) (C 0).

a1 = 0.6830127
a2 = 0.3169873
a3 = -0.1160254
a4 = -0.0849365
a5 = 0.0310889
a6 = 0.0227587
a7 = -0.0083302
a8 = -0.0060982

p1 1=

p2
1
2
---=

q1
10
12
------=

q2
6
12
------–=

q3
1
12
------=

b1 = 0.8660254
b2 = -0.3169873
b3 = -0.2320508
b4 = 0.0849365
b5 = 0.0621778
b6 = -0.0227587
b7 = -0.0166605
b8 = 0.0044642

a9 = 0.0022321
a10 = 0.0016340

b9 = -0.0016340
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Figure 10: 4 types of linear barycentric B-spline
bases.

Figure 11: Quartic barycentric B-spline bases (in-
tensity plot) (C 2).

Figure 12: 4 different types of quartic barycentric
B-spline bases.

Figure 13: Editing of an individual coefficient in
decomposition level m=3 using linear
bases (a) and quartic bases (b).

Figure 14: Compression performance of the me-
thod on a digital terrain data set: MRA
with maximum decomposition level 3,
using linear bases ((a)-(d)) and quartic
bases ((e)-(h)).

(a) (b)

(a) 231% coefficients, 0.0% error (b) 36.0% coefficients, 0.56% error

(c) 24.5% coefficients, 1,14% error (d) 6.2% coefficients, 30.0% error

(e) 231% coefficients, 0.0% error (f) 36.0% coefficients, 0.40% error

(g) 24.5% coefficients, 1,11% error (h) 6.2% coefficients, 30.0% error
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Figure 15: Editing Silvia’s face in different resolutions: level 1 ((a)-(d)) and level 2 ((e)-(h)) using linear ba-
ses (a),(b),(e),(f) and quartic bases (c),(d),(g),(h).

(a) (b) (c) (d)

(e) (f) (g) (h)


