
EUROGRAPHICS ‘99 / P. Brunet and R. Scopigno Volume 18, (1999), Number 3
(Guest Editors)

© The Eurographics Association and Blackwell Publishers 1999. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Interactive Cuts through 3-Dimensional Soft Tissue

Daniel Bielser, Volker A. Maiwald, Markus H. Gross

Computer Science Department
ETH Zurich, Switzerland

e-mail: {bielser, grossm}@inf.ethz.ch

Abstract

We describe a physically based framework for interactive modeling and cutting of 3-dimensional soft tissue
that can be used for surgery simulation. Unlike existing approaches which are mostly designed for tensorprod-
uct grids our methods operate on tetrahedral decompositions giving more topological and geometric flexibility
for the efficient modeling of complex anatomical structures. We start from an initial tetrahedralization such as
being provided by any conventional meshing method. In order to track topological changes tetrahedra inter-
sected by the virtual scalpel are split into substructures whose connectivity follows the trajectory of the cut,
which can be arbitrary. For the efficient computation of collisions between the scalpel and individual tetrahe-
dra we devised a local collision detection algorithm. The underlying physics is approximated through masses
and springs attached to each tetrahedral vertex and edge. A hierarchical Runge-Kutta iteration computes the
relaxation of the system by traversing the designed data structures in a breadth-first order. The framework
includes a force-feedback interface and uses real-time texture mapping to enhance the visual realism.

Keywords: Physically Based Modeling, Surgery Simulation, Soft Tissue, Tetrahedralization, Interactive Cut,
Virtual Scalpel, Runge Kutta Method;

1. Introduction

Surgery simulation is an extremely challenging field of
research encompassing the efforts of various disciplines,
including Graphics, Vision, Mechanics, Robotics, and Med-
icine. With the availability of low-cost 3D graphics hard-
ware, systems for surgical training or planning emerged
from many research labs and are partly in use as instrumen-
tal tools [7]. Besides the development of advanced human
computer interfaces for surgery simulation the key research
issues relate to the provision of advanced computational
models for the real-time representation, deformation, and
rendering of soft tissue structures. In most cases, the ulti-
mate goal is to interactively manipulate high resolution 3D
models. In order to tackle this problem, we have to address
two different aspects: The first one relates to the develop-
ment of efficient representations of the underlying 3D
geometry tolerating topological changes during manipula-
tion. The second one applies to the fast computation of the
physics of deformation, which, of course, has to balance
real-time performance against computational accuracy.

Due to the fundamental importance of the above issues
considerable related work has been done in the Graphics
and Vision communities, part of which, however, in differ-
ent application contexts. The computationally most accu-
rate methods for the modeling of elastic soft tissue mostly

use Finite Element procedures to solve the corresponding
governing equations. [2], for instance, develops surface-
based snakes to represent human organs. [10] conveys a
FEM based model for facial surgery simulation and extend
it for animating human emotions [11]. Full volumetric soft
tissue models over tetrahedral discretizations can be found
in [18]. The powerful mathematical setting of FEM proce-
dures, however, comes along with the drawback of compu-
tational costs.

In order to make 3D soft tissue modeling real-time, dif-
ferent strategies have been advocated. Most notably, [3]
suggests methods to accelerate the conventional FEM set-
ting. Another interesting approach is the 3D ChainMail, as
introduced by [6]. Rather than computing physical defor-
mations on the fly, the method uses a two-pass hybrid
scheme, where in a first pass, pure geometric deformation
fields are applied. In the second pass, the tissue is post-
relaxed by some iterative solvers. The topology of the dis-
cretization is restricted to tensor product grids. Others, like
[12] employ surface based mass-spring systems for their
real-time simulators. Similar Euler type methods on regular
grids are reported in [20]. Pure geometric and topological
manipulations based on marching cubes techniques can be
found in the algorithms of [17] and [16], whose visual qual-
ity is amazing. In most approaches, force feedback devices
are utilized to implement the interface to the user.

Bielser et al. / Interactive Cuts through 3-Dimensional Soft Tissue

© The Eurographics Association and Blackwell Publishers 1999.

Furthermore, [13] for instance, developed a soft tissue
model for facial animation and [14] used mass-spring and
particle systems for the representation of human muscles.
Other interesting work can be found in [21] who devised an
efficient collision detection method for cloth simulation.
Lately, [1] optimized implicit numerical solution strategies
for efficient use in cloth modeling.

In summary, existing real time cutting approaches are
either designed for surface based tissue models or they
restrict the discretization of the underlying continuum to a
tensor product topology. The major novelty of our frame-
work lies in the fact that it operates on irregular tetrahedral
decompositions thus providing much more topological and
geometric flexibility for the efficient representation of com-
plex anatomical structures. The required tetrahedralization
can be conveyed by any conventional meshing method,
including Delaunay or 3D progressive meshes as described
in [8] and [19]. In order to track the topological changes of
the mesh when cutting through the tissue, we split all inter-
sected tetrahedra into subsets of smaller simplices. The pro-
cedure follows the trajectory of the scalpel, where in most
cases collision detection can be handled locally. The
designed data structures allow a fast update of the represen-
tation. Finally, a hierarchical fourth order Runge Kutta
relaxation drives the underlying governing equations. The
iteration step size is adapted to the distance from the current
scalpel position. We currently use a PHANToM® as a 6
degree of freedom interface to the system.

Our paper is organized as follows: In section 2 we present
an overview of our approach and describe its conceptual
components. Section 3 addresses the problem of efficient
collision detection. The procedures required to track and
update geometric and topological changes are illuminated
in section 4 and our numerical solution strategies are
detailed in section 5. Finally, we discuss the performance
and limitations of our framework in section 6.

2. Overview

Fig. 1 depicts the fundamental components of our system.
In order to decouple the simulation pipeline from the force-
feedback device, we run different processes communicating
via TCP/IP. The decoupling is reasonable, although we cur-
rently use the PHANToM® device only as 3D input device,
because the force-feedback will require an update rate of
more than 1 kHz. After each rendering step the current
position and orientation of the scalpel are read by theRead
Force-Feedbackmodule and transferred into the modeling
pipeline. Then, a sequence of individual processing steps
has to be performed allowing one to eventually render the
scalpel and the soft tissue model. In a first step possible col-
lisions between the trajectory of the scalpel and individual
edges of the tetrahedral mesh have to be detected. In case of
collisions, all necessary geometric and topological changes
of the underlying tetrahedralization must be tracked and
solved. The subsequent relaxation step updates the mass-
spring system enabling tissue structures to open or deform
when manipulated. In the following sections, we will

describe the technical details of all components presented
below.

3. Collision Detection

The detection of interactions between the virtual scalpel
and the tetrahedral mesh is a substantial prerequisite for any
further topological or geometric analysis and operates
locally on a list ofactive tetrahedra. Here, an active tertra-
hedron has at least one intersection point with the scalpel,
which, for now, is represented by a thin line. The list is
updated at each time step . Fig. 2 shows two consecutive
scalpel positions over time. .

All active tetrahedra for the scalpel position at time are
drawn in black, whereas those at are presented in yel-
low. The active tetrahedron containing the point of the scal-
pel shall be namedactive point tetrahedron(bold edges in
Fig. 2). The swept surface bounded by the scalpel positions

Figure 1: Conceptual components and data flow

Figure 2: Local collision detection using a list of active
tetrahedra

Collision Detection

Relaxation

Rendering

Read Force-Feedback

Topology/Geometry
Changes

Force-Feedback Device

TCP/IP

∆t

trajectory of the
scalpel point

surface swept by scalpel movement

= intersections of the

new active
tetrahedra old active

tetrahedra

old active
point tetrahedron

new active point
tetrahedron

scalpel position at
time ti 1+

scalpel position at
time ti

swept surface

= intersection of the
scalpel point
trajectory

ti
ti 1+

Bielser et al. / Interactive Cuts through 3-Dimensional Soft Tissue

© The Eurographics Association and Blackwell Publishers 1999.

at and and by the line between the two scalpel
points (colored in red) is approximated by two triangle
faces. Assuming the time step , the scalpel speed and the
tetrahedra size to be sufficiently balanced the collision
detection reduces to finding a) intersections between the
approximating plane and theactive tetrahedraedges and b)
intersections of the trajectory of the scalpel point and one of
the faces of theactive point tetrahedron. As we will see,
both computations are needed to determine the topology of
the tetrahedral splits explained in Section 4.

Note, that an intersection between the trajectory and one
of the adjacent tetrahedral faces only occurs, if the scalpel
point leaves the oldactive point tetrahedron. This can be
checked by an inside test of the scalpel point. If this test
fails we search the newactive point tetrahedronin the
direct neighborhood of the old one by applying similar
inside tests. Of course, the success of this strategy is based
on the assumption that for sufficiently small time steps
the probability of finding the newactive point tetrahedron
in the direct vicinity is very high. Therefore, the algorithm’s
average complexity is only a linear function of the number
of tetrahedron neighbors, albeit a global search is needed to
compute intersections in the worst case. After finding the
new active point tetrahedronwe calculate the intersection
of the trajectory and the face shared by both. The
pseudocode fragment drafted below illustrates the algo-
rithm.

determNewActivePointTetrahedron(active_point_tetra)

if(InsideTetraTest(active_point_tetra) == TRUE)
return active_point_tetra

else
for all neighbor_tetra of active_point_tetra do

if(InsideTetraTest(neighbor_tetra) == TRUE)
return neighbor_tetra

for all tetra
if(InsideTetraTest(tetra) == TRUE)

return tetra

Note furthermore, that the global search could be substi-
tuted by a recursive breadth-first traversal, however, the
high hit rates obtained in our experiments report no signifi-
cant loss in speed using a global search.

In a second step we determine the cut edges by calculat-
ing the intersections between the swept surface and the
edges of all oldactive tetrahedra.Subsequently, for each
active tetrahedron the intersected edges are marked using a
bitcode (cut-edge-code)consisting of a bit for each of the
six tetrahedral edges. This code is stored for subsequent
analysis. Again, a pseudocode fragment illustrates the algo-
rithm:

calculateEdgeIntersections()

for all old_active_tetra do
for all edge of old_active_tetra do

if(edge.cut == FALSE)
if(FaceIntersectionTest(edge) == TRUE)

edge.cut = TRUE

This procedure enables us to record possible topological
changes at time both using active simplices at and
positional information at and .

The last step consists of finding the new list of active tet-
rahedra. Again, the spatial coherency allows us to devise an
incremental updating of the old active list given at time .
Starting from theactive point tetrahedronwe trace along
the scalpel through all penetrated tetrahedra at time .
Those tetrahedra already found in the old active list are
kept, (in Fig. 2 only the first one behind the newactive
point tetrahedron), others are removed and the newly found
tetrahedra are added. Here, we exploit the adjacency rela-
tions encoded in our data structure:

buildNewActiveTetrahedraList()

old_active_tetra = first of old active tetra list

// recycle entries of the old active tetra list
while(IntersectTest(old_active_tetra) == TRUE) do

new_active_tetra = old_active_tetra
old_active_tetra = old_active_tetra.next
new_active_tetra = new_active_tetra.next

// find and add newly active tetrahedra
exist_intersected_tetra = TRUE
while(exist_intersected_tetra == TRUE)

exist_intersected_tetra = FALSE
for all neighbor_tetra of new_active_tetra

if(IntersectionTest(neighbor_tetra) == TRUE)
exist_intersected_tetra = TRUE
new_active_tetra = neighbor_tetra
new_active_tetra = new_active_tetra.next

The described procedures are triggered once the scalpel
penetrates the surface of the tissue structure.

4. Geometric and Topological Operations

After maintaining a list ofactive tetrahedraand retaining
all information about the intersection between the scalpel
blade and the edges, appropriate geometric and topological
operations on the tetrahedra have to be carried out.

4.1. Cutting Tetrahedra

We start from the observation that there are only five topo-
logically different cases in which a tetrahedron can be cut
during one incision. Fig. 3 exemplifies the five cases as
occurring during a cut trough a tetrahedral mesh, denoted
by A through E. The cases A and B represent a full cut and
correspond to those used in the marching tetrahedra algo-
rithm [9]. In addition, we distinguish between three types of
slit tetrahedra distinguished by the number of edge intersec-
tions (one in C, two in D and three in E).

Including all possible rotations and mirroring operations
we end up with four different subcases for A, three subcases
for B, and six for C, respectively. In addition, we obtain 12
combinations each for cutting the two edges of case D and
the three edges of case E. For each of the five cases we first
store the set of actions required to establish the new mesh in
a lookup-table entry. These actions include the insertion of
new massnodes, the assignment of their connectivity, and
the insertion of new faces. By rotating and mirroring these
five entries we get all possible combinations of edge inter-
sections necessary to complement the lookup-table. The
key for the lookup-table, from where all required actions
and topological information can be taken, is thecut-edge-
code described in section 3.

ti ti 1+

∆t

∆t

ti ti
ti ti 1+

ti

ti 1+

Bielser et al. / Interactive Cuts through 3-Dimensional Soft Tissue

© The Eurographics Association and Blackwell Publishers 1999.

4.2. Splitting Tetrahedra

In order to avoid individual subdivision procedures for each
of the five cases and to simplify implementation, we pro-
pose to apply a generic 1:17 tetrahedral split, such as pre-
sented in Fig. 4. We observe that all possible cases from
section 4.1 can be mapped onto this subdivision.

Note that Fig. 4 only depicts the topology of the split. For
all edges and faces, the correct geometry of a cut surface is
computed by replacing the indicated edge and face mid-
points by the current intersection points. Recall that this is
exactly, where the results of the collision detection compu-
tations from section 3 are used.

By referencing the edge midnodes twice and the face
midnodes three times the above subdivision scheme can be
implemented as a presplit tetrahedron. Fig. 5 illustrates the
five parts of the presplit tetrahedron according to the
explained method.

4.3. Data Structures

In our implementation, we use the following data struc-
tures: Initially, the two references of the edge midnode (e.g.
AB1 and AB2 in Fig. 5) and the three references of the face
midnode (e.g. ABC1, ABC2 and ABC3 in Fig. 5) point to
the same node and glue the pieces of the tetrahedron
together. By defining asplitEdgeand asplitFaceoperator
(Fig. 6) all the cuts can be represented. ThesplitEdgeoper-

ation is invoked for all edges that have to be cut. The opera-
tion subdivides the initial nodal mass into two
submasses and assigns them to the corresponding
vertices. Similar operations hold for thesplitFace proce-
dure. A new mass is inserted and assigned to one of the
edges (bold lines in Fig. 6). In both cases we have to redis-
tribute the masses according to the underlying discretiza-
tion and material settings. Here different algorithms are
possible including total mass preservation constraints.

Figure 3: 5 different topologies generated when cutting a
tetrahedral mesh

A

B

C

D

E

Figure 4: Generic 1:17 split of a tetrahedron

Figure 5: Presplit tetrahedron according to the employed
subdivision

A

C

D

B

edge midpoint

face midpoint

AB BD

CDAC

ABC

BC

AD

BCD

B

AB2

AB1

A

C

D

CD1

CD2

BD2

BD1

BC1

BC2

ABC3

ABC2

ABC1

AC1

AC2

AD1

AD2

ABC

BCD3

BCD2

BCD1

BCD

m
m1 m2,

Bielser et al. / Interactive Cuts through 3-Dimensional Soft Tissue

© The Eurographics Association and Blackwell Publishers 1999.

The described approach enables one to use a single
generic subdivision for all five cases including the insertion
of all new edges, faces and masses. For efficient representa-
tion we store the split operations defined above in a lookup-
table, such as described in Section 4.1. In general the opera-
tions splitEdgeandsplitFaceare sufficient to represent all
tetrahedral splits. However, since we only insert the visible
cut-faces into the geometric representation we have to store
additional operations in the lookup-table. Fig. 7 shows a
lookup-table entry for case D of Fig. 3.

Comparing the memory consumption of our datastruc-
tures to typical tetrahedral meshes, the additional data is
primarily required for the representation of the mass-spring
system and for the design of efficient access methods.

Some limitations of the generic subdivision procedure
deserve further discussion: The first one relates to the
potential existence of hanging nodes having no connection
to adjacent tetrahedra. This may lead to cracks in the repre-
sentation. However, due to the spatial coherency of the scal-
pel trajectory we can avoid major visual artifacts. Although
it is possible to solve for all hanging nodes of the represen-
tation by splitting adjacent tretrahedra appropriately, we
decided to balance accuracy against computational costs
and renounced this operation.

The second one relates to the fact that the splitting proce-
dure of the tetrahedra is invoked after completing the cut.
This might lead to minor positional and visual discontinui-
ties.

5. Relaxation

As already pointed out the underlying physics is modeled
by a continuous relaxation of a damped mass-spring sys-
tem. The numeric solution strategies used to solve the sec-
ond order differential equations have to find a trade-off
between framerate constraints and numerical accuracy. In
general, fast convergence requires more computationally
expensive schemes and leads to lower framerates assuming
one frame for each update cycle. The relaxation algorithm
presented in the following section is an adapted fourth order
Runge Kutta scheme for second order differential equa-
tions. We give an intuitive and geometric derivation of the
scheme and obtain correction terms which are similar to the
mathematically rigorous treatment in [4].

5.1. The Two-Level Runge Kutta Method

Mass-spring systems can be computed by any numerical
method solving the governing system of ordinary second
order linear differential equations of type

(1)

Given nodes the equation establishes the equilibrium
of forces for each of the of the diagonal mass matrix

 with

diag() =

and describes their positional movement =
over time . denotes the damp-

ing and the stiffness matrix. and are sparse matri-
ces, element of consisting of matrices

and , respectively. is a vec-
tor of dimension and represents the vector of external
forces. It can be divided into 3-dimensional vectors .
The above system is solved by iterative stepwise processing
of each individual equation. To simplify notation, we will
only consider the governing equation for a single mass
and omit all indices for the position .

In order to derive the method we divide the second order
differential equation for a single mass into a system of
two first order differential equations by introducing the
velocity function .

(2)

Figure 6: a) SplitEdge operation, b) SplitFace operation

Figure 7: Example of a lookup-table entry

AB1

AB2
AB1

AB2

ABC1

ABC2

ABC3

ABC1

ABC2

ABC3

a)

b)

splitEdge(AB)

splitFace(ABC1)

m

m

m2

m2

m1

m1

cut-edge-code
 = AB|BC|BD|AC|CD|AD

action

48 = 110000 splitEdge(AB)
splitEdge(BC)

splitFace(ABC1)

insertFace(BC1, ABC1, BCD2)
insertFace(AB2, ABC1, ABD2)
insertFace(ABC1, BCD2, ABD2)
insertFace(BC2, ABC2, BCD2)
insertFace(AB1, ABC3, ABD2)
insertFace(ABC2, BCD2, ABD2)

ABC1

ABC2/3

BCD2
ABD2

AB1

AB2
BC1

BC2

B

A

D

C

The reader might distinguish between the “order” of the differ-
ential equation to be solved (=2) and the “order” of the Runge
Kutta method (=4).

M
d

2x t()

dt
2

----------------⋅ D
dx t()

dt
-------------⋅ K x t()⋅+ + Fext=

n
mk

M ℜ3n 3n×∈
M m1 m1 m1 m2 m2 m2 … mn mn mn, , , , , , , , ,[]

x t()
x1 t() x2 t() … xn t(), , ,[] t D

K D K
ℜ3n 3n×

n
Dk ℜ3 3×∈ K k ℜ3 3×∈ Fext

3n
n f k

mk
k xk t()

mk

v t()

dx t()
dt

------------- v t()=

dv t()
dt

f k Dk v t()⋅– K k x t()⋅–

mk
---=

Bielser et al. / Interactive Cuts through 3-Dimensional Soft Tissue

© The Eurographics Association and Blackwell Publishers 1999.

Note that the vector-valued functions can be separated
and solved by calculating three scalar differential equations
for each component of and .

We assume that at time the equation has the initial val-
ues and . Given the position

and velocity at time our
goal is to compute the values and respectively
at the time . We observe that there are two
interdependent integration levels which can be integrated
using standard Runge Kutta steps, such as known from [15].
Fig. 8 gives a pictorial representation of the different curves
to be integrated during relaxation using the variables ,
and as independent axes of a 3D Euclidean space. Conse-
quently, the curve lies in the bottom plane of the chart.
An approximation of this function requires the values of the
tangent vector. It can be obtained by the velocity (gradient)
function v(t) lying in the back plane of Fig. 8 with

. Likewise, an approximation of can
be calculated by using the velocity gradient

 which in turn requires values of .

The basic idea of the following method is to combine the
two integration levels by making use of the geometric cor-
respondencies illustrated in the chart.

Therefore, we construct the spatial parametric curve
by projecting the curve from the back plane

onto the surface . This surface is traced out by translation
of along the -axis. Note that defines the posi-
tion and the velocity of one spatial coordinate of
the mass for each time .

Now, in order to solve the equation system (2), we inte-
grate the “3D” curveC(t) over time. To this end, we intro-
duce the gradient of given by

(3)

The method starts with the computation of the first inter-
mediate value by multiplying with half the stepsize
(). The intermediate value for is given
correspondingly:

(4)

We compute a new intermediate guess for the gradient,
say , by evaluating the acceleration at this position and
continue in the same fashion, we know well from Runge
Kutta for first order equations [15].

Switching back from the scalar representations ,
and into the vectorial world , and
the complete set of equations that make up the scheme

can be summarized as follows:

(5)

Here, the stand for the gradients in the bottom plane
providing the desired estimations for the velocity, whereas
the represent the gradients of the back plane function
approximating the acceleration.

The new position and velocity at time are calcu-
lated straightforwardly by integration using the standard
correction terms from [15]:

(6)

5.2. Hierachical Breadth-First Traversal

Using the relations derived above the system is solved by
iteratively calculating each mass position. As with standard
Euler schemes this procedure requires quadratic computa-
tional expense. In order to further reduce the complexity of
the method we added the following two performance
enhancements:

• exponential decay of the number of update cycles based
on topological distance

• upper recursion bounds leading to local relaxation proce-
dures

Figure 8: Geometric interpretation of the Runge-Kutta
method adapted to second order differential equations

x t() v t()

t0
x0 x t0()= v0 v t0()=

xn x tn()= vn v tn()= tn
xn 1+ vn 1+

tn 1+ tn ∆t+=

x v
t

x t()

vn 1 v t(),[]T
= v t()

an 1 a t(),[]T
= x t()

∆t/2

v t()

x t()

v

x

t

C t()

S

vn

an

G

C t() v t()
S

x t() v C t()
x t() v t()

t

G C t()

G t() 1 v t() a t()
T

=

G tn()
∆t 2⁄ C tn ∆t 2⁄+()

tn
∆t
2
-----+ xn

∆t
2
----- vn⋅+ vn

∆t
2
----- an⋅+

T

G'

x t()
v t() a t() x t() v t()
a t()

k1 vn=

l1 a tn xn vn,,()=

k2 vn l+
1

t∆
2
-----=

l2 a tn
t∆

2
----- xn

t∆
2
-----k1 k2,+,+ 

 =

k3 vn l+
2

t∆
2
-----=

l3 a tn
t∆

2
----- xn

t∆
2
-----k2 k3,+,+ 

 =

k4 vn l+
3

t∆=

l4 a tn t xn tk3 k4,∆+,∆+()=

k i

l i

tn 1+

xn 1+ xn
t∆

6
----- k1 2k2 2k3 k4+ + +()+=

vn 1+ vn
t∆

6
----- l1 2l2 2l3 l4+ + +()+=

Bielser et al. / Interactive Cuts through 3-Dimensional Soft Tissue

© The Eurographics Association and Blackwell Publishers 1999.

The traversal of the massnodes operates in a breadth-first
manner [5] starting from the current scalpel position, called
focus_of_traversal.The number of updates of the relaxation
is decreased exponentially with the topological distance of
the associated node from the focus. This strategy is justified
by the observation that due to the physics of deformation,
most significant changes of the continuum occur on average
in the direct vicinity of the applied external forces. Fig. 9
gives an illustration of the traversal method.

Let indicate the topological distance of a massnode
from thefocus_of_traversalmeasured in terms of the small-
est number of edges between them. The function
defines the number of iteration steps for the massnode as a
function of and is set to decrease exponentially.

Furthermore, we fix a maximum iteration depth to
bound the recursion. Starting with iteration steps for the
focus_of_traversal we receive

(7)

At each relaxation step a global time variable is increased
by a given increment . Storing a time stamp along with
each node its time increment is computed by subtraction of
the stamp from the global time variable. Consequently,
those nodes are exposed to time increments of size

(8)

For the calculation of the spring forces, the positions of
the neighbor nodes must be considered. These positions can
be estimated by using their velocity vector.

The computation of the nodal position includes a damp-
ing constant which can slow down the convergence of the
system for inappropriate settings. Therefore, we support
penalty based damping as well.

6. Results

The sequence of images presented in Fig. 10 shows four
frames of a cut through a grid of initially 576 tetrahedra. To
enhance the visual realism of the tissue, we applied texture
mapping both for exterior and for the interior faces gener-
ated during the cut. Displacement boundary conditions
were set along the left- and right-hand sides of the volume.
Fig. 11 gives a more detailed presentation of the topological
changes of the mesh by depicting the wire frame represen-
tations of the first and of the last frame of Fig. 10. We
observe that the tetrahedral splits follow the trajectory of
the scalpel. The number of simplices after the procedure
grows to 2446.

To demonstrate the ability of our approach to support
arbitrary cutting trajectories on even coarse initial meshes
Fig. 12 depicts two additional examples based on 2x2x2
and 7x7x7 grids. In order to simplify the construction of the
initial meshes the presented examples are based on tetrahe-
dralizations of regular structures using six tetrahedra per
cell. However we emphasize, that the presented algorithms
impose no restrictions on the initial mesh which can be
arbitrary.

Finally, Table 1 gives an idea of the algorithm’s perfor-
mance broken down into the different tasks. The time con-
sumption of the collision detection and of the geometric/
topological operations is relatively small compared to the
relaxation and rendering procedures. We can clearly verify
that the hierarchical and localized relaxation algorithms of
section 5 lead to gracefully decreasing framerates as a func-
tion of the initial mesh size.

Although the proposed method enables users to freely cut
soft tissue structures, there are two restrictions which have
to be mentioned:

Since the collision-detection is based on the scalpel point
position, it must be the first part to enter the tissue. Like-
wise, the scalpel-point has to be the last one leaving the tis-
sue.

Figure 9: Hierachical breadth-first traversal strategy for
efficient relaxation

s

i s()

s

focus

s = 1 s = 2

s = 3

focus_of_traversal (s = 0): N relaxation steps with stepsize ∆t

topological distance s = 1, N/2 relaxation steps of stepsize ∆t1 = 2∆t

topological distance s = 2, N/4 relaxation steps of stepsize ∆t2 = 4∆t

topological distance s = 3, N/8 relaxation steps of stepsize ∆t3 = 8∆t

edges

massnodes

smax
I

i s() I 2
s–⋅

0



=
s smax≤

s smax>

∆t

∆ts
∆t

i s()
---------=

Table 1: System performance on a SGI Indigo 2, Impact
with R10000, 180 MHz. The framerate is averaged over the
cut. Notation: relaxation (RX), rendering (RD), topology/
geometric changes (GC) and collision detection (CD).

number of
cells

initial
tetra-
hedra

final
tetra-
hedra

average
 frame-

rate RX RD GC CD

48 354 3.78 82.1 11.4 1.7 0.3

144 960 2.24 88.9 7.8 0.4 0.4

576 2446 1.14 92.2 4.9 0.1 0.5

2 2 2××

2 4 3××

4 6× 4×

 percentage

Bielser et al. / Interactive Cuts through 3-Dimensional Soft Tissue

© The Eurographics Association and Blackwell Publishers 1999.

In addition, no backward movement is supported in the
current setting, because each tetrahedron can only be pro-
cessed once.

7. Conclusions and Future Work

We presented a framework for the representation and physi-
cally based manipulation of volumetric soft tissue that is
based on tetrahedral decompositions of the underlying con-
tinuum. The framework encompasses several algorithms
allowing the efficient computation of all necessary steps
including geometry, topology and numerics. Thus, users
can freely cut through three dimensional soft tissue along
almost arbitrary paths.

Our future work is primarily targeted at finding efficient
solutions for the described limitations. Specifically, the full
avoidance of cracks and visual discontinuities is an impor-
tant direction. Further research will be conducted towards a
reduction of the substantial increase of simplices during
cutting. Additionally, the migration from the line represen-
tation of the scalpel to a volumetric representation and the
involved force-feedback simulation are topics, we are inter-
ested in. Finally, alternative numeric solution strategies will
be subject of future research.

Acknowledgement

This research has been supported in part by the Swiss
National Science Foundation under grant No. 21-49247.96.

References

[1] D. Baraff and A. Witkin. “Large steps in cloth sim-
ulation.” In SIGGRAPH Proceedings, pages 43–54,
1998.

[2] M. Bro-Nielsen. “Modelling elasticity in solids
using active cubes - application to simulated opera-
tions.” In N. Ayache, editor,Computer Vision, Vir-
tual Reality and Robotics in Medicine, Lecture
Notes in Computer Science, pages 535–541.
Springer-Verlag, Apr. 1995. ISBN 3-540-59120-6.

[3] M. Bro-Nielsen and S. Cotin. “Real-time volumetric
deformable models for surgery simulation using
finite elements and condensation.”Computer
Graphics Forum, 15(3):C57–C66, C461, Sept.
1996.

[4] L. Collatz.The Numerical Treatment of Differential
Equations, pages 61–73. Springer, 1966.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms, chapter 23, pages 469–
485. McGraw-Hill Book Company, 1990.

[6] S. F. Gibson. “3d chainmail: a fast algorithm for
deforming volumetric objects.” InProceedings
1997 Symposium on Interactive 3D Graphics, pages
149–154, Apr. 1997.

[7] M. Gross. “Graphics in medicine: From visualiza-
tion to surgery simulation.” InACM Computer
Graphics, volume 32, pages 53–56, 1998.

[8] M. H. Gross, O. G. Staadt, and R. Gatti. “Efficient
triangular surface approximations using wavelets

and quadtree data structures.” InIEEE Transactions
on Visualization and Computer Graphics, volume 2,
pages 130–143, 1996.

[9] P. S. Heckbert.Graphics Gems IV, page 329, 1994.

[10] R. Koch, M. Gross, D. von Bueren, G. Frankhauser,
Y. Parish, and F. Carls. “Simulating facial surgery
using finite element models.” InProceedings of
SIGGRAPH 96, pages 421–428, 1996.

[11] R. M. Koch, M. H. Gross, and A. A. Bosshard.
“Emotion editing using finite elements.” InCOM-
PUTER GRAPHICS Forum, volume 17, pages
C295–C302, 1998.

[12] U. Kuehnapfel, C. Kuhn, M. Huebner, H. Krumm,
H. Maafl, and B. Neisius. “The karlsruhe endo-
scopic surgery trainer as an example for virtual real-
ity in medical education.” InMinimally Invasive
Therapy and Allied Technologies, volume 6, pages
122–125. Blackwell Science Ltd., 1997.

[13] Y. Lee, D. Terzopoulos, and K. Waters. “Realistic
face modeling for animation.” In R. Cook, editor,
SIGGRAPH 95 Conference Proceedings, Annual
Conference Series, pages 55–62. ACM SIG-
GRAPH, Addison Wesley, Aug. 1995.

[14] L. P. Nedel and D. Thalmann. “Real time muscle
deformations using mass-spring systems.”Com-
puter Graphics International, pages 156–165, 1998.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery.Numerical Recipes in C, chapter 16,
pages 710–714. Cambridge University Press, 1992.

[16] K. D. Reinig, H. L. Pelster, V. M. Spitzer, T. B.
Johnson, and T. J. Mahalik. “More real-time visu-
ally and haptic interaction with anatomical data.” In
K. Morgan et al, editor,Medicine Meets Virtual
Reality, pages 155–158. IOS Press, 1997.

[17] K. D. Reinig, C. G. Rush, H. L. Pelster, V. M.
Spitzer, and J. A. Heath. “Real-time visually and
haptically accurate surgical simulation.” In S. H.
H. Sieburg and K. Morgan, editors,Health Care in
the Information Age, pages 542–546. IOS Press,
1996.

[18] S. H. M. Roth, M. H. Gross, S. Turello, and F. R.
Carls. “A bernstein-bezier based approach to soft
tissue simulation.” InCOMPUTER GRAPHICS
Forum, volume 17, pages C285–C294, 1998.

[19] O. G. Staadt and M. H. Gross. “Progressive tetrahe-
dralizations.” InProceedings of IEEE Visualization
’98, pages 397–402, 1998.

[20] N. Suzuki, A. Hattori, S. Kai, T. Ezumi, and
A. Takatsu. “Surgical planning system for soft tis-
sues using virtual reality.”Medicine Meets Virtual
Reality, pages 159–163, 1997.

[21] P. Volino, M. Courchesne, and N. M. Thalmann.
“Versatile and efficient techniques for simulating
cloth and other deformable objects.” InSIGGRAPH
Proceedings, pages 137–144, 1995.

Bielser et al. / Interactive Cuts through 3-Dimensional Soft Tissue

© The Eurographics Association and Blackwell Publishers 1999.

Figure 10: Four frames of an interactive cut through a grid of cells

Figure 11: Mesh structures corresponding to frames a) and d) of Fig. 10

Figure 12: Examples of cuts: a) grid, b) grid

a) b)

c) d)

4 6 4××

a) b)

a) b)

2 2 2×× 7 7 7××

