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ABSTRACT
Compression methods have become of fundamental impor-
tance in almost every subfield of scientific visualization.
However, unlike image compression, advanced visualiza-
tion applications impose manifold constraints on the design
of appropriate algorithms, where progressiveness, multires-
olution or topology preservation are some of the key issues.
This paper demonstrates the importance of multiresolution
compression methods for visualization using two examples:
The first, compression domain volume rendering, enables
one to visualize volume data progressively and instanta-
neously from its compressed data format and has been
designed for WWW and networked applications. The sec-
ond one is a multiresolution compression and reconstruction
method that allows for progressive coding, transmission and
geometric reconstruction of surfaces and volumes. Both of
the presented methods are so-called transform coding
schemes and use wavelets for data representation.

KEYWORDS
wavelets, multiresolution, volume rendering, mesh simplifi-
cation, compression.

1 INTRODUCTION

1.1 Motivation

From the early days of computer science, data compression
has been of fundamental importance for efficient representa-
tion, transmission, storage, and archival of large data vol-
umes [7]. Thus, various strategies and different classes of
compression schemes have been devised over the past
decades. The most successful ones are almost ubiquitous
and can be found in many high tech appliances.

Modern data compression [35], essentially distinguishes
between lossless compression andlossy compression.
Among the lossless techniques, very popular algorithms can
be found, such as the Huffman or arithmetic coding, which
exploit the statistical structure of the data. Others, like Ziv-
Lempel-based methods, make use of repetitive data patterns
and can be found in many operating system libraries.

One of the essential steps in lossy compression methods
is quantization, by which the information loss is ultimately
controlled. Sophisticated lossy compression methods, such
as the JPEG [41] for image coding, perform compression in
a transform domain, that is, they project onto Fourier,

cosine, PCA, or wavelet spaces before quantization a
compression. By providing a more efficient data represen
tion, they amplify the compression gain at a given loss.

The design of a compression method is highly applic
tion dependent and has to thoroughly balance competit
requirements, such as information loss and speed of deco
pression.

Due to its broad range of applications, image compre
sion [6] has become paramount and countless algorith
have been devised to efficiently represent and compress
and moving images or video. Recent developments, as
MPEG-4 comprise so-called model-based image compr
sion [2, 12] where image content is encoded individuall
Many modern image compression methods areprogressive
and incremental, that is, they allow reconstructing the ima
successively as data comes in from the network.

Unlike image compression, the graphics and visualiz
tion community have neglected the importance of compre
sion methods for quite a long time. Specifically, in [29] th
importance of compression in visualization was pointed ou
however, only recently, with emerging WWW and distrib
uted applications, graphics researchers have faced the c
lenge of devising compression algorithms. [9], for instanc
proposed a lossy compression scheme for meshes. An
gant data structure to represent and compress meshes
proposed by [21] and [32]. In [20], Rossignac presented
compression algorithm, which allows to efficiently repre
sent both mesh geometry and topology. Conversely, [4] a
[26] invented methods for compression domain volume re
dering.

1.2 The Power of Hierarchy

Wavelets, as devised by approximation theory a decade
[8, 5, 28], provide an extremely powerful method for vari
ous types of compression strategies. Specifically, they c
be used in the context of transform coding algorithm
where the initial data sets are transformed into a wave
representation prior to quantization and compression. T
power of the wavelets lies in the combination of variou
useful mathematical properties, such as local support, v
ishing moments, (bi-) orthogonality, progressive approx
mation, hierarchical setup, fast decomposition an
reconstruction, error control and many others. Therefo
many lossy compression methods are based on wavel
One of the most popular ones is the ‘zero-tree’ for imag
coding [37].
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Consequently, wavelets had soon been discovered by the
graphics and visualization communities for efficient data
approximation [40] and have been used for many different
applications, as for instance, global illumination [15], hier-
archical meshing [27, 19], geometric modeling [13] or vol-
ume rendering [42, 30, 18, 24].

The major purpose of a wavelet transform embedded in
a compression scheme is to approximate the data with as
few nonvanishing coefficients as possible given a predefined
information loss. The following pictures illustrate the
approximation power of wavelets [24]. Here, semiorthogo-
nal B-spline wavelets of polynomial degree 3 [5] had been
used for volume data approximation. Fig. 1 shows a
sequence of images computed with a decreasing amount of
coefficients. For high compression rates, high frequency
components are washed out and artifacts become visible.
Specifically, the smoothness of the hierarchical basis func-
tions is striking.

The localization properties of the wavelets are demon-
strated in Fig. 2. Here, a filter operating in wavelet space
allows controlling the approximation quality locally and has
the effect of an electronic magnifier enhancing spatially
interesting subregions. Obviously, compression gain and
information loss are functions of the spatial position.

Similar methods can be developed for mesh generation
and mesh control [19, 38]. The series of images depicted in
Fig. 3 shows meshes, whose quality is controlled by an
underlying wavelet representation of the data. Similar filter
operations were applied on the data sets in the middle and
right hand side image to influence the mesh quality.

The purpose of the following paper is twofold: First, to
point out the fundamental importance of compression meth-
ods for visualization and image generation and second, to
illustrate how efficient compression methods can be
designed using wavelets. Therefore, we present two differ-

ent examples of compression schemes devised by
authors: The first example describes a compression dom
volume rendering method, such as presented in [26]. He
volume data sets can be rendered instantaneously from
highly compressed file format that has been computed fro
a wavelet representation of the data. The method is es
cially designed for distributed applications and allows fo
progressive rendering as data comes in from the netwo
The second example elaborates on wavelet-based comp
sion and visualization of surface and volume meshes a
was presented by the authors in [38]. Again, the wave
transform provides full approximation error control and pro
gressive transmission of surface and volume data over n
works. At the client side, piecewise linear representatio
with simplices can be computed from the decompress
data.

For reasons of brevity, we omit all mathematical detai
of wavelets.

Figure 1: Illustration of the approximation power of cu-
bic B-spline wavelets: (a) original CT data set (100%), (b)
5.04%, (c) 1.92%, (d) 0.15% of nonvanishing coefficients
(courtesy of Mallinckrodt Institute of Radiology, Washing-
ton University).

Figure 2: Localization properties of cubic B-spline wavelets: (a) original data set, (b) Magnifier centered at toe-region, (c) Magn
fier centered at heel-region.

(a) (b) (c)
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2 COMPRESSION DOMAIN VOLUME
RENDERING

2.1 Overview

Our first example is targeted at networked applications
where, for instance, a local client with low computational
power browses through a remote volume database. Thus, in

order to transmit our volume data efficiently we have to fin
appropriate compression strategies. The underlying fram
work of the wavelet representation being used here propo
to develop an optimized compression technique that allo
progressive transmission, decompression and direct rend
ing at interactive frame rates. Moreover, wavelet doma
rendering avoids full decompression of the data prior to s
called splatting which itself as an image based method do
not require to store the full volume data at the client’s sid
Although much research has been done on wavelet co
pression methods [40], [43] the specific needs of compre
sion domain rendering encouraged us to develop a n
compression pipeline which will be explained below.

Fig. 4 illustrates the data flow in our compression and
rendering setup. The data preprocessing comprises five
stages. It enables both intensity and RGB volumes to be
handled which might be the result of an optional data classi-
fication step [3]. In case of RGB volumes the second step
consists of a colorspace optimization which essentially
decorrelates the data and allows color sensitive quantiza-
tion. Next, a wavelet transform is performed independently
on the three channels. Lossy compression is carried out by
an oracle [16] operating locally or globally in the wavelet
domain. The final step includes a data compression and
encoding scheme to achieve a binary output stream that can
be stored locally or transmitted directly through a network.
Note that forward compression does not have any real-time
constraints as opposed to the decompression.

2.2 Wavelet Splats

In order to understand our renderer, it is necessary to rec
that in classic volume rendering, the amount of ligh

received at pointx from directions up to a ray
lengthtL is computed as:

(1)

whereq denotes the volume source term andα the opacity
function. For an isotropic medium with constant opacity
equation (1) reduces to

Figure 3: Localization in triangulations: a) Initial trian-
gulation. b), c) Magnifier is centered at the upper and cen-
tral area of the triangulation.

a) b) c)

Figure 4: Setup for distributed compression domain volume rendering.
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Note that for  we end up in a X-ray-like image.

Especially in those cases, splatting has proved its usabil-
ity for fast volume rendering. In contrast to ray-casting, it
allows one to reduce the computational complexity for
interpolation and integration to a minimum, since the pre-
projected footprints of high-order interpolation functions
can be stored as lookup tables. The projections themselves
can be computed with an accurate quadrature technique.
Besides hierarchical splats [23], wavelet splatting [25] is a
sophisticated extension.

In wavelet splatting, the renderer computes the projec-
tion such as defined in (2). Taking into account the wavelet
decomposition levelm up toM and moving the summation
outside the integral, the formulation collapses to:

(3)

where denote the wavelet coefficients of decompo
tion level m at the spatial positionp, q, r and wavelet-type
typeand the coefficient of the scaling function o
level M. The computation of the line integrals for a particu
lar view can be accomplished by Fourier projection slicin
(FPS). It allows to compute accurate projections of an
basis function. This theorem states that the 2D Four
transform of a projection of a functionf(x,y,z) onto a given
plane P equals a plane that slices the Fourier transfor

 parallel toP and intersects the origin.

Since many wavelet types such as B-splines come alo
with closed form representations in the frequency domain
is straightforward to apply this theorem to get the require
splats. Fig. 5 depicts the setting, where an inverse FFT p
cesses the slices to obtain the wavelet splat.

The intersection plane spanned byu, v defines the 2D
Fourier transform of the texture splats

, whereas the normal
vectorn of the plane equals the direction of the projection
The definition of the viewing parameters is figured out i
spherical coordinates (α,β).

Once the renderer builds the viewpoint dependent inte-
gral tables, the screen position of the table is calculated,
mapped, weighted by the wavelet coefficient and accumu-
lated into the framebuffer. Since the basis functions of dif-
ferent iteration levelsm differ by dilation, only eight
different splats of depthM have to be calculated. All other
footprints are derived by subsampling in the spirit of a
mipmap. Correct sampling and optimized data-structures of
the calculated splats are discussed in [18].

2.3 Multiview Rendering

One way to overcome the drawback of missing occlusion in
X-ray images is the introduction of a multiview arrange-
ment. Here, the volume is rendered simultaneously from
different directions and presented to the user in a single win-

dow. Exploiting the coherence of different viewing angle
given by the symmetry of tensor-product constructions, t
basic single-view splatting approach can be extended to
multiview renderer without computational overhead fo
splat calculation [26].

The triple view rendering is illustrated in Fig. 6, where
classified data set is displayed from three directions. T
image was grabbed directly from the screen as it is d
played to the user. Skin is colored white, brain tissue r
and a tumor is colored in blue.

In our implementation the software decompressor wor
at a rate of ~30 k wavelet-coefficients/sec. on an Ind
R4400 workstation and allows on-line decompression. T
renderer splats the computed footprints weighted with t
decoded wavelet-coefficients directly into a software
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Figure 5: Illustration of the Fourier projection slicing theorem in 3D for an idealized wavelet.
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hardware accumulation buffer. In addition, our framework
incorporates a local cache to store coefficients at the client’s
side. The required splats are computed locally. Since the
wavelet coefficients are transmitted in significance order the
rendering quality is fully controlled by a user-defined fra-
merate, the client’s hardware and, if no cache mechanism is
enabled, also by the bandwidth of the network. Hence, this
concept balances CPU, network and graphics performance
and allows scalability. In a minimum configuration we have
to provide client storage only for the eight mother-wavelet
splats and three Huffman tables. Together they take less
than 5KB of memory even for huge data sets. This allows
the scheme to run on clients such as the upcoming network
computers.

2.4 Colorspaces for Compression

If the initial volume is given in RGB, it is critical to trans-
form the volume into an optimized colorspace prior to com-
pression. Here, we assume the optimized space to be
spanned by the three vectorsC1, C2 andC3. This allows to
assign an additional significance to each vector. As a result
we get two independent significance weights per coefficient
which affect encoding and quantization. The first weight is
defined by the energy of the associated function [16]. The
second one is a global significance determined by the color-
space-coordinates. For instance, a coefficient with the coor-
dinates (1,0,0) is regarded as more relevant than a
coefficient (0,1,0), if the vectorC1 is considered to be more
significant thanC2.

In addition to RGB we employ two colorspaces: The
first one is data-independent and equals the YIQ-colorspace
obtained by a simple matrix transform [34]. TheY compo-
nent encodes the luminance information, whereas the chro-
maticity is encoded inI and Q. We followed the NTSC
bandwidth conventions and assigned a quantization factor 4
to Y, 1.5 to I and 0.6 toQ. In practical use this colorspace
allows to compute a black and white image (Y) as a rough
sketch and to refine color progressively. Thus, progression
is figured out both in the spatialand in color domain. Alter-
natively, our second colorspace is calculated by a statisti-
cally optimal principle component analysis (PCA) or
Karhunen-Loève expansion [14] whose matrix has to be
computed individually for each data set. Although the solu-
tions of the eigenproblems are computationally more chal-

lenging on offline forward compression, yet they provid
better results. In this case the absolute values of the eigen
lues are taken to describe the significance of the correspo
ing eigenvector. Note that this step can be skipped f
intensity volumes, such as raw CT or MRI data sets.

2.5 Data Compression Pipeline

The algorithmic steps for data compression are execu
sequentially in the pipeline summarized in Fig. 7 and co
vert the wavelet transformed data sets into a sequential bi
ream.

Therefore, we start with a sorting operation that gene
ates a sequence of coefficients and positional data in sign
cance order. The significance scoreS is determined for each
color channel and coefficient

individually according to its
associated wavelet energyE and color channel importanceI.

(4)

Table 1 summarizes the importance factors for the thr
different colorspaces. For each color channel (C), wavelet
type (type) and decomposition level (m) a deltacoding, nor-
malization and quantization operation is performed sep

Figure 6: Triple views seen from different viewing an-
gles. (volume size: 256 x 128 x 256) a)α = β = 0.0. b)α =
0.66,β = 0.91.

a) b)

Table 1: Colorspace significance assignments for different color cod-
ing schemes

COLORSPACE IMPORTANCE I
I(C1) I(C2) I(C3)

RGB 1 1 1
YIQ 4 1.5 0.6

EIGEN-
VECTORS (PCA)

EIGEN-VALUE 1 EIGEN-VALUE 2 EIGEN-VALUE 3

Figure 7: Pipeline representing the individual steps of the
compression scheme.
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rately depending on the individual ranges of the coefficients
w. More precisely, if quantization is restricted toP bits for a
given sequence ofN+1 significance sorted non-zero wavelet
and scaling function coefficients ,
we compute the coefficient’s delta factor  as:

(5)

This factor is used to store the coefficient’s range witth
respect to the assigned bytes. Thus, it has to be transmitted
once for each wavelet type, decomposition level and color
coordinate. In contrast, the normalized and quantized differ-
ence of two coefficientsδ has to be transmitted for each
coefficient individually. It is computed as:

(6)

Upon reconstruction we end up with approximated
wavelet and scaling function coefficients ,

 which can be computed by:

(7)

Since the coefficients are sorted according to their indi-
vidual scores we optimize the residual approximation error
as a function of the parameters introduced above. Note that
the sign of each coefficient is encoded by an additional flag,
referred to assign(n).

We choose to limit the quantizationP to eight bits, since
standard framebuffers use eight bits for RGBα each. How-
ever, observations in practice encourage us to reduce qua
zation to even three bits without significant loss of visu
quality (see Section 2.6). The three data sequences
merged and sorted according to the scores of their wave
coefficients. In particular, the sorted sequence requires
each coefficient to encode additionally its spatial positio
wavelettype and color-channel in a lossless scheme. In or
to overcome the drawbacks in compression performan
arising from this requirement we introduce an addition
spatial clustering mechanism [26]. That is, we balance sp
tial coherence and the energy-based sorting order of
coefficients. Note that clustering also speeds up the rend
ing process, since splats outside the field of view can
detected easily and skipped without further computation.

Additional runlength-codings of wavelettype, decompo
sition depthm and colorchannel are performed and tran
mitted as variable length Hufman tag codes. The thi
Huffman-table encodes the deltasδ of wavelet-coefficients.
These three tables together take about 2kBytes and hav
be transmitted separately prior to the data. In addition t
transmitted meta-data includes information about the ba
vectors of the colorspace, maximum depth of the wave
transform (M), exact initial wavelet coefficients
( ) and the coefficient delta factors
( ).

The reconstruction scheme has to decode all requir
information, such as the spatial position, wavelet type, dep
m, colorchannel and the data value. For computational e
ciency, we propose to precompute 10-bit Huffman look-u
tables.

Fig. 8 illustrates a fraction of the bitstream as generat
by our method. The number of bits varies as a function
the individual Huffman codes.

2.6 Examples

To investigate the performance of the proposed method, we
applied the approach to the RGB-Visible Human data set of
size 128x128x128 voxels (3 x 8 bits/voxel). The wavelet
decomposition was performed with Haar wavelets up to
level M=3. In order to quantize image quality we define an

L2 image measure QI conforming to the signal-noise ratio
(SNR) in [dB] well known from signal processing applica-
tions as:

wn C m type, ,( )( )
n 0 … N, ,=

∆ C m type, ,( )

∆ C m type, ,( ) =

max
n 0 … N 1–, ,=

wn C m type, ,( ) wn 1+ C m type, ,( )–( )

2P
----------------------------------------------------------------------------------------------------------------------------------

δ C m type n, , ,( ) =

round
wn C m type, ,( ) wn 1+ C m type, ,( )–( )

∆ C m type, ,( )
-------------------------------------------------------------------------------------------------- 

 

w̃n C m type, ,( )
n 1 … N, ,=

w̃n 1+ C m type, ,( ) sign n 1+( ) w̃n C m type, ,( )
δ C m type n, , ,( ) ∆ C m type, ,( )⋅–

(
)

=

w0 C m type, ,( )
∆ C m type, ,( )

Figure 8: Fraction of the bitstream generated by the compression scheme
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where,i im(pix, col) denotes the intensity of a givenpixel
of the computed image for thecolor-component in RGB-
colorspace, e.g. or respectively.
Note specifically that in image compression ratios > 40 dB
refer to reasonable visual qualities and at ratios >60 dB
images are perceived as „noise-free“. The reference image
was generated by the proposed splatting method forM=0
and 100% of the coefficients. We observe that ratios >60 dB
are achieved at compression gains of almost 95%.

The colorplates in Fig. 10 display the image quality
achieved from the RGB data set for different colorspaces
and compression rates with respect to the original data size
of 6291456 bytes. The qualitative differences of the three
colorspaces reveal mostly for small datasizes. Note that YIQ
favors theY-component and renders greyscale images at
high compression rates. This is contrasted by the RGB color
space where the method reconstructs the volume both in the
spatial and colorspace domain and ends up in a poorer
image quality. Finally the best results are obtained by the

PCA-based color representations. However, as progress
proceeds the representations converge to each other.
clear that the entropy of the color information is lower tha
in the Y channel. Therefore, we observe in general high
compression gains (SNRs) on color volume compression

Table 2 summarizes the performance of our algorithm
Timings are given for a SGI-Indy workstation (MIPS R
4400/150 MHz) and a SGI Maximum Impact workstatio
(MIPS R10000/195 MHz). Both workstations use our sof
ware-accumulation scheme as introduced in [18]. The re
lution of the rendered image was 160x180 pixels. For th
delta-coding of the wavelet coefficients we assigned thr
bits. The timings reveal, that we still achieve interactiv
framerates for fast previewing. Note in particular, that com
petitive high quality renderers, such as shear warp factori
tion [22] are significantly slower at these data sizes a
require careful setting of the transfer function for speed-u
Our proposed splatting technique is well-suited for har
ware support [25]. The hardware assisted accumulation
the calculated splats is done within the accumulation buff
or uses alpha-blending operations, depending on the av
able hardware platform. Hardware support allows to furth
increase the rendering speed significantly, especially for
generation of high resolution images.

Fig. 9 shows a Java applet as running on a standard WWW
browser. Note again that the method renders instantaneously
as the bits arrive and does not require full volume expansion
at the client side.

3 COMPRESSION AND GEOMETRIC
RECONSTRUCTION

3.1 Overview

In our second example, we present a framework for mul
resolution compression and geometric reconstruction
arbitrarily dimensioned data designed for distributed app
cations. Although being restricted to uniformly sample
data, our versatile approach enables the handling of a la
variety of real world elements, such as nonparametric, pa
metric and implicit lines, surfaces or volumes.

Here, we designed a compression/decompression pi
line as depicted in Fig. 11. The forward compression pr
ceeds as follows: After extraction of constraints, the data s
is normalized, wavelet-transformed and both local and gl
bal approximation errors are controlled by the oracles intr
duced above. Sorting of the individual channels of the W
transforms the multidimensional array into a 1D data vect
which is quantized and encoded subsequently. Line-co
straints, as extracted earlier, are fed into a lossless comp

QI 20 ⋅=

log10

i ref pix col,( )[ ]2

color
∑

pixel
∑

i im pix col,( ) i ref pix col,( )–[ ]2

color
∑

pixel
∑

-------------------------------------------------------------------------------------------------------

 
 
 
 
 

col R G B, ,{ }∈ col Y≡

Table 2: Performance of the method.
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4.6 KBYTE 2155 0.44 0.15 2175 0.46 0.15 2184 0.45 0.15
9.4 KBYTE 4480 0.9 0.31 4221 0.93 0.3 3820 0.86 0.26
79 KBYTE 31714 3.21 1.14 35655 3.06 1.09 30554 2.61 0.9

368 KBYTE 170761 11.52 4.01 178065 12.55 3.75 172240 10.77 3.58

Figure 9: JAVA-Applet for compression domain volume
rendering (URL: http://www.inf.ethz.ch/department/IS/cg/
html/research/evolve/)
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sion scheme. Conversely, the decompression pipeline
inverts the procedure and prepares the data for subsequent
geometric reconstruction.

3.2 Progressive Lossy Compression

First the data is normalized, i. e. the values are scaled to
. In order to prepare the data for bandwise progres-

sive transmission, we sort the multidimensional coefficient
array into a 1D vector as displayed in Fig. 12. Here, the
array is traversed from the most significant scaling function
coefficients to the high frequency bands representing fine
grained detail.

Note that the vector contains floating point values and
has to be converted into an array of integers.

The quantization step comprises a multiplication of the
initial floating point coefficients with a factor of ,
where represents the number of bits to be assigned for
each coefficient. Subsequent rounding operations transform
the floating point value into signed integer formats of size

.

Let be a coefficient, we obtain it’s quantized ver-
sion  by

. (9)

Note that strongly affects the quantization error an
appears as noise after reconstruction. Lossless quantiza
would typically require 23 bits on a 32 bit machine for sin
gle precision due to the normalized IEEE–754 floating poi
format.

The major task in the proposed compression is to co
vert the quantized integer vector into a bitstream of da
Therefore, we employ an entropy coding scheme in t
spirit of JPEG [41]. Assuming that many of the coefficient
will equal zero, encoding is carried out as follows: All non
zero coefficients are represented by 2–tuples, where the
element represents the number of bits of the second o
The second element contains the data value itself. All neg
tive numbers are thus replaced by their absolute valu
where in the case of a positive number the first bit is cleare
This enables the encoding of the sign. Let’s say to encod
value of 17 we get (5, 00001), whereas to encode -17
obtain (5, 10001). Similarly, 5 is represented by (3, 001
whereas -5 is converted to (3, 101). Note specifically th
since the number of bits is known in advance, the represe
tation is unique and the additional encoding of the sign b
in the most significant bit is possible.

Figure 10: Progressive compression in three different colorspaces. (data source: [31]) volume size: 1283, max. decomposition level
M=3.
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Zero valued coefficients are encoded differently. Here
we recommend a runlength coding up to a length of

which generates a set of 32 new symbols. These
symbols, together with the first part of our 2-tuples, are
stored in a Huffman–table which has essentially 64 entries.
The Huffman symbols are as follows:

• Symbols 0 – 30:First element of a 2–tuple minus 1
• Symbol 31: ‘EOB’ (End Of Bitstream)
• Symbols 32 – 63:Runlength of ‘zero’–coefficients

The scheme proposed here compromises the complexity
of the Huffman–table with the maximum number of zero
coefficients (32) to be encoded in one symbol. The ‘EOB’
Symbol usually allows the encoding of long sequences of
‘zero’–coefficients in the least significant positions of our
data vector. However, it is only used where the Huffman
table has not been built individually. The following pseudo-
code illustrates the procedural flow of the scheme:

// N:total number of integer coefficients
// d i : coefficient i
// hufflen i : length of Huffman–code for symbol i
// huffcode i : Huffman-code for symbol i
// WriteBits (l,i):
// appends the last l bits of i to bitsream
// Make2Tupel (i,first,second):

// converts integer into 2-tuple
i ← 0;
while  i < N do

if  d i  = 0 then
j ← 0;
while  j<32 && d i ← 0 do inc (i); inc (j); end ;
WriteBits(hufflen j+31 , huffcode j+31 );

else
Make2Tupel(d i ,first,second);
WriteBits(hufflen first-1 ,huffcode first-1 );
WriteBits(first,second);
inc (i);

end ;
end ;
WriteBits(hufflen 31,huffcode 31);

In our framework the Huffman–table is generated ind
vidually for each data set upon compression and is transm
ted along with the data and header information. Since t
size of the table is fixed to 64 entries, this does not lead to
notable overhead. Another solution would be the emplo
ment of a generic table, such as in image compress
which, however, drops the compression gain and, due to
variety of geometric data, is much more difficult to con
struct. An example of encoding a sequence of coefficients
given in Fig. 13.

Figure 11: Compression pipeline including both lossless and lossy data compression. For decompression, all of the above steps
to be reversed.
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Figure 12: Conversion of the multidimensional array into
a 1D coefficient vector depicted for a 2D WT.
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Figure 13: Encoding a sequence of coefficients.

0.037 0.147 0.000 0.000 0.000 0.439Wavelet Coefficients
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Bitstream

76 301 0 0 0 899

(7,76) (9,301) 0 0 0 (10,899)

(256 bits)

with 12 bits

(67 bits)
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It should be stated again that progression is achieved
channel by channel. That is, we transmit the low frequency
scaling function coefficients first, followed by the wavelet
coefficient channels in order of ascending frequency.

Some results of the lossy compression of a B–spline sur-
face with different parameter settings are depicted in Fig.
21. In order to decompose the control points of this B–
spline surface we used the pipeline explained in detail in
[38]. We observe that quantization noise is seriously dis-
turbing the B-spline surface. Sophisticated least-square esti-
mators, such as the Wiener-Filter [17] allows one to remove
noise and to reconstruct the surface.

Table 3 compares the proposed encoding sche
(encode) with some of the most popular lossless compre
sion methods, likezip, arc, urbon andcompress. Note that
information loss occurs only upon coefficient removal an
quantization. Thus, all subsequent steps in our pipeline
lossless and can be compared with some standard a
rithms. Results are given for a 3D volume data set, whe
the data was prequantized with 8 bits and 16 bits resp
tively. Interestingly, even in lossless mode our method com
petes with popular algorithms in overall performance.

3.3 Compression of Constraints

In many cases it is desirable to compress spatially interest-
ing features, such as boundary- or isolines and individual
vertices in a lossless manner. We call these dataconstraints,
since they usually constrain subsequent geometric recon-
struction. In our pipeline we represent constraints as poly-
lines or polygons. Fig. 14 illustrates the use of constraints in
a digital terrain data set of the Swiss Alps. Here the geomet-
ric reconstruction, i. e. triangulation of the surface, was sim-
plified up to a given bound. The constraints invoked by the
polygon force the reconstruction to keep the triangulation
dense. The constraint is imposed in terms of a terrain fol-
lowing polyline of a given extent.

Assuming the polyline constraint is represented as a
stream of vertices of type(x, y, data) , we employ a
lossless compression strategy, as shown in Fig. 11.

The position and the data value are encoded sepa-
rately using both delta and higher order arithmetic compres-
sion algorithms. For details see [35].

The resulting bitstream format is presented below in Fig.
15, where two headers are followed by the individualx-, y-
and data-streams.

Any further details, such as the header formats of th
bitstream, can be found in [38].

3.4 Vertex Removal Strategies in 1D

Vertex removal methods enable the client to compute ge
metric reconstructions adaptively and progressively fro
the incoming bitstream of data. When seeking an approp
ate algorithm, computational performance and invariance
the dimensionality are important considerations. Due to t
rich literature on vertex removal in graphics and comput
tional geometry we found that the well-known algorithm o
Douglas et. al. [10] is a good starting point. First, we briefl
explain its initial form in a nonparametric 1D setting an
illustrate its application in multiresolution representation
Here, special emphasis is given to extension of the meth
for progressive reconstruction. Next, we generalize t
method to multidimensional cases and give some examp
of how it works. The versatility of the introduced method
imposes no restriction on subsequent triangulation metho
which can range from constraint Delaunay [33] to fast look
up tables [19].

In order to construct a point removal strategy, let’s firs
consider the 1D setting. Here, the problem reduces to fin
ing a strategy for the reduction of line segments in piec
wise linear approximations. Inspired by the algorithm o
[10] we extended these ideas and modified the method t
recursive and progressive algorithm, illustrated in Fig. 16.
starts by connecting the first point of a curve, , with th
last point . All intermediate points representing the curv
are compared against the line segment and the po

Table 3: Comparison of the proposed method (encode) with some popular compression algorithms (3D volume data set of Fig. 20: 128x64x64 v

8 BIT QUANT. 16 BIT QUANT.
CPU
(IN S)

50% COEFF.
(IN KB)

10% COEFF.
(IN KB)

50% COEFF.
(IN KB)

10% COEFF.
(IN KB)

ENCODE 568 245 1,835 466 2
ZIP 618 290 2,399 660 5
ARC 711 300 2,727 764 13

URBAN 501 233 1,888 496 69
COMPRESS 533 253 2,407 607 3

UNCOMPRESSED 2,248 2,248 4,496 4,496 0

Figure 14: Illustration of constraints in a digital terrain
data set. a) Interactive specification of the constraint path.
b) Mesh after constraint insertion.
(Data source: CourtesyBundesamt für Landestopographie,
Bern, Switzerland)

a) b)line constraint path

x y,( )

Figure 15: Data format of the bitstream for constraint
compression.

general headerAC headerx-streamy-streamdata-stream
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ure
with the largest distance, for instance , is identified. If its
distance exceeds a predefined threshold , the vertex is
consideredimportant and labeled. We split the initial line
segment in two halves, on each of which the algorithm can
be applied recursively. Obviously, the quality of the removal
can be controlled by the distance threshold. The advantage
of this extension to the original method lies in the tree type
refinement of the vertex analysis coming along with the
recurrence relations.

The distance can be computed in different ways, where,
however, the computation of the vertical distance, such as
depicted in Fig. 16c, is computationally much more expen-
sive for general multidimensional settings. Therefore, we
recommend computation of they-distance (see Fig. 16a)
approximating nonparametric data.

3.5 Generalizations to Multiple Dimensions

Generalizations of the method towards multidimensional
nonparametric data is straightforward. Starting from an ini-
tial grid, as in Fig. 17, the algorithm seeks the vertex with
the maximum distance and subdivides the field into 4 (in
2D) or 8 (in 3D) subcells on which the method is applied
recursively. In these cases the distances to the bilinear and
trilinear interpolants of the cell vertices are computed,
respectively.

Recalling the multiresolution B–spline approximation of
the data motivates the extension of the algorithm towards a
channelwise progressive point insertion. Therefore, the
algorithm analyzes mesh vertices progressively and labels
unimportant points as new data comes in. In 2D, for
instance, the basic idea is to start from an initial vertex field

of resolution in each direction, where represen
the maximum iteration. The vertices are provided by th
scaling function approximation and are processe
further by our algorithm. To define a distance metric, w
assume a bilinear interpolant between the vertices wh
approximates the B–spline scaling function representatio
If the difference signal is received, the resolutio
is refined by 2 and all newly inserted vertices are check
conforming to our distance metric. If required, they will b
inserted.

In order to compute the intermediate vertices for ea
iteration, an inverse wavelet transform has to be applied
all coefficients of a given iteration as soon as they a
received and decompressed.

An apparent drawback of this approach, howeve
deserves some attention: Once a vertex is labeled as imp
tant there is no way to reject it in subsequent steps. Ob
ously, the detail signals added during progression influen
the importance of each vertex. Therefore, we recommend
exponential alignment of the threshold to the iteratio
That is if stands for the current iteration step, the asso
ated threshold  is computed by

(10)

: global threshold governing the point removal.

In our implementation we employ a tree type data stru
ture to maintain the individual cells representing the mes
The tree grows iteratively as progression proceeds. Af
iteration, the leaves of the tree represent the remaining c
and can be triangulated with appropriate methods. Fig.
further elucidates the data representation.

Figure 16: a) Recursive algorithm assuming a smooth rep-
resentation of the underlying curve: a) P2 has largest verti-
cal distance. b) new approximation after insertion of P2. c)
example for vertical distance measure. d) final result.
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curve
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Figure 17: Extension towards multiple dimensions exam-
plified for nonparametric data: 2D version. A new vertex is
inserted at position and the distance is computed with re-
spect to the bilinear-interpolant of .
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Figure 18: Construction of a 1D tree data structure with 64 vertices and its growth during progression. The equivalent list struct
is given below. a) First segment at the beginning. b) Insertion of P29 causes split into two segments. c) Final tree after inserting all
points.
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For subsequent triangulations we employed theqhull
library from [1] in 2D and 3D. An example of progressive
point removal is depicted in Fig. 19, where the mesh is
refined gradually with each wavelet channel arriving at the
client side.

CONCLUSIONS
We presented two examples for compression schemes
designed for applications in visualization. Both methods are
lossy transform coding schemes and used wavelets for the
underlying data representation. The advantages are obvious:
High compression gain, precise approximation error control
in , localization, progressive refinement of the bitstream
and very fast decompression – to name a few. The major
drawback of wavelet based methods is their restriction to
trivial data topologies. The current examples employed ten-
sor product constructions, as they appear mostly in practice,
however, more sophisticated multidimensional construc-
tions are highly desirable. Although various extensions to
spherical [36] or triangular domains [11] are emerging,
much research has to be pursued to develop more powerful
wavelets are necessary to cope, for instance, with complex
boundary conditions.

Apart from the hierarchical bases provided by the wav
lets, mere multiresolution compression schemes, such as
progressive mesh [21] might bear much potential for com
pression, since they are less restrictive and give a fine gr
control over the progression. A sequence of progress
tetrahedralizations is presented in Fig. 22, where an irreg
lar turbine data set has been approximated with an incre
ing amount of simplices [39].
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