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Fairing Of Non-Manifolds For Visualization
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Figure 1: Fairing of a simple scene (see also CP1):
a) Original input scene.
b) Scene faired in the two-manifold setting: the intersections between water and land and between the columns and the top/bottom of the shrine are lost.
c) Scene faired in the non-manifold setting: the topological type of the scene is preserved, and the model is smooth both along and across intersection curves.

a) b) c)

Abstract
The concept of fairing applied to irregular triangular meshes has
become more and more important. Previous contributions con-
structed better fairing operators, and applied them both to multires-
olution editing tools and to multiresolution representations of
meshes. In this paper, we generalize these powerful techniques to
handle non-manifold models. Our framework computes a multi-
level fairing of models by fairing both the two-manifold surfaces
that define the model, the so-called two-features, and all the
boundary and intersection curves of the model, the so-called one-
features. In addition we introduce two extensions that can be used
in our framework as well as in manifold fairing concepts: an exact
local volume preservation strategy and a method for feature preser-
vation. Our framework works with any of the manifold fairing
operators for meshes.

CR Descriptors: Boundary Representations, Surface Representa-
tions, Non-manifold, Fairing, Geometric Modeling, Triangle Deci-
mation, Multiresolution Models.

1 Introduction

1.1 Motivation: Model-Centric Graphics
In recent years, with ubiquitous low-priced, high-performance
graphics hardware conquering the desktop, the models of many
graphics applications are becoming ever more complex. Driven by
the need to manage model complexity there has been a conver-
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gence of computer graphics and modeling technologies. Rather
than maintaining separate representations for modeling and ren-
dering, researchers strive towards model-centric graphics, the ben-
efits of which include improved workflows and reduced data loss
[1], [10].

Most core fields of computer graphics, such as animation, have
concentrated their efforts on working with manifold surfaces, since
they can be handled more easily: non-manifold models are inher-
ently more complex to construct and to maintain. The rationale
behind this choice has been that the visual quality of a product is of
paramount importance, and other considerations, such as the topo-
logical consistency of a model, were not thought of as priorities.
By taking a model-centric view we free the artist from concerns
about topological inconsistencies and construct automatisms that
allow him to concentrate on the creative part of his work. We advo-
cate the use of non-manifold models, as built in an advanced mod-
eling framework. As an example, consider figure 1-a that depicts a
non-manifold graphics model, where the water, the land, the col-
umns, the top and bottom of the shrine and the bunny were mod-
eled separately as manifold surfaces. If these manifolds are faired
independently (figure 1-b), severe artifacts become visible. For
instance, the water does not wash against the terrain and the top
and bottom of the shrine are not connected to the columns. If the
same model is faired in a non-manifold model-centric setting (fig-
ure 1-c), the topological type of the model is preserved, and some
of its features, such as the shape of the top of the shrine, are pre-
served more accurately.

A significant step towards model-centric graphics are editing
frameworks that build multiresolution hierarchies directly from tri-
angle meshes. As a core feature, users can interactively edit and
manipulate meshes at different levels of resolution. A key ingredi-
ent of these frameworks is discrete mesh fairing, applying signal
processing techniques to meshes. However, advanced modeling
frameworks typically build non-manifold models. We address the
issue of applying fairing to non-manifold models.

In order to further understand the problem of non-manifold fair-
ing, consider the example given in figure 2-a, where two triangular
meshes intersect. Applying an adaptation of a manifold fairing
method will either remove the intersection completely, depicted in
figure 2-b, or it will generate a non-smooth model, as shown in fig-
ure 2-c. Our non-manifold fairing method, by contrast, smooths
the entire model including the two partial surfaces and the inter-
section line, as presented in figure 2-d (see section 2.3).
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By extending conventional fairing operators to non-manifolds
we provide a framework that can be used to build advanced multi-
resolution and model-centric graphics representations supporting
constraints and other useful functionalities. In fairing non-mani-
fold models we approach a system capable of automation.

1.2 Related Work
Among the most popular concepts of multiresolution editing
frameworks we mention [17]. The authors used Loop subdivision
for the estimation of the high resolution mesh from the coarse rep-
resentation. Another elegant system was devised by [9], who was
the first to demonstrate the advantages of a discrete fairing method
as a fairing operator for mesh editing. He combined a very fast
multilevel smoother with a progressive mesh algorithm for mesh
simplification. These two examples show that the key ingredients
to design multiresolution mesh representations include both a fair-
ing or subdivision method and a mesh reduction algorithm.

Of the variety of mesh reduction methods, the most popular ones
encompass the progressive mesh of [7] that computes a sequence
of progressively refineable meshes by successive application of an
edge collapse operator. In combination with appropriate data struc-
tures [8] and error metrics [4] this method provides a very power-
ful representation for triangle meshes. Other popular methods
comprise [14] who proposes a vertex removal strategy with a local
remeshing method to successively simplify an initially dense
mesh.

In order to efficiently build such multiresolution mesh hierar-
chies, mesh fairing has often been used as a core technology to
enhance the smoothness of a mesh. Unlike geometrically moti-
vated approaches to fairing that involve the costly minimization of
fairing functionals, [16] pioneered a signal processing approach to
mesh fairing. This approach generalizes the notion of “frequency”
to meshes of arbitrary connectivity by taking the eigenfunctions of
the discretized Laplacian. Hence, mesh smoothing can be accom-
plished by attenuation of the eigenvalues associated to the “high
frequencies” of the mesh. This type of “low-pass” filtering band-
limits the mesh and produces visually appealing models. Since the
storage and computational cost is linear in the number of vertices,
this approach has become popular for mesh filtering. While mesh
fairing can be considered as a diffusion of the perturbations over
the mesh surface, [2] proposed a fast and robust implicit fairing
scheme using a backwards Euler integration. Another important

aspect relates to the quality of the estimation of the surface curva-
ture. Rather than using discretized Laplacians [2] proposed a dis-
crete curvature flow operator. A further important extension of the
signal processing approach to triangle meshes has been given in
[6]. They elegantly combined non-uniform subdivision with a fair-
ing algorithm to transform an arbitrary mesh into a multiresolution
representation, where the details influence the mesh on an increas-
ingly coarse scale. By manipulation of individual scales, they
obtain low-, high-, and bandpass behavior, with very impressive
results.

We note, however, that most of the described research has been
directed towards the handling of arbitrary, but two-manifold,
meshes. In contrast, relatively little work has been conducted
towards multiresolution editing of non-manifold models. By aban-
doning topologically simple models, such as spheres and mani-
folds, and by tolerating non-manifold geometry, we obtain a new
dimension of modeling features and bring in more of the classical
Computer Aided Design functionality into graphics modeling.
Although non-manifold representations are being widely used in
modeling, there has not been any framework for multiresolution
editing of non-manifolds introduced so far.

In order to devise such a framework, the described key compo-
nents have to be extended to tolerate non-manifold geometry. Mul-
tiresolution meshes in principle can accommodate topological
changes [4] and extend to multidimensional simplices [12]. We
are, however, not aware of any fairing framework for non-mani-
folds.

1.3 Our Contribution
In this paper we present a framework for multiresolution fairing of
non-manifold models - one of the key ingredients needed to build
multiresolution editors. We demonstrate the usefulness of our
methods by taking various examples, including subsurface models
from the domain of geoscience. The framework comprises the fol-
lowing components:
• A multilevel fairing algorithm based on a multiresolution repre-

sentation of non-manifold models. The flexibility of the basic
fairing algorithm allows us to use any discrete Laplacian, curva-
ture flow, or second order difference operator.

• The underlying boundary representation data structure allows us
to model basic constraints, such as boundary conditions and
intersection curves. These constraints are usually extracted auto-
matically from models, but they can also be specified manually
by the user.

• The data structure, in conjunction with the basic fairing algo-
rithm, enables us to define complex constraints, such as volume
preservation and feature preservation easily. The volume preser-
vation strategy is applied locally, thus we can define volumes in
a model in a simple and consistent manner. Features are pre-
served by freezing vertices and curves, without degrading the
quality of the fairing process.

Section 2 stresses the difference between surfaces and models and
briefly reviews the core concepts of conventional mesh fairing.
Section 3 introduces the novel non-manifold fairing algorithm.
Finally, in section 4 we address two important extensions to our
basic fairing framework: volume and feature preservation.

2 Surfaces versus Models
In this section we briefly review some of the existing fairing meth-
ods for manifolds. All of the algorithms that we will describe can
be extended for usage within our framework to smooth non-mani-
fold models. In addition we will introduce the notions of two-man-
ifold and non-manifold models and stress the specifics of non-
manifold fairing.

Figure 2: The problem of non-manifold fairing:
a) Initial model.
b) + c) Results obtained using simple adaptations of manifold smoothers.
d) Smooth model computed with our framework.

a) b)

c) d)
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2.1 Fairing Methods for Manifolds
We start our survey of fairing strategies by presenting a one-

dimensional fairing operator. Fairing in one dimension is easier to
achieve, since we are working in a regular, parametrizable setting.
As [2] noted, the standard 1D Laplacian assumes the distance
between the three vertices , and as being constant.
If the distance between individual vertices varies substantially, the
standard Laplacian can be improved using, for instance, general-
ized divided differences or other concepts from numerical analysis
[15], which results in

(1)

where  and 1.
The fairing of two-dimensional triangular meshes is inherently

more complex, since in general meshes are not regular. In the fol-
lowing we summarize the better known fairing operators that have
been constructed in recent years.

In his pioneering work [16] generalized the fairing concepts
known from signal processing to smooth irregular meshes. He
essentially constructed a matrix that provides a discrete approx-
imation of the Laplacian for all the mesh vertices

(2)

and he proposed to smooth the mesh using an iterative Gaussian
filtering method:

(3)

where is the identity matrix and is an appropriately
selected scalar value. The construction of the matrix determines
the properties of the fairing operators.

[9] constructed a multiresolution editing framework for meshes
with arbitrary connectivity. In order to edit surfaces effectively
they used a fairing method to remove high frequencies from the
mesh. Their fairing algorithm combines a Gaussian smoother with
an umbrella operator to approximate the Laplacian . A varia-
tional formulation states the fairing problem as a minimization of a
membrane energy and a thin plate energy of a “mesh-function”. In
order to discretize the variational formulation using divided differ-
ence operators the authors assumed that the vertices in the one-
neighborhood of every vertex have a regular parametrization.
Under this assumption he could construct the following two opera-
tors:

(4)

which corresponds to a discretization of the Laplacian  and

(5)

which corresponds to the discretization of . In (4) and in (5)
the vertices lie in the one-neighborhood of , and
denotes the number of vertices in .

[2] proposed two new, improved operators to smooth two-mani-
fold surfaces. The first one extends equation (4) to better handle
meshes with differently sized triangles. To this end, each vertex
in the one-neighborhood of is weighted with the length of
the edge  between  and , yielding:

 with (6)

The second operator introduced in [2] is based on the concept of
curvature flow. Surfaces are faired by moving the vertices in the
mesh along their normals with a speed equal to their mean cur-
vature . Hence,

(7)

The right hand side of equation (7) can be computed efficiently
for a triangular mesh as

(8)

where the and are the angles opposite to the edge in
the two triangles that share , and is the sum of the areas of
the triangles in the one-neighborhood of .

The authors also presented a more efficient solution of the under-
lying diffusion equation than (3) by using implicit integration, and
they devised a strategy to obtain exact global volume preservation
during the fairing process.

Finally, [6] described a new fairing algorithm that relies on the
minimization of second order differences defined at every
edge e in the mesh. The new position of a vertex is chosen as to
minimize the sum of the squares of the second order differences
within the support of the vertex . From this formulation it is pos-
sible to obtain a discretized Laplacian that has the form:

, with (9)

where stands for the extended one-neighborhood of with
flaps, and the are a set of coefficients that depend on the geo-
metric position of the vertices in the mesh. More details can be
found in [6].

2.2 Manifolds and Non-Manifolds
In order to better understand what follows, let us first consider a
formal definition: a surface is a two-manifold if all of its points
have an open neighborhood homeomorphic to .
This definition can be extended to two-manifold surfaces with
boundaries, where every point has an open neighborhood homeo-
morphic to either or . More information on n-manifolds
can be found in [11].

If a surface does not satisfy this criteria, it is called a non-mani-
fold. Examples of non-manifold surfaces include for instance self-
intersecting surfaces or T-junctions2. There are various data struc-
tures that describe non-manifolds. In the subsequent framework we
use a boundary representation, such as the one presented in [13].
This representation describes a model using a graph: three-dimen-
sional volumes are bounded by two-dimensional surfaces, which in
turn are bounded by one-dimensional curves. Finally, 1D lines are
bounded by zero-dimensional vertices. In general, we are going to
call these primitives n-features, where .

In this paper, we will also assume that the non-manifold models
are simplicial complexes, that is, the intersection of two simplices
is either empty or a simplex. An n-simplex is the convex hull of
n+1 affine independent vertices: a 0-simplex is a point, a 1-sim-
plex is a segment, a 2-simplex a triangle and so on.

In our framework, we describe a non-manifold model with the
following data structure:
• A set of geometric positions: every vertex in the model has a

unique entry in this set. Non-manifold vertices also have only
one entry to guarantee that the model is smoothed correctly.

1 Note that (1) corresponds to the standard Laplacian for
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• A set of two-features: a two-feature is defined as a triangulated
two-manifold. If we assume that the non-manifold model was
generated from n two-manifold surfaces, then a two-feature cor-
responds to one of these two-manifolds plus all the vertices and
triangles introduced in the manifold by the computation of the
intersection curves.

• A set of one-features: one-features are piecewise linear curves
defined in one or more two-features. We will distinguish in this
paper between two types of one-features: user-specified one-fea-
tures and representation-specific one-features. Intersection and
boundary curves are examples of representation-specific one-
features.

• A set of zero-features: zero-features are vertices in the model
that must be interpolated. We distinguish between two types of
zero-features: user-specified zero-features and representation-
specific zero-features. Vertices shared by two or more one-fea-
tures are examples of representation-specific zero-features.
The user can force any vertex to be a zero-feature, and any 1D

curve to be a one-feature. This will allow us to construct point- and
curve- interpolating smoothers (see section 4.2).

Furthermore, we observe that it is possible to identify two differ-
ent embeddings of oriented (n-1)-dimensional manifolds (such as a
one-feature) in an oriented n-dimensional manifold (such as a two-
feature). Consider the intersection curve between the two two-fea-
tures illustrated in figure 3: for the yellow two-feature it is an inte-
rior curve, for which the 2D Laplacian can be computed, and for
the green two-feature it is an boundary curve, for which the 2D
Laplacian cannot be evaluated without explicit boundary condi-
tions. We define two types of (n-1)-dimensional embeddings:
• An (n-1)-dimensional manifold is an l-seam if an n-dimensional

Laplacian will be computed for its vertices. Usually this corre-
sponds to (n-1)-manifolds embedded in the interior of an n-man-
ifold. They will be denoted by blue curves in our examples.

• An (n-1)-dimensional manifold is an l-limit if an n-dimensional
Laplacian will not be computed for its vertices. Usually this cor-
responds to (n-1)-manifolds embedded on the boundary of an n-
manifold. They will be denoted by red curves in our examples.1

2.3 Why Manifold Fairing Operators Fail on Models
Unfortunately, a non-manifold model cannot be smoothed by
straightforward application of the operators we described previ-
ously to all the two-manifold surfaces in the model. The operators
from section 2.1 assume that the neighborhood of a vertex is
homeomorphic to and, as a consequence, they are not defined
at non-manifold singularities. Of course, one could envision
straightforward extensions of the manifold operators to adapt them
to non-manifold models. We discuss two of them using the model
illustrated in figure 2-a:
I. A simple adaptation consists in smoothing the model by fairing

all the two-features separately. In this approach, each two-fea-
ture would have its own geometric information, and the position
of the non-manifold vertices would be replicated in multiple

two-features. Figure 2-b depicts the result of fairing the input
model using this strategy. Since the two-features have been
faired separately, and since the information on the l-seam has
not been used, the resulting model is optimally smooth, but the
l-seam has been entirely removed. In general this approach does
not preserve l-seams or l-limits, and the faired models it gener-
ates are not simplicial complexes. As a consequence it is
required to recompute the intersections between all the two-
manifolds - a very costly computational burden that must be
avoided.

II. Another strategy is to define the neighborhood of a vertex as
the union of all the neighborhoods of in all the two-features
where is defined, and then use a standard manifold fairing
operator to smooth the model. Figure 2-c presents the faired
model obtained when using this method. The model was not
smoothed at all. The problem is that the Laplacian of the verti-
ces in the l-seam is equal to zero, since the Laplacians of these
vertices in the yellow and green two-features have the same
magnitude, but inverse directions.

Finally, figure 2-d shows what we consider a correct result. First
of all, the l-seam has been preserved. This is very important, since
we usually do not want to change the topology of the model during
the fairing process. Furthermore, the two two-features in the model
are smooth, also across the l-seam. Finally, all the one-features in
the model are smooth as well, and the ten zero-features (the green
points) have been interpolated.

In this example we used the Umbrella operator to estimate the
Laplacian, and we avoided the shrinking problem by handling the
boundaries of the model as l-limits.

3 Model-Centric Fairing
In this section we present a novel approach to smooth non-mani-
fold models. In a model we will smooth both the two-features and
the one-features simultaneously, and we will achieve cross-l-seams
smoothness.

3.1 Overview
The manifold smoothers described in section 2.1. remove high fre-
quencies by moving the mesh vertices so as to minimize an
approximation of the curvature. Without restricting the generality
of our framework, we will work with an approximation of the
Laplacian for the following analysis. Other operators could be
used as well.

Our goal in smoothing non-manifold models is to fair all the
two-features and all the one-features while interpolating the zero-
features and guaranteeing cross-l-seams smoothness. As we will
explain subsequently, this can be achieved by constructing a
framework on top of any conventional manifold smoother. The
algorithmic flow of the resulting method is similar to the flow of
conventional smoothing algorithms, and is summarized by the fol-
lowing pseudo-code fragment:

// Step 1
for n from 1 to 2 do
for all n-features nF in the model
for all vert in nF which are not in a l-limit of nF do
nDLapl[n-feature][vert] = nDLaplacian (vert);

// Step 2
for n from 1 to 2 do
for all n-features nF in the model do
for all vert in nF do
if vert does not belong to a m-feature with m<n do
computeNewPos (vert, nDLapl);

In the first step the approximation of the Laplacian is computed
for all the vertices in the model. A 2D Laplacian is computed for
all vertices that do not lie in an l-limit, and a 1D Laplacian is com-
puted for all the vertices that are not l-limits in the one-features.

Figure 3: The blue one-feature is an l-limit in the green two-feature and an l-seam in
the yellow two-feature.

1 Note that we extended the conventional definitions of seams and
limits from CAD.
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Note that it might be necessary to compute multiple Laplacians for
a single vertex, such as for vertices in an l-seam, where both a 1D
and a 2D Laplacians are needed.

The core of our framework is the function computeNewPos () in
the second step, where the new position for all vertices must
be computed. Immediate use of simple approaches such as (3)
would not generate fair models, since cross-l-seam smoothness
could not be guaranteed. Instead, the new position for the ver-
tex is chosen as to minimize a weighted sum of the Laplacian

and the Laplacians of the vertices in the one-ring of
, thereby increasing the support of the vertices in the model. The

zero vertices in the model are interpolated, the vertices that belong
to a one-feature are smoothed with a 1D Laplacian, and the
remaining vertices are smoothed with a 2D Laplacian.

Note that depending on the choice of the underlying operator we
will minimize different functionals, such as the ones reviewed in
section 2.1.

3.2 A Fairing Functional for Non-Manifolds
The first step in the pseudo-code algorithm presented in the previ-
ous subsection can be computed using any existing fairing opera-
tor. The basic principle behind our approach for the second step is
to increase the support of a vertex , so that during the fairing
process it will not only minimize its own Laplacian , but also
the Laplacian of its neighboring vertices . Formally, the
new position of a vertex is computed using (10) for vertices
in the one-features and (11) for the remaining vertices.

(10)

(11)

where and are the indices of the vertices to the left and right of
in the one-feature respectively, and represents a weight

associated with the Laplacian of the vertex . Note that the
weights control the importance of the curvature of an individual
vertex with respect to the fairing process. In the next subsection we
will present a strategy to choose these weights.

Equation (10) and (11) increase the support of the vertex . For
instance, if the original operator had a support over the one-neigh-
borhood of , then (11) extends its support over the two-neigh-
borhood of . This is a fundamental property, since it allows us to
achieve cross-l-seam smoothness without having to move the verti-
ces on the l-seams.

In the following we will show how to derive equation (11). A
similar approach can be used to derive equation (10). The new ver-
tex position is computed by solving an system of
equations using a least squares method. We start with the follow-
ing system of equations

(12)

which depicts the ideal solution where all the Laplacians are zero.
Next, we need a formulation of the Laplacian for a vertex .

(13)

This definition is general enough to represent most of the opera-
tors described in section 2.1. If more advanced operators should be
devised in the future, it might be necessary to extend the definition.

We can construct a linear system of equations from equation (12)
using equation (13), which yields:

(14)

Note that if we plug equation (13) in (14) would disappear
from the right hand side. Finally, we can compute the new position

of the vertex that best solves (14) with respect to the two-
norm. This can be achieved using a least squares approach that
yields the normal equation (15):

(15)

It should be noted that we do not make any assumption about the
Laplacians . We simply use these values as approximations of
the curvature at every vertex . Equation (15) essentially states the
fundamental relationship used to compute the new position of
the vertex analytically from the old position . This confirms
our claim that we can use any of the manifold smoothers presented
in section 2.1.

Figure 4 visualizes the ideas behind the functional described in
this section: figure 4-a shows the Laplacian computed at every ver-
tex using a manifold smoother, and figure 4-b shows the new dis-
placements computed using (15). Finally, figure 4-d illustrates the
surface generated by our fairing operator.

3.3 Computation of Weights
In equation (15) a set of weights has been used that control

the importance of the different Laplacians. In our framework we
developed a simple strategy to select those weights allowing us to
achieve reasonable cross-l-seam smoothness.

Our approach is simple: we want to assign larger weight values
to vertices that are closer to an l-seam or a zero-feature, and
smaller weights to vertices that are farther away. We accomplished
this in two steps.

In the first step we compute the distance for each vertex to
the closest l-seam or zero-vertex. In our framework we used a
topological measure, where the distance between two vertices
and equals the minimum number of edges traversed to get from

 to .
Next, the weight for each vertex is computed as the ratio

between the distance and the maximum distance of any
mesh vertex to the closest l-seam or zero-vertex whose path goes
through :
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d) Smoothed surface that interpolates the l-seams (in blue).
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(16)

where is a user specified maximum weight. Figure 4-c shows a
colormap of the weights associated with the vertices in the model:
blue corresponds to small values, yellow to high values. We have
chosen a linear function to model the weights, since it was suffi-
cient for our needs. However, note that any function can be used in
its place.

During the smoothing step of a vertex the weights for a ver-
tex  are chosen as follows:

(17)

where is the number of neighbors of that satisfy .
As a consequence, the new position of the vertex is chosen to
minimize its curvature plus the curvature of the vertices that are
closer to an l-seam or to a zero-feature.

If the model does not contain any l-seam, our operator would
educe to the standard two-manifold operator, since the weights
would be defined as:

(18)

3.4 Boundary Conditions
Real-world models usually have boundaries, i.e. they are created

by computing the intersections of a set of two-manifolds with
boundaries. The boundaries in our models are handled in the same
way we handle any one-feature: they are smoothed using a one-
dimensional fairing operator, and the zero-features are interpo-
lated. This approach guarantees smooth boundaries, and since the
boundaries are handled as one-features, we explicitly avoid having
to define special operators for the case where the neighborhood of
a vertex  is homeomorphic to .

For the time being we are not applying additional constraints on
the boundaries, but boundary constraints could be easily included
into the model. This could be done for example by specifying the
derivative or the curvature at the boundary vertices. Using this
information we would treat the boundaries as l-seams, and we
would be able to construct approximations of the 2D Laplacians
for the boundary vertices.

3.5 Multiresolution Representation
In [9] and [6] the fairing operators were used in a multiresolution
setting to construct three important applications:
• A multi-level smoother. This is a very important application

since, as noted in [16] and [9], explicit solvers based on a
Gauss-Seidel iteration scheme only smooth high frequencies
efficiently. This effect is caused by the fact that the filtering pro-
cess attenuates the eigenvectors with largest corresponding
eigenvalues referring to the high mesh frequencies. The applica-
tion of a fairing operator on coarse approximations of the mesh
allows us to smooth lower frequencies efficiently.

• A multiresolution representation for meshes, which can be con-
structed using a prolongation operator and a set of local
frames, as demonstrated in [6]. The operator , which can be
considered as a non-uniform subdivision operator, is used to
approximate the position of a vertex that is being re-intro-
duced in the mesh. The distance between the exact position
and  is then stored in a local frame.

• A multiresolution editing tool for meshes with arbitrary connec-
tivity can be built from a fairing operator in conjunction with a
set of local frames.
In the following, we introduce the tools required to construct

these three applications in our setting, namely an edge collapse
operator, a prolongation operator  and a set of local frames.

We constructed a multiresolution representation based on the
progressive mesh algorithm presented in [7] and [8]. We extended
the edge collapse strategy to meet the underlying boundary repre-
sentation of our models: vertices that do not lie in a one-feature can
be removed using the standard edge collapse operator. Vertices in a
one-feature must be removed with special care. A vertex in a
one-feature can only be collapsed with its left or right neighbor in
the one-feature. After the collapse, the topology of all the two-fea-
tures sharing the one-feature must be updated. A collapse of a ver-
tex in a one-feature is illustrated in figure 5.

In order to construct simplified approximations of our models of
good quality, we explicitly check if an edge collapse operation
introduces degeneracies in the mesh, such as triangles with a very
small area or folded triangles. A rigorous analysis of the problem
can be found in [3]. It should be noted that the problem of bubbling
can occur, where the removal of a vertex from a model could intro-
duce new self-intersections in the model. The solution of this prob-
lem is outside the scope of our paper.

As a prolongation operator we can use directly the results
from section 3.2 expressed by (15): inserts a vertex into the
model at the position that minimizes both the Laplacian of
and of the vertices  in its neighborhood.

We implemented the local frames proposed in [9] for our mod-
els. It should be noted that we must handle special configurations,
such as vertices that lie on an l-limit or an l-seam.

We show in figure 6 how a geological model is smoothed using a
multilevel approach, implemented as a full V-cycle, which can be
described as

(19)

The input mesh (figure 6-a and b) is first smoothed using (15),
denoted by . Next, the model is simplified using our
extension of the progressive mesh scheme, denoted by the operator

. These two operations are repeated times, until the model is
coarse enough (figure 6-c). The coarse model is then refined using
the prolongation operator , which will re-introduce vertices into
the model. Since we use (15) as our operator, the resulting refine-
ment will be smooth. After that, the model is smoothed once again
using (15). These two operations must also be repeated times, in
order to reconstruct a model that has the same connectivity as the
input model.

Since the surfaces in the example of figure 6 are height fields, we
constructed a robust global parametrization for all the two-features
in the model, which allowed us to map textures to the model and
avoid tearing problems caused by the drifting of vertices encoun-
tered in the fairing process.
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Figure 5: Collapse of a vertex in a one-feature in our boundary representation:
a) Before edge collapse. b) After edge collapse.
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Figure 6: Multilevel fairing of a geological model (see also CP3):
a) Original model. b) Wireframe of the original model. c) Wireframe of the simplified model. d) Smoothed model in full resolution

a) b) c) d)

4 Improvements and Extensions
In this section we present two important extensions to improve the
quality of the fairing procedure. It should be noted that these
approaches can be applied to standard manifold smoothers as well.

4.1 Volume Preservation
In the literature, two volume preservation strategies have been

discussed:
I. [16] applied an un-shrinking step after each fairing step. An un-

shrinking step consists in applying equation (3) using a constant
instead of . As Desbrun noted in [2] this strategy will

not preserve the volume exactly leading to severe problems in
certain types of modeling applications.

II. [2] proposed a new strategy to preserve the global volume of a
mesh by computing its volume, and rescaling it after every fair-
ing step to guarantee exact global volume preservation. The
problem of this approach is that the local distribution of the vol-
ume in the model is not considered in the fairing process.

In our framework we implemented a local volume preservation
strategy derived from a simple observation: when a vertex is
smoothed the change of the volume can be computed locally.
This is accomplished by computing the volumes of the tetrahedra
defined by the triangles in the one-neighborhood of and the
new position of . We can compensate for by moving the
vertices in the one-neighborhood of into the “opposite” direc-
tion that we moved , as shown in figure 7.

We do not allow the vertices in the one-neighborhood of to
move in an arbitrary direction to preserve the volume of the model.
Instead we fix one vector, along which all the vertices
are moved during the fairing of . In our implementation we

Figure 7: Local volume preservation:
a) Model before fairing. b) The vertex xi is smoothed.
c) The neighbors vertices xj of xi compensate for the change in the volume.
d) Final model after fairing and volume preservation.
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chose this vector to be the Laplacian of the vertex . This
choice is motivated by being able to construct a simple formulation
of the volume preservation strategy using a linear system of equa-
tions. Hence, the change of the volume  can be formulated as

(20)

where the operator represents the determinant of the
matrices used to evaluate the volume of the associated tetrahedra.
We observed reasonable numerical stability, however, it is possible
to use alternative approaches, such as [5].

We then enforce each of the vertices in the one-neighborhood
of  to compensate for a part  of , where

(21)

Since all the vertices in the one-neighborhood of are moved
along the same vector , we must solve

(22)

with respect to t. If we expand equation (22) we can construct a
linear equation with respect to the unknown . The solution of this
linear equation allows us to compute the new position  of  as

(23)

Equations (22) and (23) compute the new position of the vertex
correctly, since the volume changed by the movement of is

independent of the position of the vertices  and .
Figure 8 presents the result of the volume preserving fairing

operation as applied to a simple model.

Since our operations are local, the overall shape of the model is
not changed. For instance, if the input model is a V-shaped mani-
fold, our algorithm will smooth it while preserving its volume and

Figure 8: Volume preservation: a) Input model.
b) Faired model using the local volume preservation strategy.
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its shape, whereas a global volume preservation strategy would
return a flat plane in the limit.

As opposed to [5], we use our local volume preservation strategy
in a diffusion process, and therefore we are faced with possible
convergence problems. We attacked this problem by minimizing
the drifting of the vertices in the model and by choosing in (3)
sufficiently small. This leads to a slower convergence, however, we
observed stable results.

4.2 Point- and Curve Constraints
One of the prominent applications of mesh fairing is the removal
of noise from meshes that are acquired from real world data, such
as meshes constructed from laser-scanners or from seismic data.
The noise is usually introduced by imperfect acquisition systems,
and it has to be removed in order to reconstruct the original shape.

The conventional fairing operators that have been constructed so
far do not distinguish between noise and features, however. That is,
during the fairing process special features of meshes might be
removed. When constructing a simple feature preserving fairing
operator, we exploited the properties of our B-rep data structure.

We allow the user to preserve two types of features in a model:
sets of zero-features and sets of one-features. The zero-vertices can
be interpreted as the set of vertices that contains the structural
information of the model. To prevent these vertices from moving
during the fairing process we set these vertices as zero vertices.
The use of l-limits in the interior of a two-feature allows us to
smooth curves without requiring cross-curve smoothness.

In figure 9 we depict the result of applying this simple strategy to
a model. In this example we set six vertices on the top of the V-
shaped manifold as zero-features. We observe that the algorithm
smoothed the model while preserving its overall shape and the six
interpolatory constraints.

Taubin presented in [16] a similar approach to compute a smooth
interpolation of vertices. The drawback of his approach, however,
is that in order to achieve smooth surfaces using interpolatory con-
straints, it is first necessary to compute a set of smooth surfaces. In
a second step, a linear system of equations must be solved having
the same size as the number of vertices to be smoothly interpo-
lated. Furthermore, if the fairing operator requires geometric infor-
mation, this problem must be solved for each iteration. In our
approach, the B-rep data structure gives us feature preservation at
no additional cost.

5 Conclusion and Future Work
In this paper we presented a framework for fairing non-manifold
models. We used a multi-level approach to remove both high- and
lower frequencies from models by smoothing models at different
levels of resolution. We also introduced important extensions of
our framework that allow us to guarantee local volume and feature
preservation.

We consider the described framework as a core technology
enabling us to construct a multi-resolution representation of non-
manifold models. Future work comprises improved multiresolu-
tion representations of non-manifold models, adaptive visualiza-
tion algorithms and multi-resolution editing tools. Furthermore,
we plan to develop robust texture parametrization methods that are
independent of the fairing operator and the topological type of the
two-features.
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Figure 9: Feature preservation of a model:
a) Input model with no l-seams and ten zero-vertices.
b) Smoothed model that interpolates the zero-vertices.
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