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Abstract
In this paper we propose an elementary operation on a pair of
vector fields as a building block for defining and computing
global line–type features of vector or scalar fields. While usual
feature definitions often are procedural and therefore implicit,
our operator allows precise mathematical definitions. It can
serve as a basis for comparing feature definitions and for reuse
of algorithms and implementations. Applications focus on vor-
tex core methods.

1 Introduction
During recent years, feature extraction techniques have become
increasingly interesting as a complementary way to visualize
scalar or vector fields.

Feature extraction in scientific visualization is traditionally
described in a rather procedural type of language. This is in con-
trast to basic visualization techniques such as slices, isosurfaces,
integral curves (streamlines) or stream functions. These can be
specified by simple algebraic equations or ordinary differential
equations, so there is no question that one can carefully distin-
guish between the mathematical definition and the extraction
algorithm. The same level of abstraction has not yet been
reached in the area of feature extraction.

As a step towards this goal, we propose an operator which for
two given vector fields returns the loci of points where the two
vectors are parallel. The resulting features in general are lines, as
we will show. In terms of the classification scheme introduced
by [9], these features are global and have a spatial dimension of
one. They are also inherent to the data, in the sense that they are
definable without parameters.

In the following, we first review related work in section 2. Sec-
tion 3 provides definitions and shows that some fundamental
properties of vector or scalar fields can be expressed with this
operator. Based on this, we show in section 4 that various feature
line extraction methods can be reformulated using the “parallel
vectors” operator. A collection of nine such applications will be
discussed. In section 5 we deal with the problem of unwanted
spurious solutions, and section 6 briefly describes some possible
ways of implementing the operator.

2 Related work
One area which can benefit from feature extraction is flow visu-
alization, in particular the analysis of 3D vector fields. Recent
research has focussed on vortices which are among the most

important features occurring in CFD field data. Vortex cores [1,
14, 18, 20, 23, 24] and vortex hulls [10, 17] can be rendered as
lines and surfaces, but beyond that they can be used to improve
other types of visualizations. For example, particles can be
started near the core, traced forward and backward and then ani-
mated, fading them in or out at the vortex boundary. This way, a
single vortex is visualized. Another usage is to extract a single
feature for interactive access. And finally, features can be
tracked over time [22] or while changing design parameters.

In the context of geomorphology, Finsterwalder [6] defines ridge
and valley lines: A point is on a ridge or valley line if the slope is
minimal along the contour line. In other words, ridges and val-
leys are where contour lines lie maximally apart. A mathemati-
cal formulation of this definition was already given by De Saint-
Venant [5] in 1852. Ridge and valley lines are used also in the
field of computer vision [8]. Here, grayscale images are regarded
as height fields.

A different usage of the term ridge has been established in dif-
ferential geometry: For a surface in 3-space, ridges and ravines
are defined as the loci of points of maximal normal curvature
along the curvature line in the direction of maximal curvature
(see e.g. [2]). In contrast to topographic ridge lines, this defini-
tion is isotropic, i.e. invariant under global rotations. Isotropy is
a desirable property for purposes such as feature line extraction
on arbitrary surfaces in 3-space [11, 15]. However, if the surface
is a height field, this is not the case: Ridge and valley lines are
expected to change when the whole terrain is tilted.

There also exist line-type features of 2D data which become sur-
face-type features for 3D data. In contrast to true 1D features,
such -dimensional features cannot be specified with our
operator. An example in image processing are edges, which can
be extracted by finding zero-crossings of the Laplacian (e.g.
[8]). The same method applied to 3D data results in surfaces,
used e.g. in volume rendering [28].

3 Vector parallelism

3.1 Definitions and notation

As we will frequently switch between scalar and vector fields
and between dimensions, we need a short notation for the vari-
ous types of fields: An n-dimensional (or nD) scalar field is a
real-valued function of n spatial variables, likewise an nD vec-
tor field is an n-component vector function of n spatial vari-
ables.

n 1–( )
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Let v and w be n-dimensional vector fields. Then

(1)

is the set of locations where either the two vectors have the same
direction or one of them is zero. The first term of eq. (1) is nec-
essary to avoid . The second term consists of n scalar
equations for the unknowns . In the nonde-
generate case (of independent equations), solutions are one-
dimensional. This can be seen by the following argument.

At each point x, the vector can be decomposed into a
component parallel to and a component perpen-
dicular to . The condition that and are paral-
lel means that is zero, which restricts only of the n
degrees of freedom.

If n is either 2 or 3, the set can alternatively be expressed as

(2)

(where the cross product of two 2-vectors is just the scalar
).

If , this definition involves three scalar equations for
three unknowns. However, these equations are not independent.
This is the reason why it is misleading to consider as a
derived field for the purpose of finding the set of its zeros: Such
a field is degenerate in the sense that the zeros in general are not
isolated points but lines, which prohibits application of standard
methods.

Definition: For two given n-dimensional vector fields v and w,
we denote by (“v parallel w”) the operator which
returns the set S (eq. (1)) restricted to nondegenerate solutions.
In other words, we exclude isolated points and points which
have a 2D neighborhood in S.

It can easily be seen that the lines of are closed curves
and in general do not intersect: In 2D, they are 0-isolines of the
cross product and therefore have these properties. In 3D, the

cross product has three scalar components, hence there are three
0-isosurfaces. As shown above, their intersection is a set of lines
rather than isolated points. And finally, because each isosurface
is closed, so is their intersection.

The two vector fields v and w can be given independently, how-
ever, in our applications, w is often derived from v. In the
remainder of this section, we will examine two such cases.

3.2 The loci of zero curvature

For a vector field v we can compute its gradient (the
Jacobian, which is a matrix field) and then examine the set

(3)

If we interpret v as a steady velocity field, then for each location
x, the right hand side is exactly the acceleration of a
particle at x. If now the acceleration is parallel to the velocity,
this implies that the local streamline curvature is zero. There-
fore, eq. (3) is the condition that the streamline passing through
point x has zero curvature at x.

We also note that for a solution x of eq. (3), is an eigen-
vector of . In the following, we will denote the normal-
ized i-th eigenvector by and the corresponding eigenvalue by

 and choose the numbering such that  is .

3.3 Topographic ridge and valley lines

Given a scalar field p, it is an elementary fact that a necessary
condition for an inner local minimum or maximum is .
Less obvious is how to relax this condition to make the general
type of solution a set of lines instead of a set of points. This
problem is best illustrated by looking at a 2D height field as e.g.
a topographical terrain. Let v be the vector field . The slope
of the terrain p is then the vector magnitude and the slope
lines (or lines of steepest descent) of p are the trajectories of v.

Figure 1:  A valley line (see section 3.3) of pressure extracted from simulation data for a draft tube of a Francis turbine. This feature indicating
the center of swirl cannot be visualized using pressure isosurfaces because of the global pressure change along the tube.
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Definition: A topographic ridge or valley line is the set of
points where the slope is locally minimal compared to points of
the same elevation.

The distinction between ridge lines and valley lines can be made
by looking at a profile taken in the direction normal to v. A more
formal definition can be based on the eigenvalues of the eleva-
tion Hessian H as will be shown in section 3.5. For points on
ridge or valley lines, one eigenvector of H is aligned with the
elevation gradient and the other is tangential to the contour line.
The eigenvalue associated with the latter discriminates ridges
(negative sign) from valleys (positive sign).

An equivalent formulation of this definition is commonly used
in computer vision. As Haralick [7] describes it, points on a
ridge or valley line can be found by walking in the direction of
greatest magnitude of the second directional derivative. The
ridge peak or valley bottom occurs when the first directional
derivative has a zero crossing.

Some confusion about the correct definition of topographic ridge
and valley lines has appeared in the literature. A number of
methods produce only approximate solutions. In [12], elevation
maxima in axis-parallel sections are chosen. Other authors (e.g.
[27]) search for maximum curvature of contour lines. Lines gen-
erated by both these methods can differ visibly from correct
extremum lines. A simple example for this is the inclined ellipti-
cal cylinder already given in the 19th century by [29]. Fig. 2
shows this example in both top view and perspective view. The
ellipse is aligned with the image axes, therefore the marked
points are the elevation maxima in sections of constant and
at the same time the contour curvature maxima.

Another approximation is to extract the critical lines [16], i.e.
the slope lines (lines of steepest descent) connecting passes (sad-
dles) with peaks or pits. In general, however, a ridge or valley
line is not a slope line: Breton de Champs [4] proved in 1854
that it is only if its ground projection is a straight line. But since
in typical terrain data, ridge and valley lines are often close
enough to slope lines, this is a reasonable approximation.

3.4 Extremum lines

For a vector field v and a given point x let denote the nor-
mal space of v at x, i.e. the line or (hyper-)plane containing x
and being normal to v.

Definition: An extremum line [25] of a vector field v can then be
defined as the set of points x where the restriction of to

is locally extremal. It is called a minimum (maximum)
line if  is minimal (maximal).

In 3D, this means that the vector magnitude is minimal or maxi-
mal at x w.r.t. the plane through the point x and perpendicular to

.

Of course, can be replaced by which leads to the neces-
sary condition

(4)

for extremum lines. In 3D (or higher dimensions), solutions of
eq. (4) include “saddle lines”, consisting of points where
assumes a saddle in .

By applying the identity to eq. (4) we
obtain the equivalent necessary condition for extremum lines,

(5)

which differs from the zero curvature condition eq. (3) only by
the matrix transposition.

3.5 Extremum lines of conservative vector
fields

If a vector field v is conservative, it can be written as for
some scalar field p which is called a potential for v. For conser-
vative vector fields, the minimum lines are of particular interest
because they contain ridge and valley lines as special cases. This
follows immediately from the definitions:

Observation 1: Topographic ridge (valley) lines are minimum
lines of with the additional property that each point x
is a local maximum (minimum) of p restricted to .

Observation 1 can be used as a definition of ridge and valley
lines in n dimensions. Note that by definition of , the
restricted function p automatically assumes an extremum or a
saddle in x.

For a conservative v, the matrix is symmetric and therefore
eq. (3) and eq. (5) are identical:

Observation 2: In a conservative vector field, the set of zero
curvature lines is equal to the union of extremum lines and sad-
dle lines.

Principal axes formulation
For the next observation, we look at the second-order Taylor
approximation of p around a point of an extremum or saddle
line:

(6)

Here, v denotes and H denotes (which is the Hessian
of p) at . We already know that on an extremum or saddle

Figure 2:  Left: Top view of the inclined elliptical cylinder example.
Right: Perspective view of the same height field. The ridge line does not

pass through the points of maximal contour curvature.
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line, v must be an eigenvector of H. The symmetry of H causes
the eigenvalues to be real and the eigenvectors to be orthogonal.

What we want to do next is formulate conditions for topographic
ridge lines in terms of the eigenvalues. The conditions can be
formally derived from the definition of a ridge, but we believe
that the following informal analysis gives more insight.

In the 2D case, Dupin’s indicatrix (the intersection with an infin-
itesimally offset tangential plane) of the surface
can be constructed. This is either an ellipse or a hyperbola and,
when viewed as a curve lying in the x-y-plane, it only depends
on the quadratic term, i.e. on H. Its center is and its princi-
pal axes are proportional to . In 3D, these ellipses and
hyperbolas become ellipsoids and hyperboloids.

The sign of an eigenvalue determines, for the corresponding
principal axis, whether p is below or above its linear approxima-
tion when moving away from . With this, the conditions for a
ridge or valley line are intuitive:

In the case of an ellipse (ellipsoid), we are on a ridge line if all
eigenvalues are negative and if has smallest absolute value,
and therefore is the direction of the largest principal axis.
The indexing is again such that is the eigenvector aligned
with .

In the case of a hyperbola (hyperboloid), we are on a ridge if
is positive and the other eigenvalue(s) are negative.

The conditions for valley lines are obtained by changing signs.
Combining the cases, we get for a ridge line:

(7)

and for a valley line:

(8)

where in 2D and in 3D. Therefore, given a set
of extremum or saddle lines (eq. (5)), we can select ridge lines
by imposing eq. (7) and valley lines by eq. (8). The resulting
lines are minimum lines according to observation 1.

4 Applications

4.1 Zero curvature loci

➊ Vortex cores defined by the velocity gradient
Sujudi and Haimes [24] defined vortex cores in 3D flows based
on eigenvectors of the Jacobian. In [19] we showed that their
definition is equivalent to eq. (3) combined with the condition
that the matrix has a complex pair of eigenvalues. The latter
can be tested by checking the characteristic polynomial for a
negative discriminant.

➋ Separation and attachment lines
Similarly, Kenwright’s separation line criterion [13] can be for-
mulated as eq. (3), combined with the condition or

for the eigenvalues of . This time, v is a 2D vec-
tor field, namely the velocity projected onto a solid surface. That
both eigenvalues of are real numbers follows from eq. (3),
which asserts a real eigenvector.

For Fig. 3, a slice of the “bluntfin” data next to the solid surface
has been extracted. The projected vector field v is shown by
white arrows in Fig. 3a. The black arrows indicate the field

. The set is shown as the thick lines where
the black lines are those which meet the angle criterion
explained in section 5. Fig. 3b demonstrates the zero curvature
property of the separation and attachment lines: it can be
observed that the thick lines consist of inflection points of the
streamlines of v (the skin friction lines).

In the rest of this section, we will find more such combinations
of a parallelism condition and a Boolean selection criterion. The
selection criteria used in the above two applications are quite
typical. In the first case, it is the sign of an algebraic expression,
and in the second case it is based on the relative size of the
eigenvalue associated with the eigenvector v. We will first con-
centrate on the parallelism conditions and postpone the discus-
sion of selection criteria to section 5.

4.2 Ridge and valley lines

➌ Geomorphology and computer vision
Topographic ridge and valley lines are concepts used in geomor-
phology [6] and computer vision [7]. Lines are solutions of eq.
(5), but practical applications require careful filtering of the
input field and post-processing [3] of the output lines.

In image processing applications, ridges are often used for struc-
ture enhancement. Another example is the medial axis trans-
form, which can be expressed as the ridges of the signed
distance map.

➍ Vortex cores defined by minimal pressure
Miura and Kida [18] describe a method for extracting vortex
cores based on a pressure-like scalar quantity p which is com-
puted from the velocity field. In our terminology we can say that
their procedure constructs the valley lines of the field p. An
example is shown in Fig. 1.The algorithm of Miura and Kida
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Figure 3:  a) Separation and attachment lines on a solid surface of the
“bluntfin” data set (black lines). The white arrows indicate the
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b) The same lines compared to an LIC of v.
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steps along these lines while performing local corrections. These
ensure that the gradient of p is an eigenvector of the Hessian of
p. Other lines than valley lines are excluded by applying eq. (8)
after each step.

4.3 Extremum lines

➎ Minimum and maximum lines
Tang and Medioni [25] show that many problems arising in
medical imaging or digital terrain models consist of finding
extremum lines. Such problems can therefore be expressed by
eq. (4) or eq. (5), usually constrained to either the minimum or
maximum lines.

➏ Maximum lines of vorticity
Strawn et al. [23] defined a vortex core as the set of points where
vorticity magnitude is locally maximal on the plane nor-
mal to the vorticity vector. Again, this condition can be
expressed by eq. (4), this time applied to the vorticity field.

4.4 General vector parallelism

➐ Vortex cores defined by normalized helicity
Helicity of a vector field v is defined as , while nor-
malized helicity is , which is just the
cosine of the angle between v and its curl . A vortex core
according to Levy et al. [14] is indicated by a large absolute
value of normalized helicity.

We can again make use of the “parallel vectors” operator by
observing that normalized helicity of is equivalent to

.

A previous method for extracting this type of vortex cores is
based on isosurfaces of normalized helicity. But, due to the dis-

cretization, levels cannot be chosen as . Therefore, no clear
line structures can be produced.

➑ Vortex cores defined by vorticity and pressure
In [1], Banks and Singer presented a method to first find vortex
core lines and then grow a vortex region around them. The core-
finding part basically repeats the following sequence:

   • Take a step along the vorticity vector.
   • At the new point, evaluate the vorticity vector and construct

its normal plane.
   • In this plane, correct the new point by setting it to the nearest

local pressure minimum. Stop if the correction vector
exceeds a size limit.

A starting point is found by performing a number of initial steps
for establishing convergence.

This procedure is obviously based on the assumption that the
direction of the vorticity vector has little variation compared to
the variation of pressure. Under this assumption and for small
step sizes, the algorithm yields points where vorticity is approxi-
mately parallel to the pressure gradient, i.e. .

As usual, the parallelism formulation has additional spurious
solutions. In one kind, the pressure is maximal instead of mini-
mal. There is also the case of lines which satisfy but
where the points generated by the algorithm diverge from the
line.

➒ Higher-order definition of vortex cores
In [20] we proposed a vortex core definition which better
accounts for slowly rotating curved vortices. The parallelism
part of the definition is where a is the acceleration

.
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Author(s) Problem Dim.
Type

*)
Formula Criteria

➊ Sujudi/Haimes vortex cores 3 Z eq. (3) for velocity negative discriminant of
(complex eigenvalue pair)

➋ Kenwright separation lines 2 Z eq. (3) for projected veloc-
ity

for eigenvalues of :
 or

➌ Haralick ridge, valley lines 2 Z,E eq. (3) or (5) for elevation ridge line: eq. (7),
valley line: eq. (8)

➍ Miura/Kida vortex cores 3 Z,E eq. (3) or (5) for pressure-
like quantity valley line: eq. (8)

➎ Tang/Medioni various 2,3 E eq. (5) for general vector
field minimum and maximum lines

➏ Strawn/Kenwright/
Ahmad vortex cores 3 E eq. (5) for vorticity maximum lines

➐ Levy/Degani/Seginer vortex cores 3 G none

➑ Banks/Singer vortex cores 3 G
p minimal in plane orthogonal

to (and convergence of the
algorithm)

➒ Roth/Peikert vortex cores 3 G two complex eigenvalues after
projection; angle-based quality

Table 1: Applications of vector parallelism.
*) Z: zero curvature, E: extremum lines, G: general parallelism
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5 Criteria for selecting lines
Many vortex core algorithms in their original formulation use a
priori tests on the grid nodes (e.g. a discriminant). If a node fails
the test, all adjacent cells are ignored by the line extraction pro-
cedure.

However, we propose to first extract the lines and then selec-
tively remove line segments based on criteria evaluated at the
points of the line. Advantages of this scheme are:

   • The “parallel vectors” operator can be implemented as a pro-
cedure operating on two arbitrary vector fields. It is imple-
mented once and then used for many purposes.

   • Criteria can be applied tolerantly, e.g. accepting single
exceptions. We found that this produces more consistent
lines.

Whether efficiency is gained or lost depends on the time needed
to evaluate criteria and to find parallel vectors.

Types of criteria
The criteria used in the nine above applications are summarized
in Table 1. They typically use information from the gradient ten-
sor, such as its discriminant or eigenvalues.

In conservative vector fields, criteria for ridge or valley lines are
eq. (7) and eq. (8), respectively.

In nonconservative vector fields, minimum and maximum lines
can be discriminated by sampling a few times on the line
(plane) normal to v. This way, calculation of second derivatives
can be avoided.

Many applications of the “parallel vectors” operator are based
on a model assuming that the resulting line is a trajectory of one
of the vector fields. Of course, it would then be a trajectory of
the other vector field, too.

However, this assumption is not true in general, therefore the
angle between the generated line and the vector field can be used
as a measure for how well the model fits the data. Limiting this
angle below a certain threshold is a useful technique for select-
ing meaningful lines.

6 Algorithms

6.1 The “parallel vectors” operator

In 2D, the “parallel vectors” operator is easily implemented by
computing zero level isolines of the cross product. However, if
simple bilinear interpolation of cells is used, then no higher-
order singularities can be represented. Hence, it is not possible
to obtain e.g. a junction of three ridges in the interior of a cell.
For higher quality output, an algorithm such as in [7] can be
used.

In the following, we assume vector fields in 3D. Unlike in 2D,
there is no obvious implementation of the “parallel vectors”
operator, but rather a variety of possible approaches. Since, in
implicit form, the “parallel vectors” operator has been used sev-
eral times in the literature, algorithms can be derived from these
publications. They can be grouped into the following four

schemes. The choice becomes a trade-off between conflicting
goals such as symmetry, completeness or smoothness.

Finding parallel vectors based on isosurfaces
The 3D cross product has three components. If it is zero, then
any two of the three projections along the coordinate axes are
zero, but not vice versa. Therefore, one could generate isosur-
faces for two of the components and find their intersection, e.g.
by using the “Marching Lines” algorithm [26]. On the intersec-
tion curve, one then has to verify that the third component is
zero as well.

However, there are a couple of numerical problems associated
with this approach. One is that testing for a zero value must be
done tolerantly. And besides this, choosing a fixed pair of com-
ponents can cause small angles when intersecting isosurfaces.
These can be avoided by adaptively choosing the best pair of
isosurface for each cell. But then care has to be taken to preserve
continuity.

Solution based on Newton iterations within grid faces
This method traverses all faces (triangle or quadrilateral) of grid
cells looking for zeros of the vector valued function .
Starting in the center of each face, a number of 2D Newton-
Raphson steps are performed. If a zero is found but lies outside
the current face, it is discarded. Otherwise it is an intersection
point of the solution set with the face. Points lying on faces of
the same cell are then connected by straight lines. If there are
more than two intersection points, the correct topology must be
identified, e.g. by subdividing the cell or by estimating the curve
tangents.

This method can handle vector fields defined on the cell face by
an arbitrary interpolation function, for example, a bilinear inter-
polation on quadrilaterals.

Analytic solution for triangular faces
A similar method calculates the analytic solution, but assumes
linear interpolation on the face. Therefore, quadrilateral faces
have to be subdivided into triangles. The search for points where
two linear vector fields v and w are parallel can be reduced to an
eigenvector problem in the following way: On a triangular face,
a linear 3-component vector field v can be written as a function
of local triangle coordinates s, t:

(9)

where V is a 3 by 3 matrix, and analogously for w and W. The
three coordinates can be interpreted as homogeneous coordi-
nates s,t,u with u set to one.

Two fields are parallel when

(10)

If W is invertible, multiplying this by its inverse, , leads to
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(11)

which is an eigenvector problem with
. If W is not invertible but V is, then the rôles of v

and w can be swapped. If both are singular, no isolated solutions
exist. Points where two linear vector fields are parallel can thus
be found analytically by calculating eigenvectors of a 3 by 3
matrix M. Points lying outside the triangle must be discarded.

A curve-following algorithm
Careful implementation of the three above methods guarantees
closed lines, but a situation as in Fig. 4a may occur. Even if such
a result is correct for the multilinearly interpolated discrete data,
a more consistent set of lines with a different topology may be
obtained.

This is why, in practice, techniques as in [1] or [18] have been
shown to be successful: Starting from a seed point lying on the
curve , the curve is constructed by stepping along it.
Basically, a small step is first done along v and then corrected
within the plane for minimizing the magnitude of the pro-
jection of w. Seed points can be computed by one of the preced-
ing methods, or alternatively, the procedure may start at arbitrary
points such as grid nodes. This variant (used also by [1]) works
because correction steps must be bounded in size anyway.

6.2 Computing eigenvalues

Although eq. (3) and (5) are of the form and thus have
eigenvectors as their solutions, these equations are not eigen-
value problems. The difference is that both the matrix and the
vector are known functions of space and the actual unknowns
are the spatial coordinates x. Therefore it is not necessary to cal-
culate eigenvalues and eigenvectors of the matrix at specific
locations, e.g. the grid nodes. If an algorithm for solving
is available, this is sufficient to solve eq. (3) or (5).

Even though eigenvalues are not needed for extracting lines,
they can be required for the selection criterion. However, at this
stage, a much smaller number of eigenvalues is required. And if
only the one eigenvalue associated with v is needed, it can be
cheaply computed by taking the ratio of non-zero components of
v and Mv.

7 Conclusions
We proposed the “parallel vectors” operator as a basic tool for
vector field visualization, and we demonstrated that many exist-
ing techniques for extracting feature lines from field data can be
expressed with this operator. Fig. 5 puts these methods into con-
text.

We see the main benefit of our formalism in its decoupling of
definition and algorithm. This way it can help to improve com-
munication about feature extraction methods.

The line extraction procedure now has a fixed structure:

   • Compute v and w
   • Compute the lines
   • Apply selection criteria

We do not claim that this generic algorithm can beat, in quality
or performance, the specific implementations given in the litera-
ture. The advantage of the modular approach is that code can be
reused for new applications. It could also be used as a quick way
to generate a second implementation for verification.

For these reasons, we believe that the “parallel vectors” operator
would be worth including into future visualization environ-
ments.

For the AVS 5 environment, we implemented a “parallel vec-
tors” plus a few auxiliary modules which can be downloaded
from http://www.cg.inf.ethz.ch/~rothma/turbo/parallel.html

Figure 4:  a) Possible and b) desired connectivity for the same data set.
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Figure 5:  A tree of problems that can be expressed with the “parallel
vectors” operator. ➊  through ➒  refer to the

applications discussed in section 4.
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others
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