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Abstract

We describe an alternative way of constructing interpo-
lating B-spline curves, surfaces or volumes in Fourier space
which can be used for visualization. In our approach the
interpolation problem is considered from a signal process-
ing point of view and is reduced to finding an inverse B-
spline filter sequence. The Fourier approach encompasses
some advantageous features, such as successive approxima-
tion, compression, fast convolution and hardware support.
In addition, optimal Wiener filtering can be applied to re-
move noise and distortions from the initial data points and
to compute a smooth, least-squares fitting ‘Wiener spline’.
Unlike traditional fitting methods, the described algorithm
is simple and easy to implement. The performance of the
presented method is illustrated by some examples showing
the restoration of surfaces corrupted by various types of dis-
tortions.

1 Introduction

B-splines have been used widely and successfully in
CAGD, computer graphics and visualization [1], since their
versatility makes them irreplaceable for many tasks in geo-
metric modeling. Moreover, most of the advanced commer-
cially available modeling systems, such as ALIASc, base
on B-spline representations of curves and surfaces. How-
ever, in many applications [2], [3], the problem consists of
constructing a spline through a set of given points rather
than to work immediately on control points. As a conse-
quence, the robust and efficient computation of interpolat-
ing B-spline curves and surfaces has been a fundamental
task in geometric modeling.

The mathematical description of the B-spline interpola-
tion problem can be found in many textbooks, tutorials and
papers, such as [4], [5], [6], [7], [22] or others. The stan-
dard approach is to solve a sparse linear system of equa-
tions. For this purpose, we have to build and decompose a
matrix, whose rows and columns are computed by evalua-

tion of the B-spline basis functions at discrete positions in
parameter space. In the case of cardinal B-spline interpola-
tion the knots are equally spaced. Depending on the order
of the B-spline, the resulting matrix is banded diagonal and
respective algorithms perform correspondingly. That is, the
entire interpolation step can be solved inO(N), i.e. linear
time [4].

Our motivation for the research presented in this paper
was to point out an alternative by treating the interpolation
problem from a signal processing point of view. This en-
ables to carry over and to extend some findings from the
vast amount of research in that area for the benefit of vi-
sualization. More precisely, in the case of uniform B-spline
interpolation our task consists of constructing an inverse fil-
ter which is convolved over the sequence of interpolating
points to provide the required control points. In this case,
filtering can be accomplished in Fourier domain with the
speed of FFT algorithms inO(NlogN) – regardless of the
spline order. In order to construct the required filters we
base on some results of prior work, where Fourier trans-
forms of uniform B-splines have been presented in [8], [9]
or [10]. Since the Fourier approach implicitly assumes ro-
tational symmetry special emphasis has to be put on the
preservation of boundary conditions.

Another advantage of frequency domain constructions
is the elegant embedding of least-squares fitting problems.
Spectral estimations of noise and corruptions from the data
enable us to compute a so-called Wiener filter [11] which
provides a least-squares optimal reconstruction of the un-
derlying function. The required parameters can be estimated
efficiently for B-splines and thus provide the control mesh
for a ‘Wiener spline’.

One might argue that the computational advantages of
the presented methods do not outperform in all cases. How-
ever, we demonstrate that the signal processing treatment of
the interpolation problem allows us to apply efficient algo-
rithms for fast convolution and FFT. Furthermore, advanced
low-cost signal processors could support these operations
for getting real-time performance. In addition Fourier do-
main interpolation comes along with very useful properties,



such as progressivity, multiresolution approximation, com-
pression and error bounds and provides a fancy alternative
implementation of the problem.

The paper is organized as follows: Without restricting
generality all derivations are given for 1D parametric
curves. For reasons of readability and consistency, section
2 briefly reviews some fundamentals of B-spline curves and
explains the interpolation problem. In section 3 uniform
B-splines are addressed and Fourier domain construction
schemes are presented. Section 4 is dedicated to spectral
analysis and Wiener filtering. Finally section 5 reports on
some results to illustrate the performance of the method.
Boldface characters are used throughout the paper to denote
vector-valued variables.

2 B-Spline Interpolation

This section briefly summarizes some fundamental def-
initions and relationships associated with B-spline basis
functions for curves and surfaces. Furthermore, the prob-
lem of computing interpolating B-spline curves is stressed.
More general introductions to the issue are given for in-
stance in [1] or [6]. In particular, we recommend interactive
tools to study the properties of B-spline curves and surfaces,
such as in [12].

2.1 Fundamentals of B-Splines: Revisited

A parametric B-spline curvec(u) can be considered as
the following linear combination

c(u) =
K�1X
i=0

di�
n
i (u) : (1)

K: Number of basis functions.
Here, u denotes the parametric coordinate anddi

stands for the vector valued control vertices, i.e.
di = (dix; diy; diz)

T , sometimes also called de Boor
points. Needless to say that the upper equation provides
a spatial positionc(u) = (cx(u); cy(u); cz(u))

T for each
parameter valueu and thus traces out the curve inE3.

The non-orthogonal B-spline basis functions�i are
piecewise polynomials of degreen and can be computed
recursively from a degree0 prototype:

�0i (u) =

�
1 for u 2 [ui; ui+1]
0 else

;

�ni (u) =
u� ui

ui+n � ui
�n�1i (u)

+
ui+n+1 � u

ui+n+1 � ui+1
�n�1i+1 (u) : (2)

Obviously, the so-called knot vectoru = (u0; ::;
uK+n)

T divides the parameter space into individual
segments and accounts for the definition intervals of the
bases whose local support is restricted ton+ 1 intervals.

We fix easily that the parameter spacings�i = ui+1�ui
can be eitheruniformor non-uniform, termini by which the
respective curves and surfaces are referred to.

Thus, our curve is entirely defined by the following in-
formation:

� The degreen of the bases,
� the set of control verticesdi and
� the knot vectoru.

In the case of uniform knot sequences the recurrence re-
lation to construct cardinal B-spline bases holds

�n(u) = �n�1(u) � �0(u) : (3)

*: Convolution operator.
Conversely, (1) allows us to interpret the curvec(u) as

a projection of an initial functionx(u) onto the function
spaceV , spanned by somedualbases	 . Along these lines,
the control vertices are formally given by an inner product
of x(u) and	 :

di = hx(u); 	i(u)i =

Z 1

�1

x(u)	i(u)du ;

	i(u) 2 V : (4)

Duality enforces the following relationships between the
bases:

h�i;  ji = �ij : (5)

�ij : Kronecker Delta function.
A thorough analysis of the properties of the duals are

beyond the scope of our paper and we refer to [10] or [13]
instead.

Note that the lower and upper bounds of the sum in (1)
restrict the spaceV to a finite dimensionality. For paramet-
ric curves, the upper projection has to be computed sep-
arately for thex, y and z coordinates. In a similar way,
projections of functions onto finite dimensional spaces are
fundamental to the theory and application of finite element
analysis (FEM) [14].

Tensor productsurfaces can be constructed straightfor-
wardly from parametric curves by computing 2D B-spline
bases�i(u)�j(v) from a tensor product of the 1D function
spaces. The parametric surfaces(u; v) is defined by:

s(u; v) =

L�1X
j=0

K�1X
i=0

dij�i(u)�j(v) : (6)



This approach carries out a set ofseparable2D basis
functions, one of which is illustrated for a bicubic 2D B-
spline basis function in Fig. 1. Note again a fundamen-
tal property of B-splines, namely the local support, which
equals the order(n+ 1)2 of the polynomial.

Fig. 1. Plot of a 2D bicubic B-spline basis
function

2.2 The Interpolation Problem

Partition of unity of B-spline bases force the curve or sur-
face to be bounded locally by theconvex hullof the corre-
sponding control vertices. In other words rather than pass-
ing through those points the curve or surface roughly ap-
proximates a set of predefined vertices. However, in many
practical data modeling applications, the construction of in-
terpolating B-splines is a critical issue. Fig. 2 illustrates the
interpolation problem for a planar curve.

Fig. 2. Illustration of the interpolation prob-
lem: A cubic spline curve has to pass through
a set of given points

In order to describe the interpolation problem
mathematically let’s restrict to parametric curves.
Let f = (f 0; ::;fK�1)

T be a vector of points to
be interpolated. Each entry off itself is a vector
fk = (fkx; fky; fkz). Obviously, the problem collapses
to finding the appropriate control verticesdi of the curve,
where for a given parameter valueuk the curve function
has to pass through the pointfk, or

fk = c(uk) =

K�1X
i=0

di�
n
i (uk) : (7)

Equation (7) can be rewritten in matrix form by

2
66664

f0

:::

fk

:::

fK�1

3
77775=
2
664

�0(u0) �1(u0) ::: �K�1(u0)

�0(u1) ::: ::: :::

::: ::: �i(uk) :::

�0(uK�1) ::: ::: �K�1(uK�1)

3
775

2
66664

d0

:::

di

:::

dK�1

3
77775: (8)

Hence, we have to solve a linear system of equations of
type

f = B � d ; (9)

which apparently proceeds straightforwardly by comput-
ing the inverse matrixB�1 or by decomposition.

2.3 Boundary Conditions

The parameter values do not necessarily have to corre-
spond to individual knots and thorough parameterization
has turned out to be of critical importance for getting mean-
ingful results. Due to the signal processing approach, we
restrict subsequent analysis to knot-wise interpolation and
direct our attention to the curve boundaries.

1) Floating End Conditions

Recalling that the curve needsn + 1 active bases in its
interval of definition we sum up to a total ofn + K � 1
basis functions, required to fully represent the curve in
[u0; ::; uK�1]. K of them are given by (8) and the others
can be selected to satisfy individual criteria.

2) Open End Conditions

We assume a knot vector of typeu = [u0; ::; u0; u1; ::; uK�1;
::; uK�1], where the boundary knots are repeated up to the
ordern + 1 of the curve. This popular technique forces
the curve to interpolate the endpoints. In this case and for
uneven degrees we end up withK � 1 equations to define
the interior spline intervals andn + 1 equations to specify



the boundary conditions. Endpoint interpolation costs 2
equations, namelyd0 = f0 anddn+K�1 = fK�1. The
remainingn � 1 degrees of freedom can be set to satisfy
additional criteria, like tangents, curvature and others, for
instance tot0 = d1�d0 andtK�1 = dn+K�1�dn+K�2.

3) Periodic End Conditions

Unlike the open curves from above a periodic closed
curve can be constructed by repeating the knot vector
[u0; ::; uK�1] periodically withuK = u0, uK+1 = u1 etc.
At the same time the control vertices[d0; ::;dK�1] are
repeated as well. In this case, (8) is sufficient to satisfy the
interpolation and no additional degrees of freedom are left.

It has to be noted, however, thatB can be arbitrarily ill-
conditioned and singularities may arise for even degrees and
coincidence ofuk with the knots [4]. In addition, unbal-
anced parameterization of the curve can lead to undesired
oscillations, such as the ones illustrated in Fig. 3. Here, the
curve has only been plotted in5=6 of the cyclic interval.

Due to the local support of the bases,B is in general a
sparse banded matrix, where the width of the band depends
on the degreen. Thus, sparse matrix algorithms perform
decomposition inO(N). We will elaborate on that subject
in subsequent sections.

Fig. 3. Influence of the parameterization on
the fairness of the curve for a periodic cu-
bic spline (a) u = [0; 1; 2; 3; 4; 5; 0; 1; 2; 3] (black
curve) (b)u = [0; 1:7; 2; 3:7; 4; 5; 0; 1:7; 2; 3:7] (grey
curve)

3 Cardinal B-Spline Interpolation

In the following section, the case of uniform B-splines is
discussed. Therefore, we start with an analysis of continu-

ous convolution. By discretizing the representations, the in-
terpolation problem can be implemented as a discrete con-
volution. One of the advantages of uniform B-splines is the
cyclic symmetry, i.e. Toeplitz structure of the underlying
matrix which allows one to compute an inverse filter se-
quence inverting our matrixB. In this context constructions
in Fourier space provide an elegant alternative.

3.1 B-Spline Interpolation as a Filter Operation

Recalling some fundamentals of signal processing [15],
the continuous 1D convolutionf (u) of an initial function
d(t) with a kernel�(u; t) is defined as:

f (u) =

Z 1

�1

d(t)�(u � t)dt : (10)

According to (4) we assume the functionf (t) to trace the
functional course of the inner product ofd(u) and some ker-
nel �(u), continuously shifted along some parametert. A
discretization of (10) evaluates the integral at a finite num-
ber of positionsti = i� and replaces it by the following
sum:

f (u) =

K�1X
i=0

d(i�)�(u� i�) : (11)

Note that the upper equation conforms with (1), which
actually defines our curve. Further discretization off at po-
sitionsuk = k� and auniform knot spacingset to� = 1
results in

f(k�) = fk =

K�1X
i=0

d(i�)�(k�� i�)

=
K�1X
i=0

di�(k � i) (12)

or in matrix notation as a special instance of (7)

2
66664

f0

:::

fk

:::

fK�1

3
77775 =

2
66664

�0 �
�1 ::: �1�K

�1 �0 ::: �2�K

�2 �1 ::: �3�K

::: ::: ::: :::

�K�1 �K�2 ::: �0

3
77775

2
66664

d0

:::

di

:::

dK�1

3
77775 ; (13)

where�i = �(i).
The rows of our matrixB are derived by mirroring and

shifting an initial sequencef�kg. It is easy to see that (13)
represents a discrete convolution of the sequence of control
verticesfdig with a discrete filter kernel given byf�kg.

We sum up as follows:A set of pointsffkg on the curve
can be computed by filtering the control points with a B-
spline low-pass filter kernel.



f = d � � : (14)

*: Convolution operator.
It follows immediately that one can solve the interpola-

tion problem by a convolution off with the inverse filter
sequencef kg :

d = f �  : (15)

In this case the required sequencef kg forms the en-
tries of the rows ofB�1. As elucidated in subsequent sec-
tions this sequence can be constructed from a closed form
representation in Fourier domain.

3.2 Stability

A further critical issue deserving attention is the stabil-
ity of the interpolation problem. Therefore, we compute the
condition number� of the circular Toeplitz matrixB from
above using the matrix-2 norm [16]. In this case, the norm
is given directly by the ratio of the two extreme singular
values� which themselves correspond to the respective ab-
solutes of the eigenvalues of the matrix:

�(B) = kBk �
B�1

 =
�max

�min
: (16)

For efficient computation of the eigenvalues we exploit
their correspondence with the discrete Fourier transform for
cyclic matrices. That is, given the closed form continuous
description�D of the FT of a zero-centered B-spline se-
quencef�kg (see [8], [10]) with uneven degree as1

�D = �0 + 2

bn+2c+1X
i=1

�i cos(2�if) : (17)

We find the condition number easily by maximizing
and minimizing (17). Some algebraic transforms which are
omitted here for brevity reveal

�(B) =

0
@1� 4

(n�2) DIV 4X
i=0

�2i+1

1
A
�1

: (18)

Table 1 depicts the condition number ofB as a function
of the B-spline degreen. We observe a moderate increase
with n making the problem tractable for all spline orders
used in practice.

1 As a consequence the eigenvalues ofB can be computed at the
speed of DFT algorithms.

Table 1. Condition number of B as a function
of the degree n of the B-spline

degreen condition number�

2 2.0

3 3.0

4 4.8

5 7.5

6 11.803

7 18.530

8 29.112

9 45.726

10 71.828

11 112.826

12 177.226

13 278.386

3.3 Fourier Domain Constructions

An elegant way of finding the dual sequencef kg is to
make use of Fourier domain descriptions. Especially, ana-
lytic formulations of the FT of B-spline bases, such as given
in [8], enable us to construct the dual filter sequence without
much effort.

Recalling the Fourier convolution theorem the continu-
ous form of the curve equation of [8] converts to a product
of the Fourier transformsF (f) and�(f), wheref denotes
the frequency:

F (f) =D(f)�(f) or D(f) = F (f)	(f) : (19)

The upper equation gives us the relationship between the
FT of the convolution kernel� and it’s dual	 :

�(f)	(f) = 1 , 	(f) =
1

�(f)
: (20)

Hence,	(f) represents an inverse filter, which cancels
the smoothing ofD(f) by�(f).

In the discrete setting, we develop an analytic version of
	D(f) straightforwardly by inversion of (17):

	D(f) =
1

�0 + 2
Pbn+2c+1

i=1 �i cos(2�if)
: (21)

Note that both�D and	D are continuous functions. Fig-
ure 4 illustrates the functional course of	D(f) for different
spline degrees.
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Fig. 4. Fourier transforms of the inverse filters
	D(f) for different degrees n

Note furthermore that	D(f) has no poles in the interval
of interest.

In order to implement this approach using inverse
FFT, we have to discretize	D(f) taking K samples in
[�0:5; 0:5]. Therefore, we generate a discrete sequence
f	pg = f	D(fp)g of the inverse filter in Fourier space by
sampling at frequency positions

fp =

�
�

�
1

2
+

p

K

��
; p = 0; ::;K � 1 : (22)

Pointwise multiplication of the discrete FTfF (fp)g
with the inverse filter sequence renders the FT of our
control points, or2

Dp =D(fp) = F (fp)	D(fp) : (23)

The control pointsdk in spatial domain are computed by
a discrete inverse Fourier transform (DIFT) of type:

dk =
1

K

K�1X
p=0

Dpe
�i2�kp=K (24)

i: Complex operator.
Note that in the discrete implementation the frequency

interval is shifted to[0; 1].
A major advantage coming along with frequency com-

putations is the energy concentration in the low-pass coeffi-
cients of the transform. This spectral decomposition allows
us to perform versatile analysis, such as the separation of
high frequency noise from the ‘curve signal’. Most simply,

2 According to the fundamental relationships between Fourier
and spatial domain discretization, the FT leads to a periodic
repetition of the ‘curve signal’ in spatial domain. See literature,
such as [17],[18] or [19].

we can define an upper cut-off frequency,jfg j < 0:5 from
which on all coefficients are set to zero. The resulting fre-
quency window�g(f) is given by

�g(f) =

�
1 for jf j � fg
0 for jf j > fg

(25)

and the ‘denoised’ control points by

~D(f) = F (f)	 (f)�g(f) : (26)

Due to the orthogonality of Fourier basesfg governs the
accuracy of the interpolation withinL2.

The Fourier setting described above assumes periodic
end conditions, that is, it operates on a periodic knot vector
and produces closed curves. However, most applications re-
quire open end conditions, which can be generated by eval-
uation of the curve in a subinterval of the parameter space.
Unfortunately, this truncation may lead to undesired oscil-
lations of the curve, such as illustrated in Fig. 5 and Fig. 6.
The curve plotted in Fig. 5 exhibits oscillations at its ends
that can be avoided by insertion of multiple end points. A
triple end point produces a fair curve in this example.

Fig. 5. Avoidance of oscillations generated
by truncation. Insertion of multiple end
points generates a fair interpolation curve
(grey:single;black:double;light grey: triple)

A similar behavior can be observed for 2D tensor product
surfaces. In Fig. 6(a) we interpolated a step function with
single end points. The parametric setting used to illustrate
the phenomenon reveals the deviation of individual points
due to truncation. Again, triple end points solve the problem
and produce a fair surface, such as depicted in Fig. 6(b).

In order to exploit the speed of the FFT zeros have to be
padded into the data vector up to the following power of2.



(a)

(b)

Fig. 6. B-spline interpolation in 2D parametric
settings (step function). (a) single end points
(b) triple end points

4 Wiener Filtering

Besides interpolation, many practical applications in
CAGD face the problem of coping with corrupted data
samplesfk. These curruptions are mostly caused by
measuring systems of limited accuracy. In such cases,
rather than interpolation the goal is often to fit a curve
or surface through the points in a least squares sense.
We will demonstrate that this least squares estimation is
accomplished elegantly in Fourier space by exploiting the
fundamental features of so-called Wiener filters [11]. Due
to the rich literature on Wiener-Kalman problems3 [20], we
3 Norbert Wieners’ fundamental work relates to linear estimation

theory of stochastic signals. Later, recursive implementations of

restrict our description to a brief summary and omit most
mathematical details.

4.1 The Notion of the Wiener Filter

We start with continuous descriptions and assume our
dataf(u) to be distorted by an uncorrelated noise signal
r(u). Our goal is to find the control vertices of the curve
c(u), which smoothesf(u) in a least squares sense. Let

f (u) = c(u) + r(u) : (27)

The linearity of the Fourier transform translates the rela-
tion to:

F (f) = C(f) +R(f) : (28)

The so-called Wiener filter problem consists of finding
a least squares optimal estimateC of the initial signal by
design of an appropriate filterW (f). It restores the ‘curve
signal’ ~C(f) from noise

~C(f) = F (f) �W (f) (29)

and thereby maximizes the signal-noise ratio in spatial
and frequency domain with

Z 1

�1

��� ~C(f)�C(f)
���2 df = min : (30)

It can be proofed that this optimal filter is constructed
from the power spectra both of the initial signalC(f) and
of the distorting noiseR(f)

W (f) =
jC(f)j2

jC(f)j+ jR(f)j
2 : (31)

Equation (31) is often called theWiener filter. Given
some estimates of the power spectra this simple and ele-
gant equation allows the computation of least squares fitting
curves.

Now we are in place to combine the results of section
3 with (31) and invoke our filter	 . As a consequence we
obtain a least squares estimateDlq(f) by

Dlq(f) = F (f)	(f)W (f) : (32)

In finite dimensional discrete settings the relations from
above can be summarized as follows: An additional weight-
ing of the sequencefDpg computed by (23) with a Wiener
filter sequencefWp = W (fp)g provides us with the con-
trol pointsfDlq(p)g of a curve, which fits through the data
fF pg. The inverse Fourier transform renders the desired
points in spatial domainfdkg.

such filters using the notion of state variables became famous as
Kalman filters [20]. They have enormous practical importance
for signal detection, restauration and tracking.



Note that (31) can also be computed as a vector-valued
filter W (f) treating each scalar component separately.

4.2 General Spectral Estimates

One of the difficulties of the Wiener filter is to compute
robust spectral estimates of signal and noise. In cases of un-
known data corruption we have to extract this information
somehow from the power spectrum of the given dataF (f),
where

jC(f)j
2
+ jR(f)j

2
= jF (f)j

2
: (33)

Generally, spectral estimation is nontrivial and in many
cases there is no chance to get the initial signal back from
the corrupted sequence. A fast and mostly robust way of es-
timation [21] is illustrated in Fig. 7. Assuming the signal to
be smooth and band-limited the noise characteristics can be
estimated by computation of an asymptotic regression line
towards high frequencies. Assuming furthermore a linear or
constant spectral behavior of the distortion, straightforward
extrapolation reveals the signal.

f

logF(f)

F2 (measured)

R2 (extrapolated)

C2 (from F2 und R2)

Fig. 7. Power spectrum of some measured
data and its decomposition into signal and
noise (see also [21])

4.3 Improved Estimates for B-Splines

For B-spline curves and surfaces, however, it is possible
to incorporate more a priori knowledge into the estimation
algorithm. Here, we consider the uncorrupted signal to rep-
resent a smooth ‘low-pass’ curve defined by a linear combi-
nation, such as in (1). For periodic curves and uniform knots
the Fourier transform of (1) is obtained by

C(f) = sincn(f)
K�1X
j=0

dj � e
i2�fj (34)

0

1

2

3

0 50 100

log|C(f)|2

f

(a)

0

1

2

3

0 50 100

log|Ctrunc(f)|
2

f

(b)

Fig. 8. Illustration of the effects of truncation
on the power spectrum of B-splines. (a)Power
spectrum of a periodic curve with 256 sam-
ples. (b) Truncation after 5/6 of the period

because the shifting of individual basis functions trans-
lates to a phase shift of its Fourier transform. Consequently,
a B-spline curve distorted by some noise yields to

Cnoise(f) = sincn(f)
K�1X
j=0

dj � e
i2�fj +R(f) : (35)

Thorough analysis of this equation shows that the signal
vanishes at the zero crossingsfi of the sinc polynomial.
Obviously, the noise spectrum can be estimated from

Bnoise(fi) = R(fi) : (36)
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Fig. 9. Data restauration using the Wiener Filters. (a) Original data set. (b) Corrupted data (noise
level = 0.11). (c) Corrupted data (noise level = 0.5). (d) Horizontal slice from the power spectrum.
(e) Restauration of Fig. 9(b). (f) Restauration of Fig. 9(c). (Data source: Courtesy Bundesamt f ür
Landestopographie, Bern, Switzerland)

Unfortunately, these relations are only valid for periodic
curves. Truncation to enforce open end conditions affects
the Fourier transform of the curve and cancels out the zero
crossings. In Fig. 8 a periodic curve is compared to a curve
truncated after5=6 of the period.

We recommend to employ the asymptotic regression line
method for open end conditions. In mere periodic settings
the zero crossing search can be an appropriate choice.

5 Results

In the following section we present various applications
to illustrate the performance and suitability of our method.
It ranges from sheer parametric interpolation for image
warping to removal of quantization noise in compressed ge-
ometry.

5.1 Error Norms

As with all signal processing approaches our most
important measure to quantify the error imposed by the
method is the signal-noise ratio defined as

C

R
= 20 � log

EC

ER
(dB) ; (37)

whereEC andER are theL2-norms ofc(u) andr(u).
For geometric objects it is sometimes desirable to record the
maximum(Linf) error. Therefore both errors will be used.

5.2 Interpolation Error

Table 2 reports the numerical error of the Fourier space
method for different test data sets and 32 Bit floating point
precision. The good conditioning of the problem keeps the
numerical errors small.



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Wiener Filtering of the parametric ‘Goblet’ data set corrupted by quantization noise. (a) – (d)
Different bit rates used for compression. (e) – (h)Resulting surfaces computed by the Wiener filter

Table 2. Maximum interpolation error (Linf) for
different test data sets

data set Maximum error

Box function 1.19210�7

Matterhorn 1.32010�6

5.3 Noise Removal

The second example is a non-parametric digital terrain
model of size 100x100 of the Matterhorn, Switzerland. In
order to investigate the power of the Wiener filter, we cor-
rupted the data artificially by white noise signals of different
amplitude. Fig. 9(a) depicts the original data set along with
two different noise signals. The restauration of the signal

provides visually appealing results, where for large noise
amplitudes the Wiener filter cancels out high frequency sig-
nal components, such as in Fig. 9(f). Specifically, Fig. 9(b)
shows a 1D horizontal slice from the power spectrum. Ta-
ble 3 gives some quantitative results. The Wiener filter, as
a least squares estimator improves theL2 error mostly for
medium and low signal-noise ratios, not necessarily theLinf

error.
In order to further investigate the performance of the

Wiener filter we tested parametric data sets distorted by
noise of unknown spectral composition. The data sets were
generated by a lossy geometry compression scheme, such
as presented in [2]. Changing the number of bits used to en-
code the data creates some quantization noise. In Fig. 10 the
initial data set is a smooth parametric B-spline surface sam-
pled at size 100x100. In this example the performance of the
Wiener filter is paramount. We observe that even for strong
distortions (5 Bit quantization) the estimation produces a



Table 3. Performance of the Wiener filter on
the digital terrain data set. Figures in the sec-
ond row represent the Wiener filter

noise C=R ratio (dB) L2-error Linf -error

0.11 78.48 2.21 2.58

77.36 2.51 7.22

0.25 64.93 10.74 5.69

65.57 10.0 9.23

0.5 52.96 44.48 11.5

54.75 36.2 14.34

1.0 41.68 176.8 23.2

43.9 136.2 20.6

Table 4. Error improvement of the Wiener filter
for the ‘Goblet’ data set

quantization L2-error Linf-error

10 Bits 8.7810�7 3.2010�3

5.1310�6 1.5410�2

7 Bits 3.6310�5 0.0213

2.0710�5 0.0144

5 Bits 7.7610�4 0.087

2.5310�4 0.041

visually smooth and fair surface. Table 4 gives quantitative
results.

5.4 Image Warping

Our last example relates to 2D interpolation for image
warping. Here, an initial grid is defined interactively on the
image to govern the warp. We assume the grid to be recti-
linear in some 2D tensor product parameter space, spanned
by the coordinates(u; v). The goal is to compute a smooth
cubic interpolation of the warped target image based on the
grid information. In this case the interpolation problem is
twofold: In a first step, we construct a vector-valued para-
metric interpolation functions(u; v) which essentially com-
putes the spatial position(sx; sy) in the initial image at
each given coordinate pair(ui; vj) in parameter space. By
equally spaced sampling of the parameter space we obtain
a 2D matrix of positions in the initial image at any desired
resolution. Now, given a spatial position(sx; sy) the second
step consists of a non-parametric cubic B-spline interpola-

tion/filtering in the original image. To obtain the pixel color
the interpolation is computed independently for R, G and B.
Note that the second step is ananti-aliasingof the results.

Some illustrations are given in Fig. 11 and Fig. 12, re-
spectively. We observe that the cubic polynomial provides
smooth interpolations and cancels out all aliasing artifacts
while still preserving the image details. The parametric in-
terpolation of image positions allows us to define fancy
warp grids. In this context the Wiener filter could be used
to denoise the initial image.

(a)

(b)

Fig. 11. Image Warping. (a)Original image and
interactively defined warp grid. (b) Resulting
image

6 Conclusions and Future Work

We presented an alternative way of computing B-spline
interpolation by inverse filtering in Fourier space. Although
the computational speed of the approach is limited by the
complexity of FFT algorithms the spectral formulations
provide various useful properties. Specifically, least squares



(a) (b)

Fig. 12. More fancy warp grids. (a) Original
image and grid. (b) Resulting image

fitting problems and the removal of data corruptions can be
tackled efficiently by using the notion of Wiener filters. Al-
though the presented method performs surprisingly well for
some of the examples, yet, the robust spectral estimation of
unknown distortion sources is still an open issue and will be
part of future investigations.
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